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Abstract

A numerical time-domain method is developed to simulate large-amplitude

motions of two-dimensional floating bodies in steep waves. The method em­

ploys an integral relation derived from Green's second identity and a discretiza­

tion scheme of centrally located collocation points on linear boundary segments

for solution of the full non-linear potential flow problem. Propagating unsteady

waves are simulated by imposing an Airy wave potential as a source of excitation

on a hypothetical vertical boundary of a rectangular fluid domain. Solutions of

linearized wave-propagation problems are in very good agreement with analyt­

ical solutions. For the non-linear problem, an Eulerian description of the free

surface is used in which vertical movements of the collocation points on the free

surface are followed. Smoothing schemes in space and time at the upstream

boundary, intermittent smoothing of the free surface and adaptation of a nu­

merical radiation condition permit modelling of very steep progressing waves

over 20 wave periods. Numerical experiments reveal insignificant degeneration

of the solution resulting from the embodied techniques. The effectiveness of the

method is further illustrated by its application to astudy of steep waves inter­

acting with vertical walls. Comparison with experimental and analytical results

demonstrates the capability of the method in accomplishing non-linear steady

state solutions with very good quality of agreement with experimental data.

In the study of behaviour of floating bodies in steep waves, numerical insta­

bility leads to failure of the simulation scheme unless special care is taken with

regard to the discretization and treatment of the coupled force-motion relation.

The motion of the body with respect to the free surface may result in large vari­

ations of the spatial grid sizes in the vicinity of the body and the free surface
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intersection, which results in destabilizing force effects through the computation

of the linear dynamic pressure term (dc/> / dt) . These difficulties are resolved by

means of an appropriate spatial regridding scheme, and by employing a central

difference rule for computation of the dc/>/dt term at the corrector level of the

adopted Adams-Bashforth-Moulton rule in the time-integration scheme and by

utilizing explicit rules for integration of the equations of motion. A number of

computations simulating motions of a rectangular floating body in different sit­

uations provides evidence of the efficacy of the algorithm. The presented results

contain large roll and heave motions as well as drifting behaviour of a completely

unrestrained body.

A complementary experimental study is also described, in which a rectangu­

lar body of rounded-off corners restricted from swaying was subjected to wave

excitations inside a channel. Comparison of experimental and computational

results shows in general very good agreement over the entire range of the tested

conditions, inclusive of resonant behaviour in heave and moderately large roll

motions. For this latter behaviour, accounting for viscous effects by means of a

semi-empirical procedure improves the correlation significantly.
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1 Introduction

1.1 General

Interact ion of floa ting bodies with wa ter waves has been a prominent and active

ar ea of research since last century when no table contributions on the subject were

made by J .H.Michell and Sir Willi am T hompson (Lord Kelvin). Sub sequently,

considerable ad vancements of primarily analy t ical n ature were made during the

fir st half of this century. In this early period, works were mainly concerned with

understanding of the behaviour of displacement-type ships. Consequent to the

mathematical under tone of hydrodynamics as well as the areas of applications,

mos t worker s of tha t period be longed to the group of applied mathematicians

and ship-hydrodynamicists. From about middle of the century, a progressive

change in this gen eral picture can be ob served. The field of application widened

considerably due to eme rgence of the parallel discipline of Ocean Engineering. A

variety of offshore st ructures of different sizes and geom etries arose to append to

the list of floating bodies. The simultaneous development of the power of com-

puting ma chines opened avenues for newer methods of analyses. Consequential

increase in the number of workers was complementary. Recently, international

workshops devoted ent irely to the behaviour of floa ting bodies in waterwaves

have been initiated on an annual basis (Evan s and Newman 1987)1, which ser ves

to in di ca te the growth of research act ivit ies in this field . Despite a subst an t ial

bo dy of accumulated knowledge, a number of important an d in ter esting prob-

lems await sat isfactory resolutions. One such problem is that of large mo tions

of floa ting bodies in steep waves.

1Narne and/or year included in the parenth eses refer to the publi ca t ions listed under ' Refer­
ences' at the end of the text



The present dis ser ta tion is dir ected towards the development of a me thod

that predicts extreme motions of floa ting bodies in steep waves. The practi­

cal implica tions of such pr edictions need no elaborat ion. Suffice it to say that

knowl edge of extreme behaviours const it utes an essential foundation for efficient

and safe design tasks.

The following section provides a revi ew of the present state of understand­

ing of the subject (i.e. mo tion s of floa ting bodies in waves). The discussion

is directed towards developm en t of comput a t ional tools for general studies of

bodies in waves , in contrast to application of established techniques (e.g. well

known lin ear solu tions ) in st udies of the motion responses of continually emerg­

ing newer geometries. The scop e, objective, and the nature of the present task

are outlined in the sect ion that follows , with the view that a better perspective

of the work to be pr esen ted can be attained. This section also includes brief

descriptions of the rest of the text.

1.2 Previous Work

1.2.1 Background

For mos t engineering purposes , the Navier-S tokes equations can be regarded

as the fundamental relations governing fluid motions that adequately describe

flow surrounding marine st ru cture s (Batchelor 1967 ). Neglect of viscous effects

usually leads to potential flow (ideal fluid ) formulations. For a number of hy­

drodynamic problems, including studies of wave forces and motions of ships and

offshore structures , the imp or tance of potential flow theories is universally rec­

ognized. A large body of ana lyt ical, numerical and experimental investigations



would support that treatment of water as an ideal fluid indeed yields fruitful

results for many situations of practical interest. Although a growing litera-

ture currently exists addressing solution of Navier-Stokes equations at a variety

of levels (see Aref 1986), applications of such methods, or methods based on

Lagrangian vortex schemes, to studies concerning wave-body interactions ap-

pear to be a subject of further research (see e.g. Nichols and Hirt 1973, 1975,

1977; Miyata, Kajitani, Zhu and Kawano 1986; Stansby and Dixon 1983). For

circumstances where viscous effects become significant, a practical means for

incorporating such effects, at present, is through semi-empirical formulations.

A classical example of this is provided by the Morison's formula (Morison et al.

1950) which in its original and modified forms continues to be a popular and

practical means for considering viscous effects in computation of wave forces on

certain 'slender' structural members (Faltinsen 1985, Pawlowski 1987). Among

other situations where fluid viscosity require attention, a relevant example is

provided by large roll motions of ships, and these effects are usually considered

via semi-empirical relations appropriately guided by experimental data (Himeno

1981). For studies of body motions in waves, a general solution approach with

the use of Navier-Stokes equations appears to be too difficult at present. In

view of these remarks, the discussion that follows is confined to studies based

on potential theory forrnulations''.

Two classes of hydrodynamic problems are generally recognized in studies

of marine structures interacting with water: diffraction and radiation problems.

The former is concerned with an object held fixed in an incident wave train

while in the latter the object is forced to oscillate in an otherwise quiescent

2In the regime of direct numerical methods (§1.2.2.2 below), however , some of the cited works
based on finite-difference algorithms consider solution of Navier-Stokes equations



fluid. Analyses for motions of floating bodies excited by oncoming waves encom­

pass both these problems. Upon approximation of smallness in wave steepness

and in body motions, the familiar linearized problems emerge. In the realm of

linearized potential theory, established relations (e.g. Haskind's relation) exist

interconnecting the radiation and diffraction problems. Therefore solution meth­

ods for radiation problems generally suffice in studies of body motions in waves

(for the linearized problems). More elaborate descriptions of theoretical devel­

opments including expressions for quantities of practical interest (e.g. forces

and motions) are well documented in texts of Wehausen and Laitone (1960) and

Newman (1980).

Analyses of the above linearized problems are usually performed in frequency

domain. Over the past three decades or so, a multitude of computational meth­

ods have evolved for such studies. A comprehensive review outlining fundamen­

tals of various methods can be found in Mei (1978). Amongst these, methods

founded upon integral relation formulations have a relatively enriched back­

ground in hydrodynamic applications, in contrast to, for example, the methods

of finite elements known for their phenomenal success in structural dynamics

problems (Zienkiewicz 1979). Integral relations can themselves be formed in a

variety of ways: distribution of monopoles, dipoles, mixed distributions, multi­

poles, etc. (see e.g. Burton and Miller 1971; Takagi et al. 1983). For the linear

hydrodynamic problems in context, popularity of techniques that employ singu­

larity distributions is evident from their widespread applications. These numer­

ical models, often referred to as 'panel' methods, necessarily proceed by repre­

senting the immersed body boundary by an ensemble of appropriately arranged

surface 'panels' over which singularities are distributed in some prescribed man-



ner. The development of these techniques is believed to have followed from their

successful implementation in analogous aerodynamic studies (Hess and Smith

1964 , 1967), although an inquisitive search reveals inception of similar ideas in

von Karman's works in 1927 (Baddour and Pawlowski 1985). The relative de­

lay in progress for parallel applications in free surface hydrodynamics is usually

attributed to the complicated form of the associated Green's functions. Numer­

ical schemes based on these functions started being realized since the beginning

of the past decade (Fa lt insen and Michelsen 1974; Garrison and Seetharama

Rao 1971 ; Garrison 1974 , 1975). At present, a substantial amount of literature

exists addressing various aspects of the available methods. For a comprehen­

sive review, the texts by Sarpakaya and Isaacson (1979) and Mei (1983) can

be consulted. Computational models evaluating forces and motion responses of

bodies of arbitrary three-dimensional geometries in linearized harmonic poten­

tial flow field are regarded to be sufficiently well established at present. Indeed,

several computer codes are currently available for such predictions, and stud­

ies have been initiated for assessing relative merits of these codes (Takagi et

al. 1985; Eatock-Taylor and Jefferys 1986). Recent developments are primar­

ily towards improvements in computational efficiencies. For example, in panel

based methods, efforts are towards faster numerical evaluation of the associated

Green's functions (Noblesse 1982; Newman 1984 , 1985b, 1985c; Telste and No­

blesse 1986; Endo 1987) , or refinements in the discretization procedure leading

to higher order panel methods (Breit, Newman and Sclavounos 1985), or at a

more fundamental level, development of alternative integral relation representa­

tions possessing superior features (Kleinman 1982; Angell, Hsiao and Kleinman

1986).



Application of time domain analyses in this connection is relatively scarce

since for the linearized problems frequency domain analyses usually satisfy prac­

tical needs. These modes of analyses appear more suitable for studies of transient

responses. Two related problems can be identified in this context: (i) an initial

displacement or velocity is imposed on a body, and the ensuing motion of the

body is to be determined; (ii) fluid motion is initiated by an impulse provided by

the body which is then held fixed, and the subsequent motion of the fluid is to be

followed. Theoretical backgrounds on solution methods for the se can be found

in e.g. Finkelstein (1057), Wehausen (1967, 1971) and Ursell (1964). Compu­

tational studies include Adachi and Ohmatsu (1980), Yeung (1981), Newman

(1985a), Lee (1985), Beck and Liapis (1987), etc. Recently there is an indica-

tion that time domain analyses may prove competitive in radiation-diffraction

studies in that the associated computational burdens may be smaller in compar­

ison with analogous frequency domain studies, specially for bodies that demand

a large number of panels (Newman 1985a, Korsemeyer 1987) .

A logical extension of the above linearized solutions is to relax, to some

degree, the underlying assumptions of the smallness of motions and wave steep­

ness. Research towards non-linear analyses immediately follows. In addition

to the theoretician's interest in developing general solutions for these classes of

non-linear problems as exactly as possible, practical importance of such ext en-

sions cannot be ignored. Indeed, several phenomena, e.g. mean drift forces and

slow drift oscillations are now recognized to have considerable practical impli­

cations, which are not describable through a linearized analyses even to a first

approximation (Ogilvie 1983). Other examples of importance include extreme

motions of floating bodies in steep waves and impact slamming, both of which



may have catastrophic consequences. Recent analytical and experimental work

of Longuet-Higgins (1986) have shown that capsizing of a floating object can

occur on passage of a single steep wave. Application of linear methods in such

situations yields results of questionable accuracy. Clearly, the fundamental as­

sumptions of the smallness of motions and wave steepnesses are violated to a

large degree. Motivation towards non-linear analyses is therefore well founded.

1.2.2 Non-linear Body-Wave Problems

The subject of water waves, with more than 150 years of history behind, is not

simple. An exact analytical description of the propagation of surface gravity

waves still remains a formidably difficult task. Several texts, e.g. Stoker (1966)

serve to illustrate the mathematical difficulties involved in solutions of non-linear

free surface motions even when additional justifiable approximations are made.

The complexity substantially compounds with the introduction of a body into

the wave field. It is instructive to remark here that surface waves and free

surface motions are intimately related. The definition provided by Wehausen

and Laitone (1960) which states that any motion o! a fluid with a free surface

in a gravitational force field can be called a wave motion is presumed to be

understood for the following discussion.

Major difficulties in non-linear free surface problems arise due to the highly

non-linear free surface conditions (eqns. (2.2) and (2.3) in §2). The domain

of interest is bounded by a continually changing unknown geometry (the free

surface) upon which the condition of constant pressure is applicable. Additional

non-Iinearities are posed by the body kinematic condition (eqn. (2.5) in §2)



which is to be met on the instantaneous body surface. Once again, the location

of the body at any instant presupposes a knowledge of its motion - an unknown

sought for in the solution. For problems in unbounded fluid domains, imposition

of radiation conditions (or its equivalent) is a source of further difficulties. For

non-linear problems, such conditions are either not known or are available in

forms that are difficult to apply (see Yeung 1982).

Without loss of generality, two broad divisions can be made with regard to

general solution methods for the body-wave problems under discussion: methods

based on perturbation solutions and direct numerical methods. It is recognized

that methods whose ultimate objective is to enable a quantitative evaluation of

the flow field and body responses, resort to numerical techniques at some level

is almost inevitable. The confusion in classification however disappears when

the division is meant to focus on the manner in which the governing equations

are tackled.

1.2.2.1 Methods of Perturbation S olutio n s

Solution methods constructed on systematic expansions, or matched asymp­

totic expansions, have an extensive background. The principles behind perturbation­

type solution techniques are relatively well known. For a treatment of such

methods in fluid dynamics problems, readers may refer to van Dyke (1964).

These techniques provide a recognized approach to consider non-linearities of

a system in a successive manner and are commonly employed in frequency do­

main analyses. In connection to wave theories, classical examples are provided

by Stokes higher order wave theories and shallow water non-linear theories, both

of which have undergone extensive sophistication and refinements in the recent



past. Analytical expansions for Stokian, cnoidal and solitary waves beyond the

limit at which theories become inapplicable are currently available, e.g. Schwartz

1974, Fenton 1972, 1979 (see also the recent reviews by Miles 1980 and Schwartz

and Fenton 1982). In contrast, parallel developments for body-wave interactions

have been less rapid. As already noted, introduction of a body into the fluid

raises the level of difficulty considerably. A number of second order terms emerge

upon appropriate expansions, some of which arise essentially from linear wave

effects. For example, Pinkster has identified upto five second order terms in

connection to studies of bodies responding in an irregular seaway, the sea being

essentially composed of small amplitude waves (Pinkster 1976, 1979). A theo­

retically rigorous solution method requires inclusion of all second order effects

for consistency in approximations. Confronted with the difficulty in incorporat­

ing all higher order terms in the solution while recognizing the importance of

some of the second order terms, researchers often develop models that consider

specific non-linear effects in an effort to partially account for non-linearities in

the system.

Non-linear diffraction solutions for the fundamental case of a bottom mounted

circular cylinder have received much attention fro~ Ocean Engineers. Exten­

sions of the linear diffraction solution of MacCamy and Fuchs (1954) upto sec­

ond order in a Stokian wave field are considered by Chakrabarti (1972, 1975),

Raman et al. (1976, 1977), Molin (1979), Hunt and Baddour (1981), Garri­

son (1984a), among others. Garrison's solution aims at the complete three­

dimensional radiation-diffraction problem. Analogous studies in cnoidal and

solitary waves are reported in Isaacson (1977, 1983a). Literature indicates con­

troversies over theoretical validities and merits of the various solutions. Al-
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though the underlying basic principles are similar, solutions differ in details and

lead to quantitatively inconsistent results. For more on this, interested readers

may refer to the reviews by Standing (1984) and Garrison (1984b), or consult

the text by Chakrabarti (1987).

A lucid exposition on fluids interacting with fixed offshore structures is pro-

vided by Lighthill (1979), succeeded by a later publication (Lighthill 1986).

Starting from fundamental principles of fluid behaviour, the author derives ex-

pressions for various components of fluid forces. In the context of non-linear

forces, some of his cautionary notes are worth mentioning here. Incorporation

of second order effects requires careful evaluation of the terms involved, and

consistency in expansions has important implications in this regard. In partie-

ular, the school of thought in which higher order wave theories are employed

in considering the incident wave field while a consistent order of expansion is

not accounted for in the diffraction effects is remarked to be not logically satis-

factory. Without properly (quantitatively) assessing the relative importance of

the second order effects, inclusion and/or omission of specific higher order terms

in the solution may lead to estimates of rather uncle.ar accuracies. Experimen­

tal evaluation of the specific second order effects is generally not a simple task

due to problems in separating them. Additionally, relative smallness of their

magnitudes makes accurate measurements difficult.

Subsequent to the publication of Lighthill's (1979) work, a number of stud-

ies appeared in literature reporting on computational methods to calculate

some or all of the non-linear effects (Debnath and Rahman 1981; Rahman and

Chakravartty 1981; Rahman 1984; Sabuncu and Goren 1985). In the process,

more generalizations of some of the terms are also reported (Demirbilek and
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in considering complicated geometric configurations. Additionally, a direct nu­

merical approach is often indispensible for many problems of practical interest

due to lack of appropriate analytical (closed-form) solutions. Depending on the

manner in which the basic equations are treated, three broad classifications can

be made: methods of finite differences, finite elements and integral equations.

Nevertheless, more outstanding methods are continuously emerging which ex­

ploit specific merits of each. An informative account of methods that have been

developed or applied to problems which have the free surface as a boundary can

be found in Yeung (1982), with an extensive list of references therein. Details

with regard to convergence, stability, accuracy etc. are important attributes to

the ultimate success of the specific models or their particular implementations.

Many of these methods are developed for general fluid dynamics problems to

which study of body-free surface interactions is one of the possible applications.

At present, the literature on computational fluid dynamics is eno rmous. To keep

the following discussion in perspective, it will be limited to those studies which

have direct relevance to the non-linear body-wave problems.

A forerunner of the methods which consider a body in a wave field is clearly

the numerical studies on steep waves themselves. In particular, these studies

aid in establishing numerical treatment of the highly non-linear free surface

conditions. Substantial progress has been made in studies of waves that are

steady in a time frame, complementary to the parallel progress in perturbation

based models. Beginning with Dean's numerical treatment of the free surface

conditions (Dean 1965), developments reported in Rienecker and Fenton (1981)

and Fenton and Rienecker (1982) are now believed to be more than adequate in

precision and versatility for engineering applications (Isaacson 1985).
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Studies for unsteady waves pose further problems in that the time depen­

dence can not be removed from the basic method of solution. Initial-value

formulations offer attractive means of solutions for problems of this class. The

generalized finite-difference methods for fluid flows , viz. MAC (Marker and Cell)

type algorithms (see e.g. Welch et al. 1966) in their successively refined and

sophisticated versions have been applied for simulation of a variety of unsteady

waves (e.g. Chan and Street 1970 , Chan 1975; Yen, Lee and Akai 1977). Other

similar studies include von Kerczek and Salvesen (1974) and Salvesen and von

Kerczek (1976). Finite element methods have also been applied for such studies

(see e.g. Betts and Asaat 1981; Wellford and Ganaba 1981; Toro and Caroll

1984; Toro 1986, Katopodes and Wu 1987).

The most successful studies of unsteady steep waves are perhaps those that

employ an integral relation formulation. These methods of simulation have

been pioneered by Longuet-Higgins and Cokelet (1976). Elegant in its simplic­

ity, their method modelled the propagation of unsteady steep waves, and sub­

sequently wave breaking was simulated. Complementary studies following the

same line of approach appeared subsequently. Three different techniques in the

formulation of the basic integral relation have so far been applied: application

of Cauchy's integral theorem (Vinje and co-workers 1981, 1982); distribution

of dipoles or vortices (Baker, Meiron and Orszag 1981, 1982); and application

of Green's second identity (New, McIver and Peregrine 1985). These formu­

lations have implications with regard to the efficiency of the algorithms and

other subtle computational differences. For example, the vortex method yields

a Fredholm's integral equation of the second .type for the unknowns, which has

superior features with respect to numerical solutions of the resulting system of
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linear equat ions. On t he oth er hand, th e formulation based on Green's second

identi ty can in principl e be extended to three dim ensions, and such exte nsions

are no t avail abl e through the formulation based on Cauchy 's integral theorem.

The simulation of highl y non-linear , steep breaking waves appears possible at

present. Nevertheless , investigations continue to be reported, either demon-

st ra t ing use of oth er techn iques, or improving efficiency, or making them more

amenable to specific applica tions (Alleney 1981 ; Kobayashi, Otta and Roy 1987 ;

Lu , Wang and Le Mehaute 1987 ).

Numerical studies when a body is introduced beneath or piercing the free

surface, following the use of finite-difference algorithms, e.g . modified versions

of MAC type algorithms , can be found in several studies (Nichols and Hirt

1973 , 1975 , 1977 ; Chan and Hirt 1974 ). Such finite-difference algorithms have

been applied for simulating flow around forward-moving ships in two- and three-

dimensions (Ohring and Telste 1977 ; Chan 1977; Chan and Chan 1980). Though

a relatively lar ger number of studies can be found in connection with ship­

maneuvering and wave-resistance problems via analogous (but sufficiently modi­

fied ) fini te-difference techniques (e.g. Bourianoff and Penumalli 1977 ; Bourianoff

1981 ; Miyata and Nishimura 1985; Miyata, Nishim~ra and Kajitani 1985 ; Miy­

ata, Nishimura and Masuko 1985; Chamberlain and Yen 1985), comparatively

sm aller number of studies have been attempted for the simulation of motions of

freely floating bodies, specially the non-linear ones. Some recent works in this

ca tegory include Telste (1985), and Wu and Yeung (1987), both of which deal

with non-linear forced oscillation problems in two dimensions. Methods of finite

eleme nts have apparent ly no t been applied for similar non-linear studies.

Most rec ent work s conce rni ng mo tions of freely floating bodies have fol-
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lowed from the integral equation approach , combined with time stepping of the

non-linear free surface conditions, originally employed by Longuet-Higgins and

Cokelet (1976) in studies of steep waves as already discussed. Faltinsen (1977)

considered forced heave motions of a two-dimensional circular cylinder as well as

a related problem of sloshing (Faltinsen 1978). Vinje and co-workers extended

their earlier works on breaking wave simulation (Vinje and Brevig 1981a) to

include submerged and surface-piercing bodies in the fluid (Vinje and Brevig

1981b; Brevig et al. 1982), and next attempted the problem of motions of float­

ing bodies (Vinje and Brevig 1981c; Vinje, Xie and Brevig 1982). Subsequently

the simulation of a capsizing of Salter's duck, an ocean energy extracting device,

was reported (Greenhow et al. 1982). For this latter study, experimental results

supplemented the numerical simulation. Following in large parts the techniques

of Vinje and co-workers with an important modification in consideration of the

body-free surface intersection point (discussed later, §1.2.2.2 (b)), Lin (1984)

simulated two-dimensional waves generated by a wave maker in a finite rect­

angular tank. This study was succeeded by an extension to consider forced

oscillation of ax i-syrnmetric three-dimensional cylinders (Lin, Newman and Vue

1984). Subsequently, Dommermuth and Vue (1986b, 1987) reconsidered the

three-dimensional axi-symmetric problem and were able to simulate large am­

plitude forced heave oscillation of cylinders and inverted cones in an otherwise

undisturbed free surface. Greenhow and co-workers also employed the approach

of Vinje and colleagues and applied the method for studying the two-dimensional

impact problem (Greenhow and Lin 1985; Greenhow 1987, 1988). In the pro-

cess, specific improvements and developments of the algorithm were made to

make it suitable for the particular application. Isaacson (1982, 1983b) reported
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on a similar method for studying the generalized two- and three-dimensional

fixed and floating body problems, although lack of computed results leaves his

method rather unconvincing.

Another line of ' in termedia te ' approach, in which the exact body kinematic

conditions are satisfied at the instantaneous location of the body surface, but the

free surface conditions are linearized, has been proposed by Chapman (1979),

and followed by Kim and Hwang (1986). These approaches, although compu-

tationally efficient, are restricted to their applications to problems where the

generated free surface elevations are small, and thus preclude consideration of

steep incident waves.

Prior to the development of any reliable algorithm for the complete problem

of motions of floating bodies, some specific problems remain to be resolved.

In particular, an appropriate numerical closure method, numerical treatment of

the contact point between the body and the free surface, and numerical stability

of the solution on the free surface, have received considerable attention in the

literature just cited, most of which ap~eared in this decade, some within past

three years. In view of the emphasis on details in :ecent research activities as

well as their connection to the work presented in this dissertation, discussion at

this point is directed to these specifics.

(a) Non-reflective Exterior Boundaries

For exterior free surface problems, a satisfactory treatment of the exterior

bou-ndaries is essential. Earlier analogous studies in which exterior boundaries

are replaced by walls (e.g. Chan and Street 1970) result in a prohibitively



17

large interior domain and are clearly undesirable for long time simulations. If

the physical problem under consideration is assumed to possess spatial peri­

odi city , this difficulty is easily resolved by exploiting the relatively well known

periodicity boundary conditions. The interior domain can be folded onto itself

and the exterior boundaries simply disappear from the numerical treatment.

This assumption was justified and used in the breaking wave simulations by

Longuet-Higgins and Cokelet (1976 ), and still remains popular for analogous

wave problems (e.g. Schultz et al. 1986; Calisal and Chan 1987). Presence of

an isolated body in the fluid however raises serious concerns regarding validity

of such periodicity conditions. Nevertheless, in earlier works that introduced a

body in the fluid, similar assumptions were retained (Vinje and Brevig 1981b,

1981c; Greenhow et al. 1982).

In Faltinsen's (1977) method, the exterior radiated waves are matched with

the non-linear inner solution by means of a simple Rankine dipole at the body's

centre. This procedure restricts the application of the method from simulations

extending over any reasonable length of time (i.e. several periods of oscilla­

tions), and was noted to be not satisfactory by the author. Isaacson's (1982,

1983b) assumption of no radiated and diffracted watVe effects at the truncation

boundaries is even more restrictive in that motions for only a fraction of a pe­

riod is achievable. To remove the periodicity assumption, in their later work,

Vinje et al. (1982) attempted to match the non-linear inner solution with a

linear outer solution in their two-dimensional formulation, but encountered con­

siderable difficulties. Following similar ideas, however, Dommermuth and Yue

(1987) were able to implement a matching across the fictitious outer (exterior)

boundaries and were able to continue simulations for sufficiently long periods
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in their three-dimen sional axi -symmetric computa tions (for example, about 10

period of steady st a te solu tions of the int erior fluid motion generated by forced

heave oscillations of cylinde rs could be achi eved ). Su ch a matching is permis­

sible in three dim en sions , since the radiated waves at tenuate inversely with the

radial dis tance and are the refore expecte d to be of small amplitude at sufficiently

large distances from the bo dy where the exterior boundaries can be placed. In

two dimensions, a similar closure is not te na ble be cause the non-linearities of

the outgoing waves per sist in t he ent ire exte rior domain. In linearized formula­

tions of the interior dom ain , an analogou s matching with the outer solution is

perfectly admissibl e and has been implemented earlier in a variety of two- and

three-dimensional free surface problems, both in frequency and time domain

analyses (see e.g. Ijima and Yoshida 1976 ; Finnigan and Yamamoto 1979 ; Lee

1985; Liu and Ligget 1979 ).

The importance of im plem enting a proper radiation boundary condition for

propagation of non-linear waves in unbounded domains is well documented in

literature. Requirements for equivalent conditions occur in variety of other ar­

eas su ch as acoustics and met eorology. A number of procedures have been

suggested : approximate 'absorbing' type conditions (Israeli and Orszag 1981 );

use of 's ponge' or 'viscous' layers (Chan 1975 ); methods derived from the well

known Sommerfeld's radiation condition (Sommerfeld 1949) , also known in the

form of Orlanski 's radiation condition (Orl anski 1976 ), etc. It is generally recog­

nized that in ab senc e of an alytically 'pe rfect' conditions , many of the efforts are

to construct 'workable' condit ions, spec ially in th e context to their numerical

implementations. Similar attemp ts cont inue(see e.g. Jensen 1987).
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(b) Body-Free Surface Intersection Point

A confluence of boundary conditions exists at the intersection of the body

and the free surface which in turn leads to numerical difficulties. Analytically

this is characterized by the presence of a weak type of singularity. For a vertical

translating wall, a logarithmic type of singularity in the velocity potential for

that point was known from linear analysis (Kravtchenko 1954). Existence of

an analogous singularity in three dimensions was subsequently identified (Miloh

1980). A perturbation solution predicts a logarithmic singularity for the free

surface elevation (TJ) at the intersection of an impulsively started horizontally

moving impermeable surface in water of depth d (as derived by D.H.Peregrine

in an unpublished note and reported in several references, e.g. Lin, Newman

and Vue 1984; Greenhow and Lin 1985):

..... (1.1)

where U denotes the start up (impulsive) velocity of the surface, x measures the

horizontal distance from the intersection and t denotes time. This behaviour has

been experimentally validated by Greenhow and Lin (!l983) and is believed to be

confirmed (see e.g. Evans and Newman 1987). Computationally the singularity

poses difficulties in the numerical method and may ruin the time domain simula-

tion scheme unless special care is taken. In earlier works of Vinje and colleagues,

the intersection was treated by specifying the body kinematic condition without

prescribing the free surface potential, which was determined via extrapolation

(Vinje and Brevig 1981c). As the authors note in their subsequent works, this

procedure was not entirely satisfactory, and experimental data had to be used to

fix the location of this point before acceptable results could be produced (Green-
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howet al. 1982). An extensive treatment of this region was considered later by

Lin (1984), and he was able to remove the associated difficulties, in a numerical

sense, by prescribing both the free surface and body kinematic conditions. Here

it is worth noting that a similar idea was followed by Ligget (1977) in an earlier

work, where two points were considered very close to the intersection point, one

on each part of the boundary, with respective boundary conditions prescribed

on them. Lin's approach, although strictly finite due to numerical discretiza­

tions, predicted the analytic singularity very closely. Such a numerical treatment

was noted to be very encouraging, and further experimental confirmations were

reported (Dommermuth and Yue 1986a). A similar idea was generalized and ex­

tended for the three-dimensional axi-symmetric problem in Dommermuth and

Yue(1987), where the authors provided numerical evidence of satisfactory treat­

ment of the intersection point (for example, the locus of the intersection point

for the forced heave oscillation of an inverted cone). Refinements following es­

sentially similar treatments for the specific application to impacting bodies were

subsequently considered by Greenhow (1987, 1988).

It must be noticed that the above treatment is purely numerical, and is more

concentrated on removing the associated numerical difficulties than on resolving

the flow in the immediate vicinity of the intersection in detail. Attempts for

analytical solutions have not been completely successful and inclusion of sur­

face tension or viscosity has not improved the situation (Lin 1984), but similar

attempts continue (Cointe, Jami and Molin 1987). Recently, Roberts (1987)

investigated the analytic nature of the transient unsteady flow near the contact

point between a vertical plate and the free surface. His solution, however, does

not appear to be easy to incorporate in the framework of numerical schemes.
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More information about this contact point has ,come from the numerical works of

Wu and Yeung (1987) in connection to their studies on two-dimensional forced

heave oscillations by finite-difference algorithms. It appears that the singular

behaviour of the potential is closely related to the local body geometry and its

mode of motion. For wall shaped bodies in heave, no singularity was observed

by them, while in sway mode (analogous to the translating wall case), the log­

arithmic singularity was reconfirmed. For the general case of a body free to

heave, sway and roll, the singular behaviour is therefore inevitable, regardless

of the body geometry.

An observation of important consequences is appropriate here. Numerical

experiments of Lin (1984) and Lin, Newman and Yue (1984) indicate that the

local behaviour of flow in the immediate neighbourhood of the intersection has

an insignificant effect on the rest of the fluid. The physical characteristics (e.g.

velocities, pressures) of the fluid slightly away from the intersection point ap­

parently remain uninfluenced even for a relatively cruder resolution of the flow

at that point. Further corroborative numerical evidence was reported by Green­

how and Lin (1985) and Greenhow (1987,1988) where the pressures and forces

on impacting cylinders were found to be practically unaffected by such cruder

resolutions. Therefore, although a scientific curiosity exists to examine in: detail

the analytical behaviour of the flow associated with such singularities, from the

point of view of studying global responses of the body (i.e. forces and motions),

a satisfactory numerical treatment appears sufficient.
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(c) Numerical Stability

Numerical stability considerations are critical enough to determine success

of any computational scheme, specially those for time domain simulations. In

the original works of Longuet-Higgins and Cokelet (1976), a 'sawtooth' instabil­

ity of the free surface was encountered, which was subsequently suppressed by

means of an artificial smoothing procedure. Later studies on steep wave simula­

tions have also reportedly suffered from similar instabilities. Characteristically

this instability appears in the form of oscillations of the free surface elevations

and potentials between adjacent nodal points, analogous to physical presence

of high frequency short length waves. In the earlier works, the inception and

growth of these undesired oscillations were thought to be physical in origin, but

later numerical studies strongly suggested their origin to be of purely numeri­

cal nature, specially since they always appeared between adjacent nodes with

frequencies determined by the temporal grid size (see e.g. Dommermuth and

Yue 1987). Their initiation is however not yet clearly understood, but they are

believed to be strongly dependent on the subtle numerical details of particu­

lar methods. For example, no such instability wa~ noticed in the method of

Vinje and co-workers (1981, 1982) based on Cauchy's integral theorem. How­

ever, using essentially similar integral relations, Baker et al. (1981, 1982) and

Lin et al. (1984) encountered instabilities and had to apply artificial smoothing

in order to advance their solution in time without breakdown. The instabil­

ity was found less pronounced when using a dipole distribution in contrast to

vortex methods (Baker et al. 1982). The problem appears to be closely linked

to the local steepness of free surface elevations. The solutions exhibit stronger

instabilities for larger gradients in elevations. Works have since then appeared
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addressing similar instability problems. Roberts (1983) investigated the prob­

lem using a Fourier spectral analyses and reported a modified scheme that was

found free from the instability. Dold and Peregrine (1986) employed special

integration techniques for the free surface conditions, improving on accuracy

in time integrations as well as reducing the instability considerably. Although

without complete elimination, they were able to keep the instability controlled

by a careful selection (reduction) of the time step size without having to re­

sort to any artificial smoothing. More recently, Dommermuth and Yue (1987)

reported on complete elimination of this problem by employing modified time

integration schemes (somewhat analogous to that of Dold and Peregrine 1986)

and regridding the free surface at every time step. The authors suggested that

the violation of local Courant condition is attributable to the initiation of this

instability. Since in all of the studies mentioned here, physical fluid particles

on the free surface are followed in time (fully Lagrangian description of the free

surface), the nodal points tend to concentrate in regions of large changes in lo­

cal elevations (e.g. near the crest, see Longuet Higgins and Coke let 1976) which

inevitably results in a violation of the local Courant condition. Such cluster­

ing of particles however has the beneficial feature ·in that they provide better

resolutions at regions of maximum interest.

Active current research towards improvements in stability characteristics can

be identified in the works of Schultz et al. (1986) and Han and Stansby (1987). In

particular, the former authors reported on improvements obtained by employing

least square solution techniques for the ,free surface. It appears that, although

different solutions suffer from it at varying degrees, some not exhibiting any

detectable growth, the problem of instability has not been completely eradicated.
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It should be noticed that regridding schemes also introduce artificial smoothing

effects in an indirect way (see e.g. Moore 1981) as Dommermuth and Vue (1987)

also note in their work.

1.2.3 Summarizing Remarks

The following general remarks summarize and conclude the above discussion:

(i) Approaches based on perturbation methods are noted for their suitabil-

ity in frequency domain analyses. A general perturbation solution method for

motions of floating bodies in non-linear waves, which encompasses a number

of subproblems including the usual non-linear diffraction and radiation prob-

lems, appears to be very complicated fr~m a theoretical standpoint. At present,

research is still being reported addressing some of the pertinent individual sub­

problems. These techniques are particularly useful for predicting some 'mild'

non-linear phenomena in body responses (Pawlowski 1987). However, for pre-

diction of strongly non-linear responses such as that of extreme motions, these

modes of analyses are impeded by their restricted applicability (see e.g. Pa­

panikolaou and Nowacki 1980).

(ii) In contrast, direct numerical methods appear to be more promising in

studies of steep waves and extreme body motions. Most recent research indi-

cates this direction, and activities in this regard have come mainly from meth-

ods based on integral relations. Suitability of finite-difference or finite element

methods can not be firmly assessed due to a comparatively smaller number of

reported studies. Although substantial progress has been made in general finite

difference based algorithms, specially in developments of 'boundary fitted' coor-
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dinate systems removing the earlier restrictions attached with irregular (curved)

body geometries and surfaces (see e.g. Haussling and Coleman 1977,1979), rela­

tively limited applications in studies of extreme motions in steep waves indicate

possibilities of algorithmic complications in these methods.

(iii) Satisfactory treatment of a number of component problems becomes de­

cisive for the ultimate success of a model. In particular, problems with regard to

the body and free surface intersection points, numerical stability considerations

and a satisfactory treatment of exterior boundaries are identified to require spe­

cial attention. Although very recent research has thrown light on these aspects

of numerical modelling and computations have been performed simulating non­

linear free surface motions in the presence of fixed or moving objects, numerical

simulations of motions of freely floating bodies in steep waves, the so called 'nu­

merical wave tank' studies for floating bodies, have not yet been reported. It

would appear that this 'complete' simulation awaits resolutions of some further

numerical difficulties.

1.3 Scope and Objective

1.3.1 Objective

The work presented in this dissertation is aimed towards development of a nu­

merical method for studies of the behaviour of floating bodies in steep incident

wave fields. The discussion in the preceding section is hoped to have provided

an overview of the present level of developments to this particular problem.

The rationale behind the choice of a direct numerical method rather than a

perturbation approach for the present modus operandi is apparent as well.
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Within the framework of direct numerical methods, two interrelated but

slightly different directions in which this task could proceed can be identified:

1. a detailed and rigorous study of some of the specific features that consti­

tute the complete simulation model, in order that a stronger foundations of

contributory components can be established (e.g. a more thorough study,

perhaps of analytical nature, on the behaviour of the body-free surface

contact point; attempts towards general solution algorithms for some sim­

pler free surface flow problems possessing superior stability characteristics,

etc.)

2. development of a full simulation model by using appropriate techniques to

deal with the specific difficulties as and when encountered in the process,

with due consideration to the specific attributes of stability, convergence

and accuracy.

The present task belongs to the latter category.

1.3.2 Scope

The problem considered is two-dimensional in a potential flow field. An integral

relation formulation is employed in which the integral relation is derived by

utilizing Green's second identity such as not to preclude future generalizations

to three dimensions. The solution is advanced in time by integrating appropriate

evolution equations and establishing boundary data at every time instant.

The method is first applied to study unsteady propagation of small amplitude

waves , followed by its application to simulate propagation of steep (non-linear)
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waves. Subsequently interaction of steep waves with fixed surface-piercing ob­

jects is studied, and finally simulation of extreme motions of freely floating

bodies is accomplished.

An experimental program was undertaken to validate the simulation method

thus developed. To achieve two-dimensionality of the flow, vertical boundaries

were constructed within a wave flume. The experimental object was of rectan­

gular cross section and was restricted to respond in selected modes of motions.

The numerical model developed differs in several aspects from the studies

available in literature. In particular, the method of following the free surface

is different (as discussed in §4). The manner in which an incident steep wave

is generated as well as the treatment of the exterior boundary are additional

features not readily identifiable in the reported studies.

This development follows the general direction for establishing a two dimen­

sional 'numerical wave tank' simulation model, analogous to aerodynamicist's

' digit al wind tunnel ' (Aref 1986). Computer codes are written in FORTRAN

language and the computing system of MUN consisting of DEC -VAX 8800 and

-VAX 8530 cluster is used. This work has utilized a:n estimated total CPU time

in excess of 2000 hrs. in the system mentioned. Due to the inherent developmen­

tal nature of the method, no special emphasis is placed on efficient structuring

of the software. However, care has been taken to ensure minimization of com­

putational efforts wherever possible.
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1.3.3 Outline of the Text

The text is arranged following the manner in which successive developments

were made. After providing the basic theoretical background and the numerical

discretization scheme in §2, the immediately following section (§3) ascertains

the effectiveness of the basic algorithm by choosing three examples of small

amplitude wave propagation as test cases. In the succeeding section (§4), the

non-linear problem is treated. Here the simulation of an unsteady steep prop­

agating wave is accomplished. This section also includes some computational

features that are developed to overcome the numerical difficulties encountered

in the process. In particular, techniques are developed to preserve stability

characteristics, and an outgoing wave condition is implemented. Supporting

computational results follow. In §5, a surface-piercing object, in the form of a

vertical wall, is introduced in the fluid. The choice of a wall is prompted be­

cause of availability of experimental and perturbation solutions for equivalent

interactions. Comparative results are presented. §6 considers the next step.

Development of the final numerical model for the motions of floating bodies in

waves, together with the necessary details, is reported here. Computational re­

sults demonstrating simulation of large motions in steep waves are presented. In

§7, the experimental verification program is discussed. The experimental setup,

its purpose and other necessary details are described here. Also included are

some sample experimental results. The objective of the penultimate section (§8)

is to compare the numerical and experimental results. Finally, the concluding

section (§9) contains summary and conclusions. Appendix A provides details

of the finite-difference and numerical integration formulae utilized, while details

with regard to the estimation of roll viscous damping coefficients are discussed in



29

Appendix B. A majority of the comparative experimental and numerical results,

not provided in the main text for brevity, are included in Appendix C.
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aDS

o

Figure 2.1 Definition diagram.
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condition

and the dynamic condition

aT] _~_~!!!l
at - az axax

..... (2.2)

..... (2.3)

where T] denotes free surface elevations, 9 denotes gravitational acceleration and

\l represents the gradient operator: \l = a/ax; Pa is the applied (external,

including atmospheric) pressure on the free surface and p signifies fluid density.

Following usual practice, Pa is set equal to 0 in the sequel.

The condition applied on aDD is that of impermeability:

~¢>=oan
.....(2.4)

where a/an = n· a/ax, in which n designates the unit normal vector on aD

directed outwards of 'D.

The condition applicable on the wetted body surface aDB is the kinematic

condition:

..... (2.5)

where Vn is the velocity component of aDB along its inward normal (outwards

to 'D). For bodies fixed in space, (2.5) becomes identical with (2.4).

