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Abstract

Multivariable control has been a challenging research area in process control, particularly
for dynamically coupled and nonlinear time varying process systems. Since 1960, various
multivariable control techniques have been proposed in the literature to address these
issues. Out of these techniques Model Predictive Control (MPC) based control
methodologies has received considerable attention during last few decades.

The aim of this thesis is to provide a comprehensive analysis of different MPC techniques
that can be used for a wider class of multivariable process systems. MPC schemes use a
model to predict the future behavior of the process to be controlled and the control move
that provides the minimum future error is chosen to drive the system. The model
employed in the MPC scheme is generally a linear model. The representation of the linear
model in two different forms, parametric form or weighting sequence form, has
developed two popular and widely accepted MPC techniques, such as Generalized
Predictive Control (GPC) and Dynamic Matrix Control (DMC) based MPC techniques.
Although the GPC representation is the most advanced form of MPC, the DMC technique
is popular in industrial applications. The strict linear representation of the process model
in the above MPC schemes is insufficient to provide better response results against
nonlinear and time varying systems. To overcome this issue, two approaches are
incorporated: (a) adaptive MPC design and (b) fuzzy modeling. The adaptive structure
uses an online parameter identification technique using the Recursive Least Squares
(RLS) method. The fuzzy MPC system uses the Takagi-Sugeno (TS) type fuzzy rule

based model structure. Each rule of the TS system represents a local linear model of the
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process. This particular feature is exploited to extract the linearaized parameters of the
fuzzy model in order to define an adaptive fuzzy MPC system using the RLS technique.
The performances of the two adaptive MPC schemes are verified against a simulated
multivariable nonlinear soil heating process system. The control objective is to maintain a
desired temperature profile of the soil heating system, while tracking the temperatures
outputs at three different locations in the soil sample. Three heaters are located at the
outer surface of the soil cell and considered as point heat sources in the model. The soil
heating system is modeled using the general purpose ABAQUS finite element program
and is dynamically linked with the FORTRAN based control code to achieve a realistic
simulation. In order to show the effectiveness, the performances of the proposed control
schemes are compared against the tracking performances of the linear model-based non-
adaptive MPC techniques. A decoupled multivariable PID control scheme is also
developed in this study to justify the superiority of the MPC based control strategies. The
simulations results suggest the superior performance of the proposed adaptive MPC

schemes against other linear MPC techniques.
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Chapter 1

Introduction

1.1 Research Motivation

Control applications of process industries in general present many challenging problems
for control researchers. The nonlinear dynamic behavior, uncertain and time varying
parameters, long time delays, non-minimum phase and unmeasured disturbance are
known to be the most challenging issues in the field of process control [1]. In the past few
decades, control of these systems has received considerable attention in both academia
and in the process industries. A significant number of researches have been carried out in
the control industry to solve these problems [2]. Among them, Model Predictive Control
(MPC) based control strategy has received considerable attention in the control
community [3], and has been regarded as one of appealing and attractive approaches for
multivariable process control practice. Some new and very promising results of MPC
schemes in the literature also allow one to think that this control technique will
experience greater expansion within this community {2]. The main reason for this success
can be attributed to the fact that MPC is the most general way of posing the process
control problems in the time domain approach [3]. Thus the general formulation of MPC
provides the opportunity to integrate its applications with optimal control, stochastic
control, intelligent control, and multivariable control, and also with different types of
advanced adaptive model identification strategies [3]-[7]. Considering these advantages,

various MPC based techniques have been developed and being widely received by the









capacity of the MPC to achieve highly efficient control systems, which is able to operate

during long periods of time with hardly any intervention [3].

1.2.2 MPC Strategy

The methodology of all the controllers belonging to the MPC family is characterized by
the following ‘moving horizon or receding horizon strategy’, illustrated in Fig.1.1 [12]. A
discrete-time setting is assumed in which current time is labeled as time step k. At the
present time, k a model is used to predict the future behavior of the process output, y (.)

fork =1,---, P based on past and current control and process variables and on the optimal

future control moves of the manipulated variables over a horizon, P. An objective
function based on the difference between predicted output and set point sequence (desired
output) is minimized to obtain optimum values for manipulated variables moves u (.)
over the control horizon of M control moves (M < P ). Although M moves are optimized,
only the first move is implemented. After the move u (.) at the step & is implemented, the
feedback measurement at the next time step, k+1 for vy (.) is obtained. A correction for
model error is performed, since the measured output will, in general, not be equal to the
model predicted value. A new optimization problem is then solved again, over the
prediction horizon of P steps by adjusting M control moves.

A popular analogy that is often used to explain this concept is the control mechanisms
that comes into play when driving a car [3], [13]. The driver knows the desired trajectory
for a finite horizon and by taking into account the car characteristics (mental model of the
car) decides which control actions (accelerator, brakes and steering) to take in order to

follow the desired trajectory.
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Only the first control actions are taken at each instant, and the procedure is again repeated
for the next control decisions in a receding horizon fashion. Notice that when using
classical control schemes, such as PID control, the control actions are taken based on the
past errors and the future prediction is completely disregarded.

The basic structure for implementing the MPC strategy can be described by using Fig.
1.2 [3], [14]. A dynamic model of the system is used to predict the future plant outputs
based on past and current values and on the optimal future control actions. These actions
are calculated by the optimizer taking into account the cost function (where the future

tracking error is considered) as well as the constraints.

Setpoint
Past inputs _ trajectory
and outputs Predicted +

— > outputs Y
Model —»ﬂ)
_..__—> -

Future inputs
Future errors

Optimizer |«

Cost Constraints
function

Fig.1.2 Basic structure of MPC

The process model plays an important role in the MPC based control strategy. A
complete design should include the necessary mechanisms for obtaining the best possible

model from the process. The obtained model must be capable of capturing the process
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dynamics so as to precisely predict the future outputs as well as being simple to
implement and to understand. Therefore, this model is mostly chosen as a linear model.
The main advantage of choosing the linear model is that it results in a linear prediction
model. The common control objective used in MPC is the Linear Quadratic (LQ)
objective function. An LQ objective, a linear prediction model and linear constraints
gives rise to a so-called Quadratic Programming (QP) optimization problem in the MPC
based control scheme. In general the QP optimization problem can be solved within a
finite number of numerical operations [3]. The QP problem makes the resulting MPC
algorithm robust for process control. On the other side, if the process model is allowed to
be nonlinear then in general the prediction model will be nonlinear. This leads to a
convex quadratic program to a non-convex nonlinear problem during optimization, which
usually solved by employing Sequential Quadratic Programming (SQP) technique [2],
[3]. It is much more difficult to solve. Furthermore, in this situation there is no guarantee
that the global optimum can be found, especially in real time control, when the optimum
has to be obtained in a prescribed period of time.

The general expression of such an objective function to solve the optimization

problem can be written as,

P M
J =2 S(pyk+plk)=wk+p)I + 3 Ap)Auk + p-DJ

p=N, p=1
where Au(k + p—1)denotes the change of the control signal, N, is the minimum cost
horizon, y(k+ p/k)is the p-steps ahead future prediction with available information at

instant k, and w(k+ p)is the future setpoint sequences. The coefficient d(p) and



A(p)are the weighted term of the predicted error and the control effort during

optimization.

1.2.3 Historical Perspective on MPC

The origination of MPC can be traced back to as early as 1960; where open-loop optimal
control was a research topic of significant interest during that time. The idea of moving
horizon or receding horizon control, which is the basic core behind all MPC algorithms,
was proposed by Propoi, 1963[15], within the frame of open-loop optimal feedback
control system. After that, Lee and Markus, 1967 [16] anticipated current MPC practice
in their optimal control text in the following way:

“One technique for obtaining a feedback controller synthesis from knowledge of open-
loop controllers is to measure the current control process state and then compute very
rapidly for the open-loop control function. The first portion of this function is then used
during a short time interval, after which a new measurement of the process state is made
and a new open-loop control function is computed for this new measurement. The
procedure is then repeated’.

This idea was impractical during that time due to lack of sophisticated hardware and
computerized set-up. It was also desirable to derive a closed form control law that could
be implemented with computational equipments available at reasonable cost. The true
birth of MPC using the above idea was introduced in industry after the publications the
seminal paper by Richalet et al. (1976) in which Model Predictive Heuristic Control
(MPHC) was presented [17], [18]. Later the publication of Cutler and Ramaker, 1979

[19] introduced Dynamic Matrix Control (DMC) based control strategy. A dynamic



linear weighting sequence process model is explicitly used in both algorithms in order to
predict the effect of the future control actions on the output. The control actions are
determined by minimizing the predicted error subject to operational constraints during
optimization. The optimization is repeated at each sampling period with up to date
information about the process. These formulations were both heuristic and algorithmic in
nature and took the advantages of increasing potential of the digital computers at that
time. Besides these two algorithms, there exist a large variety of MPC algorithms. All of
these algorithms use the same underlying idea of predictive control; an explicit model,
the moving horizon strategy and the computation of the control signal by optimizing the
predicted output. The only difference between them is that they use different types of
disturbances and plant models of the true systems for prediction. Detailed literature

surveys of these techniques are presented in [3] — [5].

1.3 Present Research

1.3.1 Problem Description

Most industrial processes are multivariable, and have many variables that have to be
controlled (outputs) and have many manipulated variables (inputs) to drive the plant. In
some cases, a change in one manipulated variable mainly affects the corresponding
controlled variable and each of the input-output pair can be considered as a Single-Input
Single-Output (SISO) system which can easily be controlled by independent control
loops. In many cases, when one of the manipulated variables is changed, it not only
affects the corresponding controlled variables, but also influences the other controlled

variables of the process systems. These interactions between process variables may result






measurement at three different locations as outputs (outputl, output 2, and output 3) in a
cylindrical soil cell. The control objective of this process is to achieve temperature set
points at the chosen locations in the cell.

The process is multivariable and there will be interactions between input and output
variables of the system. This interaction can cause oscillations and even instability [20].
The system exhibits a dead time. That means, the output responds to the input after some
delayed sample timed interval. It is well known that the process with dead time is
difficult to control, because of the phase lag introduced by the dead time in the closed
loop. However, a time-variant nonlinear transient heat transfer occurs through the soil
cell that makes the process more complex and nonlinear. Because of these reasons any
classical control algorithm will not give satisfactory results. MPC is one of the effective
techniques to solve these types of multivariable control problems explicitly by
considering the nonlinear interactions and time-lag (dead time) between inputs and
outputs variables of the process when the control law is developed. However, the
resulting control law in MPC is linear, easy to implement, and at the same time its tuning

methodology is relatively simple [14].

1.3.2 Present Research Issues

The application of linear model based MPC schemes for the control of nonlinear
processes is one of the most interesting issues in the current research on MPC [2]. At
present, a major part of MPC applications in process industries stems from the use of the
linear response model and has shown improved control performance against the classical

PID based control performance. However, when these linear MPC schemes are applied to
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the nonlinear and time variant processes, the application of the linear model based
controllers are limited to a relatively small operating range. Hence the capabilities of the
linear model based controllers will degrade when the operation level moves away from
the original design level of operation [24]. Nonlinear model can be employed with MPC
to solve these problems [2], [25]. But these algorithms generally lead to the use of
computationally intensive nonlinear optimization techniques that make industrial
applications almost impossible [2], [9], [26], [27]. Recursive adaptation on the linear
model parameters can be used to overcome these problems more efficiently by re-
identifying the process with its moves into a different operating region. It can also
maintain a precise control performance over a wider operational range [2], [24]. Apart
from the adaptive model based MPC, fuzzy model based MPC techniques can also be
used to handle a wide class of nonlinear process control problems. Although there are
many representations in fuzzy systems for empirical modeling, the Takagi-Sugeno (TS)
type fuzzy model is the popular one for nonlinear approximation where several local
linear models for different operating conditions are identified and combination of these
local models through fuzzy logic representations results in an approximate nonlinear
model for the wide operation range [28]. To avoid nonlinear optimization in MPC,
different instantaneous linearization technique can be employed for linear model
extraction from the nonlinear fuzzy model [29]. Online adaptation to the fuzzy local
linear models can also be used for better performance of controlled processes against
time variant process dynamics [2], [9], [11]. The present study considers these issues to

develop new multivariable MPC algorithms that can be used to support the present soil



heating process system, as well as a wide class of multivariable processes in control

industries.

