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ABSTRACT 

The ever increasing size of electrical power systems 

necessitates systematic and comprehensive methods for their analysis. 

This report is concerned with the application of graph theoretic 

concepts in power system analysis, with particular reference to 

short circuits. It is demonstrated that the application of graph 

concepts provides a very elegant method for the formulation and 

analysis of power systems problems. 

i 

The formulation is based on a decomposition of the power 

systems into a number of subsystems. The subsystems are then combined 

according to their physical interconnection pattern - so that an 

appropriate mathematically equivalent system representation is 

available for the system as a whole. Such a method is considered to 

be particularly suitable for the analysis of large power systems. 

The formulation of the ZBUS and YBUS models for a typical 

transmission system is given. Also, as an example, the multi-terminal 

representation for a typical system containing an auto-transformer is 

derived. The method of combining different subsystems, such as the 

transmission systems and the generator systems, is demonstrated. 

Building algorithms, using the concepts of multi-terminal representations, 

are developed such that the impedance matrix (ZBUS) of a network can be 

formulated in stages - by adding one element at a time. Separate 

cases for (i) addition of a branch, not mutually coupled (ii) addition 

of a link, not mutually coupled (iii) addition of a mutually coupled 

group, are illustrated. The symbolic formulations of these cases are 



discussed. Numerical examples to illustrate the use of these 

algorithms are worked out. Finally, an attempt is made to obtain 

ii 

the short circuit currents and voltages of a typical power system, by 

application of graph theoretic principles. Separate cases for three 

phase faults, as well as for two simultaneous faults, are considered. 

In each of these cases, numerical examples which illustrate the 

formulation procedure and analysis are worked out. 
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CHAPTER I 

INTRODUCTION 

The ever increasing size of power systems together with the 

associated complexities require systematic and comprehensive methods 

of analysis for evaluation of their performance and viability. Even in 

the early days of the industry this need was recognized and much effort 

was directed towards developing solution techniques for power system 

problems. The main problems frequently encountered are short circuit 

analysis, load flows and the transient stability. Until the 1950's, 

the D.C. and A.C. network analysers were popularly being used for such 

power system simulation. 

However, particularly since the last decade, the availability 

of digital computers has provided a powerful tool at the disposal of 

power system engineers for the purpose. It has provided the capability 

for performing the time consunring and complex mathematical calculations 

very fast. Thus the merits and demerits of various strategies in 

planning and operation can be evaluated efficiently. The use of digital 

computers for power system simulation has indirectly provided added 

impetus to the mathematical modelling of the system from its intercon

nection pattern. 

It is theoretically possible to develop a single model to deal 

with all the principal aspects of the analysis. Such an approach however 

is not always practical though it is a desirable goal to strive for. 

Because of the many diverse and often conflicting physical considerations, 

the simulation of power systems has essentially been specifically 
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oriented towards the type of study concerned, viz., short circuit study, 

load flow, or the transient stability study. It is advantageous to 

consider each type of study in its own right, carefully emphasising the 

significant factors that are pertinent to the study while discarding 

those that may have negligible effect on it. 

The various mathematical models that are developed for the 

solution of electrical networks depend on 

(i) Kirchoff's current and voltage law 

(ii) terminal equations of the components comprising the 

network 

and (iii) the interconnection pattern of the components. 

The mesh, node and the state equations which are usually formulated for 

the solution of networks follow simply as a result of substitution 

procedures between these basic sets of equations. When we deal with 

large networks, as is typically the case with power systems, topological 

methods using the tools of graph theory are found to be extemely useful 

and amenable for eventual computer simulation. The analysis is based 

on a decomposition of the power system into three main subsystems: 

(i) the Generator systemj 

(ii) the Transmission system, 

(iii) subsystems pertaining to the loads. 

Each of the subsystems can be represented by a model which is appropriate 

to the particular study involved. For example, for the short circuit 

study, a generator can be represented by a voltage source in series with 

the internal impedance of the machine whereas in transient stability 

studies a more complex model of the synchronous machine may be necessary. 
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Similarly, for short circuit studies, the line charging of the trans

mission lines are neglected whereas for load flow studies they are 

included in the model. The various subsystems are interconnected with 

each other at the buses. Using graph theoretic concepts one can obtain 

what is called 1'Multi-terminal representation' of each of the subsystems 

at the buses. Once such a representation is obtained, the modelling 

becomes very systematic and conceptually elegant. Procedures for 

solution for a specific type of study can then be spelled out in a 

manner which can be easily simulated on digital computers. 

This study concerns itself with the use of linear graph theory 

in short circuit studies. Specifically, the contribution concerns (i) 

derivation of multi-terminal representations for networks; (ii) the 

derivation of the ZBUS algorithms; (iii) analysis of simultaneous faults 

and (iv) illustration of (i), (ii) and (iii) for a typical system. Most 

of tQe literature of the building algorithms centers around 'heuristic' 

concepts such as 'injected currents', 'fictitious nodes' etc. Con-

sequently, it is difficult to distinguish between the concepts involved 

and the actual algorithm developed. It is demonstrated in this report 

that a rigorous way to derive the building algorithm is through the 

concept of multi-terminal representation. The other contribution in 

the report concerns itself with the analysis of simultaneous faults. 

It is shown that the concept of multi terminal representation lends 

itself very easily to such types of studies. A brief preview of the 

various chapters now follows: 

In Chapter II, the concept of multi-terminal representation 

is briefly reviewed and illustrated by some numerical examples. In 
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Chapter III, this concept is used to develop the ~BUS algorithm 

including mutual couplings. In Chapter IV, the analysis of short 

circuits and simultaneous faults are studied. Some of the results 

arrived at through extensive algebraic manipulation previously are 

shown to follow easily in a graph theoretic treatment. Finally, in 

Chapter V the work is summarized and suggestions for future work in the 

area are indicated. 
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CHAPTER II 

MULTI TERMINAL REPRESENTATION OF POWER NETWORKS 

2.1 Introduction 

In the study of power systems we are often interested in 

obtaining a proper mathematical representation of the entire system 

or one of its subsystems at the buses. In graph theoretic language 

this is known as 'Multi-Terminal Representation' or M.T.R. in the 

abbreviated form. 4 In this approach a system is viewed as an assembly 

of subsystems, each of which can be independently characterized by 

a mathematical model. This model consists of a terminal tree graph 

and a set of terminal equations in the complementary current and 

voltage variables. Such a description is very useful when we are 

to solve a large system as an interconnection of several subsystems. 

An elementary knowledge of graph theory is necessary for the material 

that follows. It is not however intended to cover these in this 

report and references [1 - 3] are being suggested as an introduction 

to these concepts. 

2.2 Tellegen's Theorem 4 

The proof of the 'Multi Terminal Representation' rests on 

a theorem known as 'Tellegen's Theorem' which is stated below: 

"If V(t) and .!_(t) are the voltage and current matrices 

associated with an oriented graph G of an arbitrary lumped network, 

then VT(t) .!_(t) 0~ 2.1 

provided that the entries V(t) and .!_(t) correspond to the same 

ordering of elements in G" . 
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Stated in the above £orm, Tellegen's Theorem implies the 

concept o£ power invariance. 

Proo£: 

Consider the cutset and circuit equations respectively o£ 

the graph G £or a formulation tree T. 

A _!_(t) 

and ..f3 V(t) 

0 

0 

It is known 1 that the current vector _!_(t) can be expressed as a 

linear combination o£ the co-tree current variables .!.c(t) only: 

.!_(t) = }::> T .!.c(t) 

2.2 

2.3 

2.4 

and the voltage vector V(t) can be expressed as a linear combination 

o£ tree voltage variables VT(t) 

V(t) = AT VT(t) 

Substituting equation (4) and (5) in (1) 

VTT(t) .!_(t) VTT(t)A/!:> T .!.c(t) 

Substituting equation 2.4 and 2.5 in 2.1, we get 

0 

we have £rom equation 2.6 

VT (t) _!_(t) 0 

It will be noted that the theorem is dependent solely on the 

orthogonality o£ the cutset and circuit vectors. In other words, 

the result is a direct consequence o£ the graph equations only. 

2.5 

2.6 

2.7 

2.8 

Since these equations are quite independent o£ the terminal equations, 

Tellegen's Theorem is valid £or any lumped parameter network, whether 



it be linear or non-linear, active or passive, time-invariant or 

time-varying. This, thus, confirms the concept of power invariance 

in any network. 

In power systems, since the majority of the studies are 

concerned with the network in A.C. steady state, we are restricting 

our attention to these forms of voltages and currents only. This 

means that the components of V and I are phasors. The following 

corollaries of the Tellegen's theorem will be to our interest since 

these correspond to the invariance of total complex power in the 

network. 

7 

0 

0 

2. 9a 

2.9b 

The asterisk (*) denotes the complex conjugate operation. 

2.3 Theorem on Multi Terminal Representation 4 , 7 

"The performance characteristics of a n-terminal network 

are completely specified by a set of (n-1) terminal equations in 

(n-1) pairs of oriented complementary current and voltage variables 

V and ~ identified by an arbitrarily chosen tree graph which is 

designated as a terminal graph". 

Under the steady state conditions, the equivalence of a 

n-terminal network consisting of passive components only is established 

by (n-1) terminal equations of the form 

VT ~T IT 

~T YT VT 



Where VT and IT are the voltage and current vectors associated with 

the terminal graph of the n-terminal component and the ZT and YT 

matrices represent the impedance and admittance parameter matrices. 

Components of V and ~ are phasors and components of ~T and YT are 

complex numbers. 

