

I e
'C:l'

APR 3 1998

.+. National Library
of Canada

Bibliotheque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395WeilingtonSlreel 395.ru eWe llinglon
OtlawaON K1A0N4 OttawaO N K1AON4
Canada canada

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce , loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats .

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author 's
permission .

L' auteur a accorde une licence non
exclusive pennettant ala
Bibliotheque nationale du Canada de
reproduire , preter , distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique ,

L' auteur conserve la propriete du
droit d'auteur qui protege cette these .
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation .

0-612-231 73-9

Canada

A Simulation Stud y of the Performan ce of Multicast Proto cols

by

Andr ea M. Segovia

A thesis submitte d to the

School of Gradu ate Studi es

in partial fulfilment of the

requir ement s for the degree of

Master of Science

Department of Computer Science

Memorial University of NewfoSndland

Sept ember 1996

St. John 's Newfoundland

Abstract

We have chose n to study multi cast proto cols because of their appli cabi lity to a

growin g numb er of network applicat ions. We have designed an d impl em ented a sim

ulation system to st udy multicast protoco ls wit hout the need for a dedicated testbed

network , an d used the sim ulator to study two simp le multicast pr otocols, the sto p and

wait and block acknowledgment protocols. We found that these protocols outp erfo rm

equivalent uni cast pr otocols for sma ll numb er of receiver s in error-free condit ions . Th e

block acknowledgme nt prot ocol shows higher thro ughput with larger window sizes, but

has greater laten cy. Both protocols, however , deteriorate qui ckly as the numb er of re

ceive rs and failure rate of the underlying network grow . T his deterioration is cause d

by a rising collision rate amo ng receiver s sending ackno wledgme nts whic h in turn

agg ravates network congestion . T hro ughput of both protocols is improved by using

random ly tim ed acknowledgme nts to reduce the collision rate; however , thi s techniq ue

does not affect the high sens it ivity of the protocols to err or conditions.

Acknowledgmen t s

I would like to thank my supervisor, Dr. Rodrigue Byrne, for his invaluable assistance

throughout the course of this project. Dr. Paul G. Gillard provided academic advice

and support during my entire Master's programme.

I would also like to than k Larry W. Coady, former Regional Director of Science,

Dr. J . Scott Campbell, Act ing Regional Director of Science, Dr. Derek H. Shaw,

Division Manager , Environmenta l Sciences, and Ga rfield D. Somerto n, Secti on Head ,

Env iron me nta l Moni tori ng, Science Bran ch, Departm ent of Fisheri es and Ocean s, for

gene rously prov iding educational leave and departmental resources so I could com plete

th is project. Special thanks to Garfield D. Somerton for his expe rt SAS advice.

Fina lly, I would like to thank my husband, James F. Linehan, for his unfa iling

support and encouragement, without which this project would never have been com

pleted.

iii

Contents

Abstract

Acknowledgments

Table of Contents

List of Table s

List of Figures

1 Introduction

2 A Description of Multicasting Protocols

2.1 Motivation .

2.2 Characterization of Multicast P rotocols .

2.3 Performance Measures .

2.4 Unicast versus Multi cast P rotocols

2.5 Mult icast Stop an d Wait P rotocol .

iv

iii

iv

vii

ix

11

14

16

2.9.1 Norma l phase . ..

2.6 Multicast Block Acknowledgment Protocol .

2.6.1 Adding Randomly Timed Acknowledgments

2.7 Kaashoek, Tanenbaum et al.

2.8 Erramilli and Singh .

2.9 Chang and Maxemchuck .

2.5. 1

2.5.2

Adding Randomly Time d Acknowledgments

Varying the Retransmission Method

20

21

22

28

28

33

39

43

3 The Simulator

3.1 Intr oduction

3.2 MAC layer .

3.3 Physica l Layer. .

3.4 Error Model .

3.5 Performance Statistics

3.6 Simulat ion Parameters

3.7 Adding new Protocols

4 Simulation R esults

4.1 Theoretical Bounds

4.2 Stop and Wait P rotocol Perform ance

4.3 Block Acknowledgment Protocol Performance

47

47

49

50

52

53

55

65

72

73

83

103

4.4 SAW and BAP Protocol Performance under Error Conditions. 119

5 Conclusions and Further Work

Bibliography

A Sample SAS program

vi

131

137

143

List of Tables

4.1 MSAW Performan ce: Relative T hroughput and Message Laten cy Sum -

mary Results . 92

101

4.2 MSAW Perform an ce: Absolute and Relative Throughput Summary

Resul ts for Varying Data Packet Sizes 97

4.3 MSAW Performan ce: Absolute and Relati ve Throughpu t Summary

Result s for Varying SAWrand Values

4.4 MBAP Perform an ce: Absolut e and Relati ve Throughput Summary

Result s for Wind ow Sizes 5, 10, and 15 109

4.5 MBAP Performance: Relati ve T hroughput an? Message Laten cy Sum-

mary Results for Varying BAPrand Values at a Window Size of 10 . . 117

4.6 MSAW Performance: Summ ary Results with 0-5 % Failur e Rates for

20, 40 and 60 Receivers. 123

4.7 MSAW Performance: Summary Result s with 0- 5% Failur e Rat es for

20, 40 and 60 Receivers using a SAWrand value of 22,000 124

vii

4.8 MBA P Performance: Summary Results with 0-5 % Failure Rates for

20 Receivers and Window Sizes of 5, 10 and 15 125

4.9 MBAP Performance: Summary Results with 0-5 % Failure Rates for

40 Receivers and Window Sizes of 5, 10 and 15 126

4.10 MBAP Performance: Summary Results with 0-5 % Failure Rates for

60 Receivers and Window Sizes of 5, 10 and 15 127

4.11 MBAP Performance: Summary Results with 0-5% Failur e Rates for

20 Receivers and Window Sizes of 5, 10 and 15 using a BAPrand value

of 22,000 . 128

4.12 MBAP Performance: Summary Results with 0- 5% Failure Rates for

40 Receivers and Window Sizes of 5, 10 and 15 using a BAP rand Value

of 22,000 .. 129

4.13 MBAP Performance: Summary Results with 0-5 % Failure Rates for

60 Receivers and Window Sizes of 5,10 and 15 using a BAP rand Value

of 22,000 .. 130

viii

List of Figures

3.1 Simulator Design 71

4.1 MSAW Performan ce: Upper Bound Relativ e Throughput 81

4.2 MBAP Perform ance: Upper Bound Relativ e Throughput for Window

Sizes 5, 10, and 15 82

4.3 MSAW Performance: Relativ e Throughput (Mean) 91

4.4 MSAW Performance: Message Latency (Percentiles) . 93

4.5 MSAW Performance: Relativ e Throughput for 64-Byte Data (Mean) . 94

4.6 MSAW Performance: Relativ e Throughput for 848-Byte Dat a (Mean) 95

4.7 MSAW Performance: Relativ e Throu ghput f r 1436-Byt e Data (Mean) 96

4.8 MSAW Performance: Relativ e Throughput using a SAWrand Value of

12,000 (Mean) .

4.9 MSAW Perform ance: Relati ve Throughput using a SAWrand Value of

22,000 (Mean) .

98

99

4.10 MSAW Perfor mance: Relati ve Throughput using a SAWrand Value of

32,000 (Mean) 100

ix

4.11 MSAW Performance: Summary of Mean Relative Throughpu t for SAWrand

Values 0, 12,000, 22,000 and 32,000 102

4.12 MBA P Perform an ce: Relative Throughpu t for a Windo w Size of 5 (Mea n) 110

4.13 MBAP Perform an ce: Relative Throughpu t for a Window Size of 10

(Mea n) 111

4.14 MBAP Performance: Relat ive Throughput for a Window Size of 15

(Mean) . 112

4.15 MBA P Performance: Summary of Mean Relative Throughp ut and Up-

per Bound Relative Throughput for Windo w Sizes 5, 10 and 15 113

4. 16 MBAP Performance: Relati ve Throughpu t using a BAP rand Value of

12,000 and a Windo w Size of 10 (Mean) 114

4. 17 MBAP Perform ance: Relati ve Throughpu t using a BAPrand Value of

22,000 and a Size of 10 (Mean) 115

4.18 NIBAP Performance: Relative Throughpu t using a BAP rand Valu e of

32,000 and a Wind ow Size of 10 (Mean) 116

4.19 iVIBAP Performan ce: Summa ry of Mean Relaf veThroughpu t for BAP-

ra nd values 0, 12,000, 22,000 and 32,000 118

Chapter 1

Introduction

The growth in the availability and speed of computer networks has resu lte d in a grow

ing inte rest in distr ibuted network app lications, and subseq uently, in the development

and stu dy of the mu lticast protoco ls on which many of these dist ribu ted syste ms are

based. Extensions to the Unix operat ing system [17] [9] and to the Int ern et suite of

protoco ls [10] [11] to support multicasting have been propose d and developed .

Some mult icast protocols [20] [18] [21] [29] [30] [28] are designed spec ifically for

use by distributed database systems, providing strict ordering properties. Other mul

ticast protoco ls are designed to enable distributed processing [12] [32] [19]. Sti ll other

multicast protoco ls concentrate on LAN environments, especially those with hardware

multicast ing capabilit ies. Reliable multicast protoco ls for such LAN environments [3]

[2] [15] [33] [1] [4] [5] [7] [8] have been discusse d in the literature.

We chose to study multicast protoco ls in an Ethernet LAN with hardware multic-

ast ing capa bilit ies. We have designed a simu lato r in which to st udy such pro tocols,

and use the sim ulato r to st udy two simp le mult icast protocols.

Cha pte r 2 begin s by giving bas ic defini tions. It then discusses the characteriza

tion of mult icast protocols by some commo n featur es: support of static or dynam ic

mu lt icast groups, su pport for multi ple sources, orde r ing gua ra ntees for transmitted

messages, ty pes of acknowledg ment schemes, buffer and ba ndw idt h req uir em ent s, con

gest ion avoidance techniques, and fault tolerance and detect ion. Some commo n per

formance meas ures for multicast protocols are then discussed , including data through

put, which measures how much data the protocol can deliver wit hin a unit of t ime,

and message laten cy, which measur es how long the pro tocol takes to reliabl y deliver

messages.

T he chapter then covers the details of the two sim ple mult icast pr otocols to be

st udied, the stop and wait and block acknow ledgment protocols. Th e stop and wait

protocol sen ds messages one at a time, waiting for acknow ledg ments from all receiver s

befo re proceeding. The block ack nowledgment protocol sends messages in blocks,

permitting recei vers to ack nowledge mul tiple messages.wit h a single acknowledgment

message.

Three mu lt icast protocols from the literatur e are described. Th e ma in featur e of

the first protocol [24J is the use of a seque ncer node to order messages from differe nt

receivers and han dle retr ansmi ssions. One di sad vantage of the protocol is that mes

sages are sent tw ice; once to the seque nce r node and aga in in a mul ti cast transmission.

T his protocol is also highly dependent on the sequencer node .

Th e protocol by Err amilli and Singh [14] is highl y dep end ent on timeout par am et

ers for it s operation. In fact , the protocol can fail if the par am eters ar e not ca refully

chose n . Receivers adv ertise the ir status using stat us/sanity messages sent at spe

cified int ervals during idle periods. Messages from multiple senders ar e indep end ent

sequence s of messages, and no gua rantee of their rela ti ve ordering is given.

Th e protocol by Max emchu ck and Chang [6] is actually a fam ily of protocols

with different fau lt-tolerant prop erti es. The protocols combine the feat ures of a mu l

tip le source/single rece iver syst em , which simp lifies message orde ring, and a sing le

send er /multip le receiver sys te m, which uses negative acknow ledgments to redu ce the

number of acknowledgments required.

A simulator develop ed to st udy the behaviour and performan ce of multicast pro

tocols in an Ethernet LA T environment is discussed in chapt er 3. The simulator

curre ntly supports the st op and wai t and block acknowledgme nt protocols. Th e sim

ula tor 's layered design is eas ily exte nsible; other multicas t protocols can be adde d to

the simulat or. Th e simulator pro vides timing da ta to measure protocol performan ce

whi ch can then be anal ysed and plotted for further st i dy. Thi s chapter describes the

over all des ign of the simulator, includ ing what is required to add a new protocol.

Th e fourth chapte r pr esents and explains the results of the simu lat ion studies. Th e

performance of both the stop and wait protocol and the block acknow ledgment proto

cols und er sim ulation was measur ed and analy sed . Both protocols performed bett er

tha n equivalent uni cast proto cols in error-free conditions . Both protocols' through

pu t was improved by usin g randomly timed acknow ledgments to reduc e the rat e of

collisions . Th e block acknowledgme nt protocol's throughput was better th an the sto p

and wait protocol 's throughput as the windo w size of the block increa sed ; however,

the block ack nowledgment protocol had significant inc reases in message lat en cy as a

res ult. Both protocols had a low to lerance for errors.

Finally, the fifth chapter gives some concluding remarks, and presents suggestions

for further work, includin g suggestions for improving the error tolera nce of the two

protocols st udied, an d an out line of a third simple mul ticast pr otocol, the round robin

acknowledgme nt protocol.

Chapter 2

A Description of Multicasting

Protocols

2.1 Motivation

Computer technology has evolved from single isolated computers performing mostly

numerical computations to large networks of computers which cooperate to perform

a wide variety of tasks. Much of the cooperation between computers is achieved by

having the computers communicate information among themselves.

Computers communicate using predefined protocols. These protocols define how

and when each computer should communicate its information to other computers.

Communications protocols are often reliable, meaning that the protocol includes pro

visions for detection and recovery of errors encountered on the communication me-

dium.

Man y common network appli cations, such as file tra nsfer , rem ote terminal access ,

and elect ronic mail only require that two computers be able to parti cip at e in a com

muni cation at anyone time . Th ese applicat ions use po int-to-po int (unicast) pro tocols

to communicate.

Other applicat ions, such as distributed pr ocessing, di stributed dat aba se systems,

and mul tim edia teleconferen cing sys te ms, involve com munication among severa l com

put er s at once. Whil e this can be achieved using multiple point-to-point com munic

ations, these applica t ions would benefit from comm unica tion protocols designed for

one-to- ma ny or many-to-m any communicat ion. Broadcast pro to cols permi t commu

nication am ong all computers in a netw ork. Th ese pro tocols ar e ofte n used for net work

man agem ent fun ctions in which all com put ers mu st par ticipate, such as the bro ad cast

ing of net work routing inform ation. Most bro ad cast protocols ar e not reliabl e, but

som e reliabl e broadcast protocols do exist . Mul ticast protocols permit designated

groups of compute rs, ofte n te rme d multi cast gro ups, to communica te amo ng them

selves. Mult icast protoco ls can be eit her reliable or uIlfe liable.

Appli cations which are dist rib ute d over a grou p of com pute rs deri ve the most

benefit from multi cast proto cols. Consider a faul t-tol eran t di stributed system which

repli cat es it s file st ruct ure in several compute rs at once . All modifi cations to the

file sys te m mu st be sent to all compute rs stor ing the file sys te m . Impl em entin g this

t ra nsfer usin g severa l poin t-t o-poin t link s is wasteful, as exactly the sa me informat ion

is bein g t ransmitted seve ra l times. However , reliability and certain order ing pr opert ies

are required , so convent ional unreliable broa dcast or mu lt icast algorit hms won't do.

As well, cont inuing improvement in mul tim edia technologies has spa rked interest in

desk top teleco nferencing app licat ions . The large bandwidth required for the transmis

sion of real-time audio and video data necessi tated by teleco nferenc ing is a signi ficant

dr ain on netw ork resour ces. Multi casti ng this data to te lecon fere nce par ticip an ts will

redu ce the required network bandwidth significant ly, and may also reduc e th e lat en cy

of the teleconferen cing applicat ion, a crit ica l perform an ce measur e in a real-time en

vironment.

Other appli cations which may benefit from multi cast protocols include the t ra ns

mi ssion of Usenet news, multi- use r chat pro grams, di stributed mul ti-u ser compute r

games, etc .

2.2 Characterization of Multicast Protocols

Communicat ion protocols [22] can be cha racte rize d as reliabl e, or unr eliabl e. An un

reliabl e pr oto col will send information on a "best effort" bas is, bu t will not resend lost

messages or guarantee that messages will arr ive in order or uncorrupted . Unrel iab le

protocols are often datagram or connect ionless protocols; messages are sent to the

destin ation in a mann er ana logous to a lett er posted at the post office.

A reli abl e protocol will ensure th at messages arr ive at the intend ed destin ation;

retransm iss ions and acknowledgme nt mess ages from the receiver are the most com

mon ly used mechani sm s to imp lement this reli abili ty. Reliabl e pr oto cols may also be

connect ion-oriente d; messages are sent to the destination in a ma nner ana logous to a

teleph one call, i.e. , using distinct phases to perform call-set up, conve rsation (or dat a

t rans fer), and ca ll-disco nnect.

Unicast protocols describ e communication between exactly two comp uters; un icast

pr otocols may be reliab le or unre liab le, connection less or connection-oriented . Multic-

ast protocols descri be communication between many comp ute rs; mult icast protocols

may also be reliabl e or unr eliable , but are ra rely connection-oriented. Broad cast pro-

tocols describ e com municat ion between all the compute rs in local are a network ; as

suc h, they may be considered as a special case of mult icast protocols.

Rel iable mult icast protocols [3] [2] [15] [33] [1] [4] [5] [7] [8] [20] [18] [21] [29] [30]

[28] can be cha racterized by a few important features, as follows:

• support of static or dy na m ic mult icast grou ps. Static mul ticast gro ups retain

the same memb ership throughout the course of a multi cast communica tion. Dy-

narnic mul ticast groups, however, may change their memb ership duri ng the

course of a mu lticast communication, by adding ?r delet ing nodes dynamically

throughout. In order to support dynamic mu lticast gro ups, a multicast pro tocol

must provide mechanisms for adding and deleti ng nodes from the group as well

as a mec ha nism to keep all nodes informed of the cur rent memb ership status .

• suppo rt for mult iple sources. A source is a node in the mul ticast group whic h

transmits multicast messages. A multicast protocol may su pport on ly single

source or mu lt iple sources in one communication.

• or der ing properties of t rans mitted messages. A protocol may del iver a ll mes

sages reliably, but ma ke no guarantee about the order ing of the messages re

ce ived . Such a protoco l is sa id to deliver messages unord ered .

Other pr oto cols may deliver messages in the order sent by the sender. Wh en

mul tipl e senders are involved , these pro tocols do not make any gua rantees abo ut

the relati ve order ing of messages sent by differen t senders, or even that all the

receivin g nodes will receive messages from differen t nodes in the same ord er .

However , if onl y one sender is involv ed , the resul t is an ord ering of messages

whi ch is iden ti cal at all rece iving nod es.

Yet ot her protocols provide even stronger order ing properties for messages, guar

anteeing a "globa l" order for messages. T hese protocols will gua rantee that all

messages from all senders are received by all nodes in exactly the sa me order.

T hese protocols do not necessari ly gua rantee that all messages will be delivered

in exactly the time seq uence sent when or iginating from differen t senders . Two

of the more common mechanisms for ens ur ing globa l order ing of messages, the

use of a timestamp or a seq uencer node, will ace m plish that goa l.

• acknowledgme nt schemes for reliability. Acknow ledg me nt schemes use eit her

posi tiv e acknowledgme nts, that is, all messages properl y receiv ed are acknow

ledg ed by sending acknowledgme nt messages to the source (or oth er int erm edi

ary nod e); or negat ive ack nowledgme nts, that is, all messages det ect ed as corrupt

or lost by the receiver are ackno wledge d by sending a negat ive acknowledgme nt

(implied retransmission requ est) to the source (or oth er int ermediary node) ; or

a combination of both. Attempts to reduc e th e number of acknow ledgments

needed by sending impli cit mu ltip le acknowl edgment s in one acknowledgment

message and /or by "piggybacking" acknowledgments onto other data me ssages

ar e also common variations.

• buffer requirem ent s for sources/receivers . Buffer requirements differ widely

among variou s protocols. A protocol may require as few as a one me ssage

buffer for all node s (stop and wait), or n message buffers at source nodes and

a single message buffer at receiv er s (go-ba ck-n), or n message buffer s at bot h

source nod es and receiver s (selectiv e rep eat) , or n message buffers at sources

and m i message buffers at ea ch receiver i (selective repeat protocols with flow

cont rol). Yet oth er protocols can dynamically ada pt to changing buffer resource

levels, using as many or as few buffer s as the syste m will allow .

• congestion avoidance te chniques. Protocols may make no provis ion for con-

gestion control; or att empt to reduce the numb :r of transmitted me ssages in

ord er to avoid conges tion; or include mechanisms for detecting and dealing with

network conges tion .

• fault tolerance and det ection. A multi cast protocol ma y br eak down com pletely

if a fault occurs in one or any of the multicast group; it ma y be able to det ect

th e fault and stop; or it may be able to operat e when a given numb er of site s

fai l.

10

• quality of serv ice guarantees. Some multicast protocols can prov ide differing

level s of serv ice as requ ested ; most ofte n these leve ls of ser vice involve reliabili ty

an d ordering guarantees. Others provide just one level of service.

2.3 P erformance M easur es

How do we compare the performance of one protocol to another? 'I'Ve need to have

a ser ies of performan ce measur es which qu an tify the pe rformance of a pro tocol in

different ways, so that we can decide which protocol is best for our need s.

The most obvious meas ure of a protocol is the amo unt of data per unit of time

which it can deli ver , norm ally te rme d throughput . In the case of multicast protocols,

the meas urement is based on the total amo unt of data which is received by the mul tic-

ast nodes within a unit of time. This measurement reflects the fact that the amount of

"effect ive" data is act ua lly the data transmit te d mul tipli ed by the numb er of receiv er s

receiving that data.

Throughp ut values in isolation are not always informative; comparing the th rough

pu t values of mul ti cast protocols to the throughput values of the equivalent mu ltip le

unicast t ransmissions will more clearly show whether the use of a given mu lticast pro-

tocol is benefic ial. To that end, we will measure the relative throughput of a mu lticast

protocol as the ratio of the absolute throughput of the multicast pr otocol to the abso-

lute throughput of the equivalent unicast transmiss ions; a multicast protocol with a

relative throughput of 1.0 has per formance equivalent to using mu ltip le point-to-point

11

tr an smi ssion s. Mul ti cast protocols with rel ative throughputs grea te r than 1.0 show

increased perform an ce over the equivalent uni cast poin t- to-point transmi ssion s.

Both absolute and rel ativ e throughput measur ement s will dep end on the error rat e

of the und erl yin g communica tion media, and is usually given in both be st case (no

er ror rat e - best po ssibl e throughput) , and average case (average err or rat e - mo st

likely ex pected throughput value) condit ions . Th e best case throughput can be used

to measur e the message overh ead incur red by a pro to col.

Ano th er mea sur e of performan ce is message laten cy. Message lat en cy measur es the

amount of time from the initi al t ran smi ssion requ est un til th e app lication receives the

t ra nsmit te d data. Thi s mea sur e includes transm iss ion tim e of the medium, pro cessing

tim es , retransmittal and oth er overh ead incurr ed in the t ransmiss ion of a message. In

the case of multi cast pro to cols, the message lat en cy mea sur e includ es the amount

of tim e required in ord er to ensure that all receivers receive the message, and in the

ord erin g guarantee d by the protocol. Thi s measur e is also affect ed by the tr an smi ssion

and er ror rat e of the medium, so it is often given in both best case and ave rage case

condit ions . Mor eover , thi s measur ement ma y also be given in worst case conditions.

T his worst case measur ement gives the greatest amount of tim e required to tr an smi t

a message from applica tion to applica tion . It is an imp or tant factor when evaluating

a proto col for real-time applications, where response tim e is crit ica l.

On e aspect of proto col performan ce whi ch only applies to multi cast protocols is

sca lability wit h res pect to the numb er of receiver s. How do oth er measur es of perfor m

ance discussed above degrade as the numb er of nod es increases? If th e degradation

12

is linear with resp ect to the numb er of rece ivers, then the protocol scales well , and

will no t be undul y affect ed by increa sing numb ers of receiver s. If the degradation

is ex ponential or worse, then the protocol will qui ckly beco me unu sable as the num

ber of receiv ers incr ea ses. Thi s measur ement will help in evalua ting protocols for

appli cations where the numb er of receivers is larg e.

Another aspect of pro to col performan ce is the amount of resour ces requ ired to

achi eve the given performan ce. For exa mple, a meas ure of the amount of network

bandwidth utili zed by the pro to col as a fun ction of t ra nsm it te d dat a quantifies the

amount of overhe ad messag es such as acknowl edgment s and oth er status mes sages

required by th e protocol. It provides us with a measure of th e network bandwidth

requi red by th e protocol in relation to the amount of data being transmitted and can

be useful in evaluat ing protocols to be used in environme nts with high network traffic.

Another measur e of the resourc es required by the protocol is buffer space require

ment s of sender(s) and receiver s as a fun ction of the numb er of receiver s and th e

dat a throughput valu e. Thi s mea sur e help s det ermine how increased buffer space will

improve data throughput for a given numb er of receiv ers , and help s det ermine an

appropr iate tradeoff point betw een space requireme nts and throughput achieve d .

Th e numb er of int errupts generate d at a nod e in order to pro cess incoming pa ckets

ofte n affects the pr ocess ing ability of the nod e. In the case of the multicast pa ckets , all

nodes whi ch receiv e the mult icas t pack et generate an int errupt to proc ess th e packet

and det ermine if it should be kept and passed along to upp er network software layer s.

A measur e of how many int errupts are generate d per receiver as a function of dat a

13

throughput (perhaps numb er of messages, inst ead) will clearl y show the impact of

various protocols on the pro cessing abili ty of the rece ivers as affect ed by int errupt

pro cessing.

2.4 Unicast ver su s Multicast Protocols

Unicas t protocols ar e mu ch simpl er to design and impl ement th an multi cast protocols

for severa l reason s. Unicas t protocols need to pro vide reliabi lity ; however , the y only

need to handle acknowl ed gments from one nod e; onl y need to ord er messages from

one source ; do not have to provide fault-toler an t mechanisms, since when one of the

two nod es in the communicat ion fail s, the communication stops; and do not have to

provide support for nod es dynamically joining or leaving during a communication.

Multi cast protocols, on the other hand , mu st handl e acknowledgme nts from a (pos

sibly dynamic) numb er of receivers, as well as the ensuing network congest ion; mu st

be able to det ect err ors in data tran smi ssion to multiple receivers and handl e the re

quir ed (pos sibl y multiple) re transmiss ions; ma y enfor;e st ricte r ord ering prop erti es

for received messages; ma y provide some measur e of fault-tolerance, sinc e th e fail-

ur e of one or more nodes doe s not automatica lly ma ke continuing the communication

frui tless; and ma y also have to support dynamic mul ticast groups .

