RAMAN SPECTROSCOPIC STUDIES OF MANGANESE CHLORIDE-ALKALI METAL CHLORIDE SYSTEMS



| AHMED | AMIN ALY |
|-------|----------|
| AHMED | SHABANA  |











# RAMAN SPECTROSCOPIC STUDIES OF MANGANESE CHLORIDE-ALKALI METAL CHLORIDE SYSTEMS

by

C Ahmed Amin Aly Ahmed Shabana, B.Sc., M.Sc.

A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

> Department of Chemistry Memorial University of Newfoundland

> > July 1985

St. John's

Newfoundland

Canada

#### Abstract

The Raman and visible spectra of  $MnCl_2$  - ACl systems (A = Li, Na, K, Rb and Cs) were investigated in the solid and the molten phases to identify possible species formation. The many solid compounds precipitated from the melts were identified by their characteristic spectra. The agreement with reported phase diagrams was good. The results indicated that the  $MnCl_4^{2-}$  ions were present in solid  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  but in the other compounds the manganese was octahedrally coordinated with bridged chlorides.

The Raman spectra of the solids were discussed in terms of factor group analysis. The data for the melts suggested that a discrete  $MnCl_4^{2-}$  species was the predominant species in the molten phase of composition  $MnCl_2.nACl (n \ge 2)$ . For melts of composition  $MnCl_2.nACl (n < 2)$  a tetrahedral species with corner sharing was proposed but no new peaks due to new discrete species could be identified. Melts of high  $MnCl_2$ content appeared to have a very rapid equilibrium of ions with most Mn retaining tetrahedral coordination but some octahedral coordination was also suggested from assessment of visible spectra. A rapidly fluctuating local structure around the  $Mn^{2+}$  with lifetime of the aggregate on the time scale of  $10^{-12}$  seconds would be consistent with the composition and temperature studies of the bandshape of the Mn-Cl stretching region.

The Raman spectra of  $MgCl_2 - CsCl$  and  $MgCl_2 - KCl$  systems were investigated in the molten phase for comparison. The results confirm the presence of discrete  $MgCl_4^{2-}$  ions as the predominant species in melts even of low  $MgCl_2$  concentration, but a distinct polynuclear species  $Mg_2Cl_7^{3-}$  was also formed when the  $MgCl_2$  concentration was increased. In contrast to the manganese system the equilibrium species present in the magnesium system have lifetimes greater than  $10^{-12}$  seconds. The results also indicated that by increasing the temperature the polynuclear species was broken down and more MgCl<sub>4</sub><sup>2-</sup> ions were formed.

### ACKNOWLEDGEMENTS

I would like to express my warmest gratitude to my research supervisor Professor Murray Brooker for his friendly guidance, assistance and enthusiastic interest throughout the course of this work. His encouragement and supervision have been extremely valuable. Special thanks to B. Rice for his generous computer help. Special thanks to Teresa Barker for typing this thesis.

I would like to thank Memorial University for financial support which made this work possible.

## TABLE OF CONTENTS

|      |              |                                         | Jaye |
|------|--------------|-----------------------------------------|------|
| LIST | OF T         | ABLES                                   | vii  |
| LIST | OF F         | IGURES                                  | x    |
| 1.   | Intro        | oduction                                | 1    |
|      | 1.1          | Previous Work                           | 6    |
| 2    | Theor        | rv.                                     | 16   |
| ۷.   | meon         |                                         | 10   |
| 3.   | Expe         | rimental Procedures                     | 19   |
|      | 3.1          | Samples Preparation                     | 19   |
|      | 3.2          | Characterization of solids              | 21   |
|      | 3.3          | Raman Spectroscopic Measurements        | 21   |
|      |              | 3.3.1 Molten Phase                      | 21   |
|      |              | 3.3.2 Solid Phase                       | 24   |
|      | 3.4          | Visible Spectroscopic Measurements      | 25   |
| 4.   | Resu         | lts and Discussion                      |      |
|      | 4 1          | Paman studies of MnCl nACl. Solid state | 29   |
|      | <b>T</b> • 1 |                                         | 25   |
|      |              | 4.1.1 MnCl <sub>2</sub>                 | 29   |
|      |              | 4.1.2 MnCl <sub>2</sub> .CsCl System    | 29   |
|      |              | (i) $Cs_2MnCl_4$                        | 29   |
|      |              | (ii) Cs <sub>3</sub> MnCl <sub>5</sub>  | 46   |
|      |              | (iii) CsMnCl <sub>3</sub>               | 47   |
|      |              | (iv) CsMn <sub>4</sub> Cl <sub>9</sub>  | 55   |
|      |              | 4.1.3 MnCl <sub>2</sub> .RbCl System    | 60   |
|      |              | (i) RbMnCl <sub>3</sub>                 | 60   |
|      |              | (ii) $Rb_{2}MnCl_{4}$                   | 61   |
|      |              | (iii) $Rb_3Mn_2Cl_7$                    | 63   |
|      |              | 4.1.4 MnCl <sub>2</sub> .KCl System     | 68   |
|      |              | 4.1.5 MnClNaCl System                   | 69   |
|      |              | 4.1.6 MnCl_LiCl System                  | 78   |

Z

- vi -

| p | a | g | e |
|---|---|---|---|
|   |   | ~ |   |

|    | 4.2  | Raman Studies of MnCl <sub>2</sub> .nACl: Molten state                                             | 82  |
|----|------|----------------------------------------------------------------------------------------------------|-----|
|    |      | 4.2.1 MnCl <sub>2</sub> and MnCl <sub>2</sub> .CsCl Melts                                          | 82  |
|    |      | 4.2.2 MnCl <sub>2</sub> .RbCl Melts                                                                | 111 |
|    |      | 4.2.3 MnCl <sub>2</sub> .KCl Melts                                                                 | 111 |
|    |      | 4.2.4 MnCl_2.NaCl Melts                                                                            | 129 |
|    |      | 4.2.5 MnCl <sub>2</sub> .LiCl Melts                                                                | 176 |
|    |      | 4.2.6 Half band width of $v_1$ mode for ACl.MnCl <sub>2</sub> melts .                              | 176 |
|    | 4.3  | Raman Studies of MgCl <sub>2</sub> .nACl: Molten state                                             | 191 |
|    |      | 4.3.1 MgCl_ and MgClCsCl Melts                                                                     | 191 |
|    |      | 4.3.2 MgCl <sub>2</sub> .KCl Melts                                                                 | 193 |
|    |      | 4.3.3 Effect of temperature on the spectra of<br>CsMgCl_ and K_MgCl_ Melts                         | 219 |
|    |      | 4.3.4 Comparison of Results for MgCl, and                                                          |     |
|    |      | MnCl <sub>2</sub> systems                                                                          | 248 |
|    | 4.4  | Visible Spectra of MnCl <sub>2</sub> .nACl                                                         | 249 |
|    |      | 4.4.1 Solid State                                                                                  | 255 |
|    |      | (i) $Cs_2MnCl_4$ and $Cs_2MnCl_5$                                                                  | 255 |
|    |      | (ii) $MnCl_2$ , $NaMn_ACl_0$ and $Na_2Mn_3Cl_8$                                                    | 257 |
|    |      | (iii) $CsMnCl_3$ and $CsMn_1Cl_6$                                                                  | 274 |
|    |      | (iv) $RbMnCl_3$ , $Rb_2MnCl_4$ and $Rb_3Mn_2Cl_7$                                                  | 274 |
|    |      | (v) $KMnCl_3$ , $K_4MnCl_6$ and $K_3Mn_2Cl_7$                                                      | 274 |
|    |      | (vi) NaMnCl <sub>3</sub> , Na <sub>2</sub> MnCl <sub>4</sub> and Na <sub>6</sub> MnCl <sub>8</sub> | 291 |
|    |      | 4.4.2 Molten State                                                                                 | 306 |
|    |      | (i) $Cs_2MnCl_A$ , $Cs_2MnCl_5$ , $K_AMnCl_6$ and $Na_6MnCl_8$                                     | 306 |
|    |      | (ii) $Rb_3Mn_2Cl_7$ , $K_3Mn_2Cl_7$ , $Na_2MnCl_4$ and $Rb_2MnCl_4$ .                              | 307 |
|    |      | (iii) CsMnCl <sub>2</sub> , NaMnCl <sub>2</sub> , KMnCl <sub>2</sub> and RbMnCl <sub>2</sub>       | 307 |
|    |      | (iv) $MnCl_2$ , $CsMn_4Cl_9$ , $NaMn_4Cl_9$ and $Na_2Mn_3Cl_8$                                     | 307 |
| 5. | Conc | lusion                                                                                             | 345 |
| 6. | Refe | rences                                                                                             | 346 |

## LIST OF TABLES

|     |                                                                                                                              |   | page |
|-----|------------------------------------------------------------------------------------------------------------------------------|---|------|
| 1.  | Peak frequencies in cm <sup>-1</sup> and assignments for solid MnCl <sub>2</sub>                                             |   | 30   |
| 2.  | Determination of $\Gamma$ red. for MnCl <sub>4</sub> <sup>2-</sup> ion                                                       |   | 35   |
| 3.  | Internal modes of $MnCl_4^{2-}$ ion                                                                                          | • | 38   |
| 4.  | Lattice modes of $MnCl_4^{2-}$ ion (Translation)                                                                             |   | 39   |
| 5.  | Lattice modes of $MnCl_4^{2-}$ ion (Rotation)                                                                                |   | 40   |
| 6.  | Lattice modes of Cs <sup>+1</sup> ions                                                                                       | • | 41   |
| 7.  | Assignments and peak positions in $\rm cm^{-1}$ for solid $\rm Cs_2MnCl_4$                                                   | • | 43   |
| 8.  | Internal modes of $MnCl_4^{2-}$ ion                                                                                          | • | 48   |
| 9.  | Lattice modes of $MnCl_4^{2-}$ ion (Translation)                                                                             | • | 49   |
| 10. | Lattice modes of $MnCl_4^{2-}$ ion (Rotation)                                                                                | • | 50   |
| 11. | Assignments and frequencies in ${\rm cm}^{-1}$ for solid ${\rm Cs}_3{\rm MnCl}_5$ .                                          | • | 51   |
| 12. | Assignments and peak frequencies in $cm^{-1}$ for CsMnCl <sub>3</sub> and (CH <sub>3</sub> ) <sub>4</sub> NMnCl <sub>3</sub> |   | 56   |
| 13. | Peak frequencies in cm <sup>-1</sup> and assignments for the solid compounds formed in CsCl-MnCl <sub>2</sub> mixture        |   | 57   |
| 14. | Assignments and frequencies in ${\rm cm}^{-1}$ for solid ${\rm RbMnCl}_3$                                                    |   | 62   |
| 15. | Peak frequencies in cm <sup>-1</sup> and assignments for the solid compounds formed in RbC1-MnC1 <sub>2</sub> mixtures       | • | 64   |
| 16. | Assignments and peak frequencies in cm <sup>-1</sup> for solid Rb <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub>               | • | 65   |
| 17. | Assignments and peak frequencies in cm <sup>-1</sup> for the solid compounds formed in KC1-MnC1 <sub>2</sub> system          | • | 70   |
| 18. | Assignments and frequencies in cm <sup>-1</sup> for the solid compounds formed in MnCl <sub>2</sub> -NaCl system             | • | 75   |
| 19. | Peak frequencies in cm <sup>-1</sup> and assignments for the solid compounds formed in LiCl-MnCl <sub>2</sub> system         | • | 79   |
| 20. | Summary of results of curve resolution analysis for MnCl <sub>2</sub><br>and MnCl <sub>2</sub> -CsCl Melts                   | • | 84   |

| page |
|------|
|------|

| 21. | Summary of results of curve resolution analysis for MnCl <sub>2</sub> -RbCl Melts                                                                                    | 112 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 22. | Summary of results of curve resolution analysis for MnCl <sub>2</sub> -KCl Melts                                                                                     | 130 |
| 23. | Summary of results of curve resolution analysis for MnCl <sub>2</sub> -NaCl Melts                                                                                    | 151 |
| 24. | Summary of results of curve resolution analysis for MnCl <sub>2</sub> -LiCl Melts                                                                                    | 177 |
| 25. | Half band width for AC1-MnC1 <sub>2</sub> melts                                                                                                                      | 190 |
| 26. | Summary of results of curve resolution analysis for<br>MgCl <sub>2</sub> and MgCl <sub>2</sub> -CsCl Melts                                                           | 194 |
| 27. | Summary of results of curve resolution analysis for MgCl <sub>2</sub> -KCl Melts                                                                                     | 220 |
| 28. | Summary of results of curve resolution analysis for CsMgCl <sub>3</sub> and K <sub>2</sub> MgCl <sub>4</sub> Melts                                                   | 237 |
| 29. | Splitting of the sextet and quartet terms of a d <sup>5</sup> ion in octahedral field                                                                                | 250 |
| 30. | Absorption spectrum of $Mn(H_20)_6^{2+}$                                                                                                                             | 251 |
| 31. | Absorption spectra of $[MnBr_4]^{2-}$ and $[MnCl_4]^{2-}$                                                                                                            | 253 |
| 32. | Electronic spectra of MnCl <sub>2</sub>                                                                                                                              | 256 |
| 33. | Band positions in $cm^{-1}$ and assignments for solid $Cs_2MnCl_4$ and $Cs_3MnCl_5$                                                                                  | 266 |
| 34. | Peak frequencies in cm <sup>-1</sup> and assignments for solid MnCl <sub>2</sub> ,                                                                                   |     |
|     | $NaMn_4C1_9$ and $Na_2Mn_3C1_8$ at room temperature                                                                                                                  | 273 |
| 35. | Peak positions in $cm^{-1}$ and assignments for solid CsMnCl <sub>3</sub> , CsMn <sub>4</sub> Cl <sub>9</sub> and (CH <sub>3</sub> ) <sub>4</sub> NMnCl <sub>3</sub> | 283 |
| 36. | Peak frequencies in $cm^{-1}$ and assignments for solid RbMnCl <sub>3</sub> ,                                                                                        |     |
|     | $Rb_2MnCl_4$ and $Rb_3Mn_2Cl_7$ at room temperature                                                                                                                  | 290 |
| 37. | Peak positions in $cm^{-1}$ and assignments for solid KMnCl <sub>3</sub>                                                                                             |     |
|     | $K_{4}$ MnCl <sub>6</sub> and $K_{3}$ Mn <sub>2</sub> Cl <sub>7</sub> at room temperature                                                                            | 298 |

| 38. | Assignments and peak positions in cm <sup>-1</sup> for solid NaMnCl <sub>3</sub> ,                                                                                                                                                    |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | $Na_2MnC1_4$ and $Na_6MnC1_8$ at room temperature                                                                                                                                                                                     | 305 |
| 39. | Assignments and peak positions in cm <sup>-1</sup> for Cs <sub>2</sub> MnCl <sub>4</sub> ,                                                                                                                                            |     |
|     | Cs <sub>3</sub> MnCl <sub>5</sub> , K <sub>4</sub> MnCl <sub>6</sub> , Na <sub>6</sub> MnCl <sub>8</sub> and MnCl <sub>2</sub> -CsCl melts                                                                                            | 316 |
| 40. | Peak positions in cm <sup>-1</sup> and assignments for Rb <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> , K <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> , Na <sub>2</sub> MnCl <sub>4</sub> , Rb <sub>2</sub> MnCl <sub>4</sub> melts |     |
|     | and $[MnCl_4]^2$ solution                                                                                                                                                                                                             | 325 |
| 41. | Assignments and peak positions in cm <sup>-1</sup> for CsMnCl <sub>3</sub>                                                                                                                                                            |     |
|     | NaMnCl <sub>3</sub> , KMnCl <sub>3</sub> , RbMnCl <sub>3</sub> and MnCl <sub>2</sub> -CsCl melts                                                                                                                                      | 334 |
| 42. | Assignments and peak positions in cm <sup>-1</sup> for MnCl <sub>2</sub> ,                                                                                                                                                            |     |
|     | CsMn <sub>4</sub> Cl <sub>9</sub> , NaMn <sub>4</sub> Cl <sub>9</sub> , Na <sub>2</sub> Mn <sub>3</sub> Cl <sub>8</sub> and MnCl <sub>2</sub> -CsCl melts                                                                             | 344 |

page

### LIST OF FIGURES

|      |     |                                                                                                                                             | page |
|------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|------|
| Fig. | 1.  | Sample furnace                                                                                                                              | 28   |
| Fig. | 2.  | Raman spectrum of solid MnCl <sub>2</sub> at room                                                                                           |      |
|      |     | temperature. The stars indicate ghost peaks.<br>The dots indicate plasma lines                                                              | 32   |
| Fig. | 3.  | Normal vibrations of a tetrahedral molecule                                                                                                 | 37   |
| Fig. | 4.  | Raman spectra of solid Cs <sub>2</sub> MnCl <sub>4</sub> at 77, 298<br>and 800 K                                                            | 45   |
| Fig. | 5.  | Raman spectra of solid Cs <sub>3</sub> MnCl <sub>5</sub> at 77, 298<br>and 760 K                                                            | 53   |
| Fig. | 6.  | Raman spectra of solids formed from the CsCl-MnCl <sub>2</sub><br>system. The stars indicate ghost peaks. The<br>dots indicate plasma lines | 59   |
| Fig. | 7.  | Raman spectra of solids formed from the RbCl-MnCl <sub>2</sub> system. The stars indicate ghost peaks                                       | 67   |
| Fig. | 8.  | Raman spectra of solids formed from the KCl-MnCl <sub>2</sub> system. The stars indicate ghost peaks                                        | 72   |
| Fig. | 9.  | Raman spectra of solids formed from the NaCl-MnCl <sub>2</sub><br>system. The stars indicate ghost peaks. The<br>dots indicate plasma lines | 77   |
| Fig. | 10. | Raman spectra of solids formed from the LiCl-MnCl <sub>2</sub><br>system. The stars indicate ghost peaks. The<br>dots indicate plasma lines | 81   |
| Fig. | 11. | Raman spectra of molten MnCl <sub>2</sub> at 942 K, $I_{  }$ and $I_{ }$ .                                                                  | 86   |
| Fig. | 12. | Raman spectra of molten Cs <sub>2</sub> MnCl <sub>4</sub> at 844 K,<br>I and I                                                              | 88   |
| Fig. | 13. | Raman spectra of molten $Cs_3MnCl_5$ at 844 K,<br>I and I                                                                                   | 90   |
| Fig. | 14. | Raman spectra of molten CsMnCl <sub>3</sub> at 916 K,<br>I and I                                                                            | 92   |
| Fig. | 15. | Raman spectra of molten $CsMn_4Cl_9$ at 865 K,<br>I and I                                                                                   | 94   |

|      | -  |    |   |
|------|----|----|---|
| n    | а  | п  | 0 |
| - 12 | u. | S. |   |
|      |    | -  | - |

| Fig. 10 | 5. Effect of temperature on $v_1$ mode of $Cs_2MnCl_4$                                                                                                                 | 96       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1       | A. Plot of band position (cm <sup>-1</sup> ) vs temperature 9<br>B. Plot of half band width (cm <sup>-1</sup> ) vs temperature 9                                       | 96<br>96 |
| Fig. 1  | 7. Effect of temperature on $v_1$ mode of $Cs_3$ MnCl <sub>5</sub>                                                                                                     | 98       |
| 1       | <ul> <li>A. Plot of band position (cm<sup>-1</sup>) vs temperature 9</li> <li>B. Plot of half band width (cm<sup>-1</sup>) vs temperature 9</li> </ul>                 | 98<br>98 |
| Fig. 18 | 3. Isotropic Raman spectra of molten MnCl <sub>2</sub> . The<br>smooth line is the best-fit curve calculated with<br>a single Gaussian*Lorentzian functions 10         | 00       |
| Fig. 19 | 9. Isotropic Raman spectra of Molten Cs <sub>2</sub> MnCl <sub>4</sub> . The<br>smooth line is the best-fit curve calculated with<br>a single Lorentzian function      | )2       |
| Fig. 20 | D. Isotropic Raman spectra of molten Cs <sub>3</sub> MnCl <sub>5</sub> . The<br>smooth line is the best-fit curve calculated with<br>a single Lorentzian function      | 04       |
| Fig. 2  | I. Isotropic Raman spectra of molten CsMnCl <sub>3</sub> . The<br>smooth line is the best-fit curve calculated with<br>a single Gaussian*Lorentzian function           | 06       |
| Fig. 22 | 2. Isotropic Raman spectra of molten CsMnCl <sub>3</sub> . The<br>smooth line is the best-fit curve calculated with<br>a single Lorentzian function                    | 08       |
| Fig. 2  | 3. Isotropic Raman spectra of molten CsMn <sub>4</sub> Cl <sub>9</sub> . The smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function 1 | 10       |
| Fig. 24 | 4. Raman spectra of molten RbMnCl <sub>3</sub> at 878 K,<br>$I_{  }$ and $I_{\perp}$ .                                                                                 | 14       |
| Fig. 2  | 5. Raman spectra of molten $Rb_2MnCl_4$ at 753 K,<br>I    and I                                                                                                        | 16       |
| Fig. 2  | 5. Raman spectra of molten RbCl:MnCl <sub>2</sub> (3:1) at<br>882 K, $I_{  }$ and $I_{\perp}$ .                                                                        | 18       |
| Fig. 2  | 7. Raman spectra of molten $Rb_3Mn_2Cl_7$ at 889 K,<br>$I_{  }$ and $I_1$                                                                                              | 20       |

| Fig. | 28. | Isotropic Raman spectra of molten RbMnCl <sub>3</sub> . The                                            |
|------|-----|--------------------------------------------------------------------------------------------------------|
|      |     | <pre>smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function</pre>     |
| Fig. | 29. | Isotropic Raman spectra of molten Rb2MnCl4. The                                                        |
|      |     | smooth line is the best-fit curve calculated with a single Lorentzian function                         |
| Fig. | 30. | Isotropic Raman spectra of molten<br>RbCl:MnCl <sub>2</sub> (3:1). The smooth line is the              |
|      |     | best-fit curve calculated with a single<br>Lorentzian function                                         |
| Fig. | 31. | Isotropic Raman spectra of molten Rb <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> . The                |
|      |     | smooth line is the best-fit curve calculated with<br>a single Lorentzian function                      |
| Fig. | 32. | Raman spectra of molten $KMnCl_3$ at 816 K,<br>I and I $\ldots$ 132                                    |
| Fig. | 33. | Raman spectra of molten KCl:MnCl <sub>2</sub> (2:1)<br>at 882 K, I and I $\therefore$ 134              |
| Fig. | 34. | Raman spectra of molten KC1:MnCl <sub>2</sub> (3:1) at 882 K, $I_{  }$ and $I_{\perp}$                 |
| Fig. | 35. | Raman spectra of molten $K_3Mn_2Cl_7$ at 794 K,<br>I and I $\therefore$ 138                            |
| Fig. | 36. | Raman spectra of molten $K_4$ MnCl <sub>6</sub> at 816 K,<br>I and I                                   |
| Fig. | 37. | Isotropic Raman spectra of molten KMnCl <sub>3</sub> . The                                             |
|      |     | <pre>smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function 142</pre> |
| Fig. | 38. | Isotropic Raman spectra of molten<br>KCl:MnCl <sub>2</sub> (2:1). The smooth line is the               |
|      |     | best-fit curve calculated with a single<br>Lorentzian function                                         |
| Fig. | 39. | Isotropic Raman spectra of molten<br>KCl:MnCl <sub>2</sub> (3:1). The smooth line is the               |
|      |     | best-fit curve calculated with a single<br>Lorentzian function                                         |
| Fig. | 40. | Isotropic Raman spectra of molten K3Mn2Cl7. The                                                        |
|      |     | <pre>smooth line is the best-fit curve calculated with a single Lorentzian function</pre>              |

| p | a | g | e |
|---|---|---|---|
|   |   | - |   |

| Fig. | 41. | Isotropic Raman spectra of molten K4MnCl6. The                                                                                                                                                                                                               |
|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     | smooth line is the best-fit curve calculated with a single Lorentzian function                                                                                                                                                                               |
| Fig. | 42. | Raman spectra of molten NaMnCl <sub>3</sub> at 773 K, $I_{  }$ and $I_{ }$                                                                                                                                                                                   |
| Fig. | 43. | Raman spectra of molten $Na_2MnCl_4$ at 794 K,<br>I and I                                                                                                                                                                                                    |
| Fig. | 44. | Raman spectra of molten NaCl:MnCl <sub>2</sub> (3:1)<br>at 973 K, I and I                                                                                                                                                                                    |
| Fig. | 45. | Raman spectra of molten $Na_2Mn_3Cl_8$ at<br>816 K, I and I                                                                                                                                                                                                  |
| Fig. | 46. | Raman spectra of molten $NaMn_4Cl_9$ at<br>937 K, $I_{  }$ and $I_{\perp}$                                                                                                                                                                                   |
| Fig. | 47. | Raman spectra of molten $Na_6MnCl_8$ at<br>988 K, $I_{  }$ and $I_{\perp}$                                                                                                                                                                                   |
| Fig. | 48. | Isotropic Raman spectra of molten NaMnCl <sub>3</sub> . The<br>smooth line is the best-fit curve calculated as a<br>sum of two Gaussian*Lorentzian functions. The<br>second low frequency peak has only been added to<br>improve the base line               |
| Fig. | 49. | Isotropic Raman spectra of molten Na <sub>2</sub> MnCl <sub>4</sub> . The<br>smooth line is the best-fit curve calculated as a<br>sum of two Gaussian*Lorentzian functions. The<br>second low frequency peak has only been added to<br>improve the base line |
| Fig. | 50. | Isotropic Raman spectra of molten NaCl:MnCl <sub>2</sub> (3:1).<br>The smooth line is the best-fit curve calculated as<br>a sum of two Gaussian*Lorentzian functions. The<br>second low frequency peak has only been added to<br>improve the base line       |
| Fig. | 51. | Isotropic Raman spectra of molten Na <sub>2</sub> Mn <sub>3</sub> Cl <sub>8</sub> . The smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function 171                                                                          |
| Fig. | 52. | Isotropic Raman spectra of molten NaMn <sub>4</sub> Cl <sub>9</sub> . The smooth line is the best-fit curve calculated with                                                                                                                                  |
|      |     | a single Gaussian*Lorentzian function                                                                                                                                                                                                                        |

| pay | E |
|-----|---|
|-----|---|

| Fig. | 53. | Isotropic Raman spectra of molten Na <sub>6</sub> MnCl <sub>8</sub> . The                                                                                                         |
|------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |     | <pre>smooth line is the best-fit curve calculated as a sum of two Gaussian*Lorentzian functions. The second low frequency peak has only been added to improve the base line</pre> |
| Fig. | 54. | Raman spectra of molten LiCl:MnCl <sub>2</sub> (1:1) at<br>945 K, $I_{  }$ and $I_{\perp}$                                                                                        |
| Fig. | 55. | Raman spectra of molten LiCl:MnCl <sub>2</sub> (2:1) at<br>953 K, $I_{  }$ and $I_{\perp}$                                                                                        |
| Fig. | 56. | Raman spectra of molten LiCl:MnCl <sub>2</sub> (3:1) at<br>973 K, $I_{  }$ and $I_{\perp}$                                                                                        |
| Fig. | 57. | Isotropic Raman spectra of molten LiCl:MnCl <sub>2</sub> (1:1).                                                                                                                   |
|      |     | The smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function 185                                                                                   |
| Fig. | 58. | Isotropic Raman spectra of molten LiCl:MnCl <sub>2</sub> (2:1).                                                                                                                   |
|      |     | The smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function                                                                                       |
| Fig. | 59. | Isotropic Raman spectra of molten LiCl:MnCl <sub>2</sub> (3:1).                                                                                                                   |
|      |     | The smooth line is the best-fit curve calculated with a single Gaussian*Lorentzian function 189                                                                                   |
| Fig. | 60. | Raman spectra of molten CsCl:MgCl <sub>2</sub> (4:1) at<br>840 K, I and I                                                                                                         |
| Fig. | 61. | Raman spectra of molten $Cs_2MgCl_4$ at 896 K,<br>I and I                                                                                                                         |
| Fig. | 62. | Raman spectra of molten CsCl:MgCl <sub>2</sub> (1.5:1) at<br>915 K, I and I                                                                                                       |
| Fig. | 63. | Raman spectra of molten CsMgCl <sub>3</sub> at 896 K,<br>I <sub>  </sub> and I <sub> </sub> 202                                                                                   |
| Fig. | 64. | Raman spectra of molten CsCl:MgCl <sub>2</sub> (0.5:1) at<br>915 K, I <sub>  </sub> and I <sub> </sub>                                                                            |
| Fig. | 65. | Raman spectra of molten MgCl <sub>2</sub> at 1056 K,<br>I and I 206                                                                                                               |
| Fig. | 66. | Isotropic Raman spectra of molten CsCl:MgCl <sub>2</sub> (4:1).                                                                                                                   |
|      |     | The smooth line is the best-fit curve calculated with a single Lorentzian function                                                                                                |

page

| Fig. | 67. | Isotropic Raman spectra of molten Cs <sub>2</sub> MgCl <sub>4</sub> . The smooth line is the best-fit curve calculated as a                                    |     |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Fig. | 68. | Isotropic Raman spectra of molten CsCl:MgCl <sub>2</sub><br>(1.5:1). The smooth line is the best-fit curve                                                     | 210 |
| Fig. | 69. | Isotropic Raman spectra of molten CsMgCl <sub>3</sub> . The smooth line is the best-fit curve calculated as a sum of three lorentzian functions.               | 212 |
| Fig. | 70. | Isotropic Raman spectra of molten CsCl:MgCl <sub>2</sub><br>(0.5:1). The smooth line is the best-fit curve<br>calculated as a sum of four Lorentzian functions | 216 |
| Fig. | 71. | Isotropic Raman spectra of molten MgCl <sub>2</sub> . The smooth line is the best-fit curve calculated as a sum of three Gaussian*Lorentzian functions         | 218 |
| Fig. | 72. | Raman spectra of molten $K_2MgCl_4$ at 1049 K, $I_{  }$ and $I_1$ .                                                                                            | 222 |
| Fig. | 73. | Raman spectra of molten KC1:MgC1 <sub>2</sub> (1.5:1) at 1049 K, I and I $\dots$       | 224 |
| Fig. | 74. | Raman spectra of molten KMgCl <sub>3</sub> at 1049 K,<br>$I_{  }$ and $I_{\perp}$                                                                              | 226 |
| Fig. | 75. | Raman spectra of molten KCl:MgCl <sub>2</sub> (0.5:1) at 1049 K, $I_{  }$ and $I_{\perp}$                                                                      | 228 |
| Fig. | 76. | Isotropic Raman spectra of molten K <sub>2</sub> MgCl <sub>4</sub> . The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions   | 230 |
| Fig. | 77. | Isotropic Raman spectra of molten KC1:MgC1 <sub>2</sub><br>(1.5:1). The smooth line is the best-fit curve<br>calculated as a sum of three Lorentzian functions | 232 |
| Fig. | 78. | Isotropic Raman spectra of molten KMgCl <sub>3</sub> . The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.                | 234 |
| Fig. | 79. | Isotropic Raman spectra of molten KCl:MgCl <sub>2</sub><br>(0.5:1). The smooth line is the best-fit curve<br>calculated as a sum of four Lorentzian functions  | 236 |

