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Abstract 

The high concentration of arsenic in groundwater sources of Newfoundland has been 

reported by governmental departments and individual researchers. Arsenic uptake by 

human beings can cause the cancer of lungs, kidneys and skin. The National Health and 

Medical Research Council (2003), NHMRC, of Australia has set the maximum 

acceptable concentration (MAC) for arsenic in drinking water at 7 IJ.g/L. The main 

objective of this research was to find an economical and sustainable water treatment 

method for rural Newfoundland. The locally available sand was used as a fi lter media to 

treat the groundwater without the aid of chemicals. Leaching column studies were 

conducted to determine the ability of sand to treat the water without exceeding the arsenic 

levels of 7 IJ.g/L. 1400 mL of high strength Wabana water (As: 62.91 11g/L and Fe: 

11825.84 11g/L) could easily be treated using a small sand filled column (6.7 em x 6.7 em 

(dia. x length)) as compared to the 4,000 mL and 10,500 mL for mixtures of the high 

strength and normal Wabana waters in the ratios of 1:1 and 1:3, respectively. Combining 

aeration and dilution, 9,000 mL and 18,000 mL of 1:1 and 1:3 mixtures, respectively, 

were treated without exceeding the arsenic limit of 7 !J.g/L. The Fe/As ratio was a major 

factor affecting arsenic adsorption and column tests were conducted with the high 

strength Wabana water mixed with Freshwater water in 1:10 (Mix-1), 2:10 (Mix-2) and 

3:10 (Mix-3) proportions. The 2:10 mixture performed better than the Mix-1 or Mix-3 

mixtures. The arsenic concentration after treating 39,000 ml was 8.735 11g/L for the Mix-

2 water and 23.93 11g/L and 12.315 11g/L for the Mix-1 and Mix-3 waters, respectively. 
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Chapter One 

Introduction 

1.1. The Problem of Arsenic in Newfoundland 

The problem of groundwater contamination by arsenic is documented in various regions 

including USA, China, Chile, Bangladesh, Taiwan, Mexico, Poland, Vietnam, Japan, 

India and Canada (Berg et al. 2006; Wang and Mulligan 2006; Leupin and Hug, 2005; 

Mohan & Pittman, 2007). Arsenic is a known carcinogen and its uptake by humans 

through drinking water is a growing concern among the nations. Through epidemiological 

studies, arsenic has been verified as one of the most carcinogenic and toxic substances 

found in surface and groundwater sources (Jiang, 2001). Mondal et al. (2007) referred to 

arsenic as the "world's most hazardous chemical". As per recent estimates, approximately 

140 million people all over the world and possibly more are affected by arsenic 

contamination (Bagchi, 2007). The current situation regarding the arsenic contamination 
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of groundwater sources in Canada appears also to be alarming (Wang and Mulligan, 

2006). The arsenic concentrations in surface water in Canada range from 1 to 2 llg/L, 

while arsenic concentrations in groundwater are often higher than those measured for 

surface waters. Fifty percent of the water sources in the Newfoundland and Labrador 

(NL) are groundwater resources which are fulfilling the potable water requirement of the 

people residing in the rural parts of the province (Rageh, 2008). The analysis of water 

wells conducted by the Department of Energy and Department of Mines and Energy 

revealed that many of them exhibited high arsenic contents. The wells that have high 

arsenic contents could either be abandoned or they could be treated to protect the 

consumer from the carcinogenic effects of arsenic. The selection is based entirely on the 

cost of each available alternative. Digging new wells may not be a feasible alternative as 

there is always a risk of contamination in the new source (Rageh, 2008). 

The recent research by Rageh et al. (2007) reported that only 3 wells out of 52 tested in 

NL had an arsenic concentration below the 10 )lg/L limit, which is very alarming. 

Further, the paper stated that the majority of arsenic contaminated wells were located on 

the Avalon Peninsula, where the majority of the province's population resides. This 

situation stresses the need for an economical treatment method for arsenic removal. 

Sources of arsenic in groundwater are both natural and anthropogenic. Natural sources of 

arsenic in water have been attributed to the weathering of rocks, oxidation of arsenic 

bearing sulfides, release of arsenic from geothermal water, leaching of arsenic from 
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sulfides by carbonate, and volcanic eruptions (Piver, 1983; Wang and Mulligan, 2006). 

Arsenic in the environment from natural enrichment is strengthened by anthropogenic 

activities (Wang and Mulligan, 2006). The anthropogenic sources include pesticides 

production and application, herbicides, non ferrous metals mining and smelting, fossil 

fuels processing and combustion, zinc production, industrial wastes and wood 

preservatives (Piver, 1983; Wang and Mulligan, 2006). 
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Figure 1.1 Areas of potential Arsenic concentrations in well water 

(Source: Department of Environment and Department of Mines and Energy) 
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Arsenic exists naturally in the sedimentary rocks and weathering of these formations 

results in its release into the environment. The two main types of rocks that exist in NL 

are igneous and sedimentary. The arsenic concentration in igneous rocks ranges from 0.2-

13.8 mg/kg while sedimentary rocks have higher arsenic contents such as 0.3-500 mg/kg 

(shale), 0.1-20 mg/kg (limestone) and 0.6-120 mg/kg (sandstone) (Salbu and Steinnes, 

1995) 

Swinden ( 1988) mentioned that the sulfide minerals are the mam arsemc bearing 

formations. In NL, the main source of arsenic is "arsenopyrite (FeAsS), realgar (AsS), 

orpiment (As2S3), niccolite (NiAs) and cobbalite (CoAsS)" (Rageh et al., 2007). The 

arsenic that accumulates in the soils and sediments can be released as a result of 

weathering of rocks and under reducing conditions and thus can pollute the groundwater 

reservoir (Robinson and Ayotte, 2006). 

Arsenic is found mostly in water wells that are drilled into the geological formations 

containing high levels of arsenic. The contact between groundwater and arsenic rich 

sediments and rocks results in the dissolution of arsenic bearing minerals and ores due to 

the weathering. As a result of the slow movement of groundwater, the contact time 

increases and the probability of arsenic contamination of groundwater increases 

(Department of Environment and Conservation and Department of Mines and Energy). 
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1.2. Background 

Arsenic is toxic and is a known human carcinogen. It has therefore been included in 

Group 1 (carcinogenic to humans) both by Health Canada (2006) and the International 

Agency for Research on Cancer (IARC, 2004 ). Arsenic may be consumed by drinking 

water, eating food and through inhalation. Arsenic is the 20th most abundant element in 

the earth's crust (Mandai and Suzuki, 2002). The two most common form of inorganic 

arsenic are As III (trivalent) and As V (pentavalent). Arsenic occurs as a metastable species 

in the +III oxidation state under oxic water conditions and As (III) is more mobile and is less 

efficiently removed as compared to As (V) (Chiu and Hering, 2000). In trivalent form it is found 

as arsenic trioxide and sodium arsenite, while common pentavalent forms include arsenic 

pentoxide and various arsenates (Report on Carcinogens, Eleventh Edition). 

As listed in the First Annual Report on Carcinogens (1980). The maximum acceptable 

concentration (MAC) of arsenic in drinking water is 50jlg/L for most developing countries; while 

the World Health Organization (WHO) guideline is 1 Ojlg/L. Inorganic arsenic compounds are 

notorious for increasing the risk of cancer of the skin, lung, liver, bladder, kidney and digestive 

tract (Kapaj et al. , 2006). Because of its marked negative effects on human health, there is an 

urgent need for the development of a simple, efficient and cost effective solution to remove 

arsenic from groundwater at the household level. 
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1.2.1. Comparison of Arsenic Removal Techniques 

Ion-exchange, activated alumina, reverse osmosis (RO) and membrane filtration are some of the 

methods recommended by United States Environment Protection Agency (USEPA) for the 

removal of arsenic (Berg, et al., 2006). Although they can remove arsenic to below 1 OJ.!g/L, they 

are not suitable for the small water systems with limited resources (Gu et al. , 2005). The focus 

should be given to the removal of arsenic using sand filtration as this system can be simple, easy 

to operate and inexpensive. 

The selection of the appropriate arsenic removal technique depends primarily on the constituents 

dissolved in the water, the pH, the oxidation state of arsenic and its concentration, and the 

concentration of iron, and the other ions (excluding As (III) and As (V)) in the water competing 

for adsorption (Gu et al., 2005). Moreover, the cost of treatment and the population of the 

community are other important factors that influence the selection of a suitable water treatment 

technique. The tests conducted by the Research and Productivity Council (RPC), Fredericton, 

New Brunswick, in September 2002 revealed that the dominating species in the groundwater 

wells of the Avalon Peninsula was As(V) (Rageh, 2008). 

Activated carbon (AC) based adsorbents for arsemc removals have been widely studied. 

Adsorption depends on the propet1ies of the AC, the pH, the temperature and properties of the 

adsorbate (Mohan and Pittman, 2007). Various AC adsorbents are synthesized commercially such 

as iron containing-granular AC adsorbents, char carbon (CC) derived from fly-ash, iron-oxide 

impregnated AC, and zirconium loaded AC (Mohan and Pittman, 2007). The AC based 
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adsorbents are widely used for the treatment of groundwater and wastewater but these adsorbents 

are expensive. A typical granular AC (GAC) tank can be seen in the Figure 1.2. 

Oxide based adsorbents are most commonly used for arsenic removal. They include Activated 

Alumina (AA), porous granular ferric hydroxide, ferrihydrite/iron oxides, hydroxide/iron oxides, 

and zirconium oxide. The mechanism of arsenic retention by these adsorbents is based on the 

Water wash 
) 

Carbon Bed 

<Influent 

Backwash 
) 

tarbon Charge 

Carbon Discharge 
) 

Effluent ) 
( 

Backwash 

Figure 1.2 Schematic of the typical GAC tank (modified from Metcalf and Eddy Inc, 

1979) 
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process called ligand exchange. A ligand is an ion, atom or molecule that forms a coordination 

complex with a central metal atom or ion by sharing one or more of its electrons through a 

covalent bond. It is a complexing group (ligand) in coordination chemistry that stabilizes and 

determines the reactivity of central metal atom. The coordination complex consists of a metal 

atom or ion surrounded by a ligand or complexing agent. The AA based adsorbents need 

replacement after four to five regenerations (Mohan and Pittman, 2007). 

Arsenic can be removed by co-precipitation with iron (III) hydroxide, aluminum sulfate and 

manganese salts. In the precipitation process coagulants are added to the wastewater in the 

presence of lime to flocculate and settle small particles which would remain suspended otherwise 

(Rageh, 2008). The addition of the coagulants to the water containing arsenic causes the coagulant 

to hydrolyze. A complexes form between the metal oxide and arsenic and they settle to the bottom 

of the tank. As (V) is more readily removed as compared to As (III). 95% of As(V) was removed 

from the water containing 0.09 mmol/L of Fe(III) and 300 f.!g/L of As (V), however, only 50-

60% of As(III) was removed (Bissen and Frimmel, 2003). The effectiveness of arsenic removal 

by precipitation is lower when alum is employed instead of FeCl3. Water containing 20 f.!g/L of 

arsenic, when treated with 4.9 mg/L of FeCl3 removed 80% of the arsenic, while; 40 mg/L of alum 

was required to achieve the same removal (Bissen and Frimmel, 2003). 

Ultra-filtration (UF), Nano-filtration (NF) and Reverse Osmosis (RO) can also be used for arsenic 

removal. UF is not suitable in removing dissolved arsenic, but, NF and RO can be used to remove 

the dissolved matter. The typical schematics ofNF and RO can be seen in the Figures 1.3 and 1.4. 

RO and NF can effectively reduce the arsenic levels in the water by up to 95% (Bissen and 

Frimmel, 2003). 
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Figure 1.3 Schematic of the typical NF Process (modified from Zhaoa et al., 2011) 

A combination of precipitation, adsorption and filtration can be economical for arsenic removal. 

The cost associated with the in-situ precipitated ferric and manganese binary oxides (FMBO) 

adsorption, sand filtration and UF combined for arsenic removal is 0.056 US$/m3 (Ruiping et al. 

2009). 
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Figure 1.4 Schematic of the typical RO Process 

Ruiping et al. (2009) found that sand could remove more than 90% of arsenic and the main 

operating cost associated with this system was acceptable for arsenic removal in rural areas. The 

cost could further be reduced by removing the UF. Similarly, the study conducted by Leupin and 

Hug (2005) concluded that As(V) could be removed by the oxidation of Fe(II) and subsequesnt 

adsorption of As(V) onto hydrous ferric oxide which was then removed by filtration. Further, the 

growing concern of arsenic uptake through water for smaller communities, where a centralized 
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system is not viable, can be minimized by the application of point of use (POU) or point of entry 

(POE) devices. In NL, where the tax-base is low, POE devices with sand filtration systems could 

prove to be very effective. These devices are based on the combination of filtration, precipitation 

and adsorption technologies and can easily be installed at the taps and points of entry. The 

adsorbent can either be dipped in the water or placed in the water supply pipelines (Rageh, 2008). 

The arsenic removal efficiencies for the various techniques that have been discussed were 

reported by the Government of NL in 2006 and are presented in Table 1.1. Table 1.1 also presents 

the costs associated with the different available techniques for arsenic mitigation. The NF and RO 

techniques require high initial investment and their corresponding operational costs are also high. 

Further, the operation of NF and RO equipment is complex and requires skillful operator and 

maintenance personnel. The techniques such as GAC, AA and sand filtration are easy to operate 

and require low setup costs. Sand filtration equipment, is simple to operate, is inexpensive and 

can provide arsenic free water at the household level. 
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Tablel.l Efficiencies and Prices (where applicable) for vanous arsemc removal techniques 

(Redrawn from Rageh, 2008 and updated) 

Arsenic removal 

efficiency 

(Government of 

Technique Newfoundland and Cost Reference for cost of techniqm 

Labrador, 2006) 

unless otherwise 

indicated 

$1200-1600 for low Arsenic Removal System, 2008 
Activated 

51% contamination levels (6-
Alumina (AA) 10 gpm) 

$550 for a drum (55US Omitha Devendra, Customer 

Granular AC 
gal) and it should be service representative, Carbon 

96% replaced every 9-12 Activated Corp, California, 
(GAC) 

month (low personal communication, 2008. 

contamination level). 

Iron Oxide 

Coated Sand 96% - -

(IOCS) 

Ion Exchange 
40-49% - -

Resins 

$5000 including a storage Shaun Segel, MD, Clean Water 

Nanofiltration 95% tank (1850 gallons) Products, Arizona, personal 

communication, 20 12. 

RO 95% 
$ 13,975 including a (Rageh, 2008) 

storage tank ( 1 000 gpd) 

$25 per ton Boyd Critch, Capital Ready Mi: 
Sand 

personal communication, 20 11 
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1.2.2. Selected Mechanism and Material 

The techniques for arsenic removal such as ion-exchange, activated alumina, RO and 

membrane filtration are not employed on a large scale due to the sophisticated technology 

and consequently lofty investment. The removal of arsenic by adsorption using iron oxide 

based adsorbents is considered to be an environmentally sustainable and cost effective 

solution. Further, reasonably large amounts of arsenic contaminated water can be treated 

using slow sand filters due to which this technology has a potential of serving small 

communities. The use of slow sand filters for the arsenic removal has shown positive 

results in mitigating the arsenic concern in Bangladesh and Vietnam (Berg et al. , 2006 

and Meng et al. , 2000). Berget al (2006) reported that removal of Arsenic by adsorption 

onto a sand surface was not an efficient process unless it was accompanied by the 

simultaneous precipitation of iron. They reported, however, that sand filters performed 

better (+ 12% on average) as compared to the co-precipitation alone. Slow sand filters 

could be a preferred choice over other available technologies for arsenic removal due to 

easy maintenance, low operational cost and simple operation (Berget al., 2006). 

The most important parameter in successfully removing arsenic from groundwater to the 

acceptable limit was the iron to arsenic ratio (wtJwt) (Berget al. 2006). In this study water 

sampling locations were narrowed down based on the composition of groundwater 

provided by the NL Department of Environment and Conservation. 
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1.3. Objective 

The aim of this research project was to use the locally available materials including sand 

from a local provider to treat groundwater; thus providing arsenic free water, without the 

addition of chemicals, to the rural population of NL. Slow sand filters are cheap and 

require little maintenance and hence, can be used as POE devices for households in small 

communities. 

