"EFFECTS OF DYNAMIC AND STATIC STRETCHING PROTOCOLS WITHIN ACTIVITY SPECIFIC AND GENERAL WARM UPS"

MICHAEL FREDRICK SAMSON

"Effects of dynamic and static stretching protocols within activity specific and general warm

ups"

by

C Michael Fredrick Samson

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

(Master of Science in Kinesiology)

School of Human Kinetics and Recreation

Memorial University of Newfoundland

September 2011

St. John's Newfoundland

Acknowledgements and Dedication

I would not have been able to complete this thesis or degree without the help and support of many individuals. I would first like to thank my supervisor Dr. David Behm for his continued guidance, patience and support throughout this process. Secondly I would like to thank my parents, Mike and April Samson along with my sister Ellen for their constant encouragement and belief in my ablities.

This also would not have been possible without the support of all the amazing faculty and staff and fellow students who have aided me in many capacities during my time as a student within the School of Human Kinetics and Recreation.

I dedicate this thesis to my family, Andrea Lewis and our son Todd. I would not have been able to accomplish this goal would their patience, support, and love.

Table of Contents

Acknowledgments		ii
Table of Contents		iii
List of Tables and Figures		iv
List of Appendices		v
List of Acronyms		v
Chapter 1 Review of Literature		1-20
1.1	Abstract	1
1.2	Introduction	2-3
1.3	Systemic warm-up component	3-4
1.4	Passive warm-up	4-5
1.5	Static stretching	5-9
1.6	Dynamic Stretching	9-11
1.7	Proprioceptive Neuromuscular facilitation	11-12
1.8	Sport specific warm-up	12-13
1.9	Post Activation Potentiation	13-19
2.10	Conclusion	19-20
References		21-38
Chapter 2		
2.1	Abstract	40
2.2	Introduction	41-43
2.3	Methods	44-47
2.4	Results	47-48
2.5	Discussion	48-52
Pafarancez		54-70

Appendices

List of tables

Table 1: Sprint times collapsed over gender.

Table 2: Male and Female sprint times.

Table 3: Description of participants.

List of figures

Figure 1: significant difference between male and female sprint times.

Figure 2: significantly decreased sprint time.

Figure 3: significant differences between the second and fifth sprint.

Figure 4: significant differences between the second and fifth sprint for males.

Figure 5: increasing sprint time between the first and fifth sprint in females

Figure 6: sit and reach score.

Figure 7: difference in movement time.

Figure 8: difference in countermovement jump height.

List of appendices

Appendix 1: Tables

Appendix 2: Figures

Appendix 3: Raw Data.

Appendix 4: Pictures of Stretches

List of Acronyms

GDS - General warm-up with dynamic stretching.

GSDS - General + specific warm-up with dynamic stretching.

GSS --General warm-up with static stretch.

GSSS - General + specific warm-up with static stretch.

MT - Movement Time.

CM - Countermovement Jump.

SRF - Sir and reach flexibility.

PAP - Post activation potentiation.

PNF - Proprioceptive Neuromuscular Facilitation.

ROM - Range of Motion.

MVC - Maximal Voluntary Contraction.

RFD - Rate of Force Development.

Review of Literature

Abstract

The intentions and some splittentume base seamined to varying extent the effect of static, dynamic and proprioceptive neuronuscular facilitation (PNV) storetohing routines, along with general and poort progressific warm-ups on a bulkgeneary performance. Common methods of measurement in the current stretch literature include measures of electromycagraphy (EMG) and mechanomycagraphy (OMK0) (Hendi et al. 2008), peak tongo (Policon et al. 2009, Yanaguchi et al. 2007), jump height (Bendley et al. 2007, Hoit et al. 2008, Disk et al. 2005, againty (AMKIIII et al. 2009) and priorit performance (Chaoauchi et al. 2010, Flocker et al. 2007). Stretching protocols of various time finnes range from 2-3 ster of 15-30 seconds in ovatines lasting up to 20 minutes (Bethen et al. 2001). Many of the studies have used an athletic population, Often the studies increasing are trivines.

The findings in the literature mostly point to a decrease in performance on power, strength and speed measures following boats of static stretching. Static stretching was previously a mainstay in per-training and competition warm-ups at all levels of sport. Similar finding have also been noted in staties withis included PFN routines (Streteps and Zefferson. 2010, Young et al. 2001). However, performance indices greently increased or experienced no change following dynamic stretch protocols (Chaocuchi et al. 2010, Sim et al. 2009, Yamaguchi et al. 2005). The trend within current literature demonstrates that static stretching routines, previously used as a common component of the gree-training and pre-competition warm up, may be counterproductive to performance.

Introduction

Research regarding the effects of pre training warm-upo on subsequent performance in the recent literature has led many athletes, coaches, and trainers to change their approach to warming one prior to training and competition. This reverse will discuss to the momentation of a warm up including, aerobia settivity, static, dynamic, and PNF stretching, and activity specific tasks. A better understanding of the various components of warm up and stretching routines and the mechanisms by which they affect performance may lead to better denign of such routines, resulting in greater performance and reduced in dis layies.

It has been the bleff of many years, that prior to activity one should warm-up initially via jogging or riding a stationary blik fullowed by repeated boats of static stretches. Past issues of opplare fittees many generations text books, and ecosching manusk all promoted pre-service static stretching as the cornerstone to the warm-up for injury prevention and enhancing performance (Ingrahma, 2003). Desmedi (1903) Static, "it appears today that static stretching is a better approach, as compared to repetitive dynamic lengthening, because it avoids the reflex activity of the stretching machine. Wower and Henton, (1903) statel "it is well known today that macles stretching performed by show mobilization of the joint (often called static stretching) is more effective than stretching the macle by rupid and repetitive movement". Such recommendations were often made although "no ocientifically based prescription for flexibility training and so conclusive statements can be made about the relationship of flexibility to athetic injury" (Gleim et al. 1997). The results from more recent studies however, illustrate the many succisated performance decrements of static stretching (Dota et al. 2009, Korkkonzo et al. 1998. Forsive can 2000. Young and Bellin, 2000. Young and Bellins. 2011) and 1998. Forsive can 2000. Young and Bellins. 2011.

Convoil et al. 2002, Behm et al. 2004, Behm et al. 2001, Guissard et al. 2001, Samuel et al. 2008, William and Stauber. 2004, Cramer et al. 2004, Netson et al. 2000, Netson et al. 2000, Netson et al. 2004, Netson et al. 2004,

Recent research however is pointing to possible performance decrements associated with the use of static stretching immediately before competition and training (Behm et al. 2001, Di Cagno et al. 2010, Holt et al. 2008, Kokkonen et al. 1998, Power et al. 2004, Savers, et al. 2008. Sim et al. 2009) and also examining possible performance enhancement (Curry et al, 2009, Little et al. 2006, Yamaguchi et al. 2007) as well as injury reduction via dynamic stretching protocols. A review by Behm and Chaouachi, (2011) reveals some conflicting results among studies; more recent studies on static stretching have reported no impairment in performance associated with static stretch. These results may be associated with reduced stretch time, less intense stretch position, and the use of elite and trained middle aged athletes as subjects (Behm and Chaouachi, 2011, Handrakis et al, 2010). Despite the conflicting findings there are still far more publications demonstrating performance impairment associated with static stretch than those that show no change or performance enhancement. Further research is warranted to determine optimal precompetition warm-up and stretching protocols. Such research will allow for a better understanding of the mechanical and physiological mechanisms responsible for increased range of motion and maintenance of maximal strength.

Systemic Warm-up Component

Components generally included in a warm-up would include; a passive warm up and / or an active aerobic component of 5-10 minutes (Emiliano et al. 2008) of slow jogging or riding on

a auticary bike, which both function to increase ocer and peripheral muscle temperature (Behm et al. 2001, Yoang et al. 2001), heart rate, blood flow, and to decrease joint fluid visconity (Islochme. 1998). A recent meta-analysis (Pradiki et al. 2010) found improved performance flobwing a varue op in 75% of the examined studies. Studies using aerobic based warm ups have been shown to allow muscles to stretch more before tensils fullare and produce increased force (Crosier, 2004) and improve neuronuscular function (Yoang et al. 2011). It has also been magneted that, where active muscles tiffness rafter than passive muscle atfifness in more related to injury, increased muscle temperature via sub-maximit accreasive would be more effective than is tretching for decreasing the incidence or iont tissue injury (Yoang and Behm, 2002). Further, it is proposed that passively warming the muscle by external means could be used experimentally to determine if many of the performance changes seen following a warm-up are primarily temperature dependent. Although this type of warm-up may not be practical for most athletes it would result in the concentration (Streev weathure (Bhbm, 2002).

Passive Warm-ups

Studies using superficial, deep heat and active means of warming have been examined produced interesting results; Knjight et al. (2001) observed ankle don'iffesion following 5 stretching protocols, isoluding; no stretch control, stretch only, superficial warming + stretch, univasand + stretch, stretwarming + stretch. The results in this shady concluded an interview hoth active and passive range of motion for all esperimental groups with the ultranound + stretch group yielding the greatest ROM increases. Emiliano et al. (2008) found that passive warm up did not show any increase in performance despite the same increase in skin temperature as the active warm-up condition. The author suggests that lack of metabolic activity in the passive group would account for this.

Many authors recognize masage as an effective component of an adulte's warm-up which aids to increase joint range of motion, decrease muscle atiffness, increase blood flow, and help to prevent and recover from muscle injurie. (Boson et al. 1991, Cafatelli and Flint. 1993, Drust et al. 2003), Tiddus and Shoemaker. 1995, Wiktorsson-Müller et al. 1983). McKecknie et al. (2008) studied the acute affects of two massage techniques on ankle joint freshilting and power of the plantar flexens. The results showed a significant increase in adult, joint angle similar to hese found after bottou of static atteching who to significant increase in a latiatr frecions power. This suggests that a massage may increase flexibility without altering power output, a finding not noted in many recent attech mades. (Behm and Kihele, 2007). Behm et al. 2001, 2004, 2006, Power et al. 2004, Poung and Behm. 2002).

Static Stretching

Following a active warm-up, the next step utill recently in the overall warm-up plan would be a requirine of static stretching. Stretching within a warm-up is to induce a short term increase in the range of motion – (KOM) of a joint and to decrease the stiffness of the muscletiondo unit (Behm et al. 2004). Young et al. 2001). Performing static stretchings part of the warm up was believed to periors better performance and reduce risk of injury (Nelson et al. 2001). Static stretching is a slow constant stretch with the end position held for an average of 30 seconds (Bandy et al. 1994, Bandy et al. 1997). Thirty accords is also the recommendation of the XOAC (Unick et al. 2003), with the initiate to relax and elongate the stretched muscle. The American College of Sport Medicine (ACSM) recommends holding a stretch for 10-30 seconds for 3-4 repetitions. Recent studies, however, have abows static iterchi hindeed decrements in performance (Kistler et al. 2010), withcheit et al. 2004 including factors such a grover (Young et al. 2001). stretching here al. 2004 being et al. 2004 being et al. 2001 bei

proprioception, reaction time, and movement time. (Cnamer et al. 2004, Cruisier. 2004, Fowles et al. 2000, Guissade et al. 1988, Kokkonen et al. 1998, Nelson et al. 2001, Power et al. 2004, Willems et al. 2001, Willson et al. 1994). Fowles et al. (2009) showed reduced strength in plantar flexors following a routine of passive stretching which resulted in a total of 30 minutes time under stretch, although the prelonged stretching in this study was said by the author to likely have little application in sport stretching.

A review by Young and Behm, (2002) lowever, suggested that in more realistic warmups as seen in training and competition settings static stretching for as little as 2 minutes per munical groups can result in power determents. Findings by Power 4: (2004) sugport this suggestion as their finding of significant decreases in MVC (lasting 120mit) following 2 boots of 45 second static stretching of the quadriceps suggesting that such stretching should be avoided for up to 120 minutes prior to activities requiring maximal force output. Young and Simon. (2000) produced a significant decrease in deep joing performance following 3 repeated boats of 15 second static stretch, which is typical with what is generally seen in a general athetic warmup routine. Kokkonen et al. (1999) used 5 static stretches to stretch all major muscles involved in knee flexion and extension following 3 stot of 15 seconds with an equal rest time and found that IN INMs come flexion decreases in dwarman following with an equal rest time and found that the INM knee flexion and extensions.

It has been suggested that decrements to peak force and torque may be velocity specific, Nelson et al. (2001) showed decrements in peak torque at 60⁴/mand 90⁴/k, but showed no such decrement at 150⁴/k, 210⁴/k, or 220⁴/k following acute static stretching. However, Cramer et al (2004) conducted a similar strady which resulted in decrements in peak torque at low 60⁴/s and hish, 240⁴/s velocity.

Mechanisms

Much of the resent research support two plausible mechanisms for the demonstrated stretch reduced decreases in force (Avela et al. 1999, Behm et al. 2001, Fordset et al. 2000, Akknonn et al. 1999, Neiton et al. 2001, Neiton et al. 1990, Neiton Cuillory, and Corsmull. 2001, Neiton and Kokkonen, 2001, Young and Elliot, 2001). It has been proposed that increased mucke compliance affects the muscle length tension reliationship thus increasing the time for force to act on the bone. Such a change in length tension reliationship any be related to an increase in joint angle at peak torque (Crease et al. 2005). Forkset et al. 2000 and Neilson et al. 2001, John noted increased joint angle at maximal ionnetric torque following static stretch. No such change in joint angle at peak torque (Crease et al. 2005).

The effects of static stretching on other related performance factors have been investigated. These factors may include altered reflex sensitivity and muscle activation. Behm et al. (2004) proposed that accuse effects of states elserks on muscle – strehos mult length, stifftness, force output, and muscle activation may be related to a decreased afferent and efferent detection and response to stimuli. Such impairment may translate to decreased balance, stability, proprioregription, reaction time, and movement time (Behm et al. 2004). This staty aboved revence trends for balance, reaction time, and movement time between the control and stretching oney. The stretching upour prepatied there 45 seconds boats of stretching on the quadricept, hannetings, and planter flexors in random order with 15 seconds recovery between boats. The control group aboved significantly fatter reaction time and movement time. The authors antibute this finding to the possible increase in new conduction velocity frattered stop upon davoed au-

significant decrements in performance. Although statistically non -significant, it should be noted that both groups underwent the same protocol except for the stretching. The stretching routine moved any warm-up related improvement and slightly decrements opticate performance. This finding is of importance across a range of populations, ranging from the elite aduletes whose performance is often measured to very finite levels at which even small decrements can have large impacts on results. Also, the development of rehabilitation programs for those of all ages enposially the idedry whose risk of serious injury could be greatly increased with small robustion in balance and neoretic-eption.

Other studies examined the nole of stretching in Injury prevention (Cochiar: 2004, Reivald. 2004, Young and Behm. 2002), the general research question was. "Does an increase mage of notion (ROM) via studie stretch decrease rick of muscle tara?" Much of the recent evidence magnets that there in o decrease in all injury risk. (Kondson et al. 1999, Pope et al 2000, Shrier et al. 1999). However, Cleim and McHugh. (1997) and Small et al. (2007) report significant reduction in musculotedneolosis injury denjie non-significant reduction in all injury risk. Pope et al. (2000) found no significant decates in the risk of Injury through the use of static viethen without a warm-up preceding high intensity training of may recenils. It is suggested that warm-up does offer injury prevention mechanisms, through reduction of active rather than passive muscle attiffeess or increased ROM and through increased muscle temperature which has been shown to decrease the risk of a muscle tar via reduction in active muscle infliness (heat may and young. 2002).