page

| Fig. | 80. | Isotropic Raman spectra of molten CsMgCl <sub>3</sub> at                                                                |
|------|-----|-------------------------------------------------------------------------------------------------------------------------|
|      |     | 899 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions 239                      |
| Fig. | 81. | Isotropic Raman spectra of molten CsMgCl <sub>3</sub> at                                                                |
|      |     | 1054 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions 241                     |
| Fig. | 82. | Isotropic Raman spectra of molten CsMgCl <sub>3</sub> at                                                                |
|      |     | 1153 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions 243                     |
| Fig. | 83. | Isotropic Raman spectra of molten K2MgCl4 at                                                                            |
|      |     | 973 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions 245                      |
| Fig. | 84. | Isotropic Raman spectra of molten K2MgCl4 at                                                                            |
|      |     | 1143 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions 247                     |
| Fig. | 85. | A. Upper spectrum is the projection lamp section.<br>Lower spectrum is the projection lamp plus<br>sample spectrum.     |
|      |     | B. The subtracted spectrum represents the visible spectrum of Cs <sub>2</sub> MnCl <sub>4</sub> at room temperature 259 |
| Fig. | 86. | Visible spectrum of Cs <sub>2</sub> MnCl <sub>4</sub> at 681 K                                                          |
| Fig. | 87. | Visible spectrum of Cs <sub>3</sub> MnCl <sub>5</sub> at room temperature 263                                           |
| Fig. | 88. | Visible spectrum of Cs <sub>3</sub> MnCl <sub>5</sub> at 681 K                                                          |
| Fig. | 89. | Visible spectrum of MnCl <sub>2</sub> at room temperature 268                                                           |
| Fig. | 90. | Visible spectrum of NaMn <sub>4</sub> Cl <sub>9</sub> at room temperature 270                                           |
| Fig. | 91. | Visible spectrum of Na <sub>2</sub> Mn <sub>3</sub> Cl <sub>8</sub> at room temperature 272                             |
| Fig. | 92. | Visible spectrum of CsMnCl <sub>3</sub> at room temperature 276                                                         |
| Fig. | 93. | Visible spectrum of CsMnCl <sub>3</sub> at 681 K 278                                                                    |
| Fig. | 94. | Visible spectrum of CsMn <sub>4</sub> Cl <sub>9</sub> at room temperature 280                                           |
| Fig. | 95. | Visible spectrum of CsMn <sub>4</sub> Cl <sub>9</sub> at 681 K                                                          |
| Fig. | 96. | Visible spectrum of RbMnCl <sub>3</sub> at room temperature 285                                                         |
| Fig. | 97. | Visible spectrum of Rb_MnCl, at room temperature 287                                                                    |

|                |   |   | page |
|----------------|---|---|------|
| m temperature. | • | • | 289  |
| emperature     | • | • | 293  |

| Fig. | 98.  | Visible | spectrum | of | Rb <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> at room temperature. | • | • | 289 |
|------|------|---------|----------|----|----------------------------------------------------------------------|---|---|-----|
| Fig. | 99.  | Visible | spectrum | of | KMnCl <sub>3</sub> at room temperature                               | • | • | 293 |
| Fig. | 100. | Visible | spectrum | of | K4MnCl6 at room temperature.                                         | • |   | 295 |
| Fig. | 101. | Visible | spectrum | of | K <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> at room temperature.  | • | • | 297 |
| Fig. | 102. | Visible | spectrum | of | NaMnCl <sub>3</sub> at room temperature.                             | • | • | 300 |
| Fig. | 103. | Visible | spectrum | of | Na <sub>2</sub> MnCl <sub>4</sub> at room temperature.               |   | • | 302 |
| Fig. | 104. | Visible | spectrum | of | Na <sub>6</sub> MnCl <sub>8</sub> at room temperature.               |   | • | 304 |
| Fig. | 105. | Visible | spectrum | of | molten Cs <sub>2</sub> MnCl <sub>4</sub> at 906 K                    | • | • | 309 |
| Fig. | 106. | Visible | spectrum | of | molten $Cs_3MnCl_5$ at 906 K                                         | • |   | 311 |
| Fig. | 107. | Visible | spectrum | of | molten K <sub>4</sub> MnCl <sub>6</sub> at 906 K                     | • |   | 313 |
| Fig. | 108. | Visible | spectrum | of | molten Na <sub>6</sub> MnCl <sub>8</sub> at 922 K                    | • | • | 315 |
| Fig. | 109. | Visible | spectrum | of | molten $Rb_3Mn_2Cl_7$ at 900 K                                       | • | • | 318 |
| Fig. | 110. | Visible | spectrum | of | molten $K_3Mn_2Cl_7$ at 900 K                                        | • | • | 320 |
| Fig. | 111. | Visible | spectrum | of | molten Na <sub>2</sub> MnCl <sub>4</sub> at 900 K                    | • | • | 322 |
| Fig. | 112. | Visible | spectrum | of | molten Rb <sub>2</sub> MnCl <sub>4</sub> at 915 K                    |   | • | 324 |
| Fig. | 113. | Visible | spectrum | of | molten CsMnCl <sub>3</sub> at 906 K                                  | • | • | 327 |
| Fig. | 114. | Visible | spectrum | of | molten NaMnCl <sub>3</sub> at 900 K                                  |   | • | 329 |
| Fig. | 115. | Visible | spectrum | of | molten KMnCl <sub>3</sub> at 906 K                                   | • | • | 331 |
| Fig. | 116. | Visible | spectrum | of | molten RbMnCl <sub>3</sub> at 906 K                                  |   | • | 333 |
| Fig. | 117. | Visible | spectrum | of | molten MnCl <sub>2</sub> at 974 K                                    | • | • | 337 |
| Fig. | 118. | Visible | spectrum | of | molten CsMn <sub>4</sub> Cl <sub>9</sub> at 925 K                    | • | • | 339 |
| Fig. | 119. | Visible | spectrum | of | molten NaMn <sub>4</sub> Cl <sub>9</sub> at 916 K                    |   |   | 341 |
| Fig. | 120. | Visible | spectrum | of | molten Na <sub>2</sub> Mn <sub>3</sub> Cl <sub>8</sub> at 901 K      |   | • | 343 |

### 1. Introduction

Raman spectroscopy can be used to study, identify and characterize discrete species and ions that exist in melts and to monitor changes that accompany changes in temperature and composition. For instance the Raman study<sup>1</sup> of molten aluminium fluoride-alkali metal fluoride mixtures, indicated an equilibrium between the tetrahedral species  $AlF_A$ and the octahedral species  $AlF_6^{3-}$ . The spectra of mixtures of  $AlF_3$  with 53.8, 59.4, 62.5, and 75 mole % of alkali fluoride were obtained. The Raman spectrum of the melt of composition 53.8 - 46.2 mole % AlF<sub>3</sub>-AF contain one strong polarized peak at 623 cm<sup>-1</sup> and three depolarized peaks at 760, 322, and 210 cm<sup>-1</sup>. These peaks were attributed to the  $AlF_{A}$  tetrahedral species. However another two peaks were detected, one polarized located at 555 cm<sup>-1</sup> and the other one a weak shoulder located around 345 cm<sup>-1</sup>. It was observed that the intensity of these two peaks increased at the same rate by increasing the conncentration of alkali metal fluoride. These two peaks were attributed to the species  $AlF_6^{3-}$ . The spectrum of the melt of 25 mole % AlF<sub>3</sub> contained three peaks one polarized located at 555 cm<sup>-1</sup> and two depolarized peaks located at 390 and 345 cm<sup>-1</sup>. These three peaks were attributed to the octahedral  $AlF_6^{3-}$  species the most likely species at this composition. The results indicated that a melt of composition close to 50-50 mole % AlF3-AF contained almost only  $AlF_4$  ions, but the  $AlF_4$  ions were replaced by  $AlF_6^{3-}$  ions upon decreasing  $AlF_3$  concentration. For the melt of 25 mole % AlF<sub>3</sub> no AlF<sub>4</sub> could be detected spectroscopically and the melt contain almost pure  $AlF_6^{3-}$  ions. Thus the Raman study established the equiilibrium between  $AlF_4^-$  and  $AlF_6^{3-}$  ions in the molten state i.e.,

$$A1F_6^{3} = A1F_4 + 2F_6^{-1}$$

Another example of the application of Raman spectroscopy to the identification and characterization of discrete species was the Raman study<sup>2</sup> of Aluminium chloride-Alkali metal chloride melts. In this case the geometry remained tetrahedral but a polynuclear species was formed. The results suggested the formation of AlCl<sub>4</sub>, Al<sub>2</sub>Cl<sub>7</sub>, and Al<sub>3</sub>Cl<sub>10</sub> species in the melts. Four peaks were observed for the melt of 50 mole % AlCl<sub>3</sub>, one polarized and three depolarized and attributed to the presence of AlCl<sub>4</sub> tetrahedral species. The relative intensities of these four peaks decreased by increasing AlCl<sub>3</sub> content. When the AlCl<sub>3</sub> concentration was increased from 50 to 66.7 mole %, new peaks were observed to increase in relative intensity. These peaks were attributed to the formation of Al<sub>2</sub>Cl<sub>7</sub> species which possibly has two distorted AlCl<sub>4</sub> tetrahedra sharing one bridging Cl<sup>-</sup>. Upon increasing the AlCl<sub>3</sub> content from 66.7 to 75.0 mole %, four peaks were detected and increased relative to the Al<sub>2</sub>Cl<sub>7</sub> peaks. These four peaks were attributed to the formation of Al<sub>3</sub>Cl<sub>10</sub> species. Thus the Raman study established the existence of the equilibrium in the molten state i.e.,

# A1C14 A12C17 A13C110

The above Raman studies gave information about the presence and the coordination of new complex species which have lifetimes greater than  $10^{-12}$  sec.which is the limit for Raman studies. In fact NMR studies of AlCl<sub>4</sub> suggest that this species has a lifetime ~  $10^{-5}$  sec.<sup>3</sup>

The interpretation of Raman measurements are not always as straightforward. Rapid equilibrium between species and severe band overlap may preclude the identification of peaks due to discrete species.

An interesting example of a Raman study of this type was the study<sup>4</sup> of LiF-NaF-ThF<sub>4</sub> molten salt system. In this case severe band overlap prevented the separation of peaks due to specific species. This study established the coordination behaviour of Th(IV) in these melts. Two peaks were observed for the melt of 14 mole % ThF<sub>4</sub> in LiF-NaF (40-46 mole %) at 650°, one polarized band at 474 cm<sup>-1</sup> attributed to the symmetric stretching of  $ThF_{x}^{4-x}$  species and another depolarized peak centered at 250 cm<sup>-1</sup>. It was noted that the position of the polarized peak remained unchanged for composition changes from 14 to 20 mole %  $ThF_{A}$ , the frequency increased to 478 cm<sup>-1</sup> when the concentration of  $ThF_{A}$ was changed from 20 to 25 mole %, and no further frequency shift was observed by increasing  $\text{ThF}_4$  content more than 25 mole %. The formation of  $\text{ThF}_8^{4-}$  species was proposed for melt of 14-20% mole  $\text{ThF}_4$ , while for melts of 20-25% ThF<sub>4</sub> the presence of ThF $_7^{3-}$  species was suggested. Similar melts have been investigated by Raman spectroscopy<sup>5</sup>. Raman spectra of molten LiF-NaF-ZrF<sub>4</sub> mixtures at 650° have been studied to monitor the coordination of Zr(IV) in alkali metal fluoride melts. The formation of eight-, seven-, six-, and five coordinated zirconium in molten fluoride was inferred from frequency shifts upon changing ZrF4 content. An equilibrium of several  $ZrF_x^{4-x}$  species (where X = 8, 7, 6, and possibly 5 or 4) was proposed in molten fluorides and is dependent on the fluoride ion concentration i.e.,

$$ZrF_{x} \xrightarrow{4-x} ZrF_{x-1} \xrightarrow{5-x} + F^{-1}$$

No new Raman lines were observed for Th(IV) and Zr(IV) melts upon changing the concentration, but equilibrium species were suggested from frequency shifts of the polarized peak. This suggests that the lifetime of these species is  $\sim 10^{-12}$  sec. and the fluoride exchange rate is too fast to detect equilibrium species. It is also possible that the peak frequencies for the different species are similar and environmental broading prevents band separation.

Studies of molten salts are important because of their use in electrowinning of metals from melts; for instance the production of Aluminium<sup>6</sup> by electrolysis of Alumina  $(Al_2O_3)$  dissolved in molten cryolite  $(Na_3AlF_6)$ . Aluminium is deposited as a liquid at the cathode, it is heavier than the electrolyte so it remains at the bottom of the cell. Pure cryolite has a melting point of 1009°C but cryolite-alumina eutectic melts at 962°C. Additives (such as LiF, NaCl, and CaF<sub>2</sub>) can be used to decrease the melting point, viscosity, vapour pressure and density of the melt. Also Magnesium<sup>6</sup> has been produced by electrowinning process from MgF<sub>2</sub> melt containing MgO as an additive to lower the melting temperature of the electrolyte bath.

Knowledge of the species present in the melts is important for process improvements. In the present study  $MnCl_2$  was studied for comparison with MgCl\_2 since discrete polynuclear species have been observed for MgCl\_2 but preliminary results indicated that the MnCl\_2 system did not reveal new polynuclear species. This was surprising since the ionic radii of Mg<sup>2+</sup> and Mn<sup>2+</sup> are quite close and they have the same charge.

- 4 -

Phase equilibrium studies along the solid metal equilibrium line also provides information about the solids which crystallize from melts. New salts of useful properties such as Li<sub>2</sub>MnCl<sub>4</sub>, a solid state conductor have now been detected from Raman studies. A previous phase diagram study failed to reveal this compound.

Visible spectroscopy has also been used to characterize the coordination of the manganese salts. In an octahedral environment  $Mn^{2+}$  absorbs the 21000-16000 cm<sup>-1</sup> region and the samples are red however in a tetrahedral environment  $Mn^{2+}$  absorbs in the 23000-19000 cm<sup>-1</sup> region and the samples are yellow. In the present study the  $MnCl_2.nACl$  samples were studied by visible absorption spectroscopy in an effort to establish the  $Mn^{2+}$  coordination in the various samples.

### 1.1 Previous Work

In addition to the related studies mentioned in the introduction there have been a number of related studies of AC1-MC1<sub>2</sub> systems which will be reviewed below.

Early Raman measurements on molten  $MgCl_2$  and  $MgCl_2$ -KCl by Balasubrahmanyam<sup>7</sup> were interpreted in terms of  $MgCl_6^{4-}$  in pure  $MgCl_2$ and  $MgCl_3^{-}$  in KMgCl\_3 but these results were shown to be flawed by peaks due to instrumental artifacts<sup>8</sup>.

Maroni et. al.<sup>8</sup> studied Raman spectra of MgX<sub>2</sub>-KX (X = C1, Br, and I) over a range of  $X^{-}/Mg^{2+}$  mole ratios in the molten state. The results for MgCl<sub>2</sub>-KCl and MgBr<sub>2</sub>-KBr systems were interpreted in terms of discrete  $MgX_4^{2-}$  complex ion in equilibrium with a residual ionic lattice at high MgCl<sub>2</sub> concentration, i.e., a polynuclear complex [MgX<sub>2</sub>]<sub>p</sub>, similar in structure to solid MgCl<sub>2</sub> and solid MgBr<sub>2</sub>. Polynuclear aggregates have also been porposed for SnCl2-KCl and ZnCl2-AlCl3 melts<sup>11,12</sup>. It was found that the concentration of  $[MgX_2]_p$  species decrease by increasing the  $X^{-}/Mg^{2+}$  mole ratio from 2.5 to 4.0. The Raman spectra of MgI<sub>2</sub>-KI system of  $I^{-}/Mg^{2+}$  mole ratio 3.0 and 3.5 indicated the presence of a single highly symmetric species, and the observation of two depolarized peaks in the low frequency region for this species is consistent with the existence of  $MgI_{A}^{2-}$  of tetrahedral structure. The experimental data suggested that at  $X^{-}/Mg^{2+}$  mole ratio near 4.0, the  $MgX_{\Lambda}^{2-}$  ions of tetrahedral geometry are the predominant species in all three systems.

The Raman spectra of MgX<sub>2</sub>-KX (X = Cl, Br, and I) with  $X^{-}/Mg^{2+}$  mole ratios near 4.0 have been studied in the molten state<sup>9</sup>. One polarized peak and three depolarized peaks were observed for each halide melt.

For MX<sub>4</sub> molecules<sup>7</sup> of T<sub>d</sub> symmetry, four vibrations are expected as follows:

$$T_{d} = A_{1} + E + 2T_{2}$$

$$R R IR/R$$
(1)

The  $A_1$  and E modes are Raman active and the  $T_2$  modes are IR and Raman active. The Raman spectra and normal coordinate analysis calculations strongly indicated the existence of tetrahedral complexes MgX<sub>4</sub><sup>2-</sup>.

The Raman spectra of single crystal and molten  $MgCl_2$  have been studied by Capwell<sup>10</sup>. The existence of discrete complex ions was not supported. Two peaks were observed at 243 and 157 cm<sup>-1</sup> in the spectrum of the crystal and assigned to the totally symmetric  $A_{1g}$  mode and the  $E_{g}$ mode respectively. Two peaks at 195 and 102 cm<sup>-1</sup> in the melt were assigned to residual lattice modes by analogy to the spectrum of the crystal. He concluded that the melt was structurally similar to the layered solid.

The IR and Raman spectra of  $(NEt_4)_2MgCl_4$  have been studied by Davies<sup>13</sup>. Four Raman peaks were observed in the solid state, one observed at 257 cm<sup>-1</sup> was observed as a polarized peak in acetonitrile solution at 253 cm<sup>-1</sup>. Two peaks were recorded in the IR spectrum of Nujol mull at 143 and 360 cm<sup>-1</sup> and one peak was observed at 358 cm<sup>-1</sup> in acetonitrile solution. The spectra strongly indicated a tetrahedral structure for MgCl<sub>4</sub><sup>2-</sup> anion.

Brooker<sup>14</sup> studied Raman spectra of single crystals of  $K_2MgCl_4$  and  $Cs_2MgCl_4$  at 77 and 298 K, his data were in good agreement with factor group analysis on the space group I4/mmm ( $D_{4h}^{17}$ ) and Pnma ( $D_{2h}^{16}$ ) for

 $K_2MgCl_4$  and  $Cs_2MgCl_4$  crystals. The data suggested that the coordination number of magnesium changed from six in solid  $K_2MgCl_4$  to four in the melt, and the existence of tetrahedral species  $MgCl_4^{2-}$  in solid and molten  $Cs_2MgCl_4$ . The presence of discrete  $MgCl_4^{2-}$  species was supported from the high resolution study of  $v_1$  region at 77 K, where the Cl<sup>35</sup>, Cl<sup>37</sup> isotope splitting was clearly resolved and found to be similar to  $CCl_A$ . Bands were observed at 271.9, 270.3, 268.0, and 266.4 cm<sup>-1</sup> with relative intensities 37%, 42%, 17%, 4.6%, and 0% due to  $Mg^{35}Cl_{4}^{2-}$ ,  $Mg^{35}Cl_{3}^{37}Cl_{2}^{2-}$ ,  $Mg^{35}Cl_2^{37}Cl_2^{2-}$ ,  $Mg^{35}Cl_3^{37}Cl_3^{2-}$  and  $Mg^{37}Cl_4^{2-}$  respectively. The Raman spectra of the molten salts strongly indicated that  $MgCl_4^{2-}$  is the predominant species in the melts. A peak was observed around 225  $\text{cm}^{-1}$  in the melts of  $\text{K}_2\text{MgCl}_4$ and  $Cs_2MgCl_4$ , and the intensity of this peak decreased by increasing the temperature. This peak was attributed to the presence of another species in the form of polynuclear complex  $Mg_2Cl_6^{2-}$ . It was suggested that the reduction in the intensity of that peak is consistent with the breaking up of the polynuclear complex and the formation of more  $MgCl_4^{2-}$  ions.

The Raman spectra of MgCl<sub>2</sub> in the melt at 1010 K and in the solid at 77 K and 298 K have been studied<sup>15</sup>. The two peaks observed in the solid state spectrum were identical to the ones observed by Capwell<sup>10</sup>. It was suggested that MgCl<sub>2</sub> does not undergo any phase transition between 77 K and the melting point. Four peaks were detected in the I<sub>||</sub> spectrum of the melt around 130, 194, 244, and 335 cm<sup>-1</sup> respectively, and three peaks were detected in the I<sub>\_</sub> spectrum of the melt, one broad peak at 335 cm<sup>-1</sup> and another two weak peaks around 100 and 140 cm<sup>-1</sup>. On the basis of the relative intensity and polarization characteristics, the peaks at 335, 244, 140, and 100 cm<sup>-1</sup> were assigned to the  $v_3$ ,  $v_1$ ,  $v_4$  and  $v_2$  vibrations of the discrete MgCl<sub>4</sub><sup>2-</sup> tetrahedral structure. The peaks at 194 and 130 cm<sup>-1</sup> were attributed to symmetric stretching vibrations of a polynuclear complex  $Mg_2Cl_n^{4-n}$ . The Raman spectra suggested that  $MgCl_2$  does not melt with retention of the basic lattice structure as was suggested before<sup>10</sup> but melts to give a dynamic equilibrium mixture containing  $MgCl_4^{2-}$ , polynuclear complexes, and  $Mg^{2+}$  and  $Cl^-$  ions. On comparing the intensities of the peaks observed in  $K_2MgCl_4$  melt<sup>14</sup> and  $MgCl_2$  melt in the region 170-270 cm<sup>-1</sup>, it was concluded that the decrease in the intensity ratio of the peaks at 244 and 194 cm<sup>-1</sup>, i.e.  $I_{244}/I_{194}$ , in  $MgCl_4$  melt is consistent with a decrease in the concentration of  $MgCl_4^{2-}$  as the  $Cl^-$  concentration decreased and a corresponding increase in polynuclear complex.

The Raman spectra of  $CsMgCl_3$  and  $Cs_3MgCl_5$  in the solid state and as single crystals have been studied.<sup>16</sup> CsMgCl<sub>3</sub> has space group  $P6_3/mmc(D_{6h}^4)$ , five Raman active modes were predicted,  $A_{1g}$ ,  $E_{1g}$  and 3Eg. The Raman results were in excellent agreement with these predictions from factor group analysis. The Raman spectra were also obtained at 77 K, and the results indicated that no phase transition occurs between room temperature and 77 K. The Raman results of  $Cs_3MgCl_5$  indicated that discrete MgCl\_2<sup>2-</sup> tetrahedral species are present, and the peak positions in the solid state are quite similar to the molten salt values:  $v_1(A_1) \sim 250 \text{ cm}^{-1}$ ;  $v_2(E) \sim 120 \text{ cm}^{-1}$ ;  $v_3(T_2) \sim 350 \text{ cm}^{-1}$  and  $v_4(T_2) \sim 140 \text{ cm}^{-1}$ . The results of the oriented single crystal studies were in excellent agreement with the predictions of the factor group analysis based on the space group  $I4/mcm(D_{4h}^{18})$ . Both  $Cs_3MgCl_5$  and  $Cs_2MgCl_4$  contain the discrete  $MgCl_4^{2-}$  tetrahedral units, the results conclusively showed that Cs3MgCl5 has a distinct structure different from  $Cs_2MgCl_4^{14}$  and this structural difference

could be deduced from the difference in the Raman spectra.

Raman spectra in the solid and molten states of composition  $MgCl_2$  + nACl (n = 0-4 and A = Cs, Rb, K, Na, Li) have been studied.<sup>17</sup> Characteristic spectra were observed for each of the predicted double salts, and the results were in excellent agreement with phase diagram studies. The Raman results on the alkali metal-rich region of RbCl-MgCl<sub>2</sub> and KCl-MgCl<sub>2</sub> suggested the presence of a new incongruent melting compounds  $Rb_3MgCl_5$  and  $K_3MgCl_5$ . The results suggested that the compounds  $Cs_2MgCl_4$ ,  $Cs_3MgCl_5$  and  $Rb_3MgCl_5$  contain the discrete  $MgCl_4^{2-}$ tetrahedral ion, and the other solids contain distorted network octahedra with face-, edge-, or corner-shared chlorides. Raman spectra of the melts were characterized by three depolarized peaks at about 110, 145, and 350  $\text{cm}^{-1}$  and one polarized peak in the 200-250  $\text{cm}^{-1}$ region. By comparing the melts of low MgCl<sub>2</sub> concentration, a marked cation dependence on the polarized band was observed, the peak maximum was shifted to slightly lower frequencies and the halfwidth of the band increased over the cation series Cs<sup>+</sup> to Li<sup>+</sup>. This was attributed to the fact that the small Li<sup>+</sup> ion can compete quite favourably for the chloride ion which decreases the Mg-Cl force constant and reduces the frequency. An additional Raman peak at ~ 225 cm<sup>-1</sup> was clearly observed for Cs, Rb, and K salts by increasing the MgCl<sub>2</sub> concentration. This peak was attributed to the formation of new equilibrium species in the melts of high MgCl, concentration. By analogy with the low melting CsCl-AlCl<sub>3</sub> system where two peaks at 350 and 312 cm<sup>-1</sup> were clearly resolved and have been assigned to  $AlCl_4$  and  $Al_2Cl_7$  ions on the basis of concentration studies and normal coordinate analysis, it was proposed that the polarized peak at 225  $\text{cm}^{-1}$  is due to the Mg<sub>2</sub>Cl<sub>7</sub><sup>3-</sup> ion on the

fact that the magnesium can retain its tetrahedral coordination through corner-sharing with other magnesium centered tetrahedrons. Also an edge-shared  $Mg_2Cl_6^{2-}$  was proposed, but the formation of  $Mg_2Cl_7^{3-}$  was considered more favourable.

The Raman spectra of MnCl<sub>2</sub> as a single crystal have been investigated<sup>18</sup>. Two Raman active modes  $A_{1g}$  and  $E_g$  were predicted from factor group analysis based on the space group  $R\bar{3}m(D_{3d}^5)$ . Two bands were observed at 234.5 and 144 cm<sup>-1</sup> and assigned to  $A_{1g}$  and  $E_g$  modes. The assignment is consistent with polarization characteristic and Raman results on isomorphous MgCl<sub>2</sub><sup>10,15</sup>. Two peaks were observed in the IR spectrum at 180 and 230 cm<sup>-1</sup> and assigned to  $A_{2u}$  and  $E_u$  modes.

The Raman spectra of molten MnCl<sub>2</sub>-KCl system have been studied<sup>19</sup> at various compositions. One totally symmetric stretching mode was observed in the range from  $100 \text{ cm}^{-1}$  to  $400 \text{ cm}^{-1}$  for every melt, and the other vibrational frequencies were not observed because of their low intensities and a limited sensitivity of the spectrophotometer. It was observed that the polarized peak in molten  $MnCl_{2}$  (mol fraction x = 1.0) appeared at 208 cm<sup>-1</sup>, and the frequency of this peak increase with increased KCl content until it reach 251 cm<sup>-1</sup> for specimen of x = 0.4, then it slightly decrease to 245 cm<sup>-1</sup> for the specimen of x = 0.1. The increase of the Raman frequency of the polarized peak was attributed to the dissociation of the  $(MnCl_2)_n$  species upon the addition of KCl to  $MnCl_2$ , and the formation of  $MnCl_6^{4-}$  octahedral units was suggested from comparison with  $(MnCl_2)_n$  species in pure  $MnCl_2$ . The existence of a small amount of  $MnCl_4^{2-}$  ions was suggested upon the observation of a slight shoulder at ~ 250 cm<sup>-1</sup> in the spectra of the melts, x = 1.0, 0.9, and 0.8. The existence of the tetrahedral  $MnCl_4^{2-}$  ions was proposed as

the predominant species in the region of x = 0.2 to x = 0.4. Also in this composition range the formation of other types of complex ions such as the pyramidal MnCl<sub>3</sub><sup>-</sup> ion or Mn<sub>2</sub>Cl<sub>7</sub><sup>3-</sup> was suggested. The presence of an equilibrium between discrete species with characteristic peaks was not confirmed by the present study.

The structure of some chloride complexes of 3d metals have been investigated in the molten salts<sup>20</sup>. The Raman spectra of melts of MnCl<sub>2</sub>, CoCl<sub>2</sub>, NiCl<sub>2</sub>, ZnCl<sub>2</sub>, and CuCl<sub>2</sub> in CsCl, CsCl-NaCl eutectic, and LiCl-KCl euectic were recorded. For MnCl<sub>2</sub> system and CoCl<sub>2</sub> system, two peaks were observed, one polarized peak in the region 240-280 cm<sup>-1</sup> assigned to  $v_1(A_1)$  mode of  $T_d$  symmetry, and another peak in the region 120-130 cm<sup>-1</sup> attributed to the deformation vibration  $v_4(T_2)$ . For the NiCl<sub>2</sub> and ZnCl<sub>2</sub> systems, one band was observed in the range 260-275 cm<sup>-1</sup> and attributed to the totally symmetric vibration  $v_1(A_1)$ . Three weak peaks at 270, 150 and 125 cm<sup>-1</sup> were observed for a melt of 1 mole % CuCl<sub>2</sub> in CsCl-NaCl eutectic, the first peak was attributed to  $v_1(A_1)$  symmetrical vibration and the other two peaks attributed to B<sub>2</sub> and E modes on the assumption of D<sub>2d</sub> symmetry.

