






























































































































































































































































































































































occurring variant of MTAT, MTATs, has also been identified [Kumar, €t al., 2002].
MTAL1s is an LXXLL motif-containing protein that has been found to interact with, and
sequester, ER in the cytoplasm, enhancing nongenomic functions of ER [Kumar, et al.,
2002].

Perhaps hMI-ER 1« and hMI-ER1p possess dual, or alternate,
activation/repression functions. NRC (nuclear receptor co-regulators), is one such dual-
function protein. NRC contains one copy of the LXXLL motif that interacts with nuclear
hormone receptors and possesses potent N-terminal (AD1) and C-terminal (AD2)
activation domains, however, the C-terminus of the protein, containing the LXXLL-motif,
appears to inhibit overall transcriptional activity [Mahajan, et al., 2000]. NSD1, a novel
mouse nuclear protein, is another bifunctional coactivator and corepressor that contains a
SET domain (motif found in several chromatin-modifying proteins), and separate
repression and activation receptor interacting domains (NID-L and NID+L) [Huang, et al.,
1998]. NID-L will interact with unliganded LBDs of RAR and TR and allow binding of
these receptors with corepressors, whereas NID+L will interact with liganded RAR, TR,
RXR and ER and allow for binding of coactivators and transcription factors [Huang, et
al., 1998]. hMI-ER1 may also have alternate cell context, ligand and receptor-specific
functions. Perhaps, in vivo interactions between hMI-ER 1« or B and ER« are more highly
complex that the in vitro results would suggest. hMI-ER 1 may interact with ER through
more than one motif and/or through novel chromatin remodeling complex(es).

hMI-ER1 has been found to interact with HDAC1 complexes [Ding, et al., 2003],
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ligands on the interaction between ERa and hMI-ERI.

Overexpression of ER« has often been observed in the early stages of breast
cancer, therefore, hormone therapies have played a critical role in breast cancer
management. Since estrogen plays in role in promoting growth and, thus, progression of
breast cancers, anti-estrogens, or selective estrogen receptor modulators (SERMs), are
widely used as anti-cancer therapies to modulate the function of ER. The transcriptional,
or genomic, activity of ERe and ERP are influenced by both ligands and by coregulator
proteins. Various ER ligands have demonstrated differences in their ability to recruit
coregulators, indicating that various ligands can induce different ER conformations
[Kraichely, et al., 2000]. Conformational differences will therefore not only affect
recruitment of coregulators but will also have functional consequences for the receptor.
For example, Schurr, et al., 2001, demonstrated an estrogen-dependent interaction
between ERo and the proapoptotic forkhead transcription factor, FKHR, and showed that
this interaction increased ERa transactivation through an estrogen response element. The
interaction was found to be significantly reduced in the absence of hormone or in the
presence of the anti-estrogen, tamoxifen.

ER subtypes also will exert different cellular functions, depending on the nature of
the bound ligand. As previously mentioned, ERe and ERf have been shown to interact
with AP1 transcription factors at AP1 sites. In a study conducted in HeLa cells, ERa
stimulated an AP 1-mediated transcription in the presence of estrogen whereas ER[3

demonstrated AP 1-mediated activation in the presence of antiestrogens [Paech, et al.,
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1997]. It would be interesting to determine whether the interaction between hMI-ER1a or

hMI-ER 1B and ER would be affected by various SERMs or anti-estrogens.

5. Examine the possibility that hMI-ER1 has other interaction partners.

As evidenced from numerous studies referenced here, the ER requires interaction
with multiple proteins in order to regulate its function. As previously mentioned., REA s
a potent repressor of ER activity, however, -teraction with prothymosin-a: (PT-ot) will
recruit REA away from ER, and thereby allow for proper coactivation of ER [Martini, et
al., 2000]. Indeed, preliminary studies have already demonstrated an interaction between
hMI-ER1 and HDAC1, HAT, Spl, retinoblastoma (pRB), heat shock protein 40 (Hsp40),
TRABID and core histone proteins [Ding, et al., 2003; Blackmore, et al., unpublished
data; Paterno, et al., unpublished data]. Binding of hMI-ER1 to any one of these proteins
could competitively affect its binding to another interaction partner, ultimately leading to
the formation of multiple protein complexes, or, alternately, BMI-ER1 may form one
single complex with all of the above.