Conditions on the control boundaries oDC 1 and aDc2 are not explicitly

stated at the moment, but are assumed to exist in such a form that either

¢> or a¢>/an are determinable at all time instants t ~ O. The imposed conditions

are clarified later, in connection with the specific applications.

henceforth for simplicity either none or only the applicable dependence will be indicated .
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2.2 Integral Relation and Its Discretization

2. 2 .1 The I nt egral R elat ion

Application of Gr een 's second identity to c/J and the fundamental singularity

In rep, Q) in 1) results in the following well known integral relation (Ke llog 1929):

fa
a a

n (p )c/J(p ) = [c/J( Q) -a -lnr(P,Q )--a- c/J(Q )lnr(P,Q )]dS
eo n (Q ) n (Q)

..... (2.6)

with Q located on aD . Here rep , Q) = Ix(P) - x (Q)I, wh ich is the dist ance

betwe en the points P an d Q ; the subscript in aj an indicates the point at which

the differentiation is taken; n( P ) = 0 or 2" respectively for P inside or outside

1), but not on Bl), For P on aD, n( p) is the angle subte nde d by t he ta ngents to

aD , measured from inside 1), and equals" when the no rmal to aD is continuous

at P.

Formula (2.6 ) expresses the potential at any point P by means of a mixed

distribution of simple sources of strengths -ac/J(Q)jan and no rmal dipo les of

moments c/J(Q) on aD. When P is taken on Bl) , ( ~: 6 ) is a Fredholm 's integral

equation of the second kind for unknown c/J( P ) and of the first kind for un known

ac/J (P)jan. For problems for which alternatively Dirichlet and Neumann condi­

tions (i.e. c/J and ac/Jjan respectively ) are imposed on parts of the boundary, a

set of coupled integral equations results. For problems which can be formulated

in terms of an int egral relation of the second kind for the unknown, advantages

in computations can be derived sinc e for such equations a global Neumann series

exists whi ch admits a simple iterative solution at reduced computer time and

storage requirements (Baker et al. 1982 ). This advantage is lost for the coupled
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set of equations. It is noticed that relation (2.6) is valid at any time instant. For

solutions advancing in time, this relation is utilized at every consecutive time

step.

2.2.2 Discretization

For convenience as well as to retain generality in the discretization scheme, it is

assumed that oD consists of N s piece-wise smooth parts:

..... (2.7)

Relation (2.6) can then be written as

D(P)¢>(P) - ~ r [¢>(Q)~lnr(P,Q) ~ ~¢>(Q)lnr(P,Q)]dS = 0
k=l J8D k un(Q) un(Q)

..... (2.8)

Surfaces oDk are further subdivided into a finite number of segments, approxi-

mated as straight lines:
,wOk

eo, = LOS;
;=1

..... (2.9)

and a collocation point Q7 is chosen on each of t~e segments oSt. Here the

superscript indicates a particular part of the boundary in consideration and Mv

denotes the number of segments in which the kth boundary contour is subdi­

vided. An illustration of the above discretization is shown in Figure 2.2.

The variations of ¢> and o¢>/on over oD are now approximated by a con­

stant value of these over each segment oS;, the values being determined at the

corresponding collocation points Q7. Following usual practice, the collocation

points are placed at the centre of each segment. However, for future reference

we remark here that in principle Q7 need not be located centrally in OSt.
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Figure 2.2 Discretization of aD.

Figure 2.3 Illustration of a domain with N s = 4.
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the free surface are different (Neumann condition on the body boundary and

Dirichlet condition on the free surface). In this respect , the central collocation

discretization scheme adopted here is the most straightforward for numerical

implementation. In particular, the following benefit are derivable from its ap-

plication:

(a) The necessity of explicitly prescribing any boundary data at the intersection

point is avoided, which is computationaly advantageous for treatment of

the body-free surface contact point (recall the discussion in §1.2.2.2 (b)).

It may be noticed that the method is essentially collocative, implying

relation (2 .6), within the approximations of the boundary geometry and

the variations of boundary data, is satisfied only at a finite number of

collocation points. Therefore, not considering any particular point as a

collocation point in principle does not invalidate the application of the

method.

(b) Lower order b.e.m. are expected to possess better stability characteristics

of the solution. Successively higher order applications of the b.e.m., al­

though recognized to represent improvements fn the discretization scheme

leading to better resolution with lesser number of segments (see Hess 1975;

Breit, Newman and Sclavounos 1985), are known to be more susceptible

to numerical instability (see Schultz 1987) which is a major concern in the

present application.

In addition to the above, another, perhaps not so objective reason, which

prompted the present choice is the belief that a 'workable' model can be built up

on this simplest discretization scheme for the final task in question (namely, sim-
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ulation of large motions of floating bodies in st eep waves ), since it is conjectured

that many of the anticipated problems to be encountered may not necessarily

be remedied by applying more refined and sophist icat ed discretization schemes.

Su ch refinements can, in principle, be incorporated la t ter.

In forming eqns. (2.10 ), it is convenient to number the collocation points

sequentially : 1 to 1111 for oDl , (M 1 + 1) to (M 1 +M2 ) for oD2 , etc. Eqns.

(2.10) contain 2N dis crete values of t he boundary data, N values of </Jand an

addit ional N values of o </J /on . Therefore, if any AI values of </J and the (N-l\Jf)

values of o</J/on are known (AI ~ N) , one boundary data at each collocation

point , th en the remaining unknowns , (N- M) values of </Jand M values of o</J/on

can be de termined from a sui table rearrangement of (2.10.) and then solving

the resulting system of N linear algebraic equations by any standard method

of solution (e.g. direct matrix inversion, Gaussian elimination technique, etc. ).

For illustration, consider the domain with N s = 4 depicted in Figure 2.3 and

ass ume that on oDl and oD2 , </J is known while on oD3 and oD4 , o </J/on is

known. The system of equations becomes

[

G 8D l ,8D l G 8Dl ,8D 2

G 8D 2,8Dl G 8D2,8D2
G 8 D3,8D l G 8D3,8D2
G 8D4,8D l G 8D4,8D2

H 8Dl ,8D 3

H 8D2,8D3
H 8D3,8D3
H 8D4,8D3

[

H 8D I ,8DI . H 8Dl ,8D 2 G 8D l ,8D 3 G 8DI ,8D4] { ( </J ) 8D I }
H 8 D2,8D l H 8D2,8D2 G 8D2,8D3 G 8D2,8D4 (</J)8D2
H 8 D3,8D l H 8D3,8D2 G 8D3,8D3 G 8D3,8D4 (o</J / o n)8 D3
H 8 D4,8D l H 8D4,8D2 G 8D4,8D3 G 8D4 ,8D4 (o </J/on)8D4

.. ... (2.12 )

to be solved for the unk nown s. The elem ent s of the above matrices represent
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subm at r ices of influence coeffici en ts:

where i and j run for
n - l n

i = E Mk +1"", E Mk
k=l k=l
m- l m

j = E Mk+1 ,"· ,E .Nh
k=l k=l

..... (2.13(a))

..... (2.13(b) )

... ..(2.13(c))

except for n = 1 and m = 1, for which the fir st terms on the r.h.s. of (2.13( b))

and (2.13( c)) are to be taken as 1.

The influence coefficients dep end onl y on the geometry of the boundary con­

to ur and can be determined explicitly (see e.g. Faltinsen 1978 ) for the pr esent

ty pe of st raigh t line segments. These are given belo~ in a form convenient for

com pu te r implem entation:

A i ,j = ;{a2In (b2 + a~ ) - 2a2 + 2barct an T
-alln(b2 + ai ) + 2al - 2b arctan ¥} ..... (2.14(a) )

B i ,j 1 for i = j

n X j b2 + a~ a 2 al
- --;- {ax In b2 + ai - 2az (ar ct an b - arctan b )}

n Zj b2 + a~ ') a2 al+--:;- {a, In b
2
+ ai + _ax ( arctan b - arctan b )}

whe re ,

for i =J j ..... (2.14(b ))

{ ( X i - Xlj)(Z2j - Zlj) - (Zi - Zlj)(X2j - X lj )} / 6.f.j

al -{(Xi - X lj)(X2j - X lj) + (Zi - Zlj)(Z2j - Zlj )} / 6.f.j

a2 - { ( X i - X2j)(X2j - X lj) + (Z i - Z2j)(Z2j - Zlj)} / 6.f.j

.. ... (2.14( c))
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boundary data for the next time level. In par ti cular, appropriate evolu tion

equations for the free surface, deduced from (2.2) and (2.3), are integrated in

time to det ermine the updated free surface contour (i.e. the configuration of

ODF for th e advanced time level ) and the valu es of ¢ on thi s updated boundary.

On the body, o¢/on on ODB is related to the body velocity by virtue of (2.5),

which in turn is rela ted to ¢ th roug h the equat ions of motion (to be discussed in

detail in §6). For t he momen t , we assume that o¢/on on ODB is determinable at

all time instants. The boundary contour aDas well as the boundary data for the

advanced time level are now established and the solution process can be repeated.

¢ at any desired location in TJ can be calculated from a discretized form of

relation (2.6). Other information, e.g. fluid velocity and pressure are easily

calculable from ¢ by utilizing Bernoulli 's equat ion and employing numerical

difference techniques in space and tim e. Evolution of the free surface and the

motion of the body, which constitute necessary information for advancing the

solution in time, are extracted as the simulation proceeds.

The system of linear equations to be solved for the unknowns (d. eqn. (2.10))

in general corresponds to a full coefficient ma trix and thus benefits admissible

in solutions of matrices with special features (e.g. banded matrix, triangular

matrix) are not available. In the present algorithm, a standard IMSL (abbrevi-

ation for International Mathematical and Statistical Library) routine is utilized

which employs a Gaussian elimination technique for matrix inversion (see e.g.

Fors ythe and Moler 1967 ).

The evolut ion equations for the free surface can be cast in the following

general form :
dydi = f(y ,t) .. .. .(2.15)
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In the present algorithm, a fourth order implicit Adams-Bashforth-Moulton

scheme is adopted and is found to be convergent for all required integrations.

To achieve an accuracy of 0(10-4
) , usually not more than one corrector step is

found necessary in most cases. This scheme requires information at the preced­

ing four steps. In the initiation of the solution, the first three steps are therefore

treated by means of successively lower order schemes with higher number of

iterations (see Appendix A.l).

A variety of other schemes exists for integration of the equations of the form

(2.15), e.g. Runge-Kutta schemes, Hamming's method, etc. 4th order Runge­

Kutta starters are popular for analogous initial-value problems (e.g. Faltinsen

1977; Longuet-Higgins and Cokelet 1976, Dommermuth and Yue 1987). How­

ever, the starter scheme employed here is found adequate for the applications

considered. Limited numerical experiments with other schemes have also been

performed and the algorithm is found insensitive to the choice of any particular

scheme. Further remarks on this are deferred till the relevant applications are

discussed but it is to be noted that the number of iteration levels to achieve a

desired degree of accuracy dictates the bulk of the computation time, since the

system of linear equations must be solved at every iteration level.

The bottom condition (2.4) permits exclusion of ODD from the contour of

integration in the integrand in (2.6) if ODD is horizontal (see e.g. Wehausen and

Laitone 1960). This can be achieved by augmenting the fundamental singularity

with its symmetric image with respect to ODD. Thus when the sea bottom is a

flat surface at a depth d, In r(P, Q) in (2.6) is replaced by [In r(P, Q)+ln r(P, Q')]

and ODD is discarded from oD. Here Q' is the symmetric image of Q on ODD.

This results in a reduction in the system of linear equations in (2.10) by the
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number of segments used in discretizing aDD. For example, referring to Figure

2.3 and taking aD 3 as the horizontal bottom, the third rows and columns of the

matrices in (2.12) along with the corresponding rows of the associated vectors

are simply deleted. The influence coefficients in this case contain additional

integrations over the image segments:

..... (2.16(a))

s.,

Ai,j ~ r In IXi - x ·ldS + ~ r In IXi - x/ ·ldS
tt lss, J 7f iss; J

1 is a 1 is a IOi,' - - -In IXi - x·ldS + - .-In IXi - x ·ldS
J tt ss an' J 7f ss: an' J

J J J J ..... (2.16(b))

where the primes denote the respective variables for the image panel. The

image panel has the end coordinates : (x~j' Z~j) = (Xlj, Zlj - 2d) and (x~j' Z~j) =

(X2j, Z2j - 2d). For evaluation of the integrands over oSi in (2.16), relations

(2.14) apply with (Xlj, Zlj), (X2j, Z2j) replaced by (x~j' Z~j)' (x~j' z~J.
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3 Linear Free Surface Flow Problems

3.1 General Considerations

A simple means of testing the effectiveness and reliability of the algorithm is

to apply it to problems involving small amplitude free surface elevations. The

use of relation (2.6) for free surface flow problems is not new. It is believed to

have been first proposed by Yeung (1973) for hydrodynamic problems and was

subsequently applied to studies involving linear free surface motions (e.g. Bai

and Yeung 1974; Sahin and Magnuson 1984) in the frequency domain. How­

ever, its application for time domain simulations, where it is used at every time

step to obtain information for the next level of computation, requires a more

careful assessment. In particular, possible degeneration of the solution due to

accumulation of numerical errors must be investigated prior to developing any

reliable algorithm for studies of complex, realistic problems. Convergence of

the numerical solution is not equivalent to accuracy. Converged solutions can

indeed produce results far from the desired solution (see the recent article by

Aref 1986). To this end, the simulation of propagation of small amplitude waves

provides an excellent means of examining the basic solution algorithm because

of two different reasons: the permissible linearization of the free surface condi­

tions aids in focussing on the algorithm in its simplest form, thereby reducing

the possible sources of contamination of the solution; secondly, solutions of lin­

earized flows are usually available in closed form, thereby permitting an exact

basis for comparison.

Upon applying the usual approximation associated with small amplitude

waves, the free surface conditions (2.2) and (2.3) take the following linearized
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forms:

~_0t
8t - 8z

84>fit = -g7]

to be applied on the undisturbed free surface z = o.

..... (3.1)

..... (3.2)

For the applications considered in this section, the fluid domain is represented

by the rectangular area depicted in Figure 3.1. The bottom surface is taken

to be at a constant depth d , and the advantage of eliminating this part of

the boundary is utilized. The free surface part of the boundary on which the

integrand in (2.6) is to be evaluated remains undisturbed at all time instants,

and 8/8n = 8/8z on 8D F. The entire boundary 8D is therefore independent of

time. Consequently, the elements of the matrices in (2.12) (or a similar system

of equations) remain unchanged with time. A significant saving in computer

time can be realized by evaluating, inverting and saving the coefficient matrix

once for all. The remaining operations are then simple matrix multiplications.

3.2 Specific Applications

At the outset, the following symbols are introduced: .6.x denotes the length of

the segments (or the spatial grid size), suffixed appropriately to indicate the

parts of 8D on which they are chosen, viz . .6.xF,.6.XCl,.6.XC2 are the segment

sizes on 8D F, 8Dcl and 8D c2 respectively. The time step size is denoted by .6.t.

The spatial grid sizes are kept constant on each part of the boundary, and .6.t

is constant over the entire time of simulation. Nt represents the time step level

of computation: N, = t] .6.t. The distance between the control boundaries 8D cl

and 8D c2 , i.e. the horizontal extent of the free surface, is denoted by L.
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Figure 3.1 The rectangular fluid domain
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Most of the following computed results are presented in terms. of the free

surface elevation TJ(x, t) and the distribution of ¢ on aDF .

3.2.1 Simulation of Airy Waves

As a test case, the method is first applied to simulate the propagation of steady

Airy waves in the control domain. The initial values of the potential on the

undisturbed free surface Z = 0 are specified according to the Airy potential:

"'( ) _ HA cosh[27l"(z+ d)/A] . ~( _ )
'I' X, t - 2T sinh 27l"d/A sin A x ct

with t = O. This corresponds to an Airy wave of height H, length A and period

T, progressing in the positive x direction with celerity c. The value of a¢/an at

any point Q on aDcan be determined from:

7l"Hcosh[27l"(z+d)/A] 27l"( )
nx(Q) T sinh(27l"d/ A) cos T x - ct

7l"H sinh[27l"(z + d)/ A] . 27l"
+nz(Q) T sinh(27l"d/ A) sin T(x - ct) ..... (3.4)

where (nx(Q), nZ(Q)) denote components of the outward unit normal at Q in the

suffixed directions. For aDcl and aD c2, these are (-),0) and (1,0) respectively.

For the following simulations, either ¢ or a¢/an computed from (3.3) or (3.4)

respectively are provided on the control boundaries.

Figures 3.2 (a) and (b) show the computed free surface elevations and po­

tential distribution on aDF , normalized with respect to Hand (HA/2T) re­

spectively, at three time instants: tiT = 1.0, 2.5 and 4.0. For this simula-

tion, L / A = 1 and water depth is, d = A. The discretization parameters are

6.xF = A/20 and 6.t = T /40. The grid sizes on the other boundaries are kept

the same as on the free surface: 6.XCl,6.XC2 = 6.xF. Dirichlet conditions are
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49

imposed on the control boundaries, i.e. the values of <p are specified on oDcl

and oDc2 at all time instants, which are determined from the Airy potential

(eqn. (3.3)). The theoretical free surface profile for an Airy wave, given by

T/(X, t) = H cos T(x -ct) ..... (3.5)

and the potential calculated from (3.3) are also plotted for comparison. The

agreement is evidently very good.

For the results shown in Figures 3.3 (a) and (b), all parameters (size of 6x,

6t and conditions on oD cl and oDc2) are retained the same except that the

control domain is stretched to L = 4'\ and water depth is reduced to d = 0.5'\.

As can be seen, curves at tiT = 4.0 are practically indistinguishable from the

corresponding theoretical curves.

Results shown in Figures 3.4 (a) and (b) are achieved by specifying different

conditions on the control boundaries, Dirichlet condition on oDc l and Neumann

condition on oD c2. The control domain extends over L = ,\ and water depth

is only d = 0.25'\. The temporal and spatial grid sizes are the same as in the

above examples. Results are presented at the same.time instant of tiT = 4.0

and compared with theoretical results. Good agreement is once more evident.

In Figures 3.5 (a) and (b), the free surface elevations are shown for a simu­

lation where Neumann conditions are imposed on both the control boundaries.

Here the control domain is relatively long, L = 7'\, and water has a depth of

d = 0.4,\. Other parameters are: 6XF,6xCl,6xC2 = ,\/25 and 6t = T/40.

The plot showing evolution of the free surface in time at the center of 1) is also

included. The comparison with theoretical free surface contours clearly demon­

strate that the present method is capable of following the wave motion with
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acceptable degree of precision over long periods of simulation time.

Computations were also performed for a wide variety of combination of the

spatial and temporal grid sizes, for different values of Lj>" and dj >.., and for

different initial distributions of the free surface potential (i.e. initial values of 4>

on aDF given by (3.3) with values of t different than 0). In all computations,

the quality of agreement between the numerical and theoretical results is similar

to the presented examples. The numerical solution does not appear to exhibit

any discernible evidence of degeneration even after reasonably long periods of

simulation (for example, after 400 time steps or up to 10 wave periods).

3.2.2 Unsteady Wave Propagation

The method is now applied to simulate propagation of unsteady waves. This is

achieved by specifying a potential on one of the control boundaries. The fluid in

D is initially at rest with z = 0 as the initial contour of aDF . The potential given

by (3.3) corresponding to an Airy wave propagating in the positive x direction

is applied on aDc l at all time instants. This simulation is therefore that of an

unsteady wave propagation in the sense that a disturbance is provided at one

end of the control domain to excite fluid motion in an initially unperturbed fluid

in D. The initial values of the potential on aDF and aDc l are: 4>(x,t) = O. For

this simulation, the boundaries aDc l and aDc2 can be referred to as upstream

and downstream boundaries respectively.

The simulation attempted as described above was not successful due to a

numerical instability initiating at the origin (at aDc l naDF) and slowly spread­

ing over the entire domain. Although this instability is of a weak type in the
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sense that the solution can still be progressed, the free surface contour shows

undesired 'zigzag' patterns and eventually diverges from the desired Airy wave

profile. A typical computational wave profile is shown in Figure 3.6 where this

unwanted behaviour is evident. By the time oft = 4T, the entire solution is con-

taminated. Investigation to the cause of this instability reveals that the problem

is associated with an incompatibility of the imposed initial conditions, which is

now discussed.

3.2.2.1 Initial Boundary Data

The initially unperturbed state of fluid in 'D indicates that ¢(x, t)!t=o = 0

in the entire of'D, including oD (the value of ¢ could strictly be any constant,

but it is convenient to make this constant 0 by redefining ¢, see e.g. Lamb

1945). What is not so apparent is the requirement of o¢(x, t)/Oilt=o = 0 to

be maintained simultaneously. Examining eqns. (2.3), it can be noted that

T/(X, t)!t=o= 0 and ¢ = 0 imply o¢/otlt=o = 0 on oDF. It follows that o¢/ot on

oD C I must have a zero value at t = 0 for compatibility of the initial boundary

data, in particular at the intersection of oDC I and oDF. The potential given by

(3.3) maintains ¢(x, t)lt=o= 0 on oD C I , but o¢(x, t)/Oi!t=o has a finite value.

In the present formulation, the excitation potential is modified by introducing

a modulation function M(t):

¢*(t)=M(t)¢(t)

with

M(t) = { ~.5(1 - cos(7rt/a)) t<a
t~a

..... (3.6)

... ..(3.7)
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This function has the property that M(t)lt=o =:: 0 and oJvI(t)/ot lt=o = O. There-

fore , regardless of th e form of rP on oD C l , the initial values of rP and orP/ot are

guaranteed to be zero by virtue of (3.6) and (3 .8) below:

orP*(t) = l\;I (t )orP(t) -+- oM(t )rP(t)
ot ot ot

..... (3.8)

The time span over which the excitation potential is modulated can be controlled

by selecting an appropriate a.

It is of some interest to comment on the physical interpretation of the above

compatibility requirement. From Bernoulli's equation:

o 1 orP 2
p(x, t) = -pgz - PairP(x, t) - 2P(-a~) . ..... (3.9)

a non-zero value of orP/ot indicates existence of a finite dynamic pressure in

the fluid. Clearly, a finite value of orP/at on oDC l at t = 0 implies an abrupt

or impulsive application of pressure on this boundary. Large fluid motions on

the free surface near the intersection are then an expected consequences. Other

forms of M(t) have been attempted (e.g. M(t) = 1 - exp( -at) or M(t) =

cos( 1rt/ a) in which the growth of rP values are compar?,tively more gradual during

the initial period, but orP/at has a nonzero initial value, and M(t) = sin(1rt/a)

in conjunction with a cos function for rP in the l.h.s. of (3.3), which enforces

orP/ot to be zero at the expense of nonzero rP at t = 0 ), but were found to

produce similar numerical instabilities of varying severity (usually less severe).

It is therefore important that both rP and orP/at have zero initial values.

Recent studies on the wave-maker problem (Cointe, J ami and Molin 1987) in­

dicate that the impulsive wave-maker problem does not admit a unique solution

unless proper account is taken for the transient period in which the wave-maker
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motion grows from zero to a finite value. The present simulation is analogous to

the wave-maker problem in that in the latter the Neumann condition is posed

on the wave-maker according to its prescribed motion (st udied in the sequel,

§3.2.3). The present experience of a numerically ill behaved solution when zero

values of </J and o</J/8t at t = 0 are not imposed, which is equivalent to the

application of an impulsive pressure on this boundary, appears to confirm the

results of the analytical study. When (3.6) is applied with a finite value of <7 in

M(t) given by (3.7), the associated difficulty disappears. As a demonstration,

in Figures 3.7 (a) - (d), the free surface elevations are shown for values of <7/T

= 0, 0.5, 1.0 and 2.0. Here a discretization of f;j.xF = >./40 and f;j.t = T /80 is

utilized. Note that <7/T = 0 corresponds to the absence of modulation of t he

applied potential, i.e. to the application of the impulsive pressure (this plot was

already shown in Figure 3.6, but is reproduced once more for convenience of

comparison). The progressive reduction in the 'zigzag ' patterns with increasing

values of <7 is evident. For <7/T = 1.0 , a careful inspection reveals still some

existence of the undesired behaviour (see the profile at tiT = 2.0). With further

increase of <7/T to 2, the wave begins to evolve smoothly.

3.2.2.2 Computed Results

Computed results in terms of the free surface elevations are shown in Figures

3.8 and 3.9. For these computations, the downstream boundary is placed at a

distance of 2>' from the upstream boundary. The discretization parameters are:

f;j.xF = >./24 and f;j.t/T = 1/36, where>. and T refer to the length and period

of the excitation wave. T he downstream boundary is considered to be a rigid

wall , thus the condition posed on 8D c 2 is 8</J(t )/8n = 0 at all time instants.
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Figure 3.8 Free surface elevations of an unsteady smallam plitude wave progress­
ing in to an ini tially undisturded fluid region ; LI>" = 2, dl>" = 0.5, 6.xFI>.. = 1/24
and 6.tlT = 1/36; the downstream boundary is a wall.
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The water has a dep th of d = 0.5>', and the excitation potential is modulated

over 2T , i.e. alT = 2. The wave is ob serv ed to form gradually, subsequently

it grows and propagates along the po siti ve x axis. At about t iT = 3, the wave

begins to reflect from 8D c2' and at tiT = 6, almost full reflection takes place

at tha t boundary , indicat ed by the grow th of the free surface elevation. Linear

theory pr edi cts a m agnifi ca tion of the wave amplit ude by a factor of two for

full reflection on 8D c2 (i.e. TlIH = 1) , and the present results show a closely

com parable factor, at the last collocat ion point the corresponding numerical

value of Til H is 0.985 . Figure 3.9 shows plots of the free surface elevations

at four sta t ions sit uat ed at x = 0.26>',0.50>' ,0.74>' and 0.98>', together with

the theoretical Air y wave profiles com pu ted from (3.5) at the corresponding

periods . For comparativ e purposes , the Air y wave profiles are also modulated

by the same modulation fun ction. It is clear that for tiT::; 5, the reflected waves

do not reach th e location xl >' = 0.98. At locations xl >' = 0.24 and 0.50 , more

than two wave periods of steady state results are achieved . The comparisons

with theoretical pr ofiles before reflected waves contaminate the profile are very

encouraging. These resul ts demonstrate that reasonably long periods of steady

state results can be achieved in a region closer to t he upstream boundary by

sh ift ing the downs t ream boundary further down str eam.

In order to further investi gate on the effect conditions imposed on the down­

st ream boundar y have upon the in terior solut ion, com put a t ions are performed

with the condit ion ¢(t) = 0 pr escribed on 8D c2. This condition physically im­

plies that the ta nge nt ia l veloci ty at th e down stream boundary is zero at all times,

in contrast to a zero norm al velocity wh en 8D c2 is a wall , and is appropriate

in the limi t of high fre quency waves (such condit ions are usually applicable in
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studies of flow due to earthquake (Garrison and Berklite 1972), impacting bodies

on the free surface (Geers 1982 ; Troesch and Kang 1986 ). Figure 3.10 compares

the free surface contours obtained for the two imposed conditions of </J = 0 and

o</Jlon = 0 on oDc2. In the region 0 :S x :S A, the profiles differ negligibly

until about tiT :S 5. Clearly, waves reflected from oDc2 have not yet reached

this region. This indicates that reasonably accurate results upto few periods

of steady state can be achieved in parts of the fluid closer to the downstream

boundary, if the control domain is suitably large, irrespective of whether a wall

condition or a zero potential condition is applied at the downstream boundary.

3.2.3 The Wave-Maker Problem

This application relates to the wave-maker problem. A piston type wave-maker

is undergoing a horizontal sinusoidal motion:

~ = scos 2;t ..... (3.10)

at one end of the control domain, with period T and half-stroke s. The mean

position of the wave-maker coincides with aDc l . The boundary condition for

the wave-maker is applicable at its mean position, 'consisten t with linear the-

ory approximations. For the simulation, the condition prescribed on oDc l is

therefore

?1= ~s sin 27rt
On T T

.. ...(3.11)

Observe that the wave-maker has a zero initial velocity. Nevertheless, earlier

remarks concerning the compatibility of initial boundary data apply, and it is

found necessary to modulate the velocity by the same modulation function (3.7):

O</J*(t)=M(t)O</J(t)
On On

.. ... (3.12)
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Results are shown in terms of the free surface elevations. The control domain

chosen is relatively large. The downstream boundary is located at a distance 4.\

from the wave-maker and is taken as an impermeable wall with the condition

o¢J(t)lon = 0 prescribed on it. The water has a depth of d = 0.5.\. Here X

represents the length of an equivalent Airy wave of period T in water depth

d. Relatively coarse discretizations (compared to the preceding examples) of

.6.xF, .6.xCl, .6.XC2 = .\/15 and .6.t = T 124 are used, and (J'IT = 2. Figure 3.11

shows the space plots of the free surface elevations at times tiT = 3.0,4.0, 5.0

and 6.0, while the time-evolutions at locations xl.\ = 0.5,1.0 and 1.5 are shown

in Figure 3.12. Generation of a wave is evident. The generated wave eventually

exhibits a steady state periodic behaviour with period T. The gain function for

this type of wave-maker, according to linear theory, is given by (Biesel 1951)

a 2sinh2(kd)

kd + sinh(kd) cosh(kd)
. .....(3.13)

with a denoting the amplitude of the generated wave and k = wave number

= 21rI.\. This expression yields a value of ale = 1.9468, while the present

simulation has the corresponding value of a]» = 1.95 (the numerical value is

evaluated by averaging the elevations at crests and tr~>ughs after the wave reaches

a steady state). The difference is less than 0.2%.

For a single flap type wave-maker hinged at depth d, the wave-maker motion

is given by

~(z) = 8(1 + ~) cos 2;t ..... (3 .14)

from which the normal component of the wave-maker velocity, applicable at its

mean position, is deduced as

..... (3.15)
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Figure 3.12 Evolution of the free surface in time corresponding to the plots in
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This condition is imposed on oDC I ' together with a/T = 2, to achieve the results

presented in Figures 3.13 and 3.14. Other parameters are retained the same as

in the application of the piston type above. Free surface elevations at times t /T

= 3.0 , 4.0 , 5.0 and 6.0 are plotted in Figure 3.13 , while Figure 3.14 shows time

evolutions at three locations x /..\ = 0.5, 1.0 and 1.5. Once again, formation

of a wave exhibiting a steady state behaviour with period T is apparent. The

appropriate gain function for this case, given by (Biesel 1951)

a 2sinh(kd) [1- cosh(kd) + kdsinh(kd)]
kd [kd + sinh(kd) cosh(kd)]

..... (3.16)

produces a valu e of a/s = 1.3785 . In comparison, the simulated wave has a gain

function of a/s = 1.39 , a value not more than 1% in error.

3.3 Discussion and Summarizing Remarks

The presented results demonstrate the robustness of the numerical time domain

simulation scheme for fluid flow problems that include a free surface. Compu-

tations are performed for a number of combinations of other parameters, and

have shown a similar quality of agreement with theoretical solutions. Regarding

discretizations, no rigorous rule could be established for the minimum size of

.6.x. As a rough guide, a size of .6.x = ..\/12 is found to describe adequately the

evolution of the free surface for most of the simulations. Further relaxation re-

sults in lack of resolution, although the fluid motion can still be followed (which

means the solution does not break down). For temporal grid size, the usual

Courant-Friedrichs-Lewy condition (Roache 1972) of

..... (3.17)
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with c representing the wave celerity, is followed. In the present computations,

for most of the cases , a value of N C F L between 0.5 and 0.7 is used. Further ex­

amination of the possible size of 6.t /T by successive relaxation was not pursued

in view of the expected upper limit posed on it by (3.17).

The solution is found to exhibit a tendency towards numerical instability

upon successive refinements of the spatial mesh sizes. When a collocation point

is located very close to a corner where the boundary undergoes sharp changes

in curvature, such as the intersection of 8D F with 8D c 1 and 8D c 2 , relatively

larger errors of the computed velocities are found in these locations, in com­

parison with points far from such corners. This is confirmed by a number of

numerical experiments for the application case 1 (§3.2.1), for which the theoret­

ical values of both the boundary data (</> and 8</>/8n) are calculable from (3.3)

and (3.4). Comparisons of computed and theoretical values of 8</>/8n on 8D F

show an increasing difference as the collocation points approach the intersections

on both sides. These non-uniform differences are believed to introduce numer­

ical instability when the grid size is very fine, typically when 6.x/ >.. ::; 1/100.

A similar behaviour of solutions near corners in applications of boundary ele­

ment methods appears to be fairly well documented in literature (see Schultz

1987). For the present time simulation scheme, numerical stability considera­

tions are crucial, since the computed free surface elevations and potentials at

any time instant form the input for the next level of computations. Considering

the segment sizes for which accurate results (in comparison with the theoretical

results) are obtained, this instability is thought not to be a serious limitation

in the applications of the algorithm, but serves to indicate a lower bound of the

grid sizes. As a guide, values in the range of 1/80::; 6. x/ >.. ::; 1/20 are suggested.
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It is also found important to choose an appropriate value of (J while modu­

lating the exciting potential (or the velocity). A very small value of (J does not

entirely remove the instability as can be seen from Figure 3.7. For the applica­

tion cases presented in §3.2.2.2 and §3.2.3, a value of (J /T < 0.5 resulted in some

instability. For the spatial grid size of 6.x/ >.. = 1/24, a value of (J /T = 0.5 was

found to cause the instability to initiate after about 80 time steps, regardless

of the temporal grid size. For a more refined mesh size, this was found to start

even earlier (for example, when the mesh size was 6.x/>.. = 1/40, the free surface

profile began to show distortions after about 50 steps). However, as the results

demonstrate (d. Figures 3.8 to 3.14), it is possible to achieve stable results by

a suitable choi ce of (J. It should be observed that no artificial smoothing was

applied on the free surface in any of the above computations. The suggested

values of (J are: for 6.x/ >.. ::; 1/32, (J = T and for 6.x/ >.. 2: 1/32, (J = 2T. These

values can perhaps be lowered considerably depending on specific applications

or if artificial smoothing schemes are applied.

When both ¢> and o¢>/on are defined on some parts of oD,the physical system

is overdetermined. For such situations, it is possibl: to achieve a reduction in

the number of linear algebraic equations to be solved for the unknowns. Such

overdetermined systems (as was followed in Isaacson 1982) are soluble when

the imposed boundary data are compatible. Results for the application case 1

(§3.2.1) were obtained by specifying both the boundary data (¢> and o¢>/on)

on ODCl and oDc 2. However, it was noticed that such overdetermined systems

were inherently more susceptible to nu~erical instability (this was studied by

specifying ¢> and o¢>/on given by eqns. (3.3) and (3.4) and then introducing a

slight variation in the order of 0.001 % in one of them). The computed velocities
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on the "free surface were found more sensitive to the discretization near the

intersection points when the boundary data were not perfectly compatible, as

compared to the well posed problems. It is further observed that, in principle,

a set of linear equations can be obtained when both the boundary data are

imposed on a particular part of the boundary while none are specified on some

other part, provided the number of segments in discretizing these boundaries

are equal. Though this provides a tempting situation, specially for suggesting a

means of avoiding imposition of any open boundary condition (i.e. imposition

of both if> and 8if>j8n on 8Dc 1 and non-specification of any data on 8D c 2) , the

resulting systems are nevertheless unsolvable. The coefficient matrix becomes

singular. This is consistent with the well known property of elliptic boundary

value problems; a well posed problem must have one boundary data, or an

interrelation between the two must be specified, all across the boundary (see

e.g. Polozhiy 1967).

Besides the 4th order A-B-M scheme, other schemes have also been con-

sidered. In particular, we find that explicit schemes do not always lead to

a converged solution. This observation contradicts Isaacson's (1982) method

where the author employed second order explicit schemes for time-integration of

the free surface conditions. The first order implicit scheme is found inadequate

in that the solution shows poor convergence characteristics as well as contains

considerably large errors. In contrast, second order schemes lead to substantial

improvements. Further improvements are achieved by using 3rd and 4th order

schemes, although the relative improvements between these two latter orders

are practically insignificant (the numerical values differ only in the 6th decimal

place). In no cases was more than one corrector level required for a convergence
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of 1 in 10-4 • It is observed here that, from a computational point of view, higher

order schemes do not require additional computational efforts. However, in view

of the good convergence obtained with 4th order schemes, further experiments

with still higher orders schemes were not pursued.

For the starter, the lower order A-B-M schemes are found to be adequate.

For the application cases in §3.2.2.2 and §3.2.3, the fluid remains practically

undisturbed (the associated non-dimensional velocities, 8¢/8n/(>../T), on the

free surface do not exceed 10- 7
) . Since the final aim is to pursue such applica­

tions for the simulation of steep waves (considered in §4), further investigations

employing higher order Runge-Kutta starters were not carried out.

Finally, the following concluding remarks can be made from the results pre­

sented in this section:

(1) The simulation scheme, although based on the lowest order of discretization

of the boundary integral, produces sufficiently accurate and reliable results.

The solution does not appear to degenerate to any significant degree as it

progresses in time.

(2) The scheme is sensitive to the chosen initial conditions. In particular, im­

pulsive application of pressure is found to produce numerical instability of

a weak type. Therefore, it is important to maintain the compatibility of

initial boundary data.

(3) It is feasible to apply the method to simulations offree surface motions that

are of unsteady and transient nature.
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4 Unsteady Propagation of Steep Waves

4.1 General Considerations

For simulation of fully non-linear free surface flow problems, it is imperative

that the full non-linear free surface conditions given by eqns. (2 .2) and (2.3) are

considered without any simplifying approximations. Noticing that these equa­

tions are to be satisfied on the exact location of the free surface, the evolution of

the free surface within the control domain must be followed such that the fluid

domain can be redefined at every consecutive time instant. Furthermore, the

values of the boundary data must be determined on the evolved free surface.

4.1.1 Evolution Equations for the Free Surface

The free surface conditions in eqns. (2.2) and (2.3) are in an Eulerian frame of

reference. Identifying the collocation points on 8D F (x , t) as 'marker' points (the

trace of which defines the free surface contour), time integration of eqn. (2.2)

provides information on the location of these points vertically displaced. For

determining the velocity potential on the instantaneous free surface contour,

an appropriate evolution equation for 4J on the evolved free surface is .to be

derived. The change in potential at points on the free surface undergoing vertical

displacements is (see e.g. Faltinsen 1978)

..... (4.1)

since 4J = 4J(z, t ) for these points. Here dry is the incremental vertical displace-

ment of the 'm arker ' points:

dry = ?!ldt
at

..... (4.2)
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From (2.2), (2.3), (4.1) and (4.2), the evolution equation for rjJ is readily deduced

...... (4.3)

which defines the rate of change of the potentials at these points. Here the

symbol d]dt is used to signify that the differentiation is following the 'marker'

points which are free to move along vertical lines. The evolution equations to

be integrated in time for following the free surface contour and potential, in the

present method, are therefore eqns. (2.2) and (4.3) respectively. In passing, it

is remarked that Isaacson's (1982) strictly Eulerian method of following rjJ on

the free surface by integrating eqn. (2.3) determines the potential at space fixed

points. This introduces a further approximation on the computed free surface

potentials in that the changes in them due to the updated location of the free

surface are not accounted for. In contrast, eqns. (2.2) and (4.3) are exact.

The above method of following the free surface is different from the fully

Lagrangian method utilized in most of the previous investigations of non-linear

water waves based upon similar integral relation formulations (e.g. Longuet­

Higgins and Cokelet 1976; Vinje and Brevig 1981; .Baker , Meiron and Orszag

1982; Lin, Newman and Vue 1984; New, McIver and Peregrine 1985; Dommer­

muth and Vue 1987). It is worth comparing and contrasting the features of

the two. In fully Lagrangian methods, the 'marker' points on the free surface

coincide with physical fluid particles and the evolution equations take the form:

D arjJ
DiXF = &.

~rjJ(XF) = -gTJ + ~(V'rjJ)2

..... (4.4)

..... (4.5)

with D/Dt denoting the material derivative: D/Dt = a/ai + arjJ/ax . a/ax and
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XF representing the radius vector of the marked fluid particles. The vertical

component of (4.4) provides information on the vertical displacements of the

'marker' points. It may be noticed that this component is identical to the

kinematic free surface condition (2.2). Since the particles also undergo horizontal

displacements, the horizontal component of (4.4) needs to be integrated as well.

The attractiveness of following fluid particles lies clearly in its ability to

describe multivalued free surface contours. In contrast, the present method is

restricted in its applicability to single-valued free surface profiles. The possibility

for simulating overly extreme wave conditions, as in the case of wave breaking,

is therefore excluded. Nevertheless, the present method provides several com­

putational advantages:

(a) The 'marker' points are not allowed to cluster, which is expected to re­

duce adverse numerical effects associated with the Lagrangian methods in

which the particles tend to concentrate in some regio ns. In other words,

a better control is exercised on the points being followed. From previous

experience of other workers, it is known that some form of control on these

points is necessary to prevent them from clustering, e.g. introduction of

a 'tangential' velocity component as discussed in Baker et al. (1982) as

a controlling device, regridding of the free surface points at every step as

employed by Dommermuth and Yue (1987). The present mode offollowing

the free surface is free from such additional computational burdens.

(b) The 'marker' points can not leave t~e computational domain at any time,

therefore the additional task of tracing such points is avoided.

(c) In the present discretization scheme, numerical difficulties are anticipated
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when a collocation point is situated very close to the vertical control

boundaries, as found from the computational experience related to the

linear case (recall the discussion in §3.3). By preventing horizontal dis-

placements of the 'marker' points, such problems are also minimized.

Yet another point with regard to the applicability of the present method

needs to be emphasized. The ultimate objective is to be able to simulate the

body motions for a sufficiently long time, preferably over several periods of os­

cillation after a steady state is established, which is different from interaction of

bodies with breaking waves. It must be noted that even in Lagrangian methods

the simulation can not be extended much beyond the time when the wave breaks

(the fluid domain ceases to be simply connected, and the methods become inap­

plicable). Therefore, inability to model multivalued free surface contours does

not appear to be a serious limitation of applicability of the method. Similar

restrictions in applications are typical of most finite-difference algorithms (see

e.g. Telste 1985).

It must be noted that in both descriptions (Lagrangian and the present

method), the fully non-linear free surface conditions are treated and the approx-

imations are introduced by the numerical schemes employed in the integration

of the appropriate evolution equations. The free surface contour in both cases

is defined by the trace of the 'marker' points, representing either physical fluid

particles or non-material points on the free surface.
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4.1.2 Spatial Derivatives on the Free Surface

The evolution equations (2.2) and (4.3) require evaluat ion of spatial derivatives

of 7] and r/> at the collocation points j. To determine (07] / oX)j, 7] as a function of

x is approximated by a cubic spline . From this approximation, the components

of the outward normal can be ca lculated :

- (ory/OX) '
nX J = [1 + (ory / oX);jO.5

1

For th e spatial derivatives of r/>, we have

... ..(4.6(a) )

..... (4.6(b))

..... (4.7)

since l/ (ds/dx )j = nZj ' Here %s denotes the tangential derivative. To de­

termine (dr/> / dx)j, once again r/> as a function of x is approximated by a cubic

spline. From or/>/os and or/>/on , other components of the spatial derivatives can

be determined:

..... (4.8(a) )

... ..(4.8(b))

In the software, an IMSL rou tine for cubic splines with natural end condit ions is

used in whi ch no condit ions are pr escribed at th e end points but the penultimate

points enforce con tinuity of second derivatives (see Ahlberg , Nilson and Walsh

1967).
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4.1.3 Simulation Procedure

The simulation for unsteady propagation of steep waves is accomplished by a

similar procedure as in the application described in §3.2.2. A wave potential,

representing an oncoming wave travelling in the positive x direction, is imposed

on aDcl at all times. This applied potential is hereinafter called the excitation

potential, since it provides the necessary excitation for initiating the fluid mo­

tion in 1). Unlike in the linear case, questions regarding selection of appropriate

excitation potential arise in the present non-linear application. As a first ap­

proximation, the Airy potential given by eqn. (3.3) is chosen as the excitation

potential. Subsequently other forms of excitations can be considered. However

it will be shown later through numerical results that the form of the excitation

potential has little influence on the generated numerical wave in the interior of

1).

