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Abstract

We consider minimax designs for estimation of nonparametric regression models us-

ing wavelet approximations of the mean response function. We assume that the error

terms are autocorrelated. Since the method of estimation depends on the choice of

design, we argue that using ordinary least squares method (OLS) for estimation may

lead to designs that are less efficient than designs constructed based ongeneralized

least squares (GLS) or weighted least squares (WLS). A simulated annealing algo-

rithm is developed to carry out the minimization problems to search for minimax

designs. In this thesis we considered AR(l) model for example. We found that the

GLS method is good for the moderate level correlation and W LS or OLS is preferred

for higWy correlated data.
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Chapter 1

Introduction

Wavelet analysis has been found to be a powerful tool for the estimation of non-

parametric mean response functions. During the 1990s, the nonparametric literature

was dominated by (nonlinear) wavelet shrinkage and wavelet thresholding estimators.

These estimators are a new subset of an old class of nonparametric regressionesti-

mators, namely orthogonal series methods. For more details see Antoniadis, Gregoire

and Mckeague (1994)[2J,andWegrnan, Poston and Solka (1996) [40]. Several authors

have used wavelets in nonpararnetric regression from the minimax viewpoint. See for

example Donoho, Johnstone, Kerkyacharian and Picard (1995) [9], Oyet and Wiens

(2000) [28] andOyet (2003) [27].

Beginning with Herzberg and Traves (1994) [15], wavelets have continued to play



an important role in robust design of regression experiments. They assumed that

the wavelet model was exact and thus applied classical methods for the design. Oyet

and Wiens (2000) [28] considered the construction of designs for the estimationofa

regression function, when it is anticipated that this function is to beapproximatedby

the dominant terms in its wavelet expansion. They considered both the Haar wavelet

basis and the multiwavelet system. The experimenter estimates the coefficients of

those wavelets included in the approximation, hoping that the omitted terms will

be inconsequential. This introduces bias into the least square estimates, which they

proposed handling at the design stage by one of two methods;

(i) Implementing a minimax "olmst design, which enjoys the property of mini-

mizing the maximum value of an mse-based loss function, with the maximum

being taken over the remainder in the wavelet expansion as it varies over anll}

-neighborhood;

(ii) Implementing a minimum variance unbiased (mvu) design which, when em-

ployedwith weighted least squares and weighs derived here, minirnizes thevari-

ancesubjecttoasideconditionofunbiasedness.

Oyet (2003) [27] discussed the problem of constructing designs in order to max-

imize the accuracy ofnonpararnetric curve estimation in the possible presence of



heteroscedasticerrors. His approach was to exploit the flexibility of wavelet approxi-

mations to approximate the unknown response curve by its wavelet expansionthereby

eliminating the mathematical difficulty associated with the unknown structure. It is

expected that only finitely many parameters in the resulting wavelet response can

be estimated by weighted least squares. The bias arising from this, compounds the

natural variation of the estimates. Robust minimax designs and weights are then

constructed to minimize mean squared error based loss functions of the estimates.

He found the periodic and symmetric properties of the Euclidean norm of the multi-

wavelet system useful in eliminating some of the mathematical difficulties involved.

These properties lead him to restrict the search for robust minimax designs to a

specific class of symmetric designs. He also constructed minimum variance unbiased

designs and weights, which minimize the loss functions subject to aside condition of

In this thesis, we propose minimax robust designs for estimation of nonparametric

regression models using wavelet approximations of the meanresponsefunction. In

particular, we use daubechies wavelets to approximate the mean responsefunction

Here we assume that the error terms are autocorrelated. More specifically, we as

sume that the errors follow an autoregressive process of order 1, AR(l). We allow for

repeated observations in the optimal design and assume that there is no correlation



within observations from the same design points, but that the errors are autocorre-

latedbetweendesignpoints. This leads to a patterned block matrix for the covariance

of the error vector. We study two estimators: the weighted least squares estimator

(WLSE) using weights proposed by Oyet and Wiens (2000) [28], and the general-

ized least square estimator (GLSE). We consider the discrete version of [ntegrated

mean squared error as a loss function and simulated annealing algorithm tosearch

for integer-valued robust designs in finite design spaces. Previously, Zhou(2001) [47]

had used theOLS method in constructing designs forautocorrelated models. [tis

well known that the choice of a method of estimation has some effect on the optimal

design. Since the errors are autocorrelated we conjecture that it may be possibleto

finddesignsthathavesmallerloss(moreefficient)thanthoseofZhou(2001) [47] by

using GLS or WLS method of estimation rather than the OLS method.

There are two main approaches in the literature generally used in the construction

of designs for regression experiments. If the regression model is assumed to be exact,

classical design theory is commonly applied; whereas, when the model is only an ap-

proximation, robust design theory applied. The classical design problem in Section

(1.1),therobustdesignprobleminSection(1.2),andsomebackgroundonwavelets

in Section (1.3) are discussed. This is the most e.xtensively studied of discussions and

reviews; see Box and Draper (1959) [4]' Kiefer (1959) [17], Fedorov (1972) [13], Silvey



(1980) [36], Shah and Sinha (1989) [35], Pukelsheim (1993) [331. In the area of ro-

bust designs with serially correlated observations, there existsanabundantliterature.

Fang and Wiens (2000) [12] introduced anew approach to construct integer valued,

minimax robust designs for approximately linear models with possible heteroscedas-

tic errors. This approach uses a simulated annealing algorithm to search fori nteger

valued,insteadofcontinuous,robustdesigninfinitedesignspaces.Zhou(2001)[47]

applied this approach to construct integer valued, minimax robust design for ap-

proximately linear models with possible correlated errors, in particular, with moving

average (MA) error processes. Minimax robust designs for approximately linear mod-

elswithpossiblecorrelatederrorshavebeenstudiedbyWiensandZhou (1996, 1997,

1999)([43], [44] and [45]) and Zhou (2001) [48] in infinite design spaces. Continu-

ous robust designs have been derived for weakly stationary error process,Wiensand

Zhou(1996) [43],forthefirstorderMA[MA(1)]process,Zhou(2001) [47]' and for

the first order autoregressive [AR(l)] process, Wiens and Zhou (1999)[45]). Wiens

and Zhou (1997)[44] introduced an infinitesimal approach to the construction of

robust designs for linear models and used autocorrelated structure for errors. The

idea of infinitesimal and minimax approaches were used by Zhou (2001) [48] to con-

struct robust regression designs for linear models with correlated errors, particularly

MA(1) process. Recently Wiens and Zhou (2008) [46) and Ou and Zhou (2009) [25]

-



investigated robust estimators and designs for two-dimensional correiations. Also in

thatpaper,Ou andZhou (2009) [25] have found the result that the generalized least

squares estimators is often more efficient than the least square estimator if the spatial

correlation structure belongs to a small neighborhood ofacovariance matrix.

1.1 The classical design problem

The standard nonlinear regression model involves observations of {Xi,Y(Xi)} where

Y(Xi) = 1)(Xi; 0) + fi, i = 1,2, ... , n. (1.1)

In (l.l),y(xi) E iR is an observable random variable and Xi E S<;; iR is theith vector

of some design variables. Thus S is called the design space. Typically S will be

continuous but can also be a discrete space. TheerrorsfiEiRarecommonlyassumed

to be independent and identically distributed with mean zero and commonvariancea2

and1)(x,;O) is the value of some known square integrable, possiblynonlinearfunction

of Xi upto the unknown parameterO.

An experiment can be designed to answer a variety of questions of interest. It

is clear that values or levels of inputs must be chosen before running an experiment

and observing measurements on a variable of interest. Now, in order to obtain an

observation on Y, a value for x must first be selected from S where x can be set to any



value in S. Given this control over the selection of x, a natural question to consider

is at what values ofxshould observationsyofsizesay,n, betaken in order to obtain

to the elements of S is commonly referred to as an optimal design.

Classical and robust design theories were developed to determine optimaldesign

points for regression models. The difference between classical and robust design

theory arises from their underlying assumptions. In classical design theory, it is

• Themodelrepresentingy(x)isexactand'l(x) is correctly specified;

• The errors f, are uncorrelatedand have variance a 2•

The concept of classical design of regression and optimality principle can be found in

Smith (1918) [37], and Plackett and Burman (1946) [32]. Why has this concept come

about? When we conduct an experiment, it is common to take time or expenditure

of observations gives the maximum amount of information. Elfving (1952, 1956) [10],

and [11], Chernoff (1953) [5] and others developed this principle of design theory.

Kiefer (1959) [17], and Kiefer and Wolfowitz, J. (1959) [18]contributedsignificantly

to the area by extending the previous work. The problem of nonlinear experimental



designs was first considered by Fisher (1922) [14] and White (1973) [41] who proved

the nonlinear version of the Kiefer - Wolfowitz equivalence theorem. Though classical

design theory was used in nonlinear design, the approach was to approximate the

nonlinear function by a linear Taylor series expansion. Thus, nonlinear designs are in

fact not optimal in the classical sense since the mean response is notexact. The first

comprehensive volume on the theory of approximate continuous optimal experimental

design was written by Fedorov (1972) [131, whereas the book by Silvey (1980) [36]

gives a very concise description of the theory of optimal design for estimation in linear

models. Discrete optimal designs are covered in the book by Shah and Sinba(l989)

[351·

In estimation theory for statistical models with one real parameter, the reciprocal

of the variance of an efficient estimator is called the"Fisher Information" for that

estimator. BecauseofthisreciprocitY,minimizingthevariancecorrespondsto maxi-

mizing the information. When the statistical model has several parameters, however,

the mean of the parameter-estimator is a vector and its variance is a matrix. The

inverse of the variance- matrix is called the "information matrix". In this case the

problem of "minimizing the variance" becomes complicated. Using statistical theory,

statisticians compress the information-matrix using real-valued summary statistics;

being real-valued functions, these "information criteria" can be maximized. The



traditional optimality-criteria are invariants of the information matrix; algebraically,

the traditional optimality-criteria are functionals of the eigenvalues of the information

matrix. Inordertoapplyoptimaldesigntheoryto(1.1)aninformationcriterion is

required for comparing experiments and then selecting the best design with respect

to the specified criterion. We define M(O) as the mean squared error (MSE) matrix

ofanestimatorof8in(1.1). It may be possible to obtain a best inference for all or

some of the unknown parameters 8 E e by making some function of the matrix M(O)

large in some sense. Therefore, we consider various ways in which to make the matrix

M(O) large, namely by maximizing some real valued functionlfl(O) = w(M(O)). Here,

the functionlfl is called thecriterionfunction,alld ill tUfll, thecriteriondefilledby

the fUllction lfI is usually referred to as 'I>-optimality criterion. A design maximizillg

'1>(0) is said to be a'l>-optimal design. Mathematically, the classical design criteria

(1.2)

where V(O) is the covariance of 0

The most commonly used criteria in design literature are:

(i) D-optimality: Here, '1>(.) =det(·),wheredet(·) is thedeterrninant function.