Th ese issues add a considerable amount of compl exity to a mu lti cast protocol.

Cons ider th e numb er of acknowledgme nts required in a multi cast pro tocol for r nodes .

If one acknowledgme nt from each receiver is requi red for each message, then the num -

14

bel' of acknowledgme nts per message is simply r, Now the numb er of acknowledg me nt

me ssages is tied to the numb er of nod es participa tin g in a communication, and there

fore the protocol 's throughpu t det eri orates as the number of nod es increa ses. This

redu ces the scalability of the protocol. Man y mu lti cast protocols at te m pt to redu ce

the number of acknowledgment messages requi red in an effort to improve the pro

tocol's perfo rm an ce when using a large numb er of nodes. Mechani sm s for redu cing

the numb er of acknowledgme nts includ e piggyb acking severa l acknowl ed gm ents in

one message; using negative acknowl edgm ent s, and variou s oth er combinations. Of

course, these mechani sms come with a pri ce: the amount of tim e required to det ect

a lost message usually increases, and the amo unt of buffer space required may also

increase.

Another important issue is that of ord erin g. Many applicat ions require that mul

ti cast messages be tot ally ordered. For example, a fault-toler ant di stributed database

sys te m th at is sending tr an saction information ori ginating from various nod es to a

repli cat ed datab ase using mul ticast messages, must gua ra ntee th at all t ra nsaction

information arrives in exactly the sa me order at all)lodes to main tain cons iste ncy

among the repli cated copies of the datab ase. Totally orde ri ng messages from differen t

sources requires some sort of globa l t imes tamp or a sequence r node to sequence all

messages. Synchronization of clocks in a di stributed environme nt is complex . Using

a seque nce r nod e redu ces the fault -t oler ant prop er ties of the protocol , sin ce failur e

of the sequencer node will cause the ent ire communicat ion to fail. Mechani sm s to

red uce this vuln er abil ity usually involve rotation of the sequence r node responsibili t-

15

ies among all nod es coupled with a recovery mechani sm should the act ing sequencer

nod e fail. Whil e these pr oblem s are sur mo unta ble, they add a cons idera ble amo un t

of complex ity to the design of a reliabl e multi cast prot ocol.

Yet another issue is retransmi ssion policy impl em ent ed by the multi cast protocol.

Unicast pr oto cols simply retransmi t a lost message to it s int end ed recipi en t ; mul ti cast

protocols must det ermine whi ch receiver lost the message and may handl e the retran s-

mi ssion by either sending a uni cast message to the affecte d receiver or mul ti casting

th e retransmission to th e ent ire group. Unicast ing ret ran smi ssion s ma y redu ce the

amo unt of time spe nt by rece ivers pro cessing mul ti cast messages; however , multi c-

ast ing retransmiss ions may result in fewer retr an smi ssions overall, redu cing network

conges t ion und er high t ra ffic condit ions .

2.5 Multicast Stop and Wait Pro tocol

Th e simplest uni cast proto col is a stop and wait pr otocol. In thi s protocol , th e source

send s its message and wait s for an acknowledgme nt f:om th e single receiver before

sending another message. Ad vantages of thi s pro to col include a single messag e buffer

requirem ent bo th at the source and receiver , and a sim ple impl ementation.

Extending the stop and wait par adi gm to a mul ti cast protocol result s in a rather

sim ple pr otocol whi ch supports only a single sour ce and static mult icast groups and

does not provide any faul t toler an ce. Th e acknowl edgment scheme uses po sitive ac-

knowl ed gmen ts. Sequ en ce numb ers are only single-bit, since at mo st one packet is

16

out st anding at any one tim e. Th e pr opo sed multi cast stop and wait protocol also

includes several options: ra ndom wai t int ervals before sending acknowledgme nts, and

using either uni cast or multi cast messages for retransmi ssion s. Th e ba sic multi cast

stop and wait protocol using uni cast ret ran smi ssion s will be described first , followed

by the options.

Th e protocol requires th at all receivers and the sender agree on a multicast address

and th e composit ion of the multi cast group. Thi s can be done either statica lly or by a

pr eliminar y negoti ation phase. Th e sender ini ti alizes it s dat a st ruct ure s, which include

a single message buffer , and one timer, retransmi ssion count and acknowl edgment

buffer per receiv er . Th e sender checks its t ra nsmiss ion queue for messages to be

sent; if th e queue is not em pty, the sender enca psulates the first message with th e

following head er information : the sender 's address (source), the pr eviou sly agr eed

upon mul ti cast address (des tination), the sequence numb er of the message (0 for the

first messag e) , and a message ty pe of data. Th e resul tin g packet is th en multicast to

th e local ar ea network, a timer is started for eac h receiv er, and th e sender enters a

waiting ph ase.

Th e receiv ers initialize themse lves to expect a dat a mess age with seque nce numb er

0, and pr epare a single message buffer. Th en , the receivers wait for messages. On ce

a message has arr ived for a parti cular receiver , eit her explicit ly addresse d to it or

destin ed for the pr eviou sly agree d upon multi cast address, the receiver checks if the

message numb er is the expected message numb er. If so, the receiv er pr ep ares a uni cast

packet with a message ty pe of ACK , the sequence number of the me ssage bein g ac-

17

know ledged, the receiver's address as the source address, and the sender's address as

the destination, and sends the packet. It then increments its expected sequence num

ber by one (note the sequence number is a single-bit quantity), and res umes wait ing

for messages.

W hen an ack nowledg ment is lost, the sequence number of a message received will

not be the expected seq uence numbe r. Wh en this occurs, the rece iver will pre pa re

and send an acknow ledgment message as desc ri be d above, bu t does not upd ate its

ex pected sequence numb er . Thi s ensures th at lost acknowledgme nt messages are

eve nt ua lly resen t.

Wh en a sender is in its wait ing phase one of two events may occur; eit her an

acknowledgment is rece ived or a timer expires. If an acknowledgme nt is received , the

sender will check if the sequence number contained in the acknow ledgment message

is the sequence number of the currently outstanding message, and whether the source

of the acknowledgment is among the mu lticast group. If the acknow ledg ment passes

both valid ity tests, then the acknowledgment buffer for the corresponding receiver is

updated, an d its t imer reset.

The sen der now checks if all receivers have rece ived the cur rent ly outstanding

message by examining the acknow ledgme nt vector containing the acknowledg ment

buffers for eac h receiver . If all rece ivers have rece ive d the message, then the se nder

determines that the message has been success fully an d reliably multicast and there fore

gat hers timing informat ion for performance statistics, re-ini t ial izes its data st ruct ures,

including inva lidating all active timers, increm ents the cur rent seq uence number, an d

18

inform s the upp er layer applicat ion pro tocol of its success. It is now read y to send the

next message in the t rans m iss ion queue as described abov e. If some of the recei ver s

ha ve not acknowl edged the curre nt ly ou tstanding message, then the sender continues

in the waiting phase .

If a timer expires, then the sender concludes that the corres ponding receiv er has

not rece ived the cur rent message. Note that the sen der cannot dist inguish betw een

the case whe re the receiver does not receive the message, and the case where the ac

knowl ed gm ent packet sent by the receiver does not arrive at the sender. Th e sender

checks that the retr an smi ssion count for the receiver. If th is does not excee d the max -

imum retransmis sion count , the sender pr epar es and sends a unicast retransmi ssion

of the current packet to the receiver whose time r expired, and also increm ents the

appropr iate retr an smi ssion counte r.

If the maximum retr an smi ssion count has been excee ded, then the pro to col fail s,

having been unabl e to success fully t ra nsm it the mul ticast message reliabl y within the

allotted tim e. However , an impl ement ation may ju st note the failure and cont inue;

relyin g on an upp er layer to detect and correct the pro lem. Thi s is done in order to

place an upp er bound on the amount of tim e used to transmit a messag e; it is also

often the case that upp er layer pr otocols will have some erro r detecti on and correction

mechan ism s that will per mi t the com municat ion to cont inue .

19

2.5.1 Adding Randomly Timed Acknow le dg me nts

In an Eth ern et CSMA/CD envi ronme nt, the multicast stop and wait pro tocol di s

cusse d above can cause congestion in the network. To see why this is so, consi der

the case of 10 nodes of relat ively equal processing power and load participating in a

multicast communication . All nodes will simultaneously receive the mu lt icast commu

nication , process it and attempt to send an acknow ledgment message on the Ethernet

medium. The most likely scenario is that a slight ly faste r node captures the Et her

net me dium, causing all ot her nodes to wait un til the first idle period to send thei r

acknow ledgments. W hen the nodes then attempt to sen d the ir acknowledgments, a

collision results. While it is true that the collision contention algorithm of CSlVIA/CD

will attempt to prevent further collis ions in the future, at least one collision detecti on

cycle must occ ur for th is to happen. So, a variation on the mult icast sto p an d wait

pro tocol di scussed above at te mpts to pre vent collis ions from occ ur ring by build ing

in a rand om wait inter val to be obse rve d by all receiv ers before an acknow led gment

message is transmitte d.

The random wait interval is imp lemented as follows: the upp er bou nd of the ran

dom wait interval is chosen for all receivers; when a rece iver is ready to transmit an

ack nowledgment message, it selects a ran dom number wit hin the chose n t ime inter val ,

and delays sending the acknowledgme nt message for this amo unt of time .

We expect this variation in the mult icast sto p and wait pro toco l to im pro ve

throughput values significant ly, ma inly due to a reduct ion in the numb er of colli

sions. The probability of collis ions decrease as the chosen wait interval becomes

20

larger; however, the delays incurred transmitting acknowledgments as the interval

increases can also reduce throughput.

This interval also affects other parameters of the protocol , most notably the timeout

value used by the sender to determine when a receiver has lost a message. If th is value

is not chosen with the maximum random wait interval in mind, the sende r may sen d

unnecessary retransmissions because it bel ieves that a receiver has lost the cu rre nt

message although the acknowledgme nt may have been purposefu lly delayed . T he

network congestion thus cause d may res ult in a sign ificant det er ioration of pr otocol

performance.

2.5.2 Var ying the Retransmission M ethod

Multicast packets in an Ethernet network may be lost in one of two ways . Either the

entire multicast pac ket is garbled on the bus and no node receives it , or particu lar

nodes have difficu lty grabbing the packet off the wire . In the first case, it should be

obvious that mult icast ret ransmiss ions are more effective than unicast retr an smi ssions;

once the ini tial multicast pac ket is lost, us ing unica t ret rans miss ions redu ces the

protocol to mu lti ple po int-to-point transmissions to correct the error.

In the secon d case, if the number of rece ivers which lost anyone packet is two or

mo re, the amo unt of time req uire d for retransmiss ions is significant ly reduce d if the

retransmissions are mult icast. T he second variat ion on the multi cast stop and wait

protocol di scussed above uses multicast retr an smissions instead of uni cast retr ans

miss ions in order to improve protoco l per formance.

21

Multicast retransmissions are simple to implement. Retransmissions use the same

multicast packet format used for the original transmission of a message; the only signi

ficant changes to the above protocol description are the use of a single retransmission

count and timer instead of one retransmission count and timer per receiver previously

required . Note that the semantics of the maximum number of retransmissions para

meters is changed; in the original protocol, this placed an upper bound on the number

of retransmissions per message to anyone node, in the modified protocol, th is places

an upper bound on the total number of retransmissions per message.

2.6 Multicast Block Acknowledgment Protocol

The previous multicast stop and wait protocol requires, for r receivers, r acknow

ledgment messages per message. The multicast block acknowledgment protocol is a

simple enhancement to the multicast stop and wait protocol which reduces the number

of acknowledgment messages required per message. The multicast block acknowledg

ment protocol allows a block of n messages to be transmitted at once; each receiver

will send one acknowledgment message acknowledging the successful receipt of some

or all of the block of messages.

The proposed multicast block acknowledgment protocol supports only single-source

transmissions with static multicast groups. It guarantees totally ordered messages,

uses a positive acknow ledgment scheme, and attempts to prevent network congestion

by "piggybacking" several acknowledgments in one message, but does not include any

22

faul t tolerance. It requires an n message buffer at the sender, bu t onl y need s a single

message buffer at eac h of the receiver s" .

Th e sender, which has a maximum window of size n, may send up to n mul tic as t

messages at onc e to the multi cas t group. Th e receivers in the group will send one

acknowledgme nt respon se acknowledging all n received messages. The send er pro

cesses the acknowl edgmen ts and sends the next n messages. Under idea l conditions ,

no messages or acknowl ed gment s will be lost and the proto col would be quit e simple.

However , in more rea listi c environme nts, the protocol mu st be prepa red to handle lost

pa cket s, and other errors, adding to the complexity of the protocol.

Simi lar to the stop and wai t protocol discu ssed earl ier, messag es have sequence

numb ers ass ociate d with them to ensure synchronisat ion of message s between the

sender and receiver s. In the sto p and wait pro to col, however , the sequence numb ers

are either 0 or 1, reflectin g the fact that at mo st one message was outstanding at

one time. In the block acknowledgment protocol , the sender has a window of up to

n messages whi ch may be outstanding at one time . Th e rang e of sequence numb ers

mu st there fore be 0 to (2n - 1) [22]. Th e next sequence numb er can be calculate d as

Si + 1 = (s; + l j modulo Zn. (2.1)

Th e send er' s window is defined as the ord ered list of sequ enc e numb er s corres-

ponding to curr ently outstanding messages, which ma y be fully specified by giving

the cur rent size of the window , c, the sequence numb er of the first messag e sent in th e

window , s, and th e maximum size of the window , w . Given this specification of the

se nder's window, we can tes t whether a message fall s into the window . As well , given

23

a vector of sequence numbers repr esenting the last message acknowledged by ea ch

of th e receiver s, we can calculate the mo st recentl y sent message acknowledged by

all the receiv er s. Thi s calculation is done by det ermining the rank (orderi ng) of each

sequence numb er within the current window , select ing the lowest rank, and converting

the rank back into a sequence numb er.

Th e sender must keep all the messages in it s window in a buffer ; if a messag e is

lost , th e send er mu st retransmit the lost mess age and all subse quent messa ges in the

cur rent window . Th e send er mu st also keep a vector of acknowl edgm ent s, one per

receiv er, to be able to calculate how man y messages in its window have been correctly

received by all receiver s, and another vector to count the numb er of retransmi ssion s

per message in the cur rent window. Th e sender also has one timer, which is used to

bound th e amount of tim e spe nt waiting for acknowl edgments from receiv er s.

Each receiv er keep s a coun t of messa ges success fully received but not acknow

ledg ed , the maximum size of the sender's window , and the sequence numb er and

sour ce of the last message received. It also uses a tim er , which is used to bound th e

amount of tim e before an acknowledgment is sent .

Th e sender and receiv ers particip ating in the multi cast block acknowledgment

protocol must agree on the maximum window size used by the sender, the multi cast

address for th e group , and the memb ership of the group. Thi s is don e either statically

or with a negotiation phas e before communication starts.

Th e communication is initiated by the sender, which sends up to n messages to th e

multi cast group. Th e active window is initially of size zero, with a start ing sequence

24

number of o. Each message has the appropriate header information attached, including

the source sender's address, the destination multicast group address, and the sequence

number of the message, and is copied to the sender's n message buffer. As each

message is sent, the sender's packet timer is set to the packet timeout value, and the

sender's window is increased by one. The result is a window of up to n outstanding

messages, starting at sequence number o.

The sender then waits for acknowledgments from the receivers. When one does

arrive, the sender validates the acknowledgment by checking that the source of the

packet is one of the multicast group, and its sequence number falls within the currently

active window. If the acknowledgment is a duplicate, that is, it has been received and

processed before, then the sender continues waiting for acknowledgments.

Otherwise, the sender processes the acknowledgment by first updating the ac

knowledgment vector to include the newly received acknowledgment. This is done by

setting the validity bit and copying the sequence number of the acknowledgment into

the slot of the acknowledgment vector corresponding to the source of the acknowledg

ment packet. The last acknowledgment received from. all receivers by the sender is

then calculated as outlined previously. If there is at least one message in the currently

active window which has been acknowledged by all receivers, then the calculation of

last acknowledgment will result in the sequence number of the most recently sent

message in the currently active window to have been acknowledged by all receivers.

The sender can now advance its window by the number of messages acknowledged.

First, the upper layer is notified of the successful transmission of the acknowledged

25

messages. Then, the current window is advanced by recalculating the current win

dow parameters, and resetting the appropriate slots in the acknowledgment vector

and message buffer. The sender now checks for messages in its transmit queue, and

transmits as many messages as its window will allow. The procedure for transmitting

the message is the same as described above, with the exception that sequence numbers

continue in sequence.

The sender can also receive a packet timer expiry event while waiting for acknow

ledgments. A packet timer expiry event occurs when the sender has been waiting

for some time for acknowledgments which have not arrived. In this case, the sender

assumes that all or some of the messages outstanding in its window have not been

properly received, If the retransmission count has not been exceeded, the sender re

transmits all the messages in its currently active window, updating the retransmission

counts appropriately. The retransmission limit bounds the amount of time required

to send messages, however, the protocol fails if the retransmission count is exceeded.

The receivers are initialized with the size of the sender's window, a value of - 1

for the last sequence received, etc ., and enter a waiting phase. In the waiting phase,

the receivers wait for messages from the sender. When a message arrives, the receiver

verifies that the message is the next message in the sequence; if it is not, then the mes

sage is discarded without acknowledgment. However, if the message is valid, then the

receiver updates its counter for messages correctly received but not yet acknowledged

and resets the acknowledgment delay timer. When this message counter is equal to the

size of the sender's window, the receiver transmits a unicast acknowledgment to the

26

sender acknowl edgin g all the messages in the sender's window and reset s th e message

counte r.

Wh en the acknowledgment delay timer expires, the receiver has been waiting for

a message from the sender for some time. Th e rece iver ass umes that either a mes sage

from the sen der has been lost or the receiver 's pr evious acknowledgme nt has been

lost. Th e receiver sends an acknowledgment to inform the sender of it s cur rent status

and sets the acknowledgme nt delay time r once mo re. All messages correctly receiv ed

are acknowledge d by including the sequence numb er of the last success fully receiv ed

message in the acknowledgme nt packet .

T his rath er simple block acknowl ed gment algor ithm can redu ce the numb er of ac

knowled gment s pe r message by a factor of ~ over the pr eviou s multi cast stop an d wait

protocol in ideal con ditio ns . We define ideal condit ions to be an erro r-free env iron

men t wit h a steady supply of messages to be t ra nsmitte d. Wh en n messages are sent

to r rece ivers und er these condit ions, the previously di scussed multi cast stop and wait

algor it hm requires nr acknowledgments. Mul ti cast block acknowledgme nt, however ,

only requi res r acknow ledgments . Since up to n messa es can be tr ansmitted without

wait ing for an acknowledgment, the rece iver in a mult icas t blo ck acknowledgme nt

pr otocol will at tem pt to accumulate seve ra l messages before sending any re ply. It

will then send a single acknowledgme nt message when eit her no messages have been

received for some time or all n messages have been rece ive d. Under the ideal condit ion

describ ed ea rl ier, eac h receiver will send a single acknowledgment for all n messages,

res ult ing in a total of r acknowledgments for n messages. T his improvem ent , espe-

27

cially when the number of outstanding messages n is related to the number of receivers

r improves the sca labi lity of the protocol and therefore its performance as the number

of nodes increases.

2.6.1 Adding Randomly Timed Ac knowle dgments

The multicast block acknowledgment protocol suffers from the same problem as the

multicast stop and wait protocol: acknowledgments from the receivers are transmitted

all about the same time, caus ing excessive collis ions in an Ethernet environment. The

same solution can be applied for this protocol as well; transmission of all acknowledg

ments is delayed to some random time within a specified interval, thus red ucing the

probability that two or more acknowledgments are sent at exactly the same time.

The interval to be used when implementing randomly timed acknowledgments

must be carefully chosen; this interval will affect other protocol parameters such as

the packet timeout value used by the sender.

2.7 Kaashoek, Tanenbaum et al.

The protocol presented is a simple reliable broadcast [24]. If the group of nodes is

determined beforehand, then this broadcast protocol can be trivially modified to work

in a multicast environment. We will present it as a multicasting protocol, describing

any changes required.

The protocol supports static multicast groups, and multiple senders. It guarantees

28

globa lly ord ered messages through the use of a seq uence node. It uses a pos it ive ac

kn owled gm ent scheme whi ch is coupled wit h explicit ret ransm ission requ ests for qui ck

response to misse d messages. Th e acknowledgme nt scheme also at te m pts to redu ce

the numb er of sepa ra te acknowledgme nt messages requi red by piggyb ackin g acknow

led gmen ts onto mul ticast requ est messages and using impli cit acknowledgments for

sequences of pro pe rly rece ived messages . However , the protocol as describ ed has no

faul t tolera nce, and is particularly vu lnera ble to a failure of the sequence node. Th e

aut hors do suggest an extension of the prot ocol to includ e an elect ion pro cedure to

repl ace the single sequencer node on failur e. Buffer req uire men ts at both sender and

receiver are flexibl e, since the protocol will use any ava ilable resour ces, an d can ada pt

to differin g resour ce levels dyn ami cally. Of course, the amount of buffer resour ces

ava ilable will imp act the performan ce of the protoco l.

For the purposes of this descri pt ion, a di st r ibuted sys tem is defined as a group

of n processes which communicate via a broad cast network. Each pro cess runs on a

separa te nod e, which has a kern el process (for the operat ing system and networkin g

softw are) and an application process. Any of the applicat ion pr ocesses can send

messages to all other pro cesses at any instan t.

T he prot ocol will make use of a spec ia l node called a sequence nod e to coordinate

all mu lt icasting act ivit ies. Th e sequence node has the resp onsib ility of sequenc ing

outgo ing mul ti casts, and ensur ing that all nodes rece ive the messages correctly. All

the nodes have the ab ility to be the sequence node, but only one should act as the

sequence node per mult icast conversation .

29

Th e protocol is initialized by elect ing a sequence node from among the nod es in

the multicast group. All node s should be informed of this choice as well the multicast

address to be used throughout the mul t icast communicat ion. T his is onl y a slight

modifi cation from the bro ad cast case , where only the seque nce r node 's address is

required by the nod es (s ince the broad cast address for a network is usually fixed).

A pro cess wishing to send a multi cast message will pass the message to the kern el

pro cess, whi ch then pa ckages it into a point-to-point multicast requ est message which

is sent to th e sequ enc e nod e. Th e sequence nod e receives and buffers the message,

ass igns it a unique sequence numb er , and multicast s the messag e over the network.

Reliability is achieved by havin g eac h of the nodes in the network keep a counter

of the seque nce numb er of the last message received . If a message is received and it s

seque nce numb er does not corres pond to the sequence number expecte d, then the nod e

has mi ssed one or more messages in betw een . Th e nod e sends a point-to-point re

tr an sm ission requ est message to the sequence nod e, requ esting the mi ssing messages.

It also buffers the out of sequence message received, and waits until th e mi ssing mes

sages are receiv ed befor e it passes along the messag~s in the corr ect sequence to

the application pro cess. If no buffers are availabl e, then the nod e just di scard s the

message, and sends another retransmission requ est to the sequence r nod e.

To reduc e overh ead , the nod es do not acknowledge eve ry multicast mes sage re

ceive d . Acknowl edgment s are piggyb acked to multi cast requ est messages sent to th e

seque nce node. A numb er k in the sequence number field of the head er of a multi c

ast request message informs the sequence node that all multi cast messages up to and

30

including k have been received by the node. The sequence node keeps a table of the ac-

know ledgments sent by the nodes; if all nodes have acknowledged receiving up to and

including some sequence number i , then all messages with sequence numbers less than

or equal to j in the sequence node's buffer are deleted. As well, if a node has not sent

a mu lticast request to the sequence node for some time, it sends a dummy mu lt icast

message to the seq ue nce node to keep it informed of recent acknow ledg me nts.

If, due to excess ive data loss in network , the seq uence node has exhauste d its

buffer space, it stops acce pt ing mul ticast reques ts and perform s a synchronizat ion

protocol utili zing two-phase commit to ensure that all nodes have received all mul ticast

messages. All nodes are sent a phase 1 synchronization message, which inform s the

nodes of the last sequence number transmitted by the seq uence node and instructs

them to send up-to-date information on their latest multicast message received. The

sequence node then uses this information to ret ransmit all miss ing messages to all

nodes. Once all nodes have acknowledged their missing messages, the seq uence node

enters phase 2, delet ing all messages in its buffer and informing all nodes that the

synchronization is comp leted. The nodes reply with an.°acknow ledgment, and normal

operation is resumed.

Message head ers have the following field s:

struct header {
unsigned int type;
unsigned int sequenceNr;
unsigned int messageNr ;
unsigned int senderID ;
unsigned int destID;

31

The information contained in the header and its interpretation differs slightly based

on the type of message . Valid message types are DATA (multicast request), MU L

T ICAST (m ult icast message), RETRANS (retransmission request), PHA SEI (phase

1 intention message), PH ASE2 (phase 2 message), ACICC OMMIT (ack nowledgment

message for 2 phase comm it).

If the message ty pe is DATA, then the sequenceNr field holds the piggyb acked

acknowledgment from the node to the sequencer; this seq uence numb er is the sequence

numb er of the last consec ut ive multi cast message received by the node. Th e senderI D

identifies the nod e makin g the mul ticast requ est ; the dest ID is the address of the

sequencer node to which the multicast request is being sent . T he messageNr un iquely

identifies messages from th is node and is use d to discard dupli cate multi cast requests

from the same node .

If the message type is MULT ICAST, the sequenceNr field holds the sequence

number of the multicast message contained in the body of the message as assigned

by the sequencer node . The sende rI D is the address of the sequencer node; while the

destID is a mu lticast address.

If the message ty pe is RETRANS, then the sequenceNr field holds the seq uence

number of the message being requested for retransmission. T he senderI D is the ad

dress of the nod e maki ng the retransmission request; the seq uencer requires this ad

dress to correct ly address the point-to-point message conta ining the mi ssing message

to the requesting node. T he des tI D is the ad dress of the sequencer node to which the

retransmission request is directed.

32

If the message ty pe is PHA SE1 , it signa ls the beg inning of a synchro nization phase

whose purp ose is to send all outs tan ding mu lticast messages to all nod es and flush

the buffer of the sequencer node. Th e sequenceNr field holds the seque nce numb er of

the last bro ad cast message sent by the sequencer node. T he senderID is the address

of the seq uence r node; while the destID is a multi cast address.