An alternative way of simulating waves is to provide a physically moving

wave-maker at one end of the control domain, analogous to the application case

considered in §3.2.3. This procedure was followed in earlier works, e.g. Lin

(1984) , Lin,Newman and Yue (1985) and Greenh6w and Lin (1985). In the

present method of following the evolution of the free surface, such approach

would necessitate either a redistribution of the free surface grid or a successive

introduction and deletion of the collocation points, since the wave-maker is likely

to either enter or withdraw from the free surface grid. The possibility of points

coming too close to the wave-maker is also distinct, which is likely to cause

numerical difficulties (cf. §3.3). Provided waves are produced within the control

domain, the source of its generation is not important for the ultimate objective
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of wave-body interactions. Therefore, having gained some confidence from the

equivalent linear application case, here the application of a known potential

along a fixed aDo1 is adopted.

Several aspects of the numerical scheme, closely related to the specific details

discussed in §1.2.2.2, were found to have important effects on the algorithm and

required special attention. These are addressed below.

4.2 Specific Considerations

4.2.1 Instability at the Intersection of aD 01 and aDF

On application of an appropriately time-modulated excitation Airy potential on

aD 01 in the described algorithm, an instability is found to originate at the in­

tersection of aDo1 and aDF. The form of the instability is qualitatively similar

to that in the analogous linear application case when not applying the modula-

tion function. Between the adjacent collocation points on the free surface, the

computed wave elevations and the values of the potential exhibit undesired os-

cillations, the amplitudes of which progressively diminish with the distance from

the intersection. The severity of this, indicated by the amplitude of these oscil-

lations , is con siderably larger than those encountered earlier in the linear case

(d. Figures 3.6 and 3.7). These high frequency short length waves gradually

travel inwards into the fluid domain. More importantly, the amplitudes mag­

nify with such rapidity that within few time steps after they appear (typically

within 10 time steps irrespective of the step size) , the solution breaks down. In

view of the fact that the exact free surface elevation defines the boundary of the

domain (in contrast to the mean free surface in the linear case), the increase of
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the amplitudes of these oscillations is not surprising.

Application of the modulation function over increasingly larger periods of

time (i.e. increasing the value of a in M(t) in eqn. (3.7» helped to defer the

initiation of the oscillations, but did not remove or suppress the instability. Sev-

eral forms of artificial smoothing schemes failed to cure the problem. Partial

success could be achieved in keeping the instability controlled by means of exces-

sive smoothing at the expense of large numerical viscosity effects. A particular

smoothing scheme devised on the basis of an averaging principle provided some

success in suppressing the unwanted oscillations. In this scheme, the values of TJ

and <p on oD C 1 corresponding to the excitation potential were used to average

the elevation and potential according to the following formulae:

~[2fg + f1 + 12]

I6[2fg + f1 + 912 + 413]

i"4[2fg + f1 + 912 + 3613 + 16f4]

and for a general point i

t. = ~ [2fg + it + 9(12 + 413 .

+4213+ ... + 4 i
-

2 fi) + 4 i
-

1 fi+l]

..... (4.9(a»

.. .. .(4.9(b»

where fi and]; are respectively the ith ordinates before and after smoothing,

with i denoting the collocation points numbered in an increasing order in the pos-

itive x direction, and fg represents the values of TJor <p on oDC 1 • Although free

from instability, the resulting generated waves were found excessively damped

and -were clearly unacceptable.

In an effort to search for the root of these spurious high frequency waves,
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some numerical experiments were performed by selecting pre-assigned values of

potentials on aDF and aDCI, and by prescribing the geometry of aDF. A closer

examination of the generated flow indicated that the computed normal velocities

were extremely sensitive to the free surface contour and boundary data near the

intersection. Large changes in the values of ¢> at the adjoining segments on

the two boundaries produced large velocities on the free surface. In addition,

incompatibilities between the contour of aDF and the free surface elevation of

the wave corresponding to the applied excitation potential on aDCI resulted in

similar erratic fluid motions at the intersection.

A possible explanation for the generation of these oscillations can now be

given. Application of an excitation potential on aDCI can be considered as the

presence of a wave on the upstream side (left) of aD CI, exterior to D. For

convenience of discussion, this wave will be called the 'upstream' wave in the

sequel. The free surface elevation and potential of this wave conform to the free

surface conditions within the approximations of the particular wave theory. For

example, the Airy potential on aD CI implies an upstream wave satisfying the

linearized free surface conditions. To the immediate right of aDCI, a solution is

sought for such that the full non-linear free surface co~ditions are satisfied within

the accuracy of the employed numerical scheme but without approximating the

free surface conditions themselves. Consequently the free surface elevation and

potential undergo discontinuity across aD CI. In other words, the free surface

conditions implicitly satisfied on the left of aD CI (i.e. by the upstream wave)

are inconsistent with the conditions on aDF in the immediate right of aD CI.

This discontinuity is believed to cause large velocity gradients across the vertical

boundary, which in turn initiate the instability. We remark that the application
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of other 'non-linear' excitation potentials, e.g. Stokes second order potential,

was tried with the hope that the non-linear theoretical upstream wave and the

numerical downstream wave across oDC I would be more compatible and thus

would result in a suppression of the instability. Unfortunately, the solution re­

mained equally unstable. Difficulties originating from analogous discontinuities

were known earlier, e.g. Han and Stansby (1987) discussed similar problems,

and Lin, Newman and Vue (1985) identified the discontinuity with the diffi­

culty in Vinje et al.'s (1982) matching of non-linear interior with linear exterior

solutions.

In order to achieve a smooth variation- of the free surface elevation and po­

tential across oDC I , a matching procedure, described below, is devised.

4.2.1.1 The Matching Procedure

This technique is illustrated by means of Figure 4.1. Consider another ver­

tical boundary oDCI in the interior of the control domain 'D at a short distance

l from oDC I . In the existing algorithm, the numerically evaluated free surface

elevation and potential, represented by h(x), typically exhibit large oscillatory

behaviour as illustrated. A transfer function g(x) is introduced to redefine h(x)

as f:;(x) in the region between oD CI and oD Cll henceforth referred to as the

'matching zone':

f;(x) = g(X)fl(X) ..... (4.10(a))

where f:;(x) is the smoothed curve in Xl ~ X ~ (Xl + l) , fl(X) indicates the

theoretical (upstream) wave elevation or the potential corresponding to the ex­

citation potential on oD Cl and Xl represents the X coordinate of ODCI. A
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quadra t ic polynomial is chosen for g(x) :

whose coefficients al , a2 , a 3 ar e determined from the conditions:

f ; (Xl + l) = f2(Xl + l)

!;f;(Xl + l) = !;h(Xl + l)

.. ...(4.1O(b))

.... .(4.10(c))

The derivations of aI , Q2 , a3 are provided in Appendix A.2. The above procedure

requires evaluation of 8[h(Xl + l)]j8x which is determin~d from a second order

cent ral difference scheme (see Appendix A.4 for the formula).

In principle, a higher order polynomial representation of g(x ) is possible by

exploit ing additional conditions such as con tinuity of higher order derivatives at

Xl and (Xl + l ). The quadratic function for g(x ) is however found to be very

effect ive in keeping the instability locally arrested and enables the fluid motion

to be followed without fur ther problems originating at the intersection point. It

is no ted that a linear form of g(x ) was found not as sa t isfactory in completely

suppressing the ins tabili ty.

A note of caution is appropriate with respect to th e implementation of th e

above technique. Due to the chosen coordinate system with origin at the undis-

turbed free surface level , g(x ) does not behave properly when fl (Xl + l ) and

f 2(Xl + l) differ in sign (though not much in magnitudes ). This results in a 'fold­

ing ' of f 2(X) as illus trated in Figure 4.2. Addi tionally, when If l(Xl + l)1~ 0,

a sing ular ity appears in the deri va tion of the coefficients (see eqns. (A.2.3) in

appe ndix A.2 ). A local shift of the coordina te syste m removes these difficul ties .
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Incorporation of the technique described above is found not to introduce

adverse numerical effects into the interior solution. The computed wave in 1)

does not degenerate to any significant extent. The additional boundary aDol
can be interpreted as the upstream boundary of a reduced fluid domain 1)* within

which the fluid motion is sought (i.e. the full non-linear free surface conditions

are satisfied in 1).). In other words, the interior domain is stretched by a distance

1 to absorb the 'impulsive' nature of the flow which is believed to be an undesired

outcome of the incompatibility of the free surface boundary conditions across

the original boundary aD c l . The penalty for stretching of 1)* is that additional

collocation points in 1 are required. The consequential additional expense in

computer time is of the order of 10%. Results demonstrating the effectiveness

of this procedure and typical values of 1 are presented in §4.3.

On the downstream side boundary, it is necessary to determine the inter­

section of aDF with aDc 2. This is determined via a second order Lagrangian

scheme using the data at the three preceding collocation points on aDF (see

eqn. (A.4.4) in Appendix A.4 for the formula).

4.2.2 Instability on the Free Surface

Apart from the instability originating at the upstream side intersection on the

free surface, another instabili ty develops on the entire free surface as the so­

lution progresses. Similar 'saw-tooth' instability has been reported by earlier

investigators (see the discussion in §1.2.2.2 (c)). Numerical experiments with

various combinations of the spatial and temporal grid sizes were performed with

the hope of establishing a criterion related to these discretization parameters.
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No such criterion could be established. In the present formulation, in which

the collocation points on the free surface points are restricted to move verti-

cally, the arc lengths between adjacent collocation points never reduce below

the horizontal grid spacing. Consequently, if the time step size is chosen prop-

erly in relation to the horizontal projection of the free surface segments, the local

Courant condition is easily maintained. In all computations, the usual C-F-L

condition (Courant-Friedrichs-Lewy condition, see eqn. (3.17)) is maintained in

the entire fluid domain and throughout the simulation period. An alternative

form for a stability criterion based upon a linear von Neumann stability analysis

for the fourth order Runge-Kutta scheme is provided by Dommermuth and Vue

(19S7):

l1rgb.t
2

1
< 1

Sb.xF -
..... (4.11)

which is also maintained in the present computations. The implicit fourth or-

der A-B-M scheme used here has the same order of accuracy as the above R-K

scheme, and in fact has a slightly higher accuracy than the modified R-K scheme

of Dommermuth and Vue (both aDF and if> on aDF are upgraded at each itera­

tion in the present algorithm while only the latter is upgraded in their scheme).

Present computational experience indicates that this instability is closely asso-

ciated with the free surface elevation. It becomes more pronounced as the wave

steepens. It should be observed that in the analogous linear application (§3.2.2),

no such problem was encountered. Computations with successively larger lev-

els of iteration in the time-integration of the free surface conditions and closer

examination of the computed free surface profiles and boundary data suggest

insensitivity of the instability with respect to the time-integration schemes. The

solution indeed converges, usually to an accuracy of 1 in 10- 4 within the first cor-
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1986). Remembering the goal of simulating body-wave interaction problems,

the main concern is to avoid the problem of instability so that the solution can

be progressed in time without breakdown and/or suffering from appreciable nu­

merical viscosity effects. In view of these remarks , artificial smoothing appears

justified.

4.2.3 Non-reflective Downstream Boundary

Consideration of the downstream boundary 8D c2 as a wall, as it was done in

the applications presented in §§3.2.2, 3.2.3, is not a satisfactory solution for long

time simulations. Alternative means of treatment of the flow at this boundary

is clearly necessary.

The specification of a condition on this boundary is analogous to an open

boundary condition or a radiation condition. In the absence of theoretically

rigorous 'non-linear' radiation conditions, the other recourse is to construct a

'numerical' radiation condition within acceptable limits of approximations. An

appropriate open boundary condition must be sufficiently transmissive such that

all the wave phenomena generated in the interior of J) pass through the bound­

ary without suffering from appreciable numerical reflection effects. Additionally,

when the numerical errors attributable to such an imperfect radiation condition

can not be reduced any further, it must be ensured that the stability and con­

vergence characteristics of the entire computational scheme are not adversely

affected and that the interior solution is not contaminated beyond an accept­

able level.

In the present algorithm, a simple open boundary condition is adapted on
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aDC2 which assumes that the potential at this boundary can be written as a

wave form of the same celerity as that of the applied excitation potential on

aDC1:

1>(x, t) = 1>(x - ct) ..... (4.12)

where c represents the celerity of the excitation wave (d. eqn. (3.3)). This

results in the following relation:

..... (4.13)

in which the fact that a/on = a/ox on aDC2 has been utilized. Eqn. (4.13) has

a form similar to Orlanski's radiation condition, but its application here is not

strictly equivalent. In Orlanski (1976) or in many finite-difference algorithms

(see e.g. Chan and Chan 1980), the value of c is taken as the celerity of the local

exit waves approaching the downstream boundary, and c is determined from a

numerical differentiation at the neighbouring grid points. In Wu and Wu (1982),

a similar simple form is adopted with c determined from

c= j;d ..... (4.14)

where d denotes the local water depth at the downstr~amboundary. Eqn. (4.14)

represents shallow water approximation for the phase velocity of an Airy wave,

and is therefore different than the condition applied in the present method (both

methods become equivalent in the limiting situations of d/oX << 1)

The evolution of 1> is now easily determined from time-integration of eqn.

(4.13) with the application of the same numerical schemes as the ones used

in integration of eqns. (2.2) and (4.3). Simple as it appears, this procedure

results in minimal reflection effects on aDC2' as the results presented in §4.3

will demonstrate.



88

4. 3 C om p uted Results and Numerical Studies

For the following presentations, the notations described at the beginning of §3.2

apply. It should be noticed that ~xF in the present application denotes the

spacing of the free surface collocation points instead of the actual lengths of the

segments. Unless otherwise specified, the applied excitation potential on oD c l

is the Airy potential. The normalizing parameters for horizontal and vertical

length scales and time scale are respectively the length >. , height H and period

T of the Airy wave corresponding to the prescribed potential (d. eqn. (3.3)).

In all computations presented, ~XF, ~XCl' ~XC2 and ~t are cons ta nts.

4.3.1 Match in g at the U p stream Boundary

Results in terms of the computed free surface profile and distribution of <p on

it for varying extent of the matching zone are presented in F igures 4.3 (a) -

(d) . For these computations, L = 3>', HI>. = 0.05 and dl>' = 0.50. The

discretization parameters are : ~xF, ~XCl , ~XC2 = >'/24 and ~t = T I40. The

modulation function (3.7) with a IT = 1 is applied an? the free su rface elevations

and potential are smoothed using formulae (A.3.3) and (A .3.4) (see Appendix

A.3) at the intervals of 4 time steps. n in these Figures represents the number

of segments used in discretizing the distance 1 between oDc l and oDel (see

Figure 4.1), i.e. 1 = n~xF. The computations cover a range of n from 2 to

10 at an interval of 2. 1 therefore varies between the distance of 0.083>' and

0.42>'. The results are shown for i = 12 and i = 24 where i indicates the ith

collocation point on the free surface counted from oD c l in the positive direction

of x. These stations are therefore taken relatively close to the upstream side
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boundary, approximately at distances z. = 0.5>' and x = 1.0>' from oD c l , and

are expected to be most influenced by the matching procedure. The results

clearly show the diminishing effect of the upstream matching with simulation

time. The differences between the computed profiles and potentials are found to

be contained within an initial period of approximately t/T ::; 3, after which the

curves essentially converge. A number of computer runs with other combinations

of ~x, ~t, >., H , d and L show a similar trend with practically no influence of

the adopted matching upon the interior solution after an initial transient (some

additional supporting evidence will be shown in subsequent computations).

Numerical experiments indicate that the effectiveness of the matching pro-

cedure is related to the value of n as opposed to the length 1. From a consid­

eration of computer time, the value of n should be selected as low as possible.

Even though the above results are presented for n = 2, for some steep waves

(H/>. 2: 0.10) and small grid sizes (~XF/>' ::; 1/40), it is found that this value

of n does not completely eliminate the instability. This is believed to be due

to the use of a central difference scheme (eqn. (A.4.1) in Appendix A.4) in

determining O[h(Xl + l)]/ox in (4.10 (c)), which applies the ill-behaved value

of f2(X) at the first collocation point (i = 1) on oDF. In contrast, the choice

of n = 4 is found to be very effective in removing the oscillations, regardless of

the grid sizes and wave heights. The subsequent results are all computed with

this value of n = 4. Assuming the computation time to be proportional to N 3

where N is total number of segments on oD c l UoD F UoD c 2, for a typical value

of N = 100 the increase in CPU time due to the introduction of the matching

region is therefore less than 12.5%.

To demonstrate the initiation of the instability when the matching is not
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appear slightly flat as a result of a comparatively poorer resolution. The slight

raise in the ¢ curve near the downstream boundary (oDc2) for N = 48"which is

perhaps due to the influence of numerical in tegration of eqn. (4.13), is not very

significant and does not persist subsequently. Note that the computations cor­

respond to values of the matching length 1varying between 1= 0.10A and 0.25A,

which further demonstrate the minimal influence of the employed matching on

the interior solution.

These computations (and many others) indicate that a value of 6.xF = A/24

and comparable values for 6.XC1,6.XC2 are adequate for describing the fluid

motion without appreciable effects of lack-of-resolution.

4.3.3 The Open Boundary Condition

The demonstration of the effectiveness of the open boundary condition (4.13)

is the purpose of the following computations. This is examined by selecting a

range of values for the celerity of the outgoing waves. Taking c in eqn. (4.13)

as c' and writing c' = ac where c represents the celerity of the entering wave at

oD C1 (as in eqn. (3.3)), computations cover a varia ion of a from 0 to 1, with

specific values of a = 0, 0.25, 0.50, 0.75, 0.90 and 1.00. a = 0 is recognized

to be the condition for which ¢(t) is unchanged on oD c2 at all times. The

relevant parameters are: L = 2A; d/ A = 0.5; H/ A = 0.10; 6.xF,6.XCl and

6.xC2 = A/24, and 6.t/T = 1/40. The free surface elevations at progressing

simulation times of t fT = 4.0, 5.0, 6.0, 7.0, 8.0 and 8.75 are shown in Figures

(a) - (f). It is apparent that the reflection effects at the downstream boundary

increase with the difference between a and 1. The interior solution progressively
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gets contaminated by these reflected waves as the solution proceeds. At tiT = 4

(Figure 4.6 (a)) , the wave just reaches 8D c2 and not much reflection takes place.

As time progresses, the reflected waves begin to travel inwards. At tiT = 8.75

(Figure 4.6 (f)), the free surface profile for a = 0 with pronounced crest and

trough indicates a full reflection from 8D c2. Here the wave profile shows a

growth in height by a factor of more than 2. It appears that a standing wave

system is formed by this time. In contrast, results for a = 1 indicates that the

wave passes through 8Dc2 with minimal reflections.

In Figures 4.7 (a) - (d), we show the time evolution of the free surface at

collocation points i = 36, 40, 44 and 48, corresponding respectively to the dis­

tances of xl>' = 1.48, 1.65, 1.81 and 1.96 measured from 8Dcl. The last station

coincides with the last collocation point on the free surface, adjacent to 8D c2.

The reflection effects for various values of a are clearly noticeable. At the sta-

tion i = 44 (Figure 4.7 (c)), which is at a distance of 0.19>' measured from

8D c2, reflection effects for a ~ 0.50 are visible immediately after the initial

transient period of tiT ~ 4.0. Reflection effects for a 2:: 0.75 are comparatively

much smaller. The effectiveness of choosing a = 1.0 for making the downstream

boundary transparent is evident , although values slightly less than 1 also appear

to work well. Computations are also attempted for values of a greater than 1,

but even for a value moderately greater than one, e.g. a = 1.05, the solution

breaks down after about t = 5T, which is approximately the time when the

wave grows fully at the d'ownstream boundary (this corresponds to the time

estimated from the speed of linear wave group). This breakdown results from

an instability originating at the downstream intersection of 8D F and 8D c2. In

view of the success of a = 1.0 in making the boundary sufficiently non-reflective,



101

r~
0
0

ai

1n01n00
ONIn['-mo

f~
0/I doddd"': 0

d ai ~

"~X+<lIE) ""2.s
~~

0 ~
0 8
r.: 1-

~
Q,)

f~
I.e
:::

0 b.O
0 ~
cD

~~ ~
0
0

~.-

~~ ~
~

0
0

~

0 0
0 0

00 cwi It:l en
~

(,0

,......i ,......i

II 11

? 0 ? 0
0 0

<0 N 0 N
M ~

II II

~ 0
~

0

:§: 0 e 0

....:

0 0
0 0

r----
ou-t- 0 ooot oOOt-0oOOt 00 °0 00 °0

Hilt Hilt



o
o
..:

o
o

o
o

a=

+ 0.0
e 0.25
X 0.50
+ 0.75
.&. 0.90
o 1. 00

1. 00

(c) at i = 44 (xl>" = 1.81)

.........

2: 00 3: 00 4: 00 5: 00 6: 00
tiT

7: 00 8: 00 9: 00

o
o

I-'
o
N

(d) at i = 48 (xl >" = 1.96)
..:

~ g •• •• II ... I ----*~-- ci. . ..
~

1. 00 2. 00 3. 00 4.00 5: 00 6: 00 7: 00 8: 00
tiT

Figure 4. 7 Evolution in time of the free surface for comp utat ions corresponding to Figure 4.6 above; (note
tha t i = 48 is the last colloca tion point on 8DF I adj acent to 8Dc2).



103

this aspect is not pursued any further.

It is found important to keep the length of the adjacent segments compara­

ble at the intersection of two boundaries. In particular, care must be taken to

ensure that the length of the uppermost segment on aDC2 is not reduced consid­

erably in comparison to the adjacent segment length on aDF (roughly less than

1/2). Due to wave run up effects, aD C2 continuously changes in length. Since

l.h.s. of eqn. (4.13) is an Eulerian time derivative, the collocation points on

this boundary are generally kept fixed in space, except for the uppermost seg­

ment. Depending on the length of aDC2, a segment is deleted or an additional

segment is introduced so that the length of the segment in comparison with the

length of the adjacent segment on aD F maintains a ratio between 0.5 and 2.0.

The location of the collocation point within this segment is not changed such

as to facilitate the integration of eqn. (4.13), which means that the collocation

point for this segment is not always centrally located. Recalling the remarks in

§2.2.2, this does not invalidate the numerical discretization. It is also possible

to redistribute the collocation points at each time step with equal spacing and

obtain the required information at the Eulerian points via spatial interpolation.

However, retention of the original segments where possible is computationally

beneficial in that some of the influence coefficients in (2.10) need not be recal­

culated at every step (although this is latter adopted for the wall (§5) and the

body (§6) for reasons mentioned therein).
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4.3.4 The Excitation Potential

To investigate the influence of the excitation potential on the interior solution,

computations are performed for the excitation potential specified as Stokes sec­

ond order potential:

( )
_ H)..cosh 27r(z + d)/).. . ~( _ )

,px,t - 2T sinh 27rdl).. sm).. x ct

+37rH
2

cosh 47r(Z + d)I ).. sin ~(x _ ct)
16T sinh" 27rdl).. )..

.... .(4.15)

where the first term on the left represents the Airy wave potential (d. eqn .

(3.3)) while the second term is the second order correction to it. The applied

excitations have a value of HI).. = 0.10, for which the second order correction

in wave amplitude is almost 10% of the first order ·amplitude (note that both

these excitations have the same energy density). The applied potentials are

therefore considerably different. The fluid domain chosen an d the discretization

parameters are retained the same as in the preceeding application: L = 2)",d =

0.5).. ,~XF = )../24,~t = T140. Figures 4.8 (a) and (b) show the free surface

contour and potential distribution at tiT = 4.0 and 8.0. The plots are virtually

indistinguishable. The small difference near the upstream boundary results from

the application of the matching technique at this boundary and is contained

within the matching zone of l = 0.167>... The evolutions in time at i = 12 and 36

(xl).. = 0.48 and 1.48 respectively) are shown in Figures 4.9 (a) and (b) . Except

possibly to the sharpest eyes, the differences remain undetectable.

The above results suggest that the interior solution is insensitive to the ap-

plied excitations, provided the same first order amplitude and the period are

retained. Additionally, the results further confirm that the applied matching
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does not introduce adverse effects into the domain, since fl ex) in (4'.10) is quite

different for the two applied excitations. The application of Airy potential as an

excitation then seems justified in general. Numerical experiments also indicate

a close relation between Hand H*, where H* denotes the height of the interior

wave upon reaching a steady state. H* IH is found to be within 5% of unity

for most of the applications. This ratio is on the higher side for smaller values

of HIA, as to be expected (a supporting result is shown latter, see Figures 4.12

and 4.13 below).

4.3.5 The Effect of the Modulation Function

All computations presented thus far (for the non-linear wave) were obtained

with the application of the modulation function given by (3.7). The objective

of the following is to demonstrate whether the transients associated with differ-

ent forms of modulation functions have any effect on the solution in long time

simulations.

Figure 4.10 show five plots of the free surface elevations at tiT = 8.5. The

relevant parameters for these computations are same'as in the preceding section.

The five curves correspond to the computations with the application of (3.7) with

a IT = 0, 1.0 and 2.0, and the following modulation function:

l\;f(t) = {sin(1rt /2a) t < a
1 t?a

.... .(4.16)

with a fT = 1 and 2. Notice that (3.7) with a = 0 implies that the excitation

potential is not modulated and that (4.16) violates the condition of o<jJ* Iatlt=o=

o. The plots are practically indistinguishable. The evolutions in time of the free

surface elevations at a location close to the centre of the domain (at i = 24 or
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xl).. = 0.98) are shown in Figure 4.11. All differences are observed to be within

the initial transient of tiT::; 3.0, after which the plots are in remarkably good

agreement.

This demonstrates that a modulation function, regardless of its form or the

time span over which it is applied, does not introduce effects analogous to mem­

ory effect in simulations of large durations. Such effects, if any, disappear within

a short time. Although the results indicate that the instability which is gener­

ated by the application of an impulsive pressure (as it was found in the equivalent

linear case, §3.2.2) is smoothed out by the use of the matching procedure, fol­

lowing the arguments presented in §3.2.2.1, the application of the modulation

function (3.7) with a finite value of a is preferred (usually a value of alT = 1 is

chosen).

4.3.6 Further Results: Comparison with Theor ie s

Figure 4.12 shows the free surface contours for two nominal wave steepnesses

of HI).. = 0.05 and HI).. = 0.10 at tiT = 9.0. The computational parameters

are: L = 2.25)", d = 0.5)", 6.xF,6.XCl and 6.XC2 =,. )../20, and 6.tlT = T/40.

The evolutions in time at x = 0.48).. and x = 1.48).. (corresponding to i = 12

and i = 36 respectively) are presented in Figures 4.13 (a) and (b). A steady

state behaviour with fundamental period T is apparent throughout the control

domain. The waves display typical non-linear characteristics of comparatively

more peaky crests and shallower troughs in comparison with Airy (sinusoidal)

wave profiles. The profile for HI).. = 0.10 shows stronger non-linear characteris­

tics compared to the profile for HI).. = 0.05, as to be expected.
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A comparison of the profiles at xl).. = 0.98 with theoretical profiles for the

Airy wave given by (3.5), Stokes second order wave and Miche's second order

theoretical profile (Miche 1944) are shown in Figure 4.14. For completeness, the

relevant equations for the second order profiles are reproduced below:

Stokes second order profile

H x t 3n H 2 coth(2ndl )..) x t
ry(x,t) = "2cos2n(~-T) + 8).. sinh2(2ndl)..)cos4n(~-T)

nH2 2nd x t+ 4>:cothTcos(~ - T) ..... (4.17)

Miche's profile

H x t 3n H 2
coth(2ndl )..) cos 4"'"(=-_ !.-)

ry(x,t) = "2cos 2n( ~ - T) + 8).. sinh2(2n dl)..) ").. T

+ n H
2

coth 2nd ..... (4.18)
4).. )..

The above two formulae differ only in the last term, which in the latter formula

is independent of time. The numerically simulated wave compares well with

the second order profiles, but displays stronger non-linear characteristics. For

clarity, an expanded view for one period (4.5 ::; tiT. ::; 5.5) is shown in Figure

4.15. The comparatively more peaky crest and shallower trough of the computed

wave are clearly visible.

Finally, results are shown for a particularly long duration of simulation. The

wave chosen is very steep in relatively shallow water: HI).. = 0.12 and dl).. = 0.24

(note that this gives Hid = 0.5). A relatively finer resolution of /)"X = )..132

and /)"t = T 164 is used for space and time discretizations. Figure 4.16 contains

7 plots of the free surface profiles at times tf T = 10, 12, 14, 16, 18, 20 and 22.

The comparatively smaller crest at oDC l is due to the influence of the matching
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procedure and is mainly contained within the matching length of 1 = 0.125'\

(n = 4). The agreement of the profiles demonstrates tha t the wave retains a

fundamental period of T. These plots also indicate that contamination due to

numerical errors or numerical viscosity effects with time is insignificant, since

the successive profiles do not show differences with progression of time. Such

effects evidently do not persist with time. The evolutions in time at five locations

(x / ,\ = 0.375, 0.750 , 1.125, 1.50 and 1.875) are shown in Figures 4.17 (a) - (e).

It appears that the simulation can be continued ad infinitum.

Figure 4.18 shows the comparison of the computed wave profile with the

theoretical profiles . The computed profile clearly displays stronger non-linear

characteristics. The same observation is apparent from the comparison shown in

Figure 4.19. These plots suggest that the computed wave is travelling faster than

the theoretical waves. It is possible that the associated transient effects could

contribute to the differences; however, previous computational results indicate

otherwise (d. Figures 4.10 - 4.14). Indeed, careful inspection of Figure 4.12

and 4.16 reveals that the computed waves have a length larger than the incident

,\ for larger wave steepnesses. Comparison of Figure 4.18 with Figure 4.16

also indicates that present computations predict a comparatively higher celerity

for steep shallow water waves. Although no quantitative evaluations of the

quantities (e.g. celerity, wave length) have been made, these are qualitatively

similar to well known features of steep shallow water waves (see e.g. Cokelet

1977).

4.4 Summarizing Remarks

This section is concluded with the following remarks:
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(1) The simulation of propagation of unsteady steep waves can be achieved

by imposing an excitation potential on one of the vertical control boundaries

encompassing a rectangular fluid domain. The interior solution is not sensitive

to the exact form of the potential, as demonstrated by imposing Airy and Stokes

second order potentials as excitations. The simulated wave profile displays typi­

cal non-linear characteristics of relatively more peaky crest and shallower trough

in comparison with linear waves. As expected, the non-linearities are more pro-

nounced for steeper waves. Very steep waves in reasonably shallow water were

simulated for time durations of over 20 wave periods. A steady state behaviour

occurs in the entire domain. It appears that a 'numerical wave tank' can be set

up in the described manner, i.e. by imposing an Airy potential on aD C l instead

of providing a physically moving wave board.

(2) The instability originating at the intersection of aDcl and aDF is be­

lieved to be due to an incompatibility of the free surface boundary conditions

at this boundary. The problem appears to be similar to the difficulties that

are associated with the matching of an 'interior' non-linear solution with 'exte­

rior' linear solutions in two dimensions (e.g. Vinje, Maogang and Brevig 1982

have encounter~ddifficulties in a similar matching; Han and Stansby 1987 have

discussed difficulties related to the impulsive wave-maker problem at the inter­

section due to an incompatibility of the boundary conditions).

In the present algorithm, this difficulty is circumvented by means of a match­

ing technique, which employs a quadratic polynomial smoothing scheme in space.

The effectiveness of this scheme is demonstrated by a number of computed re­

sults.
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(3) Although in the present mode of following the free surface, clustering

of the collocation points is avoided without having to resort to regridding, the

free surface instability still persists. The present study suggests that violation

of local Courant condition is not the primary mechanism of this instability, con­

trary to the postulation of Dommermuth and Yue (1987). It appears that the

instability is intimately related to the accuracy of computation of a¢J/an on

the free surface (i.e. the Laplace equation solver). The present experience in­

dicates that the problem is associated with the well documented ill behaviour

of boundary integral me thods near sharp corners. In this respect, the present

computations support the opinion expressed in Schultz (1987) (see also the dis­

cussion in §1.2.2.2 (c)). Furthermore, it does not appear that the schemes used

for integrations in time are crucial with regard to instability. Improvements in

time integration schemes are expected to increase computational efficiencies in

that relatively crude discretizations can be made to achieve an increased accu­

racy (see e.g. Dold and Peregrine 1986), but it does not appear to provide a

remedy for the instability, as the computations with progressively larger levels

of iterations have indicated. In the present method, this instability is suppressed

by means of a smoothing scheme applied intermittently.

(4) Albeit simple, the wave outgoing condition (4.13) produces good 'result s

extending over the entire period of computations as well as for all combinations

of H , L and d for which computations are performed. The interior wave is not

apparentl y contaminated by numerical reflection effects even after long tim e of

simulations and at loca tions close to the downstream boundary (see e.g. Figure

4.17). This demonstrates effectiveness of (4.13) in modelling of non-linear wave

propagation.
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5 Steep Wave Interacting with Vertical Walls

5.1 General Considerations

In continuation of the preceding developments, this section considers the in­

teraction of a steep wave with an impermeable object. As a first application,

interaction with a vertical wall is investigated. This application represents the

simplest case of introducing a surface-piercing body in the fluid. Additionally,

available experimental and theoretical perturbation solutions for standing waves

interacting with walls provide an excellent data for comparison.

Identifying the downstream boundary with an impermeable wall, the bound-

ary condition imposed on aDC 2 is that of zero normal velocity:

0t=o
an

..... (5.1)

The simulation proceeds in the similar way as in the preceding application

with the exception that (5.1) now provides the necessary boundary data (a¢ / an)

on aDC 2 at all instants (similar applications have been previously considered in

the linear application cases in §§3.2.2 ,3.2.3). The all-free surface intersection

point is determined from a three point (second order) Lagrangian extrapolation

formula using T/ values at the three preceding points, as it was done earlier for

determining aDF n aD C 2 •

The pressure on the wall is computed from unsteady Bernoulli 's equation:

.... .(5.2)

This involves time derivatives of ¢ at the Eulerian points on the wall , which is
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determined from a second order central difference scheme:

~ _ </>(t + 6.t)' - </>(t - 6.t)
&t - 26.t

..... (5.3)

\!</> on the wallis simply 8</>/8z, since from the imposed condition (5.1), 8</>/8x =

8</>/8n = O. A second-order central difference schemes is used to compute 8</>/8z

from the nodal values of </> on the wall except for the end points, for which second

order forward and backward schemes are employed (Appendix AA provides the

necessary formulae).

In this application, it is found necessary to redistribute the collocation points

on the wall at every time step such that the segments have an equal length. Oth-

erwise, at the discrete time instants at which points are introduced or deleted,

the abrupt changes in the uppermost segment size cause 'jumps' in computation

of 8</>/8t through (5.3) (in contrast, no difficulties were encountered in inte­

grating (4.13) in the preceding application, d. §4). These 'jumps', appearing as

sharp peaks on the pressure curves, however, do not interfere with the time simu-

lation procedure. The flow evolution is independent of the wall pressures which

are an extracted interim data. From this consideration, it is possible to em-

ploy numerical filtering techniques to remove these high frequency disturbances.

Redistribution of the collocation points on 8Dc2 necessitates determination of

</>(t-6.t) and </>(t+6.t)at the Eulerian points at time t. These are determined by

approximating </>j as a function of Zj by a cubic spline. It is observed here that

the spatial differentiations are found to introduce minimal numerical approxima-

tion effects, since the changes in the locations of the collocation points between

consecutive time steps are of the order of 1/50 th of the segments lengths. This

was verified by employing linear and second order interpolation schemes which

produced results within 0.01 % difference.
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The horizontal force (the vertical component of the force is zero) and the

overturning moment about the foot of the wall are determined by a direct inte-

gration of pressure:

r, = r p.dS
J 8Dc 2

u, = r p(z + d)dS
J 8D c2

Force integration can be expressed as

.....(5.4(a))

.....(5.4(b))

..... (5.5)

where j = 1, N w are the collocation points on the wall, 6.S j indicate the suffixed

segment lengths, and the pressure terms are calculated at the indicated colloca-

tion points. This is consistent with the approximation of constant value of <Pj

over each segment. The static term is also correctly evaluated due to central

location of the collocation points. For moment computation, the correspond-

ing static term has a quadratic variation, and therefore integrated by means of

Simpson's rule.

Most of the presented results are in terms of the pressures at the undisturbed

free surface level z = 0 and at bottom of the wall z = -d. This maintains a

uniformity in presentation as well as facilitates comparisons with experimental

results of Nagai (1969) which are provided mostly for these locations. Since the

collocation points on the wall continuously undergo changes of locations due to

the redistribution, once more spatial interpolations/extrapolations are used to

obtain the necessary information (note that the flow evolution is independent of

these interpolations/extrapolations).
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5.2 Computed Results and Numerical Studies

In view of the results discussed in §4, all computations hereinafter are performed

by specifying the Airy potential (eqn. (3.3)) on the upstream boundary. The

notations have the same meaning as described earlier, unless indicated otherwise.

5.2.1 Steady State Behaviour of Solution

The purpose of the following computations is to examine whether a steady state

behaviour of the pressures on the wall can be achieved, as well as to establish

the time span up to which the simulation can be carried out meaningfully. The

simulation time within which reliable results can be extracted will clearly depend

on the distance of the wall from the upstream boundary.

The test case selected corresponds to an oncoming steep wave at the up-

stream boundary (8D c1) with the parameters: A = 246 cm., H = 20.72 cm.,

d = 201 em. (H/A = 0.0817, d/A = 0.82), which means that the excitation

potential has these values of H, A and d. This particular case is chosen because

of the corresponding experimental results available .for comparisons. The free

surface is discretized with segments of constant length with 6.xF = A/24, and

there are 20 segments on each of the vertical boundaries. The time step is,

6.t/T = 1/40. The matching zone ext~nds over 4 collocation points and the

modulation function M(t) given by eqn. (3.7) with a l'I' = 1 is applied.

The time evolution of the run-up profiles, pressures on the wall at z = 0

and z = -d are presented in Figures 5.1 (a) - (c) for the following six values:

L = 1.5A, 2.0A, 2.5A, 3.0A, 3.5A and 4.0A (note that L signifies the distance

of the wall from the excitation boundary). In all Figures, two times T1 and T2
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are marked. T1 is the estimated time at which the fully developed front of the

oncoming wave reaches the wall , which is approximated by:

where Cg denotes the group speed of the linearized wave,

1 kd
cg = c(2 + sinh2kd)

..... (5.6)

..... (5.7)

where k = 27r/ A is the wave number. The above implies that we have assumed

the wave front to travel at the linear group velocity after the excitation potential

has acquired its full value (i.e. <jJ* =<jJ, cf. eqn. (3.6)). The reflected wave,

also assumed to propagate with the same speed, travels back to the excitation

boundary at T2 :

..... (5.8)

These two time values indicate an approximate interval of time during which

the results are expected to reach a steady state behaviour and can be used with

some confidence. As can be observed, in all computations the run-up and top

pressure (i.e pressure at z = 0) exhibit a steady state behaviour in the time

interval T1 to T2 , which extends over more than four periods for L :2: 2.5A. The

variations between successive peaks are usually not more than about 3%. The

bottom-pressure (pressure at z = -d) appears to acquire its steady state nature

some time after T1 , approximately one wave period later. The cause for this

delay is not known, nevertheless after this time the pressures do exhibit a sim-

ilar behaviour, although the variations here seem to be slightly larger than in

the other two time histories. This could be due to the extrapolation required to

obtain these values, and/or the relative smallness of the magnitudes involved.

For L = 4A, the computation is carried out until t = 16T because of larger



134

5 .2 .2 Qu anti t at ive Evaluation: Comparison with Experimental and

Perturbation Results

A substantial amount of experimental data was reported by Nagai (1969) on

results of experiments conducted over a broad range steepnesses (HI>") and

relative depths (dl >.. ). Here Hand>.. denote the height and length of the incident

progressive wave resp ectively, and are taken as equivalent to H and >.. of the

prescribed potential on aDCl (d. eqn. (3.3)). These results are used extensively

for the purpose of comparison. Besides, similar experimental results are scarce

in open literature (some other results are available in Goda 1967, but are in

forms not very suitable for comparison with the present results). Recognizing

that a number of combinations of the relevant parameters admits the desired

simulations as well as considering computer time, the computations are unified

with the following parameters: L = 2.5>", b.xF = >"/24 and b. t = T140 ; the

segment sizes are decided depending on d such that b.XCl an d b. XC2 are closely

comparable to b.xF ; the matching zone extends over four collocation points;

a IT = 1 in modulating the applied potential; the free surface smoothing is

applied in general at every fourth step (in some cares of large HI >.. and small

d] >.. , the free surface instability had to be controlled by applying more smoothing,

e.g. smoothing T/at every 2nd step, ¢J at every 4th step, etc.) Additionally, only

the results extending for two periods located centrally in the time interval Tl

to T2 are used, although in all cases more than three periods of steady state

behaviour in this interval were observed.

In Figures 5.2 - 5.5, results are presented in terms of the pressure at z = 0

and z = -d for all four cases for which Nagai provides experimental data. The
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theoretical predictions from linear and third order standing wave theories are

also plotted. The third order theory was originally developed by Tadjbaksh and

Keller (1960) and was used by Nagai for comparison. For completeness, the

relevant expressions are reproduced below:

(i) linear theory: d/A > 0.5

p(z) = -z _ J:.. kH2e2kzsin" wt + H ekz coswt - J:.. kH2 cos 2wt ..... (5.9)
pg 2 2

(ii) linear theory: d/A < 0.5

p(z) kH2 sin 2 wt--;;g = -z + sinh2kd [cosh'' k(d + TJ) - cosh" k(d + z)J

[
cosh k(d + z)

+TJ 1 + coshkd

(iii) third order theory

coshk(d + TJ)J
cosh kd

..... (5.10)

p(z) 1 1 .--;;g = -z + Acoswt + "4kH2sinh2kd[1 - 2smh
2

k(d + z)J

where

A

B

+B cos 2wt + Ccoswt - Dcos3wt

Hcosh k(d + z)
coshkd

J:..kH2 __1_[3cosh2k(d + z)
4 sinh 2kd sinh 2 kd

+ 2 sinh'' k(d + z) - 2 tanh kd sinh 2kdJ

..... (5.11(a))

.... .(5.11(b))

..... (5.11(c))
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P H3 - 8 - 4 . 4 cosh k(d + z)
256 [4(9wo - 12wo - 3 - 2wo) cosh kd

') cosh ked + z) - cosh3k(d + z)
+-4 cosh kdsinh4 kd

4 - 8 _ 4 cosh3k(d + z)
+ (1 + 3wo)(3wo - o + 2wo) cosh 3kd ] .. ... (5.11(d))

D P H
3

[3(9w- 8 + 62w- 4 _ 31) cosh k ed + z)
256 0 0 cosh kd

+ 24 cosh k(z + d) - cosh 3k( d + z)
cosh kd sinh" kd

4 - 12 ') - 8 - 4 3 cosh 3k (d + z)]
+ (1 + 3wo)(-9wo + 2~wo - 13wo ) cosh3kd

..... (5.11(e))

w6 = ta nhkd ..... (5.11(f))

In the abo ve, p(z) deno tes pr essure at a dep th z , w is the fundamental frequency:

w = 27rIT, and the wave is at its crest at t = O. Computer programs were

wri tten to ca lcul a te p(z) from the abo ve expressions. From the results obtained,

th e following obs ervations can be made:

(i) Figure 5.2 corresponds to a very ste ep wave (HI >" = 0.082) in deep water

(dl>" ;::: 0.5 ), which is the same as the wave in Figure 5.1. The present

result for the pr essure at z = 0 is in closer agre em ent with experimental

resul ts than t he theoretical predictions. The dip or double peak in the

curve in the computed result is in agreement with the experimental curve.

