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Abstract 

Multivariable control has been a challenging research area in process control, particularly 

for dynamically coupled and nonlinear time varying process systems. Since 1960, various 

multivariable control techniques have been proposed in the literature to address these 

issues. Out of these techniques Model Predictive Control (MPC) based control 

methodologies has received considerable attention during last few decades. 

The aim of this thesis is to provide a comprehensive analysis of different MPC techniques 

that can be used for a wider class of multivariable process systems. MPC schemes use a 

model to predict the future behavior of the process to be controlled and the control move 

that provides the minimum future error is chosen to drive the system. The model 

employed in the MPC scheme is generally a linear model. The representation of the linear 

model in two different forms, parametric form or weighting sequence form, has 

developed two popular and widely accepted MPC techniques, such as Generalized 

Predictive Control (GPC) and Dynamic Matrix Control (DMC) based MPC techniques. 

Although the GPC representation is the most advanced form of MPC, the DMC technique 

is popular in industrial applications. The strict linear representation of the process model 

in the above MPC schemes is insufficient to provide better response results against 

nonlinear and time varying systems. To overcome this issue, two approaches are 

incorporated: (a) adaptive MPC design and (b) fuzzy modeling. The adaptive structure 

uses an online parameter identification technique using the Recursive Least Squares 

(RLS) method. The fuzzy MPC system uses the Takagi-Sugeno (TS) type fuzzy rule 

based model structure. Each rule of the TS system represents a local linear model of the 
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process. This particular feature is exploited to extract the linearaized parameters of the 

fuzzy model in order to define an adaptive fuzzy MPC system using the RLS technique. 

The performances of the two adaptive MPC schemes are verified against a simulated 

multivariable nonlinear soil heating process system. The control objective is to maintain a 

desired temperature profile of the soil heating system, while tracking the temperatures 

outputs at three different locations in the soil sample. Three heaters are located at the 

outer surface of the soil cell and considered as point heat sources in the model. The soil 

heating system is modeled using the general purpose ABAQUS finite element program 

and is dynamically linked with the FORTRAN based control code to achieve a realistic 

simulation. In order to show the effectiveness, the performances of the proposed control 

schemes are compared against the tracking performances of the linear model-based non­

adaptive MPC techniques. A decoupled multivariable PID control scheme is also 

developed in this study to justify the superiority of the MPC based control strategies. The 

simulations results suggest the superior performance of the proposed adaptive MPC 

schemes against other linear MPC techniques. 
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Chapter 1 

Introduction 

1.1 Research Motivation 

Control applications of process industries in general present many challenging problems 

for control researchers. The nonlinear dynamic behavior, uncertain and time varying 

parameters, long time delays, non-minimum phase and unmeasured disturbance are 

known to be the most challenging issues in the field of process control [1]. In the past few 

decades, control of these systems has received considerable attention in both academia 

and in the process industries. A significant number of researches have been carried out in 

the control industry to solve these problems [2]. Among them, Model Predictive Control 

(MPC) based control strategy has received considerable attention in the control 

community [3], and has been regarded as one of appealing and attractive approaches for 

multivariable process control practice. Some new and very promising results of MPC 

schemes in the literature also allow one to think that this control technique will 

experience greater expansion within this community [2]. The main reason for this success 

can be attributed to the fact that MPC is the most general way of posing the process 

control problems in the time domain approach [3]. Thus the general formulation of MPC 

provides the opportunity to integrate its applications with optimal control, stochastic 

control, intelligent control, and multivariable control, and also with different types of 

advanced adaptive model identification strategies [3]-[7]. Considering these advantages, 

various MPC based techniques have been developed and being widely received by the 
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academic world and also by the process industries [3]. However, this open methodology 

also provides a respectful challenge for further extensions among the present researchers, 

and therefore motivates them to develop new MPC based control solutions that can 

effectively be implemented in process industries [2], [3]. The present research under the 

Pan-Atlantic Petroleum System Consortium (PPSC) project aims to present different 

MPC based control techniques that can be used to control a wide class of nonlinear 

multivariable process operation in a flexible way. This study also aims to serve as a 

guideline outlining how to implement MPC for multivariable and dynamically coupled 

process systems. The study attempts to show how intelligent control techniques, such as 

fuzzy logic control is effectively incorporated to obtain superior performance of the MPC 

against traditional linear MPC approach. 

1.2 Overview of Model Predictive Control 

1.2.1 Introduction to MPC 

MPC is a methodology that refers to a class of computer control algorithms in which an 

explicit process model is used for predicting the future behaviour of a dynamical process 

over an extended time horizon. At each control interval, MPC algorithm optimizes the 

future output behaviour in order to predict an open-loop sequence of values 

corresponding to the manipulated variables of the process. Different authors have 

provided the so-called standard definition of the MPC in the following way, 

• MPC is a descriptive name for a class of computer control schemes for the 

explicit prediction of future plant behaviour. It computes the appropriate control 
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action required to drive the predicted output as close to target values as possible 

[5], [8]. 

• MPC is an optimization-based strategy that uses a plant model to predict the 

effect of a control action on the plant [7]. 

In general, MPC consists of a broad range of control methods having one common 

feature; the controller is based on the prediction of the future system behavior by using a 

process model. Therefore the idea that appearing in greater or lesser degree in all the 

predictive control family can be summarized as follows, [2]- [10]: 

• Explicit use of a model to predict the future of process output. 

• Control sequence calculation based on the minimization of a certain definite 

objective function. 

• Moving horizon strategy or receding horizon strategy, i.e. at each instant, the 

horizon is displaced towards the future, which involves the application of the first 

control signal of the sequence calculation at each step. 

Because of the explicit use of the process model and the optimization approach, MPC can 

be applied to handle a wide class of complex processes, e.g. multivariable, non-minimum 

phase, open-loop unstable, nonlinear processes with long time delay [3], [11]. It can also 

deal with constraints efficiently. All these features make the MPC application more 

interesting among the present researchers. There are many applications of predictive 

control successfully in use at the present time, not only in the process industries but also 

application to the control of a diversity of processes ranging from robot manipulators to 

clinical anesthesia [3], [11]. The satisfactory performance of these applications shows the 
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capacity of the MPC to achieve highly efficient control systems, which is able to operate 

during long periods of time with hardly any intervention [3]. 

1.2.2 :MPC Strategy 

The methodology of all the controllers belonging to the MPC family is characterized by 

the following 'moving horizon or receding horizon strategy', illustrated in Fig.1.1 [12]. A 

discrete-time setting is assumed in which current time is labeled as time step k. At the 

present time, k a model is used to predict the future behavior of the process output, y (.) 

fork = 1, · · ·, P based on past and current control and process variables and on the optimal 

future control moves of the manipulated variables over a horizon, P. An objective 

function based on the difference between predicted output and set point sequence (desired 

output) is minimized to obtain optimum values for manipulated variables moves u (.) 

over the control horizon of M control moves ( M :::; P ). Although M moves are optimized, 

only the first move is implemented. After the move u (.)at the step k is implemented, the 

feedback measurement at the next time step, k+ 1 for y (.) is obtained. A correction for 

model error is performed, since the measured output will, in general, not be equal to the 

model predicted value. A new optimization problem is then solved again, over the 

prediction horizon of P steps by adjusting M control moves. 

A popular analogy that is often used to explain this concept is the control mechanisms 

that comes into play when driving a car [3], [13] . The driver knows the desired trajectory 

for a finite horizon and by taking into account the car characteristics (mental model of the 

car) decides which control actions (accelerator, brakes and steering) to take in order to 

follow the desired trajectory. 
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Only the first control actions are taken at each instant, and the procedure is again repeated 

for the next control decisions in a receding horizon fashion . Notice that when using 

classical control schemes, such as PID control, the control actions are taken based on the 

past errors and the future prediction is completely disregarded. 

The basic structure for implementing the MPC strategy can be described by using Fig. 

1.2 [3], [14]. A dynamic model of the system is used to predict the future plant outputs 

based on past and current values and on the optimal future control actions. These actions 

are calculated by the optimizer taking into account the cost function (where the future 

tracking error is considered) as well as the constraints. 

U'l ...... 
:::3 

.9 
~ 
:::3 
~ 

Past inputs 

and outputs) I 
... , 

Model 

Optimizer "" "' 

Predicted 
outputs 

-

Cost t 
function I 

~Constraints 

Fig.l.2 Basic structure of MPC 

... , 
1Setpoint 

t:ajectory 

The process model plays an important role in the MPC based control strategy. A 

complete design should include the necessary mechanisms for obtaining the best possible 

model from the process. The obtained model must be capable of capturing the process 
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dynamics so as to precisely predict the future outputs as well as being simple to 

implement and to understand. Therefore, this model is mostly chosen as a linear model. 

The main advantage of choosing the linear model is that it results in a linear prediction 

model. The common control objective used in MPC is the Linear Quadratic (LQ) 

objective function. An LQ objective, a linear prediction model and linear constraints 

gives rise to a so-called Quadratic Programming (QP) optimization problem in the MPC 

based control scheme. In general the QP optimization problem can be solved within a 

finite number of numerical operations [3]. The QP problem makes the resulting MPC 

algorithm robust for process control. On the other side, if the process model is allowed to 

be nonlinear then in general the prediction model will be nonlinear. This leads to a 

convex quadratic program to a non-convex nonlinear problem during optimization, which 

usually solved by employing Sequential Quadratic Programming (SQP) technique [2], 

[3]. It is much more difficult to solve. Furthermore, in this situation there is no guarantee 

that the global optimum can be found, especially in real time control, when the optimum 

has to be obtained in a prescribed period of time. 

The general expression of such an objective function to solve the optimization 

problem can be written as, 

p M 

1 = L 8(p)[y(k+ pi k)-w(k+ p)]2 + LA(p)[~u(k+ p-1)]2 

p= l 

where ~u(k + p -1) denotes the change of the control signal, N1 is the minimum cost 

horizon, y(k +pI k) is the p-steps ahead future prediction with available information at 

instant k, and w(k + p) is the future setpoint sequences. The coefficient 8(p) and 
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A( p) are the weighted term of the predicted error and the control effort during 

optimization. 

1.2.3 Historical Perspective on MPC 

The origination of MPC can be traced back to as early as 1960; where open-loop optimal 

control was a research topic of significant interest during that time. The idea of moving 

horizon or receding horizon control, which is the basic core behind all MPC algorithms, 

was proposed by Propoi, 1963[15], within the frame of open-loop optimal feedback 

control system. After that, Lee and Markus, 1967 [16] anticipated current MPC practice 

in their optimal control text in the following way: 

"One technique for obtaining a feedback controller synthesis from knowledge of open­

loop controllers is to measure the current control process state and then compute very 

rapidly for the open-loop control function. The first portion of this function is then used 

during a short time interval, after which a new measurement of the process state is made 

and a new open-loop control function is computed for this new measurement. The 

procedure is then repeated'' . 

This idea was impractical during that time due to lack of sophisticated hardware and 

computerized set-up. It was also desirable to derive a closed form control law that could 

be implemented with computational equipments available at reasonable cost. The true 

birth of MPC using the above idea was introduced in industry after the publications the 

seminal paper by Richalet et al. (1976) in which Model Predictive Heuristic Control 

(MPHC) was presented [17], [18]. Later the publication of Cutler and Ramaker, 1979 

[19] introduced Dynamic Matrix Control (DMC) based control strategy. A dynamic 
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linear weighting sequence process model is explicitly used in both algorithms in order to 

predict the effect of the future control actions on the output. The control actions are 

determined by minimizing the predicted error subject to operational constraints during 

optimization. The optimization is repeated at each sampling period with up to date 

information about the process. These formulations were both heuristic and algorithmic in 

nature and took the advantages of increasing potential of the digital computers at that 

time. Besides these two algorithms, there exist a large variety of MPC algorithms. All of 

these algorithms use the same underlying idea of predictive control; an explicit model, 

the moving horizon strategy and the computation of the control signal by optimizing the 

predicted output. The only difference between them is that they use different types of 

disturbances and plant models of the true systems for prediction. Detailed literature 

surveys of these techniques are presented in [3]- [5]. 

1.3 Present Research 

1.3.1 Problem Description 

Most industrial processes are multivariable, and have many variables that have to be 

controlled (outputs) and have many manipulated variables (inputs) to drive the plant. In 

some cases, a change in one manipulated variable mainly affects the corresponding 

controlled variable and each of the input-output pair can be considered as a Single-Input 

Single-Output (SISO) system which can easily be controlled by independent control 

loops. In many cases, when one of the manipulated variables is changed, it not only 

affects the corresponding controlled variables, but also influences the other controlled 

variables of the process systems. These interactions between process variables may result 
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in a poor performance of the controlled process or even instability [20]. Multivariable 

decoupling theory based control technique can be used to counteract these interactions 

and to simplify the multivariable process into several SISO processes [20] - [23] . 

However, an effective decoupling network is very difficult to achieve for processes with 

nonlinear complex dynamics and long dead times [3], [22]. 

The present study considers MPC based control schemes as a solution to overcome 

these problems for a multivariable process system. In order to achieve this objective a 

soil heating system having three inputs and three outputs is considered. Fig. 1.3 shows 

the schematic view of the soil heating process. 

Soil Cell 

Heater 1 -
"" 

Input 1 

Output 1 n ' 
"" -Thermocouple 1 

Heater 2 -
~ 

Output 2 D Input 2 
.... .... 

Thermocouple 2 
-

Heater 3 n Output 3 -
-<( 

Thermocouple 3 Input 3 

' 
-

Fig.1.3 Soil heating process 

The overall system comprises three heating sources (heater 1, 2 and 3) as inputs (input1, 

input 2, and input 3) and three thermocouples (thermocouple 1, 2 and 3) for temperature 
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measurement at three different locations as outputs (outputl , output 2, and output 3) in a 

cylindrical soil cell. The control objective of this process is to achieve temperature set 

points at the chosen locations in the cell. 

The process is multivariable and there will be interactions between input and output 

variables of the system. This interaction can cause oscillations and even instability [20] . 