Molten mixtures of  $MnCl_2-AlCl_3$  and  $MnCl_2-CsCl$  were investigated by electronic absorption spectroscopy and Raman spectroscopy<sup>23</sup>. For the melt of  $MnCl_2-AlCl_3$ , it was suggested that the  $Mn^{2+}$  was octahedrally coordinated to  $AlCl_4^-$  or  $Al_2Cl_7^-$  groups. The Raman results supported strongly the formation of separate tetrahedral  $MnCl_4^{2-}$  units in mixtures of  $MnCl_2$  with excess CsCl.

The Raman spectra of MnCl<sub>2</sub>-2ACl melts have been studied<sup>24</sup>. A single polarized peak was observed in the frequency region 100-400 cm<sup>-1</sup> for every melt, and the other peaks were not observed because of their

low intensities and the limited sensitivity of the spectrophotometer. It was found that the peak position  $v_1$  was nearly the same for every melt, and the halfwidths of the peak  $\Delta v$  varied moderately over the cation series Cs<sup>+</sup> to Li<sup>+</sup>. It was concluded that the type of complex ion in each MnCl<sub>2</sub>.2ACl melt was MnCl<sub>4</sub><sup>2-</sup> with  $v_1 \approx 249$  cm<sup>-1</sup>.

Bues<sup>25</sup> investigated  $CdCl_2$ -KCl melts, he favored a triangular planar of D<sub>3h</sub> structure. Tanaka et. al.<sup>26</sup> examined the  $CdCl_2$ -KCl system. Four peaks were recorded at 257, 211, 245, and 177 cm<sup>-1</sup>, and assigned to  $v_1(A_1)$ ,  $v_2(A_1)$ ,  $v_3(E)$ , and  $v_4(E)$ . The assignment was based on comparison of the data obtained from the corresponding solid system. It was concluded that pyramidal  $CdCl_3^-$  was the predominant species in the melt because two Raman peaks were attributed to polarized peaks  $v_1(A_1)$  and  $v_2(A_1)$ , among the four observed peaks.

The Raman spectra for  $CdCl_2$ -KCl melts containing 65, 50, and 35 mole %  $CdCl_2$  in KCl have been investigated by Maroni and Hathaway<sup>27</sup>. The spectrum of the sample containing 35 mole %  $CdCl_2$  was not different from that of the sample containing 50 mole %  $CdCl_2$ . A broad polarized envelope centered at 230 cm<sup>-1</sup> was observed for the sample containing 65 mole %  $CdCl_2$ , and it was suggested that this broad envelope contain two peaks one at 259 cm<sup>-1</sup> and a second peak associated with polynuclear aggregate. One polarized peak was recorded at 259 cm<sup>-1</sup> for the sample containing 50 mole %  $CdCl_2$ . The polarized Raman peak observed at 259 cm<sup>-1</sup> was attributed to a totally symmetric stretching vibration for tetrahedral  $CdCl_4^{2-}$ , or planar  $CdCl_3^-$ , or pyramidal  $CdCl_3^-$ . A shoulder was observed at 80 cm<sup>-1</sup> and attributed to the bending mode. It was concluded that the Raman spectra of  $CdCl_2$ -KCl melts were incomplete in terms of the assumed structures for  $CdCl_4^{2-}$  or  $CdCl_3^-$  species but not inconsistent with any of the proposed structures.
Clarke et. al.<sup>28</sup> studied the Raman spectra of molten cadmium halides and their molten mixtures with alkali metal halides. They concluded that pure molten cadmium halide has octahedral coordination of  $Cd^{+2}$ , and the addition of alkali metal halides results in the replacement of octahedral by tetrahedral  $Cd^{+2}$  coordination sites.

The structure of molten  $MnCl_2$  has been examined by x-ray diffraction<sup>29</sup>. The radial distribution function of  $MnCl_2$  melt was obtained, and a fit to a structural model deduced from possible geometrical orientation among the ions. It was concluded that the coordination number and the nearest distance of the Mn-Cl pair in  $MnCl_2$  melt are about 4.0 and 2.51 Å. A f.c.c. structural model was proposed with loosely distributed Cl atoms with tetrahedral coordination of each Mn atoms. A contribution to the structure from small fraction of octahedrally coordinated Mn could not be ruled out.

Ohno et. al.<sup>30</sup> investigated the structure of molten  $MnCl_2.2LiCl$ and  $MnCl_2.2KCl$  by consideration of the radial distribution function. The results indicated that the number of nearest neighbour Mn-Cl pairs of molten  $MnCl_2.2KCl$  and  $MnCl_2.2LiCl$  is 4.0. The data confirmed the existence of  $[MnCl_4^{2-}]$  tetrahedral units in molten  $MnCl_2.2KCl$  and  $MnCl_2.2LiCl$ .

Kleppa and McCarty<sup>31</sup> measured the enthalpies of mixing in MgCl<sub>2</sub>-Alkali chloride systems, except the LiCl-MgCl<sub>2</sub> system, they found a very marked dip in the interaction parameter,  $\Delta H/\chi(1-\chi)$ , at  $\chi MgCl_2 = 0.33$ which is the concentration corresponding to the formula A<sub>2</sub>MgCl<sub>4</sub>. The enthalpy data were interpreted to support the view first suggested by Flood and Urnes<sup>32</sup> that the alkali chloride-magnesium chloride systems contain the complex anionic species MgCl<sub>4</sub><sup>2-</sup>. The stability of this species depends strongly on the alkali cation, and increases from Lithium to Cesium. Østvold<sup>33</sup> made e.m.f. measurements in MgCl<sub>2</sub>-Alkali chloride mixtures using glass membrane cells, the entropy curves showed inflection points at  $\chi$ MgCl<sub>2</sub> = 0.33. This was accounted for in terms of the presence of an ordered structure in these melts at the composition  $\chi$ MgCl<sub>2</sub> = 0.33. Papatheodorou and Kleppa<sup>34</sup> have measured calorimetrically the heats of mixing in the binary systems MnCl<sub>2</sub>-ACl, FeCl<sub>2</sub>-ACl and CoCl<sub>2</sub>-ACl. The concentration dependence of the interaction parameters  $\Delta H_m/X_1X_2$  indicated special stabilization of these mixtures at about 33% MCl<sub>2</sub> composition. They attributed this effect to the possible formation of a tetrahedrally coordinated MCl<sub>4</sub><sup>2-</sup> species. Thermodynamic properties of MnCl<sub>2</sub>-ACl system were studied<sup>35</sup> by emf measurements. The results were interpreted in terms of the presence of MnCl<sub>4</sub><sup>2-</sup> complex anions.

## 2. Theory

When <sup>46</sup> monochromatic light of frequency  $\bar{\nu}_0$  is directed at a sample, most of the light passes through the sample. Some of the light is scattered by the sample molecules in all directions. Some of the scattered light has the same frequency  $\bar{\nu}_0$  as the incident light, and is called Rayleigh scattering. A small fraction of the scattered light has frequency  $\bar{\nu}_i \equiv \bar{\nu}_0$ . The process of producing light of frequency other than  $\bar{\nu}_0$  is called Raman scattering. The amount of scattered light with frequency  $\bar{\nu}_i < \bar{\nu}_0$  (Stokes lines) is greater than that with frequency  $\bar{\nu}_i > \bar{\nu}_0$  (anti-Stokes lines). As a result of placing a molecule in the electric field of electromagnetic radiation, a dipole moment,  $\bar{\mu}_{ind}$ , is induced in the molecule and is proportional to the field strength ( $\bar{E}$ ):

$$\dot{\mu} = \dot{\alpha} \dot{E}$$
 (2)

The polarizability  $\dot{\vec{\alpha}}$  is a symmetric tensor containing a combination of symmetric part ( $\alpha$ ) and asymmetric part ( $\beta$ ). The scattered intensity<sup>22</sup> may be conveniently divided into two components both theoretically and experimentally, polarized and depolarized and are given by these two equations:

$$I_{\alpha} = I_{iso} = I_{pol} = I_{||} - 4/3 I_{|}$$
 (3)

$$I_{\beta} = I_{aniso} = I_{depol} = I_{\perp}$$
 (4)

 $I_{||}$  is the measured intensity of scattered light polarized in the same

plane as the incident light, and I<sub>⊥</sub> is the measured intensity of scattered light polarized perpendicular to the incident beam. The anisotropic spectrum I<sub>β</sub> may be obtained directly from I<sub>⊥</sub>. The isotropic spectrum may be obtained by the appropriate subtraction of I<sub>⊥</sub> from I<sub>||</sub> as may be seen from eqn. 3.

The observed scattered intensity is  $I_{(\bar{\nu})}^{obs}$  (either  $I_{||}$  or  $I_{\perp}$ ) and is measured directly from Raman spectrometer. However the intensity of low frequency modes is temperature dependent, and the intensity of these modes is very weak with respect to the intensity of Rayleigh scattering. The contribution from Rayleigh scattering and temperature dependence can be removed by calculation of a corrected intensity  $R_2(\bar{\nu})$  as follows<sup>21</sup>:

$$I(i) = K(\bar{v}_{0} - \bar{v}_{i})^{4} \bar{v}_{i}^{-1} B^{-1} \left(\frac{\partial}{\partial} \frac{\alpha}{Q_{i}}\right)^{2}$$
(5)

where  $R_2(\bar{v}) = K(\frac{\partial}{\partial} \frac{\alpha}{Q_i})^2$  and represents a molar scattering efficiency I(i) is the intensity of the i<sup>th</sup> fundamental K is a constant  $\bar{v}_i$  is the frequency of the i<sup>th</sup> Raman mode in cm<sup>-1</sup>  $\bar{v}_0$  is the excitation frequency in cm<sup>-1</sup>  $\frac{\partial}{\partial} \frac{\alpha}{Q_i}$  is the rate of change in mean molecular polarizability with respect to the normal coordinate,  $Q_i$ B is a factor defined by the following equation

 $B = 1 - \exp(-hc\bar{v}_i/k_B T)$  (6)

where k<sub>B</sub> is the Boltzmann constant

T is the temperature of the sample

The advantage<sup>22</sup> of the  $R_2(\bar{\nu})$  spectrum is that it suppresses the central Rayleigh peak and emphasizes the Raman peaks so it is quite possible to accurately measure the low frequency region of the Raman spectrum of liquids and melts. The  $R_2(\bar{\nu})$  spectrum presents the relative molar scattering efficiencies of Raman bands directly and gives a direct spectrum of the vibrational density of states. In the study which follows both the  $I(\bar{\nu})$  and  $R_2(\bar{\nu})$  spectra have been constructed from experimental measurements.

#### 3. Experimental Procedures

#### 3.1 Samples Preparation

Analytical reagent MnCl<sub>2</sub>.4H<sub>2</sub>O (BDH) was dehydrated in a vacuum oven, and the temperature was raised slowly over (10 hours) to 180°C. Dehydration was continued in another oven under vacuum at 210°C for 40 hours until all water of hydration has been removed. The dehydrated salt was obtained according to the following equations<sup>36</sup>:

MgCl<sub>2</sub> (Alpha) was dried under vacuum at 30°C for 24 hours, then the temperature was raised slowly to 180°C where the solid was further dried under vacuum.

Spectrographic grade CsCl and RbCl (Fisher) were dried under vacuum at 180°C for 24 hours.

Reagent grade KCl and NaCl (Anachemia) were recrystallized twice from doubly distilled water and then dried under vacuum at 210°C for 24 hours.

Reagent grade LiC1.H<sub>2</sub>O (BDH) was recrystallized twice from doubly distilled water and then dehydrated under vacuum, and the temperature was raised slowly to 120°C. Dehydration was continued at 210°C for 24 hours until the anhydrous LiCl was obtained.

For MnCl<sub>2</sub>-Alkali chloride mixtures, the following samples were prepared according to the appropriate ratios:

CsMnCl<sub>3</sub>, Cs<sub>2</sub>MnCl<sub>4</sub>, Cs<sub>3</sub>MnCl<sub>5</sub>, CsMn<sub>4</sub>Cl<sub>9</sub>
 CsCl:MnCl<sub>2</sub> (1:2), CsCl:MnCl<sub>2</sub> (1:3.5)

- RbMnCl<sub>3</sub>, Rb<sub>2</sub>MnCl<sub>4</sub>, Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> RbCl:MnCl<sub>2</sub> (3:1), RbCl:MnCl<sub>2</sub> (4:1)
- KMnCl<sub>3</sub>, K<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>, K<sub>4</sub>MnCl<sub>6</sub> KCl:MnCl<sub>2</sub> (2:1), KCl:MnCl<sub>2</sub> (3:1)
- NaMnCl<sub>3</sub>, Na<sub>2</sub>MnCl<sub>4</sub>, Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub>, NaMn<sub>4</sub>Cl<sub>9</sub>, Na<sub>6</sub>MnCl<sub>8</sub> NaCl:MnCl<sub>2</sub> (3:1)
- LiCl:MnCl<sub>2</sub> (1:1), LiCl:MnCl<sub>2</sub> (2:1), LiCl:MnCl<sub>2</sub> (3:1)

For MgCl<sub>2</sub> - Alkali chloride mixtures, the following samples were prepared according to the appropriate ratios:

- CsMgCl<sub>3</sub>, Cs<sub>2</sub>MgCl<sub>4</sub> CsCl:MgCl<sub>2</sub> (1.5:1), CsCl:MgCl<sub>2</sub> (0.5:1), CsCl:MgCl<sub>2</sub> (4:1)
- KMgCl<sub>3</sub>, K<sub>2</sub>MgCl<sub>4</sub> KCl:MgCl<sub>2</sub> (1.5:1), KCl:MgCl<sub>2</sub> (0.5:1)

The appropriate quantities of the salts were placed in 4 mm i.d. quartz tubes, heated under vacuum such that temperature was raised slowly to 210°C, maintained at this value for at least 24 hours, and then the temperature slowly raised until the salt mixtures melted. The salts and the salt mixtures are hygroscopic so all manipulation were performed in a glove box under dry Nitrogen. After melting the salt mixtures, the melts of MnCl<sub>2</sub> samples were clear yellow liquids and showed no evidence of any impurities. The melts of MgCl<sub>2</sub> samples were colorless liquids and showed no evidence of any impurity such as solid MgO. The samples were cooled to room temperature and sealed under vacuum. It appeared that each salt could be characterized by its Raman spectrum since at least one peak occurred for each compound in the region of stability predicted by the phase diagram. Except for one sample of CsMgCl<sub>3</sub> which was not properly sealed the sample gave reproducible Raman spectra even after an interval of several months.

#### 3.2 Characterization of the Solids

Each solid was characterized by its distinct Raman spectrum. Attempts were made to characterize the solid compounds through X-ray diffraction powder patterns. Powder patterns were obtained for powdered samples sealed in Lindemann tubes by Debye-Scherer camera methods both at the Earth Science Department, Memorial and at AECL, Pinawa. The results were not very encouraging because the samples deteriorated rapidly in the transfer process from the quartz Raman tube into the Lindemann tube. It was obvious that even in a dry box the grinding operation gave sufficient time and surface area for absorption of considerable water. Powder patterns of  $RbMnCl_3$  and  $Rb_2MnCl_4$  which agreed with the literature were obtained but the powder patterns for CsMnCl<sub>3</sub> and Cs<sub>2</sub>MnCl<sub>4</sub> had deteriorated to those of the hydrated salts. Raman and infrared spectra of  $CsMnCl_3$  and  $Cs_2MnCl_4$  from the opened samples also revealed the presence of water of hydration. No attempts were made to obtain powder patterns for the other samples since it would have necessitated destroying the samples prepared for Raman studies.

# 3.3 Raman Spectroscopic Measurements

### 3.3.1 Molten Phase

Raman spectra were collected digitally with a Coderg PHO spectrometer. The melts of MnCl<sub>2</sub> and MnCl<sub>2</sub>-Alkali Chloride were recorded after sample excitation with the 6471 Å (150 mw) and 5682 Å (100 mw) lines of Coherent Laser model 52 Krypton-Argon ion laser or a Control Laser model 552 Krypton ion laser with slit width 2 cm<sup>-1</sup>. The scan rate was 50 cm<sup>-1</sup>/min., and the photon counts were accumulated for 0.01 min. Ten scans were collected in both parallel X(ZZ)Y and perpendicular X(ZX)Y orientations, and the digital output recorded on a disk at the M.U.N. Computer Services VAX-11/780. The spectra were averaged, baseline corrected and converted into the R<sub>2</sub> format. The spectra were then plotted on a TEKTRONIX 4662 digital interactive plotter with the aid of a TEKTRONIX 4051 graphics terminal. Subtraction files were created by subtracting I<sub>⊥</sub> (perpendicular) data from I<sub>||</sub> (parallel) data to obtain the isotropic Raman spectra I<sub>iso</sub> = I<sub>||</sub> - 4/3I<sub>|</sub>.

The melts of MgCl<sub>2</sub> and MgCl<sub>2</sub>-CsCl mixtures were recorded digitally after sample excitation with the 4880 Å (500 mw) line of Control Laser model 553 Argon ion laser with slit width 2 cm<sup>-1</sup>. The melts of MgCl<sub>2</sub>-KCl system were measured after sample excitation with the 4880 Å (500 mw) line of Control Laser model 552 Argon ion laser with slit width 4 cm<sup>-1</sup>. Ten scans were collected for each orientation. The scan rate was 50 cm<sup>-1</sup>/min. and the photon counts were accumulated for 0.01 min. for the melts except for MgCl<sub>2</sub> and CsCl:MgCl<sub>2</sub> (4:1) melts the counts were accumulated for 0.02 min. The output spectra were recorded on a computer disk, averaged, baseline corrected, and converted into the R<sub>2</sub> format. The spectra were plotted using the TEKTRONIX devices. Subtraction files were created to obtain isotropic Raman spectra.

All Raman spectra of the melts were viewed and analyzed in the  $I(\bar{\nu})$  and  $R_2(\bar{\nu})$  formats. The isotropic spectra in both formats (i.e.,  $I_{\alpha}(\bar{\nu})$  and  $R_{2\alpha}(\bar{\nu})$ ) were subject to detailed band deconvolution analysis

with a program called FITTER. Both Lorentzian and a Gaussian\*Lorentzian product function were employed for each data set but detailed analysis were not very sensitive to the type of function. The best fit data are reported along with the function type.

The MgCl<sub>2</sub>.nACl data for  $n \ge 1$  gave clear indication of at least three polarized components in the symmetric stretching region and the curve analysis was restricted to three band fits. Two band fits gave inconsistent results. For n < 1 additional low frequency intensity was obvious and a fourth band was employed. For the magnesium system the  $I_{\alpha}(\bar{\nu})$  spectra gave the most consistent results and these results are reported. The  $R_2(\bar{\nu})$  spectra seemed to overemphasize the weak broad high frequency component centered at about 300 cm<sup>-1</sup>. Because of the complexity of the spectra the best fit data reported may not be unique. The peak frequencies of the components are probably accurate to  $\pm 2$  cm<sup>-1</sup> but the error in halfwidths and intensities is difficult to estimate and for this reason only the trends of the three major components at about 210, 250 and 300 cm<sup>-1</sup> would appear significant for samples with  $n \le 2$ . For n > 2 the peak frequency and halfwidth of the single component is probably accurate to  $\pm 1$  cm<sup>-1</sup>.

The MnCl<sub>2</sub>.nACl data for  $n \ge 1$  gave no indication of more than one polarized component. Two band fits were not significantly better than one band fits. Reasonable fits were obtained for both the  $I_{\alpha}(\bar{\nu})$  and  $R_{2\alpha}(\bar{\nu})$  formats and the one band fits for the  $R_{2\alpha}(\bar{\nu})$  spectra are reported. For MnCl<sub>2</sub>.nNaCl melts ( $n \ge 1$ ) a broad low frequency component ~ 150-230 cm<sup>-1</sup> was apparent and a second peak was necessary to fit the data. Because of the breadth and uncertainty of this peak it was not considered significant and could be an artifact of the subtraction routine. The peak frequencies and halfwidths for the intense single component about 250 cm<sup>-1</sup> are probably accurate to  $\pm 2$  cm<sup>-1</sup>. The spectra of the melts were obtained from samples in a furnace with the inner core wound with nichrome heating coil. The temperatures were monitored with a Chromel-Alumal thermocouple on the sample container as shown (Fig. 1). The thermocouple was calibrated with ice, boiling water and known phase transitions. Temperatures are probably accurate to about 1%.

Plasma lines were removed with the appropriate interference filter for each exciting line. Depolarization measurements for the melts were made by analyzing the scattered light parellel  $X(ZZ)Y[I_{||}]$  and perpendicular  $X(ZX)Y[I_{|}]$  to the incident laser beam.

## 3.3.2 Solid Phase

Raman spectra were recorded with a Coderg PHO spectrometer. Spectra of yellow compounds  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  at room and liquid nitrogen temperatures and below their melting points were recorded using the yellow exciting line 5682 Å (100 mw) of Coherent Laser model 52 Krypton-Argon ion laser with slit width 2 cm<sup>-1</sup>. For  $Cs_2MnCl_4$  a possible phase change from low-temperature phase to high-temperature phase was investigated. The effect of temperature on the totally symmetric stretching vibration  $(v_1)$  of  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  was recorded.

Spectra of the red compounds  $CsMnCl_3$ ,  $CsMn_4Cl_9$ ,  $Na_2Mn_3Cl_8$ , and  $NaMn_4Cl_9$  at room temperature were recorded digitally after sample excitation with the 6764 Å (30 mw) line of Control Laser model 552 Krypton ion laser with 4 cm<sup>-1</sup> slit width, while the spectra of the other samples were collected digitally at room temperature after sample excitation with the 6471 Å (150 mw) line of Control Laser model 552 Krypton ion laser with 4 cm<sup>-1</sup> slit width. Eight scans were collected for each sample, the scan rate

was 50 cm<sup>-1</sup>/min., and the photon counts were accumulated for 0.01 min. The spectra were stored on a computer disk, averaged, base line corrected and converted to  $R_2(\bar{\nu})$  format and then plotted using the TEKTRONIX devices. The I( $\bar{\nu}$ ) spectra are only plotted here.

Plasma lines were removed using an interference filter for each exciting line. The colour of the sample should match the colour of the laser light to minimize absorption. The Raman spectra of the yellow compounds were measured using the exciting line 5682  $\mathring{A}$ , while the spectra of the red compounds were recorded using the exciting lines 6471 and 6764 Å. The visible spectra indicate that these samples have an absorption in the blue and green regions, so the exciting lines 4880 and 5145  $\stackrel{\circ}{A}$  could not be used. The exciting line 5682  $\stackrel{\circ}{A}$  could not be used for measuring the Raman spectra of the red compounds because these samples have an absorption in the yellow region also. The spectra of red compounds were very difficult to obtain because octahedral manganese has a very broad visible absorption which extends into the red. It is also a highly fluorescent material. Ghost peaks were observed in most of the recorded spectra because these samples are weak scatters and high gain setting were required. Improved relatively ghost free spectra could be obtained by subtraction of a ghost spectrum measured from a white blank scatterer.

# 3.4 Visible Spectroscopic Measurements

The visible spectra of the solids and the melts were obtained in the optical range 23042 to 15042 cm<sup>-1</sup>. The spectra were recorded digitally using the Coderg PHO spectrometer as an absorption spectrometer with a projection lamp of 300 watts (Canadian General Electric 32).

- 25 -

Slit widths 4 and 2 cm<sup>-1</sup> were employed for the solids and the melts. The spectra of the melts were obtained from samples in a furnace as shown in figure 1. The scan rate was 50 cm<sup>-1</sup>/min., and the counts were accumulated for 0.04 min. One scan was collected for the projection lamp and another scan for the sample. After subtracting the two files, the subtracted file represented the visible spectrum of the sample. The relative absorbances of the visible spectra can not be directly related to the usual visible absorbance values since the spectra were obtained by different method whereas in conventional visible spectrometers the absorbance values are ratioed against the reference beam. All visible spectra were plotted on a TEKTRONIX 4662 digital interactive plotter with the aid of a TEKTRONIX 4051 graphics terminal.

Attempts were made to obtain the visible spectra using a Cary 17 spectrometer but the difficulty of maintaining the sample under dry conditions in the sample compartment prevented measurement of a satisfactory spectrum. Several attempts to melt samples into very thin glass tubes still resulted in samples that were too thick and resulted in total absorption of the incident light. The use of the Coderg PHO spectrometer with its very sensitive photomultiplier tube permitted the measurement of visible spectra of melts and solids in the same sample tubes as employed for the Raman studies. Figure 1. Sample furnace.



## 4. Results and Discussion

4.1 Raman Studies of MnCl2.nAcl: Solid state

4.1.1 MnC1<sub>2</sub>

 $MnCl_2^{71}$  has the CdCl<sub>2</sub> structure with space group  $R\bar{3}m(D_{3d}^5)$  and one molecule per unit cell. Mn atoms occupy  $D_{3d}$  site symmetry while Cl atoms occupy  $C_{3v}$  sites. Nine modes are predicted from factor group analysis and distributed as follows:

$${}^{\Gamma}Mn = A_{2u} + E_{u}$$

$${}^{\Gamma}C1 = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{\Gamma}total = A_{1g} + E_{g} + 2A_{2u} + 2E_{u}$$

$${}^{\Gamma}acoustic = A_{2u} + E_{u}$$
(7)

 $A_{1g}$  and  $E_{g}$  modes are Raman active, while  $A_{2u}$  and  $E_{u}$  modes are IR active. The Raman spectrum of solid MnCl<sub>2</sub> is shown in figure 2 and peak frequencies and assignments are shown in Table 1.

# 4.1.2 MnCl<sub>2</sub>-CsCl System

The phase diagram of the  $MnCl_2$ -CsCl system<sup>37,38</sup> indicates the presence of four double salts, three congruent compounds; CsMnCl<sub>3</sub>, melting point 593°C; Cs<sub>2</sub>MnCl<sub>4</sub>, melting point 538°C; Cs<sub>3</sub>MnCl<sub>5</sub>, melting point 511°C, and one incongruent melting CsMn<sub>4</sub>Cl<sub>9</sub>, melting point 537°C.

(i) Cs<sub>2</sub>MnCl<sub>4</sub>

The reports on the structure of  $Cs_2MnCl_4$  are not consistent.<sup>39,41,43,44,45</sup> It has been reported that at room temperature  $Cs_2MnCl_4$  has the  $Cs_2MnBr_4$ structure<sup>40</sup>: space group Pnma( $D_{2h}^{16}$ ), four formulas per unit cell. This structure is isomorphous with  $Cs_2MgCl_4^{42}$  which contains discrete  $MgCl_4^{2-}$  ions. On the other hand it has been reported<sup>43,44</sup> that

| Frequency | Assignments |  |  |  |
|-----------|-------------|--|--|--|
| 143 m-s   | Eg          |  |  |  |
| 233 v.s   | Alg         |  |  |  |

Table 1. Peak frequencies in cm<sup>-1</sup> and assignments for solid MnCl<sub>2</sub>.

m-s: medium-strong, v.s: very strong

Figure 2. Raman spectrum of solid MnCl<sub>2</sub> at room temperature. The stars indicate ghost peaks. The dot indicate plasma line.



- 32 -

Cs<sub>2</sub>MnCl<sub>4</sub> exists in two phases; a tetragonal room temperature form called  $\alpha$ -Cs<sub>2</sub>MnCl<sub>4</sub> or (T-form) and an orthorhombic high temperature form stable above 298°C called  $\beta$ -Cs<sub>2</sub>MnCl<sub>4</sub> or (H-form). It has been proposed that the  $\alpha$ -form has space groups I4/mmm(D<sub>4b</sub><sup>17</sup>) and is isomorphous with  $K_2 NiF_4$  and  $K_2 MgC1_4^{42}$  but the  $\beta$ -form has space group  $Pnma(D_{2h}^{16})$  and is isomorphous with  $Cs_2ZnCl_4$  and  $Cs_2MgCl_4$ . Seifert<sup>43,44</sup> also reported that the red  $\alpha$ -phase transformed to the yellow  $\beta$ -phase at 298°C. In the present study it was found that Cs2MnCl4 had a greenish yellow color at all temperatures, and the Raman spectra of the compound obtained over a wide range of temperatures from 77 K to the melting point remained the same as long as the sample remained sealed under vacuum. Attempts were made to follow the reported  $^{75} \alpha \rightarrow \beta$  phase transformation by thermally annealing the sample above and below the reported phase transition but no evidence of a phase transformation could be found. However if the sample was opened to the atmosphere, absorption of a small amount of water (~0.2%) was sufficient to cause the yellow compound to turn pale red. This red compound which could be written as Cs<sub>2</sub>MnCl<sub>4</sub>.0.16H<sub>2</sub>O was very stable and the Raman spectrum indicated that this compound probably does have the K2NiF4 structure type. Furthermore the red compound could be converted to the yellow by heating to about 300°C, at which point water condensed in the cold part of the tube. The Raman spectra of Cs<sub>2</sub>MnCl<sub>A</sub> at 77, 298 and 800 K strongly confirm the presence of discrete  $MnCl_a^{2-}$  ions and this indicate that Cs2MnCl4 is isostructural with Cs2MgCl4. Most previous studies of Cs2MnCl4 at room temperature have really been made for the hydrate Cs2MnC14.0.16H20.

Manganese is tetrahedrally coordinated with distinct  $MnCl_4^{2-}$  ions present in the  $Cs_2MnCl_4$  lattice. As shown from equation (1), four Raman active vibrations are expected for  $MnCl_4^{2-}$  ions, two stretching  $v_1(A_1)$ ;  $v_3(T_2)$  and two bending  $v_2(E)$ ;  $v_4(T_2)$ . These four vibrations are calculated from group theoretical prediction<sup>46,47</sup> by counting the number of unmoved atoms under each operation of the point group  $T_d$ , and multiply these numbers by the character  $\Gamma_x$ ,y,z under each operation to obtain  $\Gamma$ red. as shown in Table 2. From  $\Gamma$ red.,  $\Gamma$ total and then  $\Gamma$ vib. are obtained.

