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Abstract

Aromatic bydrocubon contami:nation of soil and groundWllter is a widespread

cavironmcntal problem. Among the compounds ofinterest is a range oflow molecubc

weight aromatic hydrocubons that includes the so-alled BTEX compounds (benzeoe.,

toluene, ethytben:u:ne, xyIenes). Aerobic biodegndation by ualUD1 populations of

microorganisms represeots oue ofthe primary mechanisms by l'Ihich petroleum and other

hydroearl>oo pollutants are eliminated in the environment. Several indicators have been

utilized to evaluate this process but their measurement (e.g., of hydrocarbon

concenttation, bacterial count, metabolites) maybe affected by other cbemical and physical

processes. Stable carbon isotope analysis is one technique that has been previously used in

environmental studies particularly in tracing sources of organic pollutants. Compounds

have characteristic carbon isotopic compositions that can be used to pinpoint their origins..

Any process in which the compounds are involved may likewise impart significa.nt isotopic

fractionatioD.. It is shown that abiotic processes affect the nClllC otio but biological

tranSformation is known to produce the largest frlctionatioD..

The purpose ofthis study is to detellIline the magnitude and direction oftransformatioD of

stable carbon isotopes (I~C,I)C) during microbial degradation of selected low molecular

weight hydrocarbon compounds such as toulene, ethylbenzene. naphthalene. methanol and

he:udecane. Coupled with this objective is the identification ofthe various species that

make up the consortium used in the study and the metabolic pathways by which these



organisms degnde the compound. The overatching goal is to examine ifthe isotopic

fractionation associated with such pathways can be employed for monitoring in situ

bioremediation..

Replicate microbial biodegndation experiments modified from an earlier protocol were

done using microbial cultures grown aerobically at room temperature. Optical density

measurements during the course ofthe experiments were undertaken to establish microbial

growth. III addition,. hydrocarbon isotope analysis was conducted by periodically removing

a specific headspace concentration from the culture flask and analyzing it by gas

chromatography continuous flow isotope ratio mass spectrometry (GC-lRMS).

laboratory biodegradation studies on toluene showed increase in microbial growth from

increases in optical density measurements with corresponding decreases in hydrocarbon

coocenuations and no significant changes in the sUe values. Similar observations were

obuined using a higher substrate concentration (10 ~ oftoluene) except for differences in

incubation periods. Experiments conducted on ethyibenz.eoe IS the substTate likewise

demonstrated the same effects on microbial biomass as weJI IS in concentrations ofthe

residual hydrocarbon. Carbon isotopic compositions also remained relatively COnslant

during microbial growth.

Taxonomic identification ofthe microcosm resolved several strains that composed the

different hydrocarbon-specific cultures. These bacterial strains consisted of Gram negative



rods as wen as Gram positive cocci Gram. negatives included Slnlins from the geuen of

Pseudomonas, StvlOtrophomonar, Ofigella and Acitiovot'ax while Gram positives

belonged to Micrococcus. S/ophylococcw, Dennococcus and Kolcuria (or Erythronrym).

Results ofthe present study were compared with other published works. Similarities and

differences in the outcomes ofthe respective experiments indicate that the occurrence of

isotopic fractionation depeuds on the degradative pathways utilized by the respective

microbial consortia. In panicular, the nature ofthe initial metabolic step (e.g., attack on

methyl group versus scission of aromatic ring) could control the extent of carbon isotope

fractionation.

Based on the results ofthe present study. application of stable carbon isotope analysis in

aerobic degradation of aromatic hydrocarbons, particularly the BTEX compounds, does

nOl appear promising for assessment ofnatural or engineered In situ bioremediation.

Future studies should look more closely into the different degradative pathways and

enzyme systems used by individual microorganisms as wen as mixed populations and their

effects on the magnitude ofisotopic fractionation. Site-specific studies are also necessary

to determiDe the inherent presence of(these) microbial consortia and quantifY me

associated biological isotope fractionation.
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Chapter 1

Introduction

The widespread dispersal ofhuudous and toxic organic compounds in vinually all 8reaS

ofthe environment resulting from iDcreased industrial activities ofhumans has become ODe

ofthe major problems facing the world today. Among the compounds ofiDterest are low

molecu.lat weight hydrocarbons used primarily as sotvents and fuels. Their occurreoce in

the surface and groundwater envirnnments is due to accidental spills and leakage of

underground storage tanks, or through inadvertent releases duriDg use, transport or

disposal Because oCthe great concern for their relatively high pollution potential and high

toxicity (Gibson and Subramanian, 1984; Barker, et af.• 1987; Alexander, 1994), the need

for immediate remediation becomes apparent.

Aerobic biodegradation, catalyz.cd by natural populations ofmicroorganisms, represents

one ofthe primary mechanisms by which petroleum and oilier hydrocarbon pollutants are

eliminated in the environment. Indicators that have been used to evaluate and monitor this

process invotve the measuremeot of changes over time in the concentration of

hydrocarbon, number ofbaeleria, rate ofbaeterial activity, adaptation, metabolic by­

produet5, intermediary metabolites, growth-stimulating materials and ratio of

nondegradable to degradable compounds (NRC, 1993; AggalWlll and Hinchee, 1991;

Madsen, 1991). However, such measurements may be affected not only by biodegradation



but by othe.- processes such as volatilization, dissolution. dilution, migration offthe site,

sorption to the soil or transfo1'JIUltion via abiotic chemical reactions (Riser-Roberts, 1992).

Previous works demonstrated the application of stable carbon isotope analysis to

enviroDJDCIltal studies, particularly in establishing sources oforganic pollutants (O'Malley,

1994; Hunt, 1996; Santiago, 1997). These studies showed that compounds have

characteristic stable carboo isotope compositioos that can be used to establish their

origins. In the same manner, any process in which a compound is involved will impart a

significant isotopic fingerprint (Abrajano and Sherwood loUar, 1999). Abiotic processes

(volatilization., reductive halogenation) have been shown 10 affect the l3C/l2e ratio but

fractionatioo associated with biological transformation is known to produce the largest

fractionation in natural systems (Stahl., 1980; Galimov, 1985; Abrajano and Sherwood

lollar, 1999). Therefore, stable carbon isotope analysis may be used to monitor

biodegradatioo of organic compounds.

1.1. Purpose oftbe Study

The presenl paper primarily focuses on the applicability of stable isotope analysis to

determine the magnitude and direction offractionation ofcarbon isotopes (ue, 1lC)

during microbial degradatioo of selected hydrocarbon compounds such as toluene,

ethylbeozene, oaphthaleue, methanol and hexadecane. It also attempts to look at various

factors that brought about such fractiooation and that playa major role in the



transformation ofthese compounds into less harmful forms. Coupled with this objective is

the characterization ofthe various microorganisms that make up the consortium used in

the study and this in turn will give us insight into the different metabolic pathways by

which these organisms degrade the compounds. The overarching goal is to determine if

the isotopic fractionation associated with such pathways can be used for monitoring in situ

bioremediation.

1.2. Environmental Chemistry

The low molecular weight hydrocarbons selected for the study with their corresponding

chemical and physical characteristics are listed in Tablel.1 and their chemical structures

shown in Fig. 1.1. The foUowing section briefly descnbes their occurrence in the

atmosphere, terrestrial and aquatic environments, and r.heir impact on ecosystems and

h~.

1.2.1. Toluene

Toluene (~Ha) is one ofthe monocyclic petroleum hydrocarbons known as the BTEX

(benzene, toluene, ethylbenzene and xylene) compounds. This organic compound is a

clear, colourless liquid with a sweet smell at room temperature (Environment Canada,

1984b). It is commonly found as solvents in many industrial products such as cleaners,

inks, paints, lacquer, resins and adhesives as well as in pharmaceutical products (CCOHS,



Table 1.1. Chemical and physical properties of the selected
hydrocarbons.

Com,..."" Chemiall Molecular Melting BoUIng SoIubifrty Density HenlY's
Composition -" Point p",", in Water (gfmlat Constant

(amu) rC) rC) (mgll) 25"C) (atnHn'fmole)

T""", C,Ho
,__

CoM.. ''''2
Napll~ C..... 217.9 4.83>: 10

5.83>:10"

""0 1.35 >: 1a"

C......

Note: Hexadecane data taken from Gallant and Yaws (1993). other
compounds from Howard (1990& and 1990b) except density of
toluene and ethylbenzene from TRC (1990) and that of methanol
from Yang (1994).



Tal..... 0
Ethylbenane 0
Naphlhaleno OJ'" '"

OH

.......no! .k.
He_no

Fig. 1.1. Chemical structures of selected hydrocarbons.



1988; Environment Canada, 1984b; WHO, 1985). In Canada and the United States, its

main use is in the prodw;tion ofbenzene and other chemicals and in lesser amounts, as a

major component of automobile gasoline and aviation fuels (Environment Canada, 1984b;

Moore and Ramamoorthy, 1984). Toluene is also employed in the manufacture of

cxplosives and dyes (CCOHS, L988).

Toluene enters the environment chiefly during volatilization ofpetroleum fuels and

toluene-based solvents and thinners and from motor vehicle exhaust. A substantial amount

is discharged into waterways and on land during storage, transport, and disposal of fuels

and oils (Howard, 1990b). Toluene released on soU may dissipate because ofevaporation

from near-surface soils, slow biodegradatioD, and leaching into groundwater. Releases in

water will be diminished by evaporation (half.life of days to several weeks) or

biodegradation which can take several weeks depending upon temperature, mixing

conditions, and acclimatization of microorganisms. 10 addition, toluene will not adsorb

onto sediment or bioconcentrate in aquatic organisms. In the atmosphere, this compound

is removed by reaction with hydroxyl radicals giving it a half·life ofthree hours to slightly

over a day. It may also be washed out by rain.

A considerable amount of information on the toxicological effects oftoluene on test

animals and humans are found in the literature (WHO, 1985; Environment Canada, 1984b;

USPHS, 1989). Humans arc primarily exposed to toluene by inhalation of contaminated

air near congested traffic or gas stations, or in areas where toluene-based solvents are used



(Howard, 199Gb). The most important hazard to humans UpOG acute inhalation exposure

is its effect on central nervous system function (Environment Canada, 1984b; WHO.

1985). Toluene vapour can also cause mild irritation to the eyes, nose, throat aDd skin

upon COll.taet. On the other hand, swallowing ofthis compound can cause nausea. diUThea

lind loss of consciousness (CCOHS. (988).

Toluene can also affect aqllatic and terrestrial life. It can be deleterious to marine animals

through ingestion and contact at levels ranging from 3.7 to 1180 mgIl (WHO. 1985) but

has no food chain concentration potential (Environment Canada, 1984b). Toxicological

studies on test animals showed that LD.50(letbal dose to kill one-halfofthe population of

these animals) varies from 5,000 to 7,500 mg/kg by ingestion (rals) and 1,100 to 8,700

mglkg by weight by absorption through skin. The LC.50 or the concentration in air which

kills halfofthe organisms foUowing an exposure after an indicated time period is placed

between 26,000 to 72,000 mglkg by weight by inhalation (CCOHS, 1988; Speijers, 1993).

Toxic effects include tremors., elevated neurotraDSminers and loss ofcoordination.

Various bacteria can degrade toluene (Atlas, 1978; Gibson, 1984). lnaease in growth rate

of some bacteria was obsetVed with low level oftoluene (20r0gl1) but toxic effects

occurred at higher concentrations (200 mgII) (Environment Canida, 1984b). Degradation

by Pseudomonas fluorecens WlS inhibited at about 30 mgll whereas that by Escheria col;

at 200 mg/l



The concentrations oftolulCDe in Canadian drinking water supplies averaged from 2.0 J.lgfL

(Govemmeot ofCanada, 1992). Groundwater near Lmdfill sites in Ontario ranged from

0.2 J.lyL to 730 J.lg/L. Conccntntions in soils and sedimetlls have not been identified but

measurable conccntntioo$ in soil would be expected to occur in case ofspills and around

waste disposal sites.

1.2.2. Ethylbe.nzene

Ethylbenzene (CaHlO) is also a monocyclic compound and a colourless liquid with a

gasoline-like odour. It is used primarily for the production ofstyrene. It is an important

solvent and chemical intermediate in the chemical, paint and rubber manufaeturiog

mdustries. It is also an additive for motor fuel fO[IllulatiOD$ (USDHHS, 1992a; WHO,

1996).

This hydrocarbon is released to the atmosphere mainly from fugitive emissions and

exh.aUSlS., wastewater and spills, related to the use ofgasoline and manufacture ofstyTe:ne.

It ex&s in the atmosphere mainly in gaseous phase due to its vapor pressure and degrades

by reaction with hydroxyl radicals with a half-life of I few hours to two days (Howard,

199Oa). Spills into water form slicks that dissolve and diminish by evaporation and

degradation. Ethylbenzene may be adsorbed by sediment but is not usually bioaccumulated

or bioconcentTated (Howard, 199Oa).



Human exposure to ethylbcnzeoe chiefty occurs by inhalation, particularly in areas of

rnffic.. Inhalation ofvapor causes irritation ofmucous membranes. dizziness, beadache,

and depression ofthe ceotraI nervous system (Environment Canada. 1984a). Contact with

the liquid irritates eyes and skin. After sholt single exposures, threshold level values that

affect the bwnan central nervous system and mucous membrane were caJculated to be

apprmrimately 430-860 mglml (100.300 ppm) (WHO, 1996).

A 13-week. inhalation toxicology study ofpure ethylbenzene (99%). conducted on ratsand

mice, at varying concentrations from 0 tol000 ppm showed, except for increased weighu

of liver and kidney, no evidence oftoxicity (Usmms. 1992a).

The acute toxicity of ethylbenzene to some species of aquatic organisms is moderate with

the lowest values at 4.6 mgll, 1.8 mgll and 4.2 mgll for algae, invertebrates and fish,

respectively (WHO, 1996).

1.1J. Napbthalene

Napbthalene (Cl~) is a white, crystalline powder with • charJlcteristic odor. lodustrial

applications include the manufacture ofvarious organic acids such as phthalic and

anthranilic acids and sulfonic acids (USDHHS. 1992b). Napbthalene is also used as an

insecticide, antiseptic and vermicide. Commercial moth repcUants and toiJet bowl cleaners

contain this compound as a major ingredient.



Release ofnaphthaleae to the environment is from accidental emissions and exhausts

related to production and use ofgasoline and fuel oil u wen as from spills on land and

water during stonge, transport and disposal ofthesc materials.. Rapid degradation.

however, occurs im.mediJ,tely upon contael: with hydroxyl ndieals in the atmosphere. In

water, naphthalene is lost by volatilization, photolysis. adsorption. and biodegradation

(Howard., 199Oa). When discharged on land., naphthalene concentration is reduced by

moderate adsorption and biodegradation.

People ue generally e"Posed to naphthalene by inhalation of ambient air near heavy traffic

areas, gasoline stations and from tobacco smoke (Howard., 199Oa). Spills on band.,

moderate ingestion through drinking water supplies and consumption of contaminated

food may also be some sources ofexposure.

Inhalation toxicological effects ofnaphthalene to humans include headache, confusion, eye

irritation. nausea, profuse perspintion with vomiting, optic neuritis., hematuria and edema.

lDgestion ofthis substaDce gives rise to abdominal pain, nausea, vomiting, diarrbea,

darkening ofthe wine, marion ofthe bladder, jaundice, anemia and hypenhermia

(USDHHS, 1992b). Possible evidence ofits carcinogenic potential was observed in East

Germany where four cases of laryngeal carcinoma, a case of gastric carcinoma, a case of

colon carcinoma and a case oflupus erythematosus were found among 7 to IS employees

involved in naphthalene manufacture (USDfffiS, 1992h).



For animal toxicity, the oral LD~ value is 490 mglkg for rats while lethal dose values for

mice are S33 mg/kg (oral), 969 mgIkg (subcutaneous), lOOmgIkg (intravenous), and 100

mgIkg (mhalation) (USDfffiS, 1992b).

1.2.4. Methanol

Methanol (CfhOH) is descnlled as a clear, colourless, volatile flammable liquid with a

mild alcoholic odour when pure. It is a chiefconstituent of a large number of commercially

available solvents and consumer goods. It is also utilized as a chemical intermediate for

production of formaldehyde and other important industrial organic chemicals

(EnvironmetU Canada, 1985; CCOHS, 1986; WHO, 1997). It is needed in the

manufilcrure ofsome pharmaceutical products, and is an essential gasoline additive, de.

icing agent, cleaning agent for leather goods, glass and photograplUc film, as a flu.sh.ing

fJWd for hydraulic systems., and an extractant in refining gasoline and removing impurities

from animal and vegetable oils (CCOHS, 1986).