The system exhibits a dead time. That means, the output responds to the input after some 

delayed sample timed interval. It is well known that the process with dead time is 

difficult to control, because of the phase lag introduced by the dead time in the closed 

loop. However, a time-variant nonlinear transient heat transfer occurs through the soil 

cell that makes the process more complex and nonlinear. Because of these reasons any 

classical control algorithm will not give satisfactory results. MPC is one of the effective 

techniques to solve these types of multivariable control problems explicitly by 

considering the nonlinear interactions and time-lag (dead time) between inputs and 

outputs variables of the process when the control law is developed. However, the 

resulting control law in MPC is linear, easy to implement, and at the same time its tuning 

methodology is relatively simple [14]. 

1.3.2 Present Research Issues 

The application of linear model based MPC schemes for the control of nonlinear 

processes is one of the most interesting issues in the current research on MPC [2]. At 

present, a major part of MPC applications in process industries stems from the use of the 

linear response model and has shown improved control performance against the classical 

PID based control performance. However, when these linear MPC schemes are applied to 
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the nonlinear and time variant processes, the application of the linear model based 

controllers are limited to a relatively small operating range. Hence the capabilities of the 

linear model based controllers will degrade when the operation level moves away from 

the original design level of operation [24]. Nonlinear model can be employed with MPC 

to solve these problems [2], [25]. But these algorithms generally lead to the use of 

computationally intensive nonlinear optimization techniques that make industrial 

applications almost impossible [2], [9], [26], [27]. Recursive adaptation on the linear 

model parameters can be used to overcome these problems more efficiently by re­

identifying the process with its moves into a different operating region. It can also 

maintain a precise control performance over a wider operational range [2], [24]. Apart 

from the adaptive model based MPC, fuzzy model based MPC techniques can also be 

used to handle a wide class of nonlinear process control problems. Although there are 

many representations in fuzzy systems for empirical modeling, the Takagi-Sugeno (TS) 

type fuzzy model is the popular one for nonlinear approximation where several local 

linear models for different operating conditions are identified and combination of these 

local models through fuzzy logic representations results in an approximate nonlinear 

model for the wide operation range [28]. To avoid nonlinear optimization in MPC, 

different instantaneous linearization technique can be employed for linear model 

extraction from the nonlinear fuzzy model [29]. Online adaptation to the fuzzy local 

linear models can also be used for better performance of controlled processes against 

time variant process dynamics [2], [9], [11]. The present study considers these issues to 

develop new multivariable MPC algorithms that can be used to support the present soil 
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heating process system, as well as a wide class of multivariable processes in control 

industries. 

1.3.3 Research Contributions 

This thesis represents an attempt to highlight the above issues related to the linear MPC 

approach for nonlinear processes and intends to provide the contributions in the following 

three aspects: 

1. The most popular DMC based MPC strategy is used to develop a high 

performance Adaptive MPC (AMPC) technique for a wide class of nonlinear 

multivariable process systems. A decoupled PID controller and a non-adaptive 

linear model based MPC scheme are also developed to confirm the superiority of 

the proposed adaptive MPC system. The proposed system uses a recursive 

parameters identification strategy for online adaptation on the linear model and to 

cope against the nonlinearity, parameter uncertainty, and time variant process 

dynamics. 

2. The popular TS type fuzzy model based adaptive MPC strategy for a class of 

nonlinear time variant multivariable process systems is proposed and compared 

against the performance of two linear model based MPC systems. To avoid the 

nonlinear optimization, the proposed MPC algorithm utilizes a linear model 

extracted from the nonlinear fuzzy model at every time step and is used for linear 

MPC formulation. Online adaptation of the fuzzy scheme is also employed to 

handle the time variant behavior and parameters uncertainty that always exists on 

process systems. 
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3. The performances of the proposed controllers are verified against the above 

multivariable soil heating process. For the verifications, the soil heating system is 

modelled using the general-purpose ABAQUS finite element program. A dynamic 

control simulation is performed while linking these control algorithms into the 

ABAQUS finite element analysis using a FORTRAN based user-defined 

subroutine program. Thus a more realistic approach is employed for verification 

by developing the dynamic simulation model using the general-purpose 

ABAQUS finite element program. 

1.4 Short Outline of the Thesis 

This thesis consists of 6 chapters. The contents of these chapters are briefly outlined 

below: 

Chapter 2: Process Description and Finite Element Modeling 

This chapter introduces the soil heating process with its original hardware configuration. 

The finite element analysis of this process and the dynamic control simulation approach 

is presented using the general-purpose ABAQUS finite element program where the 

control algorithm is linked into the ABAQUS finite element program by a user-defined 

subroutine. 

Chapter 3: Multivariable Dynamic Matrix Control 

A DMC based MPC algorithm has been developed in this chapter to control a highly 

coupled multivariable process system. The performance of the proposed MPC controller 

has been compared with a multivariable PID controller, where three decoupled PID 
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controllers have been implemented simplifying the Multi-Input-Multi-Output (MIMO) 

system to three SISO systems. 

Chapter 4: Adaptive Model Predictive Control 

In this chapter an AMPC strategy for a coupled multivariable process system has been 

developed. The proposed AMPC is developed using the DMC strategy to realize the basic 

predictive control structure and Recursive Least Squares (RLS) method for online 

identification of the model parameters. 

Chapter 5: Adaptive Fuzzy Model Based Predictive Control 

This chapter presents a novel approach to design an adaptive fuzzy model based MPC 

algorithm for controlling a nonlinear multivariable process system. The proposed system 

uses TS type fuzzy model structure. The system recognizes the active fuzzy rules, which 

are recursively adapted for handling the time variant behavior of the process. 

Chapter 6: Concluding Remarks 

This chapter starts out by discussing the conclusions of the work presented in this thesis. 

Then there is a discussion on suitable direction for further research. 
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Chapter 2 

Process Description and Finite Element 

Modeling 

2.1 Introduction 

Mann (1999) [30] used the soil heating process system in the INCA laboratory to verify 

his control algorithms. The present study considers a different and more realistic 

approach to verify the proposed control logics with the soil heating system. A finite 

element analysis is performed on the soil cell and a model structure is built to mimic the 

nonlinear soil heating process dynamics. The finite element modelling technique allows 

representing the soil heating process dynamics based on the Jaw of physics and the 

problem of defining a single mathematical equation for this nonlinear process is 

eliminated. Thus representing the finite element based soil heating process model as 

plant, a more realistic approach is developed in the study for verification. The application 

of the process will be used in C-CORE at Memorial University of Newfoundland for 

studying transport properties and moisture migration of soil under different gravitational 

conditions. 
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2.2 Hardware Configuration of the Soil Heating Process 

The schematic view of the soil heating process and its hardware configuration is 

presented in Fig. 2.1 [30]. 

Soil Cell 

I Power I 
Heater I 
-

n ~ 
-Them1ocouple 1 

Heater 2 
,. 

-

n '-- MOSFET 
Circuit 

Them1ocouple 2 --

Heater 3 

n -

Thermocouple 3 +-- DBK2 Voltage 

- Output Card 

~ 

DBK 19 
Thermocouple 

DAQ ,. 
Board/!OOA 

Card 

... ~ 

,,. 
Pentium_ PC 

(Computer Control) 

Fig. 2.1 Hardware configuration of the soil heating process adopted from [30] 

Three heaters (heaterl, 2 and 3) as inputs located at the peripheral of the cylindrical 

container supply heat to the system and three thermocouples (thermocouple 1, 2 and 3) 

located along the centreline of the soil cylinder measure the temperatures as outputs at 
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three different locations. The system comprises a metal cylindrical container of 305mm 

height and 152mm diameter filled with dry sand. 

2.3 Finite Element Model (FEM) of the Soil Heating System 

In the experiment as shown in Fig. 2.1 the soil used inside the cylinder is dry sand. 

Therefore conduction is only the mode of heat transfer through this medium. The general 

heat conduction equation for this medium can be written as: 

where \1 is the Laplacian operator, T is temperature, p is the density, c is the specific 

heat and K is the thermal conductivity of the soil. The above equation is a nonlinear 

differential equation under given boundary condition. The development of a closed-form 

solution for the three-dimensional nonlinear transient heat transfer is mathematically a 

complex problem and can become intractable. Therefore, the analysis can be performed 

numerically using the ABAQUS/Standard-6.3 finite element based program. 

ABAQUS/Standard-6.3 finite element numerical code has the capability to analyze heat 

transfer through a body for given boundary conditions. This numerical code has been 

used in the study to model the system. The schematic view of the soil cylinder for finite 

element analysis and the corresponding finite element descretization of the cell using 

7200 eight nodded brick shape small elements are presented in Fig. 2.2(a) and (b), 

respectively. 

The heaters Ut , u2 and u3 in the finite element model are modelled using concentrated 

heat flux (qc). The concentrated heat flux is the amount of heat flux applied at each node. 
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(a) Schematic view (b) Finite element model 

Fig.2.2 Finite element analysis in the soil heating process 

The performance of the heater depends on the area of the medium it covered. Therefore, 

the energy (E) from the heater is related to qc as: 

where N is the number of node covered by the heater. The temperature of the 

thermocouples Yl, Y2 and Y3 is simply the nodal point temperature at the desired location. 

The thermal properties of soil are obtained from [31]: p = 1600 kg/m3
, c = 0.2 Cal/kg°C 

and K = 1.9 W/m0 C. It is assumed that the top and bottom surfaces of the system are 

insulated and heat dissipation occurs only through the cylindrical surface. The cylindrical 

surface temperature is assumed to be always at a constant room temperature of 20°C. 

However, the free heat transfers within the soil system makes this process a coupled 

multi-variable heating system. 
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2.4 Verification of Finite Element Analysis 

2.4.1 Finite Element Analysis through a Semi-infinite Medium 

In order to verify the performance of the finite element modeling a one-dimensional 

transient heat transfer for a semi-infinite medium has been analyzed. This is considered 

because closed-form solution is available for this problem. Figure 2.3 (a) shows a section 

of finite element mesh. Energy (£=0.2 Watt) is supplied from the top of a rectangular bar 

(10 mm x 10 mm) through four nodes (see the arrows). 

Applied heat 
flux 

0' 
0 

]()() 

--Finite elerrent analysis by 
ABAQUS 

80 o Closed form solution 

..__,60 

0 ~--~--~--~--~--~--L---L-~ 

(a) 

0 5 10 

Time(Hour) 

(b) 

Fig. 2.3 Verification of finite element analysis 

20 

15 20 



The side of the bar is insulated to model one-dimensional heat flow. Initial temperature is 

considered as the room temperature 20°C. The solid line in Fig 2.3 (b) shows the 

increase in temperature with time for an element at 500 mm from the heat supply. The 

closed-form solution for this problem is given by [31]: 

2q lft (-x
2 J qx ( x J T(x,t)=I;+- -exp- --erfc --

k n 4at k 2.Jai 

where, Tis the temperature; x is the distance from the top where the heater supplies heat; 

q is the heat flux (= EIA), tis the time, erfc is the complementary error function and a is 

the thermal diffusivity (=K/cp). The prediction using this closed form solution is also 

shown in Fig. 2.3 (b) as dotted line, which is much closed to the finite element prediction. 

That is, modeling of the heater using concentrated heat flux is reasonably accurate. A 

time-step of 0.6 minute has been used in this analysis, which will be used in heat transfer 

analysis of the present soil heating system in the following section. 

2.4.2 Verification of FEM based Soil Heating Process 

As it is extremely complex to develop a closed-form solution for a three-dimensional 

nonlinear heat transfer, an alternative approach is used for the verification of the finite 

element based soil heating process model. In general if the cylindrical soil cell of the real 

soil heating system as shown in Fig.2.1 is surrounded with a nonconductive metal then 

for a constant heat supply the system will reasonably behave as an open-loop integrating 

process. This is because; there is no radiation of heat through the external surface of the 

cell. As a result the system is conserving heat energy with time inside a closed cylindrical 

cell. In other case, if the outer surface of the soil cell is surrounded by a non-insulated 
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metal then for steady state heat transfer an open-loop stable temperature profile may 

reasonably be found. Mann (1999) [30] designed his experiment with a conductive metal 

in the outer surface of the soil cell such that heat can always radiate through the outer 

surface of the soil cell. A stable open-loop response was found from the experiment. 

The finite element based soil heating model dynamics is verified with the above 

conditions. The dimensions used for this analysis in the soil cell are shown in Fig. 2.4. A 

heater is placed on the surface of the soil cylinder at a depth of 91 rom from the top. 

Three thermocouples on the centerline of soil cylinder at different depths (A, B, C) 

measure the temperature change. Note that top and bottom surfaces in the cell are 

assumed to be insulated in the analysis. 
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T 
1

91 rnm 
Heater 

.----152 rom ~1 

Fig. 2.4 Dimension of the system for verification 

22 



Simulations have been performed employing two types of boundary conditions on the 

finite element based cylindrical soil surface. The conditions are given by, 

1. Cylindrical surface is non-insulated and 

2. Cylindrical surface is insulated. 

1. Non-insulated Cylindrical Surface 

In the simulation a boundary condition for heat dissipation through the external surface is 

considered in the finite element based heat transfer analysis. A constant energy of 40 

Watts heats from the heater is supplied to the soil cell and the boundary temperature is 

maintained at a constant room temperature, 20°C. The increase in temperature at three 

locations, A, B and C of the thermocouples are shown in Fig. 2.5. It can be seen from the 

Fig.2.5 that a stable temperature profile is achieved after 3 hours. After this time a steady 

state heat transfer occurs in the system. 
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Fig. 2.5 Increase in temperature for non-insulated cylindrical surface 
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2. Insulated Cylindrical Surface 

A number of simulations were carried out with the insulated boundary surface on the 

finite element based soil cell. The increase in temperatures at the locations A, Band C of 

thermocouples for different energy supply from the heater (4 Watt, 8 Watt and 12 Watt) 

are shown in Fig. 2.7. The higher the energy from the heater, the faster is the temperature 

increase. Simulation results justify the system is integrating with the insulated boundary 

condition. 

