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Abstract '

We consider minimax designs for estimation of nonparametric regression models us- 1
ing wavelet approximations of the mean response function. We assume that the error
terms are autocorrelated. Since the method of estimation depends on the choice of
design, we argue that using ordinary least squares method (OLS) for estimation may
lead to designs that are less efficient than designs constructed based on generalized
least squares (GLS) or weighted least squares (WLS). A simulated annealing algo-
rithm is developed to carry out the minimization problems to search for minimax

designs. In this thesis we considered AR(1) model for example. We found that the

GLS method is good for the moderate level correlation and W LS or OLS is preferred

for highly correlated data.
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Chapter 1

Introduction

Wavelet analysis has been found to be a powerful tool for the estimation of non-

parametric mean response functions. During the 1990s, the nonparametric literature

dominated by (nonlinear) wavelet shrinkage and wavelet ing estimators.
These estimators are a new subset of an old class of nonparametric regression esti-
mators, namely orthogonal series methods. For more details see Antoniadis, Gregoire
and Mckeague (1994)(2), and Wegman, Poston and Solka (1996) [40]. Several authors
have used wavelets in nonparametric regression from the minimax viewpoint. See for
example Donoho, Johnstone, Kerkyacharian and Picard (1995) (9], Oyet and Wiens
(2000) [28] and Oyet (2003) [27].

Beginning with Herzberg and Traves (1994) [15], wavelets have continued to play



INTRODUCTION 2

an important role in robust design of regression experiments. They assumed that
the wavelet model was exact and thus applied classical methods for the design. Oyet
and Wiens (2000) [28] considered the construction of designs for the estimation of a
regression function, when it s anticipated that this function is to be approximated by
the dominant terms in its wavelet expansion. They considered both the Haar wavelet
basis and the multiwavelet system. The experimenter estimates the coefficients of
those wavelets included in the approximation, hoping that the omitted terms will
be inconsequential. ‘This introduces bias into the least square estimates, which they

‘ proposed handling at the design stage by one of two methods;

(i) Implementing a minimaz robust design, which enjoys the property of mini-
mizing the maximum value of an mse-based loss function, with the maximum
being taken over the remainder in the wavelet expansion as it varies over an L?

- neighborhood;

(ii) Implementing a minimum variance unbiased (mvu) design which, when em-

ployed with weighted least squares and weighs derived here, minimizes the vari-

ance subject to a side condition of unbiasedness.

imize the accuracy of nonparametric curve estimation in the possible presence of

} Oget (2003) [27] discussed the problem of constructing designs in order to max-
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heteroscedastic errors. His approach was to exploit the flexibility of wavelet approxi-

mations to the unknown res by its wavelet expansion thereby

eliminating the mathematical difficulty associated with the unknown structure. It is
expected that only finitely many parameters in the resulting wavelet response can
be estimated by weighted least squares. The bias arising from this, compounds the
natural variation of the estimates. Robust minimax designs and weights are then
constructed to minimize mean squared error based loss functions of the estimates.
He found the periodic and symmetric properties of the Euclidean norm of the multi-
wavelet system useful in eliminating some of the mathematical difficulties involved.
These properties lead him to restrict the search for robust minimax designs to a
specific class of symmetric designs. He also constructed minimum variance unbiased

ize the loss functions subject to a side condition of

designs and weights, which mini
unbiasedness.

In this thesis, we propose minimax robust designs for estimation of nonparametric
regression models using wavelet approximations of the mean response function. In
particular, we use daubechies wavelets to approximate the mean response function
Here we assume that the error terms are autocorrelated. More specifically, we as-
sume that the errors follow an autoregressive process of order 1, AR(1). We allow for

repeated observations in the optimal design and assume that there is no correlation




within observations from the same design points, but that the errors are autocorre-
lated between design points. This leads to a patterned block matrix for the covariance
of the error vector. We study two estimators: the weighted least squares estimator
(WLSE) using weights proposed by Oyet and Wiens (2000) [28), and the general-
ized least square estimator (GLSE). We consider the discrete version of Integrated
mean squared error as a loss function and simulated annealing algorithm to search
for integer-valued robust designs in finite design spaces. Previously, Zhou (2001) [47)
had used the OLS method in constructing designs for autocorrelated models. It is
well known that the choice of a method of estimation has some effect on the optimal
design. Since the errors are autocorrelated we conjecture that it may be possible to
find designs that have smaller loss (more efficient) than those of Zhou (2001) [47] by
using GLS or WLS method of estimation rather than the OLS method.

There are two main approaches in the literature generally used in the construction
of designs for regression experiments. If the regression model is assumed to be exact,
classical design theory is commonly applied; whereas, when the model s only an ap-
proximation, robust design theory applied. The classical design problem in Section
(1.1), the robust design problem in Section (1.2), and some background on wavelets
in Section (1.3) are discussed. This is the most extensively studied of discussions and

reviews; see Box and Draper (1959) 4], Kiefer (1959) [17), Fedorov (1972) [13], Silvey
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(1980) [36], Shah and Sinha (1989) [35], Pukelsheim (1993) (33]. In the area of ro-
bust designs with serially correlated observations, there exists an abundant literature.
Fang and Wiens (2000) (12] introduced a new approach to construct integer valued,
minimax robust designs for approximately linear models with possible heteroscedas-
tic errors. This approach uses a simulated annealing algorithm to search for integer
valued, instead of continuous, robust design in finite design spaces. Zhou (2001)[47]
applied this approach to construct integer valued, minimax robust design for ap-
proximately linear models with possible correlated errors, in particular, with moving
average (MA) error processes. Minimax robust designs for approximately linear mod-
els with possible correlated errors have been studied by Wiens and Zhou (1996, 1997,
1999)(43], [44] and (45]) and Zhou (2001) [48] in infinite design spaces. Continu-
ous robust designs have been derived for weakly stationary error process, Wiens and
Zhou (1996) [43), for the first order MA [MA(1)] process, Zhou (2001) [47], and for
the first order autoregressive [AR(1)] process, Wiens and Zhou (1999) [45]). Wiens
and Zhou (1997)[44] introduced an in finitesimal approach to the construction of
robust designs for linear models and used autocorrelated structure for errors. The
idea of infinitesimal and minimax approaches were used by Zhou (2001) [48] to con-
struct robust regression designs for linear models with correlated errors, particularly

MA(1) process. Recently Wiens and Zhou (2008) [46] and Ou and Zhou (2009) [25]
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investigated robust estimators and designs for two-dimensional correlations. Also in
that paper, Ou and Zhou (2009) [25] have found the result that the generalized least
squares estimators is often more efficient than the least square estimator if the spatial

correlation structure belongs to a small neighborhood of a covariance matrix.

1.1 The classical design problem
The standard nonlinear regression model involves observations of {xi,y(x;)} where

y(x) =n(xi;0) + €, i = 1,2, n (L1)

In (1.1), y(x;) € R is an observable random variable and x; € § C R is the i"* vector

of some design variables. Thus S is called the design space. Typically S will be

continuous but can also be a di The errors € € R ly assumed
to be independent and identically distributed with mean zero and common variance o
and 7(x;;0) is the value of some known square integrable, possibly nonlinear function
of x; upto the unknown parameter 6.

An experiment can be designed to answer a variety of questions of interest. It
is clear that values or levels of inputs must be chosen before running an experiment
and observing measurements on a variable of interest. Now, in order to obtain an

observation on y, a value for x must first be selected from S where x can be set to any
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value in S. Given this control over the selection of x, a natural question to consider
is at what values of x should observations y of size say, n, be taken in order to obtain
the best inference. The best selection of x values or allocation of the n observations
to the elements of S is commonly referred to as an optimal design.

Classical and robust design theories were developed to determine optimal design
points for regression models. The difference between classical and robust design
theory arises from their underlying assumptions. In classical design theory, it is

assumed that

# The model representing y(z) is exact and 7(z) is correctly specifi
# The errors ¢ are uncorrelated and have variance o?.

The concept of classical design of regression and optimality principle can be found in

Smith (1918) [37], and Plackett and Burman (1946) [32]. Why has this concept come

about? When we conduct an experiment, it is common to take time or expenditure

int t. The motivation is to ch ions in order that a limited number

of observations gives the maximum amount of information. Elfving (1952, 1956) [10],
and (1], Chernoff (1953) [5] and others developed this principle of design theory.
Kiefer (1959) [17), and Kiefer and Wolfowitz, J. (1959) [18] contributed significantly

to the area by extending the previous work. The problem of nonlinear experimental
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designs was first considered by Fisher (1922) [14] and White (1973) [41] who proved

the nonlinear version of the Kiefer - Wolfowitz equivalence theorem. Though classical

design theory was used in nonlinear design, the approach was to approximate the
nonlinear function by a linear Taylor series expansion. Thus, nonlinear designs are in

fact ot optimal in the classical sense since the mean response is not exact. The first

volume on the theory of i p
design was written by Fedorov (1972) [13], whereas the book by Silvey (1980) [36]
gives a very concise description of the theory of optimal design for estimation in linear
models. Discrete optimal designs are covered in the book by Shah and Sinba. (1989)
35,

In estimation theory for statistical models with one real parameter, the reciprocal
of the variance of an efficient estimator is called the "Fisher Information” for that
estimator. Because of this reciprocity, minimizing the variance corresponds to maxi-
mizing the information. When the statistical model has several parameters, however,
the mean of the parameter-estimator is a vector and its variance is a matrix. The
inverse of the variance- matrix is called the “information matrix”. In this case the
problem of “minimizing the variance” becomes complicated. Using statistical theory,
statisticians compress the information-matrix using real-valued summary statistics;

being real-valued functions, these “information criteria” can be maximized. The




1.1 THE CLASSICAL DESIGN PROBLEM 9

traditional optimality-criteria are invariants of the information matrix; algebraically,

the traditional optimality-criteria are fu s of the eigenvalues of the information

‘matrix. In order to apply optimal design theory to (1.1) an information criterion is
required for comparing experiments and then selecting the best design with respect
to the specified criterion. We define () as the mean squared error (MSE) matrix
of an estimator of 6 in (L.1). It may be possible to obtain a best inference for all or
some of the unknown parameters 8 € © by making some function of the matrix M(8)
large in some sense. Therefore, we consider various ways in which to make the matrix
M(8) large, namely by maximizing some real valued function @(8) = W(M(8)). Here,
the function  is called the criterion function, and in turn, the criterion defined by
the function ® is usually referred to as ®-optimality criterion. A design maximizing
() is said to be a P-optimal design. Mathematically, the classical design criteria

can be stated as:

min
raxarxa€S)

V(@) (12)

where V(8) is the covariance of &

The most commonly used criteria in design literature are:
(i) D - optimality: Here, ®(-) = det(-), where det(:) is the determinant function.

