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Abstract

High strength concrete is used mostly in the constrUction of bridges. high rise

buildings and marine structures. Bond strength between high strength concrete and rchar

is an imponant factor in designing any reinforced concrete structures under \"arious kinds

of loadings. Therefore. this study is conducted to investigate the strength of bond between

high strength concrete and reintOrcement. to detennine the internal distribution of stresses

and strains along the rebar interface with high strength concrete

In the experimental phase of this research a total of 150 specimens made of high

strength concrete were cast to investigate the bond strength under monotonic and cyclic

loading. The influences of load history. confining reinforcement. rebar diameter. concrete

strength. rebar spacing. rate of pull out. and defannation pattern were investigated

experimentally for reinforcement bars of 25 mm and 35 mm diameter. The internal

concrete strains close 10 the contaCt surface and also the Sleel rebar strains were

measured. The test set up. load applicalion. instrumentation and measurement. test

procedure. and type of materials were designed 10 measure accurate strains and

defonnations. Several specimens with different rebar diameters and rib geometries were

lested. The range of the tested concrele compressive strengths was between 75 MPa and

95 MPa. The rib geometries were examined for rebar with nominal diameter of 25 mm

and 35 mIn.



The test results revealed that the maximum bond stresS of high strength concrete

is higher than the corresponding one for nonnal strength concrete. However. the behavior

of high strength concrete is more noniinear·brittle and it must be considered in the bond

model. The development of a new teChnique of strain measurement around the steel rebar

was unique and it can be useful to identify the internal crack panem and to predict

possible failure modes. The area under the curve of the bond stress·slip curve can define

the bond energy. The bond energy should be used to evaluate the bond behavior rather

than the maximwn bond stress. A new expression for calculating bond stress based on the

cubic root of concrete strength is recommended and the results are compared with similar

equations. Also. the influences of several parameters under cyclic loading condition ~

investigated.

In the nwnerical investigation. an attempt has been made to consider the effect of

tension stiffening in the material model. The concepts of bond energy. fracture energy.

tension softening and biaxial failure envelope of high strength concrete were applied in

the development of a material model for high strength reinforced concrete. The improved

model is implemented in the UMAT subroutine for use with the ABAQUS finite element

program. (n addition. three dimensional rebar element was added to the program in order

that the new model will be able to analyze reinforced high strength concrete suuctW"es.

The model has been checked against several standard problems. Further. A new

parametric study based on the effect of bond energy on the fracture energy was

introduced. Based on sensitivity analysis. me results were applied to analysis of slabs

with low. moderate and high steel ratio. The modified model can be used to analyze

reinforced high strength concrete members.
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Nomenclature

AbbreviatiODS

~ ; Area of contact zone (bond area)
A, : Rebar Area. in:
A" : Area of each stirrup or tie crossing the potential plane of splitting adjacent (0

the reinforcement being developed or spliced. in:
A,... : The smal1c:r aCthe area of transverse reinforcement within a spacing "5"

crossing the plane of splitting Donna! to the concrete surface
: Intercepts of the best-fit lines relating T/f,'lll to Na"Jn in Figs.S and 6 or beam

",idth. in.
c : COl +0.5 Ii.,
C : Cover
cb : Bottom cover of reinforcing bars. in.
cM : Maximum value aCe, or Cb lCwlc",<= 3.5), in.
c.. : Minimwn value ofe, ore" (c""c.<= 3.5), in.
c" : Min. (c..+0.25 in.. c",) or min (c",c..). in.
c.. : Side cover of reinforcing bars. in.
d ; Beam effet:tive depth. in.
d., : Nominal bar diameter. in.
d. : Stirrup diameter. in.
( : Concrete compressive strength. in psi: r; I'" in psi
f. : Sleel stress at failu.re. psi
f~ : Yield strength of bars being spliced or developed. psi
f"", : Yield strength oftransversc reinforcement. ksi
Col : Yield strength of transverse reinforcemenL MPa
h : Beam depth. in.
H : Fourth order material tensor

II : First invariant of stress tensor

J! : Second invariant of mess deviator tensor

J J : "Third invariant of stress deviator tensor

K". : K".{conv.) = 34.5(0.72 ~+O.18)A.,Isn for conventional reinforcement (average
"-0.0727)
K".(new) =53 (0.72 dt,+O.28)A.,Isn for new reinforcement ( average R,=O.1275)

K l : Accounts the effect of the position afthe rebar
K~ . This factor varies with concrete: cover. rebar diameter and clear distance:

between rebars



Kj : lltis fac:tor accounts the effect of transverse reinforcement
K, : nus fac:lor takes inlo accounl the effeci oflranSverse compressive pressure

k, : Factor for the position of the rebar

k: : Factor for influence of concrete cover. rebar diameter and rebar space

kJ : Fac:lor for the effect of transverse reinforcement

k, : Factor for the effect of transverse compression pressure

k, : Factor for concrete cover

k. : Factor for position of the rebar

k. : Bar localion factor

kl : Coating factor

k. : Concrete density factor

k IG : Rebar size factor
L : Bond length
I : Beam length. ft
I, : Length ofconstant moment region. ft
ld : Development of splice length. in.
I, : Splice length. in.
M : Slope of the modified relationship
MII."'l.07' : ValueofM at R.= 0.075
M" : Momenl at splice failure. kip-in.
m, : Slopes of the best·fit lines relating T/f,·I" to Na"ln

: Effect of study parameter

m.. : Friction parameter

m\ : Modification factor for ··Load History~

m, : Modification factor for ··Confinement"'

ffl j : Modification factor for "Bar Diameter'"

m. : Modification factor for "Bar Spacing·'

m~ : Modification factor for "Rate of Pull-Out"'

m6 : Modification factor for ·'Deformation Pattern"
N : Number of transverse reinforcing bars (stirrups or ties) crossing Id
n : Number of t>ars being developed or spliced along the plane of splitting
P :Total applied load at splice failure. kips
R. : Ratio of projected rib area normal to rebar axis to the product of the nominal

bar perimeter and the center-l~enter rib spacing
s : Spacing of transverse reinforcement. in.
Tb : Total force in a rebar at splice failure. Ib
Te : Concrete contribution to total force in a bar at splice failure. Ib
T, : Conftning steel contribution to total force in a bar at splice failure, lb
1.1 : Term representing the effectofrebarsize on T,
t,. : Tenn representing the effect of relative rib area on T,



: Reinforcement location factor

P :Coating factor

p : The transverse compressive pressW'e in MFa.. devialoric stress (page 44)

Y : Reinforcement size factor

A : Lightweight concrete faclor

: Hardening parameter

: The mean nonnal stress

a, : The lrial stress state

a. ·SrrcssstalC

: Strain

i p : Equivalent plastic strain rate

9 : Polar angle
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Chapter 1

Introduction

1.1 High Strength Concrete and Bond

EngIneers and material technologists were involved in perfecting concrete

propenies during the last 80 ye~. During the 30's Professor Hollister. the Past President

of the American Concrete InslilUle (ACt). spoke of the future predicting: a high sU'ength

concrete (HSC) with a compressive strength up to 70 MPa. In the fifties. 35 MPa

concrete was used in construction and. by the end of the eighties. compressive strength

reached 135 MPa.

The concept of high perfonnance concn:le as a technology emerged only about (5

years ago. The polential economic advantages of high perfonnance concrete with high

strength and improved durability for bridges. tall buildings and marine structures arc very

promising. In recenl years. the use of high strength concrete in the construction of

bridges. tall buildings. and marine structures has been receiving increasing attention.



Durability. economical conSlfuction and maintenance of high strength reinforced concrete

structural members are of major worldwide concern now. High strength concrete is

specified where reduced weight is imponant or where architectural considerations require

smaller dimension of the member.

High strength concrete is being used in bridge decks for improved durability and

longer life. It is being used 10 increase the span length of bridge girders to reduce the

number of girders required in a given bridge or allow for the use of shallower sections

and iighter superstructures. The use of high strength concrete promises to produce cost

effective long range replacements for bridge components. and to reduce loss of prestress

force because of lower c;;reep defonnation. while its high modulus of elasticity reduces the

deflection of long span bridge members.

High strength concrete was used to buill the 13 Km long Confederation Bridge in

Canada. the world's longest high strength prestressed concrete box girder bridge. with -45

malO spans of 250 m each that was designed for 100 years of service life. This bridge has

been designed to withstand a harsh marine environment. destructive ice and high wind

conditions. The massive high strength concrete components of this bridge were larger

than those have been used on any other bridge in the world. All substructure and

superstructure components for the main spans were precast and floated OUt and erected

using a large floating crane. The maJonty of the concrete used for the superstructure has a

compressive strength of 55 MPa and for some piers. the ice shields utilize concrete with a

compressive strength of 80 MPa to resist abrasion damage. The concrete box girders were

built in the controlled conditions of the: precasting yards. Subsequently. the main girder



section measuring as long as 190 meters and weighing 8200 tonnes were erected on site.

The construction phase staned from October 1993 and the bridge was completed by May

1997. The Confederation Bridge represents one of the largest uses of high performance

(high strength) concrete in a prestressed concrete bridge in North Amenca.

High strength concrete is being used in columns of high rise buildings. As taller

structures were being designed. the need for higher strengths and concrete columns were

developed. High strength concrete helps achieve more efficient floor plans through

smaller vertical members and has also often proven to be the most economical alternative

to nonnal strength concrete. by reducing both the tOlal volume of concrete and the

amount of steel reqUired for a load-beanns member. Also, fonnwork accounts for a large

portion of the cost of constructing a column; smaller column sizes reduce the amount of

formwork n~ded and result in COSI savings. There has been a race regarding the record

height of concrete structures. The highest concrete buildings that have been constructed

recently utilizing high strength concrete include the Bay-Adelaide building in Toronto.

The Kuala lumpur City Center in Malaysia built in 1995 is considered to be the tallest

concrete building in the world,

Marine and offshore structures are generally exposed to a harsh open ocean

environment. where the use of high performance (high strength) concrete is very

beneficial. Offshore concrete platforms for the recovery and processing of crude oil

present some unique challenges in structural use of high strength concrete. These

structures are designed to remain permanently or semi.permanently fixed to the seabed.

or to remain afloat.



Hibernia is the first concrete gravity base slructure (GBS) to be built in Nonh

America (1990-1997) made of high strength concrete under very harsh Atlantic weather

conditions_ and the first of such large-scale structures in the world that has been designed

to resist the impact of icebergs. Located in the Grand Banks off Newfoundland in the

Nonh Atlantic Ocean. the structure sits in a water ~pth of 80 meleT$. It is designed to

suppan topsides weighing 33.000 tonnes. and to store crude oil before it is off loaded to

shuttle tankers. Troll. the tallest offshore concrete platfonn. was built in the Nonh Sea

and also constructed with high strength concrete.

In spite of the wide use of high strength concrete. more information is required

on the malerial characteristics and the structural behavior of this relatively new material

The bond between reinforcement and concrete is one of the major propenies that make

hIgh strength reinforced concrete an efficient material.

1-2 Scope or Research

This investigation was conducted to eltamine the strength of the bond between

reinforcement and high strength concrete. The main objectives of this rescarch are

summarized as follows:

1. Determine the characteristics of the bond under different parameters.

1. Design a test sct-up to eumine the bond behavior.

3. Evaluate the influences of monotonic and reversed cyclic loading on the nature of the

bond strength between steel reinforcement and high strength concrete.

4. Determine the internal strains of high strength concrete as well as steel reinforcement



strains close to the contact surface.

5. Analyze the outpUt of the test results. define the bond stress-slip curve and evaluate the

effect of individual parameters on the bond strength.

6. Identify the surface crack patterns and different modes of failure.

7. Develop a bond strength design formula suitable for high strength concrete design

considering the effect of different parameters.

8. Implement the high strength concrete bond behavior results through a parametric study

into a finite element analysis. Use a special concrete model developed for high

strength concrete using UMAT subroutine and ABAQUS finite element program.

In this investigation about 150 specimens were tested. Among these. 100

specimens were subjected to monotonic loading, while the remaining specimens were

subjected [0 cyclic loading to simulate the effect of cydic loading. The main seven

parameters considered in the investigation are: toad history. confining remforcement.

rebar diameter. concrete strength. rebar spacing. rate of pull out. and steel reinforcement

deformation patlems.

1·3 Research Significance

A clear understanding of the behavior of the bond betw~n reinforcement and high

strength concrete enables a designer to design safe. optimum. high strength concrete

structures. The Canadian Building Code. CSA A!3.3-I994 and ACI 318-1995 Building

Code have conservative design provisions for calculating the tension development length

and tension splice length. and no special provision for high strength concrete. The reason



is the lack of test results on the actual behavior of bond between rebar and high strength

concrete. Therefore. this research is conducted to provide more infonnation regarding the

bond perfonnance of reinforcement bars embedded in high streng.th concrete.

Dctennination of the internal distribution of stress and strain along the steel bar and in the

rebar and surrounding high strength concrete are one of the main objectives of this study.

The influence of seven selected parameters on the bond resistance under monotOnic and

cyclic loading condition is investigated. The examination of cyclic loading is imponant

for long span bridges, offshore dynamic loading and eanhquake ground motions. The

observed surface crack patterns are detennined and the modes of failure are e)(amined.

Based on the test results of high strength concrete a new parametric evaluation to the

tension stiffening is recommended. The new parametric factors were implemented in a

UMAT subroutine that works with the ABAQUS finite element program.

1·4 Dissertation Outline

This dissenation consists of eIght chapters. Chapter I contains a bnef

introduction on high strength concrete followed by the scope of research as well as

significance of the research study. A general survey of literature is presented in the

Chapter 2. while concepts of an applied finite element material model for high slrength

concrete are summarized in Chapter 3. Chapter 4 describes the experimental

investigation, test program, test set up. instrumentation and preparation of high suength

concrete specimens. The bond strength of hIgh strength concrete is e)(amined

e)(perimentaily. with emphasis on the effects of load history. confinement. bar diameter.



spacing. rate of loading. concrete strength. and defonnation patterns under monotonic and

cyclic loading.. The monotonic test results an: discussed in Chapter 5 and cyclic effects

are detailed in Chapter 6. One aspect of this dissenation thai distinguishes i, from most

other imestigations on reinforced high strength concrete. is the utilization of the concept

of bond energy. the treatment of the influences of study parameters on the bond strength.

the effects of eanhquake loading on bond strength. and also the internal measurement of

strains in high strength concrete and rebar. In addition. the contribution in the tension

stiffening of high strength concrete make significance discriminates among other studies.

Proper attention to detail and an understanding of possible failure mechanisms are given

during the eltperimental program. The influences of study parameters on bond strength.

bond energy. and fracture energy are treated in depth in the tension-stiffening correction

by sensiuvlty factors of high strength reinforced concrete. It is an attempted to apply the

results of the current eltperimental investigations as a base for the analytical fonnulation

of the tension stiffening: this is covered in the Chapter 7. The thesis ends with a

conclusion on the out come of the eltperimental and analytical investigation in Ch:Jpter 8.

The conclusions are mostly focused on the key main points of the results. Some

recommend2.tions for improving the strength of bond in high strength concrete are givcn.

Recommendations for future investigations are also made.



Chapter 2

Literature Review

2.1 Introduction

The compressive forces in a reinforced concrete member are resisted by concrete.

while the sleel rebar counteracts the tensile forces. This process dictates that there must

be a force transfer or bond stress between the two materials. If the bond stress disappears.

the rebar will pull out of the concrete and the member will fail under tensile loading. The

reinforcement forces due 10 pullout are shown on Fig. 2.1.

The bond stress must be present whenever the stress in a reinforcing bar changes

from point to point along the length of the rebar. The bond for a smooth rebar embedded

in concrete is proVided by adhesion and friction bUI when a deformed rebar is used the

bond is provided by adhesion. friction. and bearing of the lugs against the concrete which

is known as mechanical interlock. All major characteristics of Ihe bond are classified

under one of Ihesc three categories. There are two approaches for investigation of Ihe

behavior of Ihe bond belween rebar and con~te. Some investigators have studied Ihe

problem experimentally and others Iheoretically using numerical methods. The present



investigation mainly follows the first approach without sacrificing the theoretical concept

of the probl~m. h is basically experimental and involves full-scale testing of high strength

concrete specimens to investigate the influence of load histol)·. rebar diameter. conl;rete

strength. rebar spacing. the rate of loading and defonnation panem on the bond strength

under monotonic and cyc1il; loading.

Fig. 2.1 A schematic illustration of pull out and reinforcement forces

2-2 Background

The bond failure and the influence of surfal;e defonnation have been examined for

nonnal strength concrete for the past eighty years. Abrams (1913) conducted the earliest

study with plain and defonned rebars in nonna! strength concrete. Glanville (1930)

studied the effect of load history. It was I;oncluded that in the case of axial compressive

stress the effect of inl;reasing rebar diameter causes an increase in the radial pressure.

Since friction is depcnclent on radial pressure. bond failure occurs at a higher stress for a

push-in test rather than in a pullout teSt.

Clark (1946) investigated the effect ofrebar patterns by the pullout teSt method. The

tests were based on an evaluation of the rib spacing and height of defannation pattern for



normal srn:ngth concrete. Clark's work (1946) showed that Ihe ralio of the shearing area

(rebar perimeter limes distance between ribs) to the rib bearing area (projected rib area

normal to the rebar axis) should be limited to a maximum of 10 for more efficient rib

geometry. II was also suggested that the average spacing belw«n deformations or ribs

should not exceed 70 percent of the nominal diameter of the rebar to achieve maximum

bond stress. Funher. he delennined a minimum height of clcformations equal to 4 percent

of the nominal rebar diameler for 13 mm rebar diameter and smaller. 4.5 percenl of the

nominal rebar diameter for 16 mm rebars diameter. and five percent for larger reban;.

Several experimental and theoretical investigations were conducted by SomayaJi

and Shah (1981). Jiang. Shah and Andonian (1984), Tiamti et al. (1992). Jiang. Shah and

Ouyang (1992). Shah el al. (1994) and finally Li and Shah (1994). on the behavior of

bond for normal strength concrete. Improved tools for measurement of local bond and

local slip were introduced and applied. The observalions of secondary cracks are

reponed. as well as the distribution of strain in concrele in the vicinily of the reinforcing

bar. An analytIcal model for predicting the secondary cracks was developed. One­

dimensional analysis was used by Jiang. Shah and Andonian (1984) 10 investigale the

primary crack width and tension stiffening conlribution between the crack and tOlal

elongation. However. Ihe number of specimens was limited and no strain measurements

were provided. Slip measurement was in lerms of rebar movement and strains. The

experiment was conducted under load control and bond stress was evaluated from the

differences in readings between adjacent strain gauges.

The contact interface betw«n concrete and steel was investigated by Mehlhorn

and Kollegger (1985). Primary and secondary cracks were verified. The assumption of

complele compatibility between steel and concrete based on steel stress, bond stress, and

concrete stress have been detennincd and those stresses~ illustrated in Fig. 2-2.



Bond Stress

Fig. U Reinforced concrete in a cracked stale
(Mehlhorn and Kolleggcr( 198.5)

Li and Shah (1994) conducted an investigation on the relationship between

micTOCr.lClting and macroscopic defonnation of concrete material. Three groups of

specimens were used and each group contained three specimens that were tested for plain

concrete. steel fiber reinforced concrete. and polypropylene fiber reinfOf"Ced concrete.

The fulcture process was the main objective of the study and uniaxial tensile tests were

conducted. An intert:hangeably multiple-channel-conlrOl method was developed for

testing the unnOtched concrete specimens 10 obtain 3. stable post-peak response. Also,

with Acoustic Emission measurement system microcrack was detected. Macroscopic

dcfonnation was measured by Linear Variable Differential Transducer (LYOT) and the

test was run by displacement control. It is reponed that the fracture process of an



unnotched concrete specimen under uniaxial tension can be classified inlo three stages:

distributed damage during loading of the sample up to 80 pe~nl of peak load. fonnation

of microcrack localizalion during the loading up to 80 percent of the post peak

descending load. and major ct3Ck propagation up 10 the load at maximum slip. The

macro-dcformation of the concrete specimen was largely influenced by mIcro cracks.

Due to strain localization. Ihe defonnation of the concrete was a local ruther than global

phenomenon.

An analytical model to predict the cracking response and the tension-stiffening

effecl in a reinforced concrete member subjected to uniuial lension was proposed by

Somayaji and Shah (981). The predicted composile slress·sml.in curves. crack spacing.

crack width. and tension stiffening contribution from Ihe matrix. were close [0 the

ex.penmental data of this study. A lotal of 72 specimens with reinforced monar type were

tested to suppon the investigation. It was found that the theoretical local bond stress-slip

relationship was nonlinear and not unique at every seclion along the member.

Tbe mechanical behavior of concrele is largely affected by the propenies of the

interfacial zone between aggregate and cement paste as delailed by Shah et al. (1994). It

was reponed that the microstructure of the interfacial zone and thus the mechanical

interfacial properties could be significanlly improved by aggregate pretrealment and

mixing methods. Mechanical properties such as stiffness. shear. bond strength and

interfacial surface energy were oblained by analyzing the bond.slip relalionship. The

relationship between the microstruclure of the interface and mechanical properties was

analyzed. It was concluded that microstructure of the interface is the key factor that

determines the mechanical behavior.

The bond of epoxy coated reinforcement was studied by Darwin and Graham

(1993), Darwin. et aI. (1995), Hadjc-Ghaffaei. et aI. (1994). These studies showed that
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epoxy coating significantly reduces the strength of bond. II was also indicated that the

development length modification factor could be reduced from 1.5 to 1.35 for all reban:

the relative bond strength of epoxy-coated reinforcement increase with increase in cover.

It was found that the lack of vibration of concrete has a negative effect on the bond

strength of both coated and uncoated reinforcement in high slump concrete.

Rehm (1961), and Sam and Holzenbein (1919) showed that the influence of the

geometry of re~ on the local bond stress-slip behavior can be expressed as a function of

the relative rib area and it was followed by several other researchers.

Darwin and Graham (1993) investigated the effect of deformation pattern on rebar

with nominal diameter of 2S mm. The investigation parameters were the effect of

deformatIOn heights between 1.27. 1.91. and 2.54 mm. and deformation spacing ranging

from 6.7 to 56 mm. The Study was based on relative rib area approach. This investigation

concluded that relative rib area was dependent on bond strength and stiffness of the load­

slip curve under all conditions of rebar confinement. Darwin and Gr.1ham (1993) showed

that by providing additional confinement. in the form of transverse reinforcement Of"

additional concrete. the bond strength increased with the increase of the rel3tive nb 3J'n.

Hamad (I99S). evaluated the effect of rebar defonnation pattern considenng rib

face angle. rib spacing. and rib height for normal strength concrete. The tests included

pullout specimens. and beam specimens under positive bending with two splices in the

constant moment region at mid-span. The nominal rebar diameter W3S 2S mm. however

after the rebar was machined. the actual net diameter was 20.6 mm. This study showed

that the bond capacity depends on rib face angle. rib spacing. and rib height. The

machined rebar with it rib face angle of 60" gave the highest ultimate bond strength and

the best load-slip performance as compared with rebar with rib face angles of 3<t. 4So.

7So. and 90". Further. rib spacing of 10 mm (SO percent rebar diameter) and with a rib

13



height to rib spacing rat,o of 0.15 developed !he highest bond strength and the best bond

slip performance. or lowest slip. for:l given load.. The study reported lIlat the effect of rib

parameter is independent of concrete Strength. Finally. it was recommended milt reb3r

deformation with:l rib face angle of6ft'. a rib spacing of 50 percent of the reb3r diameter.

and a rib height of 10 percent of the rebar diameter is the optimum rib geometry for

achieving highest bond strength.

Esfahani and Rangan (1998) carried out a testing program on me effects of reb3r

face angle on bond capacity in high strength concrete. The results of the investigation

indicated that the bond strength of the rebars with rib face angles between 23u and 17"

was smaller than that of reban with ribs face angles between 40" to 41u. Also. It was

reponed that bond strength u of tensile reban based on Australian Standard AS 3600·

1994 is calculated by:

J~+'1JT
KA,KA:tr

(2-1)

In this equation. 20 is twice the cover to the reb3r or the cle3r distance between

adjacent parallel rebars developing stress. whichever is less. and dtt is the rebar diameter.

K", IS a correction factor for horizontal rebar diameter and K~ is a correction factor for

longitudinal reban diameter. For a horizontal rebar with mote than 300 mm of con~te

cast below il. K... ,=L25. and 1.0 for all other rebars. Kc=L7 for slabs. 2.2 for

longitudinal rebars in beams and columns with fitments. and 2.4 for all 0lheT longitudinal

reban.

The following equation for calculation of the average bond stress. u. at ultimate

for a deformed rebar in tension. is proposed by Esfahani and Rangan (1998):



(2-2)

However. the following expressions for calculation of the average bond stress. u.

at ultimate for deformed rebar are recommended by ACt 318·1995 and Canadian

Standard, CSA A23.3-I994, respectively. In chapter 5 a comparison between standards

expresSIOns. recommended expression and test result are performed and explained in

details.

ACI-318M·I995:

Canadian Standard. CSA A23.3·1994:

" =",fJ:
48a,6l

(2·3)

(2-4)

Darwin. et aI. (1996) studied the splice srrength of high relative rib area of

reinforcing rebar.;. The effect of two different coarse aggregates on the bond was

evaluated. The effect of relative rib area and rebar diameter on the increase in bond

strength provided by confining reinforcement was studied. It was found that the splice

strength of uncoated reinforcement confined by transverse reinforcement increased with

an increase in the relative rib area and the rebar diameter.; of the spliced rebars. The

results indicated that the maximum development length modification factor used for

epoxy-coated reinforcement might be reduced by 20 percent. Esfahani and Rangan

(1998) investigated the bond stress in splices in beams made of high strength concrete. In

this study the bond stress distribution over the splice length was taken into account to

develop an analytical model for the strength of tensile splices. The influence of the ratios

between side cover, bonom cover, and spacing between the spliced rebars was included

"



in the model. It was concluded thai lhe bond Stress was a funclion of minimum cover.

rebar" diameter. tensile slrength of concrete. and defonnation propenies of rebar".

Darwin. el al. (1995) studied the reliability·bascd Stmlgth reduction facler f.) for

bond. "The formuialioo and calculation of (0) for developed and spliced rebars was

~nlC:d in lhis study. Convenlional and high relative rib area rebars. both with and

without coating reinforcement. were considered. The .factor they determined was

statistically based.

Darwin. et al. (1995) studied development length criteria for conventional and

high relalive rib area reinforcing rebars. On Ihe basis of a statically based expression. the

development reinforcing rebars and splice strength of reinforcing reban for concrele with

strengths belween 17 and 110 MPa. with and without confining reinforcement. was

invesligated. The effects of cover. rebar spacing. dcvelopmenllspJice lenglh. geomelric

propenies of the development and spliced rebars were incorporated. The equation was

developed for reductlon in the development length of high relative rib area rebars

confined by transverse reinforcement splice length of convenlionallhigh relative rib area

rebarsas follows:

which is based on the following equation:

A,,;,~ :: J{63dl~ (COl + 0.5d.) + 2130A, (0.1.2..+ 0.9)+ 226'J~ NA" I (2-6)
f, 1 COl 11



It was also concluded that the quadratic root of concre~ compressive s~ngt.h.f•.

provides an accurate representation of the effect of concrete strength on bond strength for

concrete with compressive strengths betw~ 17 and 110 MFa.

Azizinamini. et al. (199) and Azizinamini. Chisala and Ghosh (1994) examined

bond perl"ormance of reinforcing ban and tension development length of reinforcing baB

embedded in high strength concrete. The effects of concrete compressive s~ngth. splice

length. and casting position on bond strength of reinforcing baB have been studied and

the failure hypothesis has been explained. It was concluded that in the case of hIgh

strength concrete. increasing the ~nsion development length (or eqUivalent tension

splices) was not an efficient way of increasing the bond c;apacity of deformed reInforcing

bars. especIally when the concrete cover is small. Furthermore. some modifications were

suggested for design implementation. It has been indicated that when calculating for the

tension development length of high strength concrete and tension splice some minimum

stinup should be provided over the splice region.

Tensile bond strength of deformed rebars embedded in high strength concrete has

been investigated experimentally by Hwang. Leu and Hwang (1996). "The equivalence

between the: tensile development length and the tensile splice length for high strength

concrete was established and the effects of anchorage lengths on bond capacity have been

discussed. Conc:n:te strength. anchorage length. and the amount of transverse

reinforcement have been measured. II was concluded that the bond perl"ormance of high

strength concrete without silica fume was similar to that of the nonnal strength concrete

and also the total confinement beyond the currently accepted limit was effective for the

bond action of high strength concrete. The study also reported that the admixture of silica

fume decreases the bond strength of the deformed rebar.
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De Lanatd. Schallcr and Fuchs (1993) havc invcstigatcd the cffect of reba!"

diameter on bond strength in high performance concrete. It was concluded thai bond

capacity increases with thc tcnsile strength of the concrete and aI a higher roue with

smaller reinforcement. 11 was also found that the bond IS @J'Uter fot smaller rebar

diameters than for Iaeger rehar diameters.

Eligehausen. Popov and Betero (1983) conducted one of the main invesllgauons

on the effect of rebar diameter embedded in normal strength concrete. II was concluded

that the m3)l,imum bond ..:apacity decreased slightly with the increasing rebar diameter.

The frictional bond resistance was not influenced significantly by the different rebar

diameter. lug spacing. or the related rib area.