Proof of the Theorem 

Let ~ and ~ be the voltage and current vectors associated 

with the graph N of the n-terminal component. Superpose a tree 

graph on N; this augmented tree is designated by the symbol A and 

let the voltage and current vectors associated with the graph A be VA 

and ~ respectively. Now, let us consider the graph which is the 

union of N and A, namely N U A; the voltage and current vectors of 

this graph can be represented in the partitioned form 

v ~ 
and I 

IN 

8 

VA IA .• 2.10 

From the corollary 

i.e. ~ 

or finally 

T * 
VA IA 

of 

VT 

T 

= 

Tellegen's theorem, we have 

* I 0 

T * VA ~ 
0 --*--

IA . . 2. 11 

T * 
-~ ~ • . 2. 12 

Our purpose is to determine an equivalent graph which has the same 

power associated with it as the network graph N, defined by the inner 



T * 
product ~· ~ · This is easily identified when we introduce a set 

of complementary variables VT, ~T such that 

9 

•• 2.13 
and 

Thus equation 2.12 reduces to 

= 

From equation 2.13, it is evident that the variables VT and ~T 

correspond to a tree graph which is topologically identical to the 

augmented tree graph A. We shall refer to this new tree graph as 

2.14 

the terminal graph T. If the tree graph A consists of only voltage 

drivers or current drivers, the augmented network whose graph is 

given by N U A can be solved to obtain a set of (n-1) terminal 

equations in the variables VA and IA either in impedance or 

admittance form. In terms of the new set of variables VT and ~T' 

these equations will appear as 

or 

2. 15 

2.16 

Equations 2.15 or 2.16 along with the terminal graph constitute a 

multi- terminal representation of the network. It is an exact 

mathematical equivalent of the original network because all the 

network voltages are determined by VT from the circuit equations of 

the augmented graph N U A. The network voltages constitute a cotree 

set of voltages with respect to the terminal graph. Once these are 

known, the network currents are determined from the terminal 

equations of the individual components. 
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It may be noted that the terminal representation of a 

n-terminal component is not unique. Equation 2.12 is valid for any 

augmented tree. Furthermore, the terminal equations for a given tree 

can be either in the form of Equation 2.15 or 2.16 or indeed in 

any mixed form. 

2.4 An analytical derivation of parameter matrices of a network 4 

The admittance matrix corresponding to a Lagrangian terminal 

tree graph with common vertex identified by the ground bus is denoted 

If the terminal graph is not restricted to a Lagrangian tree, 

the corresponding admittance matrix is denoted as YBR. In the study 

of power systems, it is customary to designate a bus as the reference 

bus. The reference bus is usually the ground bus and all bus voltages 

are generally measured with reference to the ground bus. However, any 

other bus also could be designated as a reference bus, although we may 

lose the physical understanding of the Y parameters that are involved 

in the formulation of the problem. If all load, line charging and 

other shunt paths are neglected and if the ground bus is chosen as the 

reference vertex of the Lagrangian tree, then the terminal represen

tation of a transmission network in the impedance form (i.e. ~BUS) 

does not exist. This is because of the fact that the ground bus forms 

an isolated vertex. If the augmented tree graph corresponds to current 

sources, we cannot choose a tree and yet have all specified current 

sources in the cotree. However YBUS does exist and the ~atrix in this 

case will be singular and hence indefinite. The rigorous proof of 

this is contained in reference 4 . With shunt paths neglected, if for 
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the connected portion of the graph, a tree other than the Lagrangian 

tree is chosen as the terminal graph, then the corresponding Z rep

resentation is ZBR. Whereas, if a Lagrangian tree is chosen with 

slack bus as reference vertex, it is denoted by ZBN. 

11 

In the literature 5 the symbol ZBUS is used whenever the 

terminal graph is a Lagrangian tree whether the ground bus is isolated 

or not. Such a terminology may tend to create a confusion. For our 

formulation, distinction will be made in the various cases as described 

above. We shall illustrate two specific formulations YBUS and ~BN for 

a typical transmission system. The symbolic formulation of this is 

contained in reference 4 

2.5 An example for ~BN formulation. 

Let us consider a transmission network as shown in Fig. 1 

whose line data are given in Table I. 

Table I 

Impedances 

Element Self Mutual 

Number Bus Code Impedance Bus Code Impedance 

1 1 - 2 j. 10 

2 2 - 3 j.30 

3 3 - 4 j.50 

4 1 - 4 (1) j .15 1 - 4 (1) j. 1 

5 1 - 4 (2) j. 15 1 - 4 (1-) j • 1 

6 1 - 3 j.25 
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The oriented graph is shown in Fig. 2. In the first instance we 

desire to obtain the ZBN of the network. Let ~ be the reference 

vertex. It is desired to obtain the multi- terminal representation 

in the impedance form corresponding to the terminal graph shown in 

12 

Fig. 3. Since in this case we are interested in ZBN , all the buses 

are augmented by current sources whose graph is topologically iden

tical to the terminal graph in Fig. 3 and the augmented graph as 

shown in Fig. 4 is obtained. A formulation tree T(1, 2, 3) is chosen. 

The circuit equations corresponding to the formulation tree are: 

-1 1 1 1 0 0 0 0 0 v1 

-1 1 1 0 1 0 0 0 0 v2 

-1 1 0 0 0 1 0 0 0 v3 
= 0 

1 0 0 0 0 0 1 0 0 v4 

1 -1 0 0 0 0 0 1 0 vs 

1 -1 -1 0 0 0 0 0 1 v6 

v7 

v8 

vg 

. . 2.17 

Equation 2.17 is re-arranged as follows: 
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- -
0 1 -1 -1 -1 0 0 v1 

0 1 -1 -1 0 -1 0 v2 

0 1 -1 0 0 0 -1 v3 

v7 -1 0 0 0 0 0 v4 

v8 -1 1 0 0 0 0 vs 

v9 -1 1 1 0 0 0 v6 2.18 . . 

The cutset equations corresponding to the same formulation tree are: 

- - - - -
1 0 0 1 1 1 -1 -1 -1 I1 

0 1 0 -1 -1 -1 0 1 1 I2 

0 0 1 -1 -1 0 0 0 1 I3 = 0 

I4 

rs 

I6 

I7 

I8 

I9 
- - . . 2.19 

Equation 2.19 can be rewritten as follows: 
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- - - -

I1 -1 -1 -1 1 1 1 I4 

I2 1 1 1 0 -1 -1 Is 

I3 1 1 0 0 0 -1 I6 

I4 1 0 0 0 0 0 I7 

Is 0 1 0 0 0 0 I8 

I6 0 0 1 0 0 0 I9 2.20 . . 
- -

The terminal equations of the transmission network, as given in 

Table I, are written in the matrix form as follows: 

- - - -

v1 j . 1 0 0 0 0 0 I1 

v2 0 j.3 0 0 0 0 I2 

v3 0 0 j.S 0 0 0 I3 

v4 0 0 0 j. 1S j. 1 0 I4 
= 

vs 0 0 0 j. 1 j .1S 0 Is 

v6 0 0 0 0 0 j.2S I6 2.21 . . 
- -

The mutual impedance between elements 4 a nd S is due to the physical 

proximity of the transmission lines involved. The fact that the 

elements are mutually coupled, does not alter the graph, but this is 

reflected in the terminal equations. For the orientations shown in 

Fig. 2, the mutual coupling term will be positive in the terminal 

equations. 

Now, substituting equation 2.21 into equation 2.18, we get 



0 

0 

0 

1 -1 -1 -1 0 0 j.1 0 0 

1 -1 -1 0 -1 0 0 j.3 0 

1 -1 0 0 0 -1 0 0 j.5 

-1 0 0 0 0 0 0 0 0 

-1 1 0 0 0 0 0 0 0 

-1 1 1 0 0 0 0 0 0 

15 

0 0 0 

0 0 0 

0 0 0 

j . 15 j . 1 0 

j. 1 j . 15 0 

0 0 j. 25 

•. 2.22 

Again substituting Equation 2.20 into Equation 2.22 , we get 

0 

0 

0 

or 

0 

0 

0 
= 

1 -1 -1 -1 0 0 j .1 0 0 0 0 0 

1 -1 -1 0 -1 0 0 j. 3 0 0 0 0 

1 -1 0 0 0 -1 0 

-1 0 0 0 0 0 0 

-1 1 0 0 0 0 0 

-1 1 1 0 0 0 0 

-j1.05 -j1.0 -j.4 

-j1.0 -j1.05 -j.4 

-j . 4 -j . 4 -j . 65 

j . 1 

j . 4 

j . 9 

j . 1 

j . 4 

j . 9 

j. 1 

j.4 

j.4 

0 j.5 0 0 0 

0 

0 

0 

j. 1 

j. 1 

j . 1 

-j .1 

-j. 1 

-j. 1 

0 j. 15 j. 1 0 

0 j . 1 j . 15 0 

0 0 

j.4 

j.4 

j.4 

-j .1 

-j .4 

-j. 4 

0 j. 25 

j.9 

j.9 

j.4 

-j. 1 

-j .4 

-j. 9 

-1 -1 -1 . 1 1 1 

1 1 1 0 -1 -1 

1 1 0 0 0 -1 

1 0 0 0 0 0 

0 1 0 0 0 0 

0 0 1 0 0 0 

2.23 

•. 2.24 

From the first three equations of Equation 2.24 , we get 
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- - - -
j 1. 05 j1.0 j.4 I4 j. 1 j.4 j.9 I7 

j 1. 0 j 1. 05 j.4 Is j. 1 j.4 j.9 I8 

j .4 j .4 j. 65 I6 j. 1 j.4 j.4 I9 

- - - -

or 

- -

I4 j 1. 05 j 1. 0 j.4 
-1 

j . 1 j.4 j.9 I7 

Is = }1.0 j 1. 05 j.4 j. 1 j.4 j.9 I8 

I6 j .4 j .4 j.65 j. 1 j.4 j.4 I9 

- - - -

- -
. 03 .12 .47 I7 

= . 03 .12 .47 I8 

.11 .50 .10 I9 2.25 

- -

Substituting Equation 2.25 into the last three equations of 2.24, 

we get 

- - - - ~- - -

v7 j. 1 j. 1 j. 1 . 03 .12 .47 I7 -j. 1 -j. 1 -j .1 I7 

VB = j.4 j.4 j.4 . 03 .12 .47 I8 + -j .1 -j. 4 -j .4 I8 

v9 I j. 9 j.9 j.4 . 11 .so .1~1 I9 -j .1 -j. 4 -j. 9 I9 

- - - -

- -
j. 027 j. 072 j.104 I7 -j .1 -j. 1 -j. 1 I7 

j. 072 j . 30 j . 42 I8 + -j .1 -j. 4 -j. 4 I8 

j.104 j • 42 j . 89 I9 -j. 1 -j. 4 -j. 9 I9 
- - - -
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- -

-j • 07 3 -j. 028 j.004 I7 

= -j.028 -j. 1 j.02 I8 

j.004 j.02 -j. 01 I9 2.26 .. 
- -

Since the bus currents corresponding to the terminal graph described 

in Fig.3 ' are negativ~of I 7 , I 8 and I
9

, ~BN of the transmission 

network is given by Eq. 2.27. 

j.073 

ZBN = j.028 

-j.004 

j.028 

j . 1 

-j.02 

-j.004 

-j.02 

j. 1 

2.6 An example for ~BUS formulation. 

.• 2.27 

For YBUS formulation, let us, as an example, consider the 

same transmission netv1ork as shown in Fig. 1. By taking inverses-·. 

of the line impedance datas, the admittance of the elements are 

obtained as in Table II. 

