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Abstract

We have chosen to study multicast protocols because of their applicability to a
growing number of network applications. We have designed and implemented a sim-
ulation system to study multicast protocols without the need for a dedicated testbed
network, and used the simulator to study two simple multicast protocols, the stop and
wait and block acknowledgment protocols. We found that these protocols outperform
equivalent unicast protocols for small number of receivers in error-free conditions. The
block acknowledgment protocol shows higher throughput with larger window sizes, but
has greater latency. Both protocols, however, deteriorate quickly as the number of re-
ceivers and failure rate of the underlying network grow. This deterioration is caused
by a rising collision rate among receivers sending acknowledgments which in turn

aggravates network i Tt hput of both protocols is improved by using

randomly timed acknowledgments to reduce the collision rate; however, this technique

does not affect the high sensitivity of the protocols to error conditions.
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Chapter 1

Introduction

The growth in the availability and speed of computer networks has resulted in a grow-

ing interest in distributed network and ly, in the dev
and study of the multicast protocols on which many of these distributed systems are
based. Extensions to the Unix operating system [17] [9] and to the Internet suite of
protocols [10] [11] to support multicasting have been proposed and developed.

Some multicast protocols [20] [18] [21] [29] [30] [28] are designed specifically for
T e e e e\ O ther
ticast protocols are designed to enable distributed processing [12] [32] [19]. Still other
multicast protocols concentrate on LAN environments, especially those with hardware
multicasting capabilities. Reliable multicast protocols for such LAN environments [3]

2] [15] [33] [1] [4] [5] [7] [8] have been discussed in the literature.

We chose to study multicast protocols in an Ethernet LAN with hardware multic-



asting capabilities. We have designed a simulator in which to study such protocols,
and use the simulator to study two simple multicast protocols.

Chapter 2 begins by giving basic definitions. It then discusses the characteriza-
tion of multicast protocols by some common features: support of static or dynamic
multicast groups, support for multiple sources, ordering guarantees for transmitted
messages, types of acknowledgment schemes, buffer and bandwidth requirements, con-
gestion avoidance techniques, and fault tolerance and detection. Some common per-
formance measures for multicast protocols are then discussed, including data through-
put, which measures how much data the protocol can deliver within a unit of time,
and message latency, which measures how long the protocol takes to reliably deliver
messages.

The chapter then covers the details of the two simple multicast protocols to be
studied, the stop and wait and block acknowledgment protocols. The stop and wait
protocol sends messages one at a time, waiting for acknowledgments from all receivers
before proceeding. The block acknowledgment protocol sends messages in blocks,
permitting receivers to acknowledge multiple messages‘,with a single acknowledgment
message.

Three multicast protocols from the literature are described. The main feature of

the first protocol [24] is the use of a node to order from different
receivers and handle retransmissions. One disadvantage of the protocol is that mes-
sages are sent twice; once to the sequencer node and again in a multicast transmission.

This protocol is also highly dependent on the sequencer node.



The protocol by Erramilli and Singh [14] is highly dependent on timeout paramet-
ers for its operation. In fact, the protocol can fail if the parameters are not carefully
chosen. Receivers advertise their status using status/sanity messages sent at spe-
cified intervals during idle periods. Messages from multiple senders are independent
sequences of messages, and no guarantee of their relative ordering is given.

The protocol by Maxemchuck and Chang [6] is actually a family of protocols
with different fault-tolerant properties. The protocols combine the features of a mul-
tiple source/single receiver system, which simplifies message ordering, and a single
sender/multiple receiver system, which uses negative acknowledgments to reduce the
number of acknowledgments required.

A simulator developed to study the behaviour and performance of multicast pro-
tocols in an Ethernet LAN environment is discussed in chapter 3. The simulator
currently supports the stop and wait and block acknowledgment protocols. The sim-
ulator’s layered design is easily extensible; other multicast protocols can be added to
the simulator. The simulator provides timing data to measure protocol performance
which can then be analysed and plotted for further st\idy, This chapter describes the
overall design of the simulator, including what is required to add a new protocol.

The fourth chapter presents and explains the results of the simulation studies. The
performance of both the stop and wait protocol and the block acknowledgment proto-
cols under simulation was measured and analysed. Both protocols performed better
than equivalent unicast protocols in error-free conditions. Both protocols’ through-

k led, to reduce the rate of

put was imp; 1 by using randomly timed a



1ed 1

collisions. The block acki protocol’s thi put was better than the stop

and wait protocol’s throughput as the window size of the block increased; however,

the block acknowled, protocol had signifi increases in message latency as a
result. Both protocols had a low tolerance for errors.

Finally, the fifth chapter gives some concluding remarks, and presents suggestions
for further work, including suggestions for improving the error tolerance of the two
protocols studied, and an outline of a third simple multicast protocol, the round robin

acknowledgment protocol.



Chapter 2

A Description of Multicasting

Protocols

2.1 Motivation

Computer technology has evolved from single isolated computers performing mostly
numerical computations to large networks of computers which cooperate to perform
a wide variety of tasks. Much of the cooperation betdeen computers is achieved by
having the computers communicate information among themselves.

Computers communicate using predefined protocols. These protocols define how
and when each computer should communicate its information to other computers.
Communications protocols are often reliable, meaning that the protocol includes pro-

visions for detection and recovery of errors encountered on the communication me-



dium.

Many common network applications, such as file transfer, remote terminal access,
and electronic mail only require that two computers be able to participate in a com-
munication at any one time. These applications use point-to-point (unicast) protocols
to communicate.

Other applications, such as distributed processing, distributed database systems,
and multimedia teleconferencing systems, involve communication among several com-

puters at once. While this can be achieved using multiple point-to-point communic-

ations, these applications would benefit from communication protocols d d for
one-to-many or many-to-many icati Broadcast p ls permit commu-

nication among all computers in a network. These protocols are often used for network
management functions in which all computers must participate, such as the broadcast-
ing of network routing information. Most broadcast protocols are not reliable, but
some reliable broadcast protocols do exist. Multicast protocols permit designated
groups of computers, often termed multicast groups, to communicate among them-
selves. Multicast protocols can be either reliable or \m!rcliable,

Applications which are distributed over a group of computers derive the most
benefit from multicast protocols. Consider a fault-tolerant distributed system which
replicates its file structure in several computers at once. All modifications to the
file system must be sent to all computers storing the file system. Implementing this
transfer using several point-to-point links is wasteful, as exactly the same information

is being transmitted several times. However, reliability and certain ordering properties



are required, so c jonal unreliable broadcast or multicast algorithms won’t do.

As well, continuing imp in multimedia technologies has sparked interest in

desktop teleconferencing applications. The large bandwidth required for the transmis-

1 fe : fonif

sion of real-time audio and video data itated by isa

drain on network resources. Multicasting this data to teleconference participants will

reduce the required network bandwidth significantly, and may also reduce the latency

of the teleconfe ing application, a critical perf measure in a real-time en-
vironment.

Other applications which may benefit from multicast protocols include the trans-
mission of Usenet news, multi-user chat programs, distributed multi-user computer

games, etc.

2.2 Characterization of Multicast Protocols

Communication protocols [22] can be characterized as reliable, or unreliable. An un-
reliable protocol will send information on a “best effort” basis, but will not resend lost

or that will arrive in order or uncorrupted. Unreliable

protocols are often datagram or connectionless protocols; are sent to the

destination in a manner analogous to a letter posted at the post office.

A reliable protocol will ensure that messages arrive at the intended destination;

retr: issions and ack; from the receiver are the most com-

1

monly used to impl this reliability. Reliable protocols may also be



connection-oriented; messages are sent to the d in a manner to a

telephone call, i.e., using distinct phases to perform call-setup, conversation (or data
transfer), and call-disconnect.

Unicast protocols describe communication between exactly two computers; unicast
protocols may be reliable or unreliable, connectionless or connection-oriented. Multic-

ast describe ication between many computers; multicast protocols

may also be reliable or unreliable, but are rarely connection-oriented. Broadcast pro-
tocols describe communication between all the computers in local area network; as
such, they may be considered as a special case of multicast protocols.

Reliable multicast protocols [3] [2] [15] [33] [1] [4] [5] [7] [8] [20] [18] [21] [29] [30]

[28] can be characterized by a few important features, as follows:

o support of static or dynamic multicast groups. Static multicast groups retain
the same membership throughout the course of a multicast communication. Dy-
namic multicast groups, however, may change their membership during the
course of a multicast communication, by adding or deleting nodes dynamically
throughout. In order to support dynamic multica.!st groups, a multicast protocol
must provide mechanisms for adding and deleting nodes from the group as well

as a mechanism to keep all nodes informed of the current membership status.

support for multiple sources. A source is a node in the multicast group which
transmits multicast messages. A multicast protocol may support only single

source or multiple sources in one communication.



® ordering properties of transmitted messages. A protocol may deliver all mes-
sages reliably, but make no guarantee about the ordering of the messages re-

ceived. Such a protocol is said to deliver messages unordered.

Other protocols may deliver messages in the order sent by the sender. When
multiple senders are involved, these protocols do not make any guarantees about
the relative ordering of messages sent by different senders, or even that all the
receiving nodes will receive messages from different nodes in the same order.
However, if only one sender is involved, the result is an ordering of messages

which is identical at all receiving nodes.

Yet other protocols provide even stronger ordering properties for messages, guar-

anteeing a “global” order for These Is will that all

messages from all senders are received by all nodes in exactly the same order.
These protocols do not necessarily guarantee that all messages will be delivered
in exactly the time sequence sent when originating from different senders. Two
of the more common mechanisms for ensuring global ordering of messages, the

[} '

use of a ti ora node, will h that goal.

acknowledgment schemes for reliability. Acknowledgment schemes use either

positive acknowled that is, all properly received are acknow-

ledged by sending acknowledgment messages to the source (or other intermedi-

ary node); or negative acknowled, that is, all detected as corrupt

or lost by the receiver are acknowledged by sending a negative acknowledgment



(implied retransmission request) to the source (or other intermediary node); or
a combination of both. Attempts to reduce the number of acknowledgments
needed by sending implicit multiple acknowledgments in one acknowledgment
message and/or by “piggybacking” acknowledgments onto other data messages

are also common variations.

buffer requirements for sources/receivers. Buffer requirements differ widely
among various protocols. A protocol may require as few as a one message
buffer for all nodes (stop and wait), or n message buffers at source nodes and
a single message buffer at receivers (go-back-n), or n message buffers at both
source nodes and receivers (selective repeat), or n message buffers at sources
and m; message buffers at each receiver i (selective repeat protocols with flow
control). Yet other protocols can dynamically adapt to changing buffer resource

levels, using as many or as few buffers as the system will allow.

congesti Protocols may make no provision for con-

gestion control; or attempt to reduce the number of transmitted messages in
¢
order to avoid congestion; or include mechanisms for detecting and dealing with

network congestion.

fault tolerance and detection. A multicast protocol may break down completely
if a fault occurs in one or any of the multicast group; it may be able to detect
the fault and stop; or it may be able to operate when a given number of sites

fail.



o quality of service Some multicast p Is can provide differing

levels of service as requested; most often these levels of service involve reliability

and ordering guarantees. Others provide just one level of service.

2.3 Performance Measures

How do we compare the performance of one protocol to another? We need to have
a series of performance measures which quantify the performance of a protocol in
different ways, so that we can decide which protocol is best for our needs.

The most obvious measure of a protocol is the amount of data per unit of time
which it can deliver, normally termed throughput. In the case of multicast protocols,
the measurement is based on the total amount of data which is received by the multic-
ast nodes within a unit of time. This measurement reflects the fact that the amount of
“effective” data is actually the data transmitted multiplied by the number of receivers
receiving that data.

Throughput values in isolation are not always informative; comparing the through-
put values of multicast protocols to the throughput va.{ues of the equivalent multiple
unicast transmissions will more clearly show whether the use of a given multicast pro-
tocol is beneficial. To that end, we will measure the relative throughput of a multicast
protocol as the ratio of the absolute throughput of the multicast protocol to the abso-
lute throughput of the equivalent unicast transmissions; a multicast protocol with a

relative throughput of 1.0 has performance equivalent to using multiple point-to-point




transmissions. Multicast protocols with relative throughputs greater than 1.0 show
increased performance over the equivalent unicast point-to-point transmissions.

Both absolute and relative throughput measurements will depend on the error rate
of the underlying communication media, and is usually given in both best case (no
error rate - best possible throughput), and average case (average error rate - most
likely expected throughput value) conditions. The best case throughput can be used
to measure the message overhead incurred by a protocol.

Another measure of performance is message latency. Message latency measures the
amount of time from the initial transmission request until the application receives the
transmitted data. This measure includes transmission time of the medium, processing
times, retransmittal and other overhead incurred in the transmission of a message. In
the case of multicast protocols, the message latency measure includes the amount
of time required in order to ensure that all receivers receive the message, and in the
ordering guaranteed by the protocol. This measure is also affected by the transmission
and error rate of the medium, so it is often given in both best case and average case
conditions. Moreover, this measurement may also be given in worst case conditions.
This worst case measurement gives the greatest amount of time required to transmit
a message from application to application. It is an important factor when evaluating
a protocol for real-time applications, where response time is critical.

One aspect of protocol performance which only applies to multicast protocols is
scalability with respect to the number of receivers. How do other measures of perform-

ance discussed above degrade as the number of nodes increases? If the degradation

12



is linear with respect to the number of receivers, then the protocol scales well, and
will not be unduly affected by increasing numbers of receivers. If the degradation
is exponential or worse, then the protocol will quickly become unusable as the num-
ber of receivers increases. This measurement will help in evaluating protocols for
applications where the number of receivers is large.

Another aspect of protocol performance is the amount of resources required to
achieve the given performance. For example, a measure of the amount of network
bandwidth utilized by the protocol as a function of transmitted data quantifies the
amount of overhead messages such as acknowledgments and other status messages
required by the protocol. It provides us with a measure of the network bandwidth
required by the protocol in relation to the amount of data being transmitted and can
be useful in evaluating protocols to be used in environments with high network traffic.

Another measure of the resources required by the protocol is buffer space require-
ments of sender(s) and receivers as a function of the number of receivers and the
data throughput value. This measure helps determine how increased buffer space will
improve data throughput for a given number of recejvers, and helps determine an
appropriate tradeoff point between space requirements and throughput achieved.

The number of interrupts generated at a node in order to process incoming packets
often affects the processing ability of the node. In the case of the multicast packets, all
nodes which receive the multicast packet generate an interrupt to process the packet
and determine if it should be kept and passed along to upper network software layers.

A measure of how many interrupts are generated per receiver as a function of data

13



throughput (perhaps number of messages, instead) will clearly show the impact of
various protocols on the processing ability of the receivers as affected by interrupt

processing.

2.4 Unicast versus Multicast Protocols

Unicast protocols are much simpler to design and implement than multicast protocols
for several reasons. Unicast protocols need to provide reliability; however, they only
need to handle acknowledgments from one node; only need to order messages from

one source; do not have to provide fault-tolerant mechanisms, since when one of the

two nodes in the ication fails, the ication stops; and do not have to

provide support for nodes dynamically joining or leaving during a communication.
Multicast protocols, on the other hand, must handle acknowledgments from a (pos-
sibly dynamic) number of receivers, as well as the ensuing network congestion; must
be able to detect errors in data transmission to multiple receivers and handle the re-
quired (possibly multiple) retransmissions; may enforce stricter ordering properties
for received messages; may provide some measure of !faultvtolerance, since the fail-
ure of one or more nodes does not automatically make continuing the communication
fruitless; and may also have to support dynamic multicast groups.

These issues add a considerable amount of complexity to a multicast protocol.
Consider the number of acknowledgments required in a multicast protocol for r nodes.

If one acknowledgment from each receiver is required for each message, then the num-



ber of acknowledgments per message is simply r. Now the number of acknowledgment
messages is tied to the number of nodes participating in a communication, and there-
fore the protocol’s throughput deteriorates as the number of nodes increases. This
reduces the scalability of the protocol. Many multicast protocols attempt to reduce
the number of acknowledgment messages required in an effort to improve the pro-
tocol’s performance when using a large number of nodes. Mechanisms for reducing
the number of acknowledgments include piggybacking several acknowledgments in
one message; using negative acknowledgments, and various other combinations. Of
course, these mechanisms come with a price: the amount of time required to detect
a lost message usually increases, and the amount of buffer space required may also
increase.

Another important issue is that of ordering. Many applications require that mul-
ticast messages be totally ordered. For example, a fault-tolerant distributed database
system that is sending transaction information originating from various nodes to a

licated datab

rep using

52

must guarantee that all transaction

information arrives in exactly the same order at all ?odes to maintain consistency
among the replicated copies of the database. Totally ordering messages from different
sources requires some sort of global timestamp or a sequencer node to sequence all
messages. Synchronization of clocks in a distributed environment is complex. Using
a sequencer node reduces the fault-tolerant properties of the protocol, since failure

Necl o

of the sequencer node will cause the entire ication to fail.

reduce this vulnerability usually involve rotation of the sequencer node responsibilit-

15



ies among all nodes coupled with a recovery mechanism should the acting sequencer
node fail. While these problems are surmountable, they add a considerable amount

of complexity to the design of a reliable multicast protocol.

Yet another issue is ret ission policy impl, 1 by the multi protocol.
Unicast protocols simply retransmit a lost message to its intended recipient; multicast
protocols must determine which receiver lost the message and may handle the retrans-
mission by either sending a unicast message to the affected receiver or multicasting
the retransmission to the entire group. Unicasting retransmissions may reduce the
amount of time spent by receivers processing multicast messages; however, multic-
asting retransmissions may result in fewer retransmissions overall, reducing network

congestion under high traffic conditions.

2.5 Multicast Stop and Wait Protocol

The simplest unicast protocol is a stop and wait protocol. In this protocol, the source
sends its message and waits for an acknowledgment from the single receiver before
sending another message. Advantages of this protocol i!nclude a single message buffer
requirement both at the source and receiver, and a simple implementation.
Extending the stop and wait paradigm to a multicast protocol results in a rather
simple protocol which supports only a single source and static multicast groups and
does not provide any fault tolerance. The acknowledgment scheme uses positive ac-

knowledgments. Sequence numbers are only single-bit, since at most one packet is



outstanding at any one time. The proposed multicast stop and wait protocol also
includes several options: random wait intervals before sending acknowledgments, and
using either unicast or multicast messages for retransmissions. The basic multicast
stop and wait protocol using unicast retransmissions will be described first, followed
by the options.