It must also be considered that not only mechanical muscle properties are affected by static stretching, but that enhanced flexibility following stretching may be due to neural adaptations (McHugh et al. 1992). Reduction of Hoffman (H) – reflex amplitude during stretch

suggests that such neural adaptations to stretch contribute to muncke compliance via reduced excitability of the afferent input to the motoneurone pool (Guissand et al 1988, 2001). Similarly Talgaret ad (1988) propried depresended H reflex following a standing stretch of the thirtyp strate. The findings suggest that the stretching may induce autogenic inhibition and compromise force production. However, Guissand et al. (1984) findings suggest that autogenic inhibition would be limited to the time which the stretch is held. Since dynamic attretching trends to excite the motoneuron, dynamic stretching may be now experiptive for swarm-up.

Dynamic Stretching

Along with observed performance decrements in studies examining the effects of static stretching there has been concurrent observations of the associated effects of dynamic stretch routines. Subsequent performance improvements observed following warm-up activities involving dynamic stretch modalities are often coupled with prior sub-maximal sport specific activities (Behm. 2004, Chaouachi et al. 2010, Fletcher and Jones. 2004). Static stretch decreases and dynamic stretch increases in performance were demonstrated by Fletcher and Jones, (2004). They reported significantly faster 20m sprint time when subjects (trained rugby players) utilized an active dynamic stretching routine whereas both active and passive static stretch routines resulted in significantly slower sprint times. In a more recent study Fletcher and Jones. (2007) examined the effects of three different stretch protocols which included; active dynamic stretch (ADS), static dynamic stretch combined with active dynamic (DADS), and static passive combined with active dynamic (SADS). The results concluded that when static stretch was removed from the warm-up protocols, fifty meter sprint time was significantly decreased in both men and women. Mean decreases of 0.16 and 0.11 seconds for men and 0.1 and .09 seconds for women were observed following the ADS and SADS protocols respectively. Little and

Williams, (2006) compared similar atteching protocolo on performance of 10 meter statis start and 20 meter lying start sprints in professional asceer players. Observations in this study included significantly faster 10m times for dynamic stretch (1.83 a. 608) compared to no-stretch (1.87 a. 69), while bodynamic (2.27 a. 0.13) and statis stretch (2.7 a. 0.12) yielded significantly faster 20m sprint times than no stretch (2.41 a. 0.13). A significant difference was observed between static (5.22 a. 0.18) and dynamic (5.14 a. 0.17) stretching during a zig-zag aglity test, and no significant difference was noted on vertical jump performance between conditions. The author suggests that dynamic stretching is the optimal choice when preparing for ubsequent high twee forformance.

Most malies have concentrated on lower limits ROM when comparing mixet and spannel stretching protocols and reported determents in performance followings thatic attech only. Torre et al. (2008) however saminoid the effects of 4 stretching protocols on upper body muscular performance. The protocols included, no stretch, static, dynamic and static plus dynamic attech. Subjects were tested on 30% of maximum break press throw, isometric borsh, press, over hand medicline ball throw and lateral medicine ball throw to test power, force, neceleration / velocity and displacement respectively. The only significant difference was lateral medicine ball displacement respectively. The only significant difference was lateral medicine ball displacement where the static + dynamic were significantly larger than static alone. Although no effect of upper body stretching was observed on upper body muscular performance the automass suggested using dynamic enther than static attech forior to activisties requiring upper body stretch anno-que due to the evidence provided in many pervisorius imilar induels involving the lower body. McMillian et al. (2006) provides a similar suggestion to reassess the use of static stretch warm-que protocols. Their naday sensible in significantly apperior performance on solution run, understant medicine ball throw and 3 + 2 test pairs following dwarmics accounced to the stretch warm-que to the tother the stretching stretching and pairs of performance on stretching respectively. The only sensible is significantly superior performance on should be there in the stretching stretching and performance respectively. The only sensible is a performance respectively. The only sensible is a performed respectively. The only sensible is the respectively performance respectively. The only sensible is a perfor

atreth. Similar results are seen in training radies where subjects are elite level adhetes. Results from Herman and Smith. (2008) support these suggestions following their study of a 4 week dynamic atreth program. In NCAA division 1 wrestlers. When compared to a similar 4 week taskis atretch program, the athletes who performed the dynamic stretch program had serveral performance improvements, including increases in quadriceps peak torque (11%), broad jump (4%), underhand medicine bull throw (4%), sil-ups (11%), and puth-ups (3%). Decrease in the average times on 300-9d shuftle (2%) and the 600-m run (2.4%), suggesting enhanced muscular strength, endurance, agilty, and nareobic capacity, these markers show improvements in both upper ad lower doly performance.

Aside from static and dynamic stretching, other methods of stretching are used frequently in order to elicit greater changes ROM. One such method that has become quite popular is proprioceptive neuromuscular facilitation (PNF).

Proprioceptive neuromuscular facilitation

Utili recently proprioceptive Neuromuscular Facilitation (TNP) stretching has received less attention in the literature than the more common methods of stretching (Young and Ellict. 2001). Proprioceptive neuromuscular flucilitation stretching utilizes isometric contractions of agoinst and sometimes antagonist muscles to theoretically cause reflexive relaxations in the target muscle, allowing a greater stretch response (Sharman et al. 2006). The two most common methods being contract relax (CR), which involves an isometric contraction of the agonist muscle following a passive static stretch and contract relax agonist contract (CRAC) which is similar to the CR technique however utilizes a scool isometric contraction, of the antagonist muscle. When studied by Young and Elliss (2000) no significant differences regarding

concentric muscle contraction performance or stretch shortening cycle were reported when compared to static stretching. It is suggested that PNF stretching may decrease musculotendonous stiffness in similar ways as static stretching and as such have negative effects on explosive force. PNF stretching did vield non-statistically significant decreases in performance (Moore and Hutton, 1980). Moore and Hutton. (1980) believe that the contraction phase of the PNF stretch could act to counter the effects of the reduced stiffness due to the stretch. Young and Elliot. (2001) suggest this may be the reason their non-significant findings. A more recent study (Bradley et al. 2007) demonstrated a significant decrease in jump performance following 10 minutes bouts of either static or PNF stretching, however decrements in performance subsided following 15 minutes of recovery. These findings support recommendations to avoid static and PNF stretching immediately prior to explosive athletic performance. There is evidence however to suggest that the use of PNF style stretching may promote long term performance enhancement. Handel et al. (1997) demonstrated up 21.6% increase in peak torque under eccentric load conditions following an 8 week unilateral contract relax stretching program. The author suggests that torque increase is likely due to the heavy isometric loading which occurs during the contract relax protocol. It is important to note that the Handel et al. (1997) studied the long term training adaptations to stretching and not acute effects.

Sport Specific Warm-Up Activities

Sport specific warm-up activities may have further beneficial physiological effects as opposed to general warm up activities on subsequent performance. Vetter, (2007) looked at 6 different warm-up protocols and their effects on counter movement jump and sprint performance. The walk run and walk run + dynamic stretch and jumping activities yielded gratet performance in counternovement jump when compare to static stretch, however when

jumping activities were used with the static stretch so significant difference was observed when compared to the dynamic stretch + jumping activities protocol. It is suggested that the activity specific task of jumping may negate the expected decrement of the static stretch routine and poot variation optimization may have a positive effect on performance. Manistret, the stretch routine and poot a significant increase in countermovement jump performance. Batista et al. (2007) investigated the presence of PAP following intermittent exercise, where 10 near maximal isometric knee executions over used and PAP was seen up to 12 minutes follow the knee extension condition. The author suggests more "real world" approaches to verify applications to a warm up routine. Such activity specific tasks within a warm-up could have a potentiating affect. This observed effect on performance when adding activity specific tasks to either type of stretching protocol may allow for warm-up protocols with further performance benefits. To assess the benefits of may protocols its its mortant to understand poor carcivation potentiation.

Post Activation Potentiation (PAP)

Post activation potentiation (PAP) is the phenomenon in which there is an increased contractice capability of the muscle following maximal and near maximal forces (Eaformes et al. 2010, Scott and Dochery. 2004, Hamada et al. 1999). PAP has been attributed to phonphorylation of myoin regulatory light hans, causing activat and myosin to become more sensitive to Ca+. Increases in alpha motor nearon excitability reflected in changes in the H-reflex have also been considered as a contributor to the potentiated state. (Hodguon et al. 2005). Such studies, have led to the premise of complex training which involves the use of explosive movements preceded by heavy resistance exercise (HEE) (Robbins. 2005, Hodguon et al. 2005) when movements merceded by heavy resistance exercise (HEE) (Robbins. 2005, Hodguon et al. 2005)

consideration that contracille activity produces both fittigue and PAP (Enfineer et al. 2010, Hamada et al. 2003, Robbins. 2005) would mean that we need to consider the rate of dissipation of both fittigue and PAP in order to detimate a infinition of optimate protentiation. Knowledge of such a timeline would allow for the design of programs (complex training) which would allow the manipulation of PAP and futigue in order to produce a granter increase in performance. Optimal performance occurs when fittigue has dissipated and potentiation timeline could be of great basefit to their training. Hamada et al. (1999) noted that the enhanced futigue resistance of the mancies of endurance trained athletes may allow for the effects of potentiation to be greater than the effects of futigue due to increased futigue resistance, thus yielding a greater net potentiation.

The existence of PAP has been shown in twitch intimulation studies, in-vivo studies, invivos skinned mammalian muscle tissue studies and in athelice performance studies (Robbin. 505, Meregre et al. 1999). Metregre et al. (1995) regarestind skinetare mammalian muscle tissue in which twitch potentiation was observed and concluded it was result of myosin light chain (MLC) phosphorylation. Observation by Houstan et al. (1985) suggests that MLC kinase activity is mainly associated with flat twitch muscle fibers. This was suggests that MLC kinase activity is potentiation followed a similar timeline to that of phosphate insceparation into the light chain. A study of mouse flat twitch muscle fiber by Grange et al. (1995) showed a potentiation of both maximum isometric twitch, force and rate of force development following two studies using both isometric and muscle shortening techniques. This is comistent with reports from Sweeny and 201(1993) of an isome in the twitch studie of the transition of convolutient with reports from Sweeny and 201(1993) of an isometric out throw the study and the through the study of the study of the twitch muscle fibring et that and of the transition of convolutient with reports from Sweeny and 201(1993) of an isometric study and the study of the stu

producing to force producing states following regulatory light chain (RLC) phosphorylation (Grange et al. 1995). Findings by Vanderboom and Houston (1996) suggest that such effects may only be present while RLC is phosphorylated above resting values for fatigued muscles.

Phosphorylation of the myosin regulatory light chain is a mechanism of potentiation which causes an increased sensitivity of actin - myosin to Ca2+ that is released from the sacroplasmic reticulum (Sweeney et al. 1993, Hamada et al. 1999, Sale. 2003). When MLC kinase phosphorylates the myosin head, this phosphate binding leads to a structural change in the myosin molecule which subsequently decreases the time to form a myosin cross bridge. Voluntary and evoked stimuli show varying effects, with low frequency tetanic contraction resulting in increased force and rate of force development (RFD) while high frequency tetanic stimulation have only been shown to increase RFD and have no effect on force. Voluntary contractions' effect on potentiation is related to the intensity and duration of contraction. Potentiation is greatest following contraction of approximately 10 seconds while longer duration show suppression of notentiated state via fatigue. It is also noted that voluntary contraction of less than 75% maximum voluntary contraction (MVC) resulted in little to no potentiation. Therefore, contraction near or at MVC lasting close to 10 seconds would cause the greatest potentiation. Such results were found to be greater in fast type 2 fibers (Hodgson et al. 2005). Chaouachi et al. (2011) examined the literature and found that a large variety of maximal and submaximal exercises done with traditional weights where 70% or more of the 1 repetition maximum was used. The study reported a >75% likelihood of increasing peak power, force, and velocity when 5 x 70% of 1 renetition maximum and 3 x 85% of 1 renetition maximum were used. This finding supports the use of heavy resistance exercise protocols to elicit potentiation and performance enhancement in training sessions. Turki et al. (2011) however observed that 10

minutes of dynamic stretching without the use of sub-maximal or maximal resistance exercises was sufficient to potentiate vertical jump performance. This result would suggest that near maximal resistance is not the only factor of contractile history affecting potentiation.

In studies involving havy resistance training exercise, results show that trained athletes are likely to benefit from PAP significantly more than recreationally trained individuals (Chiki et al. 2003). Findings that athletically trained would benefit more than recreationally trained athlete were observed by Chiki et al. (2003) who performed rebound and concentric only squi jump of 50%, 50%, and 70 % MVC, 5 and 18.5 minutes post heavy load warm-up of 5 sets of 1 rep at 50 % of 1 rep maximum. Conversely, Scott and Docherty. (2004) found no significant effect on vertical or horizontal jump following a 58M back squark. Fever researcher have examined the effects of prior phyometric type exercise on heavy resistance exercise performance. One such study of (Masmoot et al. 2003) pointed to enhanced 118M squarkality 70 seconds following performance of 2 deph jumps. It was noted in this study that subjects were experienced strength trained athletes and all had prior experience with phyometrics. Also Chite et al. (2013) who performal heavy resistance exercise prior to explosive squatt jump found thut only athletically trained individual exercised a significant icrease in performance.

Reaction time is also affected by contractile history. Euryre et al (2001) found that a 3 second isometric contraction of the knee extension yielded an increase in reaction time (RT), premotor time (PmT), and motor time (MT) to a pre contraction anditray stimulas, concluding the RT, ParT, and MT could be significantly reduced when preceded by an isometric contraction.

When examining practical applications of PAP, twitch potentiation increases in rate of force production and theoretically should increase peak power and velocity during dynamic

muche action (Holgson et al. 2005). Further research however may indicate what combination of intensity and duration at prior extivities will result in an optimal PAP: fnique ratio, (Sale, 2002). Some studies suggest that longer recovery periods (1 minutes) are most likely to yield such as optimal ratios (Gibbert et al. 2003). Could, et al. 1995, Yoshe (2002) suggested that other effects of contractile history need to be considered in future studies such as increased muscle temperature which woold increase rate of force production thus increasing power performance synergistically with PAP. However while an increase in muscle temperature would shorten twitch duration positively affecting contraction velocity, it could have detrimental effects on endances performance.

stretch and dynamic weighted 2% body mass group over the static stretch group. The author believes the 6% body mass weight may have been too fariguing, for the young high school aged subjects due to lack of matter manculad explorement. It was suggested that this faring effect could be limited if extended recovery periods were given. Similar studies using weighted vests within their experimental design with older more muscularly matter subjects have yielded improved performance results using resistance up to 10% body mass. (Buckett et al. 2005, Thomson et al. 2006)

Little information is available in the literature though that examines the performance effects of low to no resistance activity specific tasks. Perce et al. (2007) showed a significant increase in the ability of subjects to perform stable co contractions of the plantar and doniflexors following 30 min of co contraction task training. This amount of time may not be practical in a typical warms uphowever.

Another measurement tool used to study the effects of contractile history on neurosmucular response is the Hoffman reflex (14-reflex) (16:ffman, 1910). Studies involving um havinai concentric coexettis (Thinb and Bhar) 1993, and maximal internetire contractions (Gallich and Schmidbleicher, 1996) have shown immediate H reflex depression generally larding from 10-60 (Etoolas et al. 1980), conce et al 1980 seconds. Following this depression there is a period of H- reflex potentiation lasting from 4-11 minutes (Gallich and Schmidbleicher, 1996), Timible and Ling (1998) provide an bereflex potentiation in abjects to hove seguedstrength trained and found no such potentiation effect in nutrained subjects. Studies of static stretching where H-reflex is used as a measure have shown decrease in motor neuroon excitability (Condon and Hatton. 1987, Oaisad et al. 1983). It is unclear if this decrease remains once the stretch have reased. There are available to that you access in In-Hortes directive

following tretch (Avela et al. 1999). Thigpen et al. 1985). While others that do not (Guisated et al. 1988, Vignovich and Dawson. 1994). Anong those studies that did provide evidence of Hreflex depression following a stretch condition, antiber Avela et al. (1999) nor Thiggen et al. (1983) demonstrated that this effect would be sufficiently prolonged. Avela et al. (1999) showed a near complete recovery in H-reflex after 4 minutes while Thiggen et al. failed to report the time between stretch condition and post stretch measurements. Nelson et al. (2001) suggested that recovery times may have been less if more realistic stretching protocols were used. The Avela et al. (1999) and Thiggen et al. (1985) tradies used prolonged bouts of repeated passive stretching for 1 hour on the ticreps strate. Fowless and slate. (1977), however, reported a plastitt flexion torque decrement up to 60 minutes post stretch, while motor unit activation had returned to prestretch level following 30 minutes recovery. Nethon et al. (2001) suggests that H-reflex depression is not likely to be the dominant mechanism in the post stretch strength docrement uses in many Markes.