1.3.3 Research Contributions

This thesis represents an attempt to highlight the above issues related to the linear MPC

approach for nonlinear processes and intends to provide the contributions in the following

three aspects:

1.

The most popular DMC based MPC strategy is used to develop a high
performance Adaptive MPC (AMPC) technique for a wide class of nonlinear
multivariable process systems. A decoupled PID controller and a non-adaptive
linear model based MPC scheme are also developed to confirm the superiority of
the proposed adaptive MPC system. The proposed system uses a recursive
parameters identification strategy for online adaptation on the linear model and to
cope against the nonlinearity, parameter uncertainty, and time variant process
dynamics.

The popular TS type fuzzy model based adaptive MPC strategy for a class of
nonlinear time variant multivariable process systems is proposed and compared
against the performance of two linear model based MPC systems. To avoid the
nonlinear optimization, the proposed MPC algorithm utilizes a linear model
extracted from the nonlinear fuzzy model at every time step and is used for linear
MPC formulation. Online adaptation of the fuzzy scheme is also employed to
handle the time variant behavior and parameters uncertainty that always exists on

process systems.
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3. The performances of the proposed controllers are verified against the above
multivariable soil heating process. For the verifications, the soil heating system is
modelled using the general-purpose ABAQUS finite element program. A dynamic
control simulation is performed while linking these control algorithms into the
ABAQUS finite element analysis using a FORTRAN based user-defined
subroutine program. Thus a more realistic approach is employed for verification
by developing the dynamic simulation model using the general-purpose

ABAQUS finite element program.

1.4 Short Outline of the Thesis

This thesis consists of 6 chapters. The contents of these chapters are briefly outlined
below:

Chapter 2:  Process Description and Finite Element Modeling

This chapter introduces the soil heating process with its original hardware configuration.
The finite element analysis of this process and the dynamic control simulation approach
is presented using the general-purpose ABAQUS finite element program where the
control algorithm is linked into the ABAQUS finite element program by a user-defined
subroutine.

Chapter 3:  Multivariable Dynamic Matrix Control

A DMC based MPC algorithm has been developed in this chapter to control a highly
coupled multivariable process system. The performance of the proposed MPC controller

has been compared with a multivariable PID controller, where three decoupled PID
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Chapter 2

Process Description and Finite Element

Modeling

2.1 Introduction

Mann (1999) [30] used the soil heating process system in the INCA laboratory to verify
his control algorithms. The present study considers a different and more realistic
approach to verify the proposed control logics with the soil heating system. A finite
element analysis is performed on the soil cell and a model structure is built to mimic the
nonlinear soil heating process dynamics. The finite element modelling technique allows
representing the soil heating process dynamics based on the law of physics and the
problem of defining a single mathematical equation for this nonlinear process is
eliminated. Thus representing the finite element based soil heating process model as
plant, a more realistic approach is developed in the study for verification. The application
of the process will be used in C-CORE at Memorial University of Newfoundland for
studying transport properties and moisture migration of soil under different gravitational

conditions.
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2.2 Hardware Configuration of the Soil Heating Process
The schematic view of the soil heating process and its hardware configuration is

presented in Fig. 2.1 [30].

Soil Cell
Power
[leater 1
1
Thermocouple 1
Heater 2 =
I:] MOSFLET
< Circuit
Thermocouple 2
A
I:] Heater 3
Thermocouple 3 DBK2 Voliage
Output Card
A

> ?}?K 19 ‘1 1 bac
crmocouple » Board/100A
o Card

Pentium PC

(Computer Control)

Fig. 2.1 Hardware configuration of the soil heating process adopted from [30]

Three heaters (heaterl, 2 and 3) as inputs located at the peripheral of the cylindrical
container supply heat to the system and three thermocouples (thermocouple 1, 2 and 3)
located along the centreline of the soil cylinder measure the temperatures as outputs at

17



three different locations. The system comprises a metal cylindrical container of 305mm

height and 152mm diameter filled with dry sand.

2.3 Finite Element Model (FEM) of the Soil Heating System
In the experiment as shown in Fig. 2.1 the soil used inside the cylinder is dry sand.
Therefore conduction is only the mode of heat transfer through this medium. The general

heat conduction equation for this medium can be written as:

VlT:Bﬁ?_T.

K or

where V is the Laplacian operator, T is temperature, o is the density, c is the specific
heat and K is the thermal conductivity of the soil. The above equation is a nonlinear
differential equation under given boundary condition. The development of a closed-form
solution for the three-dimensional nonlinear transient heat transfer is mathematically a
complex problem and can become intractable. Therefore, the analysis can be performed
numerically using the ABAQUS/Standard-6.3 finite element based program.
ABAQUS/Standard-6.3 finite element numerical code has the capability to analyze heat
transfer through a body for given boundary conditions. This numerical code has been
used in the study to model the system. The schematic view of the soil cylinder for finite
element analysis and the corresponding finite element descretization of the cell using
7200 eight nodded brick shape small elements are presented in Fig. 2.2(a) and (b),
respectively.

The heaters 1, u; and u3 in the finite element model are modelled using concentrated

heat flux (g.). The concentrated heat flux is the amount of heat flux applied at each node.
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(a) Schematic view (b) Finite element model

Fig.2.2 Finite element analysis in the soil heating process

The performance of the heater depends on the area of the medium it covered. Therefore,

the energy (£) from the heater is related to g, as:

E=3%gq.
N

where N is the number of node covered by the heater. The temperature of the
thermocouples y; y» and ys3 is simply the nodal point temperature at the desired location.

The thermal properties of soil are obtained from [31]: 0 = 1600 kg/m’, ¢ = 0.2 Cal/kg°C

and K = 1.9 W/m°C. It is assumed that the top and bottom surfaces of the system are
insulated and heat dissipation occurs only through the cylindrical surface. The cylindrical
surface temperature is assumed to be always at a constant room temperature of 20°C.
However, the free heat transfers within the soil system makes this process a coupled

multi-variable heating system.
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2.4 Verification of Finite Element Analysis

2.4.1 Finite Element Analysis through a Semi-infinite Medium

In order to verify the performance of the finite element modeling a one-dimensional
transient heat transfer for a semi-infinite medium has been analyzed. This is considered
because closed-form solution is available for this problem. Figure 2.3 (a) shows a section
of finite element mesh. Energy (E=0.2 Watt) is supplied from the top of a rectangular bar

(10 mm x 10 mm) through four nodes (see the arrows).

Applied heat

flux 100 . | ' ' . |
Qﬂﬁ' ! Finite element analysis by |
ABAQUS
80 = o Closed form solution -
Ly R |
@)
—— g w ]
4T Jﬂg 1
— 40 -
IS/
A1 20 ¢ _
.y 0 P T RS B
m 0 5 10 15 20

Time (Hour)
(a) (b)

Fig. 2.3 Verification of finite element analysis



The side of the bar is insulated to model one-dimensional heat flow. Initial temperature is
considered as the room temperature 20°C. The solid line in Fig 2.3 (b) shows the
increase in temperature with time for an element at 500 mm from the heat supply. The

closed-form solution for this problem is given by [31]:

2q |ou -x*) gx x
T(x,t)=T +==, [—exp| —— |- "—erfc
(v =1 kN p[4ar} k (2\/0’1‘)

where, T is the temperature; x is the distance from the top where the heater supplies heat;
q is the heat flux (= E/A), t is the time, erfc is the complementary error function and « is
the thermal diffusivity (=K/cp). The prediction using this closed form solution is also
shown in Fig. 2.3 (b) as dotted line, which is much closed to the finite element prediction.
That is, modeling of the heater using concentrated heat flux is reasonably accurate. A
time-step of 0.6 minute has been used in this analysis, which will be used in heat transfer

analysis of the present soil heating system in the following section.

2.4.2 Verification of FEM based Soil Heating Process

As it is extremely complex to develop a closed-form solution for a three-dimensional
nonlinear heat transfer, an alternative approach is used for the verification of the finite
element based soil heating process model. In general if the cylindrical soil cell of the real
soil heating system as shown in Fig.2.1 is surrounded with a nonconductive metal then
for a constant heat supply the system will reasonably behave as an open-loop integrating
process. This is because; there is no radiation of heat through the external surface of the
cell. As a result the system is conserving heat energy with time inside a closed cylindrical

cell. In other case, if the outer surface of the soil cell is surrounded by a non-insulated
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metal then for steady state heat transfer an open-loop stable temperature profile may
reasonably be found. Mann (1999) [30] designed his experiment with a conductive metal
in the outer surface of the soil cell such that heat can always radiate through the outer
surface of the soil cell. A stable open-loop response was found from the experiment.

The finite element based soil heating model dynamics is verified with the above
conditions. The dimensions used for this analysis in the soil cell are shown in Fig. 2.4. A
heater is placed on the surface of the soil cylinder at a depth of 91 mm from the top.
Three thermocouples on the centerline of soil cylinder at different depths (A, B, C)
measure the temperature change. Note that top and bottom surfaces in the cell are

assumed to be insulated in the analysis.

o

91 mm
Heater Iﬂ—

95 mm EA

305 mm :
182 mm ‘B
274 mm c

+«—]52 mm———’{

Fig. 2.4 Dimension of the system for verification
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Simulations have been performed employing two types of boundary conditions on the
finite element based cylindrical soil surface. The conditions are given by,

1. Cylindrical surface is non-insulated and

2. Cylindrical surface is insulated.

1. Non-insulated Cylindrical Surface

In the simulation a boundary condition for heat dissipation through the external surface is
considered in the finite element based heat transfer analysis. A constant energy of 40
Watts heats from the heater is supplied to the soil cell and the boundary temperature is
maintained at a constant room temperature, 20°C. The increase in temperature at three
locations, A, B and C of the thermocouples are shown in Fig. 2.5. It can be seen from the
Fig.2.5 that a stable temperature profile is achieved after 3 hours. After this time a steady

state heat transfer occurs in the system.

27 . —— , . ; . , .
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&
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Fig. 2.5 Increase in temperature for non-insulated cylindrical surface
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2. Insulated Cylindrical Surface

A number of simulations were carried out with the insulated boundary surface on the
finite element based soil cell. The increase in temperatures at the locations A, B and C of
thermocouples for different energy supply from the heater (4 Watt, 8 Watt and 12 Watt)
are shown in Fig. 2.7. The higher the energy from the heater, the faster is the temperature
increase. Simulation results justify the system is integrating with the insulated boundary

condition.

60 v T T T T T
I —A— ] ocation A } 12 Watt
—8— Location B
50 - —®— Location C .

Temperature (°C)
8
|

g } 4 Watt
= =
I g = 1
= =
20 -
0 5 10 15 20
Time (Hour)

Fig. 2.6 Increase in temperature for insulated cylindrical surface



2.5 Dynamic Control Simulation

After modelling the soil heating process dynamics using ABAQUS finite element code a
user-defined subroutine (UMATHT) has been developed to link the proposed control
algorithms dynamically with the finite element based soil heating process dynamics. Thus
linking the control code into the user subroutine, following Internal Model Control

(IMC) based control simulation is performed. The schematic view for this dynamic

simulation is presented in Fig.2.7.