The protocol requires that all receivers and the sender agree on a multicast address
and the composition of the multicast group. This can be done either statically or by a
preliminary negotiation phase. The sender initializes its data structures, which include
a single message buffer, and one timer, retransmission count and acknowledgment

buffer per receiver. The sender checks its tr ission queue for to be

sent; if the queue is not empty, the sender encapsulates the first message with the
following header information: the sender’s address (source), the previously agreed
upon multicast address (destination), the sequence number of the message (0 for the
first message), and a message type of data. The resulting packet is then multicast to
the local area network, a timer is started for each receiver, and the sender enters a

waiting phase.

)
The receivers initialize themselves to expect a data message with sequence number

0, and prepare a single message buffer. Then, the receivers wait for messages. Once
a message has arrived for a particular receiver, either explicitly addressed to it or
destined for the previously agreed upon multicast address, the receiver checks if the
message number is the expected message number. If so, the receiver prepares a unicast

packet with a message type of ACK, the sequence number of the message being ac-

17



knowledged, the receiver’s address as the source address, and the sender’s address as

the destination, and sends the packet. It then i its expected num-

ber by one (note the sequence number is a single-bit quantity), and resumes waiting

for messages.

When an acknowled is lost, the number of a message received will
not be the expected sequence number. When this occurs, the receiver will prepare
and send an acknowledgment message as described above, but does not update its
expected sequence number. This ensures that lost acknowledgment messages are
eventually resent.

When a sender is in its waiting phase one of two events may occur; either an
acknowledgment is received or a timer expires. If an acknowledgment is received, the

sender will check if the number ined in the acl led, message

is the sequence number of the currently outstanding message, and whether the source
of the acknowledgment is among the multicast group. If the acknowledgment passes
both validity tests, then the acknowledgment buffer for the corresponding receiver is
updated, and its timer reset. i

The sender now checks if all receivers have received the currently outstanding

Tod

message by ining the acknowled, vector ining the ackni

buffers for each receiver. If all receivers have received the message, then the sender

o

determines that the message has been Ily and reliably multi and therefore

gathers timing information for performance statistics, re-initializes its data structures,

including invalidating all active timers, increments the current sequence number, and
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informs the upper layer application protocol of its success. It is now ready to send the
next message in the transmission queue as described above. If some of the receivers
have not acknowledged the currently outstanding message, then the sender continues
in the waiting phase.

If a timer expires, then the sender ludes that the corresponding receiver has

not received the current message. Note that the sender cannot distinguish between
the case where the receiver does not receive the message, and the case where the ac-
knowledgment packet sent by the receiver does not arrive at the sender. The sender
checks that the retransmission count for the receiver. If this does not exceed the max-
imum retransmission count, the sender prepares and sends a unicast retransmission
of the current packet to the receiver whose timer expired, and also increments the
appropriate retransmission counter.

If the maximum retransmission count has been exceeded, then the protocol fails,
having been unable to successfully transmit the multicast message reliably within the
allotted time. However, an implementation may just note the failure and continue;
relying on an upper layer to detect and correct the problem. This is done in order to
place an upper bound on the amount of time used to transmit a message; it is also
often the case that upper layer protocols will have some error detection and correction

mechanisms that will permit the communication to continue.




2.5.1 Adding Randomly Timed Acknowledgments

In an Ethernet CSMA/CD environment, the multicast stop and wait protocol dis-
cussed above can cause congestion in the network. To see why this is so, consider

the case of 10 nodes of relatively equal processing power and load participating in a

1ti communication. All nodes will simul ly receive the multicast commu-
nication, process it and attempt to send an acknowledgment message on the Ethernet
medium. The most likely scenario is that a slightly faster node captures the Ether-
net medium, causing all other nodes to wait until the first idle period to send their
acknowledgments. When the nodes then attempt to send their acknowledgments, a
collision results. While it is true that the collision contention algorithm of CSMA /CD
will attempt to prevent further collisions in the future, at least one collision detection
cycle must occur for this to happen. So, a variation on the multicast stop and wait

protocol discussed above attempts to prevent collisions from occurring by building

in a random wait interval to be observed by all receivers before an ackne
message is transmitted.

The random wait interval is implemented as followg: the upper bound of the ran-
dom wait interval is chosen for all receivers; when a receiver is ready to transmit an
acknowledgment message, it selects a random number within the chosen time interval,
and delays sending the acknowledgment message for this amount of time.

We expect this variation in the multicast stop and wait protocol to improve
throughput values significantly, mainly due to a reduction in the number of colli-

sions. The probability of collisions decrease as the chosen wait interval becomes

20



larger; however, the delays incurred transmitting acknowledgments as the interval
increases can also reduce throughput.

This interval also affects other parameters of the protocol, most notably the timeout
value used by the sender to determine when a receiver has lost a message. If this value
is not chosen with the maximum random wait interval in mind, the sender may send
unnecessary retransmissions because it believes that a receiver has lost the current
message although the acknowledgment may have been purposefully delayed. The
network congestion thus caused may result in a significant deterioration of protocol

performance.

2.5.2 Varying the Retransmission Method

Multicast packets in an Ethernet network may be lost in one of two ways. Either the
entire multicast packet is garbled on the bus and no node receives it, or particular
nodes have difficulty grabbing the packet off the wire. In the first case, it should be
obvious that multicast retransmissions are more effective than unicast retransmissions;
once the initial multicast packet is lost, using unicast retransmissions reduces the
protocol to multiple point-to-point transmissions to correct the error.

In the second case, if the number of receivers which lost any one packet is two or
more, the amount of time required for retransmissions is significantly reduced if the
retransmissions are multicast. The second variation on the multicast stop and wait
protocol discussed above uses multicast retransmissions instead of unicast retrans-

missions in order to improve protocol performance.
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Multicast retransmissions are simple to implement. Retransmissions use the same
multicast packet format used for the original transmission of a message; the only signi-
ficant changes to the above protocol description are the use of a single retransmission
count and timer instead of one retransmission count and timer per receiver previously

required. Note that the ics of the i number of issil para-

meters is changed; in the original protocol, this placed an upper bound on the number
of retransmissions per message to any one node, in the modified protocol, this places

an upper bound on the total number of retransmissions per message.

2.6 Multicast Block Acknowledgment Protocol

The previous multicast stop and wait protocol requires, for r receivers, r acknow-
ledgment messages per message. The multicast block acknowledgment protocol is a
simple enhancement to the multicast stop and wait protocol which reduces the number
of acknowledgment messages required per message. The multicast block acknowledg-
ment protocol allows a block of n messages to be transmitted at once; each receiver
will send one acknowledgment message acknowledging‘the successful receipt of some
or all of the block of messages.

The proposed multicast block acknowledgment protocol supports only single-source
transmissions with static multicast groups. It guarantees totally ordered messages,
uses a positive acknowledgment scheme, and attempts to prevent network congestion

by “piggybacking” several acknowledgments in one message, but does not include any
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fault tolerance. It requires an n message buffer at the sender, but only needs a single
message buffer at each of the receivers.

The sender, which has a maximum window of size n, may send up to n multicast
messages at once to the multicast group. The receivers in the group will send one

acknowledgment response acknowledging all n received messages. The sender pro-
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cesses the acknowledgments and sends the next n Under ideal
no messages or acknowledgments will be lost and the protocol would be quite simple.
However, in more realistic environments, the protocol must be prepared to handle lost

packets, and other errors, adding to the complexity of the protocol.

Similar to the stop and wait protocol di earlier, have seq
numbers associated with them to ensure synchronisation of messages between the
sender and receivers. In the stop and wait protocol, however, the sequence numbers
are either 0 or 1, reflecting the fact that at most one message was outstanding at
one time. In the block acknowledgment protocol, the sender has a window of up to
n messages which may be outstanding at one time. The range of sequence numbers

must therefore be 0 to (2n — 1) [22]. The next sequenoe number can be calculated as
$i 4 1 = (si + 1) modulo 2n. (2:1)

The sender’s window is defined as the ordered list of sequence numbers corres-
ponding to currently outstanding messages, which may be fully specified by giving
the current size of the window, ¢, the sequence number of the first message sent in the
window, s, and the maximum size of the window, w. Given this specification of the
sender’s window, we can test whether a message falls into the window. As well, given
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a vector of sequence numbers representing the last message acknowledged by each
of the receivers, we can calculate the most recently sent message acknowledged by
all the receivers. This calculation is done by determining the rank (ordering) of each
sequence number within the current window, selecting the lowest rank, and converting
the rank back into a sequence number.

The sender must keep all the messages in its window in a buffer; if a message is
lost, the sender must retransmit the lost message and all subsequent messages in the
current window. The sender must also keep a vector of acknowledgments, one per
receiver, to be able to calculate how many messages in its window have been correctly
received by all receivers, and another vector to count the number of retransmissions
per message in the current window. The sender also has one timer, which is used to
bound the amount of time spent waiting for acknowledgments from receivers.

Fach receiver keeps a count of messages successfully received but not acknow-
ledged, the maximum size of the sender’s window, and the sequence number and
source of the last message received. It also uses a timer, which is used to bound the

amount of time before an acknowledgment is sent. i

The sender and receivers participating in the multicast block acknowled,
protocol must agree on the maximum window size used by the sender, the multicast
address for the group, and the membership of the group. This is done either statically
or with a negotiation phase before communication starts.

The communication is initiated by the sender, which sends up to n messages to the

multicast group. The active window is initially of size zero, with a starting sequence
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number of 0. Each message has the appropriate header information attached, including
the source sender’s address, the destination multicast group address, and the sequence
number of the message, and is copied to the sender’s n message buffer. As each
message is sent, the sender’s packet timer is set to the packet timeout value, and the
sender’s window is increased by one. The result is a window of up to n outstanding
messages, starting at sequence number 0.

The sender then waits for acknowledgments from the receivers. When one does
arrive, the sender validates the acknowledgment by checking that the source of the
packet is one of the multicast group, and its sequence number falls within the currently
active window. If the acknowledgment is a duplicate, that is, it has been received and
processed before, then the sender continues waiting for acknowledgments.

Otherwise, the sender processes the acknowledgment by first updating the ac-
knowledgment vector to include the newly received acknowledgment. This is done by

setting the validity bit and copying the sequence number of the acknowledgment into

d di

the slot of the acknowl vector cor to the source of the acknowledg-
ment packet. The last acknowledgment received fromr all receivers by the sender is
then calculated as outlined previously. If there is at least one message in the currently
active window which has been acknowledged by all receivers, then the calculation of
last acknowledgment will result in the sequence number of the most recently sent
message in the currently active window to have been acknowledged by all receivers.

The sender can now advance its window by the number of messages acknowledged.

First, the upper layer is notified of the successful transmission of the acknowledged
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messages. Then, the current window is advanced by recalculating the current win-
dow parameters, and resetting the appropriate slots in the acknowledgment vector
and message buffer. The sender now checks for messages in its transmit queue, and
transmits as many messages as its window will allow. The procedure for transmitting
the message is the same as described above, with the exception that sequence numbers
continue in sequence.

The sender can also receive a packet timer expiry event while waiting for acknow-
ledgments. A packet timer expiry event occurs when the sender has been waiting
for some time for acknowledgments which have not arrived. In this case, the sender
assumes that all or some of the messages outstanding in its window have not been
properly received, If the retransmission count has not been exceeded, the sender re-
transmits all the messages in its currently active window, updating the retransmission
counts appropriately. The retransmission limit bounds the amount of time required
to send messages, however, the protocol fails if the retransmission count is exceeded.

The receivers are initialized with the size of the sender’s window, a value of —1
for the last sequence received, etc., and enter a waiting phase. In the waiting phase,
the receivers wait for messages from the sender. When a message arrives, the receiver
verifies that the message is the next message in the sequence; if it is not, then the mes-
sage is discarded without acknowledgment. However, if the message is valid, then the
receiver updates its counter for messages correctly received but not yet acknowledged
and resets the acknowledgment delay timer. When this message counter is equal to the

size of the sender’s window, the receiver transmits a unicast acknowledgment to the
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sender acknowledging all the messages in the sender’s window and resets the message
counter.

When the acknowledgment delay timer expires, the receiver has been waiting for
a message from the sender for some time. The receiver assumes that either a message
from the sender has been lost or the receiver’s previous acknowledgment has been
lost. The receiver sends an acknowledgment to inform the sender of its current status
and sets the acknowledgment delay timer once more. All messages correctly received

are acknowledged by including the number of the last successfully received

message in the acknowledgment packet.

This rather simple block acknowledgment algorithm can reduce the number of ac-
knowledgments per message by a factor of £ over the previous multicast stop and wait
protocol in ideal conditions. We define ideal conditions to be an error-free environ-

ment with a steady supply of to be transmitted. When n are sent

to r receivers under these conditi the previously disc: d multi stop and wait,

algorithm requires nr acknowledgments. Multicast block acknowledgment, however,
only requires r acknowledgments. Since up to n messages can be transmitted without
waiting for an acknowledgment, the receiver in a multicast block acknowledgment
protocol will attempt to accumulate several messages before sending any reply. It
will then send a single acknowledgment message when either no messages have been
received for some time or all n messages have been received. Under the ideal condition
described earlier, each receiver will send a single acknowledgment for all n messages,

resulting in a total of » acknowledgments for n messages. This improvement, espe-
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cially when the number of outstanding messages n is related to the number of receivers
7, improves the scalability of the protocol and therefore its performance as the number

of nodes increases.

2.6.1 Adding Randomly Timed Acknowledgments

The multicast block acknowledgment protocol suffers from the same problem as the
multicast stop and wait protocol: acknowledgments from the receivers are transmitted
all about the same time, causing excessive collisions in an Ethernet environment. The
same solution can be applied for this protocol as well; transmission of all acknowledg-
ments is delayed to some random time within a specified interval, thus reducing the
probability that two or more acknowledgments are sent at exactly the same time.
The interval to be used when implementing randomly timed acknowledgments
must be carefully chosen; this interval will affect other protocol parameters such as

the packet timeout value used by the sender.

2.7 Kaashoek, Tanenbaum et al.

The protocol presented is a simple reliable broadcast [24]. If the group of nodes is
determined beforehand, then this broadcast protocol can be trivially modified to work
in a multicast environment. We will present it as a multicasting protocol, describing
any changes required.

The protocol supports static multicast groups, and multiple senders. Tt guarantees
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globally ordered messages through the use of a sequence node. It uses a positive ac-
knowledgment scheme which is coupled with explicit retransmission requests for quick
response to missed messages. The acknowledgment scheme also attempts to reduce
the number of separate acknowledgment messages required by piggybacking acknow-
ledgments onto multicast request messages and using implicit acknowledgments for
sequences of properly received messages. However, the protocol as described has no
fault tolerance, and is particularly vulnerable to a failure of the sequence node. The
authors do suggest an extension of the protocol to include an election procedure to
replace the single sequencer node on failure. Buffer requirements at both sender and
receiver are flexible, since the protocol will use any available resources, and can adapt
to differing resource levels dynamically. Of course, the amount of buffer resources
available will impact the performance of the protocol.

For the purposes of this description, a distributed system is defined as a group
of n processes which communicate via a broadcast network. Each process runs on a
separate node, which has a kernel process (for the operating system and networking
software) and an application process. Any of the application processes can send
messages to all other processes at any instant.

The protocol will make use of a special node called a sequence node to coordinate
all multicasting activities. The sequence node has the responsibility of sequencing
outgoing multicasts, and ensuring that all nodes receive the messages correctly. All
the nodes have the ability to be the sequence node, but only one should act as the

sequence node per multicast conversation.
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The protocol is initialized by electing a sequence node from among the nodes in
the multicast group. All nodes should be informed of this choice as well the multicast
address to be used throughout the multicast communication. This is only a slight
modification from the broadcast case, where only the sequencer node’s address is
required by the nodes (since the broadcast address for a network is usually fixed).

A process wishing to send a multicast message will pass the message to the kernel

1 1t

process, which then p it into a point-to-point request message which
is sent to the sequence node. The sequence node receives and buffers the message,
assigns it a unique sequence number, and multicasts the message over the network.
Reliability is achieved by having each of the nodes in the network keep a counter
of the sequence number of the last message received. If a message is received and its
sequence number does not correspond to the sequence number expected, then the node
has missed one or more messages in between. The node sends a point-to-point re-
transmission request message to the sequence node, requesting the missing messages.
It also buffers the out of sequence message received, and waits until the missing mes-

sages are received before it passes along the messages in the correct sequence to
1

the application process. If no buffers are available, then the node just discards the

message, and sends another retr ission request to the seq; node.

To reduce overhead, the nodes do not acknowledge every multicast message re-
ceived. Acknowledgments are piggybacked to multicast request messages sent to the
sequence node. A number k in the sequence number field of the header of a multic-

ast request message informs the sequence node that all multicast messages up to and
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including k have been received by the node. The sequence node keeps a table of the ac-
knowledgments sent by the nodes; if all nodes have acknowledged receiving up to and
including some sequence number j, then all messages with sequence numbers less than
or equal to j in the sequence node’s buffer are deleted. As well, if a node has not sent
a multicast request to the sequence node for some time, it sends a dummy multicast
message to the sequence node to keep it informed of recent acknowledgments.

If, due to excessive data loss in network, the sequence node has exhausted its
buffer space, it stops accepting multicast requests and performs a synchronization
protocol utilizing two-phase commit to ensure that all nodes have received all multicast
messages. All nodes are sent a phase 1 synchronization message, which informs the

nodes of the last number tr itted by the node and instructs

them to send up-to-date information on their latest multicast message received. The
sequence node then uses this information to retransmit all missing messages to all
nodes. Once all nodes have acknowledged their missing messages, the sequence node
enters phase 2, deleting all messages in its buffer and informing all nodes that the
synchronization is completed. The nodes reply with anyacknowledgment, and normal
operation is resumed.

Message headers have the following fields:

struct header {
unsigned int type;
unsigned int sequencelr;
unsigned int messagelNr;
unsigned int senderID;
unsigned int destID;
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The information contained in the header and its interpretation differs slightly based
on the type of message. Valid message types are DATA (multicast request), MUL-
TICAST (multicast message), RETRANS (retransmission request), PHASEI (phase
1 intention message), PHASE2 (phase 2 message), ACK_.COMMIT (acknowledgment
message for 2 phase commit).

If the message type is DATA, then the sequenceNr field holds the piggybacked
acknowledgment from the node to the sequencer; this sequence number is the sequence
number of the last consecutive multicast message received by the node. The senderID
identifies the node making the multicast request; the destID is the address of the
sequencer node to which the multicast request is being sent. The messageNr uniquely
identifies messages from this node and is used to discard duplicate multicast requests
from the same node.

