
CENTRE FOR NEWFOUNDLAND STUDI ES 

TOTAL OF tO PAGES ONLY 
MAY BE XEROXED 

(Without Author's Pcnninton) 







Application of Contingency Analysis Methods for 

Power System Security and Optimization 

St.John's 

By 

Ravinder Pal Singh Sawhney, B.Eng 

A thesis submitted to the School of Graduate 

Studies in partial fulfillment of the 

Requirement for the degree of 

Master of Engineering 

Faculty of Engineering and Applied Science 

Memorial University of Newfoundland 

August 2004 

Newfoundland Canada 



1+1 Library and 
Archives Canada 

Bibliotheque et 
Archives Canada 

Published Heritage 
Branch 

Direction du 
Patrimoine de !'edition 

395 Wellington Street 
Ottawa ON K1A ON4 
Canada 

395, rue Wellington 
Ottawa ON K1A ON4 
Canada 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

• •• 
Canada 

AVIS: 

Your file Votre reference 
ISBN: 0-494-02374-0 
Our file Notre reference 
ISBN: 0-494-02374-0 

L'auteur a accorde une licence non exclusive 
permettant a Ia Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par I' Internet, preter, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

L'auteur conserve Ia propriete du droit d'auteur 
et des droits meraux qui protege cette these. 
Ni Ia these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

Conformement a Ia loi canadienne 
sur Ia protection de Ia vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

Bien que ces formulaires 
aient inclus dans Ia pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

Static security assessment of a power system deals with analyzing the system 

steady state performance after disturbances. Security assessment is the process whereby 

any violation of operating limit is detected. Maintaining power system security is a great 

challenge as power systems are now operated closer to their security limits. In this thesis, 

contingencies based on active power flow violations using DC power flow based methods 

are detected and ranked using performance index. The contingencies causing voltage 

limit violations are determined using sensitivity analysis based approach. These results 

are then compared with full AC power flow solution. Network reduction technique is 

used to reduce a larger power system into a smaller system, so that that particular part of 

system could be analyzed with sufficient accuracy and less computational burden. 

Optimization methods are applied to enhance the overall security of the power system. 

Different case studies are presented throughout the thesis to illustrate the application of 

the studied methods. 
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Chapter 1 

Introduction 

1.1 Motivation 

The electric power industry is undergoing changes like deregulation and 

privatization. The basic function of the industry to produce and to deliver power, safely 

and reliably has not changed, comparatively little attention has been directed towards 

the issue of power system security in this market environment. Regardless of the market 

model chosen, it is still essential to carefully balance the power requirements of the 

supply side and demand side in the presence of disturbances. It is well known that this 

balance is required to maintain system voltage, frequency and angle stability of the 

network. This involves techniques developed to keep the system working when devices 

fail. For example, when there is a generator outage, the system can make up if there is a 

sufficient spinning reserve. Key aspects of any security framework are methods to assess 

security and some type of market dispatch methods to implement security solutions. 

Power system security is the ability to maintain the flow of power from the 

generating station to the customers, especially under disturbed conditions. Since 

disturbances can be small or large, localized or widespread, the planning and design of 
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the power system must achieve a certain level of security. To secure the system against 

more severe disturbances obviously requires more expensive designs; hence, the design 

criteria are chosen to meet an appropriate level of security. In the more developed 

countries, the customer is often willing to pay more for minimizing the interruption of 

power, whereas in the less developed countries the scarcity of capital and other reasons 

keep the level of power system security lower [1]. The measures of power system 

security are magnitude, duration and frequency of customer outages. Such outages can 

thus be represented in probabilistic terms, e.g. X hour per year, or 99.9% reliable. Thus 

the terms reliability and security have been used interchangeably for power systems, 

although reliability is more often used to refer to the probabilistic measures while 

security refers to the ability of the system to withstand particular equipment outages 

without loss of service. One way to withstand equipment outages is to have redundant 

equipment. Providing redundancy in generators, especially when the economies of scale 

favored fewer and larger units is an expensive proposition. 

Enough generation must be available at all times to meet the load demand. 

Thus, generator units must be managed in such a way that planned outages of units, as 

well as forced outages should not result in a shortage of generation. The installed 

generation capacity has to be greater than the maximum demand and it has to meet 

specific security criteria. 
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1.2 System Security 

Power System security can be considered as having three major functions that 

are carried out in an operations control center: 

e System monitoring 

0 Contingency analysis 

~ Security constrained Optimal power flow 

1.2.1 System Monitoring 

Monitoring power supply and power quality are critical to ensuring optimal 

performance of power system. Power providers and users alike are concerned about the 

reliable power, whether the focus is on interruption and disturbances or extended outages. 

One of the most critical elements in ensuring reliability is monitoring power system 

performance. Monitoring can provide information about power flow and demand and 

help understand the cause of power system disturbances. Effective monitoring programs 

are important for power reliability assurance for both utilities and customers. 

With this in mind, it is clear that monitoring is essential for optimal power system 

performance and effective energy management, which includes reliable supply of power. 

Fig. 1.1 shows the basic components of modem power monitoring system [4]. 
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1.2.2 

ATS 

LV 
MCC 

lighting 
Panels 

Incoming 
Substaticn 

Fig 1.1 Basic components of a power monitoring system [4] 

Contingency Analysis 

In planning studies, the traditional approach for steady state contingency 

analysis is to test all contingencies sequentially to evaluate system performance and 

reliability [5]. Maintaining the security of the power system requires adequate planning 

and proper operational procedures. A power system can be operated under two security 

levels: (a) preventive and (b) corrective. A preventive operation requires that for every 

contingency postulated all system variables are within limits without making any action. 

A corrective requires that, if any of the contingencies postulated occurs, all variables can 

be brought within their limits taking appropriate actions. Therefore, a preventive 

operation is more restrictive than a corrective operation. 
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Technical constraints can be separated into two types: (1) active power constraints 

and (2) reactive power constraints. Active power constraints correspond to violations of 

the branch power flows. Reactive power constraints occur when the bus voltages are not 

within their admissible ranges. The static security assessment program is thus designed 

to alert the operator if a particular contingency would cause the system to violate 

operational limits. The operator, if so alerted must then decide whether to take preventive 

action right away so that this contingency does not pose a problem or to take no action at 

the present time but be ready to take corrective action if the contingency does occur. The 

main use however of the real time power flow solution is the automatic assessment of the 

static security of the system. 

The security analysis program automatically studies hundreds of possible 

contingencies that could happen on the power system and determines how well the 

system can withstand them. This is equal to running hundreds of power flow solutions 

and then checking for line loading or voltage violations to alert the operator and it has to 

be done within a few minutes for the information to be useful. This is quite a 

computational burden in terms of both the number of power flow solutions and the data 

sifting needed for checking violations. Thus much of the development of static security 

assessment tools in the last two decades has concentrated on making this computation 

more efficient. Instead of finding full power flow solutions for all hundreds of 

contingencies, more approximate but fast solutions are obtained to determine which 

contingencies pose the biggest hazards. This calculation is known as contingency 

screening. 
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Most of the time for well-planned systems, single contingencies should not cause 

any limit violations and the main purpose of the contingency screening is to isolate the 

very few problem cases from the hundreds of non-threatening contingencies. In addition 

to running fast approximate solutions, the screening must evaluate these solutions by a 

severity index to determine which contingencies are the worst. These severity indiceE: 

must reflect line overloads and voltage violations such that the contingencies can be 

ranked according to their severity. Once this is done, only the worst contingencies are 

further studied with accurate power flow solutions and the resulting overloads and under 

voltages are reported to the operator as alerting messages. 

1.2.3 Security Constrained Optimal Power Flow 

The security constrained optimal control flow of an electric power system 

generation- transmission network is an extremely difficulty task. This difficulty tends to 

increase with growth in size, interconnection and other operating problems. In this 

operation, a contingency analysis is run in parallel to optimal power flow, which makes 

changes to the optimal dispatch of generation, as well as other required adjustments, so 

that when a security analysis is run, no contingencies result in violations. We can divide 

the whole operation in to four operating states. 

e Optimal Dispatch 

e Post Contingency 

e Secure Dispatch 

e Secure post-contingency 
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Security- constrained scheduling is sometimes applied to the relevant controls 

throughout an entire interconnected power system. The above states can be explained 

with an example. It is assumed that the system is in economic dispatch consisting of two 

generators, a load, and a double circuit line, is to be operated with two generators 

supplying the load as shown below in fig L2 (ignoring losses) [1]. 

600MW 800MW 

--•~ 300MW 

Gen.2 
Gen.l 

300MW 

1400MW 

Fig. L2 Optimal Dispatch 

600MW 800MW 

---IOoDo OMW 

~------0 
Gen.2 

Gen.l 

--+il' 600MW 1400MW 

Fig L3 Post contingency state 

The system shown in fig 1.2 is in economic dispatch, which means 600 MW from 

generator 1 and the 800 MW is the optimum dispatch. Each circuit can carry a maximum 
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of 500 MW, so there is no loading problem in the base operating condition. If one of the 

circuits is opened considering a failure and rest of the circuit will be overloaded. This 

state is called Post Contingency state shown in fig. 1.3. Decreasing the generation on 

generator 1 and increasing generation on generator 2 can help avoiding this condition. 

Now, this state is called secure dispatch shown in fig 1.4. 

500MW 900MW 
250MW 

0 
Gen.l ~ Gen.2 

250MW 1400MW 

Fig 1.4 Secure Dispatch 

500MW 900MW 

~-----0 Gen. 2 

Gen.l 
--~~>~ 500 MW 

1400MW 

Fig 1.5 Secure post-contingency state 

After this measure is taken and a line outage occurs there will be no overloading. This 
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state of the system is called secure post contingency state shown in fig 1.5. 

1.3 Methods of Contingency Analysis 

The conventional approach followed for contingency analysis is that each 

contingency is simulated on the base-case model of the power system. Then, the 

calculated post contingency operating state is checked for operating state violations. In 

principle, the routine power flow should be run for each each contingency violation. The 

main motive behind the contingency analysis is to determine severity of the events like: 

(a) transmission/transformer outages and (b) generator outages. The general approach 

now adopted is to separate online analysis into three distinct stages: contingency 

definition, selection and evaluation. 

1.3.1 Contingency Definition 

This definition is a function that leads to basically selection of cases whose 

probability of occurrence is deemed sufficiently very high and is specified by the utility 

company at system level. This list is very large and is automatically translated in to 

electrical network topological changes: normally injection and or branch outages. 

Outages occur due to a variety of reasons. It could be due to switching operation or any 

other kind of over load that trips the circuit breaker. The outages may be of any type but 

the operators are supposed to know the power flows and voltage conditions in the system. 

This helps the operator to take preventive measure that he could take before the outage 

9 



happens. The condition becomes worse the forced outage case. These outages occur 

with very low probabilities that are time and weather dependent Most of the times single 

-line outages are more probable than double or multiple outages. 

1.3.2 Contingency Selection 

This area has received the maximum attention. Its function is to select only those 

cases, which may cause severe violation. It uses an approximate power system model 

mostly linear with less computational burdened techniques, but limited accuracy results, 

the contingency cases are ranked in order of severity. 

1.3.3 Contingency Evaluation 

After the list of cases to be examined is decided, the contingency evaluation 

using ac power flow is then preferred on the successive individual cases up to the point 

where no post contingency violations are encountered, or until a maximum number of 

cases have been covered, or until a specified time has elapsed. 

1.4 Organization of the thesis 

A discussion of the DC power flow based linear contingency analysis methods is 

presented in chapter 2. DC load flow and linear sensitivity factors methods are applied to 

different case studies and the results are compared with full AC power flow solution. 

contingencies detected on basis of active power flow violations are ranked using 

performance index. 
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Chapter 3 focuses on sensitivity analysis based method for detecting voltage 

violations. The basic concept of sensitivity analysis is discussed and voltage 

distribution factors are derived. This method is applied to the 39-bus system and 

Newfoundland & Labrador Hydro system (Reduced equivalent). 

Network reduction is introduced in chapter 4. The method of obtaining a 

reduced equivalent from a larger system is discussed and applied to 39-bus system. 

Linear contingency analysis method discussed in chapter 2 and 3 are applied to 

complete Newfoundland Hydro system. 

Chapter 5 discusses the application and algorithm of optimal power flow (OPF) 

and security constrained optimal power flow (SCOPF). The minimum cost problem 

of OPF and SCOPF is considered as an example to discuss the application of the 

optimization techniques. 

Chapter 6 gives the conclusion of the thesis, highlights the contribution of 

research and suggestions for future work are given 

11 



1.5 Conclusion 

The requirement of the present power system security analysis is to look for a 

trade off between speed and accuracy, The main approach for both contingency selection 

and evaluation is still direct power flow solution, Major approximations aimed at 

enhancing computing speeds are still prevalent in the selection process, Unless, some 

completely different contingency analysis approach emerges, potential for major 

improvements in the existing analysis seems limited, 
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Chapter 2 

DC Power Flow-Based Methods For Security Analysis 

2.1 Introduction 

Security monitoring is a fundamental aspect in the operation of the power system. 

It involves practices designed to maintain system operating when components fail [1]. 

It is now commonly accepted that for the security assessment of a power system, the most 

efficient and practical strategy is to deal with the problem in two stages: the first is 

contingency selection, in which those potentially critical cases are ranked by the severity 

of their impacts on the system; the second stage is contingency analysis, in which 

detailed AC power flows are applied only to the most dangerous cases appearing on the 

top of ranked list. 

In the past decade, contingency selection has attracted many intensive studies 

from which efficient and reliable algorithms have been developed. The two main 

approaches to contingency selection are direct methods and indirect methods. The main 

platform on which direct methods are based is DC power flow. Indirect methods calculate 
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a scalar performance index (PI) without calculating the post outage value of monitored 

quantities, which measures the system stress in terms of circuit overloads and voltage 

violations. The methods for calculating real power flows have been in use for a long and 

give fairly accurate results. However, in the field of voltage calculation, little success has 

been achieved. The methods for real power flow calculations are discussed in the 

following sections. 