(ii) A - optimality: In this case, ®() = tr(*), where tr(:) is the trace function.
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(iii) E - optimality: Here, &(-) (), where Amax(:) is the maximum eigenvalue

function.
(iv) G - optimality: Here, ®(.) = max(:), where ma() is the maximization function.

(v) Q - optimality: Here, ®() = / (-), where f is the integral function over a

design space, say S.

ide in the model of a

Hoel (1958) noticed that the D- and G- optimum designs coi
one - dimensional polynomial regression, and Kiefer and Wolfowitz (1960)[19] present
extensive results on D- and G- optimality, including the Equivalence Theorem. The
Equivalence Theorem established that a design is D-optimal if and only if it is G-

optimal.

1.2 The robust design problem

Robust designs became a subject of interest for two major reasons. These are
(i) the model may not be exactly correct;
(ii) the errors € may not be uncorrelated or normally distributed as assumed.

It is well known that in most cases where the form of 7(z) is pre-specified, the assumed

form is the model builder's best mathematical description of the process under study
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and often a convenient approximation. We recall that in the nonlinear case, the
designs constructed so far have used a linear approximation of n(z, 8) with the hope
that the remainder terms are negligible. Under these conditions, the least squares
estimator of @y is biased and the classical designs which minimize variance alone are
10 longer “optimal” due to the bias.

Box and Draper (1959) [4] considered a response as polynomial of first degree
‘when the true response was quadratic. They found that the optimal design in typical
situations in which both variance and bias occur is nearly the same as would be
obtained if variance were ignored completely and the experiment designed 5o as to
minimize bias alone. They argued that a more appropriate optimality criterion is
the Integrated Mean Squared Error (IMSE) of the estimate 1 of the “true” response
surface 7 over the design space S. That is,

7 ';—?/sz(m(z) — @)}z = ISB+1V (13)
where ©, the Integrated Squared Bias (ISB) and the Integrated Variance (IV) are
defined by

Q- /dr, ISB= Z—?A(E[v’y(x)] — n(@)Ydz (14)
and

E{i(z) - Eli(z)]}dz (15)
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Frequently the experimenter fits E[y| q"(z)8 when in fact

Elyle] = " (2)80 + f(z) (1.6)
for some unknown function f. The presence of f implies that, possibly, 6y # 6. In
fact the meaning of the “true” parameter in a model like (1.6) is itself a problem to
be addressed. A number of authors, such as Marcus and Sacks (1976) (23], Sacks
and Yivisaker (1978) [34], Pesotchinsky (1982) [30], Li and Notz (1982) [21], and Li
(1984) (20] assumed f to be a member of the class of function defined by

{F:1/@) < é(@)}, (L7)
for a function ¢(z) with specified properties. For example, ¢(z) may be constant, or

9(z)

some function of the MSE of 8, and are quite sensitive to the choice of ¢. They also

lz][%. The designs which are “robust” in this class are those which minimize

tend to concentrate all mass on extreme points of S.
Robust minimax designs were constructed by solving the problem
minmax &(M(f,£)) (18
for some loss function (), where M(f,€) is the MSE of 9, as a function of the
contamination term f and a design measure £, To motivate (1.6), suppose that an
experimenter fits the approximate linear model

Elylz) ~ q"(z)80 (1.9)
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13

for some parameter vector 8. If E(y|z) is only approximately q”(z)6, then what is

607 The “true” 0 is defined such that it makes (1.9) most accurate:

0= argmin / (Elyle] - a7 (2)0)dz.
A
‘Then define

() = Elylz] - a" ()80

‘Thus our approximate linear model is

y(@) = q"(2)00 + f(z) +e, T€S

with

[ otz
s

Huber (1975) [16] takes f(z) from

Foe {/:/sq(x)j(z)dz:o. [v/’(z)dzgff}

(110)

(L11)

(112)

(1.13)

(1.14)

where radius 7 of F is assumed fixed. The first condition in F says that f and q are

orthogonal, so the parameter 6 is uniquely defined in model (1.12).

Wiens (1990) [42) generalized Huber's work from simple linear regression to mul-

tiple linear regression. In this thesis, we use Huber’s type contamination term in

(112)
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1.2.1 The Robust designs with correlated errors
One approach to the construction of robust designs for linear models with autocorre-
lated errors was in two stages. These are:

(i) find a design £ which is optimal for uncorrelated errors;

(ii) order the design points to minimize the covariance matrix of the parameter

estimate under correlated errors.
Following this procedure, Berenblut and Webb (1974) [3] obtained robust D-optimal
designs for the model
y=X0+¢, Var(e)=oP. (1.15)

The correlation structure they considered was when P = V/(p), where p is the param-
eter of the first order autoregressive process. Thus, V(0) = I, the identity matrix.
‘Wiens and Zhou (1996) [43) studied optimal designs for regression models under cer-
tain departures from the classical assumptions. They considered the usual formulation

of the fixed-regressors linear regression model, which they wrote as

=" @)0 + 04 (@) + € 1,2, ,m (1.16)

where E(€) = 0 and Var(e) = o®P. Here, P is a positive semi-definite Toeplitz

matrix with unit diagonal, i.e. the autocorrelation matrix of a weakly stationary
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process. Then robust minimax designs were constructed by solving the problem

m{lnr‘ﬁgry;fi’(M(Lﬂ‘f)) (1.17)

for some loss function ®(), where M(f, p,) is the MSE of 6.

In this thesis, we have applied this criterion and we used the loss function as the
Integrated Mean Squared Error (IMSE) of the estimated response. More details of
the Integrated Mean Squared Error can be found in Oyet and Wiens (2000) (28], Oyet

(2003) [27] and Wiens and Zhou (1999) [45].

1.3 Some background on wavelets

In this section, we discuss some basic knowledge of wavelet systems related to our

ions can be found

work. Additional reviews on wavelets and their statistical applic:

in the papers by Mallat (1989), Meyer (1992), Daubechies (1992) and Hrdle et al.
(1988), among others.

‘The concept of wavelets was developed from the oldest and probably best known
method, Fourier transform, which was developed in 1807 by Joseph Fourier. Wavelets
as an alternative method to Fourier transform was first mentioned by Alfred Harr in
1910.

‘The development of wavelet theory has in recent years spawned applications in
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signal processing, fast algorithms for integral transforms, and image and function
representation methods. This last application has stimulated interest in wavelet ap-
plications to statistics and to the analysis of experimental data, with many successes
in the efficient analysis, processing, and compression of noisy signals and images. See
for instance Antoniadis (2007) [1].

In this thesis, we will focus on wavelets in the Hilbert space £;(R). Additionally
we are aiming to find some simple functions ¥;x such that every function f € £5(R)

has a representation of the type

J@) =33 diatin(a) (L18)
i

for some known coefficients (d;); xez. The motivation comes from the approximation
theory. The function f might be difficult to work with, but if such a representation
exists, then we can hope that the finite partial sums of (1.18) can approximate f well,
J@~ Y Y disule). (1.19)

LISM SN
By definition, a wavelet system is a collection of dilated and translated versions of a

scaling function ¢(z) and a primary wavelet 1(z) defined by

Bix(z) = 29(Vz ~ k) (1.20)
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and $j(x) = 27Y(@x-k), jkeZ (1.21)

respectively. The function ¢(z) and %(z) are chosen to satisfy the equations,

ox) = 3 V2huo(2z - k) (122)
=1
and Y(x) = 3 VIgh(2x — 1), (1.23)
e
where g = (~1)h_r1 (1.24)

| for a sequence {h,} of constants, called filter coefficients, with

/ $(a)de =

/wlz)dz: 1,/¢’(x)dz 1 (1.25) ‘
[ The condition
>he=v2 (1.26)
=4
[ ensures the existence of a unique solution to equations (1.22) and (1.23). Orthogo-
nality of the translation of ¢(z) is ensured by the condition ‘
3 huhioyy =055 j€Z (127)
it
where 8 = [ ¢(x)¢(z — j)dz
In the theory of wavelets, the space of square integrable functions, La(R), is

written as the limit of a sequence of close subspaces {V;} where

----- CVaCVachehehC (1.28)
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These nested spaces have the properties that their intersection is trivial and their

union is dense in £5(R),
NV = (o}, Uvi=om. (1.29)
s Y

Mallat (1989) [22] introduced the notion of a multiresolution analysis, the definition

of which we recall here:

Definition 1.3.1 A multiresolution analysis (MRA) of La(R) consists of an increas-

ing sequence of closed subspaces V;, j € Z such that the following holds:
@ V=0
]
() JV; = La(®)
7

(¢) there esists a scaling function ¢ € V such that {¢(x — k),k € Z} is an or-

thonormal basis of Vy
(@) fl) e V;=> flz-2K)€V; VkeZ
(e) f(z) € V; 4= f(22) € Vi,

The intuitive meaning of (e) is that in passing from V; to Vj41, the resolution of
the approximation is doubled. Mallat (1989) [22] has shown that given any mul-

tiresolution analysis, it is possible to derive a function ¥(z) such that the family
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{¥sx(2) : .k € Z} is an orthonormal basis of £(R). Thus, the representation in
(1.18) is possible.
To construct y;4(z), we define for each j € Z the difference space W; to be the
orthogonal complement of V; such that
W @DVi=Vie, WLV, (130)
‘That is, any function f(z) € Vj41 can be written as a linear combination or direct

sum of functions in W; and Vj. It can be verified that

s
Vi=V,o@W:  i>iez (1.31)
Iterating this infinitely many times, we find

LR =V, o Wi =Pw; (1.32)
e

This means that any f € £a(R) can be represented as

J@) =Y condin(@) + 3 3 dtn(z) (1.33)
=4 F=4—
or
1@ =YY diutala) (134)
i

where cjqs, dji are some coefficients, and {y;c}, k € Z is a basis for W;. The relation

(1.33) is called a multiresolution expansion of f. The space W; is called resolution
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level of multiresolution analysis. In Fourier analysis there is only one resolution level.
In multiresolution analysis there are many resolution levels, which is the origin of its

‘name.