2·3 Properties or High Strength Concrete

Thc direction of research in last twO decades mostly has been concentreted in

malcrial and miuure development to ensure: the highcst possible strength of concrete.

The propcnies of high strength concrete such as slump. density. air content. cohesion.

crc:ep. shrinkage. compressIve: strength. stress-strain behavior. permcability. nellur.l!

strength and chloride resistance. cle. have been invcstigated by several researchers in

Europe and Nonh America. Hoff (l98S). Manouk (1987). Malhooa (988). Shah (1978)

direcled some comprehensive researches to investigate the properties of normal and

lightwcight high strength COf'lCRtc.

Manouk (1989) has conducted broad research to investigate propenies of high

strength concrete at Memorial Unive~ity of Newfoundland. Different propenies of high

strength concrete such as the effect of low cxean temperature on strength and elasticity.
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creep of high sirength concrele at low temperatures. freezing and thawing resistance of

high strength concrete have been investigaled in details. A shon summary of rc.sc:arch

investigation on lhe mix design of high stn:ngth concrete Indicated lhat local materials

with silica fume and ny ash can produce concrete wilh compressive slrength greater !han

70 MPa Oil 28 days. as 1'IC(:0mmcndcd by Marzouk and Hussein (1990). The Innucnce of

low temperature was ITUn(X" on slJ'lCngth. elasticity and strcu-strain relationshIp of hIgh

slrength concrete. The relation of creep to SlJ'lCSS slrength ratio Oil room temper.l.ture was

found to be linear for concrete containing silica fume as was lhe case for ordinary

Ponland cemenl concrete. Manouk (1992). The changes in weight. length. pulse

velocity. resonanl frequency, compressive slrength. due to freezing and thawing were

recorded for 458 cycles. As a result. high sirength concrete made with local malerial and

having about 3-5% air conlenl is durable up to 458 cycles. Manook (1990). The stress

strain relationships of high strength concrete under uniaxial compressive and tensile

streSSeS recorded by Manouk and Chen (1993) as well as an idealized Slt'e5S strain curve

of the steel reinforcemenl are shown in Fig. ::!:.5 and Fig. 2.6.

The properties of high ~ngth lightweight concrete were investigaled by Horr

(1992). The propcnies included suess-strain relationship. modules of elasticity. Poisson's

ratio. tensile splining strength, modulus of rupture. creep. shrinkage, aging. freezing and

mawing. mermai propenies and temperature development of high slJ'lCngth lighl weight

concrete. II was found mat slrain at maximum s~sses ranged from 0.0025 to 0.0035. The

value of modulus of elasticity 31 40 percent of ultimate s~ss ranged from 18 to 30 OPa

for concrete having compressive s~ngr..hs ranging from 55 to 82 MPa. The modulus of
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elasticity for lightweight concrete was lower than nonnal weight concrete. Both

aggregate volume and stiffness as well as aggregate types had a great effect on the:

compressive strength and modulus of elasticity of high strength lightweight concrete. The

values fOf Poisson's ratio .....ere in the range of 0.21 to 0.23 for moist cured and decre:ued

to 0.16-0.17 .....hen the concrete .....as exposed for additional air drying for concrete .....ith

compressive strengths 55 to 72 MPa. The value fOf tensile splining strength of semI­

(sand) lightweight concrete ranged from 0.43J7: MPa (S.15.[i psi) downward:

0.49.[i MPa (5.87.r;: psi) or greater for moist cured concrete for compressive strengths

r.mged from 55 to 72 MP3.

Bilodeau. Malhotra and Hoff (1998) presented the mechanical propenies of the

light .....eight and nonnal .....eight high strength with respect to hydrocarbon fire reSIStance

Incorporating polypropylene fires. It was concluded that the amount of deterior:nion in

the concrete increased .....ith the amount of lightweight ag~g3te in the concrete. The

results demonstrated also the effectiveness of the: polypropylene fibers to reduce the

saplling of concrete during the: hydrocarbon fire. The reduction of the: saplling resulted in

a reduction of the tempe"uure rise in the: concrete block during the fire test. and therefore

to a beUef protection to the steel reinforcement.

The propenies of fresh and hardened concrete made .....ith the superplasticlzed

cements. the effttt of superplasticized with Ponland cement clinker and gypsum on the

fineness of the product. and on the water requirement and the compressive strength of the

mortars made: with the superplasticizer cement. were investigated by Bouzoubaa. Ahang.

and Malhotra (1998). It was concluded that the integrinding of a given amount of a



naphthalene-based superpla5licizer with Ponland clinker and gypsum reduced the

grinding time required for obtaining lhe same Blaine fineness as that of the control

Ponland cement withoul the superplasticizer.

The propenies of high strength concrete playa significant role in the interface in

strength enhancement of high strength concrete. The propenies of concrete depend on the

propenies of its miXing material and the inleractions between them and the presence of

aggregates and weaker zones (interfaces) where crack growth begins. The difference in

stiffness between aggregates and concrete matrix produces stress concentratlons at the

interface points. The stress concentration of material. multiple cr-,lCk fonnalion in monaro

concrete and aggregale panicles can lead to propagating cracks to branch. In ~ent years,

considerable attention has been gi ....en to the use of silica fume as a panial replacement for

cement to produce high strength concrete. Silica fume improves concrete strength

through physical and chemical modifications of the cement paste. 11 is reponed by

Goldman and Bentur (l989) that two effects should be considered when analyzing the

effects of silica-fume: I) the reduction in water requirement of the system, and 2) the

pozzolanic reaclion of the silica fume. Olher chemical admill.Cures are also used in the

mixture for increasing the strength of concrete such as 'superplasticizer' and 'retarder'

which ha....e been recently the focus of adequate research attention.

2-4 Bond and Fracture Energy

Failure of concrete is a process of crack fonnation and development. For some

materials the risk of failure due to the growth of crack is trealed as a fmcture mechanics

problem. A1lhough fraclure mechanics has been de....eloped for brittle materials. the

applicabilily of conventional concepts 10 concrete is not easy, due to the complex

charac:leristic$ of the material, Giaccio et aI, (1992), Concrete is a composite, multiphase
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material; crncking itself is a heterogeneous process (initiation of crncks. slow stable crack

growth. crack arrest. and unstable crnck propagation); the: surface area formed is many

times larger than the effective fracture area (multiple crack formation occurs) and the

energy-dissipating mechanism In concrete is IlO( merely confined to surface ,energy. To

characterize fracture in concrete. several nonlinear fracture-mechanics approaches have

been proposed. These approaches can be categorized as "Cohesivc Crack Models"

(Hillerborg. Modeer and Petersson (1976); Hillerborg (198S); Manouk and Chen (1995):

Bazant and Oh (1983»): and effective (or equivalent elastic) crack models (Bazant (1984):

Jenq and Shah (1985) and Bazant and Kazemi (1990). In these models. the behaVior of

Ihe fracture process zone is nOt modeled through stress-strain relations. Instead. some

adaptation of linear elastlc fracture mechanics was introduced to approximately renect

the nonlinearity of fracture response. The cohesive crack models Simulate the fracture

process zone by a closing pressure that reduces the stress singularity at the crack tip. The

effective crack models characterize the fracture process zone by an effective crack length

that can be determined from an additional instability condition.

Developing a constitutive model that contains the material charnctenstlcs for

every conceivable load hisux)' for high strength concrete is essential. This constitutive

model has to cover the entire spcctnlm of triaxial strength. stiffness as well as fragility in

tension when bnn1e-ductile materials such as high strength concrete are considered.

The fracture toughness concept of concrete by means of fracture energy M G I ..

was indicated by Hillerl:lorg (1976). It is indicated that the fracture process zone may be

more than 100mm long at maximum load and the stress within this zone decreases as the

load increases. Hence. the fonnation of a crack should be analyzed for high strength

concrete. The most direct way of detenniningGf is by means of a uniaxial tensile test.

where the complete stress-dcfonnation response is measured. It is established that the



direct tensile test is the only lest that gives all the relevant information for numerical

analysis.

A general descriplion of the stress..(ieformation propenies of concrete can be

given by means of two curves: the stress-strain curve. including branches: and the stress­

deformation curve for the additional deformation ''W'' within the damage lone.

Fig. 2..3 Description of the lensile behavior by means of two curves.
G-E Curve for the whole volume and one G·W curve for

additional deformation within the damage zone

Another method for analyzing crack formation and crack growth in concrete by

means of fracture mechanics was developed by Hillerborg. Modeer and Pelersson (1976).

In this model Stresses are assumed to act across a crack as long as it is narrow. This

assumption may be regarded as a way of e",pressing the energy absOfl1tion. G/ in the

energy balance approach. but it is also in agreement with resulLS of tension tests. The

crack is assumed to propagate when the stress at crack tip reaches the tensile

strength. When the crack opens the streSS decn::ases with increasing crack width w. In



Olher words. the model counts for the observed response Ihal StreSS contmues to be

transferred across a developing crack after Ihe material's tensile strength has been

reached. The transfer region is the fracture process zone. Using the fictitious crack mcx1c1.

the fracture process zone is defined as the region in which the S!roun corresponding 10 the

tcnsile strength. has been cxcccdcd (resulLing in the fonnalion of a physical crack) but the

matenal can carry a tensile stress. As !he crack continucs to open. the ability of lhe

co~te to resisl the lC:nsile stress ~reases, finally reaching zero at a crack widlh of w...

Using fracture mechanics 10 predict the SIZC effcct was conducted by TianJ.l. Shah

and Ouyang (992). It has been found that the strength of concrete structures generally

decreases with increasing structural sizc before reaching a limiting value. The two·

parameter fracture moc!el is used to predici the size effect of three-point bend beams. The

effect of different widths of load distribulion on strength of concrele structures was also

discussed.

Darwin. et al. (1993) performed a finite element fr.rocture analYSiS of sleel-concfete

bond. It is mferred that the reason for uSing fracture mechaniCS concepts for modeling

failure of the beam specimens is the nature of the splitting crack. where fracture surfaces

an: displaced symmetrically perpendicular to one another in opposite directions. Due 10

nonlinearity at the tip of the crack. a nonlinear fracture mechanics approach is used.

Energy is absorbed as displacements across the crack i~ase from 0 to w~ The

an:a under the stress4isplacemenl curve represents the total energy absorbed per unil

an:a of the crnck surface, known as the fracture energy. G/ and is calculated as:

(2·7)

CJ is tensile stress at the crack. OJ is the crack width and w_ is the displacement at

which the tensile stress in the concrete becomes zero. The researchers applied the
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fictitious crack model to the finite element analysIS to represent !he crack that fonns

along the centerline of the beam-cnd specimens. In the model. the crack is predefined

along the specunen centeTline and the SUl:S$ acros.s the crack. a is transferred USing rod

elements oriented perpendicular to the crack. plane. lhe rod elements have two nodes

WIth each node having one degree of freedom paraJlel to the: element. a unit length and

the total ~a equal to the tributary area of the concrete elements attached to the same

"ode.

In general. the investigation improved the development characteristics of

reinforcing rebars. The effects of the defonnation pattern on bond strength were

investigated experimentally and analytically. The influences of dc:fonnation paltem on

the bond of reinforcing rebars to concrete were examined. A nonlinear finite element

analysis was employed to study the bond mechanism.

The load defonnation behavior of plain high slre:ngth concrete under direct

unlax.lal tension. including post cracking or softening response. was investigated in detail

by Marzouk and Chen (1995). The complete tension softening model of high strength

concrete is shown in Figure 2.7. The: tensile-softening response. strains in cracking

process zone and elongatIon for various gauge lengths were measured. The recorded

results from direct tension. splitting.tension. and modulus of rupture test procedures for

high sttength concrete in tension were compared. The research revealed that high strength

concrete exhibits a more brinle and stiffer behavior with a l3fge initial modulus of

elasticity. It is estimated that the fracture energy of high strength concrete is about five

times the area under the ascending portion of the sU'ess-defonnation curve. compared to a

corresponding value of 10 estimated for nonnal strength concrete. A constitutive

relationship was recommended for the behavior of high strength concrete in tension,

including post peak softening response.
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2-5 Constitutive Modeling

In order to simulate cxpcrimenUllly the observed behavior of reinforced concrete

under multiaxial loading. a suitable constitutive relationship must be established. Hence.

the relation between stress and strain under various Stages of loading has to be verified.

The constitutive relations may vary from simple equilibrium methods to the more general

rel.:ations between stresses and strains such as a) linear elasticity the:0fY bl nonlinear

elasticity theory c) work hardening plasticity theory d) endochronic theory.

Elwi and Murray (1979) proposed a nonlinear three dimensional l:uisymmetric)

stress-strain relationship for concrete. The proposed material model was based on 3

hypoelastic orthotropic 3pproach and incremenlll.l stress-strain equations. The model

presented the assumed fonn of the incremental constitutive equations and established the

shear stiffness in terms of some material constants. Secondly. a technique was Introduced

for expressing this IncremenUll relationship in terms of incremental uniuial strains.

Finally.lhe relationship between equivalent uniaxial suain and Slre:S5 was introduced and

the iocremenUll elastic model was derived in terms of strain parameters. A comparison of

the proposed lhCOf)' wilh twO sets of expcrimenUll d3ta indicated reasonable agreement.

for both tensile and compteS5ive responses.

Cervenka (1985) studied a constitutive model for cracked reinforced cc.ncrete.

The rdationship between stress and strain was in terms of lhe tensile resistance of

concrete normal to cracks (also called tension stiffening). represented the: tension stiffness

of concrete between cracks activated through bond between concrete and reinforcement.

Further. the material stiffness matrill was derived and a constitutive equation in 3n

incremental fonn was proposed. The computation of the stress-strain curve was achieved

by incremental loading. with iteration at each step based on the initial stress method.



Different types of stirrness were used for each component of concrete in a single

itemtion. The tangent stiffness was used for compression. zero stiffness for tension and

secant stiffness for the shear. The solution within a load step IS repeated until the material

laws and stress equilibrium is satisfied.. The materiaJ panmeten were detennll'led from

experimental testing. A 3-D concrete constitutive model which was implemented In a

computer program by Buyukozturlr. and Shardf (l98S) incorporated nonlinear material

propenies. based on isotropic elastic. ortholropic elastic. and plasticity fonnulallons.

cracking in concrete. shear transfer in cracked reinforced concrete sections. and lime

dependent effects such as creep. shrinkage. and transient temperature distributions.

Cracking. load-displacement response and ultimate strength prediction were achieved

with adequate accuracy. In addition. some comparison between predictions with different

constitutive models and between predictions and test results was made.

Pramono and Willam (1989) developed a comprehensIve constitutive model for

the uiaxial behavior of plain concrete with emphasis on the material formulation of

concrete failure In tension and compression including calibr.ltion of the Underlying

constitutive parameuen from labonatory ellOperiments. II was reponed that the frxture

energy release approach describes the degrndation of uiaxial stn:ngth below the tr.lnsuion

point of brinle-ductile fracture due to debonding and decohesion in tension and low

confined compression.

Sankarasubramanian and RajasekaJan (1996) studied the concept of neur.ii1

network principle for compressive and tensile meridians of the surface. A nonlinear

hypoc:lastic constitutive relationship was proposed to analyze plane and axisymmetric

reinforced concrete structures. The proposed model assumed concrete to be onholropic

and the equivalent uniaxial strain concept was used along with an incremental

formulation based on hypoc:lasticity.
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An ell.cellent investigation was performed by Hussain (1998) to develop a

constitutive model for high stren!th con~~ based on test results of a bia:ual loading

conditions to enable !he numencal prediction. through the finite element method. A

plasllcity based model based on Else and Willam's (1994) original model was adopl:ed.

1he numerical implementation of plasticity was carried out through the elastic-predictor

plastic-corrector method. The material model was calibr.ued for high strength concrete

using the data obtained from the ell.periment. The validity of the proposed model was

studied by comparing ell.perimcntal results. which showed an uccllent agreement.

2-6 Numerical Analysis of Bond·Slip Behavior

A mechanical model for bond between concretc and reinforcement has been

developed by Plauk and Hees (1981). The mechanical model took into account the

nonlinear propenies of material. progressive cracking and local failure. It was concluded

that the true state of stress and strain as well as the actual crack pattern and denections of

a reinforced concrc~ beam can only be obtained from analysIs. The moment-curvaturc

relallon obuined from analytical results shows funhel'TnOl'e the significant innuence of

bond on internal defomw:ions which canTMX be neglected WIthout essential loss of

:K:Curacy.

Investigation of bond via the concept of nonlincar contact problems was initiated

by Mehlhorn. Kollegger (1985). The application of the element with different contact

models was shown in this study. Slip OCCUlTed in the longitudinal direction while lateral

pressure as well as gapping may occur nonnal to the rebar surfac:e. The bond stress·slip

relation that is derived from Doerr's tcsts (1981) was ell.plained. The strength ofconcretc

in the bond zone near the rehar surfacc, the position of the rebar's during casting, the

geometry of the rebar surfacc. lnlnsvene pressure or gapping, and local damage of
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concrete were considered in the relationship. The application of the developed element is

restricted to stallC problems in this study.

An incremental hypoclastic plane stress material model for remforced concrete

was developed by Massicotte (1988). The suggested material model for concrete allows

for stram softening after cracking and crushing and includes tilted and TOtating crack

models. A rational tension stiffening relationship was intrOduced. in which the post

cracking stress strain response is described in terms of the reinforcement ratios and the

angle of the crack to the reinfon:ement. Several verification eumples ha\'e been solved

with use of the proposed model.

Lucie (1992) derived a model to predict the ultimate bond stress as 3 function of

the concrete cover on the ste.el rebar. the concrete quality and the temperature. It was

shown that the magnitude of the ultimate bond stress of deformed re.bars depends upon

the failure mode of concrete, This study used a thick·walled cylinder model subjected to

an internal pressure in order 10 determine the ultimate bond stress theoretically. Using

Coulomb's failure criterion. the muimum shear stress is calculated at the ma.umum

internal pressure.

Sudan and Mum.y (1994) proposed a distributed discrete concrete C1'3Cking

model for the finite element analysis of reinfon:ed concrete SUUCtUTe$. Their investigation

considered discrete cradung. longitudinal splitting cracking. interlace behavior. and

identification of local cNshing a."Id progression of these mechanisms at different stages

during the loading history. The bond stress and the bond slip were evaluated within

intervals referenced to the position of the lug on the reinforcing surface and the

co~lation between splitting mechanisms and bond variables was eumined. It was

reponed that longitudinal splitting has an important influence on the bond. A numerical

analysis indicated that for muimum crnck spacing. the concrete intetface progressively



lifts up from the rebar surface. It was found that at any fixed point. the bond slip

increases suddenly. and the bond streSS decreases suddenly as the longitudinal splinmg

crack propagates past the point.

Shear forces applied by the lugs to surrounding concrete cause vertical concrete

cr.ICks located at. or close to. the center of the crack spacing. to grow slowly and steadily.

The bond-slip increases linearly with increase of steel Stresses. It seems that more

extensive comparison with tests and com::lalion with experimental measurements. :and

improvements in modeling of longitudinal cracking. arc necessary.

2~7 Bond and Cyclic Loading

One of the major sources of failure in reinforced c:oncrete members is the sudden

loss of bond between the rebar and concrete in anchorage zones. which has been the

cause of damage and even collapse of several structures during earthquakes. It was also

proven that the bond-slip for reban anchored within connections. influences the stiffness

and ductility of reinforced conctete suuctu~ subject to intense seismic loading.

~fore. accurate knowledge of the load-slip characteristics. and on anchorage

requirements for soch reban. is essential for the realistic modeling of the seiSmiC

response of concrete structures.

The effects of tensile venus compressive loading. amount of c:onfinement

reinforcement. rebar diameter. concrete strength. rebar spacing. transverse pressure and

rate of pull out of the bond behavior for nonna.! strength concrete under monotonic and

c:yclic loading were investigated by Popov (1984). A local bond sueSS-Slip relationship

was developed and an analytical approach for the analysis of the deteriorating cyclic

behavior of beam-column joints was diSl:ussed.



The behavior of compression lap splices of normal relnfon:ed concrete memben

wbjected to high level repeated cydic loads was studied by Panahshahi. et al. (1992).

The force lnlnsfer mechanisms In compression lap splices were obtained by

implementing the resuh of experimenlal observation Into an inelastic finite element

model. A design method for resistance of compression lap splices for concrete memben

sUb,ected to earthquake loading was proposed.

Failure due to shearin8 of the concrete between the ribs by pulling the rebars out

of specimens with large concrete cover was studied by Rehm and Eligehausen (1979).

The effect of maximum load. load amplitude. rebar diameter. concrete quality and bond

length were investigated. It was reported that the slip :n the free rebar end considerably

increased during the cyclic loading and the upper load and the bond length mainly

influenced the increase. Hawkins. Lin and Ueda (1987) demonstrated a computer model

and the results of inelastic reve~ cyclic loading testS on deformed reban anchored in

Idealized models of exterior beam-column connections.

Hawkins. et al. (1982). studied local bond strength of concrete for cyclic reversed

loading both experimenlally and analytically. This study demonstrated that the load-slip

response of an inelastically and reverse cyclically-loaded rebar can be modeled by

integration of: I) the local bond-slip relationship: 2) the suus-str.lin relationship 3nd; 3)

the conditions for continuity of forces and displacements along the rebar. Three stages of

behavior for the local bond stress-slip response were ascertained as: I) the development

of internal CfOICks radiating from the lug: 2) the coalescence of those cracks into a failure

cylinder surrounding the rebar: 3nd 3) the movement of one lug under loading inlo a

position occupied previously by an adjacent lug. For cyclic loading local bond stress-slip

envelope was found to be similar to that of monotonic loading prior to attainment of the

maximum capacity.
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Chapter 3

High Strength Concrete Constitutive Model

3.1 Introduction

The continuum theory of solid mechanics deals with the mathematical theories of

elasticity, plasticity, a basic sel of equilibrium equations. condition of geometry or strain

compatibility and displacement and material constitutive law or stress·strain relation.

Clearly. both the equations of equilibrium and the equations of compatibility are

independent of the characteristics of the material. The main feature of various material

behaviors is accounted for in the material constitutive relationship. The constitutive

model idealizes the behavior aCme actual material.

The equations that model the behavior of a material are called "constitutive

equations." A constitutive equation is a mathematical model thaI can pennil production

of the observed response of a continuous medium. Establishment of constinrtive

equations in engineering can be based on the experimental observations at a macroscopic
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level. taking into account the principles of m«hanics. Physics provides the fundamenlal

basis and mathematics the concise way to express the physical phenomena.

The material model used in this study is largely based on Etse and Willam (1994).

That panicular model was chosen because it possesses different characteristics thaI make

it attractive for use in concrete material with ftnite element analysis. Compatibility of

displacements across the element boundaries is satisfied identically and force equilibrium

is satisfied approximately. The stiffness matrix for each individual element is constructed

using the energy approach. The complete finite element equations are then determined 10

solve for unknown nodal displacements. elemenl strains. and stresses.

The fundamentals of the constitutive model used to define high strength concrete

behavior are presented in this chapler. The relationship between stress and strain for a

material. yield surface. hardening behavior. non-associated flow rule and softening

behavior characterize the concrete model which is presented in the subsequenl sections.

3.2 The Assumptions for Flow Theory of Plasticity

The flow theory of plasticity is based on thrtt assumptions:

• Decomposition of 10tai strain rale into an elastic recoverable. ;, and a plastic

irrecoverable. ~~ part. so that the tangential material law is recovered for loading. and the

initial elastic modulus governs the unJoading response. Decomposition of elastic and

inelastic strain rates can be expressed as follows:

&=&,+&~

This asswnption is normally justified for small or infinitesimal deformation.

(3-1)
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• Yield criterion mat delimits the elastic ponion of the matenal response under combined

state of stress. The yield crilerion is generally expressed as a function of the state of streSS

a and the intemal variables q. Lublincr (1990). The intema.l variablesq. in vector fonn.

are used to describe the past history of the Slale of st:res5. Thus. thc general fonn of the

yield function can be wrincn as

F(a.q)::O (3·2)

For the case of isottopic behavior. the yield surface can be expressed in terms of the

principal stresses or in terms of the invariants of the stress tensor.

• The flow rule describes the evolution of the plastic: strain rate when the material

undergoes plastic defonnation. The plastic flow equation takes the form:

(3·3)

where. Qdesignate thc plastic potential. mdcsctibes the direction of the plastic: flow. and

l is a positive scalar factor called the plastic muJtiplier. The value ofl is non·zcro onl)'

when plastic: deformations occur. When the plastic: potential and the yield surface

coincide Q"" F. this leads 10 associated plastic flow. For pressurc-snlSitive materials. it

is widely accepted mat the usc of an associated now resuJts in the prediction of 100 much

dilatancy. Vcnnccr and 80m (1984). Consequently. the non-associated flow is used.

The malerial stability postulates: many mar.crial stability postulates were proposed b)'

different researchers. for example. Hill (1950). Ilyushin (1948) and Drucker (1959).

However. Bazant (1984) proved that those poStUlates are neither necessary nor

sufficient for stability. As a result no stability poStUlate is used in the applied model.



3.2.1 Numerial ComputatioD of Plutkity

The elastic-predictor plastic-corrector method is used here. It is based simply on

an assumed trial stress vector (elastic-predictor) and a cOl'Tecting procedure (plastic.

corrector) in case the trial vector violales the yield condition. In general. the initial values

a.£.q are known al timel=I~. in the procedure, then an incremenl of stress 6ais applied

and it is required to find the new state of StreSS and strain.

3.2.2 Elastic·Predictor Step

The plastic-predictor defines the trial stress state as:

(J-4)

where

a~ : Stress state

£ : Young's modulus

6£ : Strain increment

From this step. the stress point that represents the stress state in principal stress space

causes one of three situations to arise. It is either elastic loading: F(a"q~)<O. neutral

loading: F(O'"q~)=Oor plastic loading: F(a,.q.»O. The case of elastic loading and

neutral loading is handled within the elastic constitutive relation. In the case of plastic

loading. a plastic-com:ctor will be required as presented in the next section.

3.2.3 Plastie-Corrutor Slep

When the state of stress exceeds the elastic limit, the stresses cross the yield

surface. The purpose of the plastic-corrector is to return the trial stress vector a, to the
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yield surface. In order to obtain an efficient return strategy, the stress state 0'•• 1 must be

on the loading surface and the constitutive law for hardening/softening must be satisfied.

For the case of plastic loading the elastic-predictor step is followed by a plastic-corrector

step. This can be expressed as:

60':/},0',-60',

The elastic StreSS and the plastic stress, as mentioned before. are expressed as

/},0'=£6&,

6£,=6.Am

Thus. Equation 3-5 can be wrinen as

/},O'=£l:1c-£f:1).m

(3-5)

(3-8)

3.2.4 CrouiDltbe Yield Surface

The integration procedure used here requires the location of the integralion of !he

elastic stress vector wi!h the yield surface. In such circumstances. we have

(3-9)

where the original stresses. 0' are such that

(3·10)

wlt.i1e,with a:l ,the elastic stresses 0',+0', give

/«(1,): /«(1+tJ.O'.»O (J-lt)
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For some yield surfaces. this problem can be solved exactly. In the current work.

an iterative scheme is used 10 determine the point of intersection with the yield surface. A

scheme is needed to retwn the stresses to the yield surface following an initial predictor.

Nwnerical solution schemes for most material models will include the nwnerical

integration of some kind of rate equations. There are two schemes. wnicn are well known

for numerical integration. The Forward·Euler integration scneme is called explicit. as

information at some future time t > t" is used 10 advance the numerical solution. The

Backward·Euler integration scneme is called implicit. as information at some future time

t > In is used to advance the numerical solution from station 1". The procedure used in the

current work is a standard predictor in the form of a Forward·Euler procedure. as shown

in Figure 3·1. such that

tiO'"~ £ti& - tJ.A.E -£ = tiO'".- AJ.£-!;-

Moving from the intersection point A (Fig. 3.1). tiO'", is now the elastic increment after

reaching the yield surface. i.e. (I-a) times the tJ.0'", .In relation 10 Figure 3.1

0'"<"'-O'"A+tJ.0'",-tJ.A.E-£=0'"5-tLA.£ (3-1)

The step can be interpreted as giving an elastic step from the inle~tion point A

to B followed by a plastic return that is onhogonall.:J the yield surface al A.
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F(a •.q.)"'O

F(a•.. q.';ltO

F(ao·qo)=O

Fie- 3.1 Forward·Euler intearation scheme

[NAFEMS.lntroduction to Nonlinear Finite Element Analysis. ed. E. Hinton. 1991}

The linearized consi.stency condition is derived by expanding the yield criterion

into a first order truncated Taylor series around the previous converged stale.

This assumes thai the previous stress stale F" =0 is satisfied. The classical

linearized consistmcy condition can be written as: it can be seeu that the full consistency

condition is DOl satisfied since F_, -F" +6F;. except for linear yield surfaces and

hatdenin&,softening rules. In case of isotrOpic softcrlinslbarden the intemal variables

degenerate into a sinile variable function oftbe plastic main and are expressed as:



(3-15)

where:

(3·16)

1berefore. the plastic multiplier .:M can be expressed in an explicit fonn as:

tul... tr(n£:d&)

- ~Im I+tr(n£m)

3.2.6 RetumiDI to Ibe Yield Surf.c:e

()·17)

(3-18)

In general. the previow method produces stresses that lie outside the yield

surface. It is possible to simply scale the stresses at C. Figure 3.1 by a fac:or r until the

yield surface f becomes zero. 0t1iz and Popov (1985). However. this technique will

generally involve an elastic component and thw it is not encouraged to use iL An

alternative technique Ortiz. and Sima (1986) suggestS that the total strains an kept flxed

while additional plastic .strains are introduced in order to relax the stresses to the yield

surface. Consequently Equation 3-13 can be repeated at point C. Figure 3.1 so that

(3-19)

If the resulting yield function at D. Figure 3.1. is insufficiently small, further relaxation

can be applied.