Methanol occurs as a natunl volatile emission product of some plants and comes from

biological decomposition ofbioJogical wastes, sewages and sludges (Howard, 1990b).

Anthropogenic sources are largely from evaporation ofthe solvent. Photochemical

reactions with hydroxyl radicals remove methanol from the atmosphere. Biodegradation

\I



coupled with volatilization significantly reduces its CODcentration in water whereas

biodegradation and leaching notably decompose rt in soil

Inhalation is the most likely route of exposure to humans although absorption through

dermal contact and consumption ofvarious food and waters cannot be d.i.sregarded

(Howard, 1990b; WHO. 1997). Shon-term exposure to methanol vapour can produce

irritation ofthe eyes. nose and throat. headache, nausea, vomiting, dizziness. drunkenness

and blurred vision (CCOHS, 1986). Massrve exposure can cause blindness,

unconsciousness and death. Long-term exposure causes headaches, giddiness, eye

irritation, insonmia, abdominal pains, skin irritation, impaired vision and blindness

(CCOHS, 1986).

Methanol is moderately toxic to test animals such as rats, mice or rodents (CCOHS,

1986). Toxicity data for animals obtained from their LD~wen: placed at 6.2 to 13.0 glkg

for rats upon ingestion, 20.0 mlJ1cg for rabbit by absorption through the skin and LCJ(I

64,000 ppm for tit by inhalation for four hoUlS.

For aquatic organisms, methanol is oflow toxicity and effects due to envlmnD1ental

exposure are unlikely to be observed elC:cept in the case ofa spill (WHO. 1997). The LC50

ranges from 1,300 to IS,900 mg/l for invenebrates (48-hour and 96-hour exposures), and

1,300 to 29,000 mgII for fish (96.-hourelCposure) (WHO, 1997).
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Reponed toxicity threshold values for methanol in the cell multiplication inhibition test

were 6,600 mgfl for the bacterium Pseudomonas purida (Bringmann and Kuhn. 1980).

1.1.5. HUlIdeanc:

Hexadecane (Cl~) is an alipbatic straight chained hydrocarbon and a colowiess liquid.

This compound, also called cetane. is employed. primarily as a reference compouod for

diesel fuels (Snell and &tre, 1971). Generally, it is utilized for standardization of

secondary reference fuels that arc then used for quality controL

Like other alkanes, hendecane occurs naturally in oil and gas deposits., and is discharged

to the envirol1IDcut during spills and controOed emissions (Moore and Ramamoonhy,

(984). It is one oflhe volatile compounds isolated from beat-treated beefand cooked rice

and it contn"butes to the typical flavor of meat (Dwivedi, 1971) and aroma ofBasmati and

Iulian rice (Tan. and Bocchi. 1999). ConcentratiODS ofhex.adecane in soil and water

environments are reduced by volatilization (Gidda c:t 01., 1999) and biodegradation

(Bouchez-NaitaliC:l al., 1999; Erikson et 01., 1999; So and Young, 1999).

Exposure to high concentrations ofhexadecane is extremely destructive to tissues oflhe

mucous membranes and upper respiratory tract, eyes and skin.



1.3. III situ Biorem.ediatiOD

The e:oormous impact ofhydrocarboD contamination to the environment has spurred

iavestigations to develop are., effective and economicaIiy viable approaches to clean

contaminated soils, surface and groundwater (NRC, 1993; Alexander, 1994; Baker and

Herson, 1994; Cnwford and Crawford. 1996; Tmari, 1997). One technique currently in

use is in situ bioremediatioD.. This method makes use ofoatural microbial processes to

break down complelt compounds in place into simpler, less harmless forms. For

biodegradation ofhydrocarboos to occur and for bioremediation to be successful, some

basic requirements need to be considered. These include the presence ofan appropriate

microbial population., energy and carbon sources, electron acceptors, nutrients, and

appropriate environmental conditions (Atlas, 1978;NRC,1993;Bedicotcta/., t994).

Understanding the microbia! degradation of any organic compound can be illUSUllted by

the golde:o triangle (Fig. 1.2) adapted from Dodman (1995). It CODsists of knowledge of

the microbial community, eo.wonmental conditions and knowledge ofthe structure and

physico-chemical cbaneteristics ofthe organic compound The latter was discussed in the

previous section.

The key players in bioremed.iation are the ubiquitous microscopic organisms. They are

ideally suited to the task of contaminant destruction because they possess enzymes that

allow them to use environmental contaminants as food and because they are so small that



Fig. 1.2. The golden triangle for microbial degradation
(after Doelman, 1995).



they are able to contact contaminants easily (NRC. 1993). Transformation oforganic

CODta.miD.ants by microbial activity is a natural consequence ofthe microorganisms' ability

to utilize organic material, such IS contaminants, for their growth and reproduction..

Organic conumirunts such IS hydrocarbons therefore become the source of carbon to the

organism for production ofnew cell constituents. At the same time, they become I source

of electrons from wbich the organisms obtain energy (NRC, 1993; Bedient et al., 1994).

Microbes break chemical bonds and transfer electrons from the CODtamiDants to an

electron acceptor. They then invest the energy along with some electrons and carbon from

the contaminant to prod;uce more ceUs (NRC, 1993).

The cellular components ofmicroorganisms have a fixed elemental composition (NRC,

(993). Typically, a bacterial cell is 50% carbon, 14% nitrogen, 3% phosphorus, 2%

potassium, 1% sulfur, 0.2% iron and 0.5% each ofcalcium, magnesium, and chloride

(NRC, 1993). The lack. ofone ofthese elements will limit ovenll microbial growth and

therefore retard contaminant removal Thus, one importlDt goal ofbioremediation is to

stimulate the microorganisms by mpplying them. with optinmn levels ofnutrients and

other chemicals essential for their metabolism (NRC, 1993).

Aside from proper concentrltions ofnutrients, microbial activity is likewise dependent

upon many environmental conditions. These include concentration ofdissolved oxygen,

temperature, pH, salinity, pressure, soil moisture, oxidation-reduction potential,

concentration ofpoUutants, and presence ofinhJ.oitor$ (Atlas, 1978; Atlas, 1981; Cooney
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et aJ., 1985; Wilson eta/., 1986; Leahy and Colwen, 1990; Daubaras and Chaknbarty.

L992; Riser-Roberts, 1992; Baker and Herson, 1994). Some ofthese parameters can be

modified at the site to stimulate the biodegradative activities ofindigenous

microorganisms. Ideal conditions suited for efficient utilizatioo ofbydrocubons by

microbes described by Roberu-Riser (1992) include a temperature between 20 and )SoC,

pH ofS to 9 and a low population ofpredators, to nJ.mC a few.

Site characteristics such as geological and chemical characteristics must also be assessed

to determine the appropriate in situ bioremediation system to be implemented (NRC,

1993).

1.3.1. Microbial Processes

Processes by which microorganisms can break do\W. various hydrocarbons can be

classified according to electron acceptors utilized. Typical electron acceptors include

oxygen, carbon dioxide, nitrite, sulfate and certain metals such as iron and manganese.

Some organisms, kno\W. IS lerobes. use only molecular oxygen IS an electron acceptor to

destroy organic COmpOUDds. In this process, kno\W. as aerobic respiration, oxygen

oxidizes pan ofthe carbon in the compOlwd funning carbon dioxide while the remaining

carbon is used for production ofnew cells. Oxygen, itsel( is reduced producing water

(NRC, 1993). Other microorganisms., referred to as anaerobes. exist without molecular

oxygen utilizing a process called anaerobic respiration. In addition to Dew cell mass. the
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by-products ofanaerobic respiration may include nitrogen gas (Nt). hydrogen sulfide

(HtS), reduced forms ofmeuJs, and methane (CH.), depending on the electron Icceptor.

Still other microorgan.i.sms use I Vlriation ofaerobic respiration. Cometabolism is one

such process in. which microbes transform I c:ootaminaot but the contaminant cannot serve

IS the primary energy source for the organisms (NRC, 1993). Under these circumstances,

microbes require other coqJounds that can suppon their growth.

1.3.2. Microorganisms

A diverse group ofrnicroorganisms has been extensively reponed on, utilizing a wide

raugeofhydrocarbon compounds (Zobel, 1946; Walker etal., 1975; Walker et al., 1976;

AustinetaJ.,1977;Adas, 1978; Ribbons and Eaton, 1982; Cerniglia, 1984; Gibson, 1984;

Ce:rniglia. 1992;Muller,I992;AdasandCemigli.a, 1995; Hallet 01., 1999). low

molecular weight hydrocarbons aTe particularty susceptlble. Bacterial species that use the

aerobic process ofdegradation aTe described below.

Toluene and cthylbenzene aTe some ofthe most aerobically biodegradable petroleum

hydrocarbons found in the subsurface environments. According 10 Gibson and

Subramanian (l984) experiments done with the isolates ofBacillus hexacarbovonnn

showed that this type ofmicroorganism could grow with toluene (and xylene). They also

repon that two organisms, Bacterium benzoli a and b, were capable ofgrowth with

toluene and other monoaromatic compounds such as benzene and xylene, and that a strain



ofPHl«1omonas putida could grow with ethyIbenzene as the sole source of carbon and

energy. Strains ofPsnufomonas isolates were also shown to variably grow in toluene

(Zyfstraetol., 1988; Chang etol., 1993; AJvarez and Vogel, 1991). Hutchins (1991)

worked on aquifer microorganisms that could degrade benzeoe, toluene and xylene by

using different electron accepto['$. Under aerobic conditions, he found out that these

compounds degraded to concentrations below S J.1g/l within 7 days whereas only toluene

and xylene were degraded when either nitrate or nitrous oxide was used.

Experiments done by Cox and Goldsmith (1979) showed that using bexadecane as the

sole source of carbon aided in the conversion ofethy[beruene by a culture ofNocardia

taTtaricans ATCC 31190 into two rnc:t.abolites of I-phenethanol and acetophenone.

Removal ofhexadecaoe with Pseudomonas aeruginosa ATCC 15442 loaded to sterile

sand columns was also studied by Herman et al. (1997). Species ofComybacterium,

Micrococcus and unidentified Gram-negative rods (Jones and Edington, 1968) as weU as

strains ofAlcaligene= and Rhcdococcus (Bouchez.Naitali et al., (1999) were also found

growing 00 hexadecaoe.

A wide variety ofbaeteria have the ability to oxidize polycyclic hydrocarbons mcluding

naphthalene (Walker et al., 1976; Cerniglia, 1992). A considerable amount ofresearcb has

been conducted on strains ofPseudomonas pulido which are capable of metabolizing

naphthalene (Davies and Evans., 1964; Patel and Barnsley, 1980; Cerniglia, 1984; Tagger

et al., 1990). The involvement ofplasmids in the degradation ofnaphthalene bas also been
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reported (Dunn and GunsaJus, 1973). Minen.J..izatiOD half-lives ofthis aromatic

hydrocarbon in microcosms obtained from sediment and water samples coDeaed from

three ecosystems ranged from 2.4 weeks in sediment chronically exposed to petroleum

hydrocarbons to 4.4 weeks in sediment from a pristine environment (Heitkamp et aI.,

1987).

Aerobic biodegradation has posed some problems particularly in terrestrial subsurfilcc

environments where oxygen concentration is initially low. Due to low solubility ofoxygen

in water, and its low Ate oftranspolt through satunted porous matrices such as soil and

sc:dimeots, removal ofhydrocarbon compounds such as BTEX and PAHs from such

contaminated sites is inhibited (Fries et al., 1994). Recent studies have therefore focused

on the anaerobic biotransformation ofthese compounds by miCToorganisms under

denitrifYiog, sulfate-reducing, and iron-reducing conditions (Evans, 1977; Vogel and

Grbic-Galic, 1986; Zeyer et aI., 1986; Evans and Fuchs, 1988; Mihe1cic and Luthy, 1988;

Kuhn etal., 1988; Grbic-Galic, 1989; Grbic-Galic, 1990; Lovley and Lonergan. 1990;

Acton and Barker, 1992; Barbaro etal, 1992; Ed.ward.s etal., 1992; Evansetal., 1992;

SchiDck et a/., 1992; Frazer et 01., 1993; Rabus ct 01., 1993; Cozurelli et 01., 1995; Rabus

and Widdel, 1995; Ball et aL 1996; Biegert et 01., 1996; Krumholz et 0/.,1996; BeUer and

Spormann, 1997;Giegetal., 1999).
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1.4. Monitoring of In situ Biol'"emcdiation

Demonstrating that in situ bioremediation is working I'"equires evidence not only that

contaminant concentrations have decreased but that microorganisms caused the decrease.

A considerable amount ofwork has focussed on the capability of aerobic microorganisms

collected at hydrocarbon-contaminated sites to mineralize hydrocarbons to Co" and water

under laboratory conditions (Austin et at., 1977; Zylstra et at., 1988; Stehmeir et at.•

1996; Herman et at., 1997). Other research has concentrated on parameters such as

bacterial number, metabolic by-products, inorganic carbon isotope ratios and electron

acceptor concentration to show evidences ofbioremediation in the field (NRC, 1993).

These approaches, however, do not attnoute contaminant loss to microbial activity

unequivocally. Funhermore, experiments involving isolation ofindividual hydrocarbon

degraders using conventional methods (e.g. plate count method) have encountered some

difficulties as they are limited in the culturability ofthe targeted bacterial populations.

Wilson and Lindow (1992) showed that up to 75% ofthe viable bacterial populations

could be underestimated.

1.4.1. .Stable Carbon Isotope Analysis

One technique that has gained much attention to verifY natural attenuation is the

determination of stable carbon isotope signatures. This method involves the measurement

of isotopic ratios (Olle) ofearbon dioxide in soil gas and/or dissolved inorganic carbon



(DIe) (NRc, 1993; Suchomel ~l aI., 1990; Aggarwal and Hinchee, 1991; Trust ~lal_,

1995; Van de Velde ~laI., 1995; Jackson el aI.. 1996; KeUey ~l aI., 1997; Landmeyer ~t

ai., 1996; Aggarwal etaI., 1991; Conrad., 1997; Conrad et al., 1997). While such isotopic

measuremeuts render invaluable information on microbial degndation ofhydrocarbons,

other sources and sinks ofCOt cootnllute to changes in SlSC values (Suchomel et aL,

1990). Funhermore, significant (lVel"lap that exists between SI:tC values of~ derived

from biodegndation ofhydcocarbon contamioants and those resulting from indigenous

respiration (e.g. root respiration or degradation ofendogenous soil organic matter) can

produce ambiguous results.

The recent development of compound specific isotope analysis (CSlA) using gas

chromatography isotope ratio mass spectrometry (GC-lRMS) interfaced with a

combustion furnace, has provided a more efficient way to uscss in situ biorcmcdiation by

enabling direct isotOPK: analysis ofthe cont.aminantsthemselves.

1.5. Carbon Stable lJotope Biogeoc.hemistry

Carbon appears in nature as one ofseveral lsolOpeS. two ofwb,ich arc considered stable

isotopes and important in the present study: l2C with a natural abundance of98.89% and

lSC with a natural abundance of 1.11% (HoefS, 1987). The enrichment or depletion ofthe

less abundant isotope in the products ofchemical reaction is referred to as isotopic



fractionatioD (LIjtha and Michener, 1994) and is caused by two main processes: isotope

exchange reactions and kinetic processes.

1.5.1. hotope Exchange

Isotope ex.change involves the equilibrium distnbution of isotopes between differeot

compounds, phases and molecules (Hoefs, 1987) expressed as:

where A and 8 are different chemical species and the subscripts 1 and 2 indicate whether

they contain the lighter or heavier isotopes, respectively. For sucb reaction, the

equilibrium constant will be equal to:

K -

The equihorium constant (K) is related to the fractionation factor a. whiclI is defined as:



Ylbere~ and~ are the n.OOs of the hUY}' and light isotopes (AlAi. BiBI) in chemical

compounds A and B, respe<:tively. In some cases where only one atom is exchanged., the

equilibrium constant is idc:ntical with the fractionation factor, K-a.

Stable isotope ratios are mea5l.lred usually by utilizing isotope ratio mass spectrometer that

measures the ratio ofthe heavy and light isotopes in a sample (R..",pk) and compares this

to that of a standard~). Therefore, the isotopic composition of a compound is

generally defined as the differences in isotope ratios of I compound and the standard, and

is calculated in 'del' (S) notation and expressed in units per mil (%a):

S - [(~~l)JxlO)

The primary standard for carbon is a marine limestone fossil, the Peedee Belemnite (POS)

(Hoefs, 1987). For the stable isotopes ofcarbon, the ratio is llC/12C and the isotopic

composition is written IS oUe.

1.5.2. Kinetic Effects

Kinetic isotope effects occur during unidirectional or incomplete f"'...actiODS (Hoefs, 1987).