1.3.1 Construction of the scaling function ¢

Strang (1989) [38] provides a brief introduction to the construction of scaling func-
tions using three different approaches. The fourth construction of Daubechies scaling
function will be discussed under the section on some important wavelets.

The basic dilation equation, described in (1.22) is in fact a two scale difference
equation. We know from the condition in (1.26) that by = v/2 ensures the unique-
ness of ¢ but a smooth solution is not ensured. For ; Es:rikmg example, set hg = v/2.
Then the function ¢, satisfies ¢(z) = 26(2z).

‘The dilation of ¢ is unfamiliar (but somehow very pleasing). For other /s, spline
functions appear. For example ho = J, and hy = J;, in this case the function ¢
satisfies ¢(z) = ¢(2z) + (22 — 1), then we are able to find the function named as

Box function and defined by
1, f0Sz<y
#@) =
0, elsewhere.

The algorithm for the construction of ¢ are outlined below.
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Construction 1: Iterate ;(z) = 3 VZhud;-1(22 — k) with the box function
as do(z). When hg = v/2 the boxes get taller and thinner, approximating the delta

function. For ho = J3, and hy = J; the box is invariant: ¢; = go. For ho = 5l

5. and hy = 51 the hat function appears as j - oo, and gly, obe, 0o b 1
yields the cubic B-spline. An example that will be important (denote this scaling
function as Dy) has coefficients 143, 345, 343 and =3, This scaling function Dy

leads to orthogonal wavelets. It is not as smooth as it looks. It is shown in Figure

11

Figure 1.1: The scaling function Dy(z)
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Construction 2: The second construction begins with the Fourier transform of
the scaling function (1.22); given by
Bu) = = /” e §(z) d.
) .

It can then be shown that, using (1.22), we have

s Tk [P

Now, define

(1.35)

Then we can write

®(w) = ma()O(G). (1.36)
‘The function in (1.35) is sometimes called the transfer function and it describes the
behavior of the associated filter h in the Fourier domain. Notice that the function
‘mq is periodic with the period 2x and that the filter taps {hn,n € Z} are the Fourier

coefficients of the function H(w) = v2mo(w).

By iterating (1.36), one gets
*w) = er(;)] ()

= I (1.37)




1.3 SOME BACKGROUND ON WAVELETS 23

For hg = V2 we find mg = 1 and & = 1, the transform of the delta function. For

ho = hy = J5 the products of the mq’s form & geometric series:

(1.38)

mo(Bma() = 11+ e (1 4708 =y

1-
As N = co this approaches the infinite product (17 which is the transform

(iw)

of the box function. The hat function comes from squaring mo(w), which by (1.37)
also squares ®(w). (Multiplication of my’s is § times convolution of h’s.) The cubic
B-spline comes from squaring again.

Construction 3: This construction of ¢ works directly with the recursion (1.22).
Suppose ¢ is known at the integers z = j. The recursion (1.22) gives ¢ at the half-
integers. Then it gives  at the quarter-integers, and ultimately at all dyadic points
z= % This is fast to program and all good wavelet calculations use recursion. The
values of ¢ at the integers come from an cigenvector. With the four Daubechies
coefficients, set z = 1 and = 2 in the dilation equation (1.22) and use the fact that

$=Ounless0<z<3:

o= E0

o+ Lo

S

4(2) = $(1) + X 9(2) (1.39)

This is ¢ = L, with matrix entries Ly; = ha;-, which is the classical cigenvalues

problem. Compare with h;_; for an ordinary difference equation. The eigenvalues
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are 1 and L. The eigenvector for A = 1 has components ¢(1) = (1 + v3), ¢(2) =
4(1 = V/3), which are the heights on our graph of D;. The other eigenvalue A = 1
means that the recursion can be differentiated: ¢'(z) = Y v2hi2¢' (2 — k) leads
similarly to ¢'(1) and ¢'(2). In some weak sense, ¢ = D has a "dilational derivative”.
For the hat function, the recursion matrix again has A = 1,}. For the cubic spline
the eigenvalues are 1,3, 3, 1.

To repeat for emphasis: From (1) and ¢(2) the recursion gives everything. In

this construction the properties of mo(w) = 5 3 v3hxe ™™ are decisive (1.37). The

precise hypotheses are in fux, and infinitely many A can be allowed.

1.3.2 Some important wavelets
(i) Haar wavelets

The first example of a function f satisfying (1.18) was proposed by Alfred Harr in

1910. The Haar mother wavelet is a mathematical function defined by
1, f0<z<05;

¥(@)=1 -1, f05<z<];

0,  elsewhere.

‘The scaling function ¢(z) can be described as
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1, if0<z<1;
@) =
0, elsewhere.

The Haar wavelet basis has the following relations:

b(z) = B2z — 1) + §(2x) (1.40)

Y(z) = $(22) - ¢(2¢ - 1) (La1)

The Haar wavelet is easy to handle. However the only disadvantage is that it is

1

discontinuous at z = 0, ¢ = 0.5 and =

8 3
s 8 -
3 %
o 3
Py H
10 00 10 20 ’-dl 00 os I‘n 1.

Figure 1.2: The scaling function and wavelet function of Haar wavelets
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(if) Daubechies compactly supported wavelets

One of the most important achievements in wavelet theory was the construction of
orthogonal wavelets that were compactly supported but were smoother than Harr
wavelets. Daubechies (1988) [6] constructed such wavelets by an ingenious solution of
the dilation equation (1.22) that resulted in a family of orthonormal wavelets (several
families actually). Each member of each family is indexed by a number N, which

refers to the number of vanishing moments.

Daubechies-Lagarias Algorithm

In this section, we describe an algorithm for fast numerical calculation of wavelet
values at a given point, based on the Daubechies-Lagarias local pyramidal algorithm
(7] and [8]. The scaling function and wavelet function in Daubechies families have no
explicit representations (except for the Haar wavelet). However, it is often necessary
to find their values at arbitrary points

The Daubechies-Lagarias algorithm enables us to evaluate ¢ and ¢ at a point
with preassigned precision. We will illustrate the algorithm on wavelets to form
the Daubechies family; however, the algorithm works for all finite impulse response
quadrature mirror filters.

Let ¢ be the scaling function of the DAUBN wavelet. The support of ¢ is
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0,2V ~1]. Let 2 € (0,1), and let dyad(a) = {d,da, - ,dn, -} be the sct of 0-1

digits in the dyadic representation of z (z = 3 d;279). By dyad(z, n), we denote the
=
subset of the first n digits from dyad(z), i.c., dyad(z,n) = {dy,dz, -+ ,dn}.

Let h = (ho,hy,+++ ,han-1) be the wavelet filter coefficients. Define two (2N —

1) x (2 — 1) matrices as:

To= (V2 haij-icijeav-t and Ty = (V2-haicy) (1.42)

Theorem 1.3.1 (7]

lim Ty, Ty T,
#(z) 9(z) i #(z)
da+1) Pa+1) o plet+l)

Gz+2N-2) Ga+2N-2) - Pz+2N-2)

The convergence of || T, - Ty -+ Ta, = Tay - Ty + Ty || t0 2010, for fixed m,
is exponential and constructive, i.e,. effective decreasing bounds on the error can be
established.

Example 1.3.1 Consider the DAUB2 scaling function (N = 2). The correspond-

ing filter is h = (%Zfﬁi‘-ﬁlﬁg!) According to (1.42) the matrices Ty and
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T are given as

w0 o wa
To= i3 A 190 i Ty= (150 18 220
0o 0o 0 A
Let us evaluate the scaling function at an arbitrary point, say z = 0.35. Twenty
decimals in the dyadic representation of 0.3 are
dyad(0.35,20) = {0,1,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1}. In addition to the
value at 0.35, we get (for free) the values at 1.35 and 2.35 (the values 0.35, 1.35 and
2.35) are in the domain of ¢, the interval [0, 3]. The values (0.35), ¢(1.35) and
$(2.35) may be approximated as averages of the first, second, and third row, respec-

tively in the matrix

0.7243749 0.724373908 0.724372881
Ti = |0.2672756 0.267276667 0.267277767

iedyad(0.35,20)
0.0083495 0.008349425 0.008349352

‘The Daubechies-Lagarias algorithm gives only the values of the scaling function. In
applications, most of the evaluation needed involves the wavelet function. It turns

out that another algorithm is unnecessary, due to the following result.
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Theorem 1.3.2 [31] Let z be an arbitrary real number, let the wavelet be given by

its filter coefficients, and let u with 2V — 1 be a vector defined as
(@) = {(=1)" "1 i = 0,1, 2N — 2}

1If for some i the index i + 1 — [2z] is negative or larger than 2V — 1, then the corre-

sponding component of 1 is equal to 0.

Let the vector  be
wam=st—1 [ ™
h N1 iy

where 1" = (1,1,-++,1) is the row-vector of ones. Then,
$(@) = lim u()v(z,n), (143)

and the limit is constructive,
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i

:

Ve S
e I

Figure 1.3: Graphs of scaling and wavelets function from Daubechies’ family N = 2,
3,4, 7, and 10



Chapter 2

Robust Design Using Weighted

Least Squares Estimation

2.1 The model

Zhou (2001) [47] considered repeated observations from  finite design space to con-
struct minimax robust designs for approximately linear models with correlated errors.