Conclusion

With all factors considered, the paradigm shift towards pre event dynamic stretching coupled with more port specific warm up movement patterns as opposed to the traditional general warm up and static stretch model is quickly gaining support. Much recent research domonstrates a decrement in force, zowe, blance, reaction time, and movement time following static stretch routines (Behm et al. 2001, 2004, 2004, Cahosachi et al. 2010, Kokkonen et al. 1998, Young and Behm 2002). Studies lend support to the aforementioned performance impairments with decrements in reflex responses and matcle activity. (Convent) et al. 2010, Fowles et al. 1999). Research on pre event warm-up and stretching is constantly examining alterative means by which to increase muck range of motion, such as, NPS stretching

(Decice et al. 2005), dynamis attertehing (Yanngaschi et al. 2007), hent (Usuba et al. 2006), and added weight (Swank et al. 2001), while decreasing risk of injury (Hasselman et al. 1995, Relwald, 2004) and minimizing decrements to preformance (Behm et al. 2001, Di Cango et al. 2001, flori et al. 2005, Neton et al. 2001, Newer et al. 2005).

Investigations still need to be performed to determine optimal warm up and atteching protocols for athetes. The current literature continues to use dynamic atteching protocols. Further research should be performed to provide further information toward optimizing stretching and warm-up programs. Some researcher's content that such optimized programs will be sport dependent to reflect the variety of ROM requirements across sports (Glieim et al. 1997) and training status and age of the athlete (Behm and Chasouchi, 2011). Supporting a need for more sport specific studies utilizing subjects from a cross section of training status, age groups, and activities.

References

Amiri – Khorasani. (2011) Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. Journal of Strength and Conditioning Research. 25(6): 1647-52.

Avela, J., Kryolainen, H., and Komi, P.V. (1999) Altered reflex sensitivity after repeated and prolonged passive muscle stretching. Journal of applied physiology. (86)4: 1292-300.

Bacurau, R.F., Monteiro, G.A., Ugrinowitsch, C., Tricoli, V., Cabral, L.F., and Aoki, M.S. (2009) Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. Journal of strength and conditioning research. 23(2): 304-8.

Bandy, W.D., Irion, J.M., and Briggler, M. (1997) The effect of time and frequency of static stretching on flexibility of hamstring muscles. Physical therapy. 77(10): 1090-6.

Bandy, W.D., and Irion, J.M. (1994) The effects of time on static stretch on the flexibility of hamstring muscles. Physical Therapy. 79(9): 845-50.

Batista, M.A., Ugrinowitsch, C., Roschel, H., Lotufo, R., Ricard, M.D., and Tricoli, V.A. (2007) Intermittent exercise as a conditioning activity to induce postactivation potentiation. Journal of strength and conditioning research. 21(3) 837-840.

Beedle, B.B., and Mann, C.L. (2007) A Comparison of Two Warm-ups on Joint Range of Motion. Journal of Strength and Conditioning Research 21(3): 776-779.

Behm, D.G. (2004) Force maintenance with sub maximal fatiguing contractions. Canadian Journal of applied physiology 29(3); 274-290 Behm, D.G., Bambury, A., Chaill, F., and Power, K. (2004) effect of acute static stretching on force balance, reaction time, and movement time. Medicine in Sport Science and Exercise.

Behm, D.G., Bradbury, E.E, Haynes, A.T., Hodder, J.N., Leonard, A.M., and Paddock. N.R. (2006) Flexibity is not related to stretch-induced deficits in force or power. Journal of Sports Science and Medicine 5, 33-42.

Behm, D.G., and Chaouachi, A. (2011) A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology. In press.

Behm, D.G., and Kibele, A. (2007) Effects of differing intensities of static stretching on jump performance. European Journal of Applied Physiology 101, 587 – 594.

Bishop, D. (2003) Warm up 1: Potential mechanisms and the effects of passive warm-up on exercise performance. Sports Medicine 33(6): 439-54

Bishop, D. (2003) Warm up 2: performance changes following active arm up and how to structure a warm up. Sports Medicine 33(7): 483-98.

Bradley, P.S., Olsen, P.D., and Portas, M.D. (2007) The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. Journal of Strength and Conditioning Research 21(1), 223-226

Burkett, L.N., Phillips, and W.T, Ziuraitis, J. (2005) The best warm up for vertical jump in college age athletic men. Journal of Strength and Conditioning Research. 19(3) 673-6.

Chaouachi, A., Castagna, C., Chtara, M., Brughell, M., Turri, O., Galy, O., Chamari, K., and Behm, D.G. (2010) Effect of Warm-ups Involving static or dynamic stretching on Agility, sprinting, and jumping performance in trained individuals. Journal of Strength and Conditioning Research. 24(8)

Chaouachi, A., Chamari, K., Wong, P., Cartagna, C., Chouachi, M., Moussa-Chamari, I., and Behm, D.G. (2008) Stretch and Sprint training reduces stretch-induced sprint performance deficits in 13- to 15- year- old youth. European Journal of Applied Physiology. 104; 515-522.

Chui, L.Z.F., Fry, A.C., Weiss, L.W., Schilling, B.K., Brown, L.E., and Smith, S.L. (2003) Postactivation Potentiation Response in Athletic and Recreationally Trained individuals. Journal of Strength and conditioning research. 17(4), 671-677

Church, B.J., Wiggins, M.S. Moode, M.E. and Crist, R. (2001) Effect of warm-up and flexibility treatments on vertical jump performance. Journal of strength and conditioning research 15(3) 332-336

Condon and Hutton (1987) Soleus muscle electromyographic activity and ankle dorsiflexion range of motion during four stretching procedures. Physical therapy. 67(1) 24-30.

Cornwell, A., Nelson, A.G., and Sidaway, B., (2002) Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. European Journal of Applied Physiology. 86, 428-434.

Costa, P.B., Graves, B.S., Whitehurst, M., and Jacobs, P.L. (2009) The acute effects of different duration of static stretching on dynamic balance performance. Journal of Strength and conditioning Research. 23(1) 141-7. Covert, C.A., Alexander, M.P., Petronis, J.J., and Davis, S. (2010) Comparison of Ballistic and Static Stretching on Hamstring Muscle Length using an Equal Stretching Dose. Journal of Strength and Conditioning Research. 0(0) 1-7.

Cramer, J.T., Housh, T.J., Johnson, G.O., Miller, J.M., Coburn, J.W., and Beck, T.W. (2004) Acute effects of static stretching on Peak Torgue in Women. Journal of Strength and Conditioning Research. 18(2), 236-241.

Crone, C., and Nielson, J. (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Experimental brain research. 78(1) 28-32.

Crosier, J.L. (2004) Factors Associated with Recurrent Hamstring Injuries. Sports Medicine. 34(10): 681-695.

Curry BS, Chengkalath, D, Crouch, GJ, Romance, M, and Manns, PJ. (2009) Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women. J Strength Cond Res 23: 1811-1819.

Deschene, M.R., and Kraemer, W.J. (2002) Performance and physiologic adaptations of resistance training. American Journal of Physical Medicine and Rehabilitation. 81(11): s3-16.

Decicco, P.V., and Fisher, M.M. (2005) The effects of proprioceptive neuromuscular facilitation stretching on shoulder range of motion in overhead athletes. Journal of Sports medicine and physical fitness. 45(2) 183-7.

Di Cagno, A., Baldari, C., Battaglia, C., Gallotta, M.C., Videira, M., Piazza, M., and Guidetti, L. (2010) Pre-exercise static stretching effect the leaping performance of rhythmic gymnasts. Journal of Strength and Conditionings Research. 24(8): 1995-2000. Drust, B., Atkinson, G., Gregson, W., French, D., and Binningsley, D. (2003) The effects of massage on intra muscular temperature in the vastus lateralis in humans. International Journal of Sport Medicine. 24(6) 395-9.

Emiliano, C., Margonato, V., Casasco, M., and Veicsteinas, A. (2008) Effects of Stretching on Maximal Anaerobic Power: The Roles of Active and Passive Warm-ups. Journal of Strength and Conditioning Research. 22(3): 794-800.

Enoka, R.M., Hutton, R.S., and Eldred, E. (1980) Changes in excitability of tendon tap and Hoffmann reflexes following voluntary contractions. Electroencephalography and Clinical Neurophysiology. 48(6) 664-72.

Esformes, J.I., Cameron, N., and Bampouras, T.M. (2010) Postactivation potentiation following different modes of exercise. Journal of Strength and Conditioning Research. 24(7) 1911-6.

Emyre, B., and Kinugasa, T. (2002) Post-contraction influences on Reaction time. Research quarterly for Exercise and Sport. 73(3): 271-281.

Faigenbaum, A.D., McFarland, J.E., Schwerdtman, J.A., Ratamess, N.A., Kang, J., and Hoffman, J.R. (2006) Dynamic warm up protocols with and without a weighted vest, and fitness performance in high school female athletes. Journal of Athletic training, 41(4) 357-63.

Finni, T., Ikegawa, S., and Komi, V. (2001) Concentric force enhancement during human movement. Acta Physiol Scand. 173; 369-377.

Fletcher, I. A., and Anness, R. (2007) The Acute Effects of Combined Static and Dynamic Stretch Protocols on Fifty-Meter Sprint Performance in track- and- Field Athletes. Journal of Strength and Conditioning Research. 21(3): 784-787. Fletcher, L.M., and Jones, B. (2004) The Effects of Different Warm-up Stretch Protocols on 20 Meter Sprint Performances in trained Rugby Union Players. Journal of Strength and Conditioning Research. 18(4): 885-888.

Fowles, J. R., Sale, D.G., and MacDougall, J.D. (2000) Reduced strength after passive stretch of the human plantarflexors. Journal of Applied Physiology. 89; 1179-1188.

Fradkin, A.J., Zazryn, T.R., and Smoliga, J.M. (2010) Effects of warming up on physical performance: a systematic review with meta-analysis. Journal of Strength and Conditioning Research. 21(1): 140-8.

Gleim, G.W., and McHugh, M.P. (1997) Flexibility and its effects on sports injury and performance. Sports Medicine. 24(5) 289-99.

Grange, R.W., Cory, C.R., Vandenboom, R., and Houston, M.E. (1995) Myosin phosphorylation augments force-displacement and force velocity relationships of mouse muscle. American Journal of Physiology. 269(3 Pt 1) C713-24.

Guissard, N., Duchateau, J., and Hainaut, K. (2001) Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res. 137: 163-169

Guissard, N., Duchateau, J., and Hainaut, K. (1988) Muscle Stretching and motoneuron excitability. Eurpean Journal of Applied Physiology. 58: 47-52

Gullich and Schmidtbleicher. (1996) MVC induced short term potentiation of explosive force. New Studies in Athletics. 11(4): 67-81.

Gursoy, R. (2010) Sex differences in relations of muscle power, lung function, and reaction time in athletes. Perceptual and Motor Skills. 110(3 Pt 1): 714-20. Hamada, T. Sale, D.G., and MacDougall, J.D. (1999) Postactivation potentiation in endurance trained male athletes. Medicine and Science in Sport and Exercise.

Hamada, T. Sale, D.G., MacDougall, J.D., and Tarnopolsky, M.A. (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Phylol Scand, 178: 165-173.

Hamada, T. Sale, D.G., MacDougall, J.D., and Tarnopolsky, M.A. (2000) Postactivation potentiation, fibre type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology, 88: 2131-2137.

Handnakis, J.P., Soudhard, V.N., Abreu, J.M., Aloisa, M., Doven, M.R., Echevarria, L.M., Hvang, H., Samuels, C., Vegenas, S.A., and Douris, P.C. (2010) Static Stretching does not impair performance in active middle aged adults. Journal of Strength and Conditioning Research. 24(2) 082-30.

Handel, M. Horstmann, T., and Dickhuth, H. (1997) Effects of Contract-relax stretching training on muscle performance in athletes. European Journal of Applied Physiology. 76, 400-408.

Hasselman, C.T., Best, T.M., Seaber, A.V., and Garrett, W.E. (1995) A threshold and Continuum of injury During Active Stretch of Rabbit Skeletal Muscle. American Journal of Sports Medicine. 23(1)

Henda, T.J., Camner, J.T., Ryan, E.D., McHugh, M.P., and Stour, J.R. (2008) Acute Effects of Static versus Dynamic Stretching on Isometric Peak Torque, Electromyography and Mechanomyography of The Biceps Femoris Muscle. Journal of Strength and Conditioning Research.
Herman and Smith (2008) Four week dynamic atteching warm up intervention elicits longer term performance benefits. Journal of Strength and Conditioning Research. 22(4) 1286-97. Hodgson, M., Docherty, D., and Robbins, D. (2005) Post activution Potentiation – Underlying physiology and implications for motor performance. Sports Medicine. 35(7): 585-595. Hoffman (1910) Beitrag zur Kenntnis der menschlichen Reflexe mit besonderer Berucksichigung der elektrischen Enscheinungen. Archives of Anatomy and Physiology. 1.223-266.

Holcombe, W.R., Lander, J.F., Rutland, R.M., and Wilson. G.D. (1996) A biomechanical analysis of the

vertical jump and three modified plyometric depth jumps. Journal of Strength and Conditioning Research 10, 83-88.

Holt, B.W., and Lambourne, K. (2008) The impact of Different Warm-up Protocols on Vertical Jump Performance in Male Collegiate Athletes. Journal of Strength and Conditioning Research. 22(1): 226-229.

Houston, M.E., Green, H.J., and Stull, J.T. (1985) Myosin Light Chain phosphorylation and isometric twitch potentiation in intact human muscle. European Journal of Physiology. 403: 348-152.

Ingram (2003) The role of flexibility in injury prevention: have we stretched the truth. Minnesota Medicine. 86(5) 58-61.

Jones, A.A. (2001) Running Economy is Negatively Related to sit and reach Test Performance in International – Standard distance Runners. International Journal of Sports Medicine. 23; 40-43. Jones, A.M., Wilkerson, D.P., Burnley, M., and Koppo, K. (2003) Prior Heavy Exercise Enhances Performance during Subsequent Perimaximal exercise. Medicine and Science in Sport and Exercise. 35(12) 2085-2092.

Kay, A.D., and Blazevich, A.J. (2011) Effect of Acute Static Stretch on Muscle performance: A Systematic Review. Medicine and Science in Sport and Exercise. In press.

Kistler, B.M., Walsh, M.S., Horn, T.S., and Cox, R.H. (2010) The acute effects of static stretching on the sprint performance of collegiate men in the 80 and 100m dash after a dynamic warm up. Journal of Strength and Conditioning Research. 24(9) 2280-4.

Knight, C.A., Rutledge, C.R., Cox, M.E., Acosta, M., and Hall, S.J. (2001) Effect of superficial heat, deep heat, and active exercise warm up on the extensibility of the plantar flexors. Physical therapy. 81(6) 1206-14.

Knight, C.A., and Kamen, G. (2001) Adaptations in muscular activation of the knee extensor muscles with strength training in young and old adults. Journal of Electromyography and Kinesiology. 11(6) 405-12.