TABLE II 

Admittances 

Element Self Mutual 
Number Bus Code Admittance Bus Code Admittance 

1 1 - 2 -j 10 

2 2 - 3 -j 3.3 

3 3 - 4 -j 2.0 

4 1 - 4 (1) -j 12 1 - 4 (1) j8 

5 1 - 4 (2) -j 12 1 - 4 (2) j8 

6 1 - 3 -j 4.0 
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Since YBUS representation is desired, the oriented system graph is 

augmented with voltage sources with reference to the ground bus and 

the augmented graph as in Fig. S is derived. Our desired terminal 

graph is as shown in Fig. 6. 

The cutset equations with respect to the formulation tree T(7,8,9,10) 

are 

1 0 0 0 ~ 1 0 0 1 1 1 I7 
I 

0 1 0 0 '-1 -1 0 0 0 0 I8 I 

I 

0 0 1 0 0 1 -1 0 0 -1 I9 0 

0 0 0 1 I 0 0 1 -1 -1 0 I10 

I1 

I2 

I3 

I4 

Is 

I6 . . 2.28 
- -

From Eq. 2.28 we get 

- -

I7 -1 0 0 -1 -1 -1 I1 

I8 1 1 0 0 0 0 I2 

I9 0 -1 1 0 0 1 I3 

I10 0 0 -1 1 1 0 I4 

Is 

I6 . . 2.29 
- -
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The terminal equations of the transmission network, as detailed in 

Table II can be written in the following form. 

- - - -

I1 -j 10 0 0 0 0 0 v1 

I2 0 -j 3. 3 0 0 0 0 v2 

I3 0 0 -j2.0 0 0 0 v3 
= 

I4 0 0 0 -j 12 j8 0 v4 

Is 0 0 0 j8 -j 12 0 vs 

I6 0 0 0 0 0 -j4.0 v6 2.30 . . 
- -- -

Substituting Eq. 2.30 into Eq. 2.29 we get 

- -- -

I7 -1 0 0 -1 -1 -1 -j 10 0 0 0 0 0 v1 

I8 1 1 0 0 0 0 0 -j 3. 3 0 0 0 0 v 
2 

I9 0 -1 1 0 0 1 0 0 -j2.0 0 0 0 v3 

I10 0 0 -1 1 1 0 0 0 0 -j 12 j8 0 v4 

- -
0 0 0 j8 -j 12 0 vs 

0 0 0 0 0 -j4.0 v6 
- -

0 • 2.31 

Again the circuit equations, for the formulation tree (7,8,9,10) are 
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- -
-1 1 0 0 1 0 0 0 0 0 v7 

0 1 -1 0 0 1 0 0 0 0 vs 

0 0 1 -1 0 0 1 0 0 0 v9 

-1 0 0 1 0 0 0 1 0 0 v1o 0 

-1 0 0 1 0 0 0 0 1 0 v1 

-1 0 1 0 0 0 0 0 0 1 v2 

v3 

v4 

vs 

v6 . . 2.32 
- -

Rearranging Eq. 2.32 we get 

- - - -

v1 1 -1 0 0 v7 

v2 0 -1 1 0 vs 

v3 0 0 -1 1 v9 

v4 1 0 0 -1 v1o 
- -

vs 1 0 0 -1 

v6 1 0 -1 0 . . 2.33 

- -

Substituting Eq. 2.33 into Eq. 2.31 
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- - - -

I7 -1 0 0 -1 -1 -1 -j 10 0 0 0 0 0 1 -1 0 0 v7 

I8 1 1 0 0 0 0 0 -j 3. 3 0 0 0 0 0 -1 1 0 v8 
= 

I9 0 -1 1 0 0 1 0 0 -j2 0 0 0 0 0 -1 1 v9 

I10 0 0 -1 1 1 0 0 0 0 -j 12 j8 0 1 0 0 -1 v1o 
- - - -

0 0 0 j8 -j 12 0 1 0 0 -1 

0 0 0 0 0 -j4 1 0 -1 0 

or 

- -

I7 j 22 -j 10 -j4 -j8 v7 

I8 -j 10 j 13.3 -j 3. 3 0 v8 
= 

I9 -j4 -j 3.3 j9.3 -j2 v9 

I10 -j8 0 -j2 j 10 v1o 2.34 .. 
- - - -

However, for the augmented graph (Fig. 5) and the desired terminal 

graph (Fig. 6), it will be noted that 

- - - - ·- -

I I7 v v7 a a 

Ib I8 
and 

vb v8 
= = 

I I9 v v9 c c 

Id I10 vd v1o 
- - - - - -

therefore, the YBUS matrix is 

-j 22 j 10 j4 j8 

j 10 -j 13.3 j 3. 3 0 

YBUS = j4 -j9. 3 j2 j 3. 3 

j8 0 j2 -j 10 .. 2.35 
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2.7 Derivation of Multi-terminal Representation for Systems 
Containing Auto-Transformers -

22 

As has been discussed earlier, the multi-terminal represen-

tation provides an adequate basis to describe a n-terminal component. 

A multi-terminal representation can be derived for the various corn-

ponents of the power system e.g. generators, transformers, transmission 

lines, etc. When the M.T.R.s of these individual components are inter-

connected in accordance with their physical connections, a M.T.R. of 

the complete system can again be derived at the desired buses. As an 

example we shall describe the derivation of ZBUS of a system containing 

an auto-transformer. For this purpose let us consider a system 12 as 

described in Fig. 7. Fig.8 shows the oriented graph of the system. 

The component terminal equations, as obtained from the data · in the 

system diagram are given by equations 2.36 and 2.37, where 'a' is the 

turns ratio which in this case is 0.6. 

(1+j 4) 0 0 

0 (. 5+j. 5) 0 

0 0 0 0 (2+j. 5) 
•. 2.3.6 

v2 a 0 v3 .6 0 v3 
= 

I2 0 
1 

I3 0 -.166 I3 a . . 2.37 

It is desired to obtain a terminal representation in the ~BUS form 

corresponding to the terminal graph as shown in Fig. 9. For this 
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purpose the buses are augmented by current sources and the augmented 

graph as described in Fig. 10 results. The circuit and the cutset 

equations with respect to the formulation tree T(2, 1, 4, 5) are 

given by Eq. 2.38 and 2.39 respectively. 

- -

-1 -1 -1 1 1 0 0 0 v2 

-1 -1 0 0 0 1 0 0 v1 

-1 0 0 0 0 0 1 0 v4 = 0 

-1 -1 0 1 0 0 0 1 vs 

v3 

v6 

v7 

v8 . . 

1 0 0 0 1 1 1 1 12 

0 1 0 0 1 1 0 1 11 

0 0 1 0 1 0 0 0 14 0 

0 0 0 1 -1 0 0 -1 rs 

13 

16 

17 

18 . . 
- -

Rearranging Eq. 2.38, we get 

2.38 

2.39 



- -

v6 1 

v7 = 1 

vs 1 

- -

Substituting 

Eq. set 2.30, 

Substituting 

- -

v6 

v7 
a 

a-1 

vs 
- -

a = --
a-1 

Now from the 

- -

I1 -1 

I4 = -1 

rs 1 

- -

or 

1 0 

v2 + 0 0 

1 0 

for v3 from Eq. 

we get 

= 

- -
0 v1 

0 v4 

-1 vs 
- -

2.37 into 

a-1 --v 
a 2 

the 

Eq. 2.41 into Eq. 2.40 

1 v1 

1 [ -1 -1 1] v4 + 

1 vs 
- -

- -
-1 -1 1 v1 1 0 

-1 -1 1 v4 + 0 0 

-1 -1 1 vs 1 0 

- -

cutset Eq. 2.39, we get 

- -
-1 0 1 I3 

0 0 0 I6 

0 0 1 I7 

I8 
- -

24 

. . 2.40 

first equation of 

.. 2.41 

- -
1 0 0 v1 

0 0 0 v4 

1 0 -1 vs 
- -

0 v1 

0 v4 

-1 vs .. 2.42 
- -
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- - - - - -

11 -1 -1 0 1 16 

14 -1 13 + 0 0 0 17 

15 1 0 0 1 18 2.43 . . 
- - - -

Substituting for I2 from Eq. 2.37 into the first equation of the Eq. 

set 2.39, we get 

12 + 13 (16 + 17 + 18) 

13 
a 

(16 + 17 + 18) 2.44 or = 
a-1 . . 