We discuss designs for the nonparametric regression model with repeated designs
wj = (@) + €5 (1)

where i=1,2,+,N;  j=12-,m
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The design variable z is assumed to belong to a design space S, and ¢ is ran-
dom error. In order to investigate the expected response, we may denote the points
1,22, Zy to make observations on y. Suppose we need n observations. The
integer-valued design problem consists of determination of optimal allocation ny, na,
<+ ny. 1 n; =0, the design point z; is omitted. 1f n; > 1, the design point z; is
repeated n times.

In particular we assume the random error term has the following properties

E(e; (22)
o* ifi=kandj=1,
Covleen) =40 ifi=kandj#1, (23)

o ifiFk
<N andjl =12 m

where i,k = 1,2,
Oyet and Wiens (2000) [28] approximated the regression response by finitely many
dominant terms of its wavelet representation, with remainder f(z). We transform
model (2.1) into an approximately linear model through the wavelet expansion:
(@) = q"(z)B+ f(z) (24)
That is our basic model (2.1) becomes

vy =" (@)B + () + e (235)
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where components of g (;) are dilated and translated version of a wavelet system.

Since q” (z) is made up of components of an orthogonal wavelet, system, it is clear

that
[awa@ =1
s
From orthogonality of wavelet system we obtain
L&
¥ L a@) @) = 0, (2.6)

In order to ensure that the bias in (2.4) is not too large we impose a bound on f(z)

defined by
1 s
~ ;_l Sm) <7 @7

for some, presumably small, constant 7. Thus errors due to bias will not swamp
those due to random variation. We shall see that our results depend on 7 and on

2
o
%5+ o the experimenter, this

the error variance o® only through the quantity v
quantity may represent the relative importance of variance versus bias with v = 0
corresponding to a 'pure bias’ problem and v = 0o to a 'pure variance’ problem.

For simplicity purpose we re-define the equation (2.5) as

=" (u)B+ () + e (28)
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where k = 1,2,---,n. In (2.8), the values of uy,uz,-- ,un, are equal to z;. Sim-
ilarly, tny41,Uny42,+  Uny4ny are equal to z; and so on. Further, yi,ya, - Yo

are equal t0 yi1, Y12, s Yiny Tespectively. AlSO Yn,i1,Yny 42, s Yny+ny ar€ equal to

Yt Yan, Tespectively, and so on. Now, define
n a”(w) B f(w) a
n o’ (ua) B f(ua) @
s Qe . B , , €=
" () s lw)] e
In matrix notations, we can re-write the model (28) as
Y=QB+f.+¢ (2.9)

where E(€) = 01 and Cou(e) = £ = o?R. It can be shown that the correlation

matrix R is a patterned block matrix of the form




2.1 THE MODEL

35
| Ly Pradnim P Imn
Pndnamy P NP
s (2.10)
PN Ty PN nyina PN3Inyng oo g
where,
ifi=kandj=1,
Corr(ey,eu) = Wi=kandj#l, (11

Wik

with i,k =1,2,+, N and j,l = 1,2, ,m;. The constant matrix J,, in (2.10) is

of dimension n; x n; and is defined by

Jnim,




2.1 THE MODEL 36

and L, is an n; x n; identity matrix.
Since the method of estimation influence the choice of a design an experimenter

needs to decide on method of estimation prior to constructing the design. In this

section, we will be using the wavelet version of weighted least squares estimate. The

weights we shall use are given in the following theorem.

Theorem 2.1.1 (Oyet and Wiens (2000) [28]) The minimum variance unbiased
(muvu) design under the model (2.8) and integrated mean squared error loss has density

ko(z) = vo(z)™", where the muu weights are (proportional to)

_Jylla@ ldz
)= @ T

‘Thus, if we define wy, wy, -+ , w as weights related to 2, z3, -+, Zy respectively,
then, in general w; can be computed as follows;

_ b lla@) |l d=
R ey

‘We shall % the weigh i he variable ug, k= 1,2, ,n.

¥

Now, by defining the matrix W,
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wi 0 0 0
0w 0 0
0 0 0 w)

We can write the weighted least square estimate of the parameter 3 as

n “1sa
8= [2 w:qm)q’(u.)] (Z w(q(u.)v.)
= (Q'W.Q) ' Q'W.Y. (212)
Oyet and Wiens (2002) [29] amongst others have used the Average Mean Squared
Error (AMSE) as a design criterion. This measure of loss is the discrete version of

the Integrated Mean Squared Error (IMSE). The AMSE is defined as
1 (o 2
ause = 3355 {[i-s1e)]}

= 25 e {4 4 fj (B - 070}
2

= AV +4SB (2.13)
N N
where, AV = %; B { [Fe = BT} ad 458 = 13~ {BCFie) - O}

=

The Average Variance is abbreviated to AV and ASB is the Average Squared Bias.
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We have also used the AMSE as a design criterion. In what follows, we will derive

expression for the AV and the ASB.

2.2 The Average Mean Squared Error

It is clear, from (2.13) that the AMSE has two components namely, the AV and
ASB. In order to derive an expression for the AMSE we first need to derive the AV

and the ASB. Now, by taking expectation of 3 in (2.12) we obtain

E(B

= p{(@W.Q ' Q'W.y}
= (Q'W.Q) " Q"W.E(Y)
= (Q'W.Q) ' Q"W.[QB + 1]

= B+(Q'W.Q) QWA
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‘Thus, the bias of 3 denoted by d can be written as
d = bias(3)
= E@)-8
= (Q'W.Q) " QTW.L,

n -1 .
= {Zw:q(n.)q’(u.)} > wifwatw)

o
n.uuq(n)q’(rv)] > nawf(ada(e)
=

= (Z'MWZ)"(Z"MWiy), (2.14)
w 0 0 0 a’(z) S(@)
0w 0 0 0 a(z2) S(w2)
where W= [... .. i oo |, Z= fy = and
000 0 o ouy ") Saw)
m o0 0 0
0 om0 0

00 0 - ony
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Now, we note that in actual computations the estimate of ¥ will be Vi) = q(z)B.

This implies that the ASB in (2.13) can be simplified to

ASB

"
3 (B - B}
7
AL 2
= 3 2 {alB(B) - aty8 - £}
?
LN (o pa P 2957 ps 18,
= X {ahE@) - )} - 53 ab)(EB) - B)1@) + 5 3w
= =
Using the orthogonality condition in (2.6) we find that
N W
S dLy(E@B) -B)f(w) = Y aky@)ERB)-B)
= 0.

Consequently, the ASB reduces to

ASB

[

18 5 11
> {atE® -} +5 L1

% f (5@ - 8] away [£6) - 5]

L
+y )
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It follows from (2.14) that
~

3 )
1 PRI
b ‘Z‘:q(,.)qm +5

= Lgrgm 1 2 9
= yUZZd+ 5l iy I (2.15)

~
1 T T 1
ASB = § .;d Unaeyd + 7

Having obtained an expression for the ASB we now proceed to derive an expression
for the AV. For this purpose, we note that the variance of 3 can be written as
Var(B) = Vor{(@W.Q)" Q"'W.Y}
= (Q"W.Q)'Q'W.Var(Y)W.Q(Q"W.Q) ™

= (Q"W.Q)"'Q"W.RW.Q(Q"W.Q)™".

Then, using kronecker products we find that

QW = [wiq(w), wiq(w), -, wialuw)]

w17, @ate))]

= (w17, ®q@), w(1}, ®a(z)), -

where, 17, = (1,1, , )1xn 1,2,---, N, and




2.2 THE AVERAGE MEAN SQUARED ERROR 42

Q'W.R =

1t follows that

Q'W,RW,Q =

X
(L ®a@)+ Y w1 @ a(@)Inm,
& G#1)

w1, ®a@)+ D paws(1E, @A)y m,
G=1) & (j#2)

x
wy(1f, @an)+ D sy (1], @ a(e;)n,n
G- 'C

w1, ®a(@)(1n ®a"(z1)
v

Fu Y (1 ® (@) dnm © (L ®47(21)
=1 & A1)

+ w(1], ®a@)(1n, ® " (z2)

N
> w1, ® (@) Fnym © 1)1 ® q7(22))
=1 & Ge2)

4

% 3

+ w1, @ alzn)) Ly ®a" (o))
x

Fuy Y ey ®a())Tnyn ® D(lny a7 (@n))
G=1) & (i#N)
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W
QWRW.Q = 3 nwfa@)a (@)
=1

+ Y prwmnma(z;)a’ (@)
G & G

prwyuwansnaa(z;)a’ (z2)
)

pivwsonnnya(z;)a’ (zy).

=0 AN
Now define R* as follows
0 p2 p3 PN
P 0 pn Py

(2.16)

PNy PNz pys e O
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Then,

Q'W.RW,Q = Z'MWZ

mwnq(z)
nywyq(e2)
+ [mwa(e), nausa(e), -, nywnaEy)|R®
nywyq(zy)
= Z'MW?Z + Z'MWR WMZ.

We already know that
Q'W.Q = Z'MWZ.