3.3 LeoD'S Triaxial Streagtb Failure Criterion

The failure criterion proposed by Leon (1935) was for the shear strength of

concrete under combined tension-eompression. The extension of this failure criterion is

widely used in the field of rock mechanics, where it is known under the names of Hook

and Brown (1980). This strength formula combines the ~·o·parameter Mohr-Coulomb

friction law and the one-parameter tension cur-off condition of Rankine. Hook and

Brown (1980) developed the isotropic failure criterion in lerms of the major and minor

principal stresses as:

( )·20)

in which C1 is the principal mess vector. It is clear that the influence of the intennediate

principal stress is omined. similar to the Tresca and Coulomb conditions of maximum

shear. The triaxial failure criteria in Equation )·20 are characterized by the uniaxial

compressive strength h . the frictional parameter m... and the cohesion parameter '".....

At failure. '"Il/I has a value of 1.0.

The friction parameter m.. is calibrated in terms of the uniaxial tensiie strength.

which has an important role in the fracture: energy formulation. A uniaxial state of stress

m _ C..f~l ~ /,.2
.- fJ,

The triaxial failure surface proposed by Leon was used by Pramono and Willam( 1988)

and is depicted in Figure 3.2.
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Fia. J.l Triaxial Failure Envelope of lean (also used by Ptamono and WilJam (1988»

3.4 Extended Leo.', Triuial Strength Failure CriterioD

The Extended Leon Model (ELM) combines the Leon-Pramooo characterization.

Pramono and Willam (1989) with the five-parameter model of Willam and Wranke

(975). That produces an elliptical approximation of the failure swfacc. Consequently,

the comers in the dcvialoric trace are eliminated. As a result. a C I
• Continuous failure

surface is prodUC('C\. There are several reasons for selce:ting these criteria such as



ac:cW"aCy, simplicity. providing continuous lranSition between failw-e in direct tension and

triaxial compression. and reducing calibration of the failw-e criterion to two strength

parameters that are readily available from uniaxial-tension and uniaxial-compression

data. Further. Hussein (1998) developed a new model fOf plain high strength concrete.

which is based on the biaxial failure curves. The failure surface was defined in the finite

element program. In addition. the ductilil)' panuneters A•• B. andC. of Equation }-)5 are

also caJibrated from laboratory experiments at Memorial University of Newfoundland b~'

Hussein (1998).

Using the three scalar invariant a. the mean nonnal stress. p. the deviatoric

slress. and the polar angle 9.

(3-22)

cOS).9"'~

II ; first invariant of stress tensor,

J: ; second invariant ofstress deviator tensor

J , ; third invariant ofstress deviator tensor.

the relationship between the principal stresses and the Haigh-Westergaard coordinates

can be iiven by:



"',.
cos(8 - ¥-)
cos(.9+ 3f-)

0-23)

this relationship is valid for 0 s: (} s:~ and consequently for a \ 2: CJ: 2: a l' Substituting

the principal stresses into Eq. (3·20) leads to

F(a,p.a)=[J24sin(.9+~)]l+m.[ ff ..e,.cos.9+~J-c.=O 0-24)
h , '/3 f. f.

Introducing the following approximations into Equation )-24

JZ sin(a + 1) "" .jT3r(s)

leads to the failure criteria aCthe ELM:

,[pr(!})l: In. preS)
F(a,p.9)=- -- +---:- [0-+ ---r:-j-c. =0

2 h J h .;6

(3-26)

(3·27)

This yield surface is a function of the three: scalar invariant (j. the mean nonna! stress. p.

the deviatoric stress. and the polar angle a.

The elliptic variation of the five-parameter model r(.9) is given by the following

equation:



r(,9) 4(1-t':)cos:[}+(2e-l))

2(1 t')cos([})+(2t'-I)~4(1-e-cos-[}+5e- 4e)
(3-28)

The eccentricity t'is defined blithe ratio p, I p<. The values of P, andp. can be

found by considering the tensile ([}:: 0). and compressive meridians (/} .. tr ,. 3) in

Equation )-27.

3.5 Isotropic Hardening Model for Pre-Peak Behavior

The hardening rule defines the motion of the subsequent yield swfaces during

plastic loading. The expansion of the yield surface is called hardening. conversely a

contracting yield surface denotes softening. and a stationary yield surface designates

perfect plasticity. The hardening rule can be expressed in a general form as:

q::H (3-29)

where H is a fourth order material lensor. ~ is nonnal vector to plastic potential surface

in stress space and c, is equivalent plastic strain rate. The hardening rule can be

expressed as:

- Work.hardening: ~ ~ = tr(O' c:)
• .1_)

- Strain.barderung: q < = tr (c,)

A number of hardening rules has been proposed such as isotropic hardening, kinematic

hardening, and mixed hardening rules Chen (1982). Among these three hardening rules.

the assumption of isotropic hardening is the simplest one to formulate mathematically



and it is used in this model. The isotropic rule requires onJy one parameter K 10 define

the subsequent yield surface after plastic defonnation occurs. This hardening rule

assumes that the yield surface expands unifonnly without distonion as plastic

deformation occurs. It should be noted thaI the isotropic hardening rule is adequate in

modeling the behavior of concrete under monotonically loading conditions.

The isotropic hardening m«:hanism involves. in this case. an initial loading

surface that expands uniformly when a hardening parameter. K. increases monotonically

from an initial valueK=/C.> 0 to a final value at peak K= "," t

(3·30)

The constitutive model assumes that the material is initially isotropic and remains

isotropic during the entire deformation history irrespective of the orientation and

magnitude of the principal stress components and inelastic deformations. The lotal stress

increment can thus be d«:omposed into independent elastic and plastic components:

(3-31)

The elastic or rc:coven.ble response is governed by the linear isotropic material

parameter. E.

!:J.C7 = £d&. (j.32)



3.6 Nonlinear Hardeoioe Response

The strain-hardening hypothesis describes the currenl state of the inelastic deformation

process in terms of a scalar-valued kinematic variable. I: p' which deftnes the length of

the plastic strain trajectory. During progressive plastic defonnations. the value of the

hardening parameter increases according to an elliptical function of I: p' The influence of

confinement on the rate of hardening is introduced in terms of a ductility measure X r'

which defines the accumulated plastic strain at peak in terms of the lateral tonfinement.

As a result. the hardening parameter K = K(£~. X ~) is expressed as a monotonically

increasing elliptic function of the plastic strain:

(3.33)

The equivalent plastic strain rate is defmed as the Euclidean norm of the plastic strain

intrement:

d£p=Jde~:d£p (3·34)

where depis the vector of principal plastic strain increments. The ductility measure Xp

introduces the effect of confining pressure on the rate of hardening in lenns of a quadratic

polynomial of the mean normal stress. q.

(3·35)

The ductility parameters .-fA' BA and Cit are dimensionless defonnation parameters that are

..



calibrated from laboratory experiments. Hussein (1998) has done the calibration of these

parameters for high strength concrete.

3.7 Nonassociated flow rule

When the concrete defonns plastically. it is convenient to assume that. based on

the nonnality condition. the incremental plastic strain. de,. can be related to a plastic

potential function. Q. by the following equation

(3-36)

where dl is a plastic multiplier. and it is a positive scalar factor thaI may vary through

the hardening process. It has a non-zero value only when plastic defonnation occurs. The

gradient of the potential surface. m=~ f ii:Y. defines the direction of the incremental

plastic strain vector de,. and lhe length is detennined by the factor dl. B«ause the

vector4? I au is nonnal 10 the potential surface. the plastic strain is also nonnal to the

surface defined by the plastic potential function. Q. This condition is referred to as the

normality law. In the simpleSt case when the plastic potential function and the yield

function coincide (Q '" Fl. thef!

(3-37)

this equation is called the associated flow rule because the incremental plastic strains an:

associated with the yield function. If Qol: F then Equation 3·37 is lenned a

nODaSsociatcd flow rule. Generally, for pressure-sensitive materials. it is widely accepted

"



that the use of an associated flow results in the prediction of too much dilatancy. Thus.

the associated flow rule does not hold for the whole range of response spectrum of

concrete and it sometimes leads to great discrepancies between predicted and measured

response. as well as load carrying capacities.

ElSe and WilJam (1994) applied a nonassociated flow role. which defines the

plastic strain rate as:

dCp=d)'.m with (3·38)

The plastic potential for nonassociated flow is based on a modification of the loading

swfaceas

The friction parameter m -+ m,,(O") which is redefined in terms of its gradient

(3-39)

wh""
-0"+ f, 13

'---1.- (3-40)

The material parameters D. E, and G are calibrated from test resuJts. The gradient of the

plastic potential is evaluated by the chain rule of differentiation



where

(3-41)

3.8 Tension Softening Bebavior

iJQ aFa;;=a;;: aQ aF
B;9=a:9 (3-42)

Various £)'peS of tension softening models have been proposed for plain concrete

in uniaxial tension: linear. bilinear. exponential, rational. etc., which are 3\'ailable in

literature (Bazant and Oh (1983): Massicotte et aI. (1990): Scanlon (1972): Lin and

Scordelis (1975): Cope (1984».

The softening response is initiated when the concrete starts cracking. due to

increasing loading, in tension or low confined compression in triaxial tests. In direct

tension, (Mode I type cracking). the fracture process is based on the fictitious crack

model by Hillerborg, Modeer and Petersson (1976). This failure concept will be extended

to model Mode II (shear) type of failure in chapter 7, since the cracking and post-

cracking behavior is a very imponant feature of high strength concrete. The tension

softening model is significant for any accurate nonlinear analysis of high strength

concrete struerural members.



3.9 Summary

A plasticity model that previously was developed for describing the response of

plain high strength concrete is described. The model is required for strength degradation

due to cracking, strength enhancement due to confinement. pre- and poSt- peak stress­

strain response in tension or compression and other study parameters. The extended five­

parameter material model of Etse and Willam (1994) was found to be an ideal model for

considering the effect of tension stiffening of high strength concrete. The modification

proposed by Hussein (1998) to implement the model for high strength concrete is

examined. A brief explanation is given. concerning the characterized parameters of

concrete model such as yield surface. hardening behavior, non-associated flow rule and

softening behavior in compact fonn are discussed.
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Chapter 4

Experimental Investigation on the Bond Behavior
of High Strength Concrete

4.1 Introduction

High strength concrete is used mostly in construction of bridges. wi buildings

and marine stnlctures. Bond strength between high strength concrete and rebar is an

important factor for the strength and stability of these reinforced concrele structural

elements. The behavior of bond under increasing pull out load can be described by the

initiation of inclined cracks at contact points between the steel lugs and concrete 31

relatively low stresses. crushing of concrete in front of the lugs. and shearing-off of an

increasingly larger pan of concrete keys between the lugs Wltil the keys are fully sheared

off. The results of the experimentaJ studies reponed by Eligehausen. Popov and Betera

(1983) indicated that the key factors detennining local bond stress-slip cl\aracteristics of

deformed bars embedded in concrete are: the effe(;1 of load history. confining

reinforcement. rebar diameter, concrete strength. rebar spacing, rate of pullout. and
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defomation panern. Funher investigation showed that several other parameters such as

casting position. size of cover. specimen dimension. lranSvene pressure. crack width.

aggregate size. reinforcement coating and creep can affect the bond strength.

This chapter will provide a summary of the experimental program conducted at

the structural laboralory of Memorial University of Newfoundland to investigate the

behavior of bond of high strength concrete. The test set-up. load application.

instrumentation. measurement. the procedure of test. and type of materials are the main

subjects of discussion in this chapter.

4.2 Selection of Test Sct·up

Several methods of testing can be considered for pursuing experimentally the

bond strength between rebar and high strength concrete. These methods include pull out

test. single span beam test and beam-colwnn cOMection as reponed by early

experimental studies. Several investigalors used the method of pullout testing. It includes

a shon length of a rebar embedded in a cube or cylindrical concrete taking into

consideration the other parameters in order to idealize reinforced concrete joints. The

single span beam method was considered to study the bond strength by applying a

concentrated load on a beam. Since the method of testing must not affect the result of the

research investigation. the pullout method has been considered for the present study. The

availability of laboratory equipment is another factor for choosing the test method.



4.3 Esperimutal Program

1be experimental phase of this investigation was designed to lest the confined

region of a joint in a high strength conCTeIl- structure in order to study the behavior of the

bond between reba! and high strength concrele. A total of 150 specimens were tested

under monotonic and cyclic loading. The load history. confining reinforcement. rebar

diameler. concrete strength. reba! spacing, rale of pull out. and deformation panem were

considered as the main study parameters. The study parameters were evalualed under

monotonic loading in tension and compression. cyclic loading (full cycles). and cyclic

loading at selected peak slip values. The internal strain in concrele close to the contact

surface area was measured.

A summary of the lest program is presenled in Tables 4.1 to 4.5. The tests are

subdivided into seven series for the 25 nun rebar diameter as well as seven series for 35

nun rebar diameter. Only one parameter has been changed at a time. while all other

panme:1erS were kept constant. The influence of study parameletS on the bond behavior

under monotonic and cyclic loading was examined.

4.3.1 Load HilJlory

The test for examining the inIluence of load history was run under monotonic

loading in tension and compression. The adopted standard tatc of pullout. 1.50 nun

displacement per minute. was chosen mainly for practical reasons to complete a test in a

reasonable time. It is aboul twelve times faster than the loading rate for the load

controlled pullout tate used by Eligehausen. Popov and Belew (1983). During an
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earthquake motion the rebar is nonnally subjected to a larger strain rate. Therefore. lite

rate of pull out is increased to 75 nun slip per minute.

4.3.2 CoDflDiD& reiDforcement

(t is understood that the force in the contact surface of rebar and high strength

concrete has two components. One is parallel to the axis of rebar and the other is radial

component that is perpendicular to the axis of rebar. The radial forces can cause extra

stresses in the concrete. These are nonnally the source of the crack and ultimate croshing

of concrete. In order to prevent the failure of concrete some extra reinforcement as

confinement is necessary. The failure of high strength concrete without confmement is

accompanied by the release of a huge amount of energy. which is extremely harmful to

the struclllrC. The bond behavior of high strength concrete under radial confining stress

around the concrete specimen. together with bond stress and slip was considered in this

investigation. Different sizes of rebus were used as confinement for the specimen in this

experimental investigation. In addition. some specimens were tested without confining

reinforcement.

4.3.3 Reb.r Di.meler

The rebar diameters were changed and the influence of rebar diameter was

investigated. The r:bar diameters were varied from 20. 25 and 35 tnm. The diameters of

20 and 25 mro are mostly used in the consuuction of buildings and bridges while the

rebar diameter of35 mm and higher is nonnally used in offshore structures.



4.3.4 Concrete Strength

According to the American Concrete Institute (ACI). high strength is defined as

concrete with ultimate compressive strength over 42 MPa. Different values of concrete

including nominal f< = 50 MPa. 75 MPa. 100 MPa were tested and the results are

reponed.

4.3.5 Rate of Loading

It is commonly understood that excessively rapid loading can cause a notable

increase in the strength of steel and concrete members. For structures having a small

period of vibration and a high ductility demand. the strain rales are surprisingly high and

may result in significant strength increase of the malerials. Since most of the structures

are designed to resist against dynamic loading such as seismic loading. it is importanl to

examine the bond behavior of high strength concrete under different rates of loading. For

this purpose. the rales of loading were changed from 0.0 lSI. 1.51. to 75 mmlmin to

achieve the influence afthis parameter.

4.3.6 Spacing

Undoubtedly for reinforced concrete elements the distance between rebars is

extremely imponant. The effect of spacing was examined. taking into consideration two

different spacings. The fllSt one was equivalent to the rebar diameter and the second one

was equal to twice the rebar diameter.
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4.3.7 OdormatioD Pattern

Clark (1946). Darwin and Graham (1993). Hamad (1995). Tholen and DarYoin

(1998). Esfahani and Rangan (1998) studied the effect of the deformation panem for

normal and high strength concrele. The effect of deformation pancm on the cond

behavior in the previous studies was given a high deg~ of importance, In this

investigation the influence of different rib geometries on the bond of high strength

concrete are examined and the results are evaluated. The details of rib geometries are

illustrated in Table 4.6.

4.4 Test specimens

The test specimen represented the confined region of a joint in high strength

concrete structures. The reinforced nigh strength concrete specimen was confined by

secondary reinforcement representing the joint reinforcement. Extra tOp and bonom

stirrups were added to the specimens to ensure good confinement of the rebars.

A typical illustration of the test specimen that was considered in this investigalion

is shown schematically in Figure 4.1. A test specimen before casting the concrete is

shO"'TI in Figure 4.2. The designed specimen represents the local bond behavior of

defonned bars in a confined region of a beam-column connection of high strength

concrete. A short length of the defonned rebar was embedded in the high strength

concrete block as well as secondary reinforcement was provided with top and bonom

stirrups. The embedment lengths of rebar diameters of 25 and 35 nun were taken as 75

and 100 rom, respectively. This embedmenl length is shon enough to resu.ll in a fairly
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uniform bond stress when the rebar is puiled-oul. but nOI long enough to reduce the

scatter usually observed in test results when a very short bonded length is used. The bond

length was positioned in the middle of the specimen at the confined concrete region.

The arrangement of bond position was designed such that the bond length was

located at the middle of the specimen and the other two ends of the rebar were enclosed

in a tube 10 eliminate bond. The rubes were made of (P.V.c.) material and were neither

restrained by the slip of the bar nor affected by the transfer of bar forces to the toml

length of the specimens.

4.5 Material

High strength concrete was made with the same basic ingredients as normal

strength concrete plus mineral and chemical admixtures. It was the result of optimization

of the characteristics of the cementing medium. characteristics of the aggregate

interaction. proportions of the paste. paste-aggregate interaction. mixing and

consolidating and curing. and testing procedw-es.

High strength concrete is being used in structures. wtllch are located in harsh

environments. These structures are subjected to tremendous forces from wave loading

and impacts from wave·tossed debris in offshore and marine structures. In addition. the

influences of wening and drying. freezing and thawing. abrasion by ice and other debris.

chemical anack or mineral depletion by water it is in. salt accwnulations. and anack by

marine organisms are important. Therefore. in last decades several researchers including
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Hoff (1989), Marzouk (\987), Malhotra (1988) in North America as well as other

researchers in Europe investigated the material characteristics of high strength concrete.

Broad research has been directed to develop the best mixing proponions and

mixing procedure to produce high strength concrete using local Ne....foundland

aggregates and cement at the structural laboratory of the faculty of Engineering and

Applied Science of Memorial University of Newfoundland. St. John's. Canada. [n

addition. various other aspects of this new material. such as the effect of low ocean

temperature on strength and elasticity, creep of high strength concrete at low

temperatures, freezing and thawing resistance of high strength concrete have been

investigated in detail. Local test results indicated that local materials can be used with

silica fume and fly ash to provide a strength of 70 MPa and higher at 28 days curing.

Manouk and Hussein (1990). The effect of low temperature has a minor elTect on

strength. elasticity and stress-strain relationship as detailed by Manouk and Hussein

(1990). The relation of creep to stress strength ratio at room temperature was found to be

linear for silica fume concrete. as was the case for ordinary Ponland cemen! concrete as

reponed by Marzouk (1992). The changes in weighL length. pulse velocity. resonant

frequency. compressive strength. due 10 freezing and thawing were recorded for 458

cycles. As a result. high strength concrete made with local material and having about 3­

5% air content is durable up to 458 cycles. Marzouk (1990).

Hoff (1991) investigated the advantages of supplementary cementing materials in

offshore and marine concrete structures. The ability of concrete to resist the influences of

the environment while perfonning its desired function was called durability. The need of
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durable concrete for construction of offshore and marine structures was predicted and

recommendations for improving the quality of high strength concrete have been made.

Furthermore. Hoff (1998) presented some information about material characteristics of

high strength concrete such. as creep and shrinkage. air void parameters. permeabilily.

and chloride-ion permeability used in the Hibernia offshore platform. In this section the

material used for h.igh strength concrete mixture is explained.

4.5.1 Cement

Producing high Strength concrete depends on the quality of the cement paste.

Selection of a Portland cement for h.igh strength concrete should be based on comparative

strength lests of concrete at 28 and 90 days. Cement thai yields the highest compressive

strength at the later age (90 days) is preferable. The high strength concrete mixture for

this investigation contained normal Ponland cement. Normal Ponland cement Type: 10.

Canadian Standards Association (CSA); CSA3-AS5 as produced in Newfoundland.

Canada was used for all test specimens. About 10 percent replac~ment b)' silica fume

(pozzolanic materials) in a powder form of a total cementatious product was used on the

basis of weight. The silica fume has a specific gravity of 2.30 and surface area equal to

200.000 cm1/gm. which is about 50 times finer than most Portland cements.

4.5.2 MiDenl AdmiIturrs

Silica fume played an important role in the development of high strength

concrete. Silica fume is a mineral admixture added to concrete to improve plastic or

hardening properties of Portland cement concrete. Silica fume used for concrete must
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meet the requirement of ASTM CI240-88. The addition of silica fume increases the

cohesiveness. viscosity, and water demand of fresh concrete. However. the incre~

strength remains the: main reason for using silica fume in most high strength concrele

applications.

Hoff(I99I) rqx>ncd that thc: effect of silica fume on concrete depends both on ilS

fmeness and iu pozzolanic activity. The fineness creates more hydration for cement and

produces a denser microstructure of the hydration prodUCl than without such dispersion.

Thus. it reduces the size of capillary porosity and provides a grealCf probability of

discontinuous porosity without affccting tola! porosity. The poZ20lanic activity incre~s

the amount of gel porosity. Both effects dccrease the number of gel pores in the hydraled

cement. in turn reduce water thai free~s in winter ambient conditions. The probability

then. of creating concrcle with morc dense gel. is greater for concrete containing silica

fume than without dense gel. The greater discontinuity of porosity decreases

permeability. II can be: used as either an addition 10 or replacement for cement usually at

dosage rates up to 15 percent.. Air entertainment (4 to 6 percent) of concrete containing

silica fume or other pozzolans has been shown to be: essential for resiSlanCe to freezing

and thawing.

4.5.3 Cbflllical Adlllbturet

The admixtures conslned of superplasticizer based on a pure naphthalene

sulphonate mixed in combination with retarder with cala!ysts promoting more cement

hydration to obtain greater compressive strengths. The superplasticizer significantly

reduces the amount of walcr required, but it often increases slwnp loss. making it difficult
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to place the concrete properly even though true setting time is extended slightly. The high

rate of slwnp loss is overcome by the addition of the water-reducing retarder. which

extends the time of set and pennits the placement of a very low waler-cement r31io

concrete. Both chemical admixtures should meet the requirement of ASTM C 494-86.

4.5.4 Coarse Agreeale

The largest fraction of the volwne of concrete consists of coarse aggregate. The

characteristics of the aggregate significantly influence !.he properties of the concrete.

including strength. The strength of the aggregate. the bond or adhesion betv.·een !.he

cement paste and aggregate. and !.he absorption characteristics of the aggregate are very

imponant for the design of high strength concrete mix. There is a practical value for

detennining the optimum size of coarse aggregate for different concrete strength levels.

The optimum size depends on such factors as: relative strength of the cement paste.

cement-aggregate bond. and strength of the aggregate panicles. Standard tests are not

readily available to measure these factors adequately. The chemical content of the

aggregate and the mineral content does lend some insight into predicting the interaction

between cement paste and aggregate panicles. Still. trial batches provide !.he most

practical infonnation for choosing the best aggregate for a concrete mixture. For this

investigation a nonnal weight local coarse aggregate was used in the mixture and it was

mostly cNShed g:ran.ite with a maximum nominal size of 20 mm. Sieve analysis of the

aggregates was conducted according to ASTM C 135-86. The results of sieve analysis are

given in Table 4.7. The spec:ific gravity and absorption percentage were determined in

6l



accordance with ASTM C127-88 and ASTM CI28·88. the specific gravity of coarse

aggregate was 2 65 and absorption 0.48%. respectively.

4.5.5 Fiae Aggregate

The shape and surface texture of fine aggregate has a greater influence on water

demand of concrele than thai of coarse aggregale since flOe aggregates contain a much

higher surface area for a given weight. The grading of fine aggregate within typical

specification limits is not highly critical except thaI slightly coarse sand probably would

be more beneficial if available and not economically prohibitive. Sieve analysis of the

aggregates was conducted according to ASTM CI35-86. The results of sieve analysis are

given in Table 4.8. The specific gravity of fine aggregate was 2.73 and absorption 0.42%.

4.5.6 MiIiag Waler

The mixing water in the mixture was clear and about 4 0c. The ratios of water to

cement for concrete with compressive strength of 50 MPa, 75 MPa, 100 MPa were 0.35.

0.29.0.26. respectively.

4.5.7 Concrete MiIture Desien

The high strength concrete mixture contained a normal Portland cement. type 10

in accordance with Canadian Standards Association (CSA). and content of silica fume

used on the basis of weight. Local aggregates were used as explained in the above

sections. The coarse aggregate were mostly crushed quartzite sandstone with a maximum



nominal size of 20 mm. Th~ flM aggregate was identical in composition to the coarse

aggregat~ with a minor pen::entage of sihstone and sl\ale. A non-ch1oride water-reducing

agent and retarder and superplasticizer of sulpnonated naphthalene formaldehyde base

were also used in the mixture for high strength concrete. Table 4.8 gives the mix

proponions of the concrete used. The batcrong of the concrete was done in a 0.1 mJ

laboratory mixer. A drum type (TW'bine) mixer was used for mixing the concrete balch.

The mixer was used for 90 to 120 seconds at a rate of 18 rpm. The mix was sticky and

cohesive. At least three concrete cylinders. I52xJ04 mm. were taken from each balch and

used to determine the concrete compressive strength (c' The mix design was tried several

times and concrete cylinders were cast in a plastic or cardboard molds in accordance 10

ASTM C 192-88. The test specimens were cured under polyethylene sheets in the fonn

and dispersed by waler for an average one week. The cylinders were cured for four weeks

and tested.

The slump values were 100 mm and the density ofthc high stmIgth concrete was

2400 kglmJ in average. The suains at maximum stresses ranged from 0.0025 to 0.0035. A

soil test machine was used for the loading of cylinder specimens using a hydr.tulic

comprcssh-c ram capable of providing a maximum compression of 2670 leN. (600.000

Ibs.). The value of modulus of elasticity ranged from 26.0 to 27.5 GPa.

....5.8 Rebar

The reinforcing rebars were Grade 400 steel conforming to CAN/CSA-G40.20­

M92. Two samples of each reba!' size with diameter of 10. 25. and 35 mm were tested for

tensile strength. T-Olsen hydraulic machine was used to apply load and electrical strain
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gauges were used to measure the strain up to the yielding and linear Potential

Differential Transducers (lPDn were used to measure the e1or.gation up to the failure.

The properties of the steel reinforcemenl are given in Table 4.9. All defonnalion patterns

for rebars of Series M7 were machined. The nominal diameters were 25 mm and 35 mm.

The details of rib geometry for series M7 are illustrated in Table 4.6. while the standard

defonnalion pattern was used for rest of the experiments.

All rebars were cui to the desired length. One side of the rebars was threaded for

50 mm and 75 mm in the case of monotonic tests for rebar with diameter of 25 and 35

nun. respet:lively. In the case of cyclic lests the length of threaded rebar's were 135 and

165 mm forrebars 25 and 35 tnm. respectively.

4.6 FabricatioD of Test SpecimcDs

Two sets of fonns were prepared for casting the bond spedmens. The first set was

for specimens with rebar diameter of 25 rnm and concrete dimensions of 375x150x 150

rnm. The second set was used for the specimens with reinforcement 35 nun and concrete

dimensions of 525x25Ox175 nun. The casting position was from the side of the fonn as

shown in Figures 4.3 & 4.4. All reinforcements have been machined 10 fit in the test set­

up and depend on the study parameters; some strain gauges were installed as necessary as

shown in Figure 4.4. In order to examine the behavior of concrele around the rebar. some

strain gauges were installed inside Ihe concrete. close 10 the contac1 surface. to measure

internal concrete strain as shown in Figure 4.4.



4.7 Test Set-up

A test frame was designed 10 carry out this experimental program and some extra

parts were designed and fined to facilitate the bond strength investigation. Figure 4.8

schematically shows the test set-up and Figure 4.11 shows a pholograph of the lest set-up

with a specimen mounted. The vertical loading frame consisted of two main vertical w_

shape columns cOMected by two horizontal cross channels. The channels were braced

together by means of several plates. The vertical colwnns were bolted to \V..O inclined

wide flanged steel colwnns that acted as a horizontal brace to the frame. To increase the

stiffness of the loading frame twO solid vertical 50 mrn rods were bolted to the horizontal

beam and few steel plates were added.