If the message ty pe is PHASE2, it signa ls the second ph ase of the syn chronization

pha se. It informs th e nod es th at the sequencer has complete d th e synchronizat ion and

norm al ope ration will resum e once all nodes have acknowledge d the message.

If the message ty pe is ACICCOMMIT, the nod e is informing the seque nce nod e

that it is up to da te. Th e sequencrNr field holds the sequence numb er of the last

consec ut ive message received by the nod e; the senderI D is the address of the sending

nod e; and th e destID is the sequence r node's address.

2.8 Erramilli and Singh

Th e second protocol from the liter atur e is by Erram illi a~d Singh [14]. It is a multicast

pro tocol designed for a bro adband broadcast network, which is cha racterize d by high

band width , low error rates, and relat ively low cost buffering. In ord er to maximi ze

thro ughput, the aut hors argue th at a protocol designed for thi s environme nt should

redu ce pr ocessing time for network tr an smi ssion /reception at the expe nse of higher

network band width and buffer requiremen ts .

Th is proto col supports sta t ic mul ticast groups and either single (lecture mod e) or

33

multiple senders (conference mod e). It guarantees that mess ages sent by individual

senders will be received in ord er by all the rece ivers, but does not provide a cons iste nt

global ordering of messag es. It uses a negati ve acknowledgme nt scheme coupled with

tim ers and sta tus messages to provide reliability. Buffer requirem ent s for th e senders'

buffer is fixed , whil e the receiver s' buffer requirem ents are not as clearl y defined ; re

ceivers may have a fixed buffer pool or may dyn ami cally grow and shrink the buffer in

respon se to changing requirement s. Th e proto col att empts to avoid network conges

tion by reducing the numb er of acknowl edgment s required during periods of int en se

network activi ty at the expense of adding overh ead status me ssages during mor e idle

tim es. As well, th e protocol includes some rudimentary flow cont rol mechani sm s to

pr event buffer overflow in the receiver s. A sim ple faul t det ection mechanism, whi ch

allows all mul ticast group nodes to det ect nod e failur es by monitoring network activ

it y, is provided. Although the protocol does no t fail when a nod e fail s, the protocol

does not pro vid e any mean s of reconstructing the thr ead of communication onc e a

nod e recover s.

Thi s protocol is differentiated from oth er multi cast .protocols mainl y by th e para

met eri zation of it s behaviour into severa l importa nt variables. Th ese vari abl es cont rol

the amount of buffer space, B , required by the sender(s), the numb er of rep etitions,

I<, and t ime r int ervals , T1 and T2 , for status/sanity messages, the valid rang e of se

quen ce numb er s, 1 . .. N, and tim er int erval s for flow cont rol, T3 . Th e correct valu es

to use will dep end on the und erl ying characte rist ics of the ph ysi cal net work environ

men t , including its err or rat e as well as expec te d tr affic patt ern s and network delays.

34

Cha nges in these values will mod ify the behaviour and performance of the protocol;

if these values a re ill-chose n, the pr oto col may fai l.

In presen tin g this pr otocol , the aut hors make the following ass umptions: the mul

ticast group management and control is done by some ot her pro tocol; the underlyin g

network environment is a broadband broadcast network with low erro r rates, high

bandwidth, relatively inexpensive buffering, and physical mult icasting capabi lit ies; all

nodes in the network are relatively eq ua l in terms of process ing powe r and buffer

ing capa bilit ies, thu s flow cont rol is not an imp or tan t issue; an d absolute ord erin g of

messages from differ ent senders is not require d .

As well, in order to simp lify the buffer management at the sender, an impli cit back

window of B messages is assumed. The last B messages sent are kept in a buffer in

case retr ansmission is required. The increased buffer requi rem ent is balan ced by the

reduce d processing time whic h would be req uired in order to deter min e what. mes

sages have been acknowledge d by all nod es and there fore can be di scard ed from the

buffer. However , it is importan t to note that if B is not chose n ca refully, then the pro

toco l cou ld fail when a negative acknow ledgment C AI<) message arr ives requ est ing

retransmission of a message which has been flushed from the buffer.

T he protocol ass umes that the init ia lization of the mu lt icast gro up, includi ng ne

got iat ion of the parameter ized values N, B , J(, Ti ; T2 , and T3 , have been performed

by some ot her pr otocol. In order to keep the impl ementation of the pr oto col simple,

this in itiali zation will done as previously discussed for othe r protocols. One node will

send the des ignated mu lticast group address, as well as the above values (no negot i-

35

at ion), to all nodes using unicast reliab le t ransmission. Wh en all nodes have posit ively

responded , then the mu lticast protocol can begin .

All sende rs keep any messages sent in a buffer send Buf of size B . Th ey also keep

the sequence numbe r of the next message to be sent in a var iable nextS eqToSend.

Note that eac h sender has an indep end ent st ream of data messages to t ransm it and

thus, messages are uniqu ely iden tifiable by a combinat ion of the message source an d

its sequence numb er. Sequ en ce numb ers range from 1 .. . N . In ord er for messages

stored in a sender's buffer to be uniqu ely identifi able, the cardinality of the set of

sequence numb ers mu st be greater tha n the size of the sender's buffer , B.

Wh en an applicat ion wishes to send a multi cast mess age to the group, the sender

prep ar es the message by enca psulat ing it with a header spec ifying the source address

of the transmiss ion, the sequence numbe r of the message, the designated mult icast

add ress as the dest inat ion ad dress, an d a data message type. Th e prepared message

is placed in the sender's buffer send Buf. If the max imum bu ffer size of B has been

reac hed, the sen der simply replaces the least recently sent message wit h the newly

sent message.

T he pr epared message is then mul ticast to the gro up, the sequence numb er of

the next message, nextS eqToSend is increment ed by one modul o N, and the time r

T1 is reset. If th e tim er T1 expires before the sender has to send another multi cast

t ran smi ssion to the gro up, then the sender will pr ep are and send a stat us/sanity

message conta ining the following inform ation in the header: the source address of the

status/sanity message, the multicast group address as the destin ation , th e sequence

36

number of the next message to be sent, nextSeqToSend , and a message ty pe of status

or san ity, as appropriate. The pur pose of this message is to inform all receivers of

the seq ue nce number of the next message to be transmitted if that message is not yet

ava ilab le, an d allows receivers to detect lost messages from a pa rt icular sender when

the sen der is idle and has no data messages pendin g.

Th e stat us/sanity message is sent only during idle per iods for the sender, ini tiall y

up to [(t imes in time inter vals of TI , subse quent ly fallin g back to a mu ch longer time

interv al , T2 • Th e tr an smi ssion of sa nity /s ta tus messages ceases immediately when the

se nder has da ta messages pendi ng, and resum es when the sender is once aga in idle.

If a sender never sends any messages, status/sanity mess ages are sent in inter vals

of T2 dur ing the communicat ion . If the messages are bein g sent in inte rvals of T I ,

the messages are referred to as status messages; if these messages are being sent in

inte rva ls of T2 , they are termed sanity messages.

If a sender receives a TAK message from any of the receivers, it sea rches its buffer ,

se ndBuf, for the requested message, and retransmits that message. Th e protocol is

not clear whet her retr ansmi ssions are dir ect ed to the inten ded receiver , or mult icast

to the whole group. A multicast t ra nsmiss ion would ad d process ing time at eac h of

the rece ivers, as eac h receiver mu st exa mine the incomin g retr an smi ssion to det ermine

if it is required or is to be di scard ed . Since thi s protocol att empts to keep proc essing

times to a minimum, retr an smi ssions should prob ably be uni cast tr an smi ssion s.

Receivers mu st keep the following inform ation about eac h of the pot en ti al senders:

the seq uence numb er of the next expected data message from eac h sen der, the t imestamp

37

of the last received status/sanity message from each sender and a receive buffer

recv Buf for each sen der. In a mult icast group of A'1 + I nodes, this information

is kept in a table of M entries.

If an incom ing message is a data message, then the sequence num be r of the data

message is com pa red to the expected seq uence number from the app ropr iate sen der.

If this sequence number is less tha n the expected one, then the new ly arrive d data

message is a du plicate , and can be disca rde d . If this seque nce numb er is exactly equa l

to the ex pected sequence number , then the message is acce pte d and placed in th e

recei ve buffer to be delivered to the ap plicat ion up on request. Th e expected sequence

numb er for this sender is then incremented by one modulo N.

If, howeve r, the seq uence numbe r of the data message is greater tha n the expected

sequence number for this source, then the receiver has lost one or more data messages

from this source. The receiver now prepares a negative acknow ledgment message

CTAK) to be direct ly sent to the source, with the following information : the source

address of the data message as the destination address, the receiver's add ress as the

source address, and the expected sequence number from th is sende r.

If an incoming message is a status/sanity message, then the timestamp value of

the source of the message is updated to reflect the arrival of the status/sanity mes

sage. T he sequence number of the message is com pare d to the next expected sequ en ce

numbe r for that sen der; if the values are equa l, then no messages have been lost. If

the expected seq uence number is less tha n the value adve rt ise d by the status/sanity

message, the n this receiver has lost one or more messages from the source of the

38

status/ sanity message. Th e receiver , therefore, pr ep ares and se nds a negativ e ac

knowled gmen t message cont aining the source address of the status/sanity message as

the destin ation , its own address as the source , and the next expected seque nce numb er

from the sender.

Node failures are detected by receiver s wheneve r the t ime inter val betw een the

timestamp of the last received status/sanity message and the curre nt t ime excee ds T2 •

T hus , any node failure is detect ed by all nod es with in T2 of its occurren ce.

Th e protocol achieves a simplified form of flow cont rol by having a nod e which is

in danger of overr unning its buffer send a time d-choke message to all memb ers of the

mult icast group. T his message conta ins a time interval T3 , whi ch is the amo unt of

time the node is requ esting to clear up its backlog in ord er to receive messages again.

Note that all the multicast group node s are both senders and receivers. Thi s

mea ns that the im plementation of the prot ocol must include bo th the receiver and

sen der funct ions at eac h node. Eve n in lect ur e node, nodes whic h do not sen d data

messages are regularly sending sanity messages in ord er to inform all nod es of the ir

current stat us .

2.9 Chang and Maxemchuck

Th e proto col propo sed by Chang and Maxem chuck [6] is describ ed as a broadcast

protocol, but it is rea lly a multi cast protocol with static mu lti cast groups . Nota ble

features incl ude the ability to reduce cont rol message overhead in high message t raffic,

39

and the ability to continue the communication in the presence of multiple site failures,

including failure of the token site, without any loss of committed messages. Chang and

Maxemchuck's work actually describes a family of multicast protocols, differentiated

by their fault tolerant properties, message latency and site storage requirements.

The protocol only supports static multicast groups, but does support multiple

sources. All messages from a single source are ordered as sent, and messages from

different sources are totally ordered. The protocol uses a unique combination of pos

itive and negative acknowledgment schemes to balance the advantages of both. It also

avoids congesting the network by piggybacking other functions to acknowledgment

messages, and reducing the requirement for acknowledgment messages through a neg

ative acknowledgment scheme. Fault tolerant features include frequent rotation of the

token site responsibilities, as well as a sub-protocol to construct a fully functional

subset of the multicast group in the presence of multiple site failures.

The philosophy of this protocol is to model a multiple source/multiple receiver mul

ticast system as a combination of multiple source/single receiver and single source/multiple

receiver subsystems to reduce the complexity of the protocol. The advantages of this

division should be clear: the single receiver system simplifies the sequencing of mes

sages from different sources, while a single source/multiple receiver system can be

exploited to reduce the number of acknowledgment messages through the use of neg

ative acknowledgments.

The multiple source/single receiver subsystem is implemented by channeling all

multicast messages through a single token site, which issues unique timestamps,

40

thereby totally orderi ng all messages from mu ltip le sources . T his subsystem uses

a po siti ve acknowledgme nt scheme between the source and the token site to ex pli

cit ly acknow ledge each multicast message sent, an d also ut ilizes the acknowledgment

message to di sseminate to all sites the timestamp generated by the token site. Th e

single source/mult iple receiver subsystem is impl emented by the int er acti on between

the token site an d all the ot her receivers. The token site stores all messages not yet

committed by all sites, an d can thus han dle all retransmissio n requests, which are

spec ified in nega ti ve acknowledgme nt messages from the receiv er s to the to ken site.

Since the token site now is a single point of failure for the protocol, the resp onsib

ili ti es for the token site are rotated amo ng all sites in the mul ticast group. Resilien cy

is added by delayin g the passin g of messages to the applicat ion until it has been re

ceived prope rly by at least a specified number of sites; th is numbe r is di rect ly re lated

to the numb er of failures the protocol can tolerate be fore failin g altogether. Th e re

siliency mec hanism is p iggybac ked onto the to ken passing mec hanism, thus redu cing

the number of control messages req uired.

Th e fam ily of prot ocols is generate d by vary ing t~e token passing rate and the

resi liency of the protocol. Increasing the token passing rate as a functi on of the

message rate increases the number of control messages requir ed per broadcast , but

also decreases each site's storage requirement. Increasing the resilien cy of the pro tocol

increases the message latency. Note, however , that increased res iliency does not affect

the number of control messages required when a steady st ream of multicast messages

is ava ilable, since the resilien cy mecha nism is piggyb acked onto the token passing

41

mec han ism. It does requi re addit iona l control messages when no multicast messages

are avai lab le.

Th e aut hors suggest that the best performan ce is obtained when the token pass ing

rate is one token t ra nsfer per mult icast message, since this requir es only one control

message per broa dcast when the syste m is bu sy and two control messages pe r broa d

cast when the sys tem is idle (ass um ing a res iliency of 1). Whil e the res iliency value

does not affect the number of control messages required when the system is busy, it

will req uire ad dit iona l control messages when the system is idle.

Th e pro tocol has two phases, the normal ph ase and the reformation ph ase. During

the normal phase, messages are mult icast , sequence d, and ackno wled ged . Retr an s

miss ions of lost messages and ack nowledgments occ ur, and th e tok en is transferred

as nee ded. Duri ng the reformation phase, no messages are mul ti cast , and the sites

per form a three phase protocol to construct a new list of opera tiona l sites.

All no des sto re the next timestamp expected (to detect lost messages), the next

sequence numb er expected from each source (to detect duplicate mul ticast messages),

the vers ion numb er of the current token list (to detect disc repa ncies in token list s

used) , the act ua l token list (to commit messages and to decide which node should be

the next token site) , an d que ues of received messages and acknowledgme nts.

T he protocol sends three ty pes of messages with vary ing purposes an d info rmation.

A multicast message is sent from a source to all the sites (but is acknow ledge d solely

by the to ken site), and conta ins the address of the source, the seque nce numb er of

the message (with respect to the source) , the multicast address of the gro up, and

42

the data . An acknowledgment message is sent from the token site to all sites, and

contains the timestamp (which totally ord er s thi s message with respect to all oth ers

in the system), the token site address, and the source an d sequence numb er of the

message being ackno wledge d. The ack nowledgme nt message may also pass the token

to the next token site, and therefore also ca rr ies the next token site address, and

the version number of cur rent token list for this purpose. If the token site is not

t rans ferred, then these fields contain the current to ken site and no action is ta ken .

As well, if the token mu st be passed but no message need s to be acknowledge d, the

acknow ledgment message contains empty fields for all the acknow ledg me nt data. T he

last ty pe of message sent by the prot ocol is the confirmat ion message, which is sent

by a new to ken site to all sites, acknowledging receipt of a token. Thi s message is

only sent if, when the token is transferred, the new to ken site has no messages to be

committ ed or acknowledged aft er some des ignate d timeo ut period.

2.9.1 N orma l ph ase

Sour ces send mul ticast messages whenever the messages becom e ava ilable. However ,

eac h sou rce must wait for an acknow ledgment from the token site before sen ding sub

sequent mul ti cast messsages. Th us, the comm unicat ion between eac h of the sources

and the tok en site follows a stop and wait st ra tegy . Eac h sour ce ord er s its own mes

sages with a uni que sequence num ber cons ist ing of the source address and its seque nce

number. T his ordering reflect s the t ransmiss ion orde r of the mult icast messages.

If an acknowlegeme nt for a multi cast message is not receiv ed afte r a designat ed

43

timeout period, the source retransmit s the message up to R time s, afte r whi ch the

source decides that th e tok en site has failed , and commences the reformation pha se.

Th e cur rent tok en site pro cesses incomin g messages as follows: If th e incoming

message is a mul ti cast message, th e tok en site checks to see if thi s is the next ex pect ed

message from th e messag e 's source. If not , th en the message is a duplicate whi ch has

alre ady been acknowledge d, the message is di scard ed , but the acknowledgm en t is

rep eat ed . If it is th e expected message, th en th e tok en site tim estamps and buffer s the

message, and increments its next tim estamp value . It pr epares the acknowl ed gm ent

information for the acknowl ed gmen t message. It decides wheth er the token should be

transferred (this dep end s on the tok en pa ssing rat e). If the token is to be transferr ed ,

th en the tok en site det ermines which is the next token site from the curre nt tok en list

and adds tha t informat ion to the acknowledgme nt message before transmitting the

message to all sites .

If th e incoming message is a retransmission requ est for eith er a multi cast message

or an acknowledgme nt message, then the tok en site retransmits the required message

to the requ esting site . Note that, in thi s protocol, ack owledgments ma y need to be

retr an smitted since they not onl y acknowl ed ge a mul ticast me ssage but also provide

the tim estamp infor mation that the receiver s requi re to order multi cast messages.

Note th at the tok en site continues to proc ess retr an smi ssion requ ests afte r it has

atte m pte d to pass the tok en to th e next site . Thi s is necessar y to allow the next tok en

site to bring its buffer s up to dat e so it can accep t the token . It does not , however ,

acknowledge mul ti cast messages during thi s tim e. If the new tok en site cannot acce pt

44

a message during this period , the source will retransmit the message up to R times .

T he next token site can acce pt the token if it has all the messages and acknow

led gmen ts rece ive d by the previous token site . T his is true if the next token site can

process the acknowledgme nt which ca rr ies the token. To accept the tok en , the next

to ken site eit her acknow ledges the next broad cast message, t ra nsfers the tok en to the

next site on the toke n list , or , in the abse nce of messages to be acknowledge d or com

mitte d , transm its a confirmation message afte r a designat ed ti meout period. If the

token can not immediately acce pt a token t ra nsferred to it , the site will request from

the pre vious to ken site all messages an d acknowledgments it requires in ord er to ac

cept the to ken. Once all these messages and acknow ledgments have been successfully

rece ive d, the next token site will acce pt the token as desc ribe d above.

All sites are act ively receiving all bro ad cast messages, and the t imes ta m ped ac

kn owled gm ents (inclu ding the token pass ing in format ion) . Eac h site attempts to pro-

cess all incomi ng transmiss ions as follows: if the transmiss ion is a mult icast message,

then the site will check the seq uence numb er of the message for dupli cati on or mi ssed

messages. If the message is a dupli cate (the sequence umb er is less tha n the expec

te d seq uence num be r for that source) , then the message is disca rded. If messages are

missed (the seq ue nce numb er of the message is greater than the expected sequence

numbe r for that source) , then the message is discard ed , bu t a retr an smi ssion requ est

for the mi ssing message(s) is sent to the cur rent token site.

If the inc om ing message is an acknowledgme nt , the site checks the timestamp of the

ack nowledgme nt aga inst the next expected timestamp. If this ti mes ta mp is less tha n

45

the expected timestamp, then the acknow ledgm ent is a dup licate , and is disca rded. If

the timestamp is equa l to the next expected timestamp, then the site checks to see if

the message bein g acknowledge d has been rece ived . If it has, then the site orders the

message with respect to all ot her received and acknow ledge d messages and increm ents

its next expected timestamp. If it hasn 't , the site transm its a retr an smi ssion request

for the missing message to the curre nt token site . T he site also checks to see if it

can comm it any messages at this time . Messages are committed only after the toke n

has been transferre d at least L tim es afte r a message has been acknow ledge d. T his

condit ion ensures that at least L sites have rece ived the message.

T he normal phase cont inues until a node ini ti ates a reformat ion, based on the

ass umption that a fa ilure has occurred. The reformat ion ph ase sim ply regenerates a

list of operational sites using a three phase protoco l. More detail s on the reform ation

process can be found in Maxemchuck and Cha ng [6].

46

Chapter 3

The Simulator

3.1 Introduction

Stud ying the behaviour of multi cast protocols in an Ethernet LAN is resour ce-in tensive,

requiring a numb er of computers int erconnect ed in a testb ed network with monitor

ing softwa re. We have developed a simulator that allows study of the behaviour and

perfor mance of mult icast protocols without a dedicated test bed network . Th e simu

lator is designe d to allow easy integrat ion of different ~ulticast protocols. We use the

simulator to st udy the two basic mul ticast protocols desc ribed ea rlier, the sto p and

wait and block acknowledgment protocols.

Th e multi cast proto cols to be st udied fall into the logical link (LLC) sublayer of

the dat a-link layer as describ ed in the OSI reference model. Th ese pro tocols use the

services of the media access (MAC) sublayer, which in turn uses the physical layer

47

services to actually tr an smit dat a on the Ethernet bus. Th e simulato r follows this

layered approac h : the Ethernet LAN is modelled by two layer s, the physical and

MA C layer s, while alte rn at ive mul ti cast protoco ls are modelled as alte rnate logical

link layer s. Thi s approach provides the flexib ility to develop and use alternate logical

link layer s in the same sim ulation framework for comparison.

As in the OS1 referen ce mod el , the logical link layer (LLC layer) of the simulator

is res po nsib le for the sequenc ing of mul ti cast messages, erro r det ection , and the t ra ns

mi ssion and ret ran smi ssion of mult icast messages as spec ified by the protocol. Thi s

layer acce pts requests for the transm iss ion of messages from higher layer applica tions

which use the multi cast protocol and gua rantees that mult icast messages are reliably

received by all recipi en t nod es. Eac h mu lticast protocol includ ed in the simulator is

impl em ent ed as an alte rnative logical link layer .

Th e MAC and physical layers of the simulator model the Eth ern et LAN. Th e me dia

access layer is respons ible for all details of access to the Et hernet medi a , including

reso lving collis ions by impl em enting the adaptive bac koff policy, and the tra nsm iss ion

and recepti on of Et hernet fra mes. Th e phys ica l layer of th e simulator mo dels the

detai ls of the hard ware inte rface and the Et hernet bu s, incl uding the t ransmiss ion and

rece ptio n of data bits, transm iss ion of the ja mming signa l when a collision occurs,

sens ing when the Et hernet me dia is bu sy, an d detectin g a collis ion.

A diag ram of the sim ulator is found in Figur e 3.1. A descrip tion of th e various

layers as im plemented in the simulato r follows.

48

3.2 MAC lay er

The MAC layer protocol is fai rly comp lex, since it must be able to sen d an d receive

fra mes (encapsulat ing the data and acknow ledgment packets sent/rece ived by the

logical lin k layer) an d is dri ven by requests from bot h the logical link layer above it

and the physical layer below it. T he MAC layer protocol is iden ti cal for all nodes in

the network. T he MAC layer will receive any fra mes acce pte d by the physical layer ,

and pass them up to the logical link layer. It will also transm it fra mes as requ ested

by the logical link layer , retransm itt ing frames if collisions occur . Retran smi ssion s of

frames are governe d by the adapt ive backoff policy, which spec ifies the minimum time

int er vals at which retransmiss ions may occur.

Th e MA C layer ta kes packets pla ced in its t ransmit queue and tr an smi ts them one

at a time. Transmission at the MAC layer merely passes the packet to the physical

layer for actual t ransm iss ion on the medium; however , the MA C layer is ent ruste d

wit h the details of retransmiss ions should a collision occur. Th e physical layer sends

eve ry MAC layer one of three events for any relevan t act ivity occurring on th e me dium:

success , receive, or collision . A success event informs the MA C layer that the pac ket

it passed to the phys ica l layer for transmiss ion was indeed success fully t ra nsmitted.

A collis ion event informs the MAC layer that the packet it sent was involved in a

collis ion . A receive event informs the MAC layer that a frame destin ed for it was

received . Th e physical layer does not signal the MAC layer of a nod e if th e fram e

"on the wire" is not destin ed for it; thus, the numbe r of receive events pro cessed by

the MAC layer is the sa me as the numb er of interrupts which mu st be serv ice d by an

49

act ua l Et hernet adapter card.

In the case of a collision event , the MAC layer must imp lement the ada pt ive

ex ponent ial backoff algorithm as specified by the Ethernet stan dard. Th e algorithm

works in the following manner : for the it h retransmission attempt, where i is less

than 16 at tempts, select a rand om number between 0 and 2min(i ,1O) . Thi s integer is

the numb er of slot times (512 bit times) the MAC layer is requir ed to wait before it

may retransm it aga in. Th e MAC layer impl ement s this wait by passing a tra nsm it

requ est to the phy sical layer with a delayed start tim e. Once the 16th atte m pt has

been unsuccessful , the MAC layer is requir ed to discar d the frame and continue.

3.3 Physical Lay er

T he physical layer of the simu lator models the behav iour of the Et hernet hardw are

and bus; however , many of the deta ils of this behaviour does not affect the latency

of data/acknowledgment packets generated by the logical link layer , and therefore do

not affect any of the par ameters we wish to measur e. II}the interest of simplicity, the

physical layer model encom passes only those aspects which affect these par ameters,

ma inly collision detection, and frame t ransmit ta l times .

Some ass um ptions are made in order to simplify the model. Collisions are always

the max imum collision window, 32 bit times . In an act ua l LAN, the collision j am-

ming signal is only sent as long as necessary for the colliding nodes to recognize the

collis ion; this depend s on the distan ce between the colliding nodes. We ass ume that

50

th e small fixed interfr am e gap which exists between the en d of a tr an smi ssion and

the first po ssibl e transmi ssion time is zero, instead of it s usual sm all value . Sin ce

thi s par am et er is fixed , it will no t affect relati ve t imings, and onl y minimally affect

comparisons with actual timings.

T he physical layer of the simulator examines all of the physical layer requ est s

from eac h communicating node's MA C layer , and makes a decision to eit her transmit

a frame, det ect a collision, or rem ain idle, adju stin g the global tim e vari abl e accord-

ingl y. Each physical layer requ est will have a time associate d with it; thi s is th e tim e

the MA C layer requ est ed th e transmiss ion. Th e simulator exa mines the physical layer

requ est queu e, whi ch is ord ered by the requ est ed tr an smi ssion tim e, for imp ending

requests . If two or more nodes request t ra nsmiss ion at the sa me tim e, then the simu-

lator "de te cts" a collision and places collision events in the event queues of th e MA C

layer s of the nod es involved in the collision. Th e glob al simulat ion tim e is advanced

by the maximum collis ion window , 32 bit t imes. If only one nod e requ est s tr an smi s-

sion, th en the first reque st is "t ransmitte d" by sending a receive eve nt (conta ining th e

packet) to th e MA C layer s of th e nod e(s) receivin g the packet, and a success event to

the MA C layer of the node t ra nsmitt ing the packet . Th e simulato r then ad van ces the

simula tion tim e by the tim e requ ired to transm it the packet . If there are no imp ending

requ est s, no thin g is done and the medium is deem ed to be "idle" .