If the message type is MULTICAST, the sequenceNr field holds the sequence
number of the multicast message contained in the body of the message as assigned
by the sequencer node. The senderlD is the address of the sequencer node; while the
destID is a multicast address. ¢
If the message type is RETRANS, then the sequenceNr field holds the sequence

number of the message being requested for retransmission. The senderID is the ad-

dress of the node making the r ission request; the requires this ad-
dress to correctly address the point-to-point message containing the missing message
to the requesting node. The destID is the address of the sequencer node to which the

retransmission request is directed.
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If the message type is PHASEIL, it signals the beginning of a synchronization phase
whose purpose is to send all outstanding multicast messages to all nodes and flush
the buffer of the sequencer node. The sequenceNr field holds the sequence number of
the last broadcast message sent by the sequencer node. The senderlID is the address
of the sequencer node; while the destID is a multicast address.

If the message type is PHASEZ, it signals the second phase of the synchronization
phase. Tt informs the nodes that the sequencer has completed the synchronization and
normal operation will resume once all nodes have acknowledged the message.

If the message type is ACK_.COMMIT, the node is informing the sequence node
that it is up to date. The sequencrNr field holds the sequence number of the last
consecutive message received by the node; the senderID is the address of the sending

node; and the destID is the sequencer node’s address.

2.8 Erramilli and Singh

The second protocol from the literature is by Erramilli afxd Singh [14]. It is a multicast
protocol designed for a broadband broadcast network, which is characterized by high
bandwidth, low error rates, and relatively low cost buffering. In order to maximize
throughput, the authors argue that a protocol designed for this environment should
reduce processing time for network transmission,/reception at the expense of higher
network bandwidth and buffer requirements.

This protocol supports static multicast groups and either single (lecture mode) or
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multiple senders (conference mode). It guarantees that messages sent by individual
senders will be received in order by all the receivers, but does not provide a consistent
global ordering of messages. It uses a negative acknowledgment scheme coupled with
timers and status messages to provide reliability. Buffer requirements for the senders’
buffer is fixed, while the receivers’ buffer requirements are not as clearly defined; re-
ceivers may have a fixed buffer pool or may dynamically grow and shrink the buffer in
response to changing requirements. The protocol attempts to avoid network conges-
tion by reducing the number of acknowledgments required during periods of intense
network activity at the expense of adding overhead status messages during more idle
times. As well, the protocol includes some rudimentary flow control mechanisms to
prevent buffer overflow in the receivers. A simple fault detection mechanism, which
allows all multicast group nodes to detect node failures by monitoring network activ-
ity, is provided. Although the protocol does not fail when a node fails, the protocol
does not provide any means of reconstructing the thread of communication once a
node recovers.

This protocol is differentiated from other multicast protocols mainly by the para-
meterization of its behaviour into several important variables. These variables control
the amount of buffer space, B, required by the sender(s), the number of repetitions,
K, and timer intervals, Ty and T, for status/sanity messages, the valid range of se-
quence numbers, 1... N, and timer intervals for flow control, T5. The correct values
to use will depend on the underlying characteristics of the physical network environ-

ment, including its error rate as well as expected traffic patterns and network delays.
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Changes in these values will modify the behaviour and performance of the protocol;
if these values are ill-chosen, the protocol may fail.

In presenting this protocol, the authors make the following assumptions: the mul-
ticast group management and control is done by some other protocol; the underlying
network environment is a broadband broadcast network with low error rates, high
bandwidth, relatively inexpensive buffering, and physical muiticasting capabilities; all
nodes in the network are relatively equal in terms of processing power and buffer-
ing capabilities, thus flow control is not an important issue; and absolute ordering of
messages from different senders is not required.

As well, in order to simplify the buffer management at the sender, an implicit back

window of B is assumed. The last B sent are kept in a buffer in
case retransmission is required. The increased buffer requirement is balanced by the
reduced processing time which would be required in order to determine what mes-
sages have been acknowledged by all nodes and therefore can be discarded from the
buffer. However, it is important to note that if B is not chosen carefully, then the pro-
tocol could fail when a negative acknowledgment (NAK) message arrives requesting
retransmission of a message which has been flushed frdm the buffer.

The protocol assumes that the initialization of the multicast group, including ne-
gotiation of the parameterized values N, B, K, Ty, T, and Tj, have been performed
by some other protocol. In order to keep the implementation of the protocol simple,
this initialization will done as previously discussed for other protocols. One node will

send the designated multicast group address, as well as the above values (no negoti-
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ation), to all nodes using unicast reliable transmission. When all nodes have positively
responded, then the multicast protocol can begin.

All senders keep any messages sent in a buffer sendBuf of size B. They also keep
the sequence number of the next message to be sent in a variable nextSeqToSend.
Note that each sender has an independent stream of data messages to transmit and
thus, messages are uniquely identifiable by a combination of the message source and
its sequence number. Sequence numbers range from 1...N. In order for messages
stored in a sender’s buffer to be uniquely identifiable, the cardinality of the set of
sequence numbers must be greater than the size of the sender’s buffer, B.

When an application wishes to send a multicast message to the group, the sender
prepares the message by encapsulating it with a header specifying the source address
of the transmission, the sequence number of the message, the designated multicast
address as the destination address, and a data message type. The prepared message
is placed in the sender’s buffer sendBuf. If the maximum buffer size of B has been
reached, the sender simply replaces the least recently sent message with the newly
sent message. y

The prepared message is then multicast to the group, the sequence number of
the next message, nextSeqToSend is incremented by one modulo N, and the timer
Ty is reset. If the timer 7y expires before the sender has to send another multicast
transmission to the group, then the sender will prepare and send a status/sanity
message containing the following information in the header: the source address of the

status/sanity message, the multicast group address as the destination, the sequence
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number of the next message to be sent, nextSeqToSend, and a message type of status
or sanity, as appropriate. The purpose of this message is to inform all receivers of
the sequence number of the next message to be transmitted if that message is not yet
available, and allows receivers to detect lost messages from a particular sender when
the sender is idle and has no data messages pending.

The status/sanity message is sent only during idle periods for the sender, initially
up to K times in time intervals of T}, subsequently falling back to a much longer time
interval, T,. The transmission of sanity /status messages ceases immediately when the
sender has data messages pending, and resumes when the sender is once again idle.
If a sender never sends any messages, status/sanity messages are sent in intervals
of T, during the communication. If the messages are being sent in intervals of T},
the messages are referred to as status messages; if these messages are being sent in
intervals of 75, they are termed sanity messages.

If a sender receives a NAK message from any of the receivers, it searches its buffer,
sendBuf, for the requested message, and retransmits that message. The protocol is
not clear whether retransmissions are directed to the intended receiver, or multicast

to the whole group. A multi tr ission would add p ing time at each of

the receivers, as each receiver must examine the incoming retransmission to determine

if it is required or is to be discarded. Since this protocol attempts to keep processing

times to a minimum, retransmissions should probably be unicast transmissions.
Receivers must keep the following information about each of the potential senders:

the sequence number of the next expected data message from each sender, the timestamp
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of the last received status/sanity message from each sender and a receive buffer
recvBuf for each sender. In a multicast group of M + 1 nodes, this information
is kept in a table of M entries.

If an incoming message is a data message, then the sequence number of the data

message is compared to the expected number from the appropriate sender.

If this sequence number is less than the expected one, then the newly arrived data
message is a duplicate, and can be discarded. If this sequence number is exactly equal
to the expected sequence number, then the message is accepted and placed in the
receive buffer to be delivered to the application upon request. The expected sequence
number for this sender is then incremented by one modulo N.

If, however, the sequence number of the data message is greater than the expected
sequence number for this source, then the receiver has lost one or more data messages
from this source. The receiver now prepares a negative acknowledgment message
(NAK) to be directly sent to the source, with the following information: the source
address of the data message as the destination address, the receiver’s address as the
source address, and the expected sequence number frol‘:n this sender.

If an incoming message is a status/sanity message, then the timestamp value of

the source of the message is updated to reflect the arrival of the status/sanity mes-

1

sage. The sequence number of the message is compared to the next,
number for that sender; if the values are equal, then no messages have been lost. If
the expected sequence number is less than the value advertised by the status/sanity

message, then this receiver has lost one or more messages from the source of the
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status/sanity message. The receiver, therefore, prepares and sends a negative ac-

knowled, message ining the source address of the status/sanity message as
the destination, its own address as the source, and the next expected sequence number
from the sender.

Node failures are detected by receivers whenever the time interval between the
timestamp of the last received status/sanity message and the current time exceeds T5.
Thus, any node failure is detected by all nodes within 7 of its occurrence.

The protocol achieves a simplified form of flow control by having a node which is
in danger of overrunning its buffer send a timed-choke message to all members of the
multicast group. This message contains a time interval T3, which is the amount of
time the node is requesting to clear up its backlog in order to receive messages again.

Note that all the multicast group nodes are both senders and receivers. This
means that the implementation of the protocol must include both the receiver and
sender functions at each node. Even in lecture node, nodes which do not send data
messages are regularly sending sanity messages in order to inform all nodes of their

current status. r

2.9 Chang and Maxemchuck

The protocol proposed by Chang and Maxemchuck [6] is described as a broadcast
protocol, but it is really a multicast protocol with static multicast groups. Notable

features include the ability to reduce control message overhead in high message traffic,
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and the ability to continue the c ication in the of multiple site failures,

including failure of the token site, without any loss of committed messages. Chang and

Maxemchuck’s work actually describes a family of multi protocols, diffe iated

by their fault tolerant properties, message latency and site storage requirements.

The protocol only supports static multicast groups, but does support multiple
sources. All messages from a single source are ordered as sent, and messages from
different sources are totally ordered. The protocol uses a unique combination of pos-
itive and negative acknowledgment schemes to balance the advantages of both. It also
avoids congesting the network by piggybacking other functions to acknowledgment
messages, and reducing the requirement for acknowledgment messages through a neg-
ative acknowledgment scheme. Fault tolerant features include frequent rotation of the
token site responsibilities, as well as a sub-protocol to construct a fully functional
subset of the multicast group in the presence of multiple site failures.

The philosophy of this protocol is to model a multiple source/multiple receiver mul-
ticast system as a combination of multiple source/single receiver and single source/multiple
receiver subsystems to reduce the complexity of the protocol. The advantages of this
division should be clear: the single receiver system simplifies the sequencing of mes-
sages from different sources, while a single source/multiple receiver system can be
exploited to reduce the number of acknowledgment messages through the use of neg-
ative acknowledgments.

The multiple source/single receiver subsystem is implemented by channeling all

multicast messages through a single token site, which issues unique timestamps,
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thereby totally ordering all messages from multiple sources. This subsystem uses
a positive acknowledgment scheme between the source and the token site to expli-
citly acknowledge each multicast message sent, and also utilizes the acknowledgment
message to disseminate to all sites the timestamp generated by the token site. The
single source/multiple receiver subsystem is implemented by the interaction between
the token site and all the other receivers. The token site stores all messages not yet
committed by all sites, and can thus handle all retransmission requests, which are
specified in negative acknowledgment messages from the receivers to the token site.

Since the token site now is a single point of failure for the protocol, the responsib-
ilities for the token site are rotated among all sites in the multicast group. Resiliency
is added by delaying the passing of messages to the application until it has been re-
ceived properly by at least a specified number of sites; this number is directly related
to the number of failures the protocol can tolerate before failing altogether. The re-
siliency mechanism is piggybacked onto the token passing mechanism, thus reducing
the number of control messages required.

The family of protocols is generated by varying the token passing rate and the
resiliency of the protocol. Increasing the token passing rate as a function of the
message rate increases the number of control messages required per broadcast, but
also decreases each site’s storage requirement. Increasing the resiliency of the protocol
increases the message latency. Note, however, that increased resiliency does not affect
the number of control messages required when a steady stream of multicast messages

1abl

is avai since the resili 1

is piggybacked onto the token passing
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mechanism. It does require additional control messages when no multicast messages
are available.

The authors suggest that the best performance is obtained when the token passing
rate is one token transfer per multicast message, since this requires only one control
message per broadcast when the system is busy and two control messages per broad-
cast when the system is idle (assuming a resiliency of 1). While the resiliency value
does not affect the number of control messages required when the system is busy, it
will require additional control messages when the system is idle.

The protocol has two phases, the normal phase and the reformation phase. During

1t d

the normal phase, are and acknowledged. Retrans-
missions of lost messages and acknowledgments occur, and the token is transferred
as needed. During the reformation phase, no messages are multicast, and the sites
perform a three phase protocol to construct a new list of operational sites.

All nodes store the next timestamp expected (to detect lost messages), the next
sequence number expected from each source (to detect duplicate multicast messages),
the version number of the current token list (to detegt discrepancies in token lists
used), the actual token list (fo commit messages and to decide which node should be
the next token site), and queues of received messages and acknowledgments.

The protocol sends three types of messages with varying purposes and information.
A multicast message is sent from a source to all the sites (but is acknowledged solely
by the token site), and contains the address of the source, the sequence number of

the message (with respect to the source), the multicast address of the group, and
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the data. An acknowledgment message is sent from the token site to all sites, and
contains the timestamp (which totally orders this message with respect to all others
in the system), the token site address, and the source and sequence number of the
message being acknowledged. The acknowledgment message may also pass the token
to the next token site, and therefore also carries the next token site address, and
the version number of current token list for this purpose. If the token site is not
transferred, then these fields contain the current token site and no action is taken.
As well, if the token must be passed but no message needs to be acknowledged, the
acknowledgment message contains empty fields for all the acknowledgment data. The
last type of message sent by the protocol is the confirmation message, which is sent
by a new token site to all sites, acknowledging receipt of a token. This message is
only sent if, when the token is transferred, the new token site has no messages to be

1 ol

committed or d after some desi d timeout period.

2.9.1 Normal phase

Sources send multicast messages whenever the messag[s become available. However,
each source must wait for an acknowledgment from the token site before sending sub-

sequent multicast Thus, the ication between each of the sources

and the token site follows a stop and wait strategy. Each source orders its own mes-
sages with a unique sequence number consisting of the source address and its sequence
number. This ordering reflects the transmission order of the multicast messages.

If an acknowlegement for a multicast message is not received after a designated
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timeout period, the source retransmits the message up to R times, after which the
source decides that the token site has failed, and commences the reformation phase.

The current token site processes incoming messages as follows: If the incoming
message is a multicast message, the token site checks to see if this is the next expected
message from the message’s source. If not, then the message is a duplicate which has
already been acknowledged, the message is discarded, but the acknowledgment is
repeated. If it is the expected message, then the token site timestamps and buffers the
message, and increments its next timestamp value. It prepares the acknowledgment
information for the acknowledgment message. It decides whether the token should be
transferred (this depends on the token passing rate). If the token is to be transferred,
then the token site determines which is the next token site from the current token list
and adds that information to the acknowledgment message before transmitting the
message to all sites.

If the incoming message is a retransmission request for either a multicast message
or an acknowledgment message, then the token site retransmits the required message
to the requesting site. Note that, in this protocol, ackpowledgments may need to be
retransmitted since they not only acknowledge a multicast message but also provide
the timestamp information that the receivers require to order multicast messages.

Note that the token site continues to process retransmission requests after it has
attempted to pass the token to the next site. This is necessary to allow the next token
site to bring its buffers up to date so it can accept the token. It does not, however,

acknowledge multicast messages during this time. If the new token site cannot accept
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a message during this period, the source will retransmit the message up to R times.

The next token site can accept the token if it has all the messages and acknow-
ledgments received by the previous token site. This is true if the next token site can
process the acknowledgment which carries the token. To accept the token, the next
token site either acknowledges the next broadcast message, transfers the token to the
next site on the token list, or, in the absence of messages to be acknowledged or com-
mitted, transmits a confirmation message after a designated timeout period. If the
token cannot immediately accept a token transferred to it, the site will request from
the previous token site all messages and acknowledgments it requires in order to ac-
cept the token. Once all these messages and acknowledgments have been successfully
received, the next token site will accept the token as described above.

All sites are actively receiving all broadcast messages, and the timestamped ac-
knowledgments (including the token passing information). Each site attempts to pro-
cess all incoming transmissions as follows: if the transmission is a multicast message,
then the site will check the sequence number of the message for duplication or missed
messages. If the message is a duplicate (the sequence pumber is less than the expec-
ted sequence number for tha source), then the message is discarded. If messages are
missed (the sequence number of the message is greater than the expected sequence
number for that source), then the message is discarded, but a retransmission request
for the missing message(s) is sent to the current token site.

If the incoming message is an acknowledgment, the site checks the timestamp of the

acknowledgment against the next expected timestamp. If this timestamp is less than
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the expected timestamp, then the acknowledgment is a duplicate, and is discarded. If
the timestamp is equal to the next expected timestamp, then the site checks to see if
the message being acknowledged has been received. If it has, then the site orders the
message with respect to all other received and acknowledged messages and increments
its next expected timestamp. If it hasn’t, the site transmits a retransmission request
for the missing message to the current token site. The site also checks to see if it
can commit any messages at this time. Messages are committed only after the token
has been transferred at least L times after a message has been acknowledged. This
condition ensures that at least L sites have received the message.

The normal phase continues until a node initiates a reformation, based on the
assumption that a failure has occurred. The reformation phase simply regenerates a
list of operational sites using a three phase protocol. More details on the reformation

process can be found in Maxemchuck and Chang [6].
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Chapter 3

The Simulator

3.1 Introduction

Studying the behaviour of multicast protocols in an Ethernet LAN is resource-intensive,
requiring a number of computers interconnected in a testbed network with monitor-
ing software. We have developed a simulator that allows study of the behaviour and
performance of multicast protocols without a dedicated testbed network. The simu-
lator is designed to allow easy integration of different rhulticast protocols. We use the
simulator to study the two basic multicast protocols described earlier, the stop and
wait and block acknowledgment protocols.

The multicast protocols to be studied fall into the logical link (LLC) sublayer of
the data-link layer as described in the OST reference model. These protocols use the

services of the media access (MAC) sublayer, which in turn uses the physical layer



services to actually transmit data on the Ethernet bus. The simulator follows this
layered approach: the Ethernet LAN is modelled by two layers, the physical and
MAC layers, while alternative multicast protocols are modelled as alternate logical
link layers. This approach provides the flexibility to develop and use alternate logical
link layers in the same simulation framework for comparison.

As in the OSI reference model, the logical link layer (LLC layer) of the simulator

is responsible for the sequencing of multicast messages, error detection, and the trans-

mission and retransmission of multi as specified by the protocol. This
layer accepts requests for the transmission of messages from higher layer applications
which use the multicast protocol and guarantees that multicast messages are reliably
received by all recipient nodes. Each multicast protocol included in the simulator is
implemented as an alternative logical link layer.