A description of these vibrations  $^{48}$  is shown in figure 3.

 $Cs_2MnCl_4$  has space group Pnma( $D_{2h}^{16}$ ) with four formula units per primitive unit cell, and the site symmetries of the ions are as follows:  $MnCl_4^{2-}$ ,  $C_s$ ;  $2Cs^{+1}$ ,  $C_s$ . One expect 3.N.Z = 3.7.4 = 84 modes distributed as follows: <u>Modes due to  $MnCl_4^{2-}$  ions</u> Internal modes = 36 Lattice modes (external modes) = 24 <u>Modes due to  $Cs^{+1}$  ions</u> Lattice modes (external modes) = 24 These modes are calculated using the correlation method as shown in Tables 3, 4, 5 and 6.

| т <sub>d</sub>     | Е  | 80 <sub>3</sub> | 3C <sub>2</sub> | 65 <sub>4</sub> | 6ơd |
|--------------------|----|-----------------|-----------------|-----------------|-----|
| unmoved atoms      | 5  | 2               | 1               | 1               | 3   |
| Γ <sub>x,y,z</sub> | 3  | 0               | -1              | -1              | 1   |
| <sup>r</sup> red.  | 15 | 0               | -1              | -1              | 3   |

| Table | 2. | Determination | of | <sup>r</sup> red. | for | MnCl <sub>4</sub> <sup>2-</sup> | ion. |
|-------|----|---------------|----|-------------------|-----|---------------------------------|------|
|-------|----|---------------|----|-------------------|-----|---------------------------------|------|

Figure 3. Normal vibrations of a tetrahedral molecule.





 $\nu_3(T_2)$ 







| $f^{\gamma}=Z.t^{\gamma}$ | $t^{\gamma}$                       | C <sub>s</sub><br>Site Symmetry species<br>containing translation | <u>correlation</u><br>(γ) | D <sub>2h</sub><br>Space                                                                       | group            |
|---------------------------|------------------------------------|-------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------|------------------|
| 8                         | 2(T <sub>x</sub> ,T <sub>y</sub> ) | A'                                                                |                           | $ \begin{array}{c} - A_{g} \\ - B_{1g} \\ - B_{2u} \\ - B_{3u} \end{array} $                   | 2<br>2<br>2<br>2 |
| 4                         | 1T <sub>z</sub>                    | A"                                                                |                           | $ \begin{array}{c}       B_{2g} \\       B_{3g} \\       - A_u \\       - B_{1u} \end{array} $ | 1<br>1<br>1<br>1 |
| 12 mode                   | 25                                 |                                                                   |                           |                                                                                                | 12 mode          |

Table 4. Lattice modes of  $MnCl_4^{2-}$  ion (Translation).

| f <sup>Ŷ</sup> =Z.t <sup>Ŷ</sup> | tΥ                                 | $C_s$<br>Site Symmetry species <u>correlation</u><br>containing rotation ( $\gamma$ ) | D <sub>2h</sub><br>Space g          | Jroup            |
|----------------------------------|------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------|------------------|
| 4                                | 1R <sub>z</sub>                    | A'                                                                                    | Ag<br>B1g<br>B2u<br>B3u             | 1<br>1<br>1<br>1 |
| 8                                | 2(R <sub>x</sub> ,R <sub>y</sub> ) | A"                                                                                    | B2g<br>B3g<br>A <sub>u</sub><br>B1u | 2<br>2<br>2<br>2 |
| 12 mod                           | es                                 |                                                                                       | -                                   | 2 mode           |

| Table | 5. | Lattice | modes | of | MnC1 <sup>2-</sup> | ion | (Rotation). |
|-------|----|---------|-------|----|--------------------|-----|-------------|
|-------|----|---------|-------|----|--------------------|-----|-------------|

| f <sup>Y</sup> =Z.t <sup>Y</sup> | t <sup>Ŷ</sup>                     | C <sub>s</sub><br>Site Symmetry species<br>containing translation | <u>correlation</u><br>( <sub>Y</sub> ) | D <sub>2h</sub><br>Space                                                | group            |
|----------------------------------|------------------------------------|-------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------|------------------|
| 16                               | 2(T <sub>x</sub> ,T <sub>y</sub> ) | A'                                                                |                                        | Ag<br>B1g<br>B2u<br>B3u                                                 | 4<br>4<br>4<br>4 |
| 8                                | 1T <sub>z</sub>                    | A"                                                                |                                        | <sup>B</sup> 2g<br><sup>B</sup> 3g<br>A <sub>u</sub><br><sup>B</sup> 1u | 2<br>2<br>2<br>2 |
| 24 mode                          | s                                  |                                                                   |                                        |                                                                         | 24 modes         |

Table 6. Lattice modes of Cs<sup>+1</sup> ions.

$${}^{r}\text{total} = {}^{r}\text{MnCl}_{4}{}^{2-} \text{ (internal modes)} + {}^{r}\text{MnCl}_{4}{}^{2-} \text{ (lattice modes)} \text{ (trans.)} \\ + {}^{r}\text{MnCl}_{4}{}^{2-} \text{ (lattice modes)} \text{ (rot.)} + {}^{r}\text{2cs}^{+1} \text{ (lattice modes)} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ internal} = {}^{6}\text{A}_{g} + {}^{6}\text{B}_{1g} + {}^{6}\text{B}_{2u} + {}^{6}\text{B}_{3u} + {}^{3}\text{B}_{2g} + {}^{3}\text{B}_{3g} + {}^{3}\text{A}_{u} + {}^{3}\text{B}_{1u} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ lattice} = {}^{2}\text{A}_{g} + {}^{2}\text{B}_{1g} + {}^{2}\text{B}_{2u} + {}^{2}\text{B}_{3u} + {}^{8}\text{B}_{2g} + {}^{8}\text{B}_{3g} + {}^{A}\text{u} + {}^{8}\text{lu} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ lattice} = {}^{A}\text{g} + {}^{B}\text{lg} + {}^{B}\text{2u} + {}^{B}\text{3u} + {}^{2}\text{B}_{2g} + {}^{2}\text{B}_{3g} + {}^{2}\text{A}_{u} + {}^{2}\text{B}_{1u} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ lattice} = {}^{A}\text{g} + {}^{B}\text{lg} + {}^{B}\text{2u} + {}^{B}\text{3u} + {}^{2}\text{B}_{2g} + {}^{2}\text{B}_{3g} + {}^{2}\text{A}_{u} + {}^{2}\text{B}_{1u} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ lattice} = {}^{A}\text{g} + {}^{4}\text{B}_{1g} + {}^{4}\text{B}_{2u} + {}^{4}\text{B}_{3u} + {}^{2}\text{B}_{2g} + {}^{2}\text{B}_{3g} + {}^{2}\text{A}_{u} + {}^{2}\text{B}_{1u} \text{ }$$

$${}^{r}\text{MnCl}_{4}{}^{2-} \text{ lattice} = {}^{4}\text{A}\text{g} + {}^{4}\text{B}_{1g} + {}^{4}\text{B}_{2u} + {}^{4}\text{B}_{3u} + {}^{2}\text{B}_{2g} + {}^{2}\text{B}_{3g} + {}^{2}\text{A}_{u} + {}^{2}\text{B}_{1u} \text{ }$$

$${}^{r}\text{codes} \text{ (rot.)}^{r}\text{g} + {}^{1}\text{lattice} = {}^{4}\text{A}\text{g} + {}^{4}\text{B}_{1g} + {}^{4}\text{B}_{2u} + {}^{4}\text{B}_{3u} + {}^{2}\text{B}_{2g} + {}^{2}\text{B}_{3g} + {}^{2}\text{A}_{u} + {}^{2}\text{B}_{1u} \text{ }$$

$${}^{r}\text{total} = {}^{1}\text{3}\text{A}\text{g} + {}^{1}\text{3}\text{B}_{1g} + {}^{1}\text{3}\text{B}_{2u} + {}^{1}\text{B}_{3u} + {}^{8}\text{B}_{3g} + {}^{8}\text{A}_{u} + {}^{8}\text{B}_{1u} \text{ }$$

$${}^{r}\text{acoustic} = {}^{r}\text{B}_{2u} + {}^{r}\text{B}_{3u} + {}^{r}\text{B}_{3u} + {}^{r}\text{B}_{1u} \text{ }$$

As shown from equation (9) eighty-four modes are predicted, three of which are acoustic. All g modes are Raman active, all u modes are IR active, and  $A_u$  is inactive. The Raman spectra of  $Cs_2MnCl_4$  in the solid at 77, 298, and 800 K are shown in figure 4. The spectra strongly indicate the existence of the tetrahedral  $MnCl_4^{2-}$  ion. The totally symmetric vibration<sup>49</sup> ( $v_1$ ) of  $MnCl_4^{2-}$  has been reported in the solid at 258 cm<sup>-1</sup> and in solution as a polarized line at 251 cm<sup>-1</sup>. A peak due to  $v_4$  was reported as shoulder at 116 cm<sup>-1</sup>. The present assignments have been made by analogy with spectrum of  $Cs_2MgCl_4^{14}$ . Peak positions and assignments are shown in Table 7.

| 77 K                               | Frequency<br>298 K                       | 800 K         | Assignments                                                                                                           |
|------------------------------------|------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------|
| 40 sh,m<br>51 sh,w<br>63 w<br>75 w | 39 sh,m<br>47 sh,m-w<br>61 v.w<br>72 v.w |               | $ \begin{array}{c} B_{1g} + B_{2g} + B_{3g} \\ B_{2g} \\ A_{g} \\ A_{g} + B_{1g} \end{array} \right\} Lattice modes $ |
| 89 w<br>106 m                      | 85 sh,v.w<br>102 m                       | 98 m          | $ \begin{bmatrix} B_{2g} + B_{3g} \\ A_{g} \end{bmatrix} ^{\nu} 2 $                                                   |
| 118 m<br>133 m-w                   | 117 m<br>131 sh, m                       | 116 s         | $ \begin{bmatrix} B_{2g} + B_{3g} \\ A_{g} \end{bmatrix} v_{4} $                                                      |
| 272 m<br>(7.5) <sup>a</sup>        | 271 m<br>(10.3)                          | 262 m<br>(25) | A <sub>g</sub> ۷ <sub>1</sub>                                                                                         |
| 292 v.w<br>298 v.w                 | 293 v.w                                  |               | $ \begin{array}{c} A_{g} + B_{1g} \\ B_{2g} + B_{3g} \end{array} $                                                    |
| 310 v.w                            | 306 v.w                                  |               | $A_g + B_{1g}$                                                                                                        |

Table 7. Assignments and peak positions in  $cm^{-1}$  for solid  $Cs_2MnCl_4$ .

a: half band width is given in parenthesis

v.w: very weak, w: weak, m: medium, s: strong, sh: shoulder

Figure 4. Raman spectra of solid Cs<sub>2</sub>MnCl<sub>4</sub> at 77, 298, and 800 K.



(ii) Cs<sub>3</sub>MnCl<sub>5</sub>

The X-ray study<sup>51</sup> on single crystal of  $Cs_3MnCl_5$  indicated that  $Cs_3MnCl_5$  is isomorphous with  $Cs_3CoCl_5$  and has space group I4/mcm  $(D_{4h}^{18})$ with two formula units per primitive unit cell. In the structure the Mn ion is coordinated by Cl(2) ions to form individual MnCl<sub>4</sub><sup>2-</sup> tetrahedra, and the structure can be considered as composed of Cs<sup>+</sup>, [MnCl<sub>4</sub>]<sup>2-</sup> and Cl(1)<sup>-</sup> ions. The site symmetries of the ions are as follows: MnCl<sub>4</sub><sup>2-</sup>, D<sub>2d</sub>; Cs(1), D<sub>4</sub>; Cs(2), C<sub>2v</sub>; Cl(1), C<sub>4h</sub>.

Since the number of formulas per primitive unit cell are two, fifty-four modes are predicted from factor group analysis and distributed as follows:

18 modes due to internal modes of  $MnCl_4^{2-}$  ion 12 modes due to lattice modes of  $MnCl_4^{2-}$  ion 12 modes due to lattice modes of Cs(2) ion 6 modes due to lattice modes of Cs(1) ion 6 modes due to lattice modes of Cl(1) ion

$$\Gamma_{total} = \Gamma_{Mn} + \Gamma_{Cl}(2) + \Gamma_{Cl}(1) + \Gamma_{Cs}(1) + \Gamma_{Cs}(2)$$
  
but

 $\Gamma_{Mn} + \Gamma_{C1(2)} = \Gamma_{MnC1_4}^{2-}$  (internal modes) +  $\Gamma_{MnC1_4}^{2-}$  (lattice modes)

 $\Gamma$ total =  $\Gamma$ MnCl<sub>4</sub><sup>2-</sup> (internal modes) +  $\Gamma$ MnCl<sub>4</sub><sup>2-</sup> (lattice modes)

+  $^{\Gamma}Cs(1)$  +  $^{\Gamma}Cs(2)$  +  $^{\Gamma}C1(1)$ 

 $^{\Gamma}$ Cs(1),  $^{\Gamma}$ Cs(2), and  $^{\Gamma}$ Cl(1) are shown in equations (10), (11), and (12).

$${}^{\Gamma}Cs(1) = A_{2g} + E_{g} + A_{2u} + E_{u} (10)$$

$${}^{\Gamma}Cs(2) = A_{1g} + A_{2g} + B_{1g} + B_{2g} + E_{g} + A_{2u} + B_{1u} + 2E_{u} (11)$$

$${}^{\Gamma}C1(1) = A_{1u} + A_{2u} + 2E_{u} (12)$$

The internal and lattice modes for  $MnCl_4^{2-}$  ion are shown by correlation method in Tables 8, 9, and 10.

$$^{T}tota1 = 3A_{1g} + 3A_{2g} + 2B_{1g} + 4B_{2g} + 6E_{g} + 2A_{1u} + 6A_{2u} + 3B_{1u} + B_{2u} + 9E_{u}$$
(13)

$$A_{2u} + E_{u}$$

 $B_{1u}$  and  $B_{2u}$  are inactive, all the u modes are IR active and all the g modes are Raman active according to the rule of mutual exclusion.

The Raman spectra of  $Cs_3MnCl_5$  at 77 K, 298 K, and 760 K are shown in figure 5. The spectra strongly indicate the presence of tetrahedral  $MnCl_4^{2-}$  species as suggested before<sup>23</sup>. For the totally symmetric vibration ( $v_1$ ), splittings are observed due to  ${}^{35}Cl$  and  ${}^{37}Cl$  isotopes. The three peaks observed at 272.5, 273.8, and 275.9 cm<sup>-1</sup> are assigned to  $Mn^{35}Cl_2{}^{37}Cl_2{}^{2-}$ ,  $Mn^{35}Cl_3{}^{37}Cl^{2-}$ , and  $Mn^{35}Cl_4{}^{2-}$  ions. Assignments are made by analogy with the spectrum of  $Cs_3MgCl_5{}^{16}$ . Peak positions and assignments are shown in Table 11.

(iii) CsMnCl<sub>3</sub>

It has been reported  $^{76}$  that CsMnCl<sub>3</sub> has space group R3m, however



d: doubly degenerate mode

| f <sup>Y</sup> =Z.t <sup>Y</sup> | tΥ       | D <sub>2d</sub><br>Site Symmetry species <u>correlation</u><br>containing translation (γ) | D4h<br>Space     | grou | qr         |
|----------------------------------|----------|-------------------------------------------------------------------------------------------|------------------|------|------------|
| 2                                | 17_      | Ba                                                                                        | —B <sub>2g</sub> | 1    |            |
|                                  | Z        | 2                                                                                         | A 2u             | 1    |            |
| А                                | 2(T T )  | F                                                                                         | — E <sub>g</sub> | 1    | d          |
| -                                | -('x,'y' |                                                                                           | E <sub>u</sub>   | 1    | d          |
|                                  | 2        |                                                                                           | -                | 6 1  | -<br>nodes |
| o mode.                          |          |                                                                                           |                  |      | noucs      |

Table 9. Lattice modes of  $MnCl_4^{2-}$  ion (Translation).

d: doubly degenerate mode
| f <sup>Y</sup> =Z.t <sup>Y</sup> | t <sup>γ</sup>  | $D_{\rm 2d}$ Site Symmetry species correlation containing rotation $(\gamma)$ | D <sub>4h</sub><br>Space | gro | up         |
|----------------------------------|-----------------|-------------------------------------------------------------------------------|--------------------------|-----|------------|
| 2                                | 10              | ٨                                                                             | — A <sub>2g</sub>        | 1   |            |
| L                                | Z               | n2                                                                            | -B <sub>2u</sub>         | 1   |            |
| 4                                | 2(R R)          | F                                                                             | — E <sub>g</sub>         | 1   | d          |
|                                  | - · · x , · y / |                                                                               | — E <sub>u</sub>         | 1   | d          |
| 6 modes                          | 5               |                                                                               | -                        | 6   | -<br>modes |
|                                  |                 |                                                                               |                          |     |            |

Table 10. Lattice modes of  $MnCl_4^{2-}$  ion (Rotation).

d: doubly degenerate mode

| 77 K        | Frequency<br>298 K | 760 K    | Assignments                   |
|-------------|--------------------|----------|-------------------------------|
|             |                    |          |                               |
| 41 sh,m-w   | 38 sh,m-w          | ~41 sh,m | Eg                            |
| 51 m-w      | 49 m               |          | B <sub>2g</sub> Lattice modes |
| 64 v.w      | 61 v.w             |          | Alg Lattice modes             |
| 77 v.w      | 72 w               |          | Ea                            |
|             |                    |          | 5 -                           |
| 88 m-w      | 87 m               | ~90 w    | A <sub>10</sub> )             |
| 100 v.w     | 99 sh, v.w         |          | B10 2                         |
|             |                    |          | 19)                           |
| 119 m       | 118 m              | 114 m-s  | E )                           |
| 131 sh,m    | 130 sh,m           |          | Boa V4                        |
|             |                    |          | 2g )                          |
| 273 m       | 272 m              | 265 m-w  | AT VI                         |
| $(5.8)^{a}$ | (8.0)              | (20)     | lg                            |
| (/          |                    | (/       |                               |
| 298 v.w     | 294 v.w            |          | E)                            |
| 307 V W     | 303 V W            |          | B V3                          |
| 507 V.W     | 505 V.W            |          | <sup>2</sup> 2g J             |
|             |                    |          |                               |

Table 11. Assignments and frequencies in  $cm^{-1}$  for solid  $Cs_3MnCl_5$ .

a: half band width is given in parenthesis

v.w: very weak, w: weak, m: medium, s: strong, sh: shoulder

Figure 5. Raman spectra of solid Cs<sub>3</sub>MnCl<sub>5</sub> at 77, 298, and 760 K.



neutron diffraction data<sup>53</sup> indicated that  $CsMnCl_3$  has space group R3m. A recent<sup>52</sup> crystal structure determination on a single crystal of  $CsMnCl_3$ confirmed that  $CsMnCl_3$  crystallizes in the centric space group R3m ( $D_{3d}^5$ ) with three formulas per primitive unit cell. The compound consists of [ $Mn_3Cl_{12}$ ] trimers with each trimer linked to the other trimers by corner sharing, the central manganese atom of a trimer has  $D_{3d}$  site symmetry, and the two terminal manganese atoms of a trimer have  $C_{3v}$  site symmetry. The site symmetries of Cs(1), Cs(2), Cl(1), and Cl(2) atoms are:  $D_{3d}$ ,  $C_{3v}$ ,  $C_{2h}$ , $C_s$  respectively. Forty-five modes are predicted from factor group analysis and distributed as follows:

$${}^{1}Cs(1) = A_{2u} + E_{u}$$

$${}^{1}Mn(1) = A_{2u} + E_{u}$$

$${}^{1}Cs(2) = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{1}Cs(2) = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{1}Mn(2) = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{1}C1(1) = 4A_{1g} + A_{2g} + 2E_{g} + 4A_{2u} + A_{1u} + 2E_{u}$$

$${}^{1}C1(2) = 4A_{1g} + A_{2g} + 2E_{g} + 4A_{2u} + A_{1u} + 2E_{u}$$

$${}^{1}total = 6A_{1g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 8E_{u}$$

$${}^{1}acoustic = A_{2u} + E_{u}$$

$${}^{1}C1(1) = A_{2g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 4E_{u}$$

$${}^{1}C1(1) = A_{1g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 4E_{u}$$

$${}^{1}C1(1) = A_{1g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 4E_{u}$$

$${}^{1}C1(1) = A_{1g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 4E_{u}$$

$${}^{1}C1(1) = A_{1g} + A_{2g} + 4E_{g} + 12A_{2u} + 2A_{1u} + 4E_{u}$$

$${}^{1}C1(1) = A_{2u} + E_{u}$$

 $A_{2g}$  and  $A_{1u}$  are inactive, while the u modes are IR active and g modes are Raman active. Ten Raman active modes are predicted as shown from equation (14), but we observed only five Raman peaks. The spectrum of CsMnCl<sub>3</sub> is shown in figure 6.

Since (CH<sub>3</sub>)<sub>4</sub>NMnCl<sub>3</sub><sup>54</sup> consists of infinite linear chains composed of manganese atoms bridged by three chlorine atoms -MnCl<sub>3</sub><sup>-</sup>-, and the single crystal Raman of this compound has been reported<sup>55</sup>, the observed peaks are assigned by analogy with the peaks observed in the spectrum of  $(CH_3)_4NMnCl_3$ . Peak positions and assignments are shown in Table 12.

## (iv) CsMn\_Clo

An X-ray study<sup>39</sup> on single crystal of  $CsMn_4Cl_9$  indicated that this compound crystallizes in space group  $I4_1/a$  ( $C_{4h}^6$ ) with two formulas per unit cell. The Mn is octahedrally coordinated by Cl atoms, and each MnCl<sub>6</sub> octahedron is linked to six neighbouring octahedra by sharing five edges and one vertex. The site symmetries are as follows: Cs; S<sub>4</sub>, Mn; C<sub>1</sub>, Cl(1); C<sub>1</sub>, Cl(2); C<sub>1</sub>, Cl(3); S<sub>4</sub>. Eighty-four modes are predicted from factor group analysis and distributed as follows:

$${}^{\Gamma}Cs = B_{g} + E_{g} + A_{u} + E_{u}$$

$${}^{\Gamma}C1(3) = B_{g} + E_{g} + A_{u} + E_{u}$$

$${}^{\Gamma}Mn = 2A_{g} + 2B_{g} + 4E_{g} + 2A_{u} + 2B_{u} + 4E_{u}$$

$${}^{\Gamma}C1(1) = 2A_{g} + 2B_{g} + 4E_{g} + 2A_{u} + 2B_{u} + 4E_{u}$$

$${}^{\Gamma}C1(2) = 2A_{g} + 2B_{g} + 4E_{g} + 2A_{u} + 2B_{u} + 4E_{u}$$

$${}^{\Gamma}tota1 = 6A_{g} + 8B_{g} + 14E_{g} + 8A_{u} + 6B_{u} + 14E_{u}$$

$${}^{\Gamma}acoustic = A_{u} + E_{u}$$
(15)

The g modes are Raman active, and u modes are IR active except  $A_u$  is inactive. The Raman spectra of  $CsMn_4Cl_9$  and other mixtures in this composition region are shown in figure 6. Tentative assignments and peak frequencies are shown in Table 13.

| CsMnC13 | Assignments | (CH <sub>3</sub> ) <sub>4</sub> NMnC1 <sub>3</sub> | Assignments     |
|---------|-------------|----------------------------------------------------|-----------------|
| 48 m-w  | Eg          | 88                                                 | E <sub>2g</sub> |
| 100 m   | Eg          | 118                                                | E <sub>lg</sub> |
| 154 m-w | Eg          | 129                                                | E <sub>2g</sub> |
| 191 w   | Eg          | 182                                                | E <sub>2g</sub> |
| 250 w   | Alg         | 256                                                | Ag              |

Table 12. Assignments and peak frequencies in  $cm^{-1}$  for CsMnCl<sub>3</sub> and  $(CH_3)_4NMnCl_3$ .

w: weak, m: medium

| CsMn <sub>4</sub> Cl <sub>9</sub> | CsC1:MnC12   | CsC1:MnC12   | CsC1:MnC12 | Assignments                       |
|-----------------------------------|--------------|--------------|------------|-----------------------------------|
| I                                 | (1:4.5)<br>I | (1:3.5)<br>I | (1:2)<br>I |                                   |
| 41 w                              | 42 m-w       | 42 m-w       | 41 w       | I (E <sub>0</sub> )               |
| 50 v.w                            | 50 v.w       | 50 w         | 50 m-w     | I                                 |
| 63 m                              | 66 m         | 66 m         | 65 m       | I                                 |
| 96 m                              | 98 m         | 98 m         | 99 m       | I                                 |
| 102 w,br.                         |              |              |            | I                                 |
| 108 sh,w                          | 110 w        | 110 m,br.    | 108 sh,m-w | I                                 |
| 121 m                             | 124 m        | 123 m        | 123 w      | I                                 |
|                                   | 144 m        |              | 146 sh,w   | $E_{\alpha}$ (MnCl <sub>2</sub> ) |
| 148 w                             | 148 sh,m     | 149 m-w      | 154.5 m-w  | I                                 |
| 196 w                             | 197 w        | 200 m-w      | 196 m-w    | I                                 |
| 222 w                             | 226 sh,m-w   | 224 w        | 224 w      | I                                 |
| 238 v.w                           | 234 s        | 239 w        | 238 v.v.w  | $A_{1a}$ (MnCl <sub>2</sub> )     |
| 254 m                             | 257 m        | 256 m        | 256 m      | I (A <sub>g</sub> )               |

Table 13. Peak frequencies in cm<sup>-1</sup> and assignments for the solid compounds formed in CsCl-MnCl<sub>o</sub> mixtures.

v.w: very weak, w: weak, m: medium, s: strong, sh: shoulder, br: broad Figure 6. Raman spectra of solids formed from the CsCl-MnCl<sub>2</sub> system. The stars indicate ghost peaks. The dots indicate plasma lines.



4.1.3 MnCl\_ - RbCl System

The phase diagram of MnCl<sub>2</sub>-RbCl system<sup>37,38</sup> indicates the presence of three compounds, one congruent compound, RbMnCl<sub>3</sub>; melting point 552°C, and two incongruent compounds, Rb<sub>2</sub>MnCl<sub>4</sub>; melting point 462°C and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>; melting point 475°C.

(i) <u>RbMnCl</u><sub>3</sub>

An X-ray study<sup>56</sup> on single crystal of RbMnCl<sub>3</sub> indicated that this compound has space group P6<sub>3</sub>/mmc ( $D_{6h}^4$ ) with six formulas per unit cell. The unit cell has six layers of RbCl<sub>3</sub> with the Mn ion situated between the layers and octahedrally coordinated by Cl ions. The site symmetries are as follows: Rb(1); C<sub>2h</sub>, Rb(2); D<sub>3h</sub>, Mn(1); C<sub>2h</sub>, Mn(2); D<sub>3d</sub>, Cl(1); C<sub>1</sub>, Cl(2); C<sub>2</sub>. Ninety modes are predicted from factor group analysis, and distributed as follows:

 $\Gamma_{Rb}(1) =$  $A_{1u} + 2A_{2u} + B_{1u} + 4B_{2u} + E_{1u}$ +E2u  $\Gamma_{Rb(2)} =$ + E<sub>2g</sub> + A<sub>2u</sub> Blg + E<sub>1u</sub>  $A_{1u} + 2A_{2u} + B_{1u} + 4B_{2u} + E_{1u}$  $\Gamma_{Mn(1)} =$ + E<sub>2u</sub>  $\Gamma_{Mn}(2) =$  $A_{2u}$  +  $B_{2u}$  +  $E_{1u}$ + E<sub>2u</sub>  $^{\Gamma}$ Cl(1) = 4A<sub>1g</sub> + A<sub>2g</sub> + B<sub>1g</sub> + 4E<sub>1g</sub> + 5E<sub>2g</sub> + A<sub>2u</sub> + B<sub>1u</sub> + 4E<sub>1</sub>u + E<sub>2u</sub>  $\Gamma_{C1(2)} = A_{1g} + 4A_{2g} + 2B_{1g} + 2E_{1g} + 2E_{2g}$ + E<sub>1u</sub> + B<sub>lu</sub> Ttotal = 5A<sub>1g</sub> + 5A<sub>2g</sub> + 4B<sub>1g</sub> + 6E<sub>1g</sub> + 8E<sub>2g</sub> + 2A<sub>1u</sub>+7A<sub>2u</sub> +4B<sub>1u</sub> + 9B<sub>2u</sub> + 9E<sub>1u</sub>  $+ 4E_{2u}$  (16) <sup>r</sup>acoustic = + E<sub>lu</sub> A<sub>2u</sub>

 $A_{2g}$  and  $B_{1g}$  are inactive while  $A_{1g}$ ,  $E_{1g}$ , and  $E_{2g}$  are Raman active, and the u modes are IR active except  $B_{1u}$  and  $B_{2u}$  which are inactive.

The Raman spectrum of RbMnCl<sub>3</sub> is shown in figure 7. The assignments have been made by analogy with the Raman spectrum of RbMnCl<sub>3</sub> crystal<sup>70</sup> at 50 K. Assignments and peak positions are shown in Table 14.