Wh enever the simulat ion time is adv an ced , all the requ est s in the physical layer

requ est qu eue whose tim e is less tha n the newly adva nce d time is adjus te d to the new

t ime. Thi s behav iour is meant to simulate th e carrier sensing ability of the Ethernet

51

hardware interface; all Ethernet adapters can "sense" when the channel is busy with

another transmission, and defer any transmissions to the first "idle " time . Not e that

the carrier sensing ab ility cannot prevent collisions; nodes may attempt to t ransmit

sim ultaneously. In act ua l practice, a nonzero signal propagation delay extends the

amo unt of ti me a collision may occur to the amo unt of tim e requi red for the signa l to

pr opagate from one transmitt ing node to anot her, although we will no t be includi ng

this windo w int o our calc ulatio ns.

3.4 Error Model

Errors which may occur in an Et hernet network env ironment includ e packets dropp ed

by an interface on t ransmittal or recep tion of a frame (possibly due to buffer overflow

or the inab ility of the interface to keep up with full speed, large volume traffic) , and

garbled messages on the med ia (due to surro und ing interference, imprope r wir ing

and termination, and/or the inability to detect collisions wit hin the allotted collision

window). For our pur poses , the resu lts are the same: a lost packet. Thu s, we bas e our

error mo del on the former, an d randomly dropped pac kets on transmiss ion/reception

at ind iv idua l interfaces. We also ass ume that the error rates on both t ra nsm iss ion and

reception are equa l, that is, it is equa lly likely that an interf ace will drop an outgo ing

pac ket as an incoming one.

T he impleme ntation of the erro r model is done at the MA C layer , on recei pt or

transmittal of a packet , by randomly dro pping packets at an user-configur abl e error

52

rate. T hus, thi s mo del includ es errors by the sending node which pr even t the packet

from bein g tr an smitted , as well as errors by the receiving node in which a packet is

drop ped before bein g processed by the MA C layer. In a mul ticast env ironment, this

impli es that a mult icast packet may be dro ppe d in one of two ways : eit her by the

sen ding node, resul t ing in non e of the mult icast group ever rece iving the pa cket , or by

one or mo re receiving nodes, resu ltin g in a par tially success ful mul ticast t ra nsm iss ion.

3.5 Performance Statistics

An im porta nt aspect of the simu lato r is how it meas ures the performance of the

pr otocols it simulates . T he sim ulato r produces the followi ng data for each packet

sent :

• uniqu e pa cket ID, used for tracing a packet throughout the simulat ion pro cess

• size of the data packet , used to ca lculate data throughput.

• cur rent window size, used to calc ulate average laten cy per mess age for the block

acknow ledgment protocol.

• t ime the pa cket was sent by the LLC layer .

• tim e the packet was det ermined to have been reliably receiv ed by the LLC layer

se nder. Note that in the block acknowledgme nt pro to col, messages are acknow

ledged in gro ups, and the refore the calcul ation of laten cy per message is an

53

15780 .00
18113.00
18598 .00
16881.00
14853 .00
15560 .00
17582.00
18200 .00
17691.00
13887.00

average based on the current window size and the latency incurred in transmit -

ti ng the entire gro up.

• calculate d total laten cy, based on the two times given above.

• calcu late d average latency, calcu lated as total latency ave raged over the current

window size.

• number of LLC layer retransmissions.

• an indication of fa ilure of the protocol due to excessive ret ransmissions; set to

1 if num ber of retransmissions was exceeded, 0 otherwise.

This data is provided in an output file, formatted as a head er detailin g the values

of the simulation pa ra meters for eac h simu lat ion pass, followed by the data collecte d

in that pass. A sample of the output is prov ided be low:

Pkts=100 Re cs=3 Data=1518 Ack=64 FailRate=O Reps=1 Proto=BAP BAPWin=1 BAPPktT=115680
BAPAckT=95000 BAPrand=6000 Date=Sun Aug 4 12 : 01: 27 1996

1 1518 1 0 15780 15780
2 1518 1 15780 33893 18113
3 1518 1 33893 52491 • 18598
4 1518 1 52491 69372 16881
5 1518 1 69 37 2 8422 5 14853
6 1518 1 84 225 99785 15560
7 1518 1 997 85 117 367 17582
8 1518 1 117367 135567 18200
9 151 8 1 135567 15 3258 17691

10 151 8 1 15 3258 167145 13887

54

3.6 Simulation Parameters

A simu lation is performed by exec uti ng the simulato r with an input comma nd file

which spec ifies the user- configur able param eters of the simulat ion. Th e simulator

pr odu ces an out put file , which conta ins some header inform ation for eac h simulat ion

pass followed by the timing data generate d by the sim ulat or. Th e simula tor can also

pr odu ce a logging file on request; the logging file conta ins a play-by-pl ay descrip tion

of the simulat ion as it exec utes, and can be used to explain protocol behaviour.

T he command file allows user s to spec ify many general and protocol-sp ecific par a-

meter s of the simulat ion. A sa mple command file is given below:

Sample Configuration File for Simulation Program
#

Simulation is run with STARTRECS receivers up to ENDRECS receivers, using an increment
of INCRRECS each time; using STARTPKTS packets up to ENDPKTS packets using an increment
of INCRPKTS each time ; with a failure rate of STARTFAILRT up to ENDFAILRT, using
an increment of INCRFAILRT each time, etc .
#

Syntax:
as first character in line - comment line
VARIABLE = value - one space before and after the "="
#
Name of log file ; if empty, no logf ile is produced
LOGFILE =
#
Name of statistics file; default name is statsfile.
STATSFILE = bapwin.dat
#
Protocol simulated : valid values are
SAW (stop and wait)
BAP (bl ock acknowledgment).
#

PROTO = BAP
#

Start of number of receivers interval
valid range 2 - 100

default :

55

STARTRECS = 3
#
End of number of receivers interval

valid range 2 - 100

default :
ENDRECS = 20
#
Increment for number of receivers interval

valid range 1 - 98

default:
INCRRECS = 1
#
Size of data packets
valid range (64 - 1518 bytes)

default = 1518
#

STARTDATAPKTSIZE = 1518
ENDDATAPKTSIZE = 1518
INCRDATAPKTSIZE = 1

#
Size of ack packets
valid range (64 - 1518 bytes)

default = 64
#
STARTACKPKTSIZE = 64
ENDACKPKTSIZE = 64
INCRACKPKTSIZE = 1
SAW timeout semantics
Valid Values: constant, formula

#
SAWTIMEOUTMETHOD = formula
#SAWTIMEOUTMETHOD = constant
#

SAW timeout values

#

STARTSAWTIMEOUT = 20000
ENDSAWTIMEOUT = 40000
INCRSAWTIMEOUT= 5000

#

SAW Random Wait values

#

STARTSAWRANDWAIT = 6000
ENDSAWRANDWAIT = 6000
INCRSAWRANDWAIT = 500

#

56

SAW retransmit limits

#

STARTSAWRETRANSLIM = 10
ENDSAWRETRANSLIM = 10

INCRSAWRETRANSLIM = 1
#

SAW retransmission method

unicast, multicast
#

SAWRETRANS =multicast

#SAWRETRANS= unicast
#
BAP timeout semantics

Valid Values : constant, formula

#
BAPPKTTIMEOUTMETHOD = formula
#BAPPKTTIMEOUTMETHOD = constant
#

BAP pkt timeout values

#

STARTBAPPKTTIMEOUT = 1000
ENDBAPPKTTIMEOUT = 1000

INCRBAPPKTTIMEOUT = 100

#
BAP ack delay timeout values
#

STARTBAPACKTIMEOUT = 95000
ENDBAPACKTIMEOUT = 95000

INCRBAPACKTIMEOUT = 10000
#

BAP window sizes

#

STARTBAPWIN = 1

ENDBAPWIN = 20

INCRBAPWIN = 1
#

BAP Random Wait values
#

STARTBAPRANDWAIT = 6000

ENDBAPRANDWAIT = 6000

INCRBAPRANDWAIT = 500
#

BAP retransmit limits
#
STARTBAPRETRANSLIM = 20

57

ENDBAPRETRANSLIM = 20
INCRBAPRETRANSLIM = 1
#

Start of number of packets interval
valid range 1 - 5000
default :
STARTPKTS = 100
#
End of number of packets interval
valid range 1 - 5000
ENDPKTS = 100
default:
#
Increment for number of pa ckets interval
valid range 1 - 5000
INCRPKTS = 1
default :
#

Start of data failure rate interval
valid range 0 - 100

default :
STARTFAILRT = 0
#
End of data failure rate interval
valid range 0 - 100
default:
ENDFAILRT = 0
#
Increment for data failure rate interval
valid range 1 - 100
default:
INCRFAILRT = 2
#
Number of repetitions of simulation
valid range 1 - 100
default: 10
REPETITIONS = 1

Many of the par ameters allow for a ran ge of values with a spec ified ste pping value;

one or m ore simulation passes are perform ed over the entire ran ge of parameter values .

T he dat a thu s produced can then be summarize d over th e ran ge of values, illu str atin g

58

the effect of vary ing the parameter on protocol performance. Using several ra nges for

different pa rameters can resu lt in a wealth of data useful for st udying the interacti ons

between pa rameters on protoco l perfo rmance and sca labi lity.

General sim ulation parameters are given below:

• LOGFILE: T he name of the out put log file when logging is ena bled. T he logging

output incl udes all the act ions performed by the simu lato r whi le transm itt ing

packets. It is usefu l to show why a protocol behaves as it does; it is also used

in debugging.

• STATSFILE : T he name of the outp ut data file produced by the simulator.

• REPETITIONS : T he number of times each simulation pass is performed . Useful

when a large numb er of data points is desir ed for statist ica l ana lys is.

• STARTRECS, ENDRECS , an d INCRRECS: These parameters spec ify the range of re-

ceivers used in the simulat ion.

• STARTDATAPKTSIZE, ENDDATAPKTSIZE, and INCRDATAPKTSIZE: These paramet

ers specify the range of data packet sizes used i~ the simulat ion. The values

must fa ll within the range of 64 bytes to 1518 bytes as spec ified by Ethernet .

T he parameters are incl uded to ana lyze the protocol performance under higher

level app lications wit h vary ing data pay load req uirements. For example, a file

t ransfer app licat ion used by a dist rib uted database system can max imize data

pay loads; while an interact ive terminal sess ion app lication use d by a conferen-

cing system cou ld not.

59

• STARTACKPKTSIZE, ENDACKPKTSIZE, and INCRACKPKTSIZE: Th ese paramet er s

spec ify the range of acknowl edgmen t packet sizes used in the simulation . Again ,

the valid rang e is 64 bytes to 1518 bytes. It is likely that mo st protocols will use

an acknowledgment pa cket size of 64 byt es, the minimum allowable packet size

und er Etherne t . However , the flexibility to use large acknowl ed gm ent packet

sizes is pro vided for protocols tha t may want to "piggy bac k" ot her info rmation

ont o the packet s.

• STARTFAILRT, ENDFAILRT, and INCRFAILRT: T hese parameter s spec ify th e range

of erro r rates used in the simulation. Th e error rat e is the rat e at which packet s

ar e randomly dr opp ed by the MAC layer int erface of all nod es. T he err or ra te

is expresse d as an int eger percent age.

• PROTO: spec ifies the protocol to be used in the simulation. Valid values are SAW

for th e stop and wait protocol, and BAP for the block acknowl edgmen t protocol.

User-c onfigur able par am eter s for the sto p an d wait pr otocol includ e values for

sender t imeouts, typ e of retran smi ssion method , and the use of ra ndomly time d ac

kn owled gm ent s. T hese are describ ed below:

• STARTSAWTIMEOUT, ENDSAWTIMEOUT, and INCRSAWTIM EOUT: Th ese par amet er s

spec ify the ra nge of SAW timeo ut values used in the simula tion. and are ex

pr essed in bit tim es. Th e SAW timeout is the amo unt of tim e the sender wait s

for acknowledgme nts once a dat a packet has been sent before decidi ng th at the

60

packet has been lost and retr an smit tin g. T he semantics of th e SAW timeout

differ when uni cast or multi cast retr an sm issions are used .

Wh en the pro to col uses uni cast retr an smi ssions, this value is used to set one

time r per receiver; each tim er expires indi vidu ally if an acknowledgme nt fro m

the corres ponding receiver has not been received by the sender. Wh en the

pr otocol uses mult icast retr an smi ssions, only one time r is used ; if any of the

acknowledgme nts have not been received before expiry, th e sender ret ra nsmits

the data packet in a mul ticast t ra nsmiss ion.

SAW timeouts occur due to err ors, such as dropp ed packet s. In fact , the purpose

of th e SAW tim eout is to det ect such errors . If a SAW tim eout occur s becau se

the timeout valu e is not large enough to accommo date th e t ime required for the

sender to receiv e and pro cess acknowledge data packet s from receiver s, th en th e

resul tin g "unnecessary" ret ransmiss ions can cause congest ion in th e network, in-

crease message laten cies and redu ce overall throughput . Simul ating the pr oto col

und er vary ing conditio ns with a range of timeo ut valu es can help determi ne the

best tim eout value und er spec ific condit ions .

• SAWTIMEDUTMETHDD: Thi s par am eter spec ifies th e method used to calc ula te the

SAW timeout. If the method is constant , then the ra nge of timeout s spec ified

in the comma nd file is used as the tim eout value; if the method is formula , th e

ra nge of values given in the comma nd file are used as an increm ent to a base

timeo ut value calculate d based on the numb er of receivers, the tr an smi ssion time

61

of data and acknow ledgment packets, and the interval used for randomly timed

acknow ledgments.

• SAWRETRANS: This parameter specifies the retransmission met hod, unicast or

multicast, to be used by the protocol. Valid values are multicast or unicast .

Unicast retransmissions are directed at receivers which the sender be lieves to

have lost pac kets; mu lticasting retransmissions are sent in mu lticast packets

to all nodes of the mu lticast group whenever the sender believes that any of

the rece ivers has lost a data packet. The first met hod redu ces the pr ocessing

overhea d on nodes which do not require retransmiss ions; the secon d red uces

network congestion when more than one node requires a retransmiss ion. T he

simu lator can be used to determine under what circumstances one method resu lts

in bett er throughp ut value than the other.

• STARTSAWRETRANSLIM, ENDSAWRETRANSLIM, and INCRSAWRETRANSLIM:T hese

pa rameters specify the range of maximum retransmissions used by the SAW

protocol in a sim ulat ion. T he SAW protocol u~es the maximu m ret ransmis

sion value to bound the latency of anyone message; it is used to ensure that

the protocol terminates under all conditions. By mak ing this par ameter user

configurable, the simulator permits the user to dete rmi ne how much protocol

performance is allowed to degrade.

• STARTSAWRANDWAIT, ENDSAWRANDWAIT, and INCRSAWRANDWAIT: T hese paramet-

ers speci fy the range of random wait intervals used by the SAW protocol in a

62

simulat ion , and are expresse d in bit times . A receiver ra ndom ly chooses the

am ount of time to delay the transmission of an acknow ledgme nt from within

this interval. Thi s int erval therefore bound s the amo unt of delay incur red when

using ra ndomly time d acknowledgme nts . As the inte rva l gets lar ger , the prob

ability of collisions among the receivers decreases; however , the prob abili ty of

significa nt delays increases.

T he sim ulator's im plementation of the block ack nowledgme nt protocol allows user

configurat ion of the maximum BAP window size, various timeouts including the sender

t imeo ut and rece ivers' acknow ledgme nt delay timeo ut, the retran smi ssion limi t , and

the inte rval for randomly time d acknowledgme nts. T hese are describ ed below:

• STARTBAPWIN, ENDBAPWIN , and INCRBAPWIN: Th ese param eters specify the ran ge

of maximu m window sizes used by the simulat ion for the BAP prot ocol. T he

max imum window size spec ifies the maximum numb er of messages whi ch may

be sent by the sen der at one t ime; this value is static over a single simulat ion

pass. As the window size is increase d, the numb e of acknowledgments requi red

is red uced; however , the num ber of messages which mu st be retr an smi tt ed when

an error occ urs also ri ses. T he simu lator can be used to deter min e which window

size pro vid es the better perform an ce in environments with spec ified error rates.

• STARTBAPACKTIMEOUT, ENDBAPACKTIMEOUT , and INCRBAPACKTIMEOUT: T hese

parameters speci fy the ra nge of ack nowledgment timeo ut values used by the

simu lat ion for the BAP pro tocol, and are expresse d in bit t imes. T his timeo ut

63

value is the amo unt of time a receiver will wait without rece ivi ng add it iona l

data pac kets before decid ing that the sender is either not sending mo re packets

or has lost a prev ious ly sent acknowledgment packet. The timeout causes the

receiver to retr an smit an ack nowledgment of currently rece ive d packets to the

sender. T his t imeo ut can occ ur when packets are lost , but also when the sender

does not have enough data to t ra nsm it to fill its max imum window. T hus, this

param et er affects performan ce even und er erro r-free condit ions . T he simulato r

can be used to st udy the effect of modifying this par am et er under var ying BAP

window sizes an d error rates .

• STARTBAPPKTTIMEOUT, ENDBAPPKTTIMEOUT, and I NCRBAPPKTTIMEOUT: Th ese

parameters specify the range of sender timeout values used by the sim ulat ion

for the BAP protocol. The BAP sen der timeout specifies the amo unt of time

the sender waits for acknow ledgments before retransmitting the current window .

Th is parameter affects how quick ly the protocol responds to erro rs. Again, a

tradeoff is invo lved: low values for sender timeo ut may resu lt in "unnecessary"

retransmiss ions .

• BAPPKTTI MEOUTMETHOD: Thi s pa rame te r spec ifies the method used to calc ulate

the BAP packet timeo ut. If the method is con stant , then the range of timeo uts

spec ified in the comma nd file is used as the timeo ut value; if the met hod is

formula , the range of values given in the command file a re used as an incre

ment to a base timeo ut value calc ulate d based on the numb er of rece ivers, the

64

transmission time of data and acknowledgment packets, the interval used for

randomly timed acknow ledgments, and the BAr acknowledgment timeout .

• STARTBAPRETRANSLIM, ENDBAPRETRANSLIM, and I NCRBAPRETRANSLIM: These

parameters specify the range of maximum retransmissions used by the simu la

tion for the BAP protocol. As in the SAW protocol, the retransmission limit

parameter bounds maximum message latency; it is used to ensure the protocol

simulation will always terminate.

• STARTBAPRANDWAIT, ENDBAPRANDWAIT , and INCRBAPRANDWAIT : These paramet

ers specify the range of intervals to be used in the simu lat ion for the imp le

mentation of randomly timed acknowledgments in the BAP protocol and are

expressed in bit times. As in the SAW protocol, a good choice for this interval

should reduce the probability of collisions and the resulting network congestion.

3.7 Adding new Protocols

Extending the simulator to include other protocols requires the im plementation of new

LLC layers imp lementing the additional protocols. A new LLC layer must use existing

data structures to communicate with the lower layer MAC protocols, and follow a few

conventions to work within the existing simulation framework.

T he simulator uses the convention of a globa l variable of enumerated type Prot oType

to distinguish among the different protocols when necessary. Current valid values are

SAW and BAP. For each new protocol to be added, a new value sho uld be chosen to

65

repr esent the protocol , and the defini tion of ProtoType modifi ed appropr iately.

Th e sugge ste d overall st ruct ure of a LLC layer consists of a receiver and sender

module togeth er with supporting fun ction s. For each modul e, a list of po ssibl e event

typ es should be defined . Th ese events should stor ed in an event queu e for proc essing

by the modul es. Th e sender module should also have a transmit queue to store

imp ending t ran smit requ est s. Both modules should define a global str uct ure to store

information about the curre nt sta te of the simulatio n; thi s may include item s like

packet buffer s, window par am et er s, etc, but mu st includ e an LLC event queue, which

is used by th e lower MA C layer to inform the LLC layer about events pertaining to

it.

Th e LLC/MAC layer int erface consists of the MA C layer fun ction transmitMAC,

and th e LLC eve nt queue. Th e transmi tMACfunction is used by th e LLC layer to

pass along tr ansmit requ est s to the underl ying MA C layer, and is declar ed as follows:

void transmitMAC(PktInfo *pkt, SimTime time);

Thi s function takes th e given packet and reque st tim e and add s it to the MAC layer

t ra nsmit reques t queue for pro cessing.

Th e LLC eve nt queue is the mechani sm by which the MA C layer informs the

upp er LLC layer of relevant events, such as the arr ival of a data or acknowl ed gm ent

pack et. Th e ty pe of events suppor ted may differ among sender/rece iver modules and

pr oto col impl em ent ation s. Th erefore the MA C layer differentiates between the var ious

protocols when pa ssing event information up to the higher protocol-dep end ent LLC

layer. Thu s the impl em ent or is required to add code to th e MA C layer module whi ch

66

adds the LLC event to the event queue reference d by releva nt modul e 's LLC globa l

dat a st ructure.

T he sim ulat or monitors prot ocol performan ce by tracking the amount of time re-

qui red for a sender to t rans mit a packet and verify its transmiss ion. Th e simula tor

uses a globa l str uct ure for this pur pose. Th e PktsStatsStruct st ruct ure is defined

as follows:

typedef struct {
int pktID;
int size ;
int fail;
SimTime llcStart ;
SimTime llcEnd ;
int llcRetrans;
int llcWin;

} PktStatsStruct ;

For pr otocols with sing le message buffer s such as stop and wait, the global vari abl e

pktStats of ty pe PktStatsStruct is used to store the tim ing data until transmi ssion

of the pac ket has been confirme d by the sender . For prot ocols with several outstanding

messages, a globa l vecto r winStats of ty pe PktStatsStruct is used , conta ining one

record for eac h outstand ing message. Th e funct ion p;'intPktStats is prov ided to

write the tim ing data to the outp ut data file in the correct format.

It is the responsib ility of the LLC layer to ini tialize the globa l st ruct ures when

sending a pac ket, add the timing data when the tra nsmiss ion has been confirmed, and

ca ll the printPktStats functi on to write the results to the out put data file.

Timers in all layers (LLC and MAC) are im plemented by timer var iables, which

contain exp iry times. The timers are normally sto red in the globa l data st ruct ure for

67

th e module which uses it. All tim ers are checked by the checkTimers function eve ry

ti me th e simulation tim e is advanced; onl y the physical layer and a specia l utility

fun ction whi ch ad van ces the simulation tim e in idle periods are permitted to cha nge

the overall simulation time . Th e checkTimers function should be modifi ed to include

all t ime rs require d by th e new protocol; the code should check if a tim er has expired,

and place the corre ct event in th e event queue of the appropriate module.

It is recommend ed th at future ex te nsions to the simulator use the logging feature

to log the pro gression of th e new protocol through the simulation . Thi s is not onl y

useful for debug ging th e pro to col, but also for verifying tha t the protocol is working as

expe cte d and for closely study ing how the pro to col behave s in spec ific circums ta nces .

Th e following printf-like fun ction is provided for thi s purpose:

void plog(char *format, . . .);

Th e simulat or uses the global variables, contLLC, contMAC, and contPhys , to de

termine wheth er a sim ulat ion pass has complete d. A simulat ion pa ss is com plete if

all th ese vari ables are set to O. Th e variables are ini tiali zed to 0 at the beginning of

eac h iteration through the exec ution of LLC, MAC and physi cal layer s. Th e layer s

are res pons ible for set t ing th e appropriate valu e to 1 whenever the layer com pletes

exec ution with out standing requ ests and/ or work to be don e. Th e LLC layer , there

fore , mu st det ermine whet her subse quent invocat ions are required to complete the

simulat ion pass, and set the contLLC variable appropr iately.

Anot her set of globa l cont rol var iables are LLCactivity, MACactivity, and

physActivity . Th ese variables are set by the layers whenever any acti vit y occur s in

68

th e corres ponding module, and are used by the simulat ion to advance the simulation

time whenever all layer s are idle. Th e tim e is adva nce d to the time of the first expired

time r; th e event triggered by the tim er will cause act ivity in at least one of the layer s.

It is the res ponsi bility of th e new LLC layer to set the LLCact i vi ty variable whenever

the exec ution of a sender/ rece iver module produces act ivity in thi s layer.

An important feature of the simulator is the configur ability of simulation para

meter s via a comma nd file. Any new pr otocol added to the simulato r is likely to

have a few user-configurabl e par am et ers. Th ese paramet er s ar e specified in the com

mand file , whi ch is par sed by the simulator during initi alization . Th e parsing of the

command file is performed by the parseConfigFile function , which returns a larg e

dat a st ruct ur e containing all the user-configurable par am et er s. Thi s st ruct ure is used

by the main function of the simula tor to perform simulation pas ses. Parameters can

be add ed by adding code to par se and check valid values of the par am et er s in the

parseConfigFile function, and exte nding the simParams data st ruct ure to accomod

ate th e new par am et er s.

Man y of th e paramet er s in the command file spec ify a rang e of values for specific

protocol vari ables to assum e in separate simul ati on passes. The main bod y of th e

simulator uses loopin g cons tr ucts which exec ute a simulat ion pa ss to impl em ent the se

ranges. New protocols utili sing new parameter ranges will have to add new loopin g

constructs to th e main function .

A simulation pass is exec ute d using the function runSim whi ch will hav e to be

modifi ed slightly to include calls to the new LLC layer sender/receiver modul es. Thi s

69

fun ction uses the globa l variabl e proto to det ermine which LLC layer modules to

execute for a simu lation run.

70

Sender Receiver1 Receivern

~'Q~'Q~'Q

_LLC I Y4LC Y4LC
~ Layer Layer

~Q ~'Q ~'Q
MA~ 1, MA~ ,

'"!j

~o

v;,

~
tr;

- 1 ~o

f
~

<§o

Chapter 4

Simulation Results

Th e simulator is used to st udy the workings and performance of the multicast stop

and wai t and block acknowledgment protocols. Simul ation run s using vary ing par a

met er valu es are pe rforme d on both protocols and the res ults ana lyse d and compared.

Th e raw simulat ion resul ts are pro cessed by pro gram s wr it te n using the SAS Syst em

[26] [27] of statist ica l analys is software, which calculate the following performance

measur es: a thro ughput ratio relati ve to an equivalent uni cast protocol, an ab solut e

throughput value and an absolute message lat en cy. Th e program s also produce the

sum mary ta bles and the plots of relativ e throughput, absolute throughput and mes

sage laten cy pr esent ed in thi s chapter. A sam ple pro gram is given in App endi x A.