Set point + UMATHT
—>O——) (Control logic

Disturbance

Controlled input

ABAQUS outputs -

(Finite element

A code) analysis)
A
+
Approximated [0\/31?3&15 Y
FEM (Empirical [—=——_y(
—> model) -
Feedback Model error
filter <

Fig.2.7 Finite element based dynamic control simulation structure

In the approach the control law is written in FORTRAN into the user subroutine and the

approximated model (empirical model) of the FEM is obtained offline from the FEM

based simulated open-loop input-output data.
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2.6 Summary

A finite element based dynamic control simulation technique is presented for the present
soil heating process. The present study considers this technique as a tool to verify the
proposed controller’s performance. In this control approach it is possible to perform the
online modification of process parameters for robust analysis, such as heat transfer from
the surface, surface insulation, variation of soil properties at different locations,
disturbance due to power shut down, for simulations with least effort. However, this
program has the capability to calculate the element state variables at each step, which can
directly be used for updating the control variables dynamically while using the integrated

control law.
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Chapter 3

Multivariable Dynamic Matrix Control

3.1 Introduction

MPC has recently become one of the effective and better control methods for handling a
wide class of multivariable process systems. Although there are many forms of MPC
algorithms available in the literature, the DMC is arguably the most popular form of
MPC algorithm currently used for multivariable control problems in the process
industries [4], [24], [32]. The DMC technique is simple and relatively easy to implement
using common intuition and heuristics [2], [33]. A large part of DMC’s appeal is drawn
from an intuitive use of a linear finite step response model of the process, a quadratic
performance objective over a finite prediction horizon and optimal manipulated input
moves computed as the solution to a linear least squares optimization problem.

The aim of this chapter is to present a simple design and implementation technique
for a multivariable DMC controller. To verify the performance, the proposed control
system is simulated against the finite element based soil heating system. Writing the
FORTRAN code based on DMC strategy into the user-subroutine, a continuous control
simulation is performed at each sampling instance with the dynamics of the process
obtained from FEM based soil heating process. In order to compare the DMC output
results the performance of a classical multivariable decoupled PID controller network is
also verified where three decoupled PID controllers have been implemented simplifying

the MIMO system to three SISO systems. The simulation results show that the proposed
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DMC controller able to outperform the decoupled PID control system. Better results are

also shown when a high disturbance is applied at different level of operation.

3.2 Background

Cutler and Ramaker [19] presented details of an unconstrained multivariable MPC
algorithm, which they named DMC at the 1979 National AIChE meeting, and at the 1980
Joint Automatic Control Conference. In a companion paper at the 1980 meeting Prett and
Gillette [34] described an application of DMC technology to a Fluidized Catalytic
Cracking Unit (FCCU) reactor/regenerator in which the algorithm was modified to
handle the nonlinearities and constraints. A significant number of DMC algorithms have
been proposed in the literature to handle a wide class of multivariable process control
problems. Qin and Badgwell [4] reported about 600 successful applications of DMC in
the process industries. Apart from the DMC another form of MPC that has also rapidly
gained acceptance in the control community is the Generalized Predictive Control (GPC)
[35] based multivariable control strategy. The GPC employs a linear Controlled Auto-
Regressive Integrated Moving Average (CARIMA) model of the process, which allows a
rigorous mathematical treatment of the predictive control paradigm. The GPC
performance objective is very similar to that of DMC but the optimization is achieved via

recursion on the Diophantine identity [36].
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3.3 Formulation of Multivariable Non-Adaptive DMC

As a starting point, consider the following discrete-time linear step response model for an
n-output, m-input multivariable process. The " process output at the time instant k is

described by,

v (0= 3,0+ > gltu, (k1) (3.1

where y,(0) is the initial condition of the ™ output v, » Au; is the change in the i

h

manipulated input, g/ is the I™ unit step response coefficient of the i output that

corresponds to j‘h input. The response coefficient g’ in equation (3.1) converges to the

steady-state gain if, and only if, the system is stable. For such a stable processes the

model can be decomposed and re-expressed as,

Y =5,0+3 S giru k-D+> S giAu (k—1) (3.2)

j=1 1=1 J=LI=N, +1
where N is the process stable time in samples. If the process is asymptotically stable,

the coefficients g/ of the step response leads to a constant value after N, sampling

periods, so it can be considered that

if — ol . — oV — o~ -
En, =8Nz = = 8. =8, =0 and

m

Z i Au;(k=D)=u,(k—N,-1),

J=b =N, +1
where g is the steady state step response coefficients.

Thus the model in equation (3.2) can be written in the following form,

n Nl[

¥, (k)= y(0)+> > g/ Au,(k~1) (3.3)

j=l =1
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The cornerstone of the DMC algorithm is the response model in equation (3.3) that

predicts the output, y,(k + p/k); p sampling instants ahead of the current time instant, k

and is given by,

m Nyl

m L4 .. L.
Y+ plk)=y,0)+> > glAu (k+p-D+D. D g/Au k+p-1). (3.4)
J=1 1= j=ll=p+l
effect of current & future moves effect of ;):lsl moves

To cope with the unmeasured disturbances and inaccuracies due to plant-model mismatch
a current disturbance measurement,d, is estimated with equation (3.4) through the

prediction horizon, p =1,..., P and is written as

m 14 ) m N,}—l N
Vik+plk)=y,+ 2. ) glAu,(k+p-D+>. > gl/Au (k+p-1)+d (k). (3.5)

j=1 =1 j=l1l=p+l

Since the future values of d,(k + p) are not available an estimate of the future disturbance

is used. In the absence of any additional knowledge of d,(k + p) over future sampling

instants, the predicted disturbance is assumed to be equal to that estimated at the current

time instant. Therefore

m Nl

(k)= y" k) -] v, +> Y giAu, (k1) (3.6)

j=1 1=l
: th
where y"is the current measurement of the /" output.

The prediction model in equation (3.5) can be represented as

yik+plky=>> glAu (k+p-1)+ f,(k+p). (3.7)

j=1 1=

Where,
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filtk+p)=y"(k)- {v(0)+i2g Au (k l)}- v(0)+iZg',’,+,Au (k=1) (3.8

j=1 1=l j=l 1=l

is defined as the free response profiles of the " output, because this part of the response
does not depend on the future control actions.

Now using the prediction model described in equation (3.7) the future step predictions
through the prediction horizon, P with M future control actions, can be expressed in the

following form,

y(k+1/k)=g/'Au,(k)+-- +gl’Au (k)+--+g"Au, (k)+ f(k+1)

m

vi(k+2/k)= g“Au (k+1)+ gilAul(k)+ -+ glfAu (k+1)+ g"Au (k)+
. +g1""Au (k+1)+g”"Au (k)+ f.(k+2)

m m

yilk+M k)= g/'Au(k+M —1)+-- + gy Au (k) +--- + g/Au (k+M —1) +--
+gMAu (k) + - +g1”"Au (k+M —1)+--+ g Au (k)+ fi(k+ M)

m m

yik+M +1/k) =g Auy(k+ M)+ + gy Au (k) +-+ g/ Au,(k+M)+--

. ﬂ_

=0 =0

m m
——— e ——

+ U Au (R)+ et g Au,, (k+ M)+ 4 gl Ay (k) + f(k+ M)

=0

y(k+Plk)=g'Auj(k+P -1+ +ghAu (k)+-- + g/ Au J(k+P-1)+-

— e’

=0 =0

+gphu;(k)+ o+ " Au, (k+ P =)+ + g Au,, (k) + f,(k + P).

m m
_—

=0
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These above set of future predictions for the i™ output can be written in the following

compact matrix-vector form,
Y. =G[AU+F,. (3.9)
Where,
Y, =[y,(k+V k),---,y,(k+ Pl k)]
F, =[f(k+1),, f (k+P)]and
AU =[AU,,---,AU,, ]T where

AU, =[ Auj(k), -, Au (k+M) ] .

The matrix G in equation (3.9) is the dynamic response coefficient matrix of the "

output related to, j=1,---,m inputs of the process, and is given by

G‘R = [G”,"'vGim]pme ’
where
—glU 0 . 0 |
g: & 0.. 0
6| - ,~,~ ,,,- . (3.10)
gM ngl : o gl
_g;{ 855—1 L. gg—MH_PxM

The predicted equation in (3.9) can be combined for, i =1,---,n in the following compact

form,
Y =GAU +F (3.11)

while defining,

Y:[Yl’“.’Yn]T



--,F]Tand

1 n

F=[F,

o=[6t 61T, ..,

The objective of the control is to determine the current and future control moves

Au;(k + p—1)in equation (3.7) such that the predicted output profiles y,(k + p/k)for
p=1,..., P will drive as close to the setpoint sequences, w,(k + p) as possible in a least
square sense with a penalty of M control moves of Au ;. To do this following cost

function is selected:

J=2">"6(p)w,(k+p)—y(k+ p/k)F+. > A (pAu,(k+ p-1)J (3.12)

i=1 p=1 Jj=1 p=1
or the same can be expressed in matrix form as,

J=8[W, =Y, T [W,-Y,]+1[AU T [AU ]+ - +8,[W - Y] [W, - Y, ]+
A AU T [AU, 1+ 48, [W, =Y, I'[W, - Y, 1+ [AU, I'[AU,]1
It can be written in the following compact form
J =3[W-Y] [W-Y]+AAU]' [AU]. (3.13)

Where W is the setpoint vector and is given by,

W =[W,,---,W, ], with the i"" setpoint trajectory as
W, =[w,(k+1),--,w,(k + P)]

and the matrices 6 and A are the diagonal matrices of controlled variables weights and
manipulated variables weights of the MIMO DMC with dimensions (nPxnP) and

(mM xmM ), respectively and are given by,
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d =[diag(,,---.8,)]
A =[diag(h,,---,1,)].
The diagonal terms of &and A also the diagonal matrices of the i controlled variables

weights and 7™ manipulated variables weights with dimensions (Px P) and (M xM )

respectively. These matrices are given by,
8, =[diag (5,(1),--,6,(P))]
), =[ diag (4,1, 2,(M))].
Now using equation (3.11), the cost function in equation (3.13) can be expressed as,
J =8[W -GAU-F]'[W-GAU -F]+ A[AU] [AU]
or

J =3W'W +3AU'G " GAU + 28AU'G'F + 8FF — 26AU'G' W - 2F" W + A[AU]’ [AU]

(3.14)
Minimizing J in equation (3.14) with respect to AU yields:
ai—JU =28G'GAU +28G'F —26G" W — 2F" W + 2)AU =0
This leads to the following unconstrained close loop DMC control law,
AU=(G"8G+A)'G"8(W-F) (3.15)

or AU=K(W-F).
where K =(G"8G +AI)"'G"dis the MPC gain matrix and the term (W —F)is the

vector of future predicted error over P sampling instants due to the effect of past inputs.

The only control moves Au, (k),---,Au, (k) in equation (3.15) are applied to the plant at
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current step and whole procedure is repeated in each sampling step. The implementation

of the control law with the process can be described by Fig.3.1 [3].

Future
predicted
error

K Proces

v

Free response |,
calculation

Fig.3.1 MPC law

The control move AU is zero if there are no future predicted errors, that is,(W-F) =0
then the control objective is fulfilled only with the free evolution of the process. In other
case, the increment in the control actions is computed by optimizing the future prediction
errors. This control law provides the feedback of the measured disturbance at every
sampling instance. The other schemes such as GPC assume a model for noise and
disturbances and employ the information through a series of filters to predict future
disturbances profiles. However, the control actions computed in equation (3.15) still has
limitations when implementing to the real process due to the saturation limit of the
actuators. Constraints on the incremental values of the manipulated variables can be
imposed for the safety reasons. Typical constraints which generally implement in the

control process can be applied with this scheme for the safety purpose, [37]

um —u (k=1 <Au; (k) <ul™ —u, (k-1) (3.16)

J
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n

where 1" and u}*" are the minimum and maximum limits of the 7" manipulated input

variable.

3.4 Application of DMC to the Soil Heating Process

The above DMC based control algorithm is applied to the finite element based
multivariable soil heating process. To identify the process model for DMC, open-loop
step input test simulations are performed on the finite element based soil heating model.