(ii) Rb\_MnCl\_4

An X-ray diffraction pattern<sup>57</sup> and neutron diffraction data<sup>45</sup> of  $Rb_2MnCl_4$  showed that this compound crystallizes in space group I4/mmm  $(D_{4h}^{17})$  with one formula per unit cell. The compound is isostructural with  $K_2MgCl_4^{42}$ . The Mn atom is octahedrally coordinated by Cl atoms, and the site symmetries are as follows: Rb;  $C_{4v}$ , Mn;  $D_{4h}$ , Cl(1);  $D_{2h}$ , Cl(2);  $C_{4v}$ . Twenty-one modes are predicted from factor group analysis, and distributed as follows:

$${}^{1}Rb = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{1}Mn = A_{2u} + E_{u}$$

$${}^{1}C1(1) = A_{2u} + B_{2u} + 2E_{u}$$

$${}^{1}C1(2) = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$${}^{1}total = 2A_{1g} + 2E_{g} + 4A_{2u} + B_{2u} + 5E_{u}$$

$${}^{1}acoustic = A_{2u} + E_{u}$$
(17)

All g modes are Raman active, and the u modes are IR active except  $B_{2u}$  is inactive. Four modes are predicted in the Raman spectrum, two peaks are observed, and the other two peaks are not detected in the spectrum because of the presence of a ghost in the range 80-120 cm<sup>-1</sup>. The assignments are made by analogy with the spectrum of single crystal

|                              |                       | 0               |
|------------------------------|-----------------------|-----------------|
| RbMnC1 <sub>3</sub>          | RbMnC13 <sup>70</sup> | Assignments     |
| Solid at<br>room temperature | Crystal at<br>50 K    |                 |
|                              | 19                    | Ala             |
|                              | 28                    | Elg             |
|                              | 44                    | E <sub>2g</sub> |
| 52 sh,m                      | 53                    | E <sub>2g</sub> |
|                              | 74                    | E <sub>2g</sub> |
|                              | 130                   | Elg             |
|                              | 135                   | Alg             |
| 152 w                        | 150                   | E <sub>2g</sub> |
| 171.5 v.w                    | 170                   | Alg             |
|                              | 180                   | E <sub>2g</sub> |
|                              | 218                   | E <sub>2g</sub> |
| 258 v.w                      | 257                   | Alg             |
|                              |                       |                 |

Table 14. Assignments and frequencies in cm<sup>-1</sup> for solid RbMnCl<sub>3</sub>.

V.w: very weak, w: weak, m: medium, sh: shoulder

Rb<sub>2</sub>MnCl<sub>4</sub><sup>59,60</sup>. The spectra of Rb<sub>2</sub>MnCl<sub>4</sub>, RbCl:MnCl<sub>2</sub> (3:1), and RbCl:MnCl<sub>2</sub> (4:1) are shown in figure 7, and peak frequencies and assignments are shown in Table 15.

## (iii) Rb3Mn2Cl7

The X-ray diffraction pattern<sup>43,57</sup> of  $Rb_3Mn_2Cl_7$  indicated that this incongruent melting compound is isostructural with  $Sr_3Ti_2O_7^{61}$ , and has space group I4/mmm ( $D_{4h}^{17}$ ) with two formulas per unit cell. The site symmetries are as follows: Mn;  $C_{4v}$ , Rb(1);  $D_{4h}$ , Rb(2);  $C_{4v}$ , Cl(1);  $D_{4h}$ , Cl(2);  $C_{2v}$ , Cl(3);  $C_{4v}$ . Factor group analysis predicted seventytwo modes distributed as follows:

| <sup>1</sup> C1(1)  | =  |                  |   |                  |   |                  |   | 2A <sub>2u</sub>  |   | +                  | 2E <sub>u</sub>  |   |     |
|---------------------|----|------------------|---|------------------|---|------------------|---|-------------------|---|--------------------|------------------|---|-----|
| $^{\Gamma}$ Rb(1)   | Ξ  |                  |   |                  |   |                  |   | 2A <sub>2u</sub>  |   | +                  | 2E <sub>u</sub>  |   |     |
| $^{\Gamma}$ Rb(2)   | =  | 2A <sub>lg</sub> |   |                  | + | 2Eg              | + | 2A <sub>2u</sub>  |   | +                  | 2E <sub>u</sub>  |   |     |
| <sup>Г</sup> Мп     | =  | 2A <sub>lg</sub> |   |                  | + | 2Eg              | + | 2A <sub>2u</sub>  |   | +                  | 2E <sub>u</sub>  |   |     |
| <sup>r</sup> c1(3)  | =  | 2A <sub>lg</sub> |   |                  | + | 2Eg              | + | 2A <sub>2u</sub>  |   | +                  | 2E <sub>u</sub>  |   |     |
| <sup>r</sup> c1(2)  | H  | 2A <sub>lg</sub> | + | <sup>2B</sup> 1g | + | 4Eg              | + | 2A <sub>2u</sub>  | + | 28 <sub>2u</sub> + | 4E <sub>u</sub>  |   |     |
| <sup>r</sup> total  | H  | 8A <sub>1g</sub> | + | 2B <sub>lg</sub> | + | 10E <sub>g</sub> | + | 12A <sub>2u</sub> | + | 2B <sub>2u</sub> + | 14E <sub>u</sub> | ( | 18) |
| <sup>r</sup> acoust | ic | =                |   |                  |   |                  |   | A <sub>2u</sub>   |   | +                  | Eu               |   |     |

All g modes are Raman active, while  $A_{2u}$  and  $E_u$  modes are IR active and  $B_{2u}$  is inactive. The Raman spectrum of  $Rb_3Mn_2Cl_7$  is shown in figure 7. The spectrum seems to be similar to the spectra of  $RbMnCl_3$  and  $Rb_2MnCl_4$ . Assignments have been made by analogy with  $RbMnCl_3$  and  $Rb_2MnCl_4$ . Recently<sup>60</sup> six Raman peaks were observed without assignments for  $Rb_3Mn_2Cl_7$ . Tentative assignments and frequencies in cm<sup>-1</sup> are shown in Table 16.

| RbC1:MnC1 <sub>2</sub><br>(3:1) | RbC1:MnC1 <sub>2</sub><br>(4:1)                         | Rb <sub>2</sub> MnC1 <sub>4</sub> 59<br>at 300 K                                                                              | Assignments                                          |
|---------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| I                               | I                                                       |                                                                                                                               |                                                      |
| 52 m                            | 52 m                                                    | 52                                                                                                                            | E <sub>g</sub> (I)                                   |
|                                 |                                                         | 89.5                                                                                                                          | Alg                                                  |
|                                 |                                                         | 97.5                                                                                                                          | Eg                                                   |
| 200 m-w                         | 200 m-w                                                 | 201                                                                                                                           | A <sub>lg</sub> (I)                                  |
|                                 | RbC1:MnCl <sub>2</sub><br>(3:1)<br>I<br>52 m<br>200 m-w | RbC1:MnCl2       RbC1:MnCl2         (3:1)       (4:1)         I       I         52 m       52 m         200 m-w       200 m-w | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 15. Peak frequencies in cm<sup>-1</sup> and assignments for the solid compounds formed in RbCl-MnCl<sub>2</sub> mixtures.

w: weak, m: medium, s: strong

| Rb3Mn2C17 | Rb3Mn2C1760 | Assignments                             |
|-----------|-------------|-----------------------------------------|
|           | 36          |                                         |
| 51 sh,w   |             | (E <sub>2g</sub> (RbMnCl <sub>3</sub> ) |
|           |             | $\left( E_{g} (Rb_{2}MnC1_{4}) \right)$ |
|           | 78          |                                         |
|           | 98          |                                         |
|           | 115         |                                         |
| 148 v.w   |             | E <sub>g</sub> (MnCl <sub>2</sub> )     |
| 156 v.w   |             | E <sub>2g</sub> (RbMnCl <sub>3</sub> )  |
| 166 v.w.  | 166         | A <sub>1g</sub> (RbMnC1 <sub>3</sub> )  |
| 200 w     |             | Alg (Rb2MnCl4)                          |
| 240 v.w   | 242         | Alg (MnCl <sub>2</sub> )                |

Table 16. Assignments and peak frequencies in  $cm^{-1}$  for solid  $Rb_3Mn_2Cl_7$ .

v.w: very weak, w: weak, sh: shoulder

Figure 7. Raman spectra of solids formed from the RbCl-MnCl<sub>2</sub> system. The stars indicate ghost peaks.



#### 4.1.4 MnCl\_-KCl System

The phase diagram of  $MnCl_2-KCl$  system<sup>37,57</sup> indicated the presence of three double salts, one congruent compound,  $KMnCl_3$ ; melting point 490°C, and two incongruent compounds,  $K_3Mn_2Cl_7$ ; melting point 437°C and  $K_4MnCl_6$ ; melting point 448°C. Kuzmenko et. al<sup>58</sup> reported that there are three coordination compounds for KCl-MnCl<sub>2</sub> system, one congruent compound KMnCl<sub>3</sub>, and two incongruent compounds  $K_3Mn_2Cl_7$  and  $K_2MnCl_4$ .

 $K_3Mn_2Cl_7^{43,57}$  is isostructural with  $Rb_3Mn_2Cl_7^{43,57}$ , and the number of modes predicted from factor group analysis are given by equation 18.  $KMnCl_3^{43}$  is isostructural with  $KMgCl_3^{77}$  with space group Pnma ( $D_{2h}^{16}$ ) and four formulas per unit cell. Seifert<sup>43</sup> reported anigh temperature phase which we have not studied. The site symmetries are as follows: K;  $C_s$ , Mn;  $C_i$ , Cl(1);  $C_s$ , Cl(2);  $C_1$ . The number of modes predicted from factor group analysis are distributed as follows:

$${}^{\Gamma}Mn = 3A_{u} + 3B_{1u} + 3B_{2u} + 3B_{3u}$$

$${}^{\Gamma}K = 2A_{g} + 2B_{1g} + B_{2g} + B_{3g} + A_{u} + B_{1u} + 2B_{2u} + 2B_{3u}$$

$${}^{\Gamma}C1(1) = 2A_{g} + 2B_{1g} + B_{2g} + B_{3g} + A_{u} + B_{1u} + 2B_{2u} + 2B_{3u}$$

$${}^{\Gamma}C1(2) = 3A_{g} + 3B_{1g} + 3B_{2g} + 3B_{3g} + 3A_{u} + 3B_{1u} + 3B_{2u} + 3B_{3u}$$

$${}^{\Gamma}tota1 = 7A_{g} + 7B_{1g} + 5B_{2g} + 5B_{3g} + 8A_{u} + 8B_{1u} + 10B_{2u} + 10B_{3u} (19)$$

$${}^{\Gamma}acoustic = B_{1u} + B_{2u} + B_{3u}$$

A<sub>u</sub> is inactive, and u modes are IR active while the g modes are Raman active.

 $K_4$ MnCl<sub>6</sub><sup>62,63</sup> has space group R3c (D<sub>3d</sub><sup>6</sup>) with two formulas per unit cell. The site symmetries are as follows: K(1), C<sub>3i</sub>, K(2); C<sub>i</sub>, Mn; D<sub>3</sub>, Cl; C<sub>1</sub>. The number of modes predicted from factor group analysis are distributed as follows:

 $\begin{array}{rcl} {}^{\Gamma} Mn & = & A_{2g} + E_{g} & + A_{2u} + E_{u} \\ {}^{\Gamma} K(1) & = & A_{1u} + A_{2u} + 2E_{u} \\ {}^{\Gamma} K(2) & = & 4A_{1u} + 4A_{2u} + 5E_{u} \\ {}^{\Gamma} C1 & = & 3A_{1g} + 3A_{2g} + 10 E_{g} + 3A_{1u} + 3A_{2u} + 2E_{u} \\ {}^{\Gamma} total & = & 3A_{1g} + 4A_{2g} + 11E_{g} + 8A_{1u} + 9A_{2u} + 10E_{u} \\ {}^{\Gamma} acoustic & = & A_{2u} + E_{u} \end{array}$  (20)

 $A_{2g}$  and  $A_{1u}$  are inactive, while  $A_{1g}$  and  $E_{g}$  are Raman active and  $A_{2u}$  and  $E_{1}$  are IR active.

The Raman spectra for  $KMnCl_3$ ,  $K_3Mn_2Cl_7$ ,  $K_4MnCl_6$ ,  $KCl:MnCl_2$  (2:1) and  $KCl:MnCl_2$  (3:1) are shown in figure 8. Assignments and peak frequencies are shown in Table 17. The Raman spectrum can not distinguish whether the compound is  $K_2MnCl_4$  or  $K_4MnCl_6$ .

# 4.1.5 MnCl\_-NaCl System

The phase diagram study  $^{43,64}$  indicated the presence of five incongruent compounds, NaMnCl<sub>3</sub>; melting point 424°C, Na<sub>2</sub>MnCl<sub>4</sub>; melting point 442°C, Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub>; melting point 413°C, NaMn<sub>4</sub>Cl<sub>9</sub>; melting point 451°C, Na<sub>6</sub>MnCl<sub>8</sub>; melting point 459°C.

An X-ray study<sup>65</sup> on single crystal of NaMnCl<sub>3</sub> indicated that NaMnCl<sub>3</sub> crystallizes in space group R3 ( $C_{3i}^2$ ) with two formulas per unit cell. It is isomorphous with FeTiO<sub>3</sub><sup>66</sup>. The site symmetries are as follows: Na; C<sub>3</sub>, Mn; C<sub>3</sub>, Cl; C<sub>1</sub>. Thirty modes are predicted from factor group analysis, and distributed as follows:

$${}^{\Gamma}\text{Na} = A_{g} + E_{g} + A_{u} + E_{u}$$

$${}^{\Gamma}\text{Mn} = A_{g} + E_{g} + A_{u} + E_{u}$$

$${}^{\Gamma}\text{C1} = 3A_{g} + 3E_{g} + 3A_{u} + 3E_{u}$$

$${}^{\Gamma}\text{total} = 5A_{g} + 5E_{g} + 5A_{u} + 5E_{u}$$

$${}^{\Gamma}\text{acoustic} = A_{u} + E_{u}$$

$$(21)$$

|        | tormed in KU                                   | I-MNCI2 SYSTE                    | 2M .                           |                                |                                          |
|--------|------------------------------------------------|----------------------------------|--------------------------------|--------------------------------|------------------------------------------|
| KMnC13 | K <sub>3</sub> Mn <sub>2</sub> C1 <sub>7</sub> | K <sub>4</sub> MnCl <sub>6</sub> | KC1:MnCl <sub>2</sub><br>(2:1) | KC1:MnC1 <sub>2</sub><br>(3:1) | Assignments                              |
| 1      |                                                | 111                              | 111                            | 111                            | an a |
|        |                                                | 130 v.w                          | 128 v.w                        | 130 v.w                        | III                                      |
|        |                                                | 146 v.w                          | 146 v.w                        | 144 v.w                        | E <sub>g</sub> (MnCl <sub>2</sub> )      |
| 162 w  |                                                |                                  |                                |                                | I                                        |
|        |                                                | 165 w                            | 164 w                          | 166 w                          | III                                      |
|        | 174 v.w                                        |                                  |                                |                                | II                                       |
|        |                                                | 222 w                            | 222 w                          | 222 w                          | III                                      |
|        | 251 v.w                                        |                                  |                                |                                | II                                       |
|        |                                                | 250 v.w                          | 250 v.w                        | 252 v.w                        | III                                      |
|        |                                                |                                  |                                |                                |                                          |

Table 17. Assignments and peak frequencies in cm<sup>-1</sup> for the solid compounds

v.w: very weak, w: weak

Figure 8. Raman spectra of solids formed from the KCl-MnCl<sub>2</sub> system. The stars indicate ghost peaks.



All the g modes are Raman active, and all the u modes are IR active.

An X-ray study<sup>67</sup> on single crystal of  $Na_2MnCl_4$  indicated that  $Na_2MnCl_4$ has space group Pbam  $(D_{2h}^9)$  with two formulas per unit cell. The site symmetries are as follows: Mn;  $C_{2h}$ , Na;  $C_s$ , Cl(1);  $C_s$ , Cl(2);  $C_s$ . Forty-two modes are predicted as follows:

A<sub>u</sub> is inactive, all the u modes are IR active, while the g modes are Raman active.

An X-ray study<sup>68</sup> on powder samples of  $Na_6MnCl_8$  and  $Na_2Mn_3Cl_8$  have been made. The results indicated that  $Na_2Mn_3Cl_8$  has space group R3m ( $D_{3d}^5$ ) with one formula per unit cell, and the site symmetries are as follows: Na;  $C_{3v}$ , Mn;  $C_{2h}$ , Cl(1);  $C_{3v}$ , Cl(2);  $C_s$ .  $Na_6MnCl_8$  has space group Fm3m ( $O_h^5$ ), with one formula per unit cell, the site symmetries are as follows:  $Na; D_{2h}$ , Mn;  $O_h$ , Cl(1);  $T_d$ , Cl(2);  $C_{4v}$ . The number of modes predicted from factor group analysis for  $Na_2Mn_3Cl_8$  are as follows:

$$I^{T}Na = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$$I^{T}C1(1) = A_{1g} + E_{g} + A_{2u} + E_{u}$$

$$I^{T}Mn = 4A_{2u} + A_{1u} + 2E_{u}$$

$${}^{T}C1(2) = 4A_{1g} + A_{2g} + 2E_{g} + 4A_{2u} + A_{1u} + 2E_{u}$$

$${}^{T}tota1 = 6A_{1g} + A_{2g} + 4E_{g} + 10A_{2u} + 2A_{1u} + 6E_{u}$$

$${}^{T}acoustic = A_{2u} + E_{u}$$
(23)

 $A_{2g}$  and  $A_{1u}$  are inactive, while  $A_{1g}$  and  $E_{g}$  are Raman active and  $A_{2u}$  and  $E_{u}$  are IR active.

Forty-five modes are predicted from factor group analysis for Na<sub>6</sub>MnCl<sub>8</sub>, and distributed as follows:

$${}^{\Gamma}Mn = {}^{T}1u$$

$${}^{\Gamma}C1(1) = {}^{2T}1u$$

$${}^{\Gamma}Na = {}^{6T}1u$$

$${}^{\Gamma}C1(2) = {}^{A}_{1g} + {}^{E}_{g} + {}^{2T}_{2g} + {}^{3T}1u$$

$${}^{\Gamma}tota1 = {}^{A}_{1g} + {}^{E}_{g} + {}^{2T}_{2g} + {}^{12T}1u$$

$${}^{\Gamma}acoustic = {}^{T}1u$$

$$(24)$$

All g modes are Raman active and  $T_{1u}$  is IR active.

The crystal structure of  $NaMn_4Cl_9$  has not yet been determined. Two peaks were observed at 232 and 142 cm<sup>-1</sup> for  $NaMn_4Cl_9$ , and these two peaks are most probably due to  $MnCl_2$ . The failure to detect peaks that can be assigned to a  $NaMn_4Cl_9$  compound suggest that the compound does not exist or that the Raman features are too weak to detect. The spectrum of  $Na_6MnCl_8$  is assigned by analogy with the Raman spectrum<sup>69</sup> of the Suzuki phase (6NaCl:MnCl\_2). The Raman spectra of  $NaMnCl_3$ ,  $Na_2MnCl_4$ ,  $Na_2Mn_3Cl_8$ ,  $NaMn_4Cl_9$ , and  $Na_6MnCl_8$  are shown in figure 9. Assignments and peak frequencies are shown in Table 18.

|         | MnC12-NaC1 s | ystem.                                          |                                   |                                   |                     |                                      |
|---------|--------------|-------------------------------------------------|-----------------------------------|-----------------------------------|---------------------|--------------------------------------|
| NaMnC13 | Na2MnC14     | Na2Mn3C18                                       | NaMn <sub>4</sub> C1 <sub>9</sub> | Na <sub>6</sub> MnC1 <sub>8</sub> | Suzuki              | Assignments                          |
| I       | II           | III                                             | IV                                | V                                 | phase <sup>69</sup> |                                      |
|         | 68 w         | * <u>** %</u> ********************************* |                                   |                                   |                     | II                                   |
|         |              |                                                 |                                   |                                   | 123                 | T <sub>2g</sub>                      |
|         |              | 123 v.w                                         |                                   |                                   |                     | III                                  |
|         | 132 v.w      |                                                 |                                   |                                   |                     | II                                   |
| 139 v.w |              |                                                 |                                   |                                   |                     | I                                    |
|         |              | 142 v.w                                         | 142 m-w                           |                                   |                     | Eg (MnCl <sub>2</sub> )              |
| 151 v.w |              |                                                 |                                   |                                   |                     | I                                    |
|         | 166 v.w      |                                                 |                                   |                                   |                     | II                                   |
|         |              | 182 v.w                                         |                                   |                                   |                     | III                                  |
|         |              |                                                 |                                   | 182 m                             | 180                 | T <sub>2q</sub>                      |
|         | 183 w        |                                                 |                                   |                                   |                     | II                                   |
| 185 v.w |              |                                                 |                                   |                                   |                     | I                                    |
|         |              |                                                 |                                   | 208 w                             | 206                 | Alas                                 |
| 236 w   | 234 w        | 232 w                                           | 232 m                             | 235 w                             |                     | A <sub>1g</sub> (MnCl <sub>2</sub> ) |

| able 18. Assignments and frequencie | in cm | for the | solid | compounds | formed | in |
|-------------------------------------|-------|---------|-------|-----------|--------|----|
|-------------------------------------|-------|---------|-------|-----------|--------|----|

- 75 -

v.w: very weak, w: weak, m: medium

Figure 9. Raman spectra of solids formed from the NaCl-MnCl<sub>2</sub> system. The stars indicate ghost peaks. The dots indicate plasma lines.



V/cm<sup>-1</sup>

4.1.6 MnCl\_-LiCl System

It has been reported<sup>72</sup> that, the MnCl<sub>2</sub>-LiCl system forms a solid solution over the whole composition range. However, the Raman spectrum of the LiCl:MnCl<sub>2</sub> (1:1) mixture indicates that this mixture has separated into crystalline MnCl<sub>2</sub> and LiCl, and it may contain a small concentration of Li<sub>2</sub>MnCl<sub>4</sub>. A neutron diffraction study<sup>73</sup> concluded that  $Li_2MnCl_4$  has space group Fd3m (0<sup>7</sup><sub>h</sub>) with two formulas per unit cell, and the site symmetries of the atoms are as follows: Li(1); D<sub>3d</sub>, Li(2); Td, Mn; D<sub>3d</sub>, Cl; C<sub>3v</sub>.

Forty-two modes are predicted from factor group analysis and distributed as follows:

 ${}^{\Gamma}\text{Li}(2) = {}^{T}\text{2g} + {}^{T}\text{1u}$   ${}^{\Gamma}\text{Li}(1) = {}^{A}\text{2u} + {}^{E}\text{u} + {}^{T}\text{1u}$   ${}^{\Gamma}\text{Mn} = {}^{A}\text{2u} + {}^{E}\text{u} + {}^{T}\text{1u}$   ${}^{\Gamma}\text{C1} = {}^{2}\text{A}\text{1g} + {}^{2}\text{E}\text{g} + {}^{2}\text{T}\text{2g} + {}^{2}\text{A}\text{2u} + {}^{2}\text{E}\text{u} + {}^{2}\text{T}\text{1u}$   ${}^{\Gamma}\text{total} = {}^{2}\text{A}\text{1g} + {}^{2}\text{E}\text{g} + {}^{3}\text{T}\text{2g} + {}^{4}\text{A}\text{2u} + {}^{4}\text{E}\text{u} + {}^{5}\text{T}\text{1u}$   ${}^{\Gamma}\text{acoustic} = {}^{T}\text{1u}$ 

All the g modes are Raman active and  $T_{1u}$  is IR active.  $A_{2u}$  and  $E_u$  are inactive. The Raman spectra in the solid state of LiCl:MnCl<sub>2</sub> (1:1),  $Li_2MnCl_4$ , and LiCl:MnCl<sub>2</sub> (3:1) are shown in figure 10, and the peak frequencies in cm<sup>-1</sup> and assignments are shown in Table 19.

|                                 |                                   | -                                               |                                 |                                      |
|---------------------------------|-----------------------------------|-------------------------------------------------|---------------------------------|--------------------------------------|
| LiC1:MnC1 <sub>2</sub><br>(1:1) | Li <sub>2</sub> MnCl <sub>4</sub> | Li <sub>2</sub> MnCl <sub>4</sub> <sup>74</sup> | LiCl:MnCl <sub>2</sub><br>(3:1) | Assignments                          |
| I                               | II                                | II                                              | II                              |                                      |
|                                 |                                   | 70                                              |                                 | II                                   |
|                                 |                                   | 120                                             |                                 | II                                   |
| 143 m                           |                                   |                                                 |                                 | Eg (MnCl <sub>2</sub> )              |
| 166 sh,w                        | 164 w                             | 163                                             | 162 w                           | II                                   |
|                                 | 222 v.w                           | 227                                             | 225 v.w                         | II                                   |
| 233 s                           |                                   |                                                 |                                 | A <sub>lg</sub> (MnCl <sub>2</sub> ) |
| 247 sh,w                        | 246 w                             | 248                                             | 246 w                           | II                                   |
|                                 |                                   |                                                 |                                 |                                      |

Table 19. Peak frequencies in cm<sup>-1</sup> and assignments for the solid compounds formed in LiCl-MnCl<sub>2</sub> system.

v.w: very weak, w: weak, m: medium, s: strong, sh: shoulder

Figure 10. Raman spectra of solids formed from the LiC1-MnC1<sub>2</sub> system. The stars indicate ghost peaks. The dots indicate plasma lines.



## 4.2.1 MnCl, and MnCl\_-CsCl Melts

The Raman spectra of MnCl<sub>2</sub>, Cs<sub>2</sub>MnCl<sub>4</sub>, Cs<sub>3</sub>MnCl<sub>5</sub>, CsMnCl<sub>3</sub>, and CsMn<sub>4</sub>Cl<sub>9</sub> are shown in figures 11, 12, 13, 14, and 15 respectively. Two sets of spectra are shown for each melt, one in which the observed intensity,  $I_{(\bar{\nu})}^{obs}$  is plotted as a function of frequency ( $\bar{\nu}$  in cm<sup>-1</sup>) and which is what the Raman spectrometer measures directly, and the other which is the corrected intensity  $R_2(\bar{\nu})$  and is directly related to the density of vibrational states as discussed previously.

The spectra can be assigned to modes expected from a tetrahedral  $MnCl_4^{2-}$  species. A totally symmetric stretching mode  $(v_1)$  is observed in each spectrum in the range 160-350 cm<sup>-1</sup>. The  $v_2$  and  $v_4$  modes are observed as an overlapped peaks in the region 75-135 cm<sup>-1</sup>. The anti-symmetric stretching mode  $v_3$  should appear around ~ 300 cm<sup>-1</sup> but is too weak to be observed or is probably obscured under the polarized peak centered at ~ 250 cm<sup>-1</sup>. A peak due to  $v_3$  was observed<sup>50</sup> as strong band at 284 cm<sup>-1</sup> in the IR spectrum of solid (Et<sub>4</sub>N)<sub>2</sub>MnCl<sub>4</sub>.

The spectra of melts of composition  $MnCl_2.nCsCl (n \ge 2)$  strongly indicate the presence of an isolated tetrahedral  $MnCl_4^{2-}$  ion, but for melts of composition  $MnCl_2.nCsCl (n < 2)$  tetrahedral  $MnCl_4^{2-}$  ions with corner shared Cl are suggested. A previous Raman study<sup>19</sup> of  $MnCl_2.KCl$ melts suggested that  $MnCl_2$  melt has  $(MnCl_2)_n$  species in which  $Mn^{2+}$  ion is octahedrally coordinated by six  $Cl^-$  ions and each  $Cl^-$  ion is shared by  $Mn^{2+}$  ions, also the existence of a small amount of  $MnCl_4^{2-}$  was proposed. However, tetrahedral coordination of Cl ions around a Mn ion through corner sharing was proposed<sup>29</sup> from molten  $MnCl_2$  by x-ray diffraction. In the present study one broad polarized peak was observed for MnCl<sub>2</sub> melt and melts of higher MnCl<sub>2</sub> concentration and this peak was attributed to Mn-Cl stretching vibration of tetrahedral MnCl<sub>4</sub><sup>2-</sup> ion. MnCl<sub>2</sub> melt and melts of higher MnCl<sub>2</sub> content appear to have a rapid equilibrium of ions with most Mn retaining a tetrahedral coordination but octahedral coordination may be present to a small extent.

$$MnC1_4^2 = Mn_2C1_7^{3-1}$$
  
 $MnC1_4^2 = MnC1_6^{4-1}$ 

The existence of short lived  $Mn_2Cl_7^{3-}$  ions seem probable and the visible spectra of the  $MnCl_2$  melt and melt mixtures of high  $MnCl_2$  content suggest the presence of small amount of octahedrally coordinated  $Mn^{2+}$ , see figures 117, 118, 119 and 120.

It has been reported that the half band width of the totally symmetric mode of MnCl<sub>2</sub>-KCl melts<sup>19</sup> increased with increased MnCl<sub>2</sub> content. The present results confirmed this increment in the half band width upon increasing MnCl<sub>2</sub> concentration for the CsCl-MnCl<sub>2</sub> system, see Table 20.

The Raman spectra for solid  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  are recorded at several temperatures up to their melting points. The results for the totally symmetric mode ( $v_1$ ) for  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  are shown in figures 16 and 17. The band position moved to lower values as the temperature was increased, while the half band width increased with increased temperature.

| Compound                          | Frequency<br>(cm <sup>-1</sup> ) | Intensity        | Half band<br>width (cm <sup>-1</sup> ) | Function |
|-----------------------------------|----------------------------------|------------------|----------------------------------------|----------|
| Cs3MnC15                          | 255.7                            | 904              | 35.3                                   | L        |
| Cs2MnC14                          | 256.7                            | 914              | 39.9                                   | L        |
| CsMnC13                           | 262.7 <sup>a</sup>               | 817 <sup>a</sup> | 81.8 <sup>a</sup>                      | G * L    |
|                                   | 262.3 <sup>a</sup>               | 859 <sup>a</sup> | 78.9 <sup>a</sup>                      | L        |
| CsMn <sub>4</sub> Cl <sub>9</sub> | 245.5                            | 683              | 114.5                                  | G * L    |
| MnC12                             | 235.3                            | 794              | 135.4                                  | G * L    |

Table 20. Summary of results of curve resolution analysis for MnCl<sub>2</sub> and MnCl<sub>2</sub>-CsCl Melts.

G: Gaussian, L: Lorentzian

<sup>a</sup> Comparison of the fits for G \* L and L models indicates the insensitivity to chosen function.

Figure 11. Raman spectra of molten MnCl<sub>2</sub> at 942 K, I<sub>||</sub> and I<sub>1</sub>.