Th e result s of this ana lys is are pr esent ed and the ob ser ved behaviour of the protocols

is explained.

72

4.1 Theor etical Bounds

Before discussing the results of the simulations, we first attempt to define theoretical

bounds on throughput and message latency values for both the stop and wait and block

acknowledgment protocols. We will derive these results for an Ethernet network with

no other network traffic.

We have previously defined the relative throughput of a multicast protocol to be

the ratio of the absolute throughput of the protocol to the absolute throughput of the

equivalent unicast protocol. The absolute throughput of the unicast stop and wait

protocol is given as follows:

rd

rd+ra +5
(4.1)

where r is the number of receivers, d is the transmission time of a data packet, a is

the transmission time of an acknowledgment packet, and 5 is a synchronisation factor

(all times are expressed in bit times). The numerator is the amount of time required

to send useful data, while the denominator is the tota~ transmission time, including

acknowledgments and synchronisation.

The synchronisation factor is present to allow for transmission delays incurred by

the underlying network environment. In the case of Ethernet, this synchronisation

factor includes the amount of time spent dealing with media contention and collision

resolution. For the unicast stop and wait protocol in ideal (no other network traffic)

conditions , no collision resolution or media contention is required, resulting in a syn-

73

chronisation factor of zero. The absolute throughput for the unicast stop and wait

protocol is, therefore,

rd

rd+ra
(4.2)

Despite the absence of other network traffic, the synchronisation factor when using

multicast stop and wait protocol is significant. Several nodes may attempt to acknow-

ledge multicast packets simultaneously, causing one or more collisions. (One of the

factors which may skew the times the receivers attempt to send acknowledgments is

variances in processing times among receivers; however, these variances are unlikely

to eliminate collisions entirely.) The synchronisation factor used in the calculation

of the absolute throughput of the multicast stop and wait protocol is, therefore, the

amount of time spent in collision resolution. This is highly dependent on the Ethernet

adaptive backoff algorithm and is a function of the number of nodes attempting to

simultaneously access the network medium.

The absolute throughput of the multicast stop and wait protocol is given by:

rd

d+ra+C(r)
(4.3)

where r , d, and a are as before and C(r) is the collision resolution time. Note that only

one data packet is sent, as opposed to the r packets sent using the unicast protocol.

Using equations 4.2 and 4.3, we obtain the following equation for the relative

throughput of the multicast stop and wait protocol with respect to the unicast stop

and wait protocol for a given number of receivers r:

74

rd+ra

d+ra+C(r)
(4.4)

To calculate th e upp er bound for thi s relative throughput value, we first ob serve

th at th e best throughput will be achieved when the collision resolution function C(r) =

0, meaning that all packet s ar e tr an smitted one after another, perfectly scheduled, with

no collisions or unn ecessar y dela ys. Thu s, we arrive at the following equa tion for the

upp er bou nd of the relati ve throughput of the multicast st op and wait proto col for a

given numb er of receiv er s r:

rd+ra

d+ra
(4.5)

Not e th at thi s equation is dep end ent on the numb er of receivers r; increasing

the numb er of receiver s will increase the upp er bound. However , thi s increa se in

relative thoroughput does not continue indefinit ely, as Figur e 4.1 , whi ch plot s upp er

bound relative throughput versus numb er of receiver s for a data pa cket size of 1518

byt es and an acknowl ed gment pa cket size of 64 byt es, clearly shows. We find the

ma ximum relativ e throughpu t valu e for multi cast stop and wait by calculating the

limit of equation 4.5 as r -t 00:

Solvin g thi s limi t :

I
. rd+ ra
Im-

r-t oo d-s ra

75

(4.6)

d+a
(4.7)

This result is significant because it places a limit on the improvements which

can be achieved by merely increasing the number of receivers involved in a multicast

communication using the multicast stop and wait protocol.

Thus, the maximum relative throughput of the multicast stop and wait protocol

with a data packet size of 1518 bytes and an acknowledgment packet size of 64 bytes

is:

1518 + 64 = 24.719
64

(4.8)

The block acknowledgment protocol increases throughput by requiring only one

acknowledgment for a block of messages, thus reducing overhead due to acknowledg-

ments . In a multicast environment where the number of acknowledgments required is

directly related to the number of receivers, this improvement can be significant. We

compare the throughput performance of the multicast block acknowledgment protocol

to the equivalent unicast block acknowledgment protocol. We assume that we always

have enough data available to transmit entire blocks.

We calcu late the throughput of the unicast block acknowledgment protocol as

follows:

rnd

rnd + ra + S
(4.9)

where r, d, a and S are as defined previously, and n is the size of the window.

76

Under ideal conditions (no other netwo rk t ra ffic) in an Et hernet env ironment, the

synchronisa tion fact or is zero, and the thro ughput of the un icast block ackn owled g-

ment pro to col is given by equat ion 4.10:

rnd

rnd + ra
(4.10)

T he thro ughput performan ce of the mult icast block acknow ledgme nt pr otocol, like

the mu lticast stop and wait protocol, must include the effect of collision reso lution,

even in idea l (no ot her network traffic) conditio ns. Th e absolute throughput of the

mul ti cast block acknowledgment protocol is given by:

rrul

nd + ra +C(r)
(4.11)

where C(r) is the collision res olut ion time, which is a function of the numb er of

receiver s r .

Using equat ions 4.10 and 4.11, we derive the following equa tion for the relative

thro ughput of the mult icast block acknowledgment protocol with respect to the uni cast

block acknowledgme nt prot ocol:

rn d + ra
nd + ra +C(r)

(4.12)

We note that the upp er bound of this equat ion occurs when C(r) = O. T hus the

upp er bound relative throughput of the mul ti cast block acknowledgme nt protocol is:

77

rnd+ ra

nd+ra
(4.13)

Calc ulating the limi t of equation 4.13 as r -t oo will result in an equatio n for

the max imum relative throug hput achievab le by the multicast block acknowledgment

protocol for a given window size n:

nd +a
(4.14)

T hus, the upper bound on the relative throughput of the mul ti cast block acknow-

ledgment protocol with a window size of 5, a data packet size of 1518 bytes and an

acknow ledgment pac ket size of 64 bytes is:

5 x 1518 + 64 = 119.594
64

(4.15)

Similarly, the upper bound on the relative thro ughput of the mul ti cast block ac-

knowle dgment protocol with the same paramete rs as above bu t a window size of 10

is:

10 x 1518 + 64 = 238.187
64

(4.16)

Increasing the window size to 15 results in an upper bound relati ve thro ughp ut of:

15 x 1518 + 64 = 356.781
64

78

(4.17)

T hese asymptotes are clearly visible in Figure 4.2 which plots upper bound through

put against number of receivers for window sizes .'), 10, an d 15.

W hen we attempt to define an upper bound for message latency, we find that the

statistical nature of collision resolution of the Ethernet environment on which these

mu lticast protocols are based prevents such a calculation. When two or more nodes in

an Ethernet collide, both nodes must randomly choose to retransmit with in a spec ified

time interval, which grows exponentially with successive collisions . T he likelih ood of

success ive collis ions is, therefore, red uced significant ly wit h eac h collision, bu t is never

eliminated. It is possible, although unlikely, that a packet will never be t ransmitted

due to collisions. Thus, since the underlying Ethernet env ironment cannot guarantee

packet delivery within a specific time frame, the multicast protocols using Ethernet as

the network med ium cannot guarantee it either. Since none of the mu lticast protocols

can prov ide an upper bound of message latency, they are not the best choice for

applications wit h str ingent rea l-time requireme nts, such as process control. Note,

however , that this app lies to any protocol using Ethernet as the underl ying network,

not just multicast protocols.

Although not as useful, we can arrive at a lower bound for absolute message latency

for both the stop and wait and block acknowledgment protocols. T he lower bound can

be used as a check for the simu lat ion res ults, and provides some bas is for comparison

to average latency resu lts. It can be used to calcu late how much of the ave rage laten cy

is due to over head such as collision resolution an d retransmissions .

For the mu lticast stop and wait protocol, the lower bound for message latency is

79

calculated based on the minimum time requ ired to send one mult icast message and

all ass ociate d acknowl edgm ent s. Th e following equat ion repre sen ts a lower bound for

message latency:

d+ra (4.18)

where d is the transmission tim e of a data packet , r is the numb er of receiver s, and a

is the transmission time of an acknowl edgment packet .

In the case of the mu lti cast block acknow ledgment protocol, however , me ssages ar e

sent and acknowl edg ed as a block, thu s the lat ency of a sing le message is the latency

of the entire block of messages. Th e lower bound laten cy is therefore calcu lated for a

block of messages as follows:

dn +r'a (4.19)

where n is th e maximum window size permitted . Note that thi s calculat ion for lower

bound laten cy ass umes that the multi cast block acknowledgme nt protocol always has

enough data avai labl e to fill a window ; oth erwi se the lower bound lat ency is dependent

on the curre nt size of the window.

80

Multicast St~or;~~'m~ait Protocol
Upp er Bound Relat ive Throu ghput vs Numb er of Receivers

Upper Bo und RelatiVeThrOUghP3~

Figure 4.1: MSAW Performance: Upper Bound Relative Thro ughput

81

Block Ackn~':~:~,~,:ent Protocol
Upper Bound Relative Throughputvs Number of Receivers

Window Sizes 5, 10, and 15

Upper Bound Through~U~

-:
I UBRT limit (win = 10): 238.188

..----------
"

1//
.
f
• UBRT limit (win = 5) : 119.594

Figure 4.2 : MB AP Perform an ce: Upper Bound Relative Throughpu t for Windo w
Sizes 5, 10, and 15

82

4.2 Stop and Wait Protocol P erformance

A major motivation for the design of multi cast protocols is to utili ze the hardw are

ca pabilities of the und erl ying network tec hnology to increase the rate at which iden ti cal

data can be tra nsm itte d to mult iple sites . T hus, it is reasonable to ex pect that a

mul ti cas t protocol should perfor m better than the equ ivalent mul tipl e poin t- to-point

t ra nsmiss ions. We test this pr emi se using the two simple multi cast protocols we have

studied, the stop and wait protocol and the block acknowledgme nt protocol.

In general, we perform simulations by sending 500 pack et s to 3 to 60 receiv ers ,

using a dat a packet size of 1518 byt es, an acknowledgme nt packet size of 64 byt es,

multicast retransmi ssion s, and no randomly time d acknowledgme nts . Th e Ethern et

envi ronme nt is simulate d with no errors . Both the stop and wai t and block acknow

led gm en t sender tim eout values are chosen delib eratel y high , to prevent pr em ature

tim eout s at larg e numb er of receiver s; we do no t want to cons ider the effects of re

tr an smi ssions at thi s stage . Changes from thi s general scheme are noted as appropr i

at e.

We first simulate the multicast sto p an d wai t protocol. Th e data file produced by

the sim ulat or is then pro cessed through a SAS program , which produced Figur e 4.4,

Figur e 4.3, and Table 4.1. Figure 4.4 plot s ab solut e message lat en cy again st numb er

of receiv er s; the entire rang e of message laten cy valu es for a given number of receiv er s

is plot ted as a line with the boxed area repr esenting the 25th to the 75th percentil e

ran ges. Th e dotted line plots the lower bound message lat en cy values as deri ved in

Section 4.1. Figur e 4.3 plots relat ive throughput aga inst numb er of receiver s; the

83

entire ran ge of relati ve throughput values for a given numb er of receiver s is indi cat ed

on the plot , with the join ed line repr esen tin g the mea n relat ive throughput values.

T he upp er bound rela t ive throughput values are plotted as a dotted line. Tabl e 4.1

sum ma rizes th e simulat ion res ults, and includ es the der ived lower bound message

lat en cy and upp er bound relative throug hp ut values .

Th e resu lts pr esent ed confirm that the mult icast sto p and wait protocol performs

better than the eq uiva lent uni cast stop and wait protocol on ave rage. T he mean relat

ive throughput res ults are better for the ent ire range of numbe r of receiv er s sim ulate d,

from a low of 3.504 times bett er at r = 5 to a high of 6.191 times bett er at r = 50

tha n those calc ulate d for the equivalent un icast stop and wait pr otocol.

T he sim ulate d mul ticast st op and wait protocol resu lts also follow the same general

trend as the uppe r bou nd theoret ica l res ults : ra pid im prove me nt eventually levels

at an asymptote. However , the sim ulate d mult icast stop and wait pro to col reaches

its asy mptote much ea rlier and at a much lower relative thro ughput value th an th e

upp er boun d theoretical result s; leve lling at 20 receivers and a relati ve th rou ghput

value of ap proximately 6.0, while the theoret ica l res ult indi cat e a maximu m relative

thro ugh put of 24.7 19 at r > 1000.

T he res ults also show large var iab ility in message latency values as the number of

receiver s increases, due main ly to large increases in maximum message laten cy values.

However , minimum message laten cy values follow the lower bound message latency

values fa irly close ly. Despite this variability, 50% of the message lat en cy values fall

wit hin a sma ll ra nge, as indi cated by the plott ed 25t h and 75th percen til e message

84

lat en cy values .

T he better perform an ce of mul ticast stop and wait is due to th e fact tha t onl y

one data tr an smi ssion , as oppose d to n sepa rate transmiss ions, mu st be sent for

data to be delivered . Thu s, the amo unt of "effect ive" dat a sent by th e mult icast

packet increases linearl y with respect to the numb er of receivers. Moreover , the time

requi red to send the "effect ive" data using the sto p and wait protocol does not include

the amo unt of time required for mul tipl e tra nsm iss ions, as it does when usin g the

equiva lent uni cast pro tocol. At first glance, it might be reasonabl e to expect the

relati ve th roughput of the sto p and wait protocol to grow linearl y with respect to

the numb er of receiver s. However , the upp er bound th eoreti cal res ults show thi s

not to be the case; the increase in the number of acknowledgme nts required as the

numb er of receivers increases te mpe rs the gains reali zed by the increase of "effective"

dat a , eve nt ua lly reachin g a maximum asym pt ot ic value of 24.719. Th e simulation

res ults also exhibit thi s pattern , albe it at a much lower relat ive throughput valu e of

approximat ely 6.

Th e lower thro ughput values achieved by the mul ticast stop and wait pro to col from

the upp er bound theoretica l resul ts are the effect of th e tim e requi red to resolve colli-

sion amo ng receivers sen ding acknowledgme nts . As the numb er of receiv er s increases,

the num be r of acknowledgme nts requ ire d also increases, causing the prob ability of

mul tipl e collisions to ri se. Moreover , the amount of time required to resolve these

collisions also grows significantly . T his effect is clea rly demon str at ed by the increase

in max imu m message lat en cy as the numb er of receivers grows.

85

We conclude that th e simple mult icast stop and wait protocol has satisfactory per

form an ce within th e range of rece ivers simulate d, bu t that imp rovem ent s in throughpu t

tap er at about r = 20.

Th e res ults also showed lar ge vari ability in th e maximum and minimum throughput

valu es througho ut the range of receiv ers. T his large var iability can be explained by the

sta t ist ica l nature of collis ion resolu tion in an Ethern et environme nt. Th e ra ndomness

of thi s pro cess signifies that the time requ ired to res olve collis ions among mul tipl e

nod es can var y grea tly from one instan ce to another, thus causing large vari abilities

in message lat en cies and relati ve throughput calc ulat ions. The se var iabilities ar e mo st

no ti ceabl e among larger numb ers of receiver s, where the effect of collis ion resolution

on message lat en cies is quit e pronounced . Moreover , the stat ist ica l nature of collis ion

resolution also signifies that , on average, collisions will be resolved within a reasonabl e

time fram e, with ext reme valu es occ ur r ing mor e rar ely. Figur e 4.4 demonstr at es thi s

effect quit e clearl y, as 50% of the message lat ency values fall within a relati vely sma ll

range.

Th e above simulat ion was done using a fixed data packet size of 1518 bytes, the

largest MT U allowed by Ethernet. We next investigat e the effect of sma ller data pa cket

sizes on the protocol's performance. We can use th e upp er bound resul t deri ved in

Sect ion 4.1 to ca lculate what the maximum expected relativ e throughpu t will be for

var ious da ta packet sizes . For example, for the sim ple stop and wai t protocol, the

upp er bound on relati ve throughput when using a data pa cket size of 1436 is 23.438;

for a dat a packet size of 848, it is 14.25, and for a data packet size of 64, the upp er

86

bound drop s to ju st 2.0. Given that the theoretical upp er bound throughput declin es

significantly as the packer sizes get smaller, we would expect the protocol 's simulate d

throughput to drop drama ticall y as the data packet size decreases. To det ermine

how much the size of the packets tra nsm itte d affects the protocol performance, we

perfor med simulat ion run s as be fore but vary ing the data packet sizes to be 64, 848,

and 1436 byt es.

Plo ts of relative throu ghpu t versus numb er of receivers for data pack et sizes of 64,

848, and 1436 byt es are given in Figur es 4.5 , 4.6, and 4.7. Summary result s of relative

and ab solut e throu ghput are given in Table 4.2. Th e summa ry result s includ e the

upp er bound relati ve (U BRT) and absolute throughput (U BAT) calculate d for each

Th e resul ts show a mark ed decrease in perform an ce as the data packet size de

creases. For data packet size of 1436 byte s, the throu ghput reaches a high of 5.910

for r = 50, but for a dat a packet size of 848, the throu ghput rea ches a high of 3.849

for r = 25, subse quent ly dropping to a maximum throu ghput of 0.869 at r = 5 for

the minimum data packet size of 64 bytes. It is interestin g to note that the max

imum throughput value is found at lower numb er of receivers as the da ta packet sizes

decrease.

Th e overall declin e in throughput when tr an smit tin g smaller data pack et s is easily

explained by the declin e in "effect ive" data transmit ted , while the overh ead , such as

tr an smi ssion s of acknowledgments and collision resolution , stays relati vely consta nt.

However , another effect is also presen t as the number of receivers increase: the colli-

87

sion resolu tion time, growing due to the rising collis ion rate as the numb er of receiv er s

increases, dominates over the effect of the linear increases in "effect ive" data t ra nsm it

te d mu ch ea rl ier. Thi s is due to the fact tha t the multi plicat ive factor for the increa se

in "effect ive" da ta as the numb er of receiver s increase is the size of the data pa cket

it self ; as the data packet size decreases, the increase in "effect ive" data is affected

acco rdingly.

We can conclude that the multi cast stop and wait proto col' s performance declin es

significantly when transmitting smaller packets; it s perfo rmance as the numb er of

receiv ers increases also degrad es mu ch earlier for sma ller data packets. In fact , for

the minimum data pa cket size of 64 byt es and receivers r > 3, the multi cast stop and

wai t pro to col is worse than using mul tipl e uni cast transmiss ions .

Both of the above an alyses show that the most significant facto r affect ing the

perfor man ce of the stop an d wai t protocol is the high rate of collisions cause d by

acknowled gmen ts. Redu cing this high rate of collisions should enhance performan ce

sign ificantly. Rand omly time d acknowledgme nts were added to the stop and wait

prot ocol in ord er to redu ce these collis ions . Th e next sijn ulat ion attempts to measur e

the effect iveness of this technique. Simul ation run s were performed usin g SAWrand

values of 12,000 bit t imes, 22,000 bit t imes, and 32,000 bi t tim es.

P lots of relative throughput for SAWrand valu es of 12,000, 22,000 and 32,000 bit

tim es ar e given in Figures 4.8, 4.9 and 4.10; a summary of both relative and ab solut e

throughput for these SAWrand valu es is given in Tab le 4.3. A summa ry plot showing

the mean rela tiv e throughput values for each r with SAWr and values of 0, 12,000 ,

88

22,000 and 32,000 is given in Figure 4.11. Thi s plot also shows the upp er bound

relative throughput achievabl e by the multi cast stop and wai t protocol.

Th e result s show that usin g randomly time d acknowledgme nts improves through

put significantly throughout the rang e of receiver s. Even the smalles t SAWrand valu e

used , 12,000 bit t imes, improved throughput for r = 30 receiver s from 5.999 using

the simple stop and wait protocol to 8.625, an increas e of 43%. Th e best thr oughout

achieved was 10.560 for r = 45 and a SAWrand valu e of 32,000 bit tim es which is an

incr ease of 72% over the throughput of 6.156 achieve d by the simple multicast stop

and wait protocol for r = 45.

Th e result s also showed that whil e th e throughput gain s increa sed as the SAWrand

value s incr eas ed , wher e in th e rang e of receiver s tho se gains were mo st felt also

cha nge d as th e SAWrand valu es changed . Th e greater the SAWr and value, the greater

the numb er of receiver s at which the maximum throughput valu e was ob serv ed .

Th e overall bet ter performanc e of the protocol when using randomly timed ac

knowl edgment s is explained by the redu ced collision rat e. Since nod es mu st now wait

for some random period of time within an int erval specified by the SAWrand paramet er

befor e tr ansmitting acknowledgments, the po ssibility of collisions , and the number of

nod es invol ved in a collision when one occurs, is reduc ed dramatically. In turn , thi s

redu ces th e amount of tim e spent resolving collisions, resulting in a st ronger influence

from increasing "effect ive" data rat es and less from collision resolu tion . The overall

effect is significant throughput gains throughout the rang e of receiv er s.

As noted ea rl ier, the maximum throughput gain s appea r at larger numb er of re-

89

ceivers as the SAWrand value increase. Moreover , the throughput gains noticed at

smaller numbers of receivers seem to dwindle as the SAWrand values increase. These

effects are clearly shown by Figure 4.11. For example, the throughput at r = 15 for a

SAWrand value of 12,000 is 7.347; by the time the SAWrand value is 32,000 bit t imes ,

the throughput value for r = 15 has dropped to 4.444, which is eve n less tha n the

throughput value of 5.4 18 achieved by the stop and wait protocol wit hout rand omly

timed acknow ledgments. This red uctio n in thro ughput is cause d when the increased

delay inc ur red when transmitt ing rand omly timed acknowledg ments oversha dows the

effect of the reduce d collis ion rate. Thus, the usefu lness of the SAWrand par am eter in

improving protocol performance is linked to the number of receiver s participating in a

multicast communication and must be fine-tuned accordingly. It wou ld be advantage

ous to exp lore this relationship further; if a formu la for calculating the best SAWrand

value for a given number of receivers could be found, it would improve the scalability

of the protocol greatly.

Note, however, the SAWrand value is bounded from above by the SAWtimeout value .

Increases in the SAWrand value must be matched by orresponding increases in the

SAWtimeout value; otherwise, the sender may time out prematurely, causing unneces

sa ry retransm iss ions and netwo rk congestion. It is also not adv isab le to increase the

SAWtimeout value indiscrimi nately; high SAWtimeout values length en the time which

must ela pse before the sen der can dete rm ine that a pac ket has been lost .