-A.- Location A 
-•-Location B 
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Fig. 2.6 Increase in temperature for insulated cylindrical surface 
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2.5 Dynamic Control Simulation 

After modelling the soil heating process dynamics using ABAQUS finite element code a 

user-defined subroutine (UMA THT) has been developed to link the proposed control 

algorithms dynamically with the finite element based soil heating process dynamics. Thus 

linking the control code into the user subroutine, following Internal Model Control 

(IMC) based control simulation is performed. The schematic view for this dynamic 

simulation is presented in Fig.2.7. 
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Fig.2.7 Finite element based dynamic control simulation structure 

... 
r 

In the approach the control law is written in FORTRAN into the user subroutine and the 

approximated model (empirical model) of the FEM is obtained offline from the FEM 

based simulated open-loop input-output data. 
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2.6 Summary 

A finite element based dynamic control simulation technique is presented for the present 

soil heating process. The present study considers this technique as a tool to verify the 

proposed controller's performance. In this control approach it is possible to perform the 

online modification of process parameters for robust analysis, such as heat transfer from 

the surface, surface insulation, variation of soil properties at different locations, 

disturbance due to power shut down, for simulations with least effort. However, this 

program has the capability to calculate the element state variables at each step, which can 

directly be used for updating the control variables dynamically while using the integrated 

control law. 
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Chapter 3 

Multivariable Dynamic Matrix Control 

3.1 Introduction 

MPC has recently become one of the effective and better control methods for handling a 

wide class of multivariable process systems. Although there are many forms of MPC 

algorithms available in the literature, the DMC is arguably the most popular form of 

MPC algorithm currently used for multivariable control problems in the process 

industries [4], [24], [32]. The DMC technique is simple and relatively easy to implement 

using common intuition and heuristics [2], [33]. A large part of DMC's appeal is drawn 

from an intuitive use of a linear finite step response model of the process, a quadratic 

performance objective over a finite prediction horizon and optimal manipulated input 

moves computed as the solution to a linear least squares optimization problem. 

The aim of this chapter is to present a simple design and implementation technique 

for a multivariable DMC controller. To verify the performance, the proposed control 

system is simulated against the finite element based soil heating system. Writing the 

FORTRAN code based on DMC strategy into the user-subroutine, a continuous control 

simulation is performed at each sampling instance with the dynamics of the process 

obtained from FEM based soil heating process. In order to compare the DMC output 

results the performance of a classical multivariable decoupled PID controller network is 

also verified where three decoupled PID controllers have been implemented simplifying 

the MIMO system to three SISO systems. The simulation results show that the proposed 
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DMC controller able to outperform the decoupled PID control system. Better results are 

also shown when a high disturbance is applied at different level of operation. 

3.2 Background 

Cutler and Ramaker [19] presented details of an unconstrained multivariable MPC 

algorithm, which they named DMC at the 1979 National AIChE meeting, and at the 1980 

Joint Automatic Control Conference. In a companion paper at the 1980 meeting Prett and 

Gillette [34] described an application of DMC technology to a Fluidized Catalytic 

Cracking Unit (FCCU) reactor/regenerator in which the algorithm was modified to 

handle the nonlinearities and constraints. A significant number of DMC algorithms have 

been proposed in the literature to handle a wide class of multivariable process control 

problems. Qin and Badgwell [4] reported about 600 successful applications of DMC in 

the process industries. Apart from the DMC another form of MPC that has also rapidly 

gained acceptance in the control community is the Generalized Predictive Control (GPC) 

[35] based multivariable control strategy. The GPC employs a linear Controlled Auto­

Regressive Integrated Moving Average (CARIMA) model of the process, which allows a 

rigorous mathematical treatment of the predictive control paradigm. The GPC 

performance objective is very similar to that of DMC but the optimization is achieved via 

recursion on the Diophantine identity [36]. 
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3.3 Formulation of Multi variable Non-Adaptive DMC 

As a starting point, consider the following discrete-time linear step response model for an 

n-output, m-input multivariable process. The ith process output at the time instant k is 

described by, 

m oo 

y ;(k) = Y;(O) + LL g/ ~uj(k -l) (3.1) 
j=J 1=1 

where Y; (0) is the injtial condition of the ith output y; , ~u j is the change in the jth 

manipulated input, g/ is the zth unit step response coefficient of the ith output that 

corresponds to /h input. The response coefficient g/ in equation (3.1) converges to the 

steady-state gain if, and only if, the system is stable. For such a stable processes the 

model can be decomposed andre-expressed as, 

m Nij m oo 

y ;(k) = Y;(O) + LLg? !lu/k -l)+ L L g/ !lu/k -l) (3.2) 
j=l 1=1 

where Nu is the process stable time in samples. If the process is asymptotically stable, 

the coefficients g? of the step response leads to a constant value after N u sampling 

periods, so it can be considered that 

gij - gu - - gu - gu -0 and 
N · +I - N·· +2 - •.• - oo - ss -

I) IJ 

m oo 

L L !luj(k -1) = u/k- Nij -1), 
j=li=Nij+l 

where g ~ is the steady state step response coefficients. 

Thus the model in equation (3.2) can be written in the following form, 

m Nij 

Y;(k) = y(O)+ LL g/ !lu/k -I) (3.3) 
j=) 1=1 
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The cornerstone of the DMC algorithm is the response model in equation (3.3) that 

predicts the output, y;(k +pi k); p sampling instants ahead of the current time instant, k 

and is given by, 

m p m N,1 -l 

Y;(k +pi k) = Y;(O)+ LLgF~u/k+ p-l)+ L L g?~u/k+ p-l). (3.4) 
j=l 1=1 j=l l=p+l 

effect of curreol & future moves effect of past moves 

To cope with the unmeasured disturbances and inaccuracies due to plant-model mismatch 

a current disturbance measurement, d; is estimated with equation (3.4) through the 

prediction horizon, p = 1, ... , P and is written as 

m p m Nij-1 

Y;(k +pi k) = y0 + LLgF~u/k+ p-l)+ L L g?~u/k + p-l)+d;(k). (3.5) 
j=l 1=1 j=l l=p+l 

Since the future values of d; (k + p) are not available an estimate of the future disturbance 

is used. In the absence of any additional knowledge of d; (k + p) over future sampling 

instants, the predicted disturbance is assumed to be equal to that estimated at the current 

time instant. Therefore 

(3.6) 

where y~ is the current measurement of the ith output. 

The prediction model in equation (3.5) can be represented as 

m P 

Y;(k+ plk)= LLg?~u/k+ p-l)+ J;(k+ p). (3.7) 
j=l 1=1 

Where, 
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(3.8) 

is defined as the free response profiles of the /h output, because this part of the response 

does not depend on the future control actions. 

Now using the prediction model described in equation (3.7) the future step predictions 

through the prediction horizon, P with M future control actions, can be expressed in the 

following form, 

Y;(k + 21 k) = g;111u 1 (k + 1) + g~1 11u 1 (k) + ··· + g;111u 1 (k + 1) + g~l1u 1 (k) + 

• • • + g :m 11 U m ( k + 1) + g ~m 11 U m ( k) + /; ( k + 2) 

y j ( k + M I k) = g: I 11. u I ( k + M - 1) + . . . + g ~ 11 u I ( k) + ... + g {1 11 u j ( k + M - 1) + ... 

+ g t 11 U / k) + · · · + g ;m 11 U 111 ( k + M - 1) + · · · + g :/ 11 U m ( k ) + /; ( k + M ) 

y j ( k + M + 1 I k) = g :I 11 u I ( k + M ) + ... + g ~+I 11 u I ( k) + ... + g f1 11 u j ( k + M ) + ... 
'---v---' \,._ ___./ 

=0 ~ 

+ g t + 111 U j ( k) + · · · + g ;m 11 U 
111 

( k + M ) + · · · + g ~~ + 1 11 U m ( k) + /; ( k + M ) 
'----,---.../ 

=0 

+ g t 11 U j ( k) + · · · + g :m 11 U 
111 

( k + P - 1) + · · · + g ~m 11 U 
111 

( k) + /; ( k + P). 
'---v----' 

=0 
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These above set of future predictions for the ith output can be written in the following 

compact matrix-vector form, 

(3.9) 

Where, 

F; = [/; (k + 1),- · ·, f (k + P) J and 

~U = [~U1 ,···,~Umr where 

The matrix G~ in equation (3.9) is the dynamic response coefficient matrix of the ith 

output related to, j = 1, · · ·, m inputs of the process, and is given by 

where 

g? 0 0 

gf g/ 0 0 

Gij= 

gt 
ij 

g/ gM-1 
(3.10) 

g~ ij ij 
gP-1 g P-M+1 PxM 

The predicted equation in (3.9) can be combined for, i = 1, · · ·, n in the following compact 

form, 

Y=GilU+F (3.11) 

while defining, 

y =[Y ... y ]T 
1' ' n 
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[ R RJT G= G 1 ,.··,Gn · 
nPxmM 

The objective of the control is to determine the current and future control moves 

~u j (k + p -l) in equation (3. 7) such that the predicted output profiles Y; (k +pI k) for 

p = 1, ... , P will drive as close to the setpoint sequences, w; (k + p) as possible in a least 

square sense with a penalty of M control moves of ~u j. To do this following cost 

function is selected: 

n p m M 

1 = LL~(p)[w;(k+ p)-y;(k+ p/k)f+ LLA;(p)[~uj(k+ p-1)]2 

i=l p=l j=l p=l 

or the same can be expressed in matrix form as, 

1 =01[W1 - Y1f[W1 - Y1]+l1[AU,f[AU1]+···+o;(W;- Y;f[W;- Y;]+ 

lj[AUjf[AUj]+···+oJWn- Ynf[Wn- YJ+lm[AUmf[AUm] 

It can be written in the following compact form 

J = o[W- Yf[W- Y]+ l[AUf[AU]. 

Where W is the setpoint vector and is given by, 

W = [W" · · ·, Wn], with the ith setpoint trajectory as 

(3.12) 

(3.13) 

and the matrices o and l are the diagonal matrices of controlled variables weights and 

manipulated variables weights of the MIMO DMC with dimensions (nPxnP) and 

(mM xmM ), respectively and are given by, 
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The diagonal terms of o and A. also the diagonal matrices of the ith controlled variables 

weights and jth manipulated variables weights with dimensions ( P x P) and ( M x M ) 

respectively. These matrices are given by, 

Now using equation (3.11), the cost function in equation (3.13) can be expressed as, 

J = o[W -G~U -Ff[W -G~U -F]+A.[AUf[AU] 

or 

(3.14) 

Minimizing J in equation (3.14) with respect to ~U yields: 

This leads to the following unconstrained close loop DMC control law, 

(3.15) 

or ~U=K(W-F). 

where K = (G ToG+ A.l) - I G T () is the MPC gain matrix and the term (W- F) is the 

vector of future predicted error over P sampling instants due to the effect of past inputs. 

The only control moves~u 1 (k),···,~um(k) in equation (3.15) are applied to the plant at 
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current step and whole procedure is repeated in each sampling step. The implementation 

of the control law with the process can be described by Fig.3.1 [3]. 

Future 
predicted 
error 

K 

Free response 
calculation 

Fig.3.1 MPC law 

The control move ~U is zero if there are no future predicted errors, that is, (W- F) = 0 

then the control objective is fulfilled only with the free evolution of the process. In other 

case, the increment in the control actions is computed by optimizing the future prediction 

errors. This control law provides the feedback of the measured disturbance at every 

sampling instance. The other schemes such as GPC assume a model for noise and 

disturbances and employ the information through a series of filters to predict future 

disturbances profiles. However, the control actions computed in equation (3.15) still has 

limitations when implementing to the real process due to the saturation limit of the 

actuators. Constraints on the incremental values of the manipulated variables can be 

imposed for the safety reasons. Typical constraints which generally implement in the 

control process can be applied with this scheme for the safety purpose, [37] 

(3.16) 
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where u~" and u;ax are the minimum and maximum limits of the jth manipulated input 

variable. 

3.4 Application ofDMC to the Soil Heating Process 

The above DMC based control algorithm is applied to the finite element based 

multivariable soil heating process. To identify the process model for DMC, open-loop 

step input test simulations are performed on the finite element based soil heating model. 

In the simulations a constant open-loop control signal, u j is applied to the finite element 

based process model and responses of the corresponding outputs (y1 , Yz and y3) are 

measured to model the finite element system. Analyzing the open-loop step responses 

following linear step response model is obtained for the {h output [3] and is given by, 

3 Nij 

Y ;(k)=y;(O)+ LLg/ f1u/k-l), i=l,-··,3 (3.17) 
j =l 1=1 

Note that, the sampling interval is chosen 0.6 minute and the corresponding values of 

Nu for the process models are, 

N3 1 = 30 N32 =50 N33 =55. 

The complete control structure of the proposed control system with FEM of the soil cell 

(plant) is shown in Fig.3.2. To cope with the model-plant mismatch due to process 

uncertainties and to avoid the steady state control error, the proposed scheme is 

implemented within an IMC structure (Fig. 3.2). A feedback filter is introduced into the 

36 



control scheme and the filtered modeling error is utilized to modify the setpoint. For this 

purpose, the following first-order low-pass filter is used [2]: 

e{ (k) = K 1 (yi (k)- y;" (k) )+ (1- K 1 ) e{ (k -1) (3.18) 

where K 1 is the adjustable filter parameter, K1 E [0, 1]. The feedback filter is able to filter 

out the measurement noise and stabilize the loop by reducing the loop gain. 
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Fig. 3.2 Non-adaptive MPC structure for the soil heating process 

The overall control strategy can be described in the following simple steps: 

1. Identify the step response model described in equation (3.17) in offline and placed 

in parallel with the FEM as shown in Fig.3.2 

2. Measure the current disturbance (di(k)) due to plant-model mismatch using 

equation (3.6) and add with the prediction model shown in equation (3.7). 
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3. Predict the output in the future steps and develop the control law present in 

equation (3.15). 