(ii) A-optimality: In this case, '1>(.) =tr(·). wheretr(·) is the trace fnnction.



(iii) E - optimality: Here, <1>0 = AmaxO, where AmaxO is the maximum eigenvalue

(iv) G - optimality: Here, <1>(.) = 're¥(')' where 'll,¥O is the maximization function.

(v) Q - optimality: Here, <1>(.) = JO, where JO is the integral function over a

design space, say S.

Hoel (1958) noticed that the 0- and G- optimum designs coincide in the model of a

one _ dimensional polynomial regression, and Kiefer and Wolfowitz (1960)[19] present

extensive results on 0- and G- optimality, including the Equivalence Theorem. The

Equivalence Theorem established that a design is D-optimal if and only if it is G-

optimal.

1.2 The robust design problem

Robust designs became a subject of interest for two major reasons. These are

(i) the model may not be exactly correct;

(ii) the errors f may not be uncorrelated or normally distributed as assumed.

It is well known that in most cases where the form of1)(x) is pre-specified, the assumed

form is the model builder's best mathematical description of the process under study



and often a convenient approximation. We recall that in the nonlinear case, the

designsconstructedsofarhaveusedalinearapproximationof1)(x,(0 ) with the hope

that the remainder terms are negligible. Under these conditions, the least squares

estimator of 00 is biased and the classical designs which minimize variance alone are

no longer "optimal" due to the bias.

Box and Draper (1959) [4] considered a response as polynomial of first degree

when the true response was quadratic. They found that the optimal design in typical

situations in which both variance and bias occur is nearly the same as would be

obtained if variance were ignored completely and the experiment designed so as to

minimize bias alone. They argued that a more appropriate optimality criterion is

the Integrated Mean Squared Error (IMSE) of the estimate fJ of the "true" response

surface 1) over the design space S. That is,

J = ~ is E{[fJ(x) -1)(xW}dx = ISB + IV (1.3)

where n, the Integrated Squared Bias (ISB) and the Integrated Variance (IV) are

defined by

ISB = ~ is {E[7j(x)]-1)(x)}2dx (1.4)

IV = ~ is E{fJ(x) - E[fJ(xWdx (1.5)



Frequently the experimenter fits E[ylx] =qT(x)8 when in fact

E[ylxl=qT(X)OO+j(X) (1.6)

for some unknown function j. The presence of j implies that, possibly, 00 #0. In

fact the meaning of the "true" parameterinamodellike(1.6)isitselfa problem to

be addressed. A number of authors, such as Marcus and Sacks (1976) [23], Sacks

andYlvisaker(1978) [341, Pesotchinsky (1982) [30], Liand Notz (1982) [21]' and Li

(1984) [20]assumedjtobeamemberoftheclassoffunctiondefinedby

{j: Ij(x)l $ </>(x)}, (1.7)

for a function </>(x) with specified properties. For example, </>(x) maybe constant, or

</>(x) = IIx1l 2• The designs which are "robust" in this class are those which minimize

some function of the MSE of8, and are quite sensitive to the choice of</>. They also

tend to concentrate all mass on extreme points ofS.

Robust minimax designs were constructed by solving the problem

(1.8)

for some loss function cf?(.), where M(J,(J is the MSE of 8, as a function of the

contamination term j and a design measure(. To motivate (1.6), suppose that an

experimenter fits the approximate linear model

(1.9)



for some parameter vector 00 . If E(Ylx) is only approximately qT(XWO then what is

Oo? The "true" 00 is defined such that it makes (1.9) most accurate:

Oo=argmin h{E[Ylxl-qT(X)0}2dX. (1.10)

f(x)=E[Ylx]-qT(x)Oo. (1.11)

Thus our approximate linear model is

y(x) = qT(XWO + f(x) +f, (1.12)

(1.13)hq(x)f(x)dx=O.

Huber (1975) [16] takesf(x) from

F={f:hq(X)f(X)dX=O, h f2 (X)dx$T2
} (1.14)

where radius T of F is assumed fixed. The first condition in F says that f and q are

orthogonal,sotheparameterOisuniquelydefinedinmodel(1.l2).

Wiens (1990) [42] generalized Huber's work from simple linear regression to mul-

tiple linear regression. In this thesis, we use Huber's type contamination term in

(1.12)



1.2.1 The Robust designs with correlated errors

One approach to the construction of robust designs for linear modeIs with autocorre-

lated errors was in two stages. These are:

(i) findadesign~' which is optimal for uncorrelatederrors;

(ii) order the design points to minimize the covariance matrix of the parameter

Following this procedure, Berenblut and Webb (1974) [3) obtained robust D-optimal

designs for the model

y=X8+e, Var(e)=(l~P. (1.15)

The correlation structure they considered was when P = V(p), where p is the param-

eter of the first order autoregressive process. Thus, V(O) =1, the identity matrix.

WiensandZhou(1996) [43] studied optimal designs for regression models undercer-

tain departures from the classical assumptions. They considered the usual formulation

of the fixed-regressors linear regression model, which they wrote as

Yi = qT(Xi)80+ n- t f(x;) + €i, i = 1,2,··· ,n (1.16)

where E(e) = 0 and Var(e) = (l2p. Here, P is a positive semi-definite Toeplitz

matrix with unit diagonal, i.e. the autocorrelation matrix of a weakly stationary



1.3 SOME BACKGROUND ON WAVELETS

process. Then robust minimax designs were constructed by solving the problem

~n~~'?E8f<l>(M(J,p,m

for some loss function <1>(.), where M(J,p,~) is the MSE of iJ.

(1.17)

Tn this thesis, we have applied this criterion and we used the loss function as the

Integrated Mean Squared Error (IMSE) of the estimated response. More details of

the Integrated Mean Squared Error can be found in Oyet and Wiens (2000) [28], Oyet

(2003) [27) and Wiens and Zhou (1999) [45].

1.3 Some background on wavelets

In this section, we discuss some basic knowledge of wavelet systems related to our

work. Additional reviews on wavelets and their statistical applicationscan he found

in the papers by Mallat (1989), Meyer (1992), Dauhechies(1992) and Hiirdleetal.

(1988), among others.

The concept of wavelets was developed from the oldest and probably best known

method, Fourier transform, which was developed in 1807 by Joseph Fourier. Wavelets

as an alternative method to Fourier transform was first mentioned by Alfred Harr in

The development of wavelet theory has in recent years spawned applications in



signal processing, fast algorithms for integral transforms, and image and function

representation methods. This last application has stimulated interest in wavelet ap-

plicationstostatisticsandtotheanalysisofexperimentaldata, with many successes

in the efficient analysis, processing, and compression of noisy signaIs and images. See

for instance Antoniadis (2007) [11.

[n this thesis, we will focus on wavelets in the Hilbert space L,(!R). Additionally

we are aiming to find some simple functions tP;,k such that every function j E L,(!R)

has a representation of the type

j(X)=~~d;'k1/J;,k(X) (1.18)

for some known coefficients (d;,k);,kEZ' The motivation comes from the approximation

theory. Thefunctionj might be difficult to work with, but if such a representation

exists, then we can hope that the finite partial sums of (1.18) can approximate j well,

(1.19)

By definition, a wavelet system is a collection of dilated and translated versions ofa

scalillg function q,(x) and a primary wavelet 1/J(x) defined by

(1.20)

-~



respectively. The function ¢(x) and1jJ(x) are chosen to satisfy the equations,

¢(x) = ~ l'ihk ¢(2x - k)

and 1jJ(x) = ~ l'ig,¢(2x - r),

where g,=(-l)'h_'+1

for a sequence {h,.} of constants, called filter coefficients, with

(1.22)

(1.23)

(1.24)

J¢(x)dx = 1, J1jJ(x)dx = 1, J¢2(x)dx = 1. (1.25)

ensures the existenceofa unique solution to equations (1.22) and (1.23). Orthogo-

nality of the translation of¢(x) is ensured by the condition

jEZ

where bi = J¢(x)¢(x - j)dx

(1.27)

In the theory of wavelets, the space of square integrable functions, .c2(!R), is

written as the limit of a sequence of close subspaces {V;} where

.... C V_2 C V_I C Vo C V, C V2 C .. (1.28)

J



These nested spaces have the properties that their intersection is trivial and their

union is dense in £2(!R),

UV;=£2(!R). (1.29)

Mallat(1989) [22J introduced the notion ofamultiresolution analysis, thedefinition

Definition 1.3.1 A multiresolution analysis (MRA) of £2(!R) consists of an increas

ingsequence of closed subspaces V;, jEZ such thatthefolloutingholds:

(a)nv;={O}

(b) UV;=£2(!R)

(c) there exists a scaling function </J E Vo such that {</J(x-k),k E Z} is an or-

thonormalbasis of Va

(d) f(x)EV;==*f(x-2- i k)EV;

(e) f(x) E V; {=}f(2x) E V;+l.

The intuitive meaning of (e) is that in passing from V; to V;+l, the resolution of

the approximation is doubled. Mallat (1989) [221 has shown that given any mul-

tiresolutionanalysis,itispossibletoderiveafunctiontf;(x)suchthat the family



{.pj,k{X) : j,k E Z} is an orthonormal basis of C2{~)' Thus, the representation in

(1.l8) is possible.

