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Abstract

A numerical time-domain method is developed to simulate large-amplitude
motions of two-dimensional floating bodies in steep waves. The method em-
ploys an integral relation derived from Green’s second identity and a discretiza-

tion scheme of centrally located collocation points on linear boundary segments

for solution of the full non-li potential flow problem. Propagating unsteady

waves are simulated by imposing an Airy wave potential as a source of excitation

on a hypothetical vertical b dary of a lar fluid domain. Solutions of

linearized wave-propagation problems are in very good agreement with analyt-
ical solutions. For the non-linear problem, an Eulerian description of the free
surface is used in which vertical movements of the collocation points on the free
surface are followed. Smoothing schemes in space and time at the upstream
boundary, intermittent smoothing of the free surface and adaptation of a nu-
merical radiation condition permit modelling of very steep progressing waves
over 20 wave periods. Numerical experiments reveal insignificant degeneration
of the solution resulting from the embodied techniques. The effectiveness of the
method is further illustrated by its application to a study of steep waves inter-
acting with vertical walls. Comparison with experinllental and analytical results
demonstrates the capability of the method in accomplishing non-linear steady

state solutions with very good quality of agreement with experimental data.

In the study of behaviour of floating bodies in steep waves, numerical insta-
bility leads to failure of the simulation scheme unless special care is taken with
regard to the discretization and treatment of the coupled force-motion relation.
The motion of the body with respect to the free surface may result in large vari-

ations of the spatial grid sizes in the vicinity of the body and the free surface
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intersection, which results in destabilizing force effects through the computation
of the linear dynamic pressure term (d¢/dt). These difficulties are resolved by
means of an appropriate spatial regridding scheme, and by employing a central

diffe rule for p ion of the d¢/dt term at the corrector level of the

adopted Adams-Bashforth-Moulton rule in the time-integration scheme and by

utilizing explicit rules for integration of the equations of motion. A number of

comp ions simulating ions of a rectangular floating body in different sit-

uations provides evidence of the efficacy of the algorithm. The presented results
contain large roll and heave motions as well as drifting behaviour of a completely

unrestrained body.

A complementary experimental study is also described, in which a rectangu-
lar body of rounded-off corners restricted from swaying was subjected to wave
excitations inside a channel. Comparison of experimental and computational
results shows in general very good agreement over the entire range of the tested
conditions, inclusive of resonant behaviour in heave and moderately large roll
motions. For this latter behaviour, accounting for viscous effects by means of a

semi-empirical procedure improves the correlation significantly.

(
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1 Introduction
1.1 General

Interaction of floating bodies with water waves has been a prominent and active
area of research since last century when notable contributions on the subject were
made by J.H.Michell and Sir William Thompson (Lord Kelvin). Subsequently,
considerable advancements of primarily analytical nature were made during the

first half of this century. In this early period, works were mainly concerned with

understanding of the behaviour of displ t-type ships. C to the
mathematical undertone of hydrodynamics as well as the areas of applications,
most workers of that period belonged to the group of applied mathematicians
and ship-hydrodynamicists. From about middle of the century, a progressive
change in this general picture can be observed. The field of application widened
considerably due to emergence of the parallel discipline of Ocean Engineering. A
variety of offshore structures of different sizes and geometries arose to append to
the list of floating bodies. The simultaneous development of the power of com-
puting machines opened avenues for newc‘:r methods of analyses. Consequential
increase in the number of workers was complement;.ry. Recently, international
workshops devoted entirely to the behaviour of floating bodies in water waves
have been initiated on an annual basis (Evans and Newman 1987)!, which serves
to indicate the growth of research activities in this field. Despite a substantial
body of accumulated knowledge, a number of important and interesting prob-
lems await satisfactory resolutions. One such problem is that of large motions

of floating bodies in steep waves.

refer to the

!Name and/or year included in the
ences’ at the end of the text

listed under ‘Refer-



The present dissertation is directed towards the development of a method
that predicts extreme motions of floating bodies in steep waves. The practi-
cal implications of such predictions need no elaboration. Suffice it to say that
knowledge of extreme behaviours constitutes an essential foundation for efficient

and safe design tasks.

The following section provides a review of the present state of understand-
ing of the subject (i.e. motions of floating bodies in waves). The discussion
is directed towards development of computational tools for general studies of
bodies in waves, in contrast to application of established techniques (e.g. well
known linear solutions) in studies of the motion responses of continually emerg-
ing newer geometries. The scope, objective, and the nature of the present task
are outlined in the section that follows, with the view that a better perspective
of the work to be presented can be attained. This section also includes brief

descriptions of the rest of the text.

1.2 Previous Work

1.2.1 Background

For most engineering purposes, the Navier-Stokes equations can be regarded
as the fundamental relations governing fluid motions that adequately describe
flow surrounding marine structures (Batchelor 1967). Neglect of viscous effects
usually leads to potential flow (ideal fluid) formulations. For a number of hy-
drodynamic problems, including studies of wave forces and motions of ships and
offshore structures, the importance of potential flow theories is universally rec-

ognized. A large body of analytical, numerical and experimental investigations



would support that treatment of water as an ideal fluid indeed yields fruitful
results for many situations of practical interest. Although a growing litera-
ture currently exists addressing solution of Navier-Stokes equations at a variety
of levels (see Aref 1986), applications of such methods, or methods based on
Lagrangian vortex schemes, to studies concerning wave-body interactions ap-
pear to be a subject of further research (see e.g. Nichols and Hirt 1973, 1975,
1977; Miyata, Kajitani, Zhu and Kawano 1986; Stansby and Dixon 1983). For
circumstances where viscous effects become significant, a practical means for
incorporating such effects, at present, is through semi-empirical formulations.
A classical example of this is provided by the Morison’s formula (Morison et al.
1950) which in its original and modified forms continues to be a popular and
practical means for considering viscous effects in computation of wave forces on
certain ‘slender’ structural members (Faltinsen 1985, Pawlowski 1987). Among
other situations where fluid viscosity require attention, a relevant example is
provided by large roll motions of ships, and these effects are usually considered
via semi-empirical relations appropriately guided by experimental data (Himeno
1981). For studies of body motions in waves, a general solution approach with
the use of Navier-Stokes equations appears to be ttoo difficult at present. In
view of these remarks, the discussion that follows is confined to studies based

on potential theory formulations?.

Two classes of hydrodynamic problems are generally recognized in studies
of marine structures interacting with water: diffraction and radiation problems.
The former is concerned with an object held fixed in an incident wave train

while in the latter the object is forced to oscillate in an otherwise quiescent

2In the regime of direct numerical methods (§1.2.2.2 below), however, some of the cited works
based on finite-difference algorithms consider solution of Navier-Stokes equations



fluid. Analyses for motions of floating bodies excited by oncoming waves encom-
pass both these problems. Upon approximation of smallness in wave steepness
and in body motions, the familiar linearized problems emerge. In the realm of
linearized potential theory, established relations (e.g. Haskind’s relation) exist
interconnecting the radiation and diffraction problems. Therefore solution meth-
ods for radiation problems generally suffice in studies of body motions in waves
(for the linearized problems). More elaborate descriptions of theoretical devel-
opments including expressions for quantities of practical interest (e.g. forces
and motions) are well documented in texts of Wehausen and Laitone (1960) and

Newman (1980).

Analyses of the above linearized problems are usually performed in frequency
domain. Over the past three decades or so, a multitude of computational meth-

ods have evolved for such studies. A prehensive review outlining fund

tals of various methods can be found in Mei (1978). Amongst these, methods
founded upon integral relation formulations have a relatively enriched back-
ground in hydrodynamic applications, in contrast to, for example, the methods
of finite elements known for their phenomenal success in structural dynamics
problems (Zienkiewicz 1979). Integral relations ca.n!- themselves be formed in a
variety of ways: distribution of monopoles, dipoles, mixed distributions, multi-
poles, etc. (see e.g. Burton and Miller 1971; Takagi et al. 1983). For the linear
hydrodynamic problems in context, popularity of techniques that employ singu-
larity distributions is evident from their widespread applications. These numer-
ical models, often referred to as ‘panel’ methods, necessarily proceed by repre-
senting the immersed body boundary by an ensemble of appropriately arranged

surface ‘panels’ over which singularities are distributed in some prescribed man-



ner. The development of these techniques is believed to have followed from their
successful implementation in analogous aerodynamic studies (Hess and Smith
1964, 1967), although an inquisitive search reveals inception of similar ideas in
von Karman’s works in 1927 (Baddour and Pawlowski 1985). The relative de-
lay in progress for parallel applications in free surface hydrodynamics is usually
attributed to the complicated form of the associated Green’s functions. Numer-
ical schemes based on these functions started being realized since the beginning
of the past decade (Faltinsen and Michelsen 1974; Garrison and Seetharama
Rao 1971; Garrison 1974, 1975). At present, a substantial amount of literature
exists addressing various aspects of the available methods. For a comprehen-
sive review, the texts by Sarpakaya and Isaacson (1979) and Mei (1983) can

be consulted. Computational models evaluating forces and motion responses of

bodies of arbitrary three-dir ional ies in li ized harmonic poten-

tial flow field are regarded to be sufficiently well established at present. Indeed,

several computer codes are currently available for such predicti and stud-

ies have been initiated for assessing relative merits of these codes (Takagi et
al. 1985; Eatock-Taylor and Jefferys 1986). Recent developments are primar-
ily towards improvements in computational efficiencies. For example, in panel
based methods, efforts are towards faster numerical evaluation of the associated

Green’s functions (Noblesse 1982; Newman 1984, 1985b, 1985c¢; Telste and No-

blesse 1986; Endo 1987), or refi ts in the di ization procedure leading
to higher order panel methods (Breit, Newman and Sclavounos 1985), or at a
more fundamental level, development of alternative integral relation representa-
tions possessing superior features (Kleinman 1982; Angell, Hsiao and Kleinman

1986).



Application of time domain analyses in this connection is relatively scarce
since for the linearized problems frequency domain analyses usually satisfy prac-
tical needs. These modes of analyses appear more suitable for studies of transient
responses. Two related problems can be identified in this context: (i) an initial
displacement or velocity is imposed on a body, and the ensuing motion of the
body is to be determined; (ii) fluid motion is initiated by an impulse provided by
the body which is then held fixed, and the subsequent motion of the fluid is to be
followed. Theoretical backgrounds on solution methods for these can be found
in e.g. Finkelstein (1957), Wehausen (1967, 1971) and Ursell (1964). Compu-
tational studies include Adachi and Ohmatsu (1980), Yeung (1981), Newman
(1985a), Lee (1985), Beck and Liapis (1987), etc. Recently there is an indica-
tion that time domain analyses may prove competitive in radiation-diffraction
studies in that the associated computational burdens may be smaller in compar-
ison with analogous frequency domain studies, specially for bodies that demand

a large number of panels (Newman 1985a, Korsemeyer 1987).

A logical extension of the above linearized solutions is to relax, to some

degree, the underlying assumptions of the smallness of motions and wave steep-

i

ness. Research towards non-li analyses i ly follows. In addition
to the theoretician’s interest in developing general solutions for these classes of
non-linear problems as exactly as possible, practical importance of such exten-
sions cannot be ignored. Indeed, several phenomena, e.g. mean drift forces and
slow drift oscillations are now recognized to have considerable practical impli-
cations, which are not describable through a linearized analyses even to a first

approximation (Ogilvie 1983). Other examples of importance include extreme

motions of floating bodies in steep waves and impact slamming, both of which



may have catastrophic consequences. Recent analytical and experimental work

of Longuet-Higgins (1986) have shown that capsizing of a floating object can

Ticati

occur on passage of a single steep wave. Ap of linear methods in such

situations yields results of questionable accuracy. Clearly, the fundamental as-

sumptions of the smallness of i and wave are violated to a

hanat:

large degree. Motivation towards li analyses is e well founded

1.2.2 Non-linear Body-Wave Problems

The subject of water waves, with more than 150 years of history behind, is not
simple. An exact analytical description of the propagation of surface gravity
waves still remains a formidably difficult task. Several texts, e.g. Stoker (1966)
serve to illustrate the mathematical difficulties involved in solutions of non-linear

free surface motions even when additi

1 justifiable approxi ions are made.

The lexity sub ially pounds with the introduction of a body into
the wave field. It is instructive to remark here that surface waves and free
surface motions are intimately related. The definition provided by Wehausen
and Laitone (1960) which states that any motion of a fluid with a free surface
in a gravitational force field can be called a wave‘ motion is presumed to be

understood for the following discussion.

Major difficulties in non-linear free surface problems arise due to the highly
non-linear free surface conditions (eqns. (2.2) and (2.3) in §2). The domain

of interest is bounded by a inually changing unknown g try (the free

surface) upon which the condition of constant pressure is applicable. Additional

non-linearities are posed by the body kinematic condition (eqn. (2.5) in §2)



which is to be met on the instantaneous body surface. Once again, the location
of the body at any instant presupposes a knowledge of its motion — an unknown
sought for in the solution. For problems in unbounded fluid domains, imposition
of radiation conditions (or its equivalent) is a source of further difficulties. For
non-linear problems, such conditions are either not known or are available in

forms that are difficult to apply (see Yeung 1982).

Without loss of generality, two broad divisions can be made with regard to
general solution methods for the body-wave problems under discussion: methods
based on perturbation solutions and direct numerical methods. It is recognized
that methods whose ultimate objective is to enable a quantitative evaluation of
the flow field and body responses, resort to numerical techniques at some level
is almost inevitable. The confusion in classification however disappears when
the division is meant to focus on the manner in which the governing equations

are tackled.
1.2.2.1 Methods of Perturbation Solutions

Solution methods constructed on systematic expansions, or matched asymp-
totic expansions, have an extensive background. The principles behind perturbation-
type solution techniques are relatively well known. For a treatment of such
methods in fluid dynamics problems, readers may refer to van Dyke (1964).
These techniques provide a recognized approach to consider non-linearities of
a system in a successive manner and are commonly employed in frequency do-
main analyses. In connection to wave theories, classical examples are provided
by Stokes higher order wave theories and shallow water non-linear theories, both

of which have undergone extensive sophistication and refinements in the recent



past. Analytical expansions for Stokian, cnoidal and solitary waves beyond the
limit at which theories become inapplicable are currently available, e.g. Schwartz
1974, Fenton 1972, 1979 (see also the recent reviews by Miles 1980 and Schwartz
and Fenton 1982). In contrast, parallel developments for body-wave interactions
have been less rapid. As already noted, introduction of a body into the fluid
raises the level of difficulty considerably. A number of second order terms emerge
upon appropriate expansions, some of which arise essentially from linear wave
effects. For example, Pinkster has identified upto five second order terms in
connection to studies of bodies responding in an irregular seaway, the sea being
essentially composed of small amplitude waves (Pinkster 1976, 1979). A theo-

retically rigorous solution method requires inclusion of all second order effects

for i y in approxi i Confronted with the difficulty in incorporat-
ing all higher order terms in the solution while recognizing the importance of
some of the second order terms, researchers often develop models that consider
specific non-linear effects in an effort to partially account for non-linearities in

the system.

Non-linear diffraction solutions for the fundamental case of a bottom mounted
circular cylinder have received much attention froth Ocean Engineers. Exten-
sions of the linear diffraction solution of MacCamy and Fuchs (1954) upto sec-
ond order in a Stokian wave field are considered by Chakrabarti (1972, 1975),
Raman et al. (1976, 1977), Molin (1979), Hunt and Baddour (1981), Garri-
son (1984a), among others. Garrison’s solution aims at the complete three-
dimensional radiation-diffraction problem. Analogous studies in cnoidal and
solitary waves are reported in Isaacson (1977, 1983a). Literature indicates con-

troversies over theoretical validities and merits of the various solutions. Al-
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though the underlying basic principles are similar, solutions differ in details and
lead to quantitatively inconsistent results. For more on this, interested readers
may refer to the reviews by Standing (1984) and Garrison (1984b), or consult
the text by Chakrabarti (1987).

A lucid exposition on fluids interacting with fixed offshore structures is pro-
vided by Lighthill (1979), succeeded by a later publication (Lighthill 1986).
Starting from fundamental principles of fluid behaviour, the author derives ex-
pressions for various components of fluid forces. In the context of non-linear
forces, some of his cautionary notes are worth mentioning here. Incorporation
of second order effects requires careful evaluation of the terms involved, and
consistency in expansions has important implications in this regard. In partic-
ular, the school of thought in which higher order wave theories are employed
in considering the incident wave field while a consistent order of expansion is
not accounted for in the diffraction effects is remarked to be not logically satis-
factory. Without properly (quantitatively) assessing the relative importance of
the second order effects, inclusion and/or omission of specific higher order terms
in the solution may lead to estimates of rather unclear accuracies. Experimen-
tal evaluation of the specific second order effects is genera.lly not a simple task

due to problems in sef

them. Additionally, relative smallness of their

magnitudes makes accurate measurements difficult.

Subseq to the publication of Lighthill’s (1979) work, a number of stud-

ies appeared in literature reporting on 1 thods to calculat

some or all of the non-linear effects (Debnath and Rahman 1981; Rahman and
Chakravartty 1981; Rahman 1984; Sabuncu and Goren 1985). In the process,

more generalizations of some of the terms are also reported (Demirbilek and
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in ideri 1i. d ic fig: i Additionally, a direct nu-

merical approach is often indispensible for many problems of practical interest

due to lack of appropriate analytical (closed-form) soluti Depending on the
manner in which the basic equations are treated, three broad classifications can
be made: methods of finite differences, finite elements and integral equations.
Nevertheless, more outstanding methods are continuously emerging which ex-
ploit specific merits of each. An informative account of methods that have been
developed or applied to problems which have the free surface as a boundary can
be found in Yeung (1982), with an extensive list of references therein. Details
with regard to convergence, stability, accuracy etc. are important attributes to
the ultimate success of the specific models or their particular implementations.
Many of these methods are developed for general fluid dynamics problems to
which study of body-free surface interactions is one of the possible applications.

At present, the literature on computational fluid dynamics is enormous. To keep

the following di ion in perspective, it will be limited to those studies which

have direct relevance to the non-linear body-wave problems.

A forerunner of the methods which consider a body in a wave field is clearly
the numerical studies on steep waves themselves. I‘n particular, these studies
aid in establishing numerical treatment of the highly non-linear free surface
conditions. Substantial progress has been made in studies of waves that are
steady in a time frame, complementary to the parallel progress in perturbation

based models. Beginning with Dean’s numerical treatment of the free surface

conditions (Dean 1965), develop reported in Ri ker and Fenton (1981)

and Fenton and Rienecker (1982) are now believed to be more than adequate in

precision and versatility for engi ing tions (I 1985).
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Studies for unsteady waves pose further problems in that the time depen-
dence can not be removed from the basic method of solution. Initial-value
formulations offer attractive means of solutions for problems of this class. The
generalized finite-difference methods for fluid flows, viz. MAC (Marker and Cell)
type algorithms (see e.g. Welch et al. 1966) in their successively refined and
sophisticated versions have been applied for simulation of a variety of unsteady
waves (e.g. Chan and Street 1970, Chan 1975; Yen, Lee and Akai 1977). Other
similar studies include von Kerczek and Salvesen (1974) and Salvesen and von
Kerczek (1976). Finite element methods have also been applied for such studies
(see e.g. Betts and Asaat 1981; Wellford and Ganaba 1981; Toro and Caroll
1984; Toro 1986, Katopodes and Wu 1987).

The most successful studies of unsteady steep waves are perhaps those that
employ an integral relation formulation. These methods of simulation have

been pioneered by Longuet-Higgins and Cokelet (1976). Elegant in its simplic-

ity, their method delled the propagation of teady steep waves, and sub-
sequently wave breaking was simulated. Complementary studies following the
same line of approach appeared subsequently. Three different techniques in the
formulation of the basic integral relation have so £t been applied: application
of Cauchy’s integral theorem (Vinje and co-workers 1981, 1982); distribution
of dipoles or vortices (Baker, Meiron and Orszag 1981, 1982); and application
of Green’s second identity (New, Mclver and Peregrine 1985). These formu-
lations have implications with regard to the efficiency of the algorithms and
other subtle computational differences. For example, the vortex method yields
a Fredholm’s integral equation of the second type for the unknowns, which has

superior features with respect to numerical solutions of the resulting system of
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linear equations. On the other hand, the formulation based on Green’s second

-

identity can in principle be extended to three and such ex

are not available through the formulation based on Cauchy’s integral theorem.
The simulation of highly non-linear, steep breaking waves appears possible at
present. Nevertheless, investigations continue to be reported, either demon-
strating use of other techniques, or improving efficiency, or making them more

amenable to specific applications (Alleney 1981; Kobayashi, Otta and Roy 1987;
Lu, Wang and Le Mehaute 1987).

Numerical studies when a body is introduced beneath or piercing the free
surface, following the use of finite-difference algorithms, e.g. modified versions
of MAC type algorithms, can be found in several studies (Nichols and Hirt
1973, 1975, 1977; Chan and Hirt 1974). Such finite-difference algorithms have
been applied for simulating flow around forward-moving ships in two- and three-
dimensions (Ohring and Telste 1977; Chan 1977; Chan and Chan 1980). Though
a relatively larger number of studies can be found in connection with ship-
maneuvering and wave-resistance problems via analogous (but sufficiently modi-
fied) finite-difference techniques (e.g. Bourianoff and Penumalli 1977; Bourianoff
1981; Miyata and Nishimura 1985; Miyata, Nishimdra and Kajitani 1985; Miy-
ata, Nishimura and Masuko 1985; Chamberlain and Yen 1985), comparatively

smaller number of studies have been pted for the simulation of i of

freely floating bodies, specially the non-linear ones. Some recent works in this
category include Telste (1985), and Wu and Yeung (1987), both of which deal
with non-linear forced oscillation problems in two dimensions. Methods of finite

elements have apparently not been applied for similar non-linear studies.

Most recent works concerning motions of freely floating bodies have fol-



15

lowed from the integral equation approach, combined with time stepping of the
non-linear free surface conditions, originally employed by Longuet-Higgins and
Cokelet (1976) in studies of steep waves as already discussed. Faltinsen (1977)
considered forced heave motions of a two-dimensional circular cylinder as well as
a related problem of sloshing (Faltinsen 1978). Vinje and co-workers extended
their earlier works on breaking wave simulation (Vinje and Brevig 1981a) to
include submerged and surface-piercing bodies in the fluid (Vinje and Brevig
1981b; Brevig et al. 1982), and next attempted the problem of motions of float-
ing bodies (Vinje and Brevig 1981c; Vinje, Xie and Brevig 1982). Subsequently
the simulation of a capsizing of Salter’s duck, an ocean energy extracting device,
was reported (Greenhow et al. 1982). For this latter study, experimental results
supplemented the numerical simulation. Following in large parts the techniques
of Vinje and co-workers with an important modification in consideration of the
body-free surface intersection point (discussed later, §1.2.2.2 (b)), Lin (1984)
simulated two-dimensional waves generated by a wave maker in a finite rect-
angular tank. This study was succeeded by an extension to consider forced
oscillation of axi-symmetric three-dimensional cylinders (Lin, Newman and Yue
1984). Subsequently, Dommermuth and Yue (1986b, 1987) reconsidered the
three-dimensional axi-symmetric problem and were able to simulate large am-
plitude forced heave oscillation of cylinders and inverted cones in an otherwise
undisturbed free surface. Greenhow and co-workers also employed the approach
of Vinje and colleagues and applied the method for studying the two-dimensional
impact problem (Greenhow and Lin 1985; Greenhow 1987, 1988). In the pro-
cess, specific improvements and developments of the algorithm were made to

make it suitable for the particular application. Isaacson (1982, 1983b) reported
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on a similar method for studying the generalized two- and three-dimensional
fixed and floating body problems, although lack of computed results leaves his

method rather unconvincing.

Another line of ‘intermediate’ approach, in which the exact body kinematic
conditions are satisfied at the instantaneous location of the body surface, but the
free surface conditions are linearized, has been proposed by Chapman (1979),
and followed by Kim and Hwang (1986). These approaches, although compu-
tationally efficient, are restricted to their applications to problems where the
generated free surface elevations are small, and thus preclude consideration of

steep incident waves.

Prior to the development of any reliable algorithm for the complete problem
of motions of floating bodies, some specific problems remain to be resolved.
In particular, an appropriate numerical closure method, numerical treatment of
the contact point between the body and the free surface, and numerical stability
of the solution on the free surface, have received considerable attention in the
literature just cited, most of which appeared in this decade, some within past
three years. In view of the emphasis on details in recent research activities as

i
well as their ion to the work p d in this dissertation, discussion at

this point is directed to these specifics.

(a) Non-reflective Exterior Boundaries

For exterior free surface probl , a satisfactory treat: of the exterior

boundaries is essential. Earlier analogous studies in which exterior boundaries

are replaced by walls (e.g. Chan and Street 1970) result in a prohibitively
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large interior domain and are clearly undesirable for long time simulations. If
the physical problem under consideration is assumed to possess spatial peri-
odicity, this difficulty is easily resolved by exploiting the relatively well known
periodicity boundary conditions. The interior domain can be folded onto itself
and the exterior boundaries simply disappear from the numerical treatment.
This assumption was justified and used in the breaking wave simulations by
Longuet-Higgins and Cokelet (1976), and still remains popular for analogous
wave problems (e.g. Schultz et al. 1986; Calisal and Chan 1987). Presence of
an isolated body in the fluid however raises serious concerns regarding validity
of such periodicity conditions. Nevertheless, in earlier works that introduced a
body in the fluid, similar assumptions were retained (Vinje and Brevig 1981b,

1981c¢; Greenhow et al. 1982).

In Faltinsen’s (1977) method, the exterior radiated waves are matched with

the non-linear inner solution by means of a simple Rankine dipole at the body’s

o

centre. This pr restricts the application of the method from simulations

extending over any reasonable length of time (i.e. several periods of oscilla-
tions), and was noted to be not satisfactory by the author. Isaacson’s (1982,
1983b) assumption of no radiated and diffracted waive effects at the truncation
boundaries is even more restrictive in that motions for only a fraction of a pe-
riod is achievable. To remove the periodicity assumption, in their later work,

Vinje et al. (1982) attempted to match the non-linear inner solution with a

linear outer solution in their two-di ional formulation, but ed con-

siderable difficulties. Following similar ideas, however, Dommermuth and Yue
(1987) were able to implement a matching across the fictitious outer (exterior)

boundaries and were able to continue simulations for sufficiently long periods
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in their three-di ional axi-sy

p i (for example, about 10
period of steady state solutions of the interior fluid motion generated by forced
heave oscillations of cylinders could be achieved). Such a matching is permis-
sible in three dimensions, since the radiated waves attenuate inversely with the
radial distance and are therefore expected to be of small amplitude at sufficiently
large distances from the body where the exterior boundaries can be placed. In
two dimensions, a similar closure is not tenable because the non-linearities of
the outgoing waves persist in the entire exterior domain. In linearized formula-
tions of the interior domain, an analogous matching with the outer solution is
perfectly admissible and has been implemented earlier in a variety of two- and
three-dimensional free surface problems, both in frequency and time domain
analyses (see e.g. Ijima and Yoshida 1976; Finnigan and Yamamoto 1979; Lee
1985; Liu and Ligget 1979).

The importance of impl, ing a proper radiation boundary condition for

propagation of non-linear waves in unbounded domains is well documented in
literature. Requirements for equivalent conditions occur in variety of other ar-
eas such as acoustics and meteorology. A number of procedures have been
suggested: approximate ‘absorbing’ type conditions [(Isra‘eli and Orszag 1981);

use of ‘sponge’ or ‘viscous’ layers (Chan 1975); methods derived from the well

known S feld’s radiati dition (S feld 1949), also known in the

form of Orlanski’s radiation condition (Orlanski 1976), etc. It is generally recog-
nized that in absence of analytically ‘perfect’ conditions, many of the efforts are

to construct ‘workable’ conditions, specially in the context to their numerical

1 tats

Similar p i (see e.g. Jensen 1987).
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(b) Body-Free Surface Intersection Point

A confluence of boundary conditions exists at the intersection of the body
and the free surface which in turn leads to numerical difficulties. Analytically
this is characterized by the presence of a weak type of singularity. For a vertical
translating wall, a logarithmic type of singularity in the velocity potential for
that point was known from linear analysis (Kravtchenko 1954). Existence of

an analogous singularity in three di ions was sub ly identified (Miloh

1980). A perturbation solution predicts a logarithmic singularity for the free
surface elevation (n) at the intersection of an impulsively started horizontally
moving impermeable surface in water of depth d (as derived by D.H.Peregrine
in an unpublished note and reported in several references, e.g. Lin, Newman

and Yue 1984; Greenhow and Lin 1985):

Lo
i ™

(1.1)

In [mh(ﬁ)] +0(#2)

where U denotes the start up (impulsive) velocity of the surface,  measures the
horizontal distance from the intersection and ¢ denotes time. This behaviour has

been experimentally validated by Greenhow and Lin (1983) and is believed to be

confirmed (see e.g. Evans and N 1987). Comp ionally the singularity

poses difficulties in the numerical method and may ruin the time domain simula-
tion scheme unless special care is taken. In earlier works of Vinje and colleagues,
the intersection was treated by specifying the body kinematic condition without
prescribing the free surface potential, which was determined via extrapolation
(Vinje and Brevig 1981c). As the authors note in their subsequent works, this
procedure was not entirely satisfactory, and experimental data had to be used to

fix the location of this point before acceptable results could be produced (Green-
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how et al. 1982). An extensive treatment of this region was considered later by
Lin (1984), and he was able to remove the associated difficulties, in a numerical
sense, by prescribing both the free surface and body kinematic conditions. Here
it is worth noting that a similar idea was followed by Ligget (1977) in an earlier
work, where two points were considered very close to the intersection point, one
on each part of the boundary, with respective boundary conditions prescribed
on them. Lin’s approach, although strictly finite due to numerical discretiza-
tions, predicted the analytic singularity very closely. Such a numerical treatment
was noted to be very encouraging, and further experimental confirmations were
reported (Dommermuth and Yue 1986a). A similar idea was generalized and ex-

tended for the three-dimensional axi-symmetric problem in Dommermuth and

Yue(1987), where the authors provided ical evidence of satisfactory treat-
ment of the intersection point (for example, the locus of the intersection point
for the forced heave oscillation of an inverted cone). Refinements following es-
sentially similar treatments for the specific application to impacting bodies were

subsequently considered by Greenhow (1987, 1988).

It must be noticed that the above treatment is purely numerical, and is more
concentrated on removing the associated numerical Aifﬁcmties than on resolving
the flow in the immediate vicinity of the intersection in detail. Attempts for
analytical solutions have not been completely successful and inclusion of sur-
face tension or viscosity has not improved the situation (Lin 1984), but similar
attempts continue (Cointe, Jami and Molin 1987). Recently, Roberts (1987)
investigated the analytic nature of the transient unsteady flow near the contact
point between a vertical plate and the free surface. His solution, however, does

not appear to be easy to incorporate in the framework of numerical schemes.
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More information about this contact point has come from the numerical works of
‘Wu and Yeung (1987) in connection to their studies on two-dimensional forced
heave oscillations by finite-difference algorithms. It appears that the singular
behaviour of the potential is closely related to the local body geometry and its
mode of motion. For wall shaped bodies in heave, no singularity was observed
by them, while in sway mode (analogous to the translating wall case), the log-
arithmic singularity was reconfirmed. For the general case of a body free to
heave, sway and roll, the singular behaviour is therefore inevitable, regardless

of the body geometry.