4.8 Instrumentation

An elecuuhydraulically controlled testing actuator with capacity 1350 kN was

used to apply monotonic tensile and compression load as well as for cyclic loading. The

general arrangement of the dosed-loop test scheme and associated instrumentation is

shown in the block diagram, Figure 4.10. The load. cell anached to the actuator measured

the load. The load cell was COMected to an internal amplifier via the controller. The

outpUt voltage from the controller was feed into the input channel of the data acquisition

system. The test was run under displacement control. The displacement was measured at

the loaded rebar end by using the built in Linear Variable Differential Transducer

(LVDn in the actuator and by an elCtcmal Linear Potential Differential Transducer

(LPDn mounted at the unloaded end of the rebar. In order to minimize the friction



between specimen and the upper head of the test set-up. a teflon sheet was used between

the specimen and the bearing plate. The slip was controlled at a rate of 1.51 mm1min for

deformed reinforcement. It adjusted by Servo-valve Controller in the Laboratory.

Concrete strain gauges were located close to the contact swface of the reba! and concrete.

The concrete strain gauges were placed around the bond area in a proper position. The

Sl:ecl strain in the middle of the bond area as well as ouuide the bond area was measured

by strain gauges. A load cell situated in the actuator measured the applied force. The

output of strain gauges together with load and displacement data were continuously

scanned and recorded by usc of a data acquisition system and constantly displayed

through a computer. The slip was measured as the relative displacement between the

reinforcement with respect to high strength concrete minus the elongation of the rehar

outside of the bond area. The bond length is located at the middle of the specimen. It was

assumed that the StreSS distribution is unifonn.

4.9 Data Acq uisitioa Systrm

The data acquisition system ""las used to record the test results and analyze the

data. The data acquisition system has six basic subsystems which include the controller.

the signal conditioner. die multiplexed amplifier. the anaIog-to-digital convener. die

storage or memory unit" and the readout devices. The controller is a microprocessor that

serves as the interface between the operator and the data-acquisition system. The signal

conditioner consists of the power supply. the bridges, and the tenninals used to connect a

large number of gauges in tum to the multiplexer. Usually, several bridges are contained

..



on a plug-in circuit board. which can be modified by adding or deleting fixed resistors to

provide for quarttt. half. or fuJI.bridge arrangements. The multiplexer portion of the

signal conditioneNcanner subassembly consists of two partS: (I) A bank of switches

serves to switch the two output leads and me cable shield from the bridge to the

differential amplifier. (2) The multiplexer also contains the circuits that control the

switching sequence as programmed in the controller. The amplified analog signa.! is

converted into a digital signa] by using an analog-to-digital converter. The data is oUipUi

from me interface unit on a parallel wired data bus. Usually it is stored temporarily in me

random-access memory on a first-in first-<lut basis. The data can be processed in real time

on a host computer. The disks provide me input data, in digital format. to an off-line

computer where the: data is processed. Gen 200 software is used to assist me organization

of data files and me a-ansfer of data files to spreadsheets for subsequent processing.

4.10 Straia Gaucc

Several typeS of SIlain gauges werr available for measuring strain such as

mechanicaL optical. electrical. acoustical strain gauges; electrical strain gauges have been

used in this investigation. The length of the electrical strain gauge was IQ-mrn. 120 Q

resistance with a gauge factor of 2.04 :t ".0.5. The excitation range for stnUn gauges was

checked. this range was between 2.5 to 10 volts. Generally, the characteristics of a strain

gauge include the gauge length. accuracy or precision., range (the maximum strain that

can be recorded wimout rezeroing or replacing me strain gauge). sensitivity afthe gauge

due to the smallest value of strain that can be read on the scale associated with the strain
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gauge. These characteristics along with budget limitation were evaluated for choosing the

most suitable type of the gauges fOf the test.

4.11 Installation of Strain Gauge

The small concrete prisms were selected and strain gauges were glued !O measure

the internal concrete strain as described previously. The electrical strain gauges also were

used to measure steel strain. In order to install a strain gauge on the surface of rebar or on

the precast concrete prism. the surface was prepared. This preparation consisted of

sanding away any rust. dust or paint to obtain a smooth but not highly polished surface,

Next. solvents were employed to remove all traces of oil and the surface was etched with

an appropriate acid. Finally, the clean. sanded, degreased. and etched surface was

neutralized (treated with a basic solution) to give it the proper chemical affinity for the

adhesive. The gauge location was then marked on the specimen and the gauge was

positioned by using a rigid transparent tape. The tape maintains the position and

orientation of the gauge as the adhesive is applied and as the gauge is pressed into place

by squeezing out the excess adhesive. After the gauge was installed. the adhesive was

exposed !O a proper combination of pressure and temperature for a suitable length of time

to ensure a complete curing. For protection against any possible water damage during

casting. water proofing such as M-coat D kind of chemical material including Flammable

toluene 50% and robber splicing tape were applied for coating as shown in Figures 4.5

and 4.6.
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4.12 Summary

A total of 150 sp«:imens made of high mmgth concrete were cast to investi@a{~

the bond strength under monotonic and cydic loading. The influences of load history.

confining reinforcement. rc:bar diamet~r. concrete strength. rebar spacing. rate of pull out.

and deformation panern were investigated experimentally. Th~ int~mal concrc:t~ close to

the contact surfac~ and also in the sl~c1 reba! was measured. The test set up. load

application. instrumentation and m~asur~m~nt. test procedure. and type of materials ar~

reponed.
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Table 4.1· EIDerimenlal Pro2nlm for MODolonic Tal (MI, M2. MJ. M4. M5)
~ries InvestipLion Loadinll Specimm R~bc Con<;re'l~IVcrtil;al Slip Type of

Parameta History Notation P;am~la SC'mit/! Confinill R.ale Defomllllion
re Rebar Patl~m

MP,

13.60
1).67

13.67
13.67

15.00
~15.00
~

Canadian
15.00
~

LSI S"""""
15.00 "11.70 INOConf.
81.70
~

Can~ian

85.00
~

Standard
85.00 "
11.70 iNO~Of1f.
11.70
~

15.00 f----?- S"""""
15.00 "71.00 Canadian
.,00 Standard
87.45

50.61
17.45 Canadian
91.45 StilJIdard
9::!.70

50.61
16.00 Canadian
92.61 S"""""
".96
16"...... " LSI

"00 Can.dian
9'2.61 S"""""

History

Codi.illl
Reillforce.

lHNM-I9-1 35
lHNM-I9-1A J5

Tension ltfNM·I9-1B J5

I MOftOIonie :=::~~~ ~~
lHNM·I9-2B 35

ComPftSsion IHNM.I9-2C 35

MonoIonie IHNM-I9-1 25
IHNM-I9-IA 15

Tension IHNM·I9-IB 25

~:=::::~C ~
IHNM.19-2A 15

Com~ion IHN"M·19-28 %5
l!iNM·19-2C 15

MOO1OUlIlic: 2!iNM·l-l 35
2HNM.I·2 J5
2HNM·I.J J5
2HNM·I-4 J5

2HNM·I·l 25
2HNM·I-2 25

Tension ::!HNM-I-J 25

~~:~::~ ~:
2HNM.I·2 25

Comp~lon 2HNM·I·J 25
2HNM·I-l 25

In ~:~::~:~ ~
Tension JHNM-12·3 JS

4HNM-12-1 J5
4HNM-12':! J5

4HNM.12·J J5
4HNM·12-4 J5

4HNM.12·1 15
4HNM·12-::! 25
4HNM-12-J 15
4HNM·12.4 15

85.00
81.00
11.00
81.00

Il.OG
15.12
13.16

IUO
16.00
15.12
15.12

Canadian
Standard

Canadian
Standard



Table 4.2- Exnerimenlal PrOiram for Monotonic Tesl (M6. M7)
Serin InVICSlilation Loading Specimen Rebar Concrcu Vcrtical Slip

Parameler Hislory NOtalion DiametCT Suenl¢l Confinig blC
f<; Reb.,

Mh

Typcof
Deformalion

Panem

IlIlIor
Loadi_,

MonOionic

6H!'o'M-6-1

6HNM-6·2
6HNM-6-3

35 19.00
3S I7.4S

JS 71.00

UlOO

O.OISI
OOסס.75

Canadian

5Wldard

25 UJO
2S 13.67
25 13.30

S«
Tablc4.6

UIOO
0.0151
OOסס.75

13.15

13.15
13.15
13.IS

12.93
12.93

12.56
12.56
19.n

19.52
16.23

16.23
74.7S
11.00.........
91.00
16.70

2.S 16.00

16.00
16.70
11.79
16.00
90.26

"""""

""""

""""""""""""""7HNM-IQ-1

7HNM·IQ-1
7HNM·IQ-3
'7HNM·IQ.4

7HNM·IQ-S
7HNM-IQ.-6

1HNM·1(}.7
7HNM-IQ-I

7HNM·1Q-9
7HNM·IQ-IO

7HNM.14--1
7HN'M.14--2

7HNM-I4-3
7HNM-I4-4

7HNM·I4--S

7HNlo1·14-6
7HNM-I4--7

7HNM·I4--'
7HNM-I4-9

7HNM·l ... lO

7HNM·I4-11
7HN'M.1 12

7HNM-l n
7HNM·l"'14

6HNM-6-1
6HNM-6-2

6HNM-6-3

MonolOnie

Tert$ion

~hr

Dero...t1o.

PaRen



Hoots ....

• IDle " ..)~ I!.J. nme.la. rro ..am lor'-ycm:: letl \lTI'.lTI~1

"'in Invcsliplion Loadinll Spa:imen Rebar Conclde Veniul Min Ratcofl.olodinll Ty~of........ ltiitOfY Notation llillllC'lCr Strmglh Con r1nill Number OefllfT"ation
r, R,w ofCycle l.titCycle Plllel\1

~ M•• mm S"t/·(mm1 S"t/-(mm)

IHNo.I9-) " 93.61 '00 6.10

IHNo.l9-4 'S 9167 11~ 1.~0

llIND-I9-~ " 93.67 3.75 7.50 CIIl..tiln..... IIINo.l9-6 Jj 93.67 10 I' l75 '.00 Slllldird

MI "iI'lll")' Cyclic IIIND-I9-7 Jj 16.00 4.20 4.20

IUND-I')·I Jj 16.00 4.20 4.20

1I1ND-19-3 " 11.00

IHNo.I9-4 " 11.00 '00 11,50 (-llIao:,lilll

IIINo.I9·~ " 11.00 10 10 U5 U5 SlIndlll"d

IIIND-19·6 " 11.00 3.75 II,SO

IHND-19.1 " 11.00 4.25 19,00

2HND-I·5 " ".00 10 3,10 6.2<1

2HND-J.6 Jj 16.20 NoCoor. 10 110 6.40 Clnadj..,

2I1ND-I-' " 16.20 2<1 '.00 9.00 Standard

C_fhl·1 2HND-I-1 Jj 16.20 lS 5,~0 5.~O

M2 Rri.Jon,. Cyclic 2IIND-I·~ " 11.10 NoConr. BO BO

2HND-I-6 " 11.62 10 10 2.~0 2.50 Carwlilll

2I1ND-I-' " 11.62 2<1 4.30 6.25 Sllndaid

2IIND-I-1 " 11.62 lS 550 111,00

2I1ND-I·9 " 11.62 NoCnor. 5.50 5.50

. -
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T bl 46- Deta'l fT ted Rib G.. " . .. eomelnes
Group Spco;imCl'1 RIb Geometry Rel<ltiv

Notation Rew Diameter "'" A' B" Heighl Rib rib
Nominal A_' Spacinll =.
~ ~ ""'" ~ ~ mm mm

7HNM-14-1 lS 26.11 620 2.29 9.40 3.56 16.26 0.196
7HNM-I4-2 lS 26.11 620 2.19 ,... B. 19.05 0,167
7HNM-I4-3 lS 26.11 • 20 2.19 ,... 3,56 25..l 0.12~

7HNM-I4-4 lS 26.11 620 2.29 9.40 3.56 31.75 0.100
7HNM-I4-5 lS 27.91 ... 2.19 I.3S 3.05 16.26 0.171
7HNM-I4-6 lS 27.91 ... 2.29 U • 3.05 19.05 0.146
7HNM_I4-7 lS 27.91 ... 2.29 1.38 3.05 25.40 0.109
7HNM·I4-8 lS 27.91 ... 2.29 1.31 3.05 31.75 0.102
7HNM-I4-9 lS 29.41 '" 2.19 .... 2.19 16.26 0.131
7HNM-I4-10 " 29,41 70' 2.19 6.16 2.29 19.05 0.112
7HNM-I4-ll lS 29,41 70' 2.19 6.16 2.29 25.4 0.014

M' 7HNM-I4-12 lS 29.41 70' 2.19 6.16 2.29 31.75 0.067
7HNM-I4-13 lS 34.00 90'
7HNM-I4-14 lS 35.70 lOGO , S S S 0.163
7HNM·1G-I " 22.00 '10 2.03 5.0S U2 16.26 0.017
7HNM-1G-2 " 21.60 ,<16 2.03 5.0S U2 19.05 0.074
7HNM-1G-3 " 21.40 "" 2.03 5.0S 1.52 25.4D 0.056
7HNM-1D-4 " 21.10 m 2.03 5.0S 1.52 31.75 0.045
7HNM·1G-5 " 22.00 '10 2.03 '.6 2.29 16.26 0.126
7HNM·l0-6 25 21.20 '" 2.03 6.' 2.29 19.05 0.107
7HNM-IG-7 " 21.70 370 2.03 .. 2.19 25.40 O.OSI
7HNM-1G-S " 21.90 376 2.03 ... 2.29 31.75 0.065
7HNM_IG-9 " 25.00 SOO S S S S 0.101
7HNM-IG-10 25 23,00 '".... ·R.ib..-.d\tl..thcf..... B··:R.ib""4Ih.dcplh



Table 4 7 Aggregale gnding
Sine "te <:l","IJlI'eper~cmJ~e

'el3med
Imperial C"a,~e Fine

lLS unllSl1 ."'gg'egJle "'S'~,egJle

I:.i I:

II,: ~ I

96 3-5

..U6
l.36

300llm

ISO"m

:-.ro. ~

No.8

So. 16

So. 50

~o. 100 I ""
Table 4.s.. Properties oCConcrete Mixlure

for 0 I cubic meier
High

Connilllent SlIenglh Slrength
\1;, \Ii,

Cement 'g "Sili~;afwme 'g
FineaU~llate 'g " "Coarse agate ate 'g '" '"Retarder m' :200
Supc.-plasti~iur m' 5500
WalerCcmcnt

Ratio 0,;:9

MixDmsity KIl-'mJ l392 l410

EXpec11td
Compressive "Strensth

Table 4.9- Propertia of the SIMI Reiaforcemeat
Yield M_ M_ E"""...... [);- "'" Yield Yield Ultimate MociIlhu

So.. 5_ 5_
~ om2 """'~ ..... ..... Or.

M-IO ,<3 '00 0.00235 .,. ... '"M.2<l 19.5 300 0.00225 '" 67. '"M·25 25.0 '00 0.00220 .., 67' '"M·3S 35.7 '000 0.00231 ... ." "I

"



Fig. 4.3 Preparation for steel reinforcement
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Fig. 4.4 Concrete strain gauges glued around rebar prior to casting
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-(11smm

Fig. 4.1 Typical high strength concrete specimens
with the position of concrete strain gauges

Fig. 4.2 Specimens before casting
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Strain gauge ?tee st {

'.~(i?~_._'

Fig. 4.5 Typical precast concrete with strain gauge

Fig. 4.6 Strain gages on concrete and rebar
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Fig. 4.7 Cyclic specimen after testing
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Pia. 4.8 Sreel ... fnmo



Fig. 4.9 Specimen during testing
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Fig. 4.11 Test set-up and instrumentation
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Fig. 4.12 Specimens prior to casting

Fig. 4.13 High strength concrete specimens before testing
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Chapter 5

Bond Strength of High Strength Concrete under

Monotonic Loading

5.1 latroductioD

The success of analytical design describing the bond behavior depends on the

characlC~riSticS of the stress-deformation response of the element being analyzed. such as

ultimate stress. stiffness and deformability. and also the mode of anticipated failure.

Therefore. this chapter reflects the results and observation of the experimental

investigation of the bond resistance between rcbar and high strength concrete W1der

monotonic loading condition. The behavior of high Strength concrete bond is not well

known. Therefore, this experimental investigation was focused on the influence of load

tustery. confining reinforcement. febar spacing. rate of pull-(lUL rebar diameter. concrete

strength and rebar defonnation patterns in conjunction with high strength conaete. A

total of 100 specimens were tested for this part of investigation. The tests were examined

for rchar with nominal diameter of25 mm and 35 mm. 1be range oCthe tested concrete

..



compressive strengths was between 75 MPa and 95 MFa. A Series of tests were devoted

10 investigate the influence of rib geometry on the bond characteristics. Different

deformation patterns were realized by machining the standard rebar. The internal

concme strain and steel strain to some degree: of accuracy have been measured during

tesling. The surface crack patterns have been plotted and the modes of failures and test

results were recorded. A new empirical expression for a bond stress-slip curve has been

suggested to represent the experimental results. Finally. a new expression for the bond

strength of high strength concrete based on the cubic rOOt of concrete Slrenith is

developed and recommended.

5.2 Test Results _ad Obsent_dons

5.2.1 Genenl 8cllavior

A bond stress venus slip curve. for high Strength concrete as recorded in this

investigation. is illustraled in Figure 5.1. 1be measured slip is recorded by the built in

linear Variable Differential Transducer (LVOn actuator from the loaded side of

reinforcement. The elongation of reinforcement was deducted from the value of l VOT to

provide the net slip value. This curve demonstrates the aetuaI. behavior of high strength

reinforced concrete bond. The typicaJ stress-slip curve can be characterized into three

main set:tions. Fimly, an ascending portion represents the increase of stress for about

20% of the total slip. In addition. some nonlinearity can be observed at the beginning of

the ascending poniOR of the curve and close to peak bond stress. Secondly, there is a
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sharp drop in the level of the stress in the beginning of the descending pon.ion of the

curve as a result of losing adhesion between high strength concrete and reinforcement.

Finally, there is some complex behavior at point "c" of the descending pon.ion of the

curve. which could be the result of changing slate of the stress. The bond srress will

decrease nonlinearly and gradually with the increase of slip throughout the remaining

75% of the total slip. This indicates thai the effects of friction and mechanical interlock

are compleled. The path of the curve from point "d" to poinl"e" is the result ofrC(:overy

the effect of the yield stress in rebar. In general. the above three stages of the bond stress-

slip curve fairly describe the process of stress transfer from rib to concrete that invariably

occurs by cracking and crushing of the surrounding concrele. Therefore. in the case of

using a fracture mechanics approach for numerical modeling the complete curve or area

under the curve as bond energy should be considered for a complete bond model.

5.2.2 Load-deflectioD relationship

The average equivalent bond stress for experimenlal phase of this investigation is

calculaled as follow

where

r.: Bondstress

q: Tension/compression force

I.: Bond length

"



The slip is calculated as the difference between the reading of the Linear Variable

Differential Transducer (Lvon and elongation of steel bar. Therefore. the measured slip

represents the local slip in the middle of embeded length with sufficient accuracy. Since

the bond location is situated at the middle of the specimen. it is possible 10 asswne that

the streSS distribution is uniform.

5.3 Effect of ID\lestigatioD Parameters

5.3.1 lo.diDI HilJlory

A total of fifteen specimens were tested for determining the effect of loading

nislory under monotonic condition in tension as well as compression for bars with

diameter 25 nun and ]5 mrn. All grapns an: nonna1ized on the basis of ma.ximwn bond

stress in venical direction and the maximwn displacement (slip) in horizontal direction.

The detail of the test specimen under monotonic loading can be found in Table 5.1. The

maximwn magnitude of load, bond suess. and slip for each specimen are shown in Table

5.16. The comparison of results for four specimens under pullout lest with an embeded

rebar diameter of ]5 nun and 25 nun each are ploned in Figure 5.2 and Figure 5.],

respectively. The bond suess and slip curve for push.in testS has been ploned on the

graphs, Figure 5.4. to facilitate the comparisdn between pullout and push·in tests. Among

each group of testS. a few have been selected for general evaluation. The comparison of

normalized bond Stress-displacement response for five specimens due to pullout and

push-in tests with an embeded bar diameter of 25 mm and ]5 mm is given in Figure 5.5.

Although the main cracks developed in the longitudinal ~tion. some cracks also are



developed in a transverse: direction. The test results indicale that nonJinearity of the bond

stress-slip in the ascending scction of the curve. especiaJly close to peak stress. is evident.

All results confirmed the sudden drop of the stress level at the beginning of the

descending 5ei:tion of the curve and followed by the graduaJ decrease of stress. The bond

strength for a rebar with large diameter is less than thaI of a smaller rebar diameter. The

slope of the curves in the ascending section in case of the push·in is higher than the

pullout lcst. Hence. the total capacity of bearing load in compression is slightly higher

than in the pullout test. In addition. the area under the curve for the push·in test is sli@htly

less than the pullout tested. However. this difference is not large enough to provide a

distinct difference between the two behaviors. In order to approximate the area under the

curve for this study parameter. the magnitude of maximum slip is useful. The magnitude

of maximum slip can be approximated by five times the magnitude of slip corresponding

10 ma:cimum bond stress. In order to study the bond behavior under loading. the level of

stress has to be kept to less than the yield stress of the rebar. A typical specimm IHNM·

19·2S with speciaJ cross section shown in Fig. 5.5 indicated that the cross section of rebar

or surface area of the rebar has significant effects on the bond sttenglh. The major

difference in this series of tcsts with the previous test result of normal strength concrete

Eligehausen. Popov and Benero (1983) is the instantaneous drop of the curve located at

the beginnin@ofthe descending pan.

The steel strain and intemal concrete strain for a typical specimen (IHNM.19·2B)

with embeded bar diameter 35 mm is ploned in Figure 5.6. The specimen is tesled under

push-in load. The two strain gauges STC I and STC2 are installed in the bond area and
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the strain gauge STC3 is far from the bond area. as shown schematically in the graph.

There are differences between the magnitudes of concrete strain reading of STC 1 and

STC2 due to the location of the strain gauges and the distance from the bond swface.

The strain reading ofSTe3 is not very significant. since it is very far from the location of

the bond failure. Figure 5.7 shows the measured steel strain for the specimen. The

location of this strain gauge was at the middle of the bond length. The curve demonstrates

the increase of steel strain proportional to the load and the decrease of the strain at the

beginning of the descending portion of the bond stress-slip curve. The result shows that

when secondary cracks started to open. the steel strain gauges were damaged.

5.J.l Confining Reinforcement

The influence of differem rebar diameters as confinement on local bond behavior

of deformed rebars was investigated in Series M2. The specification of each tested

specimen is shown in Table 5.2. The nonnalized bond stress-displacement curves for

different size of confining reinforcemem for embeded bar diameter of25 mm and 35 mm

are presented in Figures 5.8 to 5.10. respectively. Table 5.9 presents the measured values

of bond strength, peak load and slip at peak. load.

When no reinforcemem was provided as confmement. the bond stresses vanished

as soon as the longitudinal crack developed through the cover. The failure mode was of a

splining type. In addition. huge energy was released when the specimen was splitting.

Figure 5.28 shows the photograph of the unconfined specimen after splitting. However.

when confmement was provided. the total area of the bond energy curve for specimens

with confmement rebar diameter of 10 mm and 20 mm were higher than rebar diameter



of 25 mm. A 10 mm diameter stirrups was used for confinement of 25 mm and 35 nun

rebar diameters efficiently. Also. the failure mode for specimens with confinement was

based on pulling out rebar from concrete. Therefore for high strength concrete specimen

the following aspect ratio is suggested for selecting an efficient rebar as confinement:

wh=

0.3 < ~ <0.6
d.

(5·2)

d, : Diameter of confining reinforcement

d. : Bar diameter
The lUC":'Ii:LlU"'U, v, Vic ULilucUf,;c VI l,;UIUIiLlII¥ Iclnforcement can be explained as

follows: When the tensile load is increased until it reaches the ultimate load. the splining

crack. will develop in the plane of the longitudinal axis of the main rebar. then the

horizontal stirrups will be activated to resist against the splining failure. The slip

corresponding to the maximum bond stress was lower for reinforcement with diameter of

25 mm as confinemenL compared to conftning reinforcement with diameter of 20 mm.

Finally. the bond slip at peak bond stress will be increased for specimens with larger

diameter of reinforcement as confinement compared to specimens with smaller diameter

of reinforcement as confmement as well as specimen without confinement. as sh.own in

Figure 5.10. The ultimate bond stress for conftned and unconfined specimens was

approximately the same.

The effect of varying rebar diameter on the bond strength is illustrated in Figure

S.ll. The details of the test specimens are shown in Table 5.2. The test results of the 20
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mm. 25 mm and 35 nun rebar diameters are shown in Table 5.9 and the results are

compared with analytical expressions as well as differem codes. All curves of this figure

are nonnalized with respect to maximwn bond stress and maximum displacement of a

25mm bar diameter (specimen 3HNM-12.2). The bond resistance of the 20 mm rehar

diameter is greater than the tensile capacity of the rebar cross section area. Therefore. the

rebar is broken and this curve does not demonstrate the whole behavior. The ascending

slope of the curve for a 20 nun rebardiarneler is much meperthan for the 25 mm and 35

nun rebar diameters. Further. comparison between the areas under the curves shows that

the area under the curve for the rebar with a diameter of 35 nun is less than for the rebar

diameters of 20 mm and 25 nun. Hence. the bond resistance is higher for the smaller

diameter than that for larger diameter rebar.

In this series of lests the effect of losing adhesion at the beginning of the

descending ponion of the curve is evident. From the results of these teSts it can be

deduced that the strength of the bond can be improved by choosing a smaller size rebar

for designing reinforced concrete structures. In general. the results of this series agree

with the findings of Eligehausen. Popov and Bertero (\983). using a similar test set-up

for nonnal strength concrete. However. there are some differences in the magnitudes and

the shape of the curves that are attributed to the characteristics of the high strength

The measured concrete strains for the specimen 3HNM-12-4 with a bond length

of 100 mm and an embeded bar diameter of 35 mm are ploned in Figure 5.12. The

distribution of concrete strains is changed along the embeded length of the rehar as well
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as along the surrounding high strength concrete. Figure 5.12a shows the concrete strain in

high strmgth concrete close to the contact surface. Figure 5.12b shows the variation of

strain in the steel rebar. The concrete strain will increa.se with respect to the increase of

bond mess until it reaches the maximwn value: it decreases due to the d«rcasc of bond

mess. These values for the strain gauges clearly confirm lhat the behavior of high

strength concrete COlTCsponds to the bond-slip curve. The high strength concrete bond­

slip has a sharp drop at the beginning of the descending portion of the curve.

Results of an experimental investigation conducted to study the influence of rebar

spacing are presented in this section. A total of four specimens were used in this

investigation. Two specimens were tested with rebar diameter of 25 mm and spacing of

25 and 50 mm and the other two specimens were tested with rebar diameter of j5 nun

and rebar spacing of 35 and 50 mm. The detailed infonnation about each specimen is

surnmariud in Table 5.3. Table 5.10 shows the slip at peak. ultimate load and stresses for

the tested specimen. 'The nonnali.zcd bond stress and displacement curves for the two

specimens with rebar diameter of 25 mm are shown in Fig 5.14. Curve one: is for a

specimen with 25 mm bar spacing and curve two is for a specimen with 50 mm spacing.

Figure: 5.15 shows a comparison of nonnalized bond stress-displacement response of the

two specimens with rebar spacing of]5 and SO mm for embcded bar diameter of]S mm.

In the case of rebar diameter of 25 mm there was no significant difference

between the two in the ascending portion. while in the descending portion there was a

small difference. The ultimate bond mess for specimen with bar spacing of 25 mm was



about 20 percent less than for a specimen with 50 mm bar spacing.

The test results for the specimen with rebar diameter of 35 mm shows that the

increase in rebar spacing had more influence on the bond resistance of the initial pan of

the bond stress-slip relationship than on the maximwn bond resistance. The bond strength

is improved with the increase of rehar spacing. The result of observation and comparison

between ultimate bond stresses for this series of tests showed a difference of 20"/"

between the ultimate bond stresses of chosen rebar spacing. This result can be explained

by the fact that the ultimate failure load was caused by pulling out the rebar from

concrete and the effect of the restraining reinforcement can control only the growth of the

splitting cracks. In the case when less restraining reinforcement is provided. the ultimate

failure can be due to the splitting cracks. and a more significant influence of rebar

spacing would be expected.

5.3.5 lUte of Pull out

This section presents the expcrimenlai results from the testing of three specimens

tested under different rates of loading: 75.0.0151 and \.51 mm1min. Figure 5.16 shows a

comparison of normalized bond suess-displacement response to LVDl for the three

specimens with different rate of loading with rebar diameter of 35 nun. The results show

that the ultimate load for different rates of loading for 35 mm rehar are approximately the

same as presented in Table 5.10. Although at the initial stage of loading there was a

noticeable difference for the specimen with rate of loading of 1.51 mmlmin, in general

there are no significant differences between all of the different rates of loading.