The agree me nt at bottom is also good. However , com puted results indicate

a ph ase differ ence, the numeri cal solution is leading by about tt 18 radians.

(ii) Results in Figure 5.3, corresponding to a steep wave in shallow water, show

once again that the com pu te d pre ssure at z = 0 is comparatively in better
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correlation with experimental results than the theoretical solutions. The

double peak observed in the experimental curve is again reproduced by the

present computations, but the theoretical solutions are unable to predict

this feature. The pressure at the bottom is not in as good an agreement.

(iii) Figure 5.4 shows the results for a small amplitude wave in shallow water

(dl>" = 0.133). The experimental results are larger than either theoretical

predictions or the present computations both at z = 0 and z = -d. This is

somewhat surprising, since for waves of such small amplitude, theoretical

predictions are expected to be in good agreement with experiment. The

computed results, however, compare relatively well with the theories. For

this case , it is believed that comparatively larger errors in experimental

measurements are not unusual due to smallness of the measured quantities

(similar doubts have been expressed in Fenton 1985).

(iv) In Figure 5.5, which corresponds to a shallow water wave of large steepness

(HI>" ;::: 0.05), the results for wave run-up on the wall are also presented,

since the corresponding experimental data is available. The computed

results for the run-up are in closer agreement ith experimental data, dis­

playing relatively more peaky crest and broader trough. An interesting

feature is the occurrence of a double peak in the trough. Such behaviour

is not unusual in the profile of a progressive steep water wave. Indeed, for

HI>.. = 0.059 and dl>" = 0.13, the second order Stokes theory predicts a

null trough due to occurrence of a secondary crest in the trough (Wiegel

1964). Comparing the present values of HI>.. = 0.058 and dl>" = 0.133,

appearance of a secondary crest is then not surprising. The pressure re­

sults at the top are also in relatively good agreement, showing the double
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peak which once more the theoretical predictions can not reproduce. The

agreement of the pressure at the bottom is very good.

Computations are also performed for a number of other conditions for which

Nagai provides experimental results. Considering computer time, selected cases

in the range of dl>" ::;0.5 and HI>.. ~ 0.05 are run. These conditions of shallow

water steep waves are known to possess significant non-linear characteristics

and are precisely the situations for which the usefulness of the present method

is most appreciable. Majority of these exhibit presence of double peaks in the

top pressure curves. For such cases, maximum simultaneous pressures, which

correspond to the vertical distribution of pressures at the time instant when the

total horizontal force exerted on the wall is maximum, do not occur under the

wave crest (see e.g. Figures 5.2, 5.3 and 5.5). Since Nagai provides the pressure

distributions only for maximum simultaneous pressures, a direct comparison is,

in general, difficult. Instead, a qualitative description of the pressure curves is

provided in Table 5.1, which describes and compares the peaks in the pressure

curves both at z = 0 and z = -d. The experimental results are taken from

Nagai's (1969) Figure 5, where graphs showing limiting values for HI>.. and d] >..

for which the pressure curves change from single to double peaks are provided.

The comparison is remarkably good, including situations where the values fall

very close to the limiting lines (indicating that a transition from single to double

peaks is just beginning to occur). It appears that the present computations are

able to reproduce all frequency components in very good qualitative agreement.

Figures 5.6 and 5.7 show the vertical pressure distributions for two cases for

which the maximum simultaneous pressures occur under the wave crest. The

computed results contain two curves, corresponding to the two peaks in the



Table 5.1 Comp arisons of the qualitative nature of the pressur es histories with th e exper­
imental result s of Nagai (1969); 1 == single peak; 2 == double peak; 1 '" 2 indicat es that a
tra nsition from single to double peak (or vice-versa) is just beginnin g to occur.

Exper iment Pr esent
Serial ,\ H d d/ ,\ H/,\ (Naga i 1969) Meth od
No. (em. ) (em.) (em.) p(z = 0) p(z = -d) p(z = 0) p(z = -d)

1 246.0 20.17 201.0 0.814 0.082 2 2 2 2
2 294.0 19.20 53.3 0.181 0.062 2 2 2 2
3 400.0 7.0 53.3 0.133 0.018 1 1 1 1
4 405.0 23.20 53.3 0.132 0.058 2 2 2 2
5 237.6 8.55 48.0 0.202 0.036 1 1",2 1 1",2

6 181.5 13.61 45.0 0.248 0.075 2 2 2 2
7 171.8 9.62 45.0 0.262 0.066 2 2 2 2
8 400.0 9.20 _:200.0 0.500 0.023 1 2 1 2
9 844.0 40.51 200.0 0.237 0.048 1 2 1 2
10 619.2 37.15 200 0.323 0.060 1",2 2 1",2 2
11 550.3 35.22 197.0 0.358 0.064 2 2 2 2

......

.t:'­
(.oJ
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Figure 5.6 Vertical distribution of maximum si­
multaneous pressure on a wall; ,\ = 237.6 em., H
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Figure 5.7 Vertical distribution of maximum si­
multaneous pressure on a wall; ,\ = 400 em., H =
9 em., d = 200 em. (H/,\ = 0.023, d/,\ = 0.50);
L = 2.5'\, afT = 1, T1 = 6T and T2 = 11 T.
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5.2.3 Non-linear Effects

To demonstrate the non-linear effects in the total force , comparisons are made

between results obtained for two different steepnesses: HI A = 0.082 and HI A =

0.02 for a water depth of d = 0.817 A (the steeper wave corresponds to the

results of Figure 5.1). The wall here is located at L = 3.25A. The results in

the interval of T1 to T2 are shown in Figure 5.10. The mean hydrostatic part

(pgd 2 / 2) is excluded from the force which is non-dimensionalized with respect

to (pgHlk). Non-linear effects with pronounced double peaks for the steeper

wave are apparent. It is clear that the force amplitudes are considerably higher

for the steeper wave. The increase is in order of 30% in negative amplitudes.

Figures 5.11 (a) - (c) show the run-up, non-dimensionalized horizontal force

and overturning moment about the foot of the wall for a sequence of steepnesses:

HIA = 0.0,0.25,0.50,0.75 and 0.10. The mean hydrostatic parts are excluded

(which is pgd3/6 for the moment part). The water has a depth of d = 0.5A

and the wall is located at L = 3A. The zero steepness case signifies a linearized

solution in which the simulation is achieved by considering the linear free surface

conditions (cf. §3). A monotonic increase in the non-linear effects with wave

steepness is evident in the run-up profiles. For the steepness of HIA = 0.10,

the run-up profile is very close to the limiting value of a non-breaking standing

wave (Hal A = 0.218 according to the theory by Penney and Price 1952 where

H, is the limiting height of the standing wave). An interesting observation is

a phenomenon similar to beating, or presence of low frequency components, for

the larger HI A values. Closer examination reveals absence of such modulations

of the amplitudes for the linear case and lower wave steepnesses, which suggests



T2

C) HIA = 0.020
4. HIA = 0.082

0
0

NI T'
0
0

.:

~

0
~ 0
~

ci
~
k,1i

0
0

i

0
0

N
17. 50 B.5o 9.50 10.50

tIT
11.50 12.50 13.50

t-'
.c­
\0

Figure 5.10 Horizonta l force on a verti cal wall : effect of wave steepness ; L = 3.25.\, ~XF/.\ = 1/ 24 and
6.t/T = 1/ 40; the plot is shown for the time interval T] - T2 •



151

• H/>.=O

(C) Overturning moment
X H/>.=0 .025
+ H/>. =0.050

0
... H/>. =0.075

0 e H/>.=0 .10

~
~

0

~ 0

~
0

~
0
0

I

7.00 8.00 9.00 10.00 11.00 12.00 13.00
tIT

Figure 5.11 Run-up , horizontal force and overturning moment on a vertical wall
for oncoming waves of different steepnesses; L = 3'\, d/,\ = 0.5, 6.xF/'\ = 1/24
and 6.t/T = 1/48; the plots are shown within the interval T1 (= 7T) and T2

(= 13T); H/,\ = 0 signifies a linearized .applica t ion of the method where the
boundary conditions on the free surface are linearized and aDF is z = 0 (§3)j the
run-up plotted is the trace of aDF n aDC2, which i~ at z = 0 for the linearized
solution, and hence not plotted.



152

this to be rather a non-linear phenomenon than outcome of numerical errors.

Considering the force results, it is seen that the predicted positive amplitude is

maximum under the wave crest for the linear solution and the effect of steepness

is to reduce this amplitude. The negative amplitudes occur under the wave

trough in all cases and an increase in the force amplitudes is apparent here. The

amplitudes of the overturning moment do not exhibit as much variations with

steepness. Here the effect of steepness appears to be formation of a double peak

under the crest.

5.3 Summarizing Remarks

On the basis of the numerical study and the results presented above, the follow­

ing conclusions can be reached:

(i) The described simulation can be applied to study the interaction of steep

waves with a surface-piercing fixed object. The presented results demonstrate

that a steady state behaviour in the pressure and forces on a wall in the presence

of an oncoming steep wave can be achieved for time intervals extending over

several wave periods, depending on the chosen computational domain. The

run-up on the wall demonstrates that the wall and the free surface intersection

point is determined within an acceptable limit of accuracy. This is further

confirmed by the comparisons of pressures at z = 0 with experimental results,

since pressure at this point depends directly on the run-up profile.

(ii) The present results in general correlate better with experimental results

of Nagai in comparison with the agreements of the theoretical linear and third

order perturbation solutions. The present method is able to predict the associ-
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ated non-linear features , in particular the frequency components in the pressure

curves, as demonstrated by the double peaks in the curves. This prediction is in

very good agreement with experimental results and better than existing higher

order perturbation solutions. The advantage of the numerical method over per­

turbation methods results from the validi ty in applicability of the present scheme

over the entire range of relative depth and wave steepness. Additionally, irregu­

lar geometries of the wall and/or the bottom surface can be considered directly.
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6 The Floating Body Problem

6.1 General Considerations

In this section, the problem of motions of floating bodies in steep waves is

considered. As discussed in §2.1 , a floating body B is introduced in the fluid

such that its submerged part is completely contained in 1) (see Figure 2.1).

The desired objective is to expose B to an incident steep wave train and to

subsequently follow the motion of B. A propagating steep wave is generated in

the manner described earlier, developing at oDe!, travelling towards positive

x direction, and eventually interacting with B. The aim is to simulate the

subsequent responses of B.

For this simulation, it is necessary to know the exact location of B at every

time instant. In addition, a relation between ¢Y and o¢Y/on on the body surface

(oD B ) is to be established such that evolution ofthe boundary data on oD B can

be followed. The required information is obtained by invoking the equations of

body motion and the body kinematic condition.

6.1.1 Equations of Body Motion

For the following developments, it is convenient to introduce an additional co­

ordinate system fixed with the body. Accordingly, a body-fixed right handed

rectangular Cartesian coordinate system Gx'z' is defined such that its origin G

lies at the body's centre of gravity (CG) and the axes coincide with the principal

axes of inertia (Figure 6.1). Gz' is directed vertically upwards in the undisturbed

position of the body. The body geometry is invariant in this coordinate system
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Figure 6.1 Inertial and body coordinate systems.

Figure 6.2 In terp olation for ¢( x ') on aDa.
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and therefore the instantaneous contour of apB to an observer stationary in

space is completely defined by the location and orientation of Gx' z' system with

respect to the Oxz system. The coordinates of the radius vector of a point fixed

with the body in the Gx'z' system, denoted as {x}', is related to the coordinates

of radius vectors of the same point and the CG of the body in the space fixed

system, denoted by {x} and {xG} respectively, by the following:

{x}' = [R] {x - xG}

or alternatively

{x - xG} = [Rf{xl'

..... (6.1)

..... (6.2)

[R] in the above represents the matrix of coordinate transformation and the

superscript T indicates a transpose. [R] is given by:

[R] = [ c~sB sinB]
-smB cosB

..... (6.3)

where B denotes the angular displacement of Gx'z' system with respect to Oxz

system, measured positive counterclockwise.

The general equations of motion for the body can be written in the familiar

Newtonian forms:

r; M a2
x G ..... (6.4(a))

B fii2

r, a2z G ..... (6.4(b))lvIB fii2

Jvlo
a2B

..... (6.4(c))
I o at2

where Fx , F, and XG, ZG are the components of the force and radius vectors F

and XG in x and z directions respectively; Jvlo represents the angular moment

about an axis passing through G and orthogonal to Gx' and Gz'; M B denotes
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the body mass and Ie deno tes the mas s mom en t of ine rti a about the axis about

which Me applies.

The external fluid forces and moment exert ed on B can be obtained by dire ct

integrat ion of the fluid pr essure on 8D B:

F

A1e

f p(x ) ndS
JaDe

f p(x ) (x' X n' )dS
JaDe

.. ...(6.5(a ))

..... (6.5(b))

where n and n' are th e uni t nor mals on 8D B dire ct ed ou twards of 'D (i.e. inwards

to 8D B ) in the inertial and body systems respec tively and a ' x' indi cat es a

vectorial cross-product. In the sequel , the primed and non-primed symbols

are understood to be qu antities with respect to the Gx' z' and Ox z systems

respectively, unless defined specifically. The expression for moment in (6.5 (b))

is written in terms of the variables in a mixed system of reference. This can be

recast in the following form consistent with the force expressions:

Me = f p(x ) [( x - xa ) x n]dS
JaDe

.. ... (6.6)

since x' x n' = (x - xa ) x n. In their component form, these expressions are:

Me

.....(6.7(a))

.... .(6.7(b))

..... (6.7(c))

6.1.2 Body Kinematic Condition

On the body surface, t he fluid side normal velocity 8¢J/8n is equal to the normal

component of the body velocity Vn by virtue.of (2.5). For any point q on 8DB ,

.. ...(6.8)
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where V q denotes the velocity vector of oD B at q. From rigid body kinematics,

we have

..... (6.9)

where v c denotes the translational velocity vector for G: v o = &xa/ot and tv

denotes the rotational velocity of B tak en about G: tv = oO/at. i5 represents

tv in a vectorial form , i.e. i5 = tvk where k is a unit vector orthogonal to Gx'

and Gz' (positive when directed outwards of the paper in Figure 6.1). From

(2.5),( 6.8) and (6.9), the following relation results:

where the suffix q has been replaced with j indicating a collocation point. The

above expression provides the relationship between the fluid velocity o¢J/on at

any point on oD B in terms of the body displacement, velocity and geometry,

all of which are defined consistently in the inertial frame of reference (the Oxz

system).

6.1.3 Basic Algorithm for Following the Motion of the Body

The solution algorithm of §2.3 can now be adopted for simulation of motions of

B. The boundary data on oDB are interconnected by means of relations (6.7),

(6.10) and Bernoulli 's equation (5.2). At any instant , presuming o¢J/on to be

known on oD B , the other boundary data ¢J is determined from the solution of the

integral rela tion (2.6) (see §2.2). From this, the fluid pressure (p) exerted on the

body can be determined by utilizing Bernoulli's equation (5.2), since p depends
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(6.9) and (6.14), o¢/ot at the collocat ion poi nts fixed to the body sur face are:

..... (6.15)

Unlike in the determination of wave int eraction with a fixed object (§5), a

straight-forward central difference formula (5.3) can not be employed in deter­

mining (o¢ / at)j, since ¢j(t + .6.t) in this case will not be known a priori. The

evaluat ion of this te rm is discussed la t ter (§6.2.3) . To determine the tangential

derivative %s of ¢j, we use

..... (6.16)

since for the straight line segments, (os/ oj)j = .6.Sj. To determine (o¢/ oj)j,

appropriat e second-order difference formulae are employed (see Appendix A.4 ).

This is found permissible despite sharp changes of oDB , since ¢ on the surface

is in general a smoothly varying continuous function. Th is has been confirmed

by plotting ¢j against j for several conditions. The x and z derivatives of ¢ are

readily ob tainable from relations (4.8(a)) and (4.8(b)), from which

(\1,p)J

.. ... (6.17)

This completes the essential de tails in evaluation of the pressure terms. Re-

calling relations (6.13), th e force expressions can be replaced by the following:

N B

r ; = I:[(pd j + (P2)j + (P3)j]nX j .6.Sj
j = l

..... (6.18(a»
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NB

r, = 2](pdj + (P2)j + (P3)j]nz J .6.Sj
j=1

.....(6.18(b))

in which the approximation that <p;'s are constant over the segments is utilized.

The static term PI and the geometry dependent term in P2 (see eqn. (6.15))

are also correctly integrated due to their linear dependence on x and central

location of j within the segments.

For evaluation of the moment part, the static term (Mol) is

..... (6.19)

which has a quadratic variation with x and is therefore integrated using Simp­

son's rule. The other two terms are linearly varying with x and thus expressions

similar to (6.18) are applicable. In the present algorithm, however, Simpson's

rule has been applied for evaluation of all the three terms.

It is straightforward to employ other more popular and refined rules, e.g.

Gauss quadrature, for these integrations. In this context it is observed that

such refinements do not lead to additional accuracies in the above integrations.

Within the fundamental approximations of the present discretization scheme

(§2), the integration rules adopted are exact.

6.2.2 Discretization

It is convenient to describe the body geometry with respect to Gx' z' system in

which it is invariant. Denoting aD B as the complete contour of B (note that

aD B is not necessarily a closed contour), the surface can be subdivided into

segments once for all. To determine the wetted contour aD B (aD B ~ aD B),

the intersections aD F n aDB need to be determined. These are determined via
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a second order extrapolation scheme in whi ch a second degree polynomial is

assumed through th e three points on oDF adjacen t to oD B. In principle, this

is similar to th e Lagr an gia n extrapolation scheme applied earl ier in de termining

oD F n oD c2 (§§4,5). T he procedure here , however , is more elaborate in that

it involves con sideration of each segment on oD B in suc cession, determination

of the roots of a qu adratic, followed by a searching procedure to locate the two

roo t s which represent the intersection points.

The discretization of oD B on ce for all, determination of oD Bn oDF and

subsequently consideration of only those segments in oD B , is found to produce

inst ability in the forc e computations and a consequential divergence of the so­

lution. This is because this discretization scheme necessitates introduction or

deletion of segments on the body near the intersection point, which in turn

produces 'spikes' or pressure impulses in the computation of the dynamic part

of the pressure P2. Although similar problems were encountered earlier in the

simulation of waves in teracting with fixed objects (§5), here the computations

can not be continued due to the coupling nature of the forces with the time ad­

vancement of the solution. Furthermore, since generally a backward difference

scheme in t ime can be used for evaluating o</J/at , th~ solution is found to diverge

almost immediately after starting. This problem is overcome by redistributing

the collocation points on the body at every step such that the segment sizes vary

smoothly in time. In the present algorithm, we first determine oDF n oD Band

divide oD B at ever y st ep, keeping N B constant. We note that the variation of

the segment sizes betw een adjacent segments is not as critical ( i.e. the solution

is re lat ively insensi tiv e on the variation of (,6.xB)j with j while ,6.xB(t) must not

have large and abrupt changes with t ).
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Redistribution of collocation points on 8D B implies change of the locations

of the points (i.e. x'i's change with time). In the computation of d¢J/dt a spatial

interpolation for ¢Jjbecomes necessary. This can be more clearly seen from the

following. On 8D B , we have

..... (6.20)

In general, for a backward difference scheme for d¢J/dt,

(~)j = <p[¢J(x'j(t), t), ¢J(x'j(t), t - 6.t),···, ¢J(x'j(t), t - N r6.t); 6.tj

..... (6.21)

where <p means 'a function of'. The variable Nr in the above depends on the

order of the difference scheme chosen (e.g. Nr = 2 for a second order scheme).

Expression (6.21) indicates that we have to determine ¢J(x'j(t), t-m6.t) from the

available ¢J(x'j(t-m6.t), t-m6.t) for m = 1,"', Nr . This requirement is similar

to the analogous wall case except that ¢Jjcan not be considered a function of Zj,

since Zj in this case is not necessarily a monotonically increasing or decreasing

function for all j = 1,' .. , N B. It is also not possible to consider ¢Jjas a function

of j as was done in determining the tangential derivatives of ¢J. We therefore in-

troduce another variable Ij, which is essentially the angular coordinate of x' j as

shown in Figure 6.2, and assume ¢Jjas a smoothly varying function of Ij. Except

for very uncommon geometries, Ij will generally be a monotonically increasing

function of j. To obtain the required information, we now approximate ¢Jj as a

function of Ij ·by piecewise polynomials and interpolate for ¢J(x'j(t), t - m6.t).

In general this spatial interpolation is expected to introduce very little numeri-

cal approximation errors, since the changes in X'j between two consecutive times

are very small: typically Ix'j(t) - X'j(t - 6.t)1 ::; 0.026.xB where 6.xB denotes
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the length of a segment on aD B • Computations using linear and second order

interpolation rules were found to produce practically indistinguishable results.

In the present algorithm, the second order rules are retained.

The above completes the discretization of aDB. On the free surface, a similar

redistribution of the collocation points becomes necessary. Except for a wall­

sided body in heave motion, any other combination of the body geometry and

modes of motion causes a change in the size of the segments adjacent to the

body, eventually leading to a deletion or introduction of a collocation point.

For the same reason as on the body, this destabilizes the force computations.

Therefore the original location of the collocation points can not be retained, and

must be redistributed at every time step. This necessitates an interpolation of

Tlj and </>j in space for integration of the free surface evolution equations. Instead

of storing and interpolating between Tlj and </>j, the values of the right hand side

of (2.2) and (4.3) are stored (i.e. f in eqns. (A.1.3) in Appendix A.I) for the

required number of past steps (four steps for the integration scheme employed)

and used for interpolation. This results in a slight reduction of the computations

in that the computations for the r.h.s. of (2.2) and (4.3) need not be repeated.

The interpolations are accomplished by approximating Ii as a function of x i

by a cubic spline. With regard to the associated numerical inaccuracies, earlier

remarks on discretization of aDB apply.
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6.2.3 Integration of the Equations of Motion

The system of equations of motion (6.4) can be decomposed into six ordinary

differential equations of the first order:

Ua

va

..... (6.22(a))

..... (6.22(b))

..... (6.22(c))

..... (6.22(d))

..... (6.22(e))

..... (6.22(f))

A number of standard techniques are available for integrating above system of

ordinary differential equations. In the present algorithm, for convenience as well

as to be consistent with integrations of the free surface conditions, a fourth order

A-B-M scheme was originally employed. However, application of this scheme was

found to lead to an instability of the solution. The solution was found to be

divergent and this could not be remedied by increasing the number of iterations

per time step. This divergence starts at a very ; arly stage of the solution,

typically within 40 time steps of the simulation, and originates from the force

computation. On examining the computed pressure components, it was found

that the problem is associated with the calculation of the dljJ/dt term. When

an implicit scheme is used for the equations of motions, this term can only

be computed from a backward difference scheme in time. As a demonstration,

consider the following equation:

..... (6.23)
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In the A-B-M scheme, a predictor step is:

V (l) (t + ~t) = v et) + <p[F(t ), F(t - ~t) ,··· ; ~t]/MB .....(6.24)

and the corrector steps are:

v (m)(t + ~t) = v et) + <p[F(m-l)( t + ~~) , F(t) , F(t - ~t),···; ~t]/MB

..... (6.25)

where the superscripts in the parenthesis denote the level of iterations, m 2:: 2

for the corrector steps. Examining the corrector steps in the light of (6.23) , it is

seen that the contribution due to d</>/dt in F(m-l)(t + ~t) can only be calcu­

lated using a backward difference scheme. Originally a backward second order

difference scheme was applied for this computation, but successive increases in

the order of the backward schemes did not rectify the situation (the situation

was , in fact, found to worsen). This means that a stable difference formula

must be used to determine this part of the pressure, at least for the second and

subsequent iterations (for the first level , i.e. for the predictor step, a backward

scheme is unavoidable). A stable difference formula in general requires values

of relevant quantities at the advanced time level. This means the formula for

d</>/dt involves estimated values of </>(t+~t), which in turn suggests that explicit

schemes ar e to be used for integrating the motion equations.

The algorithm used can be best described by means of the flow diagram

shown in Figure 6.3. As illustrated, the predicted values are calculated using a

backward differ en ce for d</>/dt in the force evaluation and an explicit scheme is

used for integrating the equations of motion. With this , the required information

(</» on the body for the advanced step is computed. For the second and higher

it erations, the sch eme returns to the previous step and upgrades the force, this
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6.4):

L1 x distance of the body coordinate system from aD C 1

at t = 0; == xG(O)

L horizontal distance between aDcl and aD c2

L 2 L-L1

L~ x distance of the lee side of the body from aD C 1

at t = 0 j = L 1 - 0.5B

L; x distance of the windward side of the body from

aD c2 at t = 0; = L2 - 0.5B

B full breadth of the body

body draft at its static equilibrium (i.e. at t = 0)

water depth

..... (6.26)

Due to the redistribution of the collocation points, the size of the segments

on aDF and ODE continuously changes. Therefore, the parameters indicated

as ~x (with appropriate suffixes) in the following ~re meant to represent the

size of the segments at t = O. The times T1 and T2 have the same meaning

as in the wall case (§5), i.e., the estimated times for the fully developed wave

front to reach the lee side of the body and reflect back to aD c 1. Formulae (5.6)

and (5.8) with L replaced by Li apply for these estimations. The maximum

peak-to-peak values for the x and z components of the forces and moment are

denoted by IFxl, IFzl and IMol respectively while IXGI, IZGI and 181 represent the

similar values for sway, heave and roll displacements. Simulations are achieved

by imposing an Airy wave potential on aD c 1 with H, .x, T and w denoting the
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Figure 6.4 Geometri c param eters of the body and the fluid dom ain .
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height, length, period and frequency of an Airy wave in conformation with the

applied excitation potential defined by eqn. (3.3).

A number of computational results are presented below to demonstrate and

explore the effectiveness of the method in simulating large motions. Simulation

for conditions in which the body is constrained in certain modes of motion are

achieved eas ily by excluding the integration of the corresponding equations of

motion, or alternatively equating the displacements and velocities to their initial

values after each time level.

All computational results presented are for a rectangular body geometry.

6.3.1 Fixed Body Case

This corresponds to the situation of a 'fixed' floating body in which the body is

fixed in all degrees of freedom.

The relevant parameters for this example are

hlB 0.5

2B

dl>" 0.5 ... .. (6.27)

HI>.. 0.075

za(O)1B -B18

These parameters correspond to the non-dimensional frequency wjii129 =

1.253 which is within the interval of 1.5 ~ Bw 212g ~ 2 known for significant
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non-linear effects (Telste 1985). Results in terms of the run-up profile on the

lee side of the body, non-dimensionalizecl forces and moment about the body's

CG are shown in Figures 6.5 (a ) - (d ) for a control domain of Li = 2.5'\ and

L; = 2.0'\. Other parameters are : ~/T = 1.0; n = 4; 6.xF, 6.XG1, 6.XG2 and

6.xB = ,\/24 ; and 6.t/T = 1/48. The large run-up profile at the lee-side in-

dicates an almost full reflection of the wave . Although the time histories show

some variations in the amplitudes, the forces and moment appear to display a

steady state behaviour in the indicated time interval T1 to T2 (cf. eqns (5.6)

and (5.8)). It is not clear whether the observed modulations in the forces and

moment histories ar e due to numerical effects or are non-linear effects.

In order to study the free sur face motions, Figures 6.6 (a) - (d) show the

evolutions in time of the free surface at distances '\, 0.75'\,0.5'\ and 0.25'\ in

front of the body (dist an ces here are measured from the lee side of the body).

These plots suggest a gradual development of a standing wave profile of length

,\ in 0 ::; x ::; Li. Typical features displaying antinodes and nodes associated

with standing waves are apparent. This standing wave has a steepness of ap-

proximately H* /,\ = 0.15 (H* = height of the numerical wave in 1)). The free

surface evolution downstream of the body, shown i~ Figure 6.7 for a station at

a distance of ,\ downstream of the windward side, suggests that practically no

energy has been transmitted to the other side of the body.

Computations performed for this wave condition when the body is released

in heave have shown that the resulting heave motions are extremely small, Izal

not exceeding h/20. This is perhaps not an unexpected behaviour, since from

linear theory it is known that body motions at higher frequencies are usually

negligible.
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Figure 6.5 Run-up, forces and moment on a rectangular 'fixed ' floating body of
h t B = 0.5; Li = 2.5'\, L2= 2.0'\, ,\IB = 2, dl ). = 0.5, HI,\ = 0.075, T1 = 6T
and T2 = lIT.
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t he body, measured from the windward side (x = 4..\)
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6.3.2 Heave Motions

Results shown her e are for t he situation where the body is free to heave but is

fixed in the other two modes of motions.

The relevant parameters for this example are

hlB 0.5

6B

dl>' 0.5 ..... (6.28)

HI>. 0.05

zG(O)I B -B18

wjiiii; 0.723

These parameters are chosen such as to correspond to the heave resonance of

the body. The na tural frequency in heave (w~ ) can be computed from (Newm an

1980)

..... (6.29)

where C22 and a22 are restoring force and added mass in heave. From an estimate

of a2dMB = 1.0 from the experimental results of Vugts (1969), the applied

excitation frequency for this example corresponds to wlw~ = 1.023. The body

is therefore expected to display resonant behaviour in heave.

Figures 6.8 (a) - (c) show the results in terms of non-dimensional sway force ,

roll moment and heave motions for Li = 2.0>',2.5>' and 3.0>'. In all computations

Li = 2.0>'. The plots clearly display a steady state behaviour in the interval T1
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Figure 6.8 Sway force , roll moment and heave motion of a rectangular body of
h f B = 0.5; the body is free to heave only ; ).IB = 6, dl). = 0.5 and HI). = 0.05;
th e body is in (or ver y close to) heave resonance.
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to T2 • The effect of heave motion on sway force can be observed by comparing

the curves in Figure 6.8 (a) with the sway forces for the earlier, fixed body,

results in Figure 6.5 (b) (or the force results on vertical walls shown in §5 , cf.

Figures 5.2 to 5.5). The time histories of the roll moment show the presence

of higher frequency components, which are qualitatively different from the fixed

body results of the preceding example. As expected, large heave motions are

obtained. The maximum heave displacements are in excess of the initial draft:

Izel/h ~ 1.2. The relative run-up profiles at the lee side of the body shown in

Figure 6.9 illustrates that the heave motions are not in phase with the wave.

Evidently the relative motion between the body and the free surface is not

negligible. This relative run-ups vary from r / h ~ 0.2 to 1.5 indicating that

the body tends to emerge more than it tends to immerse (r here is the height

of the free surface measured from the keel, as illustrated in the accompanying

diagram in Figure 6.9) . A close-up view of the body and the free surface at

several instants over a full cycle of heave motion shown in Figure 6.10 illustrates

this feature more clearly. At its maximum positive heave displacements, the

body is almost emerging out of the free surface (see Figures 6.10 (a) and (e)).

Steady state behaviour of the solution is further evi'denced by the repeatability

of the free surface profiles when the body's displacements and velocities are

identical. Compare, for example, the free surface profiles in Figures 6.10 (a) and

(e) where the body displacements and velocities are the same. These plots when

superposed are graphically indistinguishable. On the other hand, dependence

of the fluid motion on the body's motion can be observed by examining Figures

6.10 (b) and (d), when the body is at the same displaced position but moving

in opposite directions. The free surfaces here differ considerably.
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Figure 6. 9 Relative run-up on the lee side of the body corresponding to Figure
6.8 above.
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Figure 6.10 Plots of the instantaneous position of the body and a portion of
the free surface; (a) - (e) refer to the corresponding time marks in Figure 6.8 (c)

(for Li= 2.5A).
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6.3.3 Roll Motions

In the following examples , the simulations are achieved by fixing the body in

the heave and sway modes while it is free to roll.

The key parameters are

hlB 0.5

2B

dl>' 0.5

HI>. 0.05
..... (6.30)

za(O)IB -1/8

wAA 1.253

IeipSA B 2 0.028

GM BI24

whe re SA denotes the wetted area of the body at t ~ 0 and GM denotes meta­

centric height.

The roll natural period of the body (w~) can be estimated from:

w r = (gMBGM )0.5
n Ie +He

.. .. .(6.31)

where SIe represents added moment of inertia in roll about an ax is through the

body CC. A rough estimate of Hel pS AB
2 = 0.025 from the experimental results

of Vugts (1969) yields

::!.-=1.4
w~

..... (6.32)
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for this example.

The time histories for the sway and heave forces and roll motions are shown

in Figures 6.11 (a) - (c) for Li = 2.0A and 3.0A. L; = 2A in both computations.

Although a steady state behaviour is established in the sway and heave force

results in the interval T1 to T2 , the roll motion history shows a somewhat different

behaviour. The body apparently developed a list due to the influence of the

oncoming waves from one side. Also the time histories for Li = 2A and 3A

show some differences in the roll behaviour, although the qualitative behaviour

is quite similar. Since this motion does not display a steady state behaviour,

it is not clear whether the results shown are effects of transients or result from

numerical inaccuracies. In both cases, however, the roll displacements are very

small (181 < 2.5 deg.). Considering (6.32), small roll motions are to be expected.

The force histories indicate the associated non-linearities of the system. For

example, the sway force history displays broader peaks and narrower troughs

compared to linear theory predictions (which would be sinusoidal).

This example corresponds to the example for heave resonance of the rectangular

body shown earlier (see (6.28) for the relevant parameters). The roll inertia of

the body is Io/ pS AB 2 = 0.10 and GM = B/24. These yield an estimated roll

natural period of w/w~ = 1.25 (using a value of H o/ pSAB2 = 0.020 from Vugts

1969). Results are presented in Figures 6.12 (a) - (c) for Li = 3.0A,L; = 2.0A.

A steady state behaviour in the force histories in the interval of T1 to T2 is

apparent. The roll displacements here are comparatively larger than those in
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Q

~-----,---.....,
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Li = 3.0A (Td T = 7, T2/T = 13)
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(a) Sway force

Fi gure 6 .1 1 continued J]
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Li = 2.0>' (TIlT = 5, T2/T = 9)

~

~ d

~

~ 0
0

0.00 2:00 4: DO 8:00 8: 00 lb.00 1~.00 1~. DO
t iT

0
0 L; = 3.0>' (TIl T = 7, TdT = 13)

~

~ d
~

~ 0
0

0.00 2.00 4. DO 8. DO 8.00 10.00 12.00 14.00
tIT

(b) Heave force

Figure 6.11 con tinued l]
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0
In Li = 2.0A (TdT = 5, T21T = 9)

~
0

~
0

:;:
cj
0.00 2.00 •. 00 8. 00 8.00 10.00 12.00 1•• 00

tiT

:;:
Li = 3.0A (TdT = 7, T21T = 13)

1
~

~i~

~j
~

0.00 2: 00 4: 00 6: 00 8. 00 lh.oo 1~. 00 1•. 00
tiT

(c ) Roll motion

Fi g ure 6.11 Forces and roll motion of a rectangular body of hiB = 0.5; the
body is free to roll only; Al B = 2, d] A = 0.5 and H I A = 0.05.
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(a) Sway force
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a
a
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~
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(b) Heave force

8.00 8.00
tiT

(c) Roll motion

Ib.oo

10.00 12.00

1~.00

14.00

Figure 6.12 Forces and roll motion of a rectangular body of hiB = 0.5; the
body is free to roll only ; >"1B = 6, dl>" = 0.5 and HI>.. = 0.05, Li = 3.0>",
T1 = 7T and T2 = 13T.
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the preceding example. This is to be expected from consideration of the w/w~

values (which is comparatively closer to unity in this example). Once again the

body tends to develop a steady list. The time history of roll shows a close to

steady state behaviour, although some modulations are still noticeable. It is not

clear whether the simulated roll motions are due to numerical error or are the

correct prediction of the body's behaviour. The time histories of forces in both

these examples however tend to indicate that the non-steady state simulated

histories of roll are perhaps not attributable to numerical errors, since the effect

of numerical errors is expected show up in the force histories due to the coupled

nature of the problem.

Comparing the force histories with those of Example 1 shown in Figures

6.11 (a) and (b), (note that in both cases the nominal oncoming wave steepness

is H/>.. = 0.05), it is evident that a reduction of the excitationfrequency (or

equivalently, an increase of the oncoming wave length) results in a reduction

of the forces (in their non-dimensional forms). The ratio of maximum forces

(i.e. IFxl, IFzl) in these examples is of the order of 2 for both sway and heave.

A reduction in the associated non-linear features in the force histories is also

apparent.

For both of the above examples, attempts to simulate roll by selecting a

combination of Ie and GM which yields w/w~ ~ 1 failed. The problem is

associated with not allowing the body to heave simultaneously, which results in

occurrence of flooding and consequent failure of the numerical scheme. Results

for combined roll and heave will appear latter.
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Here the rectangular body has a draft of hiB = 1 , the excitation frequency

corresponds to wfii/29 = 0.723 (same as in example 2 above) and the body

has an inertia of l olpSAB2 = 0.10. The roll motions for six values of GMIB

= 0.00825 , 0.03325, 0.05825 , 0.08325 , 0.10825 and 0.13325 are shown in Figure

6.13 (a ) - (f ). The body is located at Li = 2.5>' and the downstream boundary

is at L; = 2.0>'.

In the first plot corresponding to a very small Gl\1!value (GM = 0.00825B),

the body develops roll in one direction only which grows rapidly until the time

the results are shown. After this time the solution breaks down due to flooding

and consequent difficulty in locating the body-free surface intersection points.

From the trend of th e rolling behaviour, it would appear that the body eventually

capsizes. Considering the associated small magnitude of the restoring force , this

does not seem unlikely.

The increase of restoring forces on roll can be studied from these plots. For

smaller restoring forces, the body tends to develop a list and rolls more towards

the windward side. In the last two plots, with relatively larger Gi\l!, this trend

is found to be reversed. The body begins to roll more evenly. An increase in

the positive amplitudes compared to negative amplitudes can also be observed,

showing th at the body now rolls more towards the side of the oncoming wave.

Increases of restoring forces are found to result in larger roll amplitudes. For

the largest value of GM studied here , the roll amplitudes steadily grow and

the solu tion breaks down after the time upto which the results are shown due to

difficulties in loca ting the body-free surface intersection points by extrapolation.

Since the value of wlw~ is associated with 8Io which is not readily available for

the chosen hiB value, it is not possible to relate the natural roll period with
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a
a
a (c) Glvf/B = 0.05825

a
a
c:i

g
c:i:-!-----_/

8: 00 8: 00
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Figure 6.13 continued Jj.
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a
(e) Glv!I B = 0.10825

a
a

~
a

~

:J
1i1.00 1~.00 -1.. 000. 00 2: 00 .: 00 8:00 8: 00

t IT

a

l (f) GAflB = 0.13325

a

~ a
~

:J 2: 00 .: 00 8: 00 8:00 1•. on0.00 10.00 12.00
t i T

F ig ure 6 .1 3 Roll motion of a rectangular body of hiB = 1.0 for various values
of G1\1; >"1 B = 6, dl>" = 0.5 and HI >.. = 0.05; computations are for a domain of
L'i.= 2.5>" and Li = 2.0>" ; T1 = 6T, T2 = 11 T.
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GM. It is however possible to determine the combinations of SIe and GM,

shown below , which yields wlw~ = 1 :

H el pSAB 2 0.025 0.050 0.075 0.100 0.125 0.150

GMIB .0654 .0785 .0915 0.105 0.118 0.131

The plots shown suggest the roll resonance to be associated with a value of

GJvIIB be tween 0.10 and 0.13 , which, from the table above , sugges ts a value

of SIel pSAB 2 between 0.10 and 0.15. From a study of Vugts ' experimental He

values for lower hiB ratios, this range of SIe for the present hiB value appears '

to be a realistic estimate . Large roll motions of the body for the last two GM

values are then expected responses.

6.3.4 Combined Heave and Roll

Here the combined heave and roll motions are simulated. The body is fixed in

the sway mode.

The relevant parameters for this example are

hlB 0.5

6B

dl>' 0.5

HI>. 0.05 .....(6.33)

w[iij2; 0.723
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zo(O)/B -1/8

GlvI B/24

fo/ pSAB2 0.10

Results for this case when the body was free to either heave or roll have

already been presented. The excitation frequency here is very close to the heave

natural frequency such that large heave motions can be anticipated. Results

are shown in Figures 6.14 (a) - (d) for Li = 3.0'\, L; = 2.0'\. For comparison,

results from the earlier run when the body was fixed in roll and sway mode

but free to heave are also plotted. As can be observed, sway force and heave

motion appear to be uninfluenced by roll motion. On the other hand, the roll

moment histories show noticeable differences. The influence of heave on roll can

be studied by comparing Figure 6.12 (c) with Figure 6.14 (d) (for these two

results, all parameters are same except that for the result in Figure 6.12 (c), the

body was allowed to roll only). Besides a qualitative change in the roll history,

the amplitudes are considerably higher in the present simulation compared to

when the body was constrained from heaving. These results suggest that heave

motions are rather insensitive to ·roll motions while the reverse is not true.

This example has the following parameters:

h/B 0.5

8B

d/,\ 0.5
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Figure 6.14 continued JJ.
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. heave only
e heave and roll

a
a

(c ) Heave motion

~ a

'§
a
d

]
a
a

I
0.00 2.00 4.00 8. DO a.DD 10.00 12.00 14.00

tIT

a
d ( d ) Roll motion

2.00 4.00

Fi g ure '6. 14 Force, moment and motions of a rect angular floating body of hiB
= 0.5 ; the body is free to roll and heave; for the plots (a) - (c) , results when the
body is free to heave only (cf. Figure 6.8) are also plotted; >"jB = 6, d] ); = 0.5
and HI>.. = 0.05 ; computational domain is , Li = 3>" and L; = 2.0>..; T1 = 7T,
T2 = 13T.
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H/>. 0.04

wjBi2; 0.627 .....(6.34)

za( O)/ B -1/8

GlvI B/24

Io/pSAB 2 0.050

A rough est imat e of H o/ pSAB 2 = 0.025 from Vugts (1969) yields w/w~ = 0.967.

Therefore, lar ge roll motions can be an ticipated.

Figures 6.15 (a) and (b) show the heave and roll displacements respectively

for a domain of L 1 and L 2 = 2.5>'. These results are achieved by using !::"x/>. =

1/40 and !::"t/T = 1/100 (com pared to !::" x/>. of 1/24 to 1/30 and !::"t/T of 1/48

to 1/60 used in all the pr eceding examples ). The relatively finer discretization

is found necessary for an adequate description of the body. In this regard, the

requirement of keeping !::" x comparable over all parts of the boundary, which

follows from the nec essity of keeping the adjacent segments at the intersections

of the boundaries comparable in length (see §4.3.3) increases the computational

burden consi derably for smaller exci ta tion frequencies (t he operation count per

t ime step roughly varies with (>. / B? ).