An observation of important consequences is appropriate here. Numerical
experiments of Lin (1984) and Lin, Newman and Yue (1984) indicate that the
local behaviour of flow in the immediate neighbourhood of the intersection has
an insignificant effect on the rest of the fluid. The physical characteristics (e.g.
velocities, pressures) of the fluid slightly away from the intersection point ap-
parently remain uninfluenced even for a relatively cruder resolution of the flow
at that point. Further corroborative numerical evidence was reported by Green-
how and Lin (1985) and Greenhow (1987; 1988) where the pressures and forces
on impacting cylinders were found to be prm:ticall; unaffected by such cruder
resolutions. Therefore, although a scientific curiosity exists to examine in detail
the analytical behaviour of the flow associated with such singularities, from the
point of view of studying global responses of the body (i.e. forces and motions),

a satisfactory numerical treatment appears sufficient.
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(¢) Numerical Stability

Numerical stability considerations are critical enough to determine success
of any computational scheme, specially those for time domain simulations. In
the original works of Longuet-Higgins and Cokelet (1976), a ‘sawtooth’ instabil-
ity of the free surface was encountered, which was subsequently suppressed by
means of an artificial smoothing procedure. Later studies on steep wave simula-
tions have also reportedly suffered from similar instabilities. Characteristically
this instability appears in the form of oscillations of the free surface elevations
and potentials between adjacent nodal points, analogous to physical presence
of high frequency short length waves. In the earlier works, the inception and
growth of these undesired oscillations were thought to be physical in origin, but
later numerical studies strongly suggested their origin to be of purely numeri-
cal nature, specially since they always appeared between adjacent nodes with
frequencies determined by the temporal grid size (see e.g. Dommermuth and
Yue 1987). Their initiation is however not yet clearly understood, but they are
believed to be strongly dependent on the subtle numerical details of particu-
lar methods. For example, no such instability was noticed in the method of
Vinje and co-workers (1981, 1982) based on Caucl:y‘s integral theorem. How-
ever, using essentially similar integral relations, Baker et al. (1981, 1982) and
Lin et al. (1984) encountered instabilities and had to apply artificial smoothing
in order to advance their solution in time without breakdown. The instabil-
ity was found less pronounced when using a dipole distribution in contrast to
vortex methods (Baker et al. 1982). The problem appears to be closely linked
to the local steepness of free surface elevations. The solutions exhibit stronger

instabilities for larger gradients in elevations. Works have since then appeared
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addressing similar instability problems. Roberts (1983) investigated the prob-
lem using a Fourier spectral analyses and reported a modified scheme that was
found free from the instability. Dold and Peregrine (1986) employed special
integration techniques for the free surface conditions, improving on accuracy
in time integrations as well as reducing the instability considerably. Although
without complete elimination, they were able to keep the instability controlled
by a careful selection (reduction) of the time step size without having to re-
sort to any artificial smoothing. More recently, Dommermuth and Yue (1987)
reported on complete elimination of this problem by employing modified time
integration schemes (somewhat analogous to that of Dold and Peregrine 1986)
and regridding the free surface at every time step. The authors suggested that
the violation of local Courant condition is attributable to the initiation of this
instability. Since in all of the studies mentioned here, physical fluid particles
on the free surface are followed in time (fully Lagrangian description of the free
surface), the nodal points tend to concentrate in regions of large changes in lo-
cal elevations (e.g. near the crest, see Longuet Higgins and Cokelet 1976) which
inevitably results in a violation of the local Courant condition. Such cluster-
ing of particles however has the beneficial feature'in that they provide better

resolutions at regions of maximum interest.

Active current research towards improvements in stability characteristics can
be identified in the works of Schultz et al. (1986) and Han and Stansby (1987). In
particular, the former authors reported on improvements obtained by employing
least square solution techniques for the‘ftee surface. It appears that, although
different solutions suffer from it at varying degrees, some not exhibiting any

detectable growth, the problem of instability has not been completely eradicated.
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It should be noticed that regridding schemes also introduce artificial smoothing
effects in an indirect way (see e.g. Moore 1981) as Dommermuth and Yue (1987)

also note in their work.

1.2.3 Summarizing Remarks

The following general remarks summarize and conclude the above discussion:

(i) Approaches based on perturbation methods are noted for their suitabil-
ity in frequency domain analyses. A general perturbation solution method for
motions of floating bodies in non-linear waves, which encompasses a number
of subproblems including the usual non-linear diffraction and radiation prob-
lems, appears to be very complicated frgm a theoretical standpoint. At present,
research is still being reported addressing some of the pertinent individual sub-
problems. These techniques are particularly useful for predicting some ‘mild’
non-linear phenomena in body responses (Pawlowski 1987). However, for pre-
diction of strongly non-linear responses such as that of extreme motions, these
modes of analyses are impeded by their restricted applicability (see e.g. Pa-
panikolaou and Nowacki 1980). (

(ii) In contrast, direct numerical methods appear to be more promising in
studies of steep waves and extreme body motions. Most recent research indi-
cates this direction, and activities in this regard have come mainly from meth-
ods based on integral relations. Suitability of finite-difference or finite element
methods can not be firmly assessed due to a comparatively smaller number of
reported studies. Although substantial progress has been made in general finite

difference based algorithms, specially in developments of ‘boundary fitted’ coor-
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dinate systems removing the earlier restrictions attached with irregular (curved)
body geometries and surfaces (see e.g. Haussling and Coleman 1977, 1979), rela-

tively limited applications in studies of extreme motions in steep waves indicate

possibilities of algorithmic lications in these method

(iii) Satisfactory treatment of a number of component problems becomes de-

cisive for the ultimate success of a model. In particular, problems with regard to

the body and free surface int n points, ical stability consid

and a satisfactory treatment of exterior boundaries are identified to require spe-
cial attention. Although very recent research has thrown light on these aspects
of numerical modelling and computations have been performed simulating non-
linear free surface motions in the presence of fixed or moving objects, numerical
simulations of motions of freely floating bodies in steep waves, the so called ‘nu-
merical wave tank’ studies for floating bodies, have not yet been reported. It
would appear that this ‘complete’ simulation awaits resolutions of some further

numerical difficulties.

1.3 Scope and Objective
1.3.1 Objective

The work presented in this dissertation is aimed towards development of a nu-
merical method for studies of the behaviour of floating bodies in steep incident
wave fields. The discussion in the preceding section is hoped to have provided
an overview of the present level of developments to this particular problem.
The rationale behind the choice of a direct numerical method rather than a

perturbation approach for the present modus operandi is apparent as well.
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Within the framework of direct numerical methods, two interrelated but

slightly different directions in which this task could proceed can be identified :

1. a detailed and rigorous study of some of the specific features that consti-
tute the complete simulation model, in order that a stronger foundations of
contributory components can be established (e.g. a more thorough study,
perhaps of analytical nature, on the behaviour of the body-free surface
contact point; attempts towards general solution algorithms for some sim-
pler free surface flow problems possessing superior stability characteristics,

etc.)

2. devel of a full simulation model by using appropriate techniques to
deal with the specific difficulties as and when encountered in the process,
with due consideration to the specific attributes of stability, convergence

and accuracy.

The present task belongs to the latter category.

1.3.2 Scope )

The problem considered is two-dimensional in a potential flow field. An integral
relation formulation is employed in which the integral relation is derived by
utilizing Green’s second identity such as not to preclude future generalizations
to three dimensions. The solution is advanced in time by integrating appropriate
evolution equations and establishing boundary data at every time instant.

The method is first applied to study unsteady propagation of small amplitude

15 1

waves, followed by its app ion to si pr ion of steep (non-linear)
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waves. Subsequently interaction of steep waves with fixed surface-piercing ob-
jects is studied, and finally simulation of extreme motions of freely floating

bodies is accomplished.

An experimental program was undertaken to validate the simulation method
thus developed. To achieve two-dimensionality of the flow, vertical boundaries
were constructed within a wave flume. The experimental object was of rectan-

gular cross section and was restricted to respond in selected modes of motions.

The numerical model developed differs in several aspects from the studies
available in literature. In particular, the method of following the free surface
is different (as discussed in §4). The manner in which an incident steep wave
is generated as well as the treatment of the exterior boundary are additional

features not readily identifiable in the reported studies.

This development follows the general direction for establishing a two dimen-
sional ‘numerical wave tank’ simulation model, analogous to aerodynamicist’s
‘digital wind tunnel’ (Aref 1986). Computer codes are written in FORTRAN
language and the computing system of MUN consisting of DEC -VAX 8800 and
-VAX 8530 cluster is used. This work has utilized an estimated total CPU time
in excess of 2000 hrs. in the system mentioned. Due to the inherent developmen-
tal nature of the method, no special emphasis is placed on efficient structuring
of the software. However, care has been taken to ensure minimization of com-

putational efforts wherever possible.
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1.3.3 Outline of the Text

The text is arranged following the manner in which successive developments
were made. After providing the basic theoretical background and the numerical
discretization scheme in §2, the immediately following section (§3) ascertains
the effectiveness of the basic algorithm by choosing three examples of small
amplitude wave propagation as test cases. In the succeeding section (§4), the
non-linear problem is treated. Here the simulation of an unsteady steep prop-
agating wave is accomplished. This section also includes some computational
features that are developed to overcome the numerical difficulties encountered
in the process. In particular, techniques are developed to preserve stability
characteristics, and an outgoing wave condition is implemented. Supporting
computational results follow. In §5, a surface-piercing object, in the form of a
vertical wall, is introduced in the fluid. The choice of a wall is prompted be-
cause of availability of experimental and perturbation solutions for equivalent
interactions. Comparative results are presented. §6 considers the next step.
Development of the final numerical model for the motions of floating bodies in
waves, together with the necessary details, is reportlged here. Computational re-
sults demonstrating simulation of large motions in steep waves are presented. In

T

§7, the experimental veri ion program is di d. The experi al setup,

its purpose and other necessary details are described here. Also included are
some sample experimental results. The objective of the penultimate section (§8)
is to compare the numerical and experimental results. Finally, the concluding
section (§9) contains summary and conclusions. Appendix A provides details
of the finite-difference and numerical integration formulae utilized, while details

with regard to the estimation of roll viscous damping coefficients are discussed in
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Appendix B. A majority of the comparative experimental and numerical results,

not provided in the main text for brevity, are included in Appendix C.
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condition
Ol 98By b (2.2)
8t 0z O0Ozdz
and the dynamic condition
% _ P Lo f2.3)
el 3(V9)

where 1 denotes free surface elevations, g denotes gravitational acceleration and
V represents the gradient operator: V = 8/8x; p, is the applied (external,

luding at: heric) p on the free surface and p signifies fluid density.

Following usual practice, p, is set equal to 0 in the sequel.
The condition applied on dDp is that of impermeability:
IR A R S s I (2.4)
an et
where 8/8n = n - 9/9x, in which n designates the unit normal vector on 9D
directed outwards of D.

The condition applicable on the wetted body surface dDp is the kinematic
condition:
a
—¢= ¢ (25
T § (2:5)
where V,, is the velocity component of dDp along its inward normal (outwards

to D). For bodies fixed in space, (2.5) becomes identical with (2.4).

Conditions on the control boundaries D¢, and 8Dc¢; are not explicitly

stated at the moment, but are assumed to exist in such a form that either

¢ or 9¢/dn are d inable at all time i t > 0. The imposed conditions

are clarified later, in connection with the specific applications.

henceforth for simplicity either none or only the applicable d d will be indicated
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2.2 Integral Relation and Its Discretization
2.2.1 The Integral Relation

Application of Green’s second identity to ¢ and the fundamental singularity

In7(P, Q) in D results in the following well known integral relation (Kellog 1929):

AUPIP) = [ 1@ 1ar(P,Q) = (@) lar(P, QS
s12e(2:6)
with @ located on D . Here r(P,Q) = |x(P) — x(Q)|, which is the distance
between the points P and @ ; the subscript in 8/9n indicates the point at which
the differentiation is taken; Q(P) = 0 or 27 respectively for P inside or outside
D, but not on &D. For P on 8D, Q(P) is the angle subtended by the tangents to
0D, measured from inside D, and equals 7 when the normal to 8D is continuous

at P.

Formula (2.6) expresses the potential at any point P by means of a mixed
distribution of simple sources of strengths —9¢(Q)/dn and normal dipoles of
moments ¢(Q) on dD. When P is taken on 8D, (2:6) is a Fredholm’s integral
equation of the second kind for unknown ¢(P) and of the first kind for unknown
d¢(P)/dn. For problems for which alternatively Dirichlet and Neumann condi-
tions (i.e. ¢ and d¢/dn respectively ) are imposed on parts of the boundary, a
set of coupled integral equations results. For problems which can be formulated
in terms of an integral relation of the second kind for the unknown, advantages
in computations can be derived since for such equations a global Neumann series
exists which admits a simple iterative solution at reduced computer time and

storage requirements (Baker et al. 1982). This advantage is lost for the coupled
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set of equations. It is noticed that relation (2.6) is valid at any time instant. For
solutions advancing in time, this relation is utilized at every consecutive time

step.

2.2.2 Discretization

For convenience as well as to retain generality in the discretization scheme, it is
assumed that 8D consists of Ns piece-wise smooth parts:
Ns
P R R AR @20
k=1

Relation (2.6) can then be written as

)
On)

Ns 9
APIUP) -3 [ 16Q)5 —nr(P,Q) - 5~ 4(@)r(P,QldS =0
Surfaces 9Dy are further subdivided into a finite number of segments, approxi-
mated as straight lines:

My
8D, =3 55*

i=1

2.9)

and a collocation point Q¥ is chosen on each of the segments §S¥. Here the
-

superscript indicates a particular part of the boundary in consideration and M}

denotes the number of segments in which the kth boundary contour is subdi-

vided. An illustration of the above discretization is shown in Figure 2.2.

The variations of ¢ and 8¢/n over 9D are now approximated by a con-
stant value of these over each segment 6S¥, the values being determined at the
corresponding collocation points Q¥. Following usual practice, the collocation
points are placed at the centre of each segment. However, for future reference

we remark here that in principle Q¥ need not be located centrally in §S¥.
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Figure 2.2 Discretization of 8D.

oD, oD,

Figure 2.3 Illustration of a domain with N5 = 4.
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the free surface are different (Neumann condition on the body boundary and
Dirichlet condition on the free surface). In this respect, the central collocation
discretization scheme adopted here is the most straightforward for numerical
implementation. In particular, the following benefit are derivable from its ap-

plication :

(a) The necessity of explicitly prescribing any boundary data at the intersection
point is avoided, which is computationaly advantageous for treatment of
the body-free surface contact point (recall the discussion in §1.2.2.2 (b)).
It may be noticed that the method is essentially collocative, implying
relation (2.6), within the approximations of the boundary geometry and
the variations of boundary data, is satisfied only at a finite number of
collocation points. Therefore, not considering any particular point as a
collocation point in principle does not invalidate the application of the

method.

(b) Lower order b.e.m. are expected to possess better stability characteristics
of the solution. Successively higher order applications of the b.e.m., al-
though recognized to represent improvements fn the discretization scheme
leading to better resolution with lesser number of segments (see Hess 1975;
Breit, Newman and Sclavounos 1985), are known to be more susceptible
to numerical instability (see Schultz 1987) which is a major concern in the

present application.

In addition to the above, another, perhaps not so objective reason, which
prompted the present choice is the belief that a ‘workable’ model can be built up

on this simplest discretization scheme for the final task in question (namely, sim-



38

ulation of large motions of floating bodies in steep waves), since it is conjectured
that many of the anticipated problems to be encountered may not necessarily
be remedied by applying more refined and sophisticated discretization schemes.

Such refinements can, in principle, be incorporated latter.

In forming eqns. (2.10), it is convenient to number the collocation points
sequentially : 1 to M; for D, , (My+1) to (My+M,) for 0D, , etc. Eqns.
(2.10) contain 2N discrete values of the boundary data, N values of ¢ and an
additional N values of 3¢/9n . Therefore, if any M values of ¢ and the (N—M)
values of 8¢/n are known (M < N), one boundary data at each collocation
point, then the remaining unknowns, (N-M) values of ¢ and M values of 8¢/dn
can be determined from a suitable rearrangement of (2.10.) and then solving
the resulting system of N linear algebraic equations by any standard method

of solution (e.g. direct matrix inversion, G ian elimination techni etc.).

For illustration, consider the domain with Ns = 4 depicted in Figure 2.3 and
assume that on dD; and 8D, , ¢ is known while on dD; and 9Dy, 8¢/0n is

known. The system of equations becomes

Gop, o0, Gop,op, Hap, o0, Hop,ap, (0¢/0n)ap,
Gop,op, Gop,op, Hop,op, Hap,op, (0¢/0n)ap,
Gop,op, Gopsop, Hap,ep, Haps,ep, (8)ap,
Gop, o0, Gop, o0, Hap,op, Hap, o0, (8)ap,
Hop, o0, Hop, o0, Gop,op, Gop, oD, (¢)an,

_ | Hap,op, Hop,op, Gop,op, Gop,ap, (8)ap,
Hop, o0, Hop, o0, Gops,op, Gobsop, (94/0n)ap,
Hop, 50, Hop, o0, Gep,ep, Gop,sp, (8¢/0n)ap,

(212)

to be solved for the unknowns. The elements of the above matrices represent
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submatrices of influence coefficients:
Gop, oD, OF Hop, oD, = Aij or By; ... (2.13(a))

where ¢ and j run for

n-1 n

ST S en(2.13(b))
k=1 k=1
m-1 m

T UM T ST R (2.13(c))
k=1 k=1

except for n = 1 and m = 1, for which the first terms on the r.h.s. of (2.13(b))
and (2.13(c)) are to be taken as 1.

The influence coefficients depend only on the geometry of the boundary con-
tour and can be determined explicitly (see e.g. Faltinsen 1978) for the present
type of straight line segments. These are given below in a form convenient for

computer implementation:
1 2 2 az
Aij = ;{a, In(b? + a3) — 2a; + 2barctan o
—a, In(b* + a) + 2a;, — 2barctan %‘) ..... (2.14(a))

Bi; = 1fori=j

- Lk S @ _ a1
= = {a;In il 2a,(arctan 5 arctan b )}
b +d}

N,
+—7rl{a, In + 2a.(arctan L;—z — arctan %‘)}

by +af
Forie gl ST TR b R L S G (2.14(b))

where,

b = {(zi — 21;)(22; — 215) — (2 — 21)(@2j — 21)}/ AY;
a1 = —{(zi — z1;)(@2j — 71j) + (2 — 21;)(225 — 215)}/ AL
a = —{(zi —22j)(22j — 1) + (2 — 225)(22; — 2,)}/ AL
..... (2.14(c))
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boundary data for the next time level. In particular, appropriate evolution
equations for the free surface, deduced from (2.2) and (2.3), are integrated in
time to determine the updated free surface contour (i.e. the configuration of
8Dy for the advanced time level) and the values of ¢ on this updated boundary.
On the body, 8¢/0n on dDp is related to the body velocity by virtue of (2.5),
which in turn is related to ¢ through the equations of motion (to be discussed in
detail in §6). For the moment, we assume that d¢/9n on Dp is determinable at
all time instants. The boundary contour 8D as well as the boundary data for the
advanced time level are now established and the solution process can be repeated.
¢ at any desired location in D can be calculated from a discretized form of
relation (2.6). Other information, e.g. fluid velocity and pressure are easily
calculable from ¢ by utilizing Bernoulli’s equation and employing numerical
difference techniques in space and time. Evolution of the free surface and the
motion of the body, which constitute necessary information for advancing the

solution in time, are extracted as the simulation proceeds.

The system of linear equations to be solved for the unknowns (cf. eqn. (2.10))
in general corresponds to a full coefficient matrix and thus benefits admissible
in solutions of matrices with special features (e.g. ‘.banded matrix, triangular
matrix) are not available. In the present algorithm, a standard IMSL (abbrevi-

ation for International Mathematical and Statistical Library) routine is utilized

which employs a G. i limination technique for matrix inversion (see e.g.

Forsythe and Moler 1967).

The evolution equations for the free surface can be cast in the following

general form :

d_i’ MR ity 1 (2.15)
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In the present algorithm, a fourth order implicit Adams-Bashforth-Moulton
scheme is adopted and is found to be convergent for all required integrations.
To achieve an accuracy of O(10~*), usually not more than one corrector step is
found necessary in most cases. This scheme requires information at the preced-

ing four steps. In the initiation of the solution, the first three steps are therefore

h

treated by means of ively lower order with higher number of

iterations (see Appendix A.1).

A variety of other schemes exists for integration of the equations of the form
(2.15), e.g. Runge-Kutta schemes, Hamming’s method, etc. 4th order Runge-
Kutta starters are popular for analogous initial-value problems (e.g. Faltinsen

1977; Longuet-Higgins and Cokelet 1976, Dommermuth and Yue 1987). How-

ever, the starter scheme employed here is found adeq for the lication

considered. Limited numerical experiments with other schemes have also been
performed and the algorithm is found insensitive to the choice of any particular
scheme. Further remarks on this are deferred till the relevant applications are
discussed but it is to be noted that the number of iteration levels to achieve a

desired degree of accuracy dictates the bulk of the computation time, since the

system of linear equations must be solved at every iteration level.

The bottom condition (2.4) permits exclusion of dDp from the contour of

integration in the integrand in (2.6) if dDp is horizontal (see e.g. Wehausen and

Laitone 1960). This can be achieved by augmenting the fund tal singularity
with its symmetric image with respect to dDp. Thus when the sea bottom is a
flat surface at a depth d, Inr(P, Q) in (2.6) is replaced by [Inr(P,Q)+Inr(P,Q")]
and @Dp is discarded from dD. Here Q' is the symmetric image of Q on dDp.

This results in a reduction in the system of linear equations in (2.10) by the
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number of segments used in discretizing Dp. For example, referring to Figure
2.3 and taking Dj; as the horizontal bottom, the third rows and columns of the
matrices in (2.12) along with the corresponding rows of the associated vectors
are simply deleted. The influence coefficients in this case contain additional

integrations over the image segments:

AL 4 1 —x 04(2016(8
Aij = = Ls, In |x; — x;|dS + / In|x; — x';|dS ( (a))
Bigii—i —1/ —ln\x—x|d5+ ln|x—x|dS

ki it 55, Onj R g 55, 3n ¥

....(2.16(b))

where the primes denote the respective variables for the image panel. The
image panel has the end coordinates : (zf;,2{;) = (21, 21; — 2d) and (3}, 23;) =
(235,225 — 2d). For evaluation of the integrands over §5} in (2.16), relations

(2.14) apply with (21, 215), (€25, 22;) replaced by (24}, 21;), (255, 23;)-
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3 Linear Free Surface Flow Problems
3.1 General Considerations

A simple means of testing the effectiveness and reliability of the algorithm is
to apply it to problems involving small amplitude free surface elevations. The
use of relation (2.6) for free surface flow problems is not new. It is believed to
have been first proposed by Yeung (1973) for hydrodynamic problems and was
subsequently applied to studies involving linear free surface motions (e.g. Bai
and Yeung 1974; Sahin and Magnuson 1984) in the frequency domain. How-
ever, its application for time domain simulations, where it is used at every time
step to obtain information for the next level of computation, requires a more
careful assessment. In particular, possible degeneration of the solution due to
accumulation of numerical errors must be investigated prior to developing any
reliable algorithm for studies of complex, realistic problems. Convergence of
the numerical solution is not equivalent to accuracy. Converged solutions can
indeed produce results far from the desired solution (see the recent article by
Aref 1986). To this end, the simulation of propagation of small amplitude waves
provides an excellent means of examining the basic "solution algorithm because
of two different reasons: the permissible linearization of the free surface condi-
tions aids in focussing on the algorithm in its simplest form, thereby reducing
the possible sources of contamination of the solution; secondly, solutions of lin-
earized flows are usually available in closed form, thereby permitting an exact

basis for comparison.

Upon applying the usual approximation associated with small amplitude

waves, the free surface conditions (2.2) and (2.3) take the following linearized
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forms: 4
o _ 9% S (8h)
8t 9z
9
5" it e SO R SRR O 3.2)

to be applied on the undisturbed free surface z = 0.

For the applications considered in this section, the fluid domain is represented
by the rectangular area depicted in Figure 3.1. The bottom surface is taken
to be at a constant depth d , and the advantage of eliminating this part of
the boundary is utilized. The free surface part of the boundary on which the
integrand in (2.6) is to be evaluated remains undisturbed at all time instants,
and 8/0n = 8/9z on ODp. The entire boundary dD is therefore independent of

time. Consequently, the elements of the matrices in (2.12) (or a similar system

of ions) remain unch d with time. A significant saving in

time can be realized by evaluating, inverting and saving the coefficient matrix

once for all. The remaining operations are then simple matrix multiplications.

3.2 Specific Applications

At the outset, the following symbols are introduced:! Az denotes the length of
the segments (or the spatial grid size), suffixed appropriately to indicate the
parts of D on which they are chosen, viz. Azp, Azcy,Azc, are the segment
sizes on dDf, D¢y and dDc, respectively. The time step size is denoted by At.
The spatial grid sizes are kept constant on each part of the boundary, and At
is constant over the entire time of simulation. N, represents the time step level
of computation: N; = t/At. The distance between the control boundaries D¢y

and ADgs , i.e. the horizontal extent of the free surface, is denoted by L.
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X FREE SURFACE (3Dg)

CONTROL
BOUNDARY (3D¢))

SEA BOTTOM (80p)

Figure 3.1 The rectangular fluid domain

CONTROL
BOUNDARY (3D¢p)
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Most of the following computed results are presented in terms of the free

surface elevation 7(z,t) and the distribution of ¢ on Dp.

3.2.1 Simulation of Airy Waves

As a test case, the method is first applied to simulate the propagation of steady
Airy waves in the control domain. The initial values of the potential on the
undisturbed free surface z = 0 are specified according to the Airy potential:

HA cosh(2m(z +d)/A]

. 2%
) oy e g (3:3)

with t=0. This corresponds to an Airy wave of height H, length A and period
T, progressing in the positive z direction with celerity c. The value of d¢/8n at
any point @ on @D can be determined from :

9 _ mH cosh(27(z +d)/)A]
n = " T " sinh(2xd/A)

7H sinh[27(z +d)/N] . 27 S

+nw@) ~simb(2rd)) sin (z —ct) ....(3.4)

cos ZT"(Z —ct)

where (n,(g), n+(q)) denote components of the outward unit normal at Q in the
suffixed directions. For D¢y and D¢, these are (—.,1, 0) and (1, 0) respectively.
For the following simulations, either ¢ or 8¢/9n computed from (3.3) or (3.4)

respectively are provided on the control boundaries.

Figures 3.2 (a) and (b) show the computed free surface elevations and po-
tential distribution on dDp, normalized with respect to H and (HA/2T) re-
spectively, at three time instants: ¢/T = 1.0, 2.5 and 4.0. For this simula-
tion, L/A = 1 and water depth is, d = X\. The discretization parameters are
Azp = A/20 and At = T/40. The grid sizes on the other boundaries are kept

the same as on the free surface: Azcy,Azc; = Azp. Dirichlet conditions are
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(b) Distribution of ¢ on the free surface

Figure 3.2 Free surface elevations and potentials of a linear steady progressive
wave; L/A =1, d/\ = 1.0, Azp/X =1/20 and At/T =1/40.
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imposed on the control boundaries, i.e. the values of ¢ are specified on D¢y
and 8Dc; at all time instants, which are determined from the Airy potential

eqn. (3.3)). The theoretical free surface profile for an Airy wave, given by
(eq
2
n(z,t) = H cos T(I ) L R R (3.5)

and the potential calculated from (3.3) are also plotted for comparison. The

agreement is evidently very good.

For the results shown in Figures 3.3 (a) and (b), all parameters (size of Az,
At and conditions on dD¢, and Dc;) are retained the same except that the
control domain is stretched to L = 4\ and water depth is reduced to d = 0.5)\.
As can be seen, curves at t/T = 4.0 are practically indistinguishable from the

corresponding theoretical curves.

Results shown in Figures 3.4 (a) and (b) are achieved by specifying different

conditions on the control b daries, Dirichlet dition on 8D¢; and Neumann

condition on @D¢;. The control domain extends over L = A and water depth
is only d = 0.25\. The temporal and spatial grid sizes are the same as in the
above examples. Results are presented at the sa.me(.f.ime instant of ¢/T = 4.0
and compared with theoretical results. Good agreement is once more evident.

In Figures 3.5 (a) and (b), the free surface elevations are shown for a simu-

lation where N diti are imposed on both the control boundaries.

Here the control domain is relatively long, L = 7\, and water has a depth of
d = 0.4)\. Other parameters are: Azp,Azcy,Azc; = A/25 and At = T/40.
The plot showing evolution of the free surface in time at the center of D is also
included. The comparison with theoretical free surface contours clearly demon-

strate that the present method is capable of following the wave motion with
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Figure 3.3 Free surface elevations and potentials of a linear steady progressive
wave; L/\ =4, d/A = 0.5, Azp/\ =1/20 and At/T =1/40
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Figure 3.5 Free surface elevations of a linear steady progressive wave; L/\ = 7,
d/A =04, Azp/A =1/25 and At/T = 1/40.
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acceptable degree of precision over long periods of simulation time.

Computations were also performed for a wide variety of combination of the
spatial and temporal grid sizes, for different values of L/ and d/), and for
different initial distributions of the free surface potential (i.e. initial values of ¢
on dDr given by (3.3) with values of ¢ different than 0). In all computations,
the quality of agreement between the numerical and theoretical results is similar
to the presented examples. The numerical solution does not appear to exhibit
any discernible evidence of degeneration even after reasonably long periods of

simulation (for example, after 400 time steps or up to 10 wave periods).

3.2.2 Unsteady Wave Propagation

The method is now applied to simulate propagation of unsteady waves. This is
achieved by specifying a potential on one of the control boundaries. The fluid in
D is initially at rest with z = 0 as the initial contour of 9Dr. The potential given
by (3.3) corresponding to an Airy wave propagating in the positive z direction
is applied on D¢ at all time instants. This simulation is therefore that of an
unsteady wave propagation in the sense that a disturbance is provided at one
end of the control domain to excite fluid motion in an initially unperturbed fluid
in D. The initial values of the potential on dDr and D¢, are: ¢(x,t) = 0. For
this simulation, the boundaries D¢y and dDc¢, can be referred to as upstream

and downstream boundaries respectively.