90

Stop and Wait Protocol Performance
RelatlV~ 1 ~~~~~~~ V;l~~~~~~rR:S~~Scewers

ThooretlcalUpper BoundResults

Re lative ThroUghP,U~

SAW timeout ca lculation met hod = formu la
SAW timeout value = 600000
SAW retransmission method = multicast
SAW random wait interval - 0

Figure 4.3: MSAW Performance: Relative Throughput (Mean)

91

I Recs I Mean RT I Min RT I Max RT I UBRT I Mea n Lat I Min Lat I Max Lat I LBL I
5 3 .504 1.765 4 .285 4 .304 18481 14 768 35856 14704

10 4 .849 1.47 1 7.08 1 7.331 27357 17872 86032 17264
15 5.4 18 1.611 8 .397 9 .576 3 73 46 22608 1178 40 19824
20 5 .639 1.599 10.096 11.308 48296 25072 158320 22384
25 5 .961 1.42 3 9. 785 12.684 569 10 3233 6 222320 24 944
30 5. 999 1.557 9 .729 13 .805 6806 7 39 0 24 243824 27504
3 5 6 .02 6 1.471 10.547 14 .734 80480 42000 30 1168 30064
40 6 .102 1.433 10.4 94 15 .517 89998 48240 353 392 32624
45 6 .156 2 .098 10.4 ,11 16 .187 99171 54544 27 1408 35 184
50 6 .191 2 .927 11.226 16 .766 1080 54 5636 8 216208 3 7744
55 5.954 1.914 11.404 17 .271 1261 55 6 1040 363 632 40304
60 5.9 90 2.357 9 .727 17.716 135282 78064 322224 428 64

Table 4.1 : MSAW Performance: Relative Throughput and Message Latency Summary
Results

92

Stop and Wait Protoco l Performance
oo -~~S;~~~~~~ ;:r~~~:e~l~fu:::IV:~SUlts

Theoretical Lower Bound Results

MeSSage~;;;~

lhlilllllLJ -----l,----- ----- ------------ -- ---------------- -

SAW t ime out calculatkm metho d = fonnula
SAW time out value = 600000
SAW retransmissio n method = multicast
SAW random wa it Interval - 0

Fig ure 4.4 : MSAW Performance: Message Latency (Pe rce nt iles)

93

Stop and Wait Protocol Performance
Relative Throughput vs. Number of Receivers

HI- ':: ~~:a~a~:~~~~~SR~:Ults
Theoretical Upper Bound Results

Relative ThroU9h~~~

....------_ .._------- ----------------------------

SAW timeout calculation method = formula
SAW timeout value = 600000
SAW retransmission method = mult icast
SAW random wa lt Interval - 0

Figure 4.5: MSAW Performance: Relative Throughput for 54-Byte Data (Mean)

94

Stop and Wait Protocol Performance
Relative Throughputvs. Number of Receivers

HI-~_B~:a~a~7m:7~~:~ ~~:UItS
Theoretical Upper Bound Results

RelatiVeThroU9hP1~

r

SAW timeout ca lculation method = formula
SAW timeout value - 600000
SAW retransmission method '"" multicast
SAW random walt Interval - 0

Figure 4.6: MSAW Performance: Relative Throughput for 848-Byte Data (Mean)

95

Stop and Wait Protocol Performance
Relative Throug hputvs. Number of Receivers

HI~~o6_~:nD~~~:~~~t :~::Its
Theo ret ica l Upper Bound Resutts

Relative ThroU9hP1~

SAW timeout calcu lation method = formula
SAW timeout value - 600000
SAW retransmission method = multicast
SAW random wa lt Interval - 0

Figure 4.7: MSAW Performance: Relative Throughput for 1436-Byte Data (Mean)

96

I Data Pa eket Size = 64 I
I Rees I Mean AT I Min AT I Max AT I UBAT I Mean HT I Min HT I Max RT I UBHT I

5 4 .347 1.0 57 8 .163 8.333 0 .869 0 .211 1.633 1.66 7
10 3.73 4 0.688 8 .205 9 .09 1 0 .747 0 .138 1.64 1 1.81 8
15 3.4 13 0 .7 23 6.99 7 9 .375 0.68 3 0 .145 1.399 1.8 75
20 3 .177 0 .698 7.61 9 9 .52 4 0.635 0 .140 1.524 1.90 5
25 3 .149 0.608 6. 182 9 .6 15 0.6 30 0 .122 1.236 1.923
30 3.0 19 0.662 5 .60 7 9 .6 77 0.60 4 0 .132 1.1 21 1.93 5
3 5 2.9 42 0 .6 19 5.90 1 9.7 22 0 .588 0 .1 24 1.180 1.944
40 2.909 0 .599 5.59 4 9 .756 0.582 0 .120 1. 119 1.9 51
45 2 .87 8 0.8 87 5.369 9. 783 0.5 76 0 .177 1.074 1.9 57
50 2.8 4 7 1.251 5. 722 9. 804 0 .569 0 .250 1.1 44 1.9 6 1
55 2.695 0 .800 5.699 9.8 21 0.539 0 .160 1.1 40 1.96·1
60 2.68 5 0 .989 4 .624 9 .83 6 0 .53 7 0. 198 0 .925 1.96 7

I Data Pa eket S.ze- 848 I
I Hees I Mean AT I Min AT I Max AT I UBAT I Mean RT I Min HT I Max HT I UBHT I

5 27.009 11.1 23 36. 05 4 36.3 0 1 2.9 05 1.196 3 .878 3 .904
10 33. 109 8 .409 54.22 0 56 .989 3 .56 1 0 .904 5.83 1 6 .129
15 34.6 75 9.0 47 58.998 70 .354 3. 729 0 .9 73 6.3 45 7.566
20 34.6 74 8.8 70 68 .83 1 79 .699 3 .729 0.95 4 7.40 3 8 .571
25 35 .785 7.8 17 62 .871 86 .60 1 3.8 49 0 .841 6 .762 9.3 14
30 35.330 8.535 60.456 9 1.908 3.800 0 .9 18 6.5 02 9 .88 4
3 5 35 .048 8 .02 7 64 .803 96. 114 3. 769 0 .863 6 .969 10 .337
40 35. 145 7.79 7 63.284 99 .53 1 3 .780 0 .839 6 .806 10 .704
45 35. 16 7 11.47 5 62. 069 102 .361 3. 782 1.234 6 .675 11.009
50 35 .126 16 .087 66 .499 104 .743 3 .778 1. 730 7 .152 11. 265
55 33.551 10..114 67.0 11 106 .777 3.6 08 1. 120 7.20 7 11 .484
60 33 .6 12 12 .846 55. 986 108 .532 3 .6 15 1.38 2 6 .02 1 11 .6 72

I Dat a Pa eket S.ze- 1436 I
I Hees I Mea n AT I Min AT I Max AT I UBAT I Mea n HT I Min HT I Max HT I UBHT I

5 33.034 16 .31 8 40 .703 40 .888 3 .45 1 1.70 5 4 .252 4 .2 71
10 4 5.195 13.4 56 66 .729 69 .171 4 .7 21 1.40 6 6 .9 70 7.22 5
15 50. 173 14 .70 5 78 .499 89 .900 5 .24 1 1.536 8.20 0 9.39 1
20 5 1.996 14 .57 3 94 .102 105.744 5.43 1 1.52 2 9 .83 0 11.046
25 54 .82 7 12.957 90.657 118 .248 5 .727 1.3 53 9 .470 12 .3 52
30 55 .059 14.17 3 89.825 128 .36 7 5 .75 1 1.480 9 .383 13 .409
35 55 .22 4 13 .380 9 7.252 136 .7 25 5 .769 1.398 10 .159 14 .28 2
40 55.863 13 .027 96.5 70 143 .744 5 .835 1.361 10. 087 15 .0 15
4 5 56. 300 19 .093 95 .93 2 149 .722 5. 88 1 1.994 10 .02 1 15 .639
50 56 .579 26 .648 103.10 2 154.87 5 5.9 10 2 .784 10. 770 16 .178
55 54 .366 17.407 104. 63 7 159 .362 5.6 79 1.81 8 10 .930 16 .64 6
60 54.6 6 7 21.435 89 .0 45 163 .30 6 5.7 10 2 .239 9 .30 1 17 .058

Table 4.2: MSAW Performance: Absolute and Relat ive Thro ughp ut Summ ary Results
for Varying Data Packet Sizes

97

Stop and Wait Protocol Performance
RelatiV~1 ~~~~~~~ V;i~~~~~~rR:S~~Scewers

Theoretical Upp er Bound Results

Relative ThrOUghP1U~

SAW timeout calcu lation method - fonnula
SAW timeout value = 600000
SAW retransmission method - multicast

Figur e 4.8: ?\'ISAW Performance: Relative Throughput using a SAWrand Value of
12,000 (Mea n)

98

Stop and Wait Protoco l Performance
Aelatlve Throughput vs. Number of Rece ivers

HI -Mean -lo Simulation Resu lts
Theoretical Upper Bound Results

Re lative ThrOUghP1U~

SAW timeout calculation method = formula
SAW timeout value = 600000
SAW retransmission method .. multicast

Figure 4.9: MSAW Performance: Relative Thro ughput using a SAWrand Value of
22,000 (Mean)

99

Stop and Wait Protocol Performance
Rela tive Throughpu t vs. Numb er of Receivers

HI -Mean -Lo Simulation Results
Theo ret ical Upper Bound Resu lts

Relative ThroUghP~~

SAW time o ut calculation method "" formula
SAW time o ut value = 600000
SAW retransmission method - multicast

Figur e 4.10: 11lSAW Performance: Relative Th roughpu t using a SAWra nd Value of
32,000 (Mean)

100

I SAW ra nd wa it _ 12000 I
i Recs I Me a n AT I Min AT I Max AT I UBAT I Mean RT i Min RT I Max RT I U BRT I

5 26. 766 22.99 1 36.3 46 41.2 95 2. 789 2.396 3 .788 4 .304
10 50 .726 33.3 10 6 1.414 70 .343 5.286 3 .47 1 6 .400 7 .33 1
15 70.4 98 38.5 13 86 .87 5 9 1.88 9 7.347 4. 0 14 9.05 4 9 .5 76
20 81. 347 41.7 40 10 2.90 2 108 .50 6 8 .478 4 .35 0 10 .7 24 11.308
25 79 .334 22 .43 1 112 .951 121.713 8.268 2.338 11.771 12. 684
30 82. 76 1 25.439 116 .975 132.461 8 .625 2.6 51 12 .191 13 .80 5
35 78 .953 25 .22 8 116 .459 141. 37 8 8. 228 2.629 12 .137 14 .734
40 80. 152 38. 26 0 123 .277 148 .897 8.353 3.98 7 12.847 15 .517
45 78 .872 32.2 73 12 1.402 155.321 8 .22 0 3.3 63 12 .652 16 .18 7
50 78 .145 21. 37 5 114. 705 160 .87 3 8 .144 2 .228 11. 954 16 .766
55 75. 164 29.886 116 .74 3 16 5.7 21 7.833 3 .115 12 .166 17.271
60 74 .432 24. 25 7 122. 267 169.989 7.757 2 .5 28 12. 74 2 17.71 6

I SAW ra nd wa lt -22000 I
I R ecs i Mea n AT I Min AT I Max AT I U BAT I Mean RT i M in RT I Max RT I UB RT I

5 20 .0 43 17 .320 32 .60 1 41.2 95 2 .089 1.80 5 3.39 8 4 .304
10 37 .048 32. 136 51.126 70 .34 3 3 .86 1 3.3 49 5.3 28 7 .331
15 54. 18 7 38 .98 4 62 .95 1 91.889 5.647 4.06 3 6 .560 9. 57 6
20 70 .868 45 .544 82.6 0 1 108 .50 6 7.386 4 .746 8. 608 11. 30 8
25 84 .747 47.42 9 100 .304 121.71 3 8.832 4 .94 3 10.45 3 12.684
30 9 2.9 55 4 1.930 110 .941 132.4 6 1 9.68 7 4 .370 11.562 13 .80 5
35 93 .792 27.046 125.510 141. 378 9. 775 2 .8 19 13 .080 14 .734
40 9 1.9 74 37.047 13 2.8 16 148. 897 9 .585 3.8 6 1 13 .842 15 .51 7
45 90. 023 3 1.768 130 .00 6 155 .3 21 9.3 82 3.3 11 13 .549 16 .187
50 86. 337 25.362 132 .516 160 .8 73 8.99 8 2 .643 13 .810 16 .76 6
55 86.629 30.986 129 .5 17 165.721 9. 028 3 .229 13 .498 17 .271
60 82.985 24.59 7 129 .903 169 .989 8 .648 2.56 3 13 .538 17 .71 6

I SAW ra nd wa lt -32000 I
I R ecs I Mean AT I Min AT i Ma x AT i UBAT I Mea n RT I Min RT I M a x RT I U BRT I

5 15.61 3 13. 506 24 .43 6 41. 29 5 1.627 1.408 2 .54 7 4 .304
10 29 .0 49 26.5 15 42 .214 70 .34 3 3. 02 7 2. 763 4.3 99 7.33 1
15 42 .645 37 .4 41 55.2 12 91.889 4 .444 3.9 0 2 5. 75 4 9.5 76
20 55 .990 43 .92 6 69 .446 108 .50 6 5.835 4 .57 8 7 .237 11 .30 8
25 69 .080 53.223 83. 0 10 121.7 13 7.1 99 5 .54 7 8 .65 1 12 .684
30 8 1.8 09 57.35 7 95.9 75 132.4 6 1 8.526 5.9 78 10 .002 13 .805
35 9 1. 75 4 43 .2 74 104 .770 141. 37 8 9.5 6 2 4 .510 10 .91 9 14 .734
40 98.858 44 .202 118 .519 148 .89 7 10 .30 3 4 .607 12.3 52 15 .51 7
45 101. 330 38.2 75 128 .457 155 .321 10 .560 3.9 89 13 .387 16 .18 7
50 100. 640 37.03 2 136 .77 5 160 .87 3 10.4 88 3.859 14 .254 16 .766
55 96.8 0 1 38.3 09 143 .352 16 5.721 10 .088 3 .992 14 .940 17.271
60 93.8 18 24. 14 1 149 .692 169 .989 9. 777 2.5 16 15.600 17.716

Table 4.3: MSAW Perform ance: Absolute and Relat ive Th roughpu t Summary Results
for Var ying SAWrand Values

101

Stop and Wa it Multicast Protocol
Relative Throughpu tvs. Number otReceivers

Summary Plot For SAWrand Valu es 0,12000, 22000, 32000
and Upper Bound Rela tive Throughput

Relativ e ThrOUghP1U~

UBRT SAWrand = 0 ----- .
--- SAWrand = 22,000 -- SAWrand ~ 32 ,000

Figure 4.11: MSAW Performance: Summary of Mean Relat ive Throughpu t for
SAWrand Values 0, 12,000, 22,000 and 32,000

102

4.3 Block Acknowled gment P roto col Performance

Th e multi cast block acknowledgme nt protocol at tem pts to improve on th e performan ce

of the mul ticast sto p and wait pro tocol by sending mu ltip le mul ticast dat a packets at

a time an d acknow ledg ing all the outstanding packets with one acknow ledg me nt per

receiver. T his tech niq ue reduces the number of acknow ledgme nts required , an d there-

fore shou ld increase the throughput obtaine d by the multicast block acknowledg me nt

pr otocol over the multi cast stop and wait protocol. To test this premi se , we simulate

the multicast block acknowledgme nt proto col with window sizes of 5, 10 and 15 from

3 to 60 receivers using 450 pa ckets per simulation . Th e numb er of packets is chose n

so that the mult icast block acknowledgme nt protocol can always send full windows

for window sizes of 5, 10, and 15.

Absolu te and rel ativ e throughput figur es for the multi cast block acknowl ed gm en t

protocol with window sizes of 5, 10 and 15 are summarized in Tab le 4.4. Plots of

relativ e throughput versus the numb er of receiver s for window sizes 5, 10 and 15

are give n in Figur es 4.12, 4.13, and 4.14. Th ese plot s also includ e the upp er bound

relat ive thro ughput for the appropriate window size as derive d in Section 4.1. Fin ally,

a summary plot of sim ulate d and uppe r bound relative throughput result s for wind ow

sizes of 5, 10, and 15 is given in Figur e 4.15.

It is important to not e that the relativ e throughput values pr esent ed in thi s sect ion

ar e rela ti ve to an equivalent uni cast block acknowled gment protocol. Thi s a llows us

to com pa re the performan ce of the block acknowledg ment pro tocol relative to an equi-

valent unicast vers ion, an d dem onstr ates the effect of using multicasting over uni cast

103

transm iss ions . As a resul t , in order to compare the mult icast block acknowledgme nt

protocol with the multi cast stop and wait pro to col, we mu st use absolute thro ughput

figur es.

The resu lts show that the mu lticast block ack nowle dgment protocol does perform

better than the mu lticast sto p and wait protocol, as expected . The mu lticast stop

and wait protocol has an absolute throughput of 51.992 Mb ps for 15 recei ver s, while

the block acknowledg me nt pro tocol has abso lute thro ughput resul ts of 107.216 Mbp s,

125.526 Mbp s, and 132.387 Mbp s for window sizes 5, 10, and 15 resp ectiv ely for

the sa me number of rece ivers . (Note that the abso lute throughpu t values excee d

the theoretica l 10 Mbp s thro ughput value of Ethernet; this is due to the fact that

one pac ket of size d effective ly carries rd bits of information when r receiver s are

pa rt icipating in a mu lticast communicatio n).

T he results also dem onstr ate that the relat ive throughput of the mul ticast block

acknowledgme nt pr oto col with respect to th e uni cast version improves as the numb er

of receivers increases. For a window size of 10, relat ive throughp ut increases from a

low of 4.781 at 5 rece ivers to a high of 30.698 at 60 receivers. T he resul ts also show

that these gains eventually level off, but at different values for different window sizes .

The relat ive thro ughp ut performance of the block acknowledgme nt pro tocol also

im proves as the wind ow sizes increase. For 30 receiver s, the relativ e throughput in

creases from a value of 16.289 with a window size of 5, to a value of 20.622 with a

window size of 10, an d finally, a value of 22.913 with a wind ow size of 15. Unfort u

nate ly, th is higher per formance does come at a price; the measure of message latency

104

in the block acknowledgme nt protocol includ es the latency of all messages in a windo w

- as the window sizes increase, the message laten cy increases dr am ati cally.

T he improved performan ce of th e multi cast block ack nowledgme nt protocol over

the mul ti cast stop and wait protocol is due mainl y to a dramati c redu cti on in the

numb er of required acknowledgme nts . For every packet that does not require an ex

plicit acknowledgme nt, the numb er of ackno wledgme nts transmitted is redu ced by

the numb er of recei vers r . For example, for 10 rece ivers and a window size of 5, the

block acknowl edgmen t pr otocol requires one acknowledgme nt packet per 5 pa ckets

per receiver , resulting in the tr an smi ssion of 10 acknowledgme nt packet s as oppo sed

to the 50 acknowledgme nt packets required by the mul ticast stop and wait protocol.

Thi s is a reduction of 40 acknowledgment packets. In general, th e multicast block

acknowledge me nt pro to col redu ces th e numb er of acknowledgme nts required from r

acknowledgme nts per message to ~ acknowledgme nts per message, where r is the

numb er of receiv er s and n is the BAP window size. Th e effect of fewer acknowledg

ment s is two-fold : the amount of time require d for transmiss ions of acknowl ed gm ents

is redu ced , and the lesser network t ra ffic reduc es conte nt ion on the network , redu

cing th e amount of tim e spe nt on collision resolu tion. Th e effect of requiring fewer

acknowledgme nts is more pron ounc ed in the higher range of receivers, where collision

conte nt ion is a ma jo r fact or redu cing protocol throughput.

Th e mul ti cast block acknowledge me nt protocol 's performan ce, like the multicast

sto p and wait prot ocol, also improves as the numb er of receiver s increa ses. Th e

increase in the numb er of receiver s improves the "effect ive" data transm it te d per

105

multicast data pa cket ; however , this effect is count erm and ed by corres ponding increas e

in acknowledgme nts required. Th e overall effect is the asy mptotic curve shown in

Figures 4.12, 4.13 , and 4.14. Thes e result s follow the tr end exhibite d by the upp er

bound rel ati ve throughput results deriv ed in Section 4.1 and shown in Figure 4.15.

T he simulat ed mul ti cast block acknowledgment protocol, however , does not achieve

the magnitude of th e upp er bound performan ce result s, due main ly to the effect of

collision resolution.

Th e mul ti cast block acknowledgme nt pro to col also increases it s performance when

larger window sizes are used . Thi s improvement is due mainl y to the reduction in the

numb er of acknowl ed gm ent s required as the window size increa ses. For each singl e

pack et increase in the window size, the number of acknowledgment s required by the

multicast block ackn owledgment pro to col is redu ced by r , where r is the number

of receiv er s. As ment ioned pr eviou sly, any redu ction in the number of acknowl edg

ment s requi red not only redu ces overh ead but also lowers the probability of collisions,

thu s reducing the amount of tim e spe nt resolving collisions. Th e combined effect on

thr oughput performance is quit e significant . Th e effec of increa sing window size on

protocol perfo rman ce is clearl y demon strated in Figure 4.15.

However , increasing the window size does add a significant amount of laten cy to

message delivery. Since messages are now acknowledged as a block, th e message

lat en cy of any one message is the lat en cy of th e ent ire block; larg e window sizes cau se

corres ponding increases in message lat en cies. Thu s, the mult icast block acknowledg

ment protocol is not suite d to applicat ions where qui ck respon se is important , for

106

example, interactive multi-user chat sess ions . It is, however, particularl y well-suited

for high data traffic applications without tight time restraints, such as mak ing multiple

copies of distributed database files.

Th e failure of the multi cast block acknowled gment protocol to achieve perform

an ce close to the upp er bound relativ e throughput result s is mainl y due to the amount

of tim e spent resolvin g collisions as the numb er of receivers grows larger. As in the

multi cast stop and wait protocol , we attempt to overcome thi s prob lem by adding

randomly timed acknow ledgm ents to the multicast block acknow ledgment protocol.

To test the effectiv eness of this techn ique , we simulate the multicast block acknow

ledgm ent protocol for a fixed window size of 10, and BAPrand values of 12,000 , 22,000,

and 32,000 bit tim es.

Plot s of relative throughput versus number of receivers for a window size of 10

using BAPrand values of 12,000, 22,000, and 32,000 bit time s are given in Figures

4.16, F igure 4.17, and Figure 4.18 . Summary relative thro ughput and messag e latency

resul ts are given in Table 4.5. A summary plot showing mean relative throughputs for

BAPrand values of 0, 12,000, 22,000 and 32,000 , as well as the deriv ed upp er bound

relative throughput , is given in Figur e 4. 19.

Th e results demon strate noti cibly enhanced throu ghput performance; for example,

for a window size of 10 and 40 receivers, relative throughput is 27.962 at 12,000, 29.671

at 22,000 and 30.681 at 32,000 bit times. This improvement is achieved for the same

reason s as in stop and wait: using randomly tim ed acknowledgments reduce s the pos

sibility of collisions; thu s redu cing the amount of tim e spent resolving collision s. Note

107

also the close relationship betw een BAPrand values, numb er of receiv ers , and relativ e

throughput: as BAPrand values increa se, the relativ e throughput of high er numb er of

receiver s increa ses, while the relative th roughput of lower numb er of receiv er s declin es.

Thi s effect can be see n in Figur e 4.19.

108

I BAPwin - 5 I
I Recs I M ean AT I M in AT I Max AT I UBAT I Mean RT I Mi n RT I M ax RT I UBRT I

5 4 5.666 3 i.552 4 i .92 9 4i.9ii 4.6 05 s.rsr 4 .833 4 .838
10 81. 620 6 1.8 18 90.68 1 92. 224 8.23 1 6.23 4 9. 14 5 9.3 00
15 lOi.2 16 69. iiO 128 .008 133 .158 10 .812 i .036 12 .90 9 13 .4 28
20 128 .030 95 .268 152.0 13 Ii1.139 12.911 9.6 0 i 15 .32 9 1i .258
25 14i .904 90 .366 183 .9i3 206.4i4 14. 9 15 9. 113 18 .552 20 .822
30 161. 531 112 .5i 8 19i .553 239.432 16. 289 11.353 19 .9 22 24 .145
35 166 .481 90 .ii1 222. 823 2i O.244 16 .i 89 9. 154 22 .4 i O 2i .2 52
40 li9 .041 103 .34 3 233 .i 90 299 .113 18 .055 10 .42 1 23 .5i6 30 .16-1
4 5 18 5.964 83 .496 250 .5 13 3 26 .218 18 .i 53 8 .420 25 .263 32 .89 i
50 188 .509 98.4 64 2i4 .562 3 51.il 5 19 .0 10 9 .929 2i.68 8 35 .46 8
55 205 .32 5 102.0 51 281.0 35 3 i5 .i 43 20 .i06 10.2 9 1 28 .3 4 1 3 i .89 1
60 204 .26 i 100 .490 292. 56 1 398 .4 25 20. 599 10 .13-1 29.5 03 40 .1i8

I B APwIn - 10 I
I Recs I M ean AT I Min AT I Ma x AT I UBAT I M ean RT I Min RT I M ax RT I UBRT I

5 4 i. 606 44.848 48 .930 48 .968 4 .i8 1 4 .504 4. 914 4 .91i
10 8i .002 i 1. i 53 93 .588 95.954 8 .i3 i i .206 9.3 98 9.6 36
15 125 .526 109 .61 9 13i .103 141. 0i8 12.606 11.008 13.i68 14 .16i
20 156 .465 100 .1 i2 1i 6 .6 i 6 184 .44i 15.il 3 10 .059 1i .i 42 18 .522
25 li9 .611 124 .133 209. 02 2 226. 162 18 .03i 12.4 66 20. 99 0 22 .il 2
30 20 5 .3 53 169 .11 8 240. i 49 266.3 16 20.6 22 16 .983 24 .1i6 26 .i 44
35 22 3.4i2 14i .240 268. 11i 304. 994 22.44 1 14.i86 26 .92 5 30. 628
40 253 .681 1i 9 .i 94 296.8 90 342. 2ii 25.4i5 18. 055 29 .8 14 34.3 i2
4 5 260 .112 199 .59i 3 12. 260 3i8 .239 26. 12 1 20. 044 3 1.3 58 3 i.983
50 28 1.6 42 183 .6i 1 356 .4 i2 4 12 .949 28. 283 18 .444 35. i9i 4 1.469
55 2i 6. 60 i 1i 1.il9 34i. 238 44 6.4il zt .rtr 17 .244 34. 8 i O 44 .835
60 305. 69 4 188 .0 73 3 ii.925 478 .864 30.698 18 .88i 3 7.95 2 48 .08 8

-I BAPwIn - 15 I
I Recs I M ean AT I Min AT I Max AT I UBAT I Mean RT I Min RT I Ma x RT I UBRT I

5 48. 380 44 .574 49 .281 49 .307 4 .852 4.470 4 .942 4 .945
10 9 1.i25 8 1.0 15 96.6 7 1 9i .266 9. 198 8. 124 9 .69 4 9. 75 4
15 13 2.38 i 105.4 36 14 1.54 6 143 .932 13 .276 1O.5i3 14 .194 14.4 34
20 164 .588 129 .5i 4 1i 9 .64 5 189 .3 56 16 .505 12 .994 18 .01 5 18 .989
25 198 .388 16 1.069 220 .04 3 233 .58 6 19 .895 16 .152 22 .066 23 .42 4
30 228.489 183 .009 257 .754 2i6 .671 22.9 13 18 .3 52 25.848 27 .745
3 5 256.949 2 14 .6 15 292 .116 3 18.6 53 25.i 6 i 21.52 2 29 .294 3 1.9 55
40 2 i 5.i57 2 11.33 2 324 .5 2 1 35 9.5 74 27.653 21. 193 3 2.5 43 36 .05 8
4 5 3 11.199 237.'184 353. 93 8 399 .474 3 1.20i 23 .8 15 35 .493 40.060
50 321. 268 24 5 .610 3 i 1.69 4 438 .390 32.217 24 .630 37 .274 43 .962
55 347 .082 2ii .8 18 39 0 .3 10 476 .360 34.8 06 27.86 0 39 .14 1 4 i .iiO
60 36 4 .956 273 .579 42 3 .260 513 .4 16 36 .598 2i .435 42.44 5 51.486

Table 4.4: MBAP Perform an ce: Absolute and Relative T hroughput Summary Resul ts
for Wind ow Sizes 5, 10, and 15

109

Block Acknowledgment Protocol Performance
Relative Thr:~~h~~~dv:~ ~~:b~; ~f Receivers

HI -La -Mean Simulation Results
Theoretical Upper Sound Results

Relative ThraUghP5U~

SAP timeout ca lculation metho d = formula
SAP timeout va lue - 600000
SAP random watt Interval =
SAP window size"'" 5

Figure 4.12 : MBAP Performance: Relat ive Throughput for a Window Size of 5
(Mean)

110

Block Acknowledgment Protocol Performance
Rela tive Th~~U:0~d~: ~~:bo~r 1~f Receiver s

HI -Lo -Mean Simulation Rosults
Theoretical Upper Bound Res ults

Relative ThroU9hP5U~

SAP timeout calculation method = formula
BAP timeout value - 600000
SAP random wait Interval =
SAP window size -' 5

Figur e 4.13: MBAP Performance: Relative Throughput for a W indow Size of 10
(Mea n)

111

Block Acknowledgment Protoco l Performance
Relative Throughpu t V5. Number of Receivers

BAP Window Size of 15
HI -La -Mean Simulation Results
Theor etical Upper Bound Results

RelatiVe ThrOUghP~

SAP timeout calc ulation method = formula
SAP tlmeoutvaJue = ooסס60

BAP random watt Interva l =
BAP wi ndow size - 5

Figur e 4. 14: MBAP Performan ce: Relativ e Throughput for a Window Size of 15
(Mean)

112

Multicast Block Acknowledgment Protocol
Relative Throug hputvs. Number of Receivers

Sum mary Pial For BAP W indow Sizes 5, 10 and 15

Relative ThroU9hP~~

RT for Win ~ 5 RTforWin = 10
RT for Wi n ~ 15 - - - - - - UBR T for Win = 5

--- - UBRT fo r W in = 10 --- UBRT for Win = 15

Fig ure 4.15: MB AP Performance: Summa ry of Mean Relative Throughpu t an d Upper
Bound Relativ e Th roughpu t for Wind ow Sizes 5, 10 and 15