Large roll amplitudes in the order of 50 deg. are evid ent in Figure 6.15 (b) .

It can be seen that the body tends to roll more towards the upstream side of the

oncoming wave, simil ar to t he roll results obtained earlier for larger GM values

(d . Figures 6.13 (e) and (f» . The body also undergoes considerable heave

mo tion . The hea ve displ acemen ts are comparable to its resonant behaviour in

that mode (d. Fi gur e 6.8 (cj), alt houg h in the present example, w/w~ ~ 0.89

(us ing a22/M B = 1 from Vugt s 1969 ). Plots displaying the instantaneous po sition
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Fig u re 6. 15 Heave and roll motions of a rectangular floating body of li ] B = 0.5 ;
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to ) roll resonance.
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of the body with respect to the free surface for several time instants quarter

of a period apart are shown in Figure 6.16. The capability of the method in

simulating large motions is illustrated in Figure 6.17 where we show the evolution

of the body and free surface motions over one cycle of roll oscillation at closely

spaced time intervals. Although the free surface profiles in the vicinity of the

body show some irregularities , inspection reveals that the body is rolling with

the wave, which is typical rolling behaviours of vessels with relatively large roll

stability in long waves (see e.g. Lewis 1977).

6.3.5 Motions of a Completely Unrestrained Body

Finally results are presented to demonstrate the capability of the method to

simulate the motions of a completely unrestrained body.

In the first example, the parameters are same as in the example 1 of §6.3.1 (see

(6.27) for the relevant values). This example is chosen since from earlier results

we know that sway forces are expected to be large. 'Consequent ly, it is of some

interest to study the resulting sway motions.

Figures 6.18 (a) - (c) show the evolution of the forces and moment in time

while Figures 6.19 (a) - (c) show the time histories of the three modes of dis­

placements. The time history of sway displacement clearly displays an oscillatory

drifting pattern. Within the time of 6 ::; tiT::; 10 , the body has drifted by

a distance of over 0.25B (~ 0.06..\). The heave and roll motions are very small

which is to be expected considering that the excitation frequency is much higher
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Figure 6.17 Plots displaying the instantaneous location of the body and a
portion of the free surface over one complete period of oscillation at intervals of
2 time steps; the time interval corresponds to the period 7.70 :s: tiT :s: 8.70 (i.e.
(d) - (h) in Figure 6.15).
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Figure 6.19 Mo tions of the body corresponding to Figure 6.18 above.
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than the natural frequencies. Comparing the sway forces with those for the fixed

body results (Figure 6.5 (b)), it is seen that although the magnitudes are almost

same (the peak-to-peak values are within 5 %), the associated non-linear fea­

tures displayed by the double peaks show a qualitative difference. Heave forces

are found to be considerably reduced when the body is drifting.

This example corresponds to the example 1 of §6.3.4 where results have been

presented for combined heave and roll motions of the body. The time histories

for all three modes of displacements are plotted in Figures 6.20 (a) - (c). The

drifting of the body is evident in Figure 6.20 (a). Between the time interval of

tiT = 6 to 10, the body has drifted more than its width. Comparison with the

earlier example reveals an increase of the average drift speed in longer waves.

This feature is qualitatively similar to the experimental results of Hams (1987)

on drift of two-dimensional ice-floe models. A comparison of Figure 6.20 (b)

with Figure 6.14 (c) (which shows the corresponding heave displacements for

the body when it is fixed in sway) reveals that the influence of sway on heave

is negligible. On the other hand, considerable influence of sway on roll can be

observed. The present results also show a delay in the initiation of the roll

motion, which is believed to be due to drifting.

6.4 Summarizing Remarks

The results presented above demonstrate that it is possible to simulate large

motions of floating bodies in steep waves by imposing an excitation potential
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and subsequently following the evolution of the body configuration. It has also

been shown that a non-linear steady state solution can be approached in this

manner. Results have been presented simulating large heave and roll motions.

Also accomplished are sway motions featuring drifting of a body.

The insensitivity of the solution with regard to the size of the control (com­

putational) domain has been demonstrated. Depending on the length of the

interior domain, realistic simulations for relatively long time, typically a steady

state behaviour of the solution over several periods, can be accomplished.

Several complications that arise from the coupled nature of the problem

have been elucidated and appropriate techniques have been developed for their

treatment. The method can be explored for other applications such as forced

oscillations and free motions without anticipating difficulties. Applications to

this latter problem will appear in a later section (§8.3.2).

The major problem presently associated with the method lies in the treat­

ment of the body and free surface intersection points. Although no problems

were encountered in the earlier application of wave interactions with vertical

walls (§5), some problems are encountered when the body undergoes large roll

motions. Further remarks on this will be made in the concluding section .(§9.3).
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7 The Experimental Program

7.1 General

7.1.1 Introductory Notes

Although the results of the preceding section (§6) have shown that it is possible

to simulate large motions of two-dimensional floating bodies and to approach a

fully non-linear steady state solution, the validity of the method remains subject

to question. This section describes an experimental program which was under­

taken to validate the presented numerical model. This was considered necessary

due to inadequacy of published analytical, numerical or experimental results on

analogous two-dimensional problems of motions of floating bodies in non-linear

waves. As revealed in §1, the study considered is still unfolding in literature and

consequently experimental results with which the present numerical simulation

results can be compared are relatively scarce.

One of the earliest experimental studies on two-dimensional bodies was the

small amplitude forced oscillation tests carried out by Vugts (1969) which pro­

vided important data on hydrodynamic coefficients for several cross-sectional

geometries. Among the more recent experimental studies on similar prob­

lems, mention may be made of the following. Experiments on large amplitude

forced heave oscillations of two-dimensional section shapes were conducted by

Yamashita (1977) and Tasai and Koterayama (1976). In the experiment of

Adachi and Ohmatsu (1980), the body was subjected to a transient wave exci­

tation and the subsequent decaying motion was recorded. These authors have

also conducted some small amplitude forced heave and sway experiments. The
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'Sal ter 's duck' experiment by Greenhow et al. (1982) focussed on capsizing of

the body due to the passage of a single steep wave. Here the body was re­

stricted from sway and heave and the objective was to essentially compare the

still photograhic images of the experiment with that of the numerical simula-

tion model. Comparisons have also been made for horizontal and vertical forces

and the agreement obtained was considered to be quite good by the authors.

Notwithstanding the highly transient and non-linear nature of the experiment,

an idea of the good quality of agreement between the experimental and com­

puted data, according to the authors, can be formed by examining Figure 7.1

where the authors' results are reproduced. A more recent contribution based on

an analogous experimental study was reported in Miyata et al. (1986). Here the

forces on submerged objects due to passage of steep breaking waves were deter-

mined. The agreement between experiment and numerical solution obtained by

means of a finite-difference formulation was not very satisfactory (according to

the authors), specially in horizontal forces.

Although experiments on large amplitude forced oscillations (i.e. the radi­

ation problem) and wave forces on fixed bodies (i.e. the diffraction problem)

provide important data for comparative purposes, to the author's knowledge,

no systematic two-dimensional experimental data are readily available in open

literature in which a floating body is subjected to an incident wave train such

that the motions and waves contain significant 'non- linear' characteristics. The

only exception appears to be the experiment by Kyozuka (1982), who conducted

a similar experiment by subjecting a Lewis-form body to oncoming waves, and

presented his results in the frequency domain. 'While experiments to determine

motions of three-dimensional bodies in regular waves are routinely performed by
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Figure 7.1 Computational and experimental forces and moment on 'Salt er 's
Duck' , as obtained by Greenhow et al. (1982); full line = computations, broken
line = experiment (reproduced with permission).
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various hydrodynamic laboratories, the two-dimensional counterparts of similar

experiments are relatively rare due to their limited scope for direct application

to the industrial sector. Such two-dimensional experiments are generally most

suited for the purpose of comparison with analytical or numerical prediction

models. Therefore it was felt that an appropriate two-dimensional experiment

would not only produce valuable data for comparison with the present numeri­

cal model, but also serve as a reference for future works on similar numerical or

analytical studies.

7.1.2 Objective

As indicated earlier, the objective of the experimental program is to asses the

validity of the numerical method developed. Concern here is on accurate mea­

surement of the responses of the body, both motions and forces, by subjecting

it to an oncoming regular wave train of known characteristics. Considering the

three permissible degrees of freedom, experimental investigations are possible,

at least in principle, for a number of combinations of the forces and motions. A

partial list of the possible combinations are shown in.Table 7.1. Amongst these,

the situation where the body is completely free to float was considered not to be

favourable for experimental purposes, since it was felt that it would be difficult

to prevent the body from undergoing some motions in the transverse plane (yaw

and pitch). Additionally, a dynamometer was available which permitted mea­

surement of forc es in longitudinal direction while allowing the body to heave and

roll. This lead to th e choice of experiments in which the body is restricted from

swaying. In addition, by appropriate modification of the mounting arrangement,

it was possible to restrain the body from rolling. It was therefore decided to
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Table 7.1 Some possible experimental arrangements; 'x 'and 'V indicate
respectively that the body is restrained from and free in particular modes of
motions.

Serial Degrees of Freedom Measurements
No. Sway Heave Roll Forces/Moment Displacements

Sway Heave Roll Sway Heave Roll

1 ~ ~ ~ ~ ~ ~

2 x ~ ~ ~ ~ ~

3 x x ~ ~ ~ ~

4 x ~ x ~ ~ ~

5 x x x ~ ~ ~
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carry out the experiments for which heave only and heave and roll motions were

permitted.

The conducted experiments conform to items 2 and 4 in Table 7.1 while

items 1, 3 and 5 were omitted from further consideration due to difficulties in the

measurements and/or the required modifications of the mounting arrangement

(it is to be noted that the roll moment for item 4 could also not be measured due

to lack of appropriate instrumentation). These two controlled test environments

are believed to be adequate for the present purpose of comparison.

7.2 Design and Dimensions

The experiments were performed in the Memorial University wave tank. This

tank has interior dimensions of 54.74 m. x 4.8 m . x 3.04 m. A piston type

wave maker driven by an electro-mechanical servo mechanism generates waves

at one end of the tank and a parabolic beach acts as an energy absorbing device

(for more details on the tank, see Muggeridge and Murray 1981). The body

chosen for testing is of rectangular cross section. The dimensions of the body

were arrived at from the following considerations:

• The dynamometer poses an upper limit on the size of the body. Denoting B

and LB as the width and length of the body respectively, these dimensions

must be such that the maximum anticipated force exerted on the body is

within the capacity of the dynamometer.

• B should be preferably chosen such that the range of A/ B for which exper­

iments can be performed is as wide as possible, preferably spanning from

about 1 to 10 (corresponding to the non-dimensional frequency parameter
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BwJB/29 ranging from about 0.55 to 1.75). Since the wave maker has

an upper limit of frequency (equivalently a lower limit of ).), this puts a

constraint on the minimum possible value of B.

• To retain two-dimensionality of the phenomenon and to minimize possible

end effects, LBIB should be kept as large as possible.

• Larger models are expected to be proportionately less influenced by viscos­

ity, consequently providing better data for comparison with the potential

flow model. This suggests a larger model, i.e. a larger value of B.

From these considerations, the dimensions of the body were selected as 40

ern. x 40 cm. in cross section and 120. ern in length. To avoid sharp corners and

to minimize resulting flow separations, a bilge radius of 2.5 em. was provided.

The body had a draft of 20 cm., which provided a relatively large freeboard of 20

em. This was felt necessary to avoid flooding since from earlier computational

experience, large run-ups on the lee side of the body were anticipated. The length

chosen corresponded to LBIB = 3 which was hoped to be adequate for simulating

two-dimensional flow conditions. Indeed, no rigid rules are available in selecting

this value of LBIB and we have used guidance from previous analogous two-

dimensional experiments where the following values were used:

Adachi and Ohmatsu (1980)
Greenhow et al. (1982)
Kyozuka (1982)
Miyata et al. (1986)

LBIB
~
~ 1.7

1.4 to 3
1 to 1.5

The body was constructed from 1/4 inch aluminium plate with appropriate

interior connections for mounting the dynamometer and to provide necessary
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ballast weights. The model was extremely rigid and no extra stiffening was

required to retain its shape. Figure 7.2 provides an illustration of the body.

To achi eve two-dimensionality of the flow, a channel within the wave tank

was constructed by erect ing vertical walls. The channel length was 6.1 m. (20

ft.). As with the LB/B ratio, no rigid rules were available to establish the length

(La) of the channel. It was felt that 6.1 m. was sufficient to generate a two­

dimensional flow conditions near the test section. The present La / B value of

5.1 can however be compared with the corresponding value of approximately

4.5 in the experiment of Miyata et al. (1986) in which a similar channel was

constructed.

The vertical walls were spaced such that the body occupied the entire width

of the channel except for a small clearance in the order of few millimeters (typ­

ically 2 to 4 mm.). Each side of the channel consisted of two 8 ft. x 4 ft.

plywood of 3/4 inch thickness with a central part made of a 4 ft. x 4 ft. x

1/2 inch plexiglass piece. This arrangement for the central part was introduced

to maintain a smooth surface at the test section as well as to facilitate viewing

from the sides. The walls were firmly attached to e bottom of the tank by

means of bolts. Eight threaded rods connecting the side of the tank and the

top of the walls provided additional supports. These threaded rods also allowed

minor adjustments in the width of the channel such that a small gap between

the body and the channel could be maintained. Figure 7.3 shows an illustration

of the channel.

The dynamometer allows measurement of roll displacements upto a maxi­

mum of ±30 deg. However , a direct connection of the dynamometer with the
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body restricts the maximum roll displacemen t of the body to about ±20 deg.,

due to the wid th of t he heave-bar (t he ver ti cal mo vable part of the dynamometer ,

see Figure 7.4). In order that the body is free to roll upt o ± 30 deg. , an at t ach-

ment rod was const ructe d to connect t he body with the dynamometer. This

arrangement was nec essary also from a considera tion of the main dimensions

of the set-up (water dep th and height of th e carriage) which did not permit a

direct attachment of the dynamometer with the body. The rod was constructed

from a 2 inch x 2 inch steel beam of 1/4 inch wall thickness and was extremely

rigid. The connections of this rod with the body and the dynamometer were

also very firm. This attachment was made with the option that the body could

be restrained from roll when desired by attaching it directly to the body without

that part of the dynamometer which allows roll. Figure 7.4 illustrates details of

the above arrangement.

7.3 Description

7.3.1 Model Characteristics

The desired weight of the model was achieved by adding appropriate ballast

weights (lead), and was verified by weighing the model on a standard balance.

To determine and adjust the location of the center of gravity (CG), an inclining

test was performed in which heeling moments were applied by adding weights

at marked locations and going through a standard sequence of operations (see

Sem yono v-Tyan -Shansky 1966). Inclinations were measured by a Sperry mi­

cro l.evel pr ecision inclinometer (cour tesy IMD , NR CC) with a resolution of 0.01

degrees. For the measured angles of the order of 4 deg ., the error in KG (t he
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vertical distance of the CG measured from the keel) estimation translates to

less than 0.5%. Indeed, successive inclining tests produced almost identical

results, with KG values differing by less than 0.25%, and these values in turn

agreed very well with the value calculated from independent measurement of the

weights and locations of individual components.

The roll radii of gyration were calculated from weights and locations of indi­

vidual components. In view of the agreement between measured and computed

values of KG and weight, these computations are believed to be accurate within

1 to 2%, and experimental determination by means of the standard inclined

table was not carried out. Experiments were performed for two different weight

distributions which differed in radii of gyration of the model 'while KG remained

unchanged. This was because the first arrangement when tested for natural roll

period produced a value of 2.15 sec., which corresponded to a >"1B of about 18

to achieve roll resonance (>.. here corresponds to the length of a deep water Airy

wave of the same period). The second arrangement was to essentially reduce

the roll natural period without changing ~ny other parameter.

Table 7.2 summarizes the geometric characteristics of the body. Watertight­

ness of the model was assured by leaving it afloat overnight.

7.3.2 Test Set-up, Instrumentation and Data Acquisition

The test section was located approximately 20 m. from the wave-board, which

left a distance of about 30 m. from the beach. For the period for which test

results were collected, these distances of the body from both ends of the tank

were sufficient for reflected waves from either end not to interfere with the results.
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Table 7.2 Geometric characteristics of the model

Geometry

Length
Breadth
Depth
Draft
Bilge radius

Mass

GM (measured)

KG (from measurement)
...... (from calculation)

Natural period in heave

Natural period in roll

rectangular
(with rounded-off corners)

120 em.
40 em.
40 em.
20 em.
2.5 em.

96.3 kg.

2.15 em.

14.5 em.
14.48 em.

167 kg. cm. 2 fern,. (wt. dist. type I)
107 kg. cm.? fern. (wt. dist. type II)

1.25 sec.

2.15 sec. (wt. dist. type I)
1.82 sec. (wt. dist. type II)
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Experiments were performed for a water depth of 0.9 m. (about 3 ft.), which

provided a freeboard of about 0.3 m. (~ 1 ft.) on the vertical walls. For the

range of wave heights for which experiments were conducted, this was sufficient

to avoid spilling of water over the walls of the channel. The dynamometer was

firmly mounted on the carriage (mass = 3.9 tons) and was attached to the body

via the connecting rod.

The dynamometer used was a resistance type dynamometer, model R47 built

by Kempf and Remmers, Hamburg. This instrument is originally intended for

regular ship model towing tests, and is capable of measuring upto 200 KN of force

in longitudinal direction. In addition, it allows vertical displacement (heave) of

the model upto ±20 em. and angular displacement (roll or pitch) upto ±30

deg. The body can be easily restricted from rolling by removing the part of

the dynamometer which allows rotational modes of motion and attaching the

connecting rod directly to the model, as illustrated in Figure 7.4. However, lack

of appropriate instrumentation did not permit measurement of roll moment in

this situation. A schematic view of the test arrangement is shown in Figure 7.5.

The wave field was monitored by means of stan ard resistor type twin wire

wave probes. A total of 5 probes were used to measure wave heights. The

collected data were therefore the wave heights, longitudinal force, roll and heave

displacements. Data from all eight sources were collected in an eight channel HP

3968A instrumentation tape recorder capable of FM recording over a bandwidth

of 0 to 5 Khz. and/or direct recording of signals upto 64 Khz. During testing,

data were monitored by viewing the signals on a digital signal analyzer (model

HP 5420). For final analysis, analog data from the FM recorder were digitized

by means of a Keithley data acquisition instrument (system 570) at a sampling
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Figure 7.5 A schematic view of the test arrangement.
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rate of 40 hz. and transferred to the main frame VAX 8530/8800 computing

systems for post processing. All subsequent processing and analyses were done

on these systems.

Table 7.3 shows set-up voltages and the precision levels of the measuring

units. The probes and the dynamometer were calibrated prior to, during, and at

the end of the tests. For the range of values typical of the conducted tests, these

precision levels result in less then 2% uncertainty in the measured quantities,

e.g. typical values of sway force, heave and roll displacements of 10 kg., 10 em.

and 10 deg. result in uncertainties of 0.5%, 1% and 1% respectively.

Some views of the test arrangements and instrumentation are shown in Fig­

ures 7.6 - 7.8.

7.3.3 Test Sequences

Prior to the actual testing, a series of preliminary tests were performed in which

waves over a range of frequencies and heights were generated and wave heights

were measured at four locations along the centre line of the channel. The probe

locations are shown in Figure 7.9. Probe no. 3 coincided with the location of

the body. The purpose of these tests were to explore the range of frequency

and heights for which acceptable quality of waves can be produced by the wave­

maker. Additionally, these tests were intended to determine the effect of the

channel on the generated waves and to serve as data when comparing with the

numerical results. For each frequency, three wave heights were generated, rang­

ing from very steep to modest steepnesses (H/>.. ~ 0.12 to H/>.. ~ 0.03). Indeed,

these tests have shown that for higher frequencies and larger steepnesses, the
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Table 7.3 Precision levels of the measuring devices

Dynamometer

Measurement Supply voltage Precision level

For ce

Heave

Roll

Wave probes

2.5 V

5V

10 V

5V

± 50 gm.

±lmm".

± 0.1 deg.

±2 '" 3 mm.
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waves produced were not capable of retaining their forms . Also , the combina­

tions producing cross flows inside the channel and the tank were identified and

omitted from subsequent tests. For convenience, these tests are termed as test

series A.

The main tests consisted of a series of three tests , designated B, C and D

respectively (see Table 7.4). The probe and body locations are shown in Figure

7.10 for these tests. Probe nos. 1, 2 and 4 ~ere unaltered in location, while

two probes (nos. 3 and 5) were placed abreast within the channel and close to

the body, separated by a distance of about 0.6L B (80 em.). These two probes

were intended to provide an indication of the quality of two-dimensionality of

the near-field flow.

For test series Band C, the model was free to both roll and heave, while

for test series D the model was free to heave but restrained from rolling. As

mentioned earlier, due to lack of appropriate instrumentation, the roll moments

were not measured in these tests. The model had a larger radius of gyration in

B test series than the remaining series of tests (see Table 7.4). In most cases,

the steepest wave generated in test series A could not be applied in the main

series of the tests due to occurrence of flooding. Indeed, the run-ups were very

high, and even for moderate steepnesses (HI>" ~ 0.05), waves close to the body

displayed large steepnesses (in some situations close to breaking).

To complete the experiments, tests were also conducted with the model com­

pletely free to float (i.e. free in all modes of motion). For these tests no quanti­

tative measurements were taken but the tests were video-taped for a qualitative

analysis of the model behaviour. Also conducted were roll and heave transient
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Test series B

Test series C

Test series D
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Table 7.4 Type of tests

Measurement of wave heights
without the presence of the body

Experiment with the body,
body free to roll and heave,
weight distribution type I,
101LB = 167 kg. cm. 2/cm.

Experiment with the body,
body free to roll and heave,
weight distribution type II,
101L B = 107 kg. cm. 2/cm.

Experiment with the body,
body free to heave only
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tests, which were performed respectively by initially displacing the model in roll

and heave and than releasing it.

In order to have some idea on the flow separation near the bilges, attempts

were also made to visualize the flow field in the vicinity of these corners. This

was done by introducing coloured dyes near the bilge for the test conditions for

which the model displayed large motions. Unfortunately, due to difficulties in

photographing, no conclusive data could be obtained from these tests.

Tables 7.5 (a) - (c) summarizes all tests conducted for which measurements

were taken (excluding series A) together with comments as appropriate.

7.4 Experimental Results

For all tests, data were recorded for 32 sees, including the transient information.

Additionally, with the exception of first few tests, all of the tests were video taped

for future reference.

Except for the longitudinal force measurements, all other measurements

(wave heights, heave and roll motions) were found to .have insignificant amount

of noise content, which was removed by a five point averaging technique. For

the force measurement, however, the time record was found to contain a rel-

atively large proportion of high frequency noises. This was probably caused

by the absence of an analog filter while recording the data. These noises were

subsequently removed by applying a digital filtering technique. The time record

was first Fourier t ransformed to the frequency domain which was then digitally

filtered by selecting a standardized window (signals of frequencies more than

four times the excitation frequency were removed). Subsequently the smoothed
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Table 7.5 (a) Series B experiments

Frequency

No. f w H .A wjBi29 H/.A .A/B Remarks!
(sec.-I) (rad.Zsec.) (em.) (em .)

1 1.20 7.540 3.75 108 1.0771 0.0347 2.70
2 1.10 6.912 7.87 129 0.9874 0.0610 3.20 (a)
3 1.10 6.912 3.75 129 0.9874 0.0291 3.20
4 1.05 6.597 9.65 141 0.9425 0.0684 3.53 (b)
5 1.05 6.597 4.90 141 0.9425 0.0348 3.53
6 1.00 6.283 9.83 156 0.8976 0.0630 3.90 (a)
7 1.00 6.283 5.10 156 0.8976 0.0327 3.90
8 0.95 5.969 4.95 173 0.8527 0.0286 4.33
9 0.90 5.655 6.93 192 0.8078 0.0361 4.80
10 0.85 5.341 8.25 214 0.7630 0.0386 5.35

tRemarks

(a) : near -field waves close to breaking

(b) : near-fi eld wave tips occasionally br eaking; sur f formation
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Table 7.5 (b) Series G experiments

Frequency

No. f w H >. wlBJ29 HI>. >.IB Remarks!
(sec.-I) (rad .f sec.) (em .) (em .)

1 1.10 6.912 7.87 128 0.9874 0.0610 3.20 (a)
2 1.10 6.912 3.75 128 0.9874 0.0291 3.20
3 1.05 6.597 9.65 141 0.9425 0.0684 3.53 (a )
4 1.05 6.597 4.90 141 0.9425 0.0348 . 3.53
5 1.00 6.283 9.83 156 0.8976 0.0630 3.90 (a )
6 1.00 6.283 5.10 156 0.8976 0.0327 3.90
7 0.95 5.969 4.95 173 0.8527 0.0286 4.33
8 0.90 5.655 6.93 192 0.8078 0.0361 4.80
9 0.85 5.341 8.25 214 0.7630 0.0386 5.35
10 0.80 5.027 4.13 240 0.7181 0.0172 6.00
11 0.70 4.398 3.92 304 0.6283 0.0129 7.60
12 0.60 3.770 4.80 385 0.5386 0.0125 9.63
13 0.60 3.770 8.80 385 0.5386 0.0229 9.63
14 0.60 3.770 10.60 385 0.5386 ,.0.0275 9.63

tRemarks

(a) : near-field waves close to br eaking
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Table 7.5 (c) Series D experiments

Frequen cy

No. f w H A wfB129 H/A A/B Remarks!

(sec. 1) (rad. Zsec.) (em.) (em .)

1 1.20 7.540 3.75 108 1.0771 0.0347 2.70
2 1.10 6.912 7.87 129 0.9874 0.0610 3.20 (b)
3 1.10 6.912 3.75 129 0.9874 0.0291 3.20
5 1.05 6.597 9.65 141 0.9425 0.0684 3.53 (b)
6 1.05 6.597 4.90 141 0.9425 0.0348 3.53
7 1.00 6.283 9.83 156 0.8976 0.0630 3.90 (a)
8 1.00 6.283 5.10 156 0.8976 0.0327 3.90
9 0.95 5.969 10.20 173 0.8527 0.0590 4.33 (a)
10 0.95 5.969 4.95 173 0.8527 0.0286 4.33
11 0.90 5.655 6.93 192 0.8078 0.0361 4.80
12 0.85 5.341 8.25 214 0.7630 0.0386 5.35
13 0.80 5.027 8.70 240 0.7181 0.0363 6.00
14 0.70 4.398 8.35 304 0.6283 0.027 5 7.60
15 0.60 3.770 9.65 385 0.5386 0.0247 9.63

(a) : near-fi eld waves close to br eakin g

(b) : near-fi eld wave tips occasion ally br eakin g; surf formation
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time records were retrieved by an inverse transform (this procedure did not alter

the phase information of the signal).

To check the two-dimensionality of the flow, the records from the two probes

placed abreast inside the channel (probe nos. 3 and 5, see Figure 7.10) can be

compared. For most tests, the flow was found to possess an acceptable quality of

two-dimensionality, particularly in the initial period of recording. For some tests,

specially for the conditions of higher wave steepnesses, cross flows were found

to develop inside the channel after some time. However, these did not affect

the results, since such flows generally developed after the period up to which the

data was collected for analysis. Typical sample records from these two probes

are shown in Figure 7.11 (a) - (c) as an indication of two-dimensionality of the

flow during the test period.

For lower values of >..jB (i.e. at higher frequencies), the model displayed

negligible motions and acted very much like a floating breakwater (the lowest

AIB that could be achieved was about 2.7; the wave maker was not capable

of producing waves of acceptable quality below this wave length). The waves

transmitted to the other side of the body were negligible. As the frequencies ap­

proached heave natural period, the model began to display large heave motions.

However, except close to the roll natural period, the model did not practically

roll at any other frequencies (roll amplitudes were typically within 2 to 4 deg.).

A majority of the tests was conducted twice to verify repeatability of the

tests. The results showed very good quality of repeatability. Most of the experi­

mental results in conjunction with the corresponding results from the numerical

model are presented in the following section. Here some sample results are in-
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F ig u r e 7 .1 1 Time records for free surface elevations measured by probe no. 3
and probe no. 5 from the tests with the presence of the body.
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eluded. Figures 7.12 (a) and (b) show sampleresults from test series A as a

demonstration of the quality of the generated waves inside the channel, while

Figures 7.13 (a) - (c) show sample results for the main series of tests demon­

strating the quality of repeatability (note that the presented samples cover the

range of tested frequencies).
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:./1 probe no . 4

(a) wfiiii; = 0.9425, >..IB = 3.53 , HI>.. = 0.0684

F ig ure 7.12 continued -l).

- ...
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probe no. 1

l. DD
t (••• 1

( b) wfiiji; = 0.5386, AlB = 9.63, HI A = 0.0229

Figur e 7.12 Time records for free surface elevations from Test Series A.
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8 Comparison of Experimental and N urnerical
Results

8.1 Introduction

The objective of this section is to provide a comparison between eXPerimental

and numerical results. For a proper comparison it is necessary that the exper­

imental conditions are replicated in the numerical model. As described in the

previous section, the experiments were conducted by permitting the body to re­

spond in selected modes of motions. In this regard, the numerical mOdel can be

relatively easily tuned to imitate the experimental conditions. Computational

results illustrating responses of a floating body constrained in Particular modes

of motion have already appeared in §6. For a valid comparison, another matter

of equal importance is the correspondence of the input conditions. Although the

numerical model closely resembles its physical experimental COUnterpart in that

both represents initial value processes with waves being generated at One end of

the tank (equivalently the control domain), it is not possible to directly repli­

cate the experimental set up in the present simulation model for the following

1. The method of wave generation in the numerical model and the physical

test system is not the same. Even if it was possible to numerically simulate

a physically moving impermeable wave board generating waves at one end

of a finite control domain, the difficulties in replication of the physical test

system would still remain. This is because, considering the distance of

the body from the wave board, which is about 20 m. (in order of 10 to

20 wave lengths for the range of frequencies tested), the computational
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domain required would have been prohibitively large.

2. In the numerical model, a direct control of the height of the generated

waves in the interior of the control domain is not possible; control can

only be exercised on the imposed excitation potential.

3. Transient development of wave fields are expected to be different due to

differences in the wave generation mechanism.

A direct one -to-one mode of comparison between the experimental and nu-

merical results is therefore not available in general. Hence it is necessary that ,

prior to carrying out any comparisons, a reasonably acceptable basis of compar-

ison be established.

8.2 Basis of Comparison

The primary input variables for the comparison are taken to be the funda-

mental wave period and wave height. Previous computational results (d. §4)

have shown that the height of the generated waves !nside the control domain

is closely comparable to the height (H) of the Airy wave corresponding to the

excit a t ion potential. Also , the fundamental period of the generated wave was

shown to be very close to the excitation period. Ideally, the excitation potential

should be selected such that the conditions of the generated waves at the loca­

tion of the body's CG agrees with the test wave conditions, but this would have

lead to a trial-and-error search for the correct excitation potential. Considering

the simulation time and the amount of experimental conditions that were to

be simulated, this process would have required prohibitively expensive and time
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consuming computational efforts. Instead, selection of an Airy excitation poten-

tial with Hand w taken from the test conditions were found to be close enough

approximations for replicating the experimental waves. This will be apparent

from the results presented below.

All of the numerical results, unless specifically mentioned, have been com-

puted for a standardized control domain extending over L = 4.0>'. The CG of

the undisturbed body is located at L, = 2.5>' and L 2 = 1.5>' from the bound­

aries aD c l and aD c 2 respectively (d. Figure 6.4). The two periods T, and T2

described earlier (see §6.3) provide a guidance for the time span within which

comparisons are meaningful. For the size of the domain chosen, about 3 to 5

wave periods of results can be obtained within the interval between Tl to T2

for most of the tests. Considering the wide range of >'1B values for which nu-

merical results are to be generated, the grid sizes were not standardized. The

relative value of /:).X (i.e. /:).xl >') for which the computed results are considered

sufficiently reliable for the lower range of wavelength results in poor resolution

of the body surface for large values of >.. This follows from the requirement of

keeping /:).X approximately uniform all over aD (see e.~. §4.3.3, where it is shown

that the adjacent segments must be comparable in lengths for the numerical so­

lution to be well behaved). On the other hand, retention of the relative /:).XI >.

value chosen for the larger values of>. over the entire range of wavelengths leads

to a very fine resolution of the free surface for low>. values at the expense of

considerable additional computer time, without essentially improving accuracy

of the solution (as we have seen in §4). The spatial grid sizes are therefore chosen

such that a reasonably good description of the entire boundary can be obtained.

Guidance from previous computations helps to choose appropriate values. /:).t
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for all computations are chosen so that the Courant-Friedrichs-Lewy condition

given by eqn. (3.17) is satisfied. These discretization parameters for each com­

putations are listed in Table 8.1. The other relevant parameters are: oiT = 1

and n = 4 for all computations (th is corresponds to a matching length between

O.LAto 0.13.\). It need also be mentioned that the geometry of the body in the

numerical model is rectangular, since the algorithm is not capable of modelling

curvilinear geometry (recall that the body contour is approximated by straight

line segments). This approximation is not likely to cause any significant errors ,

since the radii of curvature are very small.

For the chosen size of the control domain, T2 for most runs is in order of 8 to

12 times the excitation period, depending on Cg values (see eqn, (5.7) and note

that d/.\ ranges from over 0.5 to about 0.25), or about 9 to 16 sees. in real time.

From the experimental results, an appropriate window extending over this time

interval was considered for the presentation of time histories for comparison. In

most cases , the windows were selected by a visual inspection of the full time

record and are such that the data contai~ a part of the transient information,

i.e. the starting point of the window is a few peri:>ds ahead of reaching the

steady state. Figure 8.1 illustrates such a typical window.

The comparison between the numerical and experimental time records are

pr esented in the following manner.

Input conditions

The numerical wave is measured at a station inside the control domain located

at a distance of 0.5.\ from the excitation boundary. This distance is chosen
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Table 8.1 Discretization parameters

t.z.. wjBii9 x f::.x/,\ f::.t/T
(sec.r ") ~

1.15 1.0771 117.9 1/30 1/60
1.10 0.9874 128.9 1/30 1/60
1.05 0.9425 141.4 1/30 1/60
1.00 0.8976 155.8 1/30 1/60
0.95 0.8527 191.8 1/40 1/80
0.90 0.8078 191.8 1/40 1/80
0.85 0.7630 213.9 1/40 1/80
0.80 0.7181 239.8 1/40 1/80
0.70 0.6283 304.1 1/40 1/100
0.60 0.5386 385.0 1/40 1/100
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~
0.00 700 12.00 16.00 --a o-o 24.00 28.00 - 32. 00

t (s ec.)

~l

~~
0.00

heave motion

·_-~~--- 1 2 . a a 16 . 00
t ( s ec.)

20 .00

Figure 8.1 Illustration of a typical window chosen for t he purpose of comparison
and presentation of results ; this record is from Test Series C; wjB129 = 0.7630 ,
>"IB = 5.35 , HI>.. = 0.0386 ; record from this window can be seen in Figures 8.7
(c) and (d) below.
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such that the station is relatively close to 8D c1 and about 0.4). outside of the

matching region on an average. Therefore the time history for the free surface

elevation remains uninfluenced by any reflection from the body for a relatively

long time. This elevation can then be taken as a measure of the oncoming wave.

For the experimental input conditions, the wave elevation records from test series

A (without the presence of the body) are considered. Comparison of these two

records therefore provide the comparisons of oncoming wave conditions. For

presentation, these two records are synchronized. The synchronization here is

standardized by matching the peak of the numerical wave in the time interval

3 ~ tiT ~ 4 with the peak of the experimental wave record.

The primary outputs of the models are the two displacements (heave and roll)

and the sway force. These results are plotted by synchronizing the records with

respect to the undisturbed wave at the horizontal location of the body's CG.

The synchronization is accomplished in the following manner.

Referring to Figures 8.2 (a) - (f), the phase difference between the wave at

location of probe no. 2 and probe no. 3, henceforth referred to as P2 and P3

respectively, for the tests without the body (i.e. for test series A, see Figure

7.9) can be determined by measuring br2,3 (Figure 8.2 (a)). Similarly, from the

tests with the body (i.e. test series B, C or D), the phase difference between

P2 and the responses (for clarity, the responses are shown as a single curve and

denoted as R( exp) in Figure 8.2 (b)) can be determined by measuring br2,R.

Taking P2 to be a reference, the phase difference between the undisturbed wave
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F ig u r e 8.2 Synchronization of the results.
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at the body's CG location (P3 in Figure 8.2 (a)) and the responses (R(exp)) are

determinable by calculating OT3,R:

...... (8.1)

Therefore the experimental time records are established with reference to the

undisturbed wave at the body's CG location, as illustrated in Figure 8.2 (c).

To synchronize the numerical results with the experimental ones, time history

for the free surface elevation at P2, which has been generated in the numerical

model, is utilized. By measuring the time difference OT2,N between the experi­

mental and numerical records for free surface elevations at this location (Figure

8.2 (d)), the entire time histories for all the responses in the numerical model

(R(num)) are shifted by this amount to achieve the desired synchronization

(see Figure 8.2 (e)). Referring to Figures 8.2 (c) and 8.2 (e), the synchronized

records referenced with respect to the extrapolated undisturbed wave record at

the body's CG location are established, as illustrated in Figure 8.2 (f) (in the

Figure, a slight phase gap between the res.ponses has been retained for clarity).

It is to be observed that synchronization of the . results could have been

achieved through a somewhat less lengthy procedure, by taking P2 as an absolute

reference and measuring all other records with respect to it. However, here the

procedure described above is adopted, since this is believed to follow standard

practice of data presentation in the frequency domain where the phases are

usually referenced relative to the incident wave crest at the body's CG location.

For extracting the phase information, times indicated as T2, T3, T;, TR, T2N and

TRN shown in Figures 8.2 (a) - (f) need to be determined. These are calculated

by an averaging process.
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Consider a time record extending for a length of NT periods (Figure 8.3),

and denote the time of occurrence of the peaks as Ti, i = 1, ... , NT (it is also

possible to work with any other reference such as the troughs or zero-crossings).

By measuring Ti, the averaged value of T1 (i.e. T at i = 1) is determined from

1 N N
T1 = -[2:: r, - 2::(i - l)T]

NT i=1 i=1

where T denotes the fundamental period of the signal.

The above procedure can be subdivided into the following steps.

..... (8.2)

(i) Determine T2 and T3 from the records of test series A (Figure 8.2 (a)) by

selecting an appropriate window by a visual inspection of the full record.

(ii) Select window from the test records of series B or C or D (as the case may

be) and find Ti and TR, and hence determine 8T2,R (Figure 8.2 (b)). In

most situations, the selected window coincides with the time span selected

in (i) above.

(iii) Calculate 8T3,R from eqn. (8.1) and establish the experimental record for

the responses in relation to P3 of test series A (Figure 8.2 (c)):

..... (8.3)

(iv) Determine T2,N from the numerical results. The window selected for this

is: [1 + (2.5'\ - L 2,3)/ Cg ] :::; t :::; [1 + (2.5'\ + L 2,3)/ Cg ] which follows from

consideration of linear group speed. Here L2 •3 is the distance between P2

and P3 (refer to Figure 7.9 or 7.10). Hence determine 8T2,N (Figure 8.2

(d)).
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Figure 8.3 A typi cal tim e record.
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(v) Shift the entire numerical record including wave information at P2 (Figure

8.2 (e)):

rjm = rRN - Drz,N .....(8.4)

(vi) Compile and plot the records: the wave record at P3 from test series A,

and the responses from the experimental and numerical results (Figure 8.2

(f)).

An interactive software is developed to process the data in the manner de­

scribed above. The approximations implicit in this processing must now be

stated:

(i) The tests have been assumed repeatable. This "assum p tion is implicit by

utilizing results of test series A for synchronization with other test results.

This means, it is assumed that for an identical signal to the wave-maker,

the generated waves are identical. Results illustrating the quality of re­

peatability presented earlier (Figure 7.13) justify this assumption.

(ii) The records are assumed to be periodic with the fundamental period of T,

which is the period of the excitation signal (i.e. the wave-maker). This

assumption is implicit in using eqn. (8.2).

Notwithstanding these assumptions which may lead to some inaccuracies in

the synchronization procedure, it should be pointed out that the relative phases

between the three responses for each set of records (experimental and numerical)

are kept unaltered by the above processing.
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8.3 Results

8.3.1 Sway Forces and Heave Motions

The comparisons between the time histories of the experimental and computed

results are presented in Figures 8.4 - 8.7. The first plots in these ((a) in the

Figures) compare the free surface elevations of the experimental and numerical

waves. The sway force and heave motion histories ((c) and (d) in the Figures)

are plotted in referenced to the undisturbed wave elevation at the location of

the body's CG (which is shown as (b) in these Figures), obtained in the manner

described above. For brevity, in this section only a limited number of time series

plots are presented, covering the experimental range of frequencies and steep­

nesses. For wJiij2; = 0.7630, computational results were also been obtained

for an extended control domain with L, = 3.25'\ as a further verification of

the numerical model. Figure 8.8 shows this comparison. Note that the plotted

sway force and heave motions are respectively the total force recorded by the

dynamometer, t; = Fx L B , and the vertical displacement of the body's CG,

za = za(t) - za(O). Also, the quoted values of Tl a;nd T2 are rounded-off to

the nearest 0.5 sec. and adjusted by adding appropriate values such that they

directly correspond to the time-axis of the plots.

Results in terms of the peak-to-peak values and phase relations were compiled

and summarized in Tables 8.2 (a) - (c). The numerical wave height quoted here

was computed from the corresponding time history by averaging wave heights.

For this, the record in the time interval 4 ~ tiT ~ 7 which lies well within

Tt to T; was considered. Here Tt and T; indicate respectively the times at

which the wave at the station (i.e. at the location of 0.5'\ from aDc l at which
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Figure 8.4 continued .lJ.
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Figure 8.4 Comparison of expe riment and theory

wfii129 = 0.9874 , AlB = 3.20, HI A = 0.0610 , Test Seri es D
T 1 ~ 19 sec. , T2 ~ 24 sec .
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Figure 8.5 continued .JJ.
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Figure 8.5 Comparison of experiment and theory

wfiii29 = 0.9425, )../B = 3.53 , H / ).. = 0.0684 , Test Seri es C
T1 ~ 17.0 sec., T2 ~ 22.0 sec .
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Figure 8.6 continued .lJ.
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(c) sway force
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Figure 8.6 Comparison of exp eriment an d theory

wjiii2'; = 0.8527 , )..IB = 4.33 , HI).. = 0.0590 , Test Serie s D
T1 ~ 22 sec. , T2 ~ 27.5 sec.
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Figure 8.7 Comparison of experiment and theory

w~ = 0.7630 , >"IB = 5.35 , HI>.. = 0.0386, Test Series C
T1 :::::: 17 sec. , 'T2 ::::::22.5 sec.
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Table 8.2 (a) ~omparisons for sway force and heave moti on , test series B

Sway Force Heave Motion

~ wjB12; AlB HIA IFxl IFxl 6.Fx 6.{3F Izel Izel 6. ze 6.{3zH num
(exp.) (num.) (%) (deg.) (exp.) (num .) (%) (deg .)