In the simulations a constant open-loop control signal, u, is applied to the finite element

based process model and responses of the corresponding outputs (v;, y» and y3) are
measured to model the finite element system. Analyzing the open-loop step responses

following linear step response model is obtained for the i output [3] and is given by,

3 N,
y.()=y,(0)+> > glAu (k=1), i=1,--3 (3.17)
Jj=1 I=1

Note that, the sampling interval is chosen 0.6 minute and the corresponding values of

N,.J. for the process models are,

The complete control structure of the proposed control system with FEM of the soil cell
(plant) is shown in Fig.3.2. To cope with the model-plant mismatch due to process
uncertainties and to avoid the steady state control error, the proposed scheme is

implemented within an IMC structure (Fig. 3.2). A feedback filter is introduced into the

36



control scheme and the filtered modeling error is utilized to modify the setpoint. For this

purpose, the following first-order low-pass filter is used [2]:
el () =K, (v, )=y ))+(1-K,) e/ (k-1) (3.18)
where K ; is the adjustable filter parameter, K, € [0, 1]. The feedback filter is able to filter

out the measurement noise and stabilize the loop by reducing the loop gain.

Disturbance

m
W+ MPClaw  |Auj l—’ Plant Vi

A AU=K(W-F)

/ i ,
¢; » Plant i ;_é
Prediction | g————{ model -
model

Feedback
filter <

Fig. 3.2 Non-adaptive MPC structure for the soil heating process

The overall control strategy can be described in the following simple steps:

1. Identify the step response model described in equation (3.17) in offline and placed
in parallel with the FEM as shown in Fig.3.2

2. Measure the current disturbance (d,(k)) due to plant-model mismatch using

equation (3.6) and add with the prediction model shown in equation (3.7).
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3. Predict the output in the future steps and develop the control law present in
equation (3.15).
4. Apply the control inputs ( Au, (k),---,Au,(k)) to both the plant and the model.

5. Go to step 2 and repeat

3.5 Decoupled Multivariable Control Scheme

In the control theory, a decoupler is defined as a device, which eliminates the interaction
between manipulated and controlled variables by changing all the manipulated variables
in such a manner that only the desired controlled variables will be changed. A decoupling
network design problem for a multivariable process is presented in this section. The
design uses the method shown by Westpha (1995) [23]. The general structure for an n-
output, m-input (nxm ) multivariable process system with decoupling network is shown

in Fig.3.3.

b4
u ny ‘
—1 >
U; D n; . H | !
_um_> My, > Vo
—_—

De-coupling Plant
network matrix

Fig. 3.3 nxm Decoupled MIMO process

In the figure, H is defined as the process dynamic transfer function matrix and D is the

desired decoupling matrix, and is given by,
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'D, - D, ]

Im

D= D.,.l D and (3.19)
"H, - H, |
H=| H, f.lim . (3.20)

Where D, and H are the decoupled transfer function model and plant dynamic transfer

h

function model for the /™ output corresponding to j™ input. The aim is to design the

decoupling network matrix D such that «, affects only y,, u, affects only y,,---, and u,,
affects only y,_, respectively at steady state.
The design equations can be summarized using the following matrix notation,
y, = Hm (3.21)
m=Du_ . (3.22)
Where y,, u,, and m are the vector of process outputs, manipulated inputs to the de-

coupler and manipulated inputs to the process, respectively and are given by,

yn :[yl"“’yn]r
um = [ul’”.’um]T
m= ["11,"',nlm]r.

Thus from equations (3.21) and (3.22) results the following form,

y, =HDu . (3.23)
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In order to affect decoupled control the coupling that exists in equation (3.23) is
deliberately removed using the following procedure. Modify equation (3.23) as,

y,=Lu (3.24)

where L is the diagonal matrix redefined while modifying the process and decoupler
matrices as given by,

L=H,D,, . (3.25)
The matrix H,, is the modified process transfer function matrix with all off diagonal
elements in equation (3.19) is zero, (i.e. for i # j, H,, (i, j) =0, else H,, (7, j)=H(, j))
and D,, is the modified decoupling network matrix with all diagonal elements in
equation (3.20) are equal to 1 (i.e. for i = j, D, (i, j) =1, else D,, (i, j) =D(, j)).
Using equations (3.23) to (3.25) the following relation is established.

D=H'H,D,, (3.26)
or it can also be written using the equation (3.25) as,

D=H'L.
The model in equation (3.26) defines the decoupler for a (nxm ) multivariable process.
Solving the equations in (3.26) for the present (3x3)soil heating process the desired

decoupling transfer functions model can be obtained. After designing the decoupling
network, it is possible to implement three PID controllers (defining as PID,, PID; and

PID3) to control and tune the output 1 (v;), output 2 (y2) and output 3 (v3), separately.
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The complete schematic diagram of the finite element based soil heating proce (FEM)

with decoupled PID control network is shown in Fig. 3.4.

m
1 > >» Yl
my Plant "
d (FEM) > 2
m3 - > 13
4

M—(‘,:_ w1

Decoupled +Y
PID < O« "2
< +5<— w3

Fig. 3.4 Decoupled PID controller for the soil heating process

The internal structure of the decoupled PID controllers in Fig.3.4 is presented  Fig.3.5.

The variables e, e, and e in the figure are defined as the feedback error corresponds to

output 1 (y;), output 2 (y,) and output 3 (v3), respectively.
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3.6.1 Simulations with Fixed Setpoint Temperature

Simulations were carried out for the non-adaptive MPC scheme with the set point
temperatures 55°C, 65°C, 60°C and 70°C, 75°C, 80°C for output 1, 2 and 3 (y;, y; and y3),
respectively and compared against the decoupled PID based control performance. The
simulation results of both schemes are presented in Fig.3.6. For the simulations the initial
temperature of the FEM outputs was considered at 20°C and the boundary temperature
was kept fixed at 25°C. A high negative disturbance of heat is applied constantly to both

control system at 180minutes, while the responses are at steady state.

](X) [ T T T T T T T | T T T ]
90 |- —
80 -
= 0 L u 1
g 2 0p ©
- 1% % = kB
[ | i O | = : .|
Q) -
=40 H —— Non-adaptive MPC 1 8 oy % ]
1 Decoid*llgd . 1,0 " — Non-adaptive MPC
30 H P o I | PP Decoupled PID 1
- - = - Set points - 10 7]
20 1 | 1 | 1 | | | 1 | 1 1 | 1 | 1 ] ! | 1 ] 1 ]
0 60 120 180 240 300 360 0 60 120 180 240 300
Time (minute) Time (minute)

(a) Simulation with set points temperatures 55 C, 65 C and 60 C
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(b) Simulation with set points temperatures 70°C, 75°C and 80°C

Fig. 3.6 Comparisons of MPC and PID against fixed setpoint sequence

3.6.2 Simulation with Variable Setpoint Temperature
For better comparisons the simulation performance of the both control schemes against a
variable setpoint sequence was carried out. The simulations were performed for 540
minute where the set points for all three outputs were change after every 90 minute
interval. The applied set point sequences for all outputs are,

For output I: 55C 70°C 90C 75C 65C 55C

For output 2: 65C 80C 90C 85C 75C 65C

For output 3: 60C 75C 90°C 75C 70C 60°C.

The simulation results and comparisons are presented in Fig. 3.7.

44

360



Temperature ( 0C)

0 Non-adaptive MPC ]
------- De-coupled PID ]
30 - - - - Variable set points n
20 PR ISR [N TN N T NN SN NS S NN N N ]
0 60 120 180 240 300 360 420 480 540
Time (minute)
]]0 [ T I T I T I T | T I T l T l T l T |
100 —
N + -
06 80 [ ]
% 70 :Z ; -
£ 60 ] - -
& ol ]
3 ] Non-adaptive MPC 1
e e De-coupled PID 5
30 - - -~ Variable set points .
D 3| EPU S TN S AU CRUUN NP R B
0 60 120 180 240 300 360 420 480 540
Time (minute)
8
o
g
3
g ]
E- w0 1 Non-adaptive MPC ]
lf e De-coupled PID ]
30 - - - - Variable set points n
20 YRR ISR NUUNY SO T VNS SN S NN SN GRS NS SN N
0 60 120 180 240 300 360 420 480 540
Time (minute)

Fig. 3.7 Comparison of MPC and PID against variable setpoint sequences
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3.6.3 Tuning Strategy and Performance Analysis
For the comparisons, following tuning parameters were used (shown in Table. 3.1) in the

MPC scheme to obtain the better performances:

Table: 3.1 Tuning parameters for MPC

Controller Prediction Control Weights for Weights for Sampling
Horizon (P) Horizon (M)  Control Manipulated Interval
Variables J; Variables 4 ; T (minute)
MPC 20 10 1.08,1.10, 1.12 0.1,0.1, 0.1 0.6

The PID tuning parameters are chosen from Ziegler Nichol (Z-N) formula and are listed

in Table 3.2.
Table: 3.2 Decoupled PID gains
PID Controllers Proportional gain K, Integral gain K; Derivative gain K,
PID, 12 0.45 0.01
PID, 10 0.14 0.02
PID, 14 0.61 0.05

Moreover the simulation was carried out for the both schemes with the following
constraints on the manipulated inputs,

0<u (k),u,(k),u,(k)<120

=20 < Au, (k),Au, (k),Au, (k) <20
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The comparison of simulation results presented in Fig.3.6 concludes the following

performance Table 3.3:

Table: 3.3 Performance comparisons of MPC and PID

Controller Overshoot Settling Time Absolute Steady
(%) (minute) State Error

MPC 20.9, 18.9, 26.1 79.8, 81.6, 82.2 0.12,0.23,0.19

PID 27.1,35.9, 30.7 80.4, 82.6,83.4 0.82,0.73,0.89

From the performance table it is clear that the non-adaptive MPC controller shows better
set point tracking performance compare to the PID control scheme. More importantly, the
input heat distribution performance of the proposed MPC is more linear compared to the
PID scheme. More over, the load disturbance performance of the proposed MPC system
is satisfactory.

In general, the conventional PID controllers show acceptable performance especially
for SISO plant systems. However, for the MIMO soil heating process, performance of
PID controller is shown unsatisfactory performance because it is unable to overcome the
high coupling effect and dead time that exist in the heating process system. The MPC
controller has the ability to counteract these coupling effects and dead time when the
control law is developed. The only drawback of MPC is the model inaccuracies [37],
[38]. To cope with model inaccuracies, the current measurement is implemented to
correct the predicted output profiles. This is a form of feedback control, which assures
accuracy of the MPC and robustness against model inaccuracies [2]. By doing this, the

general stability and robustness is increased. Tuning of weighting factors, A, and &, are
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Specifically, if the computations are based entirely on the model prediction, the accuracy
of the model has significant effect on the performance of the closed loop system [39],
[24]. Hence the performance of the DMC based MPC will become unsatisfactory when
the operation level shifted from it’s the original design level of operation [24]. On line
adaptive identification of the plant model [2], [33] or multiple model adaptive strategy

[24] can maintain the performance of the controller over a wide range of operating level.
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Chapter 4

Adaptive Model Predictive Control

4.1 Introduction

In most applications of the classical MPC techniques, the process is modeled over its
operating range by extracting a linear approximated model. The extracted linear model
must be capable of predicting the future outputs, must be simple to implement, cost
effective to simulate and easy to understand. For a linear process system the
approximation provides improved control performance against other linear control
systems, such as PID control. However, for nonlinear process systems such a linear
prediction can be justified only for a limited control region where the linearization has
been performed. Moreover reliable linear models for nonlinear processes cannot be easily
obtained by using the conventional approaches based on physical modelling or linear
system identification [9].