So that by combining these results, Var(8) can be written as

Var(B) = o*(Z"MWZ]"|(Z'MW?Z + Z'MWR'WMZ)[Z'MWZ]|~'  (2.17)

The variance of 3 depends on R* but not R. The matrix R* is easier to handle

compared to R. Applying some algebra to the expression in (2.13), we can simplify
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the AV in the following way.

av = [ = BCGa]'}

=)=

2:5{

> e {[d- o2 }
S5 {[atata - 5]}
E{

(B~ BB) awaly(B - EB)}

- 2l

==

$ 5= 1= 1= 10 2 £ 100

S traceB {af (B - BB - BB aw}

=

mu[q[,‘,E{m BB)(B - EB) }as|

=)~

Jtrase {atoVarBlacy }

=~

trace {Var(Bacoalsy}

e {z Vi)

Ths, AV = trace {2Var(B)2T}, (218)

=~

2~

where Var(3) is given by (2.17). We assume that the N x p matrix Z is of full rank,

so that the singular value decomposition (SVD) of Z is

Zxp = Unxp Apxp V7,

£

(219)

where U and V are orthogonal matrices such that UTU = VTV =1, and A is in
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(2.19) a diagonal matrix of singular values of Z. Using the SVD of Z, we can now \

write ZTMWZ = VAUTMWUAV”

for simplicity of notation we now define, My = UTMWU so that

Since V! =

Var(B) =

Z'MWZ = VAMAV"

(Z"MWZ)™ = VAT'M{ATIVT (220)
VT, it follows that the variance of 3 can be written as,
PVAT'MIATVT [VAUTMW?UAV?] VAT' M A VT
+ VAT MIATVT [VAUTMWR WMUAV”] VA M ATV
PVAT'M'AT'VIVAUTMW2UAVT VA M A VT
+ PVATM AT VIVAUTMWR WMUAV VA M A VT
*VATMTUTMW2UM AT VT

+ o*VAT'M'U"MWR ' WMUM; 'A~'VT

Now, let us consider the argument in the trace function in (2.18),

ZVar(B)Z" = o*UAVIVAT'M;'UTMW?UM;'A"'VTVAUT

+ 0?UAVIVA™'M'U"MWR WMUM; ' A~V VAUT
= SUM{'UTMW? UM UT

+ 0*UM;'UTMWR' WMUM; ' U™,
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1f we define A = M;'UTMW, then
ZVar(B)Z" = o* {UAWUM;'U" + UAR'ATU"}, (221)

and the following expression for the AV follow immediately from (2.18) and (2.21)

1

av = race [2Var(@)27]

2
= 5 {trace [VAWUM;'U") + trace [UAR"ATU']}

2
% {trace [AWUMG"] + trace [AR"AT]} (222)
Concerning the ASB, we first note that the bias of 8 which we denoted by d can
also be written in terms of the SVD of Z as
d = (Z'MW2)"(Z"MWfy)
= VA'M'ATI'VIVAUTMWEy
= VA'M;'U"MWIy,
Using the expression for d in the ASB in (2.15) we obtain
ASB = Jﬁf',’jWMUMf'A"V’VAUTUAV"VA"M['UTMWEN

1
+ vy

FTEWMUME MG UMW wiht

= %f}ﬂ' {In +ATA} fy (2.23)
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where A is given in (2.21). Thus the AMSE in (2.13) becomes
2

AMSE = %{,T,A"Af,, + %A‘,{(N + ”V {trace [AWUM;"] + trace [AR"AT]}, (2.24)

which is a function of the unknown vector fy and unknown matrix R*. Thus, in

constructing the design based on the AMSE as a criterion, we will use the MINIMAX

approach.

2.3 Exact Minimax Robust Design

In this section we first maximize the AMSE over fy such that to the constraints (2.6)
and (2.7). We will also obtain the maximum of the AMSE over R Let Uy.(x-p) be
a matrix whose columns constitute an orthonormal basis for the orthogonal comple-
ment of the column space of U, [col(U)]*. Thus, UTU =0, and U7T = Iy_,. Now
augment the columns of U and U to obtain the matrix Uy = [Uny ¢ ilwmx]

such that

Uty =

= Inan- (225)
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Clearly, the condition (2.6) can be written as

L
T a@)
e

This, implies that, the function fy belongs to the space defined by the orthogonal

compliment of U. That is,
fy € {Col(U)}* (2.26)

Since the columns of U is a basis for the space {Col(U)}* we can express fy as a
linear combination of columns of U. Thus, we can write fy = Uat

Now, the condition (2.7) given by

1 1
¥ ) = ikey <7

That is,
iy < N
Thus, 3 some c satisfying || ¢ [|*< 1 such that
IfnI? = N2 flel?

with equality if | ¢ [|= 1. Tt follows that the maximum value of fy is achieved when

|l ¢ ll= 1. Thus, we have fy = v/Nrc. Since U is an orthonormal transformation
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matrix it does not alter the length of a vector. Thus, we have maximum of fy over §
is

(227)

fy = VNrUc provided that | c ||
It is clear that the AMSE depends on fy only through the Average Square Bias
(ASB). Thus

max AMSE = max ASB + AV
fves ives

ing (2.27) we write

ASB

%NT“C“ {ﬂ'i] + UTWMUM;*U'MWU } e
= P {Ivp + UTWMUM; U MWU } e

Since UTU = Iy_,. Now, define

G = Iy, +UTWMUM;*U"MWU. (2.28)
Then ASB becomes

ASB = 1% Ge

We maximize ASB with respect to fy which is equivalent to maximize with respect
to ¢ subject to the constraint || ¢ [|= 1. That is
maxASB = maxr 2" Ge

= max 72" Ge. (2.29)
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Now, using the symmetric decomposition of G we can write

TGe=

where e; are normalized eigenvectors of G. Clearly,

.
See

Ge < Ana(G)e

§
= Amas(G)eTc
= Anaz(G),
since || ¢ %= 1. It follows that
max ASB = 1*Anas(G), (2:30)

where Aaz(G) is the maximum eigenvalue of the matrix G. We use properties of

matrices and eigenvalues to Simplify Anas(G) as follows:

Anas(G) = Amas [Ty-p + UTWMUM*U"MWU]

= Ames [I,+M;‘U'MwﬂleWMuM ]
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We know that UUT = Iy — UUT. As a result, Anaz(G) becomes

Amaz(G)

Therefore,

= e [+ M;‘UTMWﬂﬂ’WMUM;‘]

= Amaz [l + M7 'UTMW(Iy - UUT)WMUM; ']

Anaz [T + M7 'UTMW?MUM; ! - M7 UMW UU"WMUM; |

= Aaz [T + M7 'U"MW?MUM;

MM MM

Anar M UTMW?MUM; ']

= Anar [M;'UT(MW)?UM,

Amaz [M;'MaM; '] . (2.31)

2
max AMSE = 7 Apax [M,"M,M,"]+%(lr [AWUM;"] + tr [ARAT]}

where v =

= 7 {Amar [M{'MoM{] + vtr [AWUM;'] + vtr [AR'AT]}  (2.32)

Nr?

For completeness, we now have to maximize (2.32) with respect to possible values

of the correlation in the matrix R*.

maxmax AMSE = 7%\nas [M;"MsM;]

.o (trace [AWUM;"] + maxtrace [AR'AT])  (233)
2 (trace 7]+ ma .
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‘The equation (2.33) is true for any R, defined in (2.16) and the correlation matrix
R s defined in (2.10).

In what follows, we maximize (2.33) over R* and minimize it over the design
space numerically. Previously, Zhou (2001) [47) had found, theoretically, that when
the error terms in an approximately linear regression model is a moving average

process of order 1, parameter 6, the correlation matrix is maximized at § = 1. It is

clear that at 0 = 1, the MA(1) process will not be invertible and hence the designs
from such a process will not be useful in practice. For AR(1) process with parameter
,at ¢ = 1, the AR(1) process becomes non-stationary which also leads to the same
problem. In constructing her designs, Zhou (2001) [47] used the OLS method of
estimation. It is well known that such designs will be less efficient than designs based
on WLS or GLS. We shall adapt the simulated annealing algorithm of Fang and
Wiens (2000) [12] to demonstrate that the designs constructed by Zhou (2001) [47]

can be improved.

2.4 The simulated annealing algorithm

In our example, we consider the model (2.5) and a design space S with equally spaced

design points z; = (2i — 1)/2N,i = 1,2,--~ , N. For simplicity, we assume that one
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of (n, N) is a multiple of the other. If n < N, then we also require that they have
the same parity.

A simulated annealing algorithm, in general, consists of the following:

(a) A description of the initial state of the process; that is, of the starting vector of

allocations n = {ny,ny, -+ ,ny}

(b) A scheme by which subsequent states are generated

(¢) A criterion according to which these subsequent states are accepted or rejected.

Ifn > N, then the initial state is the uniform design, with ny = n/N for i =
1,2+, N. 1 n < N, then this vector of frequencies assigned to 21,25, ,zy
starts with the vector formed by repeating the vector (1,0, ,0) {with N/n 1)
0's } [n/2] times. This is followed by the same vector with the order of its elements
reversed. If N is odd, then also a vector (0,:--,0,1,0,+,0) of length N/n is
inserted in the middle. Thus in cither case the initial design is symmetric and at
least close to uniform. We impose symmetry on the designs largely for its intuitive
appeal. However, we remark that searches for better, possibly asymmetric, designs

have yielded no improvements.

To generate new designs, first define a [N/2] x 1 vector v = (vy,+, vyyp) =
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(na,+++ ,nynz) of the current allocation vector. Define

Ji

{ilo >0}, o= {ilvi =0} (231)

with cardinalities j, > 1 and jo. Generate a Bernoulli random variable,

1, with probability 72—

0, with probability 7~

If J, > 2, then choose two indices (t1,f2) from J., at random and without re-
placement, and (if B = 1) pick an index to form Jo, at random. Replace v by the
vector ¥ whose elements are those of v except for
By=vy+B, Vy=vy-1, & U,=v,+1-B. (2.35)
1f J, = 1, then pick fo from Jo at random, let ¢, be the element of J,, and replace
(2.35) by
o=+l By=v, -l (2:36)
If N is even, then & = (it~ ,fin) = (B1,++ , Oz, Dy, - B1), thus preserving
symmetry. If N is odd, then a further Bernoulli variable is simulated, with proba-
bility 1/ of “success”. If a success is obtained, then, with probability 1/2, nix/z 41
(the frequency assigned to 0) is increased by 2, with these taken randomly and sym-

metrically from the remaining n;. With the remaining probability 1/2, njvajs1 is
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reduced by 2, with these allocated randomly and symmetrically to the remaining ;.
If njyjaj1 < 2, then this step is omitted. Then f is constructed as earlier, with also
the inclusion of the new frequency ijv/aj+1.

To accept or reject i as the next state, first evaluate the loss [ = I(a). If
I() < I(n), then i is accepted and iterations continue. If AT = I(3) — I(n) > 0,
then fi is accepted with probability ezp(~AI/T), where T is a user-chosen parameter.
We initially choose T = 7.5, and we decrease T by a factor of .9 after each 100

iterations.

2.5 Example: AR(1) model

For the purpose of illustration, we assume that the errors are from an autoregressive

process of order 1. That is, & = pei-1 +a;; i
where a; is a sequence of uncorrelated random variables with mean 0 and constant
variance o2 called a white noise process. Thus we write a; ~ WN (0, 2).