Knudson, D.V., Bennett, K., Corn, R., Leick, D., and Smith, C. (2001) Acute effects of Stretching Are Not Evident In the Kinematics of the Vertical Jump. Journal of Strength and Conditioning Research. 15(1): 98-101.

Knudson, D. V., Guillermo, N. J., BahaMonde, R. E., Bauer, J., and Balckwell, J. R. (2004) Stretching Has No Effect on Tennis Serve Performance. Journal of Strength and Conditioning Research. 18(3) 654-656 Kokkonen, J., Nelson, A.G., and Cornwell, A. (1998) Acute Muscle Stretching Inhibits Maximal Strength Performance. Research Quarterly for Exercise and Sport. 69(4); 411-415.

Larson, R., Lund, H., Christensen, R., Rogind, H., Danneskiold – Samsae, B., and Bliddal, H. (2005) Effect of Static Stretching of Quadriceps and Hamstring Muscle on Knee joint Position sense. British Journal of Sports Medicine. 39: 43–46.

Layee, G., Bringard, A., Le Fur, Y., Vilmen, C., Micailef, J.P., Perrey, S., Cozonem P.J., and Bendahan, D. (2009) Effects of prior high intensity knee extension exercise on muscle recruitment and energy cost: A combined local and global investigation in humans. Experimental Physiology 49(4): 704-19.

Little, T. and Williams, A.G. (2006) Effects of Differential Stretching Protocols During Warmups on High-Speed Motor Capacities in Professional Soccer Players. Journal of Strength and Conditioning Research. 20(1); 203-207.

Maaliaropoulos, Nikos, Papalexandris, Stelios, Papalada, Agape, Papacostas, and Emanuel. (2004) The Role of Stretching in Rehabilitation of Hamstring injuries: 80 Athletes follow up. Medicine and Sciences in Sport and Exercise. 36(3): 756-759

Magnusson, P.S., Simonsen, E.B., aagaard, P., and Kjaer, M. (1996) Biomechanical responses to repeated stretches in human hamstring muscle in vivo. The American Journal of Sports Medicine. 24(3).

Masamoto, N., Larson, R., Gates, T., and Faigenbaum, A. (2003) Acute Effects of Plyometric exercise on Maximum Squat Performance in Male Athletes. Journal of Strength and Conditioning Research. 17(1): 68-71. McKechnie, G.J.B., Young, W.B., and Behm, D.G. (2007) Acute effects of two massage techniques on ankle joint flexibility and power of the plantar flexors. J Sport Sci Med 6: 498-504.

McMillian, D.J., Moore, J. H., Hatler, B.S., and Taylor, D.C. (2006) Dynamic vs. Static-Stretching Warm-up: The Effect on Power and Agility Performance. Journal of Strength and Conditioning Research. 20(3); 492–499.

McNeal, J.R., Sands, W.A., and Stone, M.H. (2010) Effects of fatigue on Kinetic and kinematic variables during a 60 second repeated jumps test. International Journal of Sports Physiology and Performance. 5(2): 218-29.

Metzger, J.M., Greaser, M.L., and Moss, R.L. (1989) Variations in cross bridge attachment rate and tension with phosphorylation of myosin in mammalian aklaned sketteda muscle fibers. Implications for twitch potentiation in intact muscle. Journal of General Physiology. 93(5) 835-83.

Miller, R.G., Mirka, A., Maxfield, M. (1981) Rate of tension development in isometric contractions of a human hand muscle. Experimental Neurology. 73: 267-285.

Moore and Hutton (1980) Electromyographic investigation of muscle stretching techniques. Medicine and Science in Sports and Exercise. 12(5) 322-9.

Needham, R.A., Morse, C.I., and Degens, H. (2009) The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. Journal of Strength and Conditioning Research. 23(9): 2614-20. Nelson, A.G., Allen, J.D., Cornwell, A., and Kokkonen, J. (2001) Inhibition of Maximal Voluntary Isometric Torque Production by Acute Stretching is Joint-Angle Specific. Research Quarterly for Exercise and Sport. 72(1); 68-70.

Nelson, A.G., Guillory, I. K., Cornwell, A., and Kokkonen, J. (2001) Inhibition of Maximal Voluntary Isokinetic Torque production Following Stretching is Velocity-Specific. Journal of Strength and Conditioning Research. 15(2): 241-246.

Nelson, A.G., and Kokkonen, J. (2001) Acute Ballistic Muscle Stretching inhibits Maximal Strength Performance. Research Quarterly for Exercise and Sport. 72(4); 415–419.

O'Sullivan, K., Murray, E., and Sainsbury, D. (2009) The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. Biomedical Central Musculoskeletal Disorders. 10:37.

Partrap, K.S., and Weiqing, G.E. (2004) Encoding of tensile stress and strain during stretch by mechano-nocireceptors. Muscle and Nerve. 30: 216-224.

Perrier, E.T., Pavol, M.J., and Hoffman, M.A. (2011) The acute effects of warm-up including static and dynamic stretching on countermovement jump height, reaction time, and flexibility. Journal of Strength and Conditioning Research. 25(7): 1925-31

Pope, R.P., Herbert, R.D., Kirwan, J.D., and Graham, B.J. (2000) A randomized trial of preexercise stretching for prevention of lower limb injury. Medicine and Science in Sport and Exercise. 32(2) 271-7. Power, K., Behm, D.G., Cahill, F., Carroll, M., and Young, W. (2004) An acute bout of static stretching: Effects on force and Jumping performance. Medicine and Science in sports and exercise. 36(8); 1389-1396.

Reid, D.A., and Menair, P.J. (2004) Passive Force, Angle, and Stiffness Changes after Stretching of Hamstring Muscles. Medicine and Science in Sports and Exercise.

Riewald, S. (2004) Stretching the Limits of our Knowledge on ... Stretching. Strength and Conditioning Journal. 26(5); 58-59.

Robbins, D.W. (2005) Postactivation potentiation and its practical applicability: A Brief Review. Journal of Strength and Conditioning Research. 19(2) 453-458.

Rosenbaum, D., and Hennig, E.M.(1995) The influence of Stretching and Warm-up exercises on Achilles tendon reflex activity. Journal of Sports Science. 13; 481-490.

Sale, D.G. (2002) Postactivation Potentiation: Role in Human Performance. Exercise and Sport Science Reviews. 138-143

SamuKawa, M., Hattori, M., Sugama, N., and Takeda, N. (2011) The effects of dynamic stretching on plantar flexor muscle-tendon properties. Manual Therapy. E-published ahead of print.

Samuel, M.N., Holcomb, W.R., Guadognoli, M.A., Rubley, M.D., and Wallmann, H. (2008) Acute effects of static and ballistic stretching on measures of strength and power. Journal of Strength and Conditioning Research. 22(5) 1422-8 Sato, T., Tsuboi, T., Miyazaki, M., and Sakamoto, K. (1999) Post-tetanic potentiation of reciprocal Ia inhibition in human lower limb. Journal of Electromyography and Kinesiology. 9; 59-66.

Sayers, A.L., Farley, R.S., Fuller, D.K., Jubenville, C.B., and Caputo, J. L. (2008) The effect of static stretching on phases of sprint performance in elite soccer players. Journal of Strength and Conditioning Research. 22(5) 1416-21

Scott, S.L., and Docherty, D. (2004) Acute Effects of Heavy Preloading on Vertical and Horizontal Jump Performance. Journal of Strength and Conditioning Research. 18(2): 201-205

Sharman, M.J., Cresswell, A.G., and Riek, S. (2006) Proprioceptive Neuromuscular Facilitation Stretching : Mechanisms and Clinical implications. Sports Medicine. 36(11): 929-39.

Shrier, I. (1999) Stretching before exercise does not reduce the risk of local muscle injury: a critical review of the clinical and basic science literature. Clinical Journal of Sports Medicine. 9(4) 221-7.

Sim, A.Y., Dawson, B.T., Guelfi, K.J., Wallman, K.E., and Young, W.B. (2009) Effect of static stretching in warm up on repeated sprint performance. Journal of Strength and Conditioning Research. 23(7): 2155-62

Skof, B. and Strojnik, V. (2007) the Effect of Two Warm-up Protocols on Some Biomechanica; Parameters of the Neuromuscular System of Middle Distance Runners. Journal of Strength and Conditioning Research. 21(2): 394-399.

Streepey, J.W., Mock, M.J., Riskowski, J.L., Vanwye, W.R., Vitvitshiy, B.M., and Mikesky, A.E. (2010) Effects of quadriceps and hamstrings proprioceptive neuromuscular facilitation

stretching on knee movement sensation. Journal of Strength and Conditioning Research. 24(4) 1037-42.

Stuart, D.S., Lingley, M.D., Grange, R.W., and Houston, M.E. (1989) Myosin light chain phosphorylation and contractile performance of human skeletal muscle. Canadian Journal of Physiology and Pharmacology. 66(1):49-54.

Sweeney, H.L., Bowman, B.F., and Stull, J.T. (1993) Myosin Light Chain Phosphorylation in vertebrate striated muscle: regulation and function. American Journal of Physiology. 264(5 Pt 1) 1085-95.

Terzis, G., Spengos, K., Karampatsos, G., Manta, P., and Georgindis, G. (2009) Acute effect of drop jumping on throwing performance. Journal of Strength and Conditioning Research. 23(9): 2592-7

Thacker, S.B., Gilchrist, J., Stroup, D.F., and Kimsey, D.C. (2004) The impact of Stretching on Sports Injury risk: A systematic review of the literature. Medicine and Science in Sports and Exercise, 36(3); 371-378.

Tiidus and Shoemaker (1995) Effleuage massage, muscle blood flow and long term post exercise strength recovery. International Journal of Sports Medicine. 16(7): 478-83.

Tillin, N.A., and Bishop, D. (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Medicine. 39(2):147-66.

Torres, E.M., Kraemer, W.J., Vingren, J.L., Volek, J.S., Hatfield, D.L., Spiering, B.A., Ho, J.Y., Fragala, M.S., Thomas, G.A., Anderson, J.M., Hakkinen, K., and Maresh, C.M. (2008) Effects of Stretching on Upper-Body muscular performance. Journal of Strength and Conditioning Research. 22(4): 1279-85.

Trimble and Harpe (1998) Post exercise potetiation of the H-reflex in humans. Medicine and Science in Sports and Exercise. 30(6):933-41

Unich, J., Kieffer, S.H., Cheesman, W., and Feeney, A. (2005) The Acute Effects of Static and Ballistic Stretching on Vertical Jump Performance in trained Women. Journal of Strength and Conditioning Research. 19(1): 206-212.

Usuba, M., Miyunaga, Y., Miyakawa, S., Maenhima, T., and Shirasaki, Y. (2006) Effects of heat in increasing the range of knee motion after the development of a joint contracture: an experiment with an animal model. Archives of Physical Medicine and Rehabilitation. 87(2):247-53.

Vandenbeom, R., and Houston, M.E. (1996) Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle. Canadian Journal of Physiology. 74: 1315-1321.

Vetter (2007) Effects of six warm up protocols on sprint and jump performance. Journal of Strength and Conditioning Research. 21(3) 819-23.

Vujnovich and Dawson (1994) The effect of therapeutic muscle stretch on neural processing. Journal of Orthopedic and Sports Physical therapy. 20(3) 145-53.

Wiktorsson-Möller. (1983) Effects of warming up, massage, and stretching on range of motion and muscle strength in the lower extremity. American Journal of Sports Medicine. 11(4) 249-52.

Willems, M.E.T., and Stauber, W.T. (2001) Force deficits by stretches of activated muscles with constant or increasing velocity. Medicine and Science in Sport and Exercise. 667-672. Wilson, G.J., Elliot, B.C., and Wood, G.A. (1992) Stretch shorten cycle performance enhancement through flexibility training. Medicine and Science in Sport and Exercise. 24(1)

Wilson, G.J., Murphy, A.J., and Pryor, J.F. (1994) Musculotendious stiffness: Its relationship to eccentric, isometric, and concentric performance. Journal of Applied Physiology. 76(6): 2714-9.

Wilson, G.J., Wood, G.A., and Elliot, B.C. (1991) Optimal Stiffness of series elastic component in a stretch-shorten cycle activity. Journal of Applied Physiology. 70(2): 825-33.

Winchester, J.B., McBride, J.M., Maher, M.A., Mikat, P.P., Allen, B.K., Kline, D.E., and McOujan, M.R. (2006) Eight weeks of ballistic exercise improves power independently of changes in strength and muscle fiber type expression. Journal of Strength and Conditioning Research. 22(6) 1725-14.

Woolstenhulme, M.T., Griffiths, C.M., Woolstenhulme, E.M., and Parcell, A.C. (2006) Ballistic Stretching Increases Flexibility and Acute Vertical Jump Height When Combined with Basketball Activity. Journal of Strength and Conditioning Research. 20(4): 799-803.

Worrell, T.W., Smith, T.L., and Winegardner, J. (1994) Effects of Hamstring Stretching on Hamstring Muscle Performance. Journal of Orthopedic and Sports Physical Therapy. 20(3): 154-159.

Yamagucki, T., and Ishii, K. (2006) Effects of Static Stretching for 30 Seconds and Dynamic Stretching on Leg Extension. Journal of Strength and Conditioning Research. 19(3): 677-681.
Yamaguchi, T., Ishii, K., Yamanaka, M., and Yamaka, K. (2007) Acute Effects of Dynamic Stretching Exercise on Power Output during Concentric Dynamic Constant External Resistance Les Extension. Journal of Strength and Conditionien Research. 2014: 1238-1244. Yang, S., Alanqeeb, M., Simpson, H., and Goldspink, G. (1997) Changes in muscle fiber type, muscle mass, and IGF-1 gene expression in rabbit skeletal muscle subjected to stretch. Journal of Anatomy, 190: 613-622.

Young, W., and Elliot, S. (2001) Acute Effects of Static Stretching, Proprioceptive Neuronnucular Facilitation Stretching, and Maximum Voluntary Contractions on Explosive Force Production and Jumping Performance. Research Quarterly for Exercise and Science. 72(3): 273-279.

Zakas, A., Doganis, G., Papakonstandinou, V., Sentelidis, T., and Vamvakoudis, E. (2006) Acute effects of static stretching duration on isokinetic peak torque production of soccer players. Journal of Bodywork and Movement Therapies. 10, 89-95

Zuniga, J., Houah, T.J., Mielke, M., Hendrix, C.R., Camie, C.L., Johnson, G.O., Houah, D.J., and Schmidt, R.J. (2011) Gender comparisons of anthropometric characteristics of young sprint swimmers. Journal of Stremath and Conditioning Research. 25(1): 103-8

"Effects of dynamic and static stretching within general and activity specific warm-up

protocols"

Bv

Mike Samson MSc

School of Human Kinetics and Recreation

Memorial University of Newfoundland and Labrador

St John's Newfoundland

Abstract

The purpose of the current study was to determine the effects of static and dynamic stretching protocols within general and activity specific warm-ups. Nine male and 10 female subjects were tested under four warm-up conditions including a general warm-up with static stretching, a general warm-up with dynamic stretching, a general + specific warm-up with static stretching and a general + specific warm-up with dynamic stretching. Following all conditions subjects were test for performance on Movement time, Countermovement jump, sit and reach flexibility and repeated sprints. Results indicated that when a sport specific warm-up is used, there is an increase (p=.0013) of 0.8% in 20 meter sprint time in both the dynamic and static stretch groups. No such difference in sprint performance between dynamic and static stretch groups existed in absence of the sport specific warm-up. The static stretch condition performed significantly (p=0.0083) better than the dynamic condition in the sit and reach test. Such results would support the use of static stretching within an activity specific warm-up to ensure maximal ROM along with an enhancement in sprint performance. However, when enhance ROM is not of particular value a protocol of activity specific warm up and dynamic stretching may be as good or a choice.