4. Apply the control inputs ( ~u1 (k ), · · ·, ~u3 (k)) to both the plant and the model. 

5. Go to step 2 and repeat 

3.5 Decoupled Multivariable Control Scheme 

In the control theory, a decoupler is defined as a device, which eliminates the interaction 

between manipulated and controlled variables by changing all the manipulated variables 

in such a manner that only the desired controlled variables will be changed. A decoupling 

network design problem for a multivariable process is presented in this section. The 

design uses the method shown by Westpha (1995) [23]. The general structure for an n-

output, m-input ( n x m) multi variable process system with decoupling network is shown 

inFig.3.3. 

u1 
Uj 

Um 
D 

De-coupling 
network matrix 

m1 
mi 
mm 

H 

Plant 

Fig. 3.3 nxm Decoupled MIMO process 

Y1 

Yi 

Yn 

In the figure, H is defined as the process dynamic transfer function matrix and D is the 

desired decoupling matrix, and is given by, 
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Dll Dlm 

D= D il Dim and (3.19) 

Dnl Dnm 

Hll Hlm 

H= H i I Him (3.20) 

H nl H nm 

Where Du and H u are the decoupled transfer function model and plant dynamic transfer 

function model for the ith output corresponding to /h input. The aim is to design the 

decoupling network matrix D such that u1 affects only y 1 , u2 affects only y2 , • • ·, and um 

affects only Yn, respectively at steady state. 

The design equations can be summarized using the following matrix notation, 

Yn =Hm 

m=Dum. 

(3.21) 

(3.22) 

Where y n, um, and m are the vector of process outputs, manipulated inputs to the de­

coupler and manipulated inputs to the process, respectively and are given by, 

Y n = [ Y1 ' · · · ' Y n r 

m =[~ , ···,mm r. 

Thus from equations (3.21) and (3.22) results the following form, 

Yn =HDum. (3.23) 
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In order to affect decoupled control the coupling that exists in equation (3.23) is 

deliberately removed using the following procedure. Modify equation (3.23) as, 

Y =Lu n m (3.24) 

where L is the diagonal matrix redefined while modifying the process and decoupler 

matrices as given by, 

(3.25) 

The matrix HM is the modified process transfer function matrix with all off diagonal 

elements in equation (3.19) is zero, (i.e. for i:;: j, HM (i, j) = 0, else HM (i, j) = H(i, j)) 

and DM is the modified decoupling network matrix with all diagonal elements in 

equation (3.20) are equal to 1 (i.e. for i = j, DM (i, j) = 1, else DM (i, j) = D(i, j) ). 

Using equations (3.23) to (3.25) the following relation is established. 

(3.26) 

or it can also be written using the equation (3.25) as, 

The model in equation (3.26) defines the decoupler for a ( n x m) multi variable process. 

Solving the equations in (3.26) for the present (3 x 3) soil heating process the desired 

decoupling transfer functions model can be obtained. After designing the decoupling 

network, it is possible to implement three PID controllers (defining as PID1, PID2 and 

PID3) to control and tune the output 1 (y1), output 2 (y2) and output 3 (y3), separately. 
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The complete schematic diagram of the finite element based soil heating process (FEM) 

with decoupled PID control network is shown in Fig. 3.4. 

ml 
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,. Y2 
mJ 
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PID ... : 
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'"": 

Fig. 3.4 Decoupled PID controller for the soil heating process 

The internal structure of the decoupled PID controllers in Fig.3.4 is presented in Fig.3.5. 

The variables e1, e2 and e3 in the figure are defined as the feedback error corresponds to 

output 1 (y1), output 2 (y2) and output 3 (y3), respectively. 
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Fig. 3.5 Internal structure of decoupled PID controller 

3.6 Simulation Results and Comparisons 

The objective of the proposed non-adaptive MPC scheme is to make the process outputs 

follow the desired outputs with lower overshoot, smaller settling time, minimum heat 

(Watt) distribution, better load disturbance characteristics and least tracking error. To 

achieve the goals two fixed temperature set-point tracking experiments and a variable set-

point tracking experiment were carried out and compared with the PID control 

performance. Simulation results and discussions are presented in the following 

subsections: 
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3.6.1 Simulations with Fixed Setpoint Temperature 

Simulations were carried out for the non-adaptive MPC scheme with the set point 

temperatures 55°C, 65°C, 60°C and 70°C, 75°C, 80oC for output 1, 2 and 3 (y1, Y1 and y3), 

respectively and compared against the decoupled PID based control performance. The 

simulation results of both schemes are presented in Fig.3.6. For the simulations the initial 

temperature of the FEM outputs was considered at 20°C and the boundary temperature 

was kept fixed at 25°C. A high negative disturbance of heat is applied constantly to both 

control system at 180minutes, while the responses are at steady state. 
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(a) Simulation with set points temperatures 55°C, 65oC and 60°C 
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Fig. 3.6 Comparisons of MPC and PID against fixed setpoint sequence 

3.6.2 Simulation with Variable Setpoint Temperature 

For better comparisons the simulation performance of the both control schemes against a 

variable setpoint sequence was carried out. The simulations were performed for 540 

minute where the set points for all three outputs were changed after every 90 minute 

interval. The applied set point sequences for all outputs are, 

0 

70°C 90°C 75°C 65°C 55°C For output 1: 55 c 

65°C 80°C 90°C 85°C 75°C 
0 

For output 2: 65 c 

For output 3: 
0 0 

90°C 
0 0 

60°C. 60C 75 c 75 c 70C 

The simulation results and comparisons are presented in Fig. 3.7. 
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Fig. 3.7 Comparison of MPC and PID against variable setpoint sequences 
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3.6.3 Tuning Strategy and Performance Analysis 

For the comparisons, following tuning parameters were used (shown in Table. 3.1) in the 

MPC scheme to obtain the better performances: 

Table: 3.1 Tuning parameters for MPC 

Controller 

MPC 

Prediction 
Horizon (P) 

20 

Control 
Horizon (M) 

10 

Weights for 
Control 
Variables 6i 
1.08, 1.10, 1.12 

Weights for 
Manipulated 

Variables A j 
0.1, 0.1, 0.1 

Sampling 
Interval 
T (minute) 

0.6 

The PID tuning parameters are chosen from Ziegler Nichol (Z-N) formula and are listed 

in Table 3.2. 

Table: 3.2 Decoupled PID gains 

PID Controllers Proportional gain Kp Integral gain K; Derivative gain Kd 

PIDL 12 0.45 0.01 

PID2 10 0.14 0.02 

PID3 14 0.61 0.05 

Moreover the simulation was carried out for the both schemes with the following 

constraints on the manipulated inputs, 

0 s;; u 1 (k),u 2 (k),u 3 (k) s;; 120 
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The comparison of simulation results presented m Fig.3.6 concludes the following 

performance Table 3.3: 

Table: 3.3 Performance comparisons of MPC and PID 

Controller 

MPC 

PID 

Overshoot 
(%) 

20.9, 18.9, 26.1 

27.1, 35.9, 30.7 

Settling Time 
(minute) 

79.8, 81.6, 82.2 

80.4, 82.6, 83.4 

Absolute Steady 
State Error 

0.12, 0. 23,0.19 

0.82, 0.73, 0.89 

From the performance table it is clear that the non-adaptive MPC controller shows better 

set point tracking performance compare to the PID control scheme. More importantly, the 

input heat distribution performance of the proposed MPC is more linear compared to the 

PID scheme. More over, the load disturbance performance of the proposed MPC system 

is satisfactory. 

In general, the conventional PID controllers show acceptable performance especially 

for SISO plant systems. However, for the MIMO soil heating process, performance of 

PID controller is shown unsatisfactory performance because it is unable to overcome the 

high coupling effect and dead time that exist in the heating process system. The MPC 

controller has the ability to counteract these coupling effects and dead time when the 

control law is developed. The only drawback of MPC is the model inaccuracies [37], 

[38]. To cope with model inaccuracies, the current measurement is implemented to 

correct the predicted output profiles. This is a form of feedback control, which assures 

accuracy of the MPC and robustness against model inaccuracies [2]. By doing this, the 

general stability and robustness is increased. Tuning of weighting factors, A.1 and ~are 
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important in the close-loop system behavior [36]. A proper selection of these weighting 

factors makes the close-loop system stable. The prediction horizon (P) and control 

horizon (M) also play an important role in MPC performance. Typically, the prediction 

horizon is in the range of 20-50 samples ahead, and the control horizon is 25-35% of the 

prediction horizon [38]. In order to improve the controller performance it is necessary to 

increase the prediction horizon, control horizon and also the number of past control 

actions NiJ taken into account when calculating the free response. This becomes evident 

when dealing with systems of relatively high dead time and having complexity in number 

of outputs and inputs. 

3.7 Summary 

A multivariable DMC based MPC scheme is presented and simulated with the finite 

element based MIMO soil heating process. The control structure and implementation 

technique proposed in this chapter is also directly applicable to GPC based multivariable 

MPC scheme. The result shows the high performance nature of the proposed MPC 

system against the general decoupled PID control systems for a coupled MIMO system. 

Although PID systems are quite satisfactory for SISO process systems, their performance 

for coupled MIMO systems are quite limited. The decoupled PID system however 

provides the opportunity to implement the general SISO based PID tuning schemes for 

MIMO systems. This study can be extended to use the general PID schemes while using 

IMC structures. The only limitation for the implementation of the proposed MPC scheme 

is that in the case of highly nonlinear or variable dead time system the application of this 

linear model based controller is limited to relatively a small operating region. 
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Specifically, if the computations are based entirely on the model prediction, the accuracy 

of the model has significant effect on the performance of the closed loop system [39], 

[24]. Hence the performance of the DMC based MPC will become unsatisfactory when 

the operation level shifted from it's the original design level of operation [24]. On line 

adaptive identification of the plant model [2], [33] or multiple model adaptive strategy 

[24] can maintain the performance of the controller over a wide range of operating level. 
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Chapter 4 

Adaptive Model Predictive Control 

4.1 Introduction 

In most applications of the classical MPC techniques, the process is modeled over its 

operating range by extracting a linear approximated model. The extracted linear model 

must be capable of predicting the future outputs, must be simple to implement, cost 

effective to simulate and easy to understand. For a linear process system the 

approximation provides improved control performance against other linear control 

systems, such as PID control. However, for nonlinear process systems such a linear 

prediction can be justified only for a limited control region where the linearization has 

been performed. Moreover reliable linear models for nonlinear processes cannot be easily 

obtained by using the conventional approaches based on physical modelling or linear 

system identification [9]. 

The Nonlinear Model Predictive Control (NMPC) systems therefore have been 

emerged as an alternative solution [4], [26], [40] to address the nonlinear effects. 

Computational and design complexities that exist in traditional NMPC sometimes limit 

their applications for real time control systems, particularly for fast multi-variable 

processes. In addition, the non-convexity of the cost function makes the nonlinear 

optimization in NMPC rather complex [41]. On the other hand, in linear model based 

MPC the optimization is carried out in the form of a structured convex quadratic program 
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resulting in a unique optimal solution. Moreover, several reliable standard solution 

packages are available for linear optimisation [ 4]. 

Alternatively it is possible to develop the traditional linear MPC with an online 

identification of the model parameters of the linear model while allowing the system to 

be adaptive for each linearized control region of the process. When the adaptation is 

performed at each control time instance, the region can be made as small as possible, 

where the application of a linear model can be easily justified. This will indirectly 

compensate the necessity of employing a nonlinear model to develop the MPC law. 

Moreover this successive linear adaptation reduces the NMPC based optimization 

problem to a linear optimization problem at each sampling step. The present study 

investigates this strategy of using a linear RLS technique for updating the linear model 

parameters recursively. The adapted parameters at every sampling step are applied to 

compute the MPC based control law with a predefined optimization procedure. 

The form of adaptive linear model identification strategy with MPC, defined as 

indirect AMPC scheme has generated a considerable interest among the researchers [2], 

[33], [42]- [53]. Among them, most of researchers [2], [42]- [50], [53] have considered 

GPC based system to develop the adaptive model based control law. The GPC based 

adaptive technique has the ability to solve the long-standing control problems such as 

variable dead time, open-loop unstable and non-minimum phase systems and is regarded 

as the most advanced form of AMPC system [2], [3], [33]. However, due to the 

involvement of the regressive process model, the GPC based adaptive controller has been 

shown to be sensitive against the prediction model [44], [54] and any mismatch of 

process parameters may lead to instability [33], [44]. The DMC is the widely used control 
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algorithm in the chemical process industry [2], [5], [24]. The derivation of the DMC law 

is based on a weighting sequence model such as linear step response or finite impulse 

model, both of which are easier to obtain and convenient to solve the MPC problem. The 

only drawback of the weighting sequence model is that it requires many parameters to 

describe the process, which could reduce the computational efficiency when the recursive 

adaptation is performed. The involvement of lesser parameters for model identification in 

the GPC makes the model adaptation more attractive than DMC model based recursive 

adaptive systems [33]. 

Multiple Model Adaptive Control (MMAC) based strategy [24] can be applied to 

overcome the above limitations in the DMC based AMPC scheme. This scheme uses 

number of different non-adaptive DMC controllers and each controller posses its own 

linear weighting sequence model to describe the process dynamics applicable for a 

chosen operational level. Adaptation of multiple DMC models for each expected 

operational point will provide an alternative solution to the recursive DMC model 

adaptation. However, the modelling in MMAC requires analysis of plant data for each 

discretized operational level. Also, this MMAC scheme is not applicable when the gain 

of the process changes its sign during operation [24]. 

The present study considers the DMC based AMPC strategy to develop a parametric 

input-output model based adaptive DMC system where it takes the advantages of GPC 

based recursive adaptive systems. The chosen soil heating process dynamics is modelled 

using the general purpose ABAQUS/Standard finite element program. Writing a 

FORTRAN code based on adaptive control strategy into a user-subroutine, a continuous 
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simulation is performed where the model parameters are updated at each sampling 

instance with the dynamics of the process obtained from FEM. 

This chapter intends to provide the following contributions. First, the most popular 

DMC based MPC is used to develop a high performance AMPC system for a coupled 

MIMO process system. Although there are similar approaches with different MPC 

strategy are reported in the past [43] - [51] the applications were limited to SISO 

systems. Finally, the chapter provides a comprehensive study and comparisons of the 

AMPC against the non-adaptive MPC scheme. Thus, validity of the proposed algorithm 

is adequately justified. 