We define the lag k autocovariance function 7% = E [e;-xe], where k > 1. Then
we have 71 = E [ei_k€i-1]. By applying standard techniques we can show that the

lag k autocovariance function v satisfies the difference equation
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Elese] = Eleslpei+ai)]

= pE[eistiaa] + Eleirai]

P o= pher; k21

Using the fact that the autocorrelation function pi %, solving the difference
equation we obtain
Corr(eicky &) = 5 k=10
Then, the autocorrelation matrix R in (2.10) becomes
L, P Py PV DI
P L, Plagmy o0 PV Py
R= (2.37)
P L UL T

and R in (2.16) is
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AR(1) MODEL

PN NS L N L

If we define the N x N matrix Gy with elements

(GR)ij = Gjivjlek 3 k=1,2,++ N =1, we can rewrite R* as

R* = pGy + p* Gy 4 oo+ FplG+ v eoh pNIGey.
Then,
trace(AR'AT) = trace {A (pGy +p* Gy +++ooo- +PG e
No1
3" pitrace(AGAT)
and

mxtrace(AR'AT) = maxtrace(AR'AT)
3 lol<

N-1
. 0
= mggpzrmmc“a )

+p"'Gyo) AT}

(2:38)
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Finally from (2.33) and (2.38) we get

maxmax AMSE = 7*Apaz [M;'MaM;']
R

2
N

N1
(trncr [AWUM"] + maxc ; p'trucc(AG.AT))

Finally, the simulated annealing algorithm was used to construct optimal designs for

the case of the AR(1) model.




Chapter 3

Robust Design Using Generalized

Least Squares Estimation

In Chapter 2, we used the weighted least squares criterion to estimate 3 in (2.9). In
this section, we use the generalized least squares estimation to estimate 3 in (2.9).

We use the same notations as in Chapter 2. Now, we re-write equation (2.9) as

Y=QB+fite (31)

where Cov(€) = £ = 0°R as in (2.10). Since T is a covariance matrix, it is at

least positive semidefinite. For the existence of $', we assume that ¥ is of positive

definite matrix. In order to transform (3.1) into a model with constant
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premultiply (3.1) by B2 to obtain

£-RY = £2QB + 57V, + 57 V%. (3.2)
Now, define,
B2, and, € =3 (3.3)

Yy -ziy, @ =z,

Then (3.1) becomes

QB+E+e, (34)

and the generalized least squares (GLS) estimate of the parameter 8 can be written

as
4, = @'Qr'QY

= (Q'="'Q)'QTElY. (35)

From (3.5) and the fact that £~ = (o2)~'R~", the GLS estimate for 3 becomes

B, = @QR'QQRY. (36)

In what follows, we use the Average Mean Squared Error (AMSE) design criterion
defined in (2.13) to construct optimal designs. To do this, we first derive the bias and

the variance of 8,
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3.1 The bias and Variance of /3,
‘Taking expectation of both sides in equation (3.6) we obtain
EB,) = E(Q"R'Q)Q'R'Y]
= (QR'QTQREY]
= (@R'QTQRIQB+ L)
= B+(Q'R'Q)'Q'RS, 37
It follows that the bias of 4, denoted by d,, is
d, = bias(d,)
= E@,)-B
= (@R'QTQRY, (38)
Again, from (3.6) we can show that
Var(8,) = Var{(Q'n"Q)"Q"n-'v}
= (QR'Q)'Q'R"'Var(Y)R™'QQ'RQ)

= FQRIQ) 39
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3.2 The Average Variance(AV,) & Average Square
Bias (ASB,) of 3,

Recall that in Chapter 2 we used the singular value decomposition method to decom-

pose the matrix Z into

Zivxp = Unxp Apxp Vg

where UTU = V'V =1, (3.10)

Similarly, the matrix Qup was decomposed using the singular value decomposition

method as

»=Us A Vy

with UTU, = V]V, (3.11)

where U, is a nxp dimensional matrix, Aq is a px p diagonal matrix of singular values
and, V, is also & p x p dimensional matrix. Using the singular value decomposition

of Q we write

Q'R'Q = VA UIRUA VT
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and define My, = UTR™'U,. Then
Q'R'Q = VA M, AV
and (QTR™'Q)™ = V,A;'M; A7 VI (3.12)
It follows from (3.9) that the variance of B, can be expressed as

Var(B,) = a*V,A; M AV, (3.13)

Recall from (2.18) that the Average Variance of , can be written as
1 i
AV, = ytrace { ZVnr(ﬂg)ZT} .
Using the SVD of Z in (3.10) and (3.13) we have
a* R g
AV, = Fptrace {UAVIVATIMIAIVIVAUT}
Define the matrix A as
A=AVTVALL
sothat AT =AJ'VIVA.
After some algebra we find that

2
I s
AV, = Tvtrwcc{AM‘;A") (3.14)
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2
; P ;
When we substitute v = 7, we obtain
E

vr? L AT
AV, = Temce{AM,,A}

(3.15)

Remark that the Average variance AV, depends on the correlation matrix R but

does not depend on fy or .

Concerning the ASB, we know from (3.8) that
bias(3,) = d, = (Q"R™'Q)'Q"R,
Using the SVD of Q in (3.16) we obtain
dy = VoA'MA;'VIVAUTRTE,
= V,A;'MUTR™'E,
From equation (2.27) in Chapter 2, we have

fy = VNrUc.

By using the orthogonality of wavelet systems we have

15 wr = o,

(3.16)

(3.17)

(3.18)

(3.19)
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which implies that

[
°

B

Q'
1 7
SVAUTE = 0
n

VIVAUE, = 0

=0

AFAUTE,

= £y,

This implies that the vector £, belongs to the space of orthogonal complement of the

column space of U,
£, € {Col(U,)}* (3.20)
Define n,, = max{ny,na, -, ny}. Then, we can write

13 1
N U@ = & nlr@)?
=

N

1 & 4
e L)

npt?

In

Thatis £7f, < Nnpr?

I6IP < Nopr.
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Thus, there exits some c, satisfying || ¢, [|°< 1 such that
15 P = Nonr* e l?
18I = I VNmre, I
= &I = I VNrare |l
Suppose U, is a matrix whose columns constitute on orthonormal basis for {Col(Ug)}*.

Then, since f, € {Col(U,)}* we have that
fo = VNnurUg,. (3.21)
Similar to (2.15) we can obtain the formula for ASB, as

L iror 1
ASB, = Nd{z'za,+ﬁ\| [

%dIZTZd, + %r,m‘ (3.22)
From equations (3.10) and (3.17) we have

Z = UAV"

dy = VeA;'M;UTR™ M, (3.23)

By using equations (3.22) and (3.23) we obtain

ASB, = %f_TR"U.,M,’,'A;'V{VAUTUAVTV,A,"M.‘,'UZR"IM+ 1

FERUMATAMUTR, + .

(3:24)
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1f we define
B =AM UjR, (3.25)
the ASB, simplifies to
ASB, = ~ETBIBE, + ~i1f
ASB, = GEBBE, + Sy
= npriclUTBTBU,c, + r2cT0TUc. (3.26)

We note that the ASB, depend on both ¢, and c.

3.3 Maximizing the Average Mean Square Error

(AMSE) with respect to fy, f,, and R
Following our approach in Chapter 2 we first decompose the AMSE, into 2 compo-
nents
AMSE, = ASB, + AV, (3:27)

and then maximize the AMSE, with respect to fy and f,. That is, we solve

max AMSE, = max ASB, + max AV,

2% [ [
Since the AV, depends on neither £, nor £, the above maximization problem becomes

e AMSE, = pu ASB, + AV, (328)
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Now,
max ASB, = maxASB,
[ e
= max{nn T OTBBU, ¢, + 7°cT 0T Uc}
= 7 max TOTBTBUc, + max 70T Oc)
= 7{nmAnax[UTB"BU,] + A 07U}
= T {NmAax[BULUTBT] + Aae[Iv—r]}

= (M AasBU,UTBY) +1).

Recall that U,U7 + U,UZ

1t follows that U, U7

Therefore Amg = AnaBU,O7BT]
= AnulB(In - U,UNBT] (3:29)
and maxASB; = T {NmAmg + 1} (3.30)

For a fixed correlation matrix R, using the equations (3.28), (3.30) and (3.15) we

have the following result
v .
max AMSE, = r* [nmxn, 1+ trace (AM,,’A')] i (3.31)
Next, we take the maximum with respect to the matrix R:

v .
mgx o AMSE, = 7* max [nmAm, 14 szu(AM,;AT)] (3:32)
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and minimize over the design to obtain the optimal design. Due to the nature of

(3.32), we will maximize (3.32) over R and minimize over the design numerically.

3.4 Example: AR(1) model using GLS method

We have already discussed an example based on the AR(1) model using WLS method
in Section 2.6 of Chapter 2. We will use the same notations in our example using
the GLS method. The correlation matrix R depends only on p, which takes values
between -1 and +1. Thus, maximizing over R is equivalent to maximizing over p.

Thus,

_ -2 y ~1 AT
g AMSE, = i mie AMSE, = 7% ma [Py 1+ Jytrace {AMGIAT}]

(3.33)
We do not have a closed form expression for the equation (3.33), so we take several
values of p between -1 and +1 and we use the simulated annealing algorithm to obtain
optimal design (say prior optimum designs) for each value of p. Also, we computed
minimun loss for each p. Among the minimum losses, we pick maximun loss over all

p values (say pope)-




Chapter 4

Results and Discussions

In this section, we compare the performances of the OLS, WLS and, GLS methods
by implementing the simulated annealing algorithm for various values of v = :—: We
defined v in Chapter 2 as v = ’i—: The values of v used in constructing the designs
are v = 0.05,1,5,10,50. Recall that no closed form expression for the maximum loss
over the correlation matrix R was obtained in Chapter 3. Thus, the loss function
depends on the correlation matrix R. In the special case of the AR(1) model, the
‘maximum loss was shown to be a function of the lag 1 autocorrelation parameter p.
As a result, various values of p was used to construct a prior optimal design that
depends on p. The maximum loss was then taken over the recorded minimum losses

of various values of p and the corresponding prior optimal design was chosen as the
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optimal design. In our examples, the Daubechies wavelet system with wavelet number
4 and the number of wavelet terms m = 2 was used.