Substituting Eq. 2.44 into Eq. 2 .43; we get 

- - - -

11 -1 16 -1 0 1 16 

14 
a -1 [ -1 -1 -1] 17 + 0 0 0 17 = a-1 

15 1 18 0 0 1 18 
- - - - - -

- -
1 1 1 16 -1 0 1 16 

a 1 1 1 17 + 0 0 0 17 a-1 

-1 -1 -1 18 0 0 1 18 2.45 . . 

Again substituting Eq. 2.36 into Eq. 2. 42, we get 

- - - -

v6 -1 -1 1 z1 0 0 11 1 0 C) z1 0 0 11 

v7 
a -1 -1 1 0 z4 0 14 + 0 0 0 0 z4 0 14 = --

a-1 

v8 -1 -1 1 0 zs rs 1 0 -1 0 zs 15 
- - - -

2.46 
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substituting Equation 2.45 into Equation 2.46 

- - - -

v6 -1 -1 1 21 0 0 1 1 1 16 

v7 
a -1 -1 1 0 24 0 

a 1 1 1 17 = a-1 a-1 

v8 -1 -1 1 0 0 z5 -1 -1 -1 18 
- - - -

- -
-1 0 -1 16 1 0 0 z1 0 0 1 1 1 16 

+ 0 0 0 17 + 0 0 0 0 z4 0 
a 1 1 1 1 7 a-1 

0 0 1 18 1 0 -1 0 0 25 -1 -1 -1 18 
- -

-1 0 -1 16 

+ 0 0 0 17 

0 0 1 18 2.47 . . 
- -

or 

- -

v6 -1 -1 1 21 0 0 1 1 1 16 

v7 
a2 

-1 -1 1 0 z4 0 1 1 1 17 = 
(a-1) 2 

v8 -1 -1 1 0 0 z5 -1 -1 -1 18 
- -

-1 -1 1 21 0 0 -1 0 -1 16 

+ a -1 -1 1 0 z4 0 0 0 0 17 a-1 

-1 -1 1 0 0 25 0 0 1 18 
- -



+ 

+ 

a 
a-1 

1 

0 

1 

1 

0 

1 

0 1 1 1 

0 0 z4 1 1 1 

o -1 z
5 

-1 -1 -1 

o o z
1 

-1 o -1 

0 0 0 0 0 

0 -1 0 0 1 

Equation 2.48 can be written in a form 

v - a 

where 

-1 -1 

v = A -1 -1 a 
a 

= 
a-1 

-1 -1 

1 0 0 

B = 0 0 0 z = 

1 0 -1 

27 

.• 2.48 

.. 2.49 

1 

1 

1 

On simplification of Eq. 2.48 and substituting for numerical values 

of a and Z into Eq. 2.48, we get 
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- - - -

v6 -z 1 -z 4 -z5 -z 1 -z 4 -z 5 -z 1 -z 4 -z 5 I6 

v7 [a~lr -z 1 -z 4 -z 5 -z 1 -z 4 -z 5 -z 1 -z 4 -z 5 I7 

v8 -z 1 -z 4 -z 5 
-z 1 -z 4 -z 5 -z 1 -z 

4 -z 5 I8 
- - - -

- -

z1 0 Z1+Z5 I6 

+ a 
z1 0 Z1+Z5 I7 a-1 

z1 0 Z1+Z5 I8 

- - - -

I6 -z 1 0 -z 1 I6 

+ I7 + 0 0 0 I7 

I8 -z 1 0 -z -z 1 5 I8 
- - - -

- -

v6 -11.82-j27.25 -9 . 32-j 17 . 25 -12.57-j28 I6 

v7 = - 9. 32-j 17. 25 -7.82-j11.25 -10.07-j 18.0 I7 

v8 -12.57-j28.0 -10.07-j18.0 -13.82-j29.25 I8 . . 2.50 - -- -

- - - -

v6 v I 

a 

However, since v7 = vb 
I -

v8 v I 

c 

we get 



v 
a 

vi 
b 

v I 

c 

or ~BUS 

11.82+j27.25 9.32+j17.25 

9.32+j17.25 7.82+j11.25 

12.57+j28 10.07+j18.0 

11.82+j.27.25 9.32+j17.25 

9.32+j17.25 7. 82+j 11. 25 

12.5 7+j 28.0 

10.07+j 18.0 

13. 82+j 29.25 

12.57+j28 

10.07+j18.0 

I 
a 

I I 

b 

I I 

c 

29 

12.57+j28 10.07+j18 13.82+j29.25 .. 2.51 

These results are in conformity with those in reference 12 

2.8 Conclusion. 

In this chapter, multi-terminal representation has been 

derived for transmission systems with and without off-nominal 

transformers. In short circuit studies we are mostly interested in 

obtaining ZBN of the transmission systems. This is because, in 

short circuit studies, from physical considerations all loads, line 

charging, etc., are neglected, and all transformers are assumed to 

have nominal tap ratios. We have also noted in this chapter that for 

deriving the multi terminal representation, manipulation and 

inversion of matrices are required. For large systems particularly, 

one would naturally like to avoid such matrix manipulations. In the 

next chapter we shall describe a procedure such that the matrix 

manipulation is reduced to a minimum in the derivation of ~BN" 



CHAPTER III 

BUILDING ALGORITHM FOR ZBUS MATRICES 

3.1 Introduction 

The ever increasing size of the present day power systems 

impose a great practical limitation on their analysis by the con-

ventional computing techniques. For many utilities, systems having 

30 

2000 or more buses are not uncommon. Solution of such large networks 

require a very large amount of core storage and the computational 

time becomes prohibitively high. Although larger computers are being 

made available and faster computing techniques are being developed, 

it is also true that the power systems network size is also increasing 

at a fast rate. With the present day emphasis on interconnection and 

power pooling arrangements amongst the utilities, it appears, this 

trend is likely to continue. For solution of networks, whether large 

or small, as has been discussed in Chapter II, manipulation and 

inversion of matrices are necessary. Matrix inversion and manipulation 

for even small networks involve a fair amount of storage and com

putation time. To obviate this, considerable amount of work has been 

done s,s, 11 ' in obtaining ZBUS and XBUSbyastep by step or algorithmic 

approach. The underlying principle in this approach is the formulation 

of the appropriate impedance or admittance matrix of a network in 

stages i.e. by adding one element to the network at a time. This, in 

other words, amounts to a repeated application of the concept of 

multi-terminal representation. This multi-stage process eliminates 



the need for inversion of large matrices. Such algorithms develop ed 

by other researchers 5 ~ 8 ~ 9 ) 101 11 • rely on intitutive or conventional 

concepts, such as, injection of currents, column elimination etc. 

Conceptually, these arguments are at times difficult to comprehend 

fully or are rather involved in terms of symbologies encountered. 

In this chapter an attempt is made to develop the ~BUS 

algorithm using the concept of multi-terminal representation. It is 

felt that this provides a proper conceptual framework for a study 

of power networks since it relies less on heuristic arguments. On 

the basis of development in this chapter, extensions can be made to 

include features for modification of the Z-matrix. 

3.2 1BUS algorithms - some preliminary comments. 

Power system networks contain, as a rule, a large number 

of transmission lines, some of which are mutually coupled. The 
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number of mutually coupled lines dependson various factors e.g. size 

of the system, availability of right-of-ways, the need to install 

parallel lines, etc. It is possible that there may exist several 

coupled groups in the system - a coupled group being defined as one 

where each line is coupled with at least another line in the group. 

If the line list is ordered such that the elements belonging to a 

coupled group appear together then the primitive impedance matrix 

can be cast in the form: 



z 

~1 0 
I 
I 
I 
I 

I I I 

0 

-----.------.------.-----
1 I I 

I ~2 I 
I I 

0 0 
I I 
I I I -----T------T------T-----

I 
I 
I 
I 

I I I -----T------T------T-----
0 I 0 I Z 

-n 
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Where ~1 corresponds to the lines which are uncoupled and hence is 

diagonal. z
2 

••. Z are submatrices corresponding to the coupled 
- -n 

groups and therefore they are not in diagonal form. Such a clas-

sification is helpful in handling large systems. In this chapter 

the algorithm for building the ZBN-matrix will be discussed. The 

general formulation is first carried out in symbolic terms. The 

actual algorithm will be restricted to the case where the coupled 

group contains no more than two lines. For medium to small scale 

utilities, this can be considered as adequate. In assembling the 

Z-matrix the uncoupled lines are processed first and then the coupled 

groups are processed. By appropriate coding it is not difficult to 

list the lines in this manner. For the uncoupled lines the following 

cases are considered. 

i) Addition of a branch creating a new node. 

ii) Addition of a link which does not create a new node. 

In case (i) the modified Z-matrix will be increased in size by one. 

In case (ii) the order of the new Z-matrix remains the same. In 

processing coupled lines, the symbolic formulation is indicated when 

a coupled group of any order is added to an existing network. In the 
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specific instances when (i) two coupled lines create two new nodes 

and (ii) two coupled lines constitute links, the nature of the 

modified Z-matrix will be exhibited. 

3.3 Case I: Addition of a branch, not mutually coupled to an 
existing network. 

Let us consider a transmission system having a terminal 

representation 

VBUS(O) ~BUS(O) _!_BUS(O) 

corresponding to the Lagrangian tree as shown in Fig. 11. The 

reference vertex is the node 0 Let a new element a be added 

from node p to a new bus denoted by q Thus the system graph 

with the added element a will be as in Fig. 12. In the case of a , 

the orientation can be chosen arbitrarily. However, for consistency 

in later representation we shall assume the orientation to be from 

p to q . Thus our aim is to derive ZBUS(m)' which represen~the 

~BUS of the modified network. The terminal graph representation of 

ZBUS(m) will be of the form as shown in Fig. 13. 