Figure 12. Raman spectra of molten  $Cs_2MnCl_4$  at 844 K,  $I_{\parallel}$ and  $I_{\perp}$ .



Figure 13. Raman spectra of molten  $Cs_3MnCl_5$  at 844 K, I || and I .



Figure 14. Raman spectra of molten  $CsMnCl_3$  at 916 K, I || and I .



Figure 15. Raman spectra of molten  $CsMn_4Cl_9$  at 865 K, I || and I ].



- 94 -

Figure 16. Effect of temperature on  $v_1$  mode of  $Cs_2MnCl_4$ .

- A. Plot of band position  $(cm^{-1})$  vs temperature.
- B. Plot of half band width  $(cm^{-1})$  vs temperature.



Figure 17. Effect of temperature on  $v_1$  mode of  $Cs_3MnCl_5$ . A. Plot of band position  $(cm^{-1})$  vs temperature.

- B. Plot of half band width (cm<sup>-1</sup>) vs temperature.



Figure 18. Isotropic Raman spectra of molten MnCl<sub>2</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



Figure 19. Isotropic Raman spectra of molten Cs<sub>2</sub>MnCl<sub>4</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 20. Isotropic Raman spectra of molten Cs<sub>3</sub>MnCl<sub>5</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 21. Isotropic Raman spectra of molten CsMnCl<sub>3</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



Figure 22. Isotropic Raman spectra of molten CsMnCl<sub>3</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 23. Isotropic Raman spectra of molten CsMn<sub>4</sub>Cl<sub>9</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



The polarized peak from the  $R_2(\bar{v})$  spectrum was fitted to Lorentzian and Gaussian\*Lorentzian functions. The results are shown in figures 18, 19, 20, 21, 22, and 23. The frequency  $(cm^{-1})$ , intensity, half band width  $(cm^{-1})$  and type of fit are shown in Table 20. For CsMnCl<sub>3</sub> both the Lorentzian and Gaussian\*Lorentzian fits are given to show that the results are not very dependent on the choice of function.

## 4.2.2 MnCl\_-RbCl Melts

The Raman spectra of RbMnCl<sub>3</sub>, Rb<sub>2</sub>MnCl<sub>4</sub>, RbCl:MnCl<sub>2</sub> (3:1), and Rb<sub>3</sub> Mn<sub>2</sub>Cl<sub>7</sub> melts are shown in figures 24, 25, 26, and 27. The results indicate the presence of MnCl<sub>4</sub><sup>2-</sup> species. An isolated MnCl<sub>4</sub><sup>2-</sup> tetrahedral ion is proposed for melts of composition MnCl<sub>2</sub>.nRbCl ( $n \ge 2$ ) but for RbMnCl<sub>3</sub> and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> melts (n < 2) a tetrahedral species with corner sharing are expected. The half band width of the stretching mode ( $v_1$ ) increased by increasing MnCl<sub>2</sub> content. The  $v_3$  peak is too weak to be observed, while  $v_2$  and  $v_4$  are observed as overlapped peaks in the region 70-135 cm<sup>-1</sup>.

The polarized peak from the  $R_2(\bar{\nu})$  spectrum was fitted to Gaussian\*Lorentzian and Lorentzian functions. The results are shown in figures 28, 29, 30, and 31 and tabulated in Table 21.

## 4.2.3 MnCl\_-KCl Melts

The Raman spectra of KMnCl<sub>3</sub>, KCl:MnCl<sub>2</sub> (2:1), KCl:MnCl<sub>2</sub> (3:1),  $K_3Mn_2Cl_7$ , and  $K_4MnCl_6$  melts are shown in figures 32, 33, 34, 35, and 36. One polarized peak ( $v_1$ ) appears in each spectrum in the range 200-325 cm<sup>-1</sup>,  $v_2$  and  $v_4$  are observed in the region 70-140 cm<sup>-1</sup>,  $v_3$ appear around ~ 300 cm<sup>-1</sup> but is weak to be observed. The data indicate

| Compound                        | Frequency<br>(cm <sup>-1</sup> ) | Intensity | Half band<br>width (cm <sup>-1</sup> ) | Function |
|---------------------------------|----------------------------------|-----------|----------------------------------------|----------|
| RbC1:MnC1 <sub>2</sub><br>(3:1) | 254.4                            | 890       | 41.0                                   | L        |
| Rb2MnC14                        | 258.0                            | 918       | 42.5                                   | L        |
| Rb3Mn2C17                       | 259.6                            | 869       | 62.0                                   | L        |
| RbMnC13                         | 252.1                            | 828       | 85.1                                   | G * L    |

Table 21. Summary of results of curve resolution analysis for MnCl<sub>2</sub>-RbCl Melts.

G: Gaussian, L: Lorentzian

Figure 24. Raman spectra of molten  $RbMnCl_3$  at 878 K, I || and I\_.



Figure 25. Raman spectra of molten Rb2<sup>MnCl</sup>4 at 753 K, I || and I1.



Figure 26. Raman spectra of molten RbCl:MnCl<sub>2</sub> (3:1) at 882 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 27. Raman spectra of molten  $Rb_3Mn_2Cl_7$  at 889 K, I and I .



Figure 28. Isotropic Raman spectra of molten RbMnCl<sub>3</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.


- 122 -

Figure 29. Isotropic Raman spectra of molten Rb<sub>2</sub>MnCl<sub>4</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 30. Isotropic Raman spectra of molten RbCl:MnCl<sub>2</sub> (3:1). The smooth line is the best-fit curve calculated with a single Lorentzian function.



- 126 -

Figure 31. Isotropic Raman spectra of molten Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



the existence of  $MnCl_4^{2-}$  as an isolated entities for melts with high KCl content or with corner sharing for melts with low KCl content. For KCl.XMnCl\_2 melts (X = 0.2, 0.3, 0.4). A previous Raman study<sup>19</sup> proposed the tetrahedral MnCl\_4<sup>2-</sup> ion as the predominant species in this concentration range, but pyramidal MnCl\_3<sup>-</sup> ion or Mn\_2Cl\_7<sup>3-</sup> were also proposed in this composition range, whereas MnCl\_6<sup>4-</sup> ion was proposed in the concentration range (x = 0.9, 0.8, 0.67) and small amount of MnCl\_4<sup>2-</sup> ion was also suggested.

It was reported<sup>19</sup> that the half band width of the totally symmetric mode increased with increased MnCl<sub>2</sub> concentration and the effect attributed to sharing of Cl ion. The present results confirmed the increment in the half band width upon increasing MnCl<sub>2</sub> mole fraction, see Table 22.

The polarized peak from the  $R_2(\bar{\nu})$  spectrum was fitted to Gaussian\*Lorentzian and Lorentzian functions. The results are shown in figures 37, 38, 39, 40 and 41 and tabulated in Table 22.

## 4.2.4 MnCl\_-NaCl Melts

The Raman spectra of NaMnCl<sub>3</sub>, Na<sub>2</sub>MnCl<sub>4</sub>, NaCl:MnCl<sub>2</sub> (3:1), Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub>, NaMn<sub>4</sub>Cl<sub>9</sub>, and Na<sub>6</sub>MnCl<sub>8</sub> are shown in figures 42, 43, 44, 45, 46 and 47. One polarised peak was observed in each spectrum and assigned to the symmetric mode ( $v_1$ ). The  $v_2$  and  $v_4$  modes were observed in the region 70-140 cm<sup>-1</sup>. The antisymmetric mode  $v_3$  of the tetrahedral ion is usually weak in the Raman spectrum and appear around ~ 300 cm<sup>-1</sup>. The spectra indicate the presence of tetrahedral species in the melts. The half band width of the symmetric mode  $v_1$  increased with increased MnCl<sub>2</sub> concentration, see Table 23.

| Compound                       | Frequency<br>(cm <sup>-1</sup> ) | Intensity | Half band<br>width (cm <sup>-1</sup> ) | Function |
|--------------------------------|----------------------------------|-----------|----------------------------------------|----------|
| K4MnC16                        | 256.0                            | 887       | 45.9                                   | L        |
| KCl:MnCl <sub>2</sub><br>(3:1) | 255.7                            | 801       | 48.2                                   | L        |
| KC1:MnC1 <sub>2</sub><br>(2:1) | 255.0                            | 850       | 51.4                                   | L        |
| K3Mn2C17                       | 258.4                            | 879       | 63.6                                   | L        |
| KMnC13                         | 258.9                            | 770       | 86.7                                   | G * L    |

Table 22. Summary of results of curve resolution analysis for MnCl<sub>2</sub>-KCl Melts.

G: Gaussian, L: Lorentzian

Figure 32. Raman spectra of molten  $KMnCl_3$  at 816 K, I || and I .



Figure 33. Raman spectra of molten KCl:MnCl<sub>2</sub> (2:1) at 882 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 34. Raman spectra of molten KCl:MnCl<sub>2</sub> (3:1) at 882 K,  $I_{||}$  and  $I_{\perp}$ .



- 136 -

Figure 35. Raman spectra of molten  $K_3Mn_2Cl_7$  at 794 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 36. Raman spectra of molten  $K_4$ MnCl<sub>6</sub> at 816 K, I<sub>||</sub> and I<sub>1</sub>.



Figure 37. Isotropic Raman spectra of molten KMnCl<sub>3</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



- 142 -

Figure 38. Isotropic Raman spectra of molten KC1:MnCl<sub>2</sub> (2:1). The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 39. Isotropic Raman spectra of molten KCl:MnCl<sub>2</sub> (3:1). The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 40. Isotropic Raman spectra of molten K<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



Figure 41. Isotropic Raman spectra of molten K<sub>4</sub>MnCl<sub>6</sub>. The smooth line is the best-fit curve calculated with a single Lorentzian function.



- 150 -

| Compound                          | Frequency<br>(cm <sup>-1</sup> ) | Intensity | Half band<br>width (cm <sup>-1</sup> ) | Function |
|-----------------------------------|----------------------------------|-----------|----------------------------------------|----------|
| Na <sub>6</sub> MnC1 <sub>8</sub> | 255.6                            | 832       | 77.6                                   | G * L    |
| NaC1:MnC1 <sub>2</sub><br>(3:1)   | 254.4                            | 819       | 79.4                                   | G * L    |
| Na2MnC14                          | 257.9                            | 762       | 82.0                                   | G * L    |
| NaMnC13                           | 253.3                            | 699       | 92.3                                   | G * L    |
| Na2Mn3C18                         | 249.3                            | 665       | 111.2                                  | G * L    |
| NaMn <sub>4</sub> C1 <sub>9</sub> | 244.1                            | 757       | 129.5                                  | G * L    |

Table 23. Summary of results of curve resolution analysis for MnCl<sub>2</sub>-NaCl Melts.

G: Gaussian, L: Lorentzian

Figure 42. Raman spectra of molten NaMnCl<sub>3</sub> at 773 K, I || and I  $\perp$ .



- 153 -

Figure 43. Raman spectra of molten  $Na_2MnCl_4$  at 794 K, I || and I  $\perp$ .



- 155 -

Figure 44. Raman spectra of molten NaCl:MnCl<sub>2</sub> (3:1) at 973 K,  $I_{||}$  and  $I_{\perp}$ .



- 157 -
Figure 45. Raman spectra of molten  $Na_2Mn_3Cl_8$  at 816 K, I and I.



Figure 46. Raman spectra of molten  $NaMn_4Cl_9$  at 937 K, I || and I  $\perp$ .



Figure 47. Raman spectra of molten  $Na_6MnCl_8$  at 988 K, I || and I .



- 163 -

Figure 48. Isotropic Raman spectra of molten NaMnCl<sub>3</sub>. The smooth line is the best-fit curve calculated as a sum of two Gaussian\*Lorentzian functions. The second low frequency peak has only been added to improve the base line.



Figure 49. Isotropic Raman spectra of molten Na<sub>2</sub>MnCl<sub>4</sub>. The smooth line is the best-fit curve calculated as a sum of two Gaussian\*Lorentzian functions. The second low frequency peak has only been added to improve the base line.



Figure 50. Isotropic Raman spectra of molten NaCl:MnCl<sub>2</sub> (3:1). The smooth line is the best-fit curve calculated as a sum of two Gaussian\*Lorentzian functions. The second low frequency peak has only been added to improve the base line.



Figure 51. Isotropic Raman spectra of molten Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



Figure 52. Isotropic Raman spectra of molten NaMn<sub>4</sub>Cl<sub>9</sub>. The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



Figure 53. Isotropic Raman spectra of molten Na<sub>6</sub>MnCl<sub>8</sub>. The smooth line is the best-fit curve calculated as a sum of two Gaussian\*Lorentzian functions. The second low frequency peak has only been added to improve the base line.



The polarized peak from the  $R_2(\bar{\nu})$  spectrum was fitted to Gaussian\*Lorentzian function. The results are shown in figures 48, 49, 50, 51, 52 and 53. The half band width in cm<sup>-1</sup>, the intensity, and the frequency in cm<sup>-1</sup> for the symmetric mode  $\nu_1$  are shown in Table 23. For the NaCl-MnCl<sub>2</sub> mixtures only it was necessary to add a second component to account for excess scattering in the  $R_{2\alpha}(\bar{\nu})$  spectrum at low  $\bar{\nu}$ . The excess scattering could be due to the Na<sup>+</sup>Cl<sup>-</sup> pair which may contribute in this region<sup>22</sup> or it could be just poor baseline subtraction.

### 4.2.5 MnCl\_-LiCl Melts

The Raman spectra of  $MnCl_2:LiCl (1:1)$ ,  $MnCl_2:LiCl (1:2)$ ,  $MnCl_2:LiCl (1:3)$  melts are shown in figures 54, 55 and 56. The results indicate the presence of tetrahedral  $MnCl_4^{2-}$  species in the melt. The curve resolution results are shown in figures 57, 58 and 59, and tabulated in Table 24.

## 4.2.6 Half band width of $v_1$ mode for ACl.MnCl<sub>2</sub> melts

The half band width of the symmetric mode  $(v_1)$  increased over the cation series Cs<sup>+</sup> to Li<sup>+</sup>. This increment of the half band width is expected because<sup>17</sup> the symmetric stretching mode of the tetrahedral ion will occur in a greater range of environmental conditions in the neighborhood of the smaller and lighter Li<sup>+</sup> and Na<sup>+</sup> cations than for the larger Rb<sup>+</sup> and Cs<sup>+</sup> ions. A summary of the half band widths in cm<sup>-1</sup> for (1:1), (2:1) and (3:1) ACl-MnCl<sub>2</sub> melts are collected in Table 25.

| Me                              | 115.                             |           |                                        |          |  |
|---------------------------------|----------------------------------|-----------|----------------------------------------|----------|--|
| Compound                        | Frequency<br>(cm <sup>-1</sup> ) | Intensity | Half band<br>width (cm <sup>-1</sup> ) | Function |  |
| LiC1:MnC1 <sub>2</sub><br>(3:1) | 246.5                            | 675       | 109.7                                  | G * L    |  |
| LiC1:MnC1 <sub>2</sub><br>(2:1) | 252.5                            | 684       | 117.4                                  | G * L    |  |
| LiCl:MnCl <sub>2</sub><br>(1:1) | 249.2                            | 644       | 123.9                                  | G * L    |  |

Table 24. Summary of results of curve resolution analysis for MnCl<sub>2</sub>-LiCl

G: Gaussian, L: Lorentzian

Figure 54. Raman spectra of molten LiCl:MnCl<sub>2</sub> (1:1) at 945 K,  $I_{||}$  and  $I_{\perp}$ .



- 179 -

Figure 55. Raman spectra of molten LiCl:MnCl<sub>2</sub> (2:1) at 953 K, I<sub>||</sub> and I<sub> $\perp$ </sub>.



Figure 56. Raman spectra of molten LiCl:MnCl<sub>2</sub> (3:1) at 973 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 57. Isotropic Raman spectra of molten LiCl:MnCl<sub>2</sub> (1:1). The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



Figure 58. Isotropic Raman spectra of molten LiCl:MnCl<sub>2</sub> (2:1). The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



- 187 -

Figure 59. Isotropic Raman spectra of molten LiCl:MnCl<sub>2</sub> (3:1). The smooth line is the best-fit curve calculated with a single Gaussian\*Lorentzian function.



| Cations                      | Cs   | Rb   | K    | Na   | Li    |
|------------------------------|------|------|------|------|-------|
| AC1:MnC1 <sub>2</sub><br>1:1 | 81.8 | 85.1 | 86.7 | 92.3 | 123.9 |
| AC1:MnC1 <sub>2</sub><br>2:1 | 39.9 | 42.5 | 51.4 | 82.0 | 117.4 |
| AC1:MnC1 <sub>2</sub><br>3:1 | 35.3 | 41.0 | 48.2 | 79.4 | 109.7 |

Table 25. Half band width for ACl-MnCl<sub>2</sub> melts.

### 4.3 Raman Studies of MgCl\_.nACl: Molten State

### 4.3.1 MgCl\_ and MgCl\_-CsCl Melts

The Raman spectra of CsC1:MgCl<sub>2</sub> (4:1),  $Cs_2MgCl_4$ , CsC1:MgCl<sub>2</sub> (1.5:1) CsMgCl<sub>3</sub>, CsCl:MgCl<sub>2</sub> (0.5:1), and MgCl<sub>2</sub> melts are shown in figures 60, 61, 62, 63, 64 and 65 respectively. For melts of composition MgCl<sub>2</sub>.nCsCl for  $n \ge 2$  there is a strong, sharp polarized peak at 250 cm<sup>-1</sup> which may be assigned to  $v_1$  mode of MgCl<sub>4</sub><sup>2-</sup> ion. A depolarized band due to  $v_3$  is observed as a very weak peak in the range 335-355 cm<sup>-1</sup>, and previously was observed in the infrared mull spectrum 13 of MgCl<sub>4</sub><sup>2-</sup> ion as a very strong peak at 360 cm<sup>-1</sup>. The depolarized peaks due to  $v_2$  and  $v_4$  are observed in the region  $100-150 \text{ cm}^{-1}$ . Since one polarized peak is clearly resolved at 250 cm<sup>-1</sup>, and three depolarized peaks are observed, the results strongly indicate the formation of  $MgCl_4^{2-}$  ions in CsCl:MgCl<sub>2</sub> (4:1) melt. In the melts of composition MgCl<sub>2</sub>.nCsCl for  $n \leq 2$  the polarized feature consists of at least two overlapped peaks estimated at 225 and 250 cm<sup>-1</sup> and one broad shoulder around  $\sim$  300 cm<sup>-1</sup>. The intensity of the low frequency peak  $\sim 225 \text{ cm}^{-1}$  and the high frequency peak at 300 cm<sup>-1</sup> quite clearly increase in relative intensity with increasing MgCl<sub>2</sub> concentration, figures 61, 62 and 63. The formation of a new equilibrium species in the melts of high MgCl<sub>2</sub> concentration was suggested<sup>17</sup> based on the presence of the low frequency peak. The results indicate the existence of tetrahedral  $MgCl_{4}^{2-}$  species in equilibrium with another species. This new species was attributed to the  $Mg_2Cl_7^{3-}$  ion since for this structure the magnesium may retain its tetrahedral coordination through corner sharing with another tetrahedral ion. A  $Mg_2Cl_6^{2-}$  ion in which the magnesium is tetrahedrally coordinated through edge sharing with another tetrahedral ion would also be logical.

These results are exactly parallel to the case of  $AlCl_3.ACl melts^2$ where two well resolved peaks at ~ 310 and 430 cm<sup>-1</sup> due to the symmetric stretching motions of the  $Al_2Cl_7$  ion increase at the expense of a peak at ~ 350 cm<sup>-1</sup> due to  $AlCl_4$  for melts of appropriate molar ratio. The greater band overlap in the MgCl<sub>2</sub>.ACl system is caused by environmental broadening factors such as the weaker bond energy and thermal motion.

The results of curve resolution analysis of the  $I_{\alpha}(\bar{\nu})$  spectra are shown in figures 66 to 71 and Table 26. Excellent fits for the MgCl<sub>2</sub>.nCsCl melts with n = 2.0, 1.5 and 1.0 were achieved with the three band model for peaks at ~ 220, 250 and 300 cm<sup>-1</sup>. Two band fits gave poor agreement with the observed spectra and were physically unrealistic. The intensity ratio of the peaks at 220 and 300 increased together at the expense of intensity at 250 cm<sup>-1</sup> as the MgCl<sub>2</sub> concentration was increased (ie. an increase of Mg<sub>2</sub>Cl<sub>7</sub><sup>3-</sup> versus MgCl<sub>4</sub><sup>2-</sup>). For melts of high MgCl<sub>2</sub> content and pure MgCl<sub>2</sub> the simple two species equilibrium model did not give good fits to the data because of a significant polarized intensity increase about 150 cm<sup>-1</sup>. In the AlCl<sub>3</sub>.ACl system peaks due to Al<sub>3</sub>Cl<sub>10</sub><sup>-</sup> and Al<sub>2</sub>Cl<sub>6</sub> have been identified<sup>2</sup> but the band overlap in the MgCl<sub>2</sub>.nACl systems precludes detailed analysis of melts with n  $\ge$  0.5 and the curve analysis for these systems may not be unique. A broad three band fit adequately reproduced the spectrum of pure MgCl<sub>2</sub> melt.

Three polarized peaks may be resolved for the pure MgCl<sub>2</sub> melt, the one resolved at 237 cm<sup>-1</sup> is attributed to the symmetric stretching mode  $(v_1)$  of the tetrahedral ion, while the other two polarized peaks are resolved at 194 and 161 cm<sup>-1</sup> were reported previously<sup>15</sup> at 194 and 130 cm<sup>-1</sup> and attributed to symmetric stretching vibrations of poly-

nuclear species  $Mg_2Cl_2^{2+}$ , or  $Mg_2Cl_3^+$ , or  $Mg_2Cl_4$ . The polarized peak resolved at 145 cm<sup>-1</sup> in the spectrum of CsCl:MgCl<sub>2</sub> (0.5:1) melt appears to correspond to the one resolved at 161  $\text{cm}^{-1}$  in the spectrum of MgCl<sub>2</sub> melt and attributed to polynuclear species. The Raman results suggest that CsCl:MgCl<sub>2</sub> (0.5:1) melt contains an equilibrium mixture of MgCl<sub>4</sub><sup>2-</sup> ions,  $Mg_2Cl_7^{3-}$  ions, and polynuclear species as positive or neutral ions. The presence of the depolarized peak at  $\sim$  350 cm<sup>-1</sup> in pure MgCl<sub>2</sub> melts suggests that an  $MgCl_a^{2-}$  unit may be present. It should be emphasized that the minimum number of bands necessary to obtain a good fit was the guiding factor in the curve analysis. More bands would give better fits and could give more realistic representation species concentrations. The important consequence of the curve analysis is the fact that at least two species and probably a third must be present to generate the observed spectra. This should be contrasted to the results for the manganese chloride system discussed previously where possible species had lifetimes that were too short to give discrete peaks.

# 4.3.2 MgCl\_-KCl Melts

The Raman spectra of  $K_2MgCl_4$ ,  $KCl:MgCl_2$  (1.5:1),  $KMgCl_3$ , and  $KCl:MgCl_2$  (0.5:1) melts are shown in figures 72, 73, 74 and 75. The peaks due to  $v_2$  and  $v_4$  of the tetrahedral  $MgCl_4^{2-}$  ion are observed in the region 100-150 cm<sup>-1</sup>, while the peak due to  $v_3$  is observed as a weak peak at ~ 350 cm<sup>-1</sup>. Only one broad polarized envelop is observed in each melt, and this envelop changes shape and broadens with increasing  $MgCl_2$  concentration. The broadening of the polarized feature indicates that there is another species in equilibrium with the tetrahedral  $MgCl_4^{2-}$  ions. The curve analysis gives results similar to the CsCl
| Compound                          | Frequency<br>(cm <sup>-1</sup> ) | Intensity  | Half band<br>width (cm <sup>-1</sup> ) | Assignments                                       |
|-----------------------------------|----------------------------------|------------|----------------------------------------|---------------------------------------------------|
| CsCl:MgCl <sub>2</sub><br>(4:1)   | 249.6                            | 334        | 23.0                                   | (v <sub>1</sub> ) MgCl <sub>4</sub> <sup>2-</sup> |
| Cs <sub>2</sub> MgC1 <sub>4</sub> | 225.4                            | 99         | 44.7                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                   | 250.1                            | 361        | 24.6                                   | (v) MaC1 2-                                       |
|                                   | 297.0                            | 25         | 56.7                                   | (v) $Mg_2C1_7^{43-}$                              |
| CsCl:MgCl <sub>2</sub><br>(1.5:1) | 224.6                            | 138        | 55.4                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                   | 250.0                            | 189        | 27.1                                   | (v <sub>1</sub> ) MgCl <sub>4</sub> <sup>2-</sup> |
|                                   | 294.8                            | 28         | 72.9                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| CsMgC1 <sub>3</sub>               | 220.6                            | 200        | 57.4                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                   | 250.6                            | 160        | 35.9                                   | (v1) MgC14 <sup>2-</sup>                          |
|                                   | 291.8                            | 42         | 103.2                                  | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| CsC1:MgC1 <sub>2</sub><br>(0.5:1) | 145.4                            | 47         | 66.1                                   | <pre>(ν) polynuclear species</pre>                |
|                                   | 213.3                            | 155        | 55.8                                   | (v) $Mg_2C1_7^{3-}$                               |
|                                   | 244.5                            | 146        | 63.0                                   | (v <sub>1</sub> ) MgC1 <sub>4</sub> <sup>2-</sup> |
|                                   | 315.7                            | 12         | 112.3                                  | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| MgC12                             | 161.1<br>194.2                   | 248<br>163 | 204.3<br>52.9                          | <pre>(ν) polynuclear species</pre>                |
|                                   | 237.0                            | 129        | 71.4                                   | (v <sub>1</sub> ) MgC1 <sub>4</sub> <sup>2-</sup> |
|                                   |                                  |            |                                        |                                                   |

Table 26. Summary of results of curve resolution analysis for MgCl<sub>2</sub> and MgCl<sub>2</sub>-CsCl Melts.

Figure 60. Raman spectra of molten CsCl:MgCl<sub>2</sub> (4:1) at 840 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 61. Raman spectra of molten  $Cs_2MgCl_4$  at 896 K, I || and I\_.



Figure 62. Raman spectra of molten CsCl:MgCl<sub>2</sub> (1.5:1) at 915 K, I<sub>||</sub> and I<sub> $\perp$ </sub>.



- 200 -

Figure 63. Raman spectra of molten  $CsMgCl_3$  at 896 K, I and I .



Figure 64. Raman spectra of molten CsCl:MgCl<sub>2</sub> (0.5:1) at 915 K, I || and I  $\perp$ .



- 204 -

Figure 65. Raman spectra of molten MgCl<sub>2</sub> at 1056 K, I || and I  $\perp$ .



- 206 -

Figure 66. Isotropic Raman spectra of molten CsCl:MgCl<sub>2</sub> (4:1). The smooth line is the best-fit curve calculated with a single Lorentzian function.



- 208 -

Figure 67. Isotropic Raman spectra of molten Cs<sub>2</sub>MgCl<sub>4</sub>. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 68. Isotropic Raman spectra of molten CsCl:MgCl<sub>2</sub> (1.5:1). The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 69. Isotropic Raman spectra of molten CsMgCl<sub>3</sub>. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 70. Isotropic Raman spectra of molten CsCl:MgCl<sub>2</sub> (0.5:1). The smooth line is the best-fit curve calculated as a sum of four Lorentzian functions.



Figure 71. Isotropic Raman spectra of molten MgCl<sub>2</sub>. The smooth line is the best-fit curve calculated as a sum of three Gaussian\*Lorentzian functions.



system the smaller K<sup>+</sup> ion results in greater environmental broadening. The peak resolved around ~ 250 cm<sup>-1</sup> is attributed to the  $v_1$  mode of the MgCl<sub>4</sub><sup>2-</sup> ions while the ones resolved around ~ 220 and 300 cm<sup>-1</sup> are attributed to the Mg<sub>2</sub>Cl<sub>7</sub><sup>3-</sup> ions. The polarized peak resolved at 137 cm<sup>-1</sup> in KCl:MgCl<sub>2</sub> (0.5:1) melt corresponds to the counterparts resolved at 161 and 145 cm<sup>-1</sup> in MgCl<sub>2</sub> and CsCl:MgCl<sub>2</sub> (0.5:1) melts and attributed to polynuclear species of positive or neutral ions. The Raman data suggest that the KCl:MgCl<sub>2</sub> (0.5:1) melt contains a mixture of MgCl<sub>4</sub><sup>2-</sup> ions, Mg<sub>2</sub>Cl<sub>7</sub><sup>3-</sup> ions, and Mg<sub>2</sub>Cl<sub>n</sub><sup>4-n</sup> species. The synthetic and experimental spectra are shown in figures 76, 77, 78 and 79, and the curve resolution data are shown in Table 27.

## 4.3.3. Effect of temperature on the spectra of CsMgCl<sub>3</sub> and K<sub>2</sub>MgCl<sub>4</sub> Melts

It was reported<sup>14</sup> that the intensity of the polarized peak, estimated at 225 cm<sup>-1</sup> and attributed to polynuclear species, decreased by increasing the temperature i.e. the intensity ratio  $I_{225}/I_{250}$  is decreasing by increasing the temperature. This decrease in intensity ratio by increasing the temperature was attributed to the breaking of the polynuclear species and the formation of more MgCl<sub>4</sub><sup>2-</sup> species.