2.2 Model For Contingency Analysis 

Accurate contingency analysis modeling is the same as in case of normal power 

flow, in that they both require the iterative solution of non linear equations [2]. In the 

case of contingency selection, approximations are made to achieve speed and 

computational efficiency. Among the limits of a power system, the one of concern in 

present discussions is real power flows. 

These operating limits are soft and are neither precise nor to be rigidly enforced. 

This softness justifies the use of limited accuracy models and solutions. There is no way 

to quantify the tradeoff between speed and accuracy. The fundamental accurate power 

flow model is the familiar Newton-Raphson Jacobian matrix equation that represents the 

linearization of a given operating point [2]: 

[H N][b9 J~=-[bP l 
J L bV bQj 

(2.1) 

H, N, J and L are the elements of the Jacobian that relate change in load angle and 

voltage in response to change in real and reactive power on the buses. More emphasis has 
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been placed on real power flow than on bus voltages. This has given rise to the very 

extensive use of linearized active power models. One of the models normally considered 

is [2] 

B' .. M)=~P (2.2) 

Here, matrix B' is a symmetric approximation to the unsymmetrical submatrix H in 

equation (2.1 ). The use of an active power model makes the assumption that voltages and 

reactive flows change very little after a contingency, and that the latter are relatively 

small. This assumption is most valid for strong high voltage systems, where branch R1X 

ratios are small. 

2.2.1 Methods of Contingency Selection 

Direct methods calculate real power flow on an approximate basis. On the basis of 

approximate post-contingency quantities like real power flows and voltages, the severity 

of the case can be quantified and ranked [1]. With regard to the applications of these 

methods to a power system, two power system models are considered: The 

Newfoundland & Labrador Hydro equivalent system and a 39-bus system. 

2.2.2 Newfoundland & Lab:rado:r Hyd:ro Equivalent System 

The single line diagram for the 9-bus Newfoundland & Labrador Hydro 

equivalent system is shown in fig 2.1. The single line diagram is a reduced equivalent of 

the hydro system and the part shown is east of Bay'Despoir. 
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Fig. 2.1 Single line diagram of Newfoundland & Labrador Hydro equivalent system 

There are three generating stations located at HolyRood, UpperSalmon and Bay d'Espoir 

connected to buses 1, 8 and 2 respectively. Table 2.1 gives the component data of the 

system. Table 2.2 gives the base case load flow summary of this system. In fig. 2.1, the 

buses have names along with numbers, which are used to show the location of the buses. 

Mainly the connections between different places are being studied, so, only the high 

voltage lines are shown in fig. 2.1. 

Table 2.1 Newfoundland & Labrador Hydro equivalent system component data 

Buses 9 

Generators 3 

Lines/Transformers 12 
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Table 2.2 Newfoundland & Labrador Hydro equivalent system base case load flow summary 

Real Power (MW) Reactive Power (Mvar) 

Total generation 1009.1 143.1 

Total load 998.1 65.2 

Losses 10.16 -49.86 

Shunts 0.0 -28.0 

Fig 2.2 Geographic location of Newfoundland & Labrador Hydro transmission network [7] 

The headwaters of the Bay d'Espoir begin at Victoria lake at an approximate elevation of 

320m. The seven generating stations at Bay d'Espoir produce an output of 604 MW. 

Through a man-made array of dams and canals, this water is directed to generating plants 
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at Upper Salmon. The Upper Salmon development utilizes a portion of the residual head 

between MeelPaeg lake reservoir and Rond Pond within the watershed of the Bay 

d'Espoir hydro electrical development [7]. The system for study being considered is the 

eastern part of the island as all the buses shown lie east of Bay d'Espoir. 

2.2.3 39 Bus Power System 

Fig. 2.3 shows the single line diagram of 39-bus power system, which contains 35 

transmission lines, 11 generators and 11 transformers. The system component data is 

given in Table 2.3. The system base case load flow summary is shown in Table 2.4. 

Table 2.3 39 Bus power system component data 

Buses 39 

Generators 11 

Lines/Transformers 46 

Table 2.4 39 Bus power system base case load flow summary 

Real Power (MW) Reactive Power (Mvar) 

Total generation 6192.8 1256.3 

Total load 6150.1 1408.9 

Losses 42.74 -152.56 
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2.3 Di:rect Methods 

Direct methods have been in use for many years and go under various names like 

Linear Sensitivity Factors method, DC power flow method etc. The approach works only 

when an approximate result of the effect of each outage on real power flow is desired. 

These methods do not take in to consideration any aspect of voltage participation in real 

power flows. 

2.4 DC Powe:r Flow 

The Newton power flow is the most robust power flow algorithm used in practice. 

However, one drawback to its use is the fact that the terms in the Jacobian matrix must be 

recalculated after each iteration and then the entire set of equations must be resolved each 

time. Since thousands of power flows are often run for power flow studies, ways to speed 

up this process have been sought. DC power flow is a linearized version of the load flow 

problem based on the assumptions discussed ahead. All line conductances are negligible, 

1.e., G .. ::::;0, where G .. is the conductance and B .. is the susceptance of the lines 
U U D 

connecting buses i and j. All angular differences are small; within 30° range. This 

implies that sinB::::; B where B is in radians [1]. All voltages remain constant at their 

nominal values, i.e., at 1 p.u [3]. The implication of these assumptions is that only real 

power equations are considered with no line losses. Given the above assumptions, the 

real power injection equation is expressed in equation (2.3) [3] 
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Fig 2.3 Single line diagram of the 39-bus power system 
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P.=V. 2G .. -V"' v.(G .. cos(e.-e.)+B..sin(B,-8.)) 
I I IIi~ J lj I J IJ 1 j 

jek(i) 

(2.3) 

P. is the net real power injection. G .. is assumed negligible as mentioned above. Angular 
1 u 

differences are small, so sinB=B. 

P. ~ -V "' V.B..(B,-8.) 
I IL.JJIJIJ 

(2.4) 
jek(i) 

These assumptions make P. approximately equal to the expression on left hand side of 
1 

equation (2.4). 

Pi= I ( -vivjBij)cei-e) 
jek(i) 

(2.5) 

As voltages have been assumed equal to 1 p.u., so this representation of P. is equivalent 
1 

to the left hand side expression in equation (2.6) 

(2.6) 

where aij =B/or all i * j . Denoting by aii the negative sum is given by equation (2. 7) 

aii=- L aij 
jek(i) 

and the expression is written as P= AB 

Where 

(2.7) 

(2.8) 

(2.9) 
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(2.10) 

DC power flow is only useful for calculating real power flows on transmission lines. It 

gives no indication of what happens to voltage magnitudes or reactive power flows. The 

power flowing on each line using DC power flow is given by 

and 
N 

Pi= ~ PK 
K=buses 
connected 
to i 

(2.11) 

(2.12) 

As discussed earlier, the use of this method is for calculating real power flows during 

contingencies. The bar charts have been used for showing comparison between real 

power flows calculated by AC power flow and DC power flow. The results are shown 

considering a 39 bus system and the Newfoundland & Labrador Hydro equivalent 

system. The following are the abbreviations used for the methods: 

1. DC : DC Power Flow 

2. AC : Full AC Power Flow 

3. MW: Mega Watt 

These abbreviations are used with the figures to explain which methods are being 

compared. 
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Fig. 2.4 Real power flow comparison with line 1 outaged using 39 bus system 

Fig. 2.4 compares the real power flow on branches when line 1(2-1) goes out of service 

for the 39-bus power system. Real power flow on branch 1 is zero as this branch is out of 

service. On branch 6, connecting bus 4 and bus 3, the difference is more as compared to 

rest of the branches. The high difference in such low values of real power flow is not so 

significant, so the over all results are close to AC power flow. Fig 2.5 compares the real 

power flow on branches, when line 2(39-1) goes out of service. Real power flow on 

branch 2 is zero as this branch is out of service. 
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Fig. 2.5 Real power flow comparison with Hne 2 outaged using 39 bus system 
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Fig. 2.6 Real power flow comparison with line 3 outaged using 39 bus system 

Fig. 2.6 compares the real power flows on branches, when line 3(3-2) goes out of service. 

In this case, the flows on all the branches are near to the AC power flow. Real power 

flow on branch 3 is zero as this branch is out of service. Fig. 2. 7 compares the real power 

flows on branches, when line 4(25-2) goes out. 
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Fig. 2.7 Real power flow comparison with line 4 outaged using 39 bus system 
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In fig. 2. 7, the difference between real power flow on branch 7 calculated by AC power 

flow and DC power flow is approximately fifty percent. Real power flow on branch 4 is 

zero as this branch is out of service. 
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Fig. 2. 8 Real power flow comparison with line 1 outaged using Newfoundland & Labrador 
Hydro equivalent system 

300 

t 200 

~ 100 :2 

0 

-100 
Branches __... 

Fig. 2.9 Real power flow comparison with line 4 outaged using Newfoundland & Labrador 
Hydro equivalent system 

Fig. 2.8 compares real power flow using the Newfoundland & Labrador Hydro equivalent 

system, when line 1 goes out of service connecting Bay d'Espoir and Sunny Side. Flows 

on all the lines are approximately same. If all the figures discussed above are analyzed 

25 



carefully, it can be inferred that the results approximately match with AC power flow and 

can be relied upon. But in some cases the difference also becomes approximately fifty 

percent between real power flows calculated using AC and DC power flow. Hence, the 

tradeoff between speed and accuracy can be crucial also in terms of decisions being taken 

on basis of these calculations. 

2.5 Linear Sensitivity Factors 

One of the ways to provide a quick calculation of overloads is to use linear 

sensitivity factors. These factors show the approximate change in line flows for changes 

in generation during network reconfiguration [1]. 

These factors are of two types: 

1. Generation shift factor 

2. Line outage distribution factor 

2.5.1 Generation Shift Factor 

It is the ratio of change in real power flow on line 1, when a change in generation 

d~ occurs at bus i. The assumption behind the generation shift factor is when a 1 p. u. 

power increase is made at bus i, it is compensated by a 1 p.u. decrease in power at the 

reference bus. The changes in bus phase angles are equal to the derivative of the bus 

angles with respect to a change in power injection at bus i. The generation shift factor is 

given in equation (2.13)[2] 
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a.= dfli =~[_!_(e -e )] 
h dP dP. X

1 
n m 

I I 

where 

X .=den =nth element from the~evector in equation (2.10) 
m dP 

' 

d9 
X . = _J!!.. =m th element from the ~e vector 

m• dP 
I 

x1 = Line reactance for line l. 

df1i = Change in MW flow on line 1, when a change in generation occurs at bus i. 

dPi =Change in generation at bus i. 

2.5.2 Line Outage Distribution Factor 

(2.13) 

(2.14) 

Linear impact of an outage is determined by modeling the outage as a transfer 

-
between the terminals of the line. Thus, setting up a transfer of P nm from bus n to bus m 

is linearly equivalent to the outaging of the transmission line. This is shown in fig. 2.10 
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Fig. 2.10 Modeling line outage distribution factor as transfer of power [7] 

The line outage model requires that the incremental injections APn and APm are equal to 

the power flowing over the outaged line after the injections are imposed. Let the line 

-
reactance be Xk, so Pnm = APn = -APm is the power transfer [2]. 

where 

(2.15) 

A sensitivity factor t5 is defined, which is the ratio of change in phase angle e , anywhere 

in the system to the original power flowing over a line nm before it was outaged. That is, 

8 =Ae; 
1,nm p 

nm 

(2.16) 

If one of the outaged buses is reference bus, then injection is made at the other bus. Using 

the relation between APn and AP m , the resulting 8 factor is 
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(2.17) 

If bus i is a reference bus, then ~\nm = 0 as the reference bus angle is constant. 

By definition, the line outage distribution factor is defined as 

(2.18) 

i and j are the buses connecting line k. 

!1J; = Change in MW flow on line 1. 

fko =Original flow on line k before it was outaged. Substituting equation (2.19) m 

equation (2.16) 

xk 
-(X. -X. -X. +X. ) 
x m Jn 1m Jill d =-----"-! _______ _ 

l,k xk -(Xnn + Xmm -2Xnm) 
(2.19) 

If the power on line 1 and line k is known, the flow on line 1 with line k out can be 

determined using "d" factors. 

" 
f1 =f1°+d 1,Kf~ (2.20) 

Where 

f1° ,f~ = Pre Outage flows on lines 1 and k, respectively. 

f; =Flow on line 1 with line k out. 

If the line outage distribution factors are precalculated, a very fast procedure can be set 

up to test all lines in the network for overloads during contingencies. 
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These factors have the same accuracy as the DC power flow but they are 

computationally efficient. Here, a comparison is presented using bar charts between the 

results of AC power flow and Line outage distribution factor method for line outages. 

The following are the abbreviations used for methods: 

1. LODF: Line Outage Distribution Factor 

2. GSF :Generation Shift Factor 
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Fig. 2.11 Real power flow comparison during line 1 outaged using 39 bus System 

Fig. 2.11 compares the real power flow on branches, when line 1 (2-1) goes out of service. 

Flow on branch 1 is zero as this branch is out of service. The difference between real 

power flow calculated by AC power flow and DC power flow is more in branch 6 

connecting nodes bus 4 and bus 3 than rest of the branches. Fig. 2.12 compares the real 

power flow on branches, when line 2(39-1) goes out of service. 
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Fig. 2.12 Real power flow comparison during line 2 outaged using 39-bus system 

Another application of Linear Sensitivity factors is computing real power flows during 

generator outages. Fig 2.13 shows real power flows on branches when generator on bus 

30 goes out. The real power flow on branch 5 connecting nodes 2 and 30 becomes zero. 
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Fig. 2.13 Real power flow comparison during outage of generator on bus 30 using 39-bus 
system 

Fig.2.14 compares real power flows, when generator on bus 32 goes out of service. 
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Fig. 2.14 Real power flow comparison during outage of generator on bus 32 
using 39-bus system 

The real power flows results calculated using Generation Shift Sensitivity factors shown 

in fig. 2.13 and fig. 2.14 are also close to the near to real power flow calculated using AC 

power flow. 
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Fig. 2.15 Real power flow comparison during line 1 outaged using Newfoundland & 
Labrador Hydro equivalent system 
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Fig. 2.16 Real Power Flow comparison during outage of generator on bus 8 using 
Newfoundland & Labrador Hydro equivalent system 

Fig 2.15 compares real power flow on branches when line 1(1-4) goes out of service. 