To derive the Z-representation of the system, the terminal 

graph as well as the system graph is augmented with current sources. 
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The augmented system graph is shown in Fig. 14. The formulation tree 

is shown in thick lines, corresponding to elements 1, 2 •.. n, a. 

Since the added element is a branch - which creates a new node it is 

apparent that the order of the ~BUS(m) matrix would be increased by one. 

Let the ZBUS of original network be denoted by: 



z 
pp 

z 
pn 

z 
pn 

z 
nn 
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3.1 

Let z represent the self-impedance of the element a • The circuit 
a a 

and cutset equation with respect to the formulation tree of :the, ,au.gmented 

graph in Fig. 14 would then be given by Eq. 3.2 and 3.3 respectively. 

0 

-u 

0 

-----------------------T-----T 
0 -1 0 1 

p 

u u 

u 

0 

1 
p 

0 

--------------T--------
0 0 I -1 

VT 

v 0 
a 

_!_T 

I 
a 

0 

3.2 

3.3 



Where 

VT 

v 
a 

and 

= 

v 
p 

v 
n 

v 
a 

I 
p 

I 
n 

I 
a 

~ = 

= 

v I 

. 1 

vi 
2 

v I 

p 

v I 

n 

v I 

q 

I I 

1 

I I 

2 

I I 

p 

I I 

n 

I I 

q 

The notation 1 is used to indicate the position 1 
p 

column as the case may be. 

The component equations are 
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in the pth row or 
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VT 2
BUS(O) 

0 _!_T 

I -----------T------
v 0 z I 

3.4 a a a a 

From equation 3.2 we express~ in terms of VT and Va and making use 

of equation 3.4 and 3.3 we finally get 

-u 
I 
I 
I 
I 
I 
I 
I 
I 
I 

0 

: 0 ----------T-----
0 .. -1 .. o: 1 

p 

~BUS(O) z 
. 1p 

I 
I Z 
1 np 
I ----------T-------

2 
1 
..•. z :z +z 

p pn 1 pp aa 
I 
I 

~BUS(O) 

I 
I 

0 

----------T-----
0 I Z 

a a 

-u 
I 
I 

0 

: -1 
I •P 
I • ----------T-----

0 •• 0 •. o: 1 

Since the bus currents corresponding to the terminal graph of the 

modified systems are negative of !c' we conclude that 

z 
-BUS(m) 

~BUS(O) 
I 
I 

z 
.1p 

I Z 
1 np 
I ----------T-------
1 z 1 .... z 1 z +z 

p pn1 pp aa 
I 

Since ~BUS(O) is a symmetric matrix, it is trivially noted that 

(i = 1, 2 .•• n). Thus it is noted that when a new z . = z. 
pl lp 

3.5 

3.6 

branch is added, to determine the new bus impedance matrix, only the 

calculation of one additional row or column is required. 
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3.4 Case II: Addition of a Link, Not Mutually Coupled to an 
Existing Network. 

The algorithm for obtaining ZBUS(m) of a network which is 

extended by a link, can be derived following the same procedure as 
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in the previous case. However, in this case, since the added element 

is a link and thus no new node has been created, the order of Z 
-BUS(m) 

matrix would be the same as ~BUS(O). 

Let the terminal graph as shown in Fig. 15 correspond to 

~BUS(O). Let a new element be added between nodes p and q with 

an orientation from p to q • Thus the new system graph as shown 

in Fig. 16 results. We desire to derive ZBUS(m) to represent the 

impedance matrix of the modified network, the terminal graph for 

which is shown in Fig. 17. 

Since aZ representation is desired, the system graph of 

Fig. 16 is augmented with current sources as shown in Fig. 18. The 

formulation tree is shown in thick lines. Let z represent the 
a. a. 

self-impedance of the added element and 

2
BUS(O) 

2 12 · • 2 1p 

2
22 · • 

2
2p 

. z 
pp 

. z 
qp 

• z np 

2
1q • • 

2
1n 

2 2q · · 2 2n 

z 
pq 

z 
qq 

z nq 

. z 
pn 

. z 
qn 

. z nn 3.7 
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The circuit and the cutset equation with respect to the formulation 

tree of the augmented graph in Fig. 18 in this instance are given by 

Eq. 3.8 and 3.9 respectively. 

I 

0 . . - 1 1 . 0 1 : 0 . . 0 VT 
p q I 

I 
I I -------------------T-----T----------

0 

-u u 

0 

0 

u 1 u 
p 

-1 
q 

0 

Where 

v1 

v2 

VT = v .!_T p 

v 
q 

v 
n 

I1 

I2 

I 
p 

I 
q 

I 
n 

v 
a. 

.!_T 

I 
a. 

I 
-c 

0 

3.8 

0 

3.9 



v 
a. 

v 
a. -----

v1 

v2 

v 
p 

I 

I 

v I 

q 

v 
n 

I 
a. 

I 
a. -----

I1 

I2 

I 
p 

I 

I 

I I 

q 

I 
n 

Performing the substitution procedures of the chord formulation 

method, we get 

0 
- B Z B T 

-1 1 

I 
a. 
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.. 3.10 

I 

0 • . -1 1 . 0 : 1 
p q I 

I -------------------T---
where ~1 = 1 0 

-u 0 

Performing the triple matrix product and substituting for I from 
a. 

the top equation into the bottom set of equations and finally noting 

that ~ is the negative of the bus currents, the new terminal 

equations as follows are obtained. 

VBUS z -BUS(m) .!_BUS • . . 3. 11 
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Where 

z -BUS(m) (z 
2
-z 

2
) .. (z -z ) (z -z ) .. (z -z 

p q pp pq pq qq pn q 

where z 2 z 
pq 

z -z 
pp qp 

z -z 
pq qq 

z -z 
pn qn 

z 
pp 

z 
qq 

.. 3.12 

z 
a a 

The algorithms in both Case I and Case II for adding a 

branch and a link not coupled to the existing network agree with the 

results in the literature 5 • 

3.5 Addition of a Mutually Coupled Group. 

As was mentioned earlier, while assembling a ZBUS matrix, 

for the sake of convenience it is desirable to arrange the lines 

belonging to a mutually coupled group consecutively. For utilities 

in urban areas several lines may comprise a coupled group. However, 

for small and medium size utilities covering a scattered area,a 

coupled group of two lines only is not uncommon. In the developments 

that follow the addition of an arbitrary number of mutually coupled 

lines is considered which corresponds to branches as well as links. 

The symbolic formulation is then illustrated for the specific case 

of two lines in a group. 

Let the partial network have a Z representation 
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VBUS(O)= 2BUS(O) IBUS(O) 

where the terminal graph correspond to Fig. 19. Let a mutually 

coupled group consisting of (m+r) lines be added such that with the 

superposing of the oriented graph corresponding to these lines, there 

will be (n+m) nodes in total. Let the numbering of the elements be 

such that elements (n+1) ... (n+m) are branches and thus form new 

nodes (n+1) (n+m); whereas elements (n+m+1) (n+rn+r) are links 

which form no new nodes. The overall graph is shown in Fig. 20. 

The new ~BUS denoted by ~BUS(m) is a (n+m) order matrix. 

Following the standard procedure, the (n+m) nodes are augmented by 

current sources, the corresponding elements being denoted by 

11 ' 2 I ' 
I • • • n , (n+m) 1 

• The circuit equations corresponding to 

the formulation tree will be given by 

B11 ~12 

~21 B22 

where vT 1 

u 

0 

v 
n 

0 VT1 

VT2 0 

-----
u ~1 

~2 

VT2 

3.13 



and ~1 

The component 

VT2 

~1 

= 

v n+m+1 

v n+m+r 

equations 

VT1 

_!_T2 

.!c1 

v1 
I 

v2 
I 

. 
~2 , 

v I 

n+m 

are 

~BUS(O) _!_T1 

where ~ is the impedance matrix of the mutually coupled group. 

The chord formulation will yield as the penultimate result (details 

omitted) 

I T T 
0 B11 ~12 u ~BUS(O) 

I 0 ~11 ~21 .!c1 I 

~2 
I = I ----------~ T u B21 ~22 0 ------- --T----

~12 
.L 

B22 .!c2 Q_ : ~ 
I 

u 0 

42 

. . 3. 14 

In equation 3.14, the partitioning of the pre and post multiplying 

matrices has been done to indicate conformity in the matrix multi-

plication. 

Thus, if ~ 12 [ ~12 : U J ; and .fo- 22 [ ~22 : _Q J 

then the triple product of equation 3.14 will result in the following 
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0 

u ~2 

T T 
B112BUS(O)B11+f312~12 

T T 
B21 2 BUS (0) B11+~22~~12 

~1 
z T 
-2 

~2 

~3 

.!c1 

From the first equation of equation set 

~1 ~1 ~2 ~2 

.!c1 ~1 
-1 

~2 ~2 or 

therefore ~2 -z T -1 
~2 + ~3 = ~1 -2 

T T 
B11 2 BUS (O)B21+~12~22 

T T 
B21~BUS(O)B21+~22~22 

3.16 

1 c2 

Noting the final change of signs, with respect to ~2 , ~BUS(m) 

obtained as 

z -BUS(m) ~3 z T z -1 _z2 
-2 -1 
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~1 

~2 

. . 3. 15 

. . 3. 16 

is 

•. 3.17 

In the above, it will be noted that the matrix inversion required 

is of the same order as the number of links being added. 