5.3.6 COIlc:rete Strength

The results of the tests for different types of concrete strength for the rebars with

diameter 35 and 25 mm. respectively are demonstrated on Figure 5.13. The different

concrete strengths included in this series were 51. 86. 93, and 95 MPa. The details of the

test specimens are shown in Table 5.4. The comparison of test results with analytical

expressions as well as codes is shown in Table 5.10. In principal. the results or this series

of tests agree \Vith the previous study for normal concrete strengths of 30 MPa and 55

MPa.. Eligehausen. Popov and Bertero (1983). The instantaneous drop of the curve al the

beginning of the descending branch of the curves. as a resull of losing adhesion. is well

illustrated in this series of tests especially for concrete with higher strength. The results of

all tests in this series confirmed the nonlinear-brittle behavior of the bond for high

strength concrete. In the case of high strength concrete the capaciry of bond stress is

higher than the normal one. however. the impact of the instantaneous drop of the high

strength concrete curve must be recognized. The test results revealed that the bond

resistance is strongly dependent on concrete strength and this parameter has a direct

effect on bond resistance. In addition. the mults of strain gauge readings for a typical

specimen \Vith an embeded bar diameter 35 mm and bond length 100 mm indicate that

st:rain will increase as a result of the increasing the tension load and will decrease as a

result of dropping the load. These strains show tensile stresses in high strength concrete

al the area surrounding the rebar due 10 bond stress and normally will lead to

defonnations and cracks. The cracks ",ill result in pulling the concrete away from the

~""'.



5.3.7 Different Rebar Deformation Patterns

The results of the investigation into the influences of different deformation

patterns on the bond resistance for reinforced high strength concrete are presented in this

section. A total of 14 specimens with differenl rib geometries of nominal 35 nun rebar

diameter and 10 specimens with 25 nun rebar diameter were tested. The varying

parameters were the rib spacing and rib height. The detail of the test specimens is shown

in Table 5.4. The maximum pullout load. maximum bond suess. and slip at ma.~imum

load for each specimen are given in Table 5.17. The [eSt results are compared with

analytical expressions and different codes. Detailed information on the rib geometries for

each specimen is presented in Table 4.6

The first four spedmens with a nominal bar diameter of 35 mm and rib height of

3.56 nun are designed to examine the effect of differenl rib spacing of 16.26. 19.05.

25.40 and 31.75 mm. The results are reponed and it is evident that the bond stress of

specimen 7HNM-14-1 is higher than thaI of specimens 7HNM-I4-2. 3 & 4 as shown in

Figure 5.17. However. when the total bond energy is calculated based on the area under

the bond suess-slip curve considering both of the ascending and descending portions. it is

clear that specimen 7HNM·I4-1 with a 25.4 mm rib spacing (72% of the nominal bar

diameter) gives the best results. Therefore. the bond stress-slip curve of this specimen is

considered more suitable than other specimen and teSt results are shown in Figure 5.18.

The effects of different rib heights of 3.56. 3.05. 2.29. 1.86 mm correspond to

0.102.0.0871. 0.0654. 0.053\ of the 35 mm nominal rehar diameter, respectively. are

considered in the investigation. In addition. the rehar with standard rib geometry and a
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plain rebar without rib is tested. and the bond stress-slip curves are compared. All of the

defonned bars were tested at a rate of 1.51 mmlmin. while for plain rebars. the rate was

0.0 lSI nunfmin. The ultimate loads and relative rib areas for selected specimens with a

nominal bar diameter of 35 rom are shown in Table 5.6.

The test results indicate that the rebar geometries or deformation panems have a

significant effect on the bond resistance in reinforced high strength concrete. The

comparison of the test results for rebar with diameter of 35 mm is shown in Figure 5.18.

All curves of this figure are nonnalized with respect to maximum bond stress and

maximum displacement of the results for specimen 7HNM·J4-14. The comparison of the

results shows that the deformation panem corresponding to curve 3 of Figure 5.18 has the

highest magnitude for bond stress. While taking into consideration the bond energy and

the behavior of the bond in descending portion. the geometries of the rebar represented

by the curve 7 gives the most effective rib geometry among all the tested specimens,

In addition. curve 3 of Figure 5.18 represents a rebar with a relative rib area of

0.125. ultimate bond stress of 21.62 MPa and area of 620 mml
• while curve 14 of the

same figure. represents a rebar with a relative rib area of 0.163. ultimate bond stress of

19.47 MPa and rebar area of 1000 mml
. It is clear that the relative rib area and the cross

sec:tion area of curve 14 are higher but the bond streSS is relatively lower.

It can be drawn out of this study that the evaluation of rib geometries by rib face

angle. rib height and rib spacing approach are more suitable than the relative rib area

approach. Soretz and Holzenbe (1979) define the relative rib area used in this study. as

follows:



R projected rib orea normal lObar axis (5-3)
, Nomi11(1/ rebar perimeter x Center 10 center rib spacing

This fonnula is suitable for evaluating the effect of ribs in the ascending portion

of the bond stress-slip curve and in the mean time. the German specification Din 488

(1986) reconunended the same approach for relative rib area. It will not cover the

descending ponion of the bond stress-slip curve. It is recommended to develop a formula

which describes the effect of the rib on both the ascending and descending ponions of the

curve using the concept of bond energy and fracture energy.

The results of the tests for 10 specimens with a nominal embeded bar diameter of

25 mm arc presented in Figure 5.19. The curves of this figure arc normalized with respect

to maximwn bond stress and maximwn displacement of the results for specimen 7HNM·

10-5. The details for the rib geometries and other test specifications are shown in Table

SA and Table 5.17. The Canadian standard deformation pancm for the 25 mm rebar

diameter with a cross section area of 500 mm~ is ploned as shown in curve 9. The test

results arc provided in Table 5.7. The most effective deformation pattern belongs to curve

9, representing the Canadian standard deformation panem.

5.4 Proposed Bond Model for Higb Strcagtb Concrete

The force required to pull a deformed reinforcing bar out of a block of concrete will

obviously increase as the length of the bar cast into the block (the lm1bcdment length)

increases. When the embedment length becomes long enough the bar will yield in tension

before it pulls out of the block. The minimwn embedment length required to develop the
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yield force of the bar is called the development length. This developmenl length. l.cl • is

used in Nonh American Codes as an indicator of the bond characteristics of the

reinforcing bar.

If a bar subjected to its yield force is embcded for a length equal to the

development length. then the average bond stress. u. on the surface of the bar is:

where
A. : Bar area

d. : Bar diameter

f. :Yield stress

t" : Development length

: The average bond stress

(5·5)

An expression for calculating development length is available in each code It

contains several modification faetQrs 10 account for differem conditions surrounding the

bar. In this section a comparative study has been done 10 select the best expression for

calculating average bond stress for nigh suength concrete.

The bond strengths arc calculated based on the equations that are collected in

Table 5.16 with the use of the above relationship. The results are compared and recorded

in Table 5.5 through Table 5.8. It is highly m:ommended for more information about the

modification factors oftbe following equations to use the references.



T.ble 5.1 Comparison of different code equations for test results

EqU.tiOD Bond strrssl
Not.tion Norm.lized Bond Source

stress

RBE
u. = 1.l8;(h>"J

Recommended bond expression
Lm.

E.tR
o,if

Esfahan.i & Rangan{l998}
u1-,t,k;k,k.

AUS

(~.I)J7
Australian standard. ASJ600

u._~

ACI
u._ O.651!!. ACI·JI8·1995

afJ).

CSA
U," O.SS.!!. Canadian standard. CSA A23.3-199

.t...t..t.k ,.

)).751.
Darwin et aI. (1995)1m u._ {, -1900

JT

The best qrecmcnt with exptrimental rcsu!u, was based on the cubic root of

compressive strength of concrete as follows:

1.285(1.")'"

u- t: (5-6)

in this equation "u" is the bond streSS in high strcDith concrete, m. - 0.08, the effect of

load history, "'-l :II: 0.05, the effect of ronfiDin& reinforcement, Ins = 0.14, the effect of



rebar diameter. m, =0.10. the effect of concrete strength. mj =0.20. the effect ofrebar

spacing. m~ = 0.10. the effect of rate of loading. In, = 0.33. the effect of defonnation

pattern. These values are detennined through a parametric study as detailed in Chapter 7.

In addition. Tables 5.12 through 5.15 show comparison results of proposed bond

strength expression ...nth previous study and different expression. It is indicated that the

proposed expression bener correlates with the Code method. Therefore. the Canadian

Building Code. CSA A13.3-(1994) and ACI 318-(1995). American Building Code. need

special consideration for high strength concrete based on this investigation to calculate

the developmeOl length. The proposed modification is to replace the current

E limitation stated in clause 12.2.3 of the Canadian Slandard Code to another

expression including if?: after taking inlo consideration some modification factor

response to main study parameters. to ensure that suuetural members designed using

development or tension length of the code would reach adequate levels of ductility before

failing.

5.5 Road Mecbaaisms

GOIO (1971) carried out a study to investigate experimentally the bond action

between concrete and defonned steel bar.>. The test specimens were axially loaded tensile

specimens. each a single bar embeded concentrically in a long concrete prism. The

pulling load was applied through the exposed ends of the bar. The cracking of concrete

was indicated by ink from special injecting holes. Afterwards the prisms were cut axially
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and the ink colored cracks became visible. Figure 5.22. It is widely accepted thaI the

physical-ehemical interaction between the interface of concrete and rebar thaI make the

bond stress arc due to adhesion. friction and mechanical interlock forces. The process of

stress transfer from rib to concrete occurs by cracking and crushing of the surrounding

concrele. Figure 5.23 shows separation of concrete ncar a primary crack for deformed

bars. as it is shown some of tension in the concrete is lost when a primary crack opens

ncar swface of the rebar. The deformation mechanisms thaI contribute to bond.slip is

classified into four types i.e.. clastic deformafions. secondary cracking (cone shaped).

longitudinal splitting cracking (radial). and crushing in frOnl of the ribs. Of those. it is

commonly assumed that secondary and longitudinal cracking are the most imponant

contributions. The influence of confining reinforcement improves the condition of failure.

When the concrete is well confined. the propagation and the width of spllning cracks arc

kept small so that the ultimate failure is caused by rebar pullout.

S.6 Bond Mechanisms of Higb nrsus Normal Strengtb Coacrete

The bond resistance mechanism for confined concrete near the rebar end loaded in

tension has been described in Figure 5.24. Eligehausen. Popov and Ber1ero (1983). This

mechanism reflected the behavior of nonnal strength concrete and under monotonic

loading condition. It is indicated that the bond behavior under increasing pull-out forces

follows the initiation of inclined cracks at contact points between the steel lugs and

concrete at relatively low stresses which is known as an elastic deformation process. A

secondary crack is formed when crushing of concrete in front of the lugs has started.

Shearing-off of an increasingly larger pan: of concrete keys between the lugs takes place
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until the keys are fully sheared off, Figure 5.24(c). After some frictional bond resistance

is left. the gradual shearing off of the concrete keys is possible only in well confined

concrete. where excessive growth of the splitting cracks can be prevented. It is commonly

accepted that secondary and longitudinal cracking are the most important causes to

failure of bond resistance.

The results of this investigation indicate that for specimens subjected to

monotonic axial loading. the behavior of the bond stress-slip would be nonlinear and

more brinle for high strength concrete. The recorded value for maximum pull-out force.

slip at maximum pull-out force. bond stress and nonnalized test results with respect to

Vi for each tested high strength concrete specimen are sho'WII. in Tables 5.16 to 5.17.

Figure 5.25 shows clearly that the bond stress-slip curve for IUgh strength concrete is

characterized by a sharp drop at the beginning of the descending portion of the curve. (t

would be reasonable to assume that the ascending branch of the curve represents strong

cooperation between adhesion. friction and mechanical interlock forces. Meanwhile. at

ultimate load. before the lugs cause crushing of concrete. adhesion in the interface loses

its strength rapidly. This will be reflected by a sharp drop at the beginning of the

descending portion. which can be estimated by approximately thiny percer-tage of

ultimate load. Then. friction and mechanical interlock forces will resist against the force

ofrehar. In this step. the bond stress gradually decreases and crushing of concrete in front

of the lugs will increase. The magnitude of the maximum slip at failure was estimated by

five times that of the slip corresponding to maximum bond stress for high strength

concrete. The behavior of the model explained above would confinn the ACI 3 t 8-(1995)
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assumption of unifonn bond stress distribution close to the ultimate bond stress in

reinforced concrete. Funher the failure that caused the rebar to pullout, happened at steel

streSs below yield strength.

5.7 Mode of Failun:

The failure bond mechanism of defonned reinforcement embeded in high strength

concrere is presented in this section. There are two types of failure mechanisms that are

known for the pullout test. The first type is splining of the concrete cover and the second

type is pullout of the bar by shearing, leaving a smooth surface. provided the concrete

cover is thick enough. There are several parameters which govern the mode of failure

such as: type of loading. confining reinforcement. concrete cover. rebar spacing. rate of

pull out, rcbar diameter. concrete strength and defonnation panerns.

The resultS of this investigation WIder a confinement condition and a monotonic

increase afthe load revealed that for high strength reinforced concrete the behavior of the

bond stress-slip was nonlinear-brinle. Also. the magnitude of the maximum slip al failure

of the bond resistance for high strength concrete was estimated 10 be five times that of the

slip corresponding to maximum bond stress. Therefore. the primary cracks have been

developed and surface cracks were observed in moSi of the teSied specimens.

The longitudinal crack at the surface of the specimen appeared approximately at

the ultimate load and the rebar failed by pulling out from the concrete. The role of rib

angle was significant. When the rib angle was small and the surface was smooth. the slip

can occur along the face of the rib. and the rib tended to push the concrete away from the

rebar. This wedging action can be a major cause of longitudinal splitting along the rebar.
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as illustrated in Figure 5.26. Failure mechanisms at the ribs of defonned rebars are shown

in Figure 5.27. The wedging action had a higher percentage of contribution in the failure

of the bond mechanism. Also. the result for the plain rebar test showed that the rebar fails

by pulling out from concrete. In addition. in the case of the unconfined condition. failure

occured in the plane of longitudinal axis of the rebar by splitting the concrete into twO

pans and at the same time a huge amount of energy was released.

5.8 Summary and CoaciusioD

The test results revealed that the maximum bond stress for high strength concrete

is higher than the corresponding one for nonnal strength concrete. However. the behavior

of high strength concrete is more nonlinear-brinle and it must be considered in modeling.

The predicted value for the maximum slip which leads to complete failwe of the hond

resistance would indicate that the value is estimated by five times the value of the slip

corresponding to the maximum bond stress. The internal concrete strain to some degree

of accuracy has been measured. The surface crack patterns have been ploned and the

mode of failures has been identified. The development of a new technique of strain

measurement around the steel rebar is unique and it can be useful to identify the imemal

crack panem and to predict possible failure modes.

The bond resistance of high strength C(Increte subject to the effects of the rebar

diameter and deformation patterns was examined. Several specimens with different rebar

diameters and rib geometries were tested. The range of the tested concrete compressive

strengths was between 78 MPa and 95 MPa. The defonnation patterns were examined for

rebar with nominal diameter of 25 mm and 35 mm. AU deformations for rebars of Series
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M7 were machined. An examination of the lest data reveals the following:

The bond stress-slip curve of high strength concrete is characterized by a sharp drop

of the level of stress at the beginning of the descending portion of the bond stress­

slip curve.

2. The area under the curve of the bond stress-slip curve can define the bond energy.

The bond energy should be used to evaluate the bond behavior rather than the

maximum bond stress.

3. The influence of confinement on bond is significant. especially after reaching the

ultimate bond strength. A method for selet:ting a suitable size of rebar confinement

is suggested.

4. The resuh of tests examining the effet:t of varying rebar diameter embeded in high

strength concrete indicates that the bond is higher for the smaller rebar diameter

than for the bigger one. The ultimate bond strength for 25 mm rebar diameter is

approximately IS percent higher lhan 35 mm rebar diameter. A sharp drop of bond

stress at the beginning of the descending portion of the bond stress-slip curve for

high strength concrete is confinned for all rebar diameters. The level of bond stress

det:reases by about 30 percent of total bond stress-slip at the beginning of the

descending branch of the bond stress-slip curve.

5. Results of the investigation regarding the influence of rebar spacing revealed that

the bond strength could improve by selecting a proper rebar spacing.

6. An investigation into the bond resistance subjet:ted to the effet:t of the concrete

strength concluded that the ultimate bond stress for high strength concrete is higher
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than the corresponding one for nonnal strength concrete. However. the behavior of

high strength concrete is more nonJinear and brinle. and it must be reflected in the

bond model.

7. The bond resistance increased approximately proponional to :If..

8. In the case of hi&h strength concnte the capaciry of bond stress is higher than the

normal one. Also. the strength ofbond depends on the concrete strength.

9. The relative rib area approach detennines onJy the effect of the rib in the ascending

ponion of the bond stress-slip curve and more anention should be given to the

descending ponion. The rib face angle. rib height and rib spacing combined with

the area under the curve approach arc more suitable to express the effect of rib on

the bond behavior.

10. It is recommended to consider the total behavior of the bond stress-slip curve for

evaluating the bond resistance of the high strength concrete with respect to

deformation panern. In this case the effcct of concrete Strength will be considered

automatically.

II. The most effective deformation pattcm for 25 mm rebar diameter and smaller is the

standard deformation pancm adopted by the Canadian code. For rebar diameters

higher than 25 mm a new deformation pancm is recommended for IUgh strength

12. A new expression for calculating bond stress based on the cubic root of concrete

strength is sUKieSlcd and the results are compared with similar equations of

different codes.
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_...

..." .. Di .COIl. diunder r, r. " I•- ~ -~, - mm """''''''' ~ ..,. ..,. .., ..,.-- IIfNN·I9-1 " 3$.1 160 111 '" '00 UI 10 1$.00 j.01 «8 lB.26
10 IltH"'.I'·1 " ),.1 860 III '" '00 UI 10 IUlll U, HI 2H.4<}....... IIINM·I'·1 " )5.1 160 111 70 '00 I." ,tI 111.011 US 4411 1',1$.12

1IINM·I'·1 " 3D 160 Il2 '" '00 I." III 11.110 VH 4411 244.S\I..- \IINM.• '.2 " JU 11M 112 '" '00 I.jl ,tI III,1XI US 4411 2H,24

MI ,.... .. IIINM·19·2 " lS.1 1160 m '" 100 I,jl '" IItl2 S.07 4411 2j2,\lj

HiilOl} eo...- IIINM·19· " H.1 Il60 Il2 70 100 1.$1 '" IIl.16 '-02 4411 122.111-- lfINM·I9·1 " 2'.2 41079 7l 7l LSI ,tI 11.70 4.97 44S 09.)6

10 lHNM·19.1 " 15.2 410 19 7l 7l 1.$1 ,tI 16.00 Ul 40 nul,l....... IIINM·19·1 " U,2 41079 7l 7l UI '" UI2 'tl7 40 n'IY
IIINM·I9-I( " 2S.:!: 410 " " 7l 1.$1 '0 IlU2 '.01 44'3SM'-- IHNM.I9-2 " 2U 41019 " 7l I.SI 10 1).6 U3 44' 3)l.49

10 !I1N"'·19·:!: " 2U 4101<J " 7l I.SI til IIl.61 >OJ U'3)I,I.21
C__

111N"'·19·2 " 2'.2 410 79 " 7l LSI 111 IU1 >OJ 44$ 1fI1.4\1
IHNM·19· " 15.2 410 1'.1 " 7l '" '" 1167 HIJ 44S ·m.07



~
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....ble ~.4· lJelall or Ihe Itsl 5 ~mens under monolontc lOaden (M4 M5,M6)

~... Invctlillllion Loadinl Spa:imcn Reb.. l:mbcIklcd R..e"r C,,"finin Ct_,CICSUellllh Yic'" Sleel
P~, HiI'Of} NOIllion U;~ Diarn. Arn Prom "t'Vel I..cnllh IA,un "bu C~ Ten,i'c Sucu Sunl

....."" A~'1IaI Oi . Con. tfilllllCCu r, r• r r.
~ .. _2 mill mm .. mlnllllin mm MP, MI'. MP, MP,

41INM.12.1 " 3D R60 112 10 II. I.SI ,. ,U, 3.91 ... 19.M
4IlNM·12·2 " 15.1 l\tIO 112 10 'OO I.S1 ,. 11.45 S.14 ". 211'MlI

COIlCmc M'_IIIM: 4ItNM.12••\ " 3D ll60 112 10 '00 1.)1
'" '1.45 S.26 '" 21111..lh

M4 Sm..... i, 4IINM·IH " )).1 ll60 112 ,. '00 I.SI ,. ..,. S.211 '" )11.6S

Tcn)iun 4ItNM·11-1 " 2S.2 ... " " 1J I.SI 10 51.61 H, 44' )44.31
4IlNM·IH " 2S.2 ..0 " " 1J I,SI 10 ..... S,1l '" .\II4.S'
41IHM·12·) " 1S.2 4111 " " 1J \.)1 10 'UI HI ... )1I4,SI
41INM-12.4 " ".2 ..0 " " 1J LSI 10 ..... ,." '" 401.'J-- SIINM·4.! " 3D 860 112 10 ,OO \.)1 10 86.S9 S.U ... 2)6.110

M' B. i, SHNM·4·2 " ).1 ll60 112 10 ,OO l.SI 10 ...... ).l)(l ", nU6
S,.,in, Te,lliun SllNM.4·1 " 25.1 "0 " " 1J ", 10 ODO s.n ", lSCUI

SHNM·4·2 " 2).2 ..0 " " n \.)1 10 92.61 S.211 ", 401.'1
6HNM·6-1 " lS.1 S60 112 10 '00 75." 10 ".00 S.III ". 21S.21

... of MtJnUIonic 6ItHM.b·2 " l).l 8611 112 10 '00 ..,1. ,. 81.4S S.14 ... 2K'MK

M' hll.-t " 6ItNM·6-l " )).1 160 112 10 '00 ...151 10 lUlU 4.811 ... 2604.13
Tcnlitlll 61fNM·6-1 " 1S.1 ... " " 1J 75.• 10 IlJO S.Ul 44' lII.91

6ItNM·6-1 " ".2 ... " " 1J ..,11 10 Il.61 S.Ul '" 366.7)
6ItNM·6-J " 1'-2 ... " " 1J ...151 10 UJU S.02 ... 26(UI



Table 5.5- Delai.. or Ihe lest s.. imens under monotonic loadlR {M7'

f>wr Investipaion I...oMlinl Specimu Rebu Rdlli~c Embedded hlcur Confininr Coo,:rCIC Slfcnglh Yiel<l Steel

P••meter ....., ........ 0;_ Diun. A,ea hrim Covu Rib Length 1...,.Illin ,... Com Tensile StlC~i StIr"

Nominal AClual A,n Dis .Con diamncr r, r" f I,

~ ~ ~l ~ ~ mm mmlmin mm Mr, Mr, Mr, Mr,
7HNM·14-1 " 26.68 620.00 IlHS 74.00 0.196 '00 151 " U.S 5,02 44M 05.94

lHNM·14·2 " lUll 620.00 IUS 14.00 0.167 '00 1.51 I<> liltS 5112 44M J71l.S7

1HNM·14·) " 26.811 620.00 84.0 14.00 O.llj II. 1.51 10 lO.lS S.U2 4411 )06.94

7HNM·14-4 " 26.H8 620.00 114.45 lUI) 0.100 '00 Ul 10 UIS S.lIl 4411 28\1.21

lI1NM·IH " 27,91 ....00 81.68 13.54 0.171 '00 Ul I<> 1I1'H 5.01 4482911,49

7IIHM·14·tJ " n.91 ..... 87.68 lJ.S4 0.146 100 151 10 Ill.lI] 5m 4411 lH.f11

7HNM·14·7 " 27,91 660.00 87.68 lU4 0,10'1 '00 1,51 10 112.56 ,.'" 4411 276.31

1HNM·IH " 21.91 ....00 87.61 1l.S4 0,102 'OIl !.Sl '" IIl.sa '.00 44ll 251.111

M7 .... Monulunic 1IINM·14.lj " 29.41 7OS,OO 92.39 12.19 0.131 '00 1.51 10 11'1.52 5.2U 4411 .1S7.11

DefOfmllioo " 7HNM·14·10 " 29.41 7US.l. 92.)9 72.19 0,112 II. lSI 10 119.S2 5.20 4411 }M.1I4

Paltem lenslon 7llNM·14·11 " 2'1.41 lOS.1ll 92.39 72.79 0,0114 II. I,SI I<> 86.B S.IO 4411 293.21

1I1NM·14-12 " 29,41 10S.OO 1ll.}9 72.79 0,067 '00 l.SI I<> 86.2l S.IO 4411 2J7.'111

7HNM· 14· II " l4.oo 860.00 106.81 70.S1 '00 I.SI " 74,7S 4.76 «' %.72

1HNM·14·14 " H.70 8tJl:1.00 112.00 70.00 V.16} 'OIl LSI 10 111.110 4.\lS 4411 253.49

1HNM·I().1 " 22.00 }80.00 69.12 76.SO 0.0117 1) LSI 10 ".M US 40 115.03

7HNM·IG-2 " 21.60 ,..'" 67.116 76.70 0.014 1) I.SI I<> "'" DS 44520\1.IIS

7HNM·I!).) " 21.40 }tJ(1.1ll1 67,2J 76.110 0.1156 11 I.SI III n,tM) S.211 .., 21.'U4

7ItNM·I!)'4 " 21.110 ]73.00 611.49 76.60 0.045 1) l.S1 10 116.70 S,12 44'i 2JK.'i2

lIINM·10-5 " 22.00 lIlO.OO 69.12 76.50 0.126 11 1.51 III 8("IMI S,IO 4451'J',l.24

7HNM·1U·6 " 21.20 J'illll) ".60 76.90 0.107 1) l'il I<> III'>(MI S,W 44'i

7HNM·1U-7 " 21.70 J7U,1 611.17 7665 tWill 1.' I ,.~ I I<> KtI.7U .~.12 44S 20JJ2

7HNM·IU-1I " 21.\10 ]76 tllI.1I1 7t1.SS O.Ol'lS 1) I.Sl ," 1111.79 S.III '" 2t12 ..1b

7HNM·I0-9 " l'i,oo 410 78.S4 1500 0.101 11 LSI 10 llti.tMI 5.10 '" lll4.51

7HNM·IO--IO " 2J.OO 410.00 72.26 76.00 11 1.51 " 90.1t1 'i.2) ,,' 91.'12



Table 5 6 Comparison of results for rebar with nominal diameter 35 mm
Cur.e I Specimen Rib Gt'O....lry Relall_e

"mb"l
SOlation ',bu I C'"''''~ I ,..k Boo' Slipal Hell.hll Rib:!

..b
Area Slrength Loali Slress , ..k

I Spacing ~rea

rc Pma:< l·ma:< S
mmZ "1Pa kS "1Pa mm mm mm

; ! 7~"'l·l4.j 6!O I &~.l~

I

t9Q.~O :1.6l 746
';:

56
1

:~.olO

I
v,i;;

~w.-;"'l·lol·7 6<>0

I

1:.~6 lll.36 1999 51? :~ olO IlI09

" i ·H"S\.I-Iol-l: 70S 86.l'; 161.78 17.80 S,6ol ~~: I jl,'S I 0,067

" I
~H"SM-l-l-'-4 '000 81.00 :18.00 19--17 6.Sj

S I s , 0.1t>:
I: ~H"S:"I.I-4.1j '" 7-4.75 &3.1& ~.76 3.07

, ~'>rl><ll'" SUn<Urd

Table 5.7- Comparison of results for rebar with nominal diameter 25 mm
Cu,,·c I Spc-c:imen Rib Getlm..uy RelatlH

"umber "01a1l0n Rebar Concrete Peak Bond Slipall Rib rib

I
.-\Tea Su-enlth Load Sl!ns Peak Height Spacing

rc Pma:< t:max S

MPa kS mm

0.OS6
0,1:6
0,101



:;

.aDle:".&-l..om nson 01 alllcrcPl CX res510ns lor DOno suene,ln lMIJ

"""" InvCSlilllioft """'II Specimen Compuison of 8000 StfCSS
p.,_. lIilolUf}' N......"'" S._ EII__• Rill .... AS,.,. ACJ·95 CSA'H l)wwincial.

(RilE) (EAR) (AUS' (ACt) (CSAj II)ARI

M'. M'. M" M'. M'. M'.- IIINM.I'I.I HI"9 5.3&1 6.011 6.002 5.IM "".. lltNM·I"·IA 5.559 ).251 ).IN U~9 5.lnl J.4114
T...... IIlNM·I".IU 5.55" 5.251 UN 5.159 '.001 HIW

1IINM-I'I·IC H5'J DH HN 5.U'I .5.110& Hll-I
M__

IIINM·19·2A 5.~5" S.257 5.174 HS9 '.001 .1.4114

MI I,,., .. IlINM·I'I·28 HH 5.llt9 6.021 6.0111'> .5.12'1 l,~47

lh_klf'y C_....... IIlNM·I'I.2(; ,... U27 5.9n '.006 '.12'1 HI1
M__

11lNM·I9-. H76 6.419 I.HI) 5.184 5.025 ),505.. IIlNM·I',I.IA 5.fl72 6.586 1.551 /1.0)1 USb H1'
T...... IIINM·I'I.1l1 UH 6.5n I.S01 '.006 5.12'1 H~7

1IINM·I'l·tC US) 6.551 1.507 '.006 S.I2'I U51- IltNM·19·2 S.621 6.494 "')4 UH ,."" l.nl.. I lINM·11)·2A M21 6.4'17 1.4)4 UH ,.... JlJ<
C_......... IIlNM·19·2U ~.621 6.4117 11.4)4 US) 5JIIWI lHI

11INM·I'I·2C S.621 6.4'17 11.04 5,955 ,.... l.nl
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Comparison or dltrl._....... _.... ~renl ex rC5Stoos lor oona sarene.ln (M4. M3 MOo'
G.... Invesli.1lioa l.oldin. Specill"len Comparison of Bond Slress

r.~ Ili~ Nut..iun S, alEsf~Rlllan ASl600 ACI.IIS CSA.\U Il"MWinelal.
RBE) (EAR) (AUS) CACI (CSAI (DARI
MPo Mr, Mr, Mr, M', M',

4IlNM· 12· I 4.HJ .c.1n 4.MJ 4.6JI l.llS4 }.1I)4

411NM·12·2 S.lIM H62 6,IOJ fI.0II1 S.IIII lS11
ClIllI'lele Muoollll\M: 4IlNM·f2.J S.ll\1 Bll6 11.241 6.22S DI6 .."M4 SlIenllh

"
4I1NM·12·4 HI6 UN 6.2&4 6.261 s.m l.6S1

Teu~lun 4HNM·12·1 4.Hl S.OB 6.SS9 4.631 US4 2.91'11
4IlNM·ll·2 S.672 6.S86 lI.m fi.(1)1 US6 Hl1
4IlNM·12.) S.1l14 6.US un 6.2M USI J.""
4HNM-l2.4 S.IIb) 6.1121 1.1l1tS 6.:W4 HIli l.102

...- SlINM·4.' UlIS S.OS 6.0n usa S.174 HM

M' o. m SIINM·4·2 S.I)6 S.6I2 U49 lI.l)) HOI ,....
S.,.:in. TUl>ion SIINM.4·1 S.ltiS 6.749 1.162 6.186 S.ll) HIlS

'ItNM·4·2 HI4 b.llS un 6.26S s.m ).611'
IIltNM·6-1 '.731 HI! 6.U1 6.141 S.144 J....