Flow on line 1 is zero as it is out of service. On rest of the branches, the real power flows 

calculated by AC power flow and Generation shift factor are in close proximity to each 

other. Fig 2.16 compares real power flow for generator outage on bus 8 for 

Newfoundland & Labrador Hydro equivalent system. 

2.6 Direct Severity Ranking 

If the numerical measure of the flow on each line during contingencies is known, 

it can be ranked using a severity index. A commonly used definition for the performance 

index is given in equation (2.21), where Lis the number of branches [1]. 

(p J\2n 
PI= I fl~~ 

all branches l p L 
(2.21) 

L 
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If n is a large number, the PI (performance index) will be a small number, if all flows are 

within limits, and it will be large or if one or more lines are overloaded. The problem 

then is how to use this performance index. 

Many methods have been used to obtain the value of performance index when a 

branch is taken out. The calculations can be made and a table of performance index 

values, one for each line in the network, can be calculated quite quickly. The selection 

procedure then involves ordering the performance index table from largest value to least. 

The lines corresponding to the top of the list are now used for further analysis. However 

when n=l, the performance index does not increase in value suddenly, instead, it rises as 

a quadratic function. A line that is just below its limits contributes to performance index 

almost equal to one that is just below its limit. Hence, the performance index ability to 

detect or distinguish bad cases is limited when n= 1. Ordering the performance index 

values when n=l usually results in a list that is not at all representative of one with the 

truly bad cases at the top. Many efforts have been tried to develop an algorithm that can 

calculate quickly when n=2. Performance index is a scalar function of the network 

variables chosen as a measure of the operating stress ofthe system [6]. The analysis can 

be started by executing full AC power flows for the cases at the top of the list. The 

methods that have been discussed before are compared with AC power flow in terms of 

severity of performance index for first ten severe outages in table 2.5. The results shown 

in table 2.5 for DC power flow and Linear sensitivity factors are not same as AC power 

flow. Other methods are an alternative to AC power flow so accuracy is sacrificed but to 

a tolerable extent and speed is gained with sacrifice in accuracy. 
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Table 2.5 Ranking of:Performance Index for 39~bus system 

AC Load flow D.C Load Flow Line Outage Distribution 

Factor 

Line No. PI Line No. 
I 

PI Line No. PI 

34 20.43 2 21.75 2 21.75 

46 18.39 34 20.01 34 20.42 

37 18.36 16 18.74 16 18.74 

2 18.18 17 18.74 17 18.74 

39 17.07 37 18.10 37 18.50 

16 16.17 46 17.97 46 18.34 

17 15.98 35 17.50 35 17.50 

42 15.94 42 17.28 39 17.39 

20 15.50 39 17.00 20 17.38 

35 14.94 20 16.93 42 17.28 

Fig. 2.17 compares performance index calculated using DC power flow and Line Outage 

Distribution Factor with AC power flow for single line outages. 
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Fig. 2.17 Comparison of Performance Index for 39-bus system 
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Fig. 2.18 Comparison ofPerfonnance Index for the Newfoundland & Labrador Hydro equivalent 
system 

Fig. 2.18 compares the performance index usmg DC power flow and Line Outage 

Distribution factor with AC power flow for outage of line 1, 2, 4 and 5 for the 

Newfoundland & Labrador Hydro equivalent system. Table 2.6 shows the value of 

performance index calculated by AC power flow, DC power flow and Line Outage 

Distribution factor. 
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Table 2.6 Ranking of Performance Index for Newfoundland & Labrador Hydro Equivalent system 

AC Load flow D.C Load Flow Line Outage Dist:ributimn 

Facto:r 

Line No. PI Line No. PI Line No. PI 

1(1-4) 4.21 1 3.58 1 3.74 

2(1-4) 4.21 2 3.58 2 3.74 

4(2-3) 3.00 4 2.77 4 2.86 

5(2-5) 4.81 5 4.41 5 4.52 

The data under the column heading "Line No." means line 1 connecting bus 1 and 4. In 

Table 2.6, when Performance index is arranged in descending order, the order of the 

severity of the outage is same as calculated using DC power flow based methods and AC 

power flow. 
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2. 7 Conclusion 

Devising algorithms that are computationally less severe and are approximate in 

terms of accuracy has always been main consideration in contingency selection. 

Contingency selection procedure eliminates running an exhaustive list of cases, it 

decreases the time spend in finding the worst cases. In this sense contingency selector can 

be thought of a contingency filter in which ranking from all the possible outages filters 

out specific outages. Finally, each such filtered and index case is then fully simulated 

with an AC power flow [7]. Results calculated AC power flow and DC power flow based 

methods are very close to each other. As noticed in some results, the difference in real 

power flows is higher between DC power flow based methods and AC power flow is 

higher, so some times the decision should not be made solely taken based on these 

results. In general it can be inferred that finding real power flow overloads, Linear 

Sensitivity Factor and DC power flow has proven to be a suitable option that gives us an 

approximate idea of the severity of outages. Overall the results are quite encouraging. 
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Chapter 3 

Sensitivity Analysis Based-Method Fo:r Voltage Security 
Analysis 

3.1 Introduction 

One important concern related to voltage security is maintaining acceptable voltage 

levels. Voltage levels are satisfactory if their values lie within a certain range. Voltages at 

buses are typically regulated within 5% of nominal values in a transmission system. It is 

necessary to maintain voltage levels as system conditions change and these changes could 

be contingencies also. Attention on contingent voltage monitoring is now increasing 

considerably. Voltage security has assumed greater importance as part of the power 

system contingency analysis. In order to reduce computational burden, linear modeling is 

required that provides faster operation. But it is difficult to model the voltage and reactive 

power relationship as it is inherently a nonlinear phenomena and it is natural to use 

nonlinear methods. Even if the fast models are developed, they may not be as accurate as 

AC power flow. Linear methods have been suggested earlier for voltage security 

analysis, butthey are not, in general very accurate [13, 14, 15]. In the following section, a 

set of distribution factors have been considered which can be used for direct computation 

39 



of bus voltages following a line or generator outage. These factors are defined in terms of 

pre-outage real and reactive power flows in the lines and outputs of generators [16]. They 

are derived by exploiting the sensitivity property of Newton-Raphson Jacobian. Case 

studies using a 39-bus power system and the Newfoundland & Labrador Hydro 

equivalent system are presented in this chapter. 

3.2 Model For Voltage Contingency Analysis 

There is no linear relationship between voltage and reactive power for large 

disturbances. But, there exists a linear relationship for active power and load angle. The 

scope for fast approximate modeling in reactive power and voltage is much less than in 

the active power and load angle. The reactive power flow behavior is nonlinear and 

voltages are also strongly influenced by reactive power flows. Reactive power flow 

model analogy to active power flow model is 

(3.1) 

Where B" is an approximation to the Jacobian sub matrix L [17-20] given in equation 

(3.2). 

IH N]f ~e ]=-[~P] lJ L L~V ~Q (3.2) 

It is necessary to calculate ~Q and possibly B" using the post-contingency voltage 

angles obtained from the active power model. The straight approach is to calculate the 

bus angular changes for the contingency case by an active power screening technique. 

The updated angles are then used in calculating the voltage normalized reactive 
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mismatches ~Q in equation (3 .1 ). Equation (3 .2) gives the change in voltage due to 
v 

change in reactive and active power injection. If this expression is explained in terms of 

sensitiveness of voltage due to change in reactive and active power, then the sensitivity 

analysis can be used to find the change in voltage. 

Sensitivity factors are well known indices in several utilities throughout the world 

to detect voltage problems and device corrective measures [21]. Sensitivity in this 

context is defined as a small change in voltage for a small change in active or reactive 

power injection over a linear operating point. 

The power flow problem solves the complex matrix equation 

YV=I=S*N* (3.3) 

Y is the network nodal admittance matrix, Vis the unknown complex voltage vector, I is 

the nodal current injection, and S=P+jQ is the apparent power nodal injection vector 

representing specified load and generation at nodes. The most general and reliable 

algorithm to solve the power flow program is the Newton-Raphson method. It is a 

multivariable formulation of Newton's method used in calculus [22]. This method 

involves iteration based on successive linearization using the first terms of a Taylor 

expansion of the equation to be solved. 

- n __ 

IK = _LYKM vm (3.4) 
m=l 
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- _n 

PK-jQK=v;IK=v~:LYKM vM (3.5) 
m=l 

The Newton-Raphson method solves the portioned matrix given in equation (3.6) 

(3.6) 

Where .&P and .&Q are mismatch vector, ll V is the unknown voltage magnitude 

correction vector, and llB is the unknown voltage angle correction vector is the Jacobian 

matrix of partial derivative terms calculated analytically from equation (3 .6). 

Sensitivity analysis can be used for the design of voltage control and reactive 

power compensation devices for voltage security. Sensitivity analysis must be used 

with great caution. The linearized model is only valid for small changes. An increase in 

loading may cause generator current limiting ( PV bus changed to PQ bus) and 

drastic change in sensitivities. 

3.3 Voltage Distribution Factors 

These factors are derived using the sensitivity property of Newton-Raphson 

Jacobian following a line/transformer or generator outages. Voltage distribution factors 

have been termed as line outage voltage distribution factor for line outage. In case of a 

generator outage, they are termed as generator outage voltage distribution factor. 

3.3.1 Line Outage Voltage Distribution Factor 

Consider a line 1 carrying real power PL and reactive power QL. Fig.3.l shows 

line 1 to be outaged connected between two buses i and j. The transmission line can be 
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represented by two fictious lines Ll and L2 in parallel. Line Ll carrying the real 

Bus i 
nf---:--P-L_L_in_e _u ____ --ln Bus j 

u QL Line L2 u 
Fig. 3. 1 Schematic diagram ofline I 

power flow PL and L2 carrying the reactive power QL . Average real power flow over the 

line is given by 

(3.7) 

Average reactive power flow over the line is given by 

(3.8) 

Where Pu is the real power flowing from bus i to bus j and Pji is the real power flowing 

from bus j to bus i. Qij is the reactive power flowing from i to j and ~i is the real power 

flowing from j to i. During simulation of a line outage, as a line goes out of service, 

[YBus] changes. To include this change in [YBus] is a time consuming process which 

defeats the purpose of this method. The changes like line outages can be simulated by 

considering two ficticious generators at bus i and bus j and a ficticious line made of two 

parallel lines Ll and L2 representing the original line. By these assumptions, [Ysus] does 
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not require a change in values. Fig.3.2 shows the preoutage state of the power flow over 

the line to be outaged. 

Line 1 

Fig.3.2 Preoutage state of the outaged line 

Pij and Qij are the real and reactive powers flowing from bus ito bus j respectively. Pji 
-+ 

and Qij is the real and reactive powers flowing from bus j to bus i respectively. Post 

outage conditions can be simulated as shown in fig 3.3. 

t ,-
Sji 

0 
Fig. 3.3 Post outage state of the outaged line 
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The changes according to fig.3.3 from pre-outage state to post-outage are g1ven m 

equations (3.9) and (3.10) 

--+ ~ 
~P. = p & ~p. = p 

l ij J ji 
(3.9) 

(3.1 0) 

Suppose, the change in voltage at a bus i is ~ vt due to outage of the line L 1 carrying 

real power PL and !l v.Q is the change in voltage following the outage of line L2 carrying 
1 

reactive power QL . The net change in voltage at bus i will be the sum of ~ vt and !l v.Q 
l 

for the line outage. Here an approach utilizing the sensitivity property of Newton-

Raphson Jacobian has been suggested to compute the post outage changes in bus voltage 

magnitudes. 

The Newton-Raphson load flow equations are used for relating the power 

mismatch with change in voltage and angles given in equation (3.11) 

(3.11) 

If reactive power generation limits of the generators are considered then the size of 

Jacobian will be {2N-Nq +m-1)* {2N-Nq +m-1), where m is the number of PV 

buses converted to PQ type following violations of generator Q-limits. In this method, an 

extended Jacobian [J*] is considered at the end of base case load flow solution of size 

(2N-2) * (2N-2) in which all the voltage buses except slack bus are treated as PQ buses. 
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This can be done by adding (oQj and (iJQ) elements corresponding to all PV buses ao; av 

(except slack bus) in final Jacobian [J]. A sensitivity matrix [S] can be defined as 

[S] = [J*r1
• This matrix directly provides the sensitivity relationship between bus 

powers and voltages and can be used to compute changes in bus voltage angles and 

magnitudes. If the changes in bus power injections are known during line and generator 

outage, the change in voltage magnitude can be directly computed using equation (3.12). 

[ ~n = [ s I [ ~~] (3.12) 

The sensitivity matrix Sneed not be recomputed utilizing new load flow Jacobian at the 

end of load flow solution as the Ybus of the system will not change. 

The effect of real and reactive power injection can be calculated separately using 

equation (3.13) 

(3.13) 

Where b. V P denotes the change in voltage magnitude due to change in real power 

injection b.P and b. VQ due to change in reactive power injection b.Q. The equation 

(3.13) can be divided into two sets. 
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(3.14) 

(3.15) 

The total change in bus voltage will be the addition of change in voltage due to active and 

reactive power. The net change in voltage after contingency will be IJ. V = 1J. V p + IJ. V Q . 

The advantage of this approach is that for each contingency, recalculation of sensitivity 

matrix is not required. 