3.6 Special Cases of ~ddition of a Mutually Coupled Group of Lines. 

Let two elements a and f3 be added to the existing network 

at nodes p and q respectively to form new nodes r and s as 

shown in Fig. 21. Let elements a and f3 be mutually coupled having a 

terminal relation: 



v 
a 

Let z 
a a 

2
SS 

z 
aS 

Elements 

= 

= 

= 

a 

z 
a a 

self 

self 

impedance 

impedance 

I 
a 

of 

of 

mutual impedance 

and s are assumed 

to s respectively. 

element a 

element s 

between elements a and s. 

to be oriented from p to r and 

For this case r = 0, m = 2. Consequently there are no 

submatrices corresponding to B11 and B12 and 

[ ~21 B22 J 

-u 0 
I ---------------.-------

0 

0 

-1 0 
p 

0 -1 
q 

1 

o: 1 
I 
I 

o: 0 

0 

1 

Carrying out the algebraic manipulation 

z -BUS(m) 

~BUS(O) z 
np z nq 

--------------T------------------
2 

1 
. . z z +z z +z p pn pp aa pq aS 

. z 
qn z +z a pq a~-' 

z 
a a 
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q 
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Case · (ii) 

Let the two elements added be such that they constitute 

links. Let p , q , r , s be the existing nodes and let a be 

added from p to q and S from r to s • The system graph with 

the added elements will thus be given by Fig. 22. 

In this case there are no elements corresponding to T
2 

and 

hence m = 0, r = 2 consequently there are no submatrices corresponding 

to B
12 

and ~22 . Also, in this case 

1 

0 . 
~11 = 

0 

Thus z -BUS(m) 

z -z z -z 
pn qn rn sn 

~ 

z -p-q, r-s 

p q r 

-1 1 0 

0 0 . -1 

ZBUS(O) + 

2z -z -z -z 
pq pp qq aa 

s 

0 

1 

z +z -z -z .-z 
ps qr pr qs aS 

n 

0 

0 
~21 -u 

-1 

z +z -z -z -z 
ps qr pr qs aS 

2z -z -z -z 
rs rr ss SS 

-ZT 
-p-q,r-s 
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FIG. 23. POWER SYSTEM WITH ELEMENTS a AND S ADDED 



3.7 Numerical Exa~ples. 

We shall now consider two numerical examples to illustrate 

the special cases as discussed in Section 3.6. 

Case I 

Let a and S be two transmission lines added to a Power 

system as shown in Fig. 23. Let the component equations for this 

element be given by 

and let 

2 BUS(O) 

v 
a 

~BUS(O) for 

j.050 

j.049 

j .055 

j.048 

j. 15 

j.05 

j .05 

j. 1 

I 
a 

the original power 

j.049 j.055 

j.121 j.082 

j.082 j .158 

j.051 j.033 

system 

j.048 

j.051 

j.033 

j.055 

In order to derive z 
-BUS(m)~ 

we can assume p 

Thus z -BUS(m) can be derived by inspection as 

j.050 j.049 j.055 j.048 j.055 

j.049 j. 121 j.082 j.051 j.082 

j.055 j.082 j. 158 j.033 j.158 
z 
-BUS(m) j.048 j.051 j.033 j.055 j.033 

be given by 

= 3 and q = 4. 

follows 

j.048 

j.051 

j .033 

j.055 
---------------------------T-----------------------
j.055 j.082 j.158 j.033 j.158+j.15 j.033+j.05 

j.048 j.051 j.033 j.055 j.033+j.05 j.055+j.1 

46 
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j.050 j.049 j.055 j.048 j.055 j . OL~8 

j.049 j. 121 j.082 j.051 j.082 j.051 

j.055 j.082 j.158 j.033 j. 158 j.033 
z 
-BUS(m) 

j.048 j.051 j.033 j.055 j.033 j.055 

j.055 j.082 j. 158 j.033 j.308 j.083 

j.048 j.051 j.033 j.055 j.083 j. 155 

Case II 

In this example let us assume that a and S are links as 

shown in Fig. 24. 

Let the component equations for the elements a and S be given by 

- -- -
v j .15 j . 1 I 

a a 

vs j.1 j. 30 Is 
- -

In this case p 1, q 4, 

r = 2, s 3. 

Therefore z will be given by 
-p-q,r-s 

j.050-j.048 j.049-j.055 j.002 -j.006 

j.049-j.051 j.121-j.082 -j. 002 j .039 
z = = --p-q,r-s j.055-j.033 j • 082-j . 158 j.022 -j.076 

j . 048-j . 055 j • 051-j . 033 -j.007 j.018 



2 z z 
pq pp 

z + z 
ps qr 

2 z - z 
rs rr 

Thus 

= 

Therefore 

-
-

z z 2xj.048-j.050-j.055-j.l5 
qq q.a. 

z - z -z = j.055+j.051-j.049-j.033-j.05 
pr qs aS 

z - zss 2x .082-j.121-j.158-j.l 
ss 

2z -z -z -z pq pp qq aa 

z +z -z -z -z 
ps qr pr qs aS 

-j. 159 -j.026 - 1 

= 
-j.026 -j. 215 

z +z -z -z -z ps qr pr qs aS 

2z -z -z -z rs rr ss aS 

j 6. 3 -j. 775 

-j .775 j4.7 

z -BUS(m) = ~BUS(O) 

j.002 -j. 006 

48 

= -j. 159 

-j.026 

j.215 

-1 

-j.002 j .039 j 6. 3 -j .775 j.002-j.002 j. 022-j. 007 
+ 

j.022 -j.076 -j .775 j 4. 7 -j.006 j.039 -j.076 j. 18 

-j.007 j. 018 

j.050 j.049 j.055 j. 048 -j. 001 j.0010 -j 0027 j.0006 

j.049 j. 121 j.082 j.051 +j.001 -j. 007 -j 014 j 003 
+ 

j. 055 j.082 j .158 j.033 -j.0027 -j 014 -j.033 j.008 

j.048 j.051 j.033 j.055 j.0006 -j.003 j.008 -j.0012 

j.049 j. 050 j.052 j.048 

j.050 j. 114 j.068 j. 054 

j. 052 j.068 j. 125 j.041 

j.048 j.054 j.041 j.054 
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3.8 Conclusion. 

In this chapter the concept of multi-terminal representation 

has been applied in the development of ZBUS algorithm. The generality 

of the algorithm has been demonstrated in as much as that this can be 

applied while adding a coupled as well as an uncoupled group of lines 

to a network at a time. Numerical examples have been worked out to 

demonstrate the applicability of the algorithm in a practical power 

system. In the next chapter, the short circuit ·analysis of power 

systems is taken up. 
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CHAPTER IV 

SHORT CIRCUIT ANALYSIS 

4.1 Introduction 

A fault proof power system is neither practical, nor economical. 

Modern power systems are designed and constructed to ensure a high degree 

of reliability, but still faults do occur due to various reasons, such 

as, equipment failures, lightning, falling of trees on transmission 

lines etc. As such, proper safeguards against these contingencies are 

imperative for the successful operation of a system. Short circuit 

currents, as a rule, will exceed considerably the rated current of the 

affected installation and can disturb the operation of a power system 

considerably. In fact the short circuits can not only lead to the damage 

of the affected installation, but also often develop situations when the 

successful operation of an entire power system could be in jeopardy. 

As such a knowledge of the conditions existing on a power system during 

such short circuits is essential. Such information is used to design 

an adequate system of protection and operation strategy. 

In electrical terms, the common form of short circuits would 

fall into one or the other of the following categories: 

(i) Three Phase. 

(ii) Line to Ground. 

(iii) Line to Line to Ground. 

(iv) Line to Line. 

(v) Three Phase to Ground. 
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These different types of faults will~ in general~ affect the power 

systems differently. The values of currents and voltages that are 

obtained during these different types of faults are of interest to the 

power system engineers - since these influence the application of circuit 

breakers~ stresses on electrical machinery~ schemes of protection/ 

control etc. However, in practice it is not generally necessary to 

analyse for each of the above types of faults since generally we are 

interested only in the worst case. As such 3 phase and the line to 

ground faults are of primary interest to power systems engineers. 

In this section an attempt will be made to obtain solution of 

a power system under short circuit conditions by the application of 

graph theoretic principles. The symbolic formulation for the short 

circuit study would be discussed first. The formulation will sub

sequently be applied to a simplified Newfoundland Power System for the 

calculation of short circuit current at the different buses. Only symmet

rical three phase faults will be considered. 

4.2 Physical Assumptions. 

The short circuit analysis essentially consists of the steady 

state solution of a linear system. As such the following physical 

assumptions are relevant to the short circuit studies as applicable to a 

power system. 

i) The generating system is represented by a voltage source 

behind the internal impedance of the machine. The value of the internal 

impedance is taken as the transient or sub-transient reactance. 



This is because a few cycles after the initiation of the fault the 

relevant protective gear is expected to respond to the fault and 

isolate the faulted circuit by the operation of circuit breakers. 

As such it is generally desired to obtain the quantity of currents 

and voltages for this period only. Depending on the purpose of the 

study, either the transient or the sub-transient reactances can be 
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used. For example, if the study is being done to determine the rating 

of circuit breakers, the sub-transient reactance shall be used, whereas 

if it is desired to determine the minimum fault current for a relay 

operation, the transient reactance shall be used. 

ii) The normal load, line charging, capacitances and other 

shunt connections to ground are neglected. This is based on the fact 

that the short circuit currents, in general, considerably exceed such 

load currents, etc., and as such will introduce an error of little 

significance. 

iii) The resistance of the generators, transformers, etc., 

are neglected. For transmission lines, if the resistance is smaller 

than the reactances by a factor of five or more, then the resistances 

are neglected. From a practical point of view this does not introduce 

any error of significance since the values are generally very small. 

On the other hand this simplifies the arithmetic. However, from a 

mathematical point of view, such resistance, can be taken into account 

if so desired. 

iv) All transformers are considered at their nominal taps. 

It is assumed that the impedance of the transformers do not change 
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with the change of taps. Considering that the taps of small percentage 

values of the main winding are generally encountered, this does not 

introduce much error. 

Some of the above physical assumptions which are used to 

simplify the resulting mathematical model are conflicting in nature 

with one another. For instance the neglect of the resistance will 

yield a value of the calculated short circuit current greater than the 

actual short circuit current. But on the other hand, neglecting of 

the line charging will yield a calculated value which is less than the 

actual value of short circuit current. On the whole the simplified 

mathematical model based on the above mentioned simplifying assumptions 

will predict the actual line flows within the limits of acceptable 

engineering approximations. 