The simulation attempted as described above was not successful due to a
numerical instability initiating at the origin (at 9D¢1 NADr) and slowly spread-

ing over the entire domain. Although this instability is of a weak type in the
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sense that the solution can still be progressed, the free surface contour shows
undesired ‘zigzag’ patterns and eventually diverges from the desired Airy wave
profile. A typical computational wave profile is shown in Figure 3.6 where this
unwanted behaviour is evident. By the time of ¢ = 47, the entire solution is con-
taminated. Investigation to the cause of this instability reveals that the problem
is associated with an incompatibility of the imposed initial conditions, which is

now discussed.
3.2.2.1 Initial Boundary Data

The initially unperturbed state of fluid in D indicates that ¢(x,t)|e=0 = 0
in the entire of D, including 8D (the value of ¢ could strictly be any constant,
but it is convenient to make this constant 0 by redefining ¢, see e.g. Lamb
1945). What is not so apparent is the requirement of d¢(x,t)/8t|i=0 = 0 to
be maintained simultaneously. Examining eqns. (2.3), it can be noted that
n(z,t)|¢=0 = 0 and ¢ = 0 imply 8¢/d%|=o = 0 on &DF. It follows that d¢/dt on
9Dy must have a zero value at ¢ = 0 for compatibility of the initial boundary
data, in particular at the intersection of D¢y and 8Dp. The potential given by
(3.3) maintains ¢(x,t)|i=0 = 0 on D¢y, but ¢(x,t)/d%|:=o has a finite value.

In the present formulation, the excitation potential is modified by introducing

a modulation function M(t):
BiB)= M(B)a(e) (- L (3.6)

with
0.5(1 — cos(wt/o)) t<o
5 t>o

M(t) = {
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Figure 3.6 Initiation of instability on the free surface at D¢y N Dg from
application of (3.3) on dDc;; for this computation the fluid domain is, L = A,
d/X = 0.5, and Azp, Azcy, Az = /40, At = T/80; the imposed condition on
0Dc, is, ¢(t) = 0.
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This function has the property that M(t)|;=o = 0 and dM(t)/d%|=0 = 0. There-
fore, regardless of the form of ¢ on 8D, the initial values of ¢ and 9¢/dt are

guaranteed to be zero by virtue of (3.6) and (3.8) below:
9¢°(t) 94(t)  oM(t)
ack FAD Y ek g BB g eee(3.8)
0 — M58 + 2 ey
The time span over which the excitation potential is modulated can be controlled
by selecting an appropriate o.
It is of some interest to comment on the physical interpretation of the above
compatibility requirement. From Bernoulli’s equation:
a 1 94,
SR R i (e | MR E NI £ 3.9
px,t) = —pgz = pmrd(x,t) = 5p(50) (39)

a non-zero value of 9¢/dt indicates existence of a finite dynamic pressure in
the fluid. Clearly, a finite value of 3¢/t on D¢y at t = 0 implies an abrupt

pplication of p on this b dary. Large fluid motions on

or impulsive
the free surface near the intersection are then an expected consequences. Other
forms of M(t) have been attempted (e.g. M(t) = 1 — exp(—ot) or M(t) =
cos(7t/o) in which the growth of ¢ values a-.re comparatively more gradual during
the initial period, but d¢/dt has a nonzero initial v;.lue, and M(t) = sin(wt/o)
in conjunction with a cos function for ¢ in the Lh.s. of (3.3), which enforces
9¢/dt to be zero at the expense of nonzero ¢ at t = 0 ), but were found to
produce similar numerical instabilities of varying severity (usually less severe).

It is therefore important that both ¢ and 9¢/dt have zero initial values.

Recent studies on the wave-maker problem (Cointe, Jami and Molin 1987) in-
dicate that the impulsive wave-maker problem does not admit a unique solution

unless proper account is taken for the transient period in which the wave-maker
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motion grows from zero to a finite value. The present simulation is analogous to
the wave-maker problem in that in the latter the Neumann condition is posed
on the wave-maker according to its prescribed motion (studied in the sequel,
§3.2.3). The present experience of a numerically ill behaved solution when zero
values of ¢ and d¢/0t at ¢t = 0 are not imposed, which is equivalent to the
application of an impulsive pressure on this boundary, appears to confirm the
results of the analytical study. When (3.6) is applied with a finite value of o in
M(t) given by (3.7), the associated difficulty disappears. As a demonstration,
in Figures 3.7 (a) - (d), the free surface elevations are shown for values of /T
=0, 0.5, 1.0 and 2.0. Here a discretization of Azp = A/40 and At = T/80 is
utilized. Note that o/T = 0 corresponds to the absence of modulation of the
applied potential, i.e. to the application of the impulsive pressure (this plot was
already shown in Figure 3.6, but is reproduced once more for convenience of
comparison). The progressive reduction in the ‘zigzag’ patterns with increasing
values of o is evident. For ¢/T = 1.0, a careful inspection reveals still some
existence of the undesired behaviour (see the profile at ¢/T = 2.0). With further
increase of o/T to 2, the wave begins to evolve smoothly.
.

3.2.2.2 Computed Results

Computed results in terms of the free surface elevations are shown in Figures
3.8 and 3.9. For these computations, the downstream boundary is placed at a

distance of 2\ from the up boundary. The di ization parameters are:

Azp = \/24 and At/T = 1/36, where A and T refer to the length and period
of the excitation wave. The downstream boundary is considered to be a rigid

wall, thus the condition posed on dD¢; is 94(t)/dn = 0 at all time instants.
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Figure 3.8 Free surface elevations of an unsteady smallamplitude wave progress-
ing into an initially undisturded fluid region; L/A = 2, d/A = 0.5, Azp/A = 1/24
and At/T = 1/36; the downstream boundary is a wall.
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The water has a depth of d = 0.5, and the itation potential is dulated
over 2T, i.e. ¢/T = 2. The wave is observed to form gradually, subsequently
it grows and propagates along the positive z axis. At about ¢/T = 3, the wave
begins to reflect from @D, and at ¢/T = 6, almost full reflection takes place
at that boundary, indicated by the growth of the free surface elevation. Linear
theory predicts a magnification of the wave amplitude by a factor of two for
full reflection on dD¢; (i.e. n/H = 1), and the present results show a closely
comparable factor, at the last collocation point the corresponding numerical
value of n/H is 0.985. Figure 3.9 shows plots of the free surface elevations
at four stations situated at z = 0.26X,0.50\,0.74\ and 0.98), together with
the theoretical Airy wave profiles computed from (3.5) at the corresponding
periods. For comparative purposes, the Airy wave profiles are also modulated
by the same modulation function. It is clear that for ¢/T" < 5, the reflected waves
do not reach the location z/A = 0.98. At locations z/A = 0.24 and 0.50, more
than two wave periods of steady state results are achieved. The comparisons
with theoretical profiles before reflected waves contaminate the profile are very
encouraging. These results demonstrate that reasonably long periods of steady
state results can be achieved in a region closer to 'the upstream boundary by

shifting the downstream boundary further downstream.

In order to further investigate on the effect conditions imposed on the down-
stream boundary have upon the interior solution, computations are performed
with the condition ¢(t) = 0 prescribed on @D¢,. This condition physically im-
plies that the tangential velocity at the downstream boundary is zero at all times,
in contrast to a zero normal velocity when &D¢; is a wall, and is appropriate

in the limit of high frequency waves (such conditions are usually applicable in
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studies of flow due to earthquake (Garrison and Berklite 1972), impacting bodies
on the free surface (Geers 1982; Troesch and Kang 1986). Figure 3.10 compares
the free surface contours obtained for the two imposed conditions of ¢ = 0 and
8¢/0n = 0 on 0D¢2. In the region 0 < z < A, the profiles differ negligibly
until about ¢/T < 5. Clearly, waves reflected from dDc2 have not yet reached
this region. This indicates that reasonably accurate results upto few periods
of steady state can be achieved in parts of the fluid closer to the downstream
boundary, if the control domain is suitably large, irrespective of whether a wall

condition or a zero potential condition is applied at the downstream boundary.

3.2.3 The Wave-Maker Problem

This application relates to the wave-maker problem. A piston type wave-maker
is undergoing a horizontal sinusoidal motion:

E= scos% +e0:(3110)

at one end of the control domain, with period T and half-stroke s. The mean
position of the wave-maker coincides with D¢;. The boundary condition for
the wave-maker is applicable at its mean position, {consistent with linear the-
ory approximations. For the simulation, the condition prescribed on 8D is
therefore

g_: L 2%3 sin% )
Observe that the wave-maker has a zero initial velocity. Nevertheless, earlier
remarks concerning the compatibility of initial boundary data apply, and it is

found necessary to modulate the velocity by the same modulation function (3.7):

99(t)

on

9¢*(t) _
Mo an)
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Results are shown in terms of the free surface elevations. The control domain
chosen is relatively large. The downstream boundary is located at a distance 4\
from the wave-maker and is taken as an impermeable wall with the condition
d4(t)/On = 0 prescribed on it. The water has a depth of d = 0.5\. Here A
represents the length of an equivalent Airy wave of period T in water depth
d. Relatively coarse discretizations (compared to the preceding examples) of
Azp,Azcy, Azcy = M\/15 and At = T'/24 are used, and o/T = 2. Figure 3.11
shows the space plots of the free surface elevations at times t/T = 3.0, 4.0, 5.0
and 6.0, while the time-evolutions at locations z/\ = 0.5, 1.0 and 1.5 are shown
in Figure 3.12. Generation of a wave is evident. The generated wave eventually
exhibits a steady state periodic behaviour with period T. The gain function for

this type of wave-maker, according to linear theory, is given by (Biesel 1951)

a_ _ 2sinb"(kd) (3.13)
s kd+ sinh(kd) cosh(kd)
with a denoting the litude of the ted wave and k = wave number

= 27/A. This expression yields a value of a/s = 1.9468, while the present

simulation has the corresponding value of a/s = 1.95 (the numerical value is

evaluated by averaging the elevations at crests and troughs after the wave reaches
5

a steady state). The difference is less than 0.2%.

For a single flap type wave-maker hinged at depth d, the wave-maker motion

is given by

&(z) = s(1 + -Z—)cos % 3.14)

from which the normal component of the wave-maker velocity, applicable at its

mean position, is deduced as

a 2 L2t 2
a_: L *?”(1 + 3)3 sm(%)cos{w) ..... (3.15)
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Figure 3.11 Free surface elevations generated by a piston type wave-maker at
8Dc1; L/ = 4, d/X = 0.5, Azp/)\ = 1/15 and At/T = 1/24; boundary dDc,

is a wall.
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Figure 3.12 Evolution of the free surface in time corresponding to the plots in
Figure 3.11 above.
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This dition is imposed on D¢, together with o /T = 2, to achieve the results

presented in Figures 3.13 and 3.14. Other parameters are retained the same as
in the application of the piston type above. Free surface elevations at times t/T
= 3.0, 4.0, 5.0 and 6.0 are plotted in Figure 3.13, while Figure 3.14 shows time
evolutions at three locations z/A = 0.5, 1.0 and 1.5. Once again, formation
of a wave exhibiting a steady state behaviour with period T is apparent. The

appropriate gain function for this case, given by (Biesel 1951)

a _ 2sinh(kd) [1 - cosh(kd) + kdsinh(kd)] (3.16)
s kd [kd + sinh(kd) cosh(kd))] 3

produces a value of a/s = 1.3785. In comparison, the simulated wave has a gain

function of a/s = 1.39, a value not more than 1% in error.

3.3 Discussion and Summarizing Remarks

The presented results demonstrate the robustness of the numerical time domain

simulation scheme for fluid flow problems that include a free surface. Compu-

S

of other par and

tations are performed for a number of
have shown a similar quality of agreement with theoretical solutions. Regarding
discretizations, no rigorous rule could be establishéd for the minimum size of
Az. As a rough guide, a size of Az = A\/12 is found to describe adequately the
evolution of the free surface for most of the simulations. Further relaxation re-
sults in lack of resolution, although the fluid motion can still be followed (which
means the solution does not break down). For temporal grid size, the usual
Courant-Friedrichs-Lewy condition (Roache 1972) of

At
= =r w327
Nerr = e I? =l ( )
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Figure 3.13 Free surface elevations generated by a flap type wave-maker at
9Dcy; LA =4, d/A = 0.5, Azp/A = 1/15 and At/T = 1/24; boundary dD¢,

is a wall.
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Figure 3.14 Evolution of the free surface in time corresponding to the plots in

Figure 3.13 above.
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with ¢ representing the wave celerity, is followed. In the present computations,
for most of the cases, a value of N¢orr, between 0.5 and 0.7 is used. Further ex-
amination of the possible size of At/T by successive relaxation was not pursued

in view of the expected upper limit posed on it by (3.17).

The solution is found to exhibit a tendency towards numerical instability
upon successive refinements of the spatial mesh sizes. When a collocation point
is located very close to a corner where the boundary undergoes sharp changes
in curvature, such as the intersection of 8D with 8D¢y and dDc:, relatively
larger errors of the computed velocities are found in these locations, in com-
parison with points far from such corners. This is confirmed by a number of
numerical experiments for the application case 1 (§3.2.1), for which the theoret-
ical values of both the boundary data (¢ and 8¢/dn) are calculable from (3.3)
and (3.4). Comparisons of computed and theoretical values of ¢/0n on dDp
show an increasing difference as the collocation points approach the intersections
on both sides. These non-uniform differences are believed to introduce numer-
ical instability when the grid size is very fine, typically when Az/\ < 1/100.
A similar behaviour of solutions near corners in applications of boundary ele-
ment methods appears to be fairly well documente{d in literature (see Schultz
1987). For the present time simulation scheme, numerical stability considera-
tions are crucial, since the computed free surface elevations and potentials at
any time instant form the input for the next level of computations. Considering
the segment sizes for which accurate results (in comparison with the theoretical
results) are obtained, this instability is thought not to be a serious limitation
in the applications of the algorithm, but serves to indicate a lower bound of the

grid sizes. As a guide, values in the range of 1/80 < Az /A < 1/20 are suggested.
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It is also found important to choose an appropriate value of o while modu-
lating the exciting potential (or the velocity). A very small value of o does not
entirely remove the instability as can be seen from Figure 3.7. For the applica-
tion cases presented in §3.2.2.2 and §3.2.3, a value of ¢ /T < 0.5 resulted in some
instability. For the spatial grid size of Az/\ = 1/24, a value of ¢/T = 0.5 was
found to cause the instability to initiate after about 80 time steps, regardless
of the temporal grid size. For a more refined mesh size, this was found to start
even earlier (for example, when the mesh size was Az/\ = 1/40, the free surface
profile began to show distortions after about 50 steps). However, as the results
demonstrate (cf. Figures 3.8 to 3.14), it is possible to achieve stable results by
a suitable choice of o. It should be observed that no artificial smoothing was
applied on the free surface in any of the above computations. The suggested
values of o are: for Az/\ < 1/32, 0 =T and for Az/\ > 1/32,0 = 2T. These
values can perhaps be lowered considerably depending on specific applications

or if artificial smoothing schemes are applied.

When both ¢ and 8¢/8n are defined on some parts of dD, the physical system
is overdetermined. For such situations, it is possiblg to achieve a reduction in
the number of linear algebraic equations to be solvc;d for the unknowns. Such
overdetermined systems (as was followed in Isaacson 1982) are soluble when
the imposed boundary data are compatible. Results for the application case 1
(83.2.1) were obtained by specifying both the boundary data (¢ and 8¢/8n)
on @D¢y and 0D¢,. However, it was noticed that such overdetermined systems
were inherently more susceptible to numerical instability (this was studied by
specifying ¢ and 9¢/dn given by eqns. (3.3) and (3.4) and then introducing a

slight variation in the order of 0.001% in one of them). The computed velocities
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on the free surface were found more sensitive to the discretization near the
intersection points when the boundary data were not perfectly compatible, as
compared to the well posed problems. It is further observed that, in principle,
a set of linear equations can be obtained when both the boundary data are
imposed on a particular part of the boundary while none are specified on some
other part, provided the number of segments in discretizing these boundaries
are equal. Though this provides a tempting situation, specially for suggesting a
means of avoiding imposition of any open boundary condition (i.e. imposition
of both ¢ and d¢/dn on dD¢; and non-specification of any data on 8Dc,), the
resulting systems are nevertheless unsolvable. The coefficient matrix becomes
singular. This is consistent with the well known property of elliptic boundary
value problems; a well posed problem must have one boundary data, or an
interrelation between the two must be specified, all across the boundary (see

e.g. Polozhiy 1967).

Besides the 4th order A-B-M scheme, other schemes have also been con-
sidered. In particular, we find that explicit schemes do not always lead to
a converged solution. This observation contradicts Isaacson’s (1982) method
where the author employed second order explicit schlemes for time-integration of
the free surface conditions. The first order implicit scheme is found inadequate
in that the solution shows poor convergence characteristics as well as contains
considerably large errors. In contrast, second order schemes lead to substantial
improvements. Further improvements are achieved by using 3rd and 4th order
schemes, although the relative improvements between these two latter orders
are practically insignificant (the numerical values differ only in the 6th decimal

place). In no cases was more than one corrector level required for a convergence
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of 1in 10~*. It is observed here that, from a computational point of view, higher
order schemes do not require additional computational efforts. However, in view
of the good convergence obtained with 4th order schemes, further experiments

with still higher orders schemes were not pursued.

For the starter, the lower order A-B-M schemes are found to be adequate.
For the application cases in §3.2.2.2 and §3.2.3, the fluid remains practically
undisturbed (the associated non-dimensional velocities, d¢/9n/(A/T), on the
free surface do not exceed 10~7). Since the final aim is to pursue such applica-
tions for the simulation of steep waves (considered in §4), further investigations

employing higher order Runge-Kutta starters were not carried out.

Finally, the following concluding remarks can be made from the results pre-

sented in this section:

(1) The simulation scheme, although based on the lowest order of discretization
of the boundary integral, produces sufficiently accurate and reliable results.
The solution does not appear to degenerate to any significant degree as it

progresses in time.
{

(2) The scheme is sensitive to the chosen initial conditions. In particular, im-
pulsive application of pressure is found to produce numerical instability of
a weak type. Therefore, it is important to maintain the compatibility of

initial boundary data.

(3) It is feasible to apply the method to simulations of free surface motions that

are of unsteady and transient nature.



4 TUnsteady Propagation of Steep Waves
4.1 General Considerations

For simulation of fully non-linear free surface flow problems, it is imperative
that the full non-linear free surface conditions given by eqns. (2.2) and (2.3) are
considered without any simplifying approximations. Noticing that these equa-
tions are to be satisfied on the exact location of the free surface, the evolution of
the free surface within the control domain must be followed such that the fluid
domain can be redefined at every consecutive time instant. Furthermore, the

values of the boundary data must be determined on the evolved free surface.

4.1.1 Evolution Equations for the Free Surface

The free surface conditions in eqns. (2.2) and (2.3) are in an Eulerian frame of
reference. Identifying the collocation points on dDp(x, t) as ‘marker’ points (the
trace of which defines the free surface contour), time integration of eqn. (2.2)
provides information on the location of these points vertically displaced. For

determining the velocity potential on the i € free surface contour,

an appropriate evolution equation for ¢ on the evolved free surface is to be
derived. The change in potential at points on the free surface undergoing vertical
displacements is (see e.g. Faltinsen 1978)

6 ¢

dp=Fdtttdy (4.1)

since ¢ = ¢(z,t) for these points. Here dn is the incremental vertical displace-

ment of the ‘marker’ points:

071
elly Lalda
dn =7 (4.2)
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From (2.2), (2.3), (4.1) and (4.2), the evolution equation for ¢ is readily deduced

as

9 ¢ O
(159 o oL

9z 0z Oz

4.3)

which defines the rate of change of the potentials at these points. Here the
symbol d/dt is used to signify that the differentiation is following the ‘marker’
points which are free to move along vertical lines. The evolution equations to
be integrated in time for following the free surface contour and potential, in the
present method, are therefore eqns. (2.2) and (4.3) respectively. In passing, it
is remarked that Isaacson’s (1982) strictly Eulerian method of following ¢ on

the free surface by integrating eqn. (2.3) determines the potential at space fixed

points. This introduces a further approxi ion on the puted free surface
potentials in that the changes in them due to the updated location of the free

surface are not accounted for. In contrast, eqns. (2.2) and (4.3) are exact.

The above method of following the free surface is different from the fully
Lagrangian method utilized in most of the previous investigations of non-linear
water waves based upon similar integral relation formulations (e.g. Longuet-
Higgins and Cokelet 1976; Vinje and Brevig 1981; Baker, Meiron and Orszag
1982; Lin, Newman and Yue 1984; New, Mclver an‘d Peregrine 1985; Dommer-
muth and Yue 1987). It is worth comparing and contrasting the features of
the two. In fully Lagrangian methods, the ‘marker’ points on the free surface

coincide with physical fluid particles and the evolution equations take the form:

%ﬂxr) =-gn+ %(w)’ <(4.5)

with D/Dt denoting the material derivative: D/Dt = 8/8t+8¢/8x - 8/0x and
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xr representing the radius vector of the marked fluid particles. The vertical
component of (4.4) provides information on the vertical displacements of the
‘marker’ points. It may be noticed that this component is identical to the
kinematic free surface condition (2.2). Since the particles also undergo horizontal

displacements, the horizontal component of (4.4) needs to be integrated as well.

The attractiveness of following fluid particles lies clearly in its ability to
describe multivalued free surface contours. In contrast, the present method is
restricted in its applicability to single-valued free surface profiles. The possibility
for simulating overly extreme wave conditions, as in the case of wave breaking,
is therefore excluded. Nevertheless, the present method provides several com-

putational advantages:

(a) The ‘marker’ points are not allowed to cluster, which is expected to re-
duce adverse numerical effects associated with the Lagrangian methods in
which the particles tend to concentrate in some regions. In other words,
a better control is exercised on the points being followed. From previous
experience of other workers, it is known that some form of control on these
points is necessary to prevent them from cluEtering, e.g. introduction of

it tial’ velocity p t as di d in Baker et al. (1982) as

a controlling device, regridding of the free surface points at every step as
employed by Dommermuth and Yue (1987). The present mode of following

the free surface is free from such additional computational burdens.

(b) The ‘marker’ points can not leave the computational domain at any time,

therefore the additional task of tracing such points is avoided.

(c) In the present discretization scheme, numerical difficulties are anticipated
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when a collocation point is situated very close to the vertical control
boundaries, as found from the computational experience related to the
linear case (recall the discussion in §3.3). By preventing horizontal dis-

placements of the ‘marker’ points, such problems are also minimized.

Yet another point with regard to the applicability of the present method
needs to be emphasized. The ultimate objective is to be able to simulate the
body motions for a sufficiently long time, preferably over several periods of os-
cillation after a steady state is established, which is different from interaction of
bodies with breaking waves. It must be noted that even in Lagrangian methods
the simulation can not be extended much beyond the time when the wave breaks
(the fluid domain ceases to be simply connected, and the methods become inap-
plicable). Therefore, inability to model multivalued free surface contours does
not appear to be a serious limitation of applicability of the method. Similar
restrictions in applications are typical of most finite-difference algorithms (see

e.g. Telste 1985).

It must be noted that in both descriptions (Lagrangian and the present
method), the fully non-linear free surface conditions are treated and the approx-
imations are introduced by the numerical schemes employed in the integration
of the appropriate evolution equations. The free surface contour in both cases
is defined by the trace of the ‘marker’ points, representing either physical fluid

particles or non-material points on the free surface.
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4.1.2 Spatial Derivatives on the Free Surface

The evolution equations (2.2) and (4.3) require evaluation of spatial derivatives
of 7 and ¢ at the collocation points j. To determine (9n/dz);, n as a function of
z is approximated by a cubic spline. From this approximation, the components

of the outward normal can be calculated:

—(9n/0z);

g 2 wer(4.6(2))
S 1 .(4.6(b
" = T+ @n/0=), P i g
For the spatial derivatives of ¢, we have
G = i
b );( )J/(E)](E)J
=n4%» ..... @7

since 1/(ds/dz); = n.;. Here /s denotes the tangential derivative. To de-
termine (d¢/dz);, once again ¢ as a function of z is approximated by a cubic
spline. From 0¢/0s and ¢/0n, other components of the spatial derivatives can

be determined:

% 06 . 0
- (4.8(a))
LRI G AR AR L (4.8(b))

8z~ "on  "0s
In the software, an IMSL routine for cubic splines with natural end conditions is
used in which no conditions are prescribed at the end points but the penultimate
points enforce continuity of second derivatives (see Ahlberg, Nilson and Walsh

1967).



4.1.3 Simulation Procedure

The simulation for unsteady propagation of steep waves is accomplished by a
similar procedure as in the application described in §3.2.2. A wave potential,
representing an oncoming wave travelling in the positive « direction, is imposed
on 8Dc; at all times. This applied potential is hereinafter called the excitation
potential, since it provides the necessary excitation for initiating the fluid mo-
tion in D. Unlike in the linear case, questions regarding selection of appropriate
excitation potential arise in the present non-linear application. As a first ap-
proximation, the Airy potential given by eqn. (3.3) is chosen as the excitation
potential. Subsequently other forms of excitations can be considered. However
it will be shown later through numerical results that the form of the excitation
potential has little influence on the generated numerical wave in the interior of

D.

An alternative way of simulating waves is to provide a physically moving
wave-maker at one end of the control domain, analogous to the application case
considered in §3.2.3. This procedure was followed in earlier works, e.g. Lin
(1984), Lin,Newman and Yue (1985) and Greenhébw and Lin (1985). In the
present method of following the evolution of the free surface, such approach
would necessitate either a redistribution of the free surface grid or a successive
introduction and deletion of the collocation points, since the wave-maker is likely
to either enter or withdraw from the free surface grid. The possibility of points
coming too close to the wave-maker is also distinct, which is likely to cause
numerical difficulties (cf. §3.3). Provided waves are produced within the control

domain, the source of its generation is not important for the ultimate objective



of wave-body interactions. Therefore, having gained some confidence from the
equivalent linear application case, here the application of a known potential

along a fixed D¢ is adopted.

Several aspects of the numerical scheme, closely related to the specific details
discussed in §1.2.2.2, were found to have important effects on the algorithm and

required special attention. These are addressed below.

4.2 Specific Considerations

4.2.1 Instability at the Intersection of D¢ and 8Dp

On application of an appropriately time-modulated itation Airy potential on
8Dc: in the described algorithm, an instability is found to originate at the in-
tersection of D¢y and dDp. The form of the instability is qualitatively similar
to that in the analogous linear application case when not applying the modula-
tion function. Between the adjacent collocation points on the free surface, the
computed wave elevations and the values of the potential exhibit undesired os-
cillations, the amplitudes of which progressively diminish with the distance from
the intersection. The severity of this, indicated by the amplitude of these oscil-
lations, is considerably larger than those encountered earlier in the linear case
(cf. Figures 3.6 and 3.7). These high frequency short length waves gradually
travel inwards into the fluid domain. More importantly, the amplitudes mag-
nify with such rapidity that within few time steps after they appear (typically
within 10 time steps irrespective of the step size), the solution breaks down. In
view of the fact that the exact free surface elevation defines the boundary of the

domain (in contrast to the mean free surface in the linear case), the increase of



the amplitudes of these oscillations is not surprising.

Application of the modulation function over increasingly larger periods of
time (i.e. increasing the value of o in M(t) in eqn. (3.7)) helped to defer the
initiation of the oscillations, but did not remove or suppress the instability. Sev-
eral forms of artificial smoothing schemes failed to cure the problem. Partial
success could be achieved in keeping the instability controlled by means of exces-
sive smoothing at the expense of large numerical viscosity effects. A particular
smoothing scheme devised on the basis of an averaging principle provided some
success in suppressing the unwanted oscillations. In this scheme, the values of 7
and ¢ on D¢ corresponding to the excitation potential were used to average

the elevation and potential according to the following formulae:

Ro= eh+si+fl
Rl 11—6[2& B O Al G R (4.9(2))

B = ml2fst i+ 964365 +16f]

and for a general point ¢

Uit %lzfg +h+9(fatdfs

I P P e (4.9(b))

where f; and f; are respectively the ith ordinates before and after smoothing,
with ¢ denoting the collocation points numbered in an increasing order in the pos-
itive & direction, and f, represents the values of 7 or ¢ on dDc;. Although free
from instability, the resulting generated waves were found excessively damped

and were clearly unacceptable.

In an effort to search for the root of these spurious high frequency waves,
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some numerical experiments were performed by selecting pre-assigned values of
potentials on D and dDe:, and by prescribing the geometry of dDp. A closer
examination of the generated flow indicated that the computed normal velocities
were extremely sensitive to the free surface contour and boundary data near the
intersection. Large changes in the values of ¢ at the adjoining segments on
the two boundaries produced large velocities on the free surface. In addition,
incompatibilities between the contour of 9D and the free surface elevation of
the wave corresponding to the applied excitation potential on D¢ resulted in

similar erratic fluid motions at the intersection.

A possible explanation for the generation of these oscillations can now be
given. Application of an excitation potential on D¢ can be considered as the
presence of a wave on the upstream side (left) of éDch exterior to D. For
convenience of discussion, this wave will be called the ‘upstream’ wave in the
sequel. The free surface elevation and potential of this wave conform to the free
surface conditions within the approximations of the particular wave theory. For
example, the Airy potential on D¢, implies an upstream wave satisfying the

linearized free surface diti To the i diate right of dDc1, a solution is

sought for such that the full non-linear free surface cohditions are satisfied within
the accuracy of the employed numerical scheme but without approximating the

free surface diti themselves. Conseq ly the free surface elevation and

potential undergo discontinuity across dDci. In other words, the free surface
conditions implicitly satisfied on the left of D¢y (i.e. by the upstream wave)
are inconsistent with the conditions on dDF in the immediate right of dDc;.
This discontinuity is believed to cause large velocity gradients across the vertical

boundary, which in turn initiate the instability. We remark that the application
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of other ¢ li 3 itation p tials, e.g. Stokes second order potential,
was tried with the hope that the non-linear theoretical upstream wave and the
numerical downstream wave across D¢y would be more compatible and thus
would result in a suppression of the instability. Unfortunately, the solution re-
mained equally unstable. Difficulties originating from analogous discontinuities
were known earlier, e.g. Han and Stansby (1987) discussed similar problems,
and Lin, Newman and Yue (1985) identified the discontinuity with the diffi-
culty in Vinje et al.’s (1982) matching of non-linear interior with linear exterior

solutions.

In order to achieve a smooth variation of the free surface elevation and po-

tential across D¢, a matching procedure, described below, is devised.
4.2.1.1 The Matching Procedure

This technique is illustrated by means of Figure 4.1. Consider another ver-
tical boundary dDg, in the interior of the control domain D at a short distance
I from @Dcy. In the existing algorithm, the numerically evaluated free surface
elevation and potential, represented by f>(z), typically exhibit large oscillatory
behaviour as illustrated. A transfer function g(z) is introduced to redefine f,(z)
as fj(z) in the region between dDcy and 0D, henceforth referred to as the
‘matching zone’:

A@=ehz )
where f3(z) is the smoothed curve in z; < z < (21 + 1) , fi(z) indicates the
theoretical (upstream) wave elevation or the potential corresponding to the ex-

citation potential on D¢y and z; represents the z coordinate of dDci. A
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quadratic polynomial is chosen for g(z) :
9(z) = w2’ + @z +as -(4.10(b))
whose coefficients a;, a;, a3 are determined from the conditions:
fi(@1) = fi(z1)
f@m+)=fzn+) L (4.10(c))
2 A+ = 2 hm+D
The derivations of a,, az, az are provided in Appendix A.2. The above procedure

requires evaluation of 9[f(z1 + 1)]/dz which is determined from a second order

central difference scheme (see Appendix A.4 for the formula).

In principle, a higher order polynomial representation of g(z) is possible by
exploiting additional conditions such as continuity of higher order derivatives at
z; and (21 + [). The quadratic function for g(z) is however found to be very

effective in keeping the instability locally arrested and enables the fluid motion

to be followed without further probl originating at the i ion point. It

is noted that a linear form of g(x) was found not as satisfactory in completely

suppressing the instability.