The oxidation of naturally present Fe2
+ ions in groundwater forming iron oxides to precipitate 

with adsorbed arsenic is the simplest conceivable water treatment method for arsenic removal 

(Roberts et al., 2004). However, the arsenic removal efficiency is compromised by the presence of 

a low iron concentration and competing anions for adsorption in the groundwater. The oxidation 

of ferrous ions and consequent formation of iron oxides results in a higher sorption capacity that 

for arsenic (Roberts et al., 2004). The sand itself adsorbs little arsenic but provides the support to 

iron oxides that adsorb the major portion of the arsenic. 

The mechanism of arsenic uptake by iron oxide based metal sorbents is anion exchange as 

is evident by the decrease in arsenic removal efficiency with the increase in pH (Streat et 

al., 2008a). Arsenic has a strong affinity for the sorption sites available on the surface of 

iron (III) hydroxide (Jovanovic et al., 2011). At the pH that is encountered in groundwater 

6.5-8.5, the As (III) is mostly present in molecular form; while, the As (V) species are 

found in ionic form and for this reason most sorbents performed well in removing As (V) 
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but were found to be ineffective in removing As (III). Further, the iron oxides coated 

material adsorb both molecular and ionic arsenic species which makes it beneficial for 

water treatment (Jovanovic et al., 2011). Arsenic in NL groundwater resources primarily 

exists in the form of As (V) (Rageh, 2008). The total arsenic present in groundwater is the 

sum of As (III) and As (V), whereas, the later is easier to remove using adsorption as it 

exists in anionic form. Hence, it was anticipated that the treatment of groundwater with 

sand filtration could be effective in mitigating the arsenic concern in this province. 

1.4. General Outline 

This thesis consists of five chapters. The first chapter has summarized arsenic uptake 

release in the environment, various techniques that can be used for arsenic removal and 

the method that was tested in this research to mitigate arsenic. The second chapter 

presents a summary of previous studies conducted in this area and their relation to this 

research. The methods, materials, tools, and equipment that were used in this study are 

discussed in chapter three. Chapter four describes experiments that were conducted and 

the results that were obtained. It includes breakthrough analysis curves, statistical analysis 

of water samples and the effect of water composition on arsenic uptake by sand. 

Conclusions and recommendations for future research are highlighted in the last chapter. 
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Chapter Two 

Theoretical Background 

2.1. Arsenic Removal by Iron-Oxide Based Adsorbents 

Arsenic can be removed from groundwater by a variety of adsorbents such as AA, ferric 

hydroxide, iron oxide coated sand and several other materials. Iron oxides have greater 

affinity for arsenic as compared to AA (Driehaus et al., 1998). 

Iron-oxides are produced in the natural water by the oxidation of ferric salts. The products 

can vary in chemical structure, compostion and physical characteristics (Streat et al., 

2008b). The complexity of iron oxide chemistry is illustrated in the Table 2.1. 
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Table 2.1 Iron Oxide Materials (Redrawn from Streat et al., 2008b ). 

Formula Mineral Morphology Colour 

a-FeOOH Goethite Needles Yellow 

~-FeOOH Akaganeite Rods Brown 

y-FeOOH Lepidocrocite Plates Fibrous Orange 

8'-FeOOH Feroxyhyte Non-crystalline Brown 

FesHOsAH20 Ferrihydrite Spherical Red 

a-Fe203 Haematite Cubic, ellipsoidal Bright red 

y-Fe203 Maghaemite Very small Reddish Brown 

Fe304 Magnetite Needles, octahedra Black 

Arsenic exists as either arsenate, As(V) or arsenite, As(III) in the groundwater system. 

The most commom arsenate and arsenite species found in groundwater are (As04-3) and 

(As03-
3), respectively. 

Arsenic is strongly attracted to the sorption sites of iron (III) hydroxide. Hydrous Ferric 

Oxides (HFOs) exists as FeOH+2, FeOH and Feo·on solid surfaces in contact with water 

depending on the pH as shown in Figure 2.1 (Cumbel and Sengupta, 2005). The HFO is 

the Fe(III) hydroxide with loosely bounded water. The HFO has a large surface area due 

to which it could be used as an arsenic adsorption media for groundwater treatment 

applications. 
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FeOH2 + •1111------.• 

Figure 2.1 The balance between HFO active surface forms depending on the pH 

FeOH+2 and FeOH forms of hydrous ferric oxides are the main species found at neutral 

pH conditions and they are responsible for binding both types of arsenic species 

(Jovanovic et al., 2011). Under neutral conditions FeOH ions bond the molecular form of 

As (III) (HAs02); while, FeOH2 + sites bond both the ionic forms of As(V) (H2As04
- and 

HAso/-) (Jovanovic et al. , 2011). As a result of Lewis acid-base reactions, the HFOs 

have a high sorption affinity towards both As(III) and As(V) (Cumbel and Sengupta, 

2005). The ability ofHFOs to adsorb both the ionic and molecular forms of arsenic makes 

them useful in treating groundwater. Water with high iron content can significantly 

increase the arsenic removal efficiencies of sand. 

The dominant form of As (III) in water up to pH 8 is H3As03 which is a non-ionic species 

and hence, difficult to adsorb onto the iron oxide sorption sites, due to high mobility. It is 

necessary to pre-oxidize As (III) to As (V) to aid in its removal (Hug & Leupin, 2003). It 

has been reported that As (III) is oxidized in parallel with the oxidation of Fe (II) by the 

dissolved Oz and when the oxidation of Fe(II) is completed, the oxidation of As (III) is 

also stopped (Hug & Leupin, 2003). 
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The dominant arsenic species in NL groundwater sources is As (V) (Rageh, 2008); hence, 

it is easy to mitigate arsenic in NL due to the better adsoprtion characteristics of the ionic 

As (V) species (H2As04- and HAs04-2). 

2.2. pH and Arsenic Speciation 

Speciation includes the formation of complexes of ligands with heavy metals in the 

aqueous phase and can result in the competition for adsorption of the heavy metals 

between soil solids and the ligands (Yang et al. , 1992). As the pH increases, the 

adsorption of arsenic decreases which suggests that it is an anion exchange material 

(Streat et al., 2008b & Driehaus et al., 1998). The isoelectric point (IEP) for hydrous 

ferric oxide is in the pH range of 7-8. The IEP is defined as "the pH value of the 

dispersion medium of a colloidal suspension at which the colloidal particles do not move 

in an electric field" (McGraw-Hill Science and Technology Dictionary) . Therefore, at a 

pH below the IEP, the surface of an adsorbent will remain positively charged and it will 

attract anions. Stumm & Morgan ( 1981) suggested the mechanism of ligand exchange for 

protonated arsenic species for the pH below the IEP with the help of the following 

equations. 

2.1 

2.2 
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The release of OH- ions increases the pH of the solution (Equation 2.1) and hence, 

decreases the positive surface charge; thus, lowering the forces to attract anionic species. 

This increase in pH is counterbalanced by the deprotonation of acid (FeH2As04 -) as 

depicted in Equation 2.2. At a pH greater than the IEP, the arsenic adsorption could still 

takes place despite the repulsion between the negative surface and the anionic species 

(Streat et al. , 2008b). The adsorption at pH greater than IEP takes place only if the energy 

gained by the surface in forming bonds with anions is higher than the repulsive forces and 

the speciation of arsenic changes from H2As04- to HAs04-2 (Streat et al. , 2008b). The 

specific adsorption at a pH higher than the IEP can take place as a result of the release of 

the proton by an acid (HAs04-
2) to form water (Equation 2.4) after reacting with the OH­

ions released by the FeOH (Equation 2.3). This water molecule bonded with the iron 

hydroxide surface is displaced by the anionic adsorption species (Asoi -) to form an iron­

arsenic complex (FeAs04-
3
) (Westall, 1980). The anion adsorption capacity of oxides, 

hydrous oxides, amorphous materials and other variable charge clays is greater than can 

be measured from the concentration of the anions adsorbed to neutralize the positive 

charges since adsorption can also takes place through an interaction between ions. Such 

adsoprtion of anions is knows as specific adsoprtion and it occurs by the displacement of 

lattice 0 2- and OH- groups by anions (Tan, 2010). 

2.3 

2.4 
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From Equations 2.3 and 2.4, OH- ions and H+ ions are being released, respectively, to 

form water that bonds itself to FeOH. This water is displaced by an adsorbing anionic 

arsenic species. Further, change in the arsenic speciation from H2As04- to HAs04-2 keeps 

the pH from increasing any further, and thus aids in adsorption of arsenic species onto 

iron oxide surfaces. 

~ 
Fe 

? ? 
~ 
Fe 

? ..... 
Fe -0--- As 

? ~"'-o 
Fe 

Fe As 

)=/ ~ 
Fe 

~ 
a) Monodenate a) Mononuclear bidenate 

Fe -0 ..... . 

Fe -o· 
b 

~ 

As 

~ 

a) Binuclear bidenate 

Figure 2.2 Arsenate Surfaces Complexes (Redrawn from Davis et al. , 1978) 

Figure 2.2 illustrates the monodentate and bidentate bonding using arsenate complexes. 

Protonated bidentate species occur at low pH as the surface functional groups of hydrous 

metal oxides are protonated at low pH; while, bidentate and mono-dentate species 

predominate at the mid pH range and low pH, respectively (Streat et al., 2008b). Table 

2.2 lists the various forms of arsenic that are found in groundwater based on pH. 
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Table 2.2 Speciation of Arsenate and Arsenite (adapted from Streat et al., 2008b) 

Speciation pH pKa 

H3As04 <2.24 

Arsenate H2As04- <7 2.2 

HAs04-2 7-11 7.08 

As04-3 > 11 11.5 

H3As03 2-9 

Arsenite H2As03- 9-12 9.22 

HAs03-L >12 12.3 

2.3. Effects of Water Composition on Arsenic Removal 

2.3.1.Iron ----

The oxidation of naturally present Fe2
+ ions in groundwater forms hydrous ferric oxides 

precipitates that have a high affinity for arsenic adsorption and it could be beneficial for 

arsenic removal from groundwater containing a high concentration of arsenic (Roberts et 

al., 2004). The sand itself does not retain much arsenic but provides the support to HFOs 

that adsorb the major portion of the arsenic. Average removal rates of80% and 76% were 

observed in the study conducted by Berg et al (2006) for raw water samples, containing 

10-382 Jlg/L As, treated with sand filtration and co-precipitation experiments, 

respectively. The mechanism involves the oxidation ofFe2
+ to Fe3

+ ions in the presence of 
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an oxidizing agent (atmospheric oxygen or chemicals can also be added) followed by the 

oxidation of some of As(III) to better adsorbable As(V). Further, arsenites and arsenates 

are adsorbed on HFO particles followed by the formation of FeAs04(s) that is 

precipitated along with the HFOs. One study found that the adsorption affinity of As(V) 

to HFOs was higher compared to As(III) by a factor of 100 (Roberts et al., 2004). This 

shows that a positive correlation exists between the arsenic removal and initial iron 

concentration. Roberts et al. (2004) showed that As(V) removal increased rapidly as the 

concentration of Fe2
+ ions was increased in solution from 0-2mg/L (free of P and Si); 

while, a much larger amount of Fe2
+ ions were required in the case of As(III) to achieve 

the same removal rates. 

Statistics presented by Berg et al. (2006) showed that the concentration of arsenic in sand 

filtered water was lowered below the WHO guidelines of 10 !J.g/L in 40% of the samples 

collected; while, 90% of the samples had an arsenic concentration below 50 !J.g/L. A 

concentration higher than 50!J.g/L was attributed either to the presence of a low 

concentration of iron or dissolved competing anions. Hence, it was concluded that the 

proportion in which iron and arsenic were dissolved in water played a vital role in 

contributing to the arsenic removal potential. Further, an Fe/ As ratio of 50 was required to 

achieve a residual arsenic concentration of 50 !J.g/L and in order to comply with WHO 

guidelines an Fe/ As ratio of 250 was required (Berg et al., 2006) 
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2.3.2. Manganese 

The mobility of arsenic in water and its removal efficiency is strongly dependent on its 

oxidation state. In oxic waters arsenic occurs as a metastable species in the +III oxidation 

state (Chiu and Hering, 2000) and is more mobile than As (V). The slow mobility of As 

(V) is attributed to its adsorption capacity on a variety of sorbents such as filter media and 

mineral components of soils and sediments (Chiu and Hering, 2000). Since, As (III) is 

less strongly sorbed to a variety of sorbents, it is more mobile in water and hence it is 

difficult to remove. Oxidation of As (III) to As (V) enhances the immobility of the arsenic 

in water and concomitantly increases its removal efficiency. Therefore, an oxidative 

treatment must be employed for the As (III) rich water for enhanced arsenic removal. It is 

evident from the study conducted by Mohan and Pittman (2007) that manganese dioxide 

(Mn02) also enhanced the oxidation of As (III) to As (V) in water bodies. 

The oxidation of As (III) with Mn02 or birnessite is a two step process as explained by 

Equations. 2.5 and 2.6 (Mohan and Pittman, 2007). 

2.5 

MnOOH is the Mn (III) intermediate reaction product. The MnOOH also reacts with As 

(III) to oxidize it to As (V) 
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2.6 

The study conducted by Driehaus et al. ( 1995) revealed that the concentration of soluble 

Mn2
+, released in the filtrate during the oxidation of As (III) was negligible. This was 

attributed either to the adsorption capacity of manganese oxides for soluble manganese or 

the formation of arsenate-manganese ion complexes. The formation of arsenate­

manganese complexes is favorable for arsenic removal as it provides adsorption sites for 

removal of arsenic besides the HFOs. An additional reaction could include the adsorption 

of As (V) by the Mn02 surface (Mohan and Pittman, 2007) as shown in Eq. 2.7. 

2.7 

Mn-OH is the reactive hydroxyl group on the Mn02 surface and (Mn0)2AsOOH 

represents the As (V) surface complex. The formation of arsenate-manganese complexes 

after the oxidation of As (III) needs to be investigated as very little is known about this 

reaction. It is believed that oxidation of As (Ill) causes a surface alteration on Mn02 

which creates the fresh reaction sites for As (V) adsorption (Mohan and Pittman, 2007). 

The oxidation of As (Ill) to As (V) by manganese oxide is favorable in lowering the 

arsenic concentration in groundwater because the As(V) is immobile and can be easily 

removed through precipitation with HFOs. Further, the formation of arsenate-manganese 
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complexes increases the adsorption of As (V) which assists m achieving the lower 

concentration of arsenic in filtered groundwater. 

2.3.3. Effects of Anions (Silicates and Phosphates) 

The effect of anions on arsenic removal is based on their adsorption affinity for ferric 

oxide. Further, the adsorption of potential determining anions reduces the surface 

potential and therefore increases the electrostatic repulsion between arsenic species and 

negatively charged surface sites (Meng et al., 2000). Potential determining ions are those 

ions that influences the surface charge of the adsorbent. 

2.3.3.1. Silicates 

The silicates compete with As (III) and As (V) for the adsorption sites of HFOs and 

reduce the number of adsorption sites available either for As (III) or As (V) and hence, 

reduce the arsenic removal efficiency. The adsorption of silicates reduces the surface 

potential of the adsorbate and subsequently increases the electrostatic repulsion between 

the negatively charged surface sites and arsenic species, thus, further hampering the 

arsenic removal (Meng et al., 2000). Silicates significantly decreases the As (III) removal 

at a concentration higher than lmg/L and a pH greater than 5, while, that of As (V) is 

moderately affected (Meng et al., 2000). With increasing pH and silicate concentration, 

the effect on arsenic adsorption is more severe. The presence of silicates along with the 
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pH higher than 8.6 significantly reduces the arsenic removal due to the interaction of 

silicate with Fe(III) to form a soluble polymer which reduces the amount of ferric oxide 

precipitate (Meng et al., 2000). Further, Roberts et al. (2004) also concluded that silicates 

decreased the removal efficiency of As (III) as compared to As (V) as silicates more 

effectively competed with As (III) for adsorption sites. The deleterious effects of silicates 

on As (V) removal can be controlled by maintaining the pH at 6.8 and by adding Ca2
+ and 

Mg2
+ (naturally present in groundwater) into the system to neutralize the negative surface 

charges (Meng et al., 2000), while the effect of As (III) can be controlled by its oxidation 

to As (V). 