.~01 M~il: 6IlNM·fl..2 DOl H.2 b.lO) 6,11111 S.IWI Hili

M' Pull-illll
"

6ItNM.fl..J Hill S.ISII S.164 S.1411 .."" J.4l1
TeMioo 61INM·6-1 UI1 6.412 1.41S S.1I41 S,014 J.nII

611NM·6·2 s.m 6.4116 11,4)4 S.9S4 lOllS l.W
611NM·o.) UI2 6.412 11,4" l\l41 S.u74 ).m
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IludbondTable 5.11- e..... ..............._.._- ..- .... '-.................... .._.... ... .......
Groop I.uatipioll ....... SpKioMn T~' T~' T~' T~' T~' T~'

PM.fllrt« "..., NlIIllifln RBF. Wi AUS ArT" CSA f)"R

M_ lUHM·19·1 0.966 l.Oll 0.907 0."" HIli.5 154U.. IIINM·I"·I" 0.10'1 0.1st! 0.7116 0.7111 0.""" 1.291
T_ IIINM·I"·lti 0.62) 0.6," 0.'"'' 0.,..1 II.M2 0,9'14

IIINM·III·IC 11.7111 0.1211 0.1)\1 0.7-41 U.... 1.246-- IItNM.I"·2" 0.111 0,1.511 0.7611 0.7711 0.901 U,,~

MI I.... .. IIINM·III·28 0.111 0.11" 0.7}} 0.1H 0,1161 124S

lliMOf)' <-- 1I1N""-11I·2C 0.697 D.7l-' 0.657 V.oSI 11.102 I.lll- IHNM.I9-l 1.241 I.... 0.1l-4 I. III l.llS 1.9IS.. UlNM·III·IA 1.0\12 0.1140 0,124 1.026 \.201 1.13'
T_ IItH"".I9.IH 0."" 0.126 1I.6l7 (1.'1102 1.0Sl! 1.'22

IIINM·19·IC 1.019 0.110 0.617 0.'" 1.124 l.oW- IHNM·I9·2 0.9B 6.12.5 O.63S 0.902 I.OB Ulfl

to IIINM·I"·2" 0.971 0.... 0.652 0."2) 1.111I1 I.SSOC___
1IlHM·III·211 I.OSl 0,911 11,702 0.... I,IM l,fl7S

11INM·I"·2C 1.2S1 l,tlll9 O.lllI LIlli I.JIIlI !.lItH
odalO""'""'""M__.. of ~"f. 'III.K_...............,... ......

u. ln I'..I_ "OS ,,_ C...... A51OOO
"CI ' A(·lll.·IYn.OiA ..k, ... I·S"A!lll"'~.I.Ak ..k' ... Il..... ,..... ll'l't111'..1"......

~



Ilh'Ized bondrlllOnor5.13- C,

......._.
BlIt ........ £oI_ .... II US ....,III ........_I:.... AS.l6OO
ACI .."".ACI)II.IW,.CS In. CIA ... U) IW.. IJAIl ..I<,IOII.'......' 01 (lW.'IIJ ....._

._...................om ..._.................. .......-~.. ...... Olner DOna suess ex re5Slons (Ml MjJ
Groop Invtslililion """"' Sp«imcn 1c$l' T~' Tn" Tes," Tew' "c~t'

Parameler lillIOf)' Nnlalion iDE ... Am" ACf CS""A --nAIr

2ItNM·I-1 0.... l.(101 G.901 O.90l I.OSR I.m
UINM·.·2 0.'110 O.YSS (USS O.IlH Ultl) 1.4'1

MolII"'IIlK: 2lINM·II·) 0.'1110 I.on U.I,J211 0.922 WillI '~J

'" 2I1NM·'·" 0.... 0.711 0.642 0,604) U.7H 1,11111

Tu~jun 2IlNM·'·1 I."" 1.1Mb 0.016 1.14' un U12
M2 Coofinilll 2IlNM·O I.12S I.... 0,1120 l.t61 UnO 1.<,l4h

Rein'. 2I1NM·'·) un 1.0/2 0.7110 1.llM 1.2'*.\ 1,IlS'!
lUNM·...

"'....-- 2HNM·'·j UU 1.201 0.925 I.JIO l.B. 1.IIlS

'" lHNM·I.2 un l.UI 0.1116 1,1H 1.47tJ !.IO.l

t'unlp'usiull 21INM·'·) 1.215 1.IOJ 0.1134 1.1IIl Ul1 1.11)1

2lINM·I·4 O.llOl 0.11811 O.SH 0.1S4 6.IU 1.21U

."'" Monlllonic )HNM.I2·1 1.061 0.92) 0,'" LOll 1.1117 um
M3 Oi_mElc.

"
lIlNM·12·2 0.... n.utl IhH2 0.1'1' UI4Il ",1.5

IcnslOll )HNM.·12·} 0.778 0.1112 0.727 0.72'1 IUD Ul2._...~ ...:-.. ...-.. ......._....A._. _.__ ...-

E



M;ud bondrison ofc._ -.. ",om I. • 'V••••_.. __~••_ _ _ , •••,., ."

CiroIIp Invnd,llioll LII_inl Specimen Tal' T(II" T~$I' Tnl' Tt~' TeM"
I'llflmtter lIi..,"l NOla/inn NHE F.U A£rn ill CSA i'i'AM.

41INM·11·J 0.1156 0.91'>1 0.176 O.IN 1,02lJ 1.\77
411N"'·11·2 0.1711 0.917 U.•21 O.IIB 1),'HIl 1..1'11

CC*CIClc M,...*",,,, 41INM·12·} U.IlH o 11M) UNt O.N} IIlJ2. UH
M4 Slf'''I.h m 4HNM·I1·.( U!~l1 IU511 D.UK 0.11641 l.lll7 1.4H

'1',,,,,,11I 41tNM· 11· I U')l1 UOIi 1,11111I 1.417 1.611 21.12
4I1NM·12·2 l.l1'J2 l).'Ut1 U.724 I02f1 1.201 1,1.15
4HN~H2·} 1,1111 n.Ii!7 n.nl l.un I.I'M I,N~

4UNM·I2-4 D.1l14 0.114 1l.511h 0.1145 O.IlI\l 1.4411

M'NNllullil; 5I1NM·"·' O.7B 0.756 0.677 (I.tl7& 0.794 US,

MS Hilt in SHNM·"·2 0.11'>1 0.144 1I.1SS 0.7S1 O.nl I.JtJI

SJ*Wl. TCllw.... SHNM·4·1 0.961 0.111 0.612 0.19S l.lMR U24
SIINM·4-2 1.101 O.'JJ7 0.121 1.022 1.1% nu
6I1NM·6-1 0.121 D.'" 0.76) 0.767 0.11911 1)(17

Rlleu' M"II"lunk: 61INM-6·2 0.1711 IUn 11.121 IUB O.W1} 1.)')11
M6 ....11·111I1 ill 6IlNM·6·) 0,11I6 11.922 (1.125 0,1121 0.%\1 I.JU

Tell~illl1 6nN~H... I D,I'.l9 (I,In Q,lll 11.188 O.22U Ul17
IlHNM ..b-2 1,072 (1.'111 U.7U2 U.'IW l.lM 1,674
6IlNM ..b-) U.7~ o.n) 0.)1/01 0.714 U.II.l6 uno

oclalD _II... 'loin:_ u-._

U ...InID"'._oMllI US ..t." ......_ ...... C""'".....S*.,
.o.a ,dellD "'l'1 ) ••.• \I9).('s ,d., III l'Sil IIU .I·'we. ,,"11 ..1<, ........... <I" ,IW'I f..p••" .....

B



~

I.UI'C:: .;:1,1.;:1- .....U.OlNli.3U1I VI nV.III........... .,.,....... ~.. ... .... u ...."...u ..~"'•• ""... '"_.~.~, .... ,
Group Invclli,ation ....." Specimen T",' TUl" T",' T",' Tesl" TCil"

Par.metcr HiilOf)' Nul~jUfl RBE FAR --.ws ACi cs. ""5'AR

1UNM·14·1 1.2j6 1.1)9 0,895 un 1.390 2,003

1HNM·14·2 UJ91 0.9H9 0,118 1,0ll 1.201 1,140

1HNM·14-l O.IIBl O,BUI 0,630 0,lIl4 0.971 1,4UIl

1HNM·14--4 0.832 0.155 0.593 0,1111 0.921 1.3211

1HNM·14·5 0.8115 0,121 OMS 0,136 0.919 1,411

lIINM-14-b 0.911 091)1 0,119 0.9111 I.U15 1,~49

1HNM-14·1 0.821 0.160 06011 0,116 U.<,I(J9 1,3111

1HNM·14·11 0.141 0,6112 O.SS4 0.101 1l.K211 1,190

M7 R.,,", Mulltllunic 1HNM·14-9 1.039 0.9Bl 0,800 0.\169 l.llS 1M3

l>cf...-malion '" lIINM·14·1O I."" l.0ll) Olln 0.'" 1.1"1 IM9

P.tllcrn lenSllln 1HNM·14·JI D.812 o.lm 0.616 0,1119 U.959 lJ11

7IINM·14.12 0.110 0.616 0.5SO 0.661 0.1ll1 1,IIS

11INM·14·13 0.340 0.3511 0,312 0.321 0.)113 0,544

11INM·14·14 0."" 0.156 (1.166 0.1611 O.ll~ L291

1HNM·IO·l 0.494 0,416 0,282 0,4H II.SJS 0.182

1HNM·IO·2 0.510 0,4811 lI.ns 0.B6 1I.6211 UIlIIl

1HNM·IU·) 0.1611 O,MI 0,4211 0,114 U.ll.16 t.211l

1HNM-I0-4 0.101 0.605 0." 0.... 0.111 LIB
1HNM·IO·5 0.901 0.111 0,522 0,8.&6 O.~I I,HI

1IlNM·IO·6
lIINM·IO.1 0.599 osn 0,342 0,562 U.6SI1 n,1I52

lIINM·IO-ll 0.161 0,6B 0,," 0.111 U.IlJII t.2t1

lIINM·IO·9 U192 0.935 0.724 1026 1.211l 1.135

111NM·IO-10 0.214 0,2)) O,IM 0.255 1l.2'J1l 0.434

_, ·",I""oNoo1na1,u~bond.lft llflEI<I""'Ra:,.",,,,,__..P"""'"
EAR .. fel ... Ed....... ....a II AUS",", III A.,trol'.. C..... "S WIt
"Cl ..... IOACtll., 1'l'l:t.CS" 1<1.. III <'So' An J·19'Iol. nAR ",1« '" I"""',ne' a1111l'tSl EA,,"'".'''



Table 5.16- Slin, load and bond stress of tested s.- imens (MI. M2, M3. M4)
G~, InveM'1I3UOn Loadinll 'o=~ Slipal 'W Tesl SomW,ud

P:>nmcler Hislory :"OQUon ,.." """ Result TeslResuh", -.. MPa
IHt'lM_19_1 1.'1 271.00 ~4.IOO '.4~1,. IHt'lM_I9-IA 6.H !l1.00 19.470 4.499

T...... IHNM-19-IB U4 16780 14.980 3..u;~
IHNM·19_1C ,.'" !lO,J~ 18.780 ·U41
IHNM-19-2A 6.71 111.6S 19.510 4.~11

'" '" IHNM.I9-28 '" !17.S4 19410 441S

Hilt0'1'

C__

lHNM_I9-1C s,n 191.08 17.060 3.908

M_ lHNM-19-1 8.19 180.14 30.190 6.9~8

lHNM-I9-IA 9.61 IS1.6S 27,J.1,() 6,194

IHNM-19-IB Hl IH.4J U820 ',4!~

IHNM-19-IC '" 146.23 25.3~0 n63

IHNM-I9-1 '.~2 lJs.91 :!JAIO U'6

IHNM-19-2A S.12 13908 5.498

e-..-. lHNM-I9-1B 3.86 UO.61 25.890 5.919

lHNM-19-2C S.19 118.38 30.930 1,012

2HNM-8-1 1.01 23.J.I ~."22

2HNM.8-1 6."3 '.142

2HNM.8-3 17.~4 24.34 U36

IHNM-8-4 S.14 190.16 16.98 3.86~

2HNM_8-1 8.11 168.19 6.116

M2 Confimnll 1HNM·8-2 8,41 111.23 29.6S 6.833

Reinf. 2HNM-8-3 29.14

~HNM-8-4

2HNM_8-1 6.13 193,84 31.4~ "'"3.23 18S.54 32.~ 1.386

C.""" 1HNM-8-3 '" 186.17 31.93 7.161

2HNM·8-4 lIS.19 19.91 4.S18.- 3HNM-1l-1 1.29 112.67 24_89 H25

MJ Oiamc:w- 3HNM-12-2 ... 141.~~ 24.84 U11

1HNM-12-3 6.82 220.66 19.69 ....ll6

"HNM.12·1 6.89 68.530 6.120 .""
4HNM-12-2 6.9S 24&.950 '.008
4HNM-12-3 6.38 24l1.8.5O !2_l2O 4.934

M4 ,~"" 4HNM-12-4 ..'" 273.110 24.190 S.l89

4HNM-12-1 6.12 141.190 24.450 '.009
4HNM.12_2 9.18 1S1.6S0 27.)40 6.194

"HNM_12_3 6.92 161.240 ,.."" UOI

4HNM-12-4 8.81 141.210 24.4.50 S.359

·1'Ic>mIaIiud_ ........--"ID Vf

'"



Table 5.17· Sli • load and bond stress of tested 5DeCimens (MS. M6. M7)
G~p In\<eStipllon Loedins Sp«:imen Shp~ ...... TeSI SOrml-llud........, HiSleI")' Notation ...... '""'" R~11 TeslResllU"

S ,-
~ kN M"

MonolonlC SHNM-4-1 >.80 20USO 18.110 4.109

M5 B. '" SHNM-+2 8.78 244.810 2\.8S6 4.796

SplC"inl Tension SHNM-4-1 6.83 143.S40 24.8S0 S.S39

SHNM-+2 7.19 167.240 21.960 6.-401

6HNM-6-1 ,." 236.730 21.030 4.711

beof MOnolOn,c 6HNM-6-2 '.96 24,1150 22.ll0 '''''M6 PIlll-OUl '" 6HNM-6-3 '" 227.670 20.320 4,7S6

Tens,on 6HNM-6-1 >'>4 28.250 01.880 LlI7

6HNM-6-2 ,,. 150.360 2H90 5.11111

6HNM-6-) 7.111 106.8110 18.S30 4.2-13

7HNM·14-1 7.42 270.28 )0,750 7.00'5

7HNM.I4-2 7.63 234.71 26,710 6.119

7HNM.I4-] H' 1110.30 21,620 HS3

7HNM.I4-4 S.1I1 179.)5 li).380 ...,
7HNM.14-S .... 19""0 21.620 4,1158

7HNM·I4-6 5.23 216.22 23.730 SOW2

7HNM·I4-7 5.17 112.36 19.990 4.591

7HNM·l4-1 'OS 166.24. 18.210 4.182

M7 R•.., MonotOnic 7HNM·\4-11 '-93 2.51.76 26.710 5,1171

Deformation '" 7HN~14-10 7.112 238.62 2HSO 6,1)6

Pm= lCIIS,on 7HNM-I4-11 5.1) 206.71 2\.870 4.1151

7HNM.I4-12 ,.... 167.78 17.800 4.0211

7HNM-I4-13 '''' 83.18 7.760 1.842

7HNM-I4-14 6.53 218.00 19."0 4.49'9

7HNM·IQ.I 4.79 66.51 13.180 2.892

7HNM-IQ.2 '-.24 76.82 1S,480 ).)97

7HNM-1Q.3 4.12 99.12 20.120 ...
7HNM-I~ S.15 89.01 17.800 4.022

7HNM.IQ.S 4.21 113.71 22.550 S.I09

7HNM_I~6

7HNM_I~7 '''' 7S.23 15.090 '''''
7HNM.I~8 4.02 98.65 19.610 ".39S

7HNM·I~9 6.53 157.65 27.340 6.194

7HNM·I~1O 2."9 37.68 J'" 1.578

.~---
.
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Chapter 6

Bond Strength of High Strength Concrete
Subjected to Reversed Cyclic Loading

6.1 Introduction

The usc of high sU'Cngth concrete In developing slrcngth of bridges. tall buildings

and marine structures in seismic zones can offer many advantages. These stroctures 3fC

subjected to severe eanhquake motions and will undergo several reve~s of loading

during an earthquake. As a result. JOints in lhcsc struclUres are subjected 10 repeated

forces such as compression and tension. The gradual loss of bond can result in

penetration of y;e1ding mto the bond i1tIChorage zone. drastically diminishing the

effective development length available to absorb the yield strength of the rebar.

In general. limited infonnalion exists on high strength concrete behavior under

eltcitation loading conditions and in particular, for the bond behavior between high

strength concnm~ and rebar. However, the lack of sufficient research data for the

development of seismic design guidelines leads to Qver-design of lhesc SUUCtUR:S. In

'.7



addiuon. 3. study 3.1'1 the lo3.ding 3.nd unloading expenmc:n15 will help In ellplonng lhe

residual tensile strength and the associ3.ted suffness. Therefore. In this phase of the

rese3.rch progmm. the influence of eanhquake loading was modeled by cyclic loading 3.nd

the bond strength between high strength concrete and rebar was studied experiment3.lIy.

The aIm of this chapler is to present the experimc:ntal results of Ihe Inyesugallon

of the bond strength under cyclic load The Influences of tensile versus compressive

loading. amount of confined reinforcement. rebar diameter. concrete strength. 3.00 rebar

space under cyclic load were investig3.ted. Representative samples of the typlc3.1 bond

stress-displacemc:nt curves of different specimens ~ presented. The results are 3.n3.lyzed

3.nd some conclUSIons are made.

6.1 Test Program

Fifty five specnnens were tested and the delails of the specllTienS are described in

T3.ble 4-3 104-6 for different study parameters under cYl:lic load. The specimens were

tested in the designed steel fmme as described in Chapter 4. The test set-up includes 3.

MrS testing machine. which permilled the 3.pplic3.tion of a cyclic load. The bond length

of the rebars was 7S 3.ltd 100 mm for rebals with di;uneterof 2S :md 3S mm. respectiyely.

The high strength concrete surrounding the bond area was well confined by stirrups and

yenlca! reban. In 3ddition. the Size of specimen compared with the bond length was

adequate. Further. since the length of the rebar in the contact zone wuh concrete is shon_

Ihe recorded average bond slress may be considered as representative of a local bond

stress. The loading history was the displacement-controlled cycles.



The level of displacement at IWO steps affected the specimen. The larger

displacement provides more severe damage in lhc tested specJnlCn. Firstly. the level of

assigned displacement was less th.:an the damage level of bond strength to study imtial

response of the bond strength. Secondly. the specimen has been tested agam for the level

of displacement close to the m:uimum slip response to m.:a..... mum bond stress. to study

the strength degrndation and loss of bond strength. Since the applied lood was controlled

by displacement. the recorded displacements were identical 10 those of the controlling

actu:Jtor at the column tips. Furthermore. Ihe load cOlTCsponding 10 displacemenls was

not equal at both half cycles. Emam (1995). Osman (1998) :;md Popov (1984) observed

the same phenomenon earlier under cyclic loading. Typical values for m:utlmum average

bond stresses are compared with ACI 318-(1995) Building Code and the results are

summarized in Table 6.1.

6.3 The Test Results of Cyclic Loading

6.3.1 General

The behavior of bond strength between the rebar and the surrounding confined

concrete undcrcyclic load are plotted in Fig. 6.1 to 6.20. Most specimens are tested tinder

small and large cyclic displacements. Severnl aspectS of this lI1vestigation can be

observed from these graphs as follow: significant dcteriOf3tion in the bond capacity takes

place during the cyclic loading. Also. after one full cycle. the bond was not damaged

under small displacement. In addition. the bond damage was continuous under larger

displacement due to funher application of cyclic loading. Finally. the maximum bond

slress after the first cycle under the large displacement was significantly decreased.. then

".



the avenge bond stress reached roughly a constant value.

The mechamsm of bond under cyclic load can be described as follows: when the

tensile force 10 a rebar is increased and the adhesive bond between steel and concrete IS

broken. some frictional slip takes place before the full beanng capacity at a rib is

mobilized. After dislodging from the rebar. negatIve frictional resistance is developed.

accounting for some residual tension in !he rebaT and corresponding compressIon in the

surrounding concrete. Inelastic deformation in the viCinity of the ribs. mlcrocrackmg In

concrete. and release of shrinkage strains result in some permanent slip. its magnItude

primarily depending on the intensity of the previously applied load. For this reason cr.:tcks

formed during the tensioning of a rebar do not close completely after the removal of the

load. With repeated loading. the frictional resistance diminishes. resulting 10 a

detenoration of the stiffness of the bond me1:hanism. It should be mentioned that the

behaVIor of high strength concrete under cyclic load is slightly different from nonnal

strength concrete as reponed by Eligehausen. Popove and Benero (1983).

6..3.2 Cyclic Plots ror Load History Parameter

Fig.6.1 to 6.2 show the recorded bond stress-displacement response plotted for

evaluaung the effect of load history. At the beginning the Specimen IHND-19-5 was

under cyclic load with displacement of +1-3.75 mm for loading and unloading conditions.

then the range of loading was changed to +1·7.5 mm. The value of 12.6 MPa as maximum

bond stress for this specimen was recorded. After sevenl cycles the level of bond stress

dropped. Since the test was run under displacement control when the displacement

changed form +1-3.15 to +1-7.50 mm_ more severe damage was observed. During the
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revet'Sal pan of the cycle. the lugs press against the concrete whose resistance has been

lowered bl' the Inclined cracks created during the prevIous half cycle loading. Moreover.

the inclined cracks coupled with splining cracks along the concrete result In dcgr:adation

and reduction in bond capacity. Figure 6.2 represents the behavior of the bond under

t:yclic load for specimen lHND-19-8 with an embedded rebar diameter of 35 mm with a

t:yclic displacement of +/-4.2 mm. This figure indicates that at loading phase the

maximum bond capacity was realized after !he bond resistance reached peak slip due to

the Incre:lSC number of cydes. As a result. il is mdic,ued that the unloading and reloading

branches of these curves as well as the reduced envelopes depend on damage parameters

and it is a function of the load hiSIOry.

6..3.3 Cyclic Plots for Confining Reinforcement Parameter

The effects of confining reinforcement are eumined by testing of nine specimens.

Four of them have an embedded rebar diameter of 35 mm and the rest 25 mm.

respectively. The measured bond stress-displacemcnt response is plaited as shown In

Figures 6.3 to 6.11. The confinement of high strength concrete offers many :!dvantages

with respect to cOfItrol of the splining of concrete under the load bearing capacity. The

test results showed that both confined and unconfined specimens reached the: highest

possible bond level. The observed difference indicated that in the case of unconfined

specimens the: failure is of the splitting type. associated with a huge amount of released

energy and a few number of cycles are recorded. While. for confined specimens the

frictional pull out failure type was observed with a greater number of cycles. In addition.

it can be concluded that the confining rebar diameter also has an effcct on the strength of

lSI



Ihe bond dunng the cyclic lesl. The resuh of lhese expenmenls indicales that lIIere should

be some kind of rule for selecling the adequate rebar diameler as confinement. II has been

observed thaI Ihe main damage was recorded 3t lhe peak \'ahx: of large CJo'CIic

displacement. The Interlocking and frictional resislance of concre(e :are greatly reduced 011

the failure surface wllh respect 10 successive cycles. The behavior shown on thiS set:llon

of teSlS is notably differenl from thai shown by olher researchers for nonnal Slrenglh

6.3.4 Cyclic Plots for Rebar Diameter Parameter

In Figure 6.12 (he behavior of bond strenglh for specimen 3HND-l:!-5 wi(h

embedded rebar diameter of 20 mm is shown. The range of cyclic displacement was +1­

3.75 mm and (he maximum bond s~ss in the firsl half cycle was recorded 10 be 26 MPa

with sharp slope:. The movmg or rebar 011 peak load can be seen as a result of delerioratlon

of bond strength due 10 adhesion and fnclion. Also. it can be seen Ihal lhe bond stress IS

decreased due 10 further cyclic loads.

6.3.5 Cyclic Plots for Concrete Strength Parameter

The behavior of bond stress-<!isplacemenl response for specHTlCn 4HND-12-5.

4HND-12-6. 4l-£ND..12-7. 4HND·12-8 willi embedded rebar diameter of 25 and. 35 mm.

and the concrete stnngths or so. 80.90 and 95 MFa. respeclively are shown in Fig. 6.13

to 6.16. The influence of concrete: strength in load carrying capacily of local bond are

examined and the resullS indicale Ihat the bond resistance of high strength concrele under

cyclic load is more (han nonnal s~ngth concrete. This resuh is evident. comparing the



test results of the above spec-linens. Specimen 4HND-12-6. 7 and 8 has compressive

strength of SO. 90 and 95 MPa. respectively. These specunens Iolo'ere subjected 10 several

cycles of loading. while specunen 4HND-11-5 with complUSlve srrength of 50 MPa.

after the first half cycle the bond resistanee was reduced drastically with the Increase

number of cycles. In :KkIition. these figures showed that a considerable reduction In bond

s~ngth is observed when the displacement reached a malloimum value. In gene...l for

cyclic loading the compressive strength has a major effect on the bond sll'cngth. The

value of bond strength was affected by Ihe increases of the concrete compressive

strength. The maximum bond strength increase with the increase of the concrete strength.

It is suggested that in the recommended bond model in Chapter five. this effect should be

considered by a modification factor for innuence of dynamiC load. Funhennore. cl'c1ic

loading does not affect the bond strength of high strength concrete as long as the cydic

slip is less than the measured maximum cyclic slip for monotOniC loading. However. for

nocmal strength concrete. cyclic slip always results in a degradation of the bond strength

ilt any slip.

6.3.6 Cyclic Plots for Rebar Spacing Parameter

The behavior of bond Slress-displacement for specimen 6HN{).6.5 with

embedded rebar diameter of 25 mm and rebar space of 50 mm is shown In Figure 6.17.

The specimen is tested under cyclic displacement of +1-4 mm. The concrete compressive

strength of teSted specimen was 94 MPa. The reduction of bond resistance is observed

gfadually after the first cycle.



6.3.7 Cyclic Plot ror Rate or Loading Parameter

The result of invesllgauon for examining (he innuence of rate or lo.::admg IS shown

on Figures 6.18. 6.19. and 6.20 for embedded rebar diameler of 3.5 mm. All Ihe

specimens were subjected 10 tWO cyclic displacements al +1-4 mm and +1-8 mm. It is

evident thaI the bond stiffness for the case of low number of cycles the recorded

displacement are stable. On the contrary. there was a gradual reduction in bond sliffness

for the case of small number of cycles allarge displacement for all the three specimens. It

can be concluded thai a change in the rate of loading does nOl have any Significant effC(:1

on the bond su~ngth foc slip less than !he maximum slip ~on:ied ill. static test. The

results show thai the loading rate does significantly innuence the bond behavior of

deformed rebar.

6.3.8 Comparison or Test Results with Code

Local bond stress displacement response has been studied under cyclic loading.

The maximum bond stress. normalized bond SIrCS5CS With respect to the cubic rool of

compt"CSSlVe strength of concrete and also with ACI 318-(1995) are !IIu51r.1Ied in Table

6.1.~ resull or a comparison belween nonnalized ICSt results and ACI Building Code

indic'l.Ies that In most or the cases a good agreement was realized between the

experimental and theorelical results. Therefore. laking into consideration a normalized

bond stress with respect to the cubic rool of concrete compressive strength for high

slrength concrete is highly recommended.



6.3.7 Failure Mechanism

Scv~ral p3r.1m~ters such as the concrete strength. bond length. and lhe relative rib

area have significant effects on the growth of the crac:k. In the miljonty of speClnlens

te5led. lhe development of craclting was found 10 follow a similar pattern. as shown In

Figure 6.21. Ct"3Cking becomes firsl visilHe near the peak load ;tfter a large displacemenl.