To construct .pj,k{X), we define for each j E Z the difference space Wj to be the

orthogonal complement of \I; such that

(1.30)

That is, any function f{x) E \1;+1 can be written as a linear combination or direct

sum of functions in Wjand \1;. It can be verified that

\I; = \1;0 EllEB W, j>joEZ

Iterating this infinitely many times, we find

This means that any fEC2{~) can be represented as

(1.31)

(1.32)

where Cjok' djk are some coefficients, and {.pj.}, k E Z is a basis for Wj. The relation

(1.33) is called a multiresolution expansionofj. The space Wj is called resolution



level of multiresolution analysis. In Fourier analysis there is only one resolution level.

In multiresolutionanalysis there are many resolution levels, which is the origin of its

1.3.1 Construction of the scaling function rP

Strang (1989) [38) provides a brief introduction to the construction of scaling func-

tionsusingthreedifferentapproaches. The fourth construction of Daubechies scaling

function will be discussed under the section on some important wavelets.

The basic dilation equation, described in (1.22) is in fact a two scale difference

equation. We know from the condition in (1.26) that~ hk = h ensures the unique

ness of ¢ but a smooth solution is not ensured. For a striking example, set i!() = h.

Then the function ¢, satisfies¢(x) =2¢(2x).

The dilation of ¢ is unfamiliar (but somehow very pleasing). For other h's, spline

functions appear. For example i!() = 7" and hi = 7" in this case the fUl}ction ¢

satisfies ¢(x) = ¢(2x) + ¢(2x - 1), then we are able to find the function named as

Box function and defined by

\

1, if 0::0; x < 1;
¢(x) =

0, elsewhere.

The algorithm for the construction of¢ are outlined below.
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Construction 1: Iterate <p;(x) = I:V2hkrP;-1(2x -,. k) with the box function

as <Po(x). Whenho = V2 the boxes get talIer and thinner, approximating the delta

function. For ho = ~, and hI = ~ the box is invariant: <p; = <Po. For ho = ~,

hI = ~, and h2 = ~ the hat function appears asj ~ 00, and g7,' sT.,~, sT., g7,

yields the cubic B-spline. An example that will be important (denote this scaling

function as D.) has coefficients lfff, ¥ft,~. and ~. This scaling function D.

leads to orthogonal wavelets. It is not as smooth as it looks. It is shown in Figure

Figure 1.1: The scaling function D.(x)



Construction 2: The second construction begins with the Fourier transform of

the scaling function (1.22); given by

[tcan then be shown that, using (1.22),wehave

Now, define

(1.35)

(1.36)

The function in (1.35) is sometimes called the tmnsferfunctionanditdescribesthe

behavior of the associated filter !lin the Fourier domain. Notice that the function

rna is periodic with the period 271" and that the filter taps {hn,n E Z} are the Fourier

coefficients of the function H(w) = J2rno(w).

By iterating (1.36), one gets

~(w) = [g rno (~)] ~(~)

= grna(~). (1.37)



For ho = J2 we find rno == 1 and <I> = I, the transform of the delta function. For

ho= hi = ~ the products of the mo's form a geometric series:

mo(~)mo(~) = ~(1 +e-iw
/
2
)(1 +e-iw

/,) = 4(~=:~::/')" (1.38)

As N -+ 00 this approaches the infinite product (1 (;:~iW) ,which is the transform

of the box function. The bat function comes from squaring mo(w), which by (1.37)

also squares <I>(w), (Multiplication of mo's is 4times convolution of h's.) The cubic

B-splinecomesfromsquaringagain.

Construction 3: This construction of¢ works directly with the recursion (1.22).

Suppose ¢is known at theintegersx=j. The recursion (1.22) gives¢at the half-

integers. Thenitgives¢at the quarter-integers, and ultimately at alldyadicpoints

x =~. This is fast to progmm and all good wavelet calculations use recursion. The

valuesof¢at the integers come from an eigenvector, With the four Daubechies

coefficients,setx= landx=2inthedilationequation(1.22) and use the fact that

¢=OunlessO<x<3:

¢(1) = (3:t) ¢(1) + (1:t) ¢(2)

¢(2) = (1:t) ¢(1) + (3:t) ¢(2) (1.39)

This is </> = L</>, with matrix entries Lij = h2i _ j , which is the classical eigenvalues

problem. Compare with hi- j for an ordinary difference equation. The eigenvalues



are 1 and 4. The eigenvector for A = 1 has components ¢(1) = 4(1 + V3), ¢(2) =

4(1- V3), which are the heights on our graph of D•. The other eigenvalue A = 4

means that the recursion can be differentiated: ¢'(x) = L: I2hk 2¢'(2x - k) leads

similarly to ¢' (1) and ¢' (2). In some weak sense, ¢ = D. has a "dilational derivative".

For the hat function, the recursion matrix again has A = 1,4. For the cubic spline

the eigenvalues are 1, 4,~, k·
To repeat for emphasis: From¢(I) and¢(2) the recursion gives everything. In

this construction the properties of 1Tl<J(w) = ~ L I2hk e-ikw are decisive (1.37). The

precise hypotheses are in flux, and infinitely manyhk can be allowed.

1.3.2 Some important wavelets

(i) Haarwavelets

The first example of a function f satisfying (1.18) was proposed by Alfred Harr in

1910. Th{e ~aar ;7:::r<w;:el;et is a mathematical function defined by

,p(x)= -1, ifO.S::;x< 1;

0, elsewhere.

Thescalingfunction¢(x) can be described as



i1, ifO::;x< 1;
¢(x) =

0, elsewhere.

The Haar wavelet basis has the following relations:

¢(x)=¢(2x-1)+¢(2x)

,p(x)=¢(2x)-¢(2x-1)

(1.40)

(1.41)

The Haar wavelet is easy to handle. However the only disadvantage is that it is

discontinuousatx=0,x=0.5andx= 1.

Figure 1.2: The scaling function and wavelet fUDction ofHaarwavelets



(ii) Daubechies compactly supported wavelets

One of the most important achievements in wavelet theory was the construction of

orthogonal wavelets that were compactly supported but were smoother than Harr

wavelets. Daubechies(1988) (6) constructed such wavelets by an ingenious solution of

the dilation equation (1.22) that resulted in a family of orthonormal wavelets (several

families actually). Each member of each family is indexed by a number N, which

refers to the number of vanishing moments.

Daubechies-LagariasAlgorithm

In this section, we describe an algorithm for fast numerical calculation of wavelet

values at a given point, basedontheDaubechies-Lagariaslocalpymmidalalgorithm

[7) and [8]. The scaling function and wavelet function in Daubechies families have no

explicit representations (except for the Haar wavelet). However, it is often necessary

to find their values at arbitrary points.

The Daubechies-Lagarias algorithm enables us to evaluate ¢ and 'I/J at a point

with preassigned precision. We will illustrate the algorithm on wavelets to form

the Daubechies family; however, the algorithm works for all finite impulse response

quadrature mirror filters.

Let ¢ be the scaling function of the DAUBN wavelet. The support of ¢ is



[D,2N-l]. LetxE (D,l), and let dyad(x) = {d"d2, •• ,d., .. } bethesetofD-l

Let!l = (1)0, hI, ", h2N_ I ) be the wavelet filter coefficients. Define two (2N -

1)x(2N-l)matricesas:

Theorem 1.3.1 [7]

¢(x)

¢(x+l)

¢(x)

¢(x+l)

¢(x)

¢(x+l)

¢(x+2N-2) ¢(x+2N-2)' ¢(x+2N-2)

The convergence of II T d, . T d, .. T dn - T d, • T d, .•• T dn+m II to zero, for fixed m,

isexponentialandconstructive,i,e,.effectivedecreasingboundsontheerrorcanbe

Example 1.3.1 Consider the DAUB2 scaling function (N = 2). The correspond

ing filter is !l = (¥ft, ¥ft,~, ~). According to (1.42) the matrices To and
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T[aregivenas

[

.!til ° 0] [lli2.!til OJ
To = ~ lli2 .!til and T[ = ~ ~ lli2

4 <I" 4 4 4

° ¥¥ ° ° ¥
Let us evaluate the scaling function at an arbitrary point, say x = 0.35. Twenty

decimals in the dyadic representation of 0.35 are

dyad(0.35,20) = {0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1}. In addition to the

vaJueatO.35, we get (for free) the values at 1.35 and 2.35 (thevaJuesO.35, 1.35 and

2.35) are in the domain of¢, the interval [0, 3]. The values ¢(0.35), ¢(1.35) and

¢(2.35) may be approximated as averages of the first, second, and third row, respec-

tively in the matrix

[

0.72437490.7243739080.724372881]

II T,= 0.2672756 0.267276667 0.267277767
iEdyad(O.35,20)

0.00834950.0083494250.008349352

The Daubechies-Lagarias algorithm gives only the vaJues of the scaling function. In

applications, most of the evaJuation needed involves the wavelet function. It turns

ontthatanotheralgorithmisunnecessary,duetothefollowingresult.
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Theorem 1.3.2 [31] Let x bean arbitrary real number, let the wavelet be given by

itsfiltercoefficients,andletywith2N-1 be a vector defined as

y(x) = {(_l)'-[2z'hHl_12zj,i = 0,1,··· ,2N -2}.

If for some i the index i + 1 - [2x] is negative or larger than 2N - 1, then the corre-

spondingcomponentofyisequaltoO.

Let the vector'!!. be

where l' = (1,1, .. ,1) is the row-vector of ones. Then,

(1.43)
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Figure 1.3: Graphs of scaling and wavelets function from Daubechies' family N = 2,
3,4, 7, and 10



Chapter 2

Robust Design Using Weighted

Least Squares Estimation

2.1 The model

Zhou(200l) [47] considered repeated observations from a finite design space tocon-

struct minimax robust designs for approximately linear models with correlated errors.