2.3.3.2. Phosphates 

The affinity of anions for iron hydroxide adsorption sites based on an apparent adsorption 

constant decreased m the following order As (V)>Phosphate>As 

(III)>Silicate>Bicarbonate (Meng et al., 2002). This suggests that the presence of anions 

such as phosphate, silicate and bicarbonate anions can affect the adsorption of As (III) 

onto sorption sites due to its low affinity for surface sites and consequently its removal 

from groundwater. Berg et al. (2006) showed that 25% of the sand filters removed less 

then 70% of the arsenic and it was attributed to low Fe and/or high phosphate levels (>2.5 

mg/L). The As (V) has greater affinity for sorption sites and hence its removal efficiency 

should only be moderately affected. However, it was also reported that the presence of 

silicates and bicarbonates enhanced the deleterious effects of phosphorus on the 
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adsorption of As (V) as a result of greater site coverage by the two other anions. The 

increased coverage of available adsorption sites decreased the removal of As (V) (Meng 

et al., 2002). 

2.4. Column Tests 

Column tests are used to assess the performance of adsorbent media to remove heavy 

metals and other undesired components from surface water or groundwater. The columns 

are treated as a small scale laboratory filtration system that can be used to determine the 

potential of a full scale sand filtration system in removing arsenic from the groundwater. 

Determination of the adsorption characteristics of a soil requires the simulation of the 

passage of water being studied through a test soil (Yong et al., 1992). When the water 

sample containing metals is passed through the column filled with soil, the extraction of 

metals occurs by their retention in the soil by a combination of adsorption, precipitation, 

and filtration. These tests are designed primarily to gain an insight into the effect of a soil 

composition on the retention of pollutants in the soil solution (Yong, 2001). Figure 2.3 

shows a typical column used for conducting column tests. 

When the fluid or leachate is passed through the column filled with soil, the pollutant 

concentration in the effluent initially decreases. Then it slowly increases with time as 

more and more fluid is passed through the soil. The point comes when the sorption 

capacity of the soil is reached and no further partioning of the pollutants takes place and 
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they remain in the fluid as they are transported through the soil (Yong, 2001). The Figure 

2.4 shows the characteristic equilibrium sorption curve. 

Leaching column tests result in lower sorption capacities compared to batch tests as the 

entire reactive soil surface is not available for the adsorption. Further, masking by 

changes in the surface characteristics due to coating by oxides and the formation of peds 

significantly affects the reactive surface available for adsorption (Yong, 2001 ). 

Porous Plate 

Influent 

~---- Column 

~----+---- Soil Sample/Filtration 
Media 

Effluent Outlet 

Figure 2.3Typical Column used for conducting column tests 
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Column based arsenic removal studies for fresh groundwater samples or simulated water 

are very common and reported in the literature in abundance. Various kinds of adsorbent 

materials have been tested including, iron fillings, silica (sand), iron oxide coated sand, 

granulated AC based 
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Figure 2.4 Equilibrium sorption characteristic curve from leaching column tests 

(Modified from Y ong, 200 1, pp. 161) 
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iron adsorbents, iron and aluminum based adsorbents and HFOs. (Tyrovolaa et al., 2006; Berg et 

al. , 2006; Rozell, 201 0; Streat et al., 2008c ; Jeong et al. , 2007; and Gu et al. , 2005). The 

efficiency of arsenic removal depends upon the type of adsorbent used, the oxidation state of 

arsenic i.e. As(III) or As(V), the iron concentration and the composition of the groundwater. The 

effect of these factors have already been discussed in detail. 

2.5. Breakthrough 

A breakthrough curve is an 'S' shaped curve that is generated by plotting the adsorbate 

concentration against the pore volume or time ( U.S. Army Corps of Engineers 2001). 

Figure 2.5 shows a typical breakthrough curve. The breakthrough point is defined as the 

point on the breakthrough curve where the concentration of the adsorbate in the effluent 

reaches to a maximum allowable concentration (U.S. Army Corps of Engineers, 2001) or 

50 % of the influent concentration in geo-environmental engineering (Y ong, 2001 ), 

because at this point the flow is at steady state (Shackelford, 1993). The filter could be 

taken out of operation for servicing at the breakthrough point. 

The water containing the targetted pollutant is passed through the column and the effluent 

concentration is measured over time with the results being plotted in the form of a solute 

breakthrough curve showing the concentration in the effluent Ci at time i , divided by the 

concentration in the influent, Co or c\ as shown in Figure 2.5. The ci of 0.5 in this figure 
Co Co 

represents the breakthrough point. 
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Figure 2.5 Equilibrium sorption characteristic "S" curve 

2.6. Minitab 

Minitab is a tool that is used for carrying out statistical analysis of simple and complex 

functions (Zehna, 1992). Minitab was used to statistically analyze the data obtained from 

the batch column tests. The correlation analysis was performed between the arsenic and 

all the detected elements present in the effluent of the column tests using inductively 

coupled plasma mass spectrometry (ICP-MS). The statistical significance of the 

parameters analyzed by the Minitab was determined using Table 2.3. It consists of four 
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columns and the first column includes the degree of freedom (d./). The df is the value 

equal to the number of samples minus two. The second, third and forth columns 

correspond to the Pearson's correlation (r) at three different p-values ofO.l , 0.05 and 0.01 

(Rageh et al., 2007). The p-value is the probability of error in a significant correlation 

(Rageh, 2008). It can be seen from Table 2.3 that as the df is increased, the acceptable 

value of significant correlation is decreased. A positive or negative correlation determines 

if the correlation between arsenic and the other parameter is either direct or inverse, 

while, the magnitude of the correlation represents the strength of the correlation (Vincent, 

1995). 

2.7. Detecting Arsenic Levels 

The cost of analyzing the water sample containing arsenic in the commercial laboratories 

varies from $15 to $50. These laboratories use EPA approved methods and equipment 

such as graphite furnace atomic adsorption (GF AA), inductively coupled plasma mass 

spectrometry (ICP-MS) or inductively coupled plasma emission spectroscopy (ICP-ES) 

(Rageh, 2008). The ICP-MS analysis was used in this study and the analysis was 

conducted in the Department of Earth Sciences at the Memorial University of 

Newfoundland (MUN). The analysis of one water sample cost $25 .5. The ICP-MS 

analysis method was selected as it provides the concentration of 37 other elements in 

addition to arsenic. The results obtained from the analysis helped in understanding the 

effect of water composition on the arsenic removal efficiency of the sand filter media. 

33 



Table 2. 3 Pearson's Correlation (adapted from Vincent, 1995) 

P-Value 
Pearson's correlation 

df 0.1 0.05 0.01 

1 0.9877 0.9969 0.9999 

2 0.900 0.950 0.990 

3 0.805 0.878 0.959 

4 0.729 0.811 0.917 

5 0.669 0.754 0.875 

6 0.621 0.707 0.834 

7 0582 0.666 0.798 

8 0.549 0.632 0.765 

9 0.521 0.602 0.735 

10 0.497 0.576 0.708 

11 0.476 0.553 0.684 

12 0.457 0.532 0.661 

13 0.441 0.514 0.641 

14 0.426 0.497 0.623 

15 0.412 0.482 0.606 
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Chapter Three 

Materials, Methods, Tools, and Equipment 

The purpose of this research was to study sand filtration as a treatment technology for 

drinking water sources in NL, so as to reduce the arsenic concentration to the level of 7 

)lg/L without using chemicals. Therefore, no chemicals including an iron source, arsenic 

source or oxidizers were added to the water samples during the course of this study. The 

research was conducted using the fresh groundwater samples collected from local 

communities (such as the town of Wabana and the town of Freshwater) facing the issue of 

arsenic contamination in their groundwater and no experiments were conducted using 

simulated water. 
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3.1. Materials 

The aim of this research project was to use locally available materials in order to reduce 

the dependence on mainland Canada for the materials required for the treatment of 

arsenic contaminated groundwater using sand filtration. This would help in minimizing 

the cost of operation and it is highly beneficial for the province of NL where the 

population is low and spread all over the province. The communities situated in NL have 

a low tax base and the use of locally available materials would help in reducing the 

associated cost, hence, making the already economical system much more cost efficient 

for these communities. Capital Ready Mix, a local sand provider, was contacted to supply 

the washed sand required for this project. (Please see Appendix A.l for a sieve analysis of 

the sand). The washed sand was the sand that was surface mined, washed and screened to 

remove the silt and clay. The sand had a finesse modulus, FM, of 2.9. The FM is defined 

as the characteristic coefficient obtained by adding percentages of the sample retained on 

a specified series of sieves divided by 100. The smaller the value of the FM the finer is 

the aggregate. 
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3.1.2. Water Samples 

It was concluded with the help of the literature reviewed that the iron to arsenic ratio 

(wt/wt) was going to be one of the important parameters in successfully removing arsenic 

from groundwater to the 7 J.lg/L level defined for this project. Berg et al. (2006) reported 

that the increase in Fe/ As ratio increased the arsenic uptake. Therefore, in this study water 

sampling locations were narrowed down based on the composition of groundwater 

provided by Department of Environment and Conservation in NL (courtesy of Mr. Keith 

Guzzwell). Water samples were collected from two different locations namely, the Town 

of Wabana on Bell Island and the Town of Freshwater in Carbonear; based on the Fe/As 

ratios and the ease of access. 120 liters of the groundwater was collected from the town of 

Wabana that contained 11825.84 J.lg/L of iron (Fe) and 62.91 J.lg/L of arsenic; herein 

after, referred to as the high strength Wabana water. 60 liters of the supply water from the 

town of Wabana's water distribution network was also collected and it contained 86.327 

J.lg/L of Fe and 4.5 J.lg/L of arsenic; herein after, referred to as the normal Wabana water. 

Column tests were conducted for the high strength Wabana water and its mixture with the 

normal Wabana water in the ratios of 1:1 and 1:3, respectively. The objective of 

conducting column tests for the mixture of the two water samples from Wabana was to 

study the effect of dilution on the arsenic uptake by the sand. When the arsenic 

concentration in the effluent reached the limit of 7 11g/L, intermittent active aeration using 

the vacuum pump was employed to study its effects on the arsenic uptake by the sand. 
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The columns were aerated for one hour after passing a batch of 500 ml of the 1: 1 and 1 :3 

mixtures of the high strength Wabana water with normal Wabana water, respectively. 

Column tests were not conducted for the normal Wabana water as it had only 4.5 j.!g/L of 

arsenic or less than the limit of 7 j.!g/L. 

120 liters of water was collected from a groundwater well at the Town of Freshwater in 

Carbonear that contained 507.52 j.lg/L and 29.707 j.!g/L of Fe and arsenic, respectively. 

The high strength Wabana water was mixed in 1: 10 (Mix-1), 2:10 (Mix-2) and 3:10 (Mix-

3) ratios with the Freshwater water, respectively, to get the water samples with three 

different Fe/ As ratios. Column tests were conducted for the water collected from the 

Town of Freshwater and the Mix-1 , Mix-2 and Mix-3 water samples. The objective of 

preparing the mixtures was to investigate the effects of varying the iron and other 

elemental concentrations on the arsenic uptake by the sand. Breakthrough curves were 

plotted for the high strength Wabana water and Mix-1 , Mix-2 and Mix-3 water samples. 

3.2. Sand Characterization Tests 

3.2.1. Bulk Density 

Bulk density is "the mass per volume in the graduated cylinder including both the 

particulate volume and the pore volume" (Gad, 2008). The bulk density of the sand was 
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measured usmg the standard ASTM test method for bulk density measurement t.e. 

ASTM-D4531-86. 

Procedure followed for determining bulk density 

1- The beaker of a known volume i.e. 40 cm3
, weighing 26.4422 g, was filled with 

wet sand. 

2- The beaker was then left in an oven for 48 h at 1 05°C. 

3- The sample was taken out of the oven after 48 h and the weight was measured to 

be 85.5642 g. 

4- The sand after drying in oven is known as the dry sand. The weight of the dry 

sand was 59.122 g and it was calculated by subtracting the weight of beaker, 

26.4422 g, from the weight of the beaker containing dry sand, 85.5642 g. 

5- Bulk Density was calculated using equation 3.1. 

msand(g) + Vr(cm3
) Eq-3.1 

where, pb is the bulk density and msand is the mass of the dry sand. V T is the total volume 

and it is defined as the sum of the volume of the solids or sand particles (V s) and the 

volume of the voids (Vv). 

3.2.2. Pore Volume Measurement 

Pore volume or pore space or porosity is "The portion of soil bulk volume occupied by 

soil pores" (Kirkham, 2005). 
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Procedure followed for determining pore volume 

1- Three containers of known volume (12 cm3
) and mass were used. 

2- Sample containers were filled with dry sand and their weights were recorded. 

3- The density of the sand was taken as 2.65 g/cm3
. 

4- The volume of the sand occupying the container was calculated using equation 

3.2. 

IDsand(g) · P(_L3) 
em 

Eq-3.2 

Where, m sand is the mass and pis the density of the sand. 

5- The mass of the sand was calculated using equation 3.3. 

msand (g) == msand with container (g) - mcontainer (g) Eq-3 .3 

6- Pore volume was calculated by subtracting the volume calculated using equation 3.2 

and the volume of the cylinder. The pore volume can also be expressed as a 

percentage of the total volume occupied by the pores. 

3.3. Leaching Column Studies 

Column tests normally assess the performance of adsorbent media to remove 

contaminants in surface waters or groundwater. In this study the sand was packed in a 
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column, for lateral confinement, with cotton cloth (Figure 2.5) at the top and bottom ends 

of the column to allow the passage and uniform distribution of solution over the sand 

surface and to retain sand particles. Initial tests were carried out with ceramic discs at the 

top and bottom ends of the column, however, they were found to be interfering with the 

removal of iron and arsenic. Therefore, ceramic discs were replaced with cotton cloth. 

Tests were conducted using the water samples of different compositions to determine the 

amount of contaminated water that could be treated to maintain the arsenic level below 7 

J..Lg/L, and to plot breakthrough curves. 

Figure 3.1 shows the aspirator bottle on the top right hand side which was filled with the 

arsenic contaminated water. The aspirator bottle was placed 1.2 m above the column inlet 

for adequate pressure head. The water flowed through the top of the partially filled sand 

column and was collected from the bottom end of the column through the hose connected 

with the valve. 

The columns were manufactured by Technical Services in the Faculty of Engineering and 

Applied Sciences at MUN. Two columns of internal dimensions 6.7 em x 14 em (small) 

and 12.5 em x 24 em (large) (Diameter x Length) were fabricated to be used in this 

research. Figure 3.2 shows the small column. 
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Figure 3.1 Experimental Setup 

Figure 3.2 Dimensional view of the small Column apparatus 
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Figure 3.3 shows the various components of the column used which were 

1- Hose: used for connecting the aspirator bottle to the column. 

2- Nuts: screwed around the threaded bolt to join or split up the column components. 

3- Upper Plate that rested over the top of the cylinder. It had a groove that snuggly 

fitted the upper part of the cylinder. The o-ring was placed inside the grove of the 

upper plate that sat around the confinement cylinder to stop leakage of water and to 

make sure that solution passed through the column. It was made of acrylic material 

which was purchased from E M Plastics. 

4- Holes drilled into the upper plate for passage of long threaded bolts. 

5- Upper Ceramic Plate or Cotton Cloth to uniformly distribute the water over the 

entire column cross section and to control the flow of solution into the column. The 

ceramic disc had an approximate porosity of 50% by volume, pore size of 6 11m, and 

hydraulic conductivity of 5.11 x 10-5. The cloth was a mixture of 55% cotton and 

45% polyester and had a thread count of 180. One layer of cloth was used at the top 

to make sure that precipitates, if any, passed through it and should not be retained on 

the cloth; The plates were purchased from Hoskin Scientific. 

6- Aluminum Spacers or long threaded bolts that held together the upper and lower 

plates and the cylinder. The nuts were screwed on top of the spacer to hold the upper 

plate in place. 