4.2 Background 

In the literature, there are two distinct architectures in MPC that have been formulated in 

the field of adaptive control: direct and indirect adaptive control scheme [2]. The direct 

adaptive control scheme adapts the control law based on a performance measure while 

the indirect scheme continuously adapt the linear model of the process and the adapted 

model is then used to synthesize the control law using a predefined optimization 

procedure. There are different types of direct adaptive MPC strategy available in the 

literature. Such as, Peterka's Predictor Based Self-Tuning Control [55], Ydstie's 

Extended Horizon Adaptive Control (EHAC) [56] and De Keyser's Extended Prediction 

Self Adaptive Control (EPSAC) [57]. In the predictor based self tuning control scheme 

the control law is developed minimizing the most recent predicted values of a quadratic 

criterion for a given control horizon. The EHAC method tries to keep the future predicted 

output close to the reference at a period of time after process delay. The prediction is 
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calculated by the recursion of Diophantine identity. In the EPSAC a constant control 

signal starting from the present moment using a sub-optimal predictor instead of solving 

the Diophantine equation. The above developments are essentially limited to SISO 

systems and their extension to the MIMO case suffers some limitations as highlighted by 

Garcia et al. (1989) in [5]. Also, the extensive applications of the aforementioned 

methods are not reported elsewhere. On the other hand, the indirect adaptive MPC 

scheme can be employed for multivariable process in a straightforward way. In the past 

several articles proposed various indirect adaptive control mechanisms for controlling 

nonlinear processes [58], [59]. A popular approach for adaptive MPC is to linearize the 

nonlinear analytical model (a model based on the law of physics) at each sampling 

instance and the linearized model is employed to develop the control law [60] - [62]. 

Analytical models are difficult to obtain due to the underlying physics and chemistry of 

the process, and are often too complex to employ directly in the optimization calculation. 

Others [63], [64] have used the nonlinear analytical model to obtain linear state space 

models at different operating levels. These models are then weighted using a Bayesian 

estimator at each sampling instance to obtain an adapted internal process model. Another 

adaptive strategy uses gain and time constant schedule for updating the process model 

[65], [66]. An extension of this method is to use multiple linear local models to update 

the process model [24] . Linear models that described the system at various operating 

points are developed based on plant measurements. Past researchers in [67] have 

illustrated that linear models can be combined in order to obtain an approximation of the 

process that approaches its true behavior. As the accuracy of this approximation depends 

on the number of small linear models, these models have to be developed using reliable 
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plant data at each level of operation [24]. Moreover, this scheme is not applicable to 

handle the non-minimum phase systems. Recursive parameter estimation on the linear 

model is another popular approach for adaptation in the MPC based control scheme [ 42] 

- [53]. In general, recursive formulations update the parameters of the process model as 

new plant measurements become available at each sampling instance. However this 

estimation schemes have well known problems including: convergence problems if the 

data does not contain sufficient and persistent excitation, inaccurate model parameters 

influence measured disturbances or noise influence the measurements, and sensitivity to 

process dead times and high noise levels [24]. 

4.3 Formulation of Multi variable AMPC 

In the proposed AMPC scheme, an online RLS parameter identification strategy is 

introduced to perform the online adaptation and a parametric input-output model is 

extracted to formulate the proposed adaptive MPC scheme. The formulation of the MPC 

scheme is nearly same as that of DMC but the output predictions is computed recursively 

at each sampling step from the adapted linear parametric input-output model parameters. 

The proposed scheme is presented in the following subsections: 

4.3.1 Formulation of RLS Scheme 

A general m-input and n-output multi variable linear system can be used to approximate a 

local operating region of a non-oscillating process by the following discrete-time MIMO 

parametric input-output model [68]. 
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A(z- 1 )y n (k) = B(z- 1 )um(k -1) + ;(k) (4.1) 

where y n (k) and um (k -1) is n dimensional and m dimensional process output and input 

vector, expressed in equations (3.21) and (3.22) respectively, and ;(k) is n dimensional 

random noise vector, and is given by, 

The matrix A(z - 1
) is nxn monic polynomial matrix and B(z-1

) is an nxm 

polynomial matrix defined as, 

and 

-k~~ B ( -1) z 11 z -k~m B ( -1) 
Z lm Z 

-k:Jt B ( - 1) z n1 z -k:Jm B ( -1) z nm z 

The ith row diagonal element of A(z-1) is, 

and the (i,j)th element of B(z-1) is given by, 

where n~ and n~ are the degree of polynomial of~ and Bij, respectively and z- 1 is the 

unit time delay operator. The delay time k% for the ith process output is expressed in 
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sampling time unit and is given by the relation,~~ = Tk~ where the dead time ~J is the 

integer multiple of the sampling timeT. 

The model in equation (4.1) for the ith output, ignoring the noise term, ~(k) can be 

represented in the following form [64]: 

(4.2) 
1=1 J=l 1=0 

The model parameters in equation ( 4.2) are updated at each sampling time for achieving 

the adaptation. Thus, based on the system model in equation (4.2), the estimated vector of 

the linear model parameters is defined as: 

where the elements of 9;(k) are, 

and 

The RLS technique [23], [64] for updating the above model parameter vector can be 

summarized as follows. The new parameter estimate can be expressed as, 

9;(k) =9;(k-1)+ P;(k-l)<p/(k) T X [y~(k) -<p;(k)9;(k-1)] 
~ '-y------1 ,u + <p . ( k) P. ( k - 1 )<p ( k) '--v----' 

newesumate oldestimate 1 1 1 new onestepahead 
correcting vector measurement prediction of the 

new measurement 

estimatederror,d; 

The covariance matrix Pi(k) is updated while using the following 

Where the components of the regression vector <p;(k)is, 
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(4.4) 



and Pi (k) is a symmetric matrix with Pi (0) = al. The coefficient a is a real large 

number, (a>> 100 ), and f..1 is the forgetting factor. In order to provide more weighting 

to the recent data the forgetting factor is restricted withifl the 0.95 S f..1 S 1 [23]. The 

implementation strategy of the above adaptation technique can be described by using 

Fig.4.1. 

Disturbance 

L Process Process outputt 
""'- ,. ,. 

Inputs 
..... ,. 

....... Process -+- ,,.. 
1 ..... 

model ,. )-Model error -
/ 

Parameter 
adjustment '-

"' (RLS adaptation) 

Fig. 4.1 Block diagram of RLS adaptation technique 

4.3.2 AMPC Controller Design 

The cornerstone of the MPC algorithm is based on the system response model as shown 

in equation (4.2), that predicts the outputs ( y i (k + p J k)) over p sampling instances 

ahead of the current time instant, k. These predictions through the prediction horizon (P) 

are based on the natural divisions of the system response where the output can be 
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decomposed into forced and free terms together with the measurement of the current 

disturbance. The prediction is thus formulated as [2]: 

Y;(k +pi k) = y{orced (k + p) + Ytee(k + p) + d;(k) (p =l,···,P). (4.5) 

The current disturbance di(k) is assumed to be constant throughout the prediction horizon 

and is computed as: 

di (k) = yJn (k)- Yi (k). (4.6) 

The RLS scheme present in equations (4.3) and (4.4) executed at each sampling instant to 

update the current model parameter vector O;(k) with the measurement of the current 

disturbance di(k). The approximation of equation (4.5) with the updated model 

parameters is then given by, 

Y;(k +pi k) = y{orced (k + p) + Ytee (k + p). (4.7) 

Where the forced output terms y{orced (k + p) are estimated at the current step with the 

updated model parameters as, 

m P 

y{orced(k+ p)= LLg~~u/k+ p-r) 
j=l r=I 

n~ nZ 
where, gAij =-" aigAij + "bij 

r L...J I r-1 L...J I 
1=1 1=0 

is the rth element of the adapted unit linear step response model parameter corresponding 

to ith output to jth input, in which when r ~ kJ, g~ = 0 and ~il/k + p- r) are the 

unknown current and future input moves. The free response term _y;ree (k + p) is inferred 

as the future response of the system provided that the system input will be maintained at a 

constant value. In other words, 
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u . ( k -1) = u . ( k) = · · · = u . ( k + P) . 
1 1 1 

The free response predictions can be estimated recursively from the updated linear 

model parameters as follows . For convenience, the free response term is expressed while 

using, 

Ytee(k + p) = f(k + p) · 

Therefore 

n~ m n~ 

f(k+ p)= 'La:f(k+ p-l)+ LLb:~,uj (k-l-kJ + p) (4.8) 
l=l j=l l=l 

The initial conditions for equation (4.8) are the predicted output at the current time and is 

given by, 

Hence, the prediction form in equation (4.7) can be written as: 

(4.9) 

The above set of predictions through the prediction horizon can be written in the 

following compact form, 

(4.10) 

where, G is the adapted multi-variable dynamic matrix expressed as, 

G=[G- .. J 
'1 nPxmM 

and the elements are given by: 
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,.., ij 
gl 0 0 
A ij 
g2 " ij 

gl 0 0 

Gij = A ij 
gM 

A ij 
gM -1 

A ij 
g) 

" iJ ,.., ij " iJ 
gp gP- 1 g P-M+l PxM 

The vectors Y , ilU and Fare the adapted predicted output, optimal control input and the 

free response vector, respectively and given by the following expressions, 

A [A A JT Y= Y1,···,Yn , 

A [ A A JT ilU = ilU1, • • ·, ilUm and 

F= F ··· F A [A A JT 
1 ' ' n 

where, 

The objective is to determine the control moves Llu/k+ p-r)in equation (4.9) such that 

the predicted output Y; (k +pI k) will drive as close to the set-point. To do this the 

following cost function is selected. 

n p m M 

1 = LL~(p)[w; (k + p)- y;(k + plk)f + LLA/p)[Llu1(k + p -1)]2 (4.11) 
i= l p =l j=J p= l 

The equation (4.11) can be written in the following compact form 

1 = o[W- Yf [W- Y] + l[AUf [AU] (4.12) 
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Combining equations (4.12) and (4.10) yields: 

1 = o[W -G~U -Ff[W -G~U -F]+l[AUf[AU] (4. 13) 

After minimizing equation ( 4.13) with respect to AU, the following closed-loop solution 

of unconstrained adaptive multi-variable control law is obtained, 

(4.14) 

Where the adaptedMPC gain matrix,K=(GToG+ll)-1GTo and the term (W-F)is the 

vector of future predicted error over P sampling instances due to the effect of past inputs. 

The only control moves,~u1 (k),···,~um(k) in equation (4.14) are applied to the plant at 

current step and whole procedure is repeated in each sampling interval. 

4.4 Application of AMPC to the Soil Heating Process 

The above AMPC scheme is applied to the FEM based soil heating process. The 

complete control structure of AMPC system with FEM of the soil cell (plant) is shown in 

Fig.4.2. To cope with the model-plant mismatch due to process uncertainties and to avoid 

the steady state control error, the proposed AMPC scheme also implemented within an 

IMC structure as shown in Fig.4.2 [9]. The RLS identification technique is incorporated 

in the IMC structure to realize the adaptive control. 
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Fig. 4.2 Block diagram of the AMPC scheme 

The overall AMPC scheme can be realized while implementing the following simple 

steps at every sampling interval: 

1. Identify the initial model parameter vector 0;(0) in offline. 

2. Measure the current disturbance ( d; (k)) in equation ( 4.6) and update the model 

parameter vector (O;(k)) using the RLS scheme shown in equations (4.3) and (4.4). 

3. Employ the updated model parameters to build the prediction model ( Y;(k +pI k)) 

described in equation (4.9) and compute the MPC based control law given in equation 

(4.14). 

4. Apply the control moves, tlu1 (k ), .. ·, tlu"' (k) to both the plant and the model. 

5. Go to step 2 and repeat. 
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4.5 Linear Model Identification from the Soil Heating Process 

A linear parametric input-output model is extracted from the FEM based soil heating 

process dynamics. The RLS online identification scheme is then incorporated with the 

extracted model to perform the online adaptation in the proposed MPC system. The 

identification and validation of the extracted linear model with RLS adaptation are 

presented in the following subsections: 

4.5.1 Identification of Non-Adaptive Linear Model 

To implement the RLS adaptation scheme described in equations (4.3) and (4.4) in the 

present soil heating process, it is necessary to identify the initial parametric input-output 

model parameter vector, 9; (0) from the process. To do this, a simulation is performed 

by applying a constant open-loop control signal u j = 18 Watt to the FEM of the soil cell 

and responses of the corresponding outputs (y 1, y2 and y3) are thus modelled. Analysing 

the responses using "plant reaction curve" method [3], [14] the following 3x3 MIMO 

discrete transfer function model is obtained. 

(4.15) 

0.00317 z-1 -1 
1-0.&9 z-1 z 

O.ffil357 z -I -2 

1-0.97 z-1 z 
o.aro17 z-1 

-6 

1-Q.94z-1 z 

Where, H=[ ~]3><3 = 
0.00127 z -I -2 0.00354 z -I -I O.CXD21 z -I _

3 (4.16) 
1-0.91z-1 z 1-0.88z-1 z 1-0.94z-1 z 

O.<XD101 z -I -6 

1-0.931 z-1 z 
0.00157 z -I -3 

1-0.&9 z-1 z 
0.002% z -I -1 
1-Q.h95z-1 z 

represents the MIMO discrete transfer function matrix. The element Hu is the plant 

open-loop discrete transfer function model relating ith output to jth input of the plant. Note 
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that, the sampling interval is chosen 0.6 minute while building the model. The model in 

equation (4.15) can be rewritten in the following parametric input-output model form [3]: 

z-kY Bl3(z-') 

z-kYB
23

(z- 1
) um(k-1) 

(4.17) 

Solving the equations (4.15) and (4.17) the polynomial matrices A(z- 1
) and B(z-1

) are 

obtained and the elements are thus given by, 

B11 (z -I)= 0.00317- 0.00605z -I + 0.00288z - 2 , 

B12 (z - 1
) = 0.000357- 0.000653z - 1 + 0.000296z -2

, 

B13 (z - 1
) = 0.000017- 0.0000316z - 1 + 0.0000147 z - 2

, 

B21 (z - 1
) = 0.00127- 0.00231z - 1 + 0.001041z - 2

, 

B22 (z - 1
) = 0.0035- 0.0065z - 1 + 0.00301z -2 , 

B23 (z - 1) = 0.00021- 0.000376z -l + 0.000168z - 2 , 

B31 (z - 1) = 0.0001- 0.00018z - 1 + 0.00086z - 2 , 

B33 (z -I)= 0.003- 0.00295z - 1 + 0.000242z -2 , 
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The model in equation ( 4.17) is employed as the initial model for the RLS scheme to 

perform the online adaptation and can be written in the following vector form as shown 

in equations (4.3) and (4.4). 