We discuss designs for the nonparametric regression model with repeated designs

Yi;='1(X;)+€,;

where i = 1,2,· .. , N; j = 1,2,· .. ,n;; n = t n;

(2.1)



The design variable x is assumed to belong to a design space S, and f is ran-

domerror. In order to investigate the expected response, we may denote the points

XI,X2,'" ,XN to make observations on y. Suppose we need n observations. The

integer-valued design problem consists of determination of optimal allocationnl,n2,

... ,nN' Ifni = 0, the design point Xi is omitted. Ifn; 2: 1, the design point Xi is

repeatedni times.

In particular we assume the random error term has the following properties

(2.2)

(2.3)

wherei,k=1,2,··· ,Nandj,I=1,2,

OyetandWiens(2000} [28] approximated the regression response by finitely many

dominant terms of its wavelet representation, with remainder f(x}. We transform

model (2.1) into an approximately linear model through the wavelet expansion:

(2.4)

That is our basic model (2.1) becomes

(2.5)



where components of qT(X') are dilated and translated version of a wavelet system.

SinceqT(x) is made up of components of an orthogonal wavelet system, it is clear

From orthogonality of wavelet system we obtain

1 NN8 q(x,)f(x,) = 0, (2.6)

In order to ensure that the bias in (2.4) is not too large we impose abound on f(x)

defined by

(2.7)

for some, presumably small, constant T. Thus errors due to bias will not swamp

those due to random variation. We shall see that our results depend on T and 011

the error llariarlce (J'" onlJI thrc)ughthe quantity v·= 3-. To the experimenter, this

quantity may represent the relative importance of variance versus bias with v = 0

correspondingtoa'purebias' problem and v=oo to a'purevariance' problem.

For simplicity purpose we re-define the equation (2.5) as

(2.8)



where k = 1,2, .. ,n. In (2.8), the values OfUl,U2,'" ,un, are equal to x,.

ilarlY,Un,+ltUn,+2,"',Un,+n, are equal to X2 and so on. Further,YltY2,

are equal tOYll,Y'2,'" ,Y'n, respectively. AlsoYn,+1,Yn,+2, .. ,Yn,+n, are equal to

.. ,Y2n, respectively, and so on. Now, define

... , Q=

p,

, (3= ... , fu =

f(ud

f(U2)

f(un )

In matrix notations, wecanre-write the model (2.8) as

Y=Q{3+fu +E, (2.9)

where E(E) = Onx' and Coo(E) = E = a2R. It can be shown that the correlation

matrix R is a patterned block matrix of the form



(2.10)

where,

Con (€",€kl) = I: :::::::::::: (2.11)

P,k lfqfk

with i, k = 1,2,' .. ,N and j, I = 1,2, .. ,n;. The constant matrix In,,n, in (2.10) is

ofdimensionn; xnj and is defined by

In,,n, =



and In; isanni xn. identity matrix.

Since the method of estimation influence the choice ofa design anexperimenter

needs to decide on method of estimation prior to constructing the design. In this

section, we will be using tbewavelet version of weighted least squares estimate. The

weights we shall use are given in the following theorem.

Theorem 2.1.1 (Oyet and Wiens (!WOO) [28J) The minimum variance unbiased

(mvu) design under the model (2.8) and integmted mean squared error loss has density

ko(x) =VO(X)-l, where the mvu weights are (proportional to)

vo(x) = fo

l

:i :~:i ii dx

Thus,ifwedefinew"w2,'" ,WN as weights relatedtoxl,X2, .. ,xNrespectively,

then, in general Wi can be computed as follows;

fo'll q(x) II dx
w.=~.

WeshalidenotebywZtheweightscorrespondingtothevariableuk, k=1,2,···,n.

Now,bydefiningthematrixWu



wi 0 0

o w:i 0

W u =

We can write the weighted least square estimate of the parameter {3 as

i3 = [tw;q(u;)qT(u;)r (tw;q(U;)Yi)
= (QTWuQr'QTWuY. (2.12)

Oyet and Wiens (2002) [291 amongst others have used the Average Mean Squared

Error (AMSE) as a design criterion. This measure of loss is the discrete version of

the Integrated Mean Squared Error (lMSE). The AMSE is defined as

AMSE = ~tE{[Yc.rE(Y'Xi)n

= ~tE{[Yc.;) -E(Yc.i»)]2} +~ t{E(Yc.i») _E(Yl xi)}2

= AV + ASB (2.13)

where, AV = ~t E { [Yc'i) - E(Yc'i»)nand ASB = ~t{E(Yc.;)) - E(Ylxi)r.
The Average Variance is abbreviated to AV and ASB is the Average Squared Bias.



2.2 THE AVERAGE MEAN SQUARED ERROR

We have also used the AMSE as a design criterion. In what follows, we will derive

expression for the AV and the ASB

2.2 The Average Mean Squared Error

It is clear, from (2.13) that the AMSE has two eomponents namely, the AV and

ASB. In order to derive an expression for the AMSE we first need to derive the AV

and the ASB. lOW, by taking expectation of (3 in (2.12) we obtain

£((3) = E{(QTW"Qr'QTWuY}

= (QTWuQr' QTWuE(Y)

= (QTWuQr'QTWu[Qt3+ful

= t3+(QTW uQr'QTW uf,.

J
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Thus, the bias of 13 denoted by d can be written as

d = bias(j3)

= E(j3)-(3

= (QTWuQr' QTWufu

= [~Wiq('ll;)qT('ll;)r ~W;f('ll;)q(Ui)

= [tniWiq(Xi)qT(X,)r'tn,Wd(Xi)q(X')

= (ZTMWZ)-'(ZTMWfN ), (2.14)

... , z= , fN =

a n2 a
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Now, we note that in actual computations the estimate of Y will be ~x) = qT(X)fJ.

This implies that the ASB in (2.13) can be simplified to

ASB = ~ ~ { E(~d _ E(Ylxi) }2

= ~ ~ {qf",)E(fJ) - qf,,;J{3 - f(Xi)} 2

= ~ ~ {qfx;J(E(fJ) -{3)} 2 - ~ ~ qf",) (E(fJ) -{3)f(Xi) +~~ f2(Xi)

Using the orthogonality condition in (2.6) we find that

Consequently, the ASB reduces to

ASB = ~~{qf,,;J(E(fJ)-{3)r +~~f2(Xi)

= ~ ~ [E(fJ) -{3r q(x,)qf",) [E(fJ) -{3]

+~~f2(Xi)



2.2 THE AVERAGE MEAN SQUARED ERROR

It follows from (2.14) that

ASB = *t d
T

q(x"qfx"d +*t f2(x,)

= *d
T (t q(x"qfxil) d +*t f

2
(x,)

= *dTZTZd +*II fN 11
2

. (2.15)

Having obtained an expression for the ASB we now proceed to derive an expression

for the AV. For this purpose, we note that the variance of /3 can be written as

Then, using kronecker products we find that

where, 1~, = (1,1, ... ,1hxn" i = 1,2,· .. ,N, and
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+ WI L pjIWj(l~j <81 q(Xj))(Jnj,nl <8Il)(lnt <81 qT(Xt))
U=l) &(#1)

+ w~(l~, <8Iq(x2))(ln, <8IqT(X2))
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L PjNWjWNnjnNq(Xj)qT(XN).

(j=I)& (j"N)

o P12

o P23

(2.16)
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Then,

We already know that

So that by combining these results, Var(/3) can be written as

The variance of /3 depends on R' but not R. The matrix R' is easier to handle

compared to R. Applying some algebra to the expression in (2.13), we can simplify
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theAV in the following way.

AV = ~tE{[f(z,)-E(f(z,»)n

= ~tE{[qfxi,-qfx,)E(/3)n

= ~tE{[qfx,)(/3-E(/3))n

= ~t E {(/3 - E(/3Wq(zi)qfx,)(/3 - E(/3))}

= ~t traceE {qfx,)(/3 - E(/3))(/3 - E(/3Wq(Z')}

= ~t trace [qfx;)E {(/3 - E(/3))(/3 - E(/3))T} %;)]

= ~ttrace{qi:,)var(/3)q(z,)}

= ~t trace {Var(/3)q(z,)qfx,)}

= ~trace {t var(/3)q(z,)qfx,)} .

Thus, AV = ~trace{zva7.(/3)ZT}, (2.18)

where Var(/3) is given by (2.17). We assume that the N x p matrix Z is of full rank,

so that the singular value decomposition (SVD) ofZis

(2.19)

where U and Y are orthogonal matrices such that uru = yTY = Jp , and A is in
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(2.19) a diagonal matrix of singular values of Z. Using the SYD of Z, we can now

write ZTMWZ = VAUTMWUAVT

for simplicity of notation we now define, M, = UTMWU so that

Since V-' = VT, it follows that the variance of j3 can be written as,

Val·(j3) = a2VA-IMtlA-'VT [VAUTMW2UAyTjVA-IMt'A-lyT

+ a 2VA- 1M t 'A-'VT [VAUTMWR'WMUAVTj VA-'Mt'A-'VT

= a2VA-'Mt'A-'VTYAUTMW2UAY''vA-IMtlA-IVT

+ a2VA-'MtIA-1VTVAUTMWR'WMUAVTVA-'MtlA-'yT

Now, let us consider the argument in the trace function in (2.18),

ZVar(j3)ZT = a2UAVTVA-IMt'UTMW2UMt'A-IVTVAUT

+ a2UAVTVA-'Mt'UTMWR'WMUMt
l A-IVTVAUT
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If we define A = M11UTMW, then

and the following expression for the AV follow immediately from (2.18) and (2.21)

AV = ~trace [ZVar(,B)ZT]

= ~ {trace [UAWUM1'UT] + trace [UAR" ATUT]}

= ~ {trace [AWUM1'] + trace [AR"AT]}. (2.22)

Concerning the ASE, we first note that the bias of,B which we denoted by d can

also be written in terms of the SVD of Z as

UsingtheexpressionfordintheASB in (2.15) we obtain

ASE = ~f;:;WMUM1'A-'VTVAUTUAVTVA-'Ml'UTMWfN

+~f;:;fN

= ~f;:;WMUM1IM1'UTMWfN + ~f;:;fN

= ~f;:; {IN + ATA} f N (2.23)
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where A is given in (2.21). Thus the AMSE in (2.13) becomes

which is a function of the unknown vector fN and unknown matrix R·. Thus, in

constructing the design based on the AMSE as a criterion, we will use the MI IMAX

approach.