The Nonlinear Model Predictive Control (NMPC) systems therefore have been
emerged as an alternative solution [4], [26], [40] to address the nonlinear effects.
Computational and design complexities that exist in traditional NMPC sometimes limit
their applications for real time control systems, particularly for fast multi-variable
processes. In addition, the non-convexity of the cost function makes the nonlinear
optimization in NMPC rather complex [41]. On the other hand, in linear model based

MPC the optimization is carried out in the form of a structured convex quadratic program
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resulting in a unique optimal solution. Moreover, several reliable standard solution
packages are available for linear optimisation [4].

Alternatively it is possible to develop the traditional linear MPC with an online
identification of the model parameters of the linear model while allowing the system to
be adaptive for each linearized control region of the process. When the adaptation is
performed at each control time instance, the region can be made as small as possible,
where the application of a linear model can be easily justified. This will indirectly
compensate the necessity of employing a nonlinear model to develop the MPC law.
Moreover this successive linear adaptation reduces the NMPC based optimization
problem to a linear optimization problem at each sampling step. The present study
investigates this strategy of using a linear RLS technique for updating the linear model
parameters recursively. The adapted parameters at every sampling step are applied to
compute the MPC based control law with a predefined optimization procedure.

The form of adaptive linear model identification strategy with MPC, defined as
indirect AMPC scheme has generated a considerable interest among the researchers [2],
[33], [42] - [53]. Among them, most of researchers [2], [42] — [50], [53] have considered
GPC based system to develop the adaptive model based control law. The GPC based
adaptive technique has the ability to solve the long-standing control problems such as
variable dead time, open-loop unstable and non-minimum phase systems and is regarded
as the most advanced form of AMPC system [2], [3], [33]. However, due to the
involvement of the regressive process model, the GPC based adaptive controller has been
shown to be sensitive against the prediction model [44], [54] and any mismatch of

process parameters may lead to instability [33], [44]. The DMC is the widely used control
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algorithm in the chemical process industry [2], [5], [24]. The derivation of the DMC law
is based on a weighting sequence model such as linear step response or finite impulse
model, both of which are easier to obtain and convenient to solve the MPC problem. The
only drawback of the weighting sequence model is that it requires many parameters to
describe the process, which could reduce the computational efficiency when the recursive
adaptation is performed. The involvement of lesser parameters for model identification in
the GPC makes the model adaptation more attractive than DMC model based recursive
adaptive systems [33].

Multiple Model Adaptive Control (MMAC) based strategy [24] can be applied to
overcome the above limitations in the DMC based AMPC scheme. This scheme uses
number of different non-adaptive DMC controllers and each controller posses its own
linear weighting sequence model to describe the process dynamics applicable for a
chosen operational level. Adaptation of multiple DMC models for each expected
operational point will provide an alternative solution to the recursive DMC model
adaptation. However, the modelling in MMAC requires analysis of plant data for each
discretized operational level. Also, this MMAC scheme is not applicable when the gain
of the process changes its sign during operation [24].

The present study considers the DMC based AMPC strategy to develop a parametric
input-output model based adaptive DMC system where it takes the advantages of GPC
based recursive adaptive systems. The chosen soil heating process dynamics is modelled
using the general purpose ABAQUS/Standard finite element program. Writing a

FORTRAN code based on adaptive control strategy into a user-subroutine, a continuous



simulation is performed where the model parameters are updated at each sampling
instance with the dynamics of the process obtained from FEM.

This chapter intends to provide the following contributions. First, the most popular
DMC based MPC is used to develop a high performance AMPC system for a coupled
MIMO process system. Although there are similar approaches with different MPC
strategy are reported in the past [43] — [51] the applications were limited to SISO
systems. Finally, the chapter provides a comprehensive study and comparisons of the
AMPC against the non-adaptive MPC scheme. Thus, validity of the proposed algorithm

is adequately justified.

4.2 Background

In the literature, there are two distinct architectures in MPC that have been formulated in
the field of adaptive control: direct and indirect adaptive control scheme [2]. The direct
adaptive control scheme adapts the control law based on a performance measure while
the indirect scheme continuously adapt the linear model of the process and the adapted
model is then used to synthesize the control law using a predefined optimization
procedure. There are different types of direct adaptive MPC strategy available in the
literature. Such as, Peterka’s Predictor Based Self-Tuning Control [55], Ydstie’s
Extended Horizon Adaptive Control (EHAC) [56] and De Keyser’s Extended Prediction
Self Adaptive Control (EPSAC) [57]. In the predictor based self tuning control scheme
the control law is developed minimizing the most recent predicted values of a quadratic
criterion for a given control horizon. The EHAC method tries to keep the future predicted

output close to the reference at a period of time after process delay. The prediction is
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calculated by e re rsion of ‘'iophantine identity. In the EPSAC a constant control
signal starting from t  present moment using a sub-optimal predictor instead of solving
the Diophantine equ ion. The above developments are essentially limited to SISO
systems and their ext sion to the MIMO case suffers some limitations as highlighted by
Garcia et al. (1989) in [5]. A o, the extensive applications of the aforementioned
methods are not rej rted elsewhere. On the other hand, the indirect adaptive MPC
scheme can be employed for multivariable process in a straightforward way. In the past
several articles proposed various indirect adaptive control mechanisms for controlling
nonlinear processes [58], [59]. A popular approach for adaptive MPC is to linearize the
nonlinear analytical 1odel (a model based on the law of physics) at each sampling
instance and the linearized model is employed to develop the control law [60] — [62].
Analytical models are fficult to obtain due to the underlying physics and chemistry of
the process, and are often too complex to employ directly in the optimization calculation.
Others [63], [64] have used the nonlinear analytical model to obtain linear state space
models at different operating levels. These models are then weighted using a Bayesian
estimator at each sampling instance to obtain an adapted internal process model. Another
adaptive strategy uses gain and time constant schedule for updating the process model
[65], [66]. An extension of this method is to use multiple linear local models to update
the process model [24]. Linear models that described the system at various operating
points are developed based on plant measurements. Past researchers in [67] have
illustrated that linear models can be combined in order to obtain an approximation of the
process that approaches its true behavior. As the accuracy of this approximation depends

on the number of small linear models, these models have to be developed using reliable
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plant data at each level of operation [24]. Moreover, this scheme is not applicable to
handle the non-minimum phase systems. Recursive parameter estimation on the linear
model is another popular approach for adaptation in the MPC based control scheme [42]
— [53]. In general, recursive formulations update the parameters of the process model as
new plant measurements become available at each sampling instance. However this
estimation schemes have well known problems including: convergence problems if the
data does not contain sufficient and persistent excitation, inaccurate model parameters
influence measured disturbances or noise influence the measurements, and sensitivity to

process dead times and high noise levels [24].

4.3 Formulation of Multivariable AMPC

In the proposed AMPC scheme, an online RLS parameter identification strategy is
introduced to perform the online adaptation and a parametric input-output model is
extracted to formulate the proposed adaptive MPC scheme. The formulation of the MPC
scheme is nearly same as that of DMC but the output predictions is computed recursively
at each sampling step from the adapted linear parametric input-output model parameters.

The proposed scheme is presented in the following subsections:

4.3.1 Formulation of RLS Scheme
A general m-input and n-output multivariable linear system can be used to approximate a
local operating region of a non-oscillating process by the following discrete-time MIMO

parametric input-output model [68].
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sampling time unit and is given by the relation, r(’; = Tk(ilj where the dead time 79 is the
integer multiple of the sampling time 7.
The model in equation (4.1) for the i output, ignoring the noise term, & (k)can be

represented in the following form [64]:

y

v, (k)= —Za,’y,(k—z)+22b;f w, (k—1-kJ -1) (4.2)
=1 j=1 1=0

The model parameters in equation (4.2) are updated at each sampling time for achieving
the adaptation. Thus, based on the system model in equation (4.2), the estimated vector of

the linear model parameters is defined as:

where the elements of 0, (k) are,

A :[a{,m,a;, } and B, :[bg,---,b";,]

The RLS technique [23], [64] for updating the above model parameter vector can be

summarized as follows. The new parameter estimate can be expressed as,

P (k—1)o, (k)

0.(k) =0.(k-1+ X[y"(k) —@ (k)0 (k-1)] . 4.3
ne\\"eflim)ule o’ld(eslimu(e) /u + q)i (k)I,' (k B l)(PiT (k) [ ‘1)1:“( ) (P:)feSipa,hEad )] ( )
correcti‘r;g vector measurement prediction of the

new measurement

estimatederror.d,

The covariance matrix P;(k)is updated while using the following

P, (k) =1(P,- (k-1)-
U

P,-(k—1)«p,f(k>w,-(k>P,-(k—1>j | )

1+9,(k)P.(k—g," (k)
Where the components of the regression vector @,(k)is,

0. =[Y.(k) Uk, 0, k]
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decomposed into forced and free terms together with the measurement of the current
disturbance. The prediction is thus formulated as [2]:

vi(k+ plk)=y" " (k+p)+y/“(k+ p)+d (k) (p=1---,P). 4.5)
The current disturbance d;(k) is assumed to be constant throughout the prediction horizon

and is computed as:

d; (k)= y{" (k)= y; (k). (4.6)
The RLS scheme present in equations (4.3) and (4.4) executed at each sampling instant to
update the current model parameter vector 0,(k)with the measurement of the current
disturbance di(k). The approximation of equation (4.5) with the updated model
parameters is then given by,

Y k+plk)=39/"“(k+p)+3"“(k+p). 4.7)

A Jorced
e i

Where the forced output terms (k + p) are estimated at the current step with the

updated model parameters as,
A ed & A~
vyl (k+ p) = z Auj(k+p—r)
Jj=1 r=l1

n'y n}

where, gl = —Z a g’ + Zb,'j
=0

is the " element of the adapted unit linear step response model parameter corresponding

to i" output to /™ input, in which when r<k’, /=0 and Af. j(k+p—r) are the

~ free

unknown current and future input moves. The free response term y/”“(k + p) is inferred

as the future response of the system provided that the system input will be maintained at a

constant value. In other words,
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u(k-)y=i,(k)y=-=u,(k+P).
The free response predictions can be estimated recursively from the updated linear

model parameters as follows. For convenience, the free response term is expressed while
using,
57k + p) = f,(k+ p).

Therefore

n'y m "11

fk+p)= Za,f(k+p D+ > bl u (k—1—k! + p) (4.8)

Jj=t {=1
The initial conditions for equation (4.8) are the predicted output at the current time and is

given by,

F)=flk=1)=- =5 k).

Hence, the prediction form in equation (4.7) can be written as:

y(k+plk) :izp: YAL, Jk+p— r)+f(k+p) 4.9)

j=1 r=1 R
§ ‘/Iro

aforeed
’\.,]aux

The above set of predictions through the prediction horizon can be written in the

following compact form,
Y =GAU+F (4.10)

where, G is the adapted multi-variable dynamic matrix expressed as,

G=[G,]
7 nPxmM

and the elements are given by:
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The vectors Y, AUand F are the adapted predicted output, optimal control input and the

free response vector, respectively and given by the following expressions,

where,

Y, =[0,(k+V k),---,9,(k+ Pl k)]
AU, = [Aﬁj(k),---,Aﬁj(k +M)] and
F=[ fk+0, fk+P)].
The objective is to determine the control moves Aﬁj(k + p —r)in equation (4.9) such that

the predicted output y,(k+ p/k) will drive as close to the set-point. To do this the

following cost function is selected.

n P m M
J = Z_]‘,Zﬂ:@(p)[wi(k+1r7)—&,v(k+p/k)]2 +§§ﬂ,(p)[m2j(k+ p—DT 4.11)

The equation (4.11) can be written in the following compact form

J=8[W-=YT[W-Y]+MAUJ [AU] (4.12)
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Combining equations (4.12) and (4.10) yields:
J =3[W-GAU-FI"[W-GAU-F]+AAUT [AU] (4.13)
After minimizing equation (4.13) with respect to AU, the following closed-loop solution

of unconstrained adaptive multi-variable control law is obtained,

AU =K(W-F). (4.14)
Where the adapted MPC gain matrix, K = (G78G + A1) G"8 and the term (W —F) s the
vector of future predicted error over P sampling instances due to the effect of past inputs.
The only control moves, Ait, (k),---,Ai, (k) in equation (4.14) are applied to the plant at

current step and whole procedure is repeated in each sampling interval.