Define the initial model parameter vector for the ith output as, 0; (k -1) = 0; (0). Therefore, 

01 (0) = [ -2.8, 2.60, -0.81,0.00317,-0.00605,0.00288,0.000357,-0.000653,0.000296, 

0.000017,-0.0000316,0.000014 7]T 

02(0) = [ -2.73, 2.48, -0.752,0.00127,-0.00231,0.001041,0.0035,-0.0065,0.00301, 

0.00021,-0.000376, 0.000168f 

03(0) = [-1.87,0.952,-0.072, 0.0001,-0.00018,0.00086,0.00157,-0.00287,0.0013, 

0.003,-0.00295, 0.000242f 

and the corresponding components vectors are given by, 

and 

<p1 (k) = [-y1 (k -1),- y1 (k- 2),- y1 (k -3),u1 (k- 2),u1 (k- 3),u1 (k -4), 

u2 (k- 3), u2 (k -4), u2 (k- 5),u3 (k -7),u3 (k -8),u3 (k -9)] 

<p 2 (k) = [ -y2 (k -1),- y2 (k- 2),- y2 (k- 3),u1 (k- 3),u1 (k- 4),u1 (k- 5), 

u2 (k- 2),u2 (k- 3),u2 (k- 4),u3 (k -4), u3 (k- 5),u3 (k- 6)] 

<p3 (k) = [-y3 (k -1),- y3 (k- 2),- y3 (k -3),u1 (k -7),u1 (k- 8),u1 (k -9), 

u2 (k -4), u2 (k- 5),u2 (k -6),u3(k- 2),u3(k- 3),u3 (k -4)] 

Now the tracking performance of the approximated linear parametric model is validated 

by comparing the open-loop step response characteristics of the model with the FEM 

responses. Fig.4.3 shows the open-loop step responses of the linear model and 

corresponding FEM results. 
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Fig. 4.3 Open-loop step responses of the soil heating model 
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Simulation results (Fig. 4.3) justify the accuracy of the extracted linear model to perform 

the control simulations. 

4.5.2 Comparison of Tracking Performance 

The performance of the approximated linear model m equation (4.17) with the RLS 

adaptation scheme is verified against variable input sequences. The input profile and the 

simulation set-up are presented in Fig.4.4 (a) and Fig.4.4 (b), respectively. The 

temperature outputs of the adaptive model (y 1, Y2 and y3) and the FEM ( y;', y; andy;') 

outputs are measured at each step with the sampling interval 0.6 minute. 

100 
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(a) Variable input sequence (b) Simulation set-up 

Fig. 4.4 Simulation with variable input sequences 

The difference between the adaptive model outputs and the FEM outputs (tracking error) 

are computed and compared with the non-adaptive linear model based tracking 

performance. The tracking errors of both adaptive and non-adaptive scheme are presented 

in Fig.4.5. 
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Simulation results justify the accuracy of the online adaptive scheme against the non-

adaptive model in the present soil heating process. 

4.6 Control Simulations 

The control objective of this exercise is to achieve precise temperature tracking with 

lower overshoot, smaller settling time, minimum heat distribution, better load disturbance 

characteristics and least tracking error. To achieve the goal two temperature set-point 

tracking experiments and a variable set-point tracking experiment were carried out for the 

proposed AMPC scheme and compared with the non-adaptive model based tracking 

performance. The output set-point temperatures are chosen as 55°C, 65°C, 60°C and 

70°C, 75°C, 80°C for output 1, 2 and 3, respectively. A high negative disturbance of heat 

is also applied constantly to both the control system at 180 minute, while the responses 

are at steady state. The simulation results are presented in Fig. 4.6. The tuning parameters 

chosen for the two schemes are shown in Table 4.1. 

Table 4.1 Tuning parameters for AMPC and MPC 

Controller Prediction Control Weights for Weights for Sampling 
Horizon (P) Horizon (M) Control Manipulated Interval 

Variables Ji Variables A. j T(minute) 

AMPC 15 5 1.12,1.05,1.15 0.1,0.1,0.1 0.6 

MPC 20 10 1.08, 1.10, 1.12 0.1,0.1,0.1 0.6 
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Fig. 4.6 AMPC and non-adaptive MPC against fixed set point temperature 

For better comparisons the same systems were also simulated for tracking the same 

variable set point sequences and the results are presented in Fig. 4.7. 
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The simulation results clearly show that the AMPC outperforms the non-adaptive MPC 

with lower overshoot, smaller settling time, minimum heat distribution and better load 

disturbance characteristics. The better performance of the AMPC is mainly due to the fact 

that its control law given in equation (4.14) is computed at every sampling step with the 

adapted linear model parameters. This in tum will update the process dynamic matrix G 

and the free response vector F of the model more precisely. Both of them are important 

for achieving accurate control performance. In the non-adaptive MPC case, the control 

law is implemented with the pre-estimated linear model parameters where the precision 

of the estimates of G and F are limited to a chosen operating range. With the change of 

operating regions resulted in more overshoot and undershoot as compared to the response 

characteristics with the AMPC. 

4.7 Summary 

An online adaptive model identification strategy for MPC has been developed, analyzed 

and implemented systematically in this chapter. The application and benefits of the 

proposed AMPC strategy over the non-adaptive MPC strategy are also demonstrated 

through several simulations. The simulation results show that the proposed AMPC 

system has the better capability to overcome the nonlinear and coupling effects of the 

process system and therefore able to produce accurate tracking performance against the 

desired output temperature profile. The tracking performance of the adaptive model also 

indicates that the proposed linear adaptation is a computationally efficient alternative to 

NMPC systems. The linearization of the nonlinear system at every sampling instance 

allows a higher resolution in achieving different linearized models and as a result the 
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recursive parameter estimation method able to handle the process variations much 

efficiently than in a traditional MPC system. More importantly, the load disturbance 

performance of the proposed AMPC system was satisfactory. Hence the proposed 

AMPC system provides a useful and relatively simple alternative when non-adaptive 

MPC fails to produce better response against nonlinear process dynamics. The only 

drawback of the scheme is that, as the adapted parameters of the linear model are applied 

to develop the MPC control law, any erroneous parameter estimations may result in 

undesirable changes in the control signal. When RLS technique is employed for time 

varying processes the process and estimator mismatch will cause the covariance matrix to 

increase. Under those circumstances when a fixed forgetting factor is used all the past 

elements in the covariance matrix will contribute towards the estimation. Particularly at 

the steady state this may leads to an exponential growth of the covariance matrix and may 

result unstable control performance [33]. To overcome the problem it is possible to adapt 

the forgetting factor recursively based on the information content in the present data [2]. 
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Chapter 5 

Adaptive Fuzzy Model Based Predictive 

Control 

5.1 Introduction 

For complex and highly nonlinear process systems, a suitable identification method for 

obtaining an accurate empirical process model is quite challenging. There are several 

techniques existing in the literature to address this issue. Among them, fuzzy logic based 

model identification technique is considered to be an appropriate tool for nonlinear 

process modelling and can be incorporated with the traditional MPC schemes for 

formulating an effective control law. Although there are many representations of fuzzy 

schemes for nonlinear process modeling, fuzzy model of the TS type is the most 

convenient form to use in MPC systems. It has the ability to approximate the complex 

nonlinear systems in a parametric form and can directly be used for solving the general 

MPC problem [11]. Further, this technique allows the complex high dimensional 

nonlinear modeling problem to be decomposed into a set of simpler linear local models to 

represent small operating regions defined by the fuzzy boundaries. Fuzzy inference is 

used to interpolate the fuzzy outputs of the local models in a smooth fashion to generate 

an approximated nonlinear fuzzy model. Therefore TS type fuzzy model based MPC 

strategy for nonlinear process recently generated considerable interests among the present 

researchers [2], [9], [11], [69]- [82]. In many cases [2], [69]- [78] the parameters of the 

linear model extracted from the nonlinear fuzzy model are used for linear MPC 
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formulation at every sampling instant. In other cases, such as in [9], [11], [79] - [82], a 

nonlinear optimization problem is solved at every step with the nonlinear fuzzy model. 

The accuracy of the extracted linear parameters depends on the process dynamic behavior 

described by the fuzzy local models. However, when the process is time-variant the 

predefined linear local models will become applicable only for a small operating region. 

Introducing more local models may increase the accuracy but may lead to over-fitting 

and heavy computational burden. The online adaptation of the fuzzy local models can be 

employed to overcome the nonlinear time-variant process dynamics. The adaptation is 

usually achieved by using a RLS parameter estimation technique [2], [69], [78], [79] A 

single linear model based AMPC technique can also be applied to handle such process 

system [2]. The adaptation of a single process model over wider operational range may 

result in a transient error, and this may in tum lead into undesirable behavior of the 

controlled process [2]. 

The present study investigated the above strategy and developed an adaptive TS type 

fuzzy model based MPC scheme to control and maintain the temperature profile of the 

coupled nonlinear multi variable soil heating system. To handle the parameter uncertainty 

and time variant behavior of the process, an iterative RLS parameter estimation technique 

for adaptive performance of the local models is introduced. An online linearization 

technique is adopted to extract the linear parameters from the nonlinear TS type fuzzy 

model in formulating the linear MPC scheme. The proposed scheme formulates the MPC 

strategy using general DMC structure. 

This chapter summarizes the contributions in two aspects. Firstly, the most popular 

DMC based MPC is formulated with the TS type adaptive fuzzy model structure and its 
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robustness is verified with the coupled nonlinear MIMO soil heating process system. 

Finally, this chapter provides a comprehensive study and comparisons of the proposed 

fuzzy model based MPC strategy against two linear MPC schemes. Thus, validity of the 

proposed algorithm is adequately justified. 

5.2 Background 

In the literature there are many successful applications of MPC using TS type fuzzy 

model have been reported in [2], [9], [11], [69] - [82]. All the approaches discussed in 

these papers can generally be classified into two groups: 1) methods using directly the 

nonlinear fuzzy model in the optimization procedure [9], [11], [79] - [82], and 2) 

methods using a linearized model instead of directly using the nonlinear fuzzy one [2], 

[69]- [78]. 

The use of the nonlinear fuzzy model directly in MPC is motivated by the possibility 

to improve the control performance by improving the prediction accuracy. But it leads to 

a non-convex optimization (nonlinear optimization) problem which must be solved at 

each sampling period. This hampers the application to fast processes where iterative 

optimization techniques cannot be properly used due to short sampling time. However, in 

the literature there are several nonlinear optimization techniques available that can be 

used to solve this problem. Among them the most straightforward way of minimizing the 

TS model in NMPC is to use the Nedler-Mead method or sequential quadratic 

programming technique [9] . These algorithms, however, require significant computing 

power which may be a serious obstacle for real-time implementation. Moreover, the 

algorithm can be trapped in a local minimum, which may result in undesirable control 
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actions and poor performance of the controlled process [9]. The Branch and Bound 

(B&B) search method is another popular approach for the nonlinear optimization and 

have been widely used to solve the TS model based NMPC problem, as for example in 

[9], [11], and [80]. In these approaches, the control space is discretized and the 

optimization problem is reduced to searching the best control action in the discrete space 

using the B&B optimal search technique. This discretization of the control space 

introduces a tradeoff between the number of discrete alternatives and the computational 

complexity [81]. Additional problems introduced by this discretization are the 

oscillations (chattering) at steady state and slow step responses [81]. To address these 

issues the authors in [81] proposed an alternative solution to overcome these problems by 

using a fuzzy predictive filter to construct the discrete control alternatives. This filter is 

represented as an adaptive set of control actions multiplied by a gain factor and keeps the 

number of necessary alternatives low during the optimization and hence increases the 

control performance. 

Another approach for NMPC optimization is the sequential technique which can be 

used to solve this NMPC problem [2]. This algorithm involves the iterative solution of 

the nonlinear model equation as an inner loop and to evaluate the objective function with 

an optimization code in the outer loop. The optimization and the model solution are 

executed iteratively until the desired accuracy is achieved. An alternative to this 

sequential solution is to solve the optimization problem and the model equation 

simultaneously [2]. This simultaneous technique involves the transformation of the 

dynamic model into algebraic equations using weighted residual techniques. 
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On the other hand the linearized TS model based MPC is generally used to avoid the 

NMPC optimization problems. The primary advantage of the successive linearization on 

the TS model is that the NMPC problem is reduced to linear MPC problem at every 

sampling step. There are several linearization techniques available in the present 

literature for linearizing the TS type fuzzy model. For example in [2] and [74], a linear 

step response model is extracted from the TS model for linear MPC formulation. 

Therefore, the resulting optimization problem is convex, and is solved using a pre­

defined linear optimization procedure. Several authors, such as in [2], [75] applied 

Jacobian linearization technique on the zero order TS type fuzzy model for extracting 

linear parametric model parameters of the process around the current operating point. 

Another popular approach is proposed in [71]- [73] where the TS model is linearized by 

converting into a linear state space form and the control signal is obtained by solving a 

constrained quadratic optimization problem. To account for errors introduced by the 

linearization, an iterative optimization scheme is also proposed with this method in [72] 

where the quadratic problem provides a search direction toward the minimum of the 

optimization problem. In [76] and [77], a different and interesting technique is 

incorporated to identify the linear model for MPC formulation. This method involves a 

search technique in the fuzzy space to identify the most active rule with the highest 

membership degree. The linear model of the corresponding rule consequent is then 

applied directly to solve the linear optimization problem. A common approach of 

linearizing the fuzzy model about the current operating point is by weighting the 

nonlinear fuzzy model parameters at each sampling instant [69], [70], [78]. The resulted 

model is obtained in an adaptive parametric form and is employed online for the linear 
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MPC formulation. Better accuracy of these weighted linear parameters is generally 

achieved by using more fuzzy partitions in the antecedent fuzzy space [69]. 