The MAC and physical layers of the simulator model the Ethernet LAN. The media
access layer is responsible for all details of access to the Ethernet media, including
resolving collisions by implementing the adaptive backoff policy, and the transmission
and reception of Ethernet frames. The physical laye!: of the simulator models the
details of the hardware interface and the Ethernet bus, including the transmission and
reception of data bits, transmission of the jamming signal when a collision occurs,
sensing when the Ethernet media is busy, and detecting a collision.

A diagram of the simulator is found in Figure 3.1. A description of the various

layers as implemented in the simulator follows.
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3.2 MAC layer

The MAC layer protocol is fairly complex, since it must be able to send and receive
frames (encapsulating the data and acknowledgment packets sent/received by the
logical link layer) and is driven by requests from both the logical link layer above it
and the physical layer below it. The MAC layer protocol is identical for all nodes in
the network. The MAC layer will receive any frames accepted by the physical layer,

and pass them up to the logical link layer. It will also transmit frames as requested

by the logical link layer, retransmitting frames if occur. Retransmissions of

frames are governed by the adaptive backoff policy, which specifies the minimum time
intervals at which retransmissions may occur.

The MAC layer takes packets placed in its transmit queue and transmits them one
at a time. Transmission at the MAC layer merely passes the packet to the physical
layer for actual transmission on the medium; however, the MAC layer is entrusted
with the details of retransmissions should a collision occur. The physical layer sends
every MAC layer one of three events for any relevant activity occurring on the medium:
siizeas feckive on Collision. A subesss svent iutboms MEMAG Iayerithat theipaclict
it passed to the physical layer for transmission was indeed successfully transmitted.
A collision event informs the MAC layer that the packet it sent was involved in a
collision. A receive event informs the MAC layer that a frame destined for it was
received. The physical layer does not signal the MAC layer of a node if the frame
“on the wire” is not destined for it; thus, the number of receive events processed by

the MAC layer is the same as the number of interrupts which must be serviced by an
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actual Ethernet adapter card.

In the case of a collision event, the MAC layer must implement the adaptive
exponential backoff algorithm as specified by the Ethernet standard. The algorithm
works in the following manner: for the ith retransmission attempt, where i is less
than 16 attempts, select a random number between 0 and 9min(i10)  Thig integer is
the number of slot times (512 bit times) the MAC layer is required to wait before it
may retransmit again. The MAC layer implements this wait by passing a transmit

request to the physical layer with a delayed start time. Once the 16th attempt has

been unsuccessful, the MAC layer is required to discard the frame and continue.

3.3 Physical Layer

The physical layer of the simulator models the behaviour of the Ethernet hardware

and bus; however, many of the details of this behaviour does not affect the latency

of data/acknowled packets d by the logical link layer, and therefore do
not affect any of the parameters we wish to measure. In the interest of simplicity, the
physical layer model encompasses only those aspects \‘Nhich affect these parameters,
mainly collision detection, and frame transmittal times.

Some assumptions are made in order to simplify the model. Collisions are always
the maximum collision window, 32 bit times. In an actual LAN, the collision jam-
ming signal is only sent as long as necessary for the colliding nodes to recognize the

collision; this depends on the distance between the colliding nodes. We assume that
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the small fixed interframe gap which exists between the end of a transmission and
the first possible transmission time is zero, instead of its usual small value. Since
this parameter is fixed, it will not affect relative timings, and only minimally affect
comparisons with actual timings.

The physical layer of the simulator examines all of the physical layer requests
from each communicating node’s MAC layer, and makes a decision to either transmit
a frame, detect a collision, or remain idle, adjusting the global time variable accord-
ingly. Each physical layer request will have a time associated with it; this is the time

the MAC layer r d the tr: ission. The simulator ines the physical layer

request queue, which is ordered by the requested transmission time, for impending
requests. If two or more nodes request transmission at the same time, then the simu-
lator “detects” a collision and places collision events in the event queues of the MAC
layers of the nodes involved in the collision. The global simulation time is advanced
by the maximum collision window, 32 bit times. If only one node requests transmis-
sion, then the first request is “transmitted” by sending a receive event (containing the
packet) to the MAC layers of the node(s) receiving the packet, and a success event to
the MAC layer of the node transmitting the packet. The simulator then advances the
simulation time by the time required to transmit the packet. If there are no impending
requests, nothing is done and the medium is deemed to be “idle”.

Whenever the simulation time is advanced, all the requests in the physical layer
request queue whose time is less than the newly advanced time is adjusted to the new

time. This behaviour is meant to simulate the carrier sensing ability of the Ethernet
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hardware interface; all Ethernet adapters can “sense” when the channel is busy with
another transmission, and defer any transmissions to the first “idle” time. Note that
the carrier sensing ability cannot prevent collisions; nodes may attempt to transmit
simultaneously. In actual practice, a nonzero signal propagation delay extends the
amount of time a collision may occur to the amount of time required for the signal to
propagate from one transmitting node to another, although we will not be including

this window into our calculations.

3.4 Error Model

Errors which may occur in an Ethernet network environment include packets dropped
by an interface on transmittal or reception of a frame (possibly due to buffer overflow
or the inability of the interface to keep up with full speed, large volume traffic), and
garbled messages on the media (due to surrounding interference, improper wiring
and termination, and/or the inability to detect collisions within the allotted collision
window). For our purposes, the results are the same: a lost packet. Thus, we base our
error model on the former, and randomly dropped pacl{ets on transmission/reception
at individual interfaces. We also assume that the error rates on both transmission and
reception are equal, that is, it is equally likely that an interface will drop an outgoing
packet as an incoming one.

The implementation of the error model is done at the MAC layer, on receipt or

packets at an error

transmittal of a packet, by randomly
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rate. Thus, this model includes errors by the sending node which prevent the packet
from being transmitted, as well as errors by the receiving node in which a packet is
dropped before being processed by the MAC layer. In a multicast environment, this
implies that a multicast packet may be dropped in one of two ways: either by the
sending node, resulting in none of the multicast group ever receiving the packet, or by

Fl malt cast

one or more receiving nodes, resulting in a partially tr

3.5 Performance Statistics

An important aspect of the simulator is how it measures the performance of the

protocols it simul; The simul prod the following data for each packet
sent:
e unique packet ID, used for tracing a packet throughout the simulation process

.

size of the data packet, used to calculate data throughput.

current window size, used to calculate average laténcy per message for the block

acknowledgment protocol.

time the packet was sent by the LLC layer.

time the packet was determined to have been reliably received by the LLC layer

sender. Note that in the block ack led, protocol, are acknow-

ledged in groups, and therefore the calculation of latency per message is an
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average based on the current window size and the latency incurred in transmit-

ting the entire group.

calculated total latency, based on the two times given above.

calculated average latency, calculated as total latency averaged over the current

window size.

number of LLC layer retransmissions.

an indication of failure of the protocol due to excessive retransmissions; set to

1 if number of retransmissions was exceeded, 0 otherwise.

This data is provided in an output file, formatted as a header detailing the values
of the simulation parameters for each simulation pass, followed by the data collected
in that pass. A sample of the output is provided below:

Pkts=100 Recs=3 Data=1518 Ack=64 FailRate=0 Reps=1 Proto=BAP BAPWin=1 BAPPktT=115680
BAPACkT=95000 BAPrand=6000 Date=Sun Aug 4 12:01:27 1996

1 1518 1! 0 16780 15780 15780.00 o o
2 1518 1 15780 33893 18113 18113.00 o o
B 1518 1 33893 52491 ¢ 18598 18598.00 00
4 1518 1 52491 69372 16881 16881.00 o o
5 1518 1 69372 84225 14853 14863.00 o o
6 1518 1 84225 99785 15560 15560.00 0 o
7 1518 1 99785 117367 17582 17682.00 o o
8 1618 it 117367 135567 18200 18200.00 o o
9 1518 1 135567 153258 17691 17691.00 o o
10 1518 1 153258 167145 13887 13887.00 oo
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3.6 Simulation Parameters

A simulation is performed by executing the simulator with an input command file
which specifies the user-configurable parameters of the simulation. The simulator
produces an output file, which contains some header information for each simulation
pass followed by the timing data generated by the simulator. The simulator can also
produce a logging file on request; the logging file contains a play-by-play description

it executes, and can be used to explain protocol behaviour.

of the simulation 4
The command file allows users o specify many general and protocol-specific para-

meters of the simulation. A sample command file is given below:

Sample Configuration File for Simulation Program

Simulation is run with STARTRECS receivers up to ENDRECS receivers, using an increment

of INCRRECS each time; using STARTPKTS packets up to ENDPKTS packets using an increment

of INCRPKTS each time; with a failure rate of STARTFAILRT up to ENDFAILRT, using
an increment of INCRFAILRT each time, etc.

Synta
# as first character in line - comment line
VARIABLE = value - one space before and after the

#
#
#
#
#
#
#
#
#
#
#
#

Name of log file; if empty, no logfile is produced
LOGFILE = (
#

# Name of statistics file; default name is statsfile.
STATSFILE = bapwin.dat

#

# Protocol simulated: valid values are
# SAW (stop and wait)
# BAP (block acknowledgment).

#

PROTO = BAP

#

# Start of number of receivers interval
# valid range 2 - 100

#  default:
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STARTRECS = 3
#

# End of number of receivers interval
#  valid range 2 - 100

#  default:

ENDRECS = 21

#

# Increment for number of receivers imterval
#  valid range 1 - 98

#  default:

INCRRECS = 1

#

# Size of data packets
#  valid range (64 - 1518 bytes)
#  default = 1518

#

STARTDATAPKTSIZE = 1518
ENDDATAPKTSIZE = 1518
INCRDATAPKTSIZE = 1

#

# Size of ack packets
# valid range (64 - 1518 bytes)
#  default = 64

#

STARTACKPKTSIZE = 64
ENDACKPKTSIZE = 6¢
INCRACKPKTSIZE = 1

# SAV timeout semantics

#  Valid Values: constant, formula

2

#

SAWTIMEOUTMETHOD = formula
#SAWTIMEQUTMETHOD = constant
#

# SAV timeout values

#

STARTSAWTIMEOUT = 20000
ENDSAWTIMEOUT = 40000
INCRSAWTIMEOUT = 5000
#

# SAW Random Wait values
#

STARTSAWRANDWAIT = 6000
ENDSAWRANDWAIT = 6000
INCRSAWRANDWAIT = 500

#




# SAV retransmit limits
#

STARTSAWRETRANSLIM = 10
ENDSAWRETRANSLIM = 10
INCRSAWRETRANSLIN = 1

#

# SAV retransmission method
# unicast, multicast

#

SAWRETRANS = multicast
#SAWRETRANS = unicast

#

# BAP timeout semantics
#  Valid Values: constant, formula

#
BAPPKTTIMEOUTMETHOD = formula
#BAPPKTTIMEOUTMETHOD = constant
#

# BAP pkt timeout values

#
STARTBAPPKTTIMEOUT = 1000
ENDBAPPKTTIMEOUT = 1000
INCRBAPPKTTIMEOUT = 100
#

# BAP ack delay timeout values
#

STARTBAPACKTIMEOUT = 96000
ENDBAPACKTIMEQUT = 956000
INCRBAPACKTIMEOUT = 10000

#
# BAP window sizes

#
STARTBAPWIN
ENDBAPWIN = 20
INCRBAPWIN = 1

#

# BAP Random Wait values

#
STARTBAPRANDWAIT = 6000
ENDBAPRANDWAIT = 6000
INCRBAPRANDWAIT = 500

#

# BAP retransmit limits
#

STARTBAPRETRANSLIM = 20



ENDBAPRETRANSLIM = 20
INCRBAPRETRANSLIN = 1
#

# Start of number of packets interval
#  valid range 1 - 5000

# default:
STARTPKTS = 100
#

# End of number of packets interval
# valid range 1 - 5000

ENDPKTS = 100

# default:

#

# Increment for number of packets interval
#  valid range 1 - 5000

INCRPKTS = 1
#  default:
#

# Start of data failure rate interval
#  valid range 0 - 100

# default:

STARTFAILRT 0
#

# End of data failure rate interval
#  valid range 0 - 100

#  default:

ENDFAILRT = 0
#

# Increment for data failure rate interval
# valid range 1 - 100

#  defaul
INCRFAILRT = 2 P
- (

# Number of repetitions of simulation
#* valid range 1 - 100
# default: 10
REPETITIONS 1
Many of the parameters allow for a range of values with a specified stepping value;

one or more simulation passes are performed over the entire range of parameter values.

The data thus produced can then be summarized over the range of values, illustrating
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the effect of varying the parameter on protocol performance. Using several ranges for
different parameters can result in a wealth of data useful for studying the interactions
between parameters on protocol performance and scalability.

General simulation parameters are given below:

® LOGFILE: The name of the output log file when logging is enabled. The logging
output includes all the actions performed by the simulator while transmitting
packets. It is useful to show why a protocol behaves as it does; it is also used

in debugging.

STATSFILE: The name of the output data file produced by the simulator.

 REPETITIONS: The number of times each simulation pass is performed. Useful

when a large number of data points is desired for statistical analysis.

STARTRECS, ENDRECS, and INCRRECS: These parameters specify the range of re-

ceivers used in the simulation.

STARTDATAPKTSIZE, ENDDATAPKTSIZE, and INCRDATAPKTSIZE: These paramet-
ers specify the range of data packet sizes used fa the simulation. The values
must fall within the range of 64 bytes to 1518 bytes as specified by Ethernet.
The parameters are included to analyze the protocol performance under higher
leveliapplizations with yarying | daa payloadstediramentst For example, a fls
transfer application used by a distributed database systern can maximize data
payloads; while an interactive terminal session application used by  conferen-

cing system could not.



o STARTACKPKTSIZE, ENDACKPKTSIZE, and INCRACKPKTSIZE: These parameters
specify the range of acknowledgment packet sizes used in the simulation. Again,
the valid range is 64 bytes to 1518 bytes. It is likely that most protocols will use
an acknowledgment packet size of 64 bytes, the minimum allowable packet size
under Ethernet. However, the flexibility to use large acknowledgment packet
sizes is provided for protocols that may want to “piggyback” other information

onto the packets.

® STARTFAILRT, ENDFAILRT, and INCRFAILRT: These parameters specify the range
of error rates used in the simulation. The error rate is the rate at which packets
are randomly dropped by the MAC layer interface of all nodes. The error rate

is expressed as an integer percentage.

PROTO: specifies the protocol to be used in the simulation. Valid values are SAW

for the stop and wait protocol, and BAP for the block acknowledgment protocol.

User-configurable parameters for the stop and wait protocol include values for
sender timeouts, type of retransmission method, and the use of randomly timed ac-

knowledgments. These are described below:

o STARTSAWTIMEOUT, ENDSAWTIMEOUT, and INCRSAWTIMEOUT: These parameters
specify the range of SAW timeout values used in the simulation. and are ex-
pressed in bit times. The SAW timeout is the amount of time the sender waits

for acknowledgments once a data packet has been sent before deciding that the
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packet has been lost and retransmitting. The semantics of the SAW timeout

differ when unicast or multicast retransmissions are used.

When the protocol uses unicast retransmissions, this value is used to set one
timer per receiver; each timer expires individually if an acknowledgment from
the corresponding receiver has not been received by the sender. When the
protocol uses multicast retransmissions, only one timer is used; if any of the
acknowledgments have not been received before expiry, the sender retransmits

the data packet in a multicast transmission.

SAW timeouts occur due to errors, such as dropped packets. In fact, the purpose
of the SAW timeout is to detect such errors. If a SAW timeout occurs because
the timeout value is not large enough to accommodate the time required for the

sender to receive and process acknowledge data packets from receivers, then the

resulting y” retr issions can cause ion in the network, in-
crease message latencies and reduce overall throughput. Simulating the protocol
under varying conditions with a range of timeout values can help determine the

best timeout value under specific conditions.

SAWTIMEQUTMETHOD: This parameter specifies the method used to calculate the
SAW timeout. If the method is constant, then the range of timeouts specified
in the command file is used as the timeout value; if the method is formula, the
range of values given in the command file are used as an increment to a base

timeout value calculated based on the number of receivers, the transmission time
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of data and acknowledgment packets, and the interval used for randomly timed

acknowledgments.

SAWRETRANS: This parameter specifies the retransmission method, unicast or
multicast, to be used by the protocol. Valid values are multicast or unicast.
Unicast retransmissions are directed at receivers which the sender believes to
have lost packets; multicasting retransmissions are sent in multicast packets
to all nodes of the multicast group whenever the sender believes that any of
the receivers has lost a data packet. The first method reduces the processing
overhead on nodes which do not require retransmissions; the second reduces
network congestion when more than one node requires a retransmission. The
simulator can be used to determine under what circumstances one method results

in better throughput value than the other.

STARTSAWRETRANSLIM, ENDSAWRETRANSLIM, and INCRSAWRETRANSLIM: These

parameters specify the range of maximum retransmissions used by the SAW
protocol in a simulation. The SAW protocol uses the maximum retransmis-
sion value to bound the latency of any one mes;age; it is used to ensure that
the protocol terminates under all conditions. By making this parameter user-
configurable, the simulator permits the user to determine how much protocol

performance is allowed to degrade.

STARTSAWRANDWAIT, ENDSAWRANDWAIT, and INCRSAWRANDWAIT: These paramet-

ers specify the range of random wait intervals used by the SAW protocol in a
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simulation, and are expressed in bit times. A receiver randomly chooses the
amount of time to delay the transmission of an acknowledgment from within
this interval. This interval therefore bounds the amount of delay incurred when
using randomly timed acknowledgments. As the interval gets larger, the prob-
ability of collisions among the receivers decreases; however, the probability of

significant delays increases.

The simulator’s implementation of the block acknowledgment protocol allows user
configuration of the maximum BAP window size, various timeouts including the sender
timeout and receivers’ acknowledgment delay timeout, the retransmission limit, and

the interval for randomly timed acknowledgments. These are described below:

o STARTBAPWIN, ENDBAPWIN, and INCRBAPWIN: These parameters specify the range
of maximum window sizes used by the simulation for the BAP protocol. The
maximum window size specifies the maximum number of messages which may
be sent by the sender at one time; this value is static over a single simulation
pass. As the window size is increased, the numbef of acknowledgments required
is reduced; however, the number of messages which must be retransmitted when
an error occurs also rises. The simulator can be used to determine which window

size provides the better performance in environments with specified error rates.