7- Confinement Cylinder used to contain the sand. It was made of acrylic material 

obtained from E M Plastics. 

8- Lower Plate is similar to the upper plate. 
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9- Lower Ceramic Plate or Cotton Cloth: Its purpose was different than the upper 

plate/cotton cloth layer as it was used to retain the sand. Three layers of cotton cloth 

were used in the experiments conducted with the cotton cloth at the bottom to make 

sure that no sand particles could flow out with the solution. 

10- Brass Legs to support the column. They were long enough so that the bottom run 

out pipe for the treated solution did not touch the bench on which column was placed. 

11- Tubing and Valve: Poly-carbon tubing and valves were obtained from Canadian 

Tire. The valves controlled the flow and the residence time of the solution in the 

column. 

Figure 3.3 Components of the Column apparatus (small and large) 
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Various tests that were conducted during the course of this study are outlined in Table-

3.1. The run-out test is defined as the minimum volume of the water sample that can be 

treated through the sand filled column without exceeding the limit of 7f.lg/L of arsenic in 

the effluent water defined for this study. The column studies are divided into preliminary 

and detailed experiments. 

All the tests were conducted using the small columns except for the R0-2 test. Gravity 

filtration was used for all the tests except for the breakthrough tests for which the 

peristaltic pump was used owing to the large amount of water that was required to pass 

through the partially filled sand columns. The active aeration of the columns, where 

required, was conducted using the vacuum pump. 
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Table 3.1 Types of sand characterization and column tests 

Type of Test Purpose 

~ 
Bulk Density and the Pore To determine the Bulk density and Pore 

0 Volume Volume of the sand ·-~ 
N 

"0 ·c: ...... Test conducted usmg § B r:n 
~ 

discs To determine the effects of ceramic discs and r/J g ...... ceramic or cotton 
a cloth at the top and cotton cloth on the arsenic removal ...c: 
u bottom of the columns 

To determine the amount of high strength 

Run Out 1 test (R0-1) 
Wabana water that could be passed through 
the column while maintaining an effluent limit 
of 7 1-lg/L. 

To determine if the larger column (12.5 em x 
r:n Run Out 2 test (R0-2) 24 em) or the smaller column (6.7 em x 14 ...... 
r:n 
~ em) was more efficient f-< 
c To study the effect of active sand aeration on C\l 
~ Run Out 3 test (R0-3) the arsenic removal efficiency for the high "§ ·- strength Wabana water v 
;...... 

To study the effect of the uniformity ~ Run Out 3(b) test (RO-
coefficient of the sand on the arsenic removal 3(b)) 
efficiency for the high strength Wabana water 

To determine if removing the top layer of the 
Run Out 5 test (R0-5) sand, after run-out, would improve the arsenic 

removal efficiency 
To study the effects of dilution and active 

Run Out 4 (R0-4) and aeration on the arsenic removal efficiency for 
c: the Wabana water. R0-4 is the 1:1 ratio of 0 Run Out 4(b) (R0-4(b)) -~ high strength Wabana water to normal ..... test c Wabana water, while, R0-4(b) is the 1:3 ratio ~ 

8 of high strength to normal Wabana water ·c: 
~ A run out test conducted for the 0.. was 
:>< 

Freshwater water sample to determine the ~ Freshwater "0 amount of water that could be passed without ~ 
"@ exceeding the limit of7!-lg/L ...... 
~ 

Breakthrough test for the W abana waters, Q 
Breakthrough Test Mix-1 , Mix-2 and Mix-3. (see section 3.1.2 

for mix descriptions) 
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3.4. Sand Preparation 

The sand for all the experiments was first washed with 60°C distilled water to dissolve all 

the impurities. The water was then drained to collect the washed sand free of impurities 

and fine particles that could cause turbidity in the effluent. Further, the sand was dried in 

the oven at 1 05°C for 24 h to remove moisture. 

Figure 3.4 Sand Sample 

The sand had a high uniformity coefficient (UC) of > 7.5. The UC is defined as the "ratio 

of the size of grain which has 60 percent of the sample finer than itself to the size which 

had 10 percent finer than itself' (Dake, 2009). In order to study the effects of UC on the 
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arsenic removal efficiency of the sand, an experiment was conducted with the sand of UC 

= 4. The details of the experiment are provided in the next chapter. The sand with UC of 4 

was prepared as follows: 

1- Prior to sieve analysis the sand was washed with a 45 j..lm screen to remove all the 

particles finer than 45 j..lm. 

2- The sand was then dried in the oven for 24 h to remove all the moisture at 1 05°C. 

3- A sample of 3 kg was obtained for sieving. 

4- Sieves of sizes 850 j..lm, 595 j..lm and 212 j..lm were nested in the proper order, 

coarsest at the top and a pan at the bottom. 

5- The stack was placed on the sieve shaker for 15 minutes. 

6- When the shaker was stopped the contents of each sieve were emptied on the 

paper. 

7- The sieve bottom was brushed gently to dislodge any sand grains that were lodged 

in the mesh. 

8- The sand of UC = 4 was prepared by mixing 60% of the sand that was passed 

through the 850 j..lm sieve but retained by the 595 j..lm sieve with 10% of the sand 

that was passed through 212 j..lm sieve. The remaining 30% of the sample 

comprised grain sizes that were passed through the 595 j..lm sieve but retained by 

the 292 j..lm sieve. The ratio of850 j..lm to 212 j..lm was 4. 
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3.5. Column Preparation 

The height of the sand in the columns was kept at 6.7 em or equivalent to the internal 

diameter of the small column. The columns were not filled completely with the sand as 

the total height of the sand column was unnecessary to treat the water and it would have 

slowed down the filtration process as well. 1 OOOmL of distilled water was passed through 

the column prior to commencing the leaching column tests in order to remove all the very 

fine particles that could result in turbidity in the effluent. Once the clear water was 

collected at the bottom of the column, only then were the tests initiated. 

3.6. Vacuum Pump 

The vacuum pump was used to aerate the leaching column by drawing air through the 

column to help oxidize the soluble Fe2
+ ions to insoluble Fe3

+ ions that have better 

adsorption characteristics. 

The vacuum pump manufactured by Gast was a non-lubricated diaphragm type pump 

capable of generating 25.5 in-Hg of vacuum at a pressure of 60 psi with a maximum flow 

output of 1.90 cfm. 
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Figure 3.5 Vacuum Pump 

3.7. Peristaltic Pump 

The peristaltic pump was used to increase the flow rate of the water passed through the 

leaching column during the breakthrough tests as a large amount of water had to be 

treated. The precipitates of arsenic adsorbed on to HFOs surfaces also occupied the pore 

space in the sand and this further slowed the filtration rate. Owing to the slow filtration 

rate, normal gravity filtration would have taken months to complete the analysis which 

was completed in weeks using the peristaltic pump. 
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Figure 3.6 Peristaltic Pump 

The pump supplied by Cole-Parmer was a Masterflex variable speed drive pump with a 

range of 6-600 revolutions per minute (RPM). The flow rate could be adjusted in the 

range of 0.36 mL/min to 3400 mL/min depending upon the tubing size and the RPM, 

though the flow rate was not changed throughout the duration of the tests. The outer 

diameter of the tubing was 1/2 in. 
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3.8. Arsenic Detection with ICP-MS 

Rageh (2008) concluded that the arsenic in water measurement methods such as the La 

Motte test kit was not accurate in determining low arsenic concentrations (in the range of 

29.84 and 62.61 ).lg/L). Hence, ICP-MS was selected as the sole method for determining 

arsenic concentrations in the untreated and effluent waters. It was more accurate and it 

could provide the concentration of 38 different elements in addition to arsenic namely: 

Lithium (Li), Beryllium (Be), Boron (B), Magnesium (Mg), Aluminum (Al), Silicon (Si), 

Phosphorus (P), Sulfur (S), Chlorine (Cl), Calcium (Ca), Titanium (Ti). Vanadium (V), 

Chromium (Cr), Iron (Fe), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu), Zinc 

(Zn), Selenium (Se), Bromine (Br), Rubidium (Rb), Strontium (Sr), Molybdenum (Mo), 

Silver (Ag), Cadmium (Cd), Tin (Sn), Antimony (Sb), Iodine (I), Cesium (Ce), Barium 

(Ba), Lanthanide (La), Cesium (Ce), Mercury (Hg), Thallium (Tl), Lead (Pb), Bismuth 

(Bi), and Uranium (U). Hence, ICP-MS was not only beneficial because it was an 

accurate test method for arsenic measurement but also because it was useful in measuring 

the concentration of other elements in the effluent that helped in understanding the effect 

of water composition on the arsenic removal efficiency. The original water samples and 

the samples collected after passing through the column were filtered using a 0.45 J.lm 

filter paper and then acidified with HN03 prior to analysis by the Department of Earth 

Sciences at MUN to determine arsenic and other element concentrations using ICP-MS. 
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3.9. Minitab 

Minitab was used to statistically analyze the results obtained from the ICP-MS analysis of 

the treated water samples. The correlation analysis was carried out to determine the 

relationship between arsenic and the rest of the elements found in the effluent water. The 

correlation was determined based on the relative changes in concentration of arsenic and 

the concentrations of Li, Be, B, Mg, AI, Si, P, S, Cl, Ca, Ti, V, Cr, Fe, Mn, Co, Ni, Cu, 

Zn, Se, Br, Rb, Sr, Mo, Ag, Cd, Sn, Sb, I, Ce, Ba, La, Ce, Hg, Tl, Pb, Bi, and U in the 

effluent. The significance of correlation data obtained from Minitab was verified by 

consulting Table 2.3 under the column with 0.05 p-values. Minitab uses the 0.05 p-value 

as a default value. The p-values mentioned in Table 2.3 on page 37 are the minimum 

accepted values for a significant correlation at a given sample size. 
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Chapter Four 

Results and Discussion 

The results of the all the leaching column tests conducted are presented in this chapter. 

The composition of groundwater samples collected from the towns of Wabana and 

Freshwater in addition to the mixtures Mix-1 Mix-2 and Mix-3 are included in the 

Appendix A.2 and A.3 respectively. Correlation analysis between arsenic and other 

elements present in the effluent of column tests are also included in this chapter. All 

element concentrations in the effluent of R0-4, R0-4(b ), Mix-1 , Mix-2 and Mix-3 

column tests over time are given in Appendices A.4, A.5, A.6, A.7 and A.8, respectively. 
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4.1. Preliminary Experiments 

4.1.1. Sand Characterization Test 

Using equation 3.1 under section 3.2 .1 , the Bulk Density for the sand was calculated to be 

1.47 g/cm3
. The pore volume was calculated by following the procedure described in 

section 3.2.2 and is outlined in Table 4.1. 

Table 4.1 Calculation of Pore Volume 

6.559 27.588 2 1.029 7.935 
0 .3387 

(33.87%) 

Mass of 
Mass of Mass 

Volume Porosity 0.3255 Average 
container 6.66 1 sand and 28. 108 of 2 1.447 of sand 8.093 (Fraction Porosity container sand (cm3

) (32.55%) (g) 
(g) (g) 

or %) 0.34 183 
(34. 183%) 

0.36 12 
6.586 29.898 20.312 7.664 

(36.12 %) 
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4.1.2. Compositional Analysis of Water Samples Collected from the Town of 

Wabana 

Two samples were collected from the town of Wabana on Bell Island i.e. one with high 

Fe and arsenic contents (high strength sample) and one from the normal water supply 

distribution network. The water samples were tested and the Fe and arsenic contents for 

the high strength Wabana water were 1825.84 1-tg/L and 62.91 ~-tg/L, respectively (Figure 

4.1). The Fe and arsenic concentrations for the normal (potable) Wabana supply water 

were 86.33 /J.g/L and 4.50 1-tg/L, respectively (Figure 4.1). 

12000 

10000 
...J -Ql) 
:1. 8000 
c 
0 
·~ 
111 6000 ... .... 

• Fe c 
Cll 
u 
c 4000 D As 0 
u 

2000 

High strength Wabana water 

Normal Wabana supply water 

Figure 4. 1 Fe and arsenic concentrations of the high strength Wabana water and the 

normal Wabana water 
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4.1.3. Comparison between Ceramic Disc and Cotton Cloth 

Two tests were simultaneously carried out with the high strength Wabana water. In one 

test, the small column was filled with sand and ceramic discs were used as retainers at the 

top and bottom of the column. In the second test, only ceramic discs were used and the 

column was not filled with sand. The purpose of this test was to determine if the ceramic 

discs were interfering with the removal of Fe and arsenic. 200 mL of high strength 

Wabana water were passed through both the columns and the samples were analyzed. The 

ceramic discs were found to be interfering with the arsenic uptake as the arsenic 

concentration for the high strength Wabana water was reduced from 62.91 )lg/L to 28.49 

)lg/L (Figure 4.2) for the column without sand. Although, the result for the column filled 

with the sand and the ceramic discs was satisfactory as the Fe and arsenic concentrations 

were reduced to 0 and 0.75 )lg/L, respectively (Figure 4.2), the purpose of the study was 

to use the sand for treatment. 
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OAs 

Figure 4.2 Effects of using ceramic discs and cotton cloth on top and bottom of the 

column as a sand retainer, with and without sand. (200mL of water was passed) 

Since the ceramic discs were interfering with the removal of arsenic they were not used in 

any subsequent column tests. After passing a different sample of high strength Wabana 

water through the column using cotton cloth as a retainer, the arsenic concentration 

dropped from 39.16 J.tg/L to only 37.76 J.tg/L (Figure 4.2). It was concluded that the 

effects of the cotton cloth on the removal of arsenic would be negligible for the passage 

of large volumes of solution. Hence, it was decided to use the cotton cloth ( 180 Thread 

Count) in place of ceramic discs as it had a larger pore size and cotton bags filled with 

sand are commonly found in the water treatment applications. 
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4.1.4.Run-Out Test -1 

After the issue of interference of ceramic discs with the experimental results was 

resolved, fresh tests were conducted with the cotton cloth as the flow distributor and sand 

retainer in the columns. 200 mL of high strength Wabana water was passed through the 

small column to determine how the sand was aiding in arsenic removal. The arsenic 

concentration in the effluent after passing 200 mL through the partially filled column 

(height of sand column was 6.7 em), was lowered from 62.91 ).!g/L (Figure 4.1) to 0.607 

).!g/L (cotton with sand, R0-200, Figure 4.3). The next step was to determine the volume 

of water that could be treated with the small column that contained 246.91 cm3 of sand. It 

was determined that 1400 mL (R0-1400, Figure 4.3) could easily be treated while 

keeping the arsenic level close to the limit of 7 ).!g/L. When a total of 2000 mL of water 

was passed through the small column, the arsenic concentration spiked to 19.73 ).!g/L 

(R0-2000, Figure 4.3). The deposition of a high iron content on the top layer of the sand 

might have restricted the flow of water and water might have passed through the space 

between the column wall and the sand boundary. Further, the lack of aeration in the 

column might have restricted the oxidation of Fe2
+ to Fe3

+ ions that adsorbed the arsenic 

(Jovanovic et al., 2011). 
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Figure 4.3 Run out Test 1 using cotton as a retainer (R0-200, R0-1400 and R0-2000 

represent the Fe and As concentrations in the effluent after passing 200 mL, 1400 mL and 

2000mL of the high strength Wabana water containing 11825.84 !J.g/L of Fe and 62.91 

!J.g/L of As as in Figure 4.1) 

4.1.5. Effect of Column Diameter (Run-Out Test- 2) 

Next, it was decided to study the effect of the column diameter on the arsenic removal 

efficiency. Hence, two tests were simultaneously conducted with the small and large 

diameter columns. Both the columns were filled with sand to the same height i.e. ~6.7 
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em. The volume of sand in the large column was 834.33 cm3 and that in small column 

was 246.91 cm3
. In order to compare and contrast the results, the liquid to sand ratio was 

kept the same for both the columns i.e. 5.7: 1. It was determined by the preliminary 

experiments that the small column could treat 1400 mL of high strength Wabana water 

before the arsenic concentration reached approximately 7 )lg/L (R0-1400, Figure 4.3) and 

this gave the liquid to sand ratio of 5. 7: 1. So, 4 730 mL of high strength Wabana water 

was passed through the large column. In Figure 4.4, R02-Sl400 corresponds to the 

volume of 1400 mL for small diameter column and R02-L4730 corresponds to the 

volume of 4 730 mL for the large column. The small column performed better than the 

large column as the arsenic concentration was lowered to 4.475 )lg/L as compared to 

5.827 )lg/L. Further, the rate of filtration through the large column was relatively slow. 