For outage of line 1, all the elements of /J.P vector in equations (3 .14) and 

/J.Q vector in equation (3 .15) will be zero except for bus i and bus j. If one of the buses 

is a slack bus, the slack bus element will be considered zero. The solution of equation 

' 
(3.14) & (3.15) will provide the change''in bus voltage angles from preoutage to 

postoutage state. During any contingency the slack bus voltage is assumed constant at 1 

p.u. 

The line outage voltage distribution factor a~ and a~ corresponding to the outage of 

ficticious lines Ll and L2 respectively can be defined as 

p 
p AV. 

a - l li--p-
L 

Q 
a~= ~;i , i=l, ...... , N & 1= 1, ........ , N1 

L 
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In equations (3.16) and (3.17), PL and QL are knuwn, 11.v: and b.V.Q are the changes in 
l l 

voltages on bus i during a line outage. 

The set of line outage voltage distribution factors can be used to calculate post 

outage voltage using equation (3 .18). 

(3.18) 

v.n is the postoutage voltage at bus i after the contingency. Each line outage can be 
1 

simulated using this algorithm and the post outage values of voltages can be determined. 

This algorithm can be explained in a step-by-step method given below. 

Step 1: Calculate Ybus, Pij, Pji, Qij, Qji, PL, QL, vi. 

2: Calculate Jacobian and form equation (3.12). 

3: Consider a line to be outaged connected to bus i and bus j. Make all elements of 

M & .6.Q vector in equation (3.13) equal to zero except the elements of the 

line to be outaged. If one of the buses of the outaged line is a slack bus, assign 

this element's value zero in M and .6.Q vector. 

4: Calculate .6.VP and h.VQ using equation (3.14) & (3.15). 

5: Use equation (3 .16) & (3 .17) to calculate line outage voltage distribution 

factors. 

6: Use equation (3.18) to calculate post outage voltage during outage of line L 

connecting bus i and bus j. 
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3.3.2 Generator Outage Voltage Distribution Factor 

Consider a generator g generating real power output Pag and reactive power QGg . 

To simulate the generator outage, it is assumed that generator can be represented by two 

sources gl and g2, where gl is delivering real power with PGg and g2 is delivering 

reactive power QGg . The combined effect of outage of these sources has been used to 

simulate outage of generator g. During the generator outage, the change in power 

mismatch from preoutage to post outage is given by equation (3.19) and (3.20) 

(3.19) 

(3.20) 

With these values equated in equations (3.14) and (3.15), the change in f).VP and f).VQ 

can be calculated. The generator outage voltage distribution factors can be defined as 

p 
p !J.V. 

b. =-1-
gl p 

Gg 

Q 
bq = L!Vi i=l. ..... ,N & g=l, ............. Nq 

gt QGg 

(3.21) 

(3.22) 

Where N and Nq are the total number of buses and reactive power sources in the system 

respectively. While simulating a generator outage, it has been assumed that the slack bus 

generator will meet the real power demand during outage. For a generator outage, the 

voltage at bus i can be computed as 

i=l, ............ N (3.23) 

49 



v.n is the post outage voltage at bus i after the contingency. Each generator outage can 
l 

be simulated using this algorithm and the post outage values of voltages can be 

determined. This algorithm can be explained in a step-by-step method given below. 

Step 1: Calculate Ybus, PGg' QGg' vi. 

2: Calculate Jacobian and form equation (3.12). 

3: Consider a generator to be outaged connected to bus i. Make all elements of 

M & .6.Q vectors in equation (3.13) equal to zero except the element of the 

bus to which generator is connected 

4: Calculate !!J.VP and !!J.VQ using equation (3.14) & (3.15). 

5: Use equation (3.21) & (3.22) to calculate line outage voltage distribution 

factors. 

6: Use equation (3.18) to calculate post outage voltage during outage of generator 

g connected to bus i. 

3.4 Application of Distribution Factors To Sample Power Systems 

A 39 bus system and the Newfoundland & Labrador Hydro equivalent system is 

considered in this section. Details of these systems have been discussed in chapter 2. 

3.4.1 39 Bus System 

Line outage voltage distribution factors and Generator outage voltage distribution 
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factors have been used for calculating the voltages on buses during contingencies like 

line outages and generator outages. The abbreviations used in the figures for comparison 

of methods are: 

1. AC AC Power Flow 

2 SAM : Sensitivity Analysis Based Method 

Fig.3.4 compares the voltages on buses, when line 1 connecting bus 2 and 1 goes out of 

service. On bus 1, the voltage calculated using AC power flow and the Sensitivity 

analysis based method would always remain the same, as this is a slack bus. The 

maximum difference in values ofvoltages shown in fig.3.4 is on bus 3. On the rest of the 

buses, the error is not more than 4 percent. Table 3.1 gives the value of percentage error, 

where percentage error is defined as in equation (3.24), where V AC is the voltage 

calculated by full AC power flow and V sAM by Sensitivity analysis method. 

V -V 
%Error= AC SAM * 1 00 

VAC 

1.05 
~ 

:::) 1 
0..: 
~ 0.95 
~ 
~ 0.9 

0.85 

2 3 4 5 6 7 8 

Bus No. 

lilAC I 

msAMI 

Fig. 3.4 Comparison ofvoltages on buses during outage ofline 1(2-1) of39-bus system 
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Table 3.1 Percentage error in voltage for outage ofline 1(2-1) of39-bus system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 0 
1 

1.03 1.01 2.67 
2 

1.01. 0.98 3.14 
3 

0.97 0.94 2.65 
4 

0.95 0.94 1.99 
5 

0.96 0.94 2.03 
6 

0.94 0.93 1.55 
7 

0.94 0.93 1.30 
8 

Fig.3.5 compares the voltages on buses, when line 10 connecting bus 6 and bus 5 goes 

out of service. The voltage on bus 1 is constant being a slack bus. The values of voltages 

calculated by the Sensitivity analysis based method are higher than AC power flow 

method, but the difference between the values calculated by the AC power flow and the 

Sensitivity analysis method is approximately same as during outage of line 2. 
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0.92 

2 3 4 5 6 7 8 
Bus No. 

Fig. 3.5 Comparison of voltages at buses during outage ofline 10(6-5) of39-bus system 

Table 3.2 Percentage error in voltage for outage of line 10(6-5) of39-bus system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 1 0 

2 1.03 1.03 -0.45 

3 1.00 1.01 -0.61 

4 0.97 0.98 -0.74 

5 0.97 0.97 -0.85 

6 0.97 0.98 -0.35 

7 0.96 0.97 -0.52 

8 0.96 0.97 -0.61 

Line 10 is carrying fewer loads as compared to line 1 and 2. The values of voltages 

calculated using AC power flow and the Sensitivity analysis based method in fig. 3.5 are 
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approximately same. Fig. 3.6 compares the voltages on buses when line 20 connecting 

bus 10 and bus 32 goes out of service. 

~ 

1.2 

1 

~ 0.8 
0.. 

-g 0.6 
ro 

~ 0.4 
0.2 

0 
1 2 3 4 5 6 7 8 

Bus No. 

Fig. 3.6 Comparison ofvoltages on buses during outage of line 20(10-32) of39-bus system 

Table 3.3 Percentage error in voltage for outage ofline 20(10-32) of39-bus system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 1 0 

2 1.00 1.09 -8.83 

3 0.96 1.08 -12.74 

4 0.90 1.05 -16.46 

5 0.88 1.04 -17.33 

6 0.88 1.04 -17.52 

7 0.87 1.03 -17.54 

8 0.87 1.02 -17.33 
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The bus 1 being a slack bus, the voltage is constant at 1 p.u. A generator connected to 

bus 32 also gets disconnected, when line 10 goes out of service. Ifthe difference between 

the values of voltages calculated by AC power flow and the Sensitivity analysis based 

method in fig. 3A & 3.5 is observed, the difference is maximum in fig. 3.6. The reason 

that can be attributed to this is that in outage cases discussed earlier, the logic involved 

was only for line outages, but in this case the line being radial and a generator connected 

to it makes it completely different from a single line outage case. So this method will not 

give accurate results in such cases where these kinds of situations arise. The difference 

in this case between the values is 15 percent, which cannot be considered tolerable. 

1.1 

~ 1.05 
::i 
ci. 
(j) 

N o.95 

~ 0.9 

0.85 

2 3 4 5 6 7 8 

Bus No. 

Fig. 3.7 Comparison of voltages on buses during outage of generator on bus 37 for 39-bus system 

Fig. 3.7 compares voltages calculated by AC power flow and Sensitivity Analysis based 

method, when the generator on bus 3 7 goes out of service. The maximum difference in 

the values is approximately 6 percent This small value of difference can be 

accommodated. 
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Table 3.4 Percentage error in voltage for outage of generator on bus 37 of39-bus system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 1 0 

2 1.00 1.09 -8.83 

3 0.96 1.08 -12.74 

4 0.90 1.05 -16.46 

5 0.88 1.04 -17.33 

6 0.88 1.04 -17.52 

7 0.87 1.03 -17.54 

8 0.87 1.02 -17.33 

Fig. 3.8 compares the values of voltages on buses calculated by AC power flow and 

Sensitivity analysis based method, when the generator on bus 34 goes out of service. The 

difference in values of voltages in this case is approximately 30 percent. This high 

difference can be attributed to the high percentage of power delivered by the generator 

in comparison to the total generation of the system. 
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Fig. 3.8 Comparison of voltages on buses during outage of generator on bus 34 of 39-bus system 

Table 3.5 Percentage error in voltage for outage of generator on bus 34 of 3 9-bus system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 1 0 

2 1.01 1.24 -22.87 

3 0.98 1.27 -29.56 

4 0.95 1.26 -32.17 

5 0.95 1.24 -31.14 

6 0.95 1.24 -31.12 

7 0.94 1.22 -30.77 

8 0.93 1.22 -30.27 
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3.4.2 Newfm.nndland & Labrador Hydro Equivalent System 

The details of Newfoundland & Labrador Hydro equivalent (NLH) system have 

been discussed in chapter 2. In this section, voltage distribution factors are applied for 

calculating voltages during line and generator outages. Fig. 3.9 shows the comparison of 

voltage on buses calculated by AC power flow and the Sensitivity analysis based method, 

when line 1 connecting Bay'Despoir and Sunny Side goes out of service. These buses are 

located on the eastern part of the province. 

1.04 

--:- 1.02 
::> 
0.: 1 ar 
Eo.98 
0 
> 0.96 

0.94 

1 2 3 4 5 6 7 8 

Bus No. 

Fig.3.9 Comparison of voltages on buses during outage ofline connecting Bay'Despoir 
and Sunny Side for NLH System. 
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Table 3.6 Percentage error in voltage during outage of line connecting Bay'Despoir 
an d S S"d fi NLH S t unny 1 e or )ys em 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1.02 1.02 0 

2 1.02 0.99 2.94 

3 0.99 0.98 1.39 

4 0.98 0.98 0.46 

5 1.01 0.98 2.74 

6 1.01 0.98 2.83 

7 0.98 0.98 0.64 

8 1.03 1.03 0 

The maximum difference in values shown in fig.3.9 is 2 percent. Fig.3.14 shows the 

comparison of voltages on buses calculated by AC power flow and the Sensitivity 

analysis based method. 

1.2 

~ 1 
::::i a: 0.8 
-g 0.6 

<11 :g 0.4 
> 0.2 
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2 3 4 5 6 7 8 

Bus No. 

Fig. 3.10 Comparison ofvoltages on buses during outage of line connecting Bay'Despoir and Upper 
Salmon for NLH System 
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Table 3.7 Percentage error in voltage during outage ofline connecting Bay'Despoir and Upper 
Salm fi NLH S t on or ~ys em 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1.02 1.02 0 

2 1.02 1.02 0 

3 1.01 1.01 -0.00 

4 1.00 1.01 -0.00 

5 1.01 1.01 -0.00 

6 1.01 1.01 -0.00 

7 1.00 1.00 0.00 

8 0 1.03 00 

When line 3 connecting bus located at Bay'Despoir and Upper Salmon goes out of 

service. The value of voltages calculated by both the methods are approximately same 

except the value of voltage on bus 8 located at Upper Salmon. The value calculated by 

AC power flow is completely zero, as line connecting bus 1 and bus 8 is radial, so when 

it is disconnected, it becomes isolated. 

1.04 
;- 1.03 
~ 1.02 
Q) 

E 1.01 

~ 1 
0.99 

i 2 3 4 5 6 7 8 

Bus No. 

Fig. 3.11 Comparison of voltages on buses during generator on bus 8 goes out of service for NLH 
system 
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Table 3.8 Percentage error in voltage during generator on bus 8 out of service for NLH system 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1.02 1.02 0.00 

2 1.02 1.02 0.00 

3 1.01 1.01 0.00 

4 1.00 1.01 -0.00 

5 1.01 1.01 -0.00 

6 1.01 1.01 -0.00 

7 1.00 1.00 -0.00 

8 1.02 1.02 0.00 

Fig. 3.11 shows the voltage on buses using AC power flow and Sensitivity analysis 

method, when generator on bus 8 goes out of service. The results calculated using AC 

power flow and Sensitivity analysis method are same. This generator is delivering no real 

power, so the reliability of the results can be attributed to the fact that sensitivity analysis 

method gives better results if the changes are small. 
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3.5 Co:ndusimn 

Sensitivity analysis is used for finding a small change over a linear operating 

point. The use of Sensitivity analysis should always be narrowed down to small changes 

for good results. After application of sensitivity analysis based method to the 39 bus 

system and the Newfoundland & Labrador Hydro equivalent system, a few observations 

have been made. In case of line outages, the results will be optimistic if the line is 

carrying a small percentage of its total carrying capacity. The same observation applies 

to generator outages as well, if the outaged generator is delivering a small percentage of 

the total generation of the system then the results calculated using Sensitivity analysis 

based method will be near to AC power flow. 