STARTBAPACKTIMEOUT, ENDBAPACKTIMEOUT, and INCRBAPACKTIMEQUT: These
parameters specify the range of acknowledgment timeout values used by the

simulation for the BAP protocol, and are expressed in bit times. This timeout
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value is the amount of time a receiver will wait without receiving additional
data packets before deciding that the sender is either not sending more packets
or has lost a previously sent acknowledgment packet. The timeout causes the
receiver to retransmit an acknowledgment of currently received packets to the
sender. This timeout can occur when packets are lost, but also when the sender
does not have enough data to transmit to fill its maximum window. Thus, this
parameter affects performance even under error-free conditions. The simulator
can be used to study the effect of modifying this parameter under varying BAP

window sizes and error rates.

STARTBAPPKTTIMEOUT, ENDBAPPKTTIMEOUT, and INCRBAPPKTTIMEOUT: These
parameters specify the range of sender timeout values used by the simulation
for the BAP protocol. The BAP sender timeout specifies the amount of time

1 g

the sender waits for a before itting the current window.

This parameter affects how quickly the protocol responds to errors. Again, a

tradeoff is involved: low values for sender timeout may result in “unnecessary”

retransmissions. '

BAPPKTTIMEQUTMETHOD: This parameter specifies the method used to calculate
the BAP packet timeout. If the method is constant, then the range of timeouts
specified in the command file is used as the timeout value; if the method is
formula, the range of values given in the command file are used as an incre-

ment to a base timeout value calculated based on the number of receivers, the
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transmission time of data and acknowledgment packets, the interval used for

randomly timed acknowledgments, and the BAP acknowledgment timeout.

e STARTBAPRETRANSLIM, ENDBAPRETRANSLIM, and INCRBAPRETRANSLIM: These
parameters specify the range of maximum retransmissions used by the simula-
tion for the BAP protocol. As in the SAW protocol, the retransmission limit
parameter bounds maximum message latencyj it is used to ensure the protocol

simulation will always terminate.

STARTBAPRANDWAIT, ENDBAPRANDWAIT, and INCRBAPRANDWAIT: These paramet-
ers specify the range of intervals to be used in the simulation for the imple-
mentation of randomly timed acknowledgments in the BAP protocol and are
expressed in bit times. As in the SAW protocol, a good choice for this interval

should reduce the probability of collisions and the resulting network congestion.

3.7 Adding new Protocols

Extending the simulator to include other protocols requfres the implementation of new
LLC layers implementing the additional protocols. A new LLC layer must use existing
data structures to communicate with the lower layer MAC protocols, and follow a few
conventions to work within the existing simulation framework.

The simulator uses the convention of a global variable of enumerated type ProtoType
to distinguish among the different protocols when necessary. Current valid values are

SAW and BAP. For each new protocol to be added, a new value should be chosen to
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represent the protocol, and the definition of ProtoType modified appropriately.

The suggested overall structure of a LLC layer consists of a receiver and sender
module together with supporting functions. For each module, a list of possible event
types should be defined. These events should stored in an event queue for processing
by the modules. The sender module should also have a transmit queue to store
impending transmit requests. Both modules should define a global structure to store
information about the current state of the simulation; this may include items like
packet buffers, window parameters, etc, but must include an LLC event queue, which
is used by the lower MAC layer to inform the LLC layer about events pertaining to
e

The LLC/MAC layer interface consists of the MAC layer function transmitMAC,
and the LLC event queue. The transmitMAC function is used by the LLC layer to
pass along transmit requests to the underlying MAC layer, and is declared as follows:

void transmitMAC(PktInfo *pkt, SimTime time);

This function takes the given packet and request time and adds it to the MAC layer
transmit request queue for processing. :

The LLC event queue is the mechanism by which the MAC layer informs the
upper LLC layer of relevant events, such as the arrival of a data or acknowledgment
packet. The type of events supported may differ among sender/receiver modules and
protocol implementations. Therefore the MAC layer differentiates between the various
protocols when passing event information up to the higher protocol-dependent LLC

layer. Thus the implementor is required to add code to the MAC layer module which
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adds the LLC event to the event queue referenced by relevant module’s LLC global
data structure.

The simulator monitors protocol performance by tracking the amount of time re-
quired for a sender to transmit a packet and verify its transmission. The simulator
uses a global structure for this purpose. The PktsStatsStruct structure is defined
as follows:

typedef struct {

int pktID;

int size;

int fail;
SimTime 1llcStart;
SinTime 11cEnd;
int llcRetrans;
int 1lcWin;

} PktStatsStruct;

For protocols with single message buffers such as stop and wait, the global variable
pktStats of type PktStatsStruct is used to store the timing data until transmission
of the packet has been confirmed by the sender. For protocols with several outstanding
messages, a global vector winStats of type PktStatsStruct is used, containing one
record for each outstanding message. The function PrintPktStats is provided to
write the timing data to the output data file in the correct format.

It is the responsibility of the LLC layer to initialize the global structures when
sending a packet, add the timing data when the transmission has been confirmed, and
call the printPktStats function to write the results to the output data file.

Timers in all layers (LLC and MAC) are implemented by timer variables, which

contain expiry times. The timers are normally stored in the global data structure for
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the module which uses it. All timers are checked by the checkTimers function every
time the simulation time is advanced; only the physical layer and a special utility
function which advances the simulation time in idle periods are permitted to change
the overall simulation time. The checkTimers function should be modified to include
all timers required by the new protocol; the code should check if a timer has expired,
and place the correct event in the event queue of the appropriate module.

It is recommended that future extensions to the simulator use the logging feature
to log the progression of the new protocol through the simulation. This is not only
useful for debugging the protocol, but also for verifying that the protocol is working as
expected and for closely studying how the protocol behaves in specific circumstances.
The following print-like function is provided for this purpose:

void plog(char *format, ...);

The simulator uses the global variables, contLLC, contMAC, and contPhys, to de-

termine whether a simulation pass has leted. A simulation pass is complete if

all these variables are set to 0. The variables are initialized to 0 at the beginning of
each iteration through the execution of LLC, MAC afd physical layers. The layers
are responsible for setting the appropriate value to 1 whenever the layer completes
execution with outstanding requests and/or work to be done. The LLC layer, there-
fore, must determine whether subsequent invocations are required to complete the
simulation pass, and set the contLLC variable appropriately.

Another set of global control variables are LLCactivity, MACactivity, and

physActivity. These variables are set by the layers whenever any activity occurs in

68



the corresponding module, and are used by the simulation to advance the simulation
time whenever all layers are idle. The time is advanced to the time of the first expired
timer; the event triggered by the timer will cause activity in at least one of the layers.
It is the responsibility of the new LLC layer to set the LLCactivity variable whenever
the execution of a sender/receiver module produces activity in this layer.

An important feature of the simulator is the configurability of simulation para-
meters via a command file. Any new protocol added to the simulator is likely to
have a few user-configurable parameters. These parameters are specified in the com-
mand file, which is parsed by the simulator during initialization. The parsing of the
command file is performed by the parseConfigFile function, which returns a large
data structure containing all the user-configurable parameters. This structure is used
by the main function of the simulator to perform simulation passes. Parameters can
be added by adding code to parse and check valid values of the parameters in the
parseConfigFile function, and extending the simParams data structure to accomod-
ate the new parameters.

Many of the parameters in the command file specify a range of values for specific
protocol variables to assume in separate simulation passes. The main body of the
simulator uses looping constructs which execute a simulation pass to implement these
ranges. New protocols utilising new parameter ranges will have to add new looping
constructs to the main function.

A simulation pass is executed using the function runSim which will have to be

modified slightly to include calls to the new LLC layer sender/receiver modules. This
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function uses the global variable proto to determine which LLC layer modules to

execute for a simulation run.
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Chapter 4

Simulation Results

The simulator is used to study the workings and performance of the multicast stop
and wait and block acknowledgment protocols. Simulation runs using varying para-
meter values are performed on both protocols and the results analysed and compared.
The raw simulation results are processed by programs written using the SAS System
[26] [27] of statistical analysis software, which calculate the following performance
measures: a throughput ratio relative to an equivalent unicast protocol, an absolute
it e TR Sl s e e T e Y | s
summary tables and the plots of relative throughput, absolute throughput and mes-
sage latency presented in this chapter. A sample program is given in Appendix A.
The results of this analysis are presented and the observed behaviour of the protocols

is explained.
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4.1 Theoretical Bounds

Before discussing the results of the simulations, we first attempt to define theoretical
bounds on throughput and message latency values for both the stop and wait and block
acknowledgment protocols. We will derive these results for an Ethernet network with
no other network traffic.

We have previously defined the relative throughput of a multicast protocol to be
the ratio of the absolute throughput of the protocol to the absolute throughput of the
equivalent unicast protocol. The absolute throughput of the unicast stop and wait

protocol is given as follows:

bRy (1)
rd+ra+8
where r is the number of receivers, d is the transmission time of a data packet, a is
the transmission time of an acknowledgment packet, and S is a synchronisation factor
(all times are expressed in bit times). The numerator is the amount of time required
to send useful data, while the denominator is the total transmission time, including
i
ackniowledgments/and synchrohisation: i
The synchronisation factor is present to allow for transmission delays incurred by
the underlying network environment. In the case of Ethernet, this synchronisation
factor includes the amount of time spent dealing with media contention and collision

resolution. For the unicast stop and wait protocol in ideal (no other network traffic)

conditions, no collision resolution or media contention is required, resulting in a syn-
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chronisation factor of zero. The absolute throughput for the unicast stop and wait

protocol is, therefore,

rd
rd +ra

(4.2)

Despite the absence of other network traffic, the synchronisation factor when using
multicast stop and wait protocol is significant. Several nodes may attempt to acknow-
ledge multicast packets simultaneously, causing one or more collisions. (One of the
factors which may skew the times the receivers attempt to send acknowledgments is
variances in processing times among receivers; however, these variances are unlikely
to eliminate collisions entirely.) The synchronisation factor used in the calculation
of the absolute throughput of the multicast stop and wait protocol is, therefore, the
amount of time spent in collision resolution. This is highly dependent on the Ethernet
adaptive backoff algorithm and is a function of the number of nodes attempting to
simultaneously access the network medium.

The absolute throughput of the multicast stop and wait protocol is given by:

rd
Trra+Ci) )
where r, d, and a are as before and C(r) is the collision resolution time. Note that only
one data packet is sent, as opposed to the r packets sent using the unicast protocol.
Using equations 4.2 and 4.3, we obtain the following equation for the relative

throughput of the multicast stop and wait protocol with respect to the unicast stop

and wait protocol for a given number of receivers r:
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dffa;:z,m (4.4)

To calculate the upper bound for this relative throughput value, we first observe
that the best throughput will be achieved when the collision resolution function C(r) =
0, meaning that all packets are transmitted one after another, perfectly scheduled, with
no collisions or unnecessary delays. Thus, we arrive at the following equation for the

upper bound of the relative throughput of the multicast stop and wait protocol for a

given number of receivers r:

rd+ra
d+ra

(4.5)

Note that this equation is dependent on the number of receivers r; increasing
the number of receivers will increase the upper bound. However, this increase in
relative thoroughput does not continue indefinitely, as Figure 4.1, which plots upper
bound relative throughput versus number of receivers for a data packet size of 1518
bytes and an acknowledgment packet size of 64 bytes, clearly shows. We find the
maximum relative throughput value for multicast stob and wait by calculating the

limit of equation 4.5 as r — 0o
rd+ra
o
% dtra

Solving this limit:
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d+a
a

(4.7)
This result is significant because it places a limit on the improvements which
can be achieved by merely increasing the number of receivers involved in a multicast
communication using the multicast stop and wait protocol.
Thus, the maximum relative throughput of the multicast stop and wait protocol
with a data packet size of 1518 bytes and an acknowledgment packet size of 64 bytes

is:

1518 + 64
= =24.719 4.
1 (48)

The block acknowled protocol i put by requiring only one

acknowledgment for a block of messages, thus reducing overhead due to acknowledg-
ments. In a multicast environment where the number of acknowledgments required is
directly related to the number of receivers, this improvement can be significant. We
compare the throughput performance of the multicast block acknowledgment protocol
to the equivalent unicast block acknowledgment protocol. We assume that we always
have enough data available to transmit entire blocks.

We calculate the throughput of the unicast block acknowledgment protocol as

follows:

rnd

rnd+ra+8 9)

where 7, d, a and S are as defined previously, and n is the size of the window.
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Under ideal conditions (no other network traffic) in an Ethernet environment, the
synchronisation factor is zero, and the throughput of the unicast block acknowledg-

ment protocol is given by equation 4.10:

;#jm (4.10)

The throughput performance of the multicast block acknowledgment protocol, like
the multicast stop and wait protocol, must include the effect of collision resolution,
even in ideal (no other network traffic) conditions. The absolute throughput of the

multicast block acknowledgment protocol is given by:

#ﬁcm (4.11)
where C(r) is the collision resolution time, which is a function of the number of
receivers r.
Using equations 4.10 and 4.11, we derive the following equation for the relative
throughput of the multicast block acknowledgment protocol with respect o the unicast
e

block acknowledgment protocol:

rnd + ra

nd +ra+C(r) )
‘We note that the upper bound of this equation occurs when C(r) = 0. Thus the

upper bound relative throughput of the multicast block acknowled; protocol is:
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rnd + ra I
T ()

Calculating the limit of equation 4.13 as r — oo will result in an equation for
the maximum relative throughput achievable by the multicast block acknowledgment

protocol for a given window size n:

nd+a
a

(4.14)

Thus, the upper bound on the relative throughput of the multicast block acknow-
ledgment protocol with a window size of 5, a data packet size of 1518 bytes and an

acknowledgment packet size of 64 bytes is:

W — 119504 (4.15)

Similarly, the upper bound on the relative throughput of the multicast block ac-
knowledgment protocol with the same parameters as above but a window size of 10
is:

10 x 1518 + 64

= 238.1 ;
= 38.187 (4.16)

Increasing the window size to 15 results in an upper bound relative throughput of:

15 x 1518 + 64

= 356.7 4.17
= 356.781 (4.17)
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These asymptotes are clearly visible in Figure 4.2 which plots upper bound through-
put against number of receivers for window sizes 5, 10, and 15.

‘When we attempt to define an upper bound for message latency, we find that the
statistical nature of collision resolution of the Ethernet environment on which these
multicast protocols are based prevents such a calculation. When two or more nodes in
an Ethernet collide, both nodes must randomly choose to retransmit within a specified
time interval, which grows exponentially with successive collisions. The likelihood of
successive collisions is, therefore, reduced significantly with each collision, but is never
eliminated. It is possible, although unlikely, that a packet will never be transmitted
due to collisions. Thus, since the underlying Ethernet environment cannot guarantee
packet delivery within a specific time frame, the multicast protocols using Ethernet as
the network medium cannot guarantee it either. Since none of the multicast protocols
can provide an upper bound of message latency, they are not the best choice for
applications with stringent real-time requirements, such as process control. Note,
however, that this applies to any protocol using Ethernet as the underlying network,
not just multicast protocols. 4

Although not as useful, we can arrive at a lower Rl message latency
for both the stop and wait and block acknowledgment protocols. The lower bound can
be used as a check for the simulation results, and provides some basis for comparison
to average latency results. It can be used to calculate how much of the average latency
is due to overhead such as collision resolution and retransmissions.

For the multicast stop and wait protocol, the lower bound for message latency is
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calculated based on the minimum time required to send one multicast message and

all iated acknowled The following equation rep a lower bound for

message latency:

d+ra (4.18)

where d is the transmission time of a data packet, r is the number of receivers, and a
is the transmission time of an acknowledgment packet.

In the case of the multicast block acknowledgment protocol, however, messages are
sent and acknowledged as a block, thus the latency of a single message is the latency
of the entire block of messages. The lower bound latency is therefore calculated for a

block of messages as follows:

dn+ra (4.19)

where n is the maximum window size permitted. Note that this calculation for lower

bound latency assumes that the multicast block acknowledgment protocol always has
¢

enough data available to fill a window; otherwise the lower bound latency is dependent

on the current size of the window.
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Multicast Stop and Wait Protocol
Theoretical Limits
Upper Bound Relative Throughput vs Number of Recoivers
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Figure 4.1: MSAW Performance: Upper Bound Relative Throughput
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Block Acknowledgment Protocol
Theoretical Limits
Upper Bound Relative Throughput v Number of Receivers
Window Sizes 5, 10, and 15
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Figure 4.2: MBAP Performance: Upper Bound Relative Throughput for Window

Sizes 5, 10, and 15
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4.2 Stop and Wait Protocol Performance

A major motivation for the design of multicast protocols is to utilize the hardware
capabilities of the underlying network technology to increase the rate at which identical
data can be transmitted to multiple sites. Thus, it is reasonable to expect that a
multicast protocol should perform better than the equivalent multiple point-to-point
transmissions. We test this premise using the two simple multicast protocols we have
studied, the stop and wait protocol and the block acknowledgment protocol.

In general, we perform simulations by sending 500 packets to 3 to 60 receivers,
using a data packet size of 1518 bytes, an acknowledgment packet size of 64 bytes,
multicast retransmissions, and no randomly timed acknowledgments. The Ethernet
environment is simulated with no errors. Both the stop and wait and block acknow-
ledgment sender timeout values are chosen deliberately high, to prevent premature
timeouts at large number of receivers; we do not want to consider the effects of re-
transmissions at this stage. Changes from this general scheme are noted as appropri-
ate.

We first simulate the multicast stop and wait protofol. The data file produced by
the simulator is then processed through a SAS program, which produced Figure 4.4,
Figure 4.3, and Table 4.1. Figure 4.4 plots absolute message latency against number
of receivers; the entire range of message latency values for a given number of receivers
is plotted as a line with the boxed area representing the 25th to the 75th percentile
ranges. The dotted line plots the lower bound message latency values as derived in

Section 4.1. Figure 4.3 plots relative throughput against number of receivers; the
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entire range of relative throughput values for a given number of receivers is indicated
on the plot, with the joined line representing the mean relative throughput values.
The upper bound relative throughput values are plotted as a dotted line. Table 4.1
summarizes the simulation results, and includes the derived lower bound message
latency and upper bound relative throughput values.

The results presented confirm that the multicast stop and wait protocol performs
better than the equivalent unicast stop and wait protocol on average. The mean relat-
ive throughput results are better for the entire range of number of receivers simulated,
from a low of 3.504 times better at » = 5 to a high of 6.191 times better at r = 50
than those calculated for the equivalent unicast stop and wait protocol.