4.3 Derivation of the Terminal Representation for a Generator
Transmission System. 

A prerequisite for the short circuit study through graph 

theoretic concepts is to obtain a multi-terminal representation of 

the generator system. For this purpose the generator system and the 

transmission system will at the first instance be considered 

separately. The transmission system will then be augmented by the 

generator system to obtain a general formulation. At this point it 

is important to mention that the terminal representation of the 

transmission system in the impedance form does not exist if the 

ground bus is chosen as the reference vertex. This is particularly 

of significance in short circuit studies, since as mentioned earlier, 

all shunt connections to ground such as loads, line charging etc., 



FIG. 25. GENERATOR - TRANSMISSION SYSTEM 

(Simplified and slightly modified 

Newfoundland Power System). 

FIG. 26. TERMINAL GRAPH OF TRANSMISSION SYSTEM 
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in this case are neglected and thus the ground forms an isolated 

vertex. Hence we use a 2 matrix representation for the transmission 

network with reference to an arbitrary bus of the system. To be 

specific, 2BN is the multi terminal representation that will be used. 

4.4 Example 

We will illustrate the derivation of the terminal represen-

tation of generator-transmission system through an example. Let us 

consider the transmission system as described in Fig. 1 in Chapter II. 

Let two sets of generators be connected at buses 1 and 4 and thus 

let Fig. 25 represent the combined generator-transmission network. 

For the transmission system, following the procedure dis

cussed earlier, the mutli-terminal representation corresponding to the 

terminal graph in Fig. 26, can be obtained in the form 

v 2 11 2 12 2 13 a 

vb = 2 21 2 22 2 23 

v 2 31 2 32 2 33 c 

The numerical values of the 

Chapter II are 

2
BN 

j.073 

j.028 

-j.004 

j.028 

j.01 

-j.02 

I 
a 

Ib 

I 
c 

above 2-matrix, as given by Eq. 2.27 

-j.004 

-j.02 

j . 1 

For short circuit studies the generator system is represented by 

voltage sources connected behind their internal impedances. The 

4.1 

in 
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FIG. 27. TERMINAL GRAPH OF GENERATOR SYSTEM 

FIG. 28. COMBINED GENERATOR - TRANSMISSION SYSTEM 

FIG. 29. TERMINAL GRAPH OF COMBINED SYSTEM 



54-B 

-· ----- -,... 
~ , , -/ ..-

~ 
, , 

/ / 

/ / 

I / -- -I I 
/- - ' / ' I I / ' 

11 I I 
I ' .3 ' 
"t 

I 
\ ' 

I 

f \ ' I 

' ' / 

' ' ' / 

' ' ' 8 / 

' '4 4. / 

' 
q ... ..... / 

' ' ' / 

' 
.... ' ~/ ' .... ..... ' ....... ' ' / /J ... _ ...... 

"' 
to - ' 

/ -- --

FIG. 30. AUGMENTED TERMINAL GRAPH OF COMBINED SYSTEM 



55 

terminal graph of the generator system can thus be represented b y 

Fig. 27. The generator system when superimposed on the transmission 

system will result in a system graph as shown in Fig. 28. In this 

combined graph, elements 4 and 5 correspond to the reactances of the 

generators and the elements 6 and 7 are voltage sources behind the 

reactances. The reactance as discussed earlier could be either the 

transient or the sub-transient depending on a particular study. 

A multi-terminal representation of the combined system can 

again be derived with reference to the ground bus g Since for 

the purpose of the short circuit studies we are interested in the 

voltages and currents at the external buses only (i.e. at nodes 1, 

2, 3, & 4) these buses will be retained in the multi-terminal 

representation. The terminal graph of the combined generator-trans-

mission system as shown in Fig. 29 thus results. In general terms, 

this terminal representation will be of the form 

V Z I+ V 
-o 

where V and I are the vectors of the bus voltage and current matrices; 

Z is the terminal impedance matrix corresponding to Fig. 29, and 

is the matrix representing the voltage sources. 

v 
-o 

In order to obtain the terminal equations in the impedance 

form corresponding to the terminal graph of Fig. 27, we consider the 

augmented graph as in Fig. 30, for the combined generator-transmission 

system. The nodes corresponding to external buses have been augmented 

by current sources for this purpose. To obtain the multi-terminal 

representation of the generator-transmission system, the procedure as 

described in Chapter II will be followed. 
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By manipulation of the circuit and cutset equations with respect to 

the formulation tree T(6, 7, 4, 1, 2, 3) in Fig. 2S we get (details 

omitted) 

0 1 -1 1 0 0 1 -1 24 0 0 0 0 -1 -1 - 1 -1 
- -

vs 1 0 v6 1 0 0 0 0 0 2
11 

2
12 

2
13 0 0 0 -1 0 

v9 1 0 v7 + 1 1 0 0 0 0 2 21 2 22 2 23 0 0 0 0 -1 

- -
vlo 1 0 1 0 1 0 0 0 2 31 

2
32 2

33 
0 -1 0 0 0 

vll 1 0 1 0 0 1 0 0 0 0 0 25 1 0 0 0 

4.2 

In this case it will be noted that v
6 

and v
7 

are known voltage sources 

and further we assume v
6 

= v
7

. Thus it can be shown that: 

vs 1 0 
-1 -2 4 - -

v9 1 0 v6 - 24-2 13 
+ 2 4+25+2 33 -2 - 24-2 13 - 24-2 23 - 24-2 33 

vlo 1 0 v7 - 24-2 23 
4 

- -
v 11 1 0 - 24- 2 33 

-z 4 -z 4 -z4 -z 
4 Is 

+ 
-24 - 24-2 11 - 24-2 12 - 24-2 13 I9 

-2 
4 - 24-2 12 - 24-2 22 - 2 4- 2 23 IlO 

-2 4 - 2 4-2 13 - 24-2 23 - 2 4- 2 33 Ill 4.3 

or 

-1 I 

0 I 

0 I 

-1 I 

0 I 

Is 

I9 

IlO 

Ill 
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1 

1 

z 2 
4 Z4(Z4+2 13) Z4(Z4+223) Z4(Z4+Z33) 

1 Z4(Z4+2 13) (Z4+Zl3)2 (Z4+Zl3)(Z4+Z23) (Z4+Zl3)(Z4+Z33) 

Z4+Z5+233 Z4(Z4+2 23) (Z4+2 13)(Z4+Z23) (Z4+Z23)2 (Z4+Z23)(Z4+Z33) 

Z4(Z4+233) (Z4+2 13)(Z4+Z33) (Z4+Z23)(Z4+Z33) (Z4+Z33)2 

z4 z4 z4 z4 18 

z4 Z4+2 11 24+2 12 24+2 13 19 

z4 24+2 12 24+222 24+2 23 1 10 

z4 24+2 13 24+2 23 24+233 1 11 4.4 

Thus, noting the change of signs, the multi terminal representation of 

the generator-transmission system can be represented in the form 

1 

VBUS 

1 

I z I .!.BUS + 
1 

1 4.5 
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FIG. 31. TERMINAL GRAPH 

OF FAULT. 

FIG. 33. TERMINAL GRAPH 

OF TWO FAULTS. 
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F 

FIG. 32. TERMINAL GRAPH OF 

FAULTED SYSTEM. 

FIG. 34. TERMINAL GRAPH OF 

FAULTED SYSTEM. 
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vl 
I 

vs Il 
I 

I8 

vz 
I 

v9 I2 
I 

I9 
where VBUS and .!_BUS 

v3 
I 

v1o I3 
I 

IlO 

v4 
I 

vll I4 
I 

Ill 

In symbolic form equation 4.5 can be written as 

VBUS = VBUS(O) + z .!_BUS 4.6 

Having obtained the MTR of the generator-transmission 

system we shall continue with this example to arrive at the solution 

of the faulted system. 

Let us assume, for our example, that bus 3 o£ Generator-

Transmission system is faulted. Let the fault impedance be represented 

Thus the terminal graph of this fault will be represented by 

Fig. 31 and the corresponding terminal graph of this fault will be 

given by 

= 4.7 

The terminal graph of the generator-transmission system when augmented 

by the fault system would be given by Fig. 32. This network can be 

solved for the fault currents as follows: 

From the cutset and circuit equation for the formulation tree 

T(l l 21 31 41) , , , we get 

0 

0 

-I 
F 

0 4.8 



and v• 
3 

Again from Eq. 4.4 and 4.5 

v' 
3 

= 

I I 

3 
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4.9 

v6 ZX IF •. 4.10 

Thus from Eq. 4.9 and 4. 10 

ZF IF = v6 + zx I3 
I 

or 

IF 
v6 

= 
ZF+Zx 4.11 

As a numerical example for this solution of a faulted system, let us 

assume the following values 

ZF j 0. 1 p.u. 

z4 j0.21 p.u. 

zs jO. 65 p.u. 

v6 1 + jO p.u. 

Also for the transmission system of Fig. 1, 

.073 .028 -.004 

~BN j .028 . 1 -.02 

.004 -.02 .01 

Thus if bus 3 of the Power System as in Fig. 25 is faulted, sub-

stituting the appropriate numerical values in equation 4.4, we get 
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v1 
I 1 j.050 j.049 j.055 j.048 I1 

v2 
I 1 j.049 j. 121 j.082 j.051 I2 

v3 
I 1 

v6 + 
j.055 j.082 j. 158 j.033 I3 

v4 
I 1 j.048 j.051 j.033 j.055 I4 .. 4.12 

Thus substituting Eq. 4.8 into Eq. 4.12 

v3 
I (1+j 0) + 1 j. 055 j.082 j. 158 j.0331 I1 

I 

I2 
I 

I3 
I 

I4 
I . . 4.13 

v3 
I (1+j 0) or = - j.158 X IF 

but v3 
I 

ZF IF = 

Therefore IF 
1+j0 -j. 158+j. 1 

j 3. 88 p.u. . . 4.14 

Now combining Eq. 4.8 and 4.12 and substituting for IF, we get 

v1 
I 1 j.050 j.049 j.055 j.048 0 

v2 
I 1 j. 049 j.121 j.082 j.051 0 

v3 
I 1 

v6 + 
j.055 j.082 j.158 j.033 I3 

I 

v4 
I 1 j.048 j. 051 j.033 j.055 0 
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VI 
I I j.055 

v2 
I I j.082 

or ( I+j 0) + -j 3. 88 
v3 

I I j. I58 

v4 
I I j.033 

VI 
I .788 

v2 
I .68 

or 
v3 

I . 39 

v4 
I .872 4.I5 . . 