The Sensitivity analysis based method can be used without changes also to real 

time systems. The time taken by this algorithm for computing post outage voltages is 

very small as compared to full AC power solution but accuracy is comparable. So, this 

method can be used for online security analysis also. 
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Chapter 4 

Application of Linear Contingency Analysis Methods to Large 
Powe:r System 

4.1 Introduction 

This chapter presents, network reduction technique and the application of linear 

contingency analysis methods to large power system. The 39-bus power system and 95-

bus Newfoundland Hydro system are studied after applying the network reduction 

technique. The main area of investigation in contingency analysis is to look for 

techniques and methods those could calculate power flow parameters in the shortest 

interval of time. In the online control and operation context, the system controlled is 

usually interconnected to other power systems. Normally, a contingency in one's own 

system will have the highest effects within that system. There are always cases, however, 

where a contingency in one system is strongly felt in another. For example, the loss of a 

major generation station may cause power flow limit violations among utilities. The 

difficulty in predicting the impact of contingency arises from the fact that the external 

network is not monitored as carefully as the internal network. Through state estimation, 

all internal system voltage magnitudes and angles, power flows, generations, load and 
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network topology are known online. As far as the external system is concerned, online 

information available is normally restricted to items such as inter-tie power flows, status 

of major lines and generators, and possibly individual unit outputs, among a few others. 

If one is looking for an exact power flow solution for a postulated contingency, then the 

state of the entire network (internal and external should be known) to establish the pre 

contingency base case. Since the state of the external network is not fully known, some 

approximations are required. In the next section, a approach called Network Reduction is 

discussed. This approach when applied to large power systems under investigation will 

help analyzing the power system from contingency aspect in a shorter period oftime. 

4.2 Network Reduction 

Consider a power system divided into three portions : internal, external and 

boundary. 

Internal 
System 

. .. I / 
··················~ .. ,./ f. .··-' -·······~'ll ( __ ,_ ....... . 

t 
Boundary Buses 

Fig. 4.1 Structure of system decomposition [3] 
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Fig. 4.1 shows the overall system decomposed into three systems. Boundary buses place 

a partition between internal and external buses. The Internal buses are not connected to 

the external buses directly. In the discussion to follow the subscripts I, B, E will 

correspond to internal, boundary and external bus related parameters [3]. Vr, VB and VE 

are the complex nodal voltages for the internal, boundary, and external systems, 

respectively. The corresponding notation for complex current, real, and reactive power 

4.2.1 Principle of Network Reduction 

The voltage current relationship in terms of bus admittance matrix is given by 

equation (4.1) 

(4.1) 

Y EE is the admittance matrix for branches connected among external buses. Y EB is the 

admittance matrix for buses branches connected between external and boundary buses. 

Y BE is the admittance matrix of branches connected between boundary and external 

buses. Yss is the admittance matrix ofbranches connected among boundary buses. Ymis 

the admittance matrix of branches connected between boundary and internal buses. Yn is 

the admittance matrix of branches connected among internal buses. The complex power 

vectorS in terms ofV variables can be obtained by appropriately splitting it into external, 
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boundary, and internal system components. In general, the vectorS can be expressed as 

in equation ( 4.2) [3] 

(4.2) 

Where Vd is the diagonal matrix whose diagonal entries are the corresponding elements 

of the vector V. Using the notation defined earlier equation (4.2) is expressed as follows 

y•EB 

y•BB 
y• 

IB 

Specifically, this last equation will be rewritten as a set of three-vector equations-

Equation (4.4) is manipulated to yield the equation (4.7) 

The i-th component of (VEY1dSE is given by equation (4.8) 

A new vector is defined in equation (4.9) 
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7(.2 l i IVEil 

W,= E (4.9) 

s;{v 
jVEnl

2 

(4.10) 

Equation (4.10) may be re-expressed as in equation (4.11) 

(4.11) 

The expression for VE from equation ( 4.11) is written as 

(4.12) 

Substituting equation (4.12) in to equation (4.5) yields-

(4.13) 

The conclusion of this derivation is that the external system 1s represented by a 

modification of YBB matrix given in equation (4.13) 

(4.14) 

This matrix corresponds to an equivalent network connecting the boundary nodes. If 

external voltage magnitudes and power injections remain constant, then (WE)d is 

constant. As a result, the external bus nodal injections can be represented by equivalent 

admittance given by equation (4.15) 
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s* W: = -' * , i e (External system) 
IV: I 

(4.15) 

The validity of this system equivalent stays on the requirement that all terms on the right 

side of equation ( 4.15) remain constant following a system contingency. This is to be 

contrasted with the classical approach of representing external load bus injections by 

means of constant impedances. In the above derivation the external load bus can be 

represented as admittance, which is a function of the post outage corresponding voltage 

magnitudes. Thus, if a means is available to estimate external load bus voltage 

magnitudes and generation bus reactive generation following a postulated contingency, 

then the above approach will yield very acceptable results. 

4.3 Application of Network Reduction to the 39-Bus System 

In this section, Network Reduction is applied to the 39-bus system. It is reduced to 

a 1 0-bus system. Linear Sensitivity factors method is applied to this reduced system for 

line outage. The results are then compared with full AC power flow solution to verify that 

reduced systems are comparable to the complete system. 

4.3.1 Case Study of the 39-Bus System 

Network Reduction is used to reduce the 39-bus system into a lO-bus system and 

then this reduced system is simulated for contingencies. The power flow on different 

transmission lines is compared with full AC power flow during contingencies. Table 4.1 
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and Table 4.2 give the summary of the new 39-bus system. Table 4.3 and Table 4.4 give 

the summary of the new 1 0-bus system. 

Table 4.1 39 Bus power system component data 

Buses 39 

Generators 10 

Lines/Transformers 46 

Table 4.2 39 Bus power system base case load flow summary 

Real Power (MW) Reactive Power (Mvar) 

Total generation 6192.8 1256.3 

Total load 6150.1 1408.9 

Losses 42.74 -152.56 

Table 4.3 10 Bus system component data 

Buses 10 

Generators 3 

Lines/Transformers 13 
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Table 4.4 10 Bus system base case load flow summary 

Real Power (MW) Reactive Power (MV AR) 

Total generation 1370 -5.5 

Total load 1124 143.3 

Losses 10.30 -49.86 

Shunts 236.7 -122.5 

10-bus system has reduced from 39-bus system making buses internal, external and 

Internal Buses Boundary Buses 

4,5,6,7,8,9,11 
12,13 10, 
14,15,16, 
24,18,19,20,21 
22,23,24.28,29 
30,31,32,33,34, 
35,36,37,38,39 

External Buses 

Fig. 4.2 Systems portioned on basis of buses 

boundary as shown in fig 4.2. Fig. 4.3 shows the single line diagram of the 39-bus 

system. Area 1 is made internal and area 2 and area 3 are considered external system. 

Table 4.5 gives the number of branches and the buses connected to each line. 
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Table 4.5 Branches and the connected buses of the reduced lO-bus system 

Branch No. To From 

1 2 1 

2 1 3 

3 1 17 

4 3 2 

5 25 2 

6 2 30 

7 3 17 

8 18 3 

9 18 17 

10 27 17 

11 26 25 

12 25 37 

13 27 26 

Fig. 4.4 shows the real power flow on transmission lines, when line 1 connecting 

bus 2 and 1 goes out of service. The real power flow is same as AC power flow on all the 

branches. The real power flow calculated by Line outage Distribution Factor using 

complete 39-bus system and reduced 1 0-bus are equal. This gives an idea that during 

such kind of reduction, a lot of time is saved and results have the same accuracy as 

calculated using original system unless and until there is a significant change in the 

external system configuration. Fig. 4.5 shows the real power flows on branches, when 

line 2 connecting bus 1 and bus 3 goes out of service. On all the branches except, branch 

1 there is a difference in the real power flows calculated by Line Outage Distribution 

Factor and AC power flow method. 
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Fig.4.3 Single line diagram ofthe 39-bus power system 
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Fig. 4.4 Real power flow comparison with line 1 outaged ofthe lO-bus system 
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Fig. 4.5 Real power flow comparison with line 2 outaged ofthe 1 0-bus system 

The observations inferred from Table 4.6. shows that Network reduction is credible 

means for saving time during contingency analysis for large systems, unless there is big 

change in the external system configuration. Introduction of concept of Network 

reduction and its application to 39-bus system is used to emphasize the fact that it could 

be very useful tool to analyze large interconnected power system. Application of this 

concept is limited to 39-bus system only in this chapter. In the following section, security 

analysis of Newfoundland hydro system is studied using linear contingency analysis 

methods. 

4.4 Security Analysis of the Newfoundland Hydro System 

Newfoundland Hydro is a 95-bus system owned by the province of Newfoundland 

and Labrador. The power company generates, transmits and distributes electrical power 

and energy to utilities, industrial and residential customers throughout the province. It has 

9 generating stations. The location of generating stations is shown in 
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Table 4.6 Real power line flows for lO-bus and 39-bus system for outage oflinel 

No. of lO-bus System 39-bus System 
Buses 

Connected MW MW 

2-1 0 0 

2-30 -250 -250 

25-37 -538.3 -538.3 

26-25 -97.5 -99.4 

18-3 19.1 18.1 

Fig. 4.6 Location of generation plants in Newfoundland Hydro system 
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fig. 4.6. The total generation ofthe plants is 1357.2 MW. The details of the system are 

discussed in Appendix C. 

Fig. 4.7 Single line diagram of95 bus Newfoundland Hydro system 

Linear contingency analysis methods are applied on real time 95 bus Newfoundland 

Hydro system. In fig. 4.7, the single line diagram shows the major transmission lines of 

the system. DC load flow and Linear Sensitivity Factors method for real power flow 

calculations and Sensitivity analysis based method have been used for finding voltages on 

buses during contingencies. The proximity of results to the full AC power flow will 

support the statement that these methods can be used for real time system also. The 

results are shown in a serial order, first DC load flow and then Line Outage Distribution 

Factor and then Sensitivity analysis based method will be applied. Fig. 4.8 shows the real 
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power flow on branches when line 5 connecting CornerBrook and MessyDrive goes out 

of service. The flow on all the branches is approximately same as AC power flow. If rest 

of the lines is also observed in the results available, the results are promising except a few 

lines like line 1 and 2, but this difference can be accommodated, as it is very small. 
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Fig. 4.8 Real power flow comparison with line 5 connecting bus 106 & 152 outaged 
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Fig. 4.9 Real power flow comparison with line 23 connecting bus 208 & 115 outaged 
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Fig. 4.9 shows the real power flow on branches, when line 23 ~cting MessyDrive 

and BottomBrook goes out of service. Real power flow on line 23 is zero both in AC 

power flow and DC power flow methods. The flow on branch 18 connecting DeerLake 1 

and DeerLak:e 2 calculated using DC load flow and AC power flow is in opposite 

direction. Fig. 4.10 shows the real power flow on lines, when line 37 connecting Bottom 

Brook and Buchans goes out of service. In fig. 4.1 0, lines from 29 to 35 have real power 

-50 
29 30 31 32 33 34 35 

Branch No.~ 

Fig. 4.10 Real power flow comparison with line 3 7 connecting bus 205 & 215 outaged 

flows approximately same as AC power flow. These results make linear contingency 

analysis methods useful for online security analysis in power system industry. 
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Fig. 4.11 Real power flow comparison with line 101 connecting bus 236 & 238 outaged 

Fig. 4.11 shows the flow on transmission lines, when line 101 connecting Hardwoods and 

OxenPond goes out of service. In fig. 4.11 lines from 25 to 31 are shown and flows are 

approximately same as AC power flow. Fig. 4.12 shows real power flow on lines from 

64 to 70, when line 107 connecting Oxen Pondl to OxenPond2 goes out of service. The 

real power flow on all the lines calculated by Line Outage Distribution factor is same as 

calculated by AC power flow method. 
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Fig. 4.12 Real power flow comparison with line 107 connecting bus 238 & 334 outaged 
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Fig. 4.13 Real power flow comparison with line 125 connecting bus 322 & 863 outaged 

Fig. 4.13 shows real power flow on lines, when line 125 connecting PBLANTAP and 

NWRIVT AP goes out of service. On most of the lines, real power flows calculated by Line 

Outage Distribution Factor and AC power flow are same. Fig. 4.14 shows the real power 

flows on transmission lines when generator on bus 105 located in FRC60HZ goes out of 

serv1ce. 

60 

t 40 

20 

0 

-20 

-40 

-60 

Branch No. __.. 

Fig. 4.14 Real power flow comparison with generator on bus 105 outaged 
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On all the lines from 16 to 23 flows calculated by Generation shift factor and AC power 

flow are same except on line 17, where the real power flow calculated by AC power flow 

method is zero but there is real power flow when calculated by Generation Shift Factor. 

Fig. 4.15 shows the flows on transmission lines, when generator on bus 138 located in 

CATARM2 goes out of service. The flows in fig. 4.15 are shown for lines from 20 to 25. 

Real power flow on all the lines calculated by Generation Shift factor is approximately 

same as AC power flow except on line 25 connecting DeerLake and CAT ARM. 

50 

20 22 23 

-100 

-150 

BranchNo. ~ 

Fig. 4.15 Real power flow comparison with generator on bus 138 outaged. 
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Fig. 4.16 Comparison of voltages on buses during outage ofline 5 connecting bus 106 & 152 
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Fig. 4.16 compares the voltage on buses, when line 10 connecting Corner Brook and 

DeerLake goes out of service. The voltage on bus 1 is constant being a slack bus. Table 

4.7 gives the percentage error of the values of the voltages calculated by full AC power 

flow and Sensitivity Analysis based method. From table 4.4, it can be inferred the error 

is within the tolerable range. Fig. 4.17 compares the voltages on buses, when line 23 

connecting MassyDrive and MassyDrive (B2B3) goes out of service. Table 4.8 gives the 

percentage error and the values are very small and the results are promising in this case. 