The simulated multicast stop and wait protocol results also follow the same general
trend as the upper bound theoretical results: rapid improvement eventually levels
at an asymptote. However, the simulated multicast stop and wait protocol reaches
its asymptote much earlier and at a much lower relative throughput value than the
upper bound theoretical results; levelling at 20 receivers and a relative throughput
value of approximately 6.0, while the theoretical resulty indicate a maximum relative
throughput of 24.719 at r > 1000.

The results also show large variability in message latency values as the number of
receivers increases, due mainly to large increases in maximum message latency values.
However, minimum message latency values follow the lower bound message latency
values fairly closely. Despite this variability, 50% of the message latency values fall

within a small range, as indicated by the plotted 25th and 75th percentile message
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latency values.

The better performance of multicast stop and wait is due to the fact that only
one data transmission, as opposed to n separate transmissions, must be sent for
data to be delivered. Thus, the amount of “effective” data sent by the multicast
packet increases linearly with respect to the number of receivers. Moreover, the time
required to send the “effective” data using the stop and wait protocol does not include
the amount of time required for multiple transmissions, as it does when using the
equivalent unicast protocol. At first glance, it might be reasonable to expect the
relative throughput of the stop and wait protocol to grow linearly with respect to
the number of receivers. However, the upper bound theoretical results show this
not to be the case; the increase in the number of acknowledgments required as the
number of receivers increases tempers the gains realized by the increase of “effective”
data, eventually reaching a maximum asymptotic value of 24.719. The simulation
results also exhibit this pattern, albeit at a much lower relative throughput value of
approximately 6.

The lower throughput values achieved by the multicast stop and wait protocol from
the upper bound theoretical results are the effect of the time required to resolve colli-
sion among receivers sending acknowledgments. As the number of receivers increases,
the number of acknowledgments required also increases, causing the probability of
multiple collisions to rise. Moreover, the amount of time required to resolve these
collisions also grows significantly. This effect is clearly demonstrated by the increase

in maximum message latency as the number of receivers grows.
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We conclude that the simple multicast stop and wait protocol has satisfactory per-

formance within the range of receivers simulated, but that imp in throughput
taper at about r = 20.

The results also showed large variability in the maximum and minimum throughput
values throughout the range of receivers. This large variability can be explained by the
statistical nature of collision resolution in an Ethernet environment. The randomness
of this process signifies that the time required to resolve collisions among multiple
nodes can vary greatly from one instance to another, thus causing large variabilities
in message latencies and relative throughput calculations. These variabilities are most
noticeable among larger numbers of receivers, where the effect of collision resolution

on message latencies is quite pr d. M , the statistical nature of collision

resolution also signifies that, on average, collisions will be resolved within a reasonable
time frame, with extreme values occurring more rarely. Figure 4.4 demonstrates this
effect quite clearly, as 50% of the message latency values fall within a relatively small
range.

The above simulation was done using a fixed data !packet size of 1518 bytes, the
largest MTU allowed by Ethernet. We next investigate the effect of smaller data packet
sizes on the protocol’s performance. We can use the upper bound result derived in
Section 4.1 to calculate what the maximum expected relative throughput will be for
various data packet sizes. For example, for the simple stop and wait protocol, the
upper bound on relative throughput when using a data packet size of 1436 is 23.438;

for a data packet size of 848, it is 14.25, and for a data packet size of 64, the upper
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bound drops to just 2.0. Given that the theoretical upper bound throughput declines
significantly as the packer sizes get smaller, we would expect the protocol’s simulated
throughput to drop dramatically as the data packet size decreases. To determine
how much the size of the packets transmitted affects the protocol performance, we
performed simulation runs as before but varying the data packet sizes to be 64, 848,
and 1436 bytes.

Plots of relative throughput versus number of receivers for data packet sizes of 64,
848, and 1436 bytes are given in Figures 4.5, 4.6, and 4.7. Summary results of relative
and absolute throughput are given in Table 4.2. The summary results include the
upper bound relative (UBRT) and absolute throughput (UBAT) calculated for each
7

The results show a marked decrease in performance as the data packet size de-
creases. For data packet size of 1436 bytes, the throughput reaches a high of 5.910
for r = 50, but for a data packet size of 848, the throughput reaches a high of 3.849
for r = 25, subsequently dropping to a maximum throughput of 0.869 at r = 5 for
the minimum data packet size of 64 bytes. It is inte{l:esting to note that the max-
imum throughput value is found at lower number of receivers as the data packet sizes
decrease.

The overall decline in throughput when transmitting smaller data packets is easily

explained by the decline in “effective” data transmitted, while the overhead, such as

o I

tr issions of acki and collision stays relatively constant.

However, another effect is also present as the number of receivers increase: the colli-
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sion resolution time, growing due to the rising collision rate as the number of receivers
increases, dominates over the effect of the linear increases in “effective” data transmit-
ted much earlier. This is due to the fact that the multiplicative factor for the increase
in “effective” data as the number of receivers increase is the size of the data packet
itself; as the data packet size decreases, the increase in “effective” data is affected
accordingly.

We can conclude that the multicast stop and wait protocol’s performance declines
significantly when transmitting smaller packets; its performance as the number of
receivers increases also degrades much earlier for smaller data packets. In fact, for
the minimum data packet size of 64 bytes and receivers r > 3, the multicast stop and
wait protocol is worse than using multiple unicast transmissions.

Both of the above analyses show that the most significant factor affecting the
performance of the stop and wait protocol is the high rate of collisions caused by
acknowledgments. Reducing this high rate of collisions should enhance performance

ificantly. Randomly timed ackn were added to the stop and wait

protocol in order to reduce these collisions. The next ss.mulation attempts to measure
the effectiveness of this technique. Simulation runs were performed using SAWrand
values of 12,000 bit times, 22,000 bit times, and 32,000 bit times.

Plots of relative throughput for SAWrand values of 12,000, 22,000 and 32,000 bit
times are given in Figures 4.8, 4.9 and 4.10; a summary of both relative and absolute
throughput for these SAWrand values is given in Table 4.3. A summary plot showing

the mean relative throughput values for each r with SAWrand values of 0, 12,000,
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22,000 and 32,000 is given in Figure 4.11. This plot also shows the upper bound
relative throughput achievable by the multicast stop and wait protocol.

The results show that using randomly timed acknowledgments improves through-
put significantly throughout the range of receivers. Even the smallest SAWrand value
used, 12,000 bit times, improved throughput for r = 30 receivers from 5.999 using
the simple stop and wait protocol to 8.625, an increase of 43%. The best throughout
achieved was 10.560 for r = 45 and a SAWrand value of 32,000 bit times which is an
increase of 72% over the throughput of 6.156 achieved by the simple multicast stop
and wait protocol for r = 45.

The results also showed that while the throughput gains increased as the SAWrand
values increased, where in the range of receivers those gains were most felt also
changed as the SAWrand values changed. The greater the SAWrand value, the greater
the number of receivers at which the maximum throughput value was observed.

The overall better performance of the protocol when using randomly timed ac-
knowledgments is explained by the reduced collision rate. Since nodes must now wait

for some random period of time within an interval specified by the SAWrand parameter

before tr itting acknowled; the ibility of collisions, and the number of
nodes involved in a collision when one occurs, is reduced dramatically. In turn, this
reduces the amount of time spent resolving collisions, resulting in a stronger influence
from increasing “effective” data rates and less from collision resolution. The overall
effect is significant throughput gains throughout the range of receivers.

As noted earlier, the maximum throughput gains appear at larger number of re-
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ceivers as the SAWrand value increase. Moreover, the throughput gains noticed at
smaller numbers of receivers seem to dwindle as the SAWrand values increase. These
effects are clearly shown by Figure 4.11. For example, the throughput at r = 15 for a
SAWrand value of 12,000 is 7.347; by the time the SAWrand value is 32,000 bit times,
the throughput value for r = 15 has dropped to 4.444, which is even less than the
throughput value of 5.418 achieved by the stop and wait protocol without randomly
timed acknowledgments. This reduction in throughput is caused when the increased
delay incurred when transmitting randomly timed acknowledgments overshadows the
effect of the reduced collision rate. Thus, the usefulness of the SAWrand parameter in
improving protocol performance is linked to the number of receivers participating in a
multicast communication and must be fine-tuned accordingly. It would be advantage-
ous to explore this relationship further; if a formula for calculating the best SAWrand
value for a given number of receivers could be found, it would improve the scalability
of the protocol greatly.

Note, however, the SAHrand value is bounded from above by the SAWtimeout value.
Increases in the SAWrand value must be matched by orresponding increases in the
SAWtimeout value; otherwise, the sender may time out prematurely, causing unneces-
sary retransmissions and network congestion. It is also not advisable to increase the
SAWtimeout value indiscriminately; high SAWtimeout values lengthen the time which

must elapse before the sender can determine that a packet has been lost.
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Figure 4.3: MSAW Performance: Relative Throughput (Mean)
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Stop and Wait Protocol Performance
Message Latency vs. Number of Recsivers
00255075100 Percentlls Simulation Rosults
Theoratical Lower Bound Resuts

Message Latency
400000

300000

Number of Receivers

SAW timeout calculation method = formula
SAW timeout value = 600000

sAW I E
SAW random wait interval =

Figure 4.4: MSAW Performance: Message Latency (Percentiles)
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Stop and Wait Protocol Performance
Relative Thmumnul vs. Number of Receivers
Data Packet Size
1oL e Bhaas ot
1 Upper Bound Resuts

o 10 20 a0 40 50
Number of Receivers

Figure 4.5: MSAW Performance: Relative Throughput for 64-Byte Data (Mean
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Stop and Wait Protocol Performance
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Relative Throughput
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o 10 20 30 a0 50 60
Number of Receivers

SAW timeout calculation method = formula
SAW timeout value = 600000

8NN retaramieain, meiod = mustast
SAW random wait interval =

Figure 4.6: MSAW Performance: Relative Throughput for 848-Byte Data (Mean)
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Stop and Wait Protocol Performance
Relative Throughput vs. Number of RecoNers
1436 Data Packet Size
Hi-Lo - Moan Simulation Resuts

‘Theoretical Upper Bound Resuts

Number of Recelvers

SAW timeout calculation method = formula
SAW timeout value = 600000

SAW retransmission method = multicast
SAW random wait interval = o

Figure 4.7: MSAW Performance: Relative Throughput for 1436-Byte Data (Mean)
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Data Packet Size = 64

54.875
366 107 | 104.637 | 159.362
9.045 | 163.306 5.710 | 2.239 9.301 | 17.058

Table 4.2: MSAW Performance: Absolute and Relative Throughput Summary Results
for Varying Data Packet Sizes
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Stop and Wait Protocol Performance

‘Theoretical Upper Bound Results

Relative Throughput
8

0 10 20 30 a0 50 60
Number of Recevers
SAW timeout calculation method = formula

SAW timeout value = 600000
SAW retransmission method = multicast

Figure 4.8: MSAW Performance: Relative Throughput using a SAWrand Value of
12,000 (Mean)
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Stop and Wait Protocol Performance
Rolative Thr Recalvers

Relative Throughput
8

o 10 20 30 a0 50 60
Number of Receivers
SAW timeout calculation method = formula

SAW timeout value = 600000
SAW retransmission method = multicast

Figure 4.9: MSAW Performance: Relative Throughput using a SAWrand Value of
22,000 (Mean)
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Stop and Wait Protocol Performance
Relative Throughput vs. Number of Receivers
Hi—Mean - Lo Simulation Resuts
Theoretical Upper Bound Rosults

Relative Throughput
8

° 10 20 £ 40 50 60
Number of Recelvers
SAW timeout calculation method = formula

SAW timeout value = 600000
SAW retransmission method = multicast

Figure 4.10: MSAW Performance: Relative Throughput using a SAWrand Value of
32,000 (Mean)
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Recs | Mean AT

26.766

T 50.726

1 70.498 | 3

2 81347 | 4

2 79.334

3 82.761

35 | 78.953

40 | 80152

45 | 78an

50 | 78145

55 75161

60 | 74432 122.267

SAW

Recs | Mean AT Max A

5| 20083
0| 37.088 51126 7331
T5 | 54.187 —62.951 | 9576
20 | 70.868 2,601 T1.308
% | 84T 100.301 12.681
30 | 92.055 930 | 110.941 | 13805
35 | 93792 | 27.046 | 125510 14731
40 | 01974 | 37.047 | 132816 5517
45 | 90.023 | 31.768 | 130.006 16.187
50 | 86337 | 25362 | 132516 X 3810 | 16.766
55 | 86629 | 30.986 | 129517 | 165.721 9,028 13.498 | 17.271
60 | 82085 | 24597 | 120,903 | 169.080 8618 13538 | 17.716

Tecs | Me: Max RT | UBRT

2547 |_4.304
1 399 | 7.331
T 754 | 9.576
2 237 | 11.308
2 X f X x 651 | 12.681
30 | 81809 X £ X X 10.002 | 13.505
35 | o17sd 10919 | 14.731
40 | os85s T2.352 | 16517

45 | 101.330

50 | 100.640 4254 | 16.766
55 96.801 4940 | 17.271
60 93818 5.600 | 17.716

Table 4.3: MSAW Performance: Absolute and Relative Throughput Summary Results
for Varying SAWrand Values
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Stop and Wait Multicast Protocol
Relative Throughput vs. Number of Receivers
Summary Plot For SAWrand Values 0, 12000, 22000, 32000
and Upper Bound Relaiive Throughput
Relative Throughput
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1
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1
1
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10
9
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7
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7
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Number of Recovers
———— UBRT - SAWrnd = 0 —==== SAWrand = 12,000
——— SAWmnd - 22000 —— SAWrand = 32000

Figure 4.11: MSAW Performance: Summary of Mean Relative Throughput for
SAWrand Values 0, 12,000, 22,000 and 32,000
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4.3 Block Acknowledgment Protocol Performance

The multicast block acknowledgment protocol attempts to improve on the performance
of the multicast stop and wait protocol by sending multiple multicast data packets at
a time and acknowledging all the outstanding packets with one acknowledgment per

receiver. This technique reduces the number of acknowledgments required, and there-

fore should increase the throughput obtained by the multicast block acknowled
protocol over the multicast stop and wait protocol. To test this premise, we simulate
the multicast block acknowledgment protocol with window sizes of 5, 10 and 15 from
3 to 60 receivers using 450 packets per simulation. The number of packets is chosen
so that the multicast block acknowledgment protocol can always send full windows
for window sizes of 5, 10, and 15.

Absolute and relative throughput figures for the multicast block acknowledgment
protocol with window sizes of 5, 10 and 15 are summarized in Table 4.4. Plots of
relative throughput versus the number of receivers for window sizes 5, 10 and 15
are given in Figures 4.12, 4.13, and 4.14. These plots also include the upper bound
relative throughput for the appropriate window size as derived in Section 4.1. Finally,
a summary plot of simulated and upper bound relative throughput results for window
sizes of 5, 10, and 15 is given in Figure 4.15.

1t is important to note that the relative throughput values presented in this section
are relative to an equivalent unicast block acknowledgment protocol. This allows us
to compare the performance of the block acknowledgment protocol relative to an equi-

valent unicast version, and demonstrates the effect of using multicasting over unicast
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transmissions. As a result, in order to pare the multi block acknowled,

protocol with the multicast stop and wait protocol, we must use absolute throughput
figures.

The results show that the multicast block acknowledgment protocol does perform
better than the multicast stop and wait protocol, as expected. The multicast stop
and wait protocol has an absolute throughput of 51.992 Mbps for 15 receivers, while
the block acknowledgment protocol has absolute throughput results of 107.216 Mbps,
125.526 Mbps, and 132.387 Mbps for window sizes 5, 10, and 15 respectively for
the same number of receivers. (Note that the absolute throughput values exceed
the theoretical 10 Mbps throughput value of Ethernet; this is due to the fact that

one packet of size d effectively carries rd bits of information when r receivers are

participating in a multi ication).

The results also demonstrate that the relative throughput of the multicast block
acknowledgment protocol with respect to the unicast version improves as the number
of receivers increases. For a window size of 10, relative throughput increases from a
low of 4.781 at 5 receivers to a high of 30.698 at 60 re.geiversA The results also show
that these gains eventually level off, but at different va.iues for different window sizes.

The relative throughput performance of the block acknowledgment protocol also
improves as the window sizes increase. For 30 receivers, the relative throughput in-
creases from a value of 16.289 with a window size of 5, to a value of 20.622 with a
window size of 10, and finally, a value of 22.913 with a window size of 15. Unfortu-

nately, this higher performance does come at a price; the measure of message latency
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in the block acknowledgment protocol includes the latency of all messages in a window
— as the window sizes increase, the message latency increases dramatically.

The improved performance of the multicast block acknowledgment protocol over
the multicast stop and wait protocol is due mainly to a dramatic reduction in the
number of required acknowledgments. For every packet that does not require an ex-
plicit acknowledgment, the number of acknowledgments transmitted is reduced by
the number of receivers r. For example, for 10 receivers and a window size of 5, the
block acknowledgment protocol requires one acknowledgment packet per 5 packets
per receiver, resulting in the transmission of 10 acknowledgment packets as opposed
to the 50 acknowledgment packets required by the multicast stop and wait protocol.
This is a reduction of 40 acknowledgment packets. In general, the multicast block
acknowledgement protocol reduces the number of acknowledgments required from r

r

acknowledgments per message to = acknowledgments per message, where r is the

number of receivers and n is the BAP window size. The effect of fewer acknowledg-

ments is two-fold: the amount of time required for tr issions of ackn
is reduced, and the lesser network traffic reduces contention on the network, redu-

cing the amount of time spent on collision resolution. The effect of requiring fewer

At d

ackno is more pr in the higher range of receivers, where collision

contention is a major factor reducing protocol throughput.

The multi block acknowled, protocol’s performance, like the multicast
stop and wait protocol, also improves as the number of receivers increases. The

increase in the number of receivers improves the “effective” data transmitted per
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multicast data packet; however, this effect is countermanded by corresponding increase
in acknowledgments required. The overall effect is the asymptotic curve shown in
Figures 4.12, 4.13, and 4.14. These results follow the trend exhibited by the upper
bound relative throughput results derived in Section 4.1 and shown in Figure 4.15.
The simulated multicast block acknowledgment protocol, however, does not achieve
the magnitude of the upper bound performance results, due mainly to the effect of
collision resolution.

The multicast block acknowledgment protocol also increases its performance when
larger window sizes are used. This improvement is due mainly to the reduction in the
number of acknowledgments required as the window size increases. For each single
packet increase in the window size, the number of acknowledgments required by the

1ti block ack led protocol is reduced by r, where r is the number

of receivers. As mentioned previously, any reduction in the number of acknowledg-
ments required not only reduces overhead but also lowers the probability of collisions,
thus reducing the amount of time spent resolving collisions. The combined effect on
throughput performance is quite significant. The effect of increasing window size on
protocol performance is clearly demonstrated in Figure 4.15.