The higher final effluent concentration for the large column could have meant that the 

solution concentrated around the middle of the column, the full diameter was not utilized, 

and the accumulation around the centre slowed down the filtration. Hence, it was decided 

to use a small column with cotton as a retainer for the remainder of the experiments. 

It is pertinent to mention here that the difference in Fe and arsenic concentrations in the 

effluent after treating 1400 mL of water for the R0-1 test (As: 8.22 )lg/L, Fe: 1658 )lg/L, 

Figure 4.3) and the R0-2 test (As: 4.475 )lg/L and Fe: 1112 )lg/L, Figure 4.4) was due in 

part to the change in composition of the high strength Wabana water sample with time as 

a result of oxidation of soluble Fe2+ions into insoluble Fe3+ ions. These Fe3+ ions adsorbed 

the arsenic and settled at the bottom of the sample container changing the Fe and arsenic 
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concentrations in the sample. In the ground, the prevailing anoxic conditions prevent the 

oxidation of soluble Fe2
+ ions to insoluble Fe3

+ ions. When this water was exposed to oxic 

conditions, oxidation started taking place. Therefore, the drop in the concentrations of Fe 
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Figure 4.4 Comparison of arsenic removal efficiency between small and large columns 

(R02-S 1400 and R02-L1400 represent the effluent concentration after passing 1400mL 

through the smaller and large columns, respectively, R02-S 1600 for 1600mL through the 

small column and R02-L4730 for 4730mL through the large column for water containing 

11825.84 11g/L of Fe and 62.91 11g/L of As) 
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and arsenic were observed. In order to avoid further changes in the concentrations, the 

water was transferred from the 20 liter capacity gallons to small bottles of two liter 

capacity. The initial arsenic concentration dropped from 62.91 Jlg/L for the R0-1 test 

(Figure 4.3) to 42.906 Jlg/L for the R0-2 test. 

4.1.6. Effect of Removal of Top Layer of Sand 

Preliminary experiments were also carried out with the removal of a top 1 em layer of 

sand to determine if the sand removal improved the arsenic uptake or not. The small 

diameter column and sand that were used for conducting the R02-S 1600 test (results 

presented in Figure 4.4) were used for the R0-5 test (to study the effect of sand removal). 

The sand was removed to expose the fresh surface of sand and 200 mL of the high 

strength Wabana water was passed through the column making the cumulative volume up 

to 1800 mL (R05-1800, Figure 4.5) as 1600 mL had already been passed during the R0-

2 test. The arsenic concentration was higher than the level of 7 Jlg/L; hence, it was 

decided to remove one more approximately 1 em thick layer of sand. An additional 200 

mL of the same water was passed through the column again to bring the total volume to 

2000 mL (R05-2000, Figure 4.5). 
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Figure 4. 5 Run Out Test 5 (R0 5-1800 and R05-2000 represents the effluent 

concentrations after passing 1800 mL and 2000 mL of high Fe and arsenic water, 

respectively, and after removing some sand). 

The results in Figure 4.5 suggested that removing the top layer of sand did actually 

enhance the arsenic removal efficiency of the sand, when compared with the arsenic 

concentration recorded in the effluent water for the R0-1 test (Figure 4.3). The spike in 

the arsenic concentration in the effluent that was observed in the case of R0-1 test 

between 1400 mL (R0-1400) and 2000 mL (R0-2000) was not observed in this case. In 

fact, the arsenic concentration stayed at approximately the same level i.e. 9.626 and 9.616 
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respectively. The reason for the lower arsenic concentration in the effluent when the top 

layers of sand in the column were removed may have been that there was less pore 

blockage from the HFO precipitates. Further, the freshly exposed sand had more pore 

space due to a lower uniformity coefficient that allowed the oxidation of Fe2
+ ions to Fe3

+ 

ions to occur and enhance the arsenic removal. Although, the low uniformity coefficient 

might have increased oxidation, it might have also decreased the precipitates holding 

ability of sand due to the larger pore spaces. Since removing the top sand layer did not 

actually reduce the arsenic concentration in the effluent below the limit of 7 )..lg/L, more 

similar experiments were not conducted. 

4.1.7. Run-Out Test- 3 

It can be seen from the Figure 4.3 that the arsenic concentration in the treated water 

suddenly increased as the volume of treated water was increased from 1400 mL to 2000 

mL. A possible cause could have been lack of aeration which inhibited the oxidation of 

Fe2
+ ions to Fe3

+ ions and hence arsenic removal efficiency started to decrease. In order to 

study the effect of aeration on arsenic removal efficiency, an experiment was designed to 

aerate the column for two hours with the vacuum pump after passing each batch of 500 

mL of high strength Wabana water. This was achieved by suctioning air through the 

column. The results were very promising and the sample collected after passing 2400 mL 

of water i.e. R03-2400 in Figure 4.6, had Fe and arsenic contents of 14.4 and 1.69 )..lg/L, 

65 



respectively. The mechanism of arsenic uptake involved the oxidation of Fe2
+ ions to Fe3

+ 

ions in the presence of an oxidizing agent (atmospheric oxygen or chemicals can also be 

added) followed by the oxidation of some of As(III) (arsenite) to better adsorbable As(V) 

(arsenate). 
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Figure 4.6 Run Out Test 3 with active aeration (R03-1400 and R03-2400 represent the 

effluent concentrations after treating 1400mL and 2400mL of the high strength Wabana 

water, respectively, containing 11825.84 !J.g/L of Fe and 62.91 !J.g/L of As) 
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It is proposed that arsenites and arsenates were adsorbed on HFO particles followed by 

the formation of FeAs04(s) that was precipitated along with the HFO particles. Roberts et 

al. (2004) found that the adsorption affinity of As(V) for HFO particles was higher by a 

factor of 100 compared to the affinity of As(III). Arsenic in NL groundwater resources 

exists primarily in the form of arsenate, hence, it is comparatively easy to mitigate the 

arsenic concern in this province due to the better adsorption characteristics of the ionic As 

(V) species (H2As0 4- and Had04-2) (Rageh, 2008). 

Berg et al., (2006) suggested that an Fe/ As ratio of 50 was required to achieve a residual 

arsenic concentration of 50 )lg/L or less and in order to comply with WHO guidelines ( 10 

)lg/L) an Fe/As ratio of 250 was required. In the high strength Wabana water the Fe/As 

ratio were 187.98. Possibly in this study there were other mechanisms, besides HFO 

adsorption that aided in achieving the residual arsenic concentration of 7 )lg/L. It is 

believed that the removal of arsenic was not only dependent on the Fe concentration but 

also on the presence of manganese (Mn). Manganese dioxide (Mn02) oxidizes the As 

(III) to better adsorbable As (V) in water bodies (Mohan and Pittman, 2007). The study 

conducted by Driehaus et al., ( 1995) concluded that Mn had the ability to form arsenate­

manganese ion complexes which are favorable for arsenic removal as they provide 

adsorption sites for removal of arsenic similarly to the HFOs. Hence, the presence of high 

Mn content (1561.51 )lg/L) along with the high Fe content could have been responsible 

for achieving the better arsenic removal rates in this study. 
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The sand had a high uniformity coefficient (UC) of> 7.5 and the iron content of the high 

strength Wabana water was 11825.84 Jlg/L. Due to the high UC of the sand and the high 

Fe content of high strength Wabana water, the fine particles in the sand and the 

conversion of soluble Fe2
+ ions to insoluble Fe3

+ ions greatly occupied the pore space 

during the vacuum pump operation and over time slowed down the water filtration rate 

through the column. The operation of this vaccum pump also affected the bulk density of 

the sand by tightly packing the sand bed which further slowed down the rate of filtration. 

Hence, it was not feasible to pass more than 2400 mL of the high strength Wabana water 

through this column and experiments could not be continued further. 

4.1.8. Run-Out Test- 3(b) 

An experiment was designed to study the effect of a lower UC on the arsenic removal 

efficiency of the sand. Sand with a UC of 4 was used to facilitate passive aeration in 

addition to carrying out active aeration, and the results are presented in Figure 4.7. The 

R0-3(b) test was similar to the R0-3 test with only difference being the UC of the sand. 

It can be seen from Figure 4.7 that the arsenic concentrations after treating 1500 mL and 

2500 mL of the high strength Wabana water were 8.190 Jlg/L and 8.712 Jlg/L, 

respectively. These concentrations were higher than those recorded for the R0-3 test for 

approximately the same volumes (Figure 4.6). Further, the Fe and arsenic concentrations 

after passing 2500 mL were found to be 1296 Jlg/L and 8.712 Jlg/L, respectively, which 
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were low compared to the Fe and arsenic concentrations recorded for the R0-1 test for 

2000 mL i.e. 4414 11g/L and 19.73 11g/L, respectively (Figure 4.3). It was therefore 

concluded that active aeration aided in reducing the arsenic concentration in the effluent. 
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Figure 4.7 Run Out Test 3(b) with active aeration (R03(b)-1500 and R03(b)-2500 

represents the effluent concentrations after treating 1500 mL and 2500 mL of the high 

strength Wabana water containing 1182 5. 84 11g/L ofF e and 62.91 11g/L of As using a 

sand with UC of 4) 
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It is possible that the efficiency of arsenic removal decreased as a result of the increased 

pore space with the lower UC which might have reduced the ability of the sand to trap 

HFO precipitates. The low UC sand mix had less fine particles and as a result the porosity 

was increased and the capacity of sand to retain HFO particles decreased. In Figure 4.7, 

the Fe contents were 1384.8 1-Lg/L and 1296 1-Lg/L for the treated volumes of 1500 mL and 

2500 mL, respectively for the R0-3(b) tests as compared to the Fe contents of 13.71 1-Lg/L 

and 14.4 1-Lg/L for the R0-3 tests for the volumes of 1400 mL and 2400 mL, respectively 

(Figure 4.6). The increased Fe concentration in the water corresponded directly to the 

increased arsenic concentration as the HFO particles have a high adsorption capacity for 

the arsenate species (Roberts et al., 2004). 

4.2. Detailed Experiments 

After conducting preliminary experiments it was decided to use a combination of dilution 

and aeration to conduct more extensive experiments while limiting the arsenic 

concentration in the effluent to 7 1-Lg/L. This was in an effort to increase the life of the 

sand bed by increasing the volume of the water that could be treated i.e. reduced the sand 

replacement frequency. 
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4.2.1. Run-Out Test- 4 

A combination of dilution and aeration was planned to extend the life of the sand bed. 

The run-out test was designed entirely for this purpose. The Run out 4 tests involved the 

dilution of high strength Wabana water with the normal Wabana supply water in a ratio of 

one to one ( 1:1 ). The objective was to study the effect of water dilution on the arsenic 

removal efficiency of the sand and to determine if this approach could have practical 

application. If high arsenic concentration groundwater was commingled with water from 

other groundwater wells, it might result in better conservation of water resources. The Fe 

and arsenic concentrations of the freshly collected Wabana water were 10045 Jlg/L and 

65.579 Jlg/L, respectively at the beginning of the test. The water sample was transferred 

into small containers. To retard the oxidation of Fe2
+ ions to Fe3

+ ions the sample 

containers were filled to zero air space and sealed and water from only one container was 

used at a time. The results were very promising and suggested that 4000 mL of diluted 

water sample could be treated (Figure 4.8) without replacing the sand instead of 1400 mL 

for the high strength Wabana water (Figure 4.3). After treating 4000 mL the arsenic 

concentration in the treated water approached the mark of 7 11g/L and the Fe 

concentration was 1133 Jlg/L. 

The waters would have naturally contained approximately the same amounts of oxygen 

from the air during the experiments, but the diluted sample would have had higher 

oxygen to arsenic ratio which might have explained the better arsenic removal in the more 

diluted sample. 
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Next, the column was aerated for one hour using the vacuum pump to help oxidize the 

Fe2
+ ions to Fe3

+ ions and 200 mL of water was passed through the column. The arsenic 

concentration in the treated water dropped from 6.96 Jlg/L for 4000 mL to 6.21 Jlg/L for 

4200 mL (Figure 4.8). Hence, it was decided to aerate the column for one hour after 

treating every batch of 500 mL of water. After treating 4500 mL, the vacuum pump was 

taken into the service again and 500 mL of more water was filtered through the column 

and so on. 
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Figure 4.8 Change in Fe and arsenic concentrations in the effluent with volume for the 

R0-4 test with an Fe:As ratio of 1:1 and active aeration. 

72 



The downward trend in the arsenic concentration was observed and it dropped from 6.96 

Jlg/L for 4000 mL to 1.36 11g/L for 6000 mL (Figure 4.8). Moreover, the downward trend 

in the Fe concentration of the effluent water was also observed from 1133 Jlg/L for 4000 

mL to 110 Jlg/L for 6000 mL (Figure 4.8). This could be due to the oxidation of Fe2
+ to 

insoluble Fe3
+ ions causing Fe to accumulate in the sand rather than being carried out 

with the water. The results suggested that the arsenic removal efficiency was enhanced 

because of the oxidation of Fe2
+ ions to Fe3+ ions. The Fe3+ ions have better adsorption 

characteristics for the arsenite and arsenate species. After treating further water the 

increasing trend in the arsenic and Fe concentrations was observed. The arsenic 

concentration was increased to the 7.34 Jlg/L after treating 9000 mL of this mix (Figure 

4.8). Hence, in total 121.58 11g of arsenic was removed by treating 4000 mL of water, 

while, the input iron concentration was 5065.66 Jlg/L. The amount of arsenic adsorbed 

(Jlg) was calculated using the following formulas and is tabulated in Table 4.2: 

Arsenic adsorbed(pg) = 

L: [{Influent As (JI:) x Vol (L)}- {Effleuent As (pg)}] 4.1 

The effluent arsenic mass (Jlg) was calculated using the following relation: 

Effluent As (pg) = 

.L~1 [Eff.As Conci (Jt:) x {Vol. Treatedi(L) - Vol. Treatedi_ 1 (L)}] 4.2 
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The influent arsenic concentration was calculated by: 

Influent Arsenic (Jl:) = 0. 5 X 65. 579 (Jl:) + 0. 5 X 4. 5 (Jl:) 4.3 

The constant i.e. 0.5 was the ratio in which the samples were mixed. 65 .579 J..lg/L and 4.5 

J..lg/L were the arsenic concentrations of the high strength Wabana water and normal 

Wabana water, respectively. The input arsenic concentration was calculated to be 35.0395 

J..lg/L. The effluent arsenic masses (J..lg) for various analysis intervals are also tabulated in 

Table 4.2. 

Table 4.2 Calculation of effluent arsenic mass (J..lg) and the total mass of arsenic removed 

(J..lg) for R0-4 test 

Volume 
Influent As Effluent As 

As 

Volume 
Effluent 

Volume (L) 
(L) Input 

(J..lg) (J..lg) 
Removed 

As between As (J..lg) (mL) 
(J..lg/L) 

(Col. 1/ 1000) 
Successive (J..lg/L) 

(Col3 x (Col2 x 
(Col5-

Intervals 
Col5) Col3) 

Col6) 

1400 2.70 1.4 1.4 49.06 3.78 45 .28 

2400 4.84 2.4 1 35.04 4.84 30.20 

3400 5.74 3.4 1 35.04 35.04 5.74 29.30 

3700 7.10 3.7 0.3 10.51 2.13 8.38 

4000 6.96 4 0.3 10.51 2.0889 8.42 

Cumulative Arsenic Removed (ug) 121.58 

74 



Similarly, the influent Fe concentration was calculated using the following equation: 

Influent Iron (Jl:) = 0. 5 X 10045 (Jl:) + 0. 5 X 86. 327 (Jl:) 4.4 

The constant i.e. 0.5 is the ratio in which samples were mixed. 10045 J.!g/L and 86.327 

J..lg/L were the Fe concentrations of high strength Wabana water and normal Wabana 

water, respectively. The influent Fe was calculated to be 5065.66 J..lg/L. 