Galimov (1985) pointed out that kinetic effects are produced by differences in the reaction

rates of compounds resulting from mass differences between isotopes. Faure (1986) and

Hoefs (1987) further explained this based on dissociation energies ofthe isotopes.



Because ofmass differences. isotopes have diffeTeD.t dissociation energies., and the bonds

that are formed by the light isotope are weaker- than those involving the heavy isotope. and

thus are more easily broken. During a reaction, compounds bearing the light isotope will,

in genem, rcact slightly more readily than wrth the heavy isotope (Hoefs, 1987). This then

implies that during unidirectional chemical reactions. there is preferential enrichment ofthe

lighter isotope in the reaction products.

In bi.ological systems, living organisms., particularly plants, discrinrinate against lJC in their

upuke ofCD: during photosynthesis such that the organic molecules produced from such

process are enriched in l~ relative to lJC (Abelson and Hocring. 1961; Broecker and

Oversby, 1971; O'Leary, 1988). This fractionation stems from the differences in activation

energies of these isotopes. Because IlC is heavier than Uc and forms slightly stronger

chemical bonds. higher activation energies need to be overcome to break the bonds

formed by a heavier isotope than that the same bonds formed by a lighter isotope. Hence,

molecules having the light isotope will generally relet at a slightly faster rale, causing the

residual molecuJes to become heavier. In a similar manner, in microbially mediated

processes, e.g., in vitro biodegradation ofan orgaaic contaminant, isotopic fractionation

due to preferc::o.tial microbial metabolism ofisotopically light isotopes ora substnlte can

also occur and lead to progressive enrichment ofthe heavy isotopes in the residual

substlllte.



1•.5.3. Rayleigh DistillatiOD

Since differences in the vapor pressures ofisotopic compOUDds can also lead to

fractionations, evaporatioo-coudeu.satiou processes Ire sig:aificaot in the study ofcarbon

isotope systems (Hoefs, 1987). This isotopic 5epUlltion process can be approached

theoretically in terms offnlction.al distillation or condensation under equilibrium conditions

and this can be expressed by. Rayleigh equation. As most ofthe compounds selected in

this study are volatile, only the distillation process \.\fil.I be given attention to.

For a distillation process, the instantaneous isotope ratios ofthe remaining liquid and the

vapor leaving the liquid are different and given by:

on'

...
R,.

f(iJ&-l)

R. L
_ f,iJ&-tl

.... a

where~ is the isotope ratio ofthe initial bulk composition; ~ is the instantaneous ratio

ofme remaining liquid; R.. is the instantaneous ratio oflhe vapor leaving the liquid; and f

is the fraction ofthe residual liquid. In this process, either one isotope will preferentially



fractionate to the vapor phase or vice versa. As the process progresses, the remaining

Liquid will become progressively enriched with respect to the heavy isotope (Hoefs. 1987).

1.6. Compound Specific botope Analysis (CSIA)

As previously mentioned, CSlA has the potential to he used to trace the source ofa

compound (Galimov el al., 1983; O'Malley, 1994; O'Malley el at., 1994; O'Malley et at.,

1996). The technique hasically makes use ofthe compound's distinct isotopic

COmpositiODS with regards to the known stable isotopes ofcarbon, nitrogen., sulfur,

oxygen and hydrogen. For analysis of carbon stable isotopes, it involves on-line

chromatographic separation and micro-combustion oforganic compounds, purification of

produced Co,., and real time measurement Of
llC/l1C ratios (Abrajano et al., 1992). This

method bas potential in the determination ofbiosyothetic pathways used in the formation,

diagenesis, or indigeneity DCa material (Macko and Estep, 1984; Mack.o et al., 1987;

Hayesetal., 1989; Freeman et al., 1990; Hayes, 1993; Macko, 1994; Boschkeret al.,

1998). Several biotic and abiotic processes occurring in the natural environment can also

change the isotopic composition of compounds of interest. Ifsuch compositions can be

investigated, the CSIA can also be utilized to 9:Udy the mechanisms involved in the

tnnsformatioos of compounds being studied Dayan et at. (1999) suggested that abiotic

transformations ofpoUutants in the environment maybe predicted using information 00 the

direction and magnitude ofthe change in isotopic composition from their elCperiments on

reductive dehalogenatioo of chlorinated ethenes. lD the same manner, bioLogical processes
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in which a compound is involved can likewise be studied and isotopic data generated can

then be used in the monitoring ofin situ bioremcdiation.

To date, only a few studies have been found that used CSlA in demonstrating in situ

bioremediation in the field as weD as in the laboratory. Oerqlster et al. (1997) developed a

pentane extraction technique that can remove dissolved DTEX compounds. at very low

concentrations, from groundwater prior to isotopic analysis. In conjunction with the

GCIlRMS method, application of such a technique enables the accurate determination of

the SIJC composition ofdissolved BTEX at concentrations significant to contaminated

settings and with great spatial and temporal precision. [n addition, its suitability in field

conditions has significant implications with respect to both tracing the source ofa

panicuJar contaminant and identifying the processes affecting satueated zone behavior. On

the other hand, Stebmeier el af. (1999) and Sherwood Lollar el af., 1999 have actually

applied compound specific studies to determine any isotopic frlctionatioD accompanying

aerobic degradation ofsome low-molecular weight hydrocarbons such as benzene and

styrene, and toluene, respectively. Sherwood Lollar et af. (1999) also studied changes in

isotopic compositions of a chlorinated compound undergoing anaerobic degradation.

"



Cbapter2

Experimental Procedures

Bench scale biodegradation experiments and taxonomic identification were undenaken

using the facilities of the Department ofEanh Sciences Isotope Biogeochemistry

Laboratory and the Department of Biology Applied Microbiology and Biotechnology

Laboratory. Sterilization ofall glassware and media needed in the experiment was

initially done with an autoclave maintained for one hour at 121"C and 15 psi. This was

done to ensure that only the desired microorganisms were being cultured. During

experiments, proper aseptic procedures were employed to prevent external contamination.

2.1. Materials

Hydrocarbon compounds used in the experiments were obtained from different chemical

companies. Toluene was purchased from Sigma-Aldrich Chemical Companies, St. Louis,

MO and Milwaukee, WI, U.S.A. while ethylbenzene came from Aldrich Chemical

Company, Inc., Milwaukee, WI, U.S.A. Methanol was acquired from Fischer Scientific,

Nepean Ontario, Canada and crystals of naphthalene were purchased from Supelco, Inc.,

Bellefonte, PA, U.S.A. All chemical reagents and solvents were of highest available

purity.



2.2. Hydrocarbon Degrader Medium

The minimum salts medium or the hydrocarbon degrader medium (HOM) used in the

experiments is described in Stehmeier et al. (1996). It contained per Liter of distilled

water: I g K2HP04, 1 g KH2P04, 2 gNH..NOJ, 0.3g MgS04.7H 20, 0.001 g CaC1.2H20.

0.001 g FeS04.7H20. One milliliter of micronutrients was also added to the solution. The

micronutrients were prepared by dissolving the following in one liter of distilled water:

2.9 g HJBOJ, 1.8 g MnClr4H20, 0.2 g ZnS04·7H20, 0.4 g Na1Mo04·2H20, 0.08 g

CuS04·5H20 and 0.05 g Co(NOJ)·6H20.

2.3. Source of tbe Microcosm

The source of hydrocarbon degraders was a mixed microbial culture obtained from a

monitoring welt al a petrochemical site (Stehmeier, pers. comm., 1998). The mixed

culture was originally enriched in minimum salts medium containing pyrolysis gas as a

carbon source. Pyrolysis gas is a mixed hydrocarbon liquid obtained during the cracking

ofethane to make ethylene (Francis el ai., 1997). From this consortium, specific

hydrocarbon-degrading cultures were enriched and maintained by subculturing every

month utilizing one of the hydrocarbons of interest as the only substrate (toluene,

ethylbenzene, hexadecane, naphthalene and methanol).



2.4. Microbial Degradation Experiments

The biodegradation protocol undertaken in this study was adapted and modified from an

earlier microbial and isotopic study of benzene and styrene (Stehmeier et al.. 1999).

Microbial cultures were grown aerobically at room temperature in sidearm flasks having

an average voLume of274 ml and equipped with Teflon miniert valves for ease of

sampling. Each flask contained 35 ml of hydrocarbon degrader medium (HOM)

augmented with 2 J.lI of a particular hydrocarbon. inoculated with 5 ml of microbial

culture, and shaken at about 150 rpm on a Gyratory shaker at room temperature (22 0 ± I

0c). The pH of the starting and final culture suspensions ofeach experiment were

recorded to detennine whether acid was produced during microbial growth.

It should be noted that the amount of hydrocarbons (2 Ill) used in the experiments when

added to the medium (40 ml) resuLted in concentrations that are comparable to

concentrations found in groundwater affected by actual spills. This concentration is close

to the solubility of the hydrocarbons in water (Table 1.1).

The previous method cited above used duplicate vials, one for optical density

measurements and the other for headspace analysis (Stehmeier et 01., I999). In the present

study, only one flask of modified design was used for each experiment to prevent opening

of the bottle that would lead to inevitable loss of hydrocarbon in the headspace.



Furtbennore, the design of the flask allows easy measurement ofoptical density by tilting

the bonle and inserting the side ann into the spectrophotometer (Fig. 2.1).

To detennine the growth of microorganisms, optical density measurements were done

utilizing a Bausch and Lomb spectrophotometer set at 600 run. Measurements were taken

at the beginning, at hourly intervals (or whenever necessary) and at the end ofeach

experiment.

Hydrocarbon isotope analyses were done at approximately the same intervals as the

optical density measurements. The [sochron II Series gas chromatograph continuous flow

isotope ratio mass spectrometer (GC-IRMS) (Fig.2.2) of the Department of Earth

Sciences, Memorial University was used. The GC was a Hewlett Packard HP5890 Series

II equipped with a Restek RTX 502.2 colwnn having a length of 105 m. an internal

diameter of 0.53 nun and a 3-llm crossband phenylmethyl polysiloxane film

(Chromatographic Specialties, Inc.). A specified concentration of hydrocarbon in the

headspace being analyzed (listed in Table 2.1) was injected into the GC. and was then

carried by helium gas (12 psi) to a furnace that combusted the organic compound at ]00

°c. Table 2.2 shows the different chromatographic parameters used in sening a

temperature program for the analysis aftoluene and ethylbenzene. The resulting carbon

dioxide then passed into a VG Optima dual inlet triple canector gas saurce mass

spectrometer. Data acquisition and processing was done by PC-based sofr.Nare supplied

by OPTIMA. Carbon stable isotope compositions are expressed as:



Fig. 2.1. Side-arm flask used in laboratory degradation
experiments.
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Fig. 2.2. Gas chromatography continuous flow isotope ratio
mass spectrometer (GC-IRMS) of the Isotope
Biogeochemistry Laboratory, Department of Earth
Sciences, Memorial University.
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Table 2.1. Headspace concentration.

Compound Used

Toluene, 2 111
Blank
Toluene, 10 1-11
Blank
Ethylbenzene, 2 1-11
Blank

30
30
10

8
20
20

Table 2.2. Chromatographic conditions for
toluene and ethylbenzene.

Com und
In'ector
Hold
Initialtem rature
Rate
finaltem rature
hold
Total

"



where BllC is per mil (%0) difference of 13CPC of the sample and reference slaDdarci

POB (peedee Belemnite).

The initial concentrations of the hydrocarbons in the headspace were calculated using

Henry's law constant from data listed in Table1.1. The corresponding concentrations (Ct)

at a given time t were determined by using the peak areas in the chromatograms from the

GC-lR.tv(s:

c,

where At is the peak area at time =- t and Ao the peak area at time = O.

Isotopic analysis and optical density measurement of blanks containing 40-ml HOM and

2 ).11 (or 10 ).11) of the selected hydrocarbon were also undertaken to act as controls, to

document hydrocarbon loss due to volatilization and to ensure that the HOM used was

totally devoid of unwanted. microorganisms.

In each experimental run, three replicates were done but inoculation was not

simultaneous. Based on initial experiments involving optical density measurements. it
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was found that the log phase of microbial growth was t 5 to 30 hours and 4 to 7 days for

toluene and ethylbenzene, respectively. For toluene, because of the short log phase

duration, it was deemed necessary to separatc each inoculation by a period of24 hours in

order to have as many isotopic measurements as possible, especially during the

exponential rise in each replicate.

Another set of experiments using 10 f.1t of toluene was also conducted to obtain more

isotopic measurements and to determine if there were differences in lJC values with

increases in substrate concentration. The same procedures and analytical conditions

mentioned above were duplicated except that the injected headspace concentration of

individual experiments and blank solutions were different (Table 2. t).

Initial experiments conducted with methanol and naphthalene as substrates showed that

degradation of these compounds was occurring as indicated by the increase in microbial

biomass (optical density measurements increased over time). Headspace analyses carried

out during these experiments were deemed inconclusive. For methanol, it was difficult 10

measure isotopic signatures as no methanol was likely detected in the headspace. This

was probably due to the high miscibility of methanol in water (Howard, I990b), in this

case water in the hydrocarbon degrader medium (HOM). Similar difficulty in headspace

measurement was also observed for naphthalene. Since the naphthalene used was in

crystal form, its low solubility in water prevented. it from going into solution and

interacting with the headspace. This resulted in detennination of unreliable isotopic



measurements. Small peaks recorded in blank measurements couJd not be resolved and

this led to differences in SUC values. For hexadecane, by the time isotopic work was

scheduJed, the GC·IRMS started to experience downtime which eventualJy led to a

situation where no isotopic data were obtained.

2.5. Taxonomic Identification of Microcosm

2.5.1. Isolation of Pure Colonies

Because accurate identification of the bacteria depends significantly on obtaining a pure

cuJture, isolation of pure strains was the first step undertaken. This was initially done by

using a combination ofdilution processes known as the spread-plate and streak-plate

methods. The aim of these techniques was to deposit individual cells far apan on the plate

so that each cell could grow into isolated colonies (Morris, (998) (Fig. 2.3). The spread­

plate method was accomplished by initially mixing I ml of hydrocarbon culture to 10 ml

ofOOM. From this mixture, several dilutions were prepared and then 0.1 ml from each

dilution was aseptically removed and directly plated on a trypticase soy agar. The streak

plate was then employed when growth occurred after 24 to 72 hours at an incubation

temperature of 25 °c. Isolated colonies distinguished by notable differences in

morphological characteristics were picked and streaked on fresh plates. Further streaking
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Fig. 2.3. Different colonies of microbial species
found in each specific hydrocarbon
culture: naphthalene (A), toluene (B),
hexadecane (e), methanol (D) and
ethylbenzene (E).
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was done to confirm the purity of me cultures. The colony morphological characteristics

such as shape, margin (edge), elevation, color, texture: and pigmentation of these pure

isolates were also noted. Once this was accomplished, pure: culrures were maintained in

trypticase soy agar plates and stored at a refrigeration temperature ofabout 5°C.

2.5.2. Testing Procedures

The next step required physiological and biochemicaL tests described by several

microbiology manuals (Blazevic and Ederer, 1975; Ballows et 01.,1991; Leboffe and

Pie«:e, 1996; Morris, 1998). Bacterial cultures grown for 24 to 72 hours at 25°C in either

tryticase soy broth or tryplicase agar plates were employed to inoculate test media. Unless

othelWise stated, all tests were examined every 24 hours for a period offive days.

Gram staining was done not only 10 differentiate between Gram.positive and Gram­

negative cells but likewise to obtain information on the size, shape and arrangement of

microbial cells using a light microscope. It was based on a four-step process in which a

decolorization step occurred between the application of two basic stains. The first step

involved staining a loopful of bacterial cells smeared and heat-fixed in a glass slide with

basic dye crystal violet followed by treatment with iodine thar functioned as a mordant to

increase the interaction between cell and the dye forming a crystal violet-iodine complex

(Leboffe and Pierce, 1996). The smear was then decolorized by flooding it with 95%

ethanol. Finally, the smear was counterstained with anolner basic dye known as safranin



O. lbis dye caused Gram-positive cells to stain purple and Gram-negative cells to stain

pink. The Gram staining also allowed the determination ofthe shapes of the microbial

cells, whether they were cocci or rods, as well as their average dimension. The

arrangement of cells, i.e., either occurring singly, in pairs or in chains, was also observed.

Aside from the Gram stain, other methods used to further verify whether the unknown

microbial cells were Gram-positive or Gram-negative were the MacConkey agar and

antibiotic sensitivity tests. Test plates of McConkey agar were inoculated with different

microbial strains. As the MacConkey agar was a selective and differential medium

containing nutrients, including lactose as well as bile salts, neutral red and crystal violet.

the presence of bile salts and crystal violet inhibited growth ofGram-positive bacteria.