Typically. at [he mouimum displacement of the firsl cycle. tnlCks were formed along the

line of the reinforcing bars, and the bond stress dropped significantly. As the number of

cycles was increased. additional cracks were formed across the width of the specimen,

and the existing cracks widened. AI the low bond stresses. inclined cracks were

propagated from tip of the ribs. Transfer of forces across the interface between concrete

and steel occur and are caused by bearing and adhesion. The loading and unloading

pallern was repealed until severe dcgntdalion occurs. The type of failure for all

specimens. which had confining reinforcement. was a pull aul from the concrete prism

while the prism remains togethcT. As ultimate bond SIl'CSS was reached. shear ct"3Cks In

concrete between ribs were fonned and propagalcd until the concrete was sheared.

The splitting type failure occurs when the crxks now from lhe COOt3C1 area of the

rebar reach the surf3Ce of the high strength concrete prism. and in the absence of ct"3Ck

confinement split the prism in sevenl pans with the release of a huge amount of energy.

The splitting failure is initiated by the wedging action of the ribs as the rebar moves with

respect to the concrete. The ribs create sufficient radial force components thai split the

concrete. Splitting is characterized by planar like cracks in planes radial to the axis of the

rebar.



6.5 CONCLUSIONS

II can be concluded thai strength and defonnation char.lCtcristics of hIgh strength

concrete structures ~ highly dependent on bond slip behavior between rebM .md

concrete under cyclic load. It has been shown that significant deterioration in the bond

capacity takes place during the cyclic loading. The lest result indicates thaI an Increase In

cyclic displacement will lead to more severe damage. The slope of the cyclic bond stress­

displacemcn! curve could describe the influence of bond suength. It is revealed that the

maximum bond strength increases wlIh the increase of the concrete: strength. Cyclic

loading does nOI affect the bond strength of high strength concrete as long as the cyclic

slip is less than the maximum cyclic slip foc monotonic loading. ll\e average bond stress

reached roughly a constant value thai can be a.ssoci:ned with an internal frictional force.

The behavior of high strength concrete under cyclic load is slightly different from that of

nonnal strength concrete. The mfluences of several par;unete~ such as the load histol")'.

confining reinforcement. rebar space. concrete strength. rebM Size and roue of loading

were investigated. It is concluded that these parameters have a significant role In me bond

strength. It has been concluded that suength of concrete. rib area and bond length have

notable effects on the crack growth. In the majority of specimens tested. the development

of cracking was foond 10 follow a similar pattern. The type of failure was pull Ollt for

specimens with confining reinforcement under a considerable number of cycles. The split

type for unconfined specimens includes a low number of cycles.

,>6



j_i j5S:5.:~~~~~~:
•

! .:.! ,
C c

:3 f r
~ j i!

= 5= <l! ..=
:; , i



~O -

~

ff---c-;,"""""-,,",,,:~~
]. ,

-Spc:o;'men: IHNO·19·S.
DIsplacement: .1- 3.7S mm

······Spc:o;'mCf\:lHND·19·S.
•20 T DlsplKement: .1- J.SO mm

Displaeflllenl,ftul'I

Fig. 6.1 Bond stress-displacement response curve for
specimen IHND·19·5 with embedded rebar diameter of 35

mm under cyclic load

-10 Spc:o;imen: 1HND-19·8.
Displacement: ./- .&.20 mm

-Specimen: 1HND-19-8.
•20 Displicemenls ./. 4.20 mm

Fig. 6.2 Bond-displacement response curve for specimen
IHND-19-8 with an embedded rt:bar diameter of 3S mm

under cyclic load
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Fig. 6.3 Bond stres-displacement response curve for
specimen without confining rebar and embedded

rebar diameter of 35 mm

IS-

·0 .15

-Spelamm: 2HND·g·5.
Displac:emmt=+/-J.lmm

-Specimm: 2HND-8-5. '
Displac:emml= .,..,.;. mm i

Dtsplutllwnt,mm
Fig. 6.4 Bond stress-displacement response curve for

specimen 2HND-8-5 with confining rebar diameter or 10 mm
and embedded rebar diameter or 35 nun under cyclic load
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-lOt
-IS -

I
·20"'-

Spec,men:2HND-8-7.
Displacerncm",./-4mm

...... Specimen: 2KND·g·7.
Displacemem .. • ,- 9 mm

Displlumtfll.mrn

Fig. 6.S Bond stress·displacement response curve for
specimen with confining rebar diameter of 20 mm and an

embedded rebar diameter of 3S mm

"
!o-

,,-

Firstc:ycle

. - SpecImen: 2HND-8-8. i
Displxcmcnl" ./- s.s mml

Displaetmrat. mm

Fig. 6.6 Bond stress·displacement response curve for
specimen 2HND·8-8 with confining nbar diameter of 25 nun

aDd embedded rebar diameter of 3S nun under cyclic load
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-10 +,-----=---,--=::-c:-:--
:: SflC'Cimen: !HND·1 ~·S.

-15 ..: OisplxemeTll_+l.::.5 mm

Fig. 6.7 Bond stress-.displacement response curve response
curve for specimen without confining rebar and an

embeddd rebar diameter of 25 mm

-20':

Spec,men:2HND-8-6.
Displxemcnl" +/- 2.$ mm

•••• Specimen: 2HND-8-6.
Displacement: +1- 2.5 mm

Dlsp,-"_t.lnm

Fig. 6.8 Bond stnss-displacement response curve for
specimen with confiDing rebar diameter of 10 mm and
embedded nbar diameter of 25 nun under cyclic load
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-15 +
_20 1

.,,­
-30-:-

- Spec,men: 2HND-8-7.
D,splacement=+I-J.5mm

······Spec'men:2HND-8·7.
Displacernentc +'-6,5mm

Displuemml,lIlm

Fig. 6.9 Bond stress-displacement response curve for
specimen with confining rebar diameter of 20 nun and
embedded rebar diameter of 25 mm under cyclic load

30-,,­
~o -

Specimcn:2JiND.8·8.
Di5placement=+'-5.jrnm

- Speeimen: 2HND-8-8.
Displxo:mcnt .. +/. 10 mm

DIs,,","mefll..lIlm

Fig. 6.10 Bond stress-displacement respoost curve for
specimen with coDfining rebar diameter of 2S nun and
embedded "bar diameter of 2S nun under cycUc load
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I -Specimen: 2HND-8-9. :
Displacemem_+'_5.5mm I

DiqIlace_t,m..

Fig. 6;,] 1 Bond stress.displacement response cune for
specimen without conrmement and embedded rebar

diameter of IS mm under cyclic load

Displacemtllt.,mm

Fig. 6.12 Bond stress-displacement response curve for
sp«irll«n 3HND-12-S with emHdded nbar diameter of 20

mm under cyclic load



.
10 t :-Spec:lmCn: 4HNO-12-6. !

·IS T i Displaccmcnl .../·3.7Smmj

.20 +: ..... ~:::~C~~~;.l ~:~·mm i

;

DispUl<:eft>Cat.lQm

Fig. 6.13 Bond stress.displacement response curve for
spcc:imea 4HND-12·6 with embedded rebar diameter of 3S

mm under cyclic load

20-

: -Specimcn:4HND-12·7. I
Displaccmef1I" ./. 3.75 mm I

...... Specimm; 4HND-12·7.
Displaccmcn! = +/_ 7.50 mm

DillplaCllmeDt.1Il1ll

FIR. 6.14 Boad·displacement response curve for specimen
4HND·12·7 with concrete strength Of 93 MPa and embedded

rebar diameter of 3S mm under cyclic load
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"

Specimen: 4HND-I2-S. I
Displacemml"+f-3.7$mm I

-~;::~:n~;_I~~8~m I

Fig. 6.15 Bond stress.displacement response curve for
specimen 4HND·12·8 with compression strength of 90 MPa

and an embedded rebar diameter of 35 mm

h
IS;'

10'"

,t

.,
Specimen:4HND-I2-S. I
Displac:eme11l ••'-3.1Smm!

Disp6a.._l,mm

Fig. 6.16 Bond stress-displacement nsponse curve for
specimen 4HND-12-5 with concrete strength of SO MPa and

an embedded rebar diameter of 25 mm
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-20 r
I

Specimen: 5HND-4-4,
Displacement = +/- 4 mm'

··Specimen:5HND-4-4.
Displacement .. +/- 4 mm I

Uuplacemenl.mm

Fig. 6.17 Dond stress-displacement response curve ror
specimen SHND-4-4 with embedded rebar diameter or 2S

mm

-0

-" -Specimen: 6HND-6-1.
Di~placement,. +'- 4 mm ,

······Specimen:6HND-6-1. '

;-~.=-~~~

DispiacelMnt,mm

Fig. 6.18 Bond stress-displacement nsponse curve ror
specimen 6HND-6-4 with embedded rebar dlameler or 35

mm under C)'clic luad
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-20-;,

SpeClrnuo:tiHND-6-S.
DIsplacement .. • I·.,j mm

•..... SpeCImen: 6HND-6-S.
0l1pllll:tmet\1 " +/.1 mm

Displace..... mm

Fig. 6.19 Bond stress-displacement response curve for
specimen 6HND·6·5 with embedded rebar diameter of 3S

rom under cyclic load

~o -

IS-

==':;'~~ml
...... Speamcn: 6fiND..6.6. .

DtsplKemcnl" ./- 8 mm !

Fig. 6.20 Bond stress-==,;;~:tresponse curve for
specimen 6HND·6-6 with embedded rebar diameter of 35

rom under cyclic load
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llIND-19-6

Fig. 6.21 Specimen IHND·19-6 aftercydic test

'68



IHND-19-7

Fig. 6.22 Apparatus ror cyclic tesl
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Fig. 6.23 A specimen without reinforcement as confinement after cyclic test
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Fig. 6.24 Specimen 6 HND-6·S after tesling and crack pattern
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Fig. 6.25 Specimens with rebar diameter of 35 mm after cyclic test
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Chapter 7

Effect of Bond on the Tension Stiffening of
High Strength Concrete

7.1 Introduction

Failure of reinforced high strength concrete structures is inttiated in many

InSlances by cracking of plain concrete through the aggregates. resuhing in a smooth

fracture surface. bond fesislance. crushing and rebar yielding. However. for rational

calculations using nonlinear finite element :malysis. II is necessary to include post-

crnck..ing resistance of high-strength concrete rOt" accun.te predictions of dcflechon. crxk

width. bond lJ'anSfcr and shear tnnsfcr phenomena. and tensile stiffening of c~tc

between cracks.

In developing a useful numerical model. it is essential to provide not only the

constitutive relationships to describe the behavior of the steel and high strength concrete

material. but also [0 establish the model and relationship for bond-slip to reflect the real

interaction between the twO rnalcrials. The ABAQUS finite element concrete model is
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based on the assumptIon lhat the strain of the concrele and the steel are the same at

sectIons under the m'lJomum 100ld. Good bond between the steel and the concrete IS

reqUired to ensure that the assumption of strain compatibility is reasonably accurate.

However. the experirnenl3l phase of this study showed that relative displacements do

occur between the steel and the surrounding high strength concrete. i.e. the bond between

reinforcement and concrete IS inelastic. It is also indicated that high strength concrete IS

briule in tension. hence. cracking is expected when significant tensile stress IS induced In

a member. Reasonable steel reinforcement ratios can be used to provide the necessary

tensile strength to the concrete member. The behavior of the bond between steel and

concrete is inelastic and also brittle at peak loading condition and it is necessary to couple

both material componenlS In the best possible way. Numerous kinds of constitutive laws

eXIst to model the bond between concrete and steel. The influence of the bond on the

global stiffness of the structure has to be considered for analyzing a structural problem.

Also. the influences of bond Stresses and cracks can be de:tennined indirectly from the

state of stJains of concrete. However. for modeling the bond between reinforcement and

high strength conCft:te. the fracture energy approach in conjunction with bond energy.

biaxial fail~ envelope and tension softening were applied to investig:ue the high

strength reinforced concrete model.

In the early study. Gerstle. lngraffea. and Gergely (l982), the finite element

method was combined with nonlinear fracture mechanics concept to study the tension

stiffening effect in tension members. Since the finite element modeling of concrete must

consider the effect of the rebar/concrete interface. the present investigation adopted a new

materiaJ model for plain high strength concrete introduced by Hussein (1998), the bond
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cncrgy approach that is defincd in the carly chaptcr and also the fracture cnergy conccpt

to Improvc the matcrial model to represent thc tcnsion stiffcmng effcct of high strength

COOCTCtC. The ncw material model is implemented in Ihc UMAT subrouune for use wilh

the ABAQUS finite clement program..

In this chapter the matenal model used in thc ABAQUS finitc clement program

for concn:te is reviewed. The new concept of material model for high strength reinforced

concrete is cJ.plained. It will be followcd by the implementation of thc ncw material

model for high strength reinforced concrete in the UMAT subroutinc for use in the

ABAQUS finite element program. A sensitivity analysis of bond strength with respect to

thc selccted study parameters was used to detcnninc the share of cach parameter to the

total capacity of the bond strength. The influences of thc study parametcrs on the

calculation of tension stiffening are cvaluatcd. The par:unctric study will be used to

improve the numerical model for the bond between TCmfon:emcnt and high strength

7.2 Fradun Energy aDd High Strength Coocnte Model

Sevcral researchers ha~ reponed that the failure of the bond between rebar and

concrete is splilting type. Clark (1949). Hadjc-Ghaffari el aI. (1991). Darwin and Graham

(1993). Since thc bond failure is splilting type. fracture mechanics can be applied to study

the problem of splitting of high strength concrete which Icads to a loss of bond in

reinforced high strength concretc members. Thc micro<rack and the crack propagation

phenomena in the case of a uniu.ial test are well described by Hillerborg (1985), and it is

CJ.tendcd for high strength concrete by Mattouk and Chen (1995).

176



7.2.1 Fracture Energy

"The softening response is initiated when [he eoncrete Starts craclong. due to

mcreasing loading. in tension or low confined compression in triaxial tests. In direct

tension. (Mode I type cr:lCking). the postcrack behavior was treated with iI bntlle fracture

concept proposed by Hillerborg (1985). The frncture energy required to form iI unit ill'ea

of crnck surfilCe. G f • is assumed to be the material property. This value can be calculilted

from integraling the complete stress-displacement curve. as follows:

(7.11

where [, is a function of tensile displacement tensile stress 6,. O_.. IS maximum

tensile effective (cracking) displacement when [, reilChes uro at the end of the tension

softening branch. The expression foc G, can be reammged and expressed as a function

of iI stress-strain law. which is mort common in the descriPlion of engmeering milterials.

Thus. WI is defined as the fracture-energy density (or work per unit of volume)

dissipaled by cracking. expressed as follows:

W, :~=r- f,dE, (7.2)

where the tensile Slress!. is expressed in terms of tensile strain E, :E-... is maximum

tensile effective (crncking) strain when j, reaches zero at the end of lhe tension softening

branch: to remain constant before and after cracking. The variableW, represents the area

under a suess-strain curve of concrele in tension. Hillerborg (1985) pointed OUt thar..
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unlike metallic materials. the energy absorbed by plain concrete members In tension IS

mainly assocIated wllh the descending branch In tension. Concrete damage consists

mamly of cracks perpendicular 10 lhe principal tensile stress and the tensile stress­

displacement curve IS not dependent on stresses in any other directions. In addillon. lhe

Independence of the tensile stress-displacement curve with respeC1 to specmlCn shapes

allows one (0 usc G
j

for 3tly Iype of structure. Manouk and Chen (1995). In addition. It

is concluded that the softening behavior of high strength concrete is unique and it is more

brittle. Also. Ihe fracture energy of high strength concrete was eSlimated to be abom five

times the area under the ascending ponion of the stress-deformation curve. compared to a

corresponding value of 10 estimated for normal slfength concrete.

During the tensile test. energy is absorbed inside and outside the fracture lone.

The fictitious crack model defines Ihe energy absorbed in the fracture zone Of fictitious

~k",

(7.)

Thus. (1, is tensile stress. U f 15 additional deformation and G f is the absorbed energy per

unit crack area fOf' complete separation of the crack surfaces. This absorbed energy IS

constant for different specimen heights in the a, - UI space. It is nalUral to monitor the

softening in terms of the fr3Cture modulus £•. which is lhe slope of C1, - Uf' Figure 7.1.

The mapping between Ihe crack opening displacement rate. du f • and the equivalent

tensile fracture strain rale. de f' leads to lhe definition of h,. The value of hi denOtes the

height of the elementary volume normal to lhe crack band as shown in Figure 7.1. The
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degradation of the tensile strength, C1" is then controlled by the fracture strain, E.,

which is expressed in terms of du I = h,dE f .

a. a
~

tO~hI!
! '-..1
,===lA,
I V !
-'-'_!,
-b-,- ", "f

a a

,Q ~
a·f

ai LI

!
-b- e, e,

Fli. 7.1 Composite fracture model for tensile cracking (Hussein 1998)

The definition of the fracture energy based strain.softening modulus is:

(7.4)

In this case. h, is used for the evaluation of the softening modulus:

(7.5)

Consequently, the definition of the strain softening modulus.E, . depends on the
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geometry of the elementary volume. There are different types of description for the

unia;\ial strength degradation In the post peak zone. mcluding linear and bi·linear

expressIons. In all expressions. thc area underneath the stress versus crack openmg

displacement curve. in direct tension. is constant and it IS referred to as the fracture

energy. G~. The frxture energy, in direct tension. was established as a matenal prnpt'ny.

In the ElSe and Willam model (1994). an exponential expression is adopted wlth:J

best fit of the Hurlbut (198~) direct tension test. The expression related the cr:Jd: defined

as total change of length in the crack process zone. to the crack width at complete rupture

a, =f. ".( -,,;:-]

where w. is the rupture displacement and w, is the crack opening displacement.

7.2.2 Biaxial Failure Ennlope (or High Strength Concrete

(7.6)

The softening response is initiated when the concrete starts cracking. due to

increasing loading. in tension or low confined compression in bt:uial tests. At this stage.

the material can no longer be assumed intact. This mechanism. at low confining ~ssure.

can be assumed to be contrOlled by the degradation of the cohesion parameter. c. where

-IScSI. When c= O.the material is considered to be completely fractured and it

exhibits only residual friction similar to cohesionless material. Else and Willam (1994)

used the model proposed by Willam et 011. (1984) to model the post-peak behavior of

The model that is used in the current work is based on the biaxial failure envelope
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developed by Hussein (1998) and is based on U1e expenmental testing conducted at

Memorial Univenny of Newfoundland. It has been proved that the strength of concrete

under biaxial compressIon is higher Ulan under uniaxial compression. The btaxlal

strength envelopes were determined for four types of concrete including normal strength

concrete. high-strengUi concrete. uher.l. high-strength concrete and high-strength light

weight concrete. Figure (1.1) shows biaxial strength envelopes for the four different types

of concrete under combined tension and compression. biaxial tension and biaxIal

compression. The relationships betwccn the normalized principal stresses and Str.l.lnS at

failure for high strength concrete were given by Hussein (1998) and are shown on Figure

7.3. It was also proved that the strength increase under biaxial compression was

dependent on the biaxial StreSS ratio. The ratio of 0.5 for a biaxial stress for the maximum

biaxial strength has been specified for high strength concrete. Furthermore. it IS noted

that in biaxial compression. as the minor principal stress is increased. the proponional

limit is also Increased.. A major case for the nonlineanty of the stress strain curve fOf

concrete is internal micro cracking. The micro cr:acks begin as bond cracks at the

3ggJegate-monar interface. and propagate through the manar mix to cause failure.

In the biaxial compression-compression tests. It was observed that failure of the

spectrnen was due to formation of tensile splining crxks in a plane parallel 10 the

unconfined planes of the specimen. Moreover. it is indicated that under different biaxial

compression loading combin3tions. the results show that the introduction of a second

principal StreSS significantly affects the effective elastic modulus of a concrete specimen

in the direction of the first principal stress. The strain. at a given stress. in the major

principal stress IS induced by the presence of a minor principal stress. This indicateS thai
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Ihe sliffness of the concrete specime:n increases in the majOr principal direcuon as the

minor principal streSS is applied. II IS imponant to emphasize that the ch<lnge in the

elastic module is not solely due to the Poisson's effect: It IS also related to micnxrac:k.

confinement. This was observed for four different types of con~te. Also. in the direction

of !he larger principal stress. the strain al ultimau: load Increases as the failure stress

increases.

7.:%.3 Relationship between Teosion and Shear Fracture Energy Release Rate

The applied material model for plain high strength concrete is based on Hussein

(1998). The model assumes that the failure mode is strongly dependent on the level of

confinement. For example. the case of the direct tension test produces a single discrete

crxk. with a f:lirly brittle post-peak response with the strength dropping to uro at the end

of the load displacement curve. On the other hand. triouial com~ssion tests with a high

level of confineme:nt [Hurlbut (1983). and Xie et al. (1994») develop distributed micro­

crxb within the specimen and the strength does not drop to a zero level. Thus. the

specime:n exhibits ductile hardening or. In the limit. perfcetly plastic response. Therefore,

we can assume: that there is a zone In stress space which defines the transition between

brittle and ductile failure behaviQT.

It should be noted that in the lriaxial loading cases. lhe strain softening becomes

more complicated. However. there are still common features in !he strength degradation.

Based on the lriouial test results of high strength concrete conducted by Xie et al. (1994),

the concrete under lriouial compression experiences strain-softening after the minor stress

reach the peak. The slope of the descending curve becomes smaller and smaller as the
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strain increases. There is a stress level at which the slope of the descending curve

becomes insignificant. It is called the residual strength. ElSe and Willam (1994) assumed

that the residual strength is reached when a purely frictional resistance. whIch

corresponds to a zero residual value of the cohesive parameter. dominates the strength

c. =0. Thus the residual Strength envelope becomes:

3[pr(8)] m. [ Pr(8)]n a .p.e.CI=2~ +1: a+--;;;- =0 17.7)

The governing mechanism that cOnlrols the degradation of strength. is the

decohesion measure thaI is an independent strength parameter. which is accompamed by

the friction hardening 15 a dependent strength parameter, The relation between the

decohesion and the uniaxial tensile strength /, is expressed 15:

n.8)

where a, is lhe dcgnding tensile strength. The associated frictional hardening parameter

is related to the value of decohesion as:

",""",.-(m.-m.)c, (7.9)

This expression is derived from the condition that for (':::I_m:::m._ and for

c-=O -+m:m •. As a result. the intermedlate softening surface is defined by

J[pr(8)]- m. [ pr(8)]
F(C1.P.8.c):::""i~ +7 a+-.:p;- -c,=il (7.10)

In order 10 capture the pronounced softening response at low compression. the

fracture model for Mode I type tensile cracking is extended to the Mode [J type shear
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fraclu~, From e"periments. II IS known !hat lCnsi1~ splitting in compression as well as

sh~ar is preceded by distributed rrucrocracking, and thai !his mlCTOCrackmg is more

imponant for Mode II than for Mode 1. Hence, the cmck surfac~ In mode II can be

interpreted as a multiple of Ihe one in the direcl tensile C3.SC. Fraclure en~rgy Similar 10

the one developed for lensile cracking can be used in order 10 maintain constant fraclUre

energy release between the surface and volume of the failure process:

(7.11)

where the fraction A, f V represents !he microcrack density in compres.sloo. Here, h~ is

called -Kauge length" or the: -equivalent crack spacing' for cases other than direct

t~nsion. C f IS called !he -equivalent tensile fracture strain", and is used 10 manllor the

degrndalion of the mUlai strength envelopes. The measure of the incremental equivalenl

tensile fmclurc strain is suggesled as

C7.t:!)

The McCauley brackets < >, eUnK:t the lensile components of the pnncipal fracture

The crack spacing. h, can be evaluated approximately in terms of the mtio

between lhe fracture energy release rate in tension G; and that in shear G;. From the

equivalence of strain energy in splitting compression it can be assumed chat

(7.13)
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The crnck spacmg in compressIOn and in tension h, and h, can thus be related by:

v C; V G:
h':;:=Gi{:;;=Gf'" (7.I.l)

The ratio G; IG: represcnts lhe lOuio between equivalem compressive crack

surface and the direct tensile leSl crack surface. As adopted by ElSe and Willam (1994).

this ratio can be described with a quadratiC polynomial in terms of the hydrostallc stress

~:A[C1- f, 13]'+.[a- 1,13]: +1
Gf I. I.

where A and B are calibrated from the low and high confined compression tests.

(7.15)

According (0 the non-associated now rule. the failure potential Q, is obtained by

volumetric modification of the yield surface in the softening regime in Equation 7.9.

,[pr«(J)]" I [ pr«(J)]Q<a. p .6.c.. mo )sz L +7: mo +m---:]"6" -c,=O (7.16)

where the: derivative of the dilaWlCy measure m Q is defined by

-a+/, 13
.t:--I.- (7.17)

D. E. and the material paralnt:ters come from experimental investigation. These malerial

and G parameters are calibrated (or the cumnt model based on e~perimental results of

Hussein (1998).
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'.3 Principal Features or Tension Stiffening Behavior ror High strength
Concrete

The stiffness of a reinforced concrete member depends on [he capilCity of the

inlaCt concrete [0 resist OU1y internal tensile forces betwttn adjacent cracks. This effect

known as tension stiffening. has been considered to improve for high strength concrete.

The following objectives were contributed with the development of tension stiffening

effect for high strength reinforced concrete.

(i) Bond energy concept

(ii) Tension softening of high strength concrete. Manouk and Chen (1995)

(iii) New material model for high slrCngth concrete that was implemented by Hussein

(1998).

'·)..1 The Effect of Bond Energy on Tension Stiffening

The load history. confining reinforcement. rebar diameter. rate of loading. rebar

spacing, concrete strength. and rebar deforma!ion paUern are the main study variables

regarding the bond slrCngth that have been investigated uperimentally and the results are

summarized in the early chapters. The relationship between tension stress and strain for

plain high strength cOnCTete. known as tension softening has been reponed by Marzouk

and Chen (1995). The complete curve of bond stress slip for high strength concrete has

been captured in the experimental phase of this study and the results are reponed in

earlier Chapters. The concept of bond energy has been defined as the area under the curve

of bond stress.slip. This is the basis for the tension stiffening concept of high strength

concrete. In the analytical study the area under the curve for both plain concrete and bond

'16



suess·slip are calculated for each test specimen. The rates of increase of the strength of

concrete due [0 1M study parameters are found and the: results are summarized In Tables

7.1 to 7.3.

Funhermore. the percentage of conlribution of each study parameter to the t0l31

bond resistance has been calculated by sensitivity analysis. The sensitivity ;malysls will

show the degree of sensitivity of bond suength to the study parameters. This type of

analysis provides a good look at the investigation of bond evaluation for high strength

concrete. It may provide the motivation and the justification of the study parameters to

obtain more accurate estimates of bond strength. In this part of the investigation. the

sensitivity of the parameters used in the calculations of tension stiffeninj!: that reflects in

the bond suength of high strength concrete is evaluated. The results of omalyses have

been displayed on sensitivity tables that show the effects of percenl.3ge variations for

each parameter.

Sensitivity analyses will as.sess 1M degree: of sensitivity of results to the study

parameter as a variable. A sensitivity assessment will help to Identify the most

charncteristic paruneters of bond strength. It will be used to improve the numencal

model for bond between reinforcement and high suength concrete. In this part. formal

procedures for evaluating devIations from basic data are discussed and shown on Tables

7.4 to 7.8. The use of this type of analysis is new in this field. so that some assumptions

had to be made. Therefore. the present study is mainly concerned with outlining the

numerical procedure and demonstrllting the functioning of the model.

The compact results of sensitivity analysis due to influence of n:bar diameter are

shown in Tables 7.7 to 7.8. It has been found that the share of load history confining
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~inforccment. reba! diameter. nll1c of loading. bat spacing. concretc strength. and

defonnatioo pattcrn in the total bond cncrgy is 8%. 5%. 14'1. lo<K. :wc:i:. 1Q<k. 33'k.

respectively. Thcn multiplYIng the related perccntagc by tOla! area of tcnslon stiffcmng

was specificd as share of each paramcter on total capacity of bond cnergy. Howcvcr. this

sensitivity analyses has becn tcstcd for one-paramcter at a time. It is possiblc to conduct a

sludy in somehow that conside~ more than one-parametcr at a timc.

Thc mam objcctivc of thiS numerical invcstigation was focused on thc c:valuatlon

of thc innucncc of diffcrent bond par.unctC~ on thc bond cncrgy betwccn rebar and high

strength conc~lC using experimental tcst rcsul15. 1bc objectives wc~: to devclop

sensitivity tables that show the effects of perccntage viltiatioos for c3Ch panmctcr 00 thc

bond strength. to identify the most important paramcte~ numencally for funner

consider-uion for improvcmcnt in order to gct bencr bond resistancc and 10 implcmcnt thc

effcct of the parametcrs numcrically in thc assessments of thc tension stiffcning in thc

finilc clcmcnt program.

7-~2 The Effect or Tension Stiffening on High Strength Concrete

Else and Willam (1995) applied the folloWing cJOpres.sion for fracture energy

relcase ratc for tensilc cracking.G;.

whcre

G; -"'f.~[I-CJOP(-5~))

/, : Tension strength

WI: Crack opening displaccmcnt

If, : Crack opening displ3Ccmcnt at residual Icvel

(7.18)
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The relation between the fr3Cture energy release for tensile cracking.G:. and thai

in shear.G:. is defined by Equation 7.1~.ln addition. me fracture energy depends on the

degr3d3tion of tensile strength as well as the effect of bond capacity. Therefore. any

change m the tensile strength of concrete affects the fracture energy release because there

is a direct relationship between them.