4.4 Application of AMPC to the Soil Heating Process

The above AMPC scheme is applied to the FEM based soil heating process. The
complete control structure of AMPC system with FEM of the soil cell (plant) is shown in
Fig.4.2. To cope with the model-plant mismatch due to process uncertainties and to avoid
the steady state control error, the proposed AMPC scheme also implemented within an
IMC structure as shown in Fig.4.2 [9]. The RLS identification technique is incorporated

in the IMC structure to realize the adaptive control.
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Fig. 4.2 Block diagram of the AMPC scheme

The overall AMPC scheme can be realized while implementing the following simple

steps at every sampling interval:

1.

o

Identify the initial model parameter vector 0.(0) in offline.

Measure the current disturbance (d,(k)) in equation (4.6) and update the model
parameter vector (0,(k) ) using the RLS scheme shown in equations (4.3) and (4 ).
Employ the updated model parameters to build the prediction model ( y,(k+ p/k))

described in equation (4.9) and compute the MPC based control law given in eq tion
(4.14).

Apply the control moves, Az, (k),---,Au, (k) to both the plant and the model.

m

Go to step 2 and repeat.
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that, the sampling interval is chosen 0.6 minute while building the model. The model in

equation (4.15) can be rewritten in the following parametric input-output model form [3]:

Az 0 0
0 A () 0 Y. (k)
0 0 Az

o _ 12 _ ! _ (417)
z ky B“(Z 1) z ky BD(;’ l) z k. Bl3(z ])

= 2B, (z") M B,(z") B, |u, (k1)
B (2" 2BL(z) 2Bz
Solving the equations (4.15) and (4.17) the polynomial matrices A(z™") and B(z7') are
obtained and the elements are thus given by,
Az =1-287"+2.60z7-0.81z"7",
A (27 =1-2.737"" +2.4877 -0.752z 2,

Ay(z7')=1-1.87827' +0.952:72 ~0.0722 7,

B, (z7') =0.00317 -0.00605z " +0.00288772, Y
By, (z7') =0.000357 —0.000653z " +0.0002967 2, k2 =2

Bi;(z7") =0.000017 —0.0000316z~" +0.0000147z 72, kL =6,

By, (') =0.00127-0.00231z "' +0.001041z 2, ki =2,
B,y (z7') = 0.0035-0.0065z " +0.00301z 72, k3 =1,
B,3(z~') =0.00021-0.000376z " +0.000168z 2 k3 =3,
By (z7") =0.0001-0.00018z" +0.00086z 2, k3 =6,
By, (z7')=0.00157 - 0.00287z " +0.0013z 72, k3P =3,
B33(z ') =0.003-0.00295z 7" +0.0002427 72, k3 =1.
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The model in equation (4.17) is employed as the initial model for the RLS scheme to
perform the online adaptation and can be written in the following vector form as shown
in equations (4.3) and (4.4).

Define the initial model parameter vector for the i output as, 0,(k —1)=0,(0). Therefore,

0,(0) =[-2.8,2.60,-0.81,0.00317,-0.00605,0.00288,0.000357,~ 0.000653,0.000296,
0.000017,-0.0000316,0.0000147]"

0,(0)=[-2.73,2.48,~-0.752,0.00127,~-0.00231,0.001041,0.0035,-0.0065,0.00301,
0.00021,-0.000376,0.000168]"

0,(0)=[-1.87,0.952,-0.072, 0.0001,-0.00018,0.00086,0.00157,-0.00287,0.0013,
0.003,—0.00295,0.000242]"

and the corresponding components vectors are given by,

¢, (k)=[-y,(k=1),—y,(k=2),— y,(k=3),1;(k =2),u,(k =3),u,(k —4),
U, (k —3),u,(k —4),u,(k = 5),15(k = 7),u;(k —8),u,(k —9)]

@, (k) =[=y,(k =1),— y,(k —2),— y, (k =3),u, (k = 3),u, (k —4),14, (k = 5),
y (k = 2), 1y (k = 3), 10, (k — 4), 15 (k = 4), 1, (k = 5), 1, (k —6)]

and

@, (k) =[=y;(k—1),— y3(k = 2),— vy (k =3),u,(k = 7),u,(k — 8),u, (k —9),
wy (k= 4), 1, (k = 5), 1, (k — 6,15 (k = 2),u; (k = 3),us(k—4)]

Now the tracking performance of the approximated linear parametric model is validated
by comparing the open-loop step response characteristics of the model with the FEM

responses. Fig.4.3 shows the open-loop step responses of the linear model and

corresponding FEM results.
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Fig. 4.3 Open-loop step responses of the soil heating model
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Simulation results (Fig. 4.3) justify the accuracy of the extracted linear model to perform

the control simulations.

4.5.2 Comparison of Tracking Performance
The performance of the approximated linear model in equation (4.17) with the RLS
adaptation scheme is verified against variable input sequences. The input profile and the

simulation set-up are presented in Fig.4.4 (a) and Fig.4.4 (b), respectively. The

m n

temperature outputs of the adaptive model (v,, y» and y3) and the FEM (y)", y;' and y')

outputs are measured at each step with the sampling interval 0.6 minute.

for uy, uy and 5
2 u .
100 r T . I : I . 1 > > yll
Uy Soil Cell o
80 | 1 > (FE model) > 32
= " / Y +
B -] —4 5
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g 1 d
20 + ' . «——
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(a) Variable input sequence (b) Simulation set-up

Fig. 4.4 Simulation with variable input sequences

The difference between the adaptive model outputs and the FEM outputs (tracking error)
are computed and compared with the non-adaptive linear model based tracking
performance. The tracking errors of both adaptive and non-adaptive scheme are presented

in Fig.4.5.
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Simulation results justify the accuracy of the online adaptive scheme against the non-

adaptive model in the present soil heating process.

4.6 Control Simulations

The control objective of this exercise is to achieve precise temperature tracking with
lower overshoot, smaller settling time, minimum heat distribution, better load disturbance
characteristics and least tracking error. To achieve the goal two temperature set-point
tracking experiments and a variable set-point tracking experiment were carried out for the
proposed AMPC scheme and compared with the non-adaptive model based tracking
performance. The output set-point temperatures are chosen as 55°C, 65°C, 60°C and
70°C, 75°C, 80°C for output 1, 2 and 3, respectively. A high negative disturbance of heat
is also applied constantly to both the control system at 180 minute, while the responses
are at steady state. The simulation results are presented in Fig. 4.6. The tuning parameters

chosen for the two schemes are shown in Table 4.1.

Table 4.1 Tuning parameters for AMPC and MPC

Controller Prediction Control Weights for Weights for Sampling
Horizon (P) Horizon (M) Control Manipulated Interval
Variables 6; ~ VariablesA; T (minute)
AMPC 15 5 1.12,1.05,1.15 0.1,0.1,0.1 0.6
MPC 20 10 1.08,1.10,1.12 0.1,0.1,0.1 0.6
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(b) Simulation performance with the set point temperatures 70°C, 75°C, 80°C

Fig. 4.6 AMPC and non-adaptive MPC against fixed set point temperature

For better comparisons the same systems were also simulated for tracking the same

variable set point sequences and the results are presented in Fig. 4.7.
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The simulation results clearly show that the AMPC outperforms the non-adaptive MPC
with lower overshoot, smaller settling time, minimum heat distribution and better load
disturbance characteristics. The better performance of the AMPC is mainly due to the fact
that its control law given in equation (4.14) is computed at every sampling step with the
adapted linear model parameters. This in turn will update the process dynamic matrix G
and the free response vector F of the model more precisely. Both of them are important
for achieving accurate control performance. In the non-adaptive MPC case, the control
law is implemented with the pre-estimated linear model parameters where the precision
of the estimates of G and F are limited to a chosen operating range. With the change of
operating regions resulted in more overshoot and undershoot as compared to the response

characteristics with the AMPC.

4.7 Summary

An online adaptive model identification strategy for MPC has been developed, analyzed
and implemented systematically in this chapter. The application and benefits of the
proposed AMPC strategy over the non-adaptive MPC strategy are also demonstrated
through several simulations. The simulation results show that the proposed AMPC
system has the better capability to overcome the nonlinear and coupling effects of the
process system and therefore able to produce accurate tracking performance against the
desired output temperature profile. The tracking performance of the adaptive model also
indicates that the proposed linear adaptation is a computationally efficient alternative to
NMPC systems. The linearization of the nonlinear system at every sampling instance

allows a higher resolution in achieving different linearized models and as a result the
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recursive parameter estimation method able to handle the process variations much
efficiently than in a traditional MPC system. More importantly, the load disturbance
performance of the proposed AMPC system was satisfactory. Hence the proposed
AMPC system provides a useful and relatively simple alternative when non-adaptive
MPC fails to produce better response against nonlinear process dynamics. The only
drawback of the scheme is that, as the adapted parameters of the linear model are applied
to develop the MPC control law, any erroneous parameter estimations may result in
undesirable changes in the control signal. When RLS technique is employed for time
varying processes the process and estimator mismatch will cause the covariance matrix to
increase. Under those circumstances when a fixed forgetting factor is used all the past
elements in the covariance matrix will contribute towards the estimation. Particularly at
the steady state this may leads to an exponential growth of the covariance matrix and may
result unstable control performance [33]. To overcome the problem it is possible to adapt

the forgetting factor recursively based on the information content in the present data [2].
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Chapter 5

Adaptive Fuzzy Model Based Predictive

Control

5.1 Introduction

For complex and highly nonlinear process systems, a suitable identification method for
obtaining an accurate empirical process model is quite challenging. There are several
techniques existing in the literature to address this issue. Among them, fuzzy logic based
model identification technique is considered to be an appropriate tool for nonlinear
process modelling and can be incorporated with the traditional MPC schemes for
formulating an effective control law. Although there are many representations of fuzzy
schemes for nonlinear process modeling, fuzzy model of the TS type is the most
convenient form to use in MPC systems. It has the ability to approximate the complex
nonlinear systems in a parametric form and can directly be used for solving the general
MPC problem [11]. Further, this technique allows the complex high dimensional
nonlinear modeling problem to be decomposed into a set of simpler linear local models to
represent small operating regions defined by the fuzzy boundaries. Fuzzy inference is
used to interpolate the fuzzy outputs of the local models in a smooth fashion to generate
an approximated nonlinear fuzzy model. Therefore TS type fuzzy model based MPC
strategy for nonlinear process recently generated considerable interests among the present
researchers [2], [9], [11], [69] — [82]. In many cases [2], [69] — [78] the parameters of the

linear model extracted from the nonlinear fuzzy model are used for linear MPC
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formulation at every sampling instant. In other cases, such as in [9], [11], [79] — [82], a
nonlinear optimization problem is solved at every step with the nonlinear fuzzy model.
The accuracy of the extracted linear parameters depends on the process dynamic behavior
described by the fuzzy local models. However, when the process is time-variant the
predefined linear local models will become applicable only for a small operating region.
Introducing more local models may increase the accuracy but may lead to over-fitting
and heavy computational burden. The online adaptation of the fuzzy local models can be
employed to overcome the nonlinear time-variant process dynamics. The adaptation is
usually achieved by using a RLS parameter estimation technique [2], [69], [78], [79] A
single linear model based AMPC technique can also be applied to handle such process
system [2]. The adaptation of a single process model over wider operational range may
result in a transient error, and this may in turn lead into undesirable behavior of the
controlled process [2].

The present study investigated the above strategy and developed an adaptive TS type
fuzzy model based MPC scheme to control and maintain the temperature profile of the
coupled nonlinear multivariable soil heating system. To handle the parameter uncertainty
and time variant behavior of the process, an iterative RLS parameter estimation technique
for adaptive performance of the local models is introduced. An online linearization
technique is adopted to extract the linear parameters from the nonlinear TS type fuzzy
model in formulating the linear MPC scheme. The proposed scheme formulates the MPC
strategy using general DMC structure.