A note of caution is appropriate with respect to the implementation of the
above technique. Due to the chosen coordinate system with origin at the undis-
turbed free surface level, g(z) does not behave properly when fi(z; + 1) and
fa(z1 +1) differ in sign (though not much in magnitudes). This results in a ‘fold-
ing’ of f;(z) as illustrated in Figure 4.2. Additionally, when |fi(z; + I)| ~ 0,
a singularity appears in the derivation of the coefficients (see eqns. (A.2.3) in

appendix A.2). A local shift of the coordinate system removes these difficulties.
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Incorporation of the technique described above is found not to introduce
adverse numerical effects into the interior solution. The computed wave in D
does not degenerate to any significant extent. The additional boundary D7,
can be interpreted as the upstream boundary of a reduced fluid domain D* within
which the fluid motion is sought (i.e. the full non-linear free surface conditions
are satisfied in D*). In other words, the interior domain is stretched by a distance
1 to absorb the ‘impulsive’ nature of the flow which is believed to be an undesired
outcome of the incompatibility of the free surface boundary conditions across
the original boundary dD¢y. The penalty for stretching of D* is that additional
collocation points in ! are required. The consequential additional expense in
computer time is of the order of 10%. Results demonstrating the effectiveness

of this procedure and typical values of | are presented in §4.3.

On the downstream side boundary, it is necessary to determine the inter-
section of dDp with &Dc2. This is determined via a second order Lagrangian
scheme using the data at the three preceding collocation points on dDp (see

eqn. (A.4.4) in Appendix A.4 for the formula).

4.2.2 Instability on the Free Surface ¢

Apart from the instability originating at the upstream side intersection on the
free surface, another instability develops on the entire free surface as the so-
lution progresses. Similar ‘saw-tooth’ instability has been reported by earlier

in g (see the di ion in §1.2.2.2 (c)). Numerical experiments with

various combinations of the spatial and temporal grid sizes were performed with

the hope of establishing a criterion related to these discretization parameters.
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No such criterion could be established. In the present formulation, in which
the collocation points on the free surface points are restricted to move verti-
cally, the arc lengths between adjacent collocation points never reduce below
the horizontal grid spacing. Consequently, if the time step size is chosen prop-
erly in relation to the horizontal projection of the free surface segments, the local
Courant condition is easily maintained. In all computations, the usual C-F-L
condition (Courant-Friedrichs-Lewy condition, see eqn. (3.17)) is maintained in
the entire fluid domain and throughout the simulation period. An alternative
form for a stability criterion based upon a linear von Neumann stability analysis
for the fourth order Runge-Kutta scheme is provided by Dommermuth and Yue
(1987):

2
Ingt (s L R S (4.11)
8Azp| T

which is also maintained in the present computations. The implicit fourth or-
der A-B-M scheme used here has the same order of accuracy as the above R-K
scheme, and in fact has a slightly higher accuracy than the modified R-K scheme
of Dommermuth and Yue (both dDp and ¢ on dDF are upgraded at each itera-
tion in the present algorithm while only the latter is upgraded in their scheme).
Present computational experience indicates that t}:és instability is closely asso-
ciated with the free surface elevation. It becomes more pronounced as the wave
steepens. It should be observed that in the analogous linear application (§3.2.2),

no such problem was encountered. Comp i with ively larger lev-

els of iteration in the time-integration of the free surface conditions and closer
examination of the computed free surface profiles and boundary data suggest
insensitivity of the instability with respect to the time-integration schemes. The

solution indeed converges, usually to an accuracy of 1 in 10~ within the first cor-



86

1986). Remembering the goal of simulating body-wave interaction problems,
the main concern is to avoid the problem of instability so that the solution can
be progressed in time without breakdown and/or suffering from appreciable nu-
merical viscosity effects. In view of these remarks, artificial smoothing appears

justified.

4.2.3 Non-reflective Downstream Boundary

Consideration of the downstream boundary D¢, as a wall, as it was done in
the applications presented in §§3.2.2, 3.2.3, is not a satisfactory solution for long
time simulations. Alternative means of treatment of the flow at this boundary

is clearly necessary.

The specification of a condition on this boundary is analogous to an open

b dary dition or a radiation condition. In the absence of theoretically

rigorous ‘non-linear’ radiation conditions, the other recourse is to construct a
‘numerical’ radiation condition within acceptable limits of approximations. An
appropriate open boundary condition must be sufficiently transmissive such that
all the wave phenomena generated in the interior of D pass through the bound-
ary without suffering from appreciable numerical reflection effects. Additionally,
when the numerical errors attributable to such an imperfect radiation condition
can not be reduced any further, it must be ensured that the stability and con-
vergence characteristics of the entire computational scheme are not adversely
affected and that the interior solution is not contaminated beyond an accept-

able level.

In the present algorithm, a simple open boundary condition is adapted on
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8D¢, which assumes that the potential at this boundary can be written as a
wave form of the same celerity as that of the applied excitation potential on
8Dcy:

&z, t) = ¢(z — ct) a4 9y
where c represents the celerity of the excitation wave (cf. eqn. (3.3)). This
results in the following relation:

3¢ ¢

pc L EIREE Pt

ot n

(4.13)

in which the fact that 8/0n = 8/8z on 8Dc, has been utilized. Eqn. (4.13) has
a form similar to Orlanski’s radiation condition, but its application here is not
strictly equivalent. In Orlanski (1976) or in many finite-difference algorithms
(see e.g. Chan and Chan 1980), the value of c is taken as the celerity of the local
exit waves approaching the downstream boundary, and c is determined from a

1 diffe iation at the neighbouring grid points. In Wu and Wu (1982),

a similar simple form is adopted with ¢ determined from

R \/g—g ..... (4.14)

where d denotes the local water depth at the downstream boundary. Eqn. (4.14)
P

represents shallow water approximation for the phase velocity of an Airy wave,

and is therefore different than the condition applied in the present method (both

methods become equivalent in the limiting situations of d/\ << 1)

The evolution of ¢ is now easily determined from time-integration of eqn.
(4.13) with the application of the same numerical schemes as the ones used
in integration of eqns. (2.2) and (4.3). Simple as it appears, this procedure
results in minimal reflection effects on @D¢2, as the results presented in §4.3

will demonstrate.



88

4.3 Computed Results and Numerical Studies

For the following presentations, the notations described at the beginning of §3.2
apply. It should be noticed that Azr in the present application denotes the
spacing of the free surface collocation points instead of the actual lengths of the
segments. Unless otherwise specified, the applied excitation potential on D¢y

is the Airy potential. The normalizing p ters for horizontal and vertical

length scales and time scale are respectively the length A, height H and period
T of the Airy wave corresponding to the prescribed potential (cf. eqn. (3.3)).

In all computations presented, Azp, Azc1, Azc, and At are constants.

4.3.1 Matching at the Upstream Boundary

Results in terms of the computed free surface profile and distribution of ¢ on
it for varying extent of the matching zone are presented in Figures 4.3 (a) -
(d). For these computations, L = 3A, H/A = 0.05 and d/\ = 0.50. The
discretization parameters are : Azp, Azcy, Azc; = A/24 and At = T/40. The
modulation function (3.7) with o//T = 1 is applied and the free surface elevations
and potential are smoothed using formulae (A.3.3)!and (A.3.4) (see Appendix
A.3) at the intervals of 4 time steps. n in these Figures represents the number
of segments used in discretizing the distance ! between dD¢y and 0D, (see
Figure 4.1), i.e. | = nAzp. The computations cover a range of n from 2 to
10 at an interval of 2. [ therefore varies between the distance of 0.083\ and
0.42). The results are shown for : = 12 and i = 24 where 7 indicates the ith
collocation point on the free surface couﬁted from D¢, in the positive direction

of z. These stations are therefore taken relatively close to the upstream side
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boundary, approximately at distances z. = 0.5\ and z = 1.0\ from D¢y, and
are expected to be most influenced by the matching procedure. The results
clearly show the diminishing effect of the upstream matching with simulation
time. The differences between the computed profiles and potentials are found to
be contained within an initial period of approximately ¢/T < 3, after which the
curves essentially converge. A number of computer runs with other combinations
of Az, At, A\, H, d and L show a similar trend with practically no influence of
the adopted matching upon the interior solution after an initial transient (some

additional supporting evidence will be shown in subsequent computations).

Numerical experiments indicate that the effectiveness of the matching pro-
cedureé is related to the value of n as opposed to the length I. From a consid-
eration of computer time, the value of n should be selected as low as possible.
Even though the above results are presented for n = 2, for some steep waves
(H/A > 0.10) and small grid sizes (Azp/A < 1/40), it is found that this value
of n does not completely eliminate the instability. This is believed to be due
to the use of a central difference scheme (eqn. (A.4.1) in Appendix A.4) in
determining 9[f;(z1 + 1)]/0z in (4.10 (cj), which applies the ill-behaved value
of fy(z) at the first collocation point (i = 1) on ODp. In contrast, the choice
of n = 4 is found to be very effective in removing the oscillations, regardless of
the grid sizes and wave heights. The subsequent results are all computed with
this value of n = 4. Assuming the computation time to be proportional to N
where N is total number of segments on D¢y UADF U D¢, for a typical value
of N = 100 the increase in CPU time due to the introduction of the matching

region is therefore less than 12.5%.

To demonstrate the initiation of the instability when the matching is not
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appear slightly flat as a result of a comparatively poorer resolution. The slight
raise in the ¢ curve near the downstream boundary (8D¢;) for N = 48, which is
perhaps due to the influence of numerical integration of eqn. (4.13), is not very
significant and does not persist subsequently. Note that the computations cor-
respond to values of the matching length [ varying between ! = 0.10\ and 0.25),
which further demonstrate the minimal influence of the employed matching on

the interior solution.

These computations (and many others) indicate that a value of Azp = A/24
and comparable values for Azci, Azc, are adequate for describing the fluid

motion without appreciable effects of lack-of-resolution.

4.3.3 The Open Boundary Condition

The demonstration of the effectiveness of the open boundary condition (4.13)

is the purpose of the following i This is ined by selecting a
range of values for the celerity of the outgoing waves. Taking c in eqn. (4.13)
as ¢’ and writing ¢’ = ac where c represents the celerity of the entering wave at
dDc (as in eqn. (3.3)), computations cover a varidtion of a from 0 to 1, with
specific values of a = 0, 0.25, 0.50, 0.75, 0.90 and 1.00. a = 0 is recognized
to be the condition for which ¢(t) is unchanged on D¢ at all times. The
relevant parameters are : L = 2); d/A = 0.5; H/A = 0.10; Azp,Azc: and
Azc, = A/24, and At/T = 1/40. The free surface elevations at progressing
simulation times of t/T = 4.0, 5.0, 6.0, 7.0, 8.0 and 8.75 are shown in Figures
(a) - (f). It is apparent that the reflection effects at the downstream boundary

increase with the difference between a and 1. The interior solution progressively
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gets contaminated by these reflected waves as the solution proceeds. At ¢/T = 4
(Figure 4.6 (a)), the wave just reaches 0D¢ and not much reflection takes place.
As time progresses, the reflected waves begin to travel inwards. At t/T = 8.75
(Figure 4.6 (f)), the free surface profile for a = 0 with pronounced crest and
trough indicates a full reflection from 9Dc,. Here the wave profile shows a
growth in height by a factor of more than 2. It appears that a standing wave
system is formed by this time. In contrast, results for @ = 1 indicates that the

wave passes through D¢, with minimal reflections.

In Figures 4.7 (a) - (d), we show the time evolution of the free surface at
collocation points : = 36, 40, 44 and 48, corresponding respectively to the dis-
tances of z/\ = 1.48, 1.65, 1.81 and 1.96 measured from 8Dc¢y. The last station
coincides with the last collocation point on the free surface, adjacent to 8Dc¢s.
The reflection effects for various values of a are clearly noticeable. At the sta-
tion 7 = 44 (Figure 4.7 (c)), which is at a distance of 0.19A measured from
0Dc,, reflection effects for a < 0.50 are visible immediately after the initial
transient period of ¢/T & 4.0. Reflection effects for a > 0.75 are comparatively
much smaller. The effectiveness of choosing a = 1.0 for making the downstream
boundary transparent is evident, although values sliéhcly less than 1 also appear

to work well. C

p i are also a pted for values of a greater than 1,

but even for a value moderately greater than one, e.g. a = 1.05, the solution
breaks down after about ¢ = 5T, which is approximately the time when the
wave grows fully at the downstream boundary (this corresponds to the time
estimated from the speed of linear wave group). This breakdown results from
an instability originating at the downstream intersection of 8D and 8Dc». In

view of the success of a = 1.0 in making the boundary sufficiently non-reflective,
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this aspect is not pursued any further.

It is found important to keep the length of the adjacent segments compara-
ble at the intersection of two boundaries. In particular, care must be taken to
ensure that the length of the uppermost segment on D¢ is not reduced consid-
erably in comparison to the adjacent segment length on dDp (roughly less than
1/2). Due to wave run up effects, dDc¢ continuously changes in length. Since
Lhs. of eqn. (4.13) is an Eulerian time derivative, the collocation points on
this boundary are generally kept fixed in space, except for the uppermost seg-
ment. Depending on the length of D¢2, a segment is deleted or an additional
segment is introduced so that the length of the segment in comparison with the
length of the adjacent segment on dDr maintains a ratio between 0.5 and 2.0.
The location of the collocation point within this segment is not changed such
as to facilitate the integration of eqn. (4.13), which means that the collocation
point for this segment is not always centrally located. Recalling the remarks in
§2.2.2, this does not invalidate the numerical discretization. It is also possible
to redistribute the collocation points at each time step with equal spacing and
obtain the required information at the Eulerian points via spatial interpolation.
However, retention of the original segments where i;ossible is computationally
beneficial in that some of the influence coefficients in (2.10) need not be recal-
culated at every step (although this is latter adopted for the wall (§5) and the

body (§6) for reasons mentioned therein).
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4.3.4 The Excitation Potential

To investigate the infl of the excitation potential on the interior solution,

computations are performed for the excitation potential specified as Stokes sec-

ond order potential:

_ HXcosh2m(z +d)/A . 27
PE D) = e S )
3nH? coshdn(z +d)/X . 4w
e ——(z —ct
T TR e

where the first term on the left represents the Airy wave potential (cf. eqn.
(8.3)) while the second term is the second order correction to it. The applied
excitations have a value of H/A = 0.10, for which the second order correction
in wave amplitude is almost 10% of the first order amplitude (note that both
these excitations have the same energy density). The applied potentials are
therefore considerably different. The fluid domain chosen and the discretization
parameters are retained the same as in the preceeding application: L = 2),d =
0.50, Azp = A/24,At = T/40. Figures 4.8 (a) and (b) show the free surface
contour and potential distribution at ¢/T = 4.0 and 8.0. The plots are virtually
indistinguishable. The small difference near the upstream boundary results from
the application of the matching technique at this boundary and is contained
within the matching zone of [ = 0.167\. The evolutions in time at ¢ = 12 and 36
(z/X = 0.48 and 1.48 respectively) are shown in Figures 4.9 (a) and (b). Except

possibly to the sharpest eyes, the differences remain undetectable.

The above results suggest that the interior solution is insensitive to the ap-
plied excitations, provided the same first order amplitude and the period are

retained. Additionally, the results further confirm that the applied matching



A Airy wave pot. on D¢
® Stokes 2nd order pot. on dDcy

1 (a) at t/T = 4.0

n/H

o

o

- \ A L i 0 " n 5
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

o

<] z/A

(b) at t/T =8.0

PoiaLLy]
SoT

n/H

S L L i = ) 1 sy
0.25 0.50 0.75 1.00 1.25 1.50 1575 2.00
z/A

Figure 4.8 Free surface elevations for different excitation potentials; L = 2\, d/\ = 0.5, H/A = 0.10, Azp/\ =
1/24 and At/T = 1/40.



n/H

n/H

a Airy wave pot. on 8D¢;

8 (a) at i = 12 (z/A = 0.48) ® Stokes 2nd order pot. on dD¢,

o)

o

8

o4

o

o

* =y~ T
0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 8,00

/T

8

=8 (b) at 7 =36 (z/\ = 1.48)

o

8 .

°'4

o

o

T — — T - —— - T T —
. 00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 S.00

/T

Figure 4.9 Evolution in time of the free surface for computations corresponding to Figure 4.8 above.

90T



107

does not introduce adverse effects into the domain, since fi(z) in (4.10) is quite
different for the two applied excitations. The application of Airy potential as an
excitation then seems justified in general. Numerical experiments also indicate
a close relation between H and H*, where H* denotes the height of the interior
wave upon reaching a steady state. H*/H is found to be within 5% of unity
for most of the applications. This ratio is on the higher side for smaller values
of H/), as to be expected (a supporting result is shown latter, see Figures 4.12
and 4.13 below).

4.3.5 The Effect of the Modulation Function

All computations presented thus far (for the non-linear wave) were obtained
with the application of the modulation function given by (3.7). The objective
of the following is to demonstrate whether the transients associated with differ-
ent forms of modulation functions have any effect on the solution in long time

simulations.

Figure 4.10 show five plots of the free surface elevations at t/T = 8.5. The
relevant parameters for these computations are samefas in the preceding section.
The five curves correspond to the computations with the application of (3.7) with
o/T =0, 1.0 and 2.0, and the following modulation function:

iin(wt/2a) t<o e (4.16)

M) = { P
with ¢/T = 1 and 2. Notice that (3.7) with ¢ = 0 implies that the excitation
potential is not modulated and that (4.16) violates the condition of 9¢*/8t|i=0 =
0. The plots are practically indistinguishable. The evolutions in time of the free

surface elevations at a location close to the centre of the domain (at ¢ = 24 or
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Figure 4.10 Free surface elevations at t/T = 8.5 for different modulations of the excitation potential; L = 2,
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z/\ = 0.98) are shown in Figure 4.11. All differences are observed to be within
the initial transient of ¢/T < 3.0, after which the plots are in remarkably good

agreement.

This demonstrates that a modulation function, regardless of its form or the
time span over which it is applied, does not introduce effects analogous to mem-
ory effect in simulations of large durations. Such effects, if any, disappear within
a short time. Although the results indicate that the instability which is gener-
ated by the application of an impulsive pressure (as it was found in the equivalent
linear case, §3.2.2) is smoothed out by the use of the matching procedure, fol-
lowing the arguments presented in §3.2.2.1, the application of the modulation
function (3.7) with a finite value of o is preferred (usually a value of ¢/T = 1is
chosen).

4.3.6 Further Results : Comparison with Theories

Figure 4.12 shows the free surface contours for two nominal wave steepnesses
of H/XA = 0.05 and H/A = 0.10 at t/T = 9.0. The computational parameters
are: L = 2.25),d = 0.5\, Az, Azcy and Azcz = A/20, and At/T = T/40.
The evolutions in time at ¢ = 0.48\ and z = 1.48) (corresponding to i = 12
and ¢ = 36 respectively) are presented in Figures 4.13 (a) and (b). A steady
state behaviour with fundamental period T is apparent throughout the control
domain. The waves display typical non-linear characteristics of comparatively
more peaky crests and shallower troughs in comparison with Airy (sinusoidal)
wave profiles. The profile for H/A = 0.10 shows stronger non-linear characteris-

tics compared to the profile for H/A = 0.05, as to be expected.
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A comparison of the profiles at z/A = 0.98 with theoretical profiles for the
Airy wave given by (3.5), Stokes second order wave and Miche’s second order
theoretical profile (Miche 1944) are shown in Figure 4.14. For completeness, the

relevant equations for the second order profiles are reproduced below:

Stokes second order profile

t 37 H? coth(2rd/)\) 2yt
2L e s A
T) T i R T

-]
n(z,t) = 7c0321r(£~
wH?

L 4
+ 4—)\coth cos(; - T)

Miche’s profile

37 H? coth(2rd/)\)
8\ sinh?(27d/\)
TH? 27“1 nnn(4.18)

o oY coth —

H Z: e
9@ 1) = ?COSZR(X— =) + cos41r(x— T)

The above two formulae differ only in the last term, which in the latter formula
is independent of time. The numerically simulated wave compares well with
the second order profiles, but displays stronger non-linear characteristics. For
clarity, an expanded view for one period (4.5 < t/T" < 5.5) is shown in Figure
4.15. The comparatively more peaky crest and shall(;wer trough of the computed

wave are clearly visible.

Finally, results are shown for a particularly long duration of simulation. The
wave chosen is very steep in relatively shallow water: H/A = 0.12and d/\ = 0.24
(note that this gives H/d = 0.5). A relatively finer resolution of Az = \/32
and At = T/64 is used for space and time discretizations. Figure 4.16 contains
7 plots of the free surface profiles at times t/T = 10, 12, 14, 16, 18, 20 and 22.

The comparatively smaller crest at D¢ is due to the influence of the matching
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Figure 4.14 Comparison of the free surface elevafions; the computed plot shows
evolution at /A = 0.98 (i = 24) for the wave with H/\ = 0.10 in Figure 4.12.
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Figure 4.15 An expanded view of the region 4.5 < t/T < 5.5 in Figure 4.14
above.
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Figure 4.16 Free surface elevations; L = 2.25\; d/A = 0.24, H/\ = 0.12,
Azp/A=1/32 and At/T = 1/64.
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procedure and is mainly contained within the matching length of = 0.125\
(n = 4). The agreement of the profiles demonstrates that the wave retains a
fundamental period of T. These plots also indicate that contamination due to
numerical errors or numerical viscosity effects with time is insignificant, since
the successive profiles do not show differences with progression of time. Such
effects evidently do not persist with time. The evolutions in time at five locations
(z/A = 0.375, 0.750, 1.125, 1.50 and 1.875) are shown in Figures 4.17 (a) - (e).

It appears that the simulation can be continued ad infinitum.

Figure 4.18 shows the comparison of the computed wave profile with the
theoretical profiles. The computed profile clearly displays stronger non-linear
characteristics. The same observation is apparent from the comparison shown in
Figure 4.19. These plots suggest that the computed wave is travelling faster than
the theoretical waves. It is possible that the associated transient effects could

contribute to the differences; however, previous p ional results indicat

otherwise (cf. Figures 4.10 - 4.14). Indeed, careful inspection of Figure 4.12
and 4.16 reveals that the computed waves have a length larger than the incident
A for larger wave steepnesses. Comparison of Figure 4.18 with Figure 4.16
also indicates that present computations predict a co!mparatively higher celerity
for steep shallow water waves. Although no quantitative evaluations of the
quantities (e.g. celerity, wave length) have been made, these are qualitatively
similar to well known features of steep shallow water waves (see e.g. Cokelet

1977).

4.4 Summarizing Remarks

This section is concluded with the following remarks:
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(1) The simulation of propagation of unsteady steep waves can be achieved
by imposing an excitation potential on one of the vertical control boundaries
encompassing a rectangular fluid domain. The interior solution is not sensitive
to the exact form of the potential, as demonstrated by imposing Airy and Stokes
second order potentials as excitations. The simulated wave profile displays typi-
cal non-linear characteristics of relatively more peaky crest and shallower trough
in comparison with linear waves. As expected, the non-linearities are more pro-
nounced for steeper waves. Very steep waves in reasonably shallow water were
simulated for time durations of over 20 wave periods. A steady state behaviour
occurs in the entire domain. It appears that a ‘numerical wave tank’ can be set
up in the described manner, i.e. by imposing an Airy potential on D¢, instead

of providing a physically moving wave board.

(2) The instability originating at the i ion of 8D¢y and 8D is be-

lieved to be due to an incompatibility of the free surface boundary conditions
at this boundary. The problem appears to be similar to the difficulties that
are associated with the matching of an ‘interior’ non-linear solution with ‘exte-
rior’ linear solutions in two dimensions (e.g. Vinje, Maogang and Brevig 1982
have encountered difficulties in a similar matching; ‘Htm and Stansby 1987 have
discussed difficulties related to the impulsive wave-maker problem at the inter-

section due to an incompatibility of the boundary conditions).

In the present algorithm, this difficulty is circumvented by means of a match-
ing technique, which employs a quadratic polynomial smoothing scheme in space.
The effectiveness of this scheme is demonstrated by a number of computed re-

sults.
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(3) Although in the present mode of following the free surface, clustering
of the collocation points is avoided without having to resort to regridding, the
free surface instability still persists. The present study suggests that violation
of local Courant condition is not the primary mechanism of this instability, con-
trary to the postulation of Dommermuth and Yue (1987). It appears that the
instability is intimately related to the accuracy of computation of d¢/dn on
the free surface (i.e. the Laplace equation solver). The present experience in-
dicates that the problem is associated with the well documented ill behaviour
of boundary integral methods near sharp corners. In this respect, the present
computations support the opinion expressed in Schultz (1987) (see also the dis-
cussion in §1.2.2.2 (c)). Furthermore, it does not appear that the schemes used
for integrations in time are crucial with regard to instability. Improvements in
time integration schemes are expected to increase computational efficiencies in
that relatively crude discretizations can be made to achieve an increased accu-
racy (see e.g. Dold and Peregrine 1986), but it does not appear to provide a
remedy for the instability, as the computations with progressively larger levels
of iterations have indicated. In the present method, this instability is suppressed

by means of a smoothing scheme applied intermittertly.

(4) Albeit simple, the wave outgoing condition (4.13) produces good results
extending over the entire period of computations as well as for all combinations
of H, L and d for which computations are performed. The interior wave is not
apparently contaminated by numerical reflection effects even after long time of
simulations and at locations close to the downstream boundary (see e.g. Figure
4.17). This demonstrates effectiveness of (4.13) in modelling of non-linear wave

propagation.
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5 Steep Wave Interacting with Vertical Walls
5.1 General Considerations

In continuation of the preceding developments, this section considers the in-

teraction of a steep wave with an impermeable object. As a first application,

interaction with a vertical wall is i tigated. This represents the

PP
simplest case of introducing a surface-piercing body in the fluid. Additionally,
available experimental and theoretical perturbation solutions for standing waves

interacting with walls provide an excellent data for comparison.

Identifying the downstream boundary with an impermeable wall, the bound-

ary condition imposed on @D, is that of zero normal velocity:

9%

—_ = Letdodl

5 =0 (5.1)
The simulation proceeds in the similar way as in the preceding application

with the exception that (5.1) now provides the necessary boundary data (9¢/8n)

on D¢ at all instants (similar applications have been previously considered in

the linear application cases in §§3.2.2,3.2.3). The wall-free surface intersection
point is determined from a three point (second order) Lagrangian extrapolation
formula using 7 values at the three preceding points, as it was done earlier for

determining dDg N 8Dc;.

The pressure on the wall is computed from unsteady Bernoulli’s equation:

1} il
p=—pgz— pg - 5A(Vey - (5.2)

This involves time derivatives of ¢ at the Eulerian points on the wall, which is
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determined from a second order central difference scheme:

96 _ #(t+ At) — 4(t = At) wl(5.3)
T 2At

V¢ on the wall is simply 8¢/9z, since from the imposed condition (5.1), 9¢/0z =
9¢/0n = 0. A second-order central difference schemes is used to compute 9¢/9z
from the nodal values of ¢ on the wall except for the end points, for which second
order forward and backward schemes are employed (Appendix A.4 provides the

necessary formulae).

In this tion, it is found y to redistribute the collocation points

1
PP

on the wall at every time step such that the segments have an equal length. Oth-
erwise, at the discrete time instants at which points are introduced or deleted,
the abrupt changes in the uppermost segment size cause ‘jumps’ in computation
of 8¢/0t through (5.3) (in contrast, no difficulties were encountered in inte-
grating (4.13) in the preceding application, cf. §4). These ‘jumps’, appearing as
sharp peaks on the pressure curves, however, do not interfere with the time simu-
lation procedure. The flow evolution is independent of the wall pressures which
are an extracted interim data. From this consideration, it is possible to em-
ploy numerical filtering techniques to remove these hi,gh frequency disturbances.
Redistribution of the collocation points on dD¢, ne;:essitates determination of
¢(t—At) and ¢(t+At) at the Eulerian points at time ¢. These are determined by

approxi ing ¢; as a fi

of z; by a cubic spline. It is observed here that

troduce minimal ical ima-

the spatial differentiations are found to i
tion effects, since the changes in the locations of the collocation points between
consecutive time steps are of the order of 1/50 th of the segments lengths. This
was verified by employing linear and second order interpolation schemes which

produced results within 0.01% difference.
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The horizontal force (the vertical component of the force is zero) and the
overturning moment about the foot of the wall are determined by a direct inte-

gration of pressure:

Toi= A p.dS 5.4(a))
M= /a lpCardd S (5.4(b))
Force integration can be expressed as
& 9¢; 09; 2
i SRS Tl el L SR REEE. 5.5
F, lep[ 9% — = 0.5( 2 P1AS; (5.5)

where j = 1, N,, are the collocation points on the wall, AS; indicate the suffixed

segment lengths, and the pressure terms are calculated at the indi; d coll

tion points. This is i with the imation of value of ¢;

over each segment. The static term is also correctly evaluated due to central

location of the collocation points. For t p ion, the correspond-

ing static term has a quadratic variation, and therefore integrated by means of

Simpson’s rule.

Most of the presented results are in terms of the pressures at the undisturbed
free surface level z = 0 and at bottom of the wall # = —d. This maintains a
uniformity in presentation as well as facilitates con;pa:isons with experimental
results of Nagai (1969) which are provided mostly for these locations. Since the

collocation points on the wall conti ly undergo ch of locati due to

the redistribution, once more spatial interpolations/extrapolations are used to
obtain the necessary information (note that the flow evolution is independent of

these interpolations/extrapolations).
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5.2 Computed Results and Numerical Studies

In view of the results discussed in §4, all computations hereinafter are performed
by specifying the Airy potential (eqn. (3.3)) on the upstream boundary. The

notations have the same meaning as described earlier, unless indicated otherwise.

5.2.1 Steady State Behaviour of Solution

The purpose of the following computations is to examine whether a steady state
behaviour of the pressures on the wall can be achieved, as well as to establish
the time span upto which the simulation can be carried out meaningfully. The
simulation time within which reliable results can be extracted will clearly depend

on the distance of the wall from the upstream boundary.

The test case selected corresponds to an oncoming steep wave at the up-
stream boundary (0Dc¢1) with the parameters: A = 246 cm., H = 20.72 cm.,
d = 201 cm. (H/A = 0.0817, d/X = 0.82), which means that the excitation
potential has these values of H, A and d. This particular case is chosen because
of the corresponding experimental results available for comparisons. The free
surface is discretized with segments of constant len‘gth with Azp = A\/24, and
there are 20 segments on each of the vertical boundaries. The time step is,
At/T = 1/40. The matching zone extends over 4 collocation points and the

modulation function M(t) given by eqn. (3.7) with ¢/T =1 is applied.