In most of the results the error is very small. Fig. 4.18 compares the voltage on buses, 

Table 4.7 Percentage error in voltage for outage ofline 5 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1 1.00 0.00 

2 1 0.94 5.22 

3 .97 0.93 4.18 

4 1.00 0.96 4.19 

5 1.07 1.00 0.90 

6 1.00 0.99 0.83 

7 1.00 0.98 1.12 
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Fig. 4.17 Comparison ofvoltages on buses during outage ofline 23 connecting bus 208 & 115 

Table 4.8 Percentage error in voltage for outage ofline 23 

Bus No. Voltage Percentage 

VAc VsAM Error 

1 1.00 1.00 0.00 

2 1.00 1.01 -1.69 

3 0.98 1.00 -2.01 

4 0.99 1.01 -1.85 

5 1.01 1.01 -0.41 

6 1.00 1.01 -0.42 

7 0.99 1.00 -0.63 

when line 37 connecting Bottom Brook and Buchans goes out of service. Table 4.6 gives 

the percentage error and this value is very less. As discussed in chapter 3, Sensitivity 

analysis can also be used for finding voltages during generator outages. Here are few 

results showing application of this method. 
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Fig. 4.18 Comparison of voltages on buses during outage ofline 37 connecting bus 205 & 215 

Table 4.9 Percentage error in voltage for outage ofline 37 

Bus No. Voltage Percentage 

VAc VsAM Error 

24 1.02 1.01 0.37 

25 1.02 1.02 0.40 

26 0.96 0.99 -2.61 

27 0.98 1.00 -2.31 

28 1.02 1.02 -0.31 

29 1.01 1.01 -0.01 
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Fig. 4.19 Comparison of voltages on buses during generator on bus 105 out of service 

Table 4.10 Percentage error in voltage for outage of generator on bus 105 

Bus No. Voltage Percentage 

VAc VsAM Error 

21 0.97 0.97 0 

22 0.96 0.96 0 

23 1.05 1.04 0.32 

24 1.01 1.01 0.00 

25 1.02 1.02 1.02 

26 0.98 0.99 0.99 

Fig. 4.19 compares voltages on different buses, when generator on bus 105 at FRC60HZ 

goes out of service. Table 4.10 shows the percentage error for the values calculated using 

full AC power flow and sensitivity analysis based method. The maximum error is 1 

percent The accuracy of results also depends upon the value of the real power supplied 

by the generator outaged, as the real power supplied by this generator is 18 MW, which is 

a small value as compared to total generation of system. Hence, the results are more 

reliable. 
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4.5 Conchnsions 

With the tools discussed in chapter 2 and 3, a power system operator can be alerted 

to the effects of possible contingencies like transmission line or generator outages. 

Network reduction is used to reduce a larger system into a smaller system and the part of 

the interest of the system can be studied in a shorter time. When the power system is 

large, the system can be reduced using Network reduction and the reduced equivalent can 

be studied using full AC power flow solution. In this chapter, Network reduction is 

applied to 39-bus system and the results were same as found using the complete system. 

The observations from the results obtained by applying linear contingency analysis 

methods to 95 bus Newfoundland Hydro system are very promising both for real power 

flow and voltage calculations during contingencies. From all the observations made, it 

can be inferred that the linear contingency analysis methods discussed can be applied to 

real time power system for online security analysis. 
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Chapter 5 

Security Constrained Optimal Power Flow 

5.1 Introduction 

The electric power system is defined as the system with the goal to generate and 

transmit electric power in a optimized way. Optimization, which is the theme of this 

chapter, is the function in an energy management system that schedules the power system 

controls in some optimal way, and at the same time is constrained by the power flow 

network model, and power system operating limits. The term optimal power flow refers 

to the optimal operation of a power system during normal operation. The optimization 

during a contingency satisfying all the constraints is called security constrained optimal 

power flow. This chapter presents the formulations of OPF and Security Constrained 

Optimal power flow (SCOPF). Matlab optimization toolbox is used to solve these 

problems. In this chapter optimal power flow and security constrained optimal power 

flow (during contingencies) are discussed. Case studies using a sample 7-bus power 

system and the 39-bus power system are presented in detail. In all the cases active power 
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flow limits are considered as part of the constraints. In the final part of this chapter, a 

summary of the OPF and SCOPF problems is given. 

5.2 Optimal Power Flow 

The OPF (Optimal Power Flow) was introduced in the early 1960's as an extension 

of the conventional economic dispatch to determine the optimal settings for control 

variables in a power network respecting various constraints [27]. OPF is a static 

constrained nonlinear optimization problem. 

Optimal power flow solves a set of non-linear equations, describing optimal and/or 

secure operation of a power system. Rather then making the adjustments in a random 

fashion, the system planner will attempt to optimize the adjustments to achieve some 

objective function. The optimal power flow problem is to formulate the power flow 

problem to find system voltages and generated powers within the framework of the 

objective function. In this application, the inputs to the power flow are systematically 

adjusted to maximize (or minimize) a scalar function of the power flow state variables. 

The two most common objective functions are minimization of the generating costs and 

active power losses. The time frame of optimal power flow is on the order of minutes to 

one hour; therefore it is assumed that the optimization occurs using only those units that 

are currently online. 

In mathematical terms, the optimization problem can be expressed as [28] 
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Minimize F (x,u) 

Subject to equality constraints: 

g(x,u)=O 

and inequality constraints: 

h(x,u) ~0 

(5.1) 

(5.2) 

(5.3) 

Where g(x,u) represents nonlinear equality constraints (power flow equations), and 

h(x,u) is the non-linear inequality constraints of vector arguments x and u. 

With the variable limitations: 

(5.4) 

(5.5) 

F is a scalar function that represents the power system's optimization goal. X is the 

vector of dependent variables. U is the vector of control variables. The parameter X 

contains dependent variables consisting of bus voltage magnitude designated for bus 

voltage control and fixed parameter such as the reference bus angle, non-controlled 

generator MW and MV AR output etc. U vector consists of control variables including 

real and reactive power generation, phase shifter angles, net interchange, load MW and 

MV AR etc. When both the objective function and the constraints are linear functions of 

the design variables, the problem is known as a linear programming problem. Quadratic 

programming concerns the minimization or maximization of a quadratic objective 

function that is linearly constrained. 
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5.2.1 Equality Constraints 

The loads in a power system are usually assumed to have a constant active part P 

and a constant reactive part Q. These two values usually cannot be changed by the 

operator and must not be modified by the normal computation. Thus for every load node 

where the load cannot be controlled, the two equality constraints must be valid: 

Q -Q =0 (56) scheduled i · 

pscheduled -pi =0 ( 5 · 7) 

An additional demand variable could be voltage magnitude of a generator PV node where 

the voltage is not allowed to move. 

5.2.2 Inequality Constraints 

The limits on the control and state variables must be modeled correctly in the OPF 

simulation in order simulation in order to have valid simulation results mathematically, 

they are formulated in inequality constraints. Inequality constraints must be expressed as 

functions of vector U and X , which contains all control and state variables. 

5.3 Mathematical Algorithm for Optimization 

There are primarily two main objectives, which present day electric companies try 

to achieve and those are reduction of the total cost of the generated power and reduction 

of active transmission losses. 
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The objectives function to be minimized is given by the following fuel cost model 

given in equation (5.8) [29] 

N 

F(Pg) = ~ (a1 + {J1Pg1 +riP~) (5.8) 
1=1 

Subject to equality constraints representing the active and reactive electric network 

balance, 

(5.9) 

Qi-Qgi+Qd=O i=l, ............. Nb (5.10) 

Nb 

~ =v;L~YyCos(B;-Bj-'P!i) i = l, ........ Nb (5.11) 
j=l 

Nb 

Q = v; L ~YySin( B; - ej - '¥ ij) i = l, ........ Nb (5.12) 
j=l 

together with the inequality constraints are 

Vimin ~Vi~ Vimax i=l, ..... Nb 

P. ~P. ~P. i=l, ...... Ng 
!llmin gl !llmax 

Qgimin ~ Qgi ~ Qgi..... i= 1 , ...... N gq 

Where 

F(Pg) Total fuel cost, as a function ofPg 

P gi Active power generation at unit i 

Ng Number of generation units 

Ngq Number of generation units and PV buses 
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Number of buses 

Number of lines 

Voltage magnitude at buses i and j 

Phase angles at buses i and j 

Net active power injections a node i 

Net reactive power injections at node i 

Magnitude of the complex admittance matrix elements at the ith row and jth 

column 

'Vij Phase angle of the complex admittance matrix element at position i, j 

Vimin, Vimax Lower and upper bound on the voltage magnitude at bus i 

~' ~ Lower and upper bounds on the reactive generation at bus i 

5.4 Security Constrained Optimal Power Flow 

Optimal power flow can also have other constraints. These have to do with the 

state of the system during a contingency. Such constraints are called security constraints, 

and allow the system to operate in a secure state. Optimal power flow forces the system 

to be operated in such a way that if a contingency occurs, the resulting voltages and flows 

would be still within limits. Contingency constraints are a fundamental part of economic 

security control. They are intrinsic to security level 1 and 2. Security Ievell means, when 

operating limits will not be reported in the event of contingencies, there will be no 
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violations. Security level 2 means, there are no limit violations during normal operation. 

If any violation occurs during a contingency, it can be corrected by appropriate control 

action without loss of load. If power system is large, the number of constraints could be 

large in number, the case may include hundreds or thousands of inequalities. Equation 

(5.13) and (5.14) give the admissible range of variables during a contingency. 

Jv;l::; jvkj(with line nm out)::; Jv;J (5.13) 

Where -ve and +ve sign indicate the value of variable before and after contingency. 

(5.14) 

This implies that the optimal power flow would prevent the post contingency voltage on 

bus k or the post contingency flow on line ij from exceeding the limits for an outage of 

line nm. This special type of optimal power flow is called security constrained optimal 

power flow. Only static security assessment is considered in this discussion [30]. The 

three main steps of security assessment are contingency selection, contingency evaluation 

and preventive/corrective control action [31]. The order in which outage constraints 

should be imposed may be used to simplify the security constrained optimal power flow 

problems. The main goal is to obtain the lowest possible fuel cost while satisfying 

operating constraints under normal conditions as well as under specified contingencies. 

The objective function is the same as in the case of optimal power flow problem and that 

is given by equation (5.15) 

n 

F= L ( 'Yi +aiP Gi +~ip Gi 
2

) 
i=l 

Where F is the total fuel cost in dollars per hour 
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P Gi is the output active power of unit i 

a.i, ~i, Yi are the cost effective coefficients of generators. 

Bus voltage and angle are the main state variables. Control variables are generator's 

generation and voltage etc. The equality constraints consist of load flow equations during 

normal operation and during contingency. Equations from (5.16)-(5.19) give the equality 

constraints. 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

Where P; and Qi is the power flow at bus i during normal operation. 

pi" and Q; is the power flow at bus i in contingency states. 

m is the number of buses. 

In regard to inequality constraints, these constraints don't let the system operate with 

violations after contingencies also. The following are the inequality constraints from 

equation (5.19)-(5.23) 

i=l,2,3 ............ ,n (5.20) 

i,j=l,2,3 ............ ,m (5.21) 
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Q ... <Q .. <Q .. 
lJmm - lJ - lJmax iJ=l ,2,3oooooooooooo,m (522) 

i=l,2,3oooooooooooo,m (523) 

i= 1 ,2,3oooooooooooo,K (524) 

When it comes to contingency, there is change in values of the variables but the limits 

still remain same. The inequality contingency constraints are given from equation (525)-

(5.29). 

p GS!ackmin ::::;; p~Slack ::::;; p GS!ackmax (5.25) 

i,j=l,2,3oooooooooooo,m (5.26) 

Q ... <Q:·. <Q .. 
!Jmm - IJ - !Jrnax i,j= 1 ,2,3oooooooooooo,ffi (5.27) 

i= 1 ,2,3oooooooooooo,ffi (5.28) 

i= 1 ,2,3oooooooooooo,K (5.29) 

Where P Gi is the generation at bus i during normal conditions 

P~slack is a generation power of slack bus in contingency condition 

V, is the voltage at bus i in contingency condition 

~j and Qij are the power flow between bus i and j in normal condition 

~; and Q;~ are the power flow between bus i and j in contingency condition 

C; is the control variable in normal condition 

c;· is the control variables in contingency condition 

n and m are the number of generators and buses respectively 
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The explanation of security constrained optimal power flow in terms of optimal power 

flow can be explained as the objective function minimization as in normal optimal power 

flow but satisfying both the equality and inequality constraints during the contingency. 

5.5 Case Study of a the 7-Bus System 

Fig. 5.1 shows the single line diagram of a 7-bus system, which contains 11 

transmission lines, 5 generators. Table 5.1 gives the component data. Table 5.2 

1.00 pu 

Fig. 5.l. Single line diagram of a 7-bus system 
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Table 5.1 7 Bus power system component data 

Buses 7 

Generators 5 

Lines/Transformers 11 

Table 5.2 7 Bus power system base case load flow summary 

Real Power (MW) Reactive Power (Mvar) 

Total generation 765.2 110.7 

Total load 760.0 130.0 

Losses 5.24 -19.32 

g1ves the base case load flow summary of the system. The main concern in this 

discussion is optimal power flow. The details in regard to generators are provided in 

Table 5.3. 

Table 5.3 Cost coefficients of generators in the 7-bus power system 

Cost Coefficients 

ll; 

~i 

Y; 

Fuel Cost 

* MW 
**$/Hr. 

Gen.l Gen.2 

373.5 403.6 

7.62 7.51 

.002 .001 

2807.3 3835.6 

Gen.4 Gen.6 Gen.7 

253.24 388.9 194.2 

7.57 7.57 7.7 

.001 .001 .001 

1357 4186.5 4694 

The 7-bus power system is divided into three areas. Each area has its own set of 

generators. Generators are using cubic cost model for this study. To calculate the optimal 
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power flow, a single area should be chosen which would comprise of all the areas 

together and can be called as super area. There is a single cost objective function given 

in equation (5.30) 

F(SA)=2.04*(373.5+7.62*G1 +.002 *q2 )+2.06*( 403.61 + 7.519*G2 +.0014*Gi) 

+2.09*(253.24+ 7.836*G4 +.0013*Gi)+2.14*(388.9+7.53*G6 +.001 *Gn 
+2.57* ( 194.28+ 7.71 *G7 + .0019 * Gi) 

(5.30) 

G~, G2, G4, G6, G7 are the output of generators in MW. SA means super area. 