For the antibiotic sensitivity test, Vancomycin-impregnated discs were placed on

trypticase soy agar plates smeared with the cultures. Development of an inhibition zone

around the discs was indicative that the microorganisms were affected by the antibiotic

and thus were Gram positive cells.

The aerotolerance or the ability of the organisms to grow in the presence of oxygen was

determined by several techniques. Such techniques included thioglycollate deep tubes, the

anaerobic jar and oxidation-fermentation (OF) tests. In the first method, thioglycolate

broth deep tubes were stabbed with an inoculating needle down to the bottom of the tubes

and incubated for 24 and 48 hours. Diffusion of free oxygen was limited only to the top

portion of the tubes as indicated by fonnation of a blue layer. Growth on top then



indicated the presence ofaerobes (organisms that requires ox.ygen). while growth only in

the lower portion indicated anaerobes (organisms that cannot live with the presence of

oxygen). Growth throughout, but more in the aerobic zone, was indicative of facultative

anaerobes (microbes that grow in both aerobic and anaerobic conditions).

The second method utilized an anaerobic jar iOlO which inoculated culture media were

placed and where the addition of 10 ml of water to a mix.tureofdry chemicals (i.e.

sodium carbonate, iron powder and an inert extender) produced hydrogen gas and carbon

dioxide. The jar was then sealed to prevent entry ofatmospheric oxygen. The rest of free

oxygen inside the jar reacted with the evolved hydrogen to form water. Occurrence of

growth in the culture media indicated that the tested organisms were anaerobic. that is.

they can live v.rithout oxygen.

The ability of the organisms being studied to oxidize or ferment a specific sugar was

determined by the oxidation-fermentation (OF) test. This medium contained a high sugar

to peptone ratio. Two tubes were stab-inoculated with the same organism being tested.

After inoculation, one tube was covered with sterile mineral oil and the other was left

unsealed. Because the oil excluded oxygen from the medium, this method was also used

in detennining the aeroto(erance of the organisms. Oiled and unoiled tubes that turned

yellow showed that the tested organisms could ferment and oxidize the sugar and were

facultative anaerobes. Unsealed yellow medium and sealed green medium indicated that

the organism could only oxidize the sugar and were basically obligate aerobes.
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Motility was detected with motility tcst medium containing 2.3.5-triphenyltetrazolium

chloride (TIC). Motility agar tubes were inoculated by stabbing with an inoculating

needle and incubated for 24 to 72 hours. A positive result was indicated by diffuse growth

outwards from the line of inoculation.

2.5.3. Cbaracterization of Aerobic Organisms

Organisms that were identified as Gram-negative and Gram-positive aerobes required

further investigations. For the former. an additional test was needed to ascertain whether

they were non-enteric (GN.NENl) or not. The oxidase test was performed by moistening

a piece of filter paper with a few drops of 1% tetramethyl-p-phenylenediame

dihydrochloride and smearing it with a loopful ofgrowth. Formation ofa blue/violet

color after 10 to 20 seconds was indicative ofa positive result that in tum showed a ON·

NENT organism.

Gram-positive isolates were further characterized by conducting the catalase test. The

catalase reaction was determined by dropping 3% hydrogen peroxide solution on a

trypticase agar slant containing growth of tested organisms. lmmediate formation of gas

bubbles indicated a positive catalase production.
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2.5.4. Characterization Using tbe MieroJogTM Microbial Identification System

The Microlog™. or Biolog. is a computer based system for me identification of bacteria

and other microbes (Solil, 1999). Using this system. a 95-wetl microplate is inoculated

and incubated for an approximate length of time. Identifications are made based on

metabolic profiles obtained from 95 substrates. A redox dye. tetrazoliwn-violet, is

reduced to an insoluble violet product that can be read visually or by using an automated

reader. For each plate the metabolic profile of the organism is recorded by me computer

and cross-referenced with a bank of profiles ofknown organisms. The computer men

gives an identification.

Before a microplate was inoculated. a bacterial suspension was made. Depending upon

the characteristics of the bacterium. it was suspended in one of the suspending fluids

(either ON/OP-IF suspending fluid or GN/GP-IF+T suspending fluid). The difference

between the two fluids is that ON/GP-IF+T contains mioglycollate. The choice of

suspending fluid was based on the preliminary results of Gram stain reaction,

aerotolerance tests, the oxidase test and the catalase test. These tests, made on the basis of

me morphological. cultural and biochemical characteristics of the unknown bacteria, were

described earlier and are shown in the flowchart (Fig.2.4).
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2.5.4.1. Preparation of Liquid [ooeula

The strains were inoculated onto blood agar and incubaled for 24 hours or longer for slow

growing species. and these in turn were suspended in special inoculating fluids. GN/GP­

IF for Gram negatives and GN/GP-IF + T for Gram positives at a specified density. The

GN/GP-IF was prepared by mixing O. t g GeLlan Gum, 4 g ofNaCI and 0.3 g Pluronic F­

68 in 1000 ml ofdistilled water and was dis:pensed in tubes and autoclaved. The same

preparation was carried out for GN/GP-IF +- T, except for the addition of three drops of

thioglycolate solution. The cell suspensions,. about ISO JlI, were inoculated into individual

wells in microplates provided specifically for Gram negatives and Gram positives and

were incubated at the same temperature used to culture the microorganisms.

As described earlier, the microplates contained 95 preselected carbon sources. Cells that

used the carbon sources in certain wells respired, reducing the tetrazolium dye leading to

formation of a characteristic pattern of purple wells which. comprised the "metabolic

fingerprint" of the capabilities of the inoculated organisms.

2.5.4.2. Reading of Microplates

The fmal step was the reading of the patteITkS produced after 24 to 48 hours of incubation

using a MicroStation Reader (Fig.2.S). The :fingerprint data were analyzed by the Biolog

MicroLog software that automaticalLy searched its extensive databases and provided an

identification in seconds.



Fig. 2.5. MicroStation Reader for BIOLOG identification.
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Fig. 3.1. Plot of optical density (OD) readings against incubation
time using 2J.L1 of toluene. Solid line indicates growth
curve of the degrading microcosm.
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Fig. 3.3. Plot of optical density (00) readings against incubation
time using 2}l1 of ethylbenzene. Solid line indicates growth
curve of the degrading microcosm.
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0.0075 and reached up to 0.245 occtlITed within 25 to 45 hours from the time of

inoculation (Fig. 3.2). Likewise, an increase in optical density measurements was also

noted for ethylbenzene. The exponential growth of the consortiwn utilizing this

compound was initiated only after 3 to 7 days of incubation (Fig. 3.3). Initial and final

00 readings were about .0025 and 0.08, respectively.

Using the relationship described in Section 2.4, concentrations of residual hydrocarbons

in the headspace were calculated from the peak area measurements from the GC-IRNlS.

These concentrations are shown in Figs. 3.4 to 3.6. Comparing Fig. 3.1 to Fig. 3.4, it is

noted that an inverse relationship exists between optical density and concentration of

residual hydrocarbons. A similar relationship is discernible when Fig. 3.2 is compared to

Fig. 3.5 for 10 III toLuene and Fig. 3.3 to Fig. 3.6 for ethylbenzene. With an increase in

biomass as indicated by the increase in optical density, a corresponding decrease in

concentration was observed indicating microbial removaL of the hydrocarbon.

Measurements of hydrocarbon concentration in the control solutions remained relatively

consistent over time for the two sets of experiments for toluene as well as for

ethylbenzene. The plots for the blank solutions are also shown in Figs. 3.4 to 3.6. Any

observed deviations in the blank solution measurements were likeLy caused by

fluctuations in the performance of the GC-lRMS or in other sources ofanalytical error.

All in all, peak areas in the control solutions can be said to have remained unchanged.
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Figures 3.7 to 3.9 give the SoC values ofeach experiment with respect to time. As die

hydrocarbon. concentration was depleted and microbial biomass increased during the

course of experiments. the SoC values did not show any significant changes. The values

were still within analytical uncertainty of the initial SOc.

In Figure 3.7. with 2 I!I oftoluene as the substrate. the last measurement has significantly

high slle compared with the starting value of approximately -27 %0. This last

observation, however, has a large standard deviation of3.17 %0 associated with it that

could be attributed to increased analytical variability with decreasing concentration of

residual hydrocarbon. The isotopic measurement of the solution in the control flasks

averages about -27 %0 with standard deviation of 0.65 %0 but this includes the last

measurement of -28.8 %0 seemingly anomalous compared to other values. Without the

last one. the standard deviation is only 0.37 %0 which is close to analytical variability. The

uncertainty of the last measurement could be due to perfonnance of the machine or other

sources of analytical errors.

For the experiments using a higher substrate concentration (10 I!l of toluene) which was

used to detennine whether there would be isotopic effects induced by increased

concentration (Fig. 3.8), the isotopic compositions were considerably constant at about

-27.3 %0 ± 0.16 %0. At the same time, the blanks gave very similar values (mean of -27.3

%0 ± 0.2 %0). It is very clear that variations of both samples and blanks are within
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Fig. 3.7. 813C values of toluene (2,.11) overtime. (e) represents
data from experimental flasks and (0) from the control flasks.
Error bars represent;!: 10".
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Error bars represent .:t1cr.
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analytical variation.

For the ethylbenzene set up, the measurements toward the end were isotopically shifted

slightly by about 2 %0 from the value of nearly -29 %0 at the start of the experiment (Fig.

3.9). Isotopic compositions of controls exhibited the same shift that could mean an

artificially induced error by the IRMS rather than an actual change in the isotopic

composition of the residual hydrocarbon.

The initial and final pHs ofeach culture flasks were also recorded. The initial pH of me

hydrocarbon degrader medium was 6.34 to 6.5. To prevent hydrocarbon loss and

introduction of unwanted organisms, the initial pH of the solution blanks and the culture

flasks was not measured. It was assumed that their pH was almost the same as that of the

hydrocarbon degrader medium due to the small amount of hydrocarbon added (2 III and

10 Ill) and that microbial activity had not yet started at that early stage of the experiments.

However, final pH for each culture flask was obtained at the end of each experiment. For

2IJI of toluene, to j.l1 of toluene and 2ul of ethylbenzene, the average final pH was

slightly acidic with values of6.31, 6.03 and 6.37, respectively. This suggests that some

acidic metabolic products might have been produced by the consortium after degradation

of each compound.



3.2. Taxooomic Ideotification of Microcosm

A series ofcontinuous transfers gave taxonomic diversity to the bydrol;arbon-degrading

bacterial community used in the present study. Although the consortium was taken from

an aquifer contaminated with various hydrocarbons, the degraders WCTC initally

acclimatized by supplementing them with specific hydrocarbon compounds as the only

substrates. This gave rise to morphologically distinct colonies isolated from cultures

specifically adapted to that compound, e.g., toluene cuhure, ethylbenzene culture. Though

isotopic studies for the three selected hydrocarbons were not successful, identification of

the different species that make up the naphthalene. methanol and hexadecane cultures was

carried out for future work.

From the five different cultures, about 26 pure strains were identified according to their

morphological charncteristics as listed in Tables 3.1a. b and c. Some strains isolated from

one culture were found to have characteristics similar to dIose in other cultures.

Results of tile thioglycollate deep tubes, anaerobic jar and OF tests showed that all are

aerobic bacteria. In all three tests, growth was affected by the absence or presence of free

oxygen. Growth was limited to the upperponion of the deep tubes where free oxygen

existed while TSA plates streaked with the organisms and placed in an anaerobic jar and

the inoculated OF test tubes covered with oil showed no growth. The OF test also
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Table 3.1 a. Morphological characteristics of microbial
strains isolated from toluene (EOn and
ethylbenzene CEDE) cultures.