Mini tab was used to determine the correlation between arsenic and different elements' 

concentrations. It was found out that arsenic levels were significantly correlated with the 

iron and chloride contents (Table-4.3). The correlation between Fe and arsenic was 

positive, while, that of arsenic and chlorine was negative. 
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Table 4.3 Concentrations of elements significantly correlated with arsenic in the effluent 

of the R0-4 test 

Volume Treated As Content Fe Content Cl Content 
(mL) (J.lg/L) (J.lg/L) (J.lg/L) 

1400 2.70 294.04 4 1653 

2400 4.84 597.20 44073 

3400 5.74 910.04 38313 

3700 7.10 994.86 55154 

4000 6.96 1133.93 36137 

4200 6.21 1184.00 50802 

5000 4.35 601.50 41741 

6000 1.36 171.44 60653 

7000 1.70 110.00 106519 

7500 4.51 1184.00 35589 

8000 7.01 1200 37104 

9000 7.34 1146 33418 

Correlation with As 1 0.906 -0.597 
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According to Vincent (1995), for data of 12 different samples, a significant correlation 

should be of value 0.576 or more. The Fe based adsorbents are widely used in water 

treatment applications to adsorb the arsenic and the high positive correlation between Fe 

and arsenic in Table 4.3 is in accordance with the literature (Leupin and Hug 2005, Gu et 

al. 2005 and Berg, et al. 2006). Further, the chloride anion has the same effect as that of 

other anions like phosphate, silicate and bicarbonate anion on arsenic adsorption i.e. it 

competes with arsenic for the iron oxides adsorption sites (Meng, et al. 2002). The effect 

of chloride is more significant for As (III) than for As (V) (Meng, et al. 2002). 

4.2.2. Run-Out Test- 4(b) 

The Run out 4(b) test was similar to the Run-out-4 test with only difference being the 

ratio of the waters used. It involved the dilution of high strength Wabana water with the 

normal Wabana water in a ratio of one to three (1 :3). Like the R0-4 test, the R0-4(b) test 

was designed to study the combined effect of aeration and dilution on the arsenic removal 

efficiency of the sand medium and to compare results with the R0-1 test (Figure 4.3). 

The results for the R0-4(b) test were very promising and suggested that, before replacing 

the sand, approximately 11 ,000 mL of diluted water or 0.25 x 11 ,000 mL or 2750 mL of 

the high strength Wabana water could be treated compared to 1400 mL of the high 

strength Wabana water (Figure 4.3) or 4000 mL of diluted water (or 2000 mL of the high 

strength Wabana water) in the R0-4 test (Figure 4.8) before any aeration was carried out. 
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After treating 10,500 mL, the arsenic concentration in the effluent was 6.232 J..Lg/L and the 

column was aerated for one hour using the vacuum pump to help oxidize the Fe2
+ ions to 

Fe3
+ ions. Following aeration 500 mL of water was passed through the column and the 

arsenic concentration in the effluent decreased from 6.232 J..Lg/L (at 10,500 mL) to 4.751 

J..Lg/L (at 11,000 mL ) (Figure 4.9). Hence, it was decided to aerate the column for one 

hour after treating every additional 500 mL of water. After treating 11,500 mL, the 

vacuum pump was taken into the service again and 500 mL more water was filtered 

through the column and so on. The downward trend in the arsenic concentration was 

observed and it dropped from 6.232 J..Lg/L at 10,500 mL to 2.513 J..Lg/L at 14,000 mL 

(Figure 4.9). 
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Figure 4.9 Change in iron and arsenic concentration in the effluent with volume for the 

R0-4(b) test with an Fe:As ratio of 1:3 and active aeration 

78 



After treating 17000 mL, an upward trend in arsenic concentration was observed. An 

arsenic concentration of 2.747 !J.g/L corresponded with the effluent volume of 17000 mL 

(Figure 4.9). Moreover, the downward trend in the Fe concentration of the effluent water 

from 605.99 !J.g/L at 10,500 mL to 392.14 !J.g/L at 14000mL was also observed (Figure 

4.9). This suggested that oxidation of Fe2
+ ions to the insoluble Fe3

+ ions was taking place 

and Fe was accumulating in the sand rather than being carried out with the water. The 

results suggested that the arsenic removal efficiency was enhanced because of the 

oxidation of Fe2
+ ions to Fe3

+ ions that had better adsorption characteristics for the 

arsenite and arsenate species (Roberts et al., 2004). For 18000 mL, the Fe content was 

raised to 808.2 !J.g/L (Figure 4.9), while the arsenic concentration increased to 5.157 !J.g/L 

(Figure 4.9). 

In total 166.50 11g of arsenic were removed by treating 10,500 mL of water before any 

aeration was carried out, while, the input Fe concentration was only 2576 !J.g/L. The 

amount of arsenic adsorbed (!J.g) was calculated using Equation 4.1 and the effluent 

arsenic masses (!J.g) were determined using Equation 4.2 (in section 4.2.1). The masses of 

arsenic removed (!J.g) at various analysis intervals are tabulated in Table 4.4. 

The input arsenic concentration was calculated as: 

Influent Arsenic ( 11
:) = 0. 25 X 65. 579 ( 11

:) + 0. 75 X 4. 5 (11
:) 4.5 
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The constants i.e. 0.25, 0.75 are for the ratio in which samples were mixed. 65 .579 )..lg/L 

and 4.5 )..lg/L were the arsenic concentrations of high strength Wabana water and normal 

Wabana water, respectively. The input arsenic concentration was calculated to be 19.770 

Table 4.4 Calculation of effluent arsenic mass ()..lg) and the total mass of arsenic removed 

()..lg) for R0-4(b) test 

Effluent 
Volume (L) 

Input Influent As Effluent As As Removed 
Volume Volume (L) between 

(mL) As (Coll/1000) Successive As ()..lg) ()..lg) ()..lg) 
(llg/L) 

Intervals 
(llg/L) (Col3 x CoiS) (Col2 x Col3) (CoiS- Col6) 

1500 1.47 1.5 1.5 29.65 2.205 27.45 

4000 3.093 4 2.5 49.42 7.7325 41.69 

5000 3.965 5 1 19.77 3.965 15.80 
19.77 

7500 3.817 7.5 2.5 49.42 9.5425 39.88 

9500 5.704 9.5 2 39.54 11.408 28.13 

10500 6.232 10.5 1 19.76975 6.232 13.53775 

Cumulative Arsenic Removed (ug) 166.50 

Similarly, the input Fe concentration was calculated using following equation: 

Influent Iron (Jl:) = 0. 25 X 10045 (Jl:) + 0. 75 X 86. 327 (Jl:) 4 .6 
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The constants i.e. 0.25 and 0.75 represent the ratio in which samples were mixed. 10045 

)lg/L and 86.327 )lg/L were the Fe concentrations of high strength Wabana water and 

normal Wabana water, respectively. The influent Fe was calculated to be 2576 )lg/L. 

Mini tab was used to determine the correlation between arsenic and different elements' 

concentrations. It was found that the arsenic levels were significantly and positively 

correlated with the Fe and lithium (Li) contents (Table 4.5). 

According to Vincent (1995), for data of 10 different samples, a significant correlation 

should be of value 0.632 or more. The affinity of oxides of Fe for arsenic has been 

mentioned in the literature and a lot of work has been carried out in this area (Leu pin and 

Hug 2005, Gu, et al. 2005 and Berg, et al. 2006). However, the interaction between Li 

and arsenic is still unknown and has not yet been mentioned in the literature and still 

needs to be explored. Although, the correlation observed between Li and arsenic was not 

very strong, Li could have reduced the adverse effects of anions in inhibiting the arsenic 

co-precipitation with oxides of Fe either by affecting the surface charge or enhancing the 

floc aggregation of Fe oxides. 
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Table 4.5 Concentration of elements significantly correlated to arsenic in effluent of RO-

4(b) test. 

Volume Treated As Content Fe Content Li Content 

(mL) (Jlg/L) (Jlg/L) (Jlg/L) 

1500 1.470 94.90 2.642 

4000 3.093 200.000 13.936 

5000 3.965 353.031 12.572 

9500 5.704 454 14.416 

10500 6.232 605.99 15.758 

11000 4.751 525 15.106 

13000 3.778 456 11.154 

14000 2.513 392 1.906 

17000 2.747 198.201 18.100 

18000 5.157 808.230 15.426 

Correlation with As 1 0.802 0.641 

4.2.3. Comparison of R0-1, R0(4) and R0-4(b) Tests 

The influent Fe and cumulative arsenic amounts removed for R0-1 , R0-4 and R0-4(b) 

tests are compared in Figure 4.10 to show the effects of diluting the high strength Wabana 
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water with normal Wabana water. It can be concluded from Figure 4.10 that 76.56 J...Lg of 

arsenic was removed or 1400 mL of high strength Wabana water was treated in sample 

R0-1400 of the R0-1 test (Figure 4.3). However, after incorporating a 1:1 dilution of the 

high strength Wabana water and normal Wabana water, 121.58 J...Lg of arsenic was 

removed or 4000 mL of water was treated for R0-4 test (Figure 8). Similarly, 166.50 J...Lg 

of arsenic was removed or 10,500 mL of the one to three mixture of Wabana's high 

strength water with Wabana's normal water could be treated in the R0-4(b) test (Figure 

9) test before the arsenic concentration approached the allowable limit of 7 J...Lg/L. It is 

evident from Figure 4.1 0 that as the dilution was increased, a greater quantity of water 

could be filtered and sand replacement frequency could be decreased as the concentration 

of influent Fe was decreased. The higher the Fe concentration, the more quickly it 

occupied the pore space in the sand bed limiting the Fe holding capacity of the sand 

which in tum influenced the arsenic removal efficiency. Hence, it was concluded that if 

there are one or two wells in the water supply system with high arsenic contents, the 

water from these wells might be used for potable purposes after sand filtration if the water 

is diluted with the groundwater wells containing low arsenic concentrations, provided that 

they have high concentrations of Fe and/or Mn. Further, if dilution is combined with 

aeration, the efficiency of the filtration system can be further augmented. 
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Figure 4.10 Comparison of cumulative arsenic removal versus Fe input for R0-1 , R0-4 

and R0-4(b) tests without considering the effect of aeration 

4.2.4.Run-Out Test for Water Sample Collected from the Town of Freshwater 

The water collected from the Town of Freshwater was filtered through the column 

partially filled with sand to determine the amount of water that could be treated before the 

arsenic concentration exceeded the level of 7 Jlg/L. The column and sand were prepared 
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in the same manner as for the other column tests and the results are presented in Figure 

4.11. 

It can be seen from Figure 4.11 that after treating 1000 mL of water collected from the 

Town of Freshwater, the Fe and arsenic concentrations dropped from 507.52 Jlg/L and 

29.707 Jlg/L to 117.46 Jlg/L and 4.88 Jlg/L, respectively. As additional water was passed 

through the column, the arsenic concentration increased to 8.217 Jlg/L or higher than the 

limit of 7 11g/L set for this project. It was concluded that the low removal rates were due 

to the low Fe concentration which is the main source for providing adsorption sites for the 

arsenic in the form of HFOs. 

Therefore, it was decided to conduct more column tests by mixing the high strength 

Wabana water with the water from the Town of Freshwater in three different Fe/As ratios. 

Since, the Fe/ As ratio was the most important factor in removing the arsenic from the 

water. The ratios of Wabana to Freshwater waters used were 1: 10, 2: 10 and 3: 10 and 

were named Mix-1 , Mix-2 and Mix-3, respectively. 

The elemental composition of these mixes is included in Appendix A.3. The Fe/ As ratios 

(wt/wt) for Mix-1, Mix-2 and Mix-3 were 17.282, 32.227 and 64.957, respectively. The 

purpose of carrying out these column tests was to determine the minimum Fe/ As ratio that 

could be used to control the arsenic concentration in the effluent. 
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Figure 4.11 Run-Out test for the water collected from the Town of Freshwater (FW 

influent represents the concentrations of Fe and As in the Freshwater groundwater, 

whereas, FW-1000 and FW-1200 are the Fe and As concentrations after treating lOOOmL 

and 1200mL of water through the partially filled sand column) 

4.3. Breakthrough Curves 

Breakthrough curves as explained in section 2.5 were used to show Ci versus time (h) for 
Co 

the arsenic and significantly correlated heavy metals found in the effluent sample. Ci is 
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the effluent concentration of a selected element at time 'i'; while, Co 1s the initial 

concentration of the same element. 

4.3.1. High Strength Wabana Water 

Breakthrough analysis was conducted for the high strength Wabana water. The 

concentration of Fe and arsenic in the influent was 8486.688 1-1g/L and 37.787 1-1g/L, 

respectively giving an Fe/As ratio of 224.59. The drop in the Fe and arsenic 

concentrations from 11825.84 1-1g/L and 62.91 1-1g/L, respectively, for the freshly collected 

water was associated with the instability of this water sample as explained in section 

4.1.4. 

The column test was allowed to proceed for 150 hours until approximately 11,500 mL of 

water had passed. The filtration rate at the start of experiment was 125 mL/h which 

slowly dropped as the test progressed because the pore space in the sand bed quickly 

filled with the adsorbing species. The average filtration rate was approximately 79.1 

mL/h. The peristaltic pump was employed to conduct the breakthrough analysis at a 

filtration rate higher than the gravity filtration. The parameters such as flow rate of the 

peristaltic pump were not changed throughout the duration of the test, however, the drop 

in the rate of filtration was observed due to the filling up of pore space in the sand bed 

with the adsorbing species. The breakthrough curves were drawn using Ci versus time (h) 
Co 

for As, Fe and Mn. (Figure 4. 12). 
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Figure 4.12 Breakthrough curves for As, Fe and Mn when conducting column tests with 

the high strength Wabana water. 

It can be seen from Figure 4.12 that the arsenic concentration dropped from 37.787 Jlg/L 

to 4.4 Jlg/L in the first 4 h and then the uptake rate decreased gradually. After 150 h, the 

arsenic concentration in the effluent went up to 32.44 Jlg/L. The breakthrough occurred 

after approximately 36 h when a value of 17.83 Jlg/L was obtained (Figure 4.12). 

Similarly in the first 4 h for the Fe and Mn, the concentrations dropped from 8486.688 

Jlg/L and 3384 Jlg/L to 483.05 ug/L and 1154 ug/L, respectively. The breakthrough for 

the Fe occurred after 70 h (3389.4 J.!g/L), while that of Mn occurred after 36 h (1 882.1 

J.!g/L). At the end of the test, the Fe and Mn concentrations were 6046.40 11g/L and 

2820.3 Jlg/L, respectively. 
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Minitab was used to find the elements that were significantly correlated with the arsenic 

concentration and they were found to be Be, P, V, Cr, Fe and Mn. The correlation values 

are shown at the bottom of the Table 4.6. Other than Fe and Mn, the rest of the elements 

were negatively correlated with arsenic. Iron hydroxide based adsorbents could be used to 

adsorb S04-
2

, Se03-
2

, P04-
3 and Cr04-2 ions (Meng and Letterman, 1996; Goldberg, 1985, 

Zachara et al., 1987 and Chowdhury and Yanful 2010). Therefore, in the presence of 

sulphates, phosphates and chromate ions, the arsenate species competed with them for the 

HFOs adsorption sites and hence they were found to be negatively correlated with the 

arsenic. Similarly, it was reported that vanadate anions have the ability to adsorb onto the 

Fe based adsorbents (Naeem et al., 2007). Most likely they also competed with the 

arsenic anions for the HFOs adsorption sites. It can be seen from Table 4.6 that as the 

concentration of the arsenic in the effluent was increased, the concentration of V, P and 

Cr decreased meaning these anions were negatively correlated with the arsenic. 
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Table 4.6 Concentration of elements significantly correlated to Arsenic in the effluent of 

Wabana water 

Initial 
Time As Be p v Cr Fe Mn 

Arsenic 
(h) ()lg/L) (!lg/L) ()lg/L) ()lg/L) ()lg/L) ()lg/L) ()lg/L) 

()lg/L) 

4 4.4 37.30 358.10 8.03 5.710 483.05 1154.00 

10 5.43 37.64 361.30 8.11 5.760 754.68 1165.00 

24 8.95 37.65 361.40 8.11 5.770 1172.5 1312.60 

30 12.43 3.41 248.50 2.46 4.045 1977.6 1537.32 
37.79 

36 17.83 4.48 326.00 3.24 3.297 2873.6 1882.10 

70 23.49 9.9 1 158.80 2.67 3.255 3889.4 1919.75 

120 29.1 6 3.59 60.323 1.99 1.029 5652.1 2082.96 

150 32.44 3.410 34.60 2. 17 0.928 6046.4 2820.3 

Correlation with 

Arsenic 1.00 -0.803 -0.942 -0.846 -0.972 0.996 0.954 

4.3.2.Mix-1 Test 

The sample Mix-1 that had the Fe/ As ratio of 17.282 and the initial arsenic concentration 

of 33.58 )lg/L was passed through the small column continuously at a rate of 125 mL/h. 