For the present research. the biaxial stress-strain relationships for high strength

concrete. proposed by Hussein (1998). and the tension softe01ng investigation of

Marzouk and Chen (199S) in associating the concept of bond energy of experimental

phase of this investigation that is explained in the previous section are applied to consider

tension stiffening effect of high strength concrete. Also. the discontinuous macrocl'3Ck

bnttle behavior of high strength concrete is modeled by a smeared cracking approach. It

is assumed that the ~nce of cracks enters into cakulatlons by the way the cr.u::ks

affect the streSS and material stiffness associated with each material calculation pomt.

Depending on the state of strain at an integration point of a finite element. the concrete of

the proponionate sub-domain of this element is considered either as intaCt or as crushed

or as cra.::ked with equidistant parallel cra.::ks in one or two directions. For simplicity. the

second crack band is assumed to be orthogonal to the first one. The possibilities of more

than two crack bands are disregarded. The smeared crack approach pennits identification

of sub-regions of the panel where fracture has occurred. Consequently. it docs nOt pennit

detennination of exact states of stnlin and stress outside of the region where fracture has

occurred.
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The direction of Ihe c11lCk in Ihe model follows Ihe fixed onhogonal cracks model.

In this model !he direction nonnal 10 the first crack 15 aligned with the direcuon of

rruulmum lensile pnncipOl1 su·ess at !he time of crack Initiation. The model hOlS memory

of Ihis cnlCk direction. and subsequent cracks at !he point under consideration COln only

form in directions. onhogonal to the first crack. Meanwhile. the maximum number of

cracks at il matenOl1 point is limited by the number of direct stress componen15 present Olt

the material point of the finite element model. Once cracks exist at a pomt. the

c:omponent forms of all vector and tensor valued quantities are rotated so that they lie in

the IOCOl1 system defined by the crack orientation vectors (lhe normal 10 the crac:k fac:es).

The model ensures that these crack face nonnal veclOrs ~ onhogonOl1 50 thai this local

syslem is rectangular CaneSlan. Crack c:losing and reopening can take place along the

directions of the crack surface normal. The model negleclS any permanenl SIl"31n

associated with crack.Jng: that is. it 15 assumed that the c11lCks c:an close completely when

the suns across them becomes comprnsive.

Finally. !he resullS of numerical investigation that presented in Secllon 7.5 ~

compared with the experimental investigation of Marzouk and Chen (1995) for diff~nt

high strength concrete slabs. The conclusions of the work indicate thai the lension

stiffening values for slab with low steel reinforcement rauo can be varied as follows:

A. =2 A.. to 2.5A." (7.19)

and the tension stiffening values for slab with moderate steel reinforcement ratio can be

represcnledas

A., = L5 '"'. to 2.0,,", (7.20)
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Also. the tension stiffening values for slab with hIgh steel reinforc~ment ratIo can be

indicated as

whc..

A. = 1.15 A., to 1.5A".,

A.. = fracture ~n~rgy of high strength reinforced concret~

A.~, = fracture energy of plaln high strength concrele

(7.21)

These results provide more accurate estim:1Uon for tension suffening than those

suggested by previous researchers.

7.4 Implementation of Bond Model into ABAQUS

In the present work. the finite element program. ABAQUSlStandaJ"d. is used. The

m:ltenal model is introduced by the user subroutine UMAT. The subroutine UMAT was

modified to take into consider-uion the tension stiffening effect of high suength concrete.

The subroutine UMAT is programmed in FORTRAN n based on the Etse and Willam

(1994) material model and its modification by Hussein (1998) for plain high strength

The user subroutine is called at each material integration point at every itmttion

of each increment. When it is called. it is provided with the material state. I.e. Sll'CSS.

solution dependenl stale variables. at the start of the increm~nl and with the strain

increment and the tim~ increment. The subroutine updat~s the stresses 10 their values at

the end of the increment and calculates the Jacobian matrix. i.e. iJdq. I o6.£¥. Since most

constitutive models require th~ storage of solution dependent state variables. ABAQUS
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provides possibilities 10 a1loc3le storage for any number of such variables foc- each

inlepation pomt. The non-linear equalions are solv~ numerically. using 3ddiuorul

routines. The bond strength is treat~ by considenng the degradation of biiUlal lensile

strength of Hussein (1998) and tension softening of Manouk and Chen (1995) for high

strength concrete. This effect is well known as lenSlon sliffening. It is updal~ in Ihe user

subrouline dunng each increment.

In the presenl work UMAT is fonnulated suictly for Ih~ dimensional continuum

elements; plane suess elements. iUisymmetric elemenls and ]-D solid elements. Two or

th~·dimensionaJelemenls can contain reban. Reban are defined as single ban or in

layen. In the latter case the layer is a surface in each element: the user gIves the rebar

orientation in the surface. Moreover. the finl step is a purely elastic step and the

following steps are incremental phase. A number of benchmark tests were analyzed for

verification.

7.4.1 Rebar Modelirtl in Three Dimrnsion!!i

This pan is largely based on the concept which is used for the ABAQUS program.

Let g•. i= 1.2..3. be the i50parameuic coordinates of the b3sic finite elemenl in which the

rebars are placed. lei ' ... a=I.2. be isoparamelric coordinates on the surface of

reinfon:emenl. with -I S,.. S I. Let t be a malerial coordinate along the reba! direclion.

See Figure 7.4.

The rebar is integrated using 2x2 or Ixl Gauss points. depending on the order of

the underlying elemem. The volume of integration at a Gauss poinl is
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(7.:m

whereA. is the cross-section area of each rebar.S, is the rebar spacing.W,. is the Gauss

weighling associaled wllh the mtegr.lUon poin!. X is the posilion of the Gauss point. and

In these expressions all quanlities are taken in the reference configuration. and so

ABAQUS ignoTCs changes in the rcbar cross-sectional area due 10 straining of [he rebar

and changes in the rebar spacing due 10 slraining of the finile element in which [he rebar

is placed. The strain in the rebar is

(7.2S)

and G is the value of-g" in lhe original configuration. For convenience "s" is defined as

a material coordinate [hat IS distance measuring along the rebar in the cumnl

configuration:

(7.26)

The first varialion of slrain is

(7.27)

and the second variation of slrain is

d&=d6u. a& _2d& .~~. alit
as as as as as as (7.28)
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7.5 Verification Example

In order 10 check the validity of the new high strength concrele modeL after the

lmplementlllion of Ihe rebar e1emenl and the tenSion sliffening conlribuuon. a few

reinfOtted high strength concrete cases WeTe checked as follows:

7.5.1 Case 1- High Strength Concrete One·Way Slab

The fint verification example. a one-way reinforced concrete slab was

considered. It is supported in the venical direction :1l Ihe edges and loaded by IWO lines

load at distance of 152 mm from each support line. The geomelry of this problem is

defined in Figure 1.5. The slab is reinforced in one direclion. The assumed compression

Slrength of concrele is 18 MPa. The slab was tesled and has been analyzed by a number

of researchen including Gilben and Warner (1918) and Crisfield (1982).

7.5.1.1 Geonwtric Moddinc

Figure 1.5 shows half of the high-strength reinforced concrete one-way slab that

is modeled with the plain stress element Iype CPS8 from the element library of

ABAQUS. Nine inlegmion points are used Ihrough the thickness of the concn:te to

ensure that the developmenl of plasticity and failure through the thickness of the concrete

is adequately modeled. The one-way reinforcement is modeled using the REBAR

element option. The boundary conditions are symmetric around the center of the slab.

7.5.1.2 Material Properties

The material data assumed are given in Table 7.9. The assumed values are laken

from previous test results on high strength concrete. The modeling of the concrete-rebar
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Inter.lCtlon and the energy release at cracking ~ critical to the response of a structure

such as thiS once lhe concrete SLartS 10 crack. These effects are modeled in an Indirect

way by including. ""tension stiffening- 10 the plain concrete model. Usually tenSIon

stiffening is added as a linear loss of strength beyond crxking failure of lhe concrete. In

this example three different values are used for the strain beyond failure al which all the

strength is lost to illustrate Ihe effect of the tension stiffening assumption on the response.

The values range from 5"IO""'to 2,,10·J for high strength concrete. (Marzouk and Chen

(1995)].

In this e"ample fuJI shear retention is used after cracking: It is assumed thai there

is no loss of shear stiffness in the plane of the cracks once they have formed. For

problems like this one the response is controlled by the material behavior nonnal to the

crack planes. whereas the material behavior in the plane of the cracks is not important. As

a result the choice of shear retention has no innuence in the results. Full shear retention

has been chosen because it proVides a more effiCient numenca.l solution. In addiuon. the

material properties that are used in the UMATsubroutine are shown in Table 7.10.

Since considerable nonlinearity is e"pected In the response. Including the

pos.sibility of unsLable regimes at the concrete cracks. the modified Rib algonthem IS

used with automatic incrementation. With the Riks method the load data and solution

parameters serve only to give an estimate of the initial increment of load. In Ihis case it

seems reasonable to apply an initial load of 44.44 kN on the half·model. The analysis is

terminated when the central displacement reaches 25.4 mm.
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7.5.1.3 Result and Discussion

The numerical results of different malenal models are compared In Figure 7.6 on

the basis of load versus deflection at the center of the slab. The strong effcct of tnc

tensiOl1 stiffening assumption with the usc of the UMAT subroutine is very cleJr In tholt

gnph. The analysis with tension stiffening using the modified high strength concrete

model concept for low. moderate and high rallo of reinforcement an: compared wIth the

material model that is used in the ABAQUS concrete model. The compansons of the

results an: shown on the Figures 7.7. 7.8. 7.9. This analysIs provides useful InformatIon

from a design viewpoint.

7.5.2 Case II· Kigh Strength Reinforced Concrete Two--Way Slab

This ell-ample is used to verify the effectiveness of the recommended tensIon

stiffening in three different high·slrCngth reinforced concrete two-way slabs thaI were

tested previously at Memorial University of Newfoundland by Hussein (1991). The r.1I1O

of reinforcement for the above slabs was vaned from low. moderate and high ratio of

reinforcement. The purpose of this uample is to compare the results obtamed by use of

the new COl1~te model in the UMAT subroutine with the ABAQUS concrete model and

actual ell-pcrimental results.

7.5.2.1 Geometry and Model

The problems were three high-strength reinforced concrete two-way slabs

subjccted to a venical load at the center of each slab. A thick shell element {S8Rl from

the element library of ABAQUS is used for the finite element mesh of these problems.

The reason for using reduced integration points is the accuracy of the result. Reduced
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mtegration usually provides more accurate results (provided the elements ~ not

dlstoncd or loaded in in.pl3nC bendmg) and sigmficantly reduces runnmg time. especially

10 three dimcnslOns. Also a bc:tm element type 832 at the center of the slab IS used ;as

shown in Figure 7.10. The finite clement meshes are assumed to have four roller supportS

and :!O hinged supportS at the boundaries. The dimensions of the slabs were

l500xI500xl20 mm. 183Ox1830xISO mm and l500xl500xI20 mm. The reinforcement

ratios of the slabs were 0.00491. 0.01093 and 0.0237 for low. moderate and high mtlO of

reinforcement. respectlvely. The analyses are run three times for recommended tenSion

stiffening for low. moderate and high ratio of remforcement. The values of :!.5. ! and

1.25 times fracture energy of high strength plain concrete arc considered as the tensIon

stiffening values for slabs with low. moderate and high steel reinforcement ratio as

eltplamed in the S«llon 7.3.2 of this chapter.

7.5.2.2 Results and diKussions

Figure 7.11 shows the deformed shape of the slab. The ultimate deflection for the

cenual point of the tested slabs were 25.45. 23.43 and 14.74 mm while the result after

Implementing the new bond model were 25.62. 23.31 and 14.82 mm. Comparison of the

eltperimental result and recommended bond model for high strength two-way slab with

low. moderate and high reinfon::emcnt ratios are shown in the figures 7.12. 7.13. and

7.14. A close agreement between experimental results and numerical results are evident

with the use of recommended bond model. The slight difference between the two curves

could be as a result of an error in the evaluation of the rigidity of the suppans. Finally.

the Figures 7.15. 16 and (7 show contour of stress for the slabs with moderate steel ratio.



7.6 Summary and Conclusions

The material model of the UMAT subroutine. developed previously for plam high

strength concrete at Memorial UniversilY of Newfoundland was re,,.jewed in detaiL

Several eumples to test the subrOUline have been solved. The matenal model was useful

for plain high strength concrete. Iherefore. an anempt has been made to consider the

effecl of tension stiffening instead of tension softening of high strength concrete.

The concepts of bond energy. fraclUre energy. tension softening of Manouk and

Chen (1995). and bi3Jl.ial failure envelope of high strength concrete of Hussein (1998) are

applied in the development of a new material model for high S1rength reinforced concrele.

The new model is implemenled in Ihe UMAT subroutine for use with the ABAQUS finite

element program. Furthennore. a three-dimensional rebar element IS added 10 the

program in order that the new model will be able to analyze reinforced high strength

concrete structures. The model has been checked by solving several problems.

A new parametric study based on the effect of bond energy on the fracture energy

was introduced. Based on sensitivity analysis. the results were applied for analysis of

slabs with low, moderate and high Sleel ratio. The study parameters are considered as the

main variables for the bond strength. A sensitivity analysis is conducted to provide

justification of the study parameters and to obtain more accurale eSlimales of bond

strength. The most characleristic parameler and the share of each study paramelers on the

strength of bond between high-strength concrete and reinforcement Ihrough senSitivity

analysis is found. Finally. the results of two analyzed examples are demonstrated to show

the effectiveness of recommended model. The results of the analyses are compared with

expc:rimenlal results and a good agreement is found between them.
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Tabl~ 7.9 M3terial propenies of one-w<lY hi~h stren~th reinforceJ concret~· sl3b •

Reinforcement ratio

(Volume of steel: volume of concrete):

Siftl (rebar) properties:

- Young's modulus

- Yield stress

Concrete properlies:

· Young's modulus

• Poisson' s ratio

Uniaxial compr-esston nlues:

• Yield Stress

• Failure stress

- Plastic strain at failure

• Ratio of uniaxial tension

to compression failure stress

- Ratio of biaxial to uniaxial

compression f3i1ure stress

in each direction 7.2x1O·'

193 GP3

..l35MPa

36.2Gl'a

O.2..l

-W.88 MP3

78.00 i\\Pa

1.16

''Tension stiffening" is assumed as a linear decrease of the stress 10 zero

stress, at a srrain of 5xI0"', at a strain of 10"10.... or at a strain of 20x 10'"

The Material constants of Jain and Kennedy R.C. Slab of ABAQl.IS
(1997). "Example Manual". include necessary modification for Hil;h

Strength Concrete material

""



m,= 12.0

k., = 0.1

1.0
E=.w159.0
v == 0.24
P = 1.0

j, = 78.00

i, = 3.5327

c. = 1.0

Table 7.IU ~Iaterial properties of on~-way hig.h strcngl~l n':nli'n;cd concrete slab
lised In UMAT ~uhrl'UllnC

E, Young's modulus (Mpa)
v. Poissin's ratio
p. m31erial density

l ,compressive strength (Mpal

{, , tensile strength (Mpal

c. ,cohesion parameter at peak

k. ' initial hardening parameter
In" frictional parameter at residual
A., B., C.' hardening ductility parameters

A. =-Q.~25,B. =-Q.00495.C. =0.000212

A,.8, . softening parameters for fracture energy ratio

A, =12.517,8, =23.753

D.. , E ..."F.... DIoI.E'" • parameters for dilation function IIl Q

D... =8.675.£",," -14.695. F... , ,. -6.3. D", ::z 5.115.£" = 6.736

II •• rupture displacement (mmJ ll.= 0.1300

II." 5.034G; I {, iju sin gexponersojlenillg junction a, =f. exp(-5u, I u./

If, :2.0G; I/, ijusinglinearsojteningfimctioll

u• . rupture displacement if exponent softening function is used

D, . tatio of reduced tensile strength at U t to f.
H ,',tensile crack spacing or height of tension specimen (mm)

H'£ • height of finite element (mm/

, ratio of lotal volume to localized damaged volume

.; ,ratio of shear band height to finite element height

[ Original soun:e of data come from XieJ.. Elwi A.. and MacGreger.
then some parametCTS were calibrated by Hussain (t998)1

II, = ·0.060

D,=0.3333

H,=108.0

H £= 38.1

~. = 1.0

.; == 1.0
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Fig. 7.2 Biaxial strength envelopes for four different types of concrete under combined
tension and compression. biaxial tension and biaxial compression {Hussein (1998)]

2l'"



G~~··", .
2

Fic- 7.4 Rebar in a solid. three:-di..ncnsional clemen!

21.



211



.' "
,.

" " "
,.

.' " " " " " "': ': .: ': ': ': ':'. " '. " " '. "

" " " " " " "

, ,

': ': " ': ': ': ': "
" " '. " " '. '.
" " " " " " "

t "
" I'

" "- ~-\- _I~:- r ~ -\- -
" " " "
" " " " " '. "

"
,.

" " " " " " ".:
" ': ': "

.: .:
" " " " " '. '.",
" "

,.
".::-f:::" " " ': " "': .: ,;

"

:;-.:-
:: :: '. :: :: :: ::

.0

.."l
CIl

>,

~
I

Q)
C
o

u

'".c
w

'"CQ)

'"wCIl
I

.c

'"''';

:r:

I--
I

5

~-I :-::.,-
I
~:?
<\I,q
~i~,
"

E E_ E

~ M

212



=
:E

'"0-'"
<
'"<

.~

N·....,

21l



Ii
N i

z...
E- ~

~

:!14



=•E
i..
"

i
::;;
1l

~1
~ /'
~ /

~

~.
~

~ ~ ~:;;
N'P'8O'l

'"



..;

..
~
f i.c
'" :;
:;;

¥/~.c.
o': ~

• 0
'".c E = '".!S '"

~ 'i:
;-~·. Ii, E
~ C

N i
~ t z,s= ...
~:o c

E~ - !·.:: !
o ~
g,s

's 'E...
E

<5
'"

,;
,.;..
ii:

I m I ~ I ~
,,'1"'0'1

216



&~&@[]JJ~
High-Strength

Steel Ratio

~,
Element Type:SBR (Reduced ~ntegration)

Fig. 7.10 Finile Elemcnl Mesh Idealisation ror Two~way Slab or Second Verification Example
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Fig. 7.11 Deformed Shape of Two-way Slab of Second Verification Example
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Chapter 8

Conclusions and Recommendations

8.1 Sununary

The main objective of investIgation is to provide more infonnalion regarding the

bond perfonnance between reinforcement bar and high strength concrete:. An additional

objective is to dclenninc the internal disuibution of StreSS and strain along the rebar and

the influence of high strength concrete on such strain dislribUlion. The characteristics of

the bond under seven sel~tcd parameters were studied experimentally and numerically.

A Iota) of 150 specimens were tested in the experimental phase of this investigation. The

influences of monotonic and cyclic loading conditions on the bond strength were

investigated separately for each parameter.

The lest results revealed thai the rruu.imum bond suess for high strength concrete

is higher than the corresponding one for normal strength concrete. However. the behavior

of high strength concrete is more nonlinear and brittle and it must be considered in
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modeling bond behavior. The measured value for the maximum slip at complete failure

of the bond resistance would indicate that the value is estimated by five times the value of

the slip corresponding to the maximum bond stress.

The development of a new technique of strain measurement around the steel rebar

is unique and it is concluded that by modifying this method it is possible to identify the

internal crack pattern and to predict possible failure modes. The internal concrete strain

with some degree of accuracy has been measured. The surface crack patterns have been

ploued and the mode of failures has been identified.

Furthennore. the effect of the rebar diameter and rib defonnation panems was

examined on the bond resistance of high strength concrete. Several specimens with

different rebar diameters and rib geomeleries were tested. The test concrete compressive

strengths for the specimen ranged between 75 MPa and 95 MPa. The defonnation

patterns were examined for rebar with nominal diameter of 25 mm and 35 mm. All the

defonnation patterns on the tested rebars were machined.

An equation for calculating average bond stress for high strength concrete is

recommended. The result is compared with different Codes and other expressions from

the literature. It is suggested that. in the case of high strength concrete. bond stress has

direct relation with the cubic root of compressive strength of concrete. In addition. the

effect of dynamic loading was modeled by cyclic loading. The influence of several

parameters on bond strength between high strength concrete and rebar was investigated

under this condition of loading. The test result indicates that an increase in cyclic

displacement will lead to more severe damage in a high strength concrete member as

compared with normal strength conrete.



An attempt was made to apply lhe resuhs of these e~pcriments to Improve the

material model using the lensior. ~tiffening effectS on high strength concrete. Therefore. a

new material model based on biaxial test results of high strength concrete. bond energy

and fracture mechanics was developed to evaluate:: the tension stiffening effects of hIgh

strength concrete. The influence of individual parameters was considered In the

lheoretical analysis and a new pararnctric evaluation to the tension stiffening effects was

recommended.

8.2 Experimental Investigation

A summary of the test results of the e~pcrimental investigation can be given as follows:

The bond stress-slip curve of high stre:ngth concrete: is ChanlCterized by a sharp drop

of Ihe level of Stress al the beginning of the descending portion of Ihe bond stress­

slip curve.

The area under the curve of the bond stress-slip curve can define the bond energy.

The bond energy should be used to evaluate: the bond behavior rather than the

maximum bond stress.

3. The influence of confinement 00 bond is significant. especially after reaching the

ultimate bond stre:ngth. The mode of failure has been explained for each tested

specimen. A method for selecting a suitable size of rebar confinement is

recommended.

4. The result of tests examining the effect of varying rebar diametcr embedded in high

strength concrete indicatcs that the: bond is highcr for the smaller rc:bar diamcter

than for the bigger one. The ultimate: bond strength for 2S nun rebar diametcr is
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approximately IS pen::ent higher than 35 mm rebar di:1rneteT. A sharp drop of bond

stress at the beginning of the descending ponlon of the bond slfeSS-slip curve for

hIgh strength concrete is confinned for all rebar diameters. The level of bond stress

decreases by about 30 percent of total bond suus-slip at the beginning of the

descending branch of the bond stress-slip curve.

S. Results of !he investigation regarding the influence of rebar spacing revealed that

the bond s~ngth could be Improved by selecting proper rebar spacing.

6. An investigation into the bond resistance subjected to the effect of the concrete

strength concluded that the ultimate bond s~ss for high strength concrete is higher

than the corresponding one for nonnal strength concrete. However. the behavior of

high strength concrete is more nonlinear-brinle and it must be reflected in the bond

model.

7. The relative rib area approach concept can only reflect the effect of rib in the

ascending ponion of the bond slfeSS-slip curve and more attention should be given

to the descending portion. The rib face angle. rib height and rib spacing combmed

with the ate.:I under the curve approach are more suirable to express the effect of rib

on the bond behavior.

8. It is recommended to consider the total behavior of the bond stress-slip curve fIX"

evaluating the bond resistance of the high S1rength concrete with respect to

defonnation pattern. In this c35eJ the effect of concrete s~ngth will be considered

automatically.

9. The most effective defonnation panem for 25 mm rebar diameter is the standard

deformation pattern adopted by the Canadian code. For rebar with diameter of 3S
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mm 3. new c:k:fonnatlon pattern is recommended for high suength concrete.

10. The bond resistance increased appro~IIn.;ltely proportional to iff. .

II. A new expression fOf" cl1lculating bond stress based on the cubIc root of concrete

strength is suggested and the results are compared with similar equ3.uons from

different codes.

11. The proposed bond stress e~pression can be used to improve the development

length in reinforced high strength concrete.

13. The influences of several panuneten; such as the load history. confimng

reInforcement. rebar space. concrete suength. rebar size and nne of loading were

investigated under cyclic loading.

14. It is concluded that str~ngth and defonnation characteristics of hIgh strength

concrete structures are highly dependent on bond slip behavior between rebar and

concrete under cyclic load.

15. The results of cyclic tests indicate that an increase in cyclic displacement will lead

to more severe damage compare to nonnal strength concrete.

16. The Influence of bond suength in a cyclic test could be described by the slope of the

cyclic bond s~-displac:ement curve.

11. It is also revealed that the maxImum bond strength increases with the increase of

the concrete: strength.

18. Cyclic loading docs not affect the bond strength of high strength concrete as long as

the cyclic slip is less than the maximum slip for monotonic loading.

19. The behavior of high strength concrete under cyclic load is slightly different from

that of noTTnal strength concrete:.
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20. II h.as been concluded that strength. of concrete. rib area and bond length have

notable effect on the crack growth.

~L It is concluded that these parameters have a significant role in me bond strength.

Also. in a majority of specnnens tested. me development of cr.ac:king was found to

follow a similar paltem.

8.3 Application of the Bond Model to Tension Stiffening

The new high strength concrete plasticity model of the UMAT subrouune

developed at Memorial University of Newfoundland previously was studied and applied.

The material model can analyze plain high strength concrete membc~ only. WIthout any

steel reinforcement. Complete fracture behavior of high strength concrete was

theoretically analyzed by means of a model. where the softening of the matenal due to

the damage within the fracture: zone: was laken into account. The softening is descnbc:d as

a relation between the: additional def()(TJl::ltion within the fracture zone. and the: stress.

which can still be: transfem:d in spite of the: damage. In the present investigation the:

material model of the: UMAT subroutine: was modified for taking into consideration the

tension stiffening effect of high s~ngth concrete. In this model the bond strength IS

treated by considering tension softening of Manouk and Chen (1995). biaxial tensile

strength of Hussein (1998). concept of fracture energy and bond energy for high strength

concrete. In addition. a three.<fimcnsional rebar element is added to the program in order

that the new model will be: able to analyze reinforced high strength concrete structures

rather than plain high strength concrete clements.



A new parametric study based on the effect of fracture: and bond enc:rgJes was

conducted. The: most characteristic parameter and the share of each study parnmeter on

the bond c:nc:rgy through sensitivity analysis was evalU3led. Funhermorc:. the: result of a

sc:nsiuvity analysis was applied to analyze: some: slabs with low. moderate and high steel

ratio. The: results of the analyses are compared with the eltpcnmc:ntal results. It is found

that there is good agreement between lhem.

8.4 Contribution or Present Thesis

The contribution of prescnt investigation can be summarized as below:

• It is the first time that the complete bond slT~ss.slip curve for hIgh stre:ngth concrete

has been studied. It is also the first time: that the: concept of bond energy has been

mtroduced and it is recommended that this concept be used to evaluate the: bond

behavior. Also. the bond stress-slip curve is charactenud by a sharp drop of the level

of Strc:s5 at the bellnnlng of the descending ponion of the curve:.

A new design formula foc calculation of bond strength for high suength concrete

based on the cubic root of the concrete compressive strength is developed.

The: possibility of measuring internal bond strain in the surrounding high strength

concrete has been shown.

A design formula for selecting the re:bar size as confinement for high strength

concrete is recommended.

The investigation on deformation panc:rn of rebar indicates that the evaluation of rib

geometries by rib face: angle. rib height and rib spacing approach arc more suitable
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than the relative rib area approach that is used by the German Specification Din 488

and some othel" researchers.

It IS suggested to develop a formula for evaluation of deformation pattern by taking

into consideration the effect of the rib on both the ascending and descending ponlon

of the curve using the concept of bond and fracture energies.

It is found that for rebar with diameter of more than 25 mm a new deformation

pattern is recommended.

It is concluded that significant deterioration in the bond capacity takes place during

the cyclic loading and the influence of bond strength could be described by the slope

of the cyclic bond stress-dlsplacement curve for high strength concrete.

Failure mechanisms for both monotonic and cyclic test specimens have been

investigated.

A three dimensional rebar element was added to the prognm.

The share of each study parameter in the bond energy of high strength reinfon:ed

concrete with use of a new parameUlC study has been evaluated.

FurtheT anention to use of the concept of bond energy and determination of the shat'e

of each study parameter is highly recommended.

11Ie high strength material model of the UMAT subroutine developed at Memorial

University of Newfoundland preViously was studied in detail and improved to include

the high strength reinforced concrete with special consideration to the tension

stiffening effect.
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8.5 Recommendations for Future Study

~ aumor would recommend sludying the influencc of OIhcr par.imetcrs such as

c::lStmg posilion. size of coycr. speclRlCn dimension. transycrse pressure. aggregatc size.

remforccmcnl coaling and creeping of bond suess for high slrcngth concretc. II is

intcrcsung 10 chanl!:e the Iype of sp«:imen and consider the double-endcd pulloul tcsllng.

beam tcsling and different full-scale structural members tcsting on the bond Slress.

It is Yaluable to inycsligate crack width opening with time and crecp dcnccuon of

highly cracked elements in conjunction with bond. It is suggestcd thai thc cffcct of bond

relaxation under imposcd constant slip. as wcll ::IS Ihc increase of slip under conSlanl bond

stress be invcstigatcd. This infonnauon would lead to beller understanding of Ihe long

tcnn dlefonnation bond behaYlor of high strength concretc. espe<:ially In the case of

prestress/precast members.

Finally. il is suggeSt~ mat another experimcnr.a! program should be conducted to

investigate the effect of bond charactenstic's parametcrs for Iight\lo'elght high strength
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