The time evolution of the run-up profiles, pressures on the wall at z = 0
and z = —d are presented in Figures 5.1 (a) - (c) for the following six values:
L = 1.5, 2.0), 2.5}, 3.0), 3.5\ and 4.0\ (note that L signifies the distance

of the wall from the excitation boundary). In all Figures, two times 7} and T}
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are marked. T} is the estimated time at which the fully developed front of the

oncoming wave reaches the wall, which is approximated by:

JS ) S S L (5.6)
where ¢, denotes the group speed of the linearized wave,
= (l + k| )
=43 Sinh2kd wee(57)

where k = 27/ is the wave number. The above implies that we have assumed
the wave front to travel at the linear group velocity after the excitation potential
has acquired its full value (i.e. ¢* = ¢, cf. eqn. (3.6)). The reflected wave,
also assumed to propagate with the same speed, travels back to the excitation
boundary at Tj:

T,=Ti+L/c, een(5.8)

These two time values indicate an approximate interval of time during which
the results are expected to reach a steady state behaviour and can be used with
some confidence. As can be observed, in all computations the run-up and top
pressure (i.e pressure at z = 0) exhibit a steady state behaviour in the time
interval T} to T, which extends over more than four periods for L > 2.5)\. The
variations between successive peaks are usually not' more than about 3%. The
bottom:pressure (pressure at z = —d) appears to acquire its steady state nature
some time after Tj, approximately one wave period later. The cause for this
delay is not known, nevertheless after this time the pressures do exhibit a sim-
ilar behaviour, although the variations here seem to be slightly larger than in
the other two time histories. This could be due to the extrapolation required to
obtain these values, and/or the relative smallness of the magnitudes involved.

For L = 4), the computation is carried out until ¢t = 16T because of larger
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5.2.2 Quantitative Evaluation : Comparison with Experimental and

Perturbation Results

A substantial amount of experimental data was reported by Nagai (1969) on
results of experiments conducted over a broad range steepnesses (H/)) and
relative depths (d/)). Here H and A denote the height and length of the incident
progressive wave respectively, and are taken as equivalent to H and A of the
prescribed potential on D¢y (cf. eqn. (3.3)). These results are used extensively
for the purpose of comparison. Besides, similar experimental results are scarce
in open literature (some other results are available in Goda 1967, but are in
forms not very suitable for comparison with the present results). Recognizing
that a number of combinations of the relevant parameters admits the desired
simulations as well as considering computer time, the computations are unified
with the following parameters: L = 2.5), Azp = A/24 and At = T/40 ; the
segment sizes are decided depending on d such that Azcy and Azc, are closely
comparable to Azp ; the matching zone extends over four collocation points;
o/T = 1 in modulating the applied potential; the free surface smoothing is
applied in general at every fourth step (in some cages of large H/A and small
d/ A, the free surface instability had to be controlled by applying more smoothing,
e.g. smoothing 7 at every 2nd step, ¢ at every 4th step, etc.) Additionally, only
the results extending for two periods located centrally in the time interval T}
to T, are used, although in all cases more than three periods of steady state

behaviour in this interval were observed.

In Figures 5.2 - 5.5, results are presented in terms of the pressure at z = 0

and z = —d for all four cases for which Nagai provides experimental data. The
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theoretical predictions from linear and third order standing wave theories are
also plotted. The third order theory was originally developed by Tadjbaksh and
Keller (1960) and was used by Nagai for comparison. For completeness, the

relevant expressions are reproduced below:
(i) linear theory : d/A > 0.5

o) _

1
—z— lIs:Hzeﬂ" sin® wt + He* coswt — —kH? cos 2wt ----+(59)
P9 2 2

(ii) linear theory : d/A < 0.5

kH?sin® wt
l% =~z -+~ [cosh® k(d + 1) — cosh? k(d + 2)]
£ cosRd ) i comb i) ) 6 VAR B (5.10)

cosh kd coshkd °

(iii) third order theory

ple) iy 1o B U
et + Acoswt + 4IcH sinthd[I 2sinh® k(d + )]
¢
+B cos 2wt + C coswt — D cos 3wt «eee(811(a))
where
_ coshk(d+2)
S e e RO AR R (e (5.11(b))
gl i gl 3 cosh 2k(d + z)
2 4kH sinh de[ sinh? kd 1

+2sinh? k(d + z) — 2tanh kd sinh2kd] .. (5.11(c))
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R ) 5 i i 4 coshk(d + z)
C = 256 [4(9wg® — 12wy * —'3 — 2wy) e hEd
i cosh k(d + z) — cosh 3k(d + z)
cosh kdsinh* kd
(3wt — ycosliSk(dil 2 LR 5.11(d
+ (1 + 303)(3w5® = 5 + 2w — o] (5.11(d))
i ERHE ki -, cosh k(d + z)
D= 256 [3(9wg® + 62wy * — 31) )
121 cosh k(z + d) — cosh 3k(d + 2)
cosh kdsinh* kd
& & _4.3cosh3k(d + 2
+ (1 + 3wg)(—9w5™? + 22w5® — wu.,‘)ﬁ]
<nn(5.11(e))
wg = tanhkd Le(BA(E))

In the above, p(z) denotes pressure at a depth z , w is the fundamental frequency:
w = 27 /T, and the wave is at its crest at ¢ = 0. Computer programs were
written to calculate p(z) from the above expressions. From the results obtained,

the following observations can be made:

(i) Figure 5.2 corresponds to a very steep wave (H/A = 0.082) in deep water
(d/X > 0.5), which is the same as the wave jn Figure 5.1. The present
result for the pressure at z = 0 is in closer agreement with experimental
results than the theoretical predictions. The dip or double peak in the
curve in the computed result is in agreement with the experimental curve.
The agreement at bottom is also good. However, computed results indicate

a phase difference, the numerical solution is leading by about 7/8 radians.

(ii) Results in Figure 5.3, corresponding to a steep wave in shallow water, show

once again that the computed pressure at z = 0 is comparatively in better
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correlation with experimental results than the theoretical solutions. The
double peak observed in the experimental curve is again reproduced by the
present computations, but the theoretical solutions are unable to predict

this feature. The pressure at the bottom is not in as good an agreement.

(iii) Figure 5.4 shows the results for a small amplitude wave in shallow water
(d/X = 0.133). The experimental results are larger than either theoretical
predictions or the present computations both at z = 0 and z = —d. Thisis
somewhat surprising, since for waves of such small amplitude, theoretical
predictions are expected to be in good agreement with experiment. The
computed results, however, compare relatively well with the theories. For

this case, it is believed that comparatively larger errors in experimental

measurements are not unusual due to 11 of the d

(similar doubts have been expressed in Fenton 1985).

(iv) In Figure 5.5, which corresponds to a shallow water wave of large steepness
(H/X > 0.05), the results for wave run-up on the wall are also presented,
since the corresponding experimental data is available. The computed
results for the run-up are in closer agreement with experimental data, dis-
playing relatively more peaky crest and broader trough. An interesting
feature is the occurrence of a double peak in the trough. Such behaviour
is not unusual in the profile of a progressive steep water wave. Indeed, for
H/X = 0.059 and d/X = 0.13, the second order Stokes theory predicts a
null trough due to occurrence of a secondary crest in the trough (Wiegel
1964). Comparing the present values of H/A = 0.058 and d/A = 0.133,
appearance of a secondary crest is then not surprising. The pressure re-

sults at the top are also in relatively good agreement, showing the double
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peak which once more the theoretical predictions can not reproduce. The

agreement of the pressure at the bottom is very good.

Computations are also performed for a number of other conditions for which
Nagai provides experimental results. Considering computer time, selected cases
in the range of d/A < 0.5 and H/A > 0.05 are run. These conditions of shallow
water steep waves are known to possess significant non-linear characteristics
and are precisely the situations for which the usefulness of the present method
is most appreciable. Majority of these exhibit presence of double peaks in the
top pressure curves. For such cases, maximum simultaneous pressures, which
correspond to the vertical distribution of pressures at the time instant when the
total horizontal force exerted on the wall is maximum, do not occur under the
wave crest (see e.g. Figures 5.2, 5.3 and 5.5). Since Nagai provides the pressure
distributions only for maximum simultaneous pressures, a direct comparison is,
in general, difficult. Instead, a qualitative description of the pressure curves is
provided in Table 5.1, which describes and compares the peaks in the pressure
curves both at z = 0 and z = —d. The experimental results are taken from
Nagai’s (1969) Figure 5, where graphs showing limiting values for H/A and d/A
for which the pressure curves change from single tonouble peaks are provided.
The comparison is remarkably good, including situations where the values fall
very close to the limiting lines (indicating that a transition from single to double
peaks is just beginning to occur). It appears that the present computations are

able to reproduce all frequency components in very good qualitative agreement.

Figures 5.6 and 5.7 show the vertical pressure distributions for two cases for
which the maximum simultaneous pressures occur under the wave crest. The

computed results contain two curves, corresponding to the two peaks in the



Table 5.1 Comparisons of the qualitative nature of the pressures histories with the exper-
imental results of Nagai (1969); 1 = single peak; 2 = double peak; 1 ~ 2 indicates that a
transition from single to double peak (or vice-versa) is just beginning to occur.

Experiment Present
Serial | A H d d/\ | H/A (Nagai 1969) Method
No. | (em.) | (em.) [ (cm.) p(z=0) | p(z=—d) | p(z=0) | p(z = —d)

246.0 | 20.17 | 201.0 | 0.814 | 0.082
294.0 | 19.20 | 53.3 | 0.181 | 0.062
400.0 | 7.0 | 53.3 [0.133 | 0.018
405.0 | 23.20 | 53.3 [0.132 | 0.058
237.6 | 8.55 | 48.0 | 0.202 | 0.036
181.5 | 13.61 | 45.0 | 0.248 | 0.075
171.8 | 9.62 | 45.0 | 0.262 | 0.066
400.0 | 9.20 |.200.0 | 0.500 | 0.023
844.0 | 40.51 | 200.0 | 0.237 | 0.048
619.2 | 37.15 | 200 | 0.323 | 0.060
550.3 | 35.22 | 197.0 | 0.358 | 0.064
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Figure 5.6 Vertical distribution of maximum si-
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5.2.3 Non-linear Effects

To demonstrate the non-linear effects in the total force, comparisons are made
between results obtained for two different steepnesses: H/A = 0.082 and H/\ =
0.02 for a water depth of d = 0.817\ (the steeper wave corresponds to the
results of Figure 5.1). The wall here is located at L = 3.25)A. The results in
the interval of T} to T, are shown in Figure 5.10. The mean hydrostatic part
(pgd?/2) is excluded from the force which is non-dimensionalized with respect
to (pgH/k). Non-linear effects with pronounced double peaks for the steeper
wave are apparent. It is clear that the force amplitudes are considerably higher

for the steeper wave. The increase is in order of 30% in negative amplitudes.

Figures 5.11 (a) - (c) show the run-up, non-dimensionalized horizontal force
and overturning moment about the foot of the wall for a sequence of steepnesses:
H/X = 0.0, 0.25, 0.50, 0.75 and 0.10. The mean hydrostatic parts are excluded
(which is pgd®/6 for the moment part). The water has a depth of d = 0.5\
and the wall is located at L = 3\. The zero steepness case signifies a linearized
solution in which the simulation is achieved by considering the linear free surface
conditions (cf. §3). A monotonic increase in the fon-linear effects with wave
steepness is evident in the run-up profiles. For the steepness of H/A = 0.10,
the run-up profile is very close to the limiting value of a non-breaking standing
wave (H,/A = 0.218 according to the theory by Penney and Price 1952 where
H, is the limiting height of the standing wave). An interesting observation is

a phenomenon similar to beating, or presence of low frequency components, for

the larger H/\ values. Closer ination reveals ab of such modul

of the amplitudes for the linear case and lower wave steepnesses, which suggests
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Figure 5.11 Run-up, horizontal force and overturning moment on a vertical wall
for oncoming waves of different steepnesses; L = 3A, d/A = 0.5, Azp/A =1/24
and At/T = 1/48; the plots are shown within the interval T} (= 77T) and T
(= 13T); H/X = 0 signifies a linearized application of the method where the
boundary conditions on the free surface are linearized and dDF is z = 0 (§3); the
run-up plotted is the trace of dDr N &Dc3, which is at z = 0 for the linearized
solution, and hence not plotted. !
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this to be rather a non-linear phenomenon than outcome of numerical errors.
Considering the force results, it is seen that the predicted positive amplitude is
maximum under the wave crest for the linear solution and the effect of steepness
is to reduce this amplitude. The negative amplitudes occur under the wave
trough in all cases and an increase in the force amplitudes is apparent here. The
amplitudes of the overturning moment do not exhibit as much variations with
steepness. Here the effect of steepness appears to be formation of a double peak

under the crest.

5.3 Summarizing Remarks

On the basis of the numerical study and the results presented above, the follow-

ing conclusions can be reached:

(i) The described simulation can be applied to study the interaction of steep
waves with a surface-piercing fixed object. The presented results demonstrate
that a steady state behaviour in the pressure and forces on a wall in the presence
of an oncoming steep wave can be achieved for time intervals extending over
several wave periods, depending on the chosen co‘mputationa.l domain. The
run-up on the wall demonstrates that the wall and the free surface intersection
point is determined within an acceptable limit of accuracy. This is further
confirmed by the comparisons of pressures at z = 0 with experimental results,

since pressure at this point depends directly on the run-up profile.

(i) The present results in general correlate better with experimental results
of Nagai in comparison with the agreements of the theoretical linear and third

order perturbation solutions. The present method is able to predict the associ-
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ated non-linear features, in particular the frequency components in the pressure
curves, as demonstrated by the double peaks in the curves. This prediction is in
very good agreement with experimental results and better than existing higher
order perturbation solutions. The advantage of the numerical method over per-
turbation methods results from the validity in applicability of the present scheme
over the entire range of relative depth and wave steepness. Additionally, irregu-

lar geometries of the wall and/or the bottom surface can be considered directly.
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6 The Floating Body Problem
6.1 General Considerations

In this section, the problem of motions of floating bodies in steep waves is
considered. As discussed in §2.1, a floating body B is introduced in the fluid
such that its submerged part is completely contained in D (see Figure 2.1).
The desired objective is to expose B to an incident steep wave train and to
subsequently follow the motion of B. A propagating steep wave is generated in
the manner described earlier, developing at dDc1, travelling towards positive
z direction, and eventually interacting with B. The aim is to simulate the

subsequent responses of B.

For this simulation, it is necessary to know the exact location of B at every
time instant. In addition, a relation between ¢ and d¢/dn on the body surface
(0Dp) is to be established such that evolution of the boundary data on dDp can
be followed. The required information is obtained by invoking the equations of

body motion and the body kinematic condition.

6.1.1 Equations of Body Motion

For the following developments, it is convenient to introduce an additional co-
ordinate system fixed with the body. Accordingly, a body-fixed right handed
rectangular Cartesian coordinate system Gz'z’ is defined such that its origin G
lies at the body’s centre of gravity (CG) and the axes coincide with the principal
axes of inertia (Figure 6.1). G2’ is directed vertically upwards in the undisturbed

position of the body. The body geometry is invariant in this coordinate system
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Figure 6.1 Inertial and body coordinate systems.

Figure 6.2 Interpolation for ¢(x’) on dDp.
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and therefore the instantaneous contour of dDp to an observer stationary in
space is completely defined by the location and orientation of Gz'z’ system with
respect to the Ozz system. The coordinates of the radius vector of a point fixed
with the body in the Ga'z’ system, denoted as {x}’, is related to the coordinates
of radius vectors of the same point and the CG of the body in the space fixed

system, denoted by {x} and {xg} respectively, by the following:

{x}' = [R] {x — x5} o)
or alternatively

{oc gl = IRTH A [OR e (6.2)
[R] in the above represents the matrix of coordinate transformation and the

superscript T indicates a transpose. [R] is given by:

cosf sinf
R] = [ ficre 9] ..... (63)

where 6 denotes the angular displacement of Gz’z’ system with respect to Ozz
system, measured positive counterclockwise.

The general equations of motion for the body can be written in the familiar

- {
Newtonian forms: ’

2

R=mEe . (6.4(a)
2

S aa:f ..... (6.4(b))
26

M, = Iggt—z ..... (6:4(c))

where F;, F. and zg, 2¢ are the components of the force and radius vectors F
and xg in ¢ and z directions respectively; M represents the angular moment

about an axis passing through G and orthogonal to Gz’ and G2'; Mp denotes
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the body mass and I3 denotes the mass moment of inertia about the axis about

which Mj applies.

The external fluid forces and moment exerted on B can be obtained by direct

integration of the fluid pressure on dDp:
) AT S e R e N TR s (6.5(a)
F /a i p(x) ndS (a))
= %4 TR R 6.5(b
My = [ o0 (¢ xw)as (6:5(b)
where n and n’ are the unit normals on 8D directed outwards of D (i.e. inwards
to 8Dp) in the inertial and body systems respectively and a ‘x’ indicates a

vectorial cross-product. In the sequel, the primed and non-primed symbols

are understood to be quantities with respect to the Gz’z’ and Ozz systems

respectively, unless defined ifically. The exp ion for t in (6.5 (b))
is written in terms of the variables in a mixed system of reference. This can be

recast in the following form consistent with the force expressions:

My= /ausp(x) [(x — xg) x n]dS ..(6.6)
since X’ X n’ = (x — Xg) X n. In their component form, these expressions are:
= 1, PedS y .(6.7(a))
[
Eo= [ pnds cene(6.7(b))
My = L L Pl=(z = za)ne + (z —za)nJdS (6.7(c))
5

6.1.2 Body Kinematic Condition

On the body surface, the fluid side normal velocity 8¢/dn is equal to the normal

component of the body velocity V, by virtue of (2.5). For any point ¢ on dDp,

R mel e AT TS LR S (6.8)
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where v, denotes the velocity vector of dDp at g. From rigid body kinematics,

we have

Vg = Ve+ @ xx,

Y b S <o) [ SR S (6.9)

where v denotes the translational velocity vector for G: vg = 9%g/8t and w
denotes the rotational velocity of B taken about G: w = 90/dt. & represents
@ in a vectorial form, i.e. & = wk where k is a unit vector orthogonal to Gz’
and G2’ (positive when directed outwards of the paper in Figure 6.1). From
(2.5),(6.8) and (6.9), the following relation results:

9
I O O RECEL)

where the suffix ¢ has been replaced with j indicating a collocation point. The
above expression provides the relationship between the fluid velocity d¢/0n at
any point on dDp in terms of the body displacement, velocity and geometry,
all of which are defined consistently in the inertial frame of reference (the Ozz
system).

.

6.1.3 Basic Algorithm for Following the Motion of the Body

The solution algorithm of §2.3 can now be adopted for simulation of motions of
B. The boundary data on dDp are interconnected by means of relations (6.7),
(6.10) and Bernoulli’s equation (5.2). At any instant, presuming 9¢/0n to be
known on 8Dpg, the other boundary data ¢ is determined from the solution of the
integral relation (2.6) (see §2.2). From this, the fluid pressure (p) exerted on the

body can be determined by utilizing Bernoulli’s equation (5.2), since p depends
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(6.9) and (6.14), d$/dt at the collocation points fixed to the body surface are:

&) = &)~ %"—m(z, e
{Oza 5(1:'—16))(6‘21‘ sl (L)

Unlike in the determination of wave interaction with a fixed object (§5), a
straight-forward central difference formula (5.3) can not be employed in deter-
mining (9¢/8%t);, since ¢;(t + At) in this case will not be known a priori. The
evaluation of this term is discussed latter (§6.2.3). To determine the tangential

derivative 9/0s of ¢;, we use

¢ 643 ds
(it —~);‘/(6—j);‘

AS (3] )i 6.16)

since for the straight line segments, (9s/95); = AS;j. To determine (9¢/9j);,
appropriate second-order difference formulae are employed (see Appendix A.4).
This is found permissible despite sharp changes of dDjp, since ¢ on the surface
is in general a smoothly varying continuous function. This has been confirmed
by plotting ¢; against j for several conditions. The z and z derivatives of ¢ are

readily obtainable from relations (4.8(a)) and (4.8(1‘5)), from which

(Vo)

az>1+( ),

=( ), ( ), ..... (6.17)

This completes the essential details in evaluation of the pressure terms. Re-

calling relations (6.13), the force expressions can be replaced by the following:

Ng
F= Z_:[(Pl)j +(p2); + (Pa)iln=;AS; e (6.18(a))
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F =3 [(m); + (p2); + (pa)ilns, A e (6.18(b))

Ns
=1
in which the approximation that ¢;’s are constant over the segments is utilized.
The static term p; and the geometry dependent term in p, (see eqn. (6.15))
are also correctly integrated due to their linear dependence on x and central

location of j within the segments.

For evaluation of the moment part, the static term (Mj, ) is
Ns
Mo, =—pg [ 2l~(z = 26)ns, + (2~ 26)nJdS  ..(6.19)
j=1748;

which has a quadratic variation with x and is therefore integrated using Simp-
son’s rule. The other two terms are linearly varying with x and thus expressions
similar to (6.18) are applicable. In the present algorithm, however, Simpson’s

rule has been applied for evaluation of all the three terms.

It is straightforward to employ other more popular and refined rules, e.g.
Gauss quadrature, for these integrations. In this context it is observed that
such refinements do not lead to additional accuracies in the above integrations.
Within the fundamental approximations of the present discretization scheme

(§2), the integration rules adopted are exact. (

6.2.2 Discretization

It is convenient to describe the body geometry with respect to Gz'2’ system in
which it is invariant. Denoting D as the complete contour of B (note that
dDY is not necessarily a closed contour), the surface can be subdivided into
segments once for all. To determine the wetted contour dDp (0Dp C dDj),

the intersections dDr N 8Dp need to be determined. These are determined via
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a second order extrapolation scheme in which a second degree polynomial is
assumed through the three points on dDf adjacent to dD%g. In principle, this
is similar to the Lagrangian extrapolation scheme applied earlier in determining
&Dfp N 8Dc, (§84,5). The procedure here, however, is more elaborate in that

it involves consideration of each on dD% in i d ination

of the roots of a quadratic, followed by a searching procedure to locate the two

roots which represent the intersection points.

The discretization of 9D once for all, determination of 8D N dDr and
subsequently consideration of only those segments in dDp, is found to produce
instability in the force computations and a consequential divergence of the so-

lution. This is because this tion scheme i introduction or

deletion of segments on the body near the intersection point, which in turn
produces ‘spikes’ or pressure impulses in the computation of the dynamic part

of the pressure p,. Although similar problems were encountered earlier in the

1 of waves int ting with fixed objects (§5), here the computations

can not be i d due to the coupling nature of the forces with the time ad-
vancement of the solution. Furthermo‘re, since generally a backward difference
scheme in time can be used for evaluating 9¢/0t, thé solution is found to diverge
almost immediately after starting. This problem is overcome by redistributing
the collocation points on the body at every step such that the segment sizes vary
smoothly in time. In the present algorithm, we first determine 8Dr N dD5 and
divide 8Dp at every step, keeping Np constant. We note that the variation of
the segment sizes between adjacent segments is not as critical ( i.e. the solution
is relatively insensitive on the variation of (Azp); with j while Azp(t) must not

have large and abrupt changes with ¢).



164

Redistribution of collocation points on Dp implies change of the locations
of the points (i.e. X’;’s change with time). In the computation of d¢/dt a spatial
interpolation for ¢; becomes necessary. This can be more clearly seen from the

following. On 8Dp, we have

65 = 6(Xi(t),1)

In general, for a backward difference scheme for d¢/dt,
d¢

Gat

)i = @le(x'(t),), (x's(t),t — At), -+, $(x's(t), t — NrAt); At]

where ¢ means ‘a function of’. The variable Nr in the above depends on the
order of the difference scheme chosen (e.g. Nr = 2 for a second order scheme).
Expression (6.21) indicates that we have to determine ¢(x';(t),t—mAt) from the
available ¢(x’;(t—mAt),t—mAt)form = 1,- - -, Np. This requirement is similar
to the analogous wall case except that ¢; can not be considered a function of z;,

since z; in this case is not ily a ically i ing or decreasing

function for all j = 1,---, Np. It is also not possible to consider ¢; as a function

of j as was done in determining the tangential derivatives of ¢. We therefore in-
I

troduce another variable v;, which is essentially the angular coordinate of x’; as

shown in Figure 6.2, and assume ¢; as a smoothly varying function of ;. Except

for very geometries, v; will lly be a monotonically increasing

function of j. To obtain the required inf tion, we now approxi ¢jasa
function of v; by piecewise polynomials and interpolate for ¢(x';(t),t — mAt).
In general this spatial interpolation is expected to introduce very little numeri-
cal approximation errors, since the changes in x’; between two consecutive times

are very small: typically |x';(t) — x';(t — At)| < 0.02Azp where Azp denotes
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the length of a segment on dDp. Computations using linear and second order
interpolation rules were found to produce practically indistinguishable results.

In the present algorithm, the second order rules are retained.

The above completes the discretization of Dp. On the free surface, a similar
redistribution of the collocation points becomes necessary. Except for a wall-
sided body in heave motion, any other combination of the body geometry and
modes of motion causes a change in the size of the segments adjacent to the
body, eventually leading to a deletion or introduction of a collocation point.
For the same reason as on the body, this destabilizes the force computations.
Therefore the original location of the collocation points can not be retained, and
must be redistributed at every time step. This necessitates an interpolation of
71; and ¢; in space for integration of the free surface evolution equations. Instead
of storing and interpolating between 7, and ¢;, the values of the right hand side
of (2.2) and (4.3) are stored (i.e. f in eqns. (A.1.3) in Appendix A.1) for the
required number of past steps (four steps for the integration scheme employed)
and used for interpolation. This results in a slight reduction of the computations

in that the computations for the r.h.s. of (2.2) and (4.3) need not be repeated.

The interpol are lished by approx fi as a function of z;
by a cubic spline. With regard to the associated numerical inaccuracies, earlier

remarks on discretization of Dp apply.
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6.2.3 Integration of the Equations of Motion

The system of equations of motion (6.4) can be decomposed into six ordinary

differential equations of the first order:

Oug F,
R TR L YL (6.22(a))
a;_c o i e (6.22(b))
g _ F:
Zo - £ en(6.22(c))
% L0k RN LU (6.22(d))
ow M,
o en(6.22(e))
g ity SRR ) (6.22())

A number of standard techniques are available for integrating above system of
ordinary differential equations. In the present algorithm, for convenience as well
as to be consistent with integrations of the free surface conditions, a fourth order
A-B-M scheme was originally employed. However, application of this scheme was
found to lead to an instability of the solution. The solution was found to be
divergent and this could not be remedied by increasing the number of iterations
per time step. This divergence starts at a very garly stage of the solution,
typically within 40 time steps of the simulation, and originates from the force
computation. On examining the computed pressure components, it was found
that the problem is associated with the calculation of the d¢/dt term. When
an implicit scheme is used for the equations of motions, this term can only
be computed from a backward difference scheme in time. As a demonstration,

consider the following equation:

F(%’,W,t) i M"% ..... (6.23)
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In the A-B-M scheme, a predictor step is:
vOO(t + At) = v(t) + p[F(2), F(t — At),---; At]/Mp  --(6:24)
and the corrector steps are:

v™(t + At) = v(t) + [F™ V(¢ + At),F(t), F(t — At),---; At]/Mp

..r(6.25)
where the superscripts in the parenthesis denote the level of iterations, m > 2
for the corrector steps. Examining the corrector steps in the light of (6.23), it is
seen that the contribution due to d¢/dt in F("~(t + At) can only be calcu-
lated using a backward difference scheme. Originally a backward second order
difference scheme was applied for this computation, but successive increases in
the order of the backward schemes did not rectify the situation (the situation
was, in fact, found to worsen). This means that a stable difference formula
must be used to determine this part of the pressure, at least for the second and
subsequent iterations (for the first level , i.e. for the predictor step, a backward
scheme is unavoidable). A stable difference formula in general requires values
of relevant quantities at the advanced time level. This means the formula for
d¢/dt involves estimated values of ¢(¢+ At), which .l!ll turn suggests that explicit

schemes are to be used for integrating the motion equations.

The algorithm used can be best described by means of the flow diagram
shown in Figure 6.3. As illustrated, the predicted values are calculated using a
backward difference for d¢/dt in the force evaluation and an explicit scheme is
used for integrating the equations of motion. With this, the required information
(¢) on the body for the advanced step is computed. For the second and higher

iterations, the scheme returns to the previous step and upgrades the force, this
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6.4):

L, : z distance of the body coordinate system from D¢y
at t=0; =zg(0)
L : horizontal distance between dD¢y and 9Dc»
L, : L-L,
L} : z distance of the lee side of the body from dD¢
at t=0; = L —0.5B <...(6.26)
L; : z distance of the windward side of the body from
8Dgs st t=0; =L, —0.5B
B : full breadth of the body
body draft at its static equilibrium (i.e. at t =0)

d : water depth

Due to the redistribution of the collocation points, the size of the segments
on @D and dDp continuously changes. Therefore, the parameters indicated
as Az (with appropriate suffixes) in the following are meant to represent the
size of the segments at ¢ = 0. The times 7} and Tg have the same meaning
as in the wall case (§5), i.e., the estimated times for the fully developed wave
front to reach the lee side of the body and reflect back to dD¢y. Formulae (5.6)
and (5.8) with L replaced by Lj apply for these estimations. The maximum
peak-to-peak values for the z and z components of the forces and moment are
denoted by |F;|, |F;| and | M| respectively while |z¢|, |2g| and |6| represent the
similar values for sway, heave and roll displacements. Simulations are achieved

by imposing an Airy wave potential on D¢y with H, A, T and w denoting the
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height, length, period and frequency of an Airy wave in conformation with the

applied excitation potential defined by eqn. (3.3).

A number of computational results are presented below to demonstrate and
explore the effectiveness of the method in simulating large motions. Simulation
for conditions in which the body is constrained in certain modes of motion are
achieved easily by excluding the integration of the corresponding equations of
motion, or alternatively equating the displacements and velocities to their initial

values after each time level.

All computational results presented are for a rectangular body geometry.

6.3.1 Fixed Body Case

This corresponds to the situation of a ‘fixed’ floating body in which the body is

fixed in all degrees of freedom.

Example : 1

The relevant parameters for this example are

h/B = 05
A = 2B
O R e R (6.27)
H/A = 0075
zc(0)/B = -B/8

These parameters correspond to the non-dimensional frequency wy/B/2g =
1.253 which is within the interval of 1.5 < Bw?/2g < 2 known for significant
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non-linear effects (Telste 1985). Results in terms of the run-up profile on the
lee side of the body, non-dimensionalized forces and moment about the body’s
CG are shown in Figures 6.5 (a) - (d) for a control domain of L] = 2.5\ and
L3 = 2.0\. Other parameters are : ¢/T = 1.0; n = 4; Azr, Azc1, Azoy and
Azg = A/24 ; and At/T = 1/48. The large run-up profile at the lee-side in-
dicates an almost full reflection of the wave. Although the time histories show
some variations in the amplitudes, the forces and moment appear to display a
steady state behaviour in the indicated time interval Ty to T; (cf. eqns (5.6)
and (5.8)). It is not clear whether the observed modulations in the forces and

moment histories are due to numerical effects or are non-linear effects.

In order to study the free surface motions, Figures 6.6 (a) - (d) show the
evolutions in time of the free surface at distances A,0.75)\,0.5\ and 0.25) in
front of the body (distances here are measured from the lee side of the body).
These plots suggest a gradual development of a standing wave profile of length
Ain 0 < ¢ < Lj. Typical features displaying antinodes and nodes associated

with standing waves are apparent. This standing wave has a st of ap-

proximately H*/A = 0.15 (H* = height of the numerical wave in D). The free
surface evolution downstream of the body, shown ih Figure 6.7 for a station at
a distance of A downstream of the windward side, suggests that practically no

energy has been transmitted to the other side of the body.