The peristaltic pump supplied by Cole-palmer was used for this test. Since, the sample 
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had the Fe concentration of only 580.26 Jlg/L, no significant drop in the flow rate through 

the column was observed. A total of 38,500 mL of water was passed through the column 

in approximately 325 h giving an average flow rate of 118.5 mL/h. The concentration of 

elements that were present in the effluent and were significantly correlated with the 

arsenic are tabulated in Table 4.7. 

Table 4.7 Concentrations of elements significantly correlated with arsenic in the effluent of 

Mix-1, the 1:10 mixture of the high strength Wabana and Freshwater waters collected from 

the Towns of Wabana and Freshwater 

Initial 
Time As Li s Cl Fe Ni Cu Zn 

As 
(h) 

(~g/L) 
(~g/L) (~g/L) (~g/L) (~g/L) (~g/L) (~g/L) (~g/L) (~g/L) 

8 
2 0.95 14318 115175.3 11 47.94 103.82 1069.12 

36 4.50 1.93 6247.27 92021.03 18.98 18.91 51.92 595.80 

68 6.35 2.94 5437.46 91051.09 21.16 14.14 59.93 665.71 

84 
33.58 

5.86 2.48 13509.2 92373.52 13.42 13.59 42.88 291.16 

200 11.54 2.84 4370.74 88251.65 16.67 9.07 44.87 328.41 

290 16.94 4.67 63426.3 140799.8 3.06 2.82 60.39 397.94 

315 20.37 3.69 68199.6 132160.2 66.68 1.51 14.58 117.87 

325 23.93 4.31 71532.2 141403.9 203 .18 2.26 16.39 98. 15 

Correlation 
0.879 0.901 0.768 0.777 -0.780 -0.757 -0.805 

with Arsenic 1.00 
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According to Vincent (1995), for data of 8 different samples, a significant correlation 

should be of value 0.707 or more. The influent arsenic concentration was 33.58 Jlg/L and 

after 8 h the effluent arsenic concentration was 2 Jlg/L after which the arsenic uptake by 

the sand gradually decreased. After 325 h, the arsenic concentration in the effluent 

reached a maximum of 23.93 11g/L. The arsenic concentration limit of 7 Jlg/L set for this 

project was exceeded after 84 hours and the breakthrough point was reached after 

approximately 290 h or at an arsenic concentration of 16.94 Jlg/L (Figure 4.13). 
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Figure 4.1 3 Breakthrough curve for Mix- l test showing Fe, arsenic and pH trends 
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For an anion exchange material such as arsenic the adsorption normally decreases as the 

pH increases (Streat et al., 2008b & Driehaus et al., 1998) and this can be seen in Table 

4.8 . The isoelectric point (IEP) for HFOs is in the pH 7-8 range. The IEP is "the pH value 

of the dispersion medium of a colloidal suspension at which the colloidal particles do not 

move in an electric field" (McGraw-Hill Science and Technology Dictionary). 

Table 4.8 Change in pH with time in relation to the Fe and arsenic concentrations in the 

effluent during the Mix -1 test. 

Time As Fe 
pH 

(h) (~g/L) (~g/L) 

0 7.97 33.58 580.26 

8 8.36 2 11 

36 8.41 4.50 18.98 

68 8.44 6.35 21.16 

84 8.45 5.86 13.42 

200 8.45 11.54 16.67 

290 8.46 16.94 3.06 

315 8.48 20.37 66.68 

325 8.51 23.93 203.1 8 

93 



Therefore, below this pH, the surface of the adsorbent remained positively charged and it 

attracted anions. Stumm & Morgan (1981) suggested the mechanism of ligand exchange 

for protonated arsenic species for the pH below the IEP with the help of following 

equations. 

FeOH + HzAs04-(aq) 

FeHzAs04-(aq) 

+0111---•• FeHzAs0 4- + OH-(aq) 

+0111---•• FeHAs04-2 + H\aq) 

4.7 

4.8 

The release of OH- ions from HFOs (FeOH, Equation 4.7) increased the pH of the 

solution and decreased the positive surface charge, lowering the forces to attract anionic 

species. The proton was dissociated from the acid surface to balance the OH- ions. 

(Equation 4.8). Qian, et al. (2009) reported that the higher pH leads to the higher 

adsorption of copper ions in an aqueous solution with Fe based adsorbents. The increase 

in the pH, created more metal binding sites that resulted in the high metal ion adsorption. 

Hence, it may be suggested that the change in pH increased the adsorption of Cu, Ni and 

Zn ions onto the HFO adsorption sites and the adsorption of arsenic along with the other 

anionic species (S and Cl) was decreased. Further, Boujelben et al., (2009), studied the 

adsorption of nickel onto the iron oxide coated sand from aqueous solution in the pH 2 to 

9 range. The optimum adsoprtion took place at pH 7 but the adsoprtion was also reported 

to take place between pH 7 and 9. Moreover, Srivastava and Srivastava (1990) studied the 

adsorption of Zn(II) on to the Fe(III) hydroxide sites at pHs of 5.5, 6.85 and 8.2. They 

concluded that adsorption of the Zn(II) increased with the increase in pH. Hence, it could 
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be concluded that HFO adsorption sites were not only capable of adsorbing aruoruc 

species but cationic species as well provided that the suitable conditons were met. The 

decrease in effluent concentrations of the Cu, Ni and Zn with the increase in pH 

suggested that under these conditons Cu, Ni and Zn ions were more favorably adsorbed 

onto HFOs sites than arsenic. This is reflected in Table 4.7, where it can be seen that the 

arsenic concentration was increasing and Cu, Ni and Zn concentrations were decreasing 

with the rise in pH. 

4.3.3. Mix-2 and Mix-3 Tests 

The Mix-2 and Mix-3 samples that had the Fe/ As ratios of 32.227 and 64.957 and the 

initial arsenic concentrations of 34.336 !J.g/L and 34.322, respectively, were passed 

through the column continuously at a filtration rate of 125 mL/h. The peristaltic pump 

supplied by Cole-Palmer was used to carry out the tests. The Mix-2 and Mix-3 samples 

had Fe concentrations of 1106.53 !J.g/L and 2229.43 !J.g/L, respectively. A total of 39,000 

mL of water was passed through the column with each sample and within 315 h and with 

an average flow rate of 123.8 mL/h. 

According to Vincent ( 1995), for data of 9 different samples, a significant correlation 

should be of a value of 0.666 or more. It can be seen from Table 4.9 that arsenic was 

significantly and positively correlated with Fe and significantly and negatively correlated 
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with Be, V, Ni, Zn and Se for the Mix-2 test. The mechanism suggested to be occurring 

for the Mix-1 sample related to the Ni and Zn adsorption on the Fe adsorption sites could 

very well be responsible in this case as well. Similarly, it was reported that vanadate 

anions have the ability to adsorb onto the iron based adsorbents (Naeem et al., 2007). 

Further, Jeong, et al. (2007) reported that the adsorption of As(V) onto Fe adsorption sites 

was affected by the presence of Se(IV) and V(V) which was exactly in accordance with 

the results presented in the Table 4.9. 

Table 4.9 Concentrations of elements significantly correlated with arsenic in the effluent 

of the 2:10 mixture of the waters from the towns ofWabana and Freshwater (Mix-2) 

Time 
Initial 

As Fe Be v Ni Zn Se 
As 

(h) (J.!g/L) (J.!g/L) (J.!g/L) (J.!g/L) (J.!g/L) (J.!g/L) (J.!g/L) 
(J.!g/L) 

8 1.910 23 .00 10.020 14.17 153.800 2037 31.350 

40 3.399 17.90 3.32 3.200 56.110 901.948 7.140 

56 5.709 18.50 3.09 3.020 5.678 283.038 6.770 

80 10.97 717.07 1.790 1 2.633 107.261 4.460 

120 34.34 7.005 122.00 3.17 3.050 23 .05 145.094 4.560 

160 9.556 156.71 3.180 3.02 12.534 135.257 4.570 

280 6.559 137.35 3.60 2.140 18.02 161.906 7.830 

296 8.382 180.62 3.28 1.950 20.44 238.983 7.130 

3 15 8.735 87.08 3.46 2.050 37.13 119.374 7.520 

Correlation with As 1.00 0.693 -0.722 -0.729 -0.766 -0.828 -0.699 
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The pH values recorded at different instances during the test are listed in Table 4.1 0. The 

arsenic concentration remained below the level of 10 j..tg/L even after treating 39,000 mL. 

The arsenic concentration at 80 h increased briefly to 10.965 j..tg/L, but then dropped and 

after 315 h the arsenic concentration was still only 8.735 j..tg/L. The Fe concentration 

dropped from 717 j..tg/L at 80 h to 87.08 j..tg/L at 315 h. The aeration of the small column 

with the peristaltic pump may have been oxidizing the soluble Fe2
+ ions to insoluble Fe3

+ 

ions as the water reservoir was exposed to air and the operation of pump allowed the air 

to pass through the column. 

Table 4.10 Changes in effluent pH and Fe and arsenic concentrations during the Mix-2 

column test. 

Time (h) pH As (!J.g/L) Fe (j..tg/L) 

0 7.91 34.34 1106.53 

8 8.32 1.910 23.00 

40 8.41 3.399 17.90 

56 8.41 5.709 18.50 

80 8.44 10.965 717.07 

120 8.42 7.005 122.00 

160 8.43 9.556 156.71 

280 8.45 6.559 137.35 

296 8.33 8.382 180.62 

315 8.25 8.735 87.08 
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The formation of Fe3
+ ions might have provided increased adsorption sites and been 

responsible for the improved adsorption of arsenic and hence the lower arsenic 

concentration that was recorded in the effluent. Changes in the effluent pH and iron and 

arsenic concentrations are depicted in Figure 4.14. Breakthrough did not occur for arsenic 

even after treating 39,000 mL of water for Mix-2 as it only reached 8.735 1-lg/L. 
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Figure 4.14 Mix-2 column test results showing Fe, arsenic and pH trends until 315 h. 
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~-------------------------------------------------------------------------------------

The drop in the pH noted in Table 4.10 and Figure 4.14 between 280 h and 315 h could 

have been due to the release of proton by acids (see Equation 2.4, section 2.2). The 

protons reacted with OH- ions released as a result of a ligand exchange reactions for the 

protonated arsenic species by the FeOH (see Equation 2.3, section 2.2). The Fe3
+ ions 

were released as a result of oxidation of Fe2+ ions as discussed under the section Mix-1 

(Figure 4.14). The increasing trend observed in the arsenic concentration during this time 

interval, although small, could be due to the competition provided by the V, Ni, Zn and 

Se for the HFOs adsorption sites. The change in pH can change the selectivity or the 

relative affmity preferences among various species (Rageh, 2008). It would have been 

interesting to continue the column test for the Mix-2 sample to see what reactions would 

have followed the drop in pH, but time did not permit this. This could be undertaken in 

the future. 

According to the Vincent ( 1995), for 9 different samples, a significant correlation should 

be of value 0.666 or more. It can be seen from Table 4.11 that arsenic was significantly 

correlated with Fe and aluminum (Al) for the Mix-3 test. A similar response was noted 

for the Mix-2 sample. The arsenic concentration in the effluent at 160 h increased to 

14.338 11g/L and decreased to 12.315 11g/L after 315 h. Similarly, the Fe concentration 

dropped from 1086.34 IJ.g/L to 518.16 11g/L during the same period. The oxidation of 

soluble Fe2
+ ions to the insoluble Fe3

+ ions as a result of operation of the pump could be 

the main reason for this drop in arsenic concentration. Further, aluminum oxides are 

known to have a positive effect in mitigating the arsenic concern (Jeong, et al. 2007 and 
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Giles, et al. 2011 ), although, these authors reported that the iron oxides are better suited in 

adsorbing As(V). Therefore, the positive correlation between Aland arsenic in this study 

is in accordance with the literature. Changes in the Fe and arsenic concentrations and in 

the effluent pH for the Mix-3 test are depicted in Figure 4.15. Arsenic breakthrough did 

not occur as the arsenic level even after treating 39,000 mL of water for Mix-3 reached 

only 12.315 11g/L. The pH values taken during the course of experiment for Mix-3 are 

also listed in the Table-4.12. 

Table 4.11 Concentration of elements significantly correlated with arsenic in the effluent 

of 3: 1 0 mixture of Wabana and Freshwater waters (Mix-3) 

Time Initial As AI Fe 

(h) As (!lg/L) (!lg/L) (!lg/L) (!lg/L) 

8 1.540 8.563 100.00 

40 2.677 5.076 17.1 80 

56 5.781 16.338 86.659 

80 10.944 23.02 588. 169 

120 34.32 11.457 34.274 665.795 

160 14.338 35.631 1086.34 

280 7.677 15.274 164.30 

296 13.270 30.207 690.039 

315 12.315 21.529 51 8.16 

Correlation with Arsenic 1.000 0.907 0.915 
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Figure 4. 15 Mix-3 column test results showing Fe, arsenic and pH trends until315 h. 

Table 4.12 Change in effluent pH, Fe and arsenic concentrations during the Mix-3 column 

test. 

Time (h) pH As (J..Lg/L) Fe (J..Lg/L) 

0 7.80 34.32 2229.43 

8 8.30 1.540 100.00 

40 8.45 2.677 17.1 80 

56 8.43 5.781 86.659 

80 8.4 1 10.944 588.169 

120 8.29 11.457 665.795 

160 8.39 14.338 1086.34 

280 8.51 7.677 164.30 

296 8.49 13.270 690.039 

315 8.50 12.315 518.16 
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4.3.4.Comparisons between Mix-1, Mix-2 and Mix-3 

It is concluded from the preceding discussion that the Mix-2 sample performed the best. 

After running the experiments for approximately 325h for Mix-1 and 315 h for each of 

the Mix-2 and Mix-3 tests and passing 38,500 mL for Mix-1 and 39,000 mL for each of 

the Mix-2 and Mix-3 tests, it was concluded that the Fe/As ratio (wt/wt) of 32.227 in the 

case of Mix-2 test gave the most desired results. The Mix-1 test was low in Fe 

concentration and the competition between arsenic ions and Cu, Ni, and Zn ions for the 

few HFOs adsorption sites appeared to hamper the efficiency of arsenic removal. 

Moreover, the Fe concentration in the Mix-3 test was on the higher end and it resulted in 

a rapid filling of the pore spaces in the sand bed that consequently decreased the arsenic 

adsorption. The drop in pH between 80 hand 160 h for Mix-3 (Table 4.12 and Figure 

4.14) did not improve the arsenic removal and the Fe concentration in the effluent was 

also found to be increased (Table 4.11). After 160 h the pH increased and both the Fe and 

arsenic in the effluent decreased temporarily. 

The higher the Fe content recorded in the effluent, the higher the arsenic concentration 

reported. On the other hand, the best combination of Fe and arsenic concentrations was 

found in the Mix-2 test and the results presented in Table 4.9 reflected that even after 

running the experiments for 315 h the arsenic concentration, although above the 7 J..lg/L 

limit set for this study, still stayed below the 10 J..lg/L limit acceptable to Health Canada. 
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The companson between the cumulative arsemc removed based on the influent Fe 

contents for the Mix-1, Mix-2 and Mix-3 tests is presented in Figure 4.16. It can be seen 

from Figure 4.16 that with influent Fe concentration of 1106.53 11g/L for the Mix-2 test, a 

total of 960.73 11g of arsenic was removed. Similarly, 900.48 11g of arsenic was removed 

with the influent Fe concentration of 2229.43 !J.g/L for the Mix-3 test. Moreover, with the 

Mix-1 test, a total of 783.62 11g of arsenic was removed with an Fe input of 580.26 11g/L. 