Table 5.4 gives the hourly cost of the five generators in the 7-bus power 

system. 

Table 5.4 Hourly cost of the 7-bus power system 

Case Gen.1 * Gen.i'' Gen.4 * Gen.6 * Gen.7 * Cost ($/hr) 

Base Case 127.5 187.1 50 200.2 200.5 16887 

OPF 100 150 183.06 220 112.77 16548 

*MW 

Fig. 5.2 shows the 7-bus system with optimal power flow including line flow constraints. 

The cost in base case is more than the optimized generation case but line 2-5 has reached 

maximum power carrying capacity limit. Now in this case, single line outages will be 

studied including their impact on total hourly cost and overloading of lines. Three lines 

6,8 and 9 have been selected for contingency studies. These have been selected on 
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random basis as the system is small and if desired, all contingencies could also be studied 

with not much effort. Outage of line 6 and 8 will be studied and for rest of the outages 

only results will be given. 

Ltfl: Area Cost 
4531 $Jhr 

Right Area Cost 
2824$11'1r 

Fig. 5.2 Single line diagram with OPF results 

Fig. 5.3 Single line diagram with line (2-6) outaged 
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Table 5.5 has two rows marked for each outage. The row without the suffix SCOPF gives 

the output of generators, when the line goes out and the system is not secure. The second 

row with suffix SCOPF gives the generation, when system is secure for that particular 

contingency. When line 6 connecting bus 2 and 6 goes out of service, line 5 connecting 

bus 2 and 5 gets overloaded by 143 percent and line 8 connecting buses 4 and 5 get 

overloaded to 101 percent as shown in fig 5.3 and the price increased from 16548 $/hr to 

16581 $/hr. When the generation was rescheduled to make the violations disappear, the 

total hourly cost increased from 16548 $/hr to 16583 $/hr, and the loading of line (2-5) 

became 100 percent as shown in fig. 5.4. Normally, fuel cost is greater in secure power 

system than non-secure one. 

Fig. 5.4 Single line diagram with SCOPF implemented for line (2-6) outaged 

When line 8 connecting bus 4 and 5 goes out of service, line 5 connecting bus 2 and 5 

gets overloaded by 129 percent as shown in fig 5.5. When the generation was rescheduled 
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to make system secure, the fuel cost was increased from 16570 $/hr to 16724 $/hr and the 

loading of line (2-5) reduces to 99 percentage as shown in fig 5060 This shows that the 

fuel cost increases, if the power system is made secure from the contingency aspect 

Left Area Cost 
4536 $/hr 

Figo 55 Single line diagram with line (4-5) outaged 

Fig. 5.6 Single line diagram with SCOPF implemented for line (4-3) outaged 
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Table 5.5 Contingency constrained generations for single line outages of7bus system 

Gl G2 G4 G6 G7 Percentage Cost 
Line Outages 

(MW) (MW) (MW) (MW) (MW) Violation in Lines ($/hr) 

2-6 100 150.35 183.41 220.31 113.20 Line 2-5: 143% 16581 
Line 4-5:101% 

2-6(SCOPF) 100 150 106.26 297.9 111.9 None 16583 

5-7 100 150 183.05 220 112.97 
Line 4-7: 102% 

16551 

5-7(SCOPF) 100 150 195.08 207.9 112.9 None 16556 

4-5 100.24 150.24 183.30 220.24 113.03 
Line 2-5:129% 

16570 

4-S(SCOPF) 100 151.2 73.6 292.32 147.46 None 16724 

When line 9 connecting bus 5 and 7 goes out of service, line ( 4-7) gets loaded to 1 02 

percent. When the generation is securely constrained, the loading of line ( 4-7) reduces to 

100 percent and the cost increases from 16570 $/hr to 16724 $/hr. All the results indicate 

a trend that there is always increase in fuel cost when the system is made secure from a 

contingency. 

5.6 Case Study of the 39-bu.s System 

This 39-bus power system has 10 generators and slack bus is located at bus 31. 

The Generators are using cubic cost model for this study and the cost coefficients are 

given in Table 5.6. 
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Table 5.6 Cost coefficients of generators in 39-bus power system 

Cost Gen. Gen. Gen. Gen. Gen. Gen. Gen. Gen. Gen. Gen. 

Coefficients 30 31 32 33 34 35 36 37 38 39 

ai 0 0 0 0 0 0 0 0 0 0 

~j 6.9 3.7 2.8 4.7 7.7 2.8 3.7 4.8 3.6 3.7 

Yi .0193 .011 .0104 .0088 .0128 .009 .009 .011 .007 .006 

Fuel CostH 2767 5551 5958 6612 4917 6536 5952 5398 8597 9517 

** $/hr. 

The cost function of generators for each area is given by equations below. 

n 

F= I( Yi+alGi+~iPa/) (5.31) 
i=l 

Table 5.7 Hourly cost of 39-bus power system 

Case Gen. Gen. Gen. Gen. Gen." Gen.· Gen:' Gen:' Gen. Gen.~ Cost 

30 31 32 33 34 35 36 37 38 39 $/Hr. 

Base 237 557 637 645 518 657 569 551 870 950 61813 

OPF 240 559 634 640 520 660 570 550 870 952 61810 

*MW 
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Table 5.8 Overloading oflines for a single line outage 

Line Outage Percentage Violation in Lines 

14-4 Line 13-16:110.5% 

14-4 (SCOPF) None 

13-10 
Line 11-16:113% 
Line 11-10: 107% 

13-10 (SCOPF) None 

14-3 
Line 11-16:130% 
Line 11-10: 101% 

13-lO(SCOPF) None 

21-16 Line 24-23:117% 

21-16(SCOPF) None 

Table 5.9 has two rows marked for each outage. The row without the suffix SCOPF gives 

the output of generators, when the line goes out and the system is not secure. The second 

row with suffix SCOPF gives the generation, when system is secure for that particular 

contingency. Line 9 connecting bus 14 and 4 is considered for a line outage. When line 

9 goes out of service, line 13 connecting bus 11 and 6 gets overloaded to 110.5 percent. 

After the system is made secure from this outage, then if the same outage takes place, 

there will be no over loading. The overloading in line 13 has reduced from 110 percent to 

100 percent and the fuel cost increased from 61857 $hr to 61898 $/hr as given in Table 

5.9. During outage of line 19 connecting bus 13 and 10, loading of line 13 connecting 

bus 11 and 6 and line 18 connecting bus 11 and 6 becomes 113 and 1 07 percent 

respectively. After the system is made secure from this contingency, the loading of line 

13 and line 18 reduces to 100 and 95.2 percent respectively and the fuel cost increases 

from 61846 $/hr to 61846 $/hr as given in Table 5.9. During outage ofline 23 connecting 
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bus 14 and 13, line 13 and 18 gets overloaded to 130 and 101 percent respectively, after 

generation is rescheduled to make the system secure the loading on line 13 and 18 

becomes 100 and 78 percent respectively. During outage of line 28 connecting buses 21 

and 16, line 38 gets overloaded to 117.9 percent When the line 23 connecting bus 14 and 

13 goes out of service, the price in the non-secure contingency case increases from 61857 

$/hr to 62115 $/hr for a secure contingency case. The results are obtained using Matlab 

and later on verified using PowerWorld Simulator. Table 5.8 gives the overloading of 

lines of every single line outage discussed earlier. 

Table 5.9 Contingency constrained generation for single line outages of39-bus system 

Line 
Outage 

14-4 

14-4 (SCOPF) 

13-10 

13-lO(SCOPF) 

14-13 

14-13(SCOPF) 

21-16 

21-16(SCOPF) 

** $/hr. 
*MW 

G* 
30 

240 

240 

240 

240 

240 

250 

240 

245 

G* G* G* 
31 32 33 

562 634 640 

590 582 632 

562 634 640 

578 559 650 

562 634 640 

569 487 660 

565 634 640 

567 651 660 

G* G* G* G* G* G* 
34 35 36 37 38 39 

520 660 570 550 870 952 

510 650 560 560 880 991 

520 660 570 550 870 952 

520 660 576 560 880 971 

520 660 570 550 870 952 

530 670 590 570 890 981 

520 660 570 550 870 952 

530 602 520 560 890 971 
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Total 
Cost ** 

61857 

61898 

61846 

61924 

61857 

62115 

61907 

61939 



5. 7 Conclusion 

The chapter has discussed the optimal power flow and security constrained optimal 

power flow application to 7-bus and 39-bus power system" A nonlinear programming 

based optimization technique has been used to solve OPF and SCOPF problems" 

During OPF operation, the fuel cost of the power system is greater than during Economic 

Dispatch settings" Thermal limits may be violated in economic dispatch but these limits 

are enforced during OPF operation" During SCOPF settings, the fuel cost 1s even 

greater than OPF operation, as the power system is secure, if a contingency occurs" 

SCOPF forces the system to operate in both economic and secure state" SCOPF problems 

pose more computational burden than OPF and Economic Dispatch applications" The 

time taken for optimizing the system from security constrained generation aspect using 

Matlab as a programming tool depends upon the size of the system and may take from 

few minutes to hours" In this study, the 39-bus system took approximately 2 hours on a 

1 "7 GHz processor; this was one of the reasons for limiting the study up to 39-bus system 

onlyo 
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Chapter 6 

Co:nchnsimn and Future Work 

6.1 Summary of the Research and Contribution of the Thesis 

Application of DC power flow based methods for calculating the severity of the 

outage during a contingency is considered in this thesis. DC load flow and Linear 

Sensitivity factors method are evaluated from the aspect of real power flow violations 

and the results obtained are compared with complete AC power flow solution. 

Performance index is calculated using AC power flow solution and then compared with 

performance index calculated using DC power flow based methods. The results show 

that DC power flow bases methods can be used to estimate the severity of an outage in a 

power system with less computational burden. 

A sensitivity analysis based approach is used to calculate voltages during 

contingences and the results are compared with those calculated using full AC power 

flow solution. Time is a very important factor during contingency analysis and DC power 

flow and sensitivity analysis based methods can be very helpful in predicting contingency 

results in a shorter time. Due to practical limitations involving analysis of large power 

system, only a part of the system called the internal system is considered and the 
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remainder of the system called external system is represented by a network equivalent of 

that part of the system. This technique is called network reduction and is used to analyze 

the part of interest in a power system with reasonable accuracy and computational 

efficiency. 

Application of optimization techniques to reschedule the generation to minimize 

the system cost while ensuring security is implemented and presented in this thesis. The 

optimization method presented in this thesis has been successful in achieving generation 

from security aspect. The optimization methods enable the power system to be operated 

in such a way that a single line outage does not cause any violation. 

All the applications discussed above can be helpful for a power system utility in 

real time operation for taking a corrective action to avoid violations. Linear contingency 

analysis methods can be used for predicting thermal overloads and sensitivity analysis 

method can be used for detecting voltage violations. SCOPF can be used to reschedule 

the generation to make the system secure, if a contingency takes place. 

6.2 Scope ofthe Future Work 

Optimal power flow in aU its forms has enormous scope and potential for online 

applications. Parallel developments are occurring in the operation and planning fields. 

Online optimal power flow is the application area, where a lot of work needs to be done 

in terms of reducing the computational burden and improving efficiency. The active 

power problem, which is discussed in this thesis, is still tractable but the reactive power 

problem related to voltage magnitude is still a great challenge. VoltageN AR constraints 
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are especially important because they still restrict the economic transmission of active 

power. 

The other major issue is, how effectively security constrained OPF can be applied to 

the interconnected power system, like an individual utility or a sub-area of the utility. 

Substantial progress has been made in modeling operational and security considerations 

in a realistic manner but a great deal of more work is needed in implementing OPF based 

modeling that will lead to specific stand alone OPF packages. 
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Appendix A :Data of the 7-Bus Powe.r System 

Appendix A contains the information of the 7-bus power system used as a case 

study in the thesis. The generation and line characteristics are shown in Table A.l and 

Table A.2 respectively. Single line diagram of the 7-bus system is shown in fig. A.l. 

Bus 

1 

2 

4 

6 

7 

53MW 

left hea Cost 
4187 $/hr 

1.00pu 

Fig. A.l Single line diagram ofthe 7-bus system 

Table A.l Generation details ofthe 7-bus system 

Gene:ratimn Limits (MW) 

Min. Max. 

127.48 MW 18.02 Mvar 100 400 

187MW 46Mvar 150 500 

50MW 14 Mvar 50 200 

200MW -6 Mvar 150 500 

200MW 38 Mvar 0 600 
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Table A.2 Line characteristics of the 7-bus power system 

Line From To Resistance Reactance Line Charging Line Limit 

No. Bus Bus (p.u.) (p.u.) (p.u) (MVA) 

1 1 2 0.01000 0.06000 0.06000 150.0 

2 1 3 0.04000 0.24000 0.05000 65.0 

3 2 3 0.03000 0.18000 0.04000 80.0 

4 2 4 0.03000 0.18000 0.04000 100.0 

5 2 5 0.02000 0.12000 0.03000 100.0 

6 2 6 0.01000 0.06000 0.05000 200.0 

7 3 4 0.00500 0.03000 0.02000 100.0 

8 4 5 0.04000 0.24000 0.05000 60.0 

9 7 5 0.01000 0.06000 0.04000 200.0 

10 6 7 0.04000 0.24000 0.05000 200.0 

11 6 7 0.04000 0.24000 0.05000 200.0 
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Appendix B: Data of the 39-bus Powe:r System 

Appendix B contains the data of the 39-bus power system. The generation and line 

characteristics of the system are given in Table B.l and Table B.2 respectively. 