Computations performed for this wave condition when the body is released
in heave have shown that the resulting heave motions are extremely small, |zg|
not exceeding h/20. This is perhaps not an unexpected behaviour, since from
linear theory it is known that body motions at higher frequencies are usually

negligible.
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Figure 6.5 Run-up, forces and moment on a rectangular ‘fixed’ floating body of
hfB = 0.5; L7 = 2.5\, L3 = 2.0A, A/B = 2, d/A = 0.5, H/X = 0.075, T} = 6T
and = 11D
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6.3.2 Heave Motions

Results shown here are for the situation where the body is free to heave but is

fixed in the other two modes of motions.

Example : 1

The relevant parameters for this example are

h/B = 05
A = 6B
/A = 05 <ene(6.28)
H/A = 0.05
2(0)/B = -B/8

wy/Bj2g = 0.723

These parameters are chosen such as to correspond to the heave resonance of
the body. The natural frequency in heave (w”) can be computed from (Newman
1980)
h ez _yos |
e e
o )
where ¢z, and ay; are restoring force and added mass in heave. From an estimate

of az/Mp = 1.0 from the experimental results of Vugts (1969), the applied
fi for this le corresponds to w/w? = 1.023. The body

is therefore expected to display resonant behaviour in heave.

Figures 6.8 (a) - (c) show the results in terms of non-dimensional sway force,
roll moment and heave motions for L7 = 2.0, 2.5\ and 3.0\. In all computations

L3 = 2.0)\. The plots clearly display a steady state behaviour in the interval T}
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Figure 6.8 Sway force, roll moment and heave motion of a rectangular body of
h/B = 0.5; the body is free to heave only; A\/B = 6, d/A = 0.5 and H/\ = 0.05;
the body is in (or very close to) heave resonance.
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to Ty. The effect of heave motion on sway force can be observed by comparing
the curves in Figure 6.8 (a) with the sway forces for the earlier, fixed body,
results in Figure 6.5 (b) (or the force results on vertical walls shown in §5 , cf.
Figures 5.2 to 5.5). The time histories of the roll moment show the presence
of higher frequency components, which are qualitatively different from the fixed
body results of the preceding example. As expected, large heave motions are
obtained. The maximum heave displacements are in excess of the initial draft:
|zg|/h & 1.2. The relative run-up profiles at the lee side of the body shown in
Figure 6.9 illustrates that the heave motions are not in phase with the wave.
Evidently the relative motion between the body and the free surface is not
negligible. This relative run-ups vary from r/h ~ 0.2 to 1.5 indicating that
the body tends to emerge more than it tends to immerse (r here is the height
of the free surface measured from the keel, as illustrated in the accompanying
diagram in Figure 6.9). A close-up view of the body and the free surface at
several instants over a full cycle of heave motion shown in Figure 6.10 illustrates
this feature more clearly. At its maximum positive heave displacements, the
body is almost emerging out of the free surface (see Figures 6.10 (a) and (e)).
Steady state behaviour of the solution is further evidenced by the repeatability
of the free surface profiles when the body’s displacements and velocities are
identical. Compare, for example, the free surface profiles in Figures 6.10 (a) and
(e) where the body displacements and velocities are the same. These plots when
superposed are graphically indistinguishable. On the other hand, dependence
of the fluid motion on the body’s motion can be observed by examining Figures
6.10 (b) and (d), when the body is at the same displaced position but moving

in opposite directions. The free surfaces here differ considerably.
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6.3.3 Roll Motions

In the following examples, the simulations are achieved by fixing the body in

the heave and sway modes while it is free to roll.

Example : 1

The key parameters are

h/B : 0.5

A AR
a/r : 05
H/A : 0.05

.....(6.30)
26(0)/B : —1/8

wy/Bf2g : 1.253
Iy/pSaB* : 0.028

GM : B/24

where S4 denotes the wetted area of the body at t = 0 and GM denotes meta-
centric height.

The roll natural period of the body (w}) can be estimated from :

gMEGM)o,s «ees(6.31)
I + 61,

wn=(
where 61, represents added moment of inertia in roll about an axis through the
body CG. A rough estimate of §Iy/pS4B* = 0.025 from the experimental results
of Vugts (1969) yields

— =14 6.32)
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for this example.

The time histories for the sway and heave forces and roll motions are shown
in Figures 6.11 (a) - (c) for L] = 2.0\ and 3.0A. Lj = 2) in both computations.
Although a steady state behaviour is established in the sway and heave force
results in the interval T to T3, the roll motion history shows a somewhat different
behaviour. The body apparently developed a list due to the influence of the
oncoming waves from one side. Also the time histories for L7 = 2\ and 3\
show some differences in the roll behaviour, although the qualitative behaviour
is quite similar. Since this motion does not display a steady state behaviour,
it is not clear whether the results shown are effects of transients or result from
numerical inaccuracies. In both cases, however, the roll displacements are very
small (0] < 2.5 deg.). Considering (6.32), small roll motions are to be expected.

The force histories indi the iated non-li ities of the system. For

example, the sway force history displays broader peaks and narrower troughs
P y y display: P g!

compared to linear theory predictions (which would be sinusoidal).

Example : 2

This le corresponds to the le for heave r of the rectangular

body shown earlier (see (6.28) for the relevant parameters). The roll inertia of
the body is Iy/pSaB? = 0.10 and GM = B/24. These yield an estimated roll
natural period of w/w}, = 1.25 (using a value of 6I;/pS4B? = 0.020 from Vugts
1969). Results are presented in Figures 6.12 (a) - (c) for L] = 3.0\, L3 = 2.0\,
A steady state behaviour in the force histories in the interval of Ty to T; is

apparent. The roll displacements here are comparatively larger than those in
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Figure 6.11 Forces and roll motion of a rectangular body of h/B = 0.5; the
body is free to roll only; \/B =2, d/A = 0.5 and H/\ = 0.05.
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the preceding example. This is to be expected from consideration of the w/wy,
values (which is comparatively closer to unity in this example). Once again the
body tends to develop a steady list. The time history of roll shows a close to
steady state behaviour, although some modulations are still noticeable. It is not
clear whether the simulated roll motions are due to numerical error or are the
correct prediction of the body’s behaviour. The time histories of forces in both
these examples however tend to indicate that the non-steady state simulated
histories of roll are perhaps not attributable to numerical errors, since the effect
of numerical errors is expected show up in the force histories due to the coupled

nature of the problem.

Comparing the force histories with those of Example 1 shown in Figures
6.11 (a) and (b), (note that in both cases the nominal oncoming wave steepness
is H/A = 0.05), it is evident that a reduction of the excitation frequency (or
equivalently, an increase of the oncoming wave length) results in a reduction
of the forces (in their non-dimensional forms). The ratio of maximum forces
(i-e. |Fz|,|F:|) in these examples is of the order of 2 for both sway and heave.
A reduction in the associated non-linem" features in the force histories is also

apparent. 3

For both of the above examples, attempts to simulate roll by selecting a
combination of Iy and GM which yields w/w], ~ 1 failed. The problem is
associated with not allowing the body to heave simultaneously, which results in
occurrence of flooding and consequent failure of the numerical scheme. Results

for combined roll and heave will appear latter.

Example : 3
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Here the rectangular body has a draft of h/B = 1 , the excitation frequency
corresponds to u\/ﬁ = 0.723 (same as in example 2 above) and the body
has an inertia of Iy/pSaB? = 0.10. The roll motions for six values of GM/B
= 0.00825, 0.03325, 0.05825, 0.08325, 0.10825 and 0.13325 are shown in Figure
6.13 (a) - (f). The body is located at L} = 2.5\ and the downstream boundary
isat L; = 2.0\,

In the first plot corresponding to a very small GM value (GM = 0.00825B),
the body develops roll in one direction only which grows rapidly until the time
the results are shown. After this time the solution breaks down due to flooding
and consequent difficulty in locating the body-free surface intersection points.
From the trend of the rolling behaviour, it would appear that the body eventually
capsizes. Considering the associated small magnitude of the restoring force, this

does not seem unlikely.

The increase of restoring forces on roll can be studied from these plots. For
smaller restoring forces, the body tends to develop a list and rolls more towards
the windward side. In the last two plots, with relatively larger GM, this trend
is found to be reversed. The body begins to roll more evenly. An increase in
the positive amplitudes compared to negative amplitudes can also be observed,
showing that the body now rolls more towards the side of the oncoming wave.
Increases of restoring forces are found to result in larger roll amplitudes. For
the largest value of GM studied here, the roll amplitudes steadily grow and
the solution breaks down after the time upto which the results are shown due to
difficulties in locating the body-free surface intersection points by extrapolation.
Since the value of w/w], is associated with §I; which is not readily available for

the chosen h/B value, it is not possible to relate the natural roll period with
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(e) GM/B = 0.10825
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Figure 6.13 Roll motion of a rectangular body of h/B = 1.0 for various values
of GM; A\/B =6, d/\ = 0.5 and H/\ = 0.05; computations are for a domain of
L;=25\and L3 =201 =67, T, =11T.
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GM. 1t is however possible to determine the combinations of §I; and GM,
shown below, which yields w/w], =1 :

8I;/pSaB* : 0.025 0.050 0.075 0.100 0.125 0.150

GM/B : .0654 .0785 .0915 0.105 0.118 0.131

The plots shown suggest the roll resonance to be associated with a value of
GM|/B between 0.10 and 0.13, which, from the table above, suggests a value
of 6Iy/pSaB? between 0.10 and 0.15. From a study of Vugts’ experimental 61
values for lower h/B ratios, this range of §Ij for the present h/B value appears
to be a realistic estimate . Large roll motions of the body for the last two GM

values are then expected responses.

6.3.4 Combined Heave and Roll

Here the combined heave and roll motions are simulated. The body is fixed in

the sway mode.

Example : 1 ¢

The relevant parameters for this example are

h/B : 05
Al 6B
d/x : 05
H/\ : 0.05 ...(6.33)

wy\/B/2g : 0.723



2¢(0)/B : —1/8
GM : B/

Iy/pSaB* : 0.10

Results for this case when the body was free to either heave or roll have
already been presented. The excitation frequency here is very close to the heave
natural frequency such that large heave motions can be anticipated. Results
are shown in Figures 6.14 (a) - (d) for L] = 3.0\, L3 = 2.0\. For comparison,
results from the earlier run when the body was fixed in roll and sway mode
but free to heave are also plotted. As can be observed, sway force and heave
motion appear to be uninfluenced by roll motion. On the other hand, the roll
moment histories show noticeable differences. The influence of heave on roll can
be studied by comparing Figure 6.12 (c) with Figure 6.14 (d) (for these two
results, all parameters are same except that for the result in Figure 6.12 (c), the
body was allowed to roll only). Besides a qualitative change in the roll history,
the amplitudes are considerably higher in the present simulation compared to
when the body was constrained from heaving. These results suggest that heave

p
motions are rather insensitive to-roll motions while the reverse is not true.

Example : 2
This example has the following parameters:

h/B : 05
A : 8B

d/x : 05
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Figure 6.14 Force, moment and motions of a rectangular floating body of /B
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body is free to heave only (cf. Figure 6.8) are also plotted; A\/B =6, d/\ = 0.5
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H/X\ : 0.04
LBl s LoieRTBl R B T (6.34)
26(0)/B : -1/8

GM : B/24

I;/pS4B* : 0.050

A rough estimate of §I3/pS4B* = 0.025 from Vugts (1969) yields w/w], = 0.967.

Therefore, large roll motions can be anticipated.

Figures 6.15 (a) and (b) show the heave and roll displacements respectively
for a domain of L, and L, = 2.5). These results are achieved by using Az/\ =
1/40 and At/T = 1/100 (compared to Az/) of 1/24 to 1/30 and At/T of 1/48
to 1/60 used in all the preceding examples). The relatively finer discretization
is found necessary for an adequate description of the body. In this regard, the
requirement of keeping Az comparable over all parts of the boundary, which
follows from the necessity of keeping the adjacent segments at the intersections
of the boundaries comparable in length (see §4.3.3) increases the computational

burden id

ably for smaller excitation fr ies (the op ion count per
p

time step roughly varies with (\/B)?).

Large roll amplitudes in the order of 50 deg. are evident in Figure 6.15 (b).
It can be seen that the body tends to roll more towards the upstream side of the
oncoming wave, similar to the roll results obtained earlier for larger GM values

(cf. Figures 6.13 (e) and (f)). The body also undergoes considerable heave

motion. The heave displ are parable to its r behaviour in
that mode (cf. Figure 6.8 (c)), although in the present example, w/w! ~ 0.89

(using az/Mp = 1 from Vugts 1969). Plots displaying the instantaneous position
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of the body with respect to the free surface for several time instants quarter
of a period apart are shown in Figure 6.16. The capability of the method in
simulating large motions is illustrated in Figure 6.17 where we show the evolution
of the body and free surface motions over one cycle of roll oscillation at closely
spaced time intervals. Although the free surface profiles in the vicinity of the
body show some irregularities, inspection reveals that the body is rolling with
the wave, which is typical rolling behaviours of vessels with relatively large roll

stability in long waves (see e.g. Lewis 1977).

6.3.5 Motions of a Completely Unrestrained Body

Finally results are presented to demonstrate the capability of the method to

late the moti of a completely unrestrained body.

Example : 1

In the first example, the parameters are same as in the example 1 of §6.3.1 (see
(6.27) for the relevant values). This example is chosen since from earlier results
we know that sway forces are expected to be large. Consequently, it is of some

interest to study the resulting sway motions.

Figures 6.18 (a) - (c) show the evolution of the forces and moment in time
while Figures 6.19 (a) - (c) show the time histories of the three modes of dis-
placements. The time history of sway displacement clearly displays an oscillatory
drifting pattern. Within the time of 6 < t/T < 10 , the body has drifted by
a distance of over 0.25B (~ 0.06)). The heave and roll motions are very small

which is to be d idering that the excitation fr

P

q 'y is much higher
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Figure 6.16 Plot of the instantaneous location of the body and free surface
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correspond to the marks (a) - (h) in Figure 6.15 above)
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Figure 6.17 Plots displaying the instantaneous location of the body and a
portion of the free surface over one complete period of oscillation at intervals of
2 time steps; the time interval corresponds to the period 7.70 < ¢/T < 8.70 (i.e.
(d) - (h) in Figure 6.15).
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than the natural frequencies. Comparing the sway forces with those for the fixed
body results (Figure 6.5 (b)), it is seen that although the magnitudes are almost
same (the peak-to-peak values are within 5 %), the associated non-linear fea-
tures displayed by the double peaks show a qualitative difference. Heave forces

are found to be considerably reduced when the body is drifting.

Example : 2

This example corresponds to the example 1 of §6.3.4 where results have been
presented for combined heave and roll motions of the body. The time histories
for all three modes of displacements are plotted in Figures 6.20 (a) - (c). The
drifting of the body is evident in Figure 6.20 (a). Between the time interval of
t/T = 6 to 10, the body has drifted more than its width. Comparison with the
earlier example reveals an increase of the average drift speed in longer waves.
This feature is qualitatively similar to the experimental results of Harns (1987)

on drift of two-dimensional ice-floe models. A comparison of Figure 6.20 (b)

with Figure 6.14 (c) (which shows the corresponding heave displ ts for
the body when it is fixed in sway) reveals that the influence of sway on heave
is negligible. On the other hand, considerable influence of sway on roll can be
observed. The present results also show a delay in the initiation of the roll

motion, which is believed to be due to drifting.
6.4 Summarizing Remarks

The results presented above demonstrate that it is possible to simulate large

motions of floating bodies in steep waves by imposing an excitation potential
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and subsequently following the evolution of the body configuration. It has also
been shown that a non-linear steady state solution can be approached in this
manner. Results have been presented simulating large heave and roll motions.

Also accomplished are sway motions featuring drifting of a body.

The insensitivity of the solution with regard to the size of the control (com-
putational) domain has been demonstrated. Depending on the length of the
interior domain, realistic simulations for relatively long time, typically a steady

state behaviour of the solution over several periods, can be accomplished.

Several complications that arise from the coupled nature of the problem
have been elucidated and appropriate techniques have been developed for their

treatment. The method can be explored for other applications such as forced

oscillations and free i without anticipating difficulti Applicati to

this latter problem will appear in a later section (§8.3.2).

The major problem presently associated with the method lies in the treat-
ment of the body and free surface intersection points. Although no problems
were encountered in the earlier application of wave interactions with vertical
walls (85), some problems are encountered when thé body undergoes large roll

motions. Further remarks on this will be made in the concluding section (§9.3).
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7 The Experimental Program
7.1 General
7.1.1 Introductory Notes

Although the results of the preceding section (§6) have shown that it is possible
to simulate large motions of two-dimensional floating bodies and to approach a
fully non-linear steady state solution, the validity of the method remains subject
to question. This section describes an experimental program which was under-
taken to validate the presented numerical model. This was considered necessary
due to inadequacy of published analytical, numerical or experimental results on
analogous two-dimensional problems of motions of floating bodies in non-linear
waves. As revealed in §1, the study considered is still unfolding in literature and
consequently experimental results with which the present numerical simulation

results can be compared are relatively scarce.

One of the earliest experimental studies on two-dimensional bodies was the
small amplitude forced oscillation tests carried out by Vugts (1969) which pro-
vided important data on hydrodynamic coefficientd for several cross-sectional
geometries. Among the more recent experimental studies on similar prob-
lems, mention may be made of the following. Experiments on large amplitude
forced heave oscillations of two-dimensional section shapes were conducted by
Yamashita (1977) and Tasai and Koterayama (1976). In the experiment of
Adachi and Ohmatsu (1980), the body was subjected to a transient wave exci-
tation and the subsequent decaying motion was recorded. These authors have

also conducted some small amplitude forced heave and sway experiments. The
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‘Salter’s duck’ experiment by Greenhow et al. (1982) focussed on capsizing of
the body due to the passage of a single steep wave. Here the body was re-
stricted from sway and heave and the objective was to essentially compare the
still photograhic images of the experiment with that of the numerical simula-
tion model. Comparisons have also been made for horizontal and vertical forces
and the agreement obtained was considered to be quite good by the authors.
Notwithstanding the highly transient and non-linear nature of the experiment,
an idea of the good quality of agreement between the experimental and com-
puted data, according to the authors, can be formed by examining Figure 7.1
where the authors’ results are reproduced. A more recent contribution based on
an analogous experimental study was reported in Miyata et al. (1986). Here the
forces on submerged objects due to passage of steep breaking waves were deter-
mined. The agreement between experiment and numerical solution obtained by
means of a finite-difference formulation was not very satisfactory (according to

the authors), specially in horizontal forces.

Although experiments on large amplitude forced oscillations (i.e. the radi-
ation problem) and wave forces on fixed bodies (i.e. the diffraction problem)
provide important data for comparative purposes, $o the author’s knowledge,
no systematic two-dimensional experimental data are readily available in open
literature in which a floating body is subjected to an incident wave train such
that the motions and waves contain significant ‘non-linear’ characteristics. The
only exception appears to be the experiment by Kyozuka (1982), who conducted
a similar experiment by subjecting a Lewis-form body to oncoming waves, and
presented his results in the frequency domain. While experiments to determine

motions of three-dimensional bodies in regular waves are routinely performed by
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Figure 7.1 C ional and experi 1 forces and moment on ‘Salter’s
Duck’, as obtamed by Greenhow et a.l (1982); full line = computations, broken
line = experiment (reproduced with permission).
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various hydrodynamic laboratories, the two-dimensional counterparts of similar
experiments are relatively rare due to their limited scope for direct application
to the industrial sector. Such two-dimensional experiments are generally most
suited for the purpose of comparison with analytical or numerical prediction
models. Therefore it was felt that an appropriate two-dimensional experiment
would not only produce valuable data for comparison with the present numeri-
cal model, but also serve as a reference for future works on similar numerical or

analytical studies.

7.1.2 Objective

As indicated earlier, the objective of the experimental program is to asses the
validity of the numerical method developed. Concern here is on accurate mea-
surement of the responses of the body, both motions and forces, by subjecting
it to an oncoming regular wave train of known characteristics. Considering the
three permissible degrees of freedom, experimental investigations are possible,
at least in principle, for a number of combinations of the forces and motions. A
partial list of the possible combinations are shown in,,Table 7.1. Amongst these,
the situation where the body is completely free to ﬂo;it was considered not to be
favourable for experimental purposes, since it was felt that it would be difficult
to prevent the body from undergoing some motions in the transverse plane (yaw
and pitch). Additionally, a dynamometer was available which permitted mea-
surement of forces in longitudinal direction while allowing the body to heave and
roll. This lead to the choice of experiments in which the body is restricted from
swaying. In addition, by appropriate modification of the mounting arrangement,

it was possible to restrain the body from rolling. It was therefore decided to
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Table 7.1 Some possible experimental arrangements; ‘x’ and ‘y/’ indicate
respectively that the body is restrained from and free in particular modes of
motions.

Serial | Degrees of Freedom Measurements
No. | Sway | Heave | Roll Forces/Moment Displacements

Sway | Heave | Roll | Sway | Heave | Roll

it b |

2 K S [ Wl

Sl ool e R [ J/

oot bk 4 i

5 X X X A Vv A
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carry out the experiments for which heave only and heave and roll motions were

permitted.

The conducted experiments conform to items 2 and 4 in Table 7.1 while
items 1, 3 and 5 were omitted from further consideration due to difficulties in the
measurements and/or the required modifications of the mounting arrangement
(it is to be noted that the roll moment for item 4 could also not be measured due
to lack of appropriate instrumentation). These two controlled test environments

are believed to be adequate for the present purpose of comparison.

7.2 Design and Dimensions

The experiments were performed in the Memorial University wave tank. This

tank has interior dimensions of 54.74 m. x 4.8 m. x 3.04 m. A piston type

wave maker driven by an electro hanical servo hani waves
at one end of the tank and a parabolic beach acts as an energy absorbing device
(for more details on the tank, see Muggeridge and Murray 1981). The body
chosen for testing is of rectangular cross section. The dimensions of the body

were arrived at from the following considerations:

e The dynamometer poses an upper limit on the size of the body. Denoting B
and Lp as the width and length of the body respectively, these dimensions
must be such that the maximum anticipated force exerted on the body is

within the capacity of the dynamometer.

B should be preferably chosen such that the range of A/ B for which exper-
iments can be performed is as wide as possible, preferably spanning from

about 1 to 10 (corresponding to the non-dimensional frequency parameter
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Bw,/B/2g ranging from about 0.55 to 1.75). Since the wave maker has
an upper limit of frequency (equivalently a lower limit of \), this puts a

constraint on the minimum possible value of B.

To retain two-dimensionality of the phenomenon and to minimize possible

end effects, Lg/B should be kept as large as possible.

Larger models are expected to be proportionately less influenced by viscos-
ity, consequently providing better data for comparison with the potential

flow model. This suggests a larger model, i.e. a larger value of B.

From these considerations, the dimensions of the body were selected as 40
cm. X 40 cm. in cross section and 120. cm in length. To avoid sharp corners and
to minimize resulting flow separations, a bilge radius of 2.5 cm. was provided.
The body had a draft of 20 cm., which provided a relatively large freeboard of 20
cm. This was felt necessary to avoid flooding since from earlier computational
experience, large run-ups on the lee side of the body were anticipated. The length
chosen corresponded to Lg/B = 3 which was hoped to be adequate for simulating
two-dimensional flow conditions. Indeed, no rigid ru];es are available in selecting
this value of Lg/B and we have used guidance fro;n previous analogous two-

dimensional experiments where the following values were used:

Isp
Adachi and Ohmatsu (1980) : 6 to 8
Greenhow et al. (1982) G
Kyozuka (1982) i 14t03
Miyata et al. (1986) 1 o, NG

The body was constructed from 1/4 inch aluminium plate with appropriate

interior connections for mounting the dynamometer and to provide necessary
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ballast weights. The model was extremely rigid and no extra stiffening was

required to retain its shape. Figure 7.2 provides an illustration of the body.

To achieve two-dimensionality of the flow, a channel within the wave tank
was constructed by erecting vertical walls. The channel length was 6.1 m. (20
ft.). As with the Lp/B ratio, no rigid rules were available to establish the length
(Lc) of the channel. It was felt that 6.1 m. was sufficient to generate a two-
dimensional flow conditions near the test section. The present L¢/B value of
5.1 can however be compared with the corresponding value of approximately
4.5 in the experiment of Miyata et al. (1986) in which a similar channel was

constructed.

The vertical walls were spaced such that the body occupied the entire width
of the channel except for a small clearance in the order of few millimeters (typ-
ically 2 to 4 mm.). Each side of the channel consisted of two 8 ft. x 4 ft.
plywood of 3/4 inch thickness with a central part made of a 4 ft. x 4 ft. x
1/2 inch plexiglass piece. This arrangement for the central part was introduced
to maintain a smooth surface at the test section as well as to facilitate viewing
from the sides. The walls were firmly attached to the bottom of the tank by
means of bolts. Eight threaded rods connecting the side of the tank and the
top of the walls provided additional supports. These threaded rods also allowed
minor adjustments in the width of the channel such that a small gap between
the body and the channel could be maintained. Figure 7.3 shows an illustration

of the channel.

The dynamometer allows measurement of roll displacements upto a maxi-

mum of +30 deg. However, a direct connection of the dynamometer with the
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body restricts the maximum roll displacement of the body to about +20 deg.,
due to the width of the heave-bar (the vertical movable part of the dynamometer,
see Figure 7.4). In order that the body is free to roll upto +30 deg., an attach-
ment rod was constructed to connect the body with the dynamometer. This
arrangement was necessary also from a consideration of the main dimensions
of the set-up (water depth and height of the carriage) which did not permit a

direct h t of the dy: with the body. The rod was constructed

from a 2 inch x 2 inch steel beam of 1/4 inch wall thickness and was extremely
rigid. The connections of this rod with the body and the dynamometer were
also very firm. This attachment was made with the option that the body could
be restrained from roll when desired by attaching it directly to the body without
that part of the dynamometer which allows roll. Figure 7.4 illustrates details of

the above arrangement.
7.3 Description
7.3.1 Model Characteristics

The desired weight of the model was achieved by adding appropriate ballast
weights (lead), and was verified by weighing the model on a standard balance.
To determine and adjust the location of the center of gravity (CG), an inclining
test was performed in which heeling moments were applied by adding weights
at marked locations and going through a standard sequence of operations (see
Semyonov-Tyan-Shansky 1966). Inclinations were measured by a Sperry mi-
crolgvel precision inclinometer (courtesy IMD, NRCC) with a resolution of 0.01

degrees. For the measured angles of the order of 4 deg., the error in KG (the
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vertical distance of the CG measured from the keel) estimation translates to
less than 0.5% . Indeed, successive inclining tests produced almost identical
results, with KG values differing by less than 0.25%, and these values in turn
agreed very well with the value calculated from independent measurement of the

weights and locations of individual co ts.

The roll radii of gyration were calculated from weights and locations of indi-
vidual components. In view of the agreement between measured and computed
values of KG and weight, these computations are believed to be accurate within
1 to 2%, and experimental determination by means of the standard inclined
table was not carried out. Experiments were performed for two different weight
distributions which differed in radii of gyration of the model while KG remained
unchanged. This was because the first arrangement when tested for natural roll
period produced a value of 2.15 sec., which corresponded to a A\/B of about 18
to achieve roll resonance (A here corresponds to the length of a deep water Airy

wave of the same period). The second t was to ially reduce

the roll natural period without changing any other parameter.

Table 7.2 izes the ic charact istics of the body. Watertight-

ness of the model was assured by leaving it afloat overnight.

7.3.2 Test Set-up, Instr: ion and Data A isiti

The test section was located approximately 20 m. from the wave-board, which
left a distance of about 30 m. from the beach. For the period for which test
results were collected, these distances of the body from both ends of the tank

were sufficient for reflected waves from either end not to interfere with the results.
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Table 7.2 Geometric characteristics of the model

Geometry

Length
Breadth

Depth

Draft

Bilge radius
Mass

GM (measured)

KG (from measurement)
...... (from calculation)

Iy/Lp

Natural period in heave

Natural period in roll

rectangular
(with rounded-off corners)

120 cm.
40 cm.
40 cm.

20 cm.
2.5 cm.

96.3 kg.

2.15 cm.

14.5 cm.
14.48 cm.

167 kg. cm.’/cn}. (wt. dist.
107 kg. cm.?/em. (wt. dist

1.25 sec.

2.15 sec. (wt. dist. type I)

. type I)
. type II)

1.82 sec. (wt. dist. type II)
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Experiments were performed for a water depth of 0.9 m. (about 3 ft.), which

provided a freeboard of about 0.3 m. (~ 1 ft.) on the vertical walls. For the

range of wave heights for which exp ts were ducted, this was suffici

to avoid spilling of water over the walls of the channel. The dynamometer was
firmly mounted on the carriage (mass = 3.9 tons) and was attached to the body

via the connecting rod.

The dynamometer used was a resistance type dynamometer, model R47 built
by Kempf and Remmers, Hamburg. This instrument is originally intended for
regular ship model towing tests, and is capable of measuring upto 200 KN of force
in longitudinal direction. In addition, it allows vertical displacement (heave) of
the model upto +20 cm. and angular displacement (roll or pitch) upto +30
deg. The body can be easily restricted from rolling by removing the part of
the dynamometer which allows rotational modes of motion and attaching the
connecting rod directly to the model, as illustrated in Figure 7.4. However, lack
of appropriate instrumentation did not permit measurement of roll moment in

this situation. A schematic view of the test arrangement is shown in Figure 7.5.

The wave field was monitored by means of standard resistor type twin wire
wave probes. A total of 5 probes were used to measure wave heights. The
collected data were therefore the wave heights, longitudinal force, roll and heave
displacements. Data from all eight sources were collected in an eight channel HP
3968A instrumentation tape recorder capable of FM recording over a bandwidth
of 0 to 5 Khz. and/or direct recording of signals upto 64 Khz. During testing,
data were monitored by viewing the signals on a digital signal analyzer (model
HP 5420). For final analysis, analog data from the FM recorder were digitized

by means of a Keithley data acquisition instrument (system 570) at a sampling



227

eiena

CARRIAGE

: 1

DYNAMOMETER

SIDE CONNECTING ROD
)

fs— CHANNEL
" 02 —~f All dimensions
1 are in cm.
.
FRONT VIEW

Figure 7.5 A schematic view of the test arrangement.
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rate of 40 hz. and transferred to the main frame VAX 8530/8800 computing
systems for post processing. All subsequent processing and analyses were done

on these systems.

Table 7.3 shows set-up voltages and the precision levels of the measuring
units. The probes and the dynamometer were calibrated prior to, during, and at
the end of the tests. For the range of values typical of the conducted tests, these
precision levels result in less then 2% uncertainty in the measured quantities,
e.g. typical values of sway force, heave and roll displacements of 10 kg., 10 cm.
and 10 deg. result in uncertainties of 0.5%, 1% and 1% respectively.

Some views of the test ar and instr ion are shown in Fig-

ures 7.6 - 7.8.