Introduction

Stretching is a common component of warm-up routines in physical activity, exercise, and sport. Both static and dynamic stretching are commonly used and othen preceded by a warm-up intended to increase the bodd meta and temperature of the target muscle to make it more compliant and at less of a risk for injury. Research regarding the effects of pre training warm-ups on subsequent performance in the recent literature has led many athletes, coaches, and trainers to change their approach to warming up prior to training and competition. This review will discuss both the composition of a warm up including, arobe activity, static, dynamic, and PNF stretching, and activity specific tasks. A better understanding of the various components of warm up and tretching routines and the mechanism by which they affect performance may lead to their detag of our shortse, resulting in genetic performance and reduced risk of injury.

the many suscitated performance decrements of static stretching (Cotas et al. 2009; Kokkonen et al. 1998; Fowles et al. 2000; Young and Behm. 2002; Power et al. 2004; Young and Elliot. 2001). Conwall et al. 2002; Behm et al. 2004; Behm et al. 2001; Guiuna et al. 2001; Susch et al. 2004; Susch et al. 2004; William and Stauber. 2004; Cramer et al. 2004; Nelson et al. 2000; Susch evidence of stretch induced decrement to both mechanical and neural properties of the muscle following static stretchin late das to paradigm aftit on coptimal stretching trypes.

Recent research however is pointing to possible performance decrements associated with the use of static stretching immediately before competition and training (Behm et al. 2001, Di Cagno et al. 2010, Holt et al. 2008, Kokkonen et al. 1998, Power et al. 2004, Savers, et al. 2008. Sim et al. 2009) and also examining possible performance enhancement (Curry et al. 2009, Little et al. 2006. Yamaguchi et al. 2007) as well as injury reduction via dynamic stretching protocols. A review by Behm and Chaouachi. (2011) reveals some conflicting results among studies: more recent studies on static stretching have reported no impairment in performance associated with static stretch. These results may be associated with reduced stretch time, less intense stretch position, and the use of elite and trained middle aged athletes as subjects (Behm and Chaouachi, 2011, Handrakis et al. 2010). Despite the conflicting findings there are still far more publications demonstrating performance impairment associated with static stretch than those that show no change or performance enhancement. Further research is warranted to determine optimal pre competition warm-up and stretching protocols. Such research will allow for a better understanding of the mechanical and physiological mechanisms responsible for increased range of motion and maintenance of maximal strength.

The present study examined the effect of static and dynamic stretching protocols when used within warm-up routines involving either general warm-up activity alone and general warm-up

with the addition of an activity specific warm-up. The purpose of the present experiment was to contrast the effects of static and dynamic stretching on subsequent performance following both general and activity specific warm ups to help determine possible mechanism associated with enhanced or decreased performance. The experimental protocol was designed to be similar to practical warm-up protocols which would be used in real word training conditions. This was to ensure that any findings would have perciscula implications.

Methods

Subjects

Nite make and 10 fitmate university students and stuff volunteered for the experiment (Table 3). All participants were trained and actively involved in recreational or competitive sports. They were were builty informed of the protocol, real and signed a consent from. Each participant also read and signed a Physical Activity Participation Questionnaire (PAR-Q). Canadian Society for Exercise Physiology) to ensure their health status was adequate for participation in the study. The study was sanctioned by the Momerial University of Networksmither.

Independent variables

Participants were required to complete four warm-up (WU) conditions. The order of the conditions was randomized.

1. General warm-up / Dynamic Stretch

This confilion had participants run around a 200 meter track for 5 minutes obtaining a heart rate of 70% of the individuals predicted maximal heart rate. Heart rate was monitored with a heart rate monitor (Polar AI heart rate monitor; Woodbury NY) secured around the participants chert at the level of the zipholo process Participants were also informed and monitored by the investigator to ensure a light sweat was achieved at the completion of the run. This represented a increase in core temperature. The dynamic stretching included 3 repetitions lasting 30 seconds each of (1) Hip extension / Resion (2) Adduction (Abduction (2) brank cited c) (9 mailve addle tractato. All tretchen were performed dynamically to full ROM at a medium speed such that there was continuous motion, but without enough speed to force the stretch beyond normal ROM.

2. General Warm-up & Specific warm-up / Dynamic Stretch

This condition followed the same protocol as condition 1, however there was an addition of a sport specific warms up which included 3 sprint specific exercise performed in random order. These exercise included (1) high knee dispiping, (2) high knee running, and (3) but is kick running. Each task was performed over a 20 metre distance and repeated twice before moving on the next task.

3. General warm-up / Static Stretch

This condition followed the same guideline for general warm-ga as the previous 2 conditions however three were no specific task and a static stretching protocol was used. Following the general warm-ga participates were put through a stretch of data it stretche in randomized order including (1) supine partner assisted hamstring stretch, 2) Koseling partner assisted quadriceges stretch, (2) seated partner assisted low back stretch, and (4) Standing wall supported call stretch, vari leg in donificion, All stretches were repeated for 3 start of 30 seconds that its re-site of raid disconsofts.

4. General Warm-up & Specific Warm-up / Static Stretch

This condition followed the general warm-up outlined in all 3 previous conditions followed by the specific warm-up used in condition 2 and the static stretching from condition 4.

Dependent Variables

The order of testing began with movement time (MT) follow by countermovement jump, sit and reach flexibility and concluded with repeated sprints.

- Movement time (MT): Movement time was measured with a contact mut and light gate apparatus. The subject was to activate the timer by touching their foot to the contact mut and then immediately flex the hip with maximal acceleration in a kicking motion through a light gate set at 0.5 meters from the mat. Data was collected using the Inservations O Kinematic Measurement System, v. 2004.2.0 on a hiptop computer. This process was repeated 3 times.
- 2. Control Jung (CM): Jung bright was measured using a context run Data was collected using the Intervision G Kinematic Measurement System, v. 2004.2.0 on a luppep computer. Participants were instructed to jump as high as they could immediately following a semi sujaci counter novemant. During the counternovement participants were allowed to swing the arms to full faction and instructed to square to lower than thight parallel to the floer. During the jump shase the arms were allowed full extension were badd. Offen et al. 2004 Kg and et al. 2006 Paver et al. 2004)
- 3. Sit and Reach Flexibility (SRF): Using a sit and reach testing device (Acuffec 1, Novel products line, USA), purticipants as with leg straight and feet fit against the sit and reach device. They exhaled and stretched forward as fit are apossible with one hand over the other and finger tips in line and held the end point for 2 accords. This is the protocol prescribed by the Chandian Society for Exercise Physiology (CSEP) to determine flexibility. The same protocol was used by Belm et al. (2006), and Deveer et al. (2004).

4. Repeated 20m sprints: Puricipant ran aix 20 metre repeated sprints with 30 seconds recovery between each speint. Sprint time was measured via witch mat and light gate apparatus. Timing was from the first stride on to the mat until passing through the light gate 20 metres away. Data was collected using the Inservations @ Kinematic Measurement's view. 2 v004.2 on a time to computer.

Statistical Analysis

A 2 way repeated measure ANOVA (452) with factors brieg 1) confidions (Dynamic stretch, Static Stretch, Dynamic stretch with specific warm-up, and Static stretch with specific warm-up) and 2) into was performed to determine fit significant differences existed between be warm-up conditions. (GB Stat Dynamic Microsystems, Silver Springs Maryland USA). An alpha level of P-0.05 was considered statisticality significant. If significant difference were detected, a Takeys –Kamer procedure was used to identify the significant min effects and interactions. All data are reported are means and student daviations.

Results

There were no significant main effects or interactions involving the experimental conditions for movement time and countermovement jump.

Sprint Time

There was a significant main effect for gender, condition and sprint factors. A main effect for gender (rev.0000) indicated that makes (1.1 e. 0.7) ware 19.4% dater than the females (1.7) a 0.2). (Figure 1) A main effect for condition (re-0.0013) indicated that the warm-tops involving a precific warm-up component resulted in a 0.5% improvement years the warm-tops involving a only a general warm-up (Figure 2). A main effect for sprint time (P=0.007) showed that the fifth sprint was 1.2% significantly slower than the second sprint. (Table1) (Figure 3)

A significant (p=0.0002) gender x spirit interaction illustrated a 1.3% increase in spirit time from the second to the fifth spirit for makes (figure 4) (Table 2). A near significant (p= 0.07) gender x spirit trend with a 1.7% increase in spirit time from the first to fifth spirit in females. (Figure 5) (Table 2)

Sit and Reach

There was a significant main effects for conditions (pr.1083) with all static stretch conditions providing greater mean sit and reach score than conditions involving dynamic stretch (Figure 6)

Movement Time

A trend was observed for gender. Males (0.19 \pm 0.02) were (p = 0.002) faster than females (0.21 \pm 0.02) (Figure 7)

Counter Movement Jump

A significant main effect was discovered for gender (p<0.0001) indicating that males (40.7 \pm 6.8) jumped 58% higher than females (25.7 \pm 3.9). (Figure 8)

Discussion

The most important findings of the present study are the, addition of activity specific warm-up enhanced sprint performance and that static stretching protocol resulted in a greater sit and reach score than dynamic stretching.

Whether the activity specific warm-up protocol was implemented with static or dynamic stretching there was a significant improvement in sprint time. A similar intervention was used by Rosenbaum et al. (1995) who reported a decreased time to peak force following a tendon tap of the triceps surae following static stretch and treadmill running warm-up and an increased time to peak force when measured after static stretching alone. It seems that the addition of a warm-un helps to negate the performance decrements of static stretch alone. Skof and Stroinik (2007) found that the addition of sprinting and bounding to a warm-up consisting of slow running and stretching resulted in an increase in muscle activation when compared to slow running and stretching alone. However Young and Behm. (2002) reported that the addition of static stretching to a warm-up yielded a decrease in performance results. The Young and Behm study though does indicated that many of the stretching protocols used in earlier studies utilized prolonged static stretching outside of the range of typical stretching protocols used by athletes. The present study had participants stretch the target muscle for 3 sets of 30 seconds where as Young and Behm describe protocols of 15 minutes or more of sustained stretch, often without no aerobic warm up or pre-stretch submaximal exercise. Zakas et al. (2006) observed no change in peak torque following 30 seconds of static stretching compared to significant (p< 0.001) decreases in peak torque after static stretching volume of 480 seconds. The activity specific warm-up in the present study may have offset the impairments thought to be caused by static stretching. Furthermore, the shortened time under stretch may have not caused any impairment. A review by Kay and Blazevich (2011) supports this statement with their conclusion that the detrimental effects of static stretching are mainly limited to stretch times of 60 seconds or greater.

The results of the present study indicate increase performance capacity following the addition of the activity specific warm up. This may be attributed to many physiological flocture, the additional warm of the mean share the additional to a further increase in muscle temperature, and conduction velocity, and muscle enzymatic cycling, along with a decrease in visconity (Bithory 2003). Alos, an indicated by Behm and Chaouschi (2011) and Tarki et al. (2011) post activation potentiation can be seen following lower intensity dynamic movements. This potentiation could researce const whice geneting viscons and potentiation resulting in a decrease of the fast twich motor unit therehold, and increase in motor unit recruitment and firing frequency (Layee et al. 2009). The increased firing frequency would be related to an increase rate of force develocment, Ohlite et al. 1981)

Significant difference were not found during for the ocunternovement jump (CM)) ent. This is consistent with results from similar studies (Knadson et al. 2001, Fouver et al. 2004, Unick et al. 2003) While Bendley et al. (2007) noted a decrease in performance following static stretching condition and all sas significant dycamic stretch yielded significantly (pr-0.004) greater CMI results than static stretching, although static stretching was not significantly different from the no stretch protocol. The warm-up protocols in the present study had oreffect or CMI performance, however it should be noted that as ostretch group was not used in the present study. This lack of change in CMI height may be due to a change in jump strategy as the musculotendenous unit (MTCI) becomes more compliant (McNeal et al. 2010). McNeal et al. whos studied the effects of 60 seconds of continuous counternation progenerated in the present study. This lack of the off stretching in guident may be due to a change in Jump strategy as the musculotendenous unit (MTCI) becomes more compliant (McNeal et al. 2010). McNeal et al. whos studied the effects of 60 seconds of continuous counternous entry in proconcludent aboved trated jumpet bechingen increptions to fitting that, Power et al. (2009) concluded that a more compliant MTU might be more hearfield when higher forces are involved. The Power et al study did not report any countermovement jump impairment following takin etretching but did report an increase in contact time. Conversely, 1601 and Lambourne, (2008) observed a decrease in vertical jump performance when tatke stretch was used following a general warm-up. Similarly Needham et al. (2009) observed superior speint and jump performance when dynamic attentioning was used in warm-up protocols. The Needham et al. study however used 10 minutes of static attention where as the current study used 3 repetitions of 30 words. This significant time difference measures for the difference in performance results.

When static stretching was implemented within the testing conditions, sit and reach scores exceeded scores attained by conditions using dynamic stretching. The warm-un protocol implemented in the present study had no effect on sit and reach results. These results concur with (Bandy et al. 1994, Beedle et al. 2007, Covert et al. 2010, O'Sullivan et al. 2009, Power et al. 2004), However some findings (Amiri - Khorasani et al. 2011, Mandy et al. 2006, Perrier et al. 2011, SamuKawa et al. 2011) have indicated that dynamic stretching can produce equal or greater results in dynamic and static range of motion tests. Perrier et al. (2011) compared the effects of static and dynamic stretching on factors including sit and reach flexibility and unlike the present study found no difference in sit and reach score between static and dynamic treatments. Static stretching is known to increase muscle compliance to stretch as well as decrease muscle stiffness and viscosity. Magnusson et al. (1996) indicates that increased flexibility can be primarily attributed to an increase in stretching tolerance. Neural effects may also play a role as Avela (1999) reported a decreased H-Reflex and subsequent muscle relaxation due to decrease reflex activity. Test specificity may also play a role, as the static stretching protocol more closely resembles the sit and reach test.

Gendre differences in performance found in the present study are consisted with common findings in the literature. (Deschenes and Knemer, 2002, Terzis et al. 2009) In the current study makes recorded faster sprint and non-rement times along with higher constructive numerical jump heights. These results are consistent with known physiological differences in muscle mass, fut free mass and absolute strength and power between males and females. (Gursoy 2010, Zuniga et al. 2011)

Conclusion

Overall the present study has demonstrated that the use of activity specific warm-op may be useful to enhance sprint performance regardless of the stretching protocol. Further research may support the argument that such activity specific warm-use outdo larguite the performance determents of static stretching previously report. Interestingly the study has also shown that static arteching will yield greater results in the static ROM Sit and reach test. Such results would support the use of static stretching within an activity specific warm-use to ensure maximal ROM along with an enhancement to stratic thereformance.

List of tables

Table 1: Asterisk (*) indicates a significant difference (p=0.007) in mean sprint time (seconds) between sprint 2 and 5.

Table 2: Asterisk (*) indicates a significant difference (p=0.0002) in the mean sprint time (seconds) of males between sprint 2 and 5. The number symbol (#) indicates a trend (P=0.07) towards an increase in sprint time between sprint 1 and 5 in females.

Table 3: Description of participants.

List of figures

Figure 1: Figure illustrates a significant (p<0.0001) main effect for gender. Columns and bars represent means and SD respectively. Arrows indicate a significant difference between male and female sprint times.

Figure 2: Figure illustrates a significant (p=0.0013) main effect for condition. Column and bars represent mean and SD respectively. Arrows indicate a significantly decreased sprint time.

Figure 3: Figure illustrates a significant (p=0.007) main effect for sprints. Columns and bars represent means and SD respectively. Arrows indicate significant differences between the second and fifth sprint.

Figure 4: Figure illustrates a significant (p=0.0002) gender x sprint interaction. Columns and bars represent means and SD respectively. Arrows indicate significant differences between the second and fifth sprint for males.