This chapter summarizes the contributions in two aspects. Firstly, the most popular

DMC based MPC is formulated with the TS type adaptive fuzzy model structure and its

76



robustness is verified with the coupled nonlinear MIMO soil heating process system.
Finally, this chapter provides a comprehensive study and comparisons of the proposed
fuzzy model based MPC strategy against two linear MPC schemes. Thus, validity of the

proposed algorithm is adequately justified.

5.2 Background

In the literature there are many successful applications of MPC using TS type fuzzy
model have been reported in [2], [9], [11], [69] — [82]. All the approaches discussed in
these papers can generally be classified into two groups: 1) methods using directly the
nonlinear fuzzy model in the optimization procedure [9], [11], [79] — [82], and 2)
methods using a linearized model instead of directly using the nonlinear fuzzy one [2],
[69] —[78].

The use of the nonlinear fuzzy model directly in MPC is motivated by the possibility
to improve the control performance by improving the prediction accuracy. But it leads to
a non-convex optimization (nonlinear optimization) problem which must be solved at
each sampling period. This hampers the application to fast processes where iterative
optimization techniques cannot be properly used duc to short sampling time. However, in
the literature there are several nonlinear optimization techniques available that can be
used to solve this problem. Among them the most straightforward way of minimizing the
TS model in NMPC is to use the Nedler-Mead method or sequential quadratic
programming technique [9]. These algorithms, however, require significant computing
power which may be a serious obstacle for real-time implementation. Moreover, the

algorithm can be trapped in a local minimum, which may result in undesirable control
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MPC formulation. Better accuracy of these weighted linear parameters is generally
achieved by using more fuzzy partitions in the antecedent fuzzy space [69].

In literature other than TS model, fuzzy relational model based MPC law has also
been developed in [83] [84] to handle the nonlinear process systems. This scheme 1s
computationally more complex and requires large computational effort in nonlinear
optimization [2], [11], [75]. Also, the further extensions of the aforementioned methods
are not reported elsewhere. Apart from these fuzzy MPC schemes, the simplest way to
control a nonlinear process is by using the inverse of a fuzzy singleton model (a special
case of the TS model) and use it in an open-loop (feed-forward) configuration [2], [9],
[11], [85]. The obtained inverse model is used as a controller and under special
conditions stable control can be guaranteed for minimum phase systems [11]. This type
of control can only be applied if the inverse of a fuzzy model exists. Since this is a feed-
forward configuration, ideal control configuration can not be directly applied in practice
because the model never a perfect mapping of the system. So any model-plant mismatch
results the system unstable. Moreover in this scheme there is always a possibility to
violate the constraints limit for the computed optimum inverse model input to the
process. So to check the constraints limit at every step a nonlinear B & B optimization is

required to solve to find the best optimal solution [9], [11].

5.3 Formulation of TS Type Adaptive Fuzzy MPC

In the proposed adaptive fuzzy MPC scheme, an online RLS parameter identification
strategy is incorporated with the TS type fuzzy model to perform the online adaptation of

the fuzzy local models and an online linearization technique is employed to extract the
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linear parametric input-output model to formulate the proposed linear MPC based control
scheme. The formulation of the MPC scheme is nearly same as that of DMC but the
output predictions is computed recursively at each sampling step from the extracted linear
parametric input-output model parameters. The proposed scheme is presented in the

following subsections:

5.3.1 TS Fuzzy Model for MIMO Process
An n-output, m-input nonlinear process can be approximately modeled by a set of
coupled Multiple Input Single Output (MISO) models. For the i™ output the decomposed

model at the time instant k can be described as,

v, (k)= f(o, (k) (5.1)

where, @, (k) is the regression vector for the i output , expressed in equation (4.3) for
RLS adaptation and f(.) is a nonlinear function used for nonlinear approximation.
The unknown nonlinear function f(.)in equation (5.1) can be approximated by using the
TS type fuzzy model. The model comprises a number of logical rules for the
approximation where each rule possesses nonlinear process variables in the antecedent
space and piecewise linear function in the consequent space. The antecedents of fuzzy
rules divide the input space into a number of fuzzy regions while the consequent
functions approximate the local behavior of the process. The general rule base TS model
for the approximation is expressed in the following form. The " rule is defined as,

L: Ify(k-1)is C/(r)and ....and y,(k —n})is C, (r)

-

and u,(k -k, —1) is D} (r) and ...
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where B, is the vector of the membership grades (degree of fulfillment) assigned to each

of the R rule implications at every sampling step and is given by,
B, =[5 5] (5.5)

The elements of P, are given by:

ye

r=1
where & is the degree of fulfillment of the r™ rule in the antecedent space. This is

obtained while applying the r-norm fuzzy operation to the " rule and is given by [69]

and [76],

£ =T uc N[ 4D,
1=l j=1 1=l

where #[.] is the grade of the membership estimated from the antecedent variables.

Although the fuzzy model consists of a number of piecewise linear models, the overall
model output in equation (5.4) is nonlinear. To formulate the linear MPC strategy with an
analytical approach, a simple method of linearizing the fuzzy model about the current
operating point is used at each sampling instant. The weighted linear parameters due to

the fuzzy inference are then given by [69]:

0,=[A, B,,--.B, |=8.0, (5.6)
where A, :[a{;--,a,’;, :l and
B, =[6), .5, |
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The vector 0, denotes the weighted linear fuzzy model parameter vector, which are

computed at every sampling step and employed with the MPC scheme to develop the

control law.

5.3.2 Formulation of MPC Scheme
A linear model based MPC strategy is formulated in this section. The linear parameters in
equation (5.6) can be used to build the following parametric input-output model,

m ’15

(k) = Za,y,(k D+ Y > blu,(k—1-kJ -1). (5.7)

Jj=1 1=0
The model in equation (5.7) can be applied to predict the future steps output

(9,(k+ plk)) for p sampling instants ahead of the current time instant, k. The prediction

through the prediction horizon, P is based on the natural divisions of the system
responses into free and forced terms and the measurement of the current disturbance due

to model-plant mismatch. The prediction is thus formulated as [3]:
9.k + plk)= 35" (k+ p)+ 9/ (k + p)+d (k) (p=1,--,P). (5.8)

The current disturbance d,(k) in equation (5.8) is assumed to be constant throughout the

prediction horizon and is computed as:
d,(k)=[y" (k)= y,(k)]
where, y,(k) is the i™ linear fuzzy model output expressed in equation (5.7) . The forced

A forced

outputs term y; (k + p) in equation (5.8) can be estimated from the current operating

point as:
m p

Arurud(k_{_p): Z leu (k+p q)

j=1 g=1
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Now employ the prediction form  equation (5.10) with the following cost function for
optimization,

n P m M

J=Y>8(pw,(k+p)- (k+p/k)+D.> A (plAi,(k+p-D]*  (5.11)

=1 p=l =1 p=l
Solving the equatic in (5.11) the >llowing optimal fuzzy model based unconstrained
adapted multivariat MPC law is  tained and is given by,

AU=(G"8G +A) T8(W-F)=K(W-F) (5.12)
Where, K =(G78G +AI)"'G"8 is the MPC gain matrix and the term (W —F)is the
vector of future predicted error ov P sampling instants due to the effect of past inputs.
The only control moves Ai, (k),---,Ai, (k) in equation (5.12) are applied to the plant at

current step and whole procedure -epeated in each sampling step.

5.3.3 RLS Adaptation of the Fuv 'y Model

For online adaptation of the TS model, the rule premises are kept fixed and only the
linear model parameters of the a ve rule consequents are adapted. Thus the overall
model output in equation (5.4) at every sampling step, is the sum of the contributions of
all the adapted active rules.

Define the estimate parameter vector of the ™ excited rule as:

6k =[A) BB, (] (5.13)
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The RLS technique for upc

[2]:

ing the local model parameter vector can be summarized as

t—Deo, (k)B:

7 ; P
0/ (k) =0/ (k—1)+—-H
new estimate 1d estimate /11' + 16

X [V"(k) —@, (k)0 (k—1)]  (5.14)
Ly () =@, (k)Y (k— 1)

new onc step ahead

(k)P (k=D)g," (k)

and the covariance matrix |

1 I
P/ (k)=—/| P/ (k-1)- =
; (k) /11_,[,( )

Where P/ (k)is a symmett

measurement prediction of the

correcting vector
new measurement

estimated error,d,

k)1s updated as follows:

(k-Deo,” (K)o, (k)P (k1)

, T (5.15)
+ﬂ:(P,(k)P,» (k—l)({)i (k)

matrix withP/(0) =ad, «is a real large number and A is

the scalar forgetting factor of the ™ rule adaptation and the range chosen for A is

0.80<A’ <I.

The estimator in equations
excited with the estimated
excitation error, the estirmr
the model parameters with
the estimator windup a de

scheme where the updat

sufficiently small consider

dr (k)=

.14) and (5.15) will work well if the process is consistently
tor (d; ). But when the control becomes perfect with little
r windup problem may occur. This will drastically change
dises and in turn make the overall system unstable. To avoid
zone or tolerance limit (o) is introduced with the adaptive
. of parameters is stopped when the estimated error is
' to the noise level.

(k)= @, (k)07 (k1)
i |V — e, (8] (k—D)|<o]
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The optimal estimate of equation (5.16) is,

0, =[(®\) @31 (@)Y, (5.17)
which define the consequent parameters of all the fuzzy rules and can be used as the
initial model in equations (5.14) and (5.15) to perform the online adaptation. The analysis
of the computational complexity shows that the computational load cubically increases
with the number of rules. Due to this cubic complexity, the global parameter estimation
becomes computationally expensive for fuzzy systems with many rules. The local
parameter estimation approach does not estimate all the rules parameters simultaneously.
This approach uses a set of local estimation criteria for separately identify the parameters

of each local model and is given by,
1 i inr i i i Qr
rrélnN(YN -9,0/)' B (Y, —¢,0) (5.18)
The weighted least squares estimate of the " rule consequent is then,

07 =[(9))" B9y 1" (0}) B)Y,, . ©G-19)

5.3.5 Control Strategy of Adaptive Fuzzy MPC Scheme
The above adaptive fuzzy model based predictive control mechanism consists of
following simple steps at every sampling instant:
1) Identify the initial fuzzy local model parameters in offline using the least
squares technique described in equations (5.18) and (5.19).
2) Measure the antecedents variables in equation (5.2) and fuzzify to build the

vector of weights (B, ) in equation (5.5) for each output.

3) Update the consequents parameter vector (é[(k)) in equation (5.13) of each
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4)

5)

6)

7)

8)

rule using the RLS estimation technique described in equations (5.14) and

(5.15).
Build the consequent model parameters matrix ((:),.) in equation 3.3) with the

updated consequent parameters of each rule.

Compute the weighted linear model parameter vector (0,) using the

linearization scheme described in equation (5.6).
Employ the weighted parameters to build the linear model described in equation
(5.7) and compute the MPC control law in equation (5.12).

Apply the control inputs (AZ, (k),---,Au, (k) ) to both the plant and the model.

m

Go to step 2 and repeat.