Gram Arrangementl Motility
~nl.m Colony Description Reliction Shllpe Size rest

brown,drculllr,convex.
entire, smooth

avesize 1.Omm

2 yeUowish,circular,convex,
entire,smooth
Bveslze 1.3mm

3 beige, circular, convex,
entire,smooth
avesize 1.1mm

4 darkbrown,circuiar,
raised,entire,smooth,
gUstening
Ivesize 1.6mm

1 lightbrown,circular,rais.ed
(?),entire,smooth
avesize O.25mm

3 Iightbrown,circular.
COllWx,entire,smoolh
avesize O.75m?

4 light brown, entire,

~~~c:.o;n. velY small 10

white, circular, convex,
enlire.smooth,dull
avesize O.35mm
lightbelge, circular, raised
{almost flat), entire,
smooth,dul
avesiZe O.45mm

6 WghtbrOWll,circ:ular,
convex, entire, smooth,

~u::;:~,verySmall
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single, pair, chain,
rounded ends,
,,"bby
avesize 1.9x
O.68wn
single,pair,chain,
thin, stubby
avesize 1.58x
0.'
single,cham,thin

ave size 2.35 x
a.58wn
single,pair,chain, motile

:~~~stsquare

ave size 1.7 x
0.7
single, pair, chain

ave size 1.6x
O.35wn
single, pair, some
are stubby
avesize?
slngle,thln.long

slngle,velY lhin
ave size 1.75x
0.55
single, pair,
clustelll,chains
avesize 1.0wn
single, pair, more
oval in shape

avesize 0,8
slngle,lQng,
stubby
aveslZe ?wn
single,stubby, motile
palisade
ave~e ?1U\'l



Table 3.1b. Morphological characteristics of microbial
strains isolated from naphthalene (EON) and
methanol (EOM) culbJres.

Gram Arrangementl Motility
Organism Colony Description Reaction Shipe Size Te"

Ilghtbrown (clarkerln the
middle). circulllr. raised.
entWe,smoolh
all8me 1.3mm

2b yeIIowish,cireulsr,ralMd
(alrnostconYell),entre,.-.
...... sir.e: 1.10101

3 whitiltlbrooMl,clrcut.,
COI'MlII"entira,srnoolh
_$ite 2.0mm

1 dar1o:brown,clrculllr.
ralsed,entire, smooth.
punctiform
Ivesize O.65mm

3 beige,circular,almost"8t.
wntire,dull. pWlctiform
avesize 0.50101

beige (darkbro\lWl),
circular.convu, entire,--avesiu 1.5mOl

4b dDbrown,circutllr,
I'1lised.entira.smooth.::=.Wr')'smaI 10

5 """"1tiIh(cn=aml,QrQiIar.
convex. entiI1o. smooth.......-
avesize 0.50101

single, paW,
stubby,palisade

~~::: 1,0511

Ingle. pair.
IqUlIristlendl

:.:::: U511

Hlgle,p.air...,....
avelim 2.05x
0.75

avsllize2.31x
0.56
single,pair,
stubby
avesiil:e 1.es.
"0
sirlile.pair,

:::~,rounded

avesize l.65x
O.65wn

Single

~=
O.5um



Table 3.1 c. Morphological characteristics of microbial
strains isolated from hexadecane (EDH)
culture.

lighlbrown, circular,
almoslflal(?),enlire,
smooth
avesile O,25mm

3 darllbrown,circular,
convex,entire{irregular?).
smooth
Bvesize 1.0mm

salmon, circular, convex,
enlire,smooth,dull
avesize 0.25mm

beige, circular, convex,
entire,smooth,dull
avesiz. 0.85mm

6 muslardyellow,c1rcular,
convex, enlire, smooth,
dull
avesiz. 0.65mm

7 mustatdyenow,circular,
:~vex,entire,smoolh,

avesize O.55mm

64

avesize 1.8x
0.5
slngle,chain,
palisade

avesize 1.4x
0.75
single,tetracl

I ~::,e'5ize 0.95

tetrads, chain

pair,chain
(streptococci)
chain,tetrad
aveSize 1.0 m
palr,tetrad,chain
(staphylococci)



indicated that they were oxidative organisms.

Based on the outcome of the Gnun stain and antibiotic tests. all bacterial strains were

Gtam-negative rods except for two (2), one (I), and four (4) species from ethylbenzene,

methanol and bexadecane, respectively, which were Gram-positive cocci. Motility tests

using the TIC reagent indicated that the Gram-negative rods were motile while the

Gram-positive cocci were non-motile.

The oxidase test further verified that the Gram-negative organisms were non-enteric as

they exhibited positive results indicated by fannation ofa blue color when a loopful of

bacteria was smeared on a filter paper moistened with tetramethyl-p.phenylenediame

dihydrocloride. Gram-positive cocci, on the other hand. gave positive reactions with the

catalase test where production of frothing or bubbling was observed.

Biolog identifications of the microbial strains are listed in Tables 3.2a and b. Gram­

negative bacteria were mostly strains oftbe genera Pseudomonas. Sfenorrophomonas.

Dligel/a. Bordefel/a and Acidovora:c. On the other hand, Gram-positives were identified

as belonging to the genera of Micrococcus, Staphylococcus. Dermacoccus and Kokuria

(or Eryfhromyxa).
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Table 3.2a. Identification of the different microbial strains from
toluene (EDT), ethylbenzene (EDE) and naphthalene
(EON) cultures._.-

PMlldomonllanuoraSCflflsl
PMlIdomonu marglna/isl
PMlIdomonlJS tIuofescensbiotype F

PMlIdomonnp.5&UooalcaIgenesJ
8on1etellaffematum
(BorcJelellahlm:/Ij

Stenotrophomonu maltopMia

OIigenaureolytica
(8on:1elellahinzllj

AckIoVotal'facifs
(Pseudomonu /IuoI8scensl
MyroidesodcntlJsl
P~lIssynnntha)

O/lgelJaureolyficlJl
8oI'det.llatrwn.wm
(Bon1eteltll bI'ondliseptiea)



Table 3.2b. Identification of the different microbial strains from
methanol (EDM) and hexadecane (EDH) cultures.

OrganIsm Gl'ilm ~.etion Mofphology

Bon:fetel/ahinzii
Botr1etelltJ-iike!lpeeies
(Oligellaureolytiea)

Acidovonllt"fiJeiu
(Aka!igenesICyIosoxydans/
comomon.u acidovoIwIs)

PseudomortasputidabiofypeBl
PseutJomonasnufX8scensbiotypeG

Dermacoccus rtishinomiyaensis

Pseudomonas cirronttlloli$/
Pseudomonas fluoreseetls

Acldovonu:facllis
(PS8Womonas S)'flICantha!
Psaudomonas fIlIoroscens biotype C)

PseudomomJs flUOfflscens/
Pseudomonas fluorencens biotype G

Kocurfa fDsaa! EJ'ythromyu

Kocurfa fOSfHJIEf'/OIromyxai
Microcoecusdivarsus

Micrococcusluteus

67



Cbapter4

Disc:ussion

4.1. Laool'1ltory Biodegradation Studies

4.1.1. Mic:robial Degradation

The toluene culture was dominated by two isolates belonging to the genera of

Pseudomonas and Stenolrophomonas (Table 3.13). These organisms are aerobic, Gram­

negative rods. GUgella, Acidovorax, Bordetella and Staphylococcus species were also

found in the ethylbenzene culture. The first three are Gram.negative rods but the latter is

Gram· positive coccus.

Based on a number of published reports, Pseudomonas species are ubiquitous, and known

to degrade wide classes of hydrocarbons in marine and soil environments (Gibson, 1984;

Vanderbergh and Kunka, 1988; Swanson, 1992; Caldini et aI., 1995; Whitman et aI.,

1998). On the other hand, Stenofrophomonas maltophilia, commonly found in soil

environments, has only been reported to degrade high molecular weight hydrocarbons

(Boonchan et ai., 1998). The role of the other identified species in biodegradation of

hydrocarbons has not been previously described.
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The present wor:k was DOt able to detennine the merabolic pathways and the associated

merabolic products as well as the enzyme systems used by the above-mentioned aerobic

microorganisms. However. the general degradative pathways established in previous

works are described. These pathways could have been used by the said organisms to

degrade the aromatic hydrocarbons (e.g. toluene. ethylbenzene. etc.) but future work

would benefit from determining the exact pathways that these organisms used and the by­

products that influence the overall degradation of the compounds.

Several studies have demonstrated the capability of microorganisms to transform

hydrocarbon compounds utilizing a wide array ofchemical reactions or metabolic

pathways. However. most aerobic bacteria use three typeS of initial reactions to uansfonn

the compounds into products that are structurally similar to chemicals that

microorganisms are used to metabolizing (Schwarzenbach et at.• 1993). With only one or

a few initial transformations. the resulting chemical products can be included in the more

common degradation pathways and be fully degraded. These reactions are often mediated

by a variety ofenzymes that function as catalystS. hence increasing the rate of chemical

reactions in the bacterial cell.

Oxidation by species of Pseudomonas is frequently accomplished using an electrophilic

form ofoxygen to actively mineralize aromatic hydrocarbons in the environment (Atlas.

1978; Gibson, 1984). The oxidation of monoaromatic hydrocarbons such as the BTEX

compounds. for instance, may be initiated by two functionally distinct classes of

..



oxygenase enzyme systems extensively described in the literature (Gibson and

Subramanian. 1984; Schwarzenbach et al., 1993). These include the monooxygenase and

dioxygenase enzyme systems. Generally, the aromatic compounds are first transformed

into catechol or its derivatives by these systems and subsequently metabolized through

common metabolic pathways (Fig. 4.1) (Fewson, 1981; Ribbons et al., 1982; Gibson.

1984; Cerniglia, 1984; Piner and Cbudoba, 1990; Muller, 1992; Baker and Herson. 1994;

Hall et 01., 1999). Benzene is initially oxidized by the introduction of two hydroxyl

groups from a two-<:omponent enzyme system fanning cir-hydrodiols, which in tum are

dehydrogenated ro yield catechol (Fig. 4.2) (Gibson and Subramanian, 1984). Toluene has

many separate biodegradative pathways, some of which include 3-meiliylcatcchol as an

intermediate product (see suceeed.ing section). Many separate pathways also exist for

ethylbenzene, which can be degraded to 3-ethylcalechol. In each oftbesc: cases, the

aromatic ring of the substituted catechol is later cleaved by dioxygc:nase enzymes.

After catechol formarion, the aromatic nucleus in these: compounds is broken through one

of two pathways: the ortho-cleavage or the: mera-cleavage pathway. The onho pathway

involves cleavage oftbe carbon bonds between the hydroxyl groups (Fig. 4.3) (Baker and

Herson, 1994). This leads to the fonnation ofthe rcspeetive muconates and

muconolactonc:s, which are further metabolized to 4-oxoadipate enol-lactone and then to

3-oxoadipate@-ketoadipate).Metabolismfinallyproceedsto intennediates acetyl.CoA

and succinate of the tnmk pathway called the Krebs cycle. These inrennediates are

metabolized by trunk pathway enzymes and used as growth substrates.
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Fig. 4.1. Aerobic degradation of the BTEX compounds.
Benzene: R = H; Toluene: R = CH,:
Ethylbenzene: R = CH2CH,; m·X:ylene: R =CH,.
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Fig. 4.2. Initial reactions utilized by bacteria to oxidize
benzene (after Gibson and Subramanian, 1984).
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In meta c:leavage, ring cleavage occurs between a carbon atom with a hydroxyl group and

the adjacent unsubstituted carbon atom, forming a 2-bydroxy·muconic semialdehyde

(Fig. 4.4) (Baker and Herson, 1994). Subsequent metabolism results in the formation of

final products such as pyruvate, formate and acetaldehyde, which are further oxidized via

the Krebs cycle.

Naphthalene. the simplest polycyclic aromatic molecule. is degraded by initial attack of a

dihydrogenase. fonning a cis-dihydrodiol, which is consequently dehydrogenated to [.2­

dihydroxynaphthalene (Figure 4.5) (Gibson and Subramanian. 1984). The aromatic ring is

then cleaved oxidatively. The side chain, from the resuLting molecule. is subsequently

removed forming salicylate. Salicylate is oxidized to catechoL whose oxidation has been

described above.

4.1.2. Isotopic FractionadoD

The molecular and stable isotopic compositions of hydrocarbons and other organic

contaminants in surface and groWldwater reflect the combined effects of me (I) nature of

contaminant sources, (2) biotic and abiotic transformation during transport, (3) dynamics

of source mixing, and (4) post-accumulation diagenetic reactions. This multiplicity of

possible sources and processes affecting organic contaminants requires a compLete

understanding of the impact of specific processes or sources on the molecular and
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isotopic chemistry of the contaminant. This in tum requires the availability of multiple

geochemical tools that~ able to uniquely identify or seriously constrain specific

contaminaot sources and/or pathways. One of the goals of the present study is to examine

the possible utility ofcarbon isotopic compositions as a means ofquantifying

biodegradation. Ifcarbon isotope fractionation accompanies biodegradation, it was our

secondary goal to e.umine the systematics of such fractionation.

Large carbon isotopic fractionation has been shown to accompany a variety of microbial

processes (e.g., Abrajano and Sherwood Lollar, 1999). It has been observed during sulfate

reduction (Jones and Starkey, 1957; Nakai and Jensen, 1964; Rees, 1973), denitrification

(Mariotti e/ al., 1985; Aravena and Robertson, 1998), and methanogenesis (Barker and

Fritz, 1981; Colemane/al., 1981; Krzyckie/al., 1987; Batte/al., 1996). However, the

magnitude of isotopic fractionation exhibited by microbial degradation of organic

contaminants differs depending on their composition and. suucture. For in.staoce, a large

carbon isotopic fractionation was associated with microbial dechlorination ofchlorinated

ethenes (Hunkeler ct ai., 1999; Huange/aL, 1999) and aerobic degradation ofa

chlorinated aliphatic compound, dichJoromethane, (Heraty ct al., 1999) but no significant

fractionation occurred durinS microbial degradation nfaromatic hydrocarbons (O'Malley

et aI., 1994; Trust et ai, 1995).

The result obtained in previous studies on hydrocarbons (O'Malley er ai, 1994) was

confinned by the present study in which laboratory experiments were performed to



determine carbon isotopic variations during aerobic degradation oflow molecular weight

b.ydrocarbons (toluene and ethylbenzene). As shown in Figs. 3.t (03.6, biodegradation

was manifested by increases in microbial biomass and decreases in bydrocarbon

concentJations. In Fig. 4.6, as the fraction of remaining toluene with initial concentration

of2 III decreases (and disregarding the last measurement as quantity of residual toluene

was not sufficient at this point (0 perfonn a reliable isotopic measurement), the 13CPC

remains relatively constant indicating no isotopic fractionation occurring. With a greater

initial substrate concentration of toluene (10 Ill), the same observation can be seen in Fig.

4.7. The gl3C values stay relatively uniform though. the amount of residual toluene was

reduced to about 20%. This similar result for 2 III and to I!! toluene suggests that

concentration is not a Limiting parameter for isotopic fractionation to occur. Likewise, no

significant change in o13e was noted for ethylbenzene as the residual concentration oCthe

compound was diminished to as low as 20% of the original concentration (Fig. 4.8).

Recent batch vial experiments carried out by Sherwood Lollar et al. (t999) on

biodegradation of toluene under aerobic conditions aJso showed results identical to that of

the present study.

Ie contrast to the aforementioned results, a substantial isotopic fractionation (6-10%0) was

obtained by Meckenstock et ai. (1999) associated with aerobic and anaerobic
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Fig. 4.6. Isotopic compositions versus fraction of residual toluene
(21-11). Error bars represent ±01. The fraction of toluene
remaining is calculated by assuming the concentration in
each of the sample vials at 1=0 is equal to that of the control
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Fig. 4.7. Isotopic compositions versus fraction of residual toluene
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remaining is calculated by assuming the concentration in
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flask.
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biodegradation of the same compound (toluene) used both by Sherwood Lollar ~t aI.

(1m) and the current study. The contrasting results observed by Meckeostock ~t aI.

(1999) and the present experimeot as well as that ofSherwood Lollar et 0/. (1999)

suggest that diffem:Jt microbial communities and environmental conditions could control

isotopic fractionation (Abmjano and Sherwood Lollar. 1999). It is also possible that

differences in experimental design could have affected the results since these experiments

were conducted under different conditions (e.g., temperature, initial concentrations, pH).

However, this is not the case with Sherwood Lollar et 01. {I999) and the present study.

Although they employed a different experimental design and microcosm. the outcome

revealed that aerobic biodegradation of toluene involves no significant fractionation in its

carbon isotopic composition. The same observation was made by Sherwood Lollar ~t 01.

(1m) when a different consoniurn containing toluene degraders was utilized.