In literature other than TS model, fuzzy relational model based MPC law has also 

been developed in [83] [84] to handle the nonlinear process systems. This scheme is 

computationally more complex and requires large computational effort in nonlinear 

optimization [2], [11], [75]. Also, the further extensions of the aforementioned methods 

are not reported elsewhere. Apart from these fuzzy MPC schemes, the simplest way to 

control a nonlinear process is by using the inverse of a fuzzy singleton model (a special 

case of the TS model) and use it in an open-loop (feed-forward) configuration [2], [9], 

[11], [85]. The obtained inverse model is used as a controller and under special 

conditions stable control can be guaranteed for minimum phase systems [11]. This type 

of control can only be applied if the inverse of a fuzzy model exists. Since this is a feed­

forward configuration, ideal control configuration can not be directly applied in practice 

because the model never a perfect mapping of the system. So any model-plant mismatch 

results the system unstable. Moreover in this scheme there is always a possibility to 

violate the constraints limit for the computed optimum inverse model input to the 

process. So to check the constraints limit at every step a nonlinear B & B optimization is 

required to solve to find the best optimal solution [9], [11]. 

5.3 Formulation of TS Type Adaptive Fuzzy MPC 

In the proposed adaptive fuzzy MPC scheme, an online RLS parameter identification 

strategy is incorporated with the TS type fuzzy model to perform the online adaptation of 

the fuzzy local models and an online linearization technique is employed to extract the 
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linear parametric input-output model to formulate the proposed linear MPC based control 

scheme. The formulation of the MPC scheme is nearly same as that of DMC but the 

output predictions is computed recursively at each sampling step from the extracted linear 

parametric input-output model parameters. The proposed scheme is presented in the 

following subsections: 

5.3.1 TS Fuzzy Model for MIMO Process 

An n-output, m-input nonlinear process can be approximately modeled by a set of 

coupled Multiple Input Single Output (MISO) models. For the ith output the decomposed 

model at the time instant k can be described as, 

Y; (k) = J(q>; (k)) (5.1) 

where, <t>;(k) is the regression vector for the ith output, expressed in equation (4.3) for 

RLS adaptation and f(.) is a nonlinear function used for nonlinear approximation. 

The unknown nonlinear function f(.)in equation (5.1) can be approximated by using the 

TS type fuzzy model. The model comprises a number of logical rules for the 

approximation where each rule possesses nonlinear process variables in the antecedent 

space and piecewise linear function in the consequent space. The antecedents of fuzzy 

rules divide the input space into a number of fuzzy regions while the consequent 

functions approximate the local behavior of the process. The general rule base TS model 

for the approximation is expressed in the following form. The rth rule is defined as, 

E,: Ifyi(k-1)is c;(r)and .... andy;(k-n~)is C~/r) 

and ... 
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and um (k- k~m -1) is D~ 1 (r) and ... 

(5.2) 
1= 1 j=l 1=0 

Where, r is the rule index, c: (r),-·· , C~ (r) and D:1(r),-··,D; 11 (r),··· , D ; ,m (r)are the 
A l n8 mn8 

antecedent fuzzy sets representing the fuzzy subspace in which the implications t , for 

r = 1, · · ·, R can be applied for reasoning, y; (k) presents the local linear model for the rth 

rule consequent and a; (r) and Ep (r) are the consequent linear model parameters of the 

The consequent parameters in equation (5.2) for all R rules can be expressed using a 

parameter matrix 0 ; and is given by, 

A ;(1) :Bil (1) B im (1) 

0-; - A ;(r) B il (r) B ;m (r) (5.3) 

A;(R) B il (R) B im (R) 

with 

Bij (r) = [ Eg (r) ,· · · , b~~ (r) J 
where S; is defined as the consequent parameter matrix. Now using the TS 

defuzzification technique overall fuzzy model output can be written as, 
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(5.4) 

where fl i is the vector of the membership grades (degree of fulfillment) assigned to each 

of the R rule implications at every sampling step and is given by, 

(5.5) 

The elements of fl i are given by: 

r = l 

where~: is the degree of fulfillment of the rth rule in the antecedent space. This is 

obtained while applying the t-norm fuzzy operation to the /h rule and is given by [69] 

and [76], 

/=1 j =l /=1 

where ,u[.] is the grade of the membership estimated from the antecedent variables. 

Although the fuzzy model consists of a number of piecewise linear models, the overall 

model output in equation (5.4) is nonlinear. To formulate the linear MPC strategy with an 

analytical approach, a simple method of linearizing the fuzzy model about the current 

operating point is used at each sampling instant. The weighted linear parameters due to 

the fuzzy inference are then given by [69]: 

(5.6) 

where 

Bu =[b%, ···,b~ ]. 
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The vector 9; denotes the weighted linear fuzzy model parameter vector, which are 

computed at every sampling step and employed with the MPC scheme to develop the 

control law. 

5.3.2 Formulation of MPC Scheme 

A linear model based MPC strategy is formulated in this section. The linear parameters in 

equation (5.6) can be used to build the following parametric input-output model, 

(5.7) 
1=1 j =1 1=0 

The model in equation (5.7) can be applied to predict the future steps output 

( Y; (k + pI k)) for p sampling instants ahead of the current time instant, k. The prediction 

through the prediction horizon, P is based on the natural divisions of the system 

responses into free and forced terms and the measurement of the current disturbance due 

to model-plant mismatch. The prediction is thus formulated as [3]: 

Y; ( k + pI k) = y(orced ( k + p) + y('ee ( k + p) + d; ( k) (p = 1,- · · ,P). (5.8) 

The current disturbance di(k) in equation (5.8) is assumed to be constant throughout the 

prediction horizon and is computed as: 

where, y;(k) is the ith linear fuzzy model output expressed in equation (5.7) . The forced 

outputs term .Y:O'ced (k + p) in equation (5.8) can be estimated from the current operating 

point as: 

m p 

y(orced (k+ p)= LLg%liu/k+ p-q) 
j=l q=1 
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where, 

is the qth element of the extracted unit linear step response model parameter 

corresponding to ith output to /h input, in which when q::; kJ , g% = 0 and 11u1 (k + p- q) 

are the unknown current and future input moves. The free response term Ytee (k + p) in 

equation (5.8) is inferred as the future response of the system provided that the system 

input will be maintained at a constant value through the prediction horizon P. In other 

words, 

u .(k -1) = u .(k) = · · · = u .(k + P) 
J J J 

The free response predictions with disturbance can be estimated recursively from the 

updated linear model parameters as follows. For convenience, the free response term is 

expressed while using, 

Ytee ( k + P) = f ( k + P) · 

Therefore, 

n~ m n~ 

f(k+ p)= L.a:f(k+ p-l)+ L_L_b:~1u/k-l-kJ + p)+dJk) (5.9) 
1=1 j=J 1=1 

The initial conditions for equation (5.9) are the predicted output at the current time and is 

given by, 

f(k) = f(k -1) = ... = yi(k). 

Hence the prediction form in equation (5.8) can be written as, 

(5.10) 
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Now employ the prediction form in equation (5 .10) with the following cost function for 

optimization, 

n p m M 

J = LL~(p)[wi (k+ p)- yJk+ plk)f + :L:LA./p)[~u/k+ p-1)]
2 (5.11) 

i=l p=l j= l p=l 

Solving the equation in (5.11) the following optimal fuzzy model based unconstrained 

adapted multi variable MPC law is obtained and is given by, 

(5.12) 

vector of future predicted error over P sampling instants due to the effect of past inputs. 

The only control moves~u1 (k) ,- ·· , ~um(k) in equation (5.12) are applied to the plant at 

current step and whole procedure is repeated in each sampling step. 

5.3.3 RLS Adaptation of the Fuzzy Model 

For online adaptation of the TS model, the rule premises are kept fixed and only the 

linear model parameters of the active rule consequents are adapted. Thus the overall 

model output in equation (5.4) at every sampling step, is the sum of the contributions of 

all the adapted active rules. 

Define the estimated parameter vector of the /h excited rule as: 

(5.13) 
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The RLS technique for updating the local model parameter vector can be summarized as 

[2]: 

a;ck) .._____.,__. 
new estimate 

=Or(k-1)+ P;~(k- 1)<f';T(k)fJ: X [y~1 (k) -<p .(k)Or(k-1)] 
~ Ar +J1r<p .(k)P.r(k-1)<pT(k) ~ I I 

oldestirnate 1 r 1 1 1 new onestepahead 
correcting vector measurement prediction of the 

new measurement 

estimatederror,d( 

and the covariance matrix P/ (k) is updated as follows: 

(5.14) 

(5.15) 

Where P/ (k)is a symmetric matrix withP/ (0) = al, a is a real large number and A.; is 

the scalar forgetting factor of the rth rule adaptation and the range chosen for A.; is 

The estimator in equations (5.14) and (5.15) will work well if the process is consistently 

excited with the estimated error ( d( ). But when the control becomes perfect with little 

excitation error, the estimator windup problem may occur. This will drastically change 

the model parameters with noises and in turn make the overall system unstable. To avoid 

the estimator windup a dead zone or tolerance limit (a) is introduced with the adaptive 

scheme where the updating of parameters is stopped when the estimated error is 

sufficiently small considering to the noise level. 
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5.3.4 Consequent Parameter Identification 

The initial parameters of the consequent models (local models) can be identified offline 

using the linear least squares parameter estimation technique. This technique involves the 

available inputs-output data samples from the process and arranges them in the following 

matrix form, 

Y;(1) 

where <p~ is the regression matrix and <p;(n)is the regression vector of the nth data 

sample, Y~ is the output data vector and the index, n = 1, · · ·, N represent the number of 

available data samples. Now build the weighted matrix, B~ for the rth rule as, 

where 13; (n) is the truth value of the nth data samples in the antecedent space. 

The parameters of all the rule consequents can be estimated globally within one least 

squares problem and is given by, 

. 1 (Y; -; 9- )r(Y; -; 9-) J111n- N-<pN i N-<pN i. 
e; N 

(5.16) 

Where <P~ denotes the matrix composed of matrices B~ and <p~ as follows 

and the ei vector is given by, 

- [ "1 T A R T JT 9; = (9;) ,···,(9;) . 
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The optimal estimate of equation (5.16) is, 

(5.17) 

which define the consequent parameters of all the fuzzy rules and can be used as the 

initial model in equations (5.14) and (5.15) to perform the online adaptation. The analysis 

of the computational complexity shows that the computational load cubically increases 

with the number of rules. Due to this cubic complexity, the global parameter estimation 

becomes computationally expensive for fuzzy systems with many rules. The local 

parameter estimation approach does not estimate all the rules parameters simultaneously. 

This approach uses a set of local estimation criteria for separately identify the parameters 

of each local model and is given by, 

(5.18) 

The weighted least squares estimate of the rth rule consequent is then, 

(5.19) 

5.3.5 Control Strategy of Adaptive Fuzzy MPC Scheme 

The above adaptive fuzzy model based predictive control mechanism consists of 

following simple steps at every sampling instant: 

1) Identify the initial fuzzy local model parameters in offline using the least 

squares technique described in equations (5.18) and (5.19). 

2) Measure the antecedents variables in equation (5.2) and fuzzify to build the 

vector of weights ( p;) in equation (5.5) for each output. 

3) Update the consequents parameter vector (O; (k)) in equation (5.13) of each 
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rule using the RLS estimation technique described in equations (5.14) and 

(5.15). 

4) Build the consequent model parameters matrix (0;) in equation (5.3) with the 

updated consequent parameters of each rule. 

5) Compute the weighted linear model parameter vector ( 9; ) using the 

linearization scheme described in equation (5.6). 

6) Employ the weighted parameters to build the linear model described in equation 

(5.7) and compute the MPC control law in equation (5.12). 

7) Apply the control inputs ( llu1 (k ), .. ·, !lum (k)) to both the plant and the model. 

8) Go to step 2 and repeat. 

The complete control structure is shown in Fig.5.1. To cope with the model-plant 

mismatch due to process uncertainties and to avoid the steady state control error, the 

proposed scheme is also implemented within an IMC structure (Fig. 5.1). A feedback 

filter is introduced into the control scheme and the filtered modeling error is utilized to 

modify the setpoint [2]. For this purpose, the following first-order low-pass filter is used: 

e{ (k) = K 1 ( Y;m (k)- Y; (k)) + ( 1- K 1 ) e{ (k -1) 

d, 

where K 1 is the adjustable filter parameter, K 1 E [0, 1]. The feedback filter is able to filter 

out the measurement noise and stabilize the loop by reducing the loop gain. 
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Fig.5.1 Adaptive fuzzy model based predictive control scheme 

5.4 Identification of Fuzzy Model for the Soil Heating Process 

The parameters of the fuzzy local models were identified from the simulated open-loop 

FEM inputs/output data pair, using the method of least squares. Simulation was carried 

out employing five rules for each output and the output variable Y; (k -1) was considered 

as the antecedent variable in the input space. The partition in the antecedent space for 

Y; (k -1) is presented in Fig.5.2. 
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Fig.5.2 Fuzzy portioning in the input space 

The offline identified rule base TS model for the present soil heating process are, 

For output 1 

~:if YI (k-1) is e1
1 (1) then 

y{(k) = 2.52y1 (k -1) +0.0031~ (k- 2) +0.00014u2 (k -3) + 0.000023u3 (k -7) 

~: if YI (k-1) is ell (2) then 

~:if YI (k-1) is e; (3) then 

y;(k) = 2.54y1 (k -1)+0.0023u1 (k- 2) +0.00034u2 (k -3) +0.000053u3 (k -7) 

y1
4 (k) = 2.52y1 (k -1) +0.0041u1 (k- 2) +0.00014u2 (k -3) +0.000023u3 (k -7) 

y~(k) = 2.52y1 (k -1) +0.0033u1 (k- 2) +0.00016u2 (k -3) +0.000028u3 (k -7) 
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For output 2 

4 : if Y2 (k-1) is C( (1) then 

y;(k) = 2.72y2 (k -1) + 0.001lu1 (k- 3) +0.034u2 (k- 2) + 0.0023u3 (k -4) 

I.3;_ : if Y2 (k-1) is C1
2 (2) then 

y;(k) = 2.72y2 (k -1) + 0.0015u1 (k- 3) + 0.044u2 (k- 2) + 0.0021u3 (k -4) 

I3j: if Y2 (k-1) is C1
2 (3) then 

y~(k) = 2.73y2 (k -1) +0.0015u1 (k- 3) + 0.037u2 (k- 2) +0.0023u3 (k -4) 

L~: if Y2 (k-1) is C1\ 4) then 

y~(k) = 2.74y2 (k -1) + 0.0021u1 (k- 3) + 0.031u2 (k- 2) + 0.0021u3 (k- 4) 

J3s: if Y2 (k-1) is C1\5) then 

y; (k) = 2.73y2 (k -1) + 0.0018u1 (k- 3) + 0.031u2 (k- 2) + 0.0022u3 (k -4) 

and for output 3 

I..i : if Y3 (k-1) is C1
3 (1) then 

y~ (k) = 2.62y3 (k -1) + 0.0021~ (k -7) + 0.031u2 (k -4) + 0.0022u3 (k- 2) 

4_ : if Y3 (k-1) is C1
3 (2) then 

y:(k) = 2.62y3 (k -1) +0.0021u1 (k -7) +0.032u2 (k -4)+0.0024u3 (k- 2) 

~ : if Y3 (k-1) is C1
3 (3) then 

y; (k) = 2.64y3 (k -1) + 0.0015u1 (k -7) + 0.039u2 (k -4) + 0.0021u3 (k- 2) 

L!: if Y3 (k-1) is C1
3 

( 4) then 
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To validate the tracking performance of the identified fuzzy model against variable inputs 

sequences an Integral Square Error (ISE) based performance index was used. The input 

profiles in~, u2 and u3 for validation and the simulation set-up, is presented in Fig.5.3. 