The spectra of  $CsMgCl_3$  melt were obtained at 899, 1054 and 1153 K, and it appears that the intensity of the peak due to  $Mg_2Cl_7^{3-}$  ions does decrease with increasing the temperature, see figures 80, 81 and 82, Table 28. The spectra of  $K_2MgCl_4$  melt are studied at 973 and 1143 K. Again the data indicate the breaking of the polynuclear species and the formation of more  $MgCl_4^{2-}$  ions. The spectra are shown in figures 83 and 84. The results of the curve resolution analysis for CsMgCl\_3 and K\_2MgCl\_4 at different temperatures are shown in Table 28.

| Compound                         | Frequency<br>(cm <sup>-1</sup> ) | Intensity | Half band<br>width (cm <sup>-1</sup> ) | Assignments                                       |
|----------------------------------|----------------------------------|-----------|----------------------------------------|---------------------------------------------------|
| K <sub>2</sub> MgC1 <sub>4</sub> | 219.4                            | 132       | 50.1                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                  | 247.5                            | 357       | 40.4                                   | (v1) MgC14 <sup>2-</sup>                          |
|                                  | 296.3                            | 21        | 44.8                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| KC1:MgC1 <sub>2</sub><br>(1.5:1) | 227.9                            | 361       | 93.5                                   | (ν) Mg <sub>2</sub> Cl <sub>7</sub> <sup>3-</sup> |
|                                  | 248.5                            | 194       | 46.4                                   | $(v_1) MgC1_4^{2-}$                               |
|                                  | 299.4                            | 33        | 61.9                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| KMgC1 <sub>3</sub>               | 220.7                            | 276       | 77.2                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                  | 249.4                            | 123       | 44.9                                   | (v1) MgC14 <sup>2-</sup>                          |
|                                  | 293.1                            | 24        | 81.7                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
| KC1:MgC1 <sub>2</sub>            | 137.8                            | 96        | 236.7                                  | (ν) polynuclear<br>species                        |
| (0.5:1)                          | 212.9                            | 216       | 60.6                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |
|                                  | 244.2                            | 218       | 69.1                                   | (v1) MgC14 <sup>2-</sup>                          |
|                                  | 295.0                            | 5         | 20.0                                   | (v) Mg <sub>2</sub> C1 <sub>7</sub> <sup>3-</sup> |

Table 27. Summary of results of curve resolution analysis for MgCl<sub>2</sub>-KCl Melts.

Figure 72. Raman spectra of molten  $K_2MgCl_4$  at 1049 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 73. Raman spectra of molten KCl:MgCl<sub>2</sub> (1.5:1) at 1049 K, I<sub>||</sub> and I<sub>1</sub>.



- 224 -

Figure 74. Raman spectra of molten KMgCl<sub>3</sub> at 1049 K,  $I_{||}$  and  $I_{\perp}$ .



Figure 75. Raman spectra of molten KCl:MgCl<sub>2</sub> (0.5:1) at 1049 K,  $I_{||}$  and  $I_{\perp}$ .



- 228 -

Figure 76. Isotropic Raman spectra of molten K<sub>2</sub>MgCl<sub>4</sub>. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.


Figure 77. Isotropic Raman spectra of molten KC1:MgCl<sub>2</sub> (1.5:1). The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



- 232 -

Figure 78. Isotropic Raman spectra of molten KMgCl<sub>3</sub>. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 79. Isotropic Raman spectra of molten KCl:MgCl<sub>2</sub> (0.5:1). The smooth line is the best-fit curve calculated as a sum of four Lorentzian functions.



| Compound                         | Temperature<br>(K) | Frequency<br>(cm <sup>-1</sup> ) | Intensity  | Half band<br>width (cm <sup>-1</sup> ) | Intensity<br>ratio                                                          |
|----------------------------------|--------------------|----------------------------------|------------|----------------------------------------|-----------------------------------------------------------------------------|
| CsMgC1 <sub>3</sub>              | 899                | 216.6<br>247.7                   | 241<br>178 | 61.5<br>42.1                           | $\frac{I_{216} \times \Gamma_{216}}{I_{247} \times \Gamma_{247}}$<br>= 1.98 |
|                                  | 1054               | 212.5<br>245.5                   | 181<br>178 | 63.9<br>51.5                           | $\frac{I_{212} \times \Gamma_{212}}{I_{245} \times \Gamma_{245}}$<br>= 1.26 |
|                                  | 1153               | 209.0<br>243.3                   | 124<br>161 | 63.0<br>58.1                           | $\frac{I_{209} \times \Gamma_{209}}{I_{243} \times \Gamma_{243}} = 0.84$    |
| K <sub>2</sub> MgC1 <sub>4</sub> | 973                | 225.3<br>249.1                   | 146<br>323 | 54.7<br>34.3                           | $\frac{I_{225} \times \Gamma_{225}}{I_{249} \times \Gamma_{249}}$<br>= 0.72 |
|                                  | 1143               | 218.7<br>246.4                   | 54<br>121  | 69.1<br>45.3                           | $\frac{I_{218} \times \Gamma_{218}}{I_{246} \times \Gamma_{246}}$<br>= 0.68 |

Table 28. Summary of results of curve resolution analysis for CsMgCl<sub>3</sub> and K<sub>2</sub>MgCl<sub>4</sub> Melts.

Figure 80. Isotropic Raman spectra of molten CsMgCl<sub>3</sub> at 899 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



- 239 -

Figure 81. Isotropic Raman spectra of molten CsMgCl<sub>3</sub> at 1054 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



- 241 -

Figure 82. Isotropic Raman spectra of molten CsMgCl<sub>3</sub> at 1153 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 83. Isotropic Raman spectra of molten K<sub>2</sub>MgCl<sub>4</sub> at 973 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



Figure 84. Isotropic Raman spectra of molten K<sub>2</sub>MgCl<sub>4</sub> at 1143 K. The smooth line is the best-fit curve calculated as a sum of three Lorentzian functions.



The Raman spectra of MnCl<sub>2</sub> and MnCl<sub>2</sub>-ACl melts indicated that the  $MnCl_{4}^{2-}$  species is the predominant species in melts of composition  $MnCl_2.nACl$  (n < 2), and melts of higher  $MnCl_2$  concentration most probably contain a rapid equilibrium between  $MnCl_4^{2-}$  and  $Mn_2Cl_7^{3-}$  and perhaps octahedral  $MnCl_6^{4-}$ . The coordination number is not well defined because the exchange lifetime for  $C1^-$  in the  $Mn^{2+}$  coordination sphere is short and near the Raman detection limit. Only one band was observed due to the Mn-Cl stretching vibration averaged over all coordinations and broadened by the wide range of environmental arrangements and Cl<sup>-</sup> exchange. The Raman results of MgCl2, MgCl2-CsCl and MgCl2-KCl melts indicate that the  $MgCl_a^{2-}$  ions are the predominant species in these melts. However, by increasing the concentration of MgCl<sub>2</sub> the polynuclear species  $Mg_2Cl_7^{3-}$  is formed, and for a further increment of MgCl\_2 concentration a third species is detected and attributed to polynuclear  $Mg_2Cl_n^{4-n}$  species. In contrast to the MnCl<sub>2</sub> system, the MgCl<sub>2</sub> system contains species that are long-lived enough to distinguish spectroscopically.

4.4 Visible Spectra of MnCl\_.nACl

The ground state<sup>78,79</sup> of Mn<sup>+2</sup> ion has five unpaired d-electrons, so the multiplicity for the ground level  $2S + 1 = 2(\frac{5}{2}) + 1 = 6$  i.e. the ground state has spin sextuplet. The ground state of the free ion has no spacial degeneracy and it has the symbol <sup>6</sup>S. Besides the ground state <sup>6</sup>S, Mn<sup>+2</sup> ion has excited states, four quartet terms <sup>4</sup>G, <sup>4</sup>P, <sup>4</sup>D and <sup>4</sup>F, and a number of doublet terms. The doublet states are of high energy and transition to them from the sextuplet ground state can only be observed at very low temperature in very thick crystals. The terms of the free ion and the splitting terms for Mn<sup>+2</sup> ion in octahedral field are shown (Table 29). These terms can be applied in a tetrahedral field if the g subscripts are dropped, because T<sub>d</sub> symmetry has no center of inversion and so the electronic states have no longer g or u character<sup>86</sup>.

The spectrum of  $Mn(H_20)_6^{2+}$  has been measured by Heidt et. al.<sup>80</sup>, Jorgensen<sup>81</sup> and Orgel<sup>82</sup>. The characteristic band positions and assignments of Heidt et. al. are shown in Table 30. Compounds which contain the octahedrally coordinated  $Mn^{2+}$  exhibit a characteristic pale red color as a consequence of weak absorption in the 17000 to 20000 cm<sup>-1</sup> region. Studies<sup>83-85</sup> of the absorption spectra of solid manganese halide crystals indicated the presence of octahedrally coordinated  $Mn^{2+}$ . The diffuse reflectance spectrum of  $MnCl_2$  has been reported by Clark<sup>83</sup> and assignments were similar to those proposed by Stout<sup>84,85</sup> for manganese halides.

The absorption spectra of tetrahalogenomanganate (II) salts of onium cations have been studied<sup>86</sup> in nonaqueous polar solvents. It was noted that when these salts dissolved in polar solvents, a slightly yellow color was observed which is due to the anion  $[MnX_4]^{2-}$ . The

Table 29. Splitting of the sextet and quartet terms of a d<sup>5</sup> ion in octahedral field.

| 6 <sub>S</sub> | 6Alg             |                   |                   |                   |
|----------------|------------------|-------------------|-------------------|-------------------|
| 4 <sub>P</sub> | 4 <sub>Tlg</sub> |                   |                   |                   |
| 4 <sub>D</sub> | 4 <sub>Eg</sub>  | 4 <sub>T2g</sub>  |                   |                   |
| 4 <sub>F</sub> | 4 <sub>A2g</sub> | 4 <sub>T</sub> 1g | 4 <sub>T2g</sub>  |                   |
| 4 <sub>G</sub> | 4 <sub>A1g</sub> | 4 <sub>Eg</sub>   | 4 <sub>T</sub> 1g | 4 <sub>T</sub> 2g |

| Table 30. Absorption spectrum of $Mn(H_20)_6^{2\tau}$ . |                                                           |  |
|---------------------------------------------------------|-----------------------------------------------------------|--|
| Band positions (cm <sup>-1</sup> )                      | Assignments                                               |  |
| 18870                                                   | ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$ |  |
| 23120                                                   | $\rightarrow {}^{4}T_{2g}({}^{4}G)$                       |  |
| 24960                                                   | $\rightarrow 4E_{g}, 4A_{1g}(4G)$                         |  |
| 27090                                                   | $4_{T}$ (4 <sub>D</sub> )                                 |  |
| 20750                                                   | → 1 <sub>2g</sub> ( D)                                    |  |
| 23750                                                   | $\rightarrow E_{g}(D)$                                    |  |
| 32900                                                   | $\rightarrow$ $1g(P)$                                     |  |
| 40810                                                   | $\rightarrow A_{2g}(F)$                                   |  |

observed spectra of the solutions were identical in all solvents and independent of the cation and similar to the reflexion spectra of the solid salts. Three distinct absorption regions were observed in the range 20000 to  $38000 \text{ cm}^{-1}$ , where ten transitions are expected. Tetrahedral coordination of Mn<sup>2+</sup> ion was proposed.

The absorption spectra<sup>87</sup> of tetrahalomanganate (II) ions  $[MnX_A]^{2-}$ , X = Cl,Br,I have been studied in the solid state and in various solvents at 25°C. It was reported that the tetrahedral manganese (II) complex has a pale green, yellow or yellow-green color, and the larger crystals have a marked color while the very fine powders often appear practically colorless. Three absorption patterns were observed in the spectra of  $[MnBr_4]^{2-}$  ion in the region 20000 to 38000 cm<sup>-1</sup>. Three absorption bands were observed in the range 20000 to 25000 cm<sup>-1</sup> and attributed to transitions to the states originating from the <sup>4</sup>G term of the free ion. A group of three absorptions was found in the range 25000 to 28000 cm<sup>-1</sup> arising from the <sup>4</sup>D and <sup>4</sup>P terms. A third set of three bands was expected in the region 36000 to 38000 cm<sup>-1</sup> due to transitions to the states arising from the <sup>4</sup>F term, but these transitions were less easily observed than the two previous patterns because they appear in a region where solvent absorption and absorption due to some organic groups of the cation. The peak positions and assignments for  $[MnCl_{4}]^{2-}$  and  $[MnBr_4]^{2-}$  are shown in Table 31.

The absorption spectra of  $MnCl_2$  in LiCl-KCl eutectic at 436°C and  $MnBr_2$  in LiBr-KBr eutectic at 457°C have been investigated<sup>88</sup>. Two peaks were observed in both spectra around 360 millimicrons (27777 cm<sup>-1</sup>) and 440 millimicrons (22727 cm<sup>-1</sup>). It was concluded that Mn(II) ion in both the chloride and bromide melts is tetrahedrally coordinated. A

| Band positi                        | ions (cm <sup>-1</sup> )           |                                                         |
|------------------------------------|------------------------------------|---------------------------------------------------------|
| [MnBr <sub>4</sub> ] <sup>2-</sup> | [MnC1 <sub>4</sub> ] <sup>2-</sup> | Assignments                                             |
| 21350                              | 21200                              | ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$ |
| 22180                              | 22400                              | $\rightarrow {}^{4}T_{2}({}^{4}G)$                      |
| 23000                              | 23200                              | $\rightarrow {}^{4}E, {}^{4}A_{1}({}^{4}G)$             |
| 25900                              | 26300                              | $\rightarrow {}^{4}T_{2}({}^{4}D)$                      |
| 26750                              | 27100                              | $\rightarrow$ <sup>4</sup> E( <sup>4</sup> D)           |
| 27700                              | 27900                              | $\rightarrow 4_{T_1}(4_P)$                              |
| 36150                              | 38000                              | $\rightarrow {}^{4}A_{2}({}^{4}F)$                      |
| 36150                              |                                    | $\rightarrow {}^{4}T_{1}({}^{4}F)$                      |
| 37400                              |                                    | $\rightarrow {}^{4}T_{2}({}^{4}F)$                      |

Table 31. Absorption spectra of  $[MnBr_4]^{2-}$  and  $[MnCl_4]^{2-}$ .

further investigation<sup>89</sup> of the absorption spectra of  $Mn^{2+}$  ion in LiCl-KCl eutectic at 400 and 1000°C was done by Gruen and McBeth. The spectra were characterized by two absorption bands at ~ 22000 and 28000 cm<sup>-1</sup>, and attributed to transitions from the <sup>6</sup>S ground state to upper <sup>4</sup>G, <sup>4</sup>P and <sup>4</sup>D states. The spectra were in good agreement with the previous work<sup>88</sup>. The results favoured the tetrahedral MnCl<sub>4</sub><sup>2-</sup> species.

The optical spectra of  $[MnX_4]^{2^-}$ , X = C1,Br,I, were studied<sup>90</sup> at 160°C in the molten state for low melting organic salts. The spectra were similar to the spectra obtained at room temperature by previous authors<sup>86,87</sup>. The results indicated that the tetrahedral Mn<sup>2+</sup> ion persisted into the fused salts. Islam<sup>91</sup> investigated the optical spectra of MnBr<sub>2</sub> in molten tetra-n-Butyl phosphonium bromide at 112°C. The solution had a yellowish-green color. The spectra showed two sets of weak resolved peaks in the visible region between 18870 and 28990 cm<sup>-1</sup> and assigned to  ${}^{6}S + {}^{4}G$ , and  ${}^{6}S + {}^{4}P + {}^{4}D$  transitions. A third band was observed in the ultraviolet region and attributed to  ${}^{6}S + {}^{4}F$  transitions. It was suggested that the manganese (II) in molten tetra-n-Butyl phosphonium bromide forms a tetrahedral complex MnBr<sub>4</sub><sup>2-</sup>.

The absorption spectra of  $MnCl_2-AlCl_3$  and  $MnCl_2-CsCl$  mixtures have been studied<sup>23</sup>. The spectra of  $MnCl_2$  with CsCl in the concentration range 0 <  $X_{MnCl_2} \le 0.33$  were less structured, but the Raman data indicated that the tetrahedral  $MnCl_4^{2-}$  was the dominate species. However, the spectra of  $Mn^{+2}$  in  $MnCl_2-AlCl_3$  melts,  $X_{MnCl_2} \le 0.30$ , were attributed to octahedral coordination of  $Mn^{+2}$  ion.

The diffuse reflectance spectra<sup>92</sup> of a number of Manganese (II) compounds in which the metal is surrounded by octahedral and tetrahedral arrangements of halogen atoms have been studied. The compounds included MnX<sub>2</sub>, X = Cl,Br,I,  $(MeNH_3)_2MnCl_4$ ,  $\alpha$ -Cs<sub>2</sub>MnCl<sub>4</sub>, K<sub>4</sub>MnCl<sub>6</sub>, KMnCl<sub>3</sub>, Me<sub>4</sub>NMnCl<sub>3</sub> and Me<sub>4</sub>NMnBr<sub>3</sub>. Also the spectrum of single crystal MnCl<sub>2</sub> has been investigated<sup>93</sup> at 77°K. Band assignments for MnCl<sub>2</sub> are shown in Table 32.

The optical spectra<sup>94,95</sup> of  $Mn^{2+}$  ions in NaCl and KCl single crystals using impurity concentration in the range 0.1 to 15 mole % have been studied at room temperature and at 77°K. The formation of  $K_4MnCl_6$  and NaMnCl\_3 complexes was thought to be probable at high concentrations, but direct evidence was not presented. Recently<sup>96,97,98</sup> the optical spectra of  $Mn^{2+}$  ions in the Suzuki-phase (6NaCl:MnCl<sub>2</sub>) have been studied in NaCl. The results indicated that an intense band at 231 nm is characteristic of the Suzuki phase.

## 4.4.1 Solid state

## (i) Cs\_MnCl\_ and Cs\_MnCl\_

The visible spectra of  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  at room temperature and at 681 K are shown in figures 85,86,87 and 88 respectively. These two compounds exhibit greenish-yellow color at room temperature and at 681 K. The X-ray studies<sup>64,43</sup> indicated the presence of discrete  $MnCl_4^{2-}$  tetrahedral species and Raman studies strongly confirmed the X-ray results.

It has been reported<sup>92</sup> that the absorption spectra of  $\alpha$ -Cs<sub>2</sub>MnCl<sub>4</sub> is identical in appearance to the spectra of  $(CH_3NH_3)_2MnCl_4$  which is pink, and this implicitly suggest that the manganese has an octahedral environment. The Raman results indicate that the red low temperature form of this solid and referred to as  $\alpha$ -Cs<sub>2</sub>MnCl<sub>4</sub> is really a hydrated solid Cs<sub>2</sub>MnCl<sub>4</sub>.0.16H<sub>2</sub>O. The so called high temperature form referred

| Band positio | ons (cm <sup>-1</sup> ) |                                                       |
|--------------|-------------------------|-------------------------------------------------------|
| MnC1292      | MnC1 293                | Assignments                                           |
| 10000        | 19500                   | $6_{1}$ $(6_{1})$ $4_{1}$ $(4_{2})$                   |
| 18900        | 18500                   | $A_1(3) \rightarrow I_1(G)$                           |
| . 22220      | 22000                   | $\rightarrow {}^{4}T_{2}({}^{4}G)$                    |
| 22070        | 23574                   | 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 23070        | 23800                   | $\rightarrow A_1, E(G)$                               |
| 27030        | 27000                   | $\rightarrow {}^{4}T_{2}({}^{4}D)$                    |
| 28250        | 28066                   | $\rightarrow {}^{4}E({}^{4}D)$                        |
| 30490        | 30500                   | $\rightarrow {}^{4}T_{1}({}^{4}P)$                    |
|              | 38400                   | $+ {}^{4}A_{2}, {}^{4}T_{1}({}^{4}F)$                 |
|              | 40700                   | $\rightarrow {}^{4}T_{2}({}^{4}F)$                    |

Table 32. Electronic spectra of MnCl<sub>2</sub>.

to as  $\beta\text{-}Cs_2\text{MnCl}_4$  is the true anhydrous form and has a greenish yellow color.

One absorption pattern was observed at room temperature in both  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$ . The observed peaks are close to the first three bands observed in the reflectance spectra<sup>87</sup> of  $[MnCl_4]^{2-}$  compounds. One peak is observed at 681 K for both samples, and slightly shifted to lower frequency on comparison to the counterpart observed at room temperature. Both compounds remained greenish-yellow until they melted and there was no evidence to suggest a phase transition. There is a weak peak observed at ~ 16000 cm<sup>-1</sup>, and it is most probably due to the presence of Manganese oxide<sup>99,100</sup> as a slight impurity in the sample. Band positions and assignments are shown in Table 33.

## (ii) MnCl<sub>2</sub>, NaMn<sub>4</sub>Cl<sub>9</sub> and Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub>

The visible spectra of  $MnCl_2$ ,  $NaMn_4Cl_9$  and  $Na_2Mn_3Cl_8$  at room temperature are shown in figures 89, 90 and 91 respectively. These compounds exhibit a pink color, and this suggests that they have octahedral environment<sup>71,68</sup>.

The peak observed in the spectrum of  $MnCl_2$  at ~ 18089 cm<sup>-1</sup> is due to  ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$  transition. A transition from the ground state  ${}^{6}A_{1g}({}^{6}S)$  to the excited state  ${}^{4}T_{2g}({}^{4}G)$  was reported  ${}^{83,84,92,93}$  to appear around ~ 22000 cm<sup>-1</sup>, so this indicate that the shoulder observed at ~ 19826 cm<sup>-1</sup> is probably not real peak. The peak observed at ~ 16000 cm<sup>-1</sup> in the spectrum of Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub> is most probably attributed to Manganese oxide  ${}^{99,100}$ . Band positions and assignments are shown in Table 34.

- Figure 85. A. Upper spectrum is the projection lamp spectrum. Lower spectrum is the projection lamp plus sample spectrum.
  - B. The subtracted spectrum represents the visible spectrum of  $Cs_2MnCl_4$  at room temperature.



-259-

Figure 86. Visible spectrum of Cs<sub>2</sub>MnCl<sub>4</sub> at 681 K.



Figure 87. Visible spectrum of  $Cs_3MnCl_5$  at room temperature.



Figure 88. Visible spectrum of Cs<sub>3</sub>MnCl<sub>5</sub> at 681 K.


| Assignments                                             | Cs <sub>2</sub> MnCl <sub>4</sub> at<br>Room Temp. | Cs <sub>2</sub> MnCl <sub>4</sub><br>at 681 K | Cs <sub>3</sub> MnCl <sub>5</sub> at<br>Room Temp. | Cs <sub>3</sub> MnC1 <sub>5</sub><br>at 681 K | [MnC1 <sub>4</sub> ] <sup>2-</sup><br>ions <sup>87</sup> |
|---------------------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|
| ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$ | 20542                                              | 20042                                         | 20542                                              | 19742                                         | 21050                                                    |
| $\rightarrow {}^{4}T_{2}({}^{4}G)$                      | 21802                                              |                                               | 21802                                              |                                               | 22000                                                    |
| $\rightarrow {}^{4}E, {}^{4}A_{1}({}^{4}G)$             | 22802                                              |                                               | 22802                                              |                                               | 23000                                                    |

Table 33. Band positions in  $cm^{-1}$  and assignments for solid  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$ .

Figure 89. Visible spectrum of MnCl<sub>2</sub> at room temperature.



Figure 90. Visible spectrum of  $NaMn_4Cl_9$  at room temperature.



Figure 91. Visible spectrum of  $Na_2Mn_3Cl_8$  at room temperature.



| Table 34. | Peak frequencies in cm <sup>-1</sup> and assignments for solid MnCl <sub>2</sub> ,                         |
|-----------|------------------------------------------------------------------------------------------------------------|
|           | NaMn <sub>4</sub> Cl <sub>9</sub> and Na <sub>2</sub> Mn <sub>3</sub> Cl <sub>8</sub> at room temperature. |
|           |                                                                                                            |

| Assignments                                       | MnC12 | MnC12 <sup>83</sup> | NaMn <sub>4</sub> Cl <sub>9</sub> | Na2Mn3C18 |
|---------------------------------------------------|-------|---------------------|-----------------------------------|-----------|
| $^{6}A_{1g}(^{6}S) \Rightarrow ^{4}T_{1g}(^{4}G)$ | 18089 | 18650               | 18159                             | 18259     |
| $\rightarrow {}^{4}T_{2g}({}^{4}G)$               | 21099 | 22100               | 21099                             | 21099     |

(iii) CsMnCl<sub>3</sub> and CsMn<sub>4</sub>Cl<sub>9</sub>

The visible spectra of  $CsMnCl_3$  and  $CsMn_4Cl_9$  at room temperature and at 681 K are shown in figures 92, 93, 94 and 95 respectively. These compounds are pink at room temperature and at 681 K. It was reported that the Mn<sup>2+</sup> ion has an octahedral environment in CsMnCl<sub>3</sub><sup>52</sup> and CsMn<sub>4</sub>Cl<sub>9</sub><sup>39</sup>. The shoulder observed at ~ 16000 cm<sup>-1</sup> in the spectrum of CsMn<sub>4</sub>Cl<sub>9</sub> at room temperature is probably due to Manganese oxide<sup>99,100</sup>. Band assignments are shown in Table 35.

## (iv) RbMnCl<sub>3</sub>, Rb<sub>2</sub>MnCl<sub>4</sub> and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>

The visible spectra of RbMnCl<sub>3</sub>, Rb<sub>2</sub>MnCl<sub>4</sub>, and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> at room temperature are shown in figures 96, 97 and 98 respectively. RbMnCl<sub>3</sub> has an orange-slight red color, while Rb<sub>2</sub>MnCl<sub>4</sub> and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> exhibit bright orange color. So it is noted that the peak observed at ~ 18709 cm<sup>-1</sup> in RbMnCl<sub>3</sub> is slightly shifted to lower frequency in comparison to its counterpart observed in Rb<sub>2</sub>MnCl<sub>4</sub> and Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>.

The X-ray study<sup>56</sup> of RbMnCl<sub>3</sub> indicated that the manganese has an octahedral environment. It was reported<sup>43</sup> that  $Rb_2MnCl_4$  is isomorphous with  $K_2MgCl_4^{42}$  in which the magnesium is octahedrally coordinated by Cl atoms. Seifert<sup>43</sup> reported that  $Rb_3Mn_2Cl_7$  is isostructural with  $Sr_3Ti_2O_7$  which has a tetragonal structure<sup>61</sup> in which the titanium is surrounded by six oxygen atoms, so this implicitly indicates that the manganese is octahedrally coordinated by Cl atoms. Band positions in  $cm^{-1}$  and assignments are shown in Table 36.

## (v) KMnCl<sub>3</sub>, K<sub>4</sub>MnCl<sub>6</sub> and K<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>

The visible spectra of  $KMnCl_3$ ,  $K_4MnCl_6$  and  $K_3Mn_2Cl_7$  at room

Figure 92. Visible spectrum of CsMnCl<sub>3</sub> at room temperature.



Figure 93. Visible spectrum of CsMnCl<sub>3</sub> at 681 K.



Figure 94. Visible spectrum of  $CsMn_4Cl_9$  at room temperature.



Figure 95. Visible spectrum of CsMn<sub>4</sub>Cl<sub>9</sub> at 681 K.



| Assignments                                               | CsMnCl <sub>3</sub> at<br>Room Temp. | CsMnCl <sub>3</sub><br>at 681 K | CsMn <sub>4</sub> Cl <sub>9</sub> at<br>Room Temp. | CsMn <sub>4</sub> Cl <sub>9</sub><br>at 681 K | (CH <sub>3</sub> ) <sub>4</sub> NMnC1 <sub>3</sub> 92 |
|-----------------------------------------------------------|--------------------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|-------------------------------------------------------|
| ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$ | 18042                                | 18042                           | 18042                                              | 18042                                         | 18840                                                 |
| $\rightarrow {}^{4}T_{2g}({}^{4}G)$                       | 21000                                |                                 | 21099                                              |                                               | 22560                                                 |

| Table 35. | Peak | positions | in | cm <sup>-1</sup> | and | assignments | for | solid | CsMnCl <sub>3</sub> , | CsMn <sub>4</sub> Cl <sub>9</sub> | and | (CH3)4NMnC13 |
|-----------|------|-----------|----|------------------|-----|-------------|-----|-------|-----------------------|-----------------------------------|-----|--------------|
|-----------|------|-----------|----|------------------|-----|-------------|-----|-------|-----------------------|-----------------------------------|-----|--------------|

Figure 96. Visible spectrum of RbMnCl<sub>3</sub> at room temperature.



Figure 97. Visible spectrum of Rb2MnCl4 at room temperature.



Figure 98. Visible spectrum of  $Rb_3Mn_2Cl_7$  at room temperature.



- 289 -

| Table 36. | Peak frequencies in cm <sup>-1</sup> and assignments for solid                                                                   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------|
|           | RbMnCl <sub>3</sub> , Rb <sub>2</sub> MnCl <sub>4</sub> and Rb <sub>3</sub> Mn <sub>2</sub> Cl <sub>7</sub> at room temperature. |

| Assignments                                               | RbMnC1 <sub>3</sub> | Rb2MnC14 | Rb3Mn2C17 |
|-----------------------------------------------------------|---------------------|----------|-----------|
| ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$ | 18709               | 18942    | 18942     |
| $\rightarrow {}^{4}T_{2g}({}^{4}G)$                       | 21788               | 21788    | 21788     |

temperature are shown in figures 99, 100 and 101 respectively. These compounds exhibit orange color.

Seifert<sup>64</sup> reported that  $Mn^{2+}$  ions occupy octahedral holes in compounds of the formula  $AMnX_3$ , so the  $Mn^{2+}$  ions in  $KMnCl_3$  have an octahedral arrangement. Also<sup>64</sup> he suggested that compounds of the formula  $A_4MnX_6$  contain isolated  $MnX_6$  octahedra, so this indicate that the Mn atom in  $K_4MnCl_6$  is octahedrally coordinated by Cl atoms.  $K_3Mn_2Cl_7^{43}$  is isostructural with  $Rb_3Mn_2Cl_7$ , in which the Mn atom has an octahedral environment.

The spectrum of  $K_4$ MnCl<sub>6</sub> is similar in appearance to the reflectance spectrum reported by Foster and Gill<sup>92</sup>. The peaks observed in the reflectance spectrum<sup>92</sup> of KMnCl<sub>3</sub> at ~19700 and at ~22960 were assigned to  ${}^6\text{S} \rightarrow {}^4\text{G}$  transitions, so the shoulder observed at ~ 20542 cm<sup>-1</sup> in the spectrum of KMnCl<sub>3</sub> is probably not real peak. Assignments and peak positions in cm<sup>-1</sup> are shown in Table 37.