2.3 Exact Minimax Robust Design

In this section we first maximize the AMSE over fN such that to the constraints (2.6)

and (2.7). We will also obtain the maximum of the AMSE over R·. Let "0NX(N-p) be

amatrixwhosecolurnnsconstituteanorthonormalbasisfortheorthogonalcomple-

ment of the column space of U, [col(U)li. Thus, uru = 0, and "OT"O = IN _ p. Now

augment the columns of U and "0 to obtain the matrix U NxN = [UNxp . "ONX(N-P)]

u"u' • [:j [u vJ

[~TU ~~]
uru UTU

= I NxN · (2.25)



Clearly, the condition (2.6) can be written as

This, implies that, the function f N belongs to the space defined by the orthogonal

complimentofU. That is,

(2.26)

Since the columns of U is a basis for the space {Col(U)}.L we can express fN as a

linear combination of columns of U. Thus, we can write fN = U",

Now, the condition (2.7) given by

That is,

Thus,3somecsatisfyingllcIl2~lsuchthat

with equality if II c 11= 1. It follows that the maximum value of fN is achieved when

II c 11= 1. Thus, we have fN = .;NTC. Since U is an orthonormal transformation



2.3 EXACT MINIMAX ROBUST DESIGN

matrix it does not alter the length of a vector. Thus, we have maximum of fN over ;Y

fN = JNrfJc provided that II c 11= 1 (2.27)

It is clear that the AMSE depends on fN only through the Average Square Bias

(ASB). Thus

V,;~AMSE= V,;~ASB + AV

Using (2.27) we write

ASB = *Nr2cT {{]Tv +VTWMUM,2UTMWV} c

= r 2cT {IN _ P +VTWMUM,2U™WV} c.

Since VTV = I N _ p• Now, define

We maximize ASB with respect to fN which is equivalent to maximize with respect

to c subject to the constraint II c 11= 1. That is

= maxr2cT Gc
Ilell=1

(2.29)



2.3 EXACT MINIMAX ROBUST DESIGN

Now, using the symmetric decomposition of G we can write

N-p

CTGc=cT~Aj(G)ejefc

whereejarenormalizedeigenvectorsofG. Clearly,

N-p

cTGc :5 Am=(G)cT~ejefc

= Am=(G)CTc

since Ilc 11
2= 1. It folJows that

(2.30)

where Amax(G) is the maximum eigenvalue of the matrix G. We use properties of

matrices and eigenvalues to simplify Amax(G) as folJows:

Am=(G) = Am= [IN - p + (rTWMUM,2U™WU]

= Amax [Ip+M,luTMWlrOTWMUM,l]



2.3 EXACT MINIMAX ROBUST DESIGN

We know that DfJT = IN - UUT As a result, Amax(G) becomes

Am=(G) = Amax [Ip +M,'UTMWDDTwMUM,']

= Amax [Ip +M,'UTMW(IN - UUT)WMUM,I]

= Amax [M,IM2M,'] .

Therefore,

(2.31)

lI}~AMSE = r 2Amax [M,'M2M,'] +~ {tr [AWUM,'] + tr [AR"AT
]}

= r 2 {Amax [M,IM2M,'] +vtr [AWUM,'] +vtr [AR"AT]} (2.32)

wherev=h·

For completeness, we now have to maximize (2.32) with respect to possiblevalues

"lti?'lI}~AMSE = r 2Amax [M,'M2M,I]

+7l- (trace [AWUM,'] +mI?-'trace [AR"AT]) (2.33)



2.4 THE SIMULATED ANNEALING ALGORITHM

The equation (2.33) is true for any R', defined in (2.16) andthecorrelation matrix

Risdefined in (2.10).

[n what follows, we maximize (2.33) over R' and minimize it over the design

space numerically. Previously, Zhou (2001) [47] had found, theoretically, that when

the error terms in an approximately linear regression model is a moving average

process of order 1, parameter e, the correlation matrix is maximized at e= 1. It is

clearthatate=l, theMA(l) process will not be invertible and hence the designs

from such a process will not be useful in practice. For AR(l) process with parameter

<p, at <p = 1, the AR(l) process becomes non-stationary which also leads to the same

problem. In constructing her designs, ZhOli (2001) [47) used the OLS method of

estimation. It is well known that slich designs will be less efficient than designs based

on WLS or GLS. We shall adapt the simulated annealing algorithm of Fang and

Wiens (2000) [12] to demonstrate that the designs constructed by Zhou(2001) [47)

can be improved

2.4 The simulated annealing algorithm

In our example, we consider the model (2.5) and a design space S with equally spaced

design points Xi = (2i - 1)/2N, i = 1,2, ... ,N. For simplicity, we assume that one



2.4 THE SIMULATED ANNEALING ALGORITHM

of (n, N) is a multiple of the other. If n < N, then we also require that they have

the same parity.

A simulated annealing algorithm, in general, consists of the following:

(a} A description of the initial state of the process; that is, of the starting vector of

allocationsn= {n"n2,'" ,nN}

(b) A scheme by which subsequent states are generated

(c) A criterion according to which these subsequent states are acceptedorrejected

If n > N, then the initial state is the uniform design, with ni = n/N for i =

1,2, .. ·,N. Ifn:S N, then this vector of frequencies assigned tOXi,X2,"',XN

starts with the vector formed by repeating the vector (1,0"" , 0) {with N/n - 1)

D's} [n/2] times. This is followed by the same vector with the order of its elements

reversed. If N is odd, then also a vector (0"",0,1,0"" ,0) of length N/n is

inserted in the middle. Thus in eitbercase the initial design is symmetric and at

least close to uniform. We impose symmetry on the designs largely for its intuitive

appeal. However, we remark that searches for better, possibly asymmetric, designs

have yielded no improvements.

To generate new designs, first define a [N/2] x 1 vector v = (VI,'" ,vIN/21) =



(n" .. ,n[N/21) of the current allocation vector. Define

J+= {ilv. >O}, Jo = {ilv,=O}

withcardinalitiesj+ 2': 1 andjo. Generate a Bernoulli random variable,

B=f 1, withprobability~;

l 0, with probability Y!:r;.

(2.34)

If J+ 2': 2, then choose two indices (t1,t2) from J+, at random and without re-

placement, and (if B = 1) pick an index to form Jo, at random. Replace v by the

vector V whose elements are thoseofv except for

Vto = V'o + B, v" = Vt, - 1, & v" = Vt, + 1 - B. (2.35)

If J+ = 1, then pick to from Jo at random, let t, be the element of J+, and replace

(2.35) by

(2.36)

If N is even, then ii = (ii,,··· ,iiN) = (v,,··· ,VN/2,VN/2, .. ,vtl, thus preserving

symmetry. If N is odd, then a further Bernoulli variable is simulated, with proba-

bility1/Nof"success". Ifasuccessisobtained,then,withprobability1/2,n(N/21+1

(the frequency assigned toO) is increased by 2, with these taken randomly andsym-

metrically from the remaining n;. With the remaining probability 1/2, n(N/21+1 is
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reduced by 2, with these allocated randomly and syrnrnetrically to the remaining n;.

Ifn(N/21+1 <2, then this step is ornitted. Then ii is constructed as earlier, with also

the inclusion of the new frequencyn[N/21+1.

To accept or reject ii as the next state, first evaluate the loss 1= I(ii). If

f(ii) < I(n), then ii is accepted and iterations continue. If 6.1 = f(ii)-f(n) > 0,

then ii is accepted with probability exp(-6.1IT), where T is a user-chosen parameter.

We initially choose T = 7.5, and we decrease T by a factor of .9 after each 100

2.5 Example: AR(l) model

For the purpose of illustration, we assume that the errors are from an autoregressive

process of order 1. That is, fi = pfi-l + a;; i = 1,2,··· ,N,

where a; is a sequence ofuncorrelated random variables with mean 0 and constant

variance C7~ called a white noise process. Thus we write a; ~ WN(O, C7~).

We define the lag k autocovariance function 7k = E [f'_kf,j, where k ~ 1. Then

we have 7k-l = E [f'_kf,_.]. By applying standard techniques we can show that the

lagk autocovariance function7k satisfies the difference equation
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'Yk = fY'Ik-l; k2': 1

Using the fact thattheautocorrelationfunctionPk=~' solving the difference

equation we obtain

Corr(fi_k, fi) = l; k2':l.

Then, theautocorrelationmatrixRin (2.10) becomes

In,

(2.37)

andRO in (2.16) is



2.5 EXAMPLE: AR(l) MODEL

If we define the N x N matrix Gk with elements

(Gk);j = 01;-J1=k ; k = 1,2"" ,N - 1, we can rewrite R' as

Then,

tmce(AR'AT) = trace {A (pG 1+ p2G2 + ..... + p'G; + ..... + pN-1GN_1) AT}

= ~ p;trace(AGiAT)

mR,?,trace(AR'AT) = l.1~trace(AR'AT)

= 1.1~~P'trace(AG;AT) (2.38)



2.5 EXAMPLE: AR(l) MODEL

Finally from (2.33) and (2.38) we get

Finally, the simulated annealing algorithm was used to construct optimal designs for

thecaseoftheAR(l) model.



Chapter 3

Robust Design Using Generalized

Least Squares Estimation

InChapter2,weusedtheweighted least squares criterion toestimatef3 in (2.9). In

this section, we use the generalized least squares estimation to estimatef3 in (2.9).