We assume that given the data [(z;,y)]i-, the experimenter will use either the
ordinary least squares method or weighted least squares method or generalized least
squares method to estimate the unknown mean response function via wavelet ex-
pansion. Under this assumption and the AR(1) model we construct integer valued

designs for fixed values of p based on the simulated annealing algorithm. The average

squared bias (ASB), average variance and, minimum loss are reported in Table 4.1 -

Table 4.15 for OLS, WLS and, GLS respectively.

4.1 Integer Valued Optimal Design for v = 0.05

The results in Table 4.1 show that when v = 0.05, the maximum of minimum loss
under OLS is 2.049277 occurs at p = 0.97. Under WLS Table 4.2 shows that the
maximum of minimum loss was 2.128778 at p = 0.85, whereas the maximum of
minimun loss for GLS which oceurs at p = 0.99999 is 6.117178. So the OLS method
works well considering all range of p values when v = 0.05. But we look at Figure
4.4 the GLS method performs very well between -0.6 and 0.6 compared to OLS and

WLS. Also OLS works better compared to WLS at entire range. In the Figure 4.5
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Minimum loss | ASB__| AV
200081 2.000057 | 0.000752968
2.005967 2.003607 | 0.002360792
2.005569 2.003309 | 0002260222 |
2022668 2018743
2026631 2022610
2.026935 2.02206 | 0.004875512
2.02783 2021947 | 0.00588259
2.026449 2019190 | 0.007258619
2.029613 2.020224 | 0.009388586
2.034541 2021450 | 0.01309060
2.044767 2.022849 | 0.02191772_|
2042100 2011287 | 0.03081347
2083253 2.008100 | 0.03515281
2.049277 [ 2.013889 | 0.03538827 |
2039064 2.004318 | 0.03424561
0.99 | 2.046060 2.009735 | 0.03632598
0.99999 | 2.046796 2.009735 | 0.03706117

Table 4.1: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.
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) Minimum loss | ASB | AV
-0.99999 | 2.080894 2.079151 | 0.001742439
09 [ 2073306 2.070749 | 0.002557343
08 [ 2073343 2.070503 | 0.002840847
06 | 2068662 2.065604 | 0.003058168
04| 2.069462 2.065604 | 0.003858362
02 | 2065608 2.060600

[ 2109661 2103610 | 000605122
] 2.069385 2.061990 | 0.0073853:
04 2.071444 2.061999 | 0.0094449
06 2116754 2.103621 | 0.01313386_|
08 212522 2.103482 | 0.0217383¢
0.85 2.128778 2103482 | 0.02529681 |
09 2.107938 2.078494 | 0.02944403
0.9 2.08487 2.052372 | 0.03249821
09 2.084333 2.052372 | 0.03196113
0.9 2074100 2.043588 | 0.0305121
0.9 2.071805 2.043588 | 0.02821649 |
0.99999 | 2.085199 2.060650 | 0.02454846

Table 4.2: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.0:
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p | Minimum loss | ASB v
-0.99999 | 1085488 2156¢-08

09 T.059457 T.058895 | 0.0005617386

08 3276169 01925158

0.6 1.271935 02353084

04 T.037739 1.029456 | 0.008282977

02 1.007879 X 006673024

0 1.004795 04794504

032 1.007828 0006676406

04 1031120 008322858

06 1185032 1206458

08 083669 0.02076957

09 709693 759484

0.95 027648 918908

098 367551 002478615 |
0.99999 | 6.117178 11714 _| 3.815061e-05

Table 4.3: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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the optimum design for OLS and WLS looks like same but the optimal design for
GLS is completely different from OLS and WLS.
It s clear, from
maxmax AMSE = 7*Apaz [M7'MoM;]
W

2
+57 (trace [AWUM; "] + maxtrace [AR°AT])

for weighted least squares method or

- = ~IAT
mRuer%AMsEg,#mﬁx[n vmg + 1+ Fotrace {AMG) A )]

for generalized least squares method, that when v is small, say v = 0.05, the bias
component of the AMSE becomes dominant; whereas as v becomes larger the average
variance AV becomes dominant, as seen in Table 4.1 - Table 4.15, irrespective of the
value of p. Figures 4.1 - 4.4, 4.6 - 4.9, 4.11 - 4.14, 4.16 - 4.19, and 4.21 - 4.24 provide
a picture of the patterns in the optimal AMSE

maxmax AMSE = 7*Amas [M;'MaM; ]

vr? -1 i i Ly
5 (mme [awuM[] +m?‘(§p trace(AG;A’

for weighted least squares method and

_ 2 I AT
mas s AMSE, = max max AMSE, = * max [Py + 1+ Ftrace {AM; A )}
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for generalized least squares method, for various values of v and p. In Figures 4.4,
49, 4.14, 4.19, and 4.24 we compare the performance of the designs for OLS, WLS,
and GLS methods of estimation. It can be seen that when [s| < 0.6, the designs from
the GLS method are more efficient. However, when the AR(1) process approaches

non-stationary state [p| — 1, the OLS becomes more efficient.

Figure 4.1: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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Figure 4.2: The comparison of Minimum loss, ASB and, AV of W LS method for
various p when N = 128, n. = 64, m = 2, DAUB4 and, v = 0.05
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Figure 4.3: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05
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Figure 4.4: The comparison of Minimum loss for OLS, WLS and, GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 0.05




4.1 INTEGER VALUED OPTIMAL DESIGN FOR v = 0.05 81
g s é s
do 02 o4 oa os 10 0 oz o4 os os 1o
@ ®
3
g s
0o oz o4 os os 1o
@
inimax design pamu (n) OLS (b) WLS (c) GLS when N = 128,

n =064, m =2, DAUB4 and, v




4.2 INTEGER VALUED OPTIMAL DESIGN FOR v = 1 82

4.2 Integer Valued Optimal Design for v

» Minimum loss | ASB__[ AV
-0.99999 | 1.996743 1.995523 | 0.001219876
0.9 2.033878 2.006919 | 0.02695928
08 2066264 2036592 | 0.02967136
0.6 2.05416 2.005176 | 0.04898433
04 2.088217 2.022613 | 006560409
02 2003798 2000279 | 0.09351933
0 2.118930 2.003297 | 01156327
02 2155274 2.013068 | 01422062
04 2196515 2.009910 | 0.1866055
06 2269324 2.012412 | 0.2569118
038 2450034 2.017605 | 0.4324204
0.9 2604849 2.013777 | 0.5910713
0.96 2.699093 2018787 | 0.6803062
0.97 2706874 2058684 | 0.6481904
0.98 2.679406 2.060381 | 0.619025
0.99999 | 2.597526 2.106485 | 0.4910409

Table 4.4: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1

In Table 4.4 the maximum of minimum loss for OLS is 2.706874 when v = 1
at p = 0.97. Similarly, from Table 4.5 the maximum of minimum loss for WLS is
2.710629 when v = 1 at p = 0.97. Furthermore, from Table 4.6 the maximum of

minimum loss for GLS is 6.348578 at p = 0.97. So the OLS method works well

considering all range of p values when v = 1. But looking at Figure 4.9 we note

that the GLS method performs very well between -0.99999 and 0.8 and compared to




4.2 INTEGER VALUED OPTIMAL DESIGN FOR v = 1 83

Minimum loss | ASB__| AV

2077370 2.071862 | 0005507841
209058 2.065636 | 0.02492445_|
211256 2.083059 | 0.02950096_|
2141580 2.085153 | 0.0564303
2133177 2.066520 | 0.06665684 |
2177348 2077710 | 0.09963783_|
2.168872 2.051462 | 0.1174097
2210527 2.080389 | 0.1301374
2230831 2084857 | 01450744
2283002 2098379 | 0.1846235 |
2318458 2061046 | 0.2574113
2487547 [2.05188_| 04356671 |
2643451 05851591
2686622 2053949

2.703887 2.066719

2710629 2.085311

2647005 56659

2521115 2.135155

| Table 4.5: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v
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FOR v =

84

Minimum loss

ASB__[AV

»
-0.99999 | 1.085489

T.085488 | 1.0043126-06

0.95 4725332
0.96 5.000686

09 1.091835 1.080426 | 0.01140855
08 1165675 1.139410 | 0.02626474
06 1194062 T.147588 | 0.04647377
04 1195115 1.029456 | 0.1656595
02 113398 1.023462 | 0.0899358
0 1095892 1 0.09589189
02 101511 T.001926 | 0.09958534
0.4 1189254 T.022797

06 1415159 1173867

08 2.253745 1843812

0.9 3.233730 3 05324431

875288

05740775

0.97 6.348578

0.98 5771601

0.99 5.97794

0.09999_| 6.117903

6.11714_| 00007631921

05659878

03976498

Table 4.6: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1
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OLS and WLS. Also the OLS works slightly well compared to WLS except at high
positive correlation. In Figure 4.10 the optimum design for OLS, WLS and, GLS
are different from each other. Also the optimal design for GLS is approximately the

uniform design.

15
L

Figure 4.6: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v
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Figure 4.7: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1




4.2 INTEGER VALUED OPTIMAL DESIGN FOR v = 1 87

Figure 4.8: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v =




88

4.2 INTEGER VALUED OPTIMAL DESIGN FOR v

minloss.