One major difference between the studies ofSherwood Lollar ef 01. (1999), Meckenstock

ef 01. (1999) and the present study was the species employed in the respective

experiments. The kinetic isotopic fractionation obtained by Meckenstock et of. (l999)

reflects only the effect of the degradation of toluene by a single strain of bacterium

(aerobic bacterium Pseudcmonas putida strain mt.2). The present study as well as that of

Sherwood Lollar et aI. (1999) reflects the overall effect of degradation by mixed

populations of microbial species. It is a common observation that the rate of

biodegradation of a particular compoWld is faster with microbial communities compared

to pure cultures (Slater and Lovatt, (984). This is due to the interactions between species



making up the microbial community where competition between bacterial strains vying

for the same substrate can lead lO a faster degradation rate.

It is unclear why carbon isotopic fractionation would be influenced by the presence ofa

competitive microbial consortia. given that kinetic isotope effect, ifpresent, will likely

result in similar heavy isotope discrimination (i.e., IlC·enriched residual hydrocarbon). It

is therefore tempting to speculate that the difference between the Meckeostock et 01.

(1999) experiments on the one hand, and the present experiments and those of Sherwood

Lollar el 01. (1999) on the other is that the microbial degradative pathways are different

(Abrajano and Sherwood Lollar, 1999). This would likewise imply that the bacterial

species dominantly responsible for the hydrocarbon degradation in our competitive

consortia experiments is not the Pseudomo1UJS pUlida strain utilized by Meckenstock et

01. (1999).

During aerobic microbial degradation, toluene bas twO likely sites for oxidative metabolic

attack.: the aromatic ring itself(Zylstni. et 01., 1988) and the methyl group (Kitagawa,

1956; Nakazawa and Yokota, 1973). Some microorganisms such as the Pseudomonas

putida FI (PpFl) ofZylstraet 01. (1988) oxidize toluene by the incorporation of both

atoms of molecular oxygen into the aromatic nucleus to fonn cis·toluene dihydrodiol

(Fig. 4.9A). This reaction is facilitated by multi-component enzyme system designated as

toluene dioxygenase. Funher metabolism ofcis·toluene dihydrodiol involves an NAD+-

independent deltydrogenation reaction to form 3-methyl catechol. Initial oxidative attack



A.

~H,COO

B. 6.> 6'-> 6" ~> or;. -> O( -> c:::
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Fig. 4.9. Degradative pathways of toluene through oxidation of
(A) the aromatic ring (Zylstra et al., 1988) or (B) the
methyl group (Kitagawa, 1956; Nakazawa and
Yokota, 1973).



oftoluene can also take place at the methyl constituent mediated by a monooxygenase

enzyme system. This involves incorporation ofone atOm ofoxygen into per dioxygen

consumed. In this reaction. hydroxylation of toluene gives rise to the fonnation of benzyl

alcobol and requires NADH and FAD (Nakazawa and Yokota, 1973; Gibson and

Submaranian, 1984) (Fig. 4.98). The benzyl alcohol is subsequently transfonned to

benzoic acid which is in turn convened to cyclo·3,S diene-I,2 diol-I-noic acidate and

finally to catechol.

It is probable that the initial oxidation of toluene utilized by Pseudomonas PUlido stIain

employed by Meckenstock et of. (1999) could be the same pathway as that of

Pseudomonas putida FI (PpFl) of Zylstra et at. (1988). It is possible then that isotopic

fractionation observed by Meckenstock el at. (1999) might be related to this initial attack

to the aromatic ring where two atoms of oxygen were added. The kinetic isotope effects

associated with breaking one of the carbon-Io-carbon bonds within the ring that (ed to the

formation ofthe cis-toluene dibydrodiollikely caused this observed fractionation.

Benzene., being the simplest aromatic hydrocarbon. possesses only the basic aromatic ring

and its degradation generally occurs with the oxidation of the aromatic ring itself where it

is converted to cis·benzene dihydrodiol aided by the benzene dioxygenase multi-enzyme

complex (Fig. 4.2) (Gibson and Subramanian, 1984). It is interesting to mention at this

point that our previous aerobic microbial degradation experiments using benzene as

substrate demonstrated isotope enrichment of llC in residual hydrocarbon (Stehrneier el
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aJ., 1999; see Appendix). This was accompanied by a decrease in concentration as

indicated by hydrocarbon loss of an average of83% and by an increase in microbial

culture absorbance as an indicator of microbial growth. Although small in magnitude, the

isotope enrichment ranges between 2 to 7 times the analytical error of 0.3 %0 (Fig. 4.10).

Based on these observations, it seems probable that if the degradative pathway used by a

single bacterial strain or by microbial consortia starts with the attack on the aromatic ring

itself, notable isotopic fractionation could be observed, as shown by the results of

Meckenstock et af. (1999) and our benzene experiments.

In contrast, the respective competitive consortia of the present study and Sherwood Lollar

et aJ. (1999) could have initiated the degradation of toluene through oxygenation of its

methyl group (Kitagawa. 1956; Nakazawa and Yokota, 1973). In this first reaction, only a

carbon-hydrogen bond within the methyl substituent is broken to yield benzyl alcohol and

this is apparently not associated with significant isotopic fractionation.

What was exhibited by the monoaromatic hydrocarbons, toluene and ethylbenzene, was

likewise described for some polycyclic aromatic hydrocarbons mentioned earlier (e.g.,

O'Malley et aJ., 1994). Studies on microbial degradation of polycyclic aromatic

hydrocarbons made by O'Malley et af. (1994) showed no enrichment of 13C in the

residual hydrocarbons. Pure culture aerobic degradation experiments on naphthalene

indicated that although rapid bacterial growth and up to 95% consumption was observed

after 6-hour exposure (Fig. 4.1 (), no significant alteration in isotopic values was noted
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Fig. 4.10. Changes in isotopic composition cel and concentration (0)
over time during aerobic degradation of benzene (after
Stehmeier at al., 1999). Line represents growth curve
of the degrading microcosm.
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O'Malley et a/.. 1994). Line represents growth curve
of the degrading Pseudomonas putida ATCC 17484.
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when this compound was used as the sole source ofcarbon (O'Malley et 01., 1994).

Similar results were recorded when a larger starting concentration was utilized.

The same holds true with that of the fluomnthene study conducted. by O'Malley et ai.

(1994) in which the coocenttationofthis hydrocarbon was reduced by 63% after 60 hours

of exposure to an active bacterial population.. Furthermore, there was no significant

alteration in the isotopic values of this hydrocarbon (Fig. 4.12). Trust et oi. (1995) also

found no isotopic fractionation associated with the microbial degradation of this

compound.

Biodegradalion of polycyclic aromatic hydrocarbons (e.g., naphthalene) occurs with the

initial anack on one of its aromatic rings (Fig. 4.5). Although one would expect isotopic

fractionation to occur in such a case, no significanl fractionation was observed by

O'Malley el ai. (1994) orTNSletal. (1995). Harrington el 01. (1999) suggested tbalthe

lack of isotopic enrichment could be due to the mineralization rate of these compounds.

The mineralization rate might have been so fast thaI the fractionation factor decreased

with increasing degradation rates (Goldhaber and Kaplan,. 1975). Anolher reason could be

correlated with the molecular masses oCme hydrocarbons. 1be iSOIOpic fractionation

faclor will be effectively "diluted" over the number of carbon atoms in the molecule

(Harrington et ai., 1999). II could also be possible thaI fractionation has occurred but lhis

was not due to microbial degradation but to an abiotic process, e.g. dissolution process.
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The hydrocarbons were: in cr:ystalline fonn and had to undergo a dissolution step prior to

microbial degradation.

Funher studies should still be conducted to elucidate the role ofme different metabolic

pathways and enzyme systems utilized by individual microorganisms as well as by mixed

populations in their effects on lbe magnitude of isotopic fractionation.

4.2. Field Studies

By examining residual h.ydrocarbons in soil extracts and vapor samples collected from

four different contaminated sites, Steluneier et al. (1999; see Appendix) attempted to

demonstrate the applicability oCthe isotope technique in the field. One of the sites (Site 2)

is a biosparging operation in Albena involving gasoline released from an underground

storage tank. Field measurements from two monitoring wells within the site are illustrated

in Fig. 4.13 to Fig. 4.14. About 28 hydrocarbon components were resolved in gas

chromatography ofsamples from 2.2 m and 24 constituents from 4.3 m depth in

monitoring well A (Fig. 4.13). Twenty·two of these compounds were found at both

depths and therefore a comparison of their isotopic compositions can be made. Two

compounds corresponding to retention times of 1275 and 1313 seconds have differences

in Bile of less than 1%0. Eleven components increased in slle values by more than 1 960

while 8 components increased by more than 2 %0. In monitoring welt B, 20 hydrocarbon

constituents were resolved at 2.2 m depth and 18 constituents at 4.3 m (Fig. 4.14). OCthe

91



• • • •• , ••• •f '" • •-" 0 ..•~~! '" "b0 0 0:!: -26 D
0 .~ D'®';

~ DO
-30

-34
>---~------~-----j

2200

Retention Time (seconds)

Fig. 4.13. Isotopic effects of gasoline contaminants from soil samples in
Well A located in Site 2 (after Stehmeieret ai" 1999). (e)
represents data from soil samples collected at 2.2 m depth and
(Q) from 4.3 m depth.
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16 compounds found at both depths. only two components showed BIle differences of

Icssthan 1 "" with six and eight components bavingBue shifts ofgreaterthan I "-and 2

"-,respectively.

Based on laboratory degradation experiments carried out for benzene and styrene:

(Steluneic:r et aI., 1999), increases in BIle of hydrocarbons in Well A seem to be due to

biodegradation occurring at shallower depths. In contrast, enrichment of Ile occurred at a

deeper level in Well B (Fig. 4.14). Possible explanations for this disparity include

substantially greater porosity at 2.2 m resuJting in much higher concentrations of

hydrocarbons at this depth which could have led to local reduction in Eh that pre-empted

aerobic biodegradation at the shallower depths. Another plausible explanation for the

reversal in llC-enrichment patlcm in Well B is the impact of toxicity of hydrocarbon at

elevated levels.

The field results ofStehmeier cf of. (1999), however, are inconsistent with the present

study in which no significant isotopic fractionation was obtained with the degradation of

low molecular weight aromatic compounds. Field experiments conducted on microbial

degradation of BTEX compounds by Kelley cf af. (1997) similarly showed that the

isotopic composition of these compounds remained the same at different sampling

periods. It is thus possible that the field observations (Stehmeier ef al., t 999) can be

attributed to other processes involving the organic contaminants (Diegol et af., 1999).



In natural environments, abiotic processes often play an important role in the

transfonnation oforganic contaminants. Only a few studies concerning isotopic

fractionation effects associated with these processes were available in the literature.

Whereas isotopic fractionation effects due to soil adsorption are likely small (e.g.,

Harrington et ai. 1999). isotopic effects due to vaporization generally varies with respect

to the variety of organic compounds. Unlike equilibrium isotope fractionation. where the

heavier isotope fractionates into the Liquid rather that the vapor, vaporization oforganic

compounds seem to exhibit what is referred to as an inverse isotopic effect (e.g., Huang er

ai., 1999; Harrington er aI., 1999).

Balabane and Letolle (1985) found out that liquid fractions taken during distillation of

benzeDe and toluene were enriched in the heavy isotope compared to the initial substrate

and that the residual liquid was decreasingly depleted as distillation proceeded to

completion, indicating a positive change in delta values. In addition, experiments on the

BTEX compounds by Harrington er al. (1999) showed small positive isotopic effects. On

the other hand, Huang et al. (1999) and Poulson and Drever(I999) pointed out that large

isotopic fractionation was associated with vaporization studies OD chlorinated aliphatic

compounds and ttichloroethylene, respectively.

The observations from the Albena hydrocarbon spill can now be reconciled with the

experimental observations. Note. in particular, the contrasting behaviour of the shallow

os



and deep samples from WeUs A and B. In Well A. the hydrocarbon samples were shifted

to isotopically heavier values. an observation consistent with aerobic biodegradation, if it

is assumed that biodegradation pathways that promote preferential destruction of I1C.

involving bonds are involved. Preferential biodegradation at shallower levels is promoted

by the greater access to oxygen at these depths. However, if it can be shown that the

labomtOl)'·cultured microcosm (i.e., those utilized in the present ellperiments) is

responsible for biodegradation at the shallower levels, then the observed fractionation has

to be due to processes other than biodegradation. Given that labomtof)' cultures inherently

alter the microbial structure compared to what is present in the field, it is not surprising

that carbon isotopic fractionation was observed in the field whereas none was observed in

the microcosms.

Well B, however, exhibited shallow fractionation that favored enrichment of 12C in the

residual hydrocarbons, and opposite that observed in Well A. In the initial assessment of

this fractionation pattern. it was speculated that carbon isotope fractionation preferentially

occurred in the deeper samples (Stehmeier el aL, 1999). It was also suggested that

anaerobic degradation., similar to those observed experimentally (Fig. 4.1 S), may have

occurred. In light oftbe discussion noted above, it now appears more likely that the

shallow hydrocarbon samples from Well B was affected by volatilization of

hydrocarbons. The reverse carbon isotope fractionation observed is consistent with the

reverse fractionation noted by Huang el of. (1999) and Harrington el of., 1999). lndeed,

the substantial carbon isotope shift shown by the shallow samples (2·3 "") from WeB B
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suggests very high degrees of volatilization. 1be problem with the previow suggestion of

Stebmeiereral. (1999) is that the deeper samples for both Well A and Well B bave very

similar carbon isotope values. This would imply that if the deeper samples in Well A are

relatively unaltered values, it becomes difficult to argue that the deeper hydrocarbons in

Well B are residues of anaerobic degradation.

4.3. Application to In situ Bioremediation

In assessing the effectiveoess of in situ biorem.ediation. the monitOring technique used

must satisfy the criteriasct by the National Research Council (NRC, 1993). These include

documented loss of contaminants; laboratory assays showing that microorganisms from

site samples have the potential to transform the contaminants under the expected site

conditions; and one or more pieces of information showing that biodegradation potential

is actually realized in the field.

Stable isotope analysis has already been used as a valuable technique in investigating the

behavior oforganic conraminants in the subsurface and to some extent in assessing the

implementation ofbioremediation. Biodegradation is of particular interest since it is often

the only process that may result in complete transformation ofcontaminants to non-tox.ic

product. With the application of this technique, it is shown that results of our bench scale

experiments satisfied criteria I and 2 in which selected hydrocarbons have been

microbially degraded under aerobic conditions. Evidence of such is manifested with