We use the same notations as in Chapter 2. Now, we re-write equation (2.9) as

Y=Qf3+fu +E, (3.1)

where GOV(E) = E = aZR as in (2.10). Since E is a covariance matrix, it is at

least positive semidefinite. For the existence of E-', we assurne that E is of positive

definite matrix. In order to transform (3.1) into a model with constant variance we
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premultiply(3.1)by~-1/2toobtain

Now, define,

Then (3.1) becomes

Y' = Q'.e + f~ + €', (3.4)

and the generalized least squares (GLS) estimate of the parameter {3 canbewritten

(3.5)

From (3.5) and the fact that ~-l = (a2)-lR-1, the GLS estimate for.e becomes

(3.6)

in what follows, we use the Average Mean Squared Error (AMSE) design criterion

defined in (2.13) to construct optimal designs. To do this, we first derive the bias and

thevarianceof/J.,



3.1 THE BIASANO VARIANCE OF{3q

3.1 The bias and Variance of I3g

Taking expectation of both sides in equation (3.6) we obtain

E[{3g] = E[(QTR-1Q)-IQTR-1Yj

= (QTR-1Q)-IQTR-1E[Y)

[t follows that the bias ofOg denoted byd9 , is

dg = bias ({3g)

= E({3g)-(3

Again, from (3.6) we can show that

(3.7)

(3.8)

(3.9)



3.2 THE AVERAGE VARIANCE(AV.) & AVERAGE SQUARE BIAS (ASS.) OF r3li3

3.2 The Average Variance(A~)& Average Square

Bias (ASBg ) of r3g

Recall that in Chapter 2 we used the singular value decomposition method to decom-

pose the matrix Z into

(3.10)

Similarly, the matrix Qnxp was decomposed using the singular value decomposition

(3.11)

where U q is a n x p dimensional matrix, Aq is a p x p diagonal matrix of singular values

and, V q is also a p x p dimensional matrix. Using the singular value decomposition

ofQwewrite



3.2 THE AVERAGE VARIANCE(AVg ) & AVERAGE SQUARE BIAS (ASSg ) OF t3q64

and define MIg = UJR-1Uq. Then

It follows from (3.9) that thevarianceoft3g can be expressed as

Recall from (2.18) that the Average Variance of t3g can be written as

Using the SVD of Z in (3.10) and (3.13) we have

so that AT = A~IV~VA.

After some algebra we find that

(3.13)

(3.14)



3.2 THE AVERAGE VARIANCE(AVg ) & AVERAGE SQUARE BIAS (ASSg ) OF t3 65

When we substitute v = ~, we obtain

(3.15)

Remark that the Average variance AVg depends on the correlation matrix R but

does not depend on fN orfu '

Concerning the ASS, we know from (3.8) that

Using the SVD of Q in (3.16) we obtain

(3.17)

From equation (2.27) inChapter2,wehave

(3.18)

By using the orthogonality of wavelet systems we have

1 ..;;:8 Q(U;)!(U;) = 0, (3.19)



3.2 THE AVERAGE VARIANCE(AV.) & AVERAGE SQUARE BIAS (ASS.) OF r3J>6

whichimpUesthat

~QTfu = 0

~VqAqU~fu = 0

~f~Uq = o.

This implies that the vector fu belongs to the space of orthogonal complement of the

co]umnspaceofUq •

(3.20)

Define nm = max{n" n2,· ., nN}. Then, we can write

1" 1 N

Iii {;[J(UkJJ' = IiiBn,[J(xi))2

::; *nmt[J(X'JJ'
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Thus,thereexitssomecqsatisfyingllcqIl2~lsuchthat

IIfu ll 2 = N1tmT2 11cq 1l
2

=> Ilfull = II.Jji:;;::.Tcqll·

Suppose Dq is a matrix whose columns constitute on orthonormal basis for {Col(Uq)}.L.

Then,sincefuE {Col(Uq)}.L we have that

(3.21)

Similar to (2.15) we can obtain the formula for ASBg as

ASBg = ~d;ZTZdg + ~ II fN 11
2

= ~d;ZTZdg + ~f~fN' (3.22)

From equations (3.10) and (3.17) we have

(3.23)

By using equations (3.22) and (3.23) we obtain

ASBg = ~f;:R-IUqM,glA;'V;VAUTUAVTVqA;'M,g'U;R-'fu + ~f~fN

= ~f;:R-'UqM,;ATAM,;U;R-'fu + ~f~fN'

(3.24)



3.3 MAXIMIZING THE AVERAGE ME:AN SQUARE ERROR (AMSE) WITH

RE:SPECT TO fN, fu , AND R

(3.25)

the ASBg simpliResto

ASBg = *f,;BTBfu + *f~fN

= 1lmT2C;U;BTBUqcq + T
2CT UT UC. (3.26)

We note that the ASBg depend on both cq andc.

3.3 Maximizing the Average Mean Square Error

(AMSE) with respect to fN , fl" and R

Following our approach in Chapter 2 we first decompose the AMSEg into 2 compo-

(3.27)

and then maximize the AMSEg with respect to fN and fu' That is, we solve

Since the AVg depends on neither fu nor fN , the above maximization problem becomes

E."t AMSEg = E."t ASBg + AV.. (3.28)



3.3 MAXIMIZING THE AVERAGE MEAN SQUARE ERROR (AMSE) WITH

RESPECT TO fN, fu , AND R

e"tASBg = ~.~ASBg

= ~.~{n".r2c~U~BTB1)qCq + r2cTUTUC}

= r2{nm1I~~1 C~U~BTBUqCq + 1I~~1 CTUTUC}

= r2{n".Amax[U~BTBUq) + Amax[UTUj}

= r2{nmAmax[BUqU~BT) + Amax[I N _,]}

Recall that UqU; + UqU; = In. It follows that UqU; = In - UqU;

For a fixed correlation matrix R, using the equations (3.28), (3.30) and (3.15) we

have the following result

Next, we take the maximum with respect to the matrix R:
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and minimize over the design to obtain the optimal design. Due to the nature of

(3.32), we will maximize (3.32) over R and minimize over the design numerically.

3.4 Example: AR(l) model using GLS method

We have already discussed an example based on the AR(I) model using WLS method

in Section 2.6 of Chapter 2. We will use the same notations in our example using

the GLS method. The correlation matrix R depends only on p, which takes values

between -1 and +1. Thus, maximizing over R is equivalent to maximizing over p.

Thus,

(3.33)

We do not have a closed form expression for the equation (3.33), so we takeseveral

values of p between -1 and +1 and we use the simulated annealing algorithm to obtain

optimal design (say prior optimum designs) for each value of p. Also, we computed

minimum loss for each p. Among the minimum losses, we pick maximum loss over all

pvalues(saypopt).



Chapter 4

Results and Discussions

In this section, we compare the performances of the OLS, WLS and, GLS methods

by implementing the simulated annealing algorithm for various values of v = f,. We

defined v in Chapter 2 asv= f,. The values ofv used in constructing the designs

are v = 0.05,1,5, 10,50. Recall that no closed form expression for the maximum loss

over the correlation matrix R was obtained in Chapter 3. Thus, the loss function

depends on the correlation matrix R. In the special case of the AR(l) model, the

maximum loss was shown to be a function of the lag 1 autocorrelationparameterp.

As a result, various values of p was used to construct a prior optimal design that

depends on p. The maximum loss was then taken over the recorded minimum losses

of various values ofpand the corresponding prior optimal design waschosen as the



optimal design. In our examples, the Daubechies wavelet system with wavelet number

We assume that given the data [(Xi, y,)l~, the experimenter will use either the

ordinary least squares method or weighted least squares method or generalizedleast

squares method to estimate the unknown mean response function via wavelet ex-

pansion. Under this assumption and the AR(I) model we construct integer valued

designs for fixed values ofp based on the simulated annealing algorithm. The average

squared bias (ASB), average variance and, minimum loss are reported in Table 4.1 -

Table 4.15 for OLS, WLS and, GLS respectively.

4.1 Integer Valued Optimal Design for v = 0.05

The results in Table 4.1 show that when v = 0.05, the maximum of minimum loss

under OLS is 2.049277 occurs at p = 0.97. Under WLS Table 4.2 shows that the

maximum of minimum loss was 2.128778 at p = 0.85, whereas the maximum of

minimum loss for GLS which occurs at p = 0.99999 is 6.117178. So the OLS method

works well considering all range of p values when v = 0.05. But we look at Figure

4.4 the GLS method performs very well between -0.6 and 0.6 compared to OLS and

W LS. Also OLS works better compared to W LS at entire range. In the Figure 4.5



4.1 INTEGER VALUED OPTIMAL DESIGN FOR V = 0.05

p Minimum loss ASB AV
-0.99999 2.00081 2.000057 0.000752968
-0.9 2.005967 2.003607 0.002360792
-0.8 2.005569 2.003309 0.002260222
-0.6 2.022668 2.018743 0.003925095
-0.4 2.026631 2.022610 0.004021718
-0.2 2.026935 2.02206 0.004875512
0 2.02783 2.021947 0.00588259
0.2 2.026449 2.019190 0.007258619
0.4 2.029613 2.020224 0.009388586
0.6 2.034541 2.021450 0.01309060
0.8 2.044767 2.022849 0.02191772
0.9 2.042100 2.011287 0.03081347
0.96 2.043253 2.008100 0.03515281
0.97 2.049277 2.013889 0.03538827
0.98 2.039064 2.004818 0.03424561
0.99 2.046060 2.009735 0.03632598
0.99999 2.046796 2.009735 0.03706117

Table 4.1: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05



p Minimum loss ASE AV
-0.99999 2.080894 2.079151 0.001742439
-0.9 2.073306 2.070749 0.002557343
-0.8 2.073343 2.070503 0.002840847
-0.6 2.068662 2.065604 0.003058168
-0.4 2.069462 2.065604 0.003858562
-0.2 2.065668 2.060600 0.005067228

0 2.109661 2.103610 0.006051221
0.2 2.069385 2.061999 0.00738538
0.4 2.071444 2.061999 0.00944496
0.6 2.116754 2.103621 0.01313386
0.8 2.12522 2.103482 0.02173836

0.85 2.128778 2.103482 0.02529681
0.9 2.107938 2.078494 0.02944403
0.96 2.08487 2.052372 0.03249821
0.97 2.084333 2.052372 0.03196113
0.98 2.074100 2.043588 0.0305121
0.99 2.071805 2.043588 0.02821649

099999 2.085199 2.060650 0.02454846

Table 4.2: The comparison of Minimum loss, ASE and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05



p Minimum loss ASB AV
-0.99999 1.085488 1.085488 5.02156e-08
-0.9 1.059457 1.058895 0.0005617386
-0.8 3.276169 3.256918 0.01925158
-0.6 1.271935 1.269581 0.002353984
-0.4 1.037739 1.029456 0.008282977
-0.2 1.007879 1.001206 0.006673024
0 1.004795 1 0.004794594
0.2 1.007828 1.001152 0.006676406
0.4 1.031120 1.022797 0.008322858
0.6 1.185932 1.173867 0.01206458
0.8 2.083669 2.062900 0.02076957
0.9 3.709693 3.682098 0.02759484
0.95 4.027648 3.998459 0.02918908
0.98 5.367551 5.342765 0.02478615
0.99999 6.117178 6.11714 3.815961e-05

Table 4.3: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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the optimum design for OLS and WLS looks like same but the optimal design for

GLS is completely different from OLS and WLS.