7.3.3 Test Sequences

Prior to the actual testing, a series of preliminary tests were performed in which
waves over a range of frequencies and heights were generated and wave heights
were measured at four locations along the centre line of the channel. The probe
locations are shown in Figure 7.9. Probe no. 3 coi;‘lcided with the location of
the body. The purpose of these tests were to explore the range of frequency
and heights for which acceptable quality of waves can be produced by the wave-
maker. Additionally, these tests were intended to determine the effect of the
channel on the generated waves and to serve as data when comparing with the
numerical results. For each frequency, three wave heights were generated, rang-

ing from very steep to modest steepnesses (H/A ~ 0.12 to H/\ 2 0.03). Indeed,

these tests have shown that for higher freq: ies and larger st , the
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Table 7.3 Precision levels of the measuring devices

Dynamometer

Measurement  Supply voltage Precision level

Force 25V =+ 50 gm.
Heave 5V + 1 mm.
Roll 10V + 0.1 deg.

Wave probes 5V +2 ~ 3 mm.
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waves produced were not capable of retaining their forms. Also, the combina-

tions producing cross flows inside the channel and the tank were identified and

1

omitted from t tests. For conveni , these tests are termed as test

series A.

The main tests consisted of a series of three tests, designated B, C and D
respectively (see Table 7.4). The probe and body locations are shown in Figure
7.10 for these tests. Probe nos. 1, 2 and 4 were unaltered in location, while
two probes (nos. 3 and 5) were placed abreast within the channel and close to
the body, separated by a distance of about 0.6Ls (80 cm.). These two probes
were intended to provide an indication of the quality of two-dimensionality of

the near-field flow.

For test series B and C, the model was free to both roll and heave, while
for test series D the model was free to heave but restrained from rolling. As
mentioned earlier, due to lack of appropriate instrumentation, the roll moments
were not measured in these tests. The model had a larger radius of gyration in
B test series than the remaining series of tests (see Table 7.4). In most cases,
the steepest wave generated in test series A could not be applied in the main
series of the tests due to occurrence of flooding. Indeed, the run-ups were very
high, and even for moderate steepnesses (H/\ &~ 0.05), waves close to the body

displayed large steepnesses (in some situations close to breaking).

To complete the experiments, tests were also conducted with the model com-
pletely free to float (i.e. free in all modes of motion). For these tests no quanti-
tative measurements were taken but the tests were video-taped for a qualitative

analysis of the model behaviour. Also conducted were roll and heave transient
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Table 7.4 Type of tests

Test series A : Measurement of wave heights
without the presence of the body

Test series B : Experiment with the body,
body free to roll and heave,
weight distribution type I,
I;/Lp = 167 kg. cm.?/cm.

Test series C : Experiment with the body,
body free to roll and heave,
weight distribution type II,
Iy/Lg = 107 kg. cm.?/cm.

Test series D : Experiment with the body,
body free to heave only
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tests, which were performed respectively by initially displacing the model in roll

and heave and than releasing it.

In order to have some idea on the flow separation near the bilges, attempts
were also made to visualize the flow field in the vicinity of these corners. This
was done by introducing coloured dyes near the bilge for the test conditions for
which the model displayed large motions. Unfortunately, due to difficulties in

photographing, no conclusive data could be obtained from these tests.

Tables 7.5 (a) - (c) izes all tests ducted for which measurements

were taken (excluding series A) together with comments as appropriate.

7.4 Experimental Results

For all tests, data were recorded for 32 secs. including the transient information.
Additionally, with the exception of first few tests, all of the tests were video taped

for future reference.

Except for the longitudinal force measurements, all other measurements
(wave heights, heave and roll motions) were found to have insignificant amount
of noise content, which was removed by a five point! averaging technique. For
the force measurement, however, the time record was found to contain a rel-
atively large proportion of high frequency noises. This was probably caused
by the absence of an analog filter while recording the data. These noises were
subsequently removed by applying a digital filtering technique. The time record
was first Fourier transformed to the frequency domain which was then digitally
filtered by selecting a standardized window (signals of frequencies more than

four times the excitation frequency were removed). Subsequently the smoothed
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Table 7.5 (a) Series B experiments

Frequency
No. i w H A |wy/B/2g| H/X | \/B | Remarkst
(sec.”™?) [ (rad./sec.) | (cm.) | (cm.)

1 1.20 7.540 3.75 108 1.0771 | 0.0347 | 2.70 -
2 1.10 6.912 7.87 | 129 | 0.9874 |0.0610 | 3.20 (a)
3 1.10 6.912 3.75 129 0.9874 | 0.0291 | 3.20 -
4 1.05 6.597 9.65 141 0.9425 | 0.0684 | 3.53 (b)
5 1.05 6.597 4.90 141 0.9425 | 0.0348 | 3.53 -
6 1.00 6.283 9.83 156 0.8976 | 0.0630 | 3.90 (a)
7 1.00 6.283 5.10 156 0.8976 | 0.0327 | 3.90 -
8 0.95 5.969 4.95 173 0.8527 | 0.0286 | 4.33 -
9 0.90 5.655 6.93 192 0.8078 | 0.0361 | 4.80 -
10 0.85 5.341 8.25 | 214 | 0.7630 | 0.0386 | 5.35 -
'Remarks

(a) : near-field waves close to breaking

(b) : near-field wave tips occasionally breaking; surf formation
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Table 7.5 (b) Series C experiments

Frequency
Nouli 5 el arost e A B Rermarit
(sec.”™) [ (rad./sec.) | (cm.) | (cm.)

1 1.10 6.912 7.87 128 0.9874 | 0.0610 | 3.20 (a)
2 1.10 6.912 3.75 128 0.9874 | 0.0291 | 3.20 -
3 1.05 6.597 9.65 141 0.9425 | 0.0684 | 3.53 (a)
4 1.05 6.597 4.90 141 0.9425 | 0.0348.| 3.53 -
5 1.00 6.283 9.83 156 0.8976 | 0.0630 | 3.90 (a)
6 1.00 6.283 5.10 | 156 0.8976 | 0.0327 | 3.90 =
w 0.95 5.969 4.95 173 0.8527 | 0.0286 | 4.33 -
8 0.90 5.655 6.93 192 0.8078 | 0.0361 | 4.80 -
9 0.85 5.341 825 | 214 0.7630 | 0.0386 | 5.35 -
10 0.80 5.027 4.13 | 240 0.7181 | 0.0172 | 6.00 -
g1 0.70 4.398 3.92 | 304 0.6283 | 0.0129 | 7.60 -
12 0.60 3.770 4.80 | 385 0.5386 | 0.0125 | 9.63 -
13 0.60 3.770 8.80 | 385 0.5386 | 0.0229 | 9.63 -
14 0.60 3.770 10.60 | 385 0.5386 |.0.0275 | 9.63 -
tRemarks

(a) : near-field waves close to breaking
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Table 7.5 (c) Series D experiments

Frequency
No. f w H A wy/B/2g | H/X | A/B | Remarks!
(sec.™) [ (rad./sec.) | (cm.) | (cm.)
ik 1.20 7.540 3.75 108 1.0771 | 0.0347 | 2.70 -
2 1.10 6.912 7.87 129 0.9874 | 0.0610 | 3.20 (b)
3 1.10 6.912 3.75 | 129 | 0.9874 |0.0291 | 3.20 -
5 1.05 6.597 9.65 | 141 | 0.9425 | 0.0684 | 3.53 (b)
6 1.05 6.597 4.90 141 0.9425 | 0.0348 | 3.53 -
7 1.00 6.283 9.83 | 156 | 0.8976 |0.0630 | 3.90 (a)
8 1.00 6.283 5.10 156 0.8976 | 0.0327 | 3.90 -
9 0.95 5.969 10.20 | 173 0.8527 | 0.0590 | 4.33 (a)
10 0.95 5.969 4.95 173 0.8527 | 0.0286 | 4.33 -
il 0.90 5.655 6.93 192 0.8078 | 0.0361 | 4.80 =
12 0.85 5.341 825 | 214 0.7630 | 0.0386 | 5.35 -
13 0.80 5.027 8.70 | 240 0.7181 | 0.0363 | 6.00 -
14 0.70 4.398 8.35 | 304 0.6283 | 0.0275 | 7.60 -
15 0.60 3.770 9.65 | 385 | 0.5386 | 0.0247 | 9.63 -
'Eemarks

(a) : near-field waves close to breaking

(b) : near-field wave tips occasionally breaking; surf formation
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time records were retrieved by an inverse transform (this procedure did not alter

the phase information of the signal).

To check the two-dimensionality of the flow, the records from the two probes
placed abreast inside the channel (probe nos. 3 and 5, see Figure 7.10) can be
compared. For most tests, the flow was found to possess an acceptable quality of
two-dimensionality, particularly in the initial period of recording. For some tests,
specially for the conditions of higher wave steepnesses, cross flows were found
to develop inside the channel after some time. However, these did not affect
the results, since such flows generally developed after the period upto which the
data was collected for analysis. Typical sample records from these two probes
are shown in Figure 7.11 (a) - (c) as an indication of two-dimensionality of the

flow during the test period.

For lower values of A\/B (i.e. at higher frequencies), the model displayed
negligible motions and acted very much like a floating breakwater (the lowest
A/B that could be achieved was about 2.7; the wave maker was not capable
of producing waves of acceptable quality below this wave length). The waves
transmitted to the other side of the body were negligible. As the frequencies ap-
proached heave natural period, the model began to display large heave motions.
However, except close to the roll natural period, the model did not practically

roll at any other frequencies (roll amplitudes were typically within 2 to 4 deg.).

A majority of the tests was conducted twice to verify repeatability of the
tests. The results showed very good quality of repeatability. Most of the experi-
mental results in conjunction with the corresponding results from the numerical

model are presented in the following section. Here some sample results are in-
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Figure 7.11 Time records for free surface elevations measured by probe no. 3
and probe no. 5 from the tests with the presence of the body.
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cluded. Figures 7.12 (a) and (b) show sample results from test series A as a
demonstration of the quality of the generated waves inside the channel, while
Figures 7.13 (a) - (c) show sample results for the main series of tests demon-
strating the quality of repeatability (note that the presented samples cover the

range of tested frequencies).
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8 Comparison of Experimental and Numerical
Results

8.1 Introduction

The objective of this section is to provide a comparison between experimental
and numerical results. For a proper comparison it is necessary that the exper-
imental conditions are replicated in the numerical model. As described i the
previous section, the experiments were conducted by permitting the body to re-
spond in selected modes of motions. In this regard, the numerical mode] e
relatively easily tuned to imitate the experimental conditions. Computational
results illustrating responses of a floating body constrained in particular mq ke

of motion have already appeared in §6. For a valid comparison, another matter

S

of equal importance is the correspond of the input

. Although the

bl

numerical model closely r its physical experi 1 counterpart in that

both represents initial value processes with waves being generated at one sad of

the tank (equivalently the control domain), it is not possible to directly repli-

cate the experimental set up in the present simulation model for the following
reasons: ¢

1. The method of wave generation in the numerical model and the physical

test system is not the same. Even if it was possible to numerically simulate

a physically moving impermeable wave board generating waves at one and

of a finite control domain, the difficulties in replication of the physical test

system would still remain. This is because, considering the distance of

the body from the wave board, which is about 20 m. (in order of 10 to

20 wave lengths for the range of frequencies tested), the computational
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domain required would have been prohibitively large.

2. In the numerical model, a direct control of the height of the generated
waves in the interior of the control domain is not possible; control can

only be exercised on the imposed excitation potential.

©w

. Transient development of wave fields are expected to be different due to

differences in the wave generation mechanism.

A direct one-to-one mode of comparison between the experimental and nu-
merical results is therefore not available in general. Hence it is necessary that,
prior to carrying out any comparisons, a reasonably acceptable basis of compar-

ison be established.
8.2 Basis of Comparison

The primary input variables for the comparison are taken to be the funda-
mental wave period and wave height. Previous computational results (cf. §4)
have shown that the height of the generated waves _inside the control domain
is closely comparable to the height (H) of the Airy 'wave corresponding to the
excitation potential. Also, the fundamental period of the generated wave was
shown to be very close to the excitation period. Ideally, the excitation potential
should be selected such that the conditions of the generated waves at the loca-
tion of the body’s CG agrees with the test wave conditions, but this would have
lead to a trial-and-error search for the correct excitation potential. Considering
the simulation time and the amount of experimental conditions that were to

be simulated, this process would have required prohibitively expensive and time
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consuming computational efforts. Instead, selection of an Airy excitation poten-
tial with H and w taken from the test conditions were found to be close enough
approximations for replicating the experimental waves. This will be apparent

from the results presented below.

All of the numerical results, unless specifically mentioned, have been com-
puted for a standardized control domain extending over L = 4.0\. The CG of
the undisturbed body is located at L; = 2.5\ and L, = 1.5\ from the bound-
aries D¢y and 8Dc, respectively (cf. Figure 6.4). The two periods T; and T,
described earlier (see §6.3) provide a guidance for the time span within which
comparisons are meaningful. For the size of the domain chosen, about 3 to 5
wave periods of results can be obtained within the interval between T} to T
for most of the tests. Considering the wide range of A/B values for which nu-
merical results are to be generated, the grid sizes were not standardized. The
relative value of Az (i.e. Az/A) for which the computed results are considered
sufficiently reliable for the lower range of wavelength results in poor resolution
of the body surface for large values of A. This follows from the requirement of
keeping Az approximately uniform all over 9D (see eg §4.3.3, where it is shown
that the adjacent segments must be comparable in lei]gths for the numerical so-
lution to be well behaved). On the other hand, retention of the relative Az/A
value chosen for the larger values of A over the entire range of wavelengths leads
to a very fine resolution of the free surface for low A values at the expense of

iderable additional P time, without essentially improving accuracy

of the solution (as we have seen in §4). The spatial grid sizes are therefore chosen
such that a reasonably good description of the entire boundary can be obtained.

Guidance from previous computations helps to choose appropriate values. At
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for all computations are chosen so that the Courant-Friedrichs-Lewy condition
given by eqn. (3.17) is satisfied. These discretization parameters for each com-

putations are listed in Table 8.1. The other relevant parameters are: ¢/T = 1

a8

and n = 4 for all p i (this corr dsto a length between

0.1X to 0.13)). It need also be mentioned that the geometry of the body in the
numerical model is rectangular, since the algorithm is not capable of modelling

curvilinear geometry (recall that the body contour is approximated by straight

line ts). This approximation is not likely to cause any significant errors,

since the radii of curvature are very small.

For the chosen size of the control domain, T, for most runs is in order of 8 to
12 times the excitation period, depending on ¢, values (see eqn. (5.7) and note
that d/X ranges from over 0.5 to about 0.25), or about 9 to 16 secs. in real time.
From the experimental results, an appropriate window extending over this time

interval was considered for the pr ion of time histories for comparison. In

most cases, the windows were selected by a visual inspection of the full time
record and are such that the data contain a part of the transient information,
ie. the starting point of the window is a few periods ahead of reaching the

i
steady state. Figure 8.1 illustrates such a typical window.

The comparison between the numerical and experimental time records are

presented in the following manner.

Input conditions

The numerical wave is measured at a station inside the control domain located

at a distance of 0.5\ from the excitation boundary. This distance is chosen
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Table 8.1 Discretization parameters

f lwyBJ2g| A |az/n|ayT
(sec.”T) (cm.)

1.15 1.0771 | 117.9 | 1/30 | 1/60
1.10 0.9874 | 128.9 | 1/30 | 1/60
1.05 0.9425 | 141.4 | 1/30 | 1/60
1.00 0.8976 | 155.8 | 1/30 | 1/60
0.95 0.8527 | 191.8 | 1/40 | 1/80
0.90 0.8078 | 191.8 | 1/40 | 1/80
0.85 0.7630 | 213.9 | 1/40 | 1/80
0.80 0.7181 | 239.8 | 1/40 | 1/80
0.70 0.6283 | 304.1 | 1/40 | 1/100
0.60 | 0.5386 | 385.0 | 1/40 |1/100
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Figure 8.1 Illustration of a typical window chosen for the purpose of comparison
and presentation of results; this record is from Test Series C; w\/B/2g = 0.7630,
A/B = 5.35, H/A = 0.0386; record from thls window can be seen in Figures 8.7
(c) and (d) below.
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such that the station is relatively close to D¢y and about 0.4\ outside of the

matching region on an average. Therefore the time history for the free surface

elevation remains uninfl d by any reflection from the body for a relatively
long time. This elevation can then be taken as a measure of the oncoming wave.
For the experimental input conditions, the wave elevation records from test series
A (without the presence of the body) are considered. Comparison of these two
records therefore provide the comparisons of oncoming wave conditions. For
presentation, these two records are synchronized. The synchronization here is
standardized by matching the peak of the numerical wave in the time interval

3 < t/T < 4 with the peak of the experimental wave record.

Outputs

The primary outputs of the models are the two displacements (heave and roll)
and the sway force. These results are plotted by synchronizing the records with

respect to the undisturbed wave at the horizontal location of the body’s CG.

Tish

The synchronization is accc d in the following manner.

Referring to Figures 8.2 (a) - (f), the phase difference between the wave at
location of probe no. 2 and probe no. 3, henceforth referred to as P2 and P3
respectively, for the tests without the body (i.e. for test series A, see Figure
7.9) can be determined by measuring 67,3 (Figure 8.2 (a)). Similarly, from the
tests with the body (i.e. test series B, C or D), the phase difference between
P2 and the responses (for clarity, the responses are shown as a single curve and
denoted as R(exp) in Figure 8.2 (b)) can be determined by measuring 675 r.

Taking P2 to be a reference, the phase difference between the undisturbed wave
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258

at the body’s CG location (P3 in Figure 8.2 (a)) and the responses (R(exp)) are

determinable by calculating 673 r:
Smap = 6T3,r — 6723 (85

Therefore the experimental time records are established with reference to the

undisturbed wave at the body’s CG location, as illustrated in Figure 8.2 (c).

To synchronize the numerical results with the experimental ones, time history
for the free surface elevation at P2, which has been generated in the numerical
model, is utilized. By measuring the time difference §7; v between the experi-
mental and numerical records for free surface elevations at this location (Figure
8.2 (d)), the entire time histories for all the responses in the numerical model
(R(num)) are shifted by this amount to achieve the desired synchronization
(see Figure 8.2 (e)). Referring to Figures 8.2 (c) and 8.2 (e), the synchronized
records referenced with respect to the extrapolated undisturbed wave record at
the body’s CG location are established, as illustrated in Figure 8.2 (f) (in the

Figure, a slight phase gap between the responses has been retained for clarity).

It is to be observed that synchronization of the,, results could have been
achieved through a somewhat less lengthy procedure, by taking P2 as an absolute
reference and measuring all other records with respect to it. However, here the
procedure described above is adopted, since this is believed to follow standard
practice of data presentation in the frequency domain where the phases are

usually referenced relative to the incident wave crest at the body’s CG location.

For extracting the phase information, times indicated as 73, 73, 75, 7Tr, T2v and
Try shown in Figures 8.2 (a) - (f) need to be determined. These are calculated

by an averaging process.
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Consider a time record extending for a length of N, periods (Figure 8.3),
and denote the time of occurrence of the peaks as 7;,i = 1,..., N, (it is also
possible to work with any other reference such as the troughs or zero-crossings).

By measuring 7;, the averaged value of 7; (i.e. 7 at i = 1) is determined from

"= N Z-r, (z o L SR LR R (8.2)
=1
where T denotes the fundamental period of the signal.
The above procedure can be subdivided into the following steps.
(i) Determine 7, and 73 from the records of test series A (Figure 8.2 (a)) by

selecting an appropriate window by a visual inspection of the full record.

Find é7y3.

(ii) Select window from the test records of series B or C or D (as the case may
be) and find 7; and 7g, and hence determine ém, g (Figure 8.2 (b)). In

most situati the selected window coincides with the time span selected

in (i) above.

(iii) Calculate é73r from eqn. (8.1) and establish the experimental record for

the responses in relation to P3 of test series A (Figure 8.2 (c)):
T3 =TR—0T3R .....(8.3)

(iv) Determine 7,y from the numerical results. The window selected for this
is: [1 4 (2.5) — La3)/c;] <t < [1+ (2.5) + La3)/c,] which follows from
consideration of linear group speed. Here L, 3 is the distance between P2
and P3 (refer to Figure 7.9 or 7.10). Hence determine §7, 5 (Figure 8.2
@)
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(v) Shift the entire numerical record including wave information at P2 (Figure
8.2 (e)):

Thy = TRN — 672N .ene(8.4)

(vi) Compile and plot the records: the wave record at P3 from test series A,
and the responses from the experimental and numerical results (Figure 8.2

()

An interactive software is developed to process the data in the manner de-
scribed above. The approximations implicit in this processing must now be

stated:

(i) The tests have been assumed repeatable. This assumption is implicit by
utilizing results of test series A for synchronization with other test results.
This means, it is assumed that for an identical signal to the wave-maker,

the generated waves are identical. Results ill ing the quality of re-

peatability presented earlier (Figure 7.13) justify this assumption.

(ii) The records are assumed to be periodic with the fundamental period of T,
s
which is the period of the excitation signal (i.e. the wave-maker). This

assumption is implicit in using eqn. (8.2).

Notwithstanding these assumptions which may lead to some inaccuracies in
the synchronization procedure, it should be pointed out that the relative phases
between the three responses for each set of records (experimental and numerical)

are kept unaltered by the above processing.



262
8.3 Results
8.3.1 Sway Forces and Heave Motions

The comparisons between the time histories of the experimental and computed
results are presented in Figures 8.4 - 8.7. The first plots in these ((a) in the
Figures) compare the free surface elevations of the experimental and numerical
waves. The sway force and heave motion histories ((c) and (d) in the Figures)
are plotted in referenced to the undisturbed wave elevation at the location of
the body’s CG (which is shown as (b) in these Figures), obtained in the manner
described above. For brevity, in this section only a limited number of time series
plots are presented, covering the experimental range of frequencies and steep-
nesses. For wy/B/2g = 0.7630, computational results were also been obtained
for an extended control domain with L; = 3.25)\ as a further verification of
the numerical model. Figure 8.8 shows this comparison. Note that the plotted
sway force and heave motions are respectively the total force recorded by the
dynamometer, F, = F, Lg, and the vertical displacement of the body’s CG,
2¢ = 26(t) — zg(0). Also, the quoted values of T} and T, are rounded-off to
the nearest 0.5 sec. and adjusted by adding appropr;ate values such that they

directly correspond to the time-axis of the plots.

Results in terms of the peak-to-peak values and phase relations were compiled
and summarized in Tables 8.2 (a) - (¢). The numerical wave height quoted here
was computed from the corresponding time history by averaging wave heights.
For this, the record in the time interval 4 < t/T < 7 which lies well within
Ty to T; was considered. Here Ty and T; indicate respectively the times at

which the wave at the station (i.e. at the location of 0.5\ from &D¢; at which
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Table 8.2 (a) Comparisons for sway force and heave motion, test series B

Sway Force Heave Motion

7o | w/B2g | MB | B/ | \RI | R [AR] e | Teal | lzal | Az | 4B,

(exp.) [ (num.) | (%) | (deg.) || (exp.) | (num.) [ (%) [ (deg.)
0.987 | 1.0771 | 2.70 | 0.0347 || 0.053 | 0.059 | 9.8 30 0.0375 | 0.0385 | 1.3 0
0.996 | 0.9874 | 3.20 | 0.0610 {| 0.135 [ 0.120 |-11.0 0 0.0985 | 0.099 | 0.10 15
0.986 | 0.9874 | 3.20 | 0.0290 || 0.066 | 0.061 | -7.7 30 0.064 | 0.0645 | -0.60 0
0.985 | 0.9425 | 3.53 | 0.0684 || 0.154 | 0.159 | 3.4 -30 0.177 | 0.178 | -1.0 -15
0.996 | 0.9425 | 3.53 | 0.0348 || 0.086 | 0.078 | -9.7 | -15 0.098 | 0.099 | 0.10 | -15
0.998 | 0.8976 | 3.90 | 0.0630 || 0.146 | 0.161 8.3 -45 0.273 | 0.275 | 0.7 -15
0.996 | 0.8976 | 3.90 | 0.0327 || 0.086 | 0.089 | 2.6 -30 0.125 | 0.128 | 2.0 -15
0.971 | 0.8527 | 4.33 | 0.0286 || 0.096 | 0.098 | -0.8 | -15 0.207 | 0.217 | 1.8 -15
0.976 | 0.8078 | 4.80 | 0.0361 || 0.152 | 0.156 15 30 0.380 | 0.454 | 16.5 30
0.976 | 0.7630 | 5.35 | 0.0386 || 0.158 | 0.165 | 3.7 15 0.660 | 0.700 | 3.6 15

€L



Table 8.2 (b) Comparisons for sway force and heave motion, test series C

Sway Force Heave Motion
7| o /Bj2g | MB | H/N | 1E| | IRl [AF | 88 | Izl | I7el | Az | A8,
(exp.) | (num.) | (%) | (deg.) || (exp.) | (num.) | (%) [ (deg.)
0.962 | 0.9874 | 3.20 | 0.0610 || 0.144 | 0.123 |-17.6 | -15 0.099 | 0.099 | -4.3 0
0.986 | 0.9874 | 3.20 | 0.0291 || 0.068 | 0.062 | -8.8 | -30 0.059 | 0.059 | -2.2 -15
0.985 | 0.9425 | 3.53 | 0.0684 || 0.176 | 0.156 |-12.9 0 0.197 | 0.190 | -5.0 15
0.994 | 0.9425 | 3.53 | 0.0348 || 0.083 | 0.078 | -6.8 0 0.098 | 0.098 |-0.60| 15
0.998 | 0.8976 | 3.90 [ 0.0630 || 0.151 | 0.164 | 8.4 15 0.273 | 0.275 | 0.7 -15
1.0 0.8976 | 3.90 | 0.0327 || 0.088 | 0.089 | 1.2 -30 0.130 | 0.128 | -1.9 -15
0.971 | 0.8527 | 4.33 | 0.0286 || 0.099 | 0.097 | -4.5 | -30 0.210 | 0.218 | 0.5 -30
0.976 | 0.8078 | 4.80 | 0.0361 || 0.156 | 0.154 | -4.0 | -15 0.390 | 0.455 | 13.8 0
0.976 | 0.7630 | 5.35 | 0:0386 || 0.148 | 0.162 | 6.5 15 0.670 | 0.700 | 2.0 15
0.993 | 0.7181 | 6.00 | 0.0172 | 0.091 [ 0.090 | -1.7 | -30 0.390 | 0.401 1.9 15
0.992 | 0.6283 | 7.60 | 0.0129 || 0.0911 | 0.085 | -7.5 0 0.295 | 0.304 | 2.1 0

LT



Table 8.2 (c¢) Comparisons for sway force and heave motion , test series D

Sway Force Heave Motion

722\ wfB2g | MB | BA [ IE] [ IE] [AR] A | J7al [ |2l [z ] A8

(exp.) | (num.) | (%) | (deg.) || (exp.) | (num.) [ (%) | (deg.)
0.987 | 1.0771 |2.70 | 0.0347 || 0.053 | 0.059 | 9.8 | 0 [0.0375| 0.04 [526| 0
0.962 | 0.9874 |3.20 [0.0610 || 0.126 | 0.123 | 62| 0 [ 0.0 | 0.099 [-39| 0
0.986 | 0.9874 |3.20 |0.0291 || 0.065 | 0.062 | -6.9 | -15 | 0.055 | 0.058 | 3.1 | 0
0985 | 0.9425 |3.53 |0.0684 | 0.151 | 0.154 | 6.2 | -30 [ 0.190 | 0195 | 1.1 | -15
0.994 | 0.9425 |3.53 [ 0.0348 | 0.086 | 0.080 | -7.2 | -30 | 0.097 | 0.098 |0.40 | -15
0.997 | 0.8976 | 3.90 | 0.0630 || 0.151 | 0.164 | 8.3 | -90 || 0.274 | 0.205 | 7.2 | -90
1.0 | 0.8976 |3.90 [0.0327 || 0.083 | 0.088 | 5.0 | -45 [ 0.130 | 0.130 | 0.0 | -30
0971 | 0.8527 |4.33 |0.0590 || 0.185 | 0.172 | -9.8 | -30 | 0.455 | 0.474 | 1.4 | -15
0.980 | 0.8527 |4.33 |0.0286 || 0.102 | 0.096 | 6.9 | -30 | 0.218 | 0.220 | -0.8 | -15
0976 | 0.8078 |4.80 [ 0.0361 || 0.148 | 0.151 | 0.7 | 15 | 0.401 | 0468 |13.9| 15
0.976 | 0.7630 | 5.35 |0.0386 || 0.148 | 0.162 | 6.5 | 15 | 0.660 | 0.690 | 2.1 | 15
0.837 | 0.7181 | 6.00 |0.0363 || 0.104 | 0.226 | 2.6 | -15 | 0.750 | 1.025 |14.3| 15
0.977 | 0.6283 | 7.60 |0.0275 || 0.152 | 0.162 | 40 | 30 | 0.580 | 0.638 | 7.2 | 15
0990 | 0.5386 |9.63 | 0.0247 || 0.160 | 0.150 | -7.8 | 15 | 0.448 | 0.488 | 88 | 15

SLT
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the numerical wave height is monitored) is likely to be fully developed and free
from the influence of reflection . From considerations of linear group speed and
chosen computational parameters, Ty /T = 1+0.5K and T; = 1+ (4.5— B/A\)K

where K = c¢/c,. The other parameters shown have the following meanings:

& | Fe|
B = o
1o = bl _ Il
i h (B/2)
ap = (B Bnum ~(El/Hexp _ 1 0
(el T L T (8.5)
(|ZG|/H)num T (1ZG|/H)exp
A = [ = 1'%x 100
@ = T ol Bexp ]
APBr, AB, = phase differences between measured and computed time

histories for sway force and heave motions respectively,

(positive indicates numerical record is leading)

where |F;| and |zg| were defined earlier (see §6.3). The values shown for the
numerical results are computed by averaging the peak-to-peak values for the
central two periods in the interval T} to T,. For the experimental results, how-
ever, the entire time record (excluding the tra.nsiex}t part of the record) was
considered in determining the quoted values (not just\ the time record chosen to

present the time history comparisons in Figures 8.4 - 8.8).

A measure of the discrepancies between experimental and computed results
are therefore provided by AF; and Azg values. Note that in defining these
parameters, a normalization with respect to H was carried out such that any

discrepancies arising from diffe in Hexp and Hnum are absorbed in them

(much in the style of usual transfer functions). For the sampling rate of 40 hz. at

which data was processed, and taking into account the data averaging procedure
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(a digital filtering technique for the force record and five point averaging formula
for the rest of the records, see §7.4), the approximate level of accuracies for the
phase values are estimated to be varying in the range of 10 to 20 deg., depending
on the frequencies. The values quoted have been rounded-off to 15 deg., since
this value is considered to be indicative of estimated average level of accuracies

over the full data range.

The discrepancies between the measured and computed peak-to-peak values
(i.e. AF, and Azg) are grouped in the range of 5% and are shown in Figures
8.9 (a) - (f). A discussion of these results is provided latter (see §8.4 below).
Note that in Tables 8.2 (a) and (b), roll results were not included since for those

ranges of frequencies roll motions were very small (see §8.3.3 below).