Figure 5: Figure illustrates a near significant (p=0.07) gender x sprint trend. Columns and bars represent means and SD respectively. Arrows indicate trend of increasing sprint time between the first and fifth sprint in females

Figure 6: Figure illustrates a significant (P=0.0083) main interaction for condition. Columns and bars represent means and SD respectively. Arrows indicate the significantly greater sit and reach score.

Figure 7: Figure illustrates significant (p=0.002) main interaction for gender. Columns and bars represent means and SD respectively. Arrows indicate a significant difference in movement time.

Figure 8: Figure illustrates significant (p=0.0001) main interaction for gender. Columns and bars represent means and SD respectively. Arrows indicate a significant difference in countermovement jump height.

References

Amiri – Khorasani. (2011) Acute effect of static and dynamic stretching on hip dynamic range of motion during instep kicking in professional soccer players. Journal of Strength and Conditioning Research. 25(6): 1647-52.

Avela, J., Kryolainen, H., and Komi, P.V. (1999) Altered reflex sensitivity after repeated and prolonged passive muscle stretching. Journal of applied physiology. (86)4: 1292-300.

Bacurau, R.F., Monteiro, G.A., Ugrinowitsch, C., Tricoli, V., Cabral, L.F., and Aoki, M.S. (2009) Acute effect of a ballistic and a static stretching exercise bout on flexibility and maximal strength. Journal of strength and conditioning research. 23(2): 304-8.

Bandy, W.D., Irion, J.M., and Briggler, M. (1997) The effect of time and frequency of static stretching on flexibility of hamstring muscles. Physical therapy. 77(10): 1090-6.

Bandy, W.D., and Irion, J.M. (1994) The effects of time on static stretch on the flexibility of hamstring muscles. Physical Therapy. 79(9): 845-50.

Batista, M.A., Ugrinowitsch, C., Roschel, H., Lotufo, R., Ricard, M.D., and Tricoli, V.A. (2007) Intermittent exercise as a conditioning activity to induce postactivation potentiation. Journal of strength and conditioning research. 21(3) 837-840.

Beedle, B.B., and Mann, C.L. (2007) A Comparison of Two Warm-ups on Joint Range of Motion. Journal of Strength and Conditioning Research 21(3): 776-779.

Behm, D.G. (2004) Force maintenance with sub maximal fatiguing contractions. Canadian Journal of applied physiology 29(3); 274-290 Behm, D.G., Bambury, A., Chaill, F., and Power, K. (2004) effect of acute static stretching on force balance, reaction time, and movement time. Medicine in Sport Science and Exercise.

Behm, D.G., Bradbury, E.E., Haynes, A.T., Hodder, J.N., Leonard, A.M., and Paddock. N.R. (2006) Flexibity is not related to stretch-induced deficits in force or power. Journal of Sports Science and Medicine 5, 33-42.

Behm, D.G., and Chaouachi, A. (2011) A review of the acute effects of static and dynamic stretching on performance. European Journal of Applied Physiology. In press.

Behm, D.G., and Kibele, A. (2007) Effects of differing intensities of static stretching on jump performance. European Journal of Applied Physiology 101, 587 – 594

Behm, D.G., Button, D.C., and Butt, J.C. (2001) Factors affecting force loss with prolonged stretching. Canadain Journal of Applied physiology. 26(3); 262-272

Bishop, D. (2003) Warm up 1: Potential mechanisms and the effects of passive warm-up on exercise performance. Sports Medicine 33(6): 439-54

Bishop, D. (2003) Warm up 2: performance changes following active arm up and how to structure a warm up. Sports Medicine 33(7): 483-98.

Bradley, P.S., Olsen, P.D., and Portas, M.D. (2007) The effect of static, ballistic, and proprioceptive neuromuscular facilitation stretching on vertical jump performance. Journal of Strength and Conditioning Research 21(1), 223-226

Burkett, L.N., Phillips, and W.T, Ziuraitis, J. (2005) The best warm up for vertical jump in college age athletic men. Journal of Strength and Conditioning Research. 19(3) 673-6. Cafarelli and Fowler (1993) Does maximal neural activation of muscle increase after resistance training? European Journal of applied physiology and occupational physiology. 66(6) 553-8

Chaouachi, A., Castagna, C., Chiara, M., Brughell, M., Turri, O., Galy, O., Channari, K., and Behm, D.O. (2010) Effect of Warm-ups Involving static or dynamics stretching on Agilly, sprinting, and jumping performance in trained individuals. Journal of Strength and Conditioning Research 2491

Chaouachi, A., Chamari, K., Wong, P., Castagna, C., Chouachi, M., Moussa-Chamari, I., and Behm, D.G. (2008) Stretch and Sprint training reduces stretch-induced sprint performance deficits in 13- to 15- year- old youth. European Journal of Applied Physiology. 104; 515-522.

Chui, L.Z.F., Fry, A.C., Weiss, L.W., Schilling, B.K., Brown, L.E., and Smith, S.L. (2003) Postactivation Potentiation Response in Athletic and Recreationally Trained individuals. *Journal* of Strength and conditioning research. 17(4), 671-677

Church, B.J., Wiggins, M.S. Moode, M.E. and Crist, R. (2001) Effect of warm-up and flexibility treatments on vertical jump performance. Journal of strength and conditioning research 15(3) 332-336

Condon and Hutton (1987) Soleus muscle electromyographic activity and ankle dorsiflexion range of motion during four stretching procedures. Physical therapy. 67(1) 24-30.

Cornwell, A., Nelson, A.G., and Sidaway, B., (2002) Acute effects of stretching on the neuromechanical properties of the triceps surae muscle complex. European Journal of Applied Physiology. 86, 428-434. Costa, P.B., Graves, B.S., Whitehurst, M., and Jacobs, P.L. (2009) The acute effects of different duration of static stretching on dynamic balance performance. Journal of Strength and conditioning Research. 23(1) 141-7.

Covert, C.A., Alexander, M.P., Petronis, J.J., and Davis, S. (2010) Comparison of Ballistic and Static Stretching on Hamstring Muscle Length using an Equal Stretching Dose. Journal of Strength and Conditioning Research. 0(0) 1-7.

Cramer, J.T., Housh, T.J., Johnson, G.O., Miller, J.M., Coburn, J.W., and Beck, T.W. (2004) Acute effects of static stretching on Peak Torgue in Women. Journal of Strength and Conditioning Research. 18(2), 236-241.

Crone, C., and Nielson, J. (1989) Methodological implications of the post activation depression of the soleus H-reflex in man. Experimental brain research. 78(1) 28-32.

Crosier, J.L. (2004) Factors Associated with Recurrent Hamstring Injuries. Sports Medicine. 34(10): 681-695.

Curry BS, Chengkalath, D, Crouch, GJ, Romance, M, and Manns, PJ. (2009) Acute effects of dynamic stretching, static stretching, and light aerobic activity on muscular performance in women. J Strength Cond Res 23: 1811-1819.

Deschene, M.R., and Krammer, W.J. (2002) Performance and physiologic adaptations of resistance mining. American Journal of Physical Medicine and Rehabilitation. 81(11): s3-16. Decicoc, P.V., and Fisher, M.M. (2005) The effects of proprioceptive neuronnuscular facilitation attention on shoulder range of motion in overhead athletes. Journal of Sports medicine and ethysical fitness. 4520: 185-7. Di Cagno, A., Baldari, C., Battaglia, C., Gallotta, M.C., Videira, M., Piazza, M., and Guidetti, L. (2010) Pre-exercise static stretching effect the leaping performance of rhythmic gymnasts. Journal of Strength and Conditionings Research. 24(8): 1995-2000.

Drust, B., Atkinson, G., Gregton, W., French, D., and Binningsley, D. (2003) The effects of massage on intra muscular temperature in the vastus lateralis in humans. International Journal of Sport Medicine. 24(6) 395-9.

Emiliano, C., Margonato, V., Casaseo, M., and Veicsteinas, A. (2008) Effects of Stretching on Maximal Anaerobic Power: The Roles of Active and Passive Warm-ups. Journal of Strength and Conditioning Research. 22(3): 794-800.

Enoka, R.M., Hutton, R.S., and Eldred, E. (1980) Changes in excitability of tendon tap and Hoffmann reflexes following voluntary contractions. Electroencephalography and Clinical Neurophysiology, 48(6) 664-72.

Esformes, J.I., Cameron, N., and Bampouras, T.M. (2010) Postactivation potentiation following different modes of exercise. Journal of Strength and Conditioning Research. 24(7) 1911-6.

Etnyre, B., and Kinugasa, T. (2002) Post-contraction influences on Reaction time. Research quarterly for Exercise and Sport. 73(3): 271-281.

Faigenbaum, A.D., McFarland, J.E., Schwerdtman, J.A., Ratamess, N.A., Kang, J., and Hoffman, J.R. (2006) Dynamic warm up protocols with and without a weighted vest, and fitness performance in high school female athletes. Journal of Athletic training, 41(4) 357-63.

Finni, T., Ikegawa, S., and Komi, V. (2001) Concentric force enhancement during human movement. Acta Physiol Scand. 173; 369-377. Fletcher, I. A., and Anness, R. (2007) The Acute Effects of Combined Static and Dynamic Stretch Protocols on Fifty-Metter Sprint Performance in track- and- Field Athletes. Journal of Strength and Conditioning Research. 21(3): 784-787.

Fletcher, L.M., and Jones, B. (2004) The Effects of Different Warm-up Stretch Protocols on 20 Meter Sprint Performances in trained Rugby Union Players. Journal of Strength and Conditioning Research. 18(4); 885-888.

Fowles, J. R., Sale, D.G., and MacDougall, J.D. (2000) Reduced strength after passive stretch of the human plantarflexors. Journal of Applied Physiology. 89; 1179-1188.

Fradkin, A.J., Zazyn, T.R., and Smeliga, J.M. (2010) Effects of warming up on physical performance: a systematic review with meta-analysis. Journal of Strength and Conditioning. Research. 21(1): 140-8.

Gleim, G.W., and McHugh, M.P. (1997) Flexibility and its effects on sports injury and performance. Sports Medicine. 24(5) 289-99.

Grange, R.W., Cory, C.R., Vandenboem, R., and Houston, M.E. (1995) Myosin phosphorylation augments force-displacement and force velocity relationships of mouse muscle. American Journal of Physiology. 269(3 Pt 1) C713-24.

Guissard, N., Duchateau, J., and Hainaut, K. (2001) Mechanisms of decreased motoneurone excitation during passive muscle stretching. Exp Brain Res. 137: 163-169

Guissard, N., Duchateau, J., and Hainaut, K. (1988) Muscle Stretching and motoneuron excitability. Eurpean Journal of Applied Physiology. 58: 47-52 Gullich and Schmidtbleicher. (1996) MVC induced short term potentiation of explosive force. New Studies in Athletics. 11(4): 67-81.

Gursoy, R. (2010) Sex differences in relations of muscle power, lung function, and reaction time in athletes. Perceptual and Motor Skills. 110(3 Pt 1): 714-20.

Hamada, T. Sale, D.G., and MacDougall, J.D. (1999) Postactivation potentiation in endurance trained male athletes. Medicine and Science in Sport and Exercise.

Hamada, T. Sale, D.G., MacDougall, J.D., and Tarnopolsky, M.A. (2003) Interaction of fibre type, potentiation and fatigue in human knee extensor muscles. Acta Phylol Scand, 178: 165-173.

Hamada, T. Sale, D.G., MacDougall, J.D., and Tarnopolsky, M.A. (2000) Postactivation potentiation, fibre type, and twitch contraction time in human knee extensor muscles. Journal of Applied Physiology. 88: 2131-2137.

Handrakis, J.P., Southard, V.N., Abreu, J.M., Aloisa, M., Doven, M.R., Ethevarria, L.M., Hwang, H., Samuels, C., Vegenas, S.A., and Douris, P.C. (2010) Static Stretching does not impair performance in active middle aged adults. Journal of Strength and Conditioning Research. 24(2) 852-30.

Handel, M. Horstmann, T., and Dickhuth, H. (1997) Effects of Contract-relax stretching training on muscle performance in athletes. European Journal of Applied Physiology. 76, 400-408.

Hasselman, C.T., Best, T.M., Seaber, A.V., and Garrett, W.E. (1995) A threshold and Continuum of injury During Active Stretch of Rabbit Skeletal Muscle. American Journal of Sports Medicine. 23(1) Henda, T.J., Zamne, J.T., Ryan, E.D., McHugh, M.P., and Stour, J.R. (2008) Acute Effects of Static versus Dynamic Stretching on Liometric Peak Torque, Electromyography and Mechanomyography of The Bioeps Femoris Muscle. Journal of Strength and Conditioning Research.

Herman and Smith (2008) Four week dynamic stretching warm up intervention elicits longer term performance benefits. Journal of Strength and Conditioning Research. 22(4) 1286-97.

Hodgson, M., Docherty, D., and Robbins, D. (2005) Post activation Potentiation – Underlying physiology and implications for motor performance. Sports Medicine. 35(7): 585-595.

Hoffman (1910) Beitrag zur Kenntnis der menschlichen Reflexe mit besonderer Berucksichtigung der elektrischen Erscheinungen. Archives of Anatomy and Physiology. 1. 223-246.

Holcombe, W.R., Lander, J.F., Rutland, R.M., and Wilson. G.D. (1996) A biomechanical analysis of the vertical jump and three modified plyometric depth jumps. Journal of Strength and Conditioning Research 10, 83–88.

Holt, B.W., and Lambourne, K. (2008) The impact of Different Warm-up Protocols on Vertical Jump Performance in Male Collegiate Athletes. Journal of Strength and Conditioning Research. 22(1); 226-229.

Houston, M.E., Green, H.J., and Stall, J.T. (1985) Myosin Light Chain phosphorylation and isometric twitch potentiation in intact human muscle. European Journal of Physiology. 403: 348-352.

Ingram (2003) The role of flexibility in injury prevention: have we stretched the truth. Minnesota Medicine. 86(5) 58-61.

Jones, A.A. (2001) Running Economy is Negatively Related to sit and reach Test Performance in International – Standard distance Runners. International Journal of Sports Medicine. 23; 40-43.

Jones, A.M., Wilkerson, D.P., Burnley, M., and Koppo, K. (2003) Prior Heavy Exercise Enhances Performance during Subsequent Perimaximal exercise. Medicine and Science in Sport and Exercise. 35(12) 2085-2092.

Kay, A.D., and Blazevich, A.J. (2011) Effect of Acute Static Stretch on Muscle performance: A Systematic Review. Medicine and Science in Sport and Exercise. In press.

Kistler, B.M., Walsh, M.S., Horn, T.S., and Cox, R.H. (2010) The acute effects of static stretching on the sprint performance of collegiate men in the 60 and 100m dash after a dynamic warm up. Journal of Strength and Conditioning Research. 24(9) 2280-4.

Knight, C.A., Rutledge, C.R., Cox, M.E., Acosta, M., and Hall, S.J. (2001) Effect of superficial heat, deep heat, and active exercise warm up on the extensibility of the plantar flexors. Physical therapy. 81(6) 1206-14.

Knight, C.A., and Kamen, G. (2001) Adaptations in muscular activation of the knee extensor muscles with strength training in young and old adults. Journal of Electromyography and Kinesiology. 11(6) 405-12.

Knudson, D.V., Bennett, K., Corn, R., Leick, D., and Smith, C. (2001) Acute effects of Stretching Are Not Evident In the Kinematics of the Vertical Jump. Journal of Strength and Conditioning Research. 15(1); 98-101. Knudson, D.V., Guillermo, N. J., BahaMonde, R.E., Bauer, J., and Balckwell, J.R. (2004) Stretching Has No Effect on Tennis Serve Performance. Journal of Strength and Conditioning Research. 18(3) 654-656

Kokkonen, J., Nelson, A.G., and Cornwell, A. (1998) Acute Muscle Stretching Inhibits Maximal Strength Performance. Research Quarterly for Exercise and Sport. 69(4); 411-415.