It is clear, from

m
R
8:""I:;xAMSE = r 2Amax [M,'M2M,']

+7l- (trace [AWUM,'] +mI?-'trace [AR'AT
])

for weighted least squares method or

for generalized least squares method, that when v is small, say v = 0.05, the bias

component of the AMSE becomes dominant; whereas as v becomes larger the average

variance AV becomes dominant, as seen in Table 4.1 - Table 4.15, irrespective of the

valueofp. Figures4.1-4.4,4.6-4.9,4.11-4.14,4.16-4.19,and4.21-4.24provide

a picture of the patterns in the optimal AMSE

for weighted least squares method and



for generalized least squares method, for various valuesofv and p. In Figures 4.4,

4.9,4.14,4.19, and 4.24 we compare the performance of the designs for OLS, WLS,

and GLS methods of estimation. It can be seen that when Ipl < 0.6, the designs from

the GLS method are more efficient. However, when the AR(I) process approaches

non-stationary state Ipl ----+ 1, the OLS becomes more efficient.

Figure 4.1: The comparison of Minimum loss, ASE and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05



~
~

Figure 4.2: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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Figure 4.3: The comparison of Minimum loss, ASS and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05



4.1 INTEGER VALUED OPTIMAL DESIGN FOR V = 0.05

~.'--WLS
~

Figure 4.4: The comparison of Minimum loss for GLS, W LS and, GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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Figure 4.5: Minimax design points: (a) OLS (b) WLS (e) GLS when N = 128,
n = 64, m = 2, DAUB4 and, v = 0.05



4.2 Integer Valued Optimal Design for v = 1

p Minimum lass ASB AV
-0.99999 1.996743 1.995523 0.001219876
-0.9 2.033878 2.006919 0.02695928
-0.8 2.066264 2.036592 0.02967136
-0.6 2.05416 2.005176 0.04898433
-0.4 2.088217 2.022613 0.06560409
-0.2 2.093798 2.000279 0.09351933
0 2.118930 2.003297 0.1156327
0.2 2.155274 2.013068 0.1422062
0.4 2.196515 2.009910 0.1866055
0.6 2.269324 2.012412 0.2569118
0.8 2.450034 2.017605 0.4324294
0.9 2.604849 2.013777 0.5910713
0.96 2.699093 2.018787 0.6803062
0.97 2.706874 2.058684 0.6481904
0.98 2.679406 2.060381 0.619025
0.99999 2.597526 2.106485 0.4910409

Table 4.4: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1

In Table 4.4 the maximum of minimum loss for OLS is 2.706874 when v = 1

at p = 0.97. Similarly, from Table 4.5 the maximum of minimum loss for W LS is

2.710629 when v = 1 at p = 0.97. Furthermore, from Table 4.6 the maximum of

minimum loss for GLS is 6.348578 at p = 0.97. So the OLS method works well

considering all range of p values when v = 1. But looking at Figure 4.9 we note

that the GLS method performs very well between -0.99999 and 0.8 and compared to



4.2 INTEGER VALUED OPTIMAL DESIGN FOR V = 1

p Minimum loss ASB AV
-0.99999 2.077370 2.071862 0.005507841
-0.9 2.09058 2.065656 0.02492445
-0.8 2.11256 2.083059 0.02950096
-0.6 2.141584 2.085153 0.05643037
-0.4 2.133177 2.066520 0.06665684
-0.2 2.177348 2.077710 0.09963783
0 2.168872 2.051462 0.1174097
0.1 2.210527 2.080389 0.1301374
0.2 2.230831 2.084857 0.1459744
0.4 2.283002 2.098379 0.1846235
0.6 2.318458 2.061046 0.2574113
0.8 2.487547 2.05188 0.4356671
0.9 2.643451 2.058292 0.5851591
0.94 2.686622 2.053949 0.6326732
0.96 2.703887 2.066719 0.6371685
0.97 2.710629 2.085311 0.6253184
0.98 2.647005 2.056689 0.5903156
0.99999 2.521115 2.135155 0.3859602

Table 4.5: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1



4.2 INTEGER VALUED OPTIMAL DESIGN FOR V = 1

p Minimum lass ASB AV
-0.99999 1.085489 1.085488 1.004312e-06
-0.9 1.091835 1.080426 0.01140855
-0.8 1.165675 1.139410 0.02626474
-0.6 1.194062 1.147588 0.04647377
-0.4 1.195115 1.029456 0.1656595
-0.2 1.113398 1.023462 0.0899358
0 1.095892 1 0.09589189
0.2 1.101511 1.001926 0.09958534
0.4 1.189254 1.022797 0.1664572
0.6 1.415159 1.173867 0.2412917
0.8 2.253745 1.843812 0.4099328
0.9 3.233730 2.701286 0.5324431
0.95 4.725332 4.137803 0.5875288
0.96 5.000686 4.426609 0.5740775
0.97 6.348578 5.78259 0.5659878
0.98 5.771601 5.275205 0.496396
0.99 5.97794 5.58029 0.3976498
0.99999 6.117903 6.11714 0.0007631921



4.2 INTEGER VALUED OPTIMAL DESIGN FOR V = 1

OLS and W LS. Also the OLS works slightly well compared to W LS except at high

positive correlation. In Figure 4.10 the optimum design for OLS, W LS and, GLS

are different from each other. Also the optimal design for G LS is approximately the

uniforll1design

Figure 4.6: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1



Figure 4.7: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1
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4.2 INTEGER VALUED OPTIMAL DESIGN FOR V = 1
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Figure 4.9: The comparison of Minimum loss for OLS, WLS and, GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1



Figure 4.10: Minimax design points: (a) OLS (b) WLS (c) GLS when N = 128,
n = 64, m = 2, DAUB4 and, v = 1

____.-J



4.3 INTEGER VALUED OPTIMAL DESIGN FOR V = 5

4.3 Integer Valued Optimal Design for v = 5

p Minimum loss ASS AV
-0.99999 2.047865 2.057248 -0.0093831
-0.9 2.100265 2.049366 0.05089852
-0.8 2.132511 2.011909 0.1206018
-0.6 2.241812 2.018743 0.2230689
-0.4 2.314149 2.024323 0.2898256
-0.2 2.430382 2.010393 0.4199898
0 2.579118 2.010932 0.5681863
0.2 2.702937 2.011419 0.691518
0.4 2.871270 2.010999 0.8602715
0.6 3.257095 2.014997 1.242099
0.8 4.146442 2.061918 2.084524
0.9 4.922302 2.046661 2.875641
0.94 5.209525 2.116116 3.093409
0.95 5.272871 2.190409 3.082462
0.96 5.263621 2.20552 3.058101
0.97 5.169232 2.139847 3.029384
0.98 5.062085 2.25283 2.809255
0.99999 4.208087 2.499849 1.708238

Table 4.7: The comparison of Minimum loss, ASS and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5

In Table 4.7 the maximum of minimum loss for OLS is 5.272871 when v = 5

at p = 0.95. Similarly, from Table 4.8 the maximum of minimum loss for W LS is

5.203846 when v = 5 at p = 0.96. Furthermore, from Table 4.9 the maximum of

minimum loss for GLS is 8.846287 at p = 0.98. So the WLS method works well

considering all range of p values when v = 5. But looking at Figure 4.14 we note



4.3 INTEGER VALUED OPTIMAL DESIGN FOR V = 5

p Minimum/oss ASB AV
-0.99999 2.131281 2.124741 0.006540674
-0.9 2.153697 2.080342 0.0733552
-0.8 2.186272 2.062570 0.1237025
-0.6 2.259083 2.057157 0.2019262
-0.4 2.349457 2.044107 0.3053502
-0.1 2.575831 2.053423 0.5224084
0 2.636004 2.056528 0.579476
0.1 2.678510 2.048461 0.6300489
0.4 2.924343 2.053382 0.8709615
0.6 3.319283 2.076050 1.243233
0.8 4.185344 2.063325 2.122020
0.9 4.945942 2.06253 2.883413
0.94 5.191955 2.067705 3.12425
0.96 5.203846 2.171627 3.032218
0.97 5.073718 2.110858 2.96286
0.98 4.911075 2.173541 2.737534
0.99 4.594742 2.27139 2.323352
0.99999 3.862797 2.423530 1.439267

Table 4.8: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5

--~



4.3 INTEGER VALUED OPTIMAL DESIGN I'OR V = 5

p Minimum loss ASB AV
-0.99999 1.085493 1.085488 5.02156e-06
-0.9 2.513215 2.443624 0.06959139
-0.87 2.005000 1.944012 0.06098852
-0.85 3.519706 3.537542 -0.0178355
-0.83 5.999396 3.914483 2.084914
-0.81 4.084916 3.891627 0.1932882
-0.8 1.417761 1.320471 0.09728996
-0.6 1.407637 1.16602 0.2416169
-0.4 1.332202 1.085325 0.2468768
-0.2 1.384103 1.040957 0.3431456
0.0 1.479459 1 0.4794594
0.4 1.805948 1.095238 0.71071
0.6 2.300031 1.282751 1.01728
0.8 4.139856 2.062900 2.076957
0.9 6.441582 3.682098 2.759484
0.97 8.612529 5.78259 2.829939
0.975 8.726667 5.996503 2.730165
0.98 8.846287 6.266682 2.579605
0.985 8.797336 6.445915 2.351421
0.99 7.568464 5.580743 1.987721
0.99999 6.120956 6.11714 0.003815961

Table 4.9: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5



that the GLS method performs very well between -0.8 and 0.8 compared to OLS

and W LS. Also the OLS are slightly better than W LS when p is between -0.99999

and 0.95 but between 0.95 and 0.99999, WLS performs well compared to OLS. In

the Figure 4.15 the optimum design for OLS, W LS and, GLS is different from each

other. Also the optimal design for GLS is approximately the uniform design.