Studies could be completed to further examine these possibilities, including a
mammalian two hybrid screen, which detects protein-protein interactions in mammalian
cells, and chromatin immunoprecipitation (ChiP) assays, which is a type of gene
expression profiling involving the immunoprecipitation of transcriptionally active
chromatin. The latter would help to characterize transcription complexes bound to ER-

target genes and would involve three steps: 1. in vivo formaldehyde cross-linking of
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whole cells that freezes protein-protein and protein-DNA interactions, 2.
immunoprecipitation of protein-DNA complexes, with antibodies such as anti-hMI-

ERI1 a-specific, anti-hMI-ER 1B-specific or anti-ERa, from cell extracts and, 3. use
quantitative PCR or Southern Blot to analyze immunoprecipitates. This procedure would
help to identify members of h(MI-ER1a/ER0. and/or hMI-ER1p/ERa protein complexes
and to identify genes targeted by such complex(es).

6. Examine other functional consequences of the interaction between hMI-ER1 and
ERd, other than just an effect on ERE-driven transcription.

Evidence suggests that estrogen receptors responsible for the nongenomic action
of estrogen may be a form of classic ER, or possibly a short translational variant of ER«,
found in the cytoplasm and plasma membrane [Li, et al., 2003; Figtree, et al., 2003;
Anderson, 1998]. ERa located in the plasma membrane has been found to physically
associate with, and activate, insulin-like growth factor receptor following E, treatment
[Kahlert, et al., 2000]. Estrogen can also activate phosphorylated membrane ER and,
through G-proteins c-Src and matrix metalloproteinases, subsequently phosphorylate and
activate HER2 [Razandi, et al., 2003]. The interaction between ERa and HER2 prevents
tamoxifen-induced apoptosis in HER2 overexpressing breast cancer cells [Chung, et al.,
2002]. A number of these interactions lead to the activation of key downstream
pathways, such as the MAPK pathway, that will subsequently activate transcriptional
activity of ER and other components of the transcriptional machinery, thus linking the

genomic and nongenomic actions of ER [Schiff, et al., 2004].
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6. Appendices

Table 1: PCR primer pairs used for preparing CS3-MT-Ami-er] constructs

Construct Forward primer Reverse primer

CS3-MT-hmi- 5-CGGGATCCATATGGCG | 5-CGGGATCCAAAACAAG
erla GAGCCATCTGTTG-3' ACCACAGAAGC-3'

aa 1-432

CS3-MT-hmi- 5-CGGGATCCATATGGC | 5-CGGGATCCTTAGTCATC
erlf GGAGCCATCTGTTG-3' TGTGTTTTCAAG-3'
aal-512

[Ding, et al., 2003]
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Table 2: PCR primer pairs used for constructing hMI-ER1 and mutating hMI-ER1
plasmids in pGEX-4T1-1 vector

Construct” Forward primer Reverse primer
hmi-erlo, 5’-CACCATGGCGACATCTG 5’-CGGGATCCAAAACAAGAC
aa 1-433 TTGAATC-3’ CACAGAAGC-3
hmi-er1f 5’-CACCATGGCGACATCTG 5’-TCAATTAGTCATCTGTGTT
aa 1-512 TTGAATC-3’ TTCAAGTTC-3’
aa 1-283 | 5>~ CACCATGGCGACATCTG 5’-AATTCCTCTCTAGCTGCTT
A4 TTGAATC-3’ TTACA-3’
aa 1-129 | 5’-CACCATGGCGACATCTG 5’-CCTTTATTAGGCGGGTGCA
AS TTGAATC-3’ GC-3°
aa 287-433 | 5’-CACCATGGTTTGGACAG 5’-CGGGATCCAAAACAAGAC
A9 AGGAAGAGTGTA-3’ CACAGAAGC-¥
aa 325-433 | 5>-CACCATGGCATTCTATTA | 5-CGGGATCCAAAACAAGAC
Al10 CATGTGGAAAAAATCT-3’ CACAGAAGC-3’
aa 355-433 | 5>~ GTAACGGATTACATGGAT | 5’-CGGGATCCAAAACAAGAC
A1l CGTC-3° CACAGAAGC-3
aa 163-283 | 5’>-GAAGAATCTGAAGAAGAT | S’-AATTCCTCTCTAGCTGCTT
A 13 GAAGATT-3’ TTACA-3’
aa 287-512 | 5’-CACCATGGTTTGGACAG 5’-CGGGATCCTTAGTCATCT
Al6 AGGAAGAGTGTA-3’ GTGTTTTCAAG-3’
aa 287-410 | 5’>-CACCATGGTTTGGACAG 5’-CTGGTCCATTAGATGACA
Al7 AGGAAGAGTGTA-3’ CTCCA-3’
aa 287-357 | 5’-CACCATGGTTTGGACAG 5’-CCGTTACACCAGGATGAA
Al8 AGGAAGAGTGTA-3’ GATT-3’
aa 287-330 | 5’~-CACCATGGTTTGGACAG 5’-CCACATGTAATAGAATGC
Al19 AGGAAGAGTGTA-3’ TACA-3’
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