Larson, R., Lund, H., Christensen, R., Rogind, H., Dunneskiold – Samsae, B., and Bliddal, H. (2005) Effect of Static Stretching of Quadriceps and Hamstring Muscle on Knee joint Position sense. British Journal of Sports Medicine. 39: 43-46.

Largee, G., Befngard, A., Le Fur, Y., Vilmen, C., Micailef, J.P., Perrey, S., Cozzonem P.J., and Bendahan, D. (2009) Effects of prior high intensity knee extension exercise on muscle recruitment and energy cost: A combined local and global investigation in humans. Experimental Psysiology. 94(6): 704-19.

Little, T. and Williams, A.G. (2006) Effects of Differential Stretching Protocols During Warmups on High-Speed Motor Capacities in Professional Soccer Players. Journal of Strength and Conditioning Research. 20(1); 203-207.

Maaliaropoulos, Nikos, Papalexandris, Stelios, Papalada, Agape, Papacostas, and Emanuel. (2004) The Role of Stretching in Rehabilitation of Hamstring injuries: 80 Athletes follow up. Medicine and Sciences in Sport and Exercise. 36(5): 756-759

Magnusson, P.S., Simonsen, E.B., augaard, P., and Kjaer, M. (1996) Biomechanical responses to repeated stretches in human hamstring muscle in vivo. The American Journal of Sports Medicine. 24(5).
Masamoto, N., Larson, R., Gates, T., and Faigenbaum, A. (2003) Acute Effects of Plyometric exercise on Maximum Squat Performance in Male Athletes. Journal of Strength and Conditioning Research. 17(1): 68-71.

McKechnie, G.J.B., Young, W.B., and Behm, D.G. (2007) Acute effects of two massage techniques on ankle joint flexibility and power of the plantar flexors. J Sport Sci Med 6: 498-504.

McMillian, D.J., Moore, J. H., Hatler, B.S., and Taylor, D.C. (2006) Dynamic vs. Static-Stretching Warm-up: The Effect on Power and Agility Performance. Journal of Strength and Conditioning Research. 20(3); 492–499.

McNeal, J.R., Sands, W.A., and Stone, M.H. (2010) Effects of fatigue on Kinetic and kinematic variables during a 60 second repeated jumps test. International Journal of Sports Physiology and Performance. 5(2): 218-29.

Metzger, J.M., Greaser, M.L., and Moss, R.L. (1989) Variations in cross bridge attachment rate and tension with phosphocylation of myosin in mammalian akimed skelettal muscle fibers. Implications for twitch potentiation in intact mascle. Journal of General Physiology. 93(5) 835-83.

Miller, R.G., Mirka, A., Maxfield, M. (1981) Rate of tension development in isometric contractions of a human hand muscle. Experimental Neurology. 73: 267-285.

Moore and Hutton (1980) Electromyographic investigation of muscle stretching techniques. Medicine and Science in Sports and Exercise. 12(5) 322-9. Needham, R.A., Morse, C.I., and Degens, H. (2009) The acute effect of different warm-up protocols on anaerobic performance in elite youth soccer players. Journal of Strength and Conditioning Research. 23(9): 2614-20.

Nelson, A.G., Allen, J.D., Corravell, A., and Kokkonen, J. (2001) Inhibition of Maximal Voluntary Isometric Torque Production by Acute Stretching is Joint-Angle Specific. Research Quarterly for Exercise and Sport. 72(1): 68-70.

Nelson, A.G., Guillory, I. K., Cornwell, A., and Kokkonen, J. (2001) Inhibition of Maximal Voluntary Isokinetic Torque production Following Stretching is Velocity-Specific. Journal of Strength and Conditioning Research. 15(2); 241-246.

Nelson, A.G., and Kokkonen, J. (2001) Acute Ballistic Muscle Stretching inhibits Maximal Strength Performance. Research Quarterly for Exercise and Sport. 72(4); 415-419.

O'Sullivan, K., Murray, E., and Sainsbury, D. (2009) The effect of warm-up, static stretching and dynamic stretching on hamstring flexibility in previously injured subjects. Biomedical Central Musculoskeletal Disorders. 10:37.

Partrap, K.S., and Weiqing, G.E. (2004) Encoding of tensile stress and strain during stretch by mechano-nocireceptors. Muscle and Nerve. 30: 216-224.

Perrier, E.T., Pavol, M.J., and Hoffman, M.A. (2011) The acute effects of warm-up including static and dynamic stretching on countermovement jump height, reaction time, and flexibility. Journal of Strength and Conditioning Research. 25(7): 1925-31 Pope, R.P., Herbert, R.D., Kirwan, J.D., and Graham, B.J. (2000) A randomized trial of preexercise stretching for prevention of lower limb injury. Medicine and Science in Sport and Exercise. 32(2) 271-7.

Power, K., Behm, D.G., Cahill, F., Carroll, M., and Young, W. (2004) An acute bout of static stretching: Effects on force and Jumping performance. Medicine and Science in sports and exercise. 36(8): 1389-1396.

Reid, D.A., and Menair, P.J. (2004) Passive Force, Angle, and Stiffness Changes after Stretching of Hamstring Muscles. Medicine and Science in Sports and Exercise.

Riewald, S. (2004) Stretching the Limits of our Knowledge on ... Stretching. Strength and Conditioning Journal. 26(5); 58-59.

Robbins, D.W. (2005) Postactivation potentiation and its practical applicability: A Brief Review. Journal of Strength and Conditioning Research. 19(2) 453-458.

Rosenbaum, D., and Hennig, E.M.(1995) The influence of Stretching and Warm-up exercises on Achilles tendon reflex activity. Journal of Sports Science. 13; 481-490.

Sale, D.G. (2002) Postactivation Potentiation: Role in Human Performance. Exercise and Sport Science Reviews. 138-143

SamuKawa, M., Hattori, M., Sugama, N., and Takeda, N. (2011) The effects of dynamic stretching on plantar flexor muscle-tendon properties. Manual Therapy. E-published ahead of print. Samuel, M.N., Holcomb, W.R., Guadognoli, M.A., Rubley, M.D., and Wallmann, H. (2008) Acute effects of static and ballistic stretching on measures of strength and power. Journal of Strength and Conditioning Research. 22(5) 1422-8

Sayers, A.L., Farley, R.S., Fuller, D.K., Jubenville, C.B., and Caputo, J. L. (2008) The effect of static stretching on phases of sprint performance in elite soccer players. Journal of Strength and Conditioning Research. 22(5) 1416-21

Scott, S.L., and Docherty, D. (2004) Acute Effects of Heavy Preloading on Vertical and Horizontal Jump Performance. Journal of Strength and Conditioning Research. 18(2): 201-205

Shrier, I. (1999) Stretching before exercise does not reduce the risk of local muscle injury: a critical review of the clinical and basic science literature. Clinical Journal of Sports Medicine. 9(4) 221-7.

Sim, A.Y., Dawson, B.T., Guelfi, K.J., Wallman, K.E., and Young, W.B. (2009) Effect of static stretching in warm up on repeated sprint performance. *Journal of Strength and Conditioning* Research. 23(7): 2155-62.

Skof, B. and Strojnik, V. (2007) the Effect of Two Warm-up Protocols on Some Biomechanica; Parameters of the Neuromuscular System of Middle Distance Runners. Journal of Strength and Conditioning Research. 21(2): 394-399.

Streepey, J. W., Mock, M.J., Riskowski, J.L., Varoye, W.R., Virvitshiy, B.M., and Mikesky, A.E. (2010) Effects of quadriceps and humatrings proprioceptive neuromuscular facilitation stretching on hase movement sensation. Journal of Strength and Conditioning Research. 24(4) 1037-42. Sweeney, H.L., Bowman, B.F., and Stull, J.T. (1993) Myosin Light Chain Phosphorylation in vertebrate striated muscle: regulation and function. American Journal of Physiology. 264(5 Pt 1) 1085-95.

Terzis, G., Spengos, K., Karampatsos, G., Manta, P., and Georgiadis, G. (2009) Acute effect of drop jumping on throwing performance. Journal of Strength and Conditioning Research. 23(9): 2592-7

Thacker, S.B., Gilchrist, J., Stroup, D.F., and Kimsey, D.C. (2004) The impact of Stretching on Sports Injury risk: A systematic review of the literature. Medicine and Science in Sports and Exercise. 36(3): 371-378.

Tiidus and Shoemaker (1995) Effleuage massage, muscle blood flow and long term post exercise strength recovery. International Journal of Sports Medicine. 16(7): 478-83.

Tillin, N.A., and Bishop, D. (2009) Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Medicine, 39(2):147-66.

Torres, E.M., Krnemer, W.J., Vingren, J.L., Volek, J.S., Hatfield, D.L., Spiering, B.A., Ho, J.Y., Fragala, M.S., Thomas, G.A., Anderson, J.M., Hakkinen, K., and Maresh, C.M. (2008) Effects of Statching on Upper-Body muscular performance. Journal of Steength and Conditioning Research. 22(4): 1279-85.

Unich, J., Kieffer, S.H., Cheesman, W., and Feeney, A. (2005) The Acute Effects of Static and Ballistic Stretching on Vertical Jump Performance in trained Women. Journal of Strength and Conditioning Research. 19(1): 206-212. Unbb, M., Myanaga, Y., Myakawa, S., Maenhima, T., and Shirasaki, Y. (2006) Effects of heat in increasing the range of knee motion after the development of a joint constructure: an experiment with an animal model. Archives of Physical Modicine and Rehabilitation. 87(2):247-53.

Vetter (2007) Effects of six warm up protocols on sprint and jump performance. Journal of Strength and Conditioning Research. 21(3) 819-23.

Vujnovich and Dawson (1994) The effect of therapeutic muscle stretch on neural processing. Journal of Orthopedic and Sports Physical therapy. 20(3) 145-53.

Wiktorsson-Möller. (1983) Effects of warming up, massage, and stretching on range of motion and muscle strength in the lower extremity. American Journal of Sports Medicine. 11(4) 249-52.

Willems, M.E.T., and Stauber, W.T. (2001) Force deficits by stretches of activated muscles with constant or increasing velocity. Medicine and Science in Sport and Exercise. 667-672.

Wilson, G.J., Elliot, B.C., and Wood, G.A. (1992) Stretch shorten cycle performance enhancement through flexibility training. Medicine and Science in Sport and Exercise. 24(1)

Wilson, G.J., Murphy, A.J., and Pryor, J.F. (1994) Musculotendious stiffness: Its relationship to eccentric, isometric, and concentric performance. Journal of Applied Physiology. 76(6): 2714-9.

Wilson, G.J., Wood, G.A., and Elliot, B.C. (1991) Optimal Stiffness of series elastic component in a stretch-shorten cycle activity. Journal of Applied Physiology. 70(2): 825-33.

Winchester, J.B., McBride, J.M., Maher., M.A., Mikat, R.P., Allen, B.K., Kline, D.E., and McGuigan, M.R. (2008) Eight weeks of ballistic exercise improves power independently of changes in strength and muscle fiber type expression. Journal of Strength and Conditioning Research. 22(6) 1728-34.

Woolstenhulme, M.T., Griffiths, C.M., Woolstenhulme, E.M., and Parcell, A.C. (2006) Ballistic Stretching Increases Flexibility and Acute Vertical Jump Height When Combined with Basketball Activity. Journal of Strength and Conditioning Research. 20(4); 799-803.

Yamaguchi, T., and Ishii, K. (2006) Effects of Static Stretching for 30 Seconds and Dynamic Stretching on Leg Extension. Journal of Strength and Conditioning Research. 19(3): 677-683.

Yamaguchi, T., Ishii, K., Yamanaka, M., and Yasuda, K. (2007) Acute Effects of Dynamic Stretching Exercise on Power Output during Concentric Dynamic Constant External Resistance Leg Extension. Journal of Strength and Conditioning Research. 21(4): 1238-1244.

Yoang, W., and Elline, S.(2001). Acute Effects of Static Stretching, Proprioceptive Neuronneouslar Facilitation Stretching, and Maximum Voluntary Contractions on Explosive Force Production and Jumping Performance. Research Quarterly for Exercise and Science. 72(3), 273-279.

Zakas, A., Doganis, G., Papakoestandinou, V., Sentelidis, T., and Vamvakoudis, E. (2006) Acute effects of static stretching duration on isokinetic peak torque production of soccer players. Journal of Bodywork and Movement Therapics. 10, 89-95

Zuniga, J., Housh, T.J., Mielke, M., Hendrix, C.R., Camic, C.L., Johnson, G.O., Housh, D.J., and Schmidt, R.J. (2011) Gender comparisons of anthropometric characteristics of young sprint swimmers. Journal of Strength and Conditioning Research. 25(1): 103-8

Appendices

Appendix 1: Tables

Table 1: Mean sprint times collapsed over gender.

Sprint	Males and Females combined averages
1	3.40 ± 0.35
2	3.39 ± 0.36 *
3	3.40 ± 0.38
4	3.42 ± 0.37
5	3.44 ± 0.38 *
6	3.41 ± 0.36

Table 2: Male and Female Mean Sprint Times

Sprint	Males	Females
1	3.11 ± 0.16	3.67 ± 0.22 #
2	3.07 ± 0.11 *	3.69 ± 0.21
3	3.09 ± 0.16	3.70 ± 0.25
4	3.10 ± 0.16	3.71 ± 0.23
5	3.12 ± 0.17 *	3.73 ± 0.25 #
6	3.11 ± 0.16	3.70 ± 0.22

Table 3: Description of participants.

Sex	Mean Age	Mean	Mean	
	in Years	Weight in	Height in	
		kg	cm	
Males	27.8 ± 8.4	90.6 ± 11.1	178.6 ± 5.7	
Females	22.2 ± 3.3	55.8 ± 5.2	164.6 ± 7.7	

Appendix 2 : Figures

Figure 1: Figure illustrates a significant (p<0.0001) main effect for gender. Columns and bars represent means and SD respectively. Arrows indicate a significant difference between male and female spirit itmes.

Figure 2: Figure illustrates a significant (p=0.0013) main effect for condition. Column and bars represent mean and SD respectively. Arrows indicate a significantly decreased sprint time.

Figure 3: Figure illustrates a significant (p=0.007) main effect for sprints. Columns and bars represent means and SD respectively. Arrows indicate significant differences between the second and fifth sprint.

Figure 4: Figure illustrates a significant (p=0.0002) gender x sprint interaction. Columns and burs represent means and SD respectively. Arrows indicate significant differences between the second and fifth sprint for males.

Figure 5: Figure illustrates a near significant (p= 0.07) gender x sprint trend. Columns and bars represent means and SD respectively. Arrows indicate trend of increasing sprint time between the first and fifth sprint in females.

Figure 6: Figure illustrates a significant (P=0.0083) main interaction for condition. Columns and bars represent means and SD respectively. Arrows indicate the significantly greater sit and reach score.

Figure 7: Figure illustrates significant (p=0.002) main interaction for gender. Columns and bars represent means and SD respectively. Star indicates a significant difference in movement time.

Figure 8: Figure illustrates significant (p<0.0001) main interaction for gender. Columns and bars represent means and SD respectively. Star indicates a significant difference in countermovement jump height.

Appendix 3 : Raw Data.

Key

F1, 2, 3,... - Female subject 1, 2, 3...

M1- Male Subject 2

GDS - General warm-up with dynamic stretching.

GSDS - General + specific warm-up with dynamic stretching.

GSS -General warm-up with static stretch.

GSSS - General + specific warm-up with static stretch.

MT - Movement Time.

CM - Countermovement Jump.

SRF - Sir and reach flexibility.

Female subjects scores during all trials and testing conditions.