This represents the bus voltages at buses I , 2 , 3 and 4 when 

bus 3 is faulted through an impedance ZF .I p.u. Since we have 

all the bus voltages, the individual line voltages can be determined 

be considering a graph, where these set of voltages are superimposed 

on the original generator-transmission system as shown in Fig. 35. 

From the circuit equation of the formulation tree T(I I 2 1 3 1 4 1 9 IO) , , , , ' 

we get 

VI I -I 0 0 0 0 VI 
I 

v2 0 -I I 0 0 0 v2 
I 

v3 0 0 -I I 0 I v3 
I 

v4 I 0 0 -I 0 0 v4 
I 

v5 I 0 0 -I 0 0 v9 
I 

v6 I 0 -I 0 0 0 via 

v7 I 0 0 0 -I 0 

v8 0 0 0 I 0 -I . . 4.I6 
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Taking v9 v1o 1+j0, and substituting for v1 
I 

vz 
I 

v3 
I and v4 

I 
= , , 

we get 

- -

v1 .108 

v2 -.29 

v3 .408 

v4 -.084 
= 

vs -.084 

v6 • 398 

v7 -.212 

v8 -.128 4.17 . . 
- -

Again from the component equations, we get 

- - - -

v1 j. 1 0 0 0 0 0 0 0 I1 

v2 0 j.3 0 0 0 0 0 0 I2 

v3 0 0 j.S 0 0 0 0 0 I3 

v4 0 0 0 j. 15 j. 1 0 0 0 I4 
--

vs 0 0 0 j. 1 j .15 0 0 0 rs 

v6 0 0 0 0 0 j. 25 0 0 I6 

v7 0 0 0 0 0 o . -j.065 0 I7 

v8 0 0 0 0 0 0 0 -j. 21 I8 4.18 .. 
- - - -

or 
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-1 
- -

I1 j. 1 0 0 0 0 0 0 0 .108 

I2 0 j.3 0 0 0 0 0 0 -.29 

I3 0 0 j.S 0 0 0 0 0 .482 

I4 0 0 0 j. 15 j. 1 0 0 0 -.084 

Is 0 0 0 j . 1 j. 15 0 0 0 -.084 

I6 0 0 0 0 0 j. 25 0 0 .398 

I7 0 0 0 0 0 0 -j. 015 0 -.212 

I8 0 0 0 0 0 0 0 -j. 21 -.128 . . 4. 19 

I1 j 1. 08 

I2 -j .96 

I3 j .96 

I4 j .33 

Is j .33 

I6 j 1. 58 

I7 -j 3. 3 

I8 -j .6 4.20 .. 
- -

4.5 Simultaneous Faults. 

4.5.1 Introduction 

Simultaneous faults on power systems are not uncommon. Such 

faults may occur at random or due to other physical reasons such as 

lightning flash-overs at two locations, or as a result of a ground on 

one location raising the voltage on the sound phase so that a flash 

over occurs at a second point, etc. Though relatively infrequent, 
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analysis of such simultaneous faults are important enough to justify 

their detailed analysis. Relay systems giving satisfactory operation 

for a fault at a single location may fail to respond correctly to 

simultaneous faults. 

Methods are available to analyse such faults by the conv en

tional analytical methods. However, such methods use cumbersome 

algebraic manipulations and are time consuming. In this section, an 

attempt will be made to analyse such faults by the application of graph 

theoretic concepts. It will be observed that once the multi-terminal 

representation of a network is available, the solution of simultaneous 

faults as well can be obtained easily. 

4.5.2 An illustration 

We shall discuss the solution of simultaneous faults with 

the same example as in Fig. 25. The multi-terminal representation of 

this system is given by Fig. 29 . and the terminal equation 4.4. Let 

us assume that two faults occur simultaneously at buses 2 and 3 . 

From Eq. 4.12 we note the ~BN for this combined generator-transmission 

system is given by 

j.050 j.049 j.055 j.048 

j.049 j.121 j.082 j.051 
2

BUS 
j.055 j.082 j.l58 j.033 

j.048 j.051 j.033 j.055 

Thus if bus 2 and bus 3 are simultaneously faulted, the augmented 

terminal graph of the complete faulted system would be given by Fig. 34-
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This network can again be solved following the procedure as 

in Section 4.3. For this numerical example let = . 1 p.u. 

ZFZ .15 p.u. 

In this case, from the cutset equation, and circuit equations, we get 

I1 
I 

I2 
I 

I3 
I 

I4 
I 

vi 
2 VF1 

vi 
3 VF2 

Again from Eq. 4.4 

- -
vi 
z 1+j0 

vi 
3 

1+j0 

- -

1+j0 

1+j0 

or 

0 

-IF1 
= 

-IF2 

0 

2
F1 1 F1 

2
F1 

1
F2 

and 4.5, 

+ 

+ 

j.049 

j.055 

j.121 

j.082 

1+j0 

1+j0 

we get 

j. 121 

j.082 

j.082 

j. 158 

j. 121 

j.082 

j.082 

j.158 

j.082 

j. 158 

j.051 

j.033 

0 

-IF1 

-IF2 

0 



1+j0 j .121 j.082 
or 

1+j0 j.082 j. 158 

Solving for IF1 and IF2 we get 

3.64 
= -j p.u. 

2.34 

Now, substituting for IF1 and IF2 in Eq. 4.4 

1 

1 

1 

1 

- -
v• 

1 

v• 
2 

or 
v• 

3 

v• 
4 

v1 

v2 

v3 

v4 
- -

1 

1 

j. 050 

j.049 

j.055 

j.048 

j.049 

j.121 

j.082 

j.051 

(1+j0) + 
1 

1 

. 693 

.368 
p.u . 

. 332 

.59 

j.055 

j.082 

j. 158 

j.033 

j.049 

j.121 

j.082 

j.051 

j.048 0 

j.051 -j 3. 64 

j.033 -j 2. 34 

j.055 0 

j.055 

j.082 -j 3. 64 

j. 158 -j 2. 34 

j.033 

66 

.. 4.21 

This represents the bus voltage at bus 1, 2, 3 and 4 for simultaneous 

faults at bus 2 and bus 3. From this, the individual line voltages 



66-A 

2 

FIG. 35. UNION OF BUS VOLTAGE GRAPH WITH SYSTEM GRAPH. 
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can be determined by considering a graph, where these set of voltages 

are superimposed on the original generator-transmission system as in 

Fig. 35. From the circuit equation of the formulation tree 

T(1', 2', 3', 4', 9, 10) we get 

v' 1 -1 0 0 0 0 v1 
I 

1 

vi 0 -1 1 0 0 0 v2 
I 

2 
vi 0 0 -1 1 0 0 v3 

I 

3 

v' 1 0 0 -1 0 0 v4 
I 

4 

v' 1 0 0 -1 0 0 v9 
I 

5 

v' 
6 

1 0 -1 0 0 0 v1~ 
vi 

7 
1 0 0 0 -:1 0 

v' 
8 0 0 0 1 0 -1 

Taking v
9 

= v 10 = 1+j0 and substituting for Vi, v;, VJ' V4 leads to 

v1 . 325 

v2 -.036 

v3 .258 

v4 .103 

v5 • 103 

v6 .361 

v7 -.307 

v8 , -.41 •• 4.22 
- --

Substituting equation 4.22 in the component equations gives 



I1 j 3. 25 

I2 -j • 12 

I3 j .516 

I4 j .34 

Is j .34 

I6 j 1. 45 

I7 -j4. 7 

Is -j 1. 96 

Thus we observe that solution o·f simultaneous faults as well can 

conveniently be obtained by applying the same concept as for single 

point faults. This procedure, it will be appreciated, can further be 

extended to cover simultaneous faults at n-number of buses. 

4.6 Conclusion 

68 

In this chapter the c o ncept of multi-terminal representation 

is applied to the short circuit analysis of a typical power system for 

a single three phase to ground fault as well as two simultaneous faults. 

The generality of the procedure is demons·trated. 
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CHAPTER V 

CONCLUSION 

In this report an attempt has been made to explain the 

principle of Multi-Terminal Representation as applicable to power net-

works. It is then applied to develop multi-terminal representations 

of transmission systems containing off-nominal transformers as well. 

This concept was then extended to develop a building algorithm, so 

that an appropriate network equivalence at the buses can be derived 

conveniently by a step-by-step procedure. Such a procedure would be 

of particular advantage when analysing large networks. Finally, the 

concept of the multi terminal representation was used for a typical 

power systems analysis - namely, the short circuit study. It is felt 

that this provides an easy, universal and conceptually elegant method 

for the short circuit study. Analysis of simultaneous faults can also 

be carried out without any difficulty. Concepts applied in this work 

have been extended for load flow studies 7 and further work consists 

in extending the application to transient stability studies. It is 

also felt that such a method would be very amenable to solution by the 

use of modern digital computers. Further work in the development of a 

computer programme for the short circuit study is also suggested. On 

the whole, the application of graph theoretic techniques for power 

system analysis seems to offer much promise since it naturally lends 

itself to computer simulation. 
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