0.987 1.0771 2.70 0.0347 0.053 0.059 9.8 30 0.0375 0.0385 1.3 0
0.996 0.9874 3.20 0.0610 0.135 0.120 -11.0 0 0.0985 0.099 0.10 15
0.986 0.9874 3.20 0.0290 0.066 0.061 -7.7 30 0.064 0.0645 -0.60 0
0.985 0.9425 3.53 0.0684 0.154 0.159 3.4 -30 0.177 0.178 -1.0 -15
0.996 0.9425 3.53 0.0348 0.086 0.078 -9.7 -15 0.098 . 0.099 0.10 -15
0.998 0.8976 3.90 0.0630 0.146 0.161 8.3 -45 0.273 0.275 0.7 -15

0.996 0.8976 3.90 0.0327 0.086 0.089 2.6 -30 0.125 0.128 2.0 -15
0.971 0.8527 4.33 0.0286 0.096 0.098 -0.8 -15 0.207 0.217 1.8 -15
0.976 0.8078 4.80 0.0361 0.152 0.156 1.5 30 0.380 0.454 16.5 30
0.976 0.7630 5.35 0~386 0.158 0.165 3.7 15 0.660 0.700 3.6 15

N

W



Table 8.2 (b) Comparisons for sway force and heave motion, test series C

Sway Force Heave Motion

~ wfiii2i >"IB HI>.. IFxl IFxl si; b..f3F Izel Izel b..ze b..f3zHnum
(exp.) (num.) (%) (deg.) (exp.) (num.) (%) (deg.)

0.962 0.9874 3.20 0.0610 0.144 0.123 -17.6 -15 0.099 0.099 -4.3 0

0.986 0.9874 3.20 0.0291 0.068 0.062 -8.8 -30 0.059 0.059 -2.2 -15

0.985 0.9425 3.53 0.0684 0.176 0.156 -12.9 0 0.197 0.190 -5.0 15

0.994 0.9425 3.53 0.0348 0.083 0.078 -6.8 0 0.098 0.098 -0.60 15

0.998 0.8976 3.90 0.0630 0.151 0.164 8.4 15 0.273 0.275 0.7 -15

1.0 0.8976 3.90 0.0327 0.088 0.089 1.2 -30 0.130 0.128 -1.9 -15

0.971 0.8527 4.33 0.0286 0.099 0.097 -4.5 -30 0.210 0.218 0.5 -30

0.976 0.8078 4.80 0.0361 0.156 0.154 -4.0 -15 0.390 0.455 13.8 0

0.976 0.7630 5.35 0:0386 0.148 0.162 6.5 15 0.670 0.700 2.0 15

0.993 0.7181 6.00 0.0172 0.091 0.090 -1.7 -30 0.390 0.401 1.9 15

0.992 0.6283 7.60 0.0129 0.0911 0.085 -7.5 0 0.295 0.304 2.1 0

tv

.po



Table 8.2 (c) Comparisons for sway force and heave motion , test series D

Sway Force Heave Motion
~ wfBi29 >.IB HI>. IFxl IFxl 6.Fx 6.{3F JZGI IZGI 6.z G 6.{3zHnum

(exp .) (num.) (%) (deg.) (exp.) (num.) (%) (deg.)

0.987 1.0771 2.70 0.0347 0.053 0.059 9.8 0 0.0375 0.04 5.26 0
0.962 0.9874 3.20 0.0610 0.126 0.123 -6.2 0 0.10 0.099 -3.9 0
0.986 0.9874 3.20 0.0291 0.065 0.062 -6.9 -15 0.055 0.058 3.1 0
0.985 0.9425 3.53 0.0684 0.151 0.154 6.2 -30 0.190 0.195 1.1 -15
0.994 0.9425 3.53 0.0348 0.086 0.080 -7.2 -30 0.097 0.098 0.40 -15
0.997 0.8976 3.90 0.0630 0.151 0.164 8.3 -90 0.274 0.295 7.2 -90

1.0 0.8976 3.90 0.0327 0.083 0.088 5.0 -45 0.130 0.130 0.0 -30
0.971 0.8527 4.33 0.0590 0.185 0.172 -9.8 -30 0.455 0.474 1.4 -15
0.980 0.8527 4.33 0.Q286 0.102 0.096 -6.9 -30 0.218 0.220 -0.8 -15
0.976 0.8078 4.80 0.0361 0.148 0.151 0.7 15 0.401 0.468 13.9 15
0.976 0.7630 5.35 0.0386 0.148 0.162 6.5 15 0.660 0.690 2.1 15
0.837 0.7181 6.00 0.0363 0.194 0.226 -2.6 -15 0.750 1.025 14.3 15
0.977 0.6283 7.60 0.0275 0.152 0.162 4.0 30 0.580 0.638 7.2 15
0.990 0.5386 9.63 0.0247 0.160 0.150 -7.8 15 0.448 0.488 8.8 15

N

\Jl
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the numerical wave height is monitored) is likely to be fully developed and free

from the influence of reflection. From considerations of linear group speed and

chosen computational parameters , Tt IT = 1+0.5K and T; = 1 + (4 .5 - B I A)K

where K = c]Cg • The other parameters shown have th e following meanings:

IFxl
pgB2

1.:£l-~
h - (BI2)

[(IFxIIH)num - (IFxIIH)exp 1J x 100

(lFxll H)exp ..... (8.5)

[(lzGIIH)num - (IzallH)exp _ 1J x 100
(IzallH)exp

phase differences between measured and computed time

histories for sway force and heave"motions respectively,

(positive indicates numerical record is leading)

where IFxl and Iza l were defined earlier (see §6.3). The values shown for the

numerical results are computed by averaging the peak-to-peak values for the

central two periods in the interval T1 to T2 • For the experimental results , how­

ever, the entire time record (excluding the transient part of the record) was

considered in determining the quoted values (not just the time record chosen to

present the time history comparisons in Figures 8.4 - 8.8).

A measure of the discrepancies between experimental and computed results

are therefore provided by C::.Fx and C::.za values. Note that in defining these

parameters, a normalization with respect to H was carried out such that any

discrepancies arising from differences in Hexp and Hnum are absorbed in them

(much in the style of usual transfer functions). For the sampling rate of 40 hz. at

which data was processed, and taking into account the data averaging procedure
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(a digital filtering technique for the force record and five point averaging formula

for the rest of the records, see §7.4), the approximate level of accuracies for the

phase values are estimated to be varying in the range of 10 to 20 deg., depending

on the frequencies. The values quoted have been rounded-off to 15 deg., since

this value is considered to be indicative of estimated average level of accuracies

over the full data range.

The discrepancies between the measured and computed peak-to-peak values

(i.e. f).Fx and f).zG) are grouped in the range of 5% and are shown in Figures

8.9 (a) - (f). A discussion of these results is provided latter (see §8.4 below).

Note that in Tables 8.2 (a) and (b), roll results were not included since for those

ranges of frequencies roll motions were very small (see §8.3.3 below).

8.3.2 Free Heave Tests

With some modifications, the numerical model can be used to simulate free

motions of floating bodies. A variety of initial conditions can be examined by

combining initial displacements and velocities. To achieve these simulations, the

imposed excitation on oD cl needs to be removed. Tlie numerical model can be

set up by either imposing condition (4.13) on oDcl and oDc2 with c determined

as the celerity of an Airy wave of period corresponding to the natural period of

oscillation, or by placing these boundaries sufficiently far and imposing either

<jJ = 0 or o<jJ/on = 0 on them. The former method is expected to permit long

time simulations with a relatively small computational domain, while in the

latter method results are expected to be contaminated when the disturbances

created by the body reach the outer boundaries. Nevertheless, depending on the
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length of the domain, uncontaminated results for a few periods of oscillations

can be obtained at the expense of additional computer time. Considering ease

of implementation in that additional algorithms need not be written for time

integration of (4.13) on oDe 1 , the latter method is adopted here for comparison

with experimental results.

Prior to showing the comparisons, in Figure 8.10 the numerical results are

shown, which are computed for different lengths of the domain, grid sizes and

imposed conditions on the outer boundaries. The discretization parameters

shown are normalized with respect to T == T h and A = length of an Airy wave

of period T h in water depth d. Here, T h is the natural period of oscillation in

heave. These plots show that results up to t ~ 2.5Th differ negligibly, except for

the smallest control domain of O.5L = 6B. This case corresponds to a distance

of only 1A. between the body and the outer boundaries. For O.5L 2: 12B, results

upto 2.5Th can therefore be considered reliable, regardless of the conditions

imposed on the exterior boundaries.

The comparison between experiment and theory is presented in Figure 8.11

in which a plot for only one of the numerical results isshown for clarity. For the

experimental results, the first half cycle of oscillation is omitted due to uncertain

initial conditions (the experiments were performed by pushing the body down

and releasing it; the force required for this was considerable, and consequently

possibilities exist for non-zero initial velocities). The agreement between theory

and experiment is in general quite good. The numerical result shows a slight

over-prediction in the natural period, indicating some over-estimation in the

heave added mass (d. eqn. (6.29)). The experimental results for the two

tests show some discrepancies. Considering that the restoring forces are linear,
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the discrepancies are perhaps attributable to experimental inaccuracies rather

than differences in initial conditions. The contribution of fluid viscosity in the

damping of heave motion appears to be not very significant, although closer

scrutiny reveals a marginal damping effect (see the lower part of the plots).

These findings are consistent with results obtained by earlier investigators (see

e.g. Adachi and Ohmatsu 1980). Since the variations in the two experimental

records are almost as large as the difference between experiment and theory,

further analysis of the comparison is not carried out.

8.3.3 Roll Motions

With the exception of the lowest experimental frequency in the vicinity of the roll

natural frequency, the body displayed very small roll displacements at all other

test frequencies. The roll amplitudes were mostly less than 4 deg. The numerical

method predicts a similar behaviour as can be seen from results shown for several

frequencies (Figures 8.12 (a) - (c)). This also provides a supporting evidence

for the roll behaviour obtained earlier for a similar geometry at frequencies far

from the natural frequency, see e.g. Figure 6.11 (c) in §6.

Large roll amplitudes were obtained experimentally for the frequencyw~

= 0.5386 in test series C. At this frequency, experimental data was gathered for

three different wave steepnesses, the largest being H / A = 0.0275. Larger steep­

ness could not be achieved due to the limitation of the dynamometer (maximum

allowable roll of ±30 deg.) as well as due to water spilling inside the body. Time

histories showing the comparisons for incident wave, sway force, heave and roll

motions for all the three wave steepnesses are presented in Figures 8.13 - 8.15.
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Also included are the comparisons of wave elevations at the location of probe

no. 2 ((b) in these Figures). The peak-to-peak values and phase informations

are compiled in Table 8.3, where

6JJ = [(1 811 H)num - (1811H)exp _ 1] x 100
(181IH )exp

..... (8.6)

and 6.f3(}, which indicates the phase difference between the measured and com-

puted roll time histories , are obtained in the same manner as for the other two

records. Although the agreement of phases is very good, the roll motions are

considerably over-predicted, 181 values differing by about 17 % to 32 %. On the

other hand, the sway forces are under-predicted while the heave motions have

correlated reasonably well. It is worth mentioning that the agreement of free

surface elevations at the location of probe no. 2 is also quite good.

The over-predictions of roll amplitudes are believed to be the effects of fluid

viscosity which is not accounted for in the potential flow numerical model. The

significant role played by fluid viscosity in the form of a damping mechanism

for large roll motions is well documented in literature (see e.g. Himeno 1981).

Incorporation of viscous effects is therefore expected to improve the predictions.

In the following, an attempt has been made to incorporate these effects by

including viscous damping terms in the roll equation of motion.

8.3.3.1 Inclusion of Viscous Damping

The single degree of freedom, uncoupled, roll equation of motion can be

written as:

..... (8.7)



Table 8.3 Comparisons for sway force, heave and roll motions, test series C

Sway Force Heave Motion Roll Motion
~ wlBf29 )./B II/). IFxl IFxl !:1Fx !:1(:JF Izal Izal !:1za !:1(:Jz 101 101 !:10 !:1(:J()Hnum

(exp.) (num.) (%) (deg.) (exp.) (num.) (%) (deg .) (exp.) (num.) (%) (deg.)

0.990 0.5386 9.63 0.0125 0.104 0.079 -24.0 15 0.28 0.29 2.5 0 18.0 21.3 17.3 15

0.989 0.5386 9.63 0.0229 0.172 0.151 -15.0 15 0.50 0.54 6.8 0 33.0 44.0 31.8 0

0.964 0.5386 9.63 0.0275 0.202 0.172 -17.0 15 0.565 0.625 6.6 0 43.9 59.5 30.6 15

N

0\
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where bo(O),Go(O)and Mo represent damping, restoring and excitation moments

respectively, single and double dots signify single and double differentiations with

respect to time, and the other symbols are as defined earlier. The effects of fluid

viscosity are contained in the bo term (the damping moment) above. The aim

is to incorporate this effect in the numerical model.

In general, the damping moment results due to two effects: hydrodynamic

or radiation damping and viscous damping. If radiation damping moment is

assumed to be linear in 0 (justification of this assumption is provided latter, in

Appendix B), we can write:

bo b1j+ br
B1jO + br ..... (8.8)

where bft and br are contributions of radiation and viscous damping moments

respectively, and Bft is the associated radiation damping coefficient. The radia­

tion damping moment results from the dissipation of energy through the creation

of radiated waves by the motion of the body. This is a part of the potential flow

phenomenon and is therefore implicitly accounted for in the numerical model.

The remaining part is then the contribution of the fir term.

This term was estimated by utilizing the results of the free roll experiments

(the roll decay tests) as explained in Appendix B. The Newton's equation of

motion for roll (eqn. 6.4 (c)), which is used in the numerical model, takes the

following modified form:

..... (8.9)

Comparing eqn. (8.7) with eqn. (8.9), it may be noted that both forms are

essentially identical, since Mo in eqn . (8.9) is determined by taking into account
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the combined contributions of 8 [0, bi!, Co and Mo terms. In addition to these,

form (8.9) also implicitly includes terms ari sing from hydrodynamic coupling

betwe en th e mo tions. In tegration of eqn. (8.9) in the numerical model is trivial

since the required additional informations (8 valu es at several past steps, see eqn.

(B.6)) for the t ime stepping procedure are being determined as the solution is

advancing in t ime.

Results obtained by means of the above procedure are shown in Figure 8.16-

8.18 in form of t ime his tories of the responses for all the three wave steepnesses .

The phase information and peak-to-peak values are summarized in Table 8.4.

Comparing these resul ts wit h the results without the inclusion of viscous effects

(F igur es 8.13 - 8.15 and Table 8.3 ), it is observed that the roll predictions have

significan tl y improved, the differences in f).8 values are now around only 5%.

The sway force and heave motion histories have remained practically unaltered

(these are not graphically distinguishable except for a slight improvement in sway

forces and a marginal improvement in heave motions for the largest steepness of

H / >. = 0.0275 ). Also of interest is the observation that the wave profile at the

location of probe no. 2 (which is at a distance of 0.6>' ahead of the body's CG )

has remained uninfluenced by the decr ease of roll mo tions.

For con venience of comparison, the roll valu es ob tained with and without

the inclusion of viscous damping are summarized in Table 8.5 which illu strates

more clearly the improvements in roll predictions.
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Table 8.4 Comparisons for sway force, heave and roll motions for test series C
(numer ical model includ es viscous roll damping)

Sway Force Heave Motion Roll Motion
!!n.um w~ AlB HIA IFxl IFxl at; ~fJF Izel Ize! ~ze ~fJz 101 101 ~O ~fJollexp

(exp.) (num .) (%) (deg.) (exp.) (num. ) (%) (deg.) (exp .) (num.) (%) (deg.)

0.990 0.5386 9.63 0.0125 0.104 0.079 -24.0 15 0.28 0.29 2.5 0 18.0 19.0 4.5 15

0.989 0.5386 9.63 0.0229 0.172 0.151 -15.0 15 0.50 0.54 6.8 0 33.0 34.8 4.3 0

0.964 0.5386 9.63 0.0275 0.202 - 0.172 -17.0 15 0.565 0.625 6.6 0 43.9 42.8 -6.0 15

w
o
(X)
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Table 8.5 Comparison of the roll results with and without inclusion
of viscous roll damping in the numerical model

Exp. Computed Results

w~ HI).. without vis. damp. with vis. damp.

181 181 .6.8(%) 181 .6.8(%)

0.5386 0.0125 18.0 21.3 17.3 19 .0 4.5

0.5386 0.0229 33.0 44 31.8 34.8 4.3

0.5386 0.0275 43.9 59.5 30.6 42.8 -6.0
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8.3.4 Free S urface Elevations

Although measurements of free surface elevations were taken at several locations,

comparison for the near-field flow (i.e. elevations at locations of probe nos. 3

and 5, d. Figure 7.10) could not be carried out extensively due to difficulties in

matching the time records . The wave elevations at this location show the influ­

ence of wave reflection from the body within a very short interva l of time after

the oncoming wave reaches this location (typically within 2 to 4 secs.). In some

tests, specially for higher frequencies andsteepnesses, the records contain reflec­

tion effects before the transient associated with the oncoming wave disappears

(see e.g. Figure 7.11 (a) ). This causes difficulties in matching the numerical

and experimental results. The initial conditions are clearly not equivalent and

consequently a direct comparison of this transient record is not avai lable. A

comparison of qualitative nature is however possible. F igures 8.19 (a) - (c) show

the results from experiment and theory without synchronizing the recor ds. The

qualitative agreement is clearly noticeable.

Similar remarks apply to the flow on the other side of the body (at the

location of probe no. 4, d. Figure 7.9 or 7.10). This station is outside the

computational domain for wjB/29 > 0.89 and therefore comparisons are not

available. At this higher end of frequencies, virtually no energy was transmitted

to the other side of the body. This fea ture is consistent in the numerical records,

as can be seen from Figures 8.20 (a) - (c) where the free surface elevations

from experiment and theory for several frequencies are shown (the numerical

wave elevations are measured at a distance of ,\ downstream of the body's CG

location) .
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In Figure 8.21 (a) - (e), we show the comparisons at the location of probe no.

2 (see Figure 7.9 or 7.10) for several frequencies. Although with regard to initial

condit ions, remarks made earlier apply, the plotted results are synchronized

(since these records were used as a reference in synchronizing other records, see

§8.2 above). Once more, most of the results are in good qualitative agreement.

See for example, Figures 8.21 (a) - (d) , where the amplifications and reductions

in the elevations are similar between experiment and theory. At the lower end

of the frequencies when the body begins to undergo relatively larger motions,

the influence of reflection is smaller both in theory and experiment, as evidenced

from Figure 8.21 (e) (see also (b ) in Figures 8.13 - 8.18 presented earlier).

8.4 Discussion of the Results

The sway force results show discrepancies between 0 to 10% over most of the re­

sults. Although some of the results at higher frequencies show relatively larger

discrepancies, no general trend indicating dependence of these differences on

wave frequency or steepness could be observed. These few increased differences

are believed to have resulted from experimental inaccuracies rather than errors

in the numerical model. This is supported by the fact that the numerical results

for the three test series at higher range of frequencies remained fairly consis­

tent in force values, while the experimental force value s lacked in consi stency.

Given that the body has displayed very small motions at these frequencies, the

force amplitudes are expect ed to be fairly consistent in magnitudes. Indeed,

the major source of experimental inaccuracies in the test data is perhaps in the

force measurements, which is evidenced from examination of the measured force

records. These records show some fluctuations for some of the tests , specially
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Figure 8.21 Free surface elevations at the location of probe no . 2 : comparison
between theory and experiment; the plots are synchronized and the window
coincides with the selected window in presenting the force and motion results.
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at higher frequencies (see e.g. the force histories shown in Figures 7.13 (a) ­

(c)). The problem is associated with the dynamometer which has a slight slack

between its movable parts (the part that allows heaving). It should be pointed

out that this instrument was originally designed for regular ship model towing

tests in whi ch the imposed forces are in one direction only while in the present

experiment the forc es are of oscillatory na ture. Consequently some inaccura­

cies are unavoidable. With regard to force comparisons, another observation of

interest is that the numerical model in general under-estimates the measured

values (see Tables 8.2 (a) - (c)).

Considering the precision level of the dynamometer (see Table 7.3), the in-

accuracies in the force histories do not appear to have resulted from the force

tranducer itself. In order to assess the errors in the quoted peak-to-peak force

values, comparisons have been made between the IFxlexp values determined

from the two repeated tests and also from the same record by choosing different

window sizes , for a few randomly selected test cases. The values thus obtained

scattered in the range of ±4 - 10%, that is, the experimental results themselves

fluctuate ±4 - 10% as a consequence of random facto:s inherent in the physical

tests. This is felt to be the predominant source of error in the experimental re-

sults rather than the force tranducer. An average valu e of ±7 -8% can be taken

as a rough estimate of the errors in the quoted IFxlexp values. This analysis

indi cates that the differences between the measured and computed peak-to-peak

force values are mostly within experimental uncertainty (see Tables 8.2 (a ) - (c)).

The agreement of heave results is very good. The discrepancies here are

mostly less than 5% and increases slightly as the resonant frequency is ap-

proached. These increases in differences are perhaps attributable to viscous
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effects. Note that the numerical' values over this frequency range consistently

over-estimate the experimental values. The relatively large differences at a single

frequency of w{iifi[J = 0.8078 consistently in all the three tests have occurred

due to an inaccuracy in the wave record from test series A at this frequency

(the wave elevation records for the two repeated tests at this frequency showed

a considerably larger difference than similar repeated tests at all other frequen-

cies). An error estimate similar to the sway force results has not been carried

out here, since the experimental time traces show practically no fluctuations.

Here the uncertainty involved is primarily governed by the precision level of the

measuring device (d. Table 7.3). Considering the range of measured values, this

uncertainty is estimated (conservatively) to be ±2%. Similar remark applies for

the roll measurements , and once more a conservative estimate of the uncertainty

in the measured roll can be taken as ±2%.

Comparison of the free heave results also shows good agreement between ex-

periment and theory. Inspection of the results suggests that radiation damping

predominates in heave motion. Considering the variation between the experi­

mental results and the relative insignificance of viscou~ effects, no attempts were

made to estimate and incorporate viscous damping in the numerical model, as

was done for roll results. Note however that, albeit marginally, such a procedure

would have improved the already good correlation of the heave results.

Except for the sway forces, the agreements for the heave and roll motions at

w{iifi[J = 0.5386 are very good when viscous effects are taken into account.

Exclusion of viscous damping results in the expected over-predictions of roll

motions. The slight over -predictions at the two lower steepnesses and a slight

under-estimation for the steepest wave (see Table 8.4) may be attributed to the
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estimated viscous damping coefficients (which may introduce a small error, since

these coefficients were considered independent of roll amplitudes). Nevertheless,

the agreements are considered very good. With regard to sway forces, it is

not clear whether the under-esti'mations resulted from a coupling between roll

motion and sway forces in the numerical model. Careful observation however

does not suggest so. See, for example, the force value at this frequency for test

series D where the body has no roll motion. Although to a lesser extent, the

numerical scheme nevertheless under-estimates the experiment. Also, the force

values with and without inclusion of viscous damping have remained practically

unaltered, suggesting that variations in roll amplitudes are inconsequential to the

force history. As mentioned, experimental inaccuracies most certainly contribute

to these differences. Another possible cause could be due to flow separation.

At this value of AlB = 9.63, an additional component of force (drag force)

arising from flow separation is quite likely. Yet another possibility lies with

the discretization of the boundary. To examine this, attempts were made to

run the program with finer resolutions of the body contour. Unfortunately, for

resolutions finer than that already used in the computations, the solution breaks

down due to difficulties in locating the free surface and body intersection points.

The numerical scheme does not appear to be able to handle large roll motions

when collocation points are very close to the intersection point. This is most

certainly related to a comparatively stronger singularity associated with large

horizontal velocity components at these contact points.

The correlation of the phase information over the entire range of data is very

satisfactory. Consideration of possible inaccuracies in compilation of the phase

data (typically ±10 - 20 deg.) does not invalidate this general remark. Note
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that the relative phase differences between the three responses (Fe, ze and 0) in

experiment and theory are unaltered. Therefore, consistency in the differences

between experiment and theory (i.e. comparable values of f).f3F, f).f3z and f).f3IJ)

confirms the quality of agreement , due to the coupled nature of the problem.

As can be seen from Tables 8.2 (a) - (c), these values are fairly consistent over

the entire set of data.

Considering the free surface elevations, the numerical model is found to re­

produce flow evolutions in fairly good qualitative agreement with experiment.

As noted earlier, differences in initial conditions did not permit a more thorough

comparative study. The correlations between the input wave conditions are also

very good. The relatively large difference atw~ = 0.7181 in test series D

occurred due to an erroneous choice of the H num value.

Although much of the above discussion is focussed on the peak-to-peak val-

ues, considering that both the numerical and experimental systems are primarily

of unsteady nature, correlation between the results is better judged by examin-

ing the comparative time records. To this end, relevant time histories showing

the comparisons for rest of the data not included in this section are provided in

appendix C.

8.5 Summarizing Remarks

In summary, taking into account possible experimental inaccuracies for unsteady

tests of this nature, it would be fair to say that the agreement between the

numerical model and experiment is between good and very good. It is worth

noting that the experiments covered the following three ranges in which non-
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linearities in the system are not negligible:

(a) At higher frequencies and higher steepnesses, the near-field flow contains

significant non-linearities. The free surface elevations in some conditions

were found to be approaching the breaking limit. Indeed, in few of the

tests, slight foam formation was observed (see Tables 7.5 (a) - (c)).

(b) Large heave motions of peak-to-peak displacements exceeding half of the

body's draught were obtained. Analysis of the video-tape for these tests

showed remarkable similarity of the run-up profiles with earlier computed

results for an identical geometry in heave resonance (d. Figure 6.10).

(c) Moderately large roll motions (ranging from 10 to 20 deg.) were obtained.

The results presented confirm the validity of the numerical method over the

above ranges, in addition to the usual linear regime. It was also demonstrated

that estimates of realistic values of roll can be obtained by such studies, provided

viscous effects are duly accounted for.
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9 Summary and Conclusions

9.1 Summary

A numerical algorithm has been presented for solution of a class of potential flow

problems that contain a free surface. The method is based on an integral equa­

tion formulation in which the utilized integral relation is derived from Green's

second identity. Despite the fact that the problems considered in this work is

limited to two-dimensional flow phenomena, the formulation adopted is favoured

over the strictly two-dimensional formulations based on Cauchy's integral the­

orem, in that possible future extensions in three dimensions can be envisioned.

The procedure followed to discretize the boundary is in its simplest form in

which the segments are straight lines and the collocation points are centrally

placed. Some generality is maintained in the scheme detailed in §2 such that

a variety of problems can be explored by prescribing appropriate initial condi­

tions and boundary data . A suitable time-stepping algorithm for the treatment

of the evolution equations for the boundary contour and data as appropriate,

in conjunction with the solution of the integral relation in a discretized form,

permits the solution to advance in time and follow the resulting fluid flow.

The solution algorithm is examined by applying it to three problems involv­

ing propagation of small ampli tude surface waves for which linearized free surface

conditions are applicable. The scheme is found to be sensitive on the imposed

initial boundary data, which must be compatible to avoid adverse numerical ef­

fects. Results ob tained in comparison with analytical solu tions have shown that

fluid motions of unsteady nature can be simulated over a considerable length of

time with acceptable degree of precision.
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Solutions for non-linear free surface motions are accomplished by taking into

account the full non-linear free surface conditions. The procedure adopted for

following the free surface motions allows only vertical displacements of the col­

location points with out translation, which differs from Lagrangian formulations

where marked fluid particles are traced. The present formulation avoids the

possibilities of particle clustering, which is believed to be intricately associated

with the numerical stability characteristics of the solution, at the expense of the

restriction to single-valuedness of the free surface contour.

Propagating unsteady steep waves are simulated by imposing a time-dependent

velocity potential at one of the control boundaries encompassing a rectangular

finite fluid region. This potential acts as a source of excitation to initiate mo­

tions in an initially unperturbed fluid , similar to a wave-maker. Prescription of

an Airy wave potential as the excitation suffices this purpose. In order to pre-

serve numerical stability, it is found necessary to apply a 'matching' technique,

which is essentially a quadratic smoothing scheme in space. Application of this

technique suppresses the instability which otherwise initiates at the intersection

of the free surface and the boundary on which the e;ccitation is applied. The

root mechanism responsible for this instability is believed to be linked with the

incompatibility of the free surface boundary conditions over the free surface at

the intersection (hence the name 'matching' procedure). Additionally, the free

surface contour and potential need to be smoothed. Numerical stability consid­

erations are found to be crucial for th e success of the algorithm, since initiation

of instability at any instant results in rapid failure of the method.

Incorporation of a variant of Orlanski 's radiation condition, which assumes

the velocity potential at the downstream boundary to be travelling with the same
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celerity as on the upstream boundary, is found to make the downstream bound­

ary sufficiently transmissive to the interior disturbances. A number of results are

presented examining the efficacy of various numerical subcomponents embodied

in the algorithm. Very steep non-breaking propagating waves are generated and

subsequently followed over a considerable length of time, for example, over 20

wave periods. Results presented show that the solution remains well behaved

over the entire simulation period and thereby demonstrate the robustness of the

method.

Solutions for interactions of a steep propagating wave with a surface-piercing

fixed rigid object is attained by introducing a vertical wall in the fluid region.

Results presented in terms of the pressures, forces and run-up on the wall demon­

strate that convergence to a steady state of the solution extending over several

wave periods can be achieved . Comparison with perturbation solutions and

available experimental data indicate that the algorithm is capable of producing

results of excellent quality. The numerical solution is closely correlated with the

experimental results, including the replication of certain non-linear features as­

sociated with the pressure histories not always obtaina?le by means of analytical

solutions, such as double peaks in the pressure histories.

The solution algorithm is extended to simulate motions of a freely floating

body subjected to the action of steep propagating waves by taking into account

the equations of body motion and appropriate conditions on the body boundary.

The problem is fully non-linear in that no approximations with regard to the

motions of the body are necessary. Techniques are developed to overcome several

numerical complications that arise in this problem. In particular, sensitivity of

the algorithm to the discretization of the boundary leads to the necessity to
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regrid the body and free surface contours at every time step such that uniformity

in the spatial grid sizes over the entire boundary can be retained. Another

problem is associated with the evaluation of the dynamic component of the

fluid pressure exerted on the body. This arises from the intricately coupled

force-motion mechanism of the system, which in turn makes the algorithm very

sensitive and numerically more demanding with respect to the evaluation of

forces and motions. The problem is rectified by adopting a central difference

rule for calculation of the dynamic pressure component at the predictor levels

of the adopted Adams-Bashforth-Moulton rules, and following explicit rules for

the integration of the equations of motion. Additionally, smoothing of the force

histories is required.

A number of computed results are presented for ascertaining the effectiveness

of the algorithm in simulating large-amplitude motions in steep waves. For most

of the results shown, typically the oncoming wave has a steepness of H / A = 0.05,

since waves of larger steepnesses are found to cause excessive run-up and conse-

quently result in a breakdown of the solution due to the occurrence of flooding.

This is believed to be associated with two-dimensior;ality of the problem un­

der consideration for which large run-ups are expected. Solutions exhibiting

large heave and roll motions are achieved. Also simulated is oscillatory sway

behaviour of completely unrestrained bodies.

In order that the simulated results can be relied upon, an experimental pro­

gram was undertaken. The two-dimensionality of the flow was accomplished by

constructing a channel inside the main wave tank. The body considered was

of rectangular cross-section with rounded-off corners. The body displacements

were restricted to heave and roll modes by means of an appropriate mount-
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ing device. The recorded measurements included heave and roll displacements,

and sway force. In addition, free surface eleva tions were measured at several

locations, with and without the pr esence of the body.

In comparing the results, possible differences in the initial conditions do not

permit a thorough examination of the transient part of the results. Compar­

isons presented therefore primarily focus on the steady state behaviour of the

forces and motions. The comparative time histories shown are synchronized by

referencing the relevant records with respect to extrapolated undisturbed wave

elevations at the body's centre of gravity, by means of which information on

amplitudes and phases becomes available.

The agreement between the results is in general very satisfactory. The nu­

merical model predicted the peak-to-peak values for the sway forces within 10%

of the corresponding experimental values over most of the data range, many of

which are within the estimated uncertainties of ±7 - 8% in the measured values.

Similar values for heave displacements are even better. The differences here are

mostly less than 5%, and once again close to the experimental uncertainties of

±2%. The numerical values show a slight over-prediction in heave displacements

at and in the vicinity of heave natural frequency, which may be due to additional

damping effects arising from fluid viscosity which was not taken into account

in the numerical model. Comparisons are also presented for free heave motions

as well as for the evolution of free surface elevations at several locations. The

qualitative and where possible quantitative agreements are found satisfactory.

Large roll motions were experimentally obtained for only one frequency in the

vicinity of the roll natural frequency. The algorithm was found to yield com-
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paratively larger roll displacements. This was evidently the influence of fluid

viscosity not modelled in the potential flow solution algorithm. Subsequently,

inclusion of viscous effects was found to improve the predictions considerably.

The viscous damping moments were estimated from the roll decay test results

and the simulation was carried out by incorporating these moments in the equa­

tion of roll motion. The predicted roll displacements, in terms of peak-to-peak

values, were then found to be differing from the corresponding experimental val­

ues by only about 5%. Considering the estimated uncertainties of ±2% in the

measured roll values, the comparisons are believed to be very good.

Taking into account possible experimental inaccuracies, the overall compar­

isons shown demonstrate that the algorithm is capable of producing reliable

predictions over the full range of data tested, including large heave and mod­

erately large roll displacements. The efficacy of the algorithm in simulating

potential flow phenomena is demonstrated by these results. In addition, the

results also demonstrate that a steady state behaviour for the motions can be

accomplished.

All computations were performed in systems VAX 8500 and VAX 8800 of

MUN. Typical CPU time for a total of 100 segments is about 15 sec. per

time level in the latter system in single-precision arithmetic. Limited runs with

double-precision arithmetic produced almost identical results.

9.2 Conclusions

Several concluding remarks related to the details of the algorithm have already

been noted at the end of individual sections'. Here the major conclusions that
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can be drawn from the work when considered as a whole are presented.

(i) Unsteady non-breaking steep waves progressing within a finite fluid region

can be effectively modelled by imposing an Airy wave potential as a source

of wave generation mechanism on a hypothetical vertical boundary. Appli­

cation of a simplified condition, deduced from Orlanski's radiation condi­

tion, succeeds in transmitting the interior disturbances without apparent

adverse effects to the interior solution and hence removes restrictions that

otherwise are attached to this problem.

(ii) It is feasible to subject a surface-piercing object to a propagating wave and

study the resulting responses and the flow evolution. The solution is fully

non -linear. No approximations with respect to the steepness of the wave

and body motions are made. The scope of applicability is however re­

stricted to single-valued free surface elevations. Although the algorithm

has not been applied to examine the responses of submerged bodies sub­

jected to wave excitations , no major difficulties are anticipated for such

applications; in principle the algorithm remains valid.

(iii) The solution can be advanced for sufficient length of time such that after

the initial transients disappear, a steady state solut ion evolves extending

over several wave periods. The length of the simulation time for which

realistic predictions are available can be extended by enlarging the fluid

domain, at the expense of additional computational efforts. In this respect,

the upperbound on the simulation time is primarily dictated by limitations

of available computing devices.
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(iv) Confirmation of the computed results is exemplified by the comparative

results presented at several levels. These include comparisons with lin­

ear and non-linear analytical solutions and available experimental results.

Additionally, the algorithm is used to replicate a series of tests conducted

by subjecting a partially restricted rectangular surface-piercing body to

wave excitations. Good correlation observed between the results attests to

the validity and reliability of the algorithm. The regime of comparison in­

cludes moderately large roll motions for which inclusion of viscous damping

through a semi-empirical formulation proves necessary. This demonstrates

how the algorithm based on potential flow assumptions can be effectively

utilized to derive realistic estimates for modes of motions for which viscous

effects are important.

(v) Numerical stability considerations are proved crucial for the success of the

algorithm. Problems attached to this issue have occurred in several circum­

stances. Developed rectifying techniques include a matching procedure,

avoidance of application of impulsive pressure and intermittent smoothing

of the free surface. Further problems of similar nature arise from the cou­

pling between forces and motions implicit in the simulation of partially or

fully unrestrained bodies. Regridding at every time step, together with

special considerations in evaluating forces and motions, provides an ef­

fective solution to these. Present computational experience leads to the

conclusion that considerable emphasis must be placed on the issue of nu­

merical stability. A previously reported stipulation suggesting that fulfil­

ment of local Courant condition removes instabilities on the free surface

(Dommermuth and Vue 1987) is found to be inadequate.
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9.3 Further Developments

Despite considerable scope of applicability, developmental work of this nature

is hardly terminal. The eventual goal is to be able to numerically simulate the

behaviour of ships and offshore structures in realistic three-dimensional irreg­

ular stormy wave conditions. Although the work pr esented makes a modest

contribution in that direction, it is still a prelude to such long term ambitious

undertakings. Consequently, considerable scope for further developmental work

exists. At the present time, the following works can be envisaged.

(i) The finite-difference and integration rules employed at a variety of levels in

the algorithm can be systematically upgraded. A plethora of such rules

exist (see Hilderbrand 1972 ). Incorporation of these is expected to improve

the overall accuracy. More importantly, further relaxation of the grid sizes

leading to reductions in computer time can be achieved.

(ii) The utilized boundary element formulation can be upgraded by adopting

a higher order b.e.m. Further savings in computational efforts as well as

possible improvements of accuracy are expected ·consequences.

(iii) The algorithm presently requires solution of the system of linear equations

(2.10) at every time step. A possible means of affecting a reduction in

computations is to investigate whether updating of the movable part of

the boundary contour (8D F and 8D B ) at every intermediate step can be

avoided without reducing the overall accuracy beyond an acceptable level.

Also , possibilities of utilizing iterative techniques for solution of the system

of equations can be explored.
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(iv) Some difficulties have been encountered in the treatment of the body-free

surface intersection points while simulating large roll motions. This is

believed to be due to the strength of the singularity at this point. It

appears that the algorithm in its present form is not very suitable to

accomodate a stronger singularity associated with large horizontal motion

of the point , although not much difficulties are faced when the singularity is

relatively weak. Improvements can be sought by incorporating the recently

reported technique of treatment of this point (see §1.2.2.2 (b)). This issue

is intimately related to (ii) above, since the discretization scheme in its

present form is not directly amenable to such improvements".

(v) In contrast to all of the above modifications, work can be directed to­

wards extensions to three-dimensional applications. Thi~ is believed to

be more challenging. The method of generating a propagating steep wave

will require re-examination since it is not yet known whether the proce-

dure adopted here will necessarily hold good in three dimensions. Several

parts of the methodology, however, are expected not to pose fundamental

difficulties.

It may be noted that (i)-(iv) above relates to the efficiency of the algorithm.

Notwithstanding these possible improvements, it is believed that the major con-

tribution of this work has been to demonstrate that, in principle, large motions

of floating bodies in non-linear waves can be effectively and reliably modelled.

4In a recent workshop (April 1988) , further studies regarding this point have been reported
by Joo and Schultz (1988) and Cointe (1988). Among these, the former authors ' explored the
analytical behaviour of th e solution, while the latter provided a numerical treatment of this
point. Both studies, however , suggest that reasonable accurate results can be obtained without
any special treatment of the point , i.e. by simply avoiding this point from considering it as a
collocation point , as the present results also showed . To keep the solution from 'blowing up ' ,
the numerical treatment suggested by the latter author can perhaps be implemented.
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To the author's knowledge, many of the presented results , in particular, sim ­

ulation of motions of floating bodies in 'a numerical wave tank, hav e not yet

appeared in literature.



334

REFERENCES

Adachi, H. and Ohmatsu, S. 1980. On the time dependent potential and its
application to wave problems. Proe. 13th ONR Symp. Naval Hydro. ,
Tokyo , pp . 281-302.

Ahlberg, J. , Nilson , E. and Walsh J. 1967. Th e th eory of splines and their
applications. Academic pr ess , New York.

Angell, T.S., Hsiao , G.C. and Kleinman, R.E. 1986. An integral equation for
the floating body problem. J. Fluid Meeh , 166, pp. 161-171.

Alleney, S. 1981. A numerical study of water waves in sloping beaches. Appld.
Math. Modelling, 5 , pp. 321-328 .

Aref, H. 1986. The numerical experiment in fluid mechanics. J. Fluid Meeh. ,
173, pp. 15-41.

Baddour, RE. and Pawlowski, J.S. 1985. Some aspects of the implementation
of the boundary element method. N.A. C.E. Can. Reg. Conf. Integrated
Prog. Corro sion Control, Montreal, pp. 1-19.

Bai, K.J. and Yeung , RW. 1974. Numerical solution to free surface flow prob­
lems. Proe. 10th ONR Symp. Naval Hydro. , Cambridge, Mass., pp. 609­
647.

Baker, J.R., Meiron, OJ. and Orszag, S.A. 1981. Applications of a generalized
vortex method to nonlinear free-surface flows. Proc. Srd. Int. Conf. Num.
Ship Hydro. , Paris, pp. 179-191.

Baker, J.R, Meiron, D.!. and Orszag, S.A. 1982. Generalized vortex methods
for free-surface flow problems. J. Fluid Meeh ., 123, pp. 477-501.

Banerjee, P.K. and Butterfield, R. 1981. Boundary element methods in engi­
neering sciences. McGraw Hill.

Bass, D.W and Haddara, M.R 1988. Non-linear models of ship roll damping.
Int. Sh ip . Prog., in press.

Batchelor, G .K. 1967. An introduction to fluid dynamics. Cambridge Univ .
Press.

Beck, RF and Liapis , S. 1987. Transient motions of floating bodies at zero
forward speed. J. Sh ip Res., 31 , 3, pp . 164-176 .



335

Betts, P .C . and Assaat , M.l. 1981. Fini te element comp ut at ion of large am­
plitude water waves. Proc. 2nd Int . Conf. Finit e Elem ents in Fluids ,
Alb erta, Canada , 2 , pp. 24-32.

Biesel, F . 1951. Les App areils Generateures de houle en Laboratoir e. La
Houille Blanche, 6 , pp . 147-165.

Bourianoff, G.l. 1981. Three-dimensional t ime-dependent nonlinear ship mo­
tion simulation usin g the iner tial marker particle technique. Proc. :lrd Int.
Conf. Num. Ship Hydro. , Paris, pp . 249-256.

Bourianoff, G.l. and Penumalli, B.R 1977. Numerical simulation of ship mo­
tion by Eulerian hydrodynamic techniques. Proc. 2n d Int. Conf. Num.
Ship Hydro. , Berkely , Calif ., pp. 358-370.

Breit, S.R. , Newman, J.N. and Sclavounos, P.D . 1985. A new generation of
panel programs for radiation-diffraction problems. Proc. Srd Int. Conf.
Beh. Off. Str. (B OSS), Elsevier Sc. Pub. B.V. , pp. 531-544.

Brevig, P. , Greenhow, M. and Vinje , T. 1982. Ex treme wave forces on sub­
merged energy devices. Appld. Ocean tu« , 4 , 4, pp. 219-225.

Burton, A.J. and Miller , G.F . 1971. The application of integral equation me th­
ods to the solution of some exterior boundar y value problems. Proc. Royal
Soc. Lond. A. 323, pp. 201-210.