Table B.l Generation details of the 39-bus power system 

Generation Limits 

Bus 

MW Mvar Min.(MW) Max.(MW) 

1 0.27 -281.53 0.00 10000.00 

30 250 192.38 0.00 10000.00 

31 572 212.55 0.00 10000.00 

32 650 211.98 0.00 10000.00 

33 632 113.43 0.00 10000.00 

34 508 169.07 0.00 10000.00 

35 650 216.16 0.00 10000.00 

36 560 103.30 0.00 10000.00 

37 540 25.15 0.00 10000.00 

38 830 30.22 0.00 10000.00 

39 1000 286.53 0.00 10000.00 
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Table B.2 Line characteristics of the 39-bus power system 

Line From To Resistance Reactance Line Charging Line Limit 

No. Bus Bus (p.u.) (p.u.) (p.u) (MVA) 

1 2 1 0.0035 0.0411 0.6987 600 
2 39 1 0.0010 0.0250 0.7500 1000 
3 3 2 0.0013 0.0151 0.2572 500 
4 25 2 0.0070 0.0086 0.1460 500 
5 2 30 0.0000 0.0181 0.0000 500 
6 4 3 0.0013 0.0213 0.2214 500 
7 18 3 0.0011 0.0133 0.2138 500 
8 5 4 0.0008 0.0128 0.1342 600 
9 14 4 0.0008 0.0129 0.1382 500 

10 6 5 0.0002 0.0026 0.0434 1200 
11 8 5 0.0008 0.0112 0.1476 900 
12 7 6 0.0006 0.0092 0.1130 900 
13 11 6 0.0007 0.0082 0.1389 480 
14 6 31 0.0000 0.0250 0.0000 2500 
15 8 7 0.0004 0.0046 0.0780 900 
16 9 8 0.0023 0.0363 0.3804 900 
17 39 9 0.0010 0.0250 1.2000 900 
18 11 10 0.0004 0.0043 0.0729 600 
19 13 10 0.0004 0.0043 0.0729 600 
20 10 32 0.0000 0.0200 0.0000 2500 
21 12 11 0.0016 0.0435 0.0000 500 
22 12 13 0.0016 0.0435 0.0000 500 
23 14 13 0.0009 0.0101 0.1723 600 
24 15 14 0.0018 0.0217 0.3660 600 
25 16 15 0.0009 0.0094 0.1710 600 
26 17 16 0.0007 0.0089 0.1342 600 
27 19 16 0.0016 0.0195 0.3040 2500 
28 21 16 0.0008 0.0135 0.2548 600 
29 24 16 0.0003 0.0059 0.0680 600 
30 18 17 0.0007 0.0082 0.1319 600 
31 27 17 0.0013 0.0173 0.3216 600 
32 19 20 0.0007 0.0138 0.0000 2500 
33 19 33 0.0007 0.0142 0.0000 2500 
34 20 34 0.0009 0.0180 0.0000 2500 
35 22 21 0.0008 0.0140 0.2565 900 
36 23 22 0.0006 0.0096 0.1846 600 
37 22 35 0.0000 0.0143 0.0000 2500 
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38 24 23 0.0022 0.0350 0.3610 600 
39 23 36 0.0005 0.0272 0.0000 2500 
40 26 25 0.0032 0.0323 0.5130 600 
41 25 37 0.0006 0.0232 0.0000 1000 
42 27 26 0.0014 0.0147 0.2396 600 
43 28 26 0.0040 0.0474 0.7802 600 
44 29 26 0.0057 0.0625 1.0290 600 
45 29 28 0.0014 0.0151 0.2490 600 
46 29 38 0.0008 0.0156 0.0000 2500 

118 



Appendix C : Data of the Newfoundland Hyd.ro System 

Appendix C contains the data of the 95-bus Newfoundland Hydro system used in 

thesis. Table C.l gives the generation details and Table C.2 gives the lines characteristics 

of the system. 

T bl C 1 G a e eneratwn etatso t e ew oun an ty< o system . d ·1 f h N fi dl d H dr 

Generation Limits 

Bus 
MW Mvar Min.(MW) Max.(MW) 

103 0.73 -39.36 0.00 10000.00 

105 18.0 2.53 0.00 10000.00 

109 79.10 27.97 0.00 10000.00 

137 63.50 16.19 0.00 10000.00 

138 63.50 16.21 0.00 10000.00 

209 0.00 23.78 0.00 10000.00 

220 308.9 22.70 0.00 10000.00 

237 0.00 28.00 0.00 10000.00 

250 75.00 6.97 0.00 10000.00 

284 8.00 2.94 0.00 10000.00 

406 84.00 7.46 0.00 10000.00 

434 161.50 61.56 0.00 10000.00 

435 161.50 49.97 0.00 10000.00 

436 142.00 54.81 0.00 10000.00 

871 17.86 -2.39 0.00 10000.00 

2201 61.34 4.60 0.00 10000.00 

2207 126.09 9.81 0.00 10000.00 
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Table C.2 Line characteristics ofthe Newfoundland Hydro system 

Line From To Resistance Reactance Line Charging Line Limit 

No. Bus Bus (p.u.) (p.u.) (p.u) (MVA) 

1 0111 103 0.01257 0.32976 0.00000 42.0 
2 103 319 0.00689 0.01445 0.00022 30.0 
3 106 105 0.02203 0.30100 0.00000 28.0 
4 106 110 0.14048 0.50430 0.00910 42.0 
5 106 152 0.00696 0.04899 0.00079 61.0 
6 106 152 0.00696 0.04899 0.00079 61.0 
7 108 114 0.04757 0.17582 0.00318 42.0 
8 108 152 0.01874 0.06726 0.00122 42.0 
9 110 109 0.00100 0.73520 0.00000 13.0 
10 110 109 0.00100 0.73520 0.00000 13.0 
11 110 109 0.00100 0.73520 0.00000 13.0 
12 110 109 0.00100 0.73520 0.00000 13.0 
13 110 109 0.00100 0.73520 0.00000 13.0 
14 llO 109 0.00100 0.73520 0.00000 13.0 
15 110 109 0.00100 0.73520 0.00000 13.0 
16 110 114 0.05970 0.21130 0.00290 42.0 
17 110 319 0.00773 0.01622 0.00025 30.0 
18 135 111 0.00440 0.14504 0.00000 75.0 
19 111 212 0.02930 0.06812 0.01645 63.0 
20 112 113 0.03384 0.08697 0.01898 52.0 
21 112 212 0.06591 0.17612 0.03621 52.0 
22 113 219 0.02062 0.04880 0.01138 63.0 
23 208 115 0.00830 0.20780 0.00000 67.0 
24 208 115 0.00300 0.11730 0.00000 125.0 
25 135 136 0.01180 0.11304 0.22178 247.0 
26 135 208 0.00533 0.05086 0.09929 247.0 
27 136 137 0.00527 0.16320 0.00000 80.0 
28 136 138 0.00522 0.16325 0.00000 80.0 
29 215 151 0.00643 0.22270 0.00000 67.0 
30 151 870 0.21967 0.49235 0.00671 30.0 
31 208 152 0.00210 0.12130 0.00000 125.0 
32 205 203 0.01059 0.21975 0.00000 42.0 
33 206 204 0.00696 0.22440 0.00000 67.0 
34 204 209 0.00839 0.21673 0.00000 75.0 
35 205 206 0.00289 0.01973 0.03736 199.0 
36 205 208 0.00947 0.05345 0.09554 175.0 
37 205 215 0.01853 0.12665 0.24123 199.0 
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38 205 603 0.00742 0.21907 0.00000 42.0 
39 206 260 0.00012 0.00080 0.00147 199.0 
40 208 215 0.01843 0.08287 0.14611 154.0 
41 212 213 0.00952 0.03840 0.00972 89.0 
42 213 250 0.00612 0.14830 0.00000 69.0 
43 213 250 0.00599 0.14970 0.00000 69.0 
44 215 216 0.01422 0.08037 0.14392 175.0 
45 215 216 0.00787 0.07653 0.15456 249.0 
46 216 217 0.00200 0.07370 0.00000 125.0 
47 216 217 0.00190 0.07460 0.00000 125.0 
48 216 221 0.00979 0.09615 0.18920 249.0 
49 216 221 0.00981 0.09642 0.18972 249.0 
50 216 261 0.00011 0.00062 0.00103 175.0 
51 217 219 0.08914 0.21141 0.04943 63.0 
52 217 296 0.04619 0.15817 0.03923 80.0 
53 217 326 0.00804 0.02647 0.00678 140.0 
54 217 341 0.01234 0.04111 0.01025 140.0 
55 221 220 0.00466 0.16710 0.00000 88.0 
56 221 220 0.00455 0.16447 0.00000 88.0 
57 221 220 0.00527 0.16976 0.00000 88.0 
58 221 220 0.00461 0.16634 0.00000 88.0 
59 221 220 0.00451 0.16230 0.00000 88.0 
60 221 222 0.01946 0.13391 0.24752 199.0 
61 221 222 0.01948 0.13407 0.24781 199.0 
62 240 221 0.02689 0.63613 0.00000 25.0 
63 240 221 0.02373 0.64087 0.00000 25.0 
64 221 405 0.00482 0.04713 0.09394 249.0 
65 221 2201 0.00450 0.16713 0.00000 88.0 
66 221 2207 0.00196 0.08130 0.00000 172.0 
67 222 223 0.00198 0.07437 0.00000 125.0 
68 222 223 0.00200 0.07438 0.00000 125.0 
69 222 227 0.00092 0.00632 0.01165 356.0 
70 222 229 0.00850 0.04238 0.07761 154.0 
71 223 232 0.06478 0.15548 0.03518 63.0 
72 223 301 0.01228 0.04093 0.01021 140.0 
73 223 306 0.02646 0.08819 0.02200 140.0 
74 223 371 0.09737 0.39585 0.10089 89.0 
75 224 225 0.03688 0.08916 0.01989 63.0 
76 224 232 0.05391 0.13015 0.02915 63.0 
77 225 359 0.00411 0.01369 0.00342 140.0 
78 227 228 0.01034 0.28310 0.00000 50.0 
79 227 229 0.00748 0.04282 0.07818 356.0 
80 227 428 0.01056 0.28300 0.00000 50.0 
81 229 230 0.00202 0.01391 0.02568 199.0 
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82 229 234 0.01077 0.07231 0.13327 199.0 
83 229 236 0.01346 0.07696 0.14065 175.0 
84 229 311 0.01067 0.21855 0.00000 42.0 
85 229 311 0.01053 0.21975 0.00000 42.0 
86 229 311 0.00164 0.07505 0.00000 125.0 
87 229 336 0.02853 0.54993 0.00000 25.0 
88 229 336 0.02928 0.53990 0.00000 25.0 
89 230 231 0.00491 0.17613 0.00000 83.0 
90 232 282 0.07662 0.76615 0.00000 15.0 
91 234 236 0.00215 0.02441 0.05052 275.0 
92 234 238 0.00513 0.03480 0.06605 199.0 
93 337 234 0.02440 0.61620 0.00000 25.0 
94 337 234 0.02373 0.63287 0.00000 25.0 
95 234 338 0.01181 0.21837 0.00000 42.0 
96 234 338 0.01053 0.21975 0.00000 42.0 
97 234 338 0.00163 0.07492 0.00000 125.0 
98 234 434 0.00130 0.07443 0.00000 180.0 
99 234 435 0.00191 0.08389 0.00000 190.0 
100 234 436 0.00229 0.07997 0.00000 170.0 
101 236 238 0.00145 0.00955 0.01929 199.0 
102 236 335 0.00790 0.20730 0.00000 67.0 
103 236 335 0.00730 0.22800 0.00000 67.0 
104 236 335 0.00824 0.21110 0.00000 67.0 
105 236 335 0.00310 0.11729 0.00000 125.0 
106 335 237 0.00867 0.22094 0.00000 75.0 
107 238 334 0.00650 0.22120 0.00000 67.0 
108 238 334 0.00175 0.12026 0.00000 125.0 
109 238 334 0.00313 0.11636 0.00000 125.0 
110 282 283 0.32998 1.03550 0.00047 16.0 
112 283 284 0.05022 0.85686 0.00000 10.0 
113 296 315 0.01808 0.06206 0.01525 80.0 
114 301 306 0.01395 0.04647 0.01159 140.0 
115 304 305 0.03146 0.10485 0.02615 112.0 
116 304 315 0.00462 0.01556 0.00380 140.0 
117 305 320 0.01357 0.04522 0.01128 140.0 
118 306 860 0.01769 0.05895 0.01471 140.0 
119 310 311 0.01066 0.03512 0.00896 140.0 
120 310 357 0.01943 0.06406 0.01634 140.0 
121 315 341 0.06206 0.20681 0.05159 140.0 
122 320 321 0.01509 0.05028 0.01254 140.0 
123 321 863 0.00736 0.02453 0.00612 140.0 
124 322 323 0.00265 0.00884 0.00221 140.0 
125 322 860 0.00769 0.02562 0.00639 140.0 
126 322 863 0.00491 0.01635 0.00408 140.0 
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127 326 341 0.01073 0.03546 0.00901 140.0 
128 335 349 0.02624 0.07728 0.00145 60.0 
129 335 349 0.02240 0.08061 0.00148 74.0 
130 337 345 0.00268 0.00750 0.00014 67.0 
131 338 340 0.00925 0.03084 0.00769 140.0 
132 340 354 0.01120 0.03710 0.00937 140.0 
133 345 347 0.02760 0.03046 0.00043 33.0 
134 347 348 0.02310 0.07895 0.00143 74.0 
135 348 349 0.02852 0.09744 0.00176 74.0 
136 353 354 0.00514 0.01696 0.00433 140.0 
137 353 357 0.00652 0.02148 0.00548 140.0 
138 359 371 0.00971 0.03234 0.00807 140.0 
139 405 406 0.00318 0.15270 0.00000 88.0 
140 870 871 0.01570 0.34690 0.00000 17.0 
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