The complete control structure is shown in Fig.5.1. To cope with the model-plant

mismatch due to process uncertainties and to avoid the steady state control error, the

proposed scheme is also implemented within an IMC structure (Fig. 5.1). A feedback

filter is introduced into the control scheme and the filtered modeling error is utilized to

modify the setpoint [2]. For this purpose, the following first-order low-pass filter is used:

e/ (k)=K,(y" (k)= 9,(k))+(1-K,) e/ (k=1)

d,

where K , is the adjustable filter parameter, K, € [0,1]. The feedback filter is able to filter

out the measurement noise and stabilize the loop by reducing the loop gain.
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Fig.5.2 Fuzzy portioning in the input space

The offline identified rule base TS model for the present soil heating process are,

For output 1

L : if y; (k-1)is C|(1) then

yl (k) =2.52y,(k —1)+0.003 11, (k — 2) +0.00014u, (k —3) +0.000023u, (k —7)
L, :if y; (k-1) is C/(2)then

v (k) =2.42y,(k ~1)+0.0021u,(k —2) +0.00016u, (k — 3) +0.000013u, (k —7)
L,:if y; (k-1) is C](3) then

v, (k) =2.54y,(k —1) +0.0023, (k — 2) + 0.00034u, (k — 3) + 0.000053u, (k — 7)
L,: if y; (k-1) is C|(4)then

vi(k)=2.52y,(k —1)+0.004 11, (k —2) +0.00014u, (k —3) + 0.000023u, (k — 7)
L, : if y; (k-1) is C/(5) then

v (k) =2.52y,(k —1)+0.0033u, (k — 2) +0.00016u, (k —3) +0.000028, (k — 7)



For output 2

L :if vy (k-1) is C}(1)then
vi(k)=2.72y,(k —1)+0.0011u, (k —3) +0.034u, (k — 2) + 0.0023u, (k — 4)
L.:if y2(k-1)is C](2) then
Vi(k)=2.72y,(k —1)+0.0015u,(k —3) +0.0441, (k — 2) +0.002 1u, (k — 4)
L.:if y, (k-1) is C](3) then
ya(k)=2.73y,(k —1)+0.0015u,(k —3) +0.037u, (k — 2) +0.0023u, (k — 4)
L::if y,(k-1)is C](4)then

yi(k) =274y, (k —1)+0.0021u, (k —3)+0.03 1, (k —2) +0.002 Lu, (k — 4)

t

L::if y; (k-1) is C](5)then

y3 (k) =2.73v,(k —1)+0.0018 1, (k —3) +0.031ut, (k — 2) +0.0022u, (k —4)

and for output 3

L if y3(k-1) is C; (1) then
yi(k)=2.62y,(k=1)+0.0021u,(k —7) +0.03 1u, (k — 4) +0.0022u, (k — 2)
L :if y3 (k-1) is C;(2) then
y; (k) =2.62y,(k—1)+0.00211,(k —7)+0.032u, (k —4) +0.0024u, (k — 2)
L :if v3(k-1) is C;'(3) then
yi(k)=2.64y,(k—1)+0.0015u, (k —7) +0.039u, (k —4) +0.002 L (k —2)

L,:if y3(k-1) is C;(4)then
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yi(k) =2.61y,(k—1)+0.0013u,(k —7)+0.032u, (k —4)+0.0021u, (k —2)
L1 if y3 (k-1) is C}(5) then

vi(k)=2.62y,(k—1)+0.0012u,(k ~7)+0.033u,(k —4) +0.002 lu, (k —2) .

To validate the tracking performance of the identified fuzzy model against variable inputs
sequences an Integral Square Error (ISE) based performance index was used. The input

profiles inu,, u, and u, for validation and the simulation set-up, is presented in Fig.5.3.
In the simulation the temperature outputs of the linearized fuzzy model (3 (k).

$,(k)and . (k)) and the FEM ( v/ (k), yy'(k) and y;' (k) ) are measured at each step with

the sampling interval 0.6 minute.

100 T T T T T T
| For uy. uy and u3
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(a) Variable inputs profile for validation
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(b) Simulation set-up

Fig. 5.3 Validation of fuzzy model against variable input sequences

The difference between the linearized fuzzy model outputs and the FEM outputs
(tracking error) are computed and compared with the non-adaptive linear step response

model (DMC model) based tracking performance. The tracking errors of both schemes

are presented in Fig.5.4.
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Simulation results justify the accuracy of the linearized fuzzy model against the linear

DMC model based tracking performance.

5.5 Control Simulations

The above fuzzy model based MPC scheme and two non-adaptive linear model based
classical MPC schemes were applied with the finite element based soil heating process
model. The control objective of this exercise is to achieve precise temperature tracking
with lower overshoot, smaller settling time, minimum heat distribution, better load
disturbance characteristics and least tracking error. The tuning parameters chosen for all

the schemes are shown in Table 5.1.

Table 5.1 Tuning parameters for fuzzy MPC and linear MPC

Controller Prediction Control Weights for Weights for Sampling
Horizon (P) Horizon (M) Control Manipulated Interval
Variables 0;  Variables Aj T (minute)
Fuzzy MPC 15 5 1.62,1.46,1.48 0.15,0.10,0.14 0.6
DMC/GPC 20 10 1.08,1.10,1.12 0.10,0.10,0.10 0.6

The simulation results and the comparisons are presented in the following subsections.

5.5.1 Comparisons of Non-Adaptive Fuzzy MPC over Linear MPC

Simulation was carried out for the non-adaptive fuzzy model based MPC scheme with the
setpoint temperatures 55°C, 65 C, 60°C for output 1, 2 and 3, respectively and compared
against the proposed (described in chapter 3) linear DMC model based non-adaptive

MPC scheme based tracking performance. A GPC model (CARIMA model) based
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classical MPC technique is also applied in the system to confirm the superiority of the

proposed fuzzy model based MPC system. The comparison of simulation results are

presented in Fig.5.5 and Fig.5.6, respectively. A high negative disturbance of heat is

applied constantly to both control systems when the simulation time reaches 180 minutes.

Temperature (°C)

Temperature (°C)

g 3 8

Fig.5.6 Linear GPC model based MPC over fuzzy MPC
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The inconsistent control performance of the non-adaptive fuzzy scheme indicates that
even with the multi-model, the time variant process dynamics may not be completely
modeled due to process nonlinearity introduced due to changes in operating set points.
This suggests the inclusion of online adaptation scheme with the non-adaptive fuzzy
model. The online adaptation scheme allows fine-tuning of the local model parameters
with the variation of the time variant nonlinear process dynamics and which in turn
update the weighted model parameters in equation (5.6) more precisely to establish an
improved and adaptive control law. The results show the superiority of the rule
adaptation against the non-adaptive fuzzy system, particularly when tracking different set

points in the time varying process dynamics.

5.6 Summary

A TS type fuzzy model based MPC strategy for a MIMO process system has been
developed, analyzed and implemented systematically in this chapter. The application and
benefits of the proposed strategy over linear MPC was also demonstrated through
simulations. The simulation results reveal that the proposed fuzzy control system has the
better capability to overcome the nonlinear and coupling effects of the process system
and is therefore able to produce accurate tracking performance against the desired output
temperature profile. The inclusion of adaptation on the fuzzy local models also indicates
the superiority of the proposed scheme against the time variant process system. More
importantly, the load disturbance performance of the proposed fuzzy control system was
satisfactory. Hence the proposed system provides a useful and relatively simple

alternative when non-adaptive linear MPC fails to a produce better response against
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nonlinear process dynamics. During control, the online adapted fuzzy model was
linearized at each sampling instance employing a simple linearization technique.
Subsequently the linear DMC based MPC scheme was formulated in accordance with the
extracted linear parameters from the fuzzy model. In this way, the advantages of both
fuzzy modelling and the existence of analytical solution in the case of linear DMC are
combined. Moreover this fuzzy model with the linearized scheme provides the
opportunity to implement other general linear MPC techniques in a straightforward way.
The involvement of large number of rules in the TS type fuzzy system representing many
local models may lead to over fitting. With linear output memberships the control surface
may become more linear with larger rules. Under those circumstances, the online
parameters estimation technique becomes less robust and ineffective, particularly at the
boundaries between the fuzzy memberships functions [69]. To address this issue the
adaptive fuzzy MPC system was chosen with three fuzzy rules for each output. In
comparison to the fuzzy relational model based predictive control [81] and or inverse
fuzzy model based control [9], [82] for nonlinear process, the presented approach is much
simpler to implement, requires less computational effort and therefore suitable for real
time process with faster dynamics. The only drawback of the scheme is that, as the
adapted parameters of the local models are applied to develop the MPC control law, any
erroneous parameters estimation may result in undesirable changes in the control signal
resulting in a poor control performance. Typically, such situation occurs at the beginning
of the adaptation process, particularly during the transient period the unexpected response

characteristics due to load adjustments may lead to erroneous estimation. Using the



equality and inequality constraints on the parameters of the local models, it is possible to

avoid unrealistic mode! parameters that could result poor control performance [2].
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Chapter 6

Concluding Remarks

6.1 Conclusions

The main objective of this thesis was to develop a computationally efficient multivariable
MPC strategy for a broad class of nonlinear process systems. To fulfill this objective a
number of multivariable MPC techniques were developed. The application and benefits
of these techniques were demonstrated through the simulations performances against the
finite element based highly coupled nonlinear multivariable soil heating process.

In chapter 3, formulation of the multivariable non-adaptive DMC based MPC strategy
was presented and addressed the high performance behaviour of the multivariable MPC
system against the general decoupled PID based multivariable control systems. To
overcome the limitations mentioned in using the non-adaptive DMC, a multivariable
AMPC scheme was developed and presented in chapter 4. The superior performance of
the AMPC scheme was justified through the comparisons of several simulation results
against the non-adaptive DMC based MPC technique. The comparative simulation results
show that the proposed multivariable AMPC system has the better capability to overcome
the nonlinear and coupling effects of the soil heating process and therefore able to
produce accurate tracking performance against the desired output temperature profile. In
chapter 5 the TS type adaptive and non-adaptive fuzzy model based MPC strategy were
introduced, analyzed and implemented systematically. The advantages of using the fuzzy

model in MPC for nonlinear processes were also justified by comparing the control
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performance against the two linear model based MPC strategies (classical DMC and GPC

strategies).

Finally a sound analysis of these comparisons, control techniques and implementation

strategies concludes that the proposed multivariable AMPC system and the multivariable

adaptive fuzzy MPC scheme have the better capability for exhibiting satisfactory

performance. Hence these two schemes represent an effective and relatively simple

technique to handle a large class of nonlinear multivariable process systems.

6.2

Recommendations for Future Research

Some recommendations for further studies are outlined below:

All the multivariable adaptive MPC schemes proposed in this study were based on
the DMC based MPC structure. However, the GPC is another popular form of
MPC strategy widely used for multivariable process control. So to integrate these
methodologies with the general GPC based control structure will provides a better
performance analysis of the proposed controllers for further study.

In this thesis the tuning of all the DMC schemes were performed by using the
general DMC tuning rules described in [2], [14], [38]. However, in literature such
as in [24], [36] proposed an adaptive strategy on the tuning parameters for the
implementation of DMC scheme. So inclusion of these tuning rules in the present
DMC techniques may offer better performance.

The nonlinear based predictive control or NMPC is the most challenging research
issue among the present MPC researchers. The use of the nonlinear model directly

in MPC can improve the control performance by improving the prediction
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accuracy. So to develop an effective NMPC technique is another line of research
on this study for future studies.

In this study for online adaptation on the process model, the RLS based parameter
estimation technique was used. But in literature there are several parameter
identification techniques available for online adaptation on the process model, as
for example, the instrumental variable method, maximum likelihood estimation,
the bootstrap method and the sequential correlation method, are the most common
techniques for online parameter estimation [68]. So to compare the accuracy of
the RLS technique for online adaptation these methods also need to be
considered.

The applications of all the proposed schemes were verified in this study against
the soil heating process system which has relatively slow dynamics. A sampling
time 0.6 min was used in the study which is sufficient enough to solve the MPC
law before that defined sampling time. But in the process industries there are
many processes where the process must be sampled before few micro seconds. In
order to prove the effectiveness of the proposed schemes it is essential to verify
them against a process with fast dynamics.

Although the finite element based soil heating process exhibits the true process
dynamics but for better justification the proposed control systems should be
verified against the real soil heating process system.

Finally a vast theoretical work on the proposed schemes involving the stability

issues is necessary for future studies.
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