Calisal, S.M. and Chan, J .L.l<. 1987. Breaking wave simulation. Proc. Second
International Worbhop on Water Wav es and Floating Bodies , Rep. No.
AM-87-6 , Univ . Bristol, pp. 9-12.

Chakrabarti, S.l<. 1972. Nonlinear wave forces on a vertical cylinder. J.
Hydraulic Div. , Proc. ASCE, HY11 , 96 , pp. 1895-1909.

Chakrabarti, S.l<. 1975. Second order wave forces on a large vertical cylinder .
J. Water. Harbor Coast. Eng. Div. , Proc. ASCE, WW3, 101, pp. 311­
317.

Chakrabarti, S.l<. 1987. Hydrodynamics of offshore s tructures. Computa ­
tional Mechanics Publications.

Chamberlain, RR and Yen , S.M. 1985. Numerical solution of the nonlinear
ship wave problem. Proc. 4th Int. Conf. Num. Sh ip Hydro. , Na tional
Academy of Sciences , Washington,D.C., pp. 246-258.



336

Chan, RK-C. 1975. Two -dimensional t ime dependent calculat ion of large am­
plitude surface gravity waves due to a surface disturbance. Proc. Lsi Int.
Conf. Num. Ship Hydro. , Gaithersburg, Md. , pp . 315-332.

Chan, RK-C. 1977. Finite difference simulation of the planer motion of a ship.
Proc. 2nd Int. Conf. Num. Ship Hydro., Berkeley, Calif., pp. 39-52.

Chan, RK-C. and Chan, F .W-K. 1980. Numerical solution of transient and
steady free surface flows about a ship of generalized hull shape. Proc. 13th
ONR Symp. Na val Hydro. , Tokyo, pp. 257-280.

Chan, RK.C. and Hirt , C.VV. 1974. Two-dimensional calculations of the mo­
tions of floating bodies. Proc. 10th ONR Symp. Naval Hydro., Cambridge,
Mass. , pp . 667 -682.

Chan, RK-C and Str eet , RL. 1970. A computer study of finite amplitude
water waves. J. Compo Phy., 6, pp. 68-94.

Chapman, RB. 1979. Large amplitude transient motions of two dimensional
floating bodies. J. Ship Res. , 23 ,2, pp. 20-31.

Cointe, R. 1988. Remarks on the numerical treatment of the intersection point
between a rigid body and a free surface. Third International Workshop on
Water Waves and Floating Bodies , Woods Hole, Mass., April 10-13.

Cointe, R, Jami, A. and Molin, B. 1987. Nonlinear impulsive problems. Proc.
Second International Workshop on Water Waves and Floating Bodies,
Rep. No. AM-87-06, Univ. Bristol, pp . 13-16.

Cokelet, E.D. 1977. Steep gravity waves in water of arbitrary uniform depth.
Philosophical Transactions, Royal Soc. Lond. , S~ries A, 286, pp. 183-230.

Debnath, L. and Rahman, M. 1981. A theory of nonlinear wave loading on
offshore structures. Int. J. Math. Sc. , 4 , pp. 589-613.

Dean, R.G. 1965. Stream function representation of nonlinear ocean waves. J.
Geophysical Res. , 70 , pp. 4561-4572.

Demirbilek, Z. and Gaston , J.D. 1985. Nonlinear wave loads on a vertical
cylinder. Ocean Engng ., 12 , 5, pp. 375-385 .

Dold, J.W. and Peregrine, D.H. 1986. An efficient boundary-integral method
for steep unst eady water waves. in Numerical j\tIe tbods for Fluid Dynamics
II. Ed. K.W. Morton and M.J. Baines, Oxford Univ. Press. , pp. 671-679.



337

Dommermuth, D.C . and Yue , D.K.P. 1986a . Numerical methods for nonlinear
two-dimension al wave : regridding versus smoot hing. First International
Worbhop on W ater Wa ve3 and Float ing Bodies, MIT , Cambridge, Mass.

Dommermuth, D.G. and Yue , D.K.P. 1986b . Study of nonlinear axisymmetric
body-wave intera ction s. Proc . 16th ONR S ymp. Na val Hydro ., National
Academic P ress, Wash ington ,D.C ., pp. 116-136.

Dommermuth, D.G. and Yue , D.K.P. 1987. Numerical simulations of non­
line ar axi symmetri c flows wit h a free surface. J. Fluid Mech. , 178, pp.
195-219.

Eatock Taylor, R . and Jefferys , E.R. 1986. Variability of hydrodynamic load
prediction for a tension leg platform. Ocean Engng. , 13 , pp. 449-490 .

Endo, a.H. 1987. Shallow water effect on the solution of three dimensional
bodies in waves. J. Sh ip Re3. , 31 , 1, pp. 34-40.

Evans, D.V. and Newman, J.N. 1987. Report on the first international work­
shop on water waves and floating bodies. J. Fluid Mech., 174, pp. 521-528.

Faltinsen, a .M. 1977. Numerical solution of transient nonlinear free-surface
motion ou tside or inside moving bodies. Proc, 2nd Int. Conf. Num. Ship
Hydro ., Berkel ey, Calif. , pp . 347-357.

Faltinsen, a.M. 1978. A numerical nonlinear method of sloshing in tanks wit h
two dimensional flow. J. Ship Re3. , 22 , 3, pp. 193-202.

Faltinsen, a .M. 1985. Hydrodynamic loads on marine structures. IUTAM
Th eoretical and Applied Meclui nic s, Ed. F.r. Niordson and N. Olhoff, El­
sevier Sc. Pub. B.V. , pp. 117-133 .

Faltinsen, a .M. and Michelsen, F .C. 1974. Motions of large structures at zero
froude number. Int. Symp. Dsme m ics Mar . Veh. Sir. Wave3 , pp. 91-106.

Fenton, J.D. 1972. A ninth-order solution for the solitary wave. J. Fluid M ech.,
53 , pp. 257-271.

Fenton, J.D . 1979. A high-order cnoidal wave theory. J. Fluid Mech. , 94 , pp.
129-161.

Fenton, J .D . 1985. Wave force on verti cal walls. J. Water. Port Coast. Ocean
Div. , Proc. ASCE, 111 , pp . 693-718.



338

Fenton, J.D. and Rienecker, M.M. 1982. A Fourier method for solving non­
linear water wave problems: application to solitary wave interactions. J.
Fluid Mech., 118, pp. 411-443.

Finkelstein, A.B. 1957. The initial value problem for transient water waves.
Comm. Pure Appld. Math., 10, pp. 511-522.

Finnigan, T.D. and Yamamoto, T. 1979. Analysis of semi-submerged porous
bi ·akwaters. Proc. Civil Eng. Oceans, San Fransisco, Calif., pp. 380-397.

Forsythe, G. and Moler, C.B. 1967. Computer solution of linear algebraic
equations. Chapter 9, Prentice-Hall, Inc., Englewood, Cliff., N.J.

Garrison, C.J. 1974. Hydrodynamics of large objects in the sea: part I.
hydrodynamic analysis. J. Hydronautic3, 8, pp. 5-12.

Garrison, C.J. 1975. Hydrodynamics of large objects in the sea: part II.
motions of free floating bodies. J. Hydronautic3, 9, pp.58-63.

Garrison, C.J. 1984a. Nonlinear wave loads on large structures. Proc. 3rd Int.
Conf. Off. Mech. Arc. Eng., New Orleans, Lousiana, pp. 128-135.

Garrison, C.J. 1984b. Wave-structure interaction. Proc. Speciality Conf.
Comp. Meth. Off. Eng., Halifax, pp. 1-72.

Garrison, C.J. and Berklite, R.B. 1972. Hydrodynamic loads induced by earth­
quakes. Proc. 4th Off. Tech. Conf., paper no. 1554, Houston, pp. 429­
442.

Garrison, C.J. and Seetharama Rao, V. 1971. Interaction of waves with sub­
merged objects. J. Water. Harbor Coast. Dtv., Proc. ASCE, 97, pp.
257-277. .

Geers, T.L. 1982. A boundary element method for slamming analysis. J. Ship
Re3., 26, 2, pp. 117-124.

Goda, Y. 1967. The fourth order approximation to the pressure of standing
waves. Coastal Engineering in Japan, 10, pp. 1-11.

Greenhow, M. 1987. Water entry an exit of a horizontal cylinder. Proc. Sec­
ond International Workshop on Water Wave3 and Floating Bodies, Rep.
No. AM-87-6, Univ. Bristol, pp. 25-28.

Greenhow, M. 1988. Wedge entry into initially calm water. Appld. Ocean
Re3., in press.



339

Greenhow, M. and Lin , W .M. 1983. Nonlinear free surface effects: experi­
men ts and theory. MIT Dept. of Ocean Eng. Rep. No. 83-19.

Greenhow, M. and Lin, W.M. 1985. Numerical simulation offree surface flows
generated by wedge-entry and wave-maker motions. Proc. 4th Int. Conf.
Num. Ship Hydro. , National Academy of Sciences , Washington,D.C. , pp.
94-106.

Greenhow, M. , Vinje , T. , Brevig, P. and Taylor, J. 1982. A theoretical and
experimental study of the capsize of Sal ter 's duck in extreme waves. J.
Fluid Meeh., 118, pp. 221-239.

Han, F.S. and Stansby, P.K. 1987. On the application of the boundary el­
ement method to two-dimensional free surface interactions with bodies.
Proc, Second International Worbhop on Water Wave8 and Floating Bod­
ies , Report. No. AM-87 -06 , Univ . of Bristol, pp. 39-42.

Harns, V.W. 1987. Steady wave-drift of modeled ice floes. J. Water. Port
Coast. Ocean Eng. , 113,6, pp. 602-622.

Haussling, H.J. and Coleman, R.M. 1977. Finite-difference computations us­
ing boundary fitted coordinates for free-surface potential flows generated
by submerged bodies. Proc. 2nd Int. Conf. Num. Ship Hydro., Berkeley,
Calif. , pp. 221-233.

Haussling, H.J. and Coleman, R.M. 1979. Nonlinear water wave generated by
an accelerated circular cylinder. J. Fluid Meeh., 92, pp. 767-781.

Hess, J.1. 1973. Higher order numerical solution of the integral equation for
the two-dimensional Neumann problem. J. Comp o Meth. Appld. Meeh.
Eng., 2 , pp. 1-15. .

Hess, J .L. 1975. The use of higher order surface singularity distribution to
obtain improved potential flow solu tions for the two-dimensional lifting
airfoils. J. Compo Meth. Appld. Meeh. Eng., 5, pp. 11-35.

Hess, J.L. and Smith, A.M.O. 1964. Calculation of non-lifting potential flow
about arbitrary three dimensional bodies. J. Ship Re8., 8, pp. 22-44.

Hess, J .L. and Smith, A.M.O. 1967. Calculation of potential flow about arbi­
trary bodies. Proqress in Aero. Se., Ed. D. Kuchemann, Pargamon Press ,
8 , pp. 1-138.

Hilderbrand, F.B. 1972. Introduction to numerical analysis. McGraw Hill ,
New York .



340

Himeno, Y. 1981. Prediction of ship roll damping - a state of the art. Univer­
sity of Michigan Dept. of Naval Arch. Rep. No . 239, 65 pp.

Hunt, J.N. and Baddour, RE. 1981. The diffraction of nonlinear progressive
waves by a vertical cylinder. Qt. J. Mech. Appld. Math., 34, pp. 69-87.

Ijima, T. and Yoshida, A. 1976. Method of analysis for two-dimensional water
wave problems. Proc, 15th Coast. Eng. Conj., Hawaii, pp. 2717-2736.

Isaacson, M. St. Q. 1977. Shallow water wave diffraction around large cylin­
ders. J. Water. Port Coast. Ocean Div., Proc. ASCE, wwi, 103, pp.
69-82.

Isaacson, M. St . Q. 1982. Nonlinear wave-effects on fixed and floating bodies.
J. Fluid Mech., 120, pp. 267-281, also Corrigendum, 133, pp. 469.

Isaacson, M. St. Q. 1983a. Solitary wave diffraction around large cylinders. J.
Water. Port Coast. Ocean Div., Proc, ASCE, 109, WWl, pp. 121-127.

Isaacson, M. St. Q. 1983b. Steep wave forces on large offshore structures. Soc.
Petro. Eng. J. , 23, 1, pp. 184-190.

Isaacson, M. St. Q. 1985. Recent advances in the computation of nonlinear
wave effects on offshore structures. Can. J. Civil Eng., 12,3, pp. 439-452.

Israeli, M. and Orszag, S.A. 1981. Approximation of radiation boundary con­
ditions. J. Compo Phsjsics, 4, pp. 115-135.

Jensen, RS. 1987. On the numerical radiation condition in the steady state
wave problems. J. Ship Re3., 31, 1, pp. 14-22.

Joo, S.W. and Schultz, W.W. 1988. Evolution of nonlinear waves due to a
moving wall. Third International Worbhop on Water Wave3 and Floating
Bodies, Woods Hole, Mass., April 10-13.

Katopodes, N.D. and Wu, C-T. 1987. Computation of finite-amplitude dis­
persive waves. J. Water Port Coast. Ocean Eng., Proc. ASCE, 113, 4,
pp. 327-346.

Kellog, O.D. 1929. Foundations of potential theory. Berlin Springer.

Kim, M.H. 1987. Second order diffracted waves around an axisymmetric body.
Proc. Second International Worbhop on Water Wave3 and Floating Bod­
ies, Rep. No. A1 il-87-06, Univ. Bristol, pp. 59-63.



341

Kim, Y.J. and Hwang, J.H. 1986. Two-dimensional transient motions with
large amplitude by time-domain method. Proc. 16th ONR Symp. Naval
Hydro., National Academic Press, Washington,D.C., pp. 415-426.

Kleinman, R.E. 1982. On modified green functions in exterior problems for
the Helmholtz equation. Proc. Royal Soc. Lond., A. 383, pp. 313-333.

Kobayashi, N. , Otta, A.K. and Roy, 1. 1987. 'Nave reflection and run-up on
rough slopes. J. Water. Port Coast. Ocean Eng., Proc. ASCE, 113, pp.
282-298.

Korsmeyer, F.T. 1987. On the first- and second-order time-domain radiation
problems. Proc. Second International Workshop on Water Waves and
Floating Bodies, Rep. No. AM-87-06, Univ. Bristol, pp. 69-72.

Kravtchenko, J . 1954. Remarques sur le Calcul des Amplitudes de la Houle
Lineaire Engendree par un Batteur. Proc. 5th Conf. Coastal Eng., Council
on Wave Research, France, pp. 50-61.

Kyozuka, Y. 1982. Experimental study on second-order forces acting on cylin­
drical bodies in waves. Proc. 14th Symp. Naval Hydro., Tokyo, pp. 319­
382.

Lamb, Sir H. 1945. Hydrodynamics, 6th Printing, Dover Pub.

Lee, C.M. 1968. The second order theory of heaving cylinders in a free surface,
J. Ship Res., 11, pp. 313-327.

Lee, M-Y. 1985. Unsteady fluid-structure interaction in water of finite depth.
Ph.D. Thesis, University of Calif. Berkeley, 105 .p.

Lewis, E.V. 1977. Motions of ships in waves. Sec. 9 in Principles of Naval
Architecture, edited by J.P. Comstock, SNAME, New York, pp. 607-717.

Ligget, J.W. 1977 Location of free surface in porous media. J. of Hydraulics
Div., Proc. ASCE, 103, pp . 353-365.

Lighthill, J. 1979. "Waves and hydrodynamic loading. Proc. 2nd Int. Conf.
Beh. Off. Str. (BOSS), Elsevier Pub. B.V., pp. 1-40.

Lighthill, J. 1986. Fundamentals concerning wave loading on offshore struc­
tures. J. Fluid Mech., 173, pp. 667-681.

Lin, "V.M. 1984. Nonlinear motion of the free surface near a moving body.
Ph.D. Thesis, Dept. Ocean Eng., MIT , 127 p.



342

Lin, W .M., Newman, J. N. and Yue , D.K.P. 1984. Nonlinear forced mo tions of
floating bodies. Proc. 15th ONR Symp . Na val Hydro. , Nat ional Academy
Press, Washington,D.C. , pp. 33-49.

Longuet-Higgins, M.S. and Cokele t , E.D. 1976. The deformation of steep
surface waves on water: 1. a numerical method of computation. Proc. R.
Soc. Lond. , Series A, 350, pp. 1-26 .

Longuet-Higgins, M.S. 1986. Eulerian and Lagrangian aspects of surface
waves. J. Flu id M ech., 173, pp . 683-707.

Liu, P.L-F. and Ligge t , J.A. 1979. Boundary solu tions to two problems in
porous media. J. Hsjdraulics Div. , P ro c. ASCE, HY3 , pp. 171-183.

Lu, C.C ., Wang, J .D. and Le Mehaute, B. 1987. Boundary integral equation
method for limit surface gravity waves . J. Water. Port Coast. Ocean
Div ., Proc. ASCE, 113,4, pp. 347-363.

MacCamy, R.C. and Fuchs, R.A. 1954. Wave forces on piles : a diffraction
theory. Tech . M em o No. 69, Beach Erosion Board, U.S. Army Corps.
Engineering.

Mei, C.C. 1978. Numerical methods in water-wave diffraction and radiation.
Ann. Rev. Fluid Mecli., 10 , pp . 393-416.

Mei, C.C. 1983. Applied dynamics of ocean surface waves. John Wiley & Sons .

Miche, R. 1944. Mouv ements ondula toires de la mer en profondeur croissante
ou decroissante. Annale3 des Petits et Ohausses .

Miles, J .W . 1980. Solitary waves. Ann. Rev. Fluid .M ech., 12 , pp. 11-43.

Miloh, T. 1980. Irregularities in the solution of the nonlinear wave diffraction
problem by ver tical cylinder. J. Wa ter . Port Coast. Ocean Eng. Div. ,
Proc. ASCE, 106, pp. 279-284 .

Miyata, H., Kajitani , H. Zhu , M. and Kawano, T. 1986. Nonlinear forces
caused by breaking waves. Proc. 16th Symp. Naval Hydro. , Nat ional
Academic Pr ess, Washington,D.C. , pp . 514-536 .

Miyata, H. , Nishimu ra , S. and Kajitani , H. 1985. Finite-difference simulation
of non-breaking 3-D bow waves and br eaking 2-D bow waves. Proc. 4th
Int. Conf. Num. Ship Hydro. , National Academy of Sciences, Washing­
ton ,D.C ., pp . 259-292.



343

Miyata, H., Nishimura, S. and Masuko, A. 1985. Finite-difference simulation
of nonlinear waves generated by ships of arbitrary three-dimensional con­
figuration. J. Compo Phy., 60, 3, pp. 391-436.

Miyata, H. and Nishimura, S. 1985. Finite-difference simulation of nonlinear
ship waves. J. Fluid Meeh., 157, pp. 327-357.

Molin, B. 1979. Second order diffraction loads upon three dimensional bodies.
Appld. Oeean Re8., 1, pp. 197-202.

Morison, J.R., O'Brien, M.P. , Johnson, J.vV. and Scharf, S.A. 1950. The forces
exerted by surface waves on piles. Tech. Rep. No. 2846, Trans. American
lnst. Mining, Metal. and Pet. Eng., 189, pp. 149-154.

Moore, D.W. 1981. On the point vortex method. SIAM J. Se. Stat. Comp.,
2, pp. 65-84.

Muggeridge, D.B. and Murray, J.J. 1981. Calibration of a 58 m. wave flume.
Can. J. Civil Eng., 8, 4, pp. 449-455.

Nagai, S. 1969. Pressures of standing waves on vertical wall. J. Water. Harbor
Div., Proc. ASCE, WW1, 95, pp. 53-76.

New, A.L., McIver, P. and Peregrine, D.H. 1985. Computation of overturning
waves. J. Fluid Meeh., 150, pp. 233-251.

Newman, J.N. 1980. Marine Hydrodynamics. 3rd printing, The MIT Press,
Camb., Mass., ix + 402 p.

Newman, J.N. 1984. Double-precision evaluation of the oscillatory source po­
tential. J. Ship Re8., 28, pp. 151-154.

Newman, J.N. 1985a. Transient axisymmetric motion of a floating cylinder.
J. Fluid Meeh., 157, pp. 17-33.

Newman, J.N. 1985b. Algorithms for the free-surface Green function. J. Eng.
Math., 19, pp. 57-67.

Newman, J .N. 1985c. Evaluation of free-surface Green's functions. Proc, 4th
Int. Con]. Num. Ship Hydro., National Academy of Sciences, Washing­
ton,D.C., pp . 4-23.

Nichols, B.D. and Hirt, C.W. 1973. Calculating three dimensional free surface
flows in the vicinity of submerged and exposed structures. J. Compo Phy.,
12, pp. 234-246.



344

Nichols, B.D. and Hirt , C.W. 1975. Methods for calculating multi dimensional
transient free surface flows. Proc . . l st Int . Conf. Num. Ship Hydro .,
Gaithersburg, Md. , pp. 253-277.

Nichols, B.D. and Hirt , C.W. 1977. Nonlinear hydrodynamic forces on floating
bodies. Proc. 2nd Int . Conf. Num. Ship Hydro. , Berkeley, Calif. , pp. 382­
394.

Noblesse, F. 1982. The Green function in the theory of radiation and diffrac­
tion of regular water waves by a body. J. Eng. Math ., 16, pp. 137-169.

Ogilvie, T.F. 1963. First and second order forces on cylinders submerged under
a free surface. J. Flu id Mech. , 16 , pp. 451-472.

Ogilvie, T.F. 1983. Second order hydrodynamic effects on ocean platforms.
Proc. Int ernational Workshop on Ship and Platform Motions, Berkeley,
Calif. , pp. 205-265.

Ohring, S. and Tels te, J .C. 1977. Numerical solu tion of transient three-dimensional
ship wave problems. Proc. 2nd Int. Conf. Num. Ship Hydro., Berkeley,
Calif. , pp. 88-103.

Orlanski, J. 1976. A simple boundary condition for unbounded hyperbolic
flows. J. Compo Phy., 21 , pp. 251-269.

Papanikolaou, A. and Nowacki , H. 1980. Second order theory of oscillating
cylinders in a regular steep wave. Proc. l Bth. ONR Symp. Naval Hydro. ,
Tokyo , pp . 303-333.

Papanikolaou, A. and Zaraphonitis, G. 1987. On. the second order steady
motions of 3D bodies in waves. Proc. Second international Workshop on
Wat er Wav es and Floating Bodies , Rep. No. AM-87-06 , Univ. Bristol,
pp . 89-93.

Pawlowski, J.S. 1985. Elem ents of kinematics and dynamics of the rigid body
in Car tesian ten sor notation. Tecbnical Rep. No . 1\ITB 160, IMD , NRCC,
St. John's.

Pawlowski, J .S. 1987. Hydrodynamic loads and responses of marine struc­
tures. Th e Can. Eng. Centennial Convention, Montreal, pp. 1-29.

Penney, vV.G. and Price, A.T . 1952. Some gra vity wave problems in the motion
of perfect fluids. Philosophical Transactions, Royal Soc. Lond. , Series A,
244 ,882 , pp. 154-184.



345

Pinkster, J .A. 1976. Low frequ ency second order wave exciting forces on float­
ing structures. Publ. No. 650, NSMB, Wage ningen, Netherl an ds, 204 p.

Pinkster, J.A. 1979. Mean and low frequency wave drifting forces on floating
structures. Ocean Engng. , 6 , pp. 593-615.

Polozhiy, G.N. 1967. Equ ation s of mathematical ph ysics. Haden Book Com. ,
Chap. 3, pp . 62-154 .

Potash, R.L. 1971. Second ord er theory of oscillating cylinders. J. Ship Res .,
14 , pp . 295-324 .

Rahman, M. 1984. Wave diffraction by larg e offshore structures: an exact
second order theory. Appld. Ocean Res. , 6 , 2, pp. 90-100.

Rahman, M. and Chakravartty, C. 1981. Hydrodynamic loading calculation
for offshore structures. Appld. Math. , 6 , pp. 593-615.

Raman, H. and Venkatanarasaiah, P. 1976. Forces due to nonlinear waves on
vertical cylinders. J. Water. Harbor Coast. Eng. Div., Proc. ASCE,
W\V3 , 103, pp .301-316.

Raman, H., Jothishankar, N. and Venkatanarasaiah, P. 1977. Nonlinear wave
interaction with vert ical cylinder of large diameter. J. Ship Res., 21, pp.
120-124.

Rawson, KJ. and Tupper, E.C'. 1976. Basic shi p theory . Vol. I, Longman,
London.

Rienecker, M.M. and Fen ton , J.D . 1981. A Fourier approximate method for
steady water waves. J. Fluid Mech ., 104, pp. 19-137.

Roache, P.1972. Computational Fluid Dynamics. Hermosa Pub.

Roberts, A.J . 1983. A stable and accurate numerical method to calculate the
motion of a sharp interface between fluids. J. Appld. Math ., 31, pp. 13-35.

Roberts, A.J .1987. Transient free surface flows generated by a moving vertical
plate. Qt. J. M ech. Appld. Math. , 40 , Part 1, pp. 129-158.

Sabuncu, T. and Goren, O. 1985. Second order ver tical and horizontal force
on a vertical dock. Ocean Engng. , 12 , pp. 341-361.

Sahin, J . and Magnuson , A.H. 1984. A numerical method for the solution of a
line source under a free sur face. Ocean Engng. , 11 , 5, pp. 451-561.



346

Salvesen, N. and von Kerczek, C. 1976. Comparison of numerical and per­
turbation solutions of two dimensional nonlinear wat er wave problems. J.
Ship Re3. , 20 , 3, pp. 160-170.

Sarpkaya, T. and Isaacson, M. St. Q. 1979. Mechanics of wave forces on
offshore structure. Van Nost rand Reinhold.

Schultz, W.W. 1987. A complex-valued int egral method for free surfaces with
intersecting bodies. Proc. Second International Workshop on Water Wave3
and Floating Bodi e3, Rep . No. AM-87-06 , Univ . Bristol, pp. 101-103.

Schultz, W.W. , Griffin , a.M. and Romberg , S.E. 1986. Steep and breaking
deep wate r waves . Proc. 16th ONR Symp. Naval Hydro., Nat ional Aca­
demic Press, pp. 106-115 .

Schwartz, L.W. 1974. Computer extension and analytic continuation of Stoke 's
expansion for gravity waves. J. Flu id Mech ., 62 , pp. 553-578.

Schwartz, L.W. and Fenton, J.D. 1982. Strongly nonlinear waves. Ann. Rev .
Fluid Mech. , 14 , pp. 39-60.

Semyonov-Tyan-Shansky, V. 1966. Statics and Dynamics of the Ship. En­
glish Translation by M. Konyaeva, Peace Pub. , Moscow , Appendix VI , pp .
567 - 580.

Sommerfeld, A.J .W .1949. Vor lesungen uber theoret ische Physik. II. Mechanik
der deforsebaren M edien. Leipzig , Akademie.

Standing, R.G. 1984. Wave loading on offshore structures. Ocean Sc. Eng.,
9 , 1, pp. 25-134.

Stansby, P.K. and Dixon , A.G. 1983. Simulation of flows around cylinders by
a Lagrangian vortex method. Appld. Ocean Re3., 103, 3, pp. 167-178.

Stoker, J.J . 1966. Water waves. 3rd printing, Interscience Pub. Inc.

Tadjbaksh, 1. and Keller, J .B. 1960. Standing surface waves of finite ampli­
tude. J. Fluid M ech., 8 , pp . 442-451.

Takagi, M. , Arai , S-1., Takezawa, S. , Tanaka, K. and Takarada, N. 1985. A
compar ison of methods for calculat ing the motion of a semi submersible.
Ocean Engng. , 12 , pp . 45-97.



347

Takagi, M., Furukawa, H. and Takagi, K. 19.83. On the precision of various
hydrodynamic solutions of two-dimensional oscillating bodies. Proc. In­
ternational Workshop on Ship and Platform Motions , Berkeley, Calif., pp.
450-466.

Tasai, F. and Koterayama, W. 1976. Nonlinear hydrodynamic forces acting on
cylinders heaving on the surface of a fluid. Rep. No. 77, Res. Inst. Appld.
Mech. , Kyushu Univ .

Telste, J.C . 1985. Calculation of fluid motion resulting from large amplitude
forced heave motion of a two-dimensional cylinder on a free surface, Proc.
4th Int. Conf. Num. Ship Hydro. , National Academy of Sciences, pp.
81-93 .

Telste, J.G. and Noblesse, F. 1986. Numerical evaluation of the Green function
of water-wave radiation and diffraction. J. Ship Res., 30, pp. 69-84.

Toro, E.F. 1986. Mesh effects on the computation of nonlinear gravity waves
of arbitrary dis charge. Int. J. Num. Meth. Fluids, 6 , pp, 479-493.

Toro, E.F. and O 'Carroll, M.J. 1984. A Kantorovich computational method for
free surface gravity flows. Int. J. Num. Meth. Fluids, 4, pp. 1137-1148.

Troesch, A.W. and Kang, CoG. 1986. Hydrodynamic loads on impacting bod­
ies. Proc. 16th ONR Symp. Naval Hydro., National Academic Press,
Washington,D.C. , pp. 537-558.

Ursell, F. 1964. The decay of the free motion of a floating body. J. Fluid
Mech., 19 , pp. 305-319. .

van Dyke, M. 1964. Perturbation methods in fluid mechanics. Academic
Press.

Vinje, T. and Brevig, P. 1981a. Numerical simulation of breaking waves. Adv.
Water Resources, 4, pp. 77-82.

Vinje, T. and Brevig, P . 1981b . Numerical calculation of forces from breaking
waves. Int. Sym Hydro. Ocean Eng., Norwegian Inst. Tech., Trondheim,
pp. 547-565 .

Vinje, T. and Brevig, P. 1981c. Nonlinear ship motions. Proc. 3rdlnt. Conf.
Num. Ship Hydro., Paris, pp. 257-268.



348

Vinje, T., Maogang, X. and Br evig , P. 1982. A nu merical approach to nonlinear
ship motion. Proc, 14th ONR Symp. Naval Hydro. , National Academy
Press , pp. 245-278.

von Kerzcek, C. and Salvesen, N. 1974. Numerical solution of two dimen­
sional nonlinear wave problems. Proc. 10th ONR Symp. Naval Hydro. ,
Cambridge, Mass. , pp. 649-663.

Vughts, J .H. 1969. The hydrodynamic coefficient for swayi ng. heaving and
rolling cylinders in a free sur face. Int. Ship. Prog. , 15 , pp . 251-276.

Wehausen, J.V. 1967. Initial-value problem for the motion in an undulating
sea of a body with fixed equ ilibrium posi tion . J. Eng. Math. , 1, pp. 1-17 .

Wehausen, J .V. 1971. The mo tion of floating bodies. Ann. Rev. Fluid M ech.,
2 , pp. 237-268.

Wehausen, J.V. and Laitone, E.V. 1960. Surface Waves. in Vol. 9, Handbuch
der Physik, Springer-Verlag, pp . 446-778 .

Welch, J .E. , Har low, F .H., Shannon, J .P. and Daly , B.J. 1966. The MAC
method, a computing technique for solving viscous, incompressible, tran­
sient fluid flow problems involving free surfaces. Los Alamos Scientific
Lab. Rep. LA-3425.

Wellford, L.C. Jr. and Ganaba, T. 1981. A finite element method with a hy­
brid Lagrange line for fluid mechanics problems involving large free surface
motion. Int . J. Num. Meth. Eng ., 17 , pp. 1201-1231.

Wiegel, R.L. 1964. Oceanograpbical engin eering. Chapter two , Prentice-Hall,
Inc. , Engl ewood Cliffs , N.J. , pp 11-64.

Wu, C-F . and Yeung , R.W. 1987. Nonlinear wave-body motion in a closed
domain. Proc. Second In t ernat ional Workshop on Water Waves Float ing
Bodies , Rep . No. AM-87 -06, Univ . Bristol, pp. 133-135.

Wu, D-M. and Wu , T.Y. 1982. Three dimensional nonlinear long waves due to
a moving surface pr essure. Proc. 14th ONR Symp. Naval Hydro. , National
Academy Press , pp. 103-125 .

Yamashita, S. 1977. Calculations of the hydrodyn amic forces acting upon thin
cylinders oscill ating vert ically with large am plitudes. J. Soc. Naval Arch.
Japan , 141, pp. 67-76.



349

Yen, S.M., Lee, K.D. and Akai, T.J. 1977. Finite element and finite difference
solutions of nonlinear free surface wave problems. Proc. 2nd Int. Conf.
Num. Ship Hydro., Berkeley, Calif., pp. 305-318 .

Yeung, R.W. 1973. A singularity distribution method for free surface flow
problems for an oscillating body. College on Eng. Rep., Univ. of Calif.,
Berkeley, vi + 124 p.

Yeung, R.W. 1982. The transient heaving motion of floating cylinders. J. Eng.
Math., 16, pp. 97-119.

Yeung, R.W. 1982. Numerical methods in free surface flows. Ann. Rev. Fluid
Mech., 14 , pp. 245-266.

Zienkiewicz, G.C. 1979 The finite element method, Tata Mcgraw Hill , New
Delhi.



350

APPENDICES



351

Appendix A

Numerical Formulae

A.l Time-integrators for the Free Surface Conditions

Consider the ordinary linear differential equation (eqn . (2.15)):

dy
di = ! (Y, t)

The Adams- Bashforth-Moulton (A-B-M) ru les are given by:

.... .(A.1.1)

(1)
Yk+!

(m)
Yk+!

(1)
Yk+!

(m)
Yk+!

Yk + t::"t!k + O(t::"t )

Yk + -¥(J1~;I) + ! k) + O(t::"e)

Yk + -¥(3!k - A-I) + O(t::"t2)

v» + -¥(J1~; I ) + !k) + Q(t::"t3)

..... (A.1.2(a))

..... (A.1.2(b))

..... (A.1.2(c))

.... .(A.1.2(d))

(1)vu; t::"t( 3Yk + 12 23!k - 6! k- I + 5!k-2) + O(t::"t) (A.1.2(e))

Yk + ~(5!1~;I) + 8!k - !k-d + O(t::"t4
) (A.1.2(f))

Yk~I v» + ~(55!k - 59!k-I + 37!k -2 - 9!k-3) + O(t::"t 4
) .. (A.1.2(g))

(m) t::"t( !(m-I) 5 (Yk+I Yk+ 24 9 k+! + 19! k - 5!k-I + !k-2) + O(t::"t ) .. A.1.2(h))
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where the superscrip ts in parenthesis denotes the level of iterations; m = 1

for the predictor ste p and m 2: 1 for corre ctor ste ps. Yi == y(i !:l.t) , f i ==

f ( v. . i !:l.t), f i(m) == f ( YJm), i !:l.t) ; !:l.t repr esents the time ste p size and a O(

indicates the local order of error.

To apply the above formulae to the free surface condit ions, comparison of

(A.l) with relevan t evolut ion equat ions give:

.....(A.1.3(a))

.... .(A.1.3(b))

..... (A.1.3(c))

7] ; f

¢> ; f

7] ; f

¢> ; f

8¢>a; for eqn. (3.1)

-g7] for eqn . (3.2)

8¢> 8¢>87] ')a; - fufu for eqn . ( 2 . ~ )

-g7] - ~ [(~)2 - ( ~)2 J - ~~?!l .for eqn. (4.3)
2 8x 8z 8x 8z 8x

.. ... (A.1.3(d))

For starting the int egrations , formulae (A.1.2 (a ), A.1.2(d)); (A.1.2(c), A.1.2 (f) );

(A.1.2(e), A.1.2 (h )) an d (A.1.2(g), A.1.2(h )) are applied sequentially for NT =

1,2,3 and 2: 4 , where NT denote the tim e step level: t = NT!:l.t. Note that for

NT = 1, 2 and 3, the rules adopted for t~e corrector ste ps are an ord er higher

than the corresponding predictor st eps .
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A.2 Coefficients al,aZ,a3 in (4.10 (b )

From (4.10 (a» and (4.10 (c) we have,

1

h(xz)
fl(XZ)
fl(Xz)f~(xz) - h(xz)f~(xz)

fl(xz)

.. ...(A.2.1(a»

... ..(A.2.1(b»

..... (A.2.1(c»

where Xz = (Xl + 1) and a prime (') denotes different iat ion with respect to x .

From (4.10b) we have,

... ..(A.2.2(a»

..... (A.2.2(b»

..... (A.2.2(c»

From (A.2.1) and (A.2.2), the coefficients are derived as:

h (xz) - h(xz) _ fl (Xz )f~ (xz ) - h (xz)fUxz) ..(A.2.3(a»
f l (XZ)(XI - xz)Z fl (XZ)(XI - xz)

fl(Xz)f~(xz) - h(xz)f~(xz) _ 2al XI ..... (A.2.3(b»
fl (xz )

1 - al xi - aZ ~1 ..... (A.2.3(c»

For evaluati on of f~(xz), formul a (A.4.1) below is appli ed.
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A .3 Smoothing Formulae

(i ) Formula bas e on the scheme of Longuet-Higgins and Cokel et (1976)

In the smoothing scheme of Longuet-Higgins and Cokelet , a function f (x) is

defined at equally spaced points x j,j = 1,2 ,3 "" , N and it is assumed that the

alternate points lie in a smooth curve. f (x) can then be locally approximated

by two polynomials:

..... (A.3 .1)

Here the first polynomial represents a smooth mean curve while the rest part

represents a quantity which oscillates with period 2 in j . The smoothed curve

can then be taken to be the first polynomial:

... ..(A.3.2)

The coefficients ao, aI, a2, ... , an and bo, bl , . .. , bn- I can be derived uniquely from

the conditions that h(xj ) = f(xj) at (2n + 1) consecutive points (j -n) to (j +n)

inclusive. When n = 2, the five point formula for a central po int becomes:

..... (A.3.3)

where Ii == f( x j ); I j == J( Xj). For j = 1, 2, N -1 and N , the (2n + 1) consec­

utive points at which h(xj) = f (xj) are to be considered are for the intervals:

(j) to (j + 2n ), (j - 1) to (j +2n - 1), (j - 2n +1) to (j +1) and (j - 2n ) to (j )

respectively. Aft er necessary algebra, the ' formulae are:



.... ~(A.3.4)

..... (A.3.5)
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i5(3Ji-l + 8fj + 6Ji+l - fj+3) for j = 2

i5( - Ji-3 + 6fj-l + 8fj + 3fj+l) for j = N-1

i5(3Ji-4 - 4fj-3 - 6fj-2 + 12Ji-l + llfj) for j = N

(ii) Least square smoothing formulae

The smoothing formulae corresponding to a third-degree least square approxi-

mation over five points are given by:

-l5( -3fj-2 + 12fj-l + 17fj + 12Ji+l - 3Ji+2) for 2::; j ::; N-1

-fo(69fj + 4fj+l - 6Ji+2 + 4fj+3 - fj+4) for j = 1

-l5(2fj-l + 27Ji + 12Ji+l - 8Ji+2 + 2fj+3) for j = 2

-l5(2fj-3 - 8fj-2 + 12Ji-l + 27 fj + 2Ji+l) for j = N-1

-fo(- fj-4 + 4Ji-3 - 6Ji-2 + 4fj-l + 69fj) for j = N
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A .4 N umerical Difference Formulae

(i) S·econd-order difference rules

Consider a func tion f (x) defined at equally spaced points xi = 1,2 ,3 "", N.

The second order cent ral differ ence formula for f' (x ) is given by:

..... (AA.1)

where the prime denotes differentiation with resp ect to x and b.h denotes the

spacing be twe en the points, b.h = x j +! - x i - This rule is inapplicable for j = 1

and j = N , for whi ch second order forward and backward rules respectively are

applicable. These are :

J' (X j ) 2~h [- f (Xj+2) + 4f(x j+d - 3f(xj )] for j = 1 ..( A A .2)

J' (Xj ) 2~h [3f(x j ) - 4f(xj-d + f (Xj-2 )] for j = N ..(AA. 3)

(ii) Second order interpolation/extrapolation formula

The second order Lagrangian interpolation/extrapolation three-point formula

which utilizes th e points at three equispaced ordinates Xj- l, Xj and Xj+! is given

by:

p(p - 1) 2 p(p + 1)
f (x j + pb.h ) = --2-f (Xj-l ) + (1 - p )f(xj) + --2- f (X j+d

.... .(AAA)

wh ere b.h = Xj+! - Xj = Xj - Xj - l '
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A.S Time-integrators for the Equations of Motion

Consider the sway equations of motions, 6.22 (a) and (b ):

ua

..... (A.5.I(a))

..... (A.5.I(b))

In the adopted procedure, only the predictor rules (i.e. explicit rules) shown in

(A.I) apply for the first equation. However for eqn. (A.5.I (b)), the corrector

rules are utilized since an estimate for the value of ua at the advanced level is

available. For NT ~ 4, the formulae are:

~t .
u~m)(t + ~t) = ua(t) + 24M

B
[55Fx(t) - 59Fx(t - ~t)

+37Fx(t - 2~t) - 9Fx(t - 3~t)] ..(A.5.2(a))

x~m)(t + ~t) = xa(t) + ~[9u~m)(t + ~t) + I9ua(t)

-5ua(t - ~t) + ua(t - 2~t)] ..(A.5.2(b))

For the heave and roll equations of motions , same formulae apply.
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A ppendix B

Estimation of Roll Damping

General Considerations

The damping momen t be(O) in (8.7) can be expressed as a series expansion of 0

and 101 in the following form:

..... (B. 1)

Depending on t he te rms considered, a variety of models can be constructed from

the above representation. Differ ent models have in fact been proposed over the

past years (see Himeno 1981 for a review), including recently suggested models

that consider angle-dependent terms not shown in (B.1) (see e.g. Bass and

Haddara 1988).

In order to adopt a model tha t will sui te the present requirements , guid­

ance may be sought from the state-of-the-art method for prediction of ship roll

damping outlined in Him eno (198 1) . According to tfis me thod, the total roll

damping coefficient can be estimated by summing several component damp­

ing coefficient s, each of which ari ses from a sp ecific flow phenomenon. Omitting

te rms not applicable for the pres ent model , the following expression for th e to tal

equivalen t linear damping coefficient (Be) emerges:

.....(B.2)

Here B R represents the hydrodynamic or radiation damping coefficient associ­

ated with the energy expen ded in generating free surface wav es . The damping
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moment due to this component is usually considered linear, which makes B R

equivalent to Bf in (8.8) as well as justifies the form of (8.8). The remaining

two terms BF and BE in (B.2), known as friction damping and eddy damping

coefficients respectively, arise from viscous effects.

A study of the formulae for B F proposed by various investigators indicates

that frictional damping moment can be further decomposed into two components

associated with laminar and turbulent flow conditions respectively (see Himeno

1981). The formula for the former of these is linear, which suggests that the

damping moment caused by laminar flow around the hull is essentially linear in B.

Considering the size of the model and the smoothness of the surface and keeping

in mind the absence of forward speed, the flow conditions in the experimental

setting is expected to be laminar. It is then fair to assume that the damping

moment arising from skin-friction tensor is linear in B, which means BF is a part

of n, in (B.1).

The last term in (B.2), that is, the eddy damping moment, is caused by

the flow separation near the bilges. This term is known to be non-linear and

dependent on BIBI (see Himeno 1981). Therefore the term associated with B 2

in (B.1) can be attributed to this effect.