113

Block Acknowledgment Protocol Perform ance
Relatl:p::~~Ug~p~o: ~U:'b;':l~f :e

1c;
tvers

HI -La -Mean Simu lation Results
Theoretical Upper Bound Res ults

Relative ThroU9hP5~

SAP timeout calculation method = formula
BAP tlmeout vejue - 600000
BAP random watt Interval = 12000
BAP window size = 10

Figur e 4.16: MBA P Performance: Relative Throughput using a BAPr and Value of
12,000 and a Window Size of 10 (Mean)

114

Block Acknowledgment Protocol Performance
Relatl~1p:~~Ug:p~~0~~ ~U:;~I~f ~e~ters

Hi -La-Mean Simulation Results
Theoretical Upper Bound Result s

Relative ThroU9hP~~

SAP timeout calculation method = formula
BAP timeout value = 600000
SAP random wait Interval = 12000
SAP window size = 10

Figure 4.17: MBAP Perform ance: Relative Throughput using a BAPr and Value of
22,000 and a Size of 10 (Mean)

115

Block Acknowledgment Protocol Performance
Relati~:p::~~U~P~~~~ ~U;;~I~f=e~;wers

HI -La -Mean Simulation Results
TheoretlcaJ Upper Bound Resutts

Relative ThroU9hp~~

SAP timeout calculation method = formula
SAP timeout value = 600000
SAP random wait Interva l = 12000
BAP win dow size - 10

Figur e 4.18: MBAP Performance: Relativ e Throughpu t using a BA Prand Value of
32,000 and a Windo w Size of 10 (Mean)

116

I BAPwin - 10 & BAPrand _ 12000

I Re cs I Mea n RT I Mi n RT I Max RT I UBT I Mean Lat I Min Lat I Max Lat I LBL

5 4 .610 4.49 4 4 .80 3 4 .917 13 2300 126958 13 5682 124000
10 9. 153 8.878 9.2 48 9.636 133240 13 1865 137 3 70 126560
15 13.47 3 12 .3 22 13 .886 14 .167 135865 131 73 2 1484 56 1291 20
20 17.394 16 .0 55 18 .213 18 .522 140363 1339 15 15 1920 131 680
25 20 .627 15 .102 22 .188 22.712 148628 137406 201882 134240
30 23.587 21.273 25 .572 26 .744 155565 143069 17 1980 136800
35 26.0 37 19 .755 29.066 30.6 28 16 5008 146847 216064 139 360
40 27 .962 20. 637 3 1.511 34.3 72 1760 13 154808 23 63 75 141 920
45 30.5 8 1 25 .13 5 33. 946 3 7.983 1805 12 161663 218 337 144480
50 33 .22 1 24 .750 37.0 74 41.469 184907 164471 24 6365 147040
55 34 .55 7 24. 57 1 39. 8 16 44.835 1959 39 168460 27298 1 149600
60 35 .4 17 26. 188 4 1.1 11 48 .088 2084 05 177986 279 408 152160

I BAPwm - 10 & BAPrand - 22000

I R ecs I Mean RT I Min RT I Max RT I UBT I Mean Lat I M in Lat I Max Lat I LBL

5 4 .348 4 .202 4 .537 4 .9 17 140299 134402 1450 95 124000
10 8 .57 6 8.462 8 .884 9. 63 6 14221 5 1372 78 144121 126 560
15 12 .820 12 .670 13 .104 14 .167 142701 139601 144 374 129 120
20 16.9 93 16.4 51 17 .607 18.522 143550 138527 148265 13 1680
25 21.0 59 18 .054 21. 56 6 22 .712 144890 141 37 1 168874 134240
30 24 .546 19.1 49 25.699 26.744 149536 14236 4 19 1053 136800
3 5 26.933 21.05 3 29.684 30 .628 15944 3 1,137 94 202 742 139360
40 29 .67 1 24 .128 3 2.69 2 34.3 72 165 178 149212 202171 141 920
45 3 1.5 4 1 25.9 12 3 5.916 3 7.983 175005 152798 211787 144480
50 33. 53 9 25 .37 6 38 .442 41.469 183 118 158 6 19 240286 14 7040
55 35.401 29 .247 42 .07 6 44.8 35 190905 159410 229 337 149600
60 36.598 3 1.2 18 42 .858 48 .088 201186 170728 23 43 86 152160

I BAP"m - 10 & BAPrand - 32000

I Hecs I Mean RT I Min RT I Max RT I UBT I Mean Lat I M in Lat I Max Lat I LBL

5 4 .107 3.96 3 4.41 8 4 .9 17 148622 138011 1538 70 124000
10 8 .125 7.920 8 .750 9 .636 1501 93 139 379 1539 72 126560
15 12 .061 11.870 12 .745 14 .167 15 1692 . 143527 154109 1291 20
20 15 .978 15.721 16 .397 18. 522 152665 148745 155146 13 1680
25 19 .893 19 .138 20 .262 22 .712 153273 150468 159310 134240
30 23 .648 21.4 57 24 .162 26 .744 15478 3 151417 170 508 136800
35 27 .396 23. 933 28 .110 30 .6 28 155 9 26 151841 178 342 139360
40 30.68 1 26 .157 3 2.04 7 34 .372 159284 152218 18649 5 141920
4 5 33. 568 26 .345 36. 142 3 7.983 164 171 1518 39 208 307 144480
50 3 5.846 30.0 54 39 .517 41.469 170846 154 303 202887 1470,10

55 37.070 3 1.6 29 41.71 6 44 .835 18 189 7 160785 212065 149600
60 38 .838 25.757 44 .630 48 .088 190146 163951 28 ,1083 1521 60

Tabl e 4.5: MBAP Performance: Relative Throughput and Message Latency Summary
Results for Varying BAPrand Values at a Window Size of 10

117

Multicast Block Acknowledgment Protocol
Relative Throughput vs. Number of Receivers

Summary Plot For ::r:~~d~~u;:eO;~2oo0. 22000 , 32000

Relative ThroUghP~~

BAPrand = 0 - - - - - - - - - - - - - - - BAPrand ~ 12.000 ----------. BAPrand = 22 .000
------ BAPrand = 32 ,000 ---- Upper Bound AT

Figure 4.19 : MB AP Performance: Summary of Mean Relative T hro ughput for BAP
rand values 0, 12,000, 22,000 and 32,000

118

4.4 SAW and BAP Protocol Performan ce under Er-

ror Conditions

P revious simu lation studies were performed in error-free conditions . We next invest

igate the effect of errors on the performance of both the mu lticast stop and wait and

block acknowledgment protocols by simu lat ing the protocols using fai lure rates of 0

5%. First, thoug h, we note that the measure of relative throughput we have been using

cannot be used for erro r ana lys is. T he relative thro ughput measur es the throughp ut

of the multicast protocol with respect to the throughput of the equivalent un icast pro

tocol in error-free conditions. Thus, we will use absolute message late ncy and number

of retransmissions as our measures of protocol performance unde r erro r cond itions.

The pac ket timeout parameter is a critical parameter when operating under error

condit ions in both the mu lticast stop and wait and block acknowledgment pr otocols.

T he timeout parameter is used by the sen der node of bot h pro tocols to decide whet her

a packet has been lost and thus to initiate retransmissions . In both protocols, the value

used for the timeout must account for the transmission' time of the mult icast packet,

that of any acknow ledgments, the interval used for randomly timed acknow ledgments,

if any, and the collis ion reso lution time. If the timeo ut value is too short, the sender will

ret ransmit packets pre mat urely, causing unn ecessar y delays and network congest ion,

eve n in error-free condit ions. If the timeo ut value is too large, the amo unt of time

required to detect a lost packet will be long, also causing unnecessary delays.

The simulator allows fine-tuning of the timeout parameters of both protocols in

119

two ways: by directly specifying the value to be used, or by specifying an increment

to be added to a simple formula based on the number of receivers. For the multicast

stop and wait protocol, the formula is:

d+a*r+i

where d is the transmission time of a data packet , a is the transmission time of an

acknowledgment packet , r is the number of receivers, and i is the interval used for ran

domly timed acknowledgments, if any. This formula calculates the minimum amount

of time required to transmit a multicast packet and receive all the acknowledgments

from the receivers.

The formula for the multicast block acknowledgment protocol is:

(d * n) + (a * r) +i + t

where d is the transmission time of a data packet, n is the maximum BAP window size,

a is the transmission time of an acknowledgment packet, r is the number of receivers,

i is the interval used for randomly timed acknowledgments, if any, and t is the ac

knowledgment delay timeout value (used to force transmissions of acknowledgments

when the maximum BAP window is not filled or acknowledgments are lost). This

formula approximates the amount of time required to transmit the current window of

multi cast data packets and receive all acknowledgments from the receivers.

Note that neither of these formulas take into account the collision resolution time.

As stated previously, the statistical nature of the collision resolution mechanism in

Ethernet does not permit us to find an upper bound for the collision resolution time.

Thus, we cannot find an exact formula which will account for the collision resolution

120

t ime and guarantee no retransmiss ions in error-free cond it ions.

We therefore select a timeout valu e by run ning several tr ia l simulat ions, using

the formula-based timeout calculation and choosing the smallest increment value that

results in fewer than 2% of the packets being ret ransm it ted under erro r-free cond it ions .

Our previous sim ulat ion st udies showed that the collision resolution time is highl y

sensitive to the number of receivers participating in the multicast protocol. Thus, we

must choose an increment value separately for each number of receivers. We choose

increment values of 45,000, 90,000 an d 135,000 bit times for 20, 40 and 60 recei vers

for both the mult icast stop and wait and block acknow ledgment protocols.

The results for the mu lticast stop and wait protocol for 20, 40, and 60 receiver s

are ta bu late d in Ta ble 4.6. T he resu lts for the multicast sto p and wait protocol with

a SAWrand interval of 22,000 bit times for the same numbers of receiver s are in Table

4.7.

Th e results for the multicast block acknow ledgment protocol for 20, 40, an d 60

receivers for window sizes 5, 10, and 15 are found in Tables 4.8, 4.9, and 4.10. The

same simu lation was also per formed for 20, 40 and 60 eceivers with a BAPRANDWAIT

interval of 22,000 bit t imes, an d the resu lts tabulated in Tabl es 4.11, 4.12, and 4.13.

For the multicast stop and wait protocol, using 20 rece ivers, a failure rate of 1%

caused the mea n message latency to j um p to 98,793 bit t imes from 47,23 7 bit times

in error-free cond itions, an increase of 109%. However , each subsequent increase of

one percentage point in failure rate only caused latencies to increase by 10-30% each

time. Sim ilar res ults were found for 40 and 60 receivers. Using random ly t ime d

121

acknowledgme nts with a SAWrand value of 22,000 bit time lowered ab solu te message

laten cies bu t exhibited the same general t rend as the sim ple mult icas t stop and wait

pro to col.

Th e res ults for the mul ticast block acknowl ed gment prot ocol show an even mor e

dr ama tic det erioration of performance under error condit ions. For a window size of 10,

with 20 receiver s, a failur e rate of 1% res ulted in mea n message lat en cies of 2,681,561

bi t t imes, an increase of 1586% over the mea n message laten cy of 159,006 bit t imes

und er err or-free conditions. Error rat es of 2-5% showed simila r mean message laten cy

values . Using randomly tim ed acknowl ed gments with a BAPrand valu e of 22,000 bit

t imes did not change the overall t rend of the result s.

Th e low toleran ce for err ors in bo th protocols is due to the relationship between

the sender timeout valu e, err or detection , and the collision resolu tion tim e. Th e sender

timeout value mu st include an estimat ion of the collision resolution tim e; oth erwi se

premat ure tim eou ts can cause significant network congesti on. However , as the numb er

of receiv er s becom es larger , the estimate of the collision resolution grow s, forcing larg er

timeo ut values . Larger timeo ut values lengthen the am ount of time whi ch mu st ela pse

befor e the sender can det er mi ne that an err or has occurred and initi at e retransmi ssion s.

Thu s, resp onse in the pr esen ce of errors, par ti cul arl y with lar ge numb er of receivers,

is poor.

122

I Receiv er s _ 20 I
I FailRate I Mean La t I Min Lat I Max Lat I Mean Ret r ! Min Retr I Ma x Retr I

o 4723 7 26 704 19 5584 O.OlD 0 .000 2.000

I Receiv er s = 40 I
I FailRa te I Mean Lat I Min La t I Max Lat I Mean Re t r ! Min Ret r I Max Retr I

o 896 09 5038 4 36982 4 0 .Ql8 0.00 0 2.000

I Recei vers = 60 I
I Fa ilR a te I Mean La t I Min Lat I Max Lat I Mea n Retr I M in R etr I Max Ret r I

o 137 9 59 72304 701472 0.03, 1 0.000 2 .000

Table 4.6: MSAW Performance: Summary Result s with 0-5% Failur e Rates for 20,
40 and 60 Receivers

123

I Receiv ers - 20 & SAWra nd - 22, 000 I
I FailRate I Mean Lat I Min La t I Max Lat I Mean Retr I Min Retr I Max R etr I

o 34532 303 74 5 1644 0 .000 0.000 0 .000

I Rece ivers - 40 & S AWra nd - 22 ,000 I
I Fa ilRate I Mean Lat I Min Lat ! Max Lat I Mea n Retr I M in R et r I Max Retr I

o 56 116 3 752 7 162197 0 .000 0. 000 0 .000

! Receiv ers _ 60 & SAWrand - 22 ,000 I
! FailRate I Mean Lat I Min Lat I Max Lat ! Mean R etr I M in R et r I Max Retr I

o 90993 563 88 258586 0 .000 0 .000 0 .000

Ta ble 4.7: MSAW Performance: Summary Results with 0- 5% Failur e Rates for 20,
40 and 60 Receivers using a SAWrand value of 22,000

124

Receiv er s - 20 & GB Nwin _ 5 I
I FailRate I Mean Lat I Min Lat I Max Lat I Mean Retr ! Min R etr I Max Retr I

a 95 466 i7i44 149456 0.000 0 .000 0 .000

I Receiv er s - 20 & GB Nwin - 10 I
I FailRate I Mean Lat I Min Lat I Max Lat I Mean Retr I Min R etr ! Max R etr I

a 15900 6 140 544 230 i2 0 0 .000 0.000 0.000

I Rece ivers - 20 & G BN win - 15 I
I FailRate I Mean Lat I Min La t I Max La t I Mean Retr I Min R etr I Max Retr I

a 2 16226 1896 i2 2535 20 0.000 0. 000 0.000

Table 4.8: MBAP Performance: Summary Result s with 0-5 % Failure Rate s for 20
Receivers and Window Sizes of 5, 10 and 15

125

I Re ceiv ers - 40 & GBNwin - 5 I
I Fa ilRat e I Mea n La t I Mi n Lat I Max Lat I Mean R etr I Mi n R etr I Max Retr I

o 13 7103 10 5008 241200 0 .000 0.000 0 .000

I R ece ivers - 40 & GB Nw in - 10 I
I FailRate I Mean Lat I Min Lat I Max Lat I Mean Retr I !\l in Retr I Max Retr I

o 19671 9 163680 29891 2 0 .000 0.000 0 .000

I Receiv ers - 40 & GB Nwin - 15 I
I Fa iIRate I Mea n Lat I Min Lat I Max Lat I Mean Ret r I Min Retr I Max Retr I

o 251020 20 ,1616 28 4304 0 .000 0.000 0 .000

Table 4.9: MBAP Performance: Summary Result s with 0-5 % Failur e Rates for 40
Receivers and Window Sizes of 5, 10 and 15

126

I Receiv ers = 60 & G BN win = 5 I
I FailRate I Mean Lat I Min Lat I Max Lat I Mean Retr I Min Retr I Max Retr I

o 1852 98 126480 3 105 12 0 .000 0 .000 0 .000

I R eceivers = 60 & G BN win = 10 I
I FaiIRate I Mean Lat I Min Lat I Max Lat I Mean Retr I Min R etr I Max R etr I

o 249 589 1888 32 369 504 0. 000 0 .000 0 .000

I Receiv er s - 60 & G BN win - 15 I
I Fa iIR a t I Mean Lat I Min Lat I Max Lat I Me· n Retr I Min Retr I Max Ret I

0 306753 2607 84 36 7760 0 .000 0 .000 0 .000
1 8871 447 2079 216 122 919 36 9.662 4 .000 12 .000
2 8488 71 2 30 198 72 13 120688 9 .9 26 6. 000 14.000
3 84 99577 280 699 2 1097 6704 9.9 16 6.000 12.000
4 832 678 3 4693376 12891952 9.9 86 3. 000 13 .000

5 79974 50 393 06 88 12747632 9. 758 5. 000 12 .000

Tab le 4.10: MBAP Performance: Summary Result s with 0-5 % Failure Rat es for 60
Receivers and Window Sizes of 5, 10 and 15

127

I Receiv er s - 20 & G BN win = 5 & G BN ra nd _ 22, 00 0 I
I Fa ilRa te I Mean La t I Min La t I Max Lat I Mea n Re t r I Min Retr I Ma x Retr I

o 82886 78950 88525 0.000 0.0 00 0 .000

t Receiv er s = 20 & G BN win = 10 & G BN rand - 22,000 I
t Fa ilRat e I Mean Lat I Min Lat I Max Lat I Mean R etr I Min Retr I Max Retr I

o 143596 140030 150928 0.0 00 0. 000 0.000

I Receiv ers - 20 & G BN win - 15 & G BNr a nd _ 22,000 I
I FailRate I Mean Lat I Min Lat I Max Lat I Mean Retr t Min Retr I Max Retr I

o 20 4238 1780 72 215757 0 .000 0 .000 0 .000

Tabl e 4.11: MBAP Performance: Summary Result s with 0-5 % Failure Rates for 20
Receivers and Windo w Sizes of 5, 10 and 15 using a BAPrand value of 22,000

128

I Receiv er s - 40 & G BN win - 5 & G BN ra nd - 22, 00 0 I
I FaiIRat e I Mean Lat I M in La t I Max Lat I Mean Retr I Min Retr I Max Retr I

o 1077 57 86 278 18792 8 0.000 0.000 0 .000

I Receiv er s - 40 & G BN win = 10 & G BN ra nd _ 22,000 I
I Fa ilRa te I Mean Lat I Min Lat I Max Lat I Mean R et r I Min Hetr I Ma x Hetr I

o 167 565 149910 26161 5 0 .000 0 .000 0 .000

I Hece ive rs - 40 & G BN win - 15 & G BN ra nd - 22 ,00 0 I
I Fa ilRate I Mea n La t I Min Lat I Max La t I Mean Re tr I Min Retr I Max R etr I

o 224684 206268 262 488 0 .000 0. 000 0. 000

Table 4.12: MBAP Perform ance: Summary Result s with 0-5 % Failur e Rat es for 40
Receiver s and Window Sizes of 5, 10 and 15 using a I3APrand Value of 22,000

129

I Receiv ers - 60 & GB Nwin - 5 & GB Nrand _ 22,000 I
I Fail Rate I Mean Lat I Min Lat I Max Lat I Mean R etr I M in R etr I Max Retr I

o 136451 1049 64 221 69 9 0 .000 0.000 0 .000

I R ece ivers - 60 & GBNwin - 10 & GBN ra nd - 22,000 I
I Fa ilR ate I Mean La t I Min Lat I Max La t I Mea n Retr I Mi n R etr I M ax R etr I

o 197240 169896 266807 0 .000 0 .000 0.000

I Receivers - 60 & G B Nwin - 15 & GB Nrand - 22,000 I
I FailRate I Mean Lat ! Min Lat I Max Lat I Mean Retr I Min Retr I Max Retr I

o 262493 227111 347189 0.000 0.000 0 .000

Tab le 4.13: MBAP Performance: Summary Results with 0-5 % Failure Rates for 60
Receivers and Window Sizes of 5, 10 and 15 using a BAP rand Value of 22,000

130

Chapter 5

Conclusions and Further Work

We chose to study mul ti cas t pro tocols because of their relevan cy to high-bandwid th

d ist ribu ted network applicat ions, such as mult i-user white boa rd systems and di strib

uted datab ases. We designed and built a simulat ion syste m to st udy mul ticas t pro

tocols in an Ethern et env ironment. Th e simu lat ion syste m eliminates the need for a

dedicated testbe d net work.

Th e simulat or follows a layered approach , the lower two layer s impl em ent the

und erl ying Ethern et network , and the top layer impl emen ts one of several mul ti cast

protocols. Th e simulator was designed to be exte nsible; other multicast protocols can

eas ily be added as alt ernate top layers . Th e simulator record s data such as message

lat en cy and retransmissions, which can later be used to analyse protocol performance.

Users can cont rol the simulation via a comma nd file, which contains both genera l

and pro tocol-specific par am eter s. General param et ers spec ified in the com mand file

131

include th e numb er of receivers, size of dat a and ack nowledgment packets, numb er of

pack et s to be sent , and th e error rate of the und erl ying net work. As well , the comma nd

file can be ex te nded to include protocol-specific par am eter s; in the multicast stop and

wait protocol , for example, thi s includes timeo ut values and the int er val to be used

for randomly tim ed acknowledgme nts.

Th e sys te m simulates errors in an Eth ern et environme nt by impl em enting a sim ple

err or mod el which ra ndomly drop s packets at inte rfaces ba sed on an user-configur able

error rat e. Thi s allows simulation of multi cast protocols in varying error conditions.

Th e simula tor was used to study th e protocol perform an ce of two sim ple multicast

protocols, sto p and wait and block acknowl ed gment. Simul ations were performed

und er vary ing condi tions, and the result s anal ysed using the SAS Syst em to compile

summa ry result s and plot s. Th ese result s were compa red against compa ra ble unicast

pro tocols, and deri ved theoretical bou nds.

An ana lys is of the multi cast stop and wait protocol gives a ma ximum relati ve

throughput of 24.719 over equivalent uni cast protocols when using a data packet

size of 1518 bytes, and an acknowledgme nt packet size. of 64 byt es. Th e simulat ion

st udies show th at while the stop and wait pr otocol does not reach thi s maximum

theore t ica l performance, it does show steady improvement s in relati ve throughput for

sma ll numb er of receiver s which event ua lly rea ch an asy mptotic value . Thi s behaviour

is cons iste nt wit h derived upp er bound theoreti cal res ult s.

Th e mul ti cast stop and wait protocol is also affect ed by the size of th e dat a payload.

Th eoreti cal resul ts show th at the relative th rou ghput of the multi cast stop and wait

132

protocol decl ines sharply as the size of the data packet decreases, eventually reach ing

a maximum relative throughput of 2.0 for a data packet size of 64 bytes. Simulation

res ults also follow this tre nd; as the data pac ket size decreases, a dr amatic decline in

protocol performance occurs.

Randomly timed acknowledgments were added to the multicast stop and wait

protocol to reduce the collision rate. This technique did show promise; not only did

the relative throughput of the protocol increase, but the number of receivers at which

the protocol per formance gains started to level off also increased ; improving the range

of rece ivers for which protocol performance was significantly better than the eq uiva lent

unicast protocol. As well, the simulati on st udies clea rly demon str at ed that the opt ima l

value of the interval used for randomly timed acknowledgment is closely related to

the number of receivers.

The multicast block acknow ledgment protocol was an attempt to improve on the

performance of the multicast stop and wait protocol by reduc ing the number of ac

know ledgments requir ed , thereby reduc ing the collision rate and im proving re lat ive

throughput. An analysis of this protocol revealed that the theoretical limit on relative

thro ugh put was related to the window size of the protocol an d would increase as the

window size increased. On the other hand, the window size is bounded by the sender's

t imeout value, memory resources and by the requirement to keep message latency

values within a reasonable lim it .

Simulation studies showed that the multicast block acknowledgment protocol did

indeed pe rform better than the multicast sto p and wait protocol. T his im provement

133

was achieved at the expense of message latency; message latencies in the mu lticast

block acknow ledgment protocol include the latency of the entire outstanding window,

and were thus significantly longer than the latencies exhibited by the mult icast stop

and wait protocol. Moreover, the performance of the multicast block acknow ledgment

protocol improved as the BA P window size increased, again at the expense of message

latency.

As in the mu lticast stop and wait protocol, the mu lticast block acknow ledgment

protocol's performance gains reach an asymptotic value as the numb er of recei vers

grows; due ma inly to the increase in collisions and the resu lting increase in message

latency. This effect, however , was slowed by increasing BA P window sizes, improving

the range of receivers for which the multicast block acknowledgment protocol's per

formance was significantly better than eit her mu lticast stop and wait or the equivalent

unicast protocol.

A significa nt portion of the pe rformance degradation exhibite d by the mult icast

block acknowledgment protocol is due to rising collision rates an d ensuing network

congestion. The addition of randomly timed acknowledgments to the protocol reduce

the rate of collisions, as expected, and therefore improves the relative throughput

significantly. As in the stop and wait protocol, the simu latio n res ults show the optimal

value of the interval used for ra ndom ly time d acknow ledg ments is closely re lated to

the number of receivers, and can be used to improve the sca labi lity of the protocol.

Simu lation of both protocols under error conditions showed that both protocols

were very sensitive to the presence of errors on the network; a failure rate of 1% was

134

enough to degrade both protocols' performance by over 100%.

The two simp le protocols have limited application due to their poor performance

in the presence of errors. Further work on techniques to improve the error-tolerance of

these simple protocols is suggested. Specifically, the use of negative acknow ledgments

may red uce the performance dete rioration in the presence of errors by allowing the

sender to detect and respond to errors qu icker.

Another approach to improve per formance is to combine the features of both proto

cols into a mu lticast round robin acknow ledgment protocol (R RA), in whic h receivers

acknow ledge messages in a round robin fashion. T he sende r sends a mu lt icast mes

sage along with an indicator of which receiver should send the acknow ledgment. T he

selected receiver acknow ledges this message and all prev ious messages successfully

received since it last sent an acknowledgment. By selecting eac h rece iver in a round

robin fashion, the sender will eventually receive acknowledgments from all receivers .

This combines the stop and wait approach of sending a message an d wait ing for a

response with the block acknowledgment approach of acknow ledg ing multip le mes

sages wit h one acknow ledgment packet. The resu lt is {ewer ack nowledgme nts , and

the elimination of contention among receivers acknow ledg ing messages, one of the

biggest drawbacks of the two previous protocols.

Another suggested aven ue of further study is implementat ion of the two protocols

in a testbed netwo rk for compariso n with the protocol simulations. The results m ight

suggest ways of improving the simulator mode l to more acc urately reflect real-world

conditions. A carefu l study of errors in such a testbed mig ht suggest refinements to

135

the error model used in the simulator, as well as give better est ima tions of ty pical

error ra tes in real Ethern et networks.