8.3.2 Free Heave Tests

With some modifications, the numerical model can be used to simulate free
motions of floating bodies. A variety of initial conditions can be examined by
combining initial displacements and velocities. To achieve these simulations, the
imposed excitation on D¢y needs to be removed. THe numerical model can be
set up by either imposing condition (4.13) on D¢ and D¢, with ¢ determined
as the celerity of an Airy wave of period corresponding to the natural period of
oscillation, or by placing these boundaries sufficiently far and imposing either
¢ =0 or 3¢/0n = 0 on them. The former method is expected to permit long
time simulations with a relatively small computational domain, while in the
latter method results are expected to be contaminated when the disturbances

created by the body reach the outer boundaries. Nevertheless, depending on the
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length of the domain, uncontaminated results for a few periods of oscillations
can be obtained at the expense of additional computer time. Considering ease
of implementation in that additional algorithms need not be written for time
integration of (4.13) on D¢, the latter method is adopted here for comparison

with experimental results.

Prior to showing the comparisons, in Figure 8.10 the numerical results are
shown, which are computed for different lengths of the domain, grid sizes and
imposed conditions on the outer boundaries. The discretization parameters
shown are normalized with respect to T = T" and A = length of an Airy wave
of period T" in water depth d. Here, T" is the natural period of oscillation in
heave. These plots show that results upto t < 2.5T" differ negligibly, except for
the smallest control domain of 0.5L = 6B. This case corresponds to a distance
of only 1\ between the body and the outer boundaries. For 0.5L > 12B, results
upto 2.5T" can therefore be considered reliable, regardless of the conditions

imposed on the exterior boundaries.

The comparison between experiment and theory is presented in Figure 8.11
in which a plot for only one of the numerical results is, shown for clarity. For the
experimental results, the first half cycle of oscillation is omitted due to uncertain

initial conditions (the experiments were performed by pushing the body down

and releasing it; the force required for this was iderable, and q ly
possibilities exist for non-zero initial velocities). The agreement between theory
and experiment is in general quite good. The numerical result shows a slight
over-prediction in the natural period, indicating some over-estimation in the

heave added mass (cf. eqn. (6.29)). The experimental results for the two

tests show some discrepancies. Considering that the restoring forces are linear,
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the di ies are perh attrik

bl

to experimental inaccuracies rather
than differences in initial conditions. The contribution of fluid viscosity in the
damping of heave motion appears to be not very significant, although closer
scrutiny reveals a marginal damping effect (see the lower part of the plots).
These findings are consistent with results obtained by earlier investigators (see
e.g. Adachi and Ohmatsu 1980). Since the variations in the two experimental
records are almost as large as the difference between experiment and theory,

further analysis of the comparison is not carried out.

8.3.3 Roll Motions

With the exception of the lowest experimental frequency in the vicinity of the roll
natural frequency, the body displayed very small roll displacements at all other

test fr ies. The roll litudes were mostly less than 4 deg. The numerical

method predicts a similar behaviour as can be seen from results shown for several
frequencies (Figures 8.12 (a) - (c)). This also provides a supporting evidence
for the roll behaviour obtained earlier for a similar geometry at frequencies far

from the natural frequency, see e.g. Figure 6.11 (c) in §6.

Large roll amplitudes were obtained experimentally for the frequency w\/ﬁ
= 0.5386 in test series C. At this frequency, experimental data was gathered for
three different wave steepnesses, the largest being H/\ = 0.0275. Larger steep-
ness could not be achieved due to the limitation of the dynamometer (maximum
allowable roll of +30 deg.) as well as due to water spilling inside the body. Time
histories showing the comparisons for incident wave, sway force, heave and roll

motions for all the three wave steepnesses are presented in Figures 8.13 - 8.15.
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Also included are the comparisons of wave elevations at the location of probe
no. 2 ((b) in these Figures). The peak-to-peak values and phase informations

are compiled in Table 8.3, where

_ ((8l/H)num — (161/H)exp _ e
A [—E(iel/H)exp 1] x 100 (8.6)

and Afg, which indicates the phase difference between the measured and com-
puted roll time histories, are obtained in the same manner as for the other two
records. Although the agreement of phases is very good, the roll motions are
considerably over-predicted, |6| values differing by about 17 % to 32 %. On the
other hand, the sway forces are under-predicted while the heave motions have
correlated reasonably well. It is worth mentioning that the agreement of free
surface elevations at the location of probe no. 2 is also quite good.

litud

The over-predictions of roll are believed to be the effects of fluid

viscosity which is not 1 for in the potential flow numerical model. The
significant role played by fluid viscosity in the form of a damping mechanism
for large roll motions is well documented in literature (see e.g. Himeno 1981).
Incorporation of viscous effects is therefore expected t{o improve the predictions.
In the following, an attempt has been made to incorporate these effects by

including viscous damping terms in the roll equation of motion.
8.3.3.1 Inclusion of Viscous Damping

The single degree of freedom, uncoupled, roll equation of motion can be
written as:

(Is + 81,)8 + bs(8) + Co(8) = M, ee(8.7)



Table 8.3 Comparisons for sway force, heave and roll motions, test series C

Roll Motion

Sway Force Heave Motion
H = =
TR\ o\/B2g | MB | BN | |E| [ (Bl [AR ] a6r | Izl | 1zl Az | ag. | 161 [ 1o |26 ] ag
(exp.) | (num.) | (%) | (deg.) || (exp.) [ (num.) [ (%) | (deg.) || (exp.) | (num.) [ (%) | (deg.)
0.990 | 0.5386 | 9.63 | 0.0125 || 0.104 | 0.079 |-24.0| 15 0.28 0.29 2.5 0 18.0 213 |17.3| 15
0.989 | 0.5386 |9.63 |0.0229 || 0.172 | 0.151 |-15.0| 15 0.50 0.54 6.8 0 33.0 44.0 |31.8 0
0.964 | 0.5386 |9.63 |0.0275 || 0.202 | 0.172 |-17.0| 15 0.565 | 0.625 | 6.6 0 43.9 59.5 | 306 15

967
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where bg(6), Cs(8) and Mj represent damping, restoring and excitation moments
respectively, single and double dots signify single and double differentiations with
respect to time, and the other symbols are as defined earlier. The effects of fluid
viscosity are contained in the b; term (the damping moment) above. The aim

is to incorporate this effect in the numerical model.

In general, the damping moment results due to two effects: hydrodynamic
or radiation damping and viscous damping. If radiation damping moment is
assumed to be linear in 6 (justification of this assumption is provided latter, in

Appendix B), we can write:

b = b +b

BG4 b (8.8)

where b and b} are contributions of radiation and viscous damping moments
respectively, and BJ is the associated radiation damping coefficient. The radia-
tion damping moment results from the dissipation of energy through the creation
of radiated waves by the motion of the body. This is a part of the potential flow
phenomenon and is therefore implicitly accounted for in the numerical model.

The remaining part is then the contribution of the 8} term.

This term was estimated by utilizing the results of the free roll experiments
(the roll decay tests) as explained in Appendix B. The Newton’s equation of
motion for roll (eqn. 6.4 (c)), which is used in the numerical model, takes the
following modified form:

LA=Mp=b0(0) e (8.9)

Comparing eqn. (8.7) with eqn. (8.9), it may be noted that both forms are

essentially identical, since Mj in eqn. (8.9) is determined by taking into account
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the combined contributions of 61, b}, Cs and M; terms. In addition to these,
form (8.9) also implicitly includes terms arising from hydrodynamic coupling
between the motions. Integration of eqn. (8.9) in the numerical model is trivial
since the required additional informations (6 values at several past steps, see eqn.
(B.6)) for the time stepping procedure are being determined as the solution is

advancing in time.

Results obtained by means of the above procedure are shown in Figure 8.16 -
8.18 in form of time histories of the responses for all the three wave steepnesses.
The phase information and peak-to-peak values are summarized in Table 8.4.
Comparing these results with the results without the inclusion of viscous effects
(Figures 8.13 - 8.15 and Table 8.3), it is observed that the roll predictions have
significantly improved, the differences in A# values are now around only 5%.

The sway force and heave motion histories have r ined tically unaltered

(these are not graphically distinguishable except for a slight improvement in sway
forces and a marginal improvement in heave motions for the largest steepness of
H/X = 0.0275). Also of interest is the observation that the wave profile at the
location of probe no. 2 (which is at a distance of 0.6\ ahead of the body’s CG)

has remained uninfluenced by the decrease of roll mdktions.

For convenience of comparison, the roll values obtained with and without

the inclusion of viscous d ing are ized in Table 8.5 which illustrates

more clearly the impr in roll pred
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Table 8.4 Comparisons for sway force, heave and roll motions for test series C
(numerical model includes viscous roll damping)

Roll Motion

Sway Force Heave Motion
y,};‘,‘(‘r’,“ w\/B/2g | \/B | H/A || || | |E| |AF: | ABr | Izl | 26| |Aze | OB | 6] 10 | A6 | Ap,
(exp.) [ (num.) [ (%) [ (deg.) || (exp.) [ (num.) | (%) [ (deg.) || (exp.) | (num.) | (%) | (deg.)
0.990 | 0.5386 | 9.63 | 0.0125 || 0.104 | 0.079 [-24.0| 15 028 | 029 | 2.5 0 180 [ 19.0 | 45| 15
0.989 | 0.5386 |9.63 |0.0229 || 0.172 | 0.151 |-15.0 | 15 0.50 | 0.54 | 6.8 0 33.0 | 348 |43 0
0.964 | 0.5386 |9.63 [0.0275 || 0.202 |~0.172 |-17.0 | 15 |/ 0.565 | 0.625 | 6.6 0 439 | 428 |-6.0( 15

80€
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Table 8.5 Comparison of the roll results with and without inclusion
of viscous roll damping in the numerical model

Exp. Computed Results
wy/B/2g | H/A without vis. damp. | with vis. damp.
161 [ 161 A8(%) 16l | A6(%)
0.5386 | 0.0125 | 18.0 | 21.3 17.3 19°.0 4.5
0.5386 | 0.0229 | 33.0 | 44 31.8 34.8 4.3
0.5386 | 0.0275 | 43.9 | 59.5 30.6 1428 -6.0
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8.3.4 Free Surface Elevations

Although measurements of free surface elevations were taken at several locations,
comparison for the near-field flow (i.e. elevations at locations of probe nos. 3
and 5, cf. Figure 7.10) could not be carried out extensively due to difficulties in
matching the time records. The wave elevations at this location show the influ-
ence of wave reflection from the body within a very short interval of time after
the oncoming wave reaches this location (typically within 2 to 4 secs.). In some

tests, specially for higher frequencies and steepnesses, the records contain reflec-

tion effects before the transient iated with the ing wave di s

PP
(see e.g. Figure 7.11 (a)). This causes difficulties in matching the numerical
and experimental results. The initial conditions are clearly not equivalent and
consequently a direct comparison of this transient record is not available. A
comparison of qualitative nature is however possible. Figures 8.19 (a) - (c) show
the results from experiment and theory without synchronizing the records. The

qualitative agreement is clearly noticeable.

Similar remarks apply to the flow on the other side of the body (at the
location of probe no. 4, cf. Figure 7.9 or 7.10). This station is outside the
computational domain for w\/ﬁ > 0.89 and therefore comparisons are not
available. At this higher end of frequencies, virtually no energy was transmitted
to the other side of the body. This feature is consistent in the numerical records,
as can be seen from Figures 8.20 (a) - (c) where the free surface elevations
from experiment and theory for several frequencies are shown (the numerical
wave elevations are measured at a distance of A downstream of the body’s CG

location).
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In Figure 8.21 (a) - (e), we show the comparisons at the location of probe no.
2 (see Figure 7.9 or 7.10) for several frequencies. Although with regard to initial
conditions, remarks made earlier apply, the plotted results are synchronized
(since these records were used as a reference in synchronizing other records, see

§8.2 above). Once more, most of the results are in good qualitative agreement.

lifi and reducti

See for example, Figures 8.21 (a) - (d), where the
in the elevations are similar between experiment and theory. At the lower end
of the frequencies when the body begins to undergo relatively larger motions,
the influence of reflection is smaller both in theory and experiment, as evidenced

from Figure 8.21 (e) (see also (b) in Figures 8.13 - 8.18 presented earlier).
8.4 Discussion of the Results

The sway force results show discrepancies between 0 to 10% over most of the re-
sults. Although some of the results at higher frequencies show relatively larger
discrepancies, no general trend indicating dependence of these differences on
wave frequency or steepness could be observed. These few increased differences
are believed to have resulted from experimental ina&:c’pracies rather than errors
in the numerical model. This is supported by the fact that the numerical results
for the three test series at higher range of frequencies remained fairly consis-
tent in force values, while the experimental force values lacked in consistency.
Given that the body has displayed very small motions at these frequencies, the
force amplitudes are expected to be fairly consistent in magnitudes. Indeed,
the major source of experimental inaccuracies in the test data is perhaps in the
force measurements, which is evidenced from examination of the measured force

records. These records show some fluctuations for some of the tests, specially
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at higher frequencies (see e.g. the force histories shown in Figures 7.13 (a) -
(c)). The problem is associated with the dynamometer which has a slight slack
between its movable parts (the part that allows heaving). It should be pointed
out that this instrument was originally designed for regular ship model towing
tests in which the imposed forces are in one direction only while in the present
experiment the forces are of oscillatory nature. Consequently some inaccura-
cies are unavoidable. With regard to force comparisons, another observation of
interest is that the numerical model in general under-estimates the measured

values (see Tables 8.2 (a) - (c)).

Considering the precision level of the dynamometer (see Table 7.3), the in-
accuracies in the force histories do not appear to have resulted from the force
tranducer itself. In order to assess the errors in the quoted peak-to-peak force
values, comparisons have been made between the |F;|exp values determined
from the two repeated tests and also from the same record by choosing different
window sizes, for a few randomly selected test cases. The values thus obtained
scattered in the range of +4 — 10%, that is, the experimental results themselves
fluctuate +4 — 10% as a consequence of random factors inherent in the physical
tests. This is felt to be the predominant source of err!or in the experimental re-
sults rather than the force tranducer. An average value of +7—8% can be taken
as a rough estimate of the errors in the quoted |F;|exp values. This analysis
indicates that the differences between the measured and computed peak-to-peak

force values are mostly within experimental uncertainty (see Tables 8.2 (a) - (¢)).

The agreement of heave results is very good. The discrepancies here are
mostly less than 5% and increases slightly as the resonant frequency is ap-

proached. These increases in differences are perhaps attributable to viscous
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effects. Note that the numerical values over this frequency range consistently
over-estimate the experimental values. The relatively large differences at a single
frequency of w\/B_/—2_ = 0.8078 consistently in all the three tests have occurred
due to an inaccuracy in the wave record from test series A at this frequency
(the wave elevation records for the two repeated tests at this frequency showed
a considerably larger difference than similar repeated tests at all other frequen-
cies). An error estimate similar to the sway force results has not been carried
out here, since the experimental time traces show practically no fluctuations.
Here the uncertainty involved is primarily governed by the precision level of the
measuring device (cf. Table 7.3). Considering the range of measured values, this
uncertainty is estimated (conservatively) to be +£2%. Similar remark applies for
the roll measurements, and once more a conservative estimate of the uncertainty

in the measured roll can be taken as +2%.

Comparison of the free heave results also shows good agreement between ex-
periment and theory. Inspection of the results suggests that radiation damping
predominates in heave motion. Considering the variation between the experi-
mental results and the relative insignificance of viscous effects, no attempts were
made to estimate and incorporate viscous damping ix’x the numerical model, as

was done for roll results. Note however that, albeit marginally, such a procedure

would have improved the already good correlation of the heave results.

Except for the sway forces, the agreements for the heave and roll motions at
w\/EW = 0.5386 are very good when viscous effects are taken into account.
Exclusion of viscous damping results in the expected over-predictions of roll
motions. The slight over-predictions at the two lower steepnesses and a slight

under-estimation for the steepest wave (see Table 8.4) may be attributed to the
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estimated viscous damping coefficients (which may introduce a small error, since
these coefficients were considered independent of roll amplitudes). Nevertheless,
the agreements are considered very good. With regard to sway forces, it is
not clear whether the under-estimations resulted from a coupling between roll
motion and sway forces in the numerical model. Careful observation however
does not suggest so. See, for example, the force value at this frequency for test
series D where the body has no roll motion. Although to a lesser extent, the

numerical scheme nevertheless under-estimates the experiment. Also, the force

values with and without inclusion of viscous d ing have r ined practically

unaltered, ing that variations in roll amplitudes are i ial to the

force history. As d, experi 1i most certainly contribute

to these differences. Another possible cause could be due to flow separation.
At this value of A\/B = 9.63, an additional component of force (drag force)

arising from flow separation is quite likely. Yet another possibility lies with

the discretization of the b dary. To ine this, attempts were made to
run the program with finer resolutions of the body contour. Unfortunately, for
resolutions finer than that already used in the computations, the solution breaks
down due to difficulties in locating the free surface and body intersection points.
The numerical scheme does not appear to be able to handle large roll motions
when collocation points are very close to the intersection point. This is most
certainly related to a comparatively stronger singularity associated with large

horizontal velocity components at these contact points.

The correlation of the phase information over the entire range of data is very
satisfactory. Consideration of possible inaccuracies in compilation of the phase

data (typically 10 — 20 deg.) does not invalidate this general remark. Note
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that the relative phase differences between the three responses (Fz, z¢ and 6) in
experiment and theory are unaltered. Therefore, consistency in the differences
between experiment and theory (i.e. comparable values of ABr, AS; and ABy)
confirms the quality of agreement, due to the coupled nature of the problem.
As can be seen from Tables 8.2 (a) - (c), these values are fairly consistent over

the entire set of data.

Considering the free surface elevations, the numerical model is found to re-

produce flow evolutions in fairly good qualitative agreement with experiment.

As noted earlier, diffe in initial conditions did not permit a more thorough
comparative study. The correlations between the input wave conditions are also
very good. The relatively large difference at wy/B/2g = 0.7181 in test series D

occurred due to an erroneous choice of the Hpym value.

Although much of the above discussion is focussed on the peak-to-peak val-
ues, considering that both the numerical and experimental systems are primarily
of unsteady nature, correlation between the results is better judged by examin-
ing the comparative time records. To this end, relevant time histories showing
the comparisons for rest of the data not included in this section are provided in

appendix C.

8.5 Summarizing Remarks

In v, taking into t possible experimental inaccuracies for unsteady
tests of this nature, it would be fair to say that the agreement between the
numerical model and experiment is between good and very good. It is worth

noting that the experiments covered the following three ranges in which non-
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linearities in the system are not negligible:

(a) At higher frequencies and higher steepnesses, the near-field flow contains

1

significant non-linearities. The free surface in some conditi

were found to be approaching the breaking limit. Indeed, in few of the

tests, slight foam formation was observed (see Tables 7.5 (a) - (c)).

(b) Large heave motions of peak-to-peak displacements exceeding half of the
body’s draught were obtained. Analysis of the video-tape for these tests

showed remarkable similarity of the run-up profiles with earlier computed

results for an identical try in heave (cf. Figure 6.10).

(¢) Mod ly large roll motions (ranging from 10 to 20 deg.) were obtained.

The results presented confirm the validity of the numerical method over the
above ranges, in addition to the usual linear regime. It was also demonstrated
that estimates of realistic values of roll can be obtained by such studies, provided

viscous effects are duly accounted for.



323

9 Summary and Conclusions
9.1 Summary

A numerical algorithm has been presented for solution of a class of potential flow
problems that contain a free surface. The method is based on an integral equa-
tion formulation in which the utilized integral relation is derived from Green’s
second identity. Despite the fact that the problems considered in this work is
limited to two-dimensional flow phenomena, the formulation adopted is favoured
over the strictly two-dimensional formulations based on Cauchy’s integral the-

orem, in that possible future extensi in three di ions can be envisioned.

The procedure followed to discretize the boundary is in its simplest form in
which the segments are straight lines and the collocation points are centrally
placed. Some generality is maintained in the scheme detailed in §2 such that
a variety of problems can be explored by prescribing appropriate initial condi-
tions and boundary data. A suitable time-stepping algorithm for the treatment
of the evolution equations for the boundary contour and data as appropriate,
in conjunction with the solution of the integral rela._tion in a discretized form,

permits the solution to advance in time and follow the resulting fluid flow.

The solution algorithm is examined by applying it to three problems involv-
ing propagation of small amplitude surface waves for which linearized free surface
conditions are applicable. The scheme is found to be sensitive on the imposed
initial boundary data, which must be compatible to avoid adverse numerical ef-
fects. Results obtained in comparison with analytical solutions have shown that
fluid motions of unsteady nature can be simulated over a considerable length of

time with acceptable degree of precision.
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Solutions for non-linear free surface motions are accomplished by taking into

account the full non-linear free surface diti The proced dopted for

following the free surface motions allows only vertical displacements of the col-
location points without translation, which differs from Lagrangian formulations
where marked fluid particles are traced. The present formulation avoids the
possibilities of particle clustering, which is believed to be intricately associated
with the numerical stability characteristics of the solution, at the expense of the
restriction to single-valuedness of the free surface contour.

d

Propagating unsteady steep waves are simulated by imposing a time-d

velocity potential at one of the control b darie: ing a rect: 1

finite fluid region. This potential acts as a source of excitation to initiate mo-
tions in an initially unperturbed fluid, similar to a wave-maker. Prescription of
an Airy wave potential as the excitation suffices this purpose. In order to pre-
serve numerical stability, it is found necessary to apply a ‘matching’ technique,
which is essentially a quadratic smoothing scheme in space. Application of this
technique suppresses the instability which otherwise initiates at the intersection
of the free surface and the boundary on which the excitation is applied. The
root mechanism responsible for this instability is beli(’eved to be linked with the
incompatibility of the free surface boundary conditions over the free surface at
the intersection (hence the name ‘matching’ procedure). Additionally, the free
surface contour and potential need to be smoothed. Numerical stability consid-
erations are found to be crucial for the success of the algorithm, since initiation

of instability at any instant results in rapid failure of the method.

Incorporation of a variant of Orlanski’s radiation condition, which assumes

the velocity potential at the downstream boundary to be travelling with the same
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celerity as on the upstream boundary, is found to make the downstream bound-
ary sufficiently transmissive to the interior disturbances. A number of results are
presented examining the efficacy of various numerical subcomponents embodied
in the algorithm. Very steep non-breaking propagating waves are generated and
subsequently followed over a considerable length of time, for example, over 20
wave periods. Results presented show that the solution remains well behaved
over the entire simulation period and thereby demonstrate the robustness of the

method.

Solutions for interactions of a steep propagating wave with a surface-piercing
fixed rigid object is attained by introducing a vertical wall in the fluid region.
Results presented in terms of the pressures, forces and run-up on the wall demon-
strate that convergence to a steady state of the solution extending over several
wave periods can be achieved. Comparison with perturbation solutions and
available experimental data indicate that the algorithm is capable of producing
results of excellent quality. The numerical solution is closely correlated with the
experimental results, including the replication of certain non-linear features as-
sociated with the pressure histories not always obtaina‘ble by means of analytical

solutions, such as double peaks in the pressure histories.

The solution algorithm is extended to simulate motions of a freely floating
body subjected to the action of steep propagating waves by taking into account
the equations of body motion and appropriate conditions on the body boundary.
The problem is fully non-linear in that no approximations with regard to the
motions of the body are necessary. Techniques are developed to overcome several
numerical complications that arise in this problem. In particular, sensitivity of

the algorithm to the discretization of the boundary leads to the necessity to
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regrid the body and free surface contours at every time step such that uniformity
in the spatial grid sizes over the entire boundary can be retained. Another
problem is associated with the evaluation of the dynamic component of the
fluid pressure exerted on the body. This arises from the intricately coupled
force-motion mechanism of the system, which in turn makes the algorithm very
sensitive and numerically more demanding with respect to the evaluation of
forces and motions. The problem is rectified by adopting a central difference
rule for calculation of the dynamic pressure component at the predictor levels
of the adopted Adams-Bashforth-Moulton rules, and following explicit rules for

the integration of the ions of motion. Additionall thing of the force

histories is required.

A number of puted results are p d for ascertaining the effectiveness
of the algorithm in simulating large-amplitude motions in steep waves. For most

of the results shown, typically the ing wave has a of H/A = 0.05,

since waves of larger steepnesses are found to cause excessive run-up and conse-

quently result in a breakdown of the solution due to the occurrence of flooding.

This is believed to be iated with two-di ionality of the problem un-
?

der consideration for which large run-ups are expected. Solutions exhibiting

large heave and roll motions are achieved. Also simulated is oscillatory sway

behaviour of completely unrestrained bodies.

In order that the simulated results can be relied upon, an experimental pro-
gram was undertaken. The two-dimensionality of the flow was accomplished by
constructing a channel inside the main wave tank. The body considered was
of rectangular cross-section with rounded-off corners. The body displacements

were restricted to heave and roll modes by means of an appropriate mount-
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ing device. The recorded measurements included heave and roll displacements,
and sway force. In addition, free surface elevations were measured at several

locations, with and without the presence of the body.

In comparing the results, possible differences in the initial conditions do not
permit a thorough examination of the transient part of the results. Compar-
isons presented therefore primarily focus on the steady state behaviour of the
forces and motions. The comparative time histories shown are synchronized by
referencing the relevant records with respect to extrapolated undisturbed wave
elevations at the body’s centre of gravity, by means of which information on

litudes and phases b available.

The agreement between the results is in general very satisfactory. The nu-
merical model predicted the peak-to-peak values for the sway forces within 10%
of the corresponding experimental values over most of the data range, many of
which are within the estimated uncertainties of +7—8% in the measured values.
Similar values for heave displacements are even better. The differences here are

mostly less than 5%, and once again close to the experimental uncertainties of

+2%. The numerical values show a slight over-predi ‘;» in heave displ t:

at and in the vicinity of heave natural frequency, whidlx may be due to additional
damping effects arising from fluid viscosity which was not taken into account
in the numerical model. Comparisons are also presented for free heave motions

as well as for the evolution of free surface elevations at several locations. The

qualitative and where possible quantitative ag are found satisfactory.

Large roll motions were experimentally obtained for only one frequency in the

vicinity of the roll natural frequency. The algorithm was found to yield com-
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paratively larger roll displacements. This was evidently the influence of fluid
viscosity not modelled in the potential flow solution algorithm. Subsequently,

inclusion of viscous effects was found to improve the predictions considerably.

The viscous d. i were d from the roll decay test results

and the simulation was carried out by incorporating these moments in the equa-

tion of roll motion. The predicted roll displ in terms of peak-to-peak
values, were then found to be differing from the corresponding experimental val-
ues by only about 5%. Considering the estimated uncertainties of +2% in the

measured roll values, the comparisons are believed to be very good.

Taking into account possible experimental ina,ccuraci.ﬁ, the overall compar-
isons shown demonstrate that the algorithm is capable of producing reliable
predictions over the full range of data tested, including large heave and mod-
erately large roll displacements. The efficacy of the algorithm in simulating

potential flow ph is d ated by these results. In addition, the

results also demonstrate that a steady state behaviour for the motions can be

accomplished.

All computations were performed in systems VAX 8500 and VAX 8800 of
MUN. Typical CPU time for a total of 100 segme;nts is about 15 sec. per
time level in the latter system in single-precision arithmetic. Limited runs with

double-precision arithmetic produced almost identical results.
9.2 Conclusions

Several concluding remarks related to the details of the algorithm have already

been noted at the end of individual sections. Here the major conclusions that
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can be drawn from the work when considered as a whole are presented.

(i) Unsteady non-breaking steep waves progressing within a finite fluid region
can be effectively modelled by imposing an Airy wave potential as a source
of wave generation mechanism on a hypothetical vertical boundary. Appli-
cation of a simplified condition, deduced from Orlanski’s radiation condi-
tion, succeeds in transmitting the interior disturbances without apparent
adverse effects to the interior solution and hence removes restrictions that

otherwise are attached to this problem.

(ii) It is feasible to subject a surface-piercing object to a propagating wave and
study the resulting responses and the flow evolution. The solution is fully
non-linear. No approximations with respect to the steepness of the wave
and body motions are made. The scope of applicability is however re-
stricted to single-valued free surface elevations. Although the algorithm
has not been applied to examine the responses of submerged bodies sub-
jected to wave excitations, no major difficulties are anticipated for such

applications; in principle the algorithm remains valid.

{

(iii) The solution can be advanced for sufficient length of time such that after
the initial transients disappear, a steady state solution evolves extending
over several wave periods. The length of the simulation time for which
realistic predictions are available can be extended by enlarging the fluid
domain, at the expense of additional computational efforts. In this respect,
the upperbound on the simulation time is primarily dictated by limitations

of available computing devices.
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(iv) Confirmation of the computed results is lified by the comparative

results presented at several levels. These include comparisons with lin-
ear and non-linear analytical solutions and available experimental results.
Additionally, the algorithm is used to replicate a series of tests conducted
by subjecting a partially restricted rectangular surface-piercing body to
wave excitations. Good correlation observed between the results attests to

the validity and reliability of the algorithm. The regime of comparison in-

cludes moderately large roll motions for which inclusion of viscous d

through a semi-empirical formulation proves necessary. This demonstrates
how the algorithm based on potential flow assumptions can be effectively
utilized to derive realistic estimates for modes of motions for which viscous

effects are important.

(v) Numerical stability considerations are proved crucial for the success of the
algorithm. Problems attached to this issue have occurred in several circum-
stances. Developed rectifying techniques include a matching procedure,
avoidance of application of impulsive pressure and intermittent smoothing
of the free surface. Further problems of similar nature arise from the cou-
pling between forces and motions implicit in the simulation of partially or
fully unrestrained bodies. Regridding at every time step, together with
special considerations in evaluating forces and motions, provides an ef-
fective solution to these. Present computational experience leads to the

lusion that considerable hasis must be placed on the issue of nu-

merical stability. A previously reported stipulation suggesting that fulfil-
ment of local Courant condition removes instabilities on the free surface

(Dommermuth and Yue 1987) is found to be inadequate.
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9.3 Further Developments

<

Despite able scope of licability, devel tal work of this nature
is hardly terminal. The eventual goal is to be able to numerically simulate the
behaviour of ships and offshore structures in realistic three-dimensional irreg-
ular stormy wave conditions. Although the work presented makes a modest
contribution in that direction, it is still a prelude to such long term ambitious

undertakings. Consequently, considerable scope for further developmental work

exists. At the present time, the following works can be envisaged.

(i) The finite-difference and integration rules employed at a variety of levels in
the algorithm can be systematically upgraded. A pléthora of such rules
exist (see Hilderbrand 1972). Incorporation of these is expected to improve
the overall accuracy. More importantly, further relaxation of the grid sizes

leading to reductions in computer time can be achieved.

(ii) The utilized boundary el formulation can be upgraded by adopting
a higher order b.e.m. Further savings in computational efforts as well as

possible improvements of accuracy are expected!consequences.

iii) The algorithm presently requires solution of the system of linear equations
g P q
(2.10) at every time step. A possible means of affecting a reduction in

p i is to i tigate wheth pdating of the movable part of

the boundary contour (0D and 8Dp) at every intermediate step can be
avoided without reducing the overall accuracy beyond an acceptable level.
Also, possibilities of utilizing iterative techniques for solution of the system

of equations can be explored.
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(iv) Some difficulties have been encountered in the treatment of the body-free

surface intersection points wh