However, increasing the window size does add a significant amount of latency to
message delivery. Since messages are now acknowledged as a block, the message
latency of any one message is the latency of the entire block; large window sizes cause
corresponding increases in message latencies. Thus, the multicast block acknowledg-

ment protocol is not suited to licati where quick resp is important, for
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example, interactive multi-user chat sessions. It is, however, particularly well-suited
for high data traffic applications without tight time restraints, such as making multiple
copies of distributed database files.

The failure of the multicast block acknowledgment protocol to achieve perform-
ance close to the upper bound relative throughput results is mainly due to the amount
of time spent resolving collisions as the number of receivers grows larger. As in the
multicast stop and wait protocol, we attempt to overcome this problem by adding
randomly timed acknowledgments to the multicast block acknowledgment protocol.

it ety

To test the effectiveness of this i we the

Iti block acknow-

ledgment protocol for a fixed window size of 10, and BAPrand values of 12,000, 22,000,
and 32,000 bit times.

Plots of relative throughput versus number of receivers for a window size of 10
using BAPrand values of 12,000, 22,000, and 32,000 bit times are given in Figures
4.16, Figure 4.17, and Figure 4.18. Summary relative throughput and message latency
results are given in Table 4.5. A summary plot showing mean relative throughputs for
BAPrand values of 0, 12,000, 22,000 and 32,000, as well as the derived upper bound
relative throughput, is given in Figure 4.19.

The results demonstrate noticibly enhanced throughput performance; for example,
for a window size of 10 and 40 receivers, relative throughput is 27.962 at 12,000, 29.671

at 22,000 and 30.681 at 32,000 bit times. This improvement is achieved for the same

domly timed acknowled reduces the pos-

reasons as in stop and wait: using r

sibility of collisions; thus reducing the amount of time spent resolving collisions. Note
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also the close relationship between BAPrand values, number of receivers, and relative
throughput: as BAPrand values increase, the relative throughput of higher number of
receivers increases, while the relative throughput of lower number of receivers declines.

This effect can be seen in Figure 4.19.
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183.973
197.553 3 922 | 24.14¢
222823 9.154 | 22.470 | 27.252
40 233.790 10.421 | 23.576 | 30.16:
45 250513 8420 | 25.263 | 32.89.
50 274562 9.929 | 27.688 | 35.4¢

281.035

50 356.472 41.469
55 | 276.607 | 171.719 | 347.238 | 446.471 27.777 | 17244 870 | 44.835
60 | 305694 | 188.073 | 377.925 | 478.864 30.698 | 18.887 | 37.952 | 48.088

Recs | Mean AT Max RT

8.380 942
91.725 691
132.387 14194
164.588 18.015
198.388 22.066
228.489 25818
35 | 256.949 29.294
40 | 275.757 32.543
311.199 35.193
321.268 X 37.274
347.082 i 39.141
364.956 | 273.579 | 423.260 | 513.416 36.598 | 27435 | _42.445

Table 4.4: MBAP Performance: Absolute and Relative Throughput Summary Results

for Window Sizes 5, 10, and 15
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Block Acknowledgment Protocol Performance
Relative Throughput vs. Number of Recelvers
BAP Window Size of 5
Hi—Lo—Moan Simulation Resuts
Theoretical Upper Bound Resuts

Relative Throughput
50

o 1 20 30 40 50 60
Number of Recelvers

Figure 4.12: MBAP Performance: Relative Throughput for a Window Size of 5
(Mean)
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Block Acknowledgment Protocol Performance
Relative Throughput vs. Number of Recelvers
BAP Window Sizo of 10
Hi—Lo— Moan Simulation Results
Theoretical Upper Bound Resuts

Relative Throughput
50

o
0 30
Number of Recelvers

BAP timeout calculation method = formula
BAP timeout value = 600000

BAP random wait interval = °

BAP window size = 5

Figure 4.13: MBAP Performance: Relative Throughput for a Window Size of 10

(Mean)
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Block Acknowledgment Protocol Performance
Relative Thro ceivers

Relative Throughput
60

o 10 20 30 a0 50 60
Number of Recelvers

Figure 4.14: MBAP Performance: Relative Throughput for a Window Size of 15
(Mean)
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Multicast Block Acknowledgment Protocol
Relative Throughput vs. Number of RecoNers
Summary Plot For BAP Window Sizes 5, 10 and 15

Relative Throughput
60

20

0 10 20 30 a0 50 60
Number of Recelvers

RT for Win = 5 == - RT for Win = 10

Figure 4.15: MBAP Performance: Summary of Mean Relative Throughput and Upper
Bound Relative Throughput for Window Sizes 5, 10 and 15
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Block Acknowledgment Protocol Performance
Relative Throughput vs. Number of Recoivers

BAPrand = 12000 & BAPwWin = 10
Hi—Lo—Mean Simulation Results
‘Theoretical Upper Bound Resutts

Relative Throughput
50

o 1 20 20 a0 50
Number of Recelvers

BAP timeout calculation method = formula
BAP timeout value =

BAP random walt interval = 12000

BAP window size = 10

Figure 4.16: MBAP Performance: Relative Throughput using a BAPrand Value of
12,000 and a Window Size of 10 (Mean)
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Block Acknowledgment Protocol Performance
Relative Thvoughput vs. Number of Recevers
BAPrand = 22000 & BAPWIn = 10

Hi—Lo—Mean Simulation Resuits
Theoretical Upper Bound Results

Relative Throughput
50

0
o 10 30
Number of Recelvers

BAP timeout calculation method = formula
BAP timeout value =

BAP random walt interval = 12000
BAP window size = 10

22,000 and a Size of 10 (Mean)
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Figure 4.17: MBAP Performance: Relative Throughput using a BAPrand Value of




Block Acknowledgment Protocol Performance
Relative Throughput vs. Number of Recelvers
BAPrand = 32000 & BAPWI = 10
Hi—Lo—Moan Simulation Resuts
Theoretical Upper Bound Results

Relative Throughput
50

30 a0 50 6
Number of Receivers

BAP timeout calculation method = formula
BAP timeout value = 600000

BAP random walt Interval = 12000
BAP window size = 10

Figure 4.18: MBAP Performance: Relative Throughput using a BAPrand Value of
32,000 and a Window Size of 10 (Mean)
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Mean RT | Mi BT | Mean Lat

107 17 | 148622 | 138011 | 153870 | 124000

125 [ 9636 150193 | 139379 | 153072 | 126560

12,06 151692 | 143527 | 154109 | 129120

T5.97 152665 | ' 148745 | 155146 | 131680

19.893 153273 | 150468 | 159310 | 134240

23.64 T54783 | 151417 | 170508 | 136800

35 | 27.39 155026 | 151841 | 178342 | 139360
40 [ 3068l 159284 | 152218 | 186495 | 141920
[ 164171 | 151830 | 208307 | 144480

170846 | 154303 | 202887 | 147040

181897 | 160785 | 212065 | 149600

190146 | 163051 | 284083 | 152160

Table 4.5: MBAP Performance: Relative Throughput and Message Latency Summary
Results for Varying BAPrand Values at a Window Size of 10
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Multicast Block Acknowledgment Protocol
Relative Throughput vs. Number of Recevers
Summary Plot For BAPrand Values 0, 2000, 22000, 32000
AP )

Relative Throughput
50

o 10 20 30 40
Number of Receivers

_ BAPrand - BAPrand = 12000  ———=======-
—————— ~  Upper Bound RT

Figure 4.19: MBAP Performance: Summary of Mean Relative Throughput for BAP-

rand values 0, 12,000, 22,000 and 32,000
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4.4 SAW and BAP Protocol Performance under Er-
ror Conditions

Previous simulation studies were performed in error-free conditions. We next invest-
igate the effect of errors on the performance of both the multicast stop and wait and
block acknowledgment protocols by simulating the protocols using failure rates of 0-

5%. First, though, we note that the measure of relative throughput we have been using

cannot be used for error analysis. The relative throughput measures the throughp
of the multicast protocol with respect to the throughput of the equivalent unicast pro-
tocol in error-free conditions. Thus, we will use absolute message latency and number
of retransmissions as our measures of protocol performance under error conditions.
The packet timeout parameter is a critical parameter when operating under error
conditions in both the multicast stop and wait and block acknowledgment protocols.

The timeout parameter is used by the sender node of both protocols to decide whether

a packet has been lost and thus to initiate retr issil In both p Is, the value

used for the timeout must account for the transmission/time of the multicast packet,

d led;

that of any acknowledgments, the interval used for r ly timed ach

if any, and the collision resolution time. If the timeout value is too short, the sender will

retransmit packets ly, causing delays and network congestion,
even in error-free conditions. If the timeout value is too large, the amount of time
required to detect a lost packet will be long, also causing unnecessary delays.

The simulator allows fine-tuning of the timeout parameters of both protocols in
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two ways: by directly specifying the value to be used, or by specifying an increment
to be added to a simple formula based on the number of receivers. For the multicast
stop and wait protocol, the formula is:

d+axr+i
where d is the transmission time of a data packet, a is the transmission time of an
acknowledgment packet, r is the number of receivers, and ¢ is the interval used for ran-
domly timed acknowledgments, if any. This formula calculates the minimum amount
of time required to transmit a multicast packet and receive all the acknowledgments
from the receivers.

The formula for the multicast block acknowledgment protocol is:

(d*n)+(axr)+i+t
where d is the transmission time of a data packet, n is the maximum BAP window size,
a is the transmission time of an acknowledgment packet, r is the number of receivers,

i is the interval used for randomly timed acknowledgments, if any, and ¢ is the ac-

knowledgment delay timeout value (used to force tr issions of ackne
when the maximum BAP window is not filled or acknowledgments are lost). This
formula approximates the amount of time required to transmit the current window of
multicast data packets and receive all acknowledgments from the receivers.

Note that neither of these formulas take into account the collision resolution time.
As stated previously, the statistical nature of the collision resolution mechanism in
Ethernet does not permit us to find an upper bound for the collision resolution time.

Thus, we cannot find an exact formula which will account for the collision resolution
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b,

time and no retr issions in error-free

We therefore select a timeout value by running several trial simulations, using

the formula-based timeout calculation and choosing the smallest increment value that
results in fewer than 2% of the packets being retransmitted under error-free conditions.
Our previous simulation studies showed that the collision resolution time is highly
sensitive to the number of receivers participating in the multicast protocol. Thus, we
must choose an increment value separately for each number of receivers. We choose
increment values of 45,000, 90,000 and 135,000 bit times for 20, 40 and 60 receivers
for both the multicast stop and wait and block acknowledgment protocols.

The results for the multicast stop and wait protocol for 20, 40, and 60 receivers
are tabulated in Table 4.6. The results for the multicast stop and wait protocol with
a SAWrand interval of 22,000 bit times for the same numbers of receivers are in Table
4.7.

The results for the multicast block acknowledgment protocol for 20, 40, and 60
receivers for window sizes 5, 10, and 15 are found in Tables 4.8, 4.9, and 4.10. The
same simulation was also performed for 20, 40 and 60 (receivers with a BAPRANDWAIT
interval of 22,000 bit times, and the results tabulated in Tables 4.11, 4.12, and 4.13.

For the multicast stop and wait protocol, using 20 receivers, a failure rate of 1%
caused the mean message latency to jump to 98,793 bit times from 47,237 bit times
in error-free conditions, an increase of 109%. However, each subsequent increase of
one percentage point in failure rate only caused latencies to increase by 10-30% each

time. Similar results were found for 40 and 60 receivers. Using randomly timed
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acknowledgments with a SAWrand value of 22,000 bit time lowered absolute message
latencies but exhibited the same general trend as the simple multicast stop and wait
protocol.

The results for the multicast block acknowledgment protocol show an even more
dramatic deterioration of performance under error conditions. For a window size of 10,
with 20 receivers, a failure rate of 1% resulted in mean message latencies of 2,681,561
bit times, an increase of 1586% over the mean message latency of 159,006 bit times
under error-free conditions. Error rates of 2-5% showed similar mean message latency
values. Using randomly timed acknowledgments with a BAPrand value of 22,000 bit
times did not change the overall trend of the results.

The low tolerance for errors in both protocols is due to the relationship between
the sender timeout value, error detection, and the collision resolution time. The sender
timeout value must include an estimation of the collision resolution time; otherwise
premature timeouts can cause significant network congestion. However, as the number
of receivers becomes larger, the estimate of the collision resolution grows, forcing larger
timeout values. Larger timeout values lengthen the amount of time which must elapse
before the sender can determine that an error has occurred and initiate retransmissions.
Thus, response in the presence of errors, particularly with large number of receivers,

is poor.
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Receivers = 20

FailRate | Mean Lat | Min Lat | Max Lat | Mean Retr | Min Retr | Max Retr

0 47237 | 26704 | 195584 0.010
1 98793 | 31248 | 377040 0.000 3.000
7 120507 | 33328 | 380360 0.000 4,000
3 148801 | 36464 | 475568 0.000 6.000
1 176844 | 47504 | 587280 0.000 5.000
5 196362 | 48048 | 509872 0.000 7.000

=40
Mean Retr | Min Retr | Max Retr
018 000 2.000
2 000 000
K .000 000
000 000
i 000 000
452190 | 150288 | 1260656 e ~000 10.000
Mean Lat | Min Lat
137959

321820 | 135664 | 910328 1.336 0.000 5.000
420496 | 200096 | 950224 1.952 1.000 5.000
530055 | 197912 | 1462992 2.638 1.000 5.000
633635 | 241016 | 1498104 3.250 1.000 5.000
755114 | 380416 | 2030416 3.966 2.000 11.000

Table 4.6: MSAW Performance: Summary Results with 0-5% Failure Rates for 20,
40 and 60 Receivers
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Receivers = 20 & SAWrand = 22,000

[(FailRate | Mican Lat | Min Lat | Max Lat | Mean Retr Viax Retr
34532 | 50574 | 6.000 500

Receivers =

frand = 22,000
Min Retr | Max Retr

Table 4.7: MSAW Performance: Summary Results with 0-5% Failure Rates for 20,
40 and 60 Receivers using a SAWrand value of 22,000
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20 & GBNwin = 5
FailRate | Mean Lat | Min Lat | Max Lat | Mean Retr | Min Retr | Max Retr

95466 | 77744 | 149456
519721 | 99280 | 1796960
655947 | 193904 | 1734480

737380 | 176640 | 2194784
705172 | 190112 | 1968720
729146 | 162536 | 1928224

TFailRate | Mean Lat

2681561
2293372
2395365
2342186
2537155

eceivers = 20 & GBNwin = 15

Mean Lat | Min Lat | Max Lat | Mean Retr
216226 | 189672 | 253520 .000

4216032 | 596192 | 1939696 X
3077723 | 1266464 | 5804320 Xt
A1596: 994912 | 4806112 .88
35914 612240 | 5359552 X
38880 619840 | 4851744 5

Table 4.8: MBAP Performance: Summary Results with 0-5% Failure Rates for 20
Receivers and Window Sizes of 5, 10 and 15
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Receivers = 40 & GBNwin = 5
Min Lat
105008
279120
200016
235920
1597767 | 380488

1561641 | 416440

FailRate | Mean Lat | Min Lat

Min Retr | Max Retr

196719 | 163680 0.000
4048725 | 523912 1.000 13.000
3912529 | 1352012 2.000 12.000
3519886 | 664168 1.000 12.000
3755537 | 918432 1.000 13.000
3757943 | 1182264 3.000 14.000

TFailRate | Mean Lat | Min Lat Min Retr | Max Retr

0 251020 | 204616 0.000 0.000
T | 6623085 | 3519056 9.000 13.000
2 | 5980839 | 2669392 X 3.000 12.000
3 | 5994812 | 753736 | 8943776 9754 1.000 12.000
1| 5660538 | 2819200 | 9812912 9.702 6.000 12.000
5 | 5743338 | 2095824 | 8372992 9.884 4,000 12.000

Table 4.9: MBAP Performance: Summary Results with 0-5% Failure Rates for 40
Receivers and Window Sizes of 5, 10 and 15
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Receivers = 60 & GBNwin = 5

FailRate | Mean Lat | Min Lat | Max Lat | Mean Retr | Min Retr | Max Retr

185208 | 126480
1812103 | 489712 | 5237472
2017384 | 613472 | 4781728
2318213 | 512816 | 5677792
2346614 | 537776 | 4515392
2195509 | 622800 | 4602912

Receivers

af ] eof o = o)

FailRate | Mean Lat

9195200 | _
Receivers = 60 & GBN
FailRate | Mean Lat | Min Lat_ | Max Lat_| Mean
306753 | 260784 367760
8871447 | 2079216 | 12291936
8488712 | 3019872 | 13120688
8499577 | 2806992 | 10976704
8326783 | 4693376 | 12891952
7997450 | 3930688 | 12747632

ol af o] vof = o)

Table 4.10: MBAP Performance: Summary Results with 0-5% Failure Rates for 60
Receivers and Window Sizes of 5, 10 and 15
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22,000

Receiver
FailRate Min Retr
FailRate

TRate

4038868
3848600 5534432
4027267 4189632

Table 4.11: MBAP Performance: Summary Results with 0-5% Failure Rates for 20
Receivers and Window Sizes of 5, 10 and 15 using a BAPrand value of 22,000
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40 & GBNwin = 5 & GBNrand = 22,000

Mean Lat | Min Lat | Max Lat | Mean Retr | Min Retr | Max Retr

Table 4.12: MBAP Performance: Summary Results with 0-5% Failure Rates for 40
Receivers and Window Sizes of 5, 10 and 15 using a BAPrand Value of 22,000
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eceivers = 60 & GBNwin = 5 & GBNrand = 22,000
FailRate | Mean Lat | Min Lat | Max Lat | Mean Retr | Min Retr

[ O] 136451 | 104964 | 221699 |  0.000 |  0.000 |

2067479 | 469184 | 4777728 5.602 T.000

0 4 227111

T | 90616 876224 | 13693616
2 | 8409535 | 2090674 | 13586272
3 | 8245958 | 3336656 | 13513622
4 | 8212559 | 3358352 | 12139376
5 | 7864979 | 2623072 | 13318203

Table 4.13: MBAP Performance: Summary Results with 0-5% Failure Rates for 60
Receivers and Window Sizes of 5, 10 and 15 using a BAPrand Value of 22,000
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Chapter 5

Conclusions and Further Work

We chose to study multicast protocols because of their relevancy to high-bandwidth
distributed network applications, such as multi-user whiteboard systems and distrib-
uted databases. We designed and built a simulation system to study multicast pro-
tocols in an Ethernet environment. The simulation system eliminates the need for a
dedicated testbed network.