-10 -05 00 05 10

Figure 4.9: The comparison of Minimum loss for OLS, WLS and, GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 1
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Figure 4.10: Minimax design points: (a) OLS (b) WLS (c) GLS when N = 128,

n=64, m =2, DAUB4 and, v =
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4.3 Integer Valued Optimal Design for v =75

Minimum loss | ASB AV

2.047865 2.057248 | -0.0093831

2100265 2.049366 | 0.05089852

2132511 2.011909 | 0.1206018

2.241812 2.018743 | 0.2230689

2314149 2024323 | 0.2898256
02 2430382 2.010393 | 0.4199898
0 2579118 2.010932 | 05681863
02 702937 2011419 | 0.691518
04 871270 2010999 | 0.8602715
06 3257095 2.014997 | 1242099
0. 146442 2.061918 | 2.084524
0. 922302 2.046661 | 2.875641
094 5.200525 2116116 | 3.093409
0.95 5.272871 2190409 | 3.082462
0.96 5.263621 220552

097 5169232 2139847
0.98 5062085 2.25283
0.99999 | 4208087 2499819

‘Table 4.7: ‘The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = §

In Table 4.7 the maximum of minimum loss for OLS is 5.272871 when v = §
at p = 0.95. Similarly, from Table 4.8 the maximum of minimum loss for WLS is
5.203846 when v = 5 at p = 0.96. Furthermore, from Table 4.9 the maximum of
minimum loss for GLS is 8.846287 at p = 0.98. So the WLS method works well

considering all range of p values when v = 5. But looking at Figure 4.14 we note
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Minimum loss | ASB

2131281

V.
0006540674

2153697
2186272

2057157
2044107
2053423

0.0733552

2.056528
2.048461
2.053382
2.076050
2.063325
2.06253
2.067705
2171627
2110858

2173541

227139

Table 4.8: The comparison of Minimum loss, ASB and, AV of WLS method for

various p when N = 128, n = 64, m = 2, DAUB4 and,

v=5
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Minimurn loss | ASB
085493 T
2513215
2.005000
3519706
5.999396
4084916
TAIT761
07637
1332202
1384103 [ 1040957
TA79459
805948 1005238

Table 4.9: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N =128, n = 64, m = 2, DAUB4 and, v = 5
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that the GLS method performs very well between -0.8 and 0.8 compared to OLS
and WLS. Also the OLS are slightly better than WLS when p is between -0.99999
and 0.95 but between 0.95 and 0.99999, W LS performs well compared to OLS. In
the Figure 4.15 the optimum design for OLS, WLS and, GLS is different from each

other. Also the optimal design for GLS is approximately the uniform design.

-10 -05 00 0s 10

Figure 4.11: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v =
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Figure 4.12: The comparison of Minimum loss, ASB and, AV of W LS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v =
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Figure 4.13: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v =5
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Figure 4.14: The comparison of Minimum loss for OLS, WLS and, GLS method ‘
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 5
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4.4 Integer Valued Optimal Design for v = 10 ‘

v Minimum loss | ASB__| AV ‘
-0.90999 | 2.045167 20705 | 0.02533313 |
09 [ 2269027 2241803 | 0.02722357 ]
08 2322824 2.123792 | 0.1990314
| 06 2488752 2.088627 | 0.4001257
04 2612670 2014389 | 0.5982002
02 2.794901 2.002144 | 0.7927574
0 3077763 2001131
[} 3365560 2.00663 ‘
04 3731137 2027582 | 1
06 1479028 2.022361
08 6.233229 2.070706 | 4.162522
09 7.864589 2.316972 | 5.547617
093 | 8329474 2.430321 | 5.800152
0.99 | 8.362358 2240780 | 6.121579
095 | 8.33708 2.264812 | 6.072267
0 833377L 2396118 | 6.007653
X 8.200657 2.490447 | 5.719215
[0 783035 256320 | 5.27606 |
0.99999 | 5.771057 3438719 | 2.332339

Table 4.10: The comparison of Mi
various p when N = 128, n. = 64, m

, DAUB4 and, v = 10

In Table 4.10 the maximum of minimum loss for OLS is 8.362358 when v = 10
at p=0.94. Similarly, from the Table 4.11 the maximum of minimum loss for WLS
is 8.327955 when v = 10 at p = 0.94. Furthermore from Table 4.12 the maximum
of minimum loss for GLS is 1144247 at p = 0.97. So the W LS method works well

mum loss, ASB and, AV of OLS method for
considering all range of p values when v = 10. But looking at Figure 4.19 we note that, ‘
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Minimum loss | ASB__| AV,

2267489 2581732 | -0.3142424
2247185 2112259 | 0.1349265
2331201 2.120416 | 0.2108748
2464161 2.063245 | 0.4009151
2667517 2.063233 | 0.6042834
2870352 2.049251 | 0.8211004
3157555 2.046277 | 1111278
2 3445544 2.073824 | 1371721
3816696 080104 | 1.736503
4.666314 [ 2:394500
317123
932483
164618 581700
91 327955 5.970502
.96 275183 [5.98525 |
97 072333
98 752201
99999 | 5.225318 338021

Table 4.11: The comparison of Minimurm loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUBA and, v = 10
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7 Minimum loss | ASB__| AV
~0.99999 | 1.085498 T.085488 | 1.0043126-05
09 150146 1482761 | 0.07869566
08 [2.295038 2130232 | 0.15670657
06 1585500 244839 | 0.340662
0.4 1.849210 1.129927 | 0.7192823
E) 570897 T.088429 | 0.4824679
0 958919 T 0.9580189
02 2.002956 001631 | 1.0014%5
04 2.26098 1.030917 | 1.230064
05 3373752 612501 | 1761161
08 6.091392 2112047 | 3.979345
09 8214476 2744507 | 5.460879
097 | 1raaoa7 5.78250 | 569878
0.98 [ 11.42589 6.266682 | 5159200
099 [ 953389 555796 _| 3.975931
0.99999 | 6124772 611714 | 0.007631921

Table 4.12: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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the GLS method performs very well between -0.99999 and 0.8 compared to OLS and
WLS. Also OLS and WLS is approximately same for entire range. In the Figure
4.20 the optimum design for OLS, WLS and, GLS is different from each other. Also

the optimal design for GLS is approximately the uniform design.
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Figure 4.16: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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Figure 4.17: The comparison of Minimum loss, ASB and, AV of W LS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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Figure 4.18: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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Figure 4.19: The comparison of Minimum loss for OLS, WLS and, GLS method
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 10
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4.5 Integer Valued Optimal Design for v = 50

Minimum loss | ASB__| AV,

-10.55223 10.68958 | -21.24181
6.982474 | -10.59064
6.001518 | -6.754183
5178896 | -3.434006
3702486 | 0.6868112
2.122914 | 3.56199
2.074770 | 5.165118
2.314758 | 6.386062
3.288586 | 6.91888
3563669 | 9575349
7716686 | 10.50471
9.65862_| 11.80311
9.96918 | 11.58248
T1.26862 | 0.968441
1165560 | 9.203142
12.05363 | 7.67934
12.66616 | 4.650195
X 12.32861 | 3.214979
0.99999 | -2.240714 17.10907 | -19.34978

Table 4.13: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50

In the Table 4.13 the maximum of minimum loss for OLS is 21.55166 when v = 50
at p = 0.91. Similarly from Table 4.14 the maximum of minimum loss for WLS is
22.27768 when v = 50 at p = 0.92. Also from Table 4.15 the maximum of minimum
loss for GLS is 33.49518 at p = 0.95. So the OLS method works well considering all

range of p values when v = 50. But we looking Figure 4.24 we note that the GLS
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Minimum loss | ASB
-0.99999 | -13.58427 1165563
09 1933222 6.253059
08 [5.619122 |
06 473058
04 3494520
02 2536562
0 2,185 | 5.236225
02 2.462226 | 6.AT7647
0.4 3008363 | 7261485
06 L0515 | 892802
038 G.016187 | 12.57094
055 7.607688 | 12.93399
09 9.467093 | 12.32768
091 5.990248 | 12.91674
092 8.921036 | 13.35604
0.93 T1.26540
0.9 1294772
0.97 TL67374
0.99999 1811551

Table 4.14: The comparison of Minimum loss, ASB and, AV of WLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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Minimum loss | ASB__| AV

7
-0.99999 | 1.085638 T.085488 | 5.02156e-05
09 833143 TA70647
08 [ 2605071 1910238
06| 2301922 TAT5000 | 0.8869212
04 81329 1155108 | 0.6581823
02 2800781 TO707__| 1.820084
0 5.794594 T 4794594
032 5.93516 T.002437 | 4.032723
04 6.150899 005317 | 5145582
06 8240323 1732204 | 6.508028 |
[0 2030685 22327
0. 2658375 | 2829639

71703 671975

0518 193673

46468 [4

03664

38311

99| 6.1653

Table 4.15: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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method performs very well between -0.4 and 0.6 compared to OLS and WLS. In the
Figure 4.25 the optimum design for OLS and W LS takes more repeated observations

compared to GLS method.

2
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Figure 4.21: The comparison of Minimum loss, ASB and, AV of OLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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Figure 4.22: The comparison of Minimum loss, ASB and, AV of W LS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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Figure 4.23: The comparison of Minimum loss, ASB and, AV of GLS method for
various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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Figure 4.24: The comparison of Minimum loss for OLS, WLS and, GLS method
for various p when N = 128, n = 64, m = 2, DAUB4 and, v = 50
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Figure 4.25: Minimax design points: () OLS (b) WLS (¢) GLS when N = 128,
n=64, m =2, DAUBA and, v = 50




Chapter 5

Concluding Remarks

In this thesis, we considered minimax designs for estimation of nonparametric re-
gression models with autocorrelated errors using wavelet approximation of the mean
response function. We assumed that given the observed responses, as experimenter
will estimate the parameters of the wavelet approximation by wavelet versions of ordi-
nary least squares (OLS), weighted least squares (W LS) and generalized least squares
(GLS). Based on this assumption we developed a simulated annealing algorithm to
search for minimax designs under an AR(1) correlation structure.

In summary, the GLS method performed better than OLS and WLS methods,
when [p| < 0.6, where p have been defined in Section 2.5 for AR(1) model. The

performance of the OLS and W LS were similar. For practical reason we considered
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the range of p between -0.99999 and 0.99999 since the stationarity condition for AR(1)
process is |o] < 1. When we have prior knowledge about a given data one can select
a suitable method for constructing an optimal design for that particular type of data.
to improve the performance of the experiment. That is, GLS is the best for the
moderate level correlation (0.6 < p < 0.6) and WLS or OLS is preferred for highly
correlated data.

We note that our techniques can be extended to Moving Average processes of

order g to select which method of estimation is the best.
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