From the above, it would appear that form (B.1) where the only non-zero

terms present are B, and B 2 is an appropriate model for the required esti-

mations. Although this turns out to be the classical quadratic form for roll

damping known since the time of Sir William Froude, the discussion above pro­

vides a rationale for adopting this model. As a further examination, the three

coefficients B l , B 2 , B3 in (B.1) have been estimated from the experimentally ob-
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tained extinction curves. The procedure is detailed in Himeno (1981) and hence

omitted here. The estimated value of B3 is found to be consistently very small

over the entire range of the data set. Typical non-dimensionalized values are:

B1 ~ 0.001 , B2 ~ 0.020, B3 ~ 0.00005 (for the non-dimensionalizing factors, see

Table B.1). This provides additional evidence on appropriateness of adopting a

quadratic model.

The uncoupled equation of motion for free roll is given by (8.7) with M() = O.

This can now be written as

..... (B.3)

where Bi denotes the viscous damping coefficient associated with the linear

part of the corresponding damping moment. Neglecting the influence arising

from coupling with heave, which is usually minimal and is a standard practice

to ignore this effect, (B.3) can be taken to represent the motions in a roll decay

experiment. The objective is to estimate the viscous terms Bi and B2 from the

test results. To achieve this, the contribution of hydrodynamic damping implicit

in the experimental records need to be isolated.

Estimation of the Hydrodynamic Damping Coefficient

As described in §8.3.2 , the numerical method can be used to simulate free mo­

tions in any mode by prescribing suitable initial conditions. Numerical exp eri­

ments have shown that motions in roll mode are less sensitive to the conditions

imposed on the outer boundaries as compared to heave mode. Considering that

the energy expended in generating free surface motions is considerably less in roll

mode th an in heave mode, this is to be expected. For the present purpose, the
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Table B. l Non-dimensionalizing factors for the damping coefficients

B 1 B 1 [B729 / (1/ pSAB)

Be B e [B729 / (l / pS AB )

B: B: [B729 / (1/ pSAB)

Bi Bi [B729 / (1/ pSAB)

B 2 B 2 (l/pSA B)

B 3 B 3 (B /2g) (1/ pSAB )
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numerical results used are generated in a control domain of length 0.5L = 40B

with the conditions </> = 0 prescribed on the outer boundaries. Results could be

obtained for more than five cycles of oscillation without detectable influence of

the conditions imposed on the exterior boundaries to the solution. This simu­

lated roll motion can be considered equivalent to a record obtained from a roll

decay test conducted in an inviscid fluid tank where the damping mechanism

involved is contribution from hydrodynamic damping alone.

To determine the value of Bf , (B.3) is numerically solved by employing a

fifth order Runge-Kutta method. An IMSL routine is utilized for this purpose

whose convergence and accuracy has been tested. The restoring moment Ce(8)

is generally non-linear, specially for large 8 values, and is known for wall sided

geometries (Rawson and Tupper 1976):

.....(BA)

where B M denotes the vertical distance between the center of buoyancy and the

metacenter for 8 = O. Solution of (BA) requires the value of ole. An initial esti­

mate of this is available from eqn. (6 .3'1). Subsequently adjustments are made

such that the period of oscillation obtained from (B ~4) are in agreement with

the numerical results. The value of He is found to be: H e/ pSAB 2 = 0.045 (SA

= wetted surface = Bh), which compares well with Vugts (1969) corresponding

experimental values (Vugts' results are given for an axis whose origin is at the

undisturbed water level; taking into account the necessary corrections, his value

ranges approximately between 0.040 to 0.060, the lower value being for the ex­

periment with roll amplitude of 0.2 rad. or 11.5 deg., which comes closest to the

present computational value of 8mean ~ 10deg. ).
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The required estimate for BtI is accomplished through an iterative search

such that the numerically simulated results and the solution from (B.3) for the

same initial conditions are in close agreement. This is a somewhat more elab­

orate procedure compared to methods where only the peak values in a decay

record are used. However, apart from being less demanding on the length of the

record required for a reliable estimate, this procedure is believed to be superior

in precision in that data over the entire time span is utilized. Although it is

possible to obtain a quantitative measure for the closeness of fit between the

plots, presently the agreement between these is judged from a visual examina­

tion. The estimated value of the coefficient is found to be : lJtI = 0.00125, for

which the plots are shown in Figure B il . As a demonstration of the influence

of non-linearities in the restoring moment to the solution, an additional result

computed from (B.3) with linear restoring moment: C9(8) = gMBGM8 is also

plotted.

To investigate the sensitivity of this coefficient on the solution, additional

results for neighbouring BtI values ( ....... ±10%) are shown in Figure B.2. Some

latitude in the estimated value is clearly available.

Estimation of Viscous Damping Coefficients

The viscous damping coefficients By and B 2 are estimated from the experimental

decay records. Results for the two tests performed are presented in Figures B.3

(a) and (b). Owing to uncertainties involved in the initial velocities, the records

shown exclude the first cycle of oscillation. Excellent quality of repeatability

is apparent from Figure B.4 where the results shown are for a range such that
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-

0

a
~

0---
~

4. 00 6.00
t ( s e c.)

8.00

(B.3), linear rest . force
(B .3), nonlinear rest. force

(!) numerical

10 . 00

Figure B .1 Free roll motion s of the body; for t he numerical simulation, 0.5L =
40B and the imposed condi tions on the exterior boundaries are : ¢>(t) = 0;
in solution of (B.3), fJf! = 0.00125; for all calculations , 8(0) = 15 deg. and
0(0) = O.

x fJ: = 0.00115
+ fJ: =0.00125• fJ: = 0.00135
o numerical

4.00 6.00
t l s e e v I

F ig ure B .2 Sensitivity of the hydrodynamic damping coefficient (B f!) in solu­
tion of (B.3) .



~o.oo

365

(a) Experiment No.1

12.00 11.00
t 1••0.1

(b) Experiment No.2

12.00 11.00
t 1••0.1

Figure B.3 Experimental roll decay records .

• Exp . no. 2, 8(0) = 13.8 deg.
e Exp . no. 1, 8(0) = 13.1 deg.

Figure B.4 Repeatability of the roll decay tests.
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B(t = 0) ~ 15 deg. (the exact values are quoted -in the Figure).

The procedure followed in determining the coefficients are same as in obtain­

ing Br above. However, presently there are two coefficients to be determined,

and a number of combinations of Byand B z values are likely to fit the test

record with almost same degree of accuracy. In order to arrive at a reliable es­

timate, guidance is sought from available experimental results for different ship

forms. A study of results shown in Himeno (1981) reveals dominance of the

Bz term over the linear term. Rough estimates of these values calculated from

the extinction curve also suggest the same (typical values for the cubic damp­

ing model have already been indicated). The required estimates are therefore

achieved by first tuning the B z term, and then making the final adjustments

by means of the By term in (B.3). The results obtained in this manner are

summarized in Table B.2 together with some experimental results from Himeno

(1981). The corresponding plots are shown in Figure B.5. A sensitivity study

have shown that these coefficients within about ±10% of the values quoted pro­

duce almost identical results. As seen from Table B.1, the trend in relative

magnitudes between the two coefficients is similar. :The reductions in magni­

tudes here as compared to the corresponding values for ship forms are to be

expected because of absence of bilge keels as well as two-dimensionality of the

model.

To improve confidence in the above estimated values, computations have also

been performed by em ploying a linear model for the total damping moment,

i.e. by taking B z = 0 in (B.1) and following the same procedure. Figure B.6

plots the results . In addition, the following relation can be used to determine

an equivalent linear damping coefficient (Be) for the quadratic model (Himeno
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Table B.2 Damping coefficients for the quadratic model

Ship forms at 0 speed (from Himeno 1981)
Coeffi- Ore Tanker Container Cargo Present
-cien ts Carrier Ship Ship Model

B1 0.00193 0.00161 0.0006 0 0.0014 t

B2 0.05667 0.05180 0.05563 0.0699 0.022

t B1 = Bf + Bi ;Bf = 0.00125; Bi = 0.000l5

Table B.3 Damping coefficients from linear and quadratic models

Coeffi- Linear Quadratic
-cients model model

B1 0.0030 0.0014

B2 0.023

Be 0.0030 0.0030 t

t in using eqn. (B.5) , (}A is taken as (}mean = 10 deg .
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• CeI"
o EX~

4.00 6.00 8.00
t ( s e c.)

Figure B.5 Comparison of experimental roll decay reco rd wit h the quadratic
damping model; for the computed plot shown, (B.3) is solve d with the coeffi­
cients : Bf = 0.00125 , By = 0.00015 (BI = 0.0014 ) and B2 = 0.022.

• CeI".
e EXP.

4. 00 6.00 8.00
t ( s e c.)

Fi g ure B .6 Comparison of experimental roll decay record with the linear damp­
ing model; for the computed plot shown, (B.3) is solved with the coefficients:
Bf = 0.00125 , By = 0.00175 (BI = 0.0030) and B2 = O.
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1981):

.....(B.5)

where w~ and BA denote the roll natural (radian) frequency and amplitude of

oscillation. These results are compiled in Table B.3 and show that the models

yield closely comparable Be values (no difference in Be values till the 4th decimal

places). In view of the insensitivity of the coefficients to the solution and the

results of Table B.3 , we can be fairly confident about the above estimates. The

values finally adopted are those from the quadratic model (Table B.2).

Comparing (B.3) with eqns. (8.7) and (8.8), the viscous damping moment

b~ in (8.9) is

..... (B.6)
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A ppendix C

Experimental and Numerical Time-histories

This appendix presents a number of plots showing t he comparison of time-

histories between experiment and theory.

Figures C.1 (a) - (j), C.2 (a) - (i) and C.3 (a) - (i) show the comparative time

histories of th e inciden t wave, sway forc e and heave motion for test series B, C

and D respectively, and include results for all of the tests excluding those alre ady

presented in the main text. Figure CA shows the compariso n of roll motion for a

number of tests. The inclu ded plots ar e such that , be twe en these and the results

which already appe are d earl ier (F igure 8.12 ), there is at least one comparison

for each of the tested frequency (t he only except ion being the highest frequency

of wJ13!2; = 1.0771) . Fi gure C.5 presents the comparison for evolution of the

free surface profile at the location of probe no. 2, and once mo re, in conjunction

with the results already presented, provides at least one comparison for each of

the tested frequency and wave st eepness from a combination of the th ree test

series. Figures C.6 and C.7 contain comparison of the near-field profile (at probe

no . 3/5) and th e profile downstream of the body respectively, covering the full

range of test-frequencies.

All plots ar e arranged sequentially in a decreasing order of frequency (i.e . at

an increasing orde r of A/B).
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(a) wfBfi9 = 1.0771 , >..IB = 2.iO, HI>.. = 0.0347
(T1 ~ 19.0 sec. , T2 ~ 23.0 sec.)

Figure C.l continued JL
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Figure C.l continued .ij.



373

• HUH.
e EXP.

25.0023.00

• HUH.
o EXP.

19.00 21.00
t (sec.)

17. 00 1~. 00 21. 00
t (sec.)

iii

---:'

i 0

'1
13.00

g
g

0
=g
xo

«, 7

~
13.00 15.00

• HUH.
e EXP.

25.0017. 00 1~. 00 21. 00
t l s e cv I

15. 00

00:·'1!
<~ j
~---r----.---,...-----r----.---

13. 00

(c) wfBji; = 0.9874, >.IB = 3.20, HI>. = 0.0291
(T1 ~ 19.0 sec ., T2 ~ 24.0 sec.)

F'izure C.l continued l]



374

• HUH.
e EXP.

20.0016.00
t ( s e c . )

~+-----r----,------r-------r------,-------,
10.00 22.00

g
• HUH.
o EXP.

Cl
~ glH--'<-+~"""'-t-l....-

xci
<.1J.."j

20.0012.00
~+----r----~----r-----.,..-------r------,

10.00 22 .00

• HUH.
e EXP.

! ci-....-............._--.:-~
(~

12.00 16. 00
t (s.ec. J

18.00 20 .00

(d ) wfiiTi9 = 0.9425, >'IB = 3.53, HI>. = 0.0684
(T1 ~ 15.5 sec., T2 ~ 20.5 sec.)

Figure C.l continued.lJ.



375

.. HUH.

o EXP.

18.0014.00 16.00
t l s e cv I

u?+------.------r------,-------r----,--------.
10.00 22.00

.. HUH.

o EXP.

CD
~ g'!ttlr-+~+-+-l-..v-1

xo
«, 7

14.00 16.00
t (sec. I

18.00

.. HUH.

o EXP.

14.00 16.00
t (sec. I

(e) wfiij2;= 0.9425 , >"IB = 3.53 , HI>.. = 0.0348
(T1 ~ 15.5 sec ., T2 ~ 20.5 sec. )

Figure C.l continued.lJ.



376

• NUH.
o EXP.

I~. 00 14.00 I~. 00 I~. 00 20.00 22.00
t (sec. J

g · NUH.

g o EXP.

~

C,

xo
«, r

~
10.00 14.00 16.00 22.00

t (sec. J

· NUH.
o EXP.

~

---:'

! 0

18.0016.00
t t s e ev l

12.00
"?+----.---"""'T"""""---,------..----,----

10.00

(f) wfii/27J = 0.8976 , AlB = 3.90 , HI A = 0.0630
(T1 :::::: 16.0 sec. , T2 :::::: 21.0 sec. )

Figure c.i continued .JJ.



377

' . ~UH.
o EXP.

12.00 14.00 16.00
t (sec.)

18.00 20.00

• HUH.
o EXP.

20.0018.0016.00
t (sec.)

12.00
~+---~----r-----..--------r----,-----,

10.00

• HUH.
e EXP.

i"""t::T-t--'t---+--A~f-'i-t.....x
.::;

12.00 14.00 16.00
t (sec.)

20.00

(g) wfiii29 = 0.8976 , )..1B = 3.90 , HI).. = 0.0327
(T1 ~ 15.5 sec. , T2 ~ 20.5 sec. )

Figure C.l continued JJ.





379

.. HUH.
(!) EXP.

16.00 18.00
t (sec.)

~1+0.-0-0----r---.....----..--__.---~--.......,....--__,

HUH.
EXP.

C.
o'1-+--t-+-t--r-t--.l../l

xc
<I&.. i

16.00 18.00
t (sec. I

~1+0.-0-0----r---.....-----.---.--------,.----r--.....,

HUH.
EXP.

'to. 00 16.00 111.00
t (sec. I

(i) wjB12; = 0.8078 , VB = 4.80 , H / ,\ = 0.0361
(T1 :::::: 16.5 sec., T2 :::::: 22.0 sec. )

Figure C.l continued JJ.



380

NUK.
EXP.

(j ) Wjii72"; = 0.7630, )..IB = 5.35, HI)..= 0.0386
(T1 ~ 15.0 sec ., T2 ~ 20.5 sec .)

15.00
t t s e c,. )

• NUK.

e EXP.

15.00
t (sec.)

a
~g l--~I--+---t'--..J

<~~

~+---~--r----..-----.---------,.--------,_.
9.00

• NUK.

e EXP.

13.00 15.00
t (sec. )

~9+.o-o--~--,.----r---r----'---------'r-



381

• HUH.
C) EXP.

23.0019.00 21.00
t ( s e c . )

g

u?1+3-.o-o----,-----,,----.----.-----.-----"---,

• HUH.
C) EXP.

19.00
t (sec.)

~1+3.-0-0---r------,---r----..----...------,

• HUH.
C) EXP.

u?+---~----r---__._--___r--___._--____,
13.00 19.00 23.00

t (sec.)

(a) wfB129 = 0.9874, )..IB = 3.20 , HI ).. = 0.0610
(T1 ~ 18.5 sec ., T2 ~ 23.5 sec.)

FIgure C.2 continued .lj.



382

6 .NUH.
e!) EXP•

• NUH.
o EXP.

.n

!

~-I
15. 0013.00

g

17. 00 19.00
t [sec)

2'1.00 23.00 25.00

19.00
t (sec.)

~+---.----.------r---~------r-----,
13.00

NUH.
EXP.

23.0019.00 21.00
t l s e cv J

'f-t---.----.-----r------r-------r----,
13.00

(b) w[Bii1J = 0.9874 , )..IB = 3.20, HI).. = 0.0291
(T I ;:::= 18.5 sec ., T2 ;:::= 23.5 sec.)

Figure C.2 continued JJ.



383

.to HUH.
(!) EXP•

19.0017.00

.to HUH.
o EXP.

11.00 13.00
t (sec.)

.n

! c:i

~
7.00

g
g

s

a
~g

xc:i
(l1..'

~
7.00 9.00

.to HUH.
e EXP.

11.00 13.00
t (sec.)

(c) wjBTi9 = 0.9425, )...IB= 3.53, HI)... = 0.0348
(T1 :::::: 13.5 sec. , T2 :::::: 18.5 sec.)



384

HUH.
EXP.

21.0019.0015.00 17.00
t (sec.)

~+---.-----r----,-------.------r----,
11.00

• HUH.

e EXP.

0,

~g

xci
<u.. 7

15.00 17.00
t (sec.)

21.00

• HUH.
(!) EXP.

21.0019.0015.00 17.00
t t s e cv l

'?+---.----,------r-------,------r------.
11.00 23.00

(d) wfii/29 = 0.8976 , AlB = 3.90, HIA = 0.0630
(T1 ~ 17.5 sec ., T2 ~ 22.5 sec.)



385

• HUM.
e EXP.

15.00
t (sec. )

'C :11 :
I::'"

"?9.-oo--.....----..---------.----r-----.-----,

• HUM.
(!) EXP.

• HUM.
o EXP.

15.00 17.00
t (sec. )

I S. 00
t I s e cv I

~9+.0-0--..---------r-----,---~--"""T"""""--~-~

~ :I~
9.00

(e) wfiiji; = 0.8976, Al B = 3.90 , H I A = 0.0327
(T1 ~ 15.5 sec.,T2 ~ 20.5 sec.)

Figure C.2 cont inued ~



386

.. NUll.
e EXP.

13.00 15.00
t (sec.)

NUll.
EXP.

NUll.
EXP.

~~~
7.00 9.00 11.00 13.00 15.00

t (sec.)

(f) wfBi29 = 0.8527 , AlB = 4.33 , HI A = 0.0286
(T1 ~ 14.5 sec. , T2 ~ 20.0 sec.)

Figure C.2 continued .lj.



387

16.00 18. 00
t ( s e c . I

~1+0.-00---..-----,.------.------r------r-----r-----,

'0
~g

xc
<u."j

g
'to. 00 1'.00 1~. 00 1 ~ . 00

t (sec. I

16.00 18.00
t (sec. I

~
\ +o.-oo- - ..--- --,.- - ----.- - - --r-- - ---r--- - ...--- --,

(g) wJBji;; = 0.8078 , AlB = 4.80 , HI A = 0.0361
(T1 ~ 17.0 sec ., T1 ~ 22.5 sec. )



388
.. NU".
e EX!'.

! ;
12. 00 H.OO 18.00 18 . 00 20 .00 22.00 24.00 28.00

t (seo. I

'12.00 18.00 20.00
t (.eo. I

18.00 20.00
t (.ec. I

~
\:t"2.-=0-=--0----r--::-:--...,.....-----r----r------,.--~----,

(h) wfi3j2; = 0.7181 , >"IB = 6.00 , HI>.. = 0.0172
(T1 ~ 18.5 sec ., T2 ~ 24.5 sec .)



389

....
I!XP'.

aoo

1IUIl.
EXP.

S
d
' .+.00- - ....-------.---....-------.---....--------.--- ....---- ----.-- -....------,

'• • 00

(i) w[iiii;J = 0.6283 , >"IB = 7.60, HI>.. = 0.0129
(T1 ~ 18.0 sec. , T2 ~ 24.5 sec. )

Figure C .2 Test Series C : comparison of experiment and th eory .



13.00 15.00

390

• HUH•
. (!) EXP.

17.00 19. 00 21. 00
t (sec.)

• HUH.
o EXP.

~
13.00 17.00 19.00 2'1.00

t l s e cv )

• HUH.
o EXP.

23.00 25.00

'1-t---- -....--- -.....,.------r-- ---,.....- ----.---
13.00 17.00 19.00 21.00 ---;S.OO

t (sec.)

(a ) wfiij2; = 1.0771, >.. IB = 2.70 , HI >.. = 0.0347
(T1 ::::= 19.0 sec. , T2 ::::= 23.0 sec .)



23.0021.0017.00 19.00
t (sec.)

15.00
~+----.----...,.-----..-----.-------r­

13.00

.... HUH.
o EXP.

23.0021.0017.00 19.00
t (sec.)

15.00
'?+-----r---.....,...-----..-----.-----,--

13.00

(b) wfiii2[; = 0.9874 , >..IB = 3.20, HI>.. = 0.0291
(T1 :::::::: 18.5 sec., T2 :::::::: 23.5 sec.)



'?-t-----r-----r-----r-----.----~
9.00 13.00 15.00 19.00

t (sec.)

(c) wfi3ii9 = 0.9425 , AlB = 3.53, HI A = 0.0684
(T1 >::::: 15.0 sec., T2 >::::: 20.0 sec.)





394
NUK.
EXP.

19.00
t t s e ev )

~+----~---r----~--...----~------,..-----
13.00

• NUK.
e EXP.

• NUK.
e EXP.

19.00 2'1.00
t (sec.)

a
~g

xo
<u.. r

~
13.00

i

:1
,~

ds.oo13. 00

(e ) wfi3/29 = 0.8976, )..IB = 3.90, H I ).. = 0.06 30
(T1 ;::;: 19.5 sec ., T2 ;::;:24.5 sec.)



1~. 00

395

.. HUH.
(!) EXP.

17.00 19.00
t (sec. I

.. NUK.
e EXP.

- ----,---.- . - .-r-
17.00 19.00

t I s e e,. l

J
<~~j~~

0 1

~l-
13.00

.. NUK. ·

e EXP.

19.00 2'1.00 23.00
t (sec. I

(f) wfiii29 = 0.8976, )..jB = 3.90, H / x = 0.0327
(T1 ~ 19.5 sec. , Tz ~ 24.5 sec. )

Figure C.3 continued .ij.



396

Nln1.
EXP.

17. ob I~. 00
t (sec. I

2~. 00

17.00
t (sec. I

~+---~--~--.----r---__r------.,...---
11.00

~:I~
II. 00 13. 00 15. 00 17. 00 I~. 00

t (sec. I

(g) wjiiii; = 0.8527 , >"IB = 4.33 , HI>.. = 0.0286
(Tl ~ 18.5 sec. , T2 ~ 24.0 sec. )

Figure C.3 continued .lJ.



397

.. HUH.
(!) EXP.

17.00 19.00
t (.ec.)

~1+1.-0-0---r-----.------r---.---------r----r---.--

.. HUH.
e EXP.

17.00 19.00
t (sec.)

~1+1.-0-0----r-----.------r------,.---------r-----,----r--

o
~g

xc
<I>.. i

HUH.
EXP.

(~

17.00 19.00
t (sec. J

(h) w.fiiii9= 0.8078 , )..jB = 4.80 , HI). = 0.0361
(T1 ::::::: 19.0 sec ., T2 ::::::: 24.5 sec.)
1:': r» ~ _~~;.:~_.~A /I



398

• HUI1.
e EXP.

11.00 13.00
t: (sec.)

~·5~.-00--..--------.-----r----,----r---.----,--

• HUI1.
e EXP.

c.
~g

xci
<u.. 7

11.00 13.00
t: (sec. I

~'54-.-00--...------r------r---...----....,.-----r----r---

11.00 13.00
t: (sec.)

(i) wfiij2; = 0.7630 , >..jB = 5.35 , HI>. = 0.0386
(T1 ~ 13.0 sec. , T2 ~ 18.5 sec.)

~5j-.:-::00--r---~------r----,---....,.-----r----...-



399

.. HUP!.
e EXP.

15.00 17.00
t (sse.)

.. MUP!.
e EXP.

15.00 17.00
t I.ee. I

~94-.0-0--'-----~----"-T"--~--..,.-----.--------,r---

~
'9+. 0-0--.----~-----r--~--..,.-----:..-.,.-¥---'(f--I....---tt-

(j) wfii72i; = 0.7181 , >'IB= 6.00, HI>. = 0.0363
(T I ~ 17.5 sec. , T2 ~ 23.5 sec.)



400

I . DO
t 1..... 1

..
5'+.1l-1l---.------.--~--..---..,.----r----.-----,--.,------.

(k ) w[iii'i;J = 0.6283, ).IB = 7.60, HI). = 0.0275
(T1 ~ 14.0 sec., T2 ~ 20.5 sec.)

Figure C.3 continued JJ.



401

1I. 1XI 1. 1XI
t 1..... 1

. -.
I!I UP.

lS.oa 1 . 1XI
t 1..... 1

(I) Wfiij2; = 0.5386 , >./B = 9.63, H/>. = 0.0247
(T1 ::::::: 15.0 sec. , T2 ::::::: 21.5 sec .)

Figure C.3 Test Series D : comparison of experiment and theory.



402
• HUH.
CD EXP.

>"1B = 3.20 , HI >.. = 0.0610 , Test Series C

25.0023.0019.00 21. 00
t (sec. J

15.00
~+------.--------r-----,---~-----.--

13.00

• HUH.
CD EXP.

>"1B = 3.53, HI >.. = 0.0348, Test Ser ies B

16.00
t ( s e c . )

~+----.-----r----.----.----,----
10.00 22.00

• HUH.
CD EXP.

>"IB = 3.90 , HI>.. = 0.0327, Test Series B

16.00
t ( s e cv J



403

.6. NUH.
e EXP.

AIB = 4.33, H I A = 0.0286, Test Series B

21.0019.0013. 00 15. 00 17. 00
t (sec.)

~4-----.----r------r-------r-----r----r­
9.00

NUll.
EXP.

Al B = 4.80, HI A = 0.0361, Test Series C

16.00 18.00
t I.ec. I

~+10-.0-0----r-----.----,...---r---...,.------r---,

Ntm.
EXP.

AIB = 6.00, HI A = 0.0172, Test Series C

111.00 20.00
t I.ec. I

g
\+2.-0-0----r-----.----,...---r---...,.------r---,



404

• HUH.
e EXP.

>"IB = 3.20 , HI>.. = 0.0291 , Test Seri es D

23.0021.0015.00
'1

1
+
3

-.
0
-
0
- --,- - - ----,- - - ,....--- - -r--- - -r--

• HUH.

e EXP.

>..jB = 3.20 , HI>.. = 0.0610 , Test Series D

21.0017.00 19.00
t (sec. I

~1+3-.o-o----.------,,.---,....-----r-----r--

17.0013.00
t (sec. I

'1
7
+.-00--.-----.------.----,-------,--------,19. 00

Figure C.5 continued .JJ.



405

ui

! ci

'1
9.00 11.00 13.00 15.00 17.00 19.00

t ( s e c . )

~9+.-00----.-----,-----.-----Y--------r-=

• HUH.

e EXP.

).IB = 3.90, H I ). = 0.0327, Test Ser ies B

0. 00 12.00 14.00 16. 00
t (sec. )

----,-- - -- -----r-
18. 00 20.00 22.00

Figure C.5 continued .lJ.



406

VB = 3.90, HIA = 0.0630, Test Series B
... NUH.
e EXP.

12.00 14.00 16.00
t (sec.)

18.00 20.00 22.00

... HUH.
e EX,..

AIB = 4.33, HIA = 0.0286, Test Series C

13.00 15.00
t (sec.)

'17+.0-0--.----~-----.----r---.---..------,

... HUH.
(!) EX,..

AIB = 4.33, HIA= 0.0286, Test Series D

17.00
t (sec.)

'1+---...-------r----~--~--r__-____,r__
11.00

Figure C.5 continued .IJ.



407
• NUK.
(!) EX/'.

>'IB = 4.80, HI >. = '0.0361 , Test Series B

16. 00 111. 00
t (sec.)

~I+O.-O-O--r---......-----.,...---.---------r-----,-----,

>'1B = 5.35, HI >. = 0.0386 , Test Seri es C ;

exte nded control domai n of L 1 = 3.25>'

- . NUK.
e EX/'.

20 .00
t (sec.) '

~I+O.-O-O----r---.,---.,...---.---------r-----,-----r---...----~-___,

NUK.
EX/'.

>'1B = 6.00 , HI>. = 0.0172, Test Ser ies C

111.00 20.00
t (sec.)

'1+---.....-----,.-----,-----r---...----,.-----,
12.00



408

.. HU".
e EX~.

AIB = 6.00 , HIA = 0.0363 , Test Seri es D

~
,9-t-. O-O--.------r--~----r-----.----.---r--

AIB = 7.60 , HIA = 0.0275 , Test Series D

1 00
t 1..... 1

Figure C.5 'Wave eleva tion at the location of pr obe no . 2
comparison of experiment and theory.



Co m p uta t io n

4: 00 8: 00 12.00
t (s e c . )

o
a
ci

a

i ~

Experiment

a
a
ci

-,---- - -.-,---.- ---, "I+---.- ---,- - - -..,.--- ---
4. 00 8. 00 12. 00 O. 00

t (sec.)
. ).. IB = 2.70, HI).. = 0.0347, Test Seri es D

a
a
ci

!
a
a
ci

I:""

a
0

ci
I

0: 00

.t:­
o
\Cl

4: 00 8: 00 12.00
t (sec.)

Figure C.6 cont inued .lJ.

a
a
ci

!
a
a

ci
I:""

a
a
ci

+-- --, "I-+I- - - - -r-- - - -,-- - - --,
4. 00 8. 00 12. 00 O. 00

t ( sec.) )..1B = 3.20 , HI ).. = 0.0610, Test Seri es D

a
a
ci

i ~

a
a

ci
I

0: 00



o 0
o 0

o 0
Experiment

S ~ VVV\ s ~~ 0 ~ 0

c-

o 0
o 0

o 0
I I

0.00 4.00 8.00 12.00 0.00
t (sec.)

AIB = 4.33, HI A = 0.0286, Test Series C

Computation

4~ 00 8: 00
t (sec.)

-I'­
I-'
o

o
o
o

o
o
o

Figure C.6 cont inued U.

. 0

~ ~

o
o
c:i
71 i
0.00

oS 0

...::.c:i~

0.00 4. 00 8.00
t (sec.)



o
o
o E x p er im e nt ~

~
C o m p ut a t ion

15.00

o
o
C

c

i :

I

5.00 to.00 15.00 0.00 5. 00 10.00
t (sec.) >"IB = 6.00 , HI>.. = 0.0363, Test Seri es D t (sec.)

o
o

~I iii
0.00

. 0

§ ~
'---' 0

F igure C .6 continued .J.L

.c­
f-'
f-'

o
o
o d

i ~ 1~

5.00 10. 00 15.00
t (••0.)

10.00 15.00
t (••0.)

o

71 Iii
0.00 20.00

o
d
il , I ,

0.00 5.00

>"1B = 9.63, HI>.. = 0.0125, Test Seri es C



0 0
0 0

~ Experiment 0 C o m p utat io n

i
;~~~~~~

i
0
0

d
l::"" c-

0
0

~
0.00 5.00 10.00 15.00 0: 00 5: 00 10.00 15.00

t (sec.) t (sec. )
>"IB = 9.63, HI>.. = 0.0229, Test Seri es C

0 0
- .p-

I-'
0 0 N

d ~

i ~~ f\ Af\ 1\ 1\ 1\ 1\ f\ 1\ I~ 1\ i 0
0

d
c-

;j
0
0

0

5: 00 10.00 15.00
I

0.00 0.00 5.00 10.00 15.00
t (sec. ) t (sec. )

>"1B = 9.63, HI>.. = 0.0275, Test Seri es C

Figure C .6 Wave elevat ion at the locat ion of probe no. 3 (or 5)
comparison of experiment and theory.



.c­

......
w

Computation

o
o
o

. 0
S 0
~o~

Experiment

o
o

o
I' I i -----,-----,

4. 00 8. 00 12. 00 0.00 4. 00 8. 00 12.00

t (sec.) >"IB = 3.20, HI>.. = 0.0610 , Test Seri es D t (sec.)

. 0
S 0

~ol ---

o
o
o

g
o
1'1 iii

4.00 8.00 12.00 0.00 4.00 8.00 12.00

t ..(s ecv l >"IB = 3.53, HI>.. = 0.0684, Test Seri es C t (sec.)

o
o
ci

o
. 0

S .
~ 0

I::-

o
o
ci
I

0: 00

o
o

ci

. 0

f ~

o
o
ci

I

0: 00

Figure C.7 continued .lJ.



414

o

oo
o
N

o
o

~

.~
s
:l
0.
S
oo

00 '0

ClUJ) lJ.

oo
00 .0'-00-.--00-.-01......0

CUI;» lJ.

o
o

00 ·0,.....1---0-0-4·0--0-0-·0-t.....- d

CUI;» u

oo
lit

o
r--_----=:;.-__..J.0

00 '0 00 '01. d



0 0
0 0

0
Experiment ~ Computation

!
0

W
0

0

! 0

d d
I::'"

0 0
0 0

ci 0

I ,
0.00 5.00 ltl• .OO 15.00 0: 00 5~ 00 10.00 15.00

t (sec. ) AIB = 9.63, HIA = 0.0229, Test Series C
t (sec. )

0 0 +:-
0 0 I-'
0 ~

VI

! ~~ 1\ f\ f\ I\ I\ I\ I\ f\ I\ I\ I ! ~
c-

~J
0
0

~o,DO 5: DO lb. DO di.oo 0: DO 5.00 10.00 15. DO
t (sec. ) AIB = 9.63, HIA = 0.027 5, Test Series C t (sec. )

Fi gure C .7 Wave elevat ions downst ream of the body: comparison of
experiment and theory; expe rimental plot is for probe no . 4 wh ile the

numerica l results are taken at a station at a dis tance of A downstream of the
body, measured from body 's CG loca tion .








	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Title Page
	0005_Dedication
	0006_Abstract
	0007_Abstract iv
	0008_Acknowledgements
	0009_Acknowledgements vi
	0010_Table of Contents
	0011_Table of Contents viii
	0012_Table of Contents ix
	0013_Table of Contents x
	0014_Table of Contents xi
	0015_List of Tables
	0016_List of Figures
	0017_List of Figures xiv
	0018_List of Figures xv
	0019_List of Figures xvi
	0020_List of Figures xvii
	0021_List of Figures xviii
	0022_List of Figures xix
	0023_List of Figures xx
	0024_List of Figures xxi
	0025_List of Figures xxii
	0026_Nomenclature
	0027_Nomenclature xxiv
	0028_Nomenclature xxv
	0029_Nomenclature xxvi
	0030_Chapter 1 - Page 1
	0031_Page 2
	0032_Page 3
	0033_Page 4
	0034_Page 5
	0035_Page 6
	0036_Page 7
	0037_Page 8
	0038_Page 9
	0039_Page 10
	0041_Page 12
	0042_Page 13
	0043_Page 14
	0044_Page 15
	0045_Page 16
	0046_Page 17
	0047_Page 18
	0048_Page 19
	0049_Page 20
	0050_Page 21
	0051_Page 22
	0052_Page 23
	0053_Page 24
	0054_Page 25
	0055_Page 26
	0056_Page 27
	0057_Page 28
	0058_Page 29
	0060_Page 31
	0061_Page 32
	0062_Page 33
	0063_Page 34
	0064_Page 35
	0066_Page 37
	0067_Page 38
	0068_Page 39
	0070_Page 41
	0071_Page 42
	0072_Page 43
	0073_Chapter 3 - Page 44
	0074_Page 45
	0075_Page 46
	0076_Page 47
	0077_Page 48
	0078_Page 49
	0079_Page 50
	0081_Page 52
	0082_Page 53
	0083_Page 54
	0084_Page 55
	0085_Page 56
	0086_Page 57
	0087_Page 58
	0088_Page 59
	0089_Page 60
	0090_Page 61
	0092_Page 63
	0093_Page 64
	0094_Page 65
	0095_Page 66
	0096_Page 67
	0097_Page 68
	0098_Page 69
	0099_Page 70
	0100_Chapter 4 - Page 71
	0101_Page 72
	0102_Page 73
	0103_Page 74
	0104_Page 75
	0105_Page 76
	0106_Page 77
	0107_Page 78
	0108_Page 79
	0109_Page 80
	0111_Page 82
	0112_Page 83
	0113_Page 84
	0115_Page 86
	0116_Page 87
	0117_Page 88
	0118_Page 89
	0120_Page 91
	0122_Page 93
	0123_Page 94
	0124_Page 95
	0125_Page 96
	0126_Page 97
	0127_Page 98
	0128_Page 99
	0129_Page 100
	0130_Page 101
	0131_Page 102
	0132_Page 103
	0133_Page 104
	0134_Page 105
	0135_Page 106
	0136_Page 107
	0137_Page 108
	0138_Page 109
	0139_Page 110
	0140_Page 111
	0141_Page 112
	0142_Page 113
	0143_Page 114
	0144_Page 115
	0145_Page 116
	0146_Page 117
	0147_Page 118
	0148_Page 119
	0149_Page 120
	0150_Page 121
	0151_Chapter 5 - Page 122
	0152_Page 123
	0153_Page 124
	0154_Page 125
	0155_Page 126
	0156_Page 127
	0157_Page 128
	0159_Page 130
	0160_Page 131
	0161_Page 132
	0163_Page 134
	0164_Page 135
	0165_Page 136
	0166_Page 137
	0167_Page 138
	0168_Page 139
	0169_Page 140
	0170_Page 141
	0171_Page 142
	0172_Page 143
	0173_Page 144
	0175_Page 146
	0177_Page 148
	0178_Page 149
	0180_Page 151
	0181_Page 152
	0182_Page 153
	0183_Chapter 6 - Page 154
	0184_Page 155
	0185_Page 156
	0186_Page 157
	0187_Page 158
	0190_Page 161
	0191_Page 162
	0192_Page 163
	0193_Page 164
	0194_Page 165
	0195_Page 166
	0196_Page 167
	0199_Page 170
	0200_Page 171
	0201_Page 172
	0202_Page 173
	0203_Page 174
	0204_Page 175
	0205_Page 176
	0206_Page 177
	0207_Page 178
	0208_Page 179
	0209_Page 180
	0210_Page 181
	0211_Page 182
	0212_Page 183
	0213_Page 184
	0214_Page 185
	0215_Page 186
	0216_Page 187
	0217_Page 188
	0218_Page 189
	0219_Page 190
	0220_Page 191
	0221_Page 192
	0222_Page 193
	0223_Page 194
	0224_Page 195
	0225_Page 196
	0226_Page 197
	0227_Page 198
	0228_Page 199
	0229_Page 200
	0230_Page 201
	0231_Page 202
	0232_Page 203
	0233_Page 204
	0234_Page 205
	0235_Page 206
	0236_Page 207
	0237_Page 208
	0238_Page 209
	0239_Page 210
	0240_Page 211
	0241_Chapter 7 - Page 212
	0242_Page 213
	0243_Page 214
	0244_Page 215
	0245_Page 216
	0246_Page 217
	0247_Page 218
	0248_Page 219
	0249_Page 220
	0250_Page 221
	0251_Page 222
	0252_Page 223
	0253_Page 224
	0254_Page 225
	0255_Page 226
	0256_Page 227
	0257_Page 228
	0258_Page 229
	0259_Page 230
	0260_Page 231
	0261_Page 232
	0262_Page 233
	0263_Page 234
	0264_Page 235
	0265_Page 236
	0266_Page 237
	0267_Page 238
	0268_Page 239
	0269_Page 240
	0270_Page 241
	0271_Page 242
	0272_Page 243
	0273_Page 244
	0274_Page 245
	0275_Page 246
	0276_Page 247
	0277_Page 248
	0278_Page 249
	0279_Chapter 8 - Page 250
	0280_Page 251
	0281_Page 252
	0282_Page 253
	0283_Page 254
	0284_Page 255
	0285_Page 256
	0286_Page 257
	0287_Page 258
	0288_Page 259
	0289_Page 260
	0290_Page 261
	0291_Page 262
	0292_Page 263
	0293_Page 264
	0294_Page 265
	0295_Page 266
	0296_Page 267
	0297_Page 268
	0298_Page 269
	0299_Page 270
	0300_Page 271
	0301_Page 272
	0302_Page 273
	0303_Page 274
	0304_Page 275
	0305_Page 276
	0306_Page 277
	0307_Page 278
	0308_Page 279
	0309_Page 280
	0310_Page 281
	0311_Page 282
	0312_Page 283
	0313_Page 284
	0314_Page 285
	0315_Page 286
	0316_Page 287
	0317_Page 288
	0318_Page 289
	0319_Page 290
	0320_Page 291
	0321_Page 292
	0322_Page 293
	0323_Page 294
	0324_Page 295
	0325_Page 296
	0326_Page 297
	0327_Page 298
	0328_Page 299
	0329_Page 300
	0330_Page 301
	0331_Page 302
	0332_Page 303
	0333_Page 304
	0334_Page 305
	0335_Page 306
	0336_Page 307
	0337_Page 308
	0338_Page 309
	0339_Page 310
	0340_Page 311
	0341_Page 312
	0342_Page 313
	0343_Page 314
	0344_Page 315
	0345_Page 316
	0346_Page 317
	0347_Page 318
	0348_Page 319
	0349_Page 320
	0350_Page 321
	0351_Page 322
	0352_Chapter 9 - Page 323
	0353_Page 324
	0354_Page 325
	0355_Page 326
	0356_Page 327
	0357_Page 328
	0358_Page 329
	0359_Page 330
	0360_Page 331
	0361_Page 332
	0362_Page 333
	0363_References
	0364_Page 335
	0365_Page 336
	0366_Page 337
	0367_Page 338
	0368_Page 339
	0369_Page 340
	0370_Page 341
	0371_Page 342
	0372_Page 343
	0373_Page 344
	0374_Page 345
	0375_Page 346
	0376_Page 347
	0377_Page 348
	0378_Page 349
	0379_Appendices
	0380_Appendix A
	0381_Page 352
	0382_Page 353
	0383_Page 354
	0384_Page 355
	0385_Page 356
	0386_Page 357
	0387_Appendix B
	0388_Page 359
	0389_Page 360
	0390_Page 361
	0391_Page 362
	0392_Page 363
	0393_Page 364
	0394_Page 365
	0395_Page 366
	0396_Page 367
	0397_Page 368
	0398_Page 369
	0399_Appendix C
	0400_Page 371
	0401_Page 372
	0402_Page 373
	0403_Page 374
	0404_Page 375
	0405_Page 376
	0406_Page 377
	0407_Page 378
	0408_Page 379
	0409_Page 380
	0410_Page 381
	0411_Page 382
	0412_Page 383
	0413_Page 384
	0414_Page 385
	0415_Page 386
	0416_Page 387
	0417_Page 388
	0418_Page 389
	0419_Page 390
	0420_Page 391
	0421_Page 392
	0422_Page 393
	0423_Page 394
	0424_Page 395
	0425_Page 396
	0426_Page 397
	0427_Page 398
	0428_Page 399
	0429_Page 400
	0430_Page 401
	0431_Page 402
	0432_Page 403
	0433_Page 404
	0434_Page 405
	0435_Page 406
	0436_Page 407
	0437_Page 408
	0438_Page 409
	0439_Page 410
	0440_Page 411
	0441_Page 412
	0442_Page 413
	0443_Page 414
	0444_Page 415
	0445_Blank Page
	0446_Inside Back Cover
	0447_Back Cover