In the simulation the temperature outputs of the linearized fuzzy model (:yJk), 

y
2 
(k) and y

3 
(k)) and the FEM ( y~ (k), y;' (k) andy; (k)) are measured at each step with 

the sampling interval 0.6 minute. 

0 ~--~---L--~----~---L--~----~--~ 
0 40 80 120 160 

Ttrre (minute) 

(a) Variable inputs profile for validation 
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Fig. 5.3 Validation of fuzzy model against variable input sequences 

The difference between the linearized fuzzy model outputs and the FEM outputs 

(tracking error) are computed and compared with the non-adaptive linear step response 

model (DMC model) based tracking performance. The tracking errors of both schemes 

are presented in Fig.5.4. 

95 



I I I 
3 

-Tracking error d1 
-

,--.... 
u 2-
0 

-
.._.. I " .. 

s....- '·' ··••• .. ,_ 0 .• •• .... .... :: '• 

Q)
t: .. :' :: .·: : !; : ',1 ; : I .. I :·. :I .. ·~ .. . . . 
Oil 0 -! : . : : - .. ; : .. : i: . . . • . : : :.: : ~ 

~ -1 ,....: .!··· .... · :::.: ~ .. ::! ~ ...... f ~·· ~ .· ···~: : .. .r :; : ;~ 
('j ·' ,: ·: •• : .. ·;...: 
~ ~ ~ c- •• 

~ -2 1-- '/ 
--Fuzzy model 

-3 r- ·······Linear DMC model -
I I I 

0 40 80 120 160 
Tune (minute) 

I I I 
3 r- Tracking error d2 -

I 

:: :: 
G' 2 1-- -
0 

,-.... 

u 
0 

1-i 
0 
;..... 
h 
Q) 

01) 
c 

:.;;;: 
(.) 

~ 
E-

'• ' I ,I 

:~ :: ,'. .=~.::: .·.· .. •, .. :· .. 
'• II I I 

.. .. 
:· 

0 :• :: '' :: I ' ' 

"! .: •• - ••• ••••• •• •, .·:-::-
• ,v . :. : : : : :: :; .. ··:: f : ? 

-1 r-: ( ~< { d . i ::.: 

-2 r-: ~ _.: -Fuz.z;, model:: 

:: .; : ~ 
tl I tl 

.. : ;..i .. ·.· 
'· ::-

-3 r- ·: .. · .... Linear DMC model -

0 

3 

2 

0 

-I 

-2 

-3 

0 

I I 

40 80 
Time (minute) 

Tracking error d3 

'• :: .. .. 
'• 

'• 
'• :. .. .. .. 

. .. 
"' .... ....... 

ltll I I 

II I I . . .. 

120 

'• 
I I I I 1 I 

•', .. 
' .. 
··~: : 

.:: : : :: : .. . ••·• ''I I :·· .... :;:: ::.: 
: . .. .. . .. .. .. .. I ',' : ... .. 

•' 
I 

--Fuzzy model 
...... ·Linear DMC model 

40 80 120 
Time (minute) 

160 

160 

Fig.5.4 Tracking Performance of fuzzy model over linear DMC model 

96 



Simulation results justify the accuracy of the linearized fuzzy model against the linear 

DMC model based tracking performance. 

5.5 Control Simulations 

The above fuzzy model based MPC scheme and two non-adaptive linear model based 

classical MPC schemes were applied with the finite element based soil heating process 

model. The control objective of this exercise is to achieve precise temperature tracking 

with lower overshoot, smaller settling time, minimum heat distribution, better load 

disturbance characteristics and least tracking error. The tuning parameters chosen for all 

the schemes are shown in Table 5.1. 

Table 5.1 Tuning parameters for fuzzy MPC and linear MPC 

Controller Prediction Control Weights for Weights for Sampling 
Horizon (P) Horizon (M) Control Manipulated Interval 

Variables Ji Variables A j T (minute) 

Fuzzy MPC 15 5 1.62, 1.46, 1.48 0.15,0.10,0.14 0.6 

DMC/GPC 20 10 1.08,1.10,1.12 0.10,0.10,0.10 0.6 

The simulation results and the comparisons are presented in the following subsections. 

5.5.1 Comparisons of Non-Adaptive Fuzzy MPC over Linear MPC 

Simulation was carried out for the non-adaptive fuzzy model based MPC scheme with the 

setpoint temperatures 55°C, 65°C, 60oC for output 1, 2 and 3, respectively and compared 

against the proposed (described in chapter 3) linear DMC model based non-adaptive 

MPC scheme based tracking performance. A GPC model (CARIMA model) based 
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classical MPC technique is also applied in the system to confirm the superiority of the 

proposed fuzzy model based MPC system. The comparison of simulation results are 

presented in Fig.5.5 and Fig.5.6, respectively. A high negative disturbance of heat is 

applied constantly to both control systems when the simulation time reaches 180 minutes. 
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The simulation results clearly show the non-adaptive fuzzy MPC outperforms the linear 

MPC schemes with respect to lower overshoot, smaller settling time, minimum heat 

distribution and better load disturbance characteristics. In general, the control law in non­

adaptive MPC is implemented with the pre-estimated linear model parameters. As such, 

its ability to compensate the nonlinear process dynamics over wide operating range is 

limited. The non-adaptive fuzzy MPC, on the other hand, is based on multiple fuzzy 

models, excites different local models and rules as the operation level changes and hence 

shown better performance. 

5.5.2 Comparison of Adaptive and Non-Adaptive Fuzzy MPC 

To prove the importance of employing online adaptation on the fuzzy model against time 

variant process dynamics, the performance of the adaptive fuzzy MPC scheme was 

compared against the above non-adaptive fuzzy MPC system. To make the present 

process time variant the boundary temperature of the soil surface and also the specific 

heat and thermal conductivity of the soil were varied with time. Simulations were carried 

out for both schemes against the same variable setpoint sequences and the results are 

presented in Fig.5.7. The adaptive fuzzy system used a total of three rules for each output 

and the parameters of each active rule are adapted at every sampling state. A low number 

of rules are chosen mainly to produce better control performance and also to reduce the 

computational burden. The tolerance limit or the dead zone (a ) of the estimator was 

chosen 0.01 for all the outputs. 
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The inconsistent control performance of the non-adaptive fuzzy scheme indicates that 

even with the multi-model, the time variant process dynamics may not be completely 

modeled due to process nonlinearity introduced due to changes in operating set points. 

This suggests the inclusion of online adaptation scheme with the non-adaptive fuzzy 

model. The online adaptation scheme allows fine-tuning of the local model parameters 

with the variation of the time variant nonlinear process dynamics and which in tum 

update the weighted model parameters in equation (5.6) more precisely to establish an 

improved and adaptive control law. The results show the superiority of the rule 

adaptation against the non-adaptive fuzzy system, particularly when tracking different set 

points in the time varying process dynamics. 

5.6 Summary 

A TS type fuzzy model based MPC strategy for a MIMO process system has been 

developed, analyzed and implemented systematically in this chapter. The application and 

benefits of the proposed strategy over linear MPC was also demonstrated through 

simulations. The simulation results reveal that the proposed fuzzy control system has the 

better capability to overcome the nonlinear and coupling effects of the process system 

and is therefore able to produce accurate tracking performance against the desired output 

temperature profile. The inclusion of adaptation on the fuzzy local models also indicates 

the superiority of the proposed scheme against the time variant process system. More 

importantly, the load disturbance performance of the proposed fuzzy control system was 

satisfactory. Hence the proposed system provides a useful and relatively simple 

alternative when non-adaptive linear MPC fails to a produce better response against 
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nonlinear process dynamics. During control, the online adapted fuzzy model was 

linearized at each sampling instance employing a simple linearization technique. 

Subsequently the linear DMC based MPC scheme was formulated in accordance with the 

extracted linear parameters from the fuzzy model. In this way, the advantages of both 

fuzzy modelling and the existence of analytical solution in the case of linear DMC are 

combined. Moreover this fuzzy model with the linearized scheme provides the 

opportunity to implement other general linear MPC techniques in a straightforward way. 

The involvement of large number of rules in the TS type fuzzy system representing many 

local models may lead to over fitting. With linear output memberships the control surface 

may become more linear with larger rules. Under those circumstances, the online 

parameters estimation technique becomes less robust and ineffective, particularly at the 

boundaries between the fuzzy memberships functions [69]. To address this issue the 

adaptive fuzzy MPC system was chosen with three fuzzy rules for each output. In 

comparison to the fuzzy relational model based predictive control [81] and or inverse 

fuzzy model based control [9], [82] for nonlinear process, the presented approach is much 

simpler to implement, requires less computational effort and therefore suitable for real 

time process with faster dynamics. The only drawback of the scheme is that, as the 

adapted parameters of the local models are applied to develop the MPC control law, any 

erroneous parameters estimation may result in undesirable changes in the control signal 

resulting in a poor control performance. Typically, such situation occurs at the beginning 

of the adaptation process, particularly during the transient period the unexpected response 

characteristics due to load adjustments may lead to erroneous estimation. Using the 
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equality and inequality constraints on the parameters of the local models, it is possible to 

avoid unrealistic model parameters that could result poor control performance [2]. 
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6.1 Conclusions 

Chapter 6 

Concluding Remarks 

The main objective of this thesis was to develop a computationally efficient multi variable 

MPC strategy for a broad class of nonlinear process systems. To fulfill this objective a 

number of multivariable MPC techniques were developed. The application and benefits 

of these techniques were demonstrated through the simulations performances against the 

finite element based highly coupled nonlinear multi variable soil heating process. 

In chapter 3, formulation of the multivariable non-adaptive DMC based MPC strategy 

was presented and addressed the high performance behaviour of the multi variable MPC 

system against the general decoupled PID based multivariable control systems. To 

overcome the limitations mentioned in using the non-adaptive DMC, a multivariable 

AMPC scheme was developed and presented in chapter 4. The superior performance of 

the AMPC scheme was justified through the comparisons of several simulation results 

against the non-adaptive DMC based MPC technique. The comparative simulation results 

show that the proposed multi variable AMPC system has the better capability to overcome 

the nonlinear and coupling effects of the soil heating process and therefore able to 

produce accurate tracking performance against the desired output temperature profile. In 

chapter 5 the TS type adaptive and non-adaptive fuzzy model based MPC strategy were 

introduced, analyzed and implemented systematically. The advantages of using the fuzzy 

model in MPC for nonlinear processes were also justified by comparing the control 
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performance against the two linear model based MPC strategies (classical DMC and GPC 

strategies). 

Finally a sound analysis of these comparisons, control techniques and implementation 

strategies concludes that the proposed multivariable AMPC system and the multivariable 

adaptive fuzzy MPC scheme have the better capability for exhibiting satisfactory 

performance. Hence these two schemes represent an effective and relatively simple 

technique to handle a large class of nonlinear multi variable process systems. 

6.2 Recommendations for Future Research 

Some recommendations for further studies are outlined below: 

• All the multi variable adaptive MPC schemes proposed in this study were based on 

the DMC based MPC structure. However, the GPC is another popular form of 

MPC strategy widely used for multi variable process control. So to integrate these 

methodologies with the general GPC based control structure will provides a better 

performance analysis of the proposed controllers for further study. 

• In this thesis the tuning of all the DMC schemes were performed by using the 

general DMC tuning rules described in [2], [14], [38]. However, in literature such 

as in [24], [36] proposed an adaptive strategy on the tuning parameters for the 

implementation of DMC scheme. So inclusion of these tuning rules in the present 

DMC techniques may offer better performance. 

• The nonlinear based predictive control or NMPC is the most challenging research 

issue among the present MPC researchers. The use of the nonlinear model directly 

in MPC can improve the control performance by improving the prediction 
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accuracy. So to develop an effective NMPC technique is another line of research 

on this study for future studies. 

• In this study for online adaptation on the process model, the RLS based parameter 

estimation technique was used. But in literature there are several parameter 

identification techniques available for online adaptation on the process model, as 

for example, the instrumental variable method, maximum likelihood estimation, 

the bootstrap method and the sequential correlation method, are the most common 

techniques for online parameter estimation [68]. So to compare the accuracy of 

the RLS technique for online adaptation these methods also need to be 

considered. 

• The applications of all the proposed schemes were verified in this study against 

the soil heating process system which has relatively slow dynamics. A sampling 

time 0.6 min was used in the study which is sufficient enough to solve the MPC 

law before that defined sampling time. But in the process industries there are 

many processes where the process must be sampled before few micro seconds. In 

order to prove the effectiveness of the proposed schemes it is essential to verify 

them against a process with fast dynamics. 

• Although the finite element based soil heating process exhibits the true process 

dynamics but for better justification the proposed control systems should be 

verified against the real soil heating process system. 

• Finally a vast theoretical work on the proposed schemes involving the stability 

issues is necessary for future studies. 
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