## (vi) NaMnCl<sub>3</sub>, Na<sub>2</sub>MnCl<sub>4</sub> and Na<sub>6</sub>MnCl<sub>8</sub>

The visible spectra of NaMnCl<sub>3</sub>, Na<sub>2</sub>MnCl<sub>4</sub> and Na<sub>6</sub>MnCl<sub>8</sub> at room temperature are shown in figures 102, 103 and 104. NaMnCl<sub>3</sub> and Na<sub>2</sub>MnCl<sub>4</sub> have an orange color while Na<sub>6</sub>MnCl<sub>8</sub> is colorless.

The manganese has an octahedral environment in NaMnCl $_3^{65}$  and Na $_2$ MnCl $_4^{67}$ . It was reported<sup>68</sup> that the Mn in Na $_6$ MnCl $_8$  has an octahedral arrangement.

The peak observed at 19256 cm<sup>-1</sup> in the spectrum of  $Na_6MnCl_8$  is close to its counterpart observed in the Suzuki phase spectrum<sup>96,97,98</sup>. Band assignments and frequency in cm<sup>-1</sup> are shown in Table 38. Figure 99. Visible spectrum of KMnCl<sub>3</sub> at room temperature.



Figure 100. Visible spectrum of K4MnCl6 at room temperature.



Figure 101. Visible spectrum of  $K_3Mn_2Cl_7$  at room temperature.



Table 37. Peak positions in cm<sup>-1</sup> and assignments for solid KMnCl<sub>3</sub>,  $K_4$ MnCl<sub>6</sub> and  $K_3$ Mn<sub>2</sub>Cl<sub>7</sub> at room temperature.

| Assignments                                               | KMnC13 | KMnC1392 | K <sub>4</sub> MnC1 <sub>6</sub> | K4MnC16 <sup>92</sup> | K3Mn2C17 |
|-----------------------------------------------------------|--------|----------|----------------------------------|-----------------------|----------|
| ${}^{6}A_{1g}({}^{6}S) \rightarrow {}^{4}T_{1g}({}^{4}G)$ | 18729  | 19700    | 18885                            | 19460                 | 18709    |
| $\rightarrow {}^{4}T_{2g}({}^{4}G)$                       | 21788  | 22960    | 21788                            | 22900                 | 21788    |

Figure 102. Visible spectrum of NaMnCl<sub>3</sub> at room temperature.



Figure 103. Visible spectrum of Na<sub>2</sub>MnCl<sub>4</sub> at room temperature.


Figure 104. Visible spectrum of Na<sub>6</sub>MnCl<sub>8</sub> at room temperature.



Table 38. Assignments and peak positions in cm<sup>-1</sup> for solid NaMnCl<sub>3</sub>,  $Na_2MnCl_4$  and  $Na_6MnCl_8$  at room temperature.

| Assignments                                       | NaMnC13 | Na2MnCl4 | Na <sub>6</sub> MnC1 <sub>8</sub> | Suzuki phase <sup>96</sup> |
|---------------------------------------------------|---------|----------|-----------------------------------|----------------------------|
| $^{6}A_{1g}(^{6}S) \rightarrow ^{4}T_{1g}(^{4}G)$ | 18786   | 19042    | 19256                             | 19242                      |
| → <sup>4</sup> T <sub>2g</sub> ( <sup>4</sup> G)  | 21788   | 21788    | 21788                             | 22878                      |

## 4.4.2 Molten State

(i) Cs\_MnCl\_, Cs\_MnCl\_, K\_MnCl\_ and Na\_MnCl\_

The visible spectra of  $Cs_2MnCl_4$ ,  $Cs_3MnCl_5$ ,  $K_4MnCl_6$  and  $Na_6MnCl_8$ melts are shown in figures 105, 106, 107 and 108. These compounds have yellow color in the melt and exhibit similar spectra. The peak observed at ~ 20142 cm<sup>-1</sup> in  $Cs_2MnCl_4$ ,  $Cs_3MnCl_5$  and  $K_4MnCl_6$  melts is attributed to  $^{6}A_1(^{6}S) + ^{4}T_1(^{4}G)$  transition. This peak is slightly shifted to lower frequency and observed at ~ 20042 cm<sup>-1</sup> in  $Na_6MnCl_8$ melt. This peak was observed in the spectra of melt  $MnCl_2$ -CsCl mixtures<sup>23</sup> at ~ 20000 cm<sup>-1</sup>. The peak observed at ~15892 cm<sup>-1</sup> in the melts is most probably due to Manganese oxide<sup>99,100</sup> impurity in the samples. Since there is no peak reported below 19000 cm<sup>-1</sup> in the optical spectra of  $MnCl_2$ -CsCl melts<sup>23</sup>,  $[MnX_4]^{2-}$  melts<sup>90</sup>,  $[MnCl_4]^{2-}$ melt<sup>88,89</sup>, and  $[MnX_4]^{2-}$  solutions<sup>86</sup>, then the peak observed at ~ 17392 cm<sup>-1</sup> in  $Cs_2MnCl_4$ ,  $Cs_3MnCl_5$  and  $K_4MnCl_6$  melts, and the peaks observed at ~ 16842, 17542 and 18142 cm<sup>-1</sup> in  $Na_6MnCl_8$  melt are attributed to artifacts or to unknown impurity in the melts.

 $Cs_2MnCl_4$  is isostructural with  $Cs_2MgCl_4$  which melts<sup>14</sup> with the retention of the discrete tetrahedral  $MgCl_4^{2-}$  ions. Also,  $Cs_3MnCl_5$  is isomorphous with  $Cs_3MgCl_5$  which contains<sup>17</sup> the discrete tetrahedral  $MgCl_4^{2-}$  ion in the molten state. Since Raman studies of  $Cs_2MnCl_4$  and  $Cs_3MnCl_5$  melts indicated the presence of  $MnCl_4^{2-}$  tetrahedral species, and most probably these species are present in these melts as a discrete entities because there is enough chloride to facilitate this kind of isolated species.

By comparing the spectra of  $K_4$ MnCl<sub>6</sub> and Na<sub>6</sub>MnCl<sub>8</sub> melts with the spectra of Cs<sub>2</sub>MnCl<sub>4</sub> and Cs<sub>3</sub>MnCl<sub>5</sub> melts, the presence of MnCl<sub>4</sub><sup>2-</sup> tetra-

hedral species in both melts is suggested. Band positions in cm<sup>-1</sup> and assignments are shown in Table 39.

## (ii) Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>, K<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub>, Na<sub>2</sub>MnCl<sub>4</sub> and Rb<sub>2</sub>MnCl<sub>4</sub>

The visible spectra of  $Rb_3Mn_2Cl_7$ ,  $K_3Mn_2Cl_7$ ,  $Na_2MnCl_4$  and  $Rb_2MnCl_4$ melts are shown in figures 109, 110, 111 and 112. These melts have a bright yellow color. In the case of  $Na_2MnCl_4$  and  $Rb_2MnCl_4$  melts, an isolated tetrahedral  $MnCl_4^{2-}$  species is expected because there is enough chloride, but for  $Rb_3Mn_2Cl_7$  and  $K_3Mn_2Cl_7$  melts, a tetrahedral species with corner sharing is the most probable structure because the spectra and the yellow color suggest that tetrahedral coordination is retained. The peak observed at ~ 15892 cm<sup>-1</sup> in the melts is most probably due to Manganese oxide<sup>99,100</sup>. Peak positions in cm<sup>-1</sup> and assignments are shown in Table 40.

## (iii) CsMnCl<sub>3</sub>, NaMnCl<sub>3</sub>, KMnCl<sub>3</sub> and RbMnCl<sub>3</sub>

The visible spectra of CsMnCl<sub>3</sub>, NaMnCl<sub>3</sub>, KMnCl<sub>3</sub> and RbMnCl<sub>3</sub> melts are shown in figures 113, 114, 115 and 116. These melts exhibit dark yellow color. Since these melts have yellow color, then a tetrahedral MnCl<sub>4</sub><sup>2-</sup> species with corner sharing is expected because there is not enough chloride to form an isolated MnCl<sub>4</sub><sup>2-</sup> entity. The peak observed at ~ 16000 cm<sup>-1</sup> in the melts is due to Manganese oxide<sup>99,100</sup>. Band positions and assignments are shown in Table 41.

## (iv) MnCl<sub>2</sub>, CsMn<sub>4</sub>Cl<sub>2</sub>, NaMn<sub>4</sub>Cl<sub>2</sub> and Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>2</sub>

The visible spectra of  $MnCl_2$ ,  $CsMn_4Cl_9$ ,  $NaMn_4Cl_9$  and  $Na_2Mn_3Cl_8$  melts are shown in figures 117, 118, 119 and 120.  $MnCl_2$ ,  $CsMn_4Cl_9$  and  $NaMn_4Cl_9$ 

Figure 105. Visible spectrum of molten Cs2MnCl4 at 906 K.



Figure 106. Visible spectrum of molten Cs<sub>3</sub>MnCl<sub>5</sub> at 906 K.



Figure 107. Visible spectrum of molten K4MnCl6 at 906 K.



Figure 108. Visible spectrum of molten Na<sub>6</sub>MnCl<sub>8</sub> at 922 K.



- 315 -

Table 39. Assignments and peak positions in  $cm^{-1}$  for  $Cs_2MnCl_4$ ,  $Cs_3MnCl_5$ ,  $K_4MnCl_6$ ,  $Na_6MnCl_8$ and  $MnCl_2$ -CsCl melts.

| Assignments                                             | Cs <sub>2</sub> MnC1 <sub>4</sub> | Cs <sub>3</sub> MnC1 <sub>5</sub> | K <sub>4</sub> MnC1 <sub>6</sub> | Na <sub>6</sub> MnC1 <sub>8</sub> | MnCl <sub>2</sub> -CsCl <sup>23</sup><br>(0.33-0.67) |
|---------------------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------|-----------------------------------|------------------------------------------------------|
| ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$ | 20142                             | 20142                             | 20142                            | 20042                             | 20000                                                |
| $\rightarrow {}^{4}T_{2}({}^{4}G)$                      | 22292                             | 22292                             | 22292                            | 22492                             | 22750                                                |

Figure 109. Visible spectrum of molten Rb<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> at 900 K.



- 318 -

Figure 110. Visible spectrum of molten K<sub>3</sub>Mn<sub>2</sub>Cl<sub>7</sub> at 900 K.



- 320 -

Figure 111. Visible spectrum of molten Na<sub>2</sub>MnCl<sub>4</sub> at 900 K.



Figure 112. Visible spectrum of molten Rb<sub>2</sub>MnCl<sub>4</sub> at 915 K.



Table 40. Peak positions in cm<sup>-1</sup> and assignments for  $Rb_3Mn_2Cl_7$ ,  $K_3Mn_2Cl_7$ ,  $Na_2MnCl_4$ ,  $Rb_2MnCl_4$ melts and  $[MnCl_4]^{2-}$  solution<sup>86</sup>.

| Assignments                                             | Rb3Mn2C17 | K3 <sup>Mn</sup> 2C17 | Na <sub>2</sub> MnC1 <sub>4</sub> | Rb2MnC14 | [MnC1 <sub>4</sub> ] <sup>2-86</sup> |
|---------------------------------------------------------|-----------|-----------------------|-----------------------------------|----------|--------------------------------------|
| ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$ | 20692     | 20692                 | 20692                             | 20692    | 21300                                |
| $\rightarrow {}^{4}T_{2}({}^{4}G)$                      | 22062     | 22062                 | 22292                             | 22292    | 22530                                |

Figure 113. Visible spectrum of molten CsMnCl<sub>3</sub> at 906 K.



Figure 114. Visible spectrum of molten NaMnCl<sub>3</sub> at 900 K.



- 329 -

Figure 115. Visible spectrum of molten KMnCl<sub>3</sub> at 906 K.



Figure 116. Visible spectrum of molten RbMnCl<sub>3</sub> at 906 K.



Table 41. Assignments and peak positions in  $cm^{-1}$  for CsMnCl<sub>3</sub>, NaMnCl<sub>3</sub>, KMnCl<sub>3</sub>, RbMnCl<sub>3</sub> and MnCl<sub>2</sub>-CsCl melts.

| Assignments                                             | CsMnC1 <sub>3</sub> | NaMnC1 <sub>3</sub> | KMnC1 <sub>3</sub> | RbMnC1 <sub>3</sub> | MnCl <sub>2</sub> -CsCl <sup>23</sup><br>(0.5:0.5) |
|---------------------------------------------------------|---------------------|---------------------|--------------------|---------------------|----------------------------------------------------|
| ${}^{6}A_{1}({}^{6}S) \rightarrow {}^{4}T_{1}({}^{4}G)$ | 19942               | 19942               | 19975              | 19975               | 20000                                              |
| $\rightarrow {}^{4}T_{2}({}^{4}G)$                      | 21739               | 21739               | 21739              | 21739               | 23050                                              |

melts have orange-slightly red color, while Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub> melt exhibit a yellow-orange color. The slight red color and the band positions in the visible spectra for melts of high MnCl<sub>2</sub> content suggest the presence of a small amount of octahedrally coordinated Mn<sup>2+</sup>. The results suggest that Mn remains mostly tetrahedral coordination but octahedral coordination may be present. However Raman studies indicated that the coordination of Mn is ill-defined due to rapid exchange of ligands:

$$2C1^{-} + MnC1_4^2 \longrightarrow MnC1_6^{4-}$$
  
 $2MnC1_4^2 \longrightarrow Mn_2C1_7^{3-} + C1^{-}$ 

The formation of these ions take place through corners sharing. The peak observed at ~ 16000 cm<sup>-1</sup> in NaMn<sub>4</sub>Cl<sub>9</sub> and Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub> melts is attributed to Manganese oxide<sup>99,100</sup>. Band positions in cm<sup>-1</sup> and assignments are shown in Table 42.

It was possible to differentitate between the compounds which have tetrahedral manganese from the ones in which the manganese is octahedrally coordinated by chlorine atoms on the basis of their visible spectra. In the molten state, the tetrahedral  $MnCl_4^{2-}$  species as an isolated entities or through corners sharing are the predominant species in the melts. Figure 117. Visible spectrum of molten MnCl<sub>2</sub> at 974 K.


Figure 118. Visible spectrum of molten CsMn<sub>4</sub>Cl<sub>9</sub> at 925 K.



- 339 ï

Figure 119. Visible spectrum of molten NaMn<sub>4</sub>Cl<sub>9</sub> at 916 K.



- 341 -

Figure 120. Visible spectrum of molten Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub> at 901 K.



343 -

F

| MnC1 <sub>2</sub> | MnCl <sub>2</sub> -CsCl <sup>23</sup><br>(1.0:0.0) | CsMn <sub>4</sub> C1 <sub>9</sub>                                                            | MnCl <sub>2</sub> -CsCl <sup>23</sup><br>(0.8:0.2)                                                                                   | NaMn <sub>4</sub> C1 <sub>9</sub>                                                                                        | Na2 <sup>Mn</sup> 3C18                               |
|-------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| 19300             | 20000                                              | 19042                                                                                        | 20000                                                                                                                                | 19042                                                                                                                    | 19542                                                |
|                   | 23300                                              |                                                                                              | 23260                                                                                                                                |                                                                                                                          | 21739                                                |
|                   | MnC1 <sub>2</sub>                                  | MnCl <sub>2</sub> MnCl <sub>2</sub> -CsCl <sup>23</sup><br>(1.0:0.0)<br>19300 20000<br>23300 | MnC1 <sub>2</sub> MnC1 <sub>2</sub> -CsC1 <sup>23</sup> CsMn <sub>4</sub> C1 <sub>9</sub><br>(1.0:0.0)<br>19300 20000 19042<br>23300 | $\begin{array}{cccc} MnC1_2 & MnC1_2-CsC1^{23} & CsMn_4C1_9 & MnC1_2-CsC1^{23} \\ (1.0:0.0) & 19042 & 20000 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ |

Table 42. Assignments and peak positions in  $cm^{-1}$  for MnCl<sub>2</sub>, CsMn<sub>4</sub>Cl<sub>9</sub>, NaMn<sub>4</sub>Cl<sub>9</sub>, Na<sub>2</sub>Mn<sub>3</sub>Cl<sub>8</sub> and MnCl<sub>2</sub>-CsCl melts.

## 5. Conclusion

The Raman and visible results indicate the presence of  $MnCl_4^{2-}$  ions as the predominant species for  $MnCl_2.nACl$  melts. However for melts of high  $MnCl_2$  concentration, the Raman results suggest the presence of  $MnCl_4^{2-}$  ions as the predominant species in addition to the very shortlived species such as,  $Mn_2Cl_7^{3-}$ . The visible results for the melts suggest the presence of a small fraction of  $MnCl_6^{4-}$  ions in addition to the predominant  $MnCl_4^{2-}$  ions.

The Raman results for  $MgCl_2$ .nACl melts indicate the presence of equilibrium concentrations of  $MgCl_4^{2-}$  and  $Mg_2Cl_7^{3-}$  ions as the predominant species in melts of moderate  $MgCl_2$  content. A third species  $Mg_2Cl_n^{4-n}$  was detected by further increment of  $MgCl_2$  concentration but the short lifetimes of the higher polymeric species makes it difficult to fully characterize their spectra.

Absorption spectra of the solid compounds in the visible range has lead to identification of tetrahedral and octahedral coordination but could not differentiate between extended array structures and discrete species. The combined visible and Raman spectra can be used to characterize the many solids formed in the AC1-MnCl<sub>2</sub> systems.

- 6. References
- B. Gilbert, G. Mamantov and G.M. Begun, J. Chem. Phys., <u>62</u>, 950 (1975).
- E. Rytter, H.A. Øye, S.J. Cyvin, B.N. Cyvin and P. Klaeboe, J. Inorg. Nucl. Chem., <u>35</u>, 1185 (1973).
- 3. J.L. Gray and G.E. Maciel, J. Am. Chem. Soc., <u>103</u>, 7147 (1981).
- 4. L.M. Toth and G.E. Boyd, J. Phys. Chem., <u>77</u>, 2654 (1973).
- 5. L.M. Toth, A.S. Quist and G.E. Boyd, J. Phys. Chem., <u>77</u>, 1384 (1973).
- Encyclopedia of Electrochemistry of Elements vol. VI, VIII by: Allen J. Bard, M. Dekker, New York, 1973.
- 7. K. Balasubrahmanyam, J. Chem. Phys., <u>44</u>, 3270 (1966).
- 8. V.A. Maroni, E.J. Hathaway and E.J. Cairns, J. Phys. Chem., <u>75</u>, 155 (1971).
- 9. V.A. Maroni, J. Chem. Phys., <u>55</u>, 4789 (1971).
- 10. R.J. Capwell, Chem. Phys. Letters, <u>12</u>, 443 (1972).
- 11. E.J. Hathaway and V.A. Maroni, J. Phys. Chem., 76, 2796 (1972).
- 12. G.M. Begun, J. Brynestad, K.W. Fung and G. Mamantov, Inorg. Nucl. Chem. Lett., 8, 79 (1972).
- 13. J.E.D. Davies, J. Inorg. Nucl. Chem., <u>36</u>, 1711 (1974).
- 14. M.H. Brooker, J. Chem. Phys., <u>63</u>, 3054 (1975).
- 15. C.-H. Huang and M.H. Brooker, Chem. Phys. Letters, 43, 180 (1976).
- 16. M.H. Brooker and C.-H. Huang, Mat. Res. Bull., <u>15</u>, 9 (1980).
- 17. M.H. Brooker and C.-H. Huang, Can. J. Chem., <u>58</u>, 168 (1980).
- 18. D.J. Lockwood, J. Opt. Soc. Am., <u>63</u>, 374 (1973).
- 19. K. Tanemoto and T. Nakamura, Chem. Letters, 351 (1975).
- 20. S.V. Volkov, N.P. Evtushenko and K.B. Yatsimirskii, Theor. Exp. Chem., <u>12</u>, 85 (1976).
- R. G. Synder and J.R. Scherer, J. Polym. Sci. Phys. Ed., <u>18</u>, 421 (1980).

- 22. M.H. Brooker and G.N. Papatheodorou in "Advances in Molten Salt Chemistry", Vol. <u>5</u>, G. Mamantov, Editor, Elsevier, 1983, p. 26.
- W. Bues, L. El-Sayed and H.A. Øye, Acta Chem. Scand., <u>31A</u>, 461 (1977).
- 24. K. Tanemoto and T. Nakamura, Japan. J. Appl. Phys., <u>17</u>, 2161 (1978).
- 25. W. Bues, Z. Anorg. Allgem. Chem., 279, 104 (1955).
- 26. M. Tanaka, K. Balasubrahmanyam and J.O'M. Bockris, Electrochim. Acta, <u>8</u>, 621 (1963).
- 27. V.A. Maroni and E.J. Hathaway, Electrochim. Acta, 15, 1837 (1970).
- J.H.R. Clarke, P.J. Hartley and Y. Kuroda, J. Phys. Chem., <u>76</u>, 1831 (1972).
- 29. H. Ohno et. al., J. Chem. Soc. Faraday I, <u>74</u>, 804 (1978), and private communication.
- 30. H. Ohno et. al., J. Chem. Soc. Faraday I, <u>75</u>, 1161 (1979).
- 31. O.J. Kleppa and F.G. McCarty, J. Phys. Chem., 70, 1249 (1966).
- 32. H. Flood and S. Urnes, Z. Elektrochem., <u>59</u>, 834 (1955).
- 33. T. Østvold, Acta Chem. Scand., 23, 688 (1969).
- 34. G.N. Papatheodorou and O.J. Kleppa, J. Inorg. Nucl. Chem., <u>33</u>, 1249 (1971).
- 35. A.S. Kucharski and S.N. Flengas, J. Electrochem. Soc., <u>119</u>, 1170 (1972).
- 36. H.J. Borchardt and F. Daniels, J. Phys. Chem., <u>61</u>, 917 (1957).
- 37. P. Ehrlich, F.W. Koknat and H.J. Seifert, Z. Anorg. Allg. Chem., <u>341</u>, 281 (1965).
- 38. B.F. Markov and R.V. Chernov, Ukr. Khim. Zh., 24, 139 (1958).
- 39. J. Goodyear and D.J. Kennedy, Acta Cryst., <u>B29</u>, 2677 (1973).
- 40. J. Goodyear, G.A. Steigmann and D.J. Kennedy, Acta Cryst., <u>B28</u>, 1231 (1972).
- 41. G.N. Papatheodorou, J. Inorg. Nucl. Chem., <u>35</u>, 465 (1973).
- 42. C.S. Gibbons, V.C. Reinsborough and W.A. Whitla, Can. J. Chem., <u>53</u>, 114 (1975).

- 43. H.J. Seifert and G. Flohr, Z. Anorg. Allg. Chem., <u>436</u>, 244 (1977).
- 44. H.J. Seifert, private communication.
- 45. A. Epstein, E. Gurewitz, J. Makovsky and H. Shaked, Phys. Review, <u>2B</u>, 3703 (1970).
- 46. Symmetry and Spectroscopy by: Daniel C. Harris and Michael D. Bertolucci, Oxford University Press, 1978.
- 47. Infrared and Raman Spectroscopy by: Norman B. Colthup, Lawrence H. Daly and Stephen E. Wiberley, Academic Press, 2nd Edition, 1975.
- 48. K.R. Loos, V.A. Campanile and C.T. Goetschel, Spectrochim. Acta, 26A, 365 (1970).
- 49. J.S. Avery, C.D. Burbridge and D.M.L. Goodgame, Spectrochim. Acta, 24A, 1721 (1968).
- 50. A. Sabatini and L. Sacconi, J. Am. Chem. Soc., <u>86</u>, 17 (1964).
- 51. J. Goodyear and D.J. Kennedy, Acta Cryst., <u>B32</u>, 631 (1976).
- 52. Ting-I Li, G.D. Stucky and G.L. McPherson, Acta Cryst., <u>B29</u>, 1330 (1973).
- 53. M. Melamud, J. Makovsky and H. Shaked, Phys. Review, <u>3B</u>, 3873 (1971).
- 54. B. Morosin and E.J. Graeber, Acta Cryst., 23, 766 (1967).
- 55. D.M. Adams and R.R. Smardzewski, Inorg. Chem., 10, 1127 (1971).
- 56. J. Goodyear, G.A. Steigmann and E.M. Ali, Acta Cryst., <u>B33</u>, 256 (1977).
- 57. H.J. Seifert and F.W. Koknat, Z. Anorg. Allgem. Chem., <u>341</u>, 269 (1965).
- 58. A.S. Kuzmenko, E.N. Ryabov and R.A. Sandler, Russ. J. Inorg. Chem., <u>19</u>, 1392 (1974).
- 59. H. Bürger, K. Strobel, R. Geick and W. Müller-Lierheim, J. Phys. C: Solid State Phys., <u>9</u>, 4213 (1976).
- 60. B. Briat, A. Vervoitte, J.C. Canit and E. Francke, Solid State Commun., <u>50</u>, 229 (1984).
- 61. S.N. Ruddlesden and P. Popper, Acta Cryst., 11, 54 (1958).
- 62. R. Bellanca, Periodica Mineral. (Rome), 16, 73 (1947).

- A. Horowitz, D. Gazit and J. Makovsky, J. Crystal Growth, <u>51</u>, 489 (1981).
- 64. H.J. Seifert and K.H. Kischka, Thermochim. Acta, 27, 85 (1978).
- 65. C.J.J. Van Loon and G.C. Verschoor, Acta Cryst., <u>B29</u>, 1224 (1973).
- 66. T.F.W. Barth and E. Posnjak, Z. Kristallogr., <u>88</u>, 265 (1934).
- 67. J. Goodyear, S.A.D. Ali and G.A. Steigmann, Acta Cryst., <u>B27</u>, 1672 (1971).
- 68. C.J.J. Van Loon and D.J.W. Ijdo, Acta Cryst., <u>B31</u>, 770 (1975).
- J.M. Calleja, A. Ruiz, F. Flores, V.R. Velasco and E. Lilley, J. Phys. Chem. Solids, <u>41</u>, 1367 (1980).
- 70. E. Fjaer and E.J. Samuelsen, Ferroelectrics, <u>36</u>, 459 (1981).
- 71. Crystal structures by: Ralph W.G. Wyckoff, Vol. 1, Second Edition, John Wiley & Sons, 1963.
- 72. G.J. Janz et. al., J. Phys. Chem. Ref. Data, 4, 871 (1975).
- 73. C.J.J. Van Loon and J. Dejong, Acta Cryst., <u>B31</u>, 2549 (1975).
- 74. H.D. Lutz, W. Schmidt and H. Haeuseler, Z. Anorg. Allg. Chem., <u>453</u>, 121 (1979).
- 75. P. Andersen, Nordiske Kemikermode, 9th Aarhus, August 1956.
- 76. J. Goodyear and D.J. Kennedy, Acta Cryst., B29, 744 (1973).
- 77. J. Brynestad, H.L. Yakel and G.P. Smith, J. Chem. Phys., <u>45</u>, 4652 (1966).
- 78. Ligand Field Theory by: Hans L. Schläfer and Günter Gliemann English Translation by: David F. Ilten, Wiley-Interscience, 1969.
- 79. J. Ferguson, Prog. Inorg. Chem., <u>12</u>, 159 (1970).
- 80. L.J. Heidt, G.F. Koster and A.M. Johnson, J. Am. Chem. Soc., <u>80</u>, 6471 (1959).
- 81. C.K. Jorgensen, Acta Chem. Scand., 11, 53 (1957).
- 82. L.E. Orgel, J. Chem. Phys., 23, 1824 (1955).
- 83. R.J.H. Clark, J. Chem. Soc., 417 (1964).

- 84. J.W. Stout, J. Chem. Phys., <u>33</u>, 303 (1960).
- 85. J.W. Stout, J. Chem. Phys., <u>31</u>, 709 (1959).
- 86. C. Furlani and A. Furlani, J. Inorg. Nucl. Chem., 19, 51 (1961).
- 87. F.A. Cotton, D.M.L. Goodgame and M. Goodgame, J. Am. Chem. Soc., <u>84</u>, 167 (1962).
- 88. B.R. Sundheim and M. Kukk, Discussions Faraday Soc., <u>32</u>, 49 (1961).
- 89. D.M. Gruen and R.L. McBeth, Pure and Appl. Chem., 6-7, 23 (1963).
- 90. B.R. Sundheim, E. Levy and B. Howard, J. Chem. Phys., <u>57</u>, 4492 (1972).
- 91. N. Islam, Appl. Spectrosc., 29, 266 (1975).
- 92. J.J. Foster and N.S. Gill, J. Chem. Soc., <u>A</u>, 2625 (1968).
- 93. A. Mehra, J. Chem. Phys., <u>48</u>, 1871 (1968).
- 94. A. Mehra and P. Venkateswarlu, J. Chem. Phys., <u>45</u>, 3381 (1966).
- 95. A. Mehra, Phys. Stat. Sol., 29, 847 (1968).
- 96. F. Rodriguez, M. Moreno, F. Jaque and F.J. Lopez, J. Chem. Phys., 78, 73 (1983).
- 97. A. DE Andrés, J.M. Calleja, F.J. López and F. Jaque, Radiation Effects, <u>75</u>, 241 (1983).
- 98. F. Jaque, F.J. López, F. Cussó, F. Meseguer, F. Agulló-López and M. Moreno, Solid State Commun., <u>47</u>, 103 (1983).
- 99. D.R. Huffman, R.L. Wild and M. Shinmei, J. Chem. Phys., <u>50</u>, 4092 (1969).
- 100. G.W. Pratt and R. Coelho, Phys. Rev., <u>116</u>, 281 (1959).

| 6.A. Cotton. D.M.L. Goodgame and M. Goodgame. J. Am. Chem. Soc.,<br>61. 167 (1962). |  |
|-------------------------------------------------------------------------------------|--|
|                                                                                     |  |
| B.M. Gruon and H.L. McBeth, Pure and Appl. Chem., 6-7, 23 (1963).                   |  |
|                                                                                     |  |
| M. Islan, Appl. Spactrosc., 29,.206 (1975).                                         |  |
|                                                                                     |  |
|                                                                                     |  |
| A. Hahra and P. Vankabaswartu, J. Count. Phys., 65, 3381 (1966).                    |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |
|                                                                                     |  |