increase in biomass and decrease hydocarbon concentration. However, measwcment of

l)IJC in residual hydrocarbons such as toluene and ethylbenzene bas shown no significant

change in isotopic compositions of residual hydrocarbons. These observations still have

10 be demonstralCd in the field, but ifcorrect, the application of carbon isotope techniques

to monitoring aerobic BITX degradation seems suspect.

Sherwood Lollar et oJ. (1999) also suggested that in monitoring of in situ bioremediation

by natural microbial communities using the stable carbon isotope analysis, field evidences

should further show the following criteria Systematic changes in Bile values, or

fractionation must occur during biodegradation. Fractionation must be greater than

analytical uncertainty, and under given set of conditions, the fractionation must be

reproducible. Finally. the effcclS of isotopic fractionation during biodegradation must also

be readily discemable from isotopic effects associated with other subsurface processes of

mass attenuation such volatilization., dissolution, and sorption.

Site-specific studies are necessary to determine the presence of inherent microbial

bacterial populations and to quantify the stable isotope fractionation occurring

biologically. In conjunction with these studies., determination of the effcclS of the variety

of environmental conditions such as tempemrure, pressure, pH. electron acceptors.

geologic and hydrologic properties. on the magnitude of isotopic fractionation of organic

contaminant should also be considered.
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Chapter 5

Summary aDd CODclusioDS

1be extensive occurrence of aromatic h.ydrocarbons through accidental spills and leakage

of WldergrOlUld storage tanks, or through inadvertent releases during use. transport or

disposal has caused tremendous contamination of surface and groWldwater environments.

Among the compounds of interest are low molecular weight hydrocarbons such as the

monoaromatic BTEX compounds because of their toxic and carcinogenic potential

Aerobic degradation catalyzed by inherent microbial populations is one of the

mechanisms that could aid in the complete removal of aromatic hydrocarbons in the

environment. Several approach.es have been utilized to assess this process but their

measarement of the changes over time (e.g., of hydrocarbon concentration, bacterial

count, metabolites) may be affected not only by biodegradation but also by other

chemical and physical processes.

Stable carbon isotope analysis is one technique that has been previously used to trace

sources of organic pollutants. Compounds have characteristic carbon isotopic

compositions that can be used to pinpoint their origins. Any process in which the

compounds are involved with. may likewise impart significant isotopic fractionation.



Microbial biodegradation experiments modified from an earlier protocol (Stehmeier et

oJ., 1999) were performed in replicates utilizing selected hydrocarbon compounds as the

substrates. Microbial euJtures acclimatized to the specific hydrocarbons were used and

grown aerobiea1Iy at room temperature in side-ann flasks. To establish microbial growth.,

mea.sumnent ofoptical density was undertaken. To determine changes in eoncenbation

and isotopic composition of residual hydrocarbons, hydrocarbon isotope analyses were

perfonned by removing a specific headspace concenbation and analyzing it by gas

chromatography continuous flow isotope ratio mass spectrometry (GC·mMS).

Biodegradation of toluene showed that microbial growth exhibited an overall increasing

trend as indicated by increases in optical density. A corresponding decrease in

hydrocarbon concentration with no significant changes in the aile values was also noted.

Similar observations were obtained using higher subSb'ate concenb'ation (10 ....1of

toluene). Experiments conducted on ethylbenzene as the substrate likewise demonstrated

the same effects on microbial growth as well as in lhe concentration of residual

hydrocarbon. Isotopic compositions also remained considerably constant.

rdentification oClhe microcosm revealed various species that make up the different

hydrocarbon-specific cuJtures. About 26 bacterial strains were identified that consisted of

Gram negative rods as well as Gram positive cocci. Gram negatives included strains from

the genera of Pseudomonas, Stenotrophomonas, Oligella and Acidovorax while Gram
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positives belonged to Micrococcus, Staphylococcus, ~rmacoccus and Kokuria (or

Erythromjaa).

The present srudy revealed that no isotopic fractionation accompanied microbial

degradation of toluene. A recent study employing two different competitive microcosms

likewise exhibited the same outcome (Sherwood Lollar et al., 1999). In contrast. another

published work obtained a substantial fractionation associated with biodegradation of tile

same compound (Meckenstock et al., 1999). These contrasting results indicate that the

occurrence of isotopic fractionation depcnds on the degradalive pathways utilized by the

respective microbial consortia. Specifically, the nature of the initial metabolic step (e.g.,

anack on methyl group versus scission of aromatic ring) could control the extent of

carbon isotopc fractionation. The corresponding microcosms used in the present study

and Sherwood Lollar et of. (l999) could have initiated the degradation of toluene through

oxygenation orits methyl group (Kitagawa, 1956; Nakasawa and Yokota. 1973) in which

a carbon-hydrogen bond was broken., and this was apparently not associated with isotopic

fractionation. The PseudomoMS strain used by Meckenstoek et 01. (l999) might have

initially attacked the aromatic ring (Zylstra et 01., 1988) in which the accompanying

cleavage of one afthe carbon·to-carbon bonds might have caused the fractionation.

Benzene is basically composed ofan aromatic ring and thus its degradation occurs with

the oxidation of the aromatic ring itself (Gibson and Subramanian, 1984). Earlier

microbial degradation experimems done with benzene showed isotopic enrichment
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ranges. though small in magnitude. from 2 to 7 times the analytical error of 0.3%0

(Stehrneier et al.• 1999). These observations. as wc:U as the results obtained by

Mcckenstock et af. (1999), seem to point out that if the degradative pathway used by a

single bacterial strain or microbial consortia occurs with the attack on the aromatic ring

itself, notable fractionation could be observed.

The outcome exhibited by the monoaromatic hydrocarbons. toluene and ethylbenzene,

was similar to that obtained from degradation studies of some polycyclic aromatic

hydrocarbons (e.g. naphthalene and fluoranthene) (O'Malley ef al. 1994; Trust et al.•

1995). Although initial microbial attack also occurs with one of the aromatic rings. the

lack of isotopic fractionation could be attributed to several factors such as mineralization

rate (Goldhaber and Kaplan, 1975), molecular masses (Harrington et aI., 1999) or to an

abiotic process. e.g. dissolution.

Field results conducted on soil samples coUceted from an Alberta hydrocarbon.

contaminated site (Stehmeier et al.. 1999) were inconsistent with the present study. The

contrasting behaviour of shallow and deep samples from two monitoring wells suggested

that other process e.g., volatilization (Harrington et al., 1999; Huang ef aI., 1999) might

have affected the observed isotopic values.

Based on the results of the present study, application of stable carbon isotope analysis in

aerobic degradation ofaromatic hydrocarbons particularly the BTEX compounds do not

103



appear promising for assessment of natural or engineered in situ bioremediation. Future

studies should look more closely into the different degradative pathways and enzyme

systems used by individual microorganisms as well as mixed populations and their effects

on the magnitude of isotopic fractionation. Site.specific studies are also necessary to

determine the inherent presence of (these) microbial consortia and quantify the associated

biological isotope fractionation.. In addition, the role of the various envirorunental

conditions such as temperature, pressure, pH, electron acceptors should also be

considered to determine their effects on the magnitude of isotopic fractionation

accompanying biodegradation oforganic contaminants.
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Appendix

A copy of the published paper entitled "Field and in vitro evidence for in-situ
bioremediation using compoWld-specific 13C112C ratio monitoring" by Stehmeier ef al.
(1999).
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pk fractionation oc:cun-ed, A summary of the silco is
gi\fCn in Table I. Sile I contained primarily volatile
aromatic compounds gcncraled n a pc<rochcmical
plan"nAlberta.Site2isab'OSllargingOpcration'n
Alberta rccoveringingrouod guoline rclcased from an
underground slorage ~k:. S,te 3 is a biopile from
Cambridge. ON, which contained mixed aromatics
""th the primary contaminant beingstyreI>C. Site 4 was
ariversedimenlsite(Sta~River,ON).conUlOli_

ltaJed""lhbcavierpct<-oleumcompounds.

At Site I. soil hydrncarb<>n conccntn.tions were
measured using a modification of EPA Method 3810
(EPA. 1986), The 6eld soil samples (45 ,) wcreplaced
in 118 ml crimp tops vials with 2Il wi ofdoionlzed
water I.Ild eqllilibratcd at U'C before a JO III head­
space sample was analyzed by GC-C·IRMS (lSOIOpe
Biogeochemistry Facilily. Memorial Uni\'elSity). The
hydrocubon components were ide~tilied by injec:tinll
ex<cmalsl30dardsand comparin,«:t.entiontimes.

At Site 2. conUlOlinalod vapor samples well: col-



lccted in Tediar hags (SKC Inc., Ei&!>ty Four, PAl llnd
th~ gasolin~ vapor-ph.asc hydrocarbons COIlc:mtrated
usinl: solid-phue microuuaction (SPME) following
procedllMS outlined in the manuf~cturer's doeu<nen'
(Sopelco.I994).TbeSPMEfiberwasinjcaeddirectly
'lito the GCCIRMS 'nstrumem.. The firs, hag col­
lccted in.-.ach sampling period wasdiscardlld tOe=
ltUc subsurface vapor was bcingcoUectcd.. In thcpre­
scntp~per, thepsolioe hydrocarbon components were
Ideotifiedonlyhytheirreteotiontim<!:S,bt.llexcerna1
s!alldards ..-..reinjectod and «sed to c= retention
tillteS were comp~rable fro", sampl" to oampl". Soil
samples fmm thr.... wells (A, B. and C) we", analyzed
usingsoilheadspaceteehn'quepreviousiydoscrlbed.
Furlltennore. samples from different depths were col_
1<C!Cd. from two of lite weUs (A and B). Two wells (A
and qwere driJled ,napproxilna'ely the saure lo<::atioo
anddcplh.butatdilfereottimd:.inordertoevaJuate
thechaoge in 6"Cover the time period (four monlhs).

Site 3 eontam,nants were analyzed u.ing the same
melltod as Site ! for soil vapor. Sty..."ewas lite ooly
hydrocarbon idelltified using lite inje<:tionofan IOlter­
nal staIldud aJld comparloa; retelltion times
Hydrocubon concentration was monitored for total
hydrocarbollSU5i.og ... licldmonl,orwith aphotolooi.
zation detector (PID) (Raymond. personal communi­
cation).

S,te 4 contaminants were too heavy to beextrac!ed
with SPME and were solvent_ eJltrncted willt "..peo­
!alIe.Sedim.ents (20 g) were p1at:ed in erimp--.led
vials and sorucated for IS min in the presenceof,,-

pentaIIC us,ng an u1U'a$Ooic bath. The eJltr:l.cts were
!rlUISferred to new vials w,th a new PasteW" pipette and
CODa!Olnl.ted under niltol:l!I<. The hydroca.rbons were
recoveredagaio U5i.0l: pelllallC. and inj:ctcd into the
GCCfRMS iosttumeoL No attemp, wu made to
,dcotify all thecornpounds present in tltesesamples,
butreteotiontimeswereontedandextemaistandards
were used to CllSW'C fCIcotioo timeswereeomparable
be!WCClIsa<nples..

Microbial activiryat Si", 1 was mcasurcd using lIu­
oresce'ndi...cetate (FDA) hydroly.i.(Soog. 1988). Soil
(I aJ was added CO lS mI of.terile phosphate buffer
(60 mM. pH 1.6) and 0.5 ml of:1. mg FDA per ml of
acetone in ... SQ-m1 Erlenmeyer ILuk. The reaction was
stoppedaftcr I hwithlSmiofacetone; SOli of sol­
utioo were filtered through a PTF"E syringe Iilter
(Chrot::lacograpmc Specialties 111(;.• Brockvi!lc. ON)
and the ablrorbance measured at 490 nm in a Tumer
ModeI30.pectrophotometer.

J.I.Labora,or}'s,uJ~s

B,odegradation cxperiments using betmne as lite
SUMtrate showed an inverse correlatioll between ben­
zcoccoocentr:atiOClandopticaJdcnsity.ind'oatingllte
depletiOllofbeozclleasthemlerobialcultureincrcascd
in bioman(Fig. I). The 6"C forrcsJduai benzene.1so
inc:rca5cd as benzene degraded. and m,crobial b,omass

-~i
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F... l......,..,lJC:bH>clel"'dationofbenzcne ....l<ownby.nir"'re..sem''''bidityand ....hifrinthed"c ....r.... Beouen... """''''r«!
... hcadsp.cea>l(C<n,n.';O<Iudintrtlllembacl.ri.alJ<O"''''''Ol..sured><6001U1L Th.d"Cofl'e1idualbenil.""i>'''''''''''atl.1<
int~..... labellont","ben!Cn<<»n<:cn'ra'iooplo'



Table 1
lsolopi<o>mp<Hili..... hydt~bonOXl=""tiooaoclcul"u.,"'<di\llllOpl..... deruilybefo"''''''''dl... upo<uR'ohydrocuboa
~o>.....rn.underurobi<::o>odi.ion<"

liCiJlilioJlypraent IailiaJ,l"C(%o) Fmal 6"C (%0) CbaIlF;n6"C(%o)......
W% -1.l.2 _21.~ ,. O.O~ D.lll~ ...

~-' '0% -!!.2 _21.0 '" O.lI4j O.l6'J
IlOm,,1 W% _:!ll.2 _26.0 U "'W
lllmafl .>% -30 _21.~ " 'm, ,.~

"-" ...
10cr-eased (FiJ:. I). The initial COOCClllratiOO of be=e
in this vial was 44 llIa/l. The shUl in 6"e was oot
llU'll'but ...... signilica.ollyJ:=lwthantheanalyLical
reprodu<:ibiJilY of c:ubon isolOpic measuremelllS.
AddilionalexperimenlSatdill"erenlmitialbe=necon_
ce:D.te':>linns sbowed si<nilar magBilude of Jlle shin
from beginning 10 end of the experiment nmgllJ: from
80to90%benzenecolISumptioncrable2).Sleril~

controls were run al 1he same time with benzelle OlI1y.
The avel3ge J "c v.o.lue for 18 anal}'Se$ wu -18.3%0
with a st3.-llda:rd deviation of 0.3""-. Also 11lCluded in
Table 1 an: the raullS of all experiment where slyrene
was the substrate. Optical density increased while nyr_
ene decreased. and the,lue for $lyrene was enriched
from ctle initial to the tinalsampling potnl.In thisCJl_
periment theenriclunent of I lie for styrene was also
substantially higher than the repro<!ucibUity of6"C

3.:U.S;,eJ
Durinll: Wecourseofretned.iation,tield_measured hy­

dr<x:arbonlou ofben>:ene. toluene and dieyclopenta-

diene (DCPO) were estimaled at 99. 99 and 840/.
~tively at Site I (3D em depth. Table 3). The cor­
responding IIJC values of residual l>e1lZCne. u,lucllC
and DCPD were enriched by 2.1. 5.9. and 2.3"- re­
spectively (Table 3). Microbial activity. measured. by
an inr:rease in FDA hydrolysis. illdica~ that at 30 em
depth. there Was a 400% ~se (Table 3). This cor­
responds lo the pattern ofresuhsobtained in the lab-­
oralOry studies where ,l'lC was enriched while the
hydrocarbonconcentratiorudecre.asedandindj""tors
or microbial llJowth m=sed. Curiously. 6"C
mcrease observed for benzene was ora similar 0l>3.l;D1.
ludeaslhalobservedinvitro.sP"cificallyatthehigh­
esldegrees ofbeD3!ne degradation (cfTables 1 and 3).

We note that the resullS for sampling a! 90 em
depth (Table 3)scem to contradict !he suggestion that
biodellJ'ldation u.'3.$ occurrmg a! this "teo At this
S3.Olplingdepth.asil;Diticamamountofbe=
appear$ 'c>have t>een lost (99%). and fDA hydrolysis
inwcaled microhial activily increased (by 156%)
during the study period. Interestingly. the 6"C
composition of the residual bennne did no! change
"pi6cantly n:Iative to our anaJytical6"C precision or
0.3"-.

Dep<handE:Jo HC In~iaJilC FonalHC lni'1>.16"C Fonal6"C Chanpind''c lnitiaIFDAIl&!hI. Final FDA Illlhi.
un./tll (mJltll (%oj (%01 (1:.)

~=
!jm"" Ben:zene39.6 0.01 -39.1 -31.0 "Tol"",," ISA 0.01 -39.9 -.1-4.0 ,.
,,= DCPD 32.~ " -.lll.• _.1-6.1 B

1.6'
-.!(II",,,,. _.,

3J 0.01 -31.0 -31.1 ,.,
Toluene .., '" _39.1 _36.2 ,.
Da'D 10.1 ~. -~J -3U -0.1
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Fil-l.Thec!>aD1" ini"CvaI... overliJn<,foranunlcnowntoll'ami......'peok.'SiI.2wi'b. "" ...,ioo ''''''0fUI4 .. S¢ilvapor
waslXlllectedinaTedlarbo.cfwlD.amanifoldccll<cliocairrw<'P"h,,,,ulh_l""''''''''lmi'''''edsoil

J.1.l.Sil.l
At Site 2. 6 "c values of psoli:lc components weu

dctennined from vapor and soil sam~les from. a site
actively being bwr.mediated. An uu;:rease in 6 "c
values for gasoline components of the foil "'apor
oa:urred over approKim.udy tWO months (Fea:. 2). Soil
samples from the site w.'" also mc:uured \lsinl the
hcad<pace'O(;hniqucdcscribcdabove(TabIes4.S.&nd
6}. [n Well A, <he hydrocarbon conwninatiO<l "",ged