Subject females	Sprint1	sprint2	sprint3	sprint4	sprint5	sprint6	mean sprint
Flgds	3.976	4.145	4.018	3.912	4.091	3.969	4.0185
Flgsds	4.1	4.018	4.103	4.074	4.111	4.136	4.090333333
Flgss	3.917	3.994	3.983	3.867	3.801	3.81	3.895333333
Flgsss	3.752	3.865	3.936	3.902	3.811	3.87	3.856
F2gds	3.41	3.474	3.34	3.534	3.44	3.535	3.4555
F2gsds	3.401	3.52	3.539	3.659	3.565	3.514	3.533
F2gss	3.456	3.488	3.435	3.473	3.434	3.444	3.455
F2gsss	3.456	3.614	3.642	3.536	3.528	3.524	3.55
F3gds	3.891	3.71	3.863	3.86	3.9	3.718	3.8236666667
F3gsds	3.686	3.758	3.734	3.792	3.877	3.83	3.7795
F3gss	3.879	3.801	3.847	4	3.848	3.859	3.872333333
F3gsss	3.869	3.838	4.046	3.872	3.948	3.842	3.9025
F4gds	3.687	3.605	3.678	3.564	3.668	3.578	3.63
F4gsds	3.534	3.566	3.59	3.501	3.563	3.616	3.561666667
F4gss	3.699	3.698	3.657	3.731	3.787	3.714	3.714333333
F4gsss	3.701	3.623	3.699	3.673	3.719	3.728	3.6905
F5gds	3.774	3.736	3.736	3.772	3.693	3.703	3.7356666667
F5gsds	3.872	3.769	3.864	3.831	3.777	3.794	3.817833333
F5gss	3.747	3.858	3.927	3.752	4.005	3.837	3.854333333
F5gsss	3.885	3.843	3.914	3.795	3.847	3.788	3.845333333

F6gds	3.744	3.636	3.732	3.698	3.788	3.731	3.7215
F6gsds	3.633	3.69	3.718	3.649	3.613	3.629	3.655333333
F6gss	3.671	3.56	3.689	3.657	3.636	3.719	3.655333333
F6gsss	3.846	3.731	3.685	3.697	3.789	3.919	3.777833333
F7gds	3.536	3.474	3.435	3.426	3.473	3.502	3.474333333
F7gsds	3.491	3.424	3.401	3.491	3.506	3.499	3.468666667
F7gss	3.473	3.529	3.53	3.605	3.559	3.6	3.549333333
F7gsss	3.41	3.456	3.54	3.578	3.601	3.558	3.523833333
F8gds	3.896	4.045	3.053	3.85	4.016	3.903	3.793833333
F8gsds	4.029	4.116	4.118	4.133	4.242	4.189	4.137833333
F8gss	3.912	3.928	4.157	4.31	4.34	4.099	4.124333333
F8gsss	3.99	3.996	3.969	4.141	4.217	3.953	4.044333333
F9gds	3.547	3.669	3.816	3.613	3.549	3.631	3.6375
F9gsds	3.572	3.661	3.587	3.535	3.617	3.598	3.595
F9gss	3.556	3.644	3.706	3.771	3.824	3.713	3.702333333
F9gsss	3.503	3.769	3.806	3.751	3.765	3.653	3.707833333
F10gds	3.42	3.369	3.318	3.293	3.294	3.29	3.3306666667
F10gsds	3.381	3.376	3.311	3.208	3.268	3.221	3.294166667
F10gss	3.245	3.307	3.314	3.362	3.403	3.257	3.314666667
F10gsss	3.29	3.36	3.454	3.412	3.395	3.402	3.3855

MT1	MT2	MT3	meanMT	CM1	CM2	CM3	meanCM
0.251	0.234	0.218	0.234333	21.8	20.2	20.2	20.73333
0.215	0.213	0.217	0.215	20.7	20.7	20.2	20.53333
0.224	0.209	0.208	0.213667	21.4	22.8	20.6	21.6
0.222	0.231	0.2	0.217667	21.5	21.1	21	21.2
0.205	0.189	0.194	0.196	29	28.3	29.2	28.83333
0.192	0.183	0.196	0.190333	29.2	31.3	28.5	29.66667
0.191	0.21	0.191	0.197333	30.8	30	29.9	30.23333
0.237	0.196	0.19	0.207667	28.8	24.5	28.1	27.13333
0.209	0.185	0.218	0.204	22.1	22.5	22	22.2
0.236	0.251	0.248	0.245	27	26.6	25.1	26.23333
0.284	0.268	0.242	0.264667	18.3	20.7	26.9	21.96667
0.24	0.232	0.215	0.229	23.6	25.3	24.4	24.43333
0.262	0.26	0.223	0.248333	28.7	29.4	31.1	29.73333
0.217	0.212	0.2	0.209667	30.3	29	28.8	29.36667
0.232	0.227	0.201	0.22	28.7	28	29.5	28.73333
0.217	0.211	0.213	0.213667	30	29.8	27	28.93333
0.253	0.256	0.214	0.241	23.3	24.2	22.1	23.2
0.229	0.227	0.263	0.239667	21.8	21.9	20.6	21.43333
0.235	0.206	0.234	0.225	21.9	18.7	20.3	20.3
0.202	0.204	0.215	0.207	21.3	20.2	22.5	21.33333
0.219	0.24	0.223	0.227333	25.5	22	23.2	23.56667
0.208	0.261	0.226	0.231667	26.5	24.5	23	24.66667
0.242	0.156	0.219	0.205667	23.7	23.8	23.2	23.56667

0.246	0.16	0.217	0.207667	23.7	28.5	24	25.4
0.192	0.14	0.224	0.185333	24.9	24.9	25.3	25.03333
0.191	0.194	0.195	0.193333	26.4	24.1	23.7	24.73333
0.236	0.191	0.234	0.220333	24.9	25.1	25.7	25.23333
0.261	0.293	0.198	0.250667	22.1	26.1	23.2	23.8
0.188	0.17	0.181	0.179667	26.9	24.6	25.2	25.56667
0.234	0.232	0.236	0.234	27.4	26.5	24.9	26.26667
0.247	0.185	0.256	0.229333	23.3	25.1	26.6	25
0.252	0.167	0.242	0.220333	22.5	24.3	21.6	22.8
0.234	0.249	0.248	0.243667	24.5	23.6	26.5	24.86667
0.235	0.255	0.224	0.238	24.8	27.9	26.3	26.33333
0.207	0.261	0.177	0.215	26.4	29.1	27.4	27.63333
0.211	0.216	0.19	0.205667	29	27.1	28.5	28.2
0.217	0.213	0.174	0.201333	32.5	35.2	33	33.56667
0.249	0.216	0.188	0.217667	29.1	31.3	33	31.13333
0.238	0.235	0.226	0.233	33.5	28.5	32.3	31.43333
0.23	0.213	0.226	0.223	32.8	34.3	33.8	33.63333

srF1	srF2	srF3	mean srF
37	36	38	37
33.5	36.5	37	35.66667
35	36	37	36
36.25	36.75	38	37
41	47	47	45
41.5	43	44	42.83333
43	45	46	44.66667
43.25	44.5	47	44.91667
50	50	51	50.33333
48	51	52	50.33333
51	51	51	51
50.5	51	52	51.16667
42	42.5	43	42.5
42	43	43	42.66667
41	41.5	43	41.83333
40	42	42.5	41.5
20.5	24	28	24.16667
19.5	23	28.5	23.66667
21.5	25.5	26.5	24.5
24	29	33	28.66667
44.5	45	47	45.5
42	44.5	45	43.83333
45	46	47	46
47	48.5	49	48,16667
33	37	40	36.66667
37	40	41.5	39.5

33	38	38.5	36.5
39	41	42	40.66667
58	59	60	59
53	56	56	55
58	60	61	59.66667
59	60	61	60
39	43	46	42.66667
39	42.5	46	42.5
43	45.5	48	45.5
42.5	44.5	46.5	44.5
47	48	49	48
49.5	49	49	49.16667
51	51	51	51
47	48.5	49	48,16667

Male scores during all trials and testing conditions.

Subject males	Sprint1	sprint2	sprint3	sprint4	sprint5	sprint6	mean sprint
Mlgds	2.921	2.901	2.909	2.936	2.937	2.92	2.920666667
Mlgsds	2.899	2.912	2.922	2.898	2.901	2.907	2.9065
Mlgss	2.951	2.873	2.94	2.971	3.055	2.877	2.9445
Mlgsss	2.924	2.839	2.875	2.884	2.906	2.924	2.892
M2gds	3.232	3.266	3.259	3.265	3.207	3.269	3.249666667
M2gsds	3.247	3.133	3.179	3.199	3.239	3.212	3.2015
M2gss	3.282	3.255	3.355	3.313	3.475	3.404	3.347333333
M2gsss	3.386	3.293	3.28	3.279	3.319	3.356	3.3188333333
M3gds	3.308	3.18	3.16	3.29	3.14	3.24	3.2196666667
M3gsds	3.31	3.26	3.14	3.26	3.24	3.29	3.25
M3gss	3.38	3.25	3.26	3.26	3.25	3.08	3.246666667
M3gsss	3.25	3.25	3.23	3.21	3.24	3.21	3.2316666667
M4gds	2.878	2.868	2.864	2.867	2.777	2.881	2.855833333
M4gsds	2.821	2.796	2.782	2.799	2.801	2.808	2.801166667
M4gss	2.836	2.839	2.824	2.749	2.838	2.839	2.820833333
M4gsss	2.867	2.798	2.807	2.798	2.794	2.805	2.8115
M5gds	3.159	3.174	3.212	3.173	3.225	3.149	3.182
M5gsds	3.094	3.073	3.111	3.095	3.097	3.092	3.0936666667
M5gss	3.249	3.196	3.16	3.222	3.209	3.197	3.2055
M5gsss	3.07	3.179	3.242	3.398	3.288	3.284	3.2435
M6gds	3.201	3.17	3.255	3.226	3.24	3.294	3.231
M6gsds	3.287	3.244	3.258	3.258	3.264	3.262	3.262166667
M6gss	3.276	3.238	3.246	3.233	3.392	3.235	3.27
M6gsss	3.206	3.123	3.263	3.198	3.266	3.2	3.209333333
M7gds	3.113	3.04	3.043	3.046	3.07	3.077	3.064833333
M7gsds	3.041	3.098	3.009	3.073	3.087	3.154	3.077
M7gss	3.029	3.097	3.069	3.079	3.019	3.009	3.050333333

M7gsss		3.01	8 3.026	3.049	3.032	3.028	2.998	3.025166667
M8gds		2.88	3 2.886	2.924	2.917	3.042	3.071	2.953833333
M8gsds		3.113	3 2.896	2.926	2.975	2.947	2.898	2.959166667
M8gss		2.93	8 2.927	2.896	2.917	2.936	2.92	2.922333333
M8gsss		2.92	2 2.999	2.992	3.054	3.079	3.064	3.018333333
M9gds		3.13	7 3.155	3.285	3.368	3.44	3.384	3.300333333
M9gsds		3.15	3.166	3.161	3.178	3.173	3.193	3.170333333
M9gss		3.285	5 3.141	3.128	3.157	3.193	3.203	3.1845
M9gsss		3.151	3.08	3.076	3.129	3.177	3.195	3.134666667
MT1	MT2	MT3	meanMT	CMI	CM2	CM3	meanCM	1
0 149	0 199	0 227	0 191667	46.4	49.1	51.5	4	0
0.247	0.219	0.221	0.229	44.1	40	51.2	48	1
0.188	0.213	0.185	0 195333	52.3	52.3	54.7	53	
0.217	0.223	0.18	0.206667	52.8	55	54.7	54 1666	7
0 184	0.177	0 194	0.185	36.8	33.2	36.6	35 5333	1
0.212	0.191	0.18	0.194333	31.6	29.9	38.6	33.3666	7
0.177	0.192	0.185	0.184667	37.6	36	35.6	36	
0.23	0.184	0.181	0.198333	32.8	32	31	31 9333	
0.179	0.18	0.176	0.178333	33.3	35	35	34.4333	
0.19	0.179	0.181	0.183333	34.3	34.7	35.4	34.1	1
0.172	0.176	0.172	0.173333	32.9	32.9	34.2	33.3333	i.
0.178	0.169	0.185	0.177333	36.2	36.4	36.7	36.4333	
0.181	0.178	0.165	0.174667	45.9	47.7	51.8	48,4666	r
0.154	0.143	0.155	0.150667	45	48.5	53.1	48.8666	r
0.213	0.179	0.175	0.189	44.7	46.7	47.9	46.43333	
0.176	0.167	0.147	0.163333	47.1	52.8	55.2	51.7	
0.239	0.226	0.206	0.223667	34.8	35.1	37	35.63333	
0.214	0.201	0.199	0.204667	39.7	43.7	40.3	41.23333	
0.182	0.19	0.176	0.182667	37.5	38.9	39.8	38.73333	
0.228	0.143	0.198	0.189667	36.4	37.4	37.8	37.2	
0.208	0.182	0.191	0.193667	37.8	43.3	43.3	41.46667	
0.198	0.225	0.236	0.219667	35.6	35.4	38.9	36.63333	
0.258	0.289	0.286	0.277667	36.2	37.9	40.5	38.2	
0.26	0.246	0.235	0.247	38.9	44.9	42	41.93333	
0.235	0.213	0.199	0.215667	33	37	38.1	36.03333	
0.203	0.25	0.233	0.228667	37	43.4	44.4	41.6	
0.18	0.135	0.177	0.164	39.4	42.8	37.5	39.9	
0.241	0.21	0.2	0.217	39.4	41	41.7	40.7	
0.16	0.167	0.167	0.164667	46.8	47.6	49.3	47.9	
0.161	0.149	0.153	0.154333	46.2	46.2	47.4	46.6	
0.164	0.156	0.169	0.163	46.2	45.8	44	45.33333	
0.154	0.172	0.17	0.165333	49	46.2	48.2	47.8	
0.183	0.177	0.184	0.181333	32	32.1	31.9	32	
0.178	0.181	0.172	0.177	39.6	37.4	37.2	38 06667	

	0.163	0.18	0.172	0.171667
5	rF1	srF2	srF3	mean srF
	34	35	36	35
	27	31.5	28	28.83333
	37.5	40	40	39.16667
	37	38.5	40.5	38.66667
	33	37.5	40	36.83333
	28	33	35.5	32.16667
	38	43	45.5	42.16667
	40.5	41.5	44.5	42.16667
	26	30	32	29.33333
	29	33	34.5	32.16667
	33	34	37	34.66667
	30	34	36	33.33333
	47	50	51	49.33333
	43	45	45.5	44.5
	40	53.5	45	46.16667
	40	43	43.5	42.16667
	35	36.5	37	36.16667
	34	36	37	35.66667
	41	42	43	42
	37.5	37.5	37.5	37.5
	15.5	17.5	18	17
	12	16	16.5	14.83333
	14	15	15.5	14.83333
	12	14	14.5	13.5
	40	38	33	37
	32	35	36	34.33333
	27	27	32	28.66667
	31	32.5	33	32.16667
	51	51	50	50.66667
	48	51.5	52.5	50.66667
	52	53.5	54	53.16667
	51	50.5	53	51.5
	34	38.5	39	37.16667
	30.5	34.5	34	33
	32	37	39	36
	34	36	36	35.33333

0.156 0.162 32.4 0.172 0.171667 30.8

32.5 31.5 32.13333 31.5 31.3 31.2

0.156

0.174

Appendix 4: Pictures of Stretches

Partner assisted Quadriceps Stretch.

Partner assisted low back stretch

Static Calve stretch against

Partner assisted static hamstring stretch

Dynamic hip flexor / extensor stretch

Dynamic hip adductors / abductors stretch

a.

Dynamic trunk rotation stretch

а.