Figure 4.11: The comparison of Minimum loss, ASS and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5



Figure 4.12: The comparison of Minimum loss, ASS and, AVof WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5



4.3 INTECER VALUED OPTIMAL DESIGN FOR V = 5

Figure 4.13: The comparison of Minimum loss, ASS and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5
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Figure 4.14: The comparison of Minimum loss for OLS, WLS and, GLS method
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5



4.3 INTEGER VALUED OPTIMAL DESIGN FOR V = 5

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.81.0

(a) (b)

Figure 4.15: Minimax design points: (a) OLS (b) WLS (c) GLS when N = 128,
n = 64, m = 2, DAUB4 and, v = 5



4.4 INTEGER VALUED OPTIMAL DESIGN FOR V = 10

4.4 Integer Valued Optimal Design for v = 10

p Minimum loss ASB AV
-0.99999 2.045167 2.0705 -0.02533313
-0.9 2.269027 2.241803 0.02722357
-0.8 2.322824 2.123792 0.1990314
-0.6 2.488752 2.088627 0.4001257
-0.4 2.612679 2.014389 0.5982902
-0.2 2.794901 2.002144 0.7927574
0 3.077763 2.001131 1.076632
0.2 3.365560 2.00663 1.358930
0.4 3.731137 2.027582 1.703555
0.6 4.479028 2.022361 2.456667
0.8 6.233229 2.070706 4.162522
0.9 7.864589 2.316972 5.547617
0.93 8.329474 2.430321 5.899152
0.94 8.362358 2.240780 6.121579
0.95 8.33708 2.264812 6.072267
0.96 8.333771 2.326118 6.007653
0.97 8.209657 2.490442 5.719215
0.98 7.83935 2.56329 5.27606
0.99999 5.771057 3.438719 2.332339

Table 4.10: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10

In Table 4.10 the maximum of minimum loss for OLS is 8.362358 when v = 10

at p = 0.94. Similarly, from the Table 4.11 the maximum of minimum loss for W LS

is 8.327955 when v = 10 at p = 0.94. Furthermore from Table 4.12 the maximum

of minimum loss for GLS is 11.44247 at p = 0.97. So the WLS method works well

considering all range of p values when v = 10. But looking at Figure 4.19 we note that



p Minimum loss ASB AV
-099999 2.267489 2.581732 -0.3142424
-09 2.247185 2.112259 0.1349265
-0.8 2.331291 2.120416 0.2108748
-0.6 2.464161 2.063245 0.4009151
-0.4 2.667517 2.063233 0.6042834
-0.2 2.870352 2.049251 0.8211004

0 3.157555 2.046277 1.111278
0.2 3.445544 2.073824 1.371721
0.4 3.816696 2.080104 1.736593
0.6 4.666314 2.271805 2.394509
0.8 6.317123 2.13009 4.187033
0.9 7.932483 2.497829 5.434654
0.92 8.164618 2.347608 5.81701
0.94 8.327955 2.357453 5.970502
0.96 8.275183 2.289933 5.98525
0.97 8.072333 2.305684 5.766649
0.98 7.752204 2.531776 5.220427
0.99999 5.225318 3.38924 1.836078

Table 4.11: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10



4.4 INTEGER VALUED OPTIMAL DESIGN FOR V = 10

p Minimum loss ASE AV
-0.99999 1.085498 1.085488 1.004312e-05
-0.9 1.56146 1.482761 0.07869866
-0.8 2.295938 2.139232 0.1567057
-0.6 1.585500 1.244839 0.340662
-0.4 1.849210 1.129927 0.7192823
-0.2 1.570897 1.088429 0.4824679
0 1.958919 1 0.9589189
0.2 2.002956 1.001531 1.001425
0.4 2.26098 1.030917 1.230064
0.6 3.373752 1.612591 1.761161
0.8 6.091392 2.112047 3.979345
0.9 8.214476 2.744597 5.469879
0.97 11.44247 5.78259 5.659878
0.98 11.42589 6.266682 5.159209
0.99 9.53389 5.55796 3.975931
0.99999 6.124772 6.11714 0.007631921

Table 4.12: The comparison of Minimum loss, ASE and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10



4.4 INTEGER VALUED OPTIMAL DESIGN FOR V = 10

the GLS method performs very well between -0.99999 and 0.8 compared to OLS and

WLS. Also OLS and WLS is approximately same for entire range. In the Figure

4.20 the optimum design for OLS, WLS and, GLS is different from each other. Also

the optimal design for GLS is approximately the uniform design.

Figure 4.16: The comparison of Minimum loss, ASE and, AVof OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10



Figure 4.17: The comparison of Minimum loss, ASB and, AVof WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10



Figure 4.18: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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Figure 4.19: The comparison of Minimum loss for OLS, WLS and, GLS method
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10



4.4 INTEGER VALUED OPTIMAL DESIGN POR v = 10

Figure 4.20: Minimax design points: (a) OLS (b) WLS (c) GLS when N = 128,
n = 64, m = 2, DAUB4 and, v = 10



4.5 INTEGER VALUED OPTIMAL DESIGN FOR V = 50

4.5 Integer Valued Optimal Design for v = 50

Table 4.13: The comparison of Minimum loss, ABE and, AV of OLB method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50

In the Table 4.13 the maximum of minimum loss for OLB is 21.55166 when v = 50

at p = 0.91. Similarly from Table 4.14 the maximum of minimum loss for WLB is

22.27768 when v = 50 at p = 0.92. Also from Table 4.15 the maximum of minimum

loss for GLB is 33.49518 at p = 0.95. So the OLB method works well considering all

range of p values when v = 50. But we looking Figure 4.24 we note that the GLB



4.5 INTEGER VALUED OPTIMAL DESIGN FOR V = 50

p Minimum loss ASB AV
-0.99999 -13.58427 11.65563 -25.23990
-0.9 -1.933222 6.253059 -8.186281
-0.8 -0.8325057 5.619122 -6.451628
-0.6 2.128258 4.73058 -2.602322
-0.4 4.31385 3.4945290.8193212
-0.2 5.926634 2.5365623.390073
o 7.421825 2.1856 5.236225
0.2 8.879873 2.4622266.417647
0.4 10.26985 3.0083637.261485
0.6 12.94254 4.0145158.92802
0.8 18.58712 6.01618712.57094
0.85 20.54168 7.60768812.93399
0.9 21.79477 9.46709312.32768
0.91 21.90699 8.99024812.91674
0.92 22.27768 8.92103613.35664
0.93 21.47031 11.2654010.20491
0.94 20.94868 12.94772 8.000965
0.97 17.90256 11.673746.22882
0.99999 -4.566663 18.11551 -22.68218

Table 4.14: The comparison of Minimum loss, ASB and, AVof WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50

---



p Minimum loss ASE AV
-0.99999 1.085538 1.085488 5.02156e-05
-0.9 1.833143 1.470647 0.3624959
-0.8 2.605071 1.910238 0.6948335
-0.6 2.301922 1.415000 0.8869212
-0.4 1.81329 1.155108 0.6581823
-0.2 2.890784 1.0707 1.820084
0 5.794594 1 4.794594
0.2 5.93516 1.002437 4.932723
0.4 6.150899 1.005317 5.145582
0.6 8.240323 1.732294 6.508028
0.8 20.30685 2.422327 17.88452
0.9 26.58375 2.829639 23.75411
0.94 32.71703 3.671975 29.04506
0.95 33.49518 4.493673 29.00151
0.97 32.46468 4.547815 27.91686
0.98 32.03664 6.215906 25.82074
0.99 25.38311 5.599105 19.78400
0.99999 6.1553 6.11714 0.03815961

Table 4.15: The comparison of Minimum loss, ASE and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50



method performs very well between -0.4 and 0.6 compared to OLS and W LS. In the

Figure 4.25 the optimum design for OLS and W LS takes more repeated observations

compared to GLS method.

Figure 4.21: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50



4.5 INTEGER VALUED OPTIMAL DESIGN FOR V = 50

Figure 4.22: The comparison of Minimum loss, ASB and, AVof WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50



Figure 4.23: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50



Figure 4.24: The comparison of Minimum loss for OLS, W LS and, GLS method
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50



4.5 INTEGER VALUED OPTIMAL DESIGN FOR V = 50

Figure 4.25: Minimax design points: (a) OLS (b) WLS (e) GLS when N = 128,

n = 64, m = 2, DAUB4 and, v = 50



Chapter 5

Concluding Remarks

[n this thesis, we considered minimax designs for estimation of nonparametric re-

gression models with autocorrelated errors using wavelet approximation of the mean

response function. We assumed that given the observed responses, as experimenter

will estimate the parameters of the wavelet approximation by wavelet versions of ordi-

nary least squares (OLS), weighted least squares (W LS) and generalized least squares

(GLS). Based on this assumption we developed a simulated annealing algorithm to

search for minimax designs under an AR(l) correlation structure.

In summary, the GLS method performed better than OLS and W LS methods,

when Ipl :5 0.6, where p have been defined in Section 2.5 for AR(l) model. The

performance of the OLS and W LS were similar. For practical reason we considered



CONCLUDING REMARKS

therangeofpbetween-0.99999andO.99999sincethestationaritycondition for AR(l)

processislpl<l. When we have prior knowledge about a given data one can select

a suitable method for constructing an optimal design for that particulartypeofdata

to improve the performance of the experiment. That is, GLS is the best for the

moderate level correlation (-0.6 < p < 0.6) and W LS or OLS is preferred for highly

We note that our techniques can be extended to Moving Average processesof

orderq to select which method of estimation is the best
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