Finally, impl em enting the three protocols describ ed in the second chapte r ma y

pro vide some insight on ot her useful techniques for the design of mu lticast protocols.

In par ticul ar , the protocol suggested by Erramilli and Singh [14] is heavi ly dep endent

on a few t imi ng par ameter s and is therefore well-su ite d for st udy in the simulat or .

136

Bibliography

[1] Decitre, Po, Estubli er , J. , Khider , A., Rousset de Pina, Xo, Vatton, 1., "An

Efficient Error Detection Mechanism for a Multi cast Transport Service on the

DANUBE network " , Proceedings of the IFIP T C 6th Int ernat ional In-D epth

S ym posium on Local Computer Ne tworks, pp. 335-347 , April 1982.

[2] Mockap etri s, P. V., "Analysis of reliabl e multi cast algorithms for local network s" ,

Proceedings of the 8th data com munications sym posium (ACM), pp. 150-157 ,

Octob er 1983.

[3] Powell , Michael L., Presotto , David L., "PUBL IS~ I G: A Reliabl e Broad cast

Commnicat ion Mechani sm" , Operat ing Sy st ems Review, Volume 17, Numb er 5,

ppo 100-109, Pr oceedin gs of the 9th ACM Sympo sium on Operating Systems

Prin ciples, Octob er 1983.

[4] Wong, J.W. , Gopal, G. , "Analysis of reliabl e broadcast in local area network s" ,

Proceedings of th e 8th data com munications symposium (A Civl) , pp. 158-163 ,

Octob er 19830

137

[5] Segall , A., Awerbuch , B. , "A Reliabl e Broadcast Proto col" , IEEE Tran sactions

on Com m unications, Volume COM-31, Numb er 7, pp. 896-901 , Jul y 1983.

[6] Chang, J. , Maxemchuk , N.F., "Reliable Broadcast P rotocols" , A CM Transa c

tions on Computer Sy st ems , Volume 2, Number 3, pp. 251-273, August 1984.

[7] Gopal , I.S. , Jaffe, J. IVI. , "Point-to-Mult ipoint Communications over Broadcast

Links" , IEEE Tran sact ions on Com m unications, Volume COM-32 , Numb er 9,

pp. 1034-1044 , Sept ember 1984.

[8] Gopal , G. , Wong, J.W. , "Two Protocols for Reliable Broadcast : A Performance

Study", Proceedings of the IEEE GLOBECOiVI '84, pp. 11.1.1-11.1.6, November

1984.

[9] Ahamad , M., Bern stein , A.J. , "Multicast Communication in UNIX 4.2BSD ",

IEEE Proceedings of th e 5th Int ernational Confe rence on Distributed Computing

Sy st ems, pp. 80-8 7, May 1985.

[10] Deering , S.E. , Cheriton, D.E., "Host Groups: At Multicast Exten sion to the

Intern et Protocol" , RF C-966 , December 1985.

[11] Cher iton, D.R. , Deerin g, S.E. , "Host Group s: A Multicast Extension for Data

gram Internetworks" , Proceedings of th e 9th Data Com m unications Symposium

(AC/vl SIGCO/vIM) , Compute r Communi cations Review, Volume 15, [umbe r 4,

pp 172-179, Sept emb er 1985.

138

[12] Cheriton, D.R. , Zwaenepoel , W. , "Dist ribute d Pr ocess Group s in the V Kern el" ,

A CiVI Transaction s on Computer Sy st ems, Volume 3, Numb er 2, pp o77-101 , May

19850

[13] Birm an , K.P. , Joseph , T.A. , "Reliable Communications in the Presence of Fail

ures" , A Ci\;I Transact ions on Computer Systems, Volume 5, Number 1, pp o47- 76,

Febru ary 1987.

[14] Err amilli , Ao, Singh, R.P ., "A reliabl e and efficient multicast protocol for broad

cast network s" , Front iers in Computer Com mu nications Technology: Pro ceedinqs

of the A CM S IGCOiVIM '87 W01'kshop , pp. 343- 352, Stowe, Vermon t , August

1987.

[15] Ram akri shnan , S., J ain , B., "A negativ e acknowledgment with periodi c polling

proto col for multi cast s over LANs" , Proceedinqs of th e IEEE INFOCOM '87, pp.

502-5 11, 1987.

[16] Gopal, I " Rom , R. , "Multicast ing to Multipl e Group s over Broadcast Channels

(Extended Abst ract)" , Proceedinqs of th e Com puter Ne tworkin g Symposium , pp.

79- 81, Washington , DC, April 1988.

[17] Hughes, L. , "A Multicast Interface for Unix 4.3", Sof tware Practi ce and Experi

ence, Volume 18, Numb er 1, pp. 15-27, January 1988.

139

[18] Garcia-Mo lina , H., Kogan, B. , Lynch , N. , "Reliable Broadcast in Networks wit h

[onprogrammable Serv ers", Proceedings of the 8th Intern ational Confe rence on

Distributed Computing Sys tems, San J ose, Ca lifornia, pp. 428-437, Ju ne 1988.

[19] Navaratnam, S., Chanson, S. , Neufeld, G., "Reliab le Gro up Communication in

Dist r ibuted Systems" , Proceedings of the 8th Intern ational Conference on Dis

tribut ed Computing Syst ems, San J ose, California , pp . 439-446, J une 1988.

[20] Ga rcia- Molina, H., Spauster , A. , "Message Orderi ng in a Mult icast Env iron

ment" , Technical Report CS-TR -161-88, Princeton Unive rsity, J une 1988.

[21] Ga rcia-Molina, H. , Kogan, B. , "An Im plementation of Reliable Broad cast Using

an Unreliable Multicast Fac ility", Technic al R eport CS-TR -170-88, Pri nceton

University, August 1988.

[22] Tanenbaum, Andrew S., Computer N etworks . Second Edit ion , P ren tice-Hall ,

1988.

[23] Chanson, S.T. , Neufeld , G.W ., Liang , L., "A Bib1iography on Multicast and

Group Communications" Operating Systems Review, Volume 23, Number 4, pp.

20-25, October 1989.

[24] Kaashoek, M.F ., Tan enbaum, A.S. , Hummel S.F. , Bal, I-I.E. , "An Efficient Reli

ab le Broadcast Protocol" , Operating Syst ems R eview, Volume 23, [umber 4, pp.

5-19, October 1989.

140

[25J Tseung, L.C .N ., "Guarantee d , Reliable, Secur e Broad cast Networks", IEEE Net

work lvlaga zine, Volume 3, Number 6, pp. 33-37 , [ovember 1989.

[26J SAS Insti tute Inc., SAS Languag e: Reference, Version 6, First Ed ition, Cary,

North Carolina , SAS Institute Inc. , 1990.

[27J SAS Institu te Inc., SAS/GRA PH Software: Reference, Version 6, First Edition,

Volum e 1 & 2, Ca ry, North Caro lina, SAS Inst itute Inc., 1990.

[28J Golding, R. A., Long, D.D.E ., "Quorum-oriented Mu lticast Pr otocols for Data

Replication" , Technical R eport UCS C-CRL-91-21, University of Ca liforn ia, Santa

Cruz , June 1991.

[29J Gar cia-Molina , H., Spau st er, A. , "Ordered and Reliab le Multicast Communica

t ion", A CM Transactions on Computer Sy st ems, Volume 9, Numb er 3, pp. 243

271, August 1991.

[30J Birman, K. , Schiper, A. , Stephenson , P., "Lightweight Causal and Atomic Group

Mu lti cast " , A CM Transactions on Computer Sy st ems , Volume 9, Number 3, pp .

272-314, August 1991.

[31J Ellington, R.M. , "Supporting Causal Mu lticast in Dist rib ute d Operating Sys

tems: An Experment in Architectural Approaches", Alaster 's Th esis, Or egon

Graduate Institute of Scienc e and Techno logy, J anuary 1992.

141

[32] Lashkari , Y. , Ramachandran, V. , Malpani , S., Mehndir atta , S.L. , "Vart alaap: a

Distributed Multicast Communication System" , S of tware Practice and Experi

ence, Volume 23, umber 7, pp. 799- 811, Jul y 1993.

[33] Wh ett en , B. , Kaplan , S., Montgomer y, T. , "A High Performance Totall y Ord ered

Multicast Protocol" , To be published, Info com 1995.

142

Appendix A

Sample SAS program

* SAS program : saw_recs . sas

*
Analyzes results of simulation program

Input File: SAW_simi . dat

Output Files:
SAW_simla_plots. eps (en caps u l a t ed PostScript file)
SAW_simlb_plots. eps (encapsulated PostScript fi le)
SAW_simLplots . ps (P ostScript file)
SAW_simla_table. tex (LaTeX source)
SAW_simlb_table . tex (LaTeX source)
SAW_simlc_table. tex (La TeX source)

Author: Andrea Segovia
Da t e : August 20, 1996

* Save datasets ;
libname save ". II ;

* Read input data;

*/

143

srecs data set (s i mu l a t i on results) :

Header info (for each simulation run) :

pkts - number of packets for this simulation run
recs - number of receivers for this simulation run
data - size of data packet for this simulation run
ack - size of ack packet for this simulation run
failrate - failure rate for this simulation run
reps - number of repetitions performed (a l wa ys 1)
proto - protocol identifier, valid values are:

SAW - stop and wait

BAP - block acknowledgment
SAWtimeM = timeout calculation identifier , valid values are:

for - formula-based timeout calculation
cons - constant timeout calculation

SAWretr - base SAW retransmission timeout value
SAWretrM = retransmission method identifier

multi - multicast retransmission
uni - unicast retransmission

SAWrand - SAW random wait interval
s_lblat - calculated theoretical lower bound for message latency

for this simulation run

formula : (da t a * 8 + recs * ack * 8)
s_uathru - calculated theoretical upper bound for absolute

throughput for this simulation run
formula: ((recs * data * 8)/(data * 8 + recs * ack * 8» * 10

s_urthru - calculated theoretical upper bo nd for relative
throughput wrt unicast SAW for this simulation run

formula: (r scs * (da t a * 8 + ack * 8»/ (data * 8 + recs * ack * 8)

Simulation info (for each multicast packet sent):
pktID - unique packet ID
pktSize - packet size
winSize - size of current window
startT - time packet sent
endT - time packet reliably received by all receivers
timeElap - time elapsed between startT and endT
timePkt - transmission time per packet sent (t i meEl ap / wi nSi z e)

144

retrans - number of retransmissions required
fail - 1 if packet transmission failed
s_athru - absolute throughput of multicast SAW

calculated per packet sent (i n Mbps for 10Mbps Ethernet) :

formula : «recs * data * 8)/timeElap) * 10
s_rthru - relative throughput sent wrt unicast SAW

calculated per packet sent:

formula: (recs * (da t a * 8 + ack * 8))/timeElap
lat - latency of packet sent

srecs_s dataset (summary results - per simulation run) :

recs - number of receivers
data - data packet size
ack - ack packet size
s_lblat - calculated theoretical lower bound for message latency
s_uathru - calculated theoretical upper bound for absolute throughput

in Mbps (for 10Mbps Ethernet)

s_urthru - calculated theoretical upper bound for relative throughput
wrt unicast SAW

s_mathru - mean absolute throughput value
s_mrthru - mean relative throughput value
s_mlat - mean message latency value
s_lathru - minimum absolute throughput value
s_lrthru - minimum relative throughput value
s_llat - mininum message latency value
s_hathru - maximum absolute throughput value
s_hrthru - maximum relative throughput val e
s_hlat - maximum message latency value

data srecs;
infile "SAW_sim1.dat";

input pkts= recs= data= ack= f ailrate= reps= proto= $CHAR3. @;

if proto = ' SAW' then do ;
input SAWtimeM= $CHAR3. @;

if SAWtimeM = 'for ' then

145

input SAWtimeI= SAWtime= @;

else if SAWtimeM = 'con' then
input SAWtime= @;

input SAWretr= SAWretrM= $CHAR3. SAWrand= @;

end;

else if proto = 'GBN' then do;
input GBNwin= GBNpktM= $CHAR3. @;

if GBNpktM = 'for' then
input GBNpktI= GBNpktT= @;

else if GBNpktM = 'con' then

input GBNpktT= e:
input GBNackT= GBNrand= @;

end;

input date= $CHAR24. ;

s_lblat = (data * 8) + (recs * ack * 8);
s_uathru = «recs * data * 8)/s_lblat) * 10;
s_urthru = (recs * (data * 8 + ack * 8))/s_lblat;

do i = 1 to pkts;
input pktID pktSize winSize startT endT timeElap timePkt retrans fail;
drop i;

s_athru = «recs * data * 8)/timeElap) * 10;
s_rthru = (recs * (data * 8 + ack * 8))/timeElap;
lat = timeElap;
output;

end;

if _n_ = 1 then do;
if proto = 'SAW' then do;

call symput ("Lproto", "Stop and Wait Protocol Performance") ;
if SAWtimeM = 'for' then do;

call symput("LStimeM", "formula");
call symput("LStime", put(SAWtimeI, 7.));

end;
else if SAWtimeM = 'con' then do;

call symput("LStimeM", "constant");
call symput("LStime", put (SAWtime , 7.));

146

end;

call symput("LSrand", put (SAWrand , 7 . » ;
if SAWretrM = "un i " then

call symput("LSretrM", "un i cas t " } :

else
call symput ("LSretrM" , "multicast") ;

end;
end ;

run ;

* Sort input data ;
proc sort data=srecs;

by recs;

* Print first 20 observations - sanity check;
proc print data=srecs (obs=20);

* Calculate means;
proc means noprint data=srecs;

by recs;
id data SAWrand

s_uathru s_urthru s_lblat;

var s_athru s_rthru lat;
output out=save. srecs_s

mean=s_mathru s_mrthru s_mlat
min=s_lathru s_lrthru s_llat
max=s_hathru s_hrthru s_hlat ;

* Print first 20 observations - sanity check;
proc print data=save. srecs_s(obs=20) ;

* Produce LaTeX table of summary results;
filename texoutl "SAW_simla_table . tex";

data;
set save . srecs_s end=endtab;
file texoutl;
if .,n., = 1 then do;

147

put '\begin{tabular}{ l r l r l r l r Ir Ir l r]r lr I} ' ;
put ' \hline ' ;
put '\multicolumn{1}{ Il}{Recs} & ' ;

put '\multicolumn{1}{ Il}{Mean RT} &';

put ' \multicolumn{1}{ Il}{Min RT} &' ;

put '\multicolumn{1}{ Il}{Max RT} &' ;

put ' \ mult i c ol umn{ l }{ l l }{ UBRT} &' ;

put ' \ mult i co l umn{ l }{ Il}{Mean Lat} & ' ;

put '\multicolumn{1}{ Il}{Min Lat} &';

put '\multicolumn{l}{ll}{Max Lat} & '

put '\multicolumn{l}{lll}{LBL} \\,
put ' \ h line' ;
put '\hline';

end;
if mod Crecs , 5) = 0 then do;

put recs 3.' & '

s_mrthru 8.3 ' & '

s_lrthru 8.3 ' & '

s_hrthru 8.3 ' & '

s_urthru 8 .3 ' & '

s_mlat 8. ' & '

s_llat 8.' & '

s_hlat 8. '&'

s_lblat 8.'\\ ' ;
put '\hline';

end;
if endtab then do ;

put '\hline';
put '\end{tabular}';

end;
run;

* Produce LaTeX table of summary results including absolute throughput;
filename texout2 "SAW_simlb_table . tex";

data;
set save . srecs_s end=endtab;
file texout2 ;
if _n_ = 1 then do;

148

put '\begin{tabular}{ l r Ir l r l r l r [r]r l r l r I} ' ;
put ' \ h line';
put ' \ mult i c ol umn{ 1}{ Il}{Recs} & ' ;

put ' \ mult i c ol umn{ 1}{ Il}{Mean AT} &' ;

put '\multicolumn{1}{ Il}{Min AT} &';

put '\multicolumn{1}{ll}{Max AT} & ' ;

put '\multicolumn{1}{ll}{UBAT} &' ;

put ' \ mult i col umn{1 }{ Il}{Mean RT} & ' ;

put ' \ mult i co l umn{ 1}{ Il}{Min RT} & ';

put '\multicolumn{1}{ll}{Max RT} &'

put '\multicolumn{1}{ III }{UBRT} \\'
put '\hline ' ;
put ' \ h l i ne';

end ;
if mod Crecs , 5) = 0 then do ;

put recs 3.' &

s_mathru 8.3 ' & '

s_lathru 8 .3 ' &'

s_hathru 8.3 ' & '

s_uathru 8.3 ' & '

s_mrthru 8.3 '& '

s_lrthru 8.3 ' & '

s_hrthru 8.3 ' & '

s_urthru 8 .3 ' \\ ' ;
put '\hline';

end;
if endtab then do;

put '\hline';
put ' \ end{ t abu l a r }, ;

end;
run ;

* Produce LaTeX table of summary results for AT, RT and lat;
filename texout3 "SAW_s i m1c_t ab l e. tex ";

data;
set save . srecs_s end=endtab;
file texout3;
if .,n., = 1 then do;

149

put '\begin{tabular}{ l r Ir l r l r l r Ir l r l } " :
put ' \ h l i ne' ;

put ' \ mult i co l wnn{1 }{ Il}{Recs} &' ;

put '\multicolwnn{1}{ Il}{Mean AT} &';
put ' \ mult i co l wnn{1 }{ l l }{ UBAT} &' ;

put ' \ mult i c o l wnn{ l }{ Il}{Mean RT} &' ;
put '\multicolumn{1}{lll}{UBRT} &' ;

put '\multicolumn{1}{ Il}{Mean Lat} &';
put '\multicolwnn{l}{ III }{LBL} \\ '
put ' \ h lin e ';

put ' \ h l i ne' ;
put '\hline';

end;
if modf r scs , 5) = 0 then do;

put recs 3.' & '
s_mathru 8.3 ' & '

s_uathru 8.3 ' & '
s_mrthru 8.3 ' & '
s _urthru 8 . 3 ' & '

s_mlat 8.' & '

s_lblat 8 . '\\';
put '\hline';
put '\hline' ;

end;
if endtab then do;

put ' \ h line';
put ' \ end{ t a bu l a r }';

end;
run;

* Produce PostScript and encapsulated PostScript plots;

titlel justify=center "&Lproto" ;

axis 1 label= (font=swiss "Message Latency") ;

axis2 label= (font=swiss "Relative Throughput");
axis3 label=(font=swiss "Number of Receivers") ;
axis4 label= (font=swiss "Absolute Throughput");

footnotel justify=left "SAW timeout calculation method = &LStimeM";

150

footnote2 justify=left "SAW timeout value = &LStime ";
footnote3 justify=left "SAW retransmission method = &LSretrM";
footnote4 justify=left "SAW random wait interval = &LSrand";

symbol! color=black interpol=hilotj;
symbol2 color=black interpol=boxtOO ;
symbol3 color=black line=l interpol=join ;

symbol4 color=black line=2 interpol=join ;

filename psout "SAW_sim1_plots. ps" ;
goptions device=ps gsfname=psout gsfmode=replace ftext=swiss;

proc gplot data=srecs;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";

plot lat * recs=l s_lblat * recs=4 /
overlay
vaxis=axis 1
haxis=axis3 ;

run;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Lower BoundRasul ts";
plot lat * recs=2 s_lblat * recs=4 /

overlay
vaxis=axis1
haxis=axis3 ;

run;

title2 justify=center "Relative Throughput vs . Number of Receivers" ;
title3 justify=center "Hi-Mean-Lo Simulation Results" ;
title4 justify=center "Theoretical Upper Bound Results";

plot s_rthru * recs=l s_urthru * recs=4/

151

overlay
vaxis=axis2
haxis=axis3 ;

run;

title2 justify=center "Relative Throughput vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Upper Bound Results" ;

plot s_rthru * recs=2 s_urthru * recs=4 /
overlay
vaxis=axis2
haxis=axis3 ;

run;

title2 justify=center "Absolute Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";

plot s_athru * recs=l s_uathru * recs=4/
overlay
vaxis=axis4
haxis=axis3 ;

run ;

title2 justify=center "Absolute Throughput vs . • Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results" ;
title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=2 S_uathru * recs=4 /

overlay
vaxis=axis4
haxis=axis3 ;

run;

filename epsoutl "SAW_s i ml a _p l ot . eps" ;

152

goptions device=psepsf gsfname=epsout1 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Message Latency vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results " ;

title4 justify=center "Theoretical Lower Bound Results";
plot timeElap * recs=1 s_lblat * recs=4 /

overlay
vaxis=axis1
haxis=axis3 ;

run ;

filename epsout2 "SAW_sim1b_plot . eps";

goptions device=psepsf gsfname=epsout2 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Message Latency vs . Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Lower Bound Results";
plot timeElap * recs=2 s_lblat * recs=4 /

overlay
vaxis=axis 1
haxis=axis3 ;

run;

filename epsout3 "SMCsim1c_plot. eps";

goptions device=psepsf gsfname=epsout3 gsfmode=replace ftext=swiss;
proc gplot data=srecs;

title2 justify=center "Relative Throughput vs . Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results" ;
title4 justify=center "The or e t i ca l Upper Bound Results" ;

plot s_rthru * recs=1 s_urthru * recs=4/
overlay
vaxis=axis2

153

haxis=axis3 ;

run ;

filename epsout4 "SA\Csim1d_plot. eps";

goptions device=psepsf gsfname=epsout4 gsfmode=replace ftext=swiss ;
proc gplot data=srecs ;

title2 justify=center "Relative Throughput vs. Number of Receivers";
title3 justify=center "00-25-50-75-100 Percentile Simulation Results";
title4 justify=center "Theoretical Upper Bound Results";
plot s_rthru * recs=2 s_urthru * recs=4 /

overlay
vaxis=axis2
haxis=axis3 ;

run;

filename epsout5 "SAW_sim1e_plot . eps ";

goptions device=psepsf gsfname=epsout5 gsfmode=replace ftext=swiss;
proc gplot data=srecs ;

title2 justify=center "Absolute Throughput vs. Number of Receivers";
title3 justify=center "Hi-Mean-Lo Simulation Results" ;
title4 justify=center "Theoretical Upper Bound Results" ;
plot s_athru * recs=l s_uathru * recs=4/

overlay
vaxis=axis4
haxis=axis3 ;

run ;

filename epsout6 "SAW_sim1f_plot. eps " ;

goptions device=psepsf gsfname=epsout6 gsfmode=replace ftext=swiss ;
proc gplot data=srecs ;

154

title2 justify=center " Abs ol ut e Throughput vs. Number of Receivers" ;
title3 justify=center "00-25-50-75-100 Percentile Simulation Results" ;

title4 justify=center "Theoretical Upper Bound Results";
plot s_athru * recs=2 s_uathru * recs=4 /

overlay
vaxis=axis4

haxis=axis3 ;

run ;

155

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Copyright Information
	0005_Title Page
	0006_Abstract
	0007_Acknowledgements
	0008_Table of Contents
	0009_Table of Contents v
	0010_Table of Contents vi
	0011_List of Tables
	0012_List of Tables viii
	0013_List of Figures
	0014_List of Figures x
	0015_Chapter 1 - Page 1
	0016_Page 2
	0017_Page 3
	0018_Page 4
	0019_Chapter 2 - Page 5
	0020_Page 6
	0021_Page 7
	0022_Page 8
	0023_Page 9
	0024_Page 10
	0025_Page 11
	0026_Page 12
	0027_Page 13
	0028_Page 14
	0029_Page 15
	0030_Page 16
	0031_Page 17
	0032_Page 18
	0033_Page 19
	0034_Page 20
	0035_Page 21
	0036_Page 22
	0037_Page 23
	0038_Page 24
	0039_Page 25
	0040_Page 26
	0041_Page 27
	0042_Page 28
	0043_Page 29
	0044_Page 30
	0045_Page 31
	0046_Page 32
	0047_Page 33
	0048_Page 34
	0049_Page 35
	0050_Page 36
	0051_Page 37
	0052_Page 38
	0053_Page 39
	0054_Page 40
	0055_Page 41
	0056_Page 42
	0057_Page 43
	0058_Page 44
	0059_Page 45
	0060_Page 46
	0061_Chapter 3 - Page 47
	0062_Page 48
	0063_Page 49
	0064_Page 50
	0065_Page 51
	0066_Page 52
	0067_Page 53
	0068_Page 54
	0069_Page 55
	0070_Page 56
	0071_Page 57
	0072_Page 58
	0073_Page 59
	0074_Page 60
	0075_Page 61
	0076_Page 62
	0077_Page 63
	0078_Page 64
	0079_Page 65
	0080_Page 66
	0081_Page 67
	0082_Page 68
	0083_Page 69
	0084_Page 70
	0085_Page 71
	0086_Chapter 4 - Page 72
	0087_Page 73
	0088_Page 74
	0089_Page 75
	0090_Page 76
	0091_Page 77
	0092_Page 78
	0093_Page 79
	0094_Page 80
	0095_Page 81
	0096_Page 82
	0097_Page 83
	0098_Page 84
	0099_Page 85
	0100_Page 86
	0101_Page 87
	0102_Page 88
	0103_Page 89
	0104_Page 90
	0105_Page 91
	0106_Page 92
	0107_Page 93
	0108_Page 94
	0109_Page 95
	0110_Page 96
	0111_Page 97
	0112_Page 98
	0113_Page 99
	0114_Page 100
	0115_Page 101
	0116_Page 102
	0117_Page 103
	0118_Page 104
	0119_Page 105
	0120_Page 106
	0121_Page 107
	0122_Page 108
	0123_Page 109
	0124_Page 110
	0125_Page 111
	0126_Page 112
	0127_Page 113
	0128_Page 114
	0129_Page 115
	0130_Page 116
	0131_Page 117
	0132_Page 118
	0133_Page 119
	0134_Page 120
	0135_Page 121
	0136_Page 122
	0137_Page 123
	0138_Page 124
	0139_Page 125
	0140_Page 126
	0141_Page 127
	0142_Page 128
	0143_Page 129
	0144_Page 130
	0145_Chapter 5 - Page 131
	0146_Page 132
	0147_Page 133
	0148_Page 134
	0149_Page 135
	0150_Page 136
	0151_Bibliography
	0152_Page 138
	0153_Page 139
	0154_Page 140
	0155_Page 141
	0156_Page 142
	0157_Appendix A
	0158_Page 144
	0159_Page 145
	0160_Page 146
	0161_Page 147
	0162_Page 148
	0163_Page 149
	0164_Page 150
	0165_Page 151
	0166_Page 152
	0167_Page 153
	0168_Page 154
	0169_Page 155
	0170_Blank Page
	0171_Inside Back Cover
	0172_Back Cover