The simulator follows a layered approach, the lower two layers implement the
G abiet (st (e by NI LT S el e

protocols. The simul was designed to be extensible; other multicast protocols can

easily be added as alternate top layers. The simulator records data such as message
latency and retransmissions, which can later be used to analyse protocol performance.
Users can control the simulation via a command file, which contains both general

and protocol-specific parameters. General parameters specified in the command file
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include the number of receivers, size of data and acknowledgment packets, number of
packets to be sent, and the error rate of the underlying network. As well, the command
file can be extended to include protocol-specific parameters; in the multicast stop and
wait protocol, for example, this includes timeout values and the interval to be used
for randomly timed acknowledgments.

The system simulates errors in an Ethernet environment by implementing a simple
error model which randomly drops packets at interfaces based on an user-configurable
error rate. This allows simulation of multicast protocols in varying error conditions.

The simulator was used to study the protocol performance of two simple multicast
protocols, stop and wait and block acknowledgment. Simulations were performed
under varying conditions, and the results analysed using the SAS System to compile
summary results and plots. These results were compared against comparable unicast
protocols, and derived theoretical bounds.

An analysis of the multicast stop and wait protocol gives a maximum relative
throughput of 24.719 over equivalent unicast protocols when using a data packet
size of 1518 bytes, and an acknowledgment packet size of 64 bytes. The simulation
studies show that while the stop and wait protocol does not reach this maximum
theoretical performance, it does show steady improvements in relative throughput for
small number of receivers which eventually reach an asymptotic value. This behaviour
is consistent with derived upper bound theoretical results.

The multicast stop and wait protocol is also affected by the size of the data payload.

Theoretical results show that the relative throughput of the multicast stop and wait
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protocol declines sharply as the size of the data packet decreases, eventually reaching
a maximum relative throughput of 2.0 for a data packet size of 64 bytes. Simulation
results also follow this trend; as the data packet size decreases, a dramatic decline in

protocol performance occurs.

Randomly timed acknowled, were added to the multicast stop and wait
protocol to reduce the collision rate. This technique did show promise; not only did
the relative throughput of the protocol increase, but the number of receivers at which
the protocol performance gains started to level off also increased; improving the range
of receivers for which protocol performance was significantly better than the equivalent

unicast protocol. As well, the simulation studies clearly demonstrated that the optimal

value of the interval used for randomly timed acknowl is closely related to
the number of receivers.

The multicast block acknowledgment protocol was an attempt to improve on the
performance of the multicast stop and wait protocol by reducing the number of ac-
knowledgments required, thereby reducing the collision rate and improving relative
throughput. An analysis of this protocol revealed that the theoretical limit on relative
throughput was related to the window size of the protocol and would increase as the
window size increased. On the other hand, the window size is bounded by the sender’s
timeout value, memory resources and by the requirement to keep message latency
values within a reasonable limit.

Simulation studies showed that the multicast block acknowledgment protocol did

indeed perform better than the multicast stop and wait protocol. This improvement
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was achieved at the expense of message latency; message latencies in the multicast
block acknowledgment protocol include the latency of the entire outstanding window,
and were thus significantly longer than the latencies exhibited by the multicast stop
and wait protocol. Moreover, the performance of the multicast block acknowledgment
protocol improved as the BAP window size increased, again at the expense of message
latency.

As in the multicast stop and wait protocol, the multicast block acknowledgment
protocol’s performance gains reach an asymptotic value as the number of receivers
grows; due mainly to the increase in collisions and the resulting increase in message
latency. This effect, however, was slowed by increasing BAP window sizes, improving
A (b T B 5 S s A s e e
formance was significantly better than either multicast stop and wait or the equivalent
unicast protocol.

A significant portion of the performance degradation exhibited by the multicast
block acknowledgment protocol is due to rising collision rates and ensuing network
congestion. The addition of randomly timed acknowledgments to the protocol reduce
the rate of collisions, as expected, and therefore improves the relative throughput
significantly. As in the stop and wait protocol, the simulation results show the optimal
value of the interval used for randomly timed acknowledgments is closely related to
the number of receivers, and can be used to improve the scalability of the protocol.

Simulation of both protocols under error conditions showed that both protocols

were very sensitive to the presence of errors on the network; a failure rate of 1% was
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enough to degrade both protocols’ performance by over 100%.

The two simple protocols have limited application due to their poor performance
in the presence of errors. Further work on techniques to improve the error-tolerance of
these simple protocols is suggested. Specifically, the use of negative acknowledgments
may reduce the performance deterioration in the presence of errors by allowing the
sender to detect and respond to errors quicker.

Another approach to improve performance is to combine the features of both proto-
cols into a multicast round robin acknowledgment protocol (RRA), in which receivers
acknowledge messages in a round robin fashion. The sender sends a multicast mes-
sage along with an indicator of which receiver should send the acknowledgment. The
selected receiver acknowledges this message and all previous messages successfully
received since it last sent an acknowledgment. By selecting each receiver in a round
robin fashion, the sender will eventually receive acknowledgments from all receivers.
This combines the stop and wait approach of sending a message and waiting for a
response with the block acknowledgment approach of acknowledging multiple mes-
sages with one acknowledgment packet. The result is fewer acknowledgments, and
the elimination of contention among receivers acknowledging messages, one of the
biggest drawbacks of the two previous protocols.

Another suggested avenue of further study is implementation of the two protocols
in a testbed network for comparison with the protocol simulations. The results might
suggest ways of improving the simulator model to more accurately reflect real-world

conditions. A careful study of errors in such a testbed might suggest refinements to
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the error model used in the simulator, as well as give better estimations of typical
error rates in real Ethernet networks.

Finally, implementing the three protocols described in the second chapter may
provide some insight on other useful techniques for the design of multicast protocols.
In particular, the protocol suggested by Erramilli and Singh [14] is heavily dependent

on a few timing and is therefore well-suited for study in the simulator.
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Appendix A

Sample SAS program

SAS program: saw_recs.sas 5
Analyzes results of simulation program
Input File: SAW_siml.dat 3

*
*
*
*
*
*
* Output Files:

* SAW_simla_plots.eps (encapsulated PostScript file)
* SAW_simib_plots.eps (encapsulated PostScript file)
* SAW_siml_plots.ps (PostScript file)

* SAW_simla_table.tex (LaTeX source)

* SAW_simib_table.tex (LaTeX source) ¢

* SAW_simlc_table.tex (LaTeX source)

*

*

*

Author: Andrea Segovia
Date: August 20, 1996 ;

* Save dataset

libname save ".";

* Read input data;
*/
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srecs data set (simulation results):
Header info (for each simulation run):

pkts - number of packets for this simulation run
recs - number of receivers for this simulation run
data - size of data packet for this simulation run
ack - size of ack packet for this simulation run
failrate - failure rate for this simulation run
reps - number of repetitions performed (always 1)
proto - protocol identifier, valid values are:
SAW - stop and wait
BAP - block acknowledgment
SAWtimeM = timeout calculation identifier, valid values are:
for - formula-based timeout calculation
cons - constant timeout calculation
SAWretr - base SAW retransmission timeout value
SAWretrM = retransmission method identifier
multi - multicast retransmission
uni - unicast retransmission
SAWrand - SAW random wait interval
s_lblat - calculated theoretical lower bound for message latency
for this simulation run
formula: (data * 8 + recs * ack * 8)
s_uathru - calculated theoretical upper bound for absolute
throughput for this simulation run
formula: ((recs * data * 8)/(data * 8 + recs * ack * 8)) * 10
s_urthru - calculated theoretical upper bound for relative
throughput wrt unicast SAW for this simulation run
formula: (recs * (data * 8 + ack * 8))/(data * 8 + recs * ack * 8)

Simulation info (for each multicast packet sent):
PktID - unique packet ID
pktSize - packet size
winSize - size of current window
startT - time packet sent
endT - time packet reliably received by all receivers
timeElap - time elapsed between startT and endT
timePkt - transmission time per packet sent (timeElap/winSize)
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retrans - number of retransmissions required

fail - 1 if packet transmission failed

s_athru - absolute throughput of multicast SAW
calculated per packet sent (in Mbps for 10Mbps Ethernet):
formula: ((recs * data * 8)/timeElap) * 10

s_rthru - relative throughput sent wrt unicast SAW
calculated per packet sent:
formula: (recs * (data * 8 + ack * 8))/timeElap

lat - latency of packet sent

srecs_s dataset (summary results - per simulation run):

recs - number of receivers

data - data packet size

ack - ack packet size

s_lblat - calculated theoretical lower bound for message latency

s_uathru - calculated theoretical upper bound for absolute throughput
in Mbps (for 10Mbps Ethernet)

s_urthru - calculated theoretical upper bound for relative throughput
wrt unicast SAW

s_mathru - mean absolute throughput value

s_mrthru - mean relative throughput value

s_mlat - mean message latency value

s_lathru - minimum absolute throughput value

s_lrthru - minimum relative throughput value

s_llat - mininum message latency value

s_hathru - maximum absolute throughput value

s_hrthru - maximum relative throughput valye

s_hlat - maximum message latency value

/%;

data srecs;
infile "SAW_siml.dat";

input pkts= recs= data= ack= failrate= reps= proto= $CHAR3. @;
if proto = ‘SAW’ then do;

input SAWtimeM= $CHAR3. Q;

if SAWtimeM = “for’ then



input SAWtimeI= SAWtime= Q;
else if SAWtimeM = ‘con” then
input SAWtime= @;
input SAWretr= SAWretrM= $CHAR3. SAWrand= @;
end;
else if proto = “GBN’ then do;
input GBNwin= GBNpktM= $CHAR3. @;
if GBNpktM = “for’ then
input GBNpktI= GBNpktT= Q;
else if GBNpktM = “con’ then
input GBNpktT= @;
input GBNackT= GBNrand= Q;
end;

input date= $CHAR24. ;

s_lblat = (data * 8) + (recs * ack * 8);
s_uathru = ((recs * data * 8)/s_lblat) * 10;
s_urthru = (recs * (data * 8 + ack * 8))/s_lblat;

do i = 1 to pkts;
input pktID pktSize winSize startT endT timeElap timePkt
drop i;
s_athru = ((recs * data * 8)/timeElap) * 10;
s_rthru = (recs * (data * 8 + ack * 8))/timeElap;
lat = timeElap;
output;
end; )

if _n_ = 1 then do;
if proto = “SAW’ then do;

retrans fail;

call symput("Lproto", "Stop and Wait Protocol Performance");

if SAWtimeM = “for’ then do;

call symput("LStimeM", "formula");

call symput("LStime", put(SAWtimeI, 7.));
end;
else if SAWtimeM = ‘con’ then do;

call symput("LStimeM", "constant");

call symput("LStime", put(SAWtime, 7.));
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end;
call symput("LSrand", put(SAWrand, 7.));
if SAWretrM = “uni’ then

call symput("LSretrM", "unicast");
else

call symput("LSretrM", "multicast");

run;

* Sort input data;
proc sort data=srecs;
by recs;

* Print first 20 observations - sanity check;
proc print data=srecs (obs=20);

* Calculate means;
proc means noprint data=srecs;
by recs;
id data SAWrand
s_uathru s_urthru s_lblat;
var s_athru s_rthru lat;
output out=save.srecs_s
mean=s_mathru s_mrthru s_mlat
min=s_lathru s_lrthru s_llat
max=s_hathru s_hrthru s_hlat;

* Print first 20 observations - sanity check;
proc print data=save.srecs_s(obs=20);

* Produce LaTeX table of summary results;
filename texoutl "SAW_simla_table.tex";

data;
set save.srecs_s end=endtab;
file texouti;
if _n_ = 1 then do;
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put “\begin{tabularMHIrlrlzriririziririr|}";
put “\hline’;
put “\multicolumn{i}{|1}{Recs} &";
put “\multicolumn{1}{|1}{Mean RT} &~;
put “\multicolumn{1}{|1}{Min RT} &~;
put “\multicolumn{1}{|1}{Max RT} &~ ;
put “\multicolumn{1}{|1}{UBRT} &~ ;
put “\multicolumn{1}{|1}{Mean Lat} &°;
put “\multicolumn{1}{|1}{Min Lat} &~
put “\multicolumn{i}{|1}{Max Lat} &° ;
put “\multicolumn{1}{|1|}{LBL} \\* ;
put “\hline’;
put “\hline’;
end;
if mod(recs, 5) = 0 then do;
put recs 3. &
s_mrthru 8.3 gy
s_lrthru 8.3 e
s_hrthru 8.3 i
s_urthru 8.3 e
s_mlat
s_llat
s_hlat
s_lblat
put “\hline’;
end;
if endtab then do;
put “\hline’;
put “\end{tabular}";
end;
run;

* Produce LaTeX table of summary results including absolute throughput;
filename texout2 "SAW_simib_table.tex";

data;
set save.srecs_s end=endtab;
file texout2;
if _n_ = 1 then do;
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put “\begin{tabularHIr|riririririririr|}’;
put “\hline’;

put ‘\multicolumn{1}{|1}{Recs} &";

put “\multicolumn{1}{|1}{Mean AT} &~

put “\multicolumn{i}{|1}{Min AT} &
put “\multicolumn{1}{|1}{Max AT} &
put “\multicolumn{1}{|1}{UBAT} &~ ;
put “\multicolumn{1}{|1}{Mean RT} &~
put \multicolumn{1}{|1}{Min RT} &
put “\multicolumn{i}{|1}{Max RT} &° ;
put “\multicolumn{i}{|1|}UBRT} \\" ;
put “\hline”;

put “\hline’;

end;
if mod(recs, 5) = 0O then do;
put recs 3. 7 A
s_mathru 8.3 K g
s_lathru 8.3 il o
s_hathru 8.3 i 2
s_uathru 8.3 G
s_mrthru 8.3 Ll
s_lrthru 8.3 v Boan o
s_hrthru 8.3 i i
s_urthru 8.3 GO\
put “\hline’;
end;

if endtab then do;

put “\hline”;

put “\end{tabular}’;
end;
run;

* Produce LaTeX table of summary results for AT, RT and lat;
filename texout3 "SAW_simlc_table.tex";

data;
set save.srecs_s end=endtab;
file texout3;
if _n_ = 1 then do;
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put “\begin{tabularHIr|rlririririrl}";
put “\hline’;
put “\multicolumn{1i}{|1}{Recs} &~;
put ‘\multicolumn{1}{|1}{Mean AT} &~;
put “\multicolumn{1}{|1}{UBAT} &~ ;
put ‘\multicolumn{i}{|1}{Mean RT} &";
put “\multicolumn{i}{|1|}{UBRT} & ;
put “\multicolumn{1}{|1}{Mean Lat} &~;
put “\multicolumn{i}{|1|}LBL} \\" ;
put “\hline”;
put “\hline”;
put ‘\hline’;
end;
if mod(recs, 5) = O then do;
put recs 3. e
s_mathru 8.3 T
s_uathru 8.3 TREET
s_mrthru 8.3 &
s_urthru 8.3 G0
s_mlat 8. ks
s_lblat R A\
put “\hline”;
put “\hline”;
end;
if endtab then do;
put “\hline’;
put “\end{tabular}’;
end;
run; ;

* Produce PostScript and encapsulated PostScript plots;
titlel justify=center "&Lproto";

axisl label=(font=swiss "Message Latency");

"Relative Throughput");
"Number of Receivers");
axis4 label=(font=swiss "Absolute Throughput");

footnotel justify=left "SAW timeout calculation method = &LStimeM";



footnote2 justify=left "SAW timeout value = &LStime";
footnote3 justify=left "SAW retransmission method = &LSretrM";
footnote4 justify=left "SAW random wait interval = &LSrand";

symboll color=black interpol=hilotj;
symbol2 color=black interpol=boxt00;
symbol3 color=black line=1 interpol=join;
symbol4 color=black line=2 interpol=join;

filename psout "SAW_simi_plots.ps";
goptions device=ps gsfname=psout gsfmode=replace ftext=swiss;

proc gplot data=srecs;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";
plot lat * recs=1 s_lblat * recs=4 /
overlay
vaxis=axisl
haxis=axis3;

run;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";
plot lat * recs=2 s_lblat * recs=4 / '

overlay

vaxis=axisi

haxis=axis3;

run;
title2 justify=center "Relative Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";

title4 justify=center "Theoretical Upper Bound Results";
plot s_rthru * recs=1 s_urthru * recs=4/
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overlay
vaxis=axis2
haxis=axis3;

run;

title2 justify=center "Relative Throughput vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results
title4 justify=center "Theoretical Upper Bound Results";
plot s_rthru * recs=2 s_urthru * recs=4 /

overlay

vaxis=axis2

haxis=axis3;

run;

title2 justify=center "Absolute Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=1 s_uathru * recs=4/
overlay
vaxis=axis4
haxis=axis3;

run;

title2 justif; "Absolute Throughput vs.;Number of Receivers"

title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=2 S_uathru * recs=4 /

overlay

haxis=axis3;
run;

filename epsoutl "SAW_simla_plot.eps";
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goptions device=psepsf gsfname=epsouti gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Message Latency vs. Number of Receivers';
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";
plot timeElap * recs=1 s_lblat * recs=4 /
overlay
vaxis=axisi
haxis=axis3;

run;

filename epsout2 "SAW_simib_plot.eps";

goptions device=psepsf gsf psout2 gsfi =replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";
plot timeElap * recs=2 s_lblat * recs=4 /

overlay

vaxis=axisi

haxis=axis3;

run;
filename epsout3 "SAW_simic_plot.eps";

goptions device=psepsf gsfname=epsout3 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Relative Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_rthru * recs=1 s_urthru * recs=4/
overlay
vaxis=axis2
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haxis=axis3;
run;
filename epsout4 "SAW_simid_plot.eps";

goptions device=psepsf gsfname=epsout4 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Relative Throughput vs. Number of Receivers';
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_rthru * recs=2 s_urthru * recs=4 /

overlay

vaxis=axis2

haxis=axis3;

run;

filename epsout5 "SAW_simie_plot.eps";

goptions device=psepsf gsfname=epsout5 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Absolute Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=1 s_uathru * recs=4/
overlay
vaxis=axis4
haxis=axis3;

run;

filename epsout6 "SAW_simif_plot.eps";

goptions device=psepsf gsf psout6 gsfi =replace ftext=swiss;
proc gplot data=srecs;
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title2 justify=center "Absolute Throughput vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=2 s_uathru * recs=4 /

overlay

vaxis=axis4

haxis=axis3;

run;
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