from SO to ISO ppm over the two sa.mpli:l& depths
wilh a UJliform sandy day soi] (Table 4; Fontaine. per_
sonaloommuoicatioo).11>e6 11Cvalueswe"'lCneraily
m~ enriched a\ 2.2 III lhan at 4.J m (Table 4). wen
B (Table S) had a ditrcrcm subs"rface litllological pro­
fikwitbasandlaycraI2.2mwitbverybighconoen_
trations of bydroearbon (J700 ppm) overlying a day
!ell> with ,ubftanti.al.ly decreased contaminan'(30
ppm) (Fonl2ine,pel'$Onalcommunlcalicn).In <hisweU

Fil. l. H)'dtocarbon ..nalysi. and 6''c ...1_ cr"':l ...pcr _pl<>< ";'hd,..-'11 (rum a biopUe a' c..mbrid¥. ON dUMI rem<di.._
,icn ot ,'yn:ne ""n'......tIll'cd Jail. H)'dtocarbon ..ClIlyoiJ wu. linde ..mple analyzed wi'h .. 1Ie1d pho'''l<mU:o'WR dou",,,,. The
6"C ....."""'~llI1a"""'l"o(lWoS-iTodI"'bal··""I'Ie<'.k ... ,Ile_doy.
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T.ble4
Slobk;"""l"'ftution;j'io""fPJOlino""n~,sfroIllSCil_ksi"""'''''''''erin'~,,'Well A. Kydnx:arbons(ound.,
.p=lftdq><hC4.J1Il).......,isclOpicI.lIylip~IIwl'_t""odll<"-tetlbe:lUl!'.... {1.211l1

R<l<tl,ion 'imo Cs) Cbonp in ~ "c from 2.111l '0 4.3 III Moai,ol'iD& Well A., 2.l III dopcb Moni'''rinJ WeU A a' 4.3 III d"l'lh

99S.0
108S.o -25.1
llOI.O -Ui.7
U15.0 -"3
119s.o ,.. -"-, -24.4
120M U _24.4 -"3
1227.0 " -2L.3 -2M
121S.0 " -zu -21.2
1217.0 -"-3 _24.4
C294.0 -22.~

Clll.o -25.1
11l4.0 _2L.I
Il74.0 '0 _21.~ -28.8
1<06.0 ,.. -25.0 _26.4
141S.0 ,., -26.9 _llt.6
14$.0 ,. _26.0 -llt.O
15Ol.0

U
_24.9

_Ui.S1512.0 -25.4
1520.0 " -24.7 -no
1569.0 ,.. _26.1 _17.6
15&0.0 " -15.3 -26.7
1S88.0 " _"3 -25.8
1607.0 ,. -= _25.01633.0 -:!J.D
164lI.D U -"-. -25.1
1676.0 .. -23.7 _24.7
1704.0 ,., -22.7 -24.4
1134.0 _21.3
1_.0 -22.7
1827.0 -2'"
1870.0 -D.I
1017.0 -22.1
1088.0

<he ,) "c values were enriched more in <he deeper day
lay"" (4.3 m) than in the san.d !:Iyer (2.1 m. Table 5).
The ,j "c values o( the gasoline conlaminanu in Well
C (s.ame depth and ~i1 u Well A) shined O\'er a tour_
month period amt b:came enriched in"C (Table 6'.
1.)3.5;"J

Vapor frOOl a styrene-contaminated soil bi<>pile
ind;""led some "Cenricllment in the residual slyune
but lltis eannot be sitnply related to theobservedhy_
drocarboncon"""uation (Fig. J). We not... nevenhe­
less. that the 6'sC values shown in FIg. 3 are for
styrene only but the hydrocarbon concenuation reflecl$
total hydrocarbon as measured via pholoion~tion

detector.

1.1.~. 5;,,,~

Re:sidua1hydroc:arbontromsediment~plesinthe

river site that received discharge from peu-ochemical
faciliti.. """analyzedataniOlervalof'hreeycatS.
Th.... resulu showN siznilic:lJ:H incr....... in 6 11C
values durinll a thr=year period for SOme compooents
while a few other componentS -.n to have been
dcplctedin "C{Table7).

~.I. In v;ua biodqratlalian

Enrichment of "C it! residual hydrocarbon was
demonstrated with benzene and slyrene as substrateS
for.erobic IllicrobiailTowlhusiogancnril'hDlemcu1­
turc of soil oq;ani$ms froPi Sile 1 (Fill· I and Table 1).
The enricltmem of tJC in laboratory e~perimentS.

whilc smal1. ranees betwo:o 1 and 7 timcs greater than
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~~~":.==-~~~dat'l.. __I.Jm).e--_., dcpt" ..."UCi:sotopQlly-

a-iD.. I.... I:s) a..q. .. "'cf...... 4J ..... :u ... WoaiIoqWdlB.,UIII"''' Woooitoria&WcilBu4J ... dq>oll

"~"". "
-2<1.' -UA

tlOLA
"

-17.0 -"-,u= --., -:!JJ _U,
IIUll ~ _no _no
IllU.O -~,

1~l.(1 -U'
11UG -n.7,,,,.,_.
UIl.O
I~.o

u _19.1 _21.11)14.0,_. .. _D' -2$.L
L.LJ.G U _19.9 _2U,_.

" _D' -26.7
L$03.o
LJL2.0 " _26.9 -14.$,no. ,.. -27.2 -n,
LWJJI " _lS.J -n.
1510.0 a _27.7 -24.9
!Su.o -26.0
161)7.0
16Jl.o -15.5,.... -"-'
1676.0 a _14.9 -ll.'
lJGol.O ,. -24..5 -2L.2
(7)4.0
1.711.Q
:!Ol7..a....
lbclUl&1ytica.lertOrofO~F ... lindical4lllhat
d11rill.lu..:-batioGofa5Oiliaoc:ulum.u..hbo!::llzr:r>.eu
tbeoa.lyc:ubo.. "'~~_tratioa
cleln:ased.op<ical.donsiryim:n=asedudl'Jcvaluo!liD.
tberesidWlihydrocalbo.. becameltllricbod.F...... osper­
iolenllI wioh betu:erlc wa-e coodueted, two with tbo:
_ iAitial co"""""traliol1 utd c.oo othen wioh
iDaaKd ")dn>c:afboo. COIIDI!fttn.Uoa (TatM 2). While
tbe"".....loffnaiou.tioaappearedtobe~t
IlpoatbeIUllOIlD.IOfhydrocarboadcsnded.ollfosper­
i_tsanl>QlsuJri<:io,Qtw<stablWl.thau.tureofthU

........=
Othef worlr. in the IiteratUR ~t1J&e5l1!d thai "C frae­

uOlLltion of hydzocubons did nOl 0CCIll elwin, biodc­
srao.lioll(O'MaIIey,I994;Tl1Uletal.. 1995). III tboose
reports the carbon SIIb<tra<es wen: w,er cnolccular
weilht polycy<:lio: aromatic h)'dro<;arbons. Previous
workdoneinourlabusinl.mixedhydroc:vbollSllb-

suateofprialaril)'CSalbars.alkeacs.a<ldfiDP!n..,
aromatia foWld Wt lbcl'ICofrGdual hydrocarboll
wu emir:bed by u crUDU "'" (J.WIdaJd devi­
atioa-O~)atIa"biodqrad.atiOtt{FraACiseta1..

1997). E1sewIlereiD thiJ ....I........ Hentyetal.(I999)
also reponWI,"bstaDtial"Cfraetiou.tio"oa:umd
dlOrin&ael'Obic:~ollofdichlo.......,!hule.

'lhollUpiwdeclfractiolllltiooforSI)'TI'r>IOwu-..
panbletowbeaz:eDeltililisbulfractioAationiD.nyr_
e""oc:curnd.,..jlhG~.... ~tiOtt{Table!).

AtSi"" I. threecompouads wereidc:ntilled arnl moa_
i,ored for "C/':C r...ctionauoa at tWO dilf....entdqoths
(Table J). ~lIlts ror JO<m dqoth suggest a ,hin in
SOlC or ,..,.idualltydroearbon that is comparable to

lhat observed in the laboralOIY experimtrllJ. The
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IDlSJI -llO
UOlA -llO

"". _ItA
,,~ U -"-' _n~

.~ .. -24•• _I'".=. U -11.J _!l.'
117SJ1 ~, -IU -~
1:!S7.D C _n~ -llO

n'" -~.
lJlJ.D -~.
lJ24.D ., -11.1 -IU
LJ7• .o .. _lU -=,... ., _n. -:!S.7
lanA .. -~. -17.',-. <2 _16.0 -17..1n.,. -24.9
1'12.0 .~ -15•• -15.1
,,~ ,., -:la.7 -u,,... ... -u, -27.0
U&D.o ., -u~ -n~,w. •., -n~ -24.1
1607.0 -11.1
l6JJ.D <2 -D.O -14.1
1641.0 ,.. _11.1 -24..1
1676.0 .. -D.7 -24.6
11001.0 ,. -~, -13.7
(7)1.0 C _11.J -11.S,... >< -~, -1U",,. _11.1

1'111.0 -~.
!Il17.o -!l.1 -15.0- -llO

a:lCQtor~tioaforl:M:azo:Deaadtolueacitt

tbot IWd eueeckd 99%. &Ad the shitt ill .J'Jc.as
puta"iDtohleaetbaaia~(batintblt_

dinaioa). n ... tbI= obscrwd imtopic shitIs at)O.Qn
depth ill Si.te I &nO colUisWlt with ~bir: biodqnd.a­
tiOll depleliDe both berlzI!.... aad tohllale. Note that
allOth<:r.,..prpl"OOltSSthatcolildluLvcOOCllfftdiathe
5dd..thatofcwapoDUoll.WOuJd.bavcluLdlbeoppos;te
illlplCloIl6'Jc{i.c..depleU: Uq Ilflberaidual
lIydroc1.rboltS (0;[. Hania'ton .... aL 1999; HlWI& et
aL 1999).

The thin. in 6 lie of l""Siduai DCPD .... lim~ar to
bellUM bUI 1M utent of depadJIUoll wu only 1-4%.
Biodejp"MbtiOll of DCPD is diflic:WI to meuun: in
vill'O boa..... of.ts llow depadatiOll rates and incom­
plete minl!f2lizatioll (Slch<ne'er. 1991). The relatively
larl"fraction.ltiollol>servedforDCPDflluestsit.able

isotopeUl:&lysis ....,be. $ICCl$iti.... lCChnique todau­
miDcwtleaDCPDisbe:iJlClII£t.abolimL

lberaultsforthe9lko:>_pLi=,cdept.ha,Si. 1
oeana,oddIwilh theobservatio4i .. 30cm.. We ...
that the FDA b)'dr'ol)'lis u.1ic:Ited Oll1y a lllodera...
~._ofmicfobi&lICliYi'yal90an c:ompued to
JOcm. This ol>$ervltioll ilco.....""'twilh IbedramalE
di.II"erut:o:~i.DOltidatiollpotelltial.'thet_

""""littadepthi... wilh lbe90cm Amp1iacdepth show­
inc quit<: reduced Elt Yalues (-200 lIIv. Table }J.
Heace ODe ""'y of rao1rinc the~ if '0
,uUf$l.<ltalthelowEltvaJuesdnlnlltica1lylilllitod the
actiYities of aerobic o'pllislNl therd>yalso 1imi"",the
re5Il1til1J 6 1le flUfl. If thJo i. com><l, however e
ha.... 10 Uoo conclude that the aetualbiodcgradali....
loso .. iIIb.tantiaUyleqthan ....halcanbcinfcrre<!.
from the lot.al hyd,ocarbon lou.
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m _30.3
m -"."~ -31.S... -12.~
,~, -"<0.. 'J -;la.4 -27.1
Ill~ " _31.4 _31.3
1126 -",,~

1176 -32.1

'D' -."
Ul6 ~., -" _)3.3
,~. -u -30.~ -32.7
un -3~.3m. -31.9 _31.7
14)2 -~J

1439 _28.$
,~, -, ~29.s -)(I.~

1~16 ~., _29.4 -:!'l.5
1526 -27.9
,m _21

'M' " _27.6 -~
,~, .., -27.5 _ll'
,,~ -21.J

"M _21.4
1777 _27.9
1917
~~

Amore plausible explanation i$ tha'biodegradation
indeed oc:cuned a, 90 CUI dq>th. albeit. anaerobie
dej:radalion.Sueh po$Sibilityis eowteRl with the
FDA measurement and hydroearban 10$$ es;timate. bllt
it implie$ that anaorobiedegnd.a.tion llIay no' =u1,in
$imilu6 lJC $hiflU that observed in the aer"bie in
vitro experiments. If eonec:t. il may abo be tnfened
lhatanaerobiemetabollepathw:l.y$oouldexhibildilfer_
ent carbon isotope fraetiona,ion than aerobie degn.
dalion. E>:perimentSeolllparinll~"Cfraetionation for
allivenhydrocarboninaerohieand-anaerobie$yStell\S
is eurreolly in progress (Diellor. unpublishedd:l.ta).

The results of i:so'opie measurements at Si'e 2
offered even greater complexities than those obsented
in Site I. In W"ll A. 24 hydrocarbon components were
resolved at 4.3 m and 28 eomponents at 2.2 m dq>th.
Twen'y_ooe oomponents we", oornparable w:ith only
tWo havin, ehana:es in 6"C valliCS of less than I
(0.6"" and -0.3"-). Ele""R COlllponents increased in
6'lC by more than I,," a.nd eight eompooents
increased by more than l'k "The inc:reue in 6'IC
VUllcs$ll&£"$tsinereuet!biodegradationoeeurre<:lal

the shallower depth compared 10 the 4.3 m depth io
WelIA.lnWeil B.aga;neolllparedat2.2and4.3m
depth. 20 hydrocarboo eomponents were ~lved a'
U III and 18 eomponenLl :1.1 4.3 m. Only tWo COm­
ponents had 6"Cdiffereoeeo of less than 1'" (0.5'"
and -0.3""'1. with six oomponeMS $howing 6 "c shift
of g:eller than 1"-. and eight components showin\t
sbifts in exeesl' "f2""'. Ineonlr3>l '0 the "bservation
in Well A, however. the 'IC enriehment oeeurred U

the deeper (4.3 m) rather than at the shallower
sampling point (2.2 m). Al 2.2 m depth a sand lens
exis;ted with 100 times the eooeenlration "f hydro­
earbon thaI ex1sted a14.3 m depth (Fontaine. personal
eommunication). Our results an! far fromconr:lusive.
a1thougb $Om< possible expLanatioos eart be offered '0
reccneiJe the sbift in 6"C values in WeU B.Wenote
that the substantially veater poro.ity at 2.2 m did
remit in mUeh b'ihereoncenuatioosofbydroearbons
at !his depth. II is lberefo", pO$$ible that local re­
ductioninEJrcouldha'(ep~mptedaerobiebiodegra·

dation at these Shallow depths. in eoolra$1 to the
deeper less porous layer. The PO$$,bjlily that an



invertod £j, profdeeoti.us for thil; well il; obviolllly leS­

labl... bul these measurements were DOl available for
lhese _lis at the time ofollf samplinJ,. An equally
plausible e~planation for this reversal in "c enrich_
mempaueminWeIlBil;theimpaetofroo.icilYO(hy.
c1toauoon al elevated levels (Leahy and Colwell.
1990). In a hydroc:aroon plume, the grealesllevel of
degradauve acuvilY is al the periphery whcrcconcen.
lnltionil;less ro:ri<: and nulrienlS:>remorc available
(NRC. 1993).
TheusefuinessoftheisoLOpic~niqueasamoni.

loringloolina Lborllim.espanWlU demonslnltedal
Wells C and A. Comparing Wells C aDd A al the!Wlle
depth shows varia.ble IlC enrichment for the II COm­
parable hydrocarbon eomponClllS. Oflhesc. two ltad
difl'erencesgreatertha.n2%.and..,,,,,nhaddill"ercnees
exoeedina 1"-. Henc:c.:>.n overall 6"C enri<:hmem for
the rocnparable hydroc:arbon components was
observed. overthc fOllf-monlh period al the sam. U"'"
lhatthehydroauboncom:enuationdecuased.

On. component in lhe soil vapor from Site 2 was
also continuollSly monitored over approximalely six
" ...tsand iDdicaled6"Cenrichmenl of I.7%. (Fig. 2).
One area of concern for monilOring in-silu btodegr3da_
uon (using any leChnique) is th.neo;ssity ofp....tr.l.1_
ing theground.urface to obtain samples. Th. resullS
in Fie_2indicalelhal soil vapor can 1:>e used 10 deter·
OIlneil;OlOpicshifioo the.ubslnltethatil; t.aJcingp13ce
in the.ubsllli....... ".ubstantiated bysuhsequenl
measurements, cotnpound-speci& carbon isolope
monitorinll of soil vapor could reduce the nllll\ber of
wclUrequircdformonitorinetheprogrCS$ofreme<!ia­
tion.Slal.relaL(l999) and Sherwood LoUarelal.
(1999) have suuesled thaI any isolopic .ffects associ­
aledwithequi!ibriumvolatilizalion.sorptionanddis­
soluuon arc less than 0.5"-. However, oth.rpall"N in
this volume (!-Inane 01 aI., 1999; Harringlon et aL.
1m) point 10 the possibility of larger (>0.5,,") frae_
tiona.tionua ....u110fvolatilizauonprocessesinth.
fi.ld.

At Site 3. vapor was also used 10 delermine if 6 IJC
fraetionationoccurreddurinl\aetivebiaremediatianof
styrmecontam.in.atedsoil.lnthisinslanCetheresuits
"....,ooteonclwive. as oeen in Fie. 3.W.beJi""elbal
lheresults shown in Fig. 3 <ollld have been the reslllt
afmixingslyrcn.cfvaryin&d~ofbiode~tian

l.1lroughehannelingaraaualphysica.ldisturhan<e.ln
Fig.. 3. twO inStances arc abserved wb.re!he 6"C
becallleheavierand then returned wavalucafap­
proximal.ly -40"-. The hydrocarbon cancentrauons
also wowed II"riods of increase and decrease, though
they did cOlcorrclate IliCll wilh the decrease and
im:rcase of ,j:IlC values. Wh.n th. biopile wa. dis­
mantled.. il was found l.1lat l.1l.re were many poc:keu af
hydrocarhonwithbianconcenlnluons.andaddilional
IVOrk was required before dispo$aI was possible

(Raymond. personal eammunicauan). This supparlS
l.1l. idea that .hanndinl lJ'O'CIlned and thaI non­
d.graded hydrocarbons became admixed wilh mor.
hi£hly degraded counterparts.

The use of nabIe isotope r.ttias far monitating the
p<agfeSS or IUslOrieaL surface spills was .:<amined at
Sile4 (Table 1). This site contained heavi.rpeU"ol.um
contaminanlSrel~inLOtheSIClai... Riv.rapproxi­
matelyIOye;usago.Analysisoffra:tensampleswen
three years apart found that in 1994. lbere IliCr. 25
rcsolvabl.componenlS tbaldecreased LO 12 by 1997.
These snmples contained. nine common compound.
(based on RT) with anly an. compound .nriched In
"c by mare than. 2"- (4.7%.) and tWO compounds
enriched by 0I0fe than I%.. Indeed. IWo compounds
sbowed substantial decrease In ,j:"C (-2.2"" and
-1.0"-) "'bercu ath.rs IliC'" Ilnch:ut&ed within the
analytical error_ Giv.n l.1l. long durauan af de&f3­
dalilll1thatthesesedimentswClltlhrou~ilistikely

that only the most reealciuanl bydrocarbons arc lelL
Further molecular ehara.lI!rization is dearly required.
but we nole thai O'Malley (1994) and Tf\1$t and eo­
warkeN (1995) b.avesbow" that the bit>degradationof
reea.leilranl higbermalccularweighleompollnds such
as n3phthal.n. and ftuaranthene. did nal rcsull in iso­
lapic fraetionauan. II is thercfore possible farbiode­
e;radatioo ta have lefl minimal imprint on the,j:'ICof
residual reealeitramcompounds.lt5hauid likewise be
born in mind thaI the lcnl:thoftiOi. that elapsed fram
initial hydrocarbon release eauld also haViO allowed a
ranll"ofoth.r'weathering· reaeti(llU taaffectth.6'lC
values ofrcsidua/coClpounds. The facr thathoth
enrichment and d.plelion w.re observed indeed lend
an indication thaI the residual hydroearbonseOllld
hav.been.xpose<!loamultiplicilyofweatheringrcae_
Uons. Additional d.tailed moleeular eharaereriz3.tion is
requil'ed 10 rcsolvealteUI3Uveexplana.tions for the car­
bon isolopie shil'ts in this ease.

Th. ohjective af lhis wark was 10 d.mansU"at. the
useof"C ratins in residual hydrocarbons formonilar.
ingiovitroandinvivobiodel:l1ldatian.Thelabal1l1ary
.xperiments with hen:ten. and styrene indicated an
enriclunent in 'lC of the residual hydrocarbon with
irn:rcasine degree af biodegradatiOlL This shifl was
r.produeible and eorrclated with thcfraaion afhydro­
carbon d.graded. The Clost .ig.nificant .hi!'t5 in 6 11C
OCCUlTCdwb.ngrcalCrtbanapproximal.ly75% ofth.
hydn>carbon eompon.nl bad been degr:lded.
Preliminary testi", afthe leCbniqu. in lltc field also
.hawed that isolOpie measuremen[ can be 3pplied 10
bolhsoil.xU"aets I./Id vapor samples. although ooly
on. sampl. lypeshollld be used ror any s,;vensil•. Th.



illSlaIIationof'On'Ollsforll>Ollit.oriqbiodqn.da.tion
could thus be sobw.Du.tJy curtailed by I.DIIJ.~

npor""'"Pt thI'ottch the rubJurf-.
Wha'a$ the ...- lOIIidmoo:Dt ..... ....,enlly

ob5a"lld ill ICYen.IlIdd sitos, the prcIeDt Rudy also
~£Dm9lesOffiddliruatioll$~asiop.iso­

lOpic_r("'C. ill this case) au.y ItOt beab!<= to

raoj"coalpbreactionll.isulI;es..._-
We tb.:aDk the NOVA 0Icmic:aJs ED.~'_ ...

Tcdu>oIolY Divisio<l. Boatd for flllld.iDa th;s pru;.a,.
FIllldiD& for the Isotopt Biopo<:bccni5uy Facility was
~thratt&haNaUIr.lIScic...,.,a.tIdEftcioecri.aI

ReIeM:b. CouDc:iI Major FaQlities Acooss GRJ1t to
TAl. Sa.mples for- analysis: _ obtaiDed from -rn
pctroebcmicatlites.a.rdtbcfoll.....iD'individllalsare
acmowledpd.: Anna Madajt:zuk. Larry Cook"e. Ted
Kierstead. Phil Raymon.d and Mib Garvey. Wade
Fontaine of Enviro FX. Inc. of Calpzy is acknowl_
cdpi for providlngaa:esJ to samples and infonnation
from. bio.parge operation at Site Z. The final manu_
S<:ript benefiued from lhorough reviews by two anon­
ymou. ",viewers.
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