The comparison was made for the treated volume of 35,000 mL for each of the Mix-1 , 

Mix-2 and Mix-3 tests. The amount of arsenic removed was calculated in the same way as 

described under sections 4.2.1 and 4.2.2 for the R0-4 and R0-4(b) tests. The Mix-2 

performed better than either of the Mix-1 or Mix-3 water samples. Further, the effluent 

arsenic concentration in Mix-2 (8.74 11g/L) for the treated volume of 39,000 mL was 

lower than either the Mix-1 (23.93 11g/L) or Mix-3 (12.32 !J.g/L) for the treated volumes 

of 38,500 mL and 39,000 mL, respectively. Therefore, the Mix-2 water sample had the 

most ideal composition and a greater arsenic adsorption than either of the Mix-1 or Mix-3 

waters. The combination of the elements and their respective concentrations were most 

likely responsible for this remarked behavior, but, there was insufficient data to attribute 

it to any specific ions and their concentrations. 
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Chapter Five 

Conclusions and Recommendations 

5.1. Conclusions 

This research studied sand filtration to remove arsenic from drinking water sources in NL 

to a level of 7J..lg/L without the use of chemicals and studied the effect of various ions 

present in groundwater on the arsenic removal. The iron to arsenic (Fe:As) ratio (wt/wt) 

was an important parameter in the arsenic removal. 

Water sampling locations were chosen based on groundwater data provided by the NL 

Department of Environment and Conservation (courtesy of Mr. Keith Guzzwell). Two 

water samples were collected from the town of Wabana on Bell Island; one with high 

105 



arsenic and iron concentrations (As: 62.91 J.lg/L and Fe: 11825.84 J.lg/L) and the second 

was the Wabana normal supply water (4.5 J.lg/L As and 86.327 J.lg/L Fe). One 

groundwater sample was also collected from Freshwater, Carbonear (29.707 J..!g/L As and 

507.52 f,lg/L). A local sand provider, Capital Ready Mix, supplied the washed sand with 

a finesse modulus of2.9. 

Columns of two dimensions 6.7cm x 14cm (small) and 12.5cm x 24cm (large) (diameter 

X length) were fabricated to be used in this research. The high strength Wabana water 

was passed through both the columns and the liquid to sand ratio was maintained at 5. 7:1 

for both the columns. The arsenic concentrations in the effluent were 4.475 11g/L and 

5.827 ug/L for small and large column, respectively. It was evident that the small column 

performed better and all later tests were conducted using the small columns. 

The mam mechanism for the arsemc removal usmg sand filled columns may have 

involved the oxidation of Fe2+ ions to Fe3+ ions in the presence of atmospheric oxygen as 

an oxidizing agent (atmospheric oxygen or chemicals can also be added) followed by the 

oxidation of some of As(III) (arsenite) to better adsorbable As(V) (arsenate). Further, 

arsenites and arsenates were adsorbed on HFO particles followed by the formation of 

FeAs04(s) that was precipitated along with the HFOs. The HFOs are the Fe (III) 

hydroxides with loosely bonded water. The large surface area of HFO particles makes 

them a suitable adsorption media for arsenic. 
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1400 mL of the high strength Wabana water was filtered without exceeding the effluent 

arsenic limit of 7 )lg/L, as compared to the 4,000 mL and 10,500 mL for mixtures of the 

high strength and normal Wabana waters in the ratios of 1:1 and 1:3, respectively. 

Combining aeration and dilution, 9,000 mL and 18,000 mL of 1:1 and 1:3 mixtures, 

respectively, were treated without exceeding the arsenic limit of 7 )lg/L. At greater 

dilution, more water could be filtered with less sand replacement frequency since the Fe 

concentrations in the influent were less. At greater Fe concentrations the sand's pore 

space filled more quickly, retarding the sand's Fe holding capacity and reducing the 

arsenic removal. The maximum total amount of arsenic removed was 76.56 )lg by 

filtering 1,400mL of the high strength Wabana water, while, 121.58 )lg and 166.50 )lg 

were removed for the 1:1 and 1:3 aerated mixtures, respectively. 

Breakthrough analysis was conducted for the high strength Wabana water (As: 

37.787ug/L and Fe: 8486.688ug/L) and breakthrough occurred after 36 hours when 17.83 

)lg/L (or 50%) of the initial arsenic occurred in the effluent. Using Minitab to conduct 

correlation analysis between arsenic and other elements in the effluent revealed that 

arsenic was significantly positively correlated with Fe and Mn and significantly 

negatively correlated with P, Be, V and Cr. The results suggested that arsenic removal 

was dependent upon both the Fe and Mn concentrations. Manganese dioxide (Mn02) 

oxidizes the As (III) to better adsorbable As(V) in water bodies and has the ability to form 

arsenate-manganese ion complexes which can precipitate out (Driehaus et al. , 1995) as 

the HFOs do. Both the high Mn (1561.51 1-1g/L) and Fe contents could have been 
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responsible for the high arsenic removal rates. The P, Cr and V might have been 

competing with arsenic for the HFO adsorption sites. 

Since the Fe/As ratio was a major factor affecting arsenic adsorption, column tests were 

conducted with the high strength Wabana water mixed with the Freshwater water in 1 : 10 

(Mix-1), 2:10 (Mix-2) and 3:10 (Mix-3) proportions giving Fe/As ratios of 17.282, 

32.227 and 64.957, respectively. After approximately 325 h for the Mix-1 test, 315 h for 

the Mix-2 test and 315 h for the Mix-3 test and passing 38,500 mL, 39,000 mL and 

39,000 mL respectively, the Mix-2 test was observed to perform the best. Mix-1 was low 

in Fe and competition between arsenic and Cu, Ni, and Zn for HFO adsorption sites may 

have hampered its removal. The Fe concentration in the Mix-3 test was high and this 

could have filled up the sand's pore spaces too quickly and limited the arsenic uptake. 

Mix-2 performed the best and after 315 h the arsenic concentration in the Mix-2 effluent 

was still below the 10 f..lg/L limit considered acceptable to Health Canada. 

In summary, an elevated iron concentration increased arsenic removal but with time could 

slow the filtration rate and ultimately increase the sand filter replacement frequency. 

Aeration during filtration significantly enhanced the arsenic uptake as did dilution of the 

high strength Wabana water with the Freshwater water. An ideal mix would neither be 

too lean nor too rich in Fe concentration as both negatively impacted the arsenic uptake. It 

is therefore suggested that sand filtration in combination with aeration and dilution, and 
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possibly by mixing water from different sources could deal with the arsenic concern in 

NL. 

5.2. Recommendations 

HFO particles can play a very vital role in mitigating the arsemc concern m the 

groundwater of NL. The higher the Fe content, the greater will be the arsenic removal but 

the sand filter replacement frequency may increase. As a result of the deposition of iron 

oxides in the pore spaces, the filtration rate decreases along with the filtration efficiency. 

Further, the incorporation of aeration in the filtration system can significantly enhance the 

arsenic adsorption. Moreover, the dilution of the high strength Wabana water sample with 

the low Fe and arsenic containing water can significantly improve the arsenic uptake. The 

mixture should neither be too lean nor too rich in the Fe concentration as both have a 

negative impact on arsenic adsorption. Further, the presence of Mn also aids in the 

removal of arsenic as Mn provides additional adsorption sites for arsenic species. It is 

therefore suggested to use sand filtration in combination with aeration and dilution to deal 

with the growing arsenic concern in NL. 
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5.3. Future Research 

The results obtained from this research suggest that sand could be an inexpensive and 

effective material for mitigating the arsenic concern. However, more research is required 

in understanding the effect of sand composition on arsenic uptake. Lithium was found to 

be statistically correlated with arsenic uptake and the exact mechanism is still unknown. 

Moreover, the effect of temperature and pH on arsenic uptake also needs to be explored. 

For this study the samples were selected based on the Fe/ As ratio. The sand filtration 

effectiveness also needs to be investigated for the communities in rural NL which do not 

have high Fe/As ratios but have high concentrations of Mn in their groundwater sources. 

Since the column test with Mix-2 and Mix-3 waters did not reach breakthrough within the 

available time frame, similar but longer duration column tests need to be conducted to get 

a better understanding of the uptake mechanism and the selection of ideal water 

characteristics. 
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Appendix 

A.l Sieve Analysis of Sand 

a me 
GRADATION ANALYSIS REPORT 

Project No: TF10301 19 Lab ID: 3516 
Project: Aggregate G radation Analysis Sample Type: Washed Concrete Sand 

Foxtrap, NL Date Sampled: 1 O-Jun-11 
Client: Capital Ready Mix 
Sampled By: M. Lynch of AMEC Date Tested: 1 0-Jun-11 
Location: Loading Face of Working Stockp ile Sample Source : Black Mountain 

100.0 SIEVE SIZE PERCENT GRADING 

(mm) PASSING LIMITS 

90.0 10 .000 100.0 100 100 

5 .000 99.8 95 100 
80.0 2.500 80.8 80 10 0 

C) 70.0 

3: 
Cf) 60.0 
~ 

1.250 58.5 50 90 

0 .630 39.2 25 60 

0 .3 15 22.5 10 35 

0 .160 9.7 2 10 
CL 50.0 >- 0 .080 3.1 0 5 

~ 
40.0 (.) 

a: 
w 

30.0 CL 

20.0 

10.0 

0.0 

10.000 1.000 0 . 100 
SIEVE SIZE (mm) 

0 .010 

Comnwnts: The sample gradation meets the project specifications. 

The FM has been determined to be 2.9; CSA standard requires an FM between 2 .3 and 3. 1. 

Reporting of those tost rosults constituto.s a tosUng setv leo onty. 
Engineer ing Interpretation or evalua:tlon o f the test results Is prov ided only on written request. 

AMEC Earth & Environmental 
133 Crosbie Road 
P.O. Box 1:3216 , StJohn's NL 

Can ada. A 1 B 4 A5 

Tel. (709) 722-7023 

Fax. (7o9) 722· 7353 

FM-MA T -57-03 
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To I. (709) 722-5062 

Fa•. (7o9) 722·5025 



A.2 Composition of Freshwater and Wabana Water Samples 

,, 
·v 

.... iiC" 0 1:\~h h ., " ''· y . 

•• ' $ ·~ :1f, 'h;,: ~z, . ;W ¥:!\ 
'±?!! .~i~:llt' '"'' ·"w '·~l . k :;. ·. 

S/N Sample , Units '~ F Wa.bana Freshwater A, f.s 'Wabana Normal 11 

r,:~\;, " +t(~~ . " j' . , ' ;*'~~~ . w'i: ! 1 ' ,{~ 
1

~ 
'" ., "' ; 

1 Li7 IJQ/L 7.31 4. 13 27.16 
2 Be IJQ/L <5.26 0.28 <1.55 
3 B IJQ/L 21 .02 18.19 37.12 
4 Mg 1-Jg/L 3151.95 7894.09 5352.69 
5 AI IJQ/L 34.69 5.64 <2.3 
6 Si 1-JQ/L 5986.58 <12165.6 4932.59 
7 p IJQ/L 78.94 <909.5 18.20 
8 s IJQ/L <7235 11979.47 10655.62 
9 Cl IJQ/L 37387.19 100101.95 36489.57 

10 Ca43 1-Jg/L 25516.55 36224.42 38389.71 
11 Ti iJg/L 7.31 2.11 13.20 
12 v IJQ/L 0.46 <16.94 <0.64 
13 Cr 52 1-JQ/L 2.02 6.05 1.39 
14 Fe 54 1-Jg/L 11436.92 <507.52 86.33 

15 Mn IJQ/L 2819.01 26.05 179.60 
16 Co IJQ/L 6.04 0.33 <0.21 
17 Ni IJQ/L 11.64 1.88 <1.68 
18 Cu lJQ/L 9.55 9.25 <0.57 
19 Zn IJQ/L 95.74 25.63 4.45 
20 As 1-Jg/L 62.70 29.71 4.50 
21 Se IJQ/L 12.82 <105.65 <6.23 
22 Br IJQ/L 68.19 131 .69 89.15 
23 Rb 1-Jg/L 2.25 9.55 2.46 
24 Sr IJQ/L 157.55 203.08 425.45 
25 Mo IJQ/L 0.86 2.98 0.23 
26 Ag 1-JQ/L <0.05 <0.75 <0.05 
27 Cd 1-Jg/L <0.36 <3.31 0.15 

28 Sn IJQ/L <0.23 <1.14 <0.20 

29 Sb IJQ/L <0.09 4.90 <0.05 

30 I 1-JQ/L 24.57 8.39 14.49 

31 Cs 1-Jg/L 0.05 0.12 0.07 

32 Ba 1-Jg/L 162.18 45.07 91 .57 

33 La 1-Jg/L 0.23 1.32 0.02 

34 Ce 1-Jg/L 1.09 0.01 0.01 

35 Hg IJQ/L <0.13 <2.01 <0.07 

36 Tl IJQ/L 0.03 0.03 0.00 

37 Pb IJQ/L 3.35 22.03 0.03 

38 Bi IJQ/L <0.03 <0.17 <0.01 

39 u 1-Jg/L 0.08 0.48 0.02 
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A.3 Composition of Mix-1, Mix-2 and Mix-3 

,, *' "<iNsY 4\§ii, ' ~ ~~~'lip ;;· ,dNY' Iii , , 4 [&~;'M %i ' ; ·~: ~~~&\:~ 1•·. ~· · s . n •• :c elt :wrc :1 
S/N .. lw Sample , 

1
., 'units ,'~ 1 .~. Mix-1 '*):0 Mix- Mix;.3 · 

',z 
l' ·.,. , ~.·~ · ? ' ' ,Iii i/' ' , rp· "' . -;lie,, \ . q~< 

1 Li7 Jlg/L 3.53 3.79 4.43 
2 Be )lg/L <3.41 <3.62 <3.24 
3 B )lg/L 13.45 12.76 15.87 
4 Mg Jlg/L 8754.15 8229.46 7324.02 
5 AI )lg/L 5.77 7.48 14.72 
6 Si )lg/L 3704.35 4218.99 3794.10 
7 p )lg/L <64.9 <68.9 <61 .7 
8 s Jlg/L <66807.7 <70919.3 <63484.1 
9 Cl )lg/L 129649.26 121401.90 107490.37 
10 Ca43 )lg/L 47306.64 46486.27 43786.58 
11 Ti Jlg/L < 16.64 <17.67 <15.81 
12 v )lg/L <2.02 <2.15 < 1.92 
13 Cr 52 )lg/L 0.71 <2.96 <2.65 
14 Fe 54 )lg/L 580.26 1106.53 2229.43 
15 Mn ~g/L 195.92 375.47 607.32 
16 Co )lg/L 3.62 1.65 0.28 
17 Ni )lg/L 2.10 4.18 3.90 
18 Cu Jlg/L 8.26 7.44 9.81 
19 Zn J.tg/L 54.92 119.69 173.8 1 
20 As )lg/L 33.58 34.34 34.32 
21 Se )lg/L <7.40 <7.86 <7.03 
22 Br )lg/L 163.07 164.08 137.46 
23 Rb · ~g/L 0.93 1.24 1.46 
24 Sr Jlg/L 273.53 270.59 254.22 
25 Mo Jlg/L 3.10 2.93 2.50 
26 Ag )lg/L <0.04 0.04 <0.04 
27 Cd )lg/L <0.46 <0.49 <0.44 
28 Sn )lg/L <0.37 <0.39 0.39 
29 Sb )lg/L 2.53 2.27 2.03 
30 I )lg/L 10.41 < 11.37 12.00 
31 Cs )lg/L 0.11 0.12 0.13 
32 Ba )lg/L 14.60 27.03 44.30 
33 La )lg/L 0.04 0.07 0.10 
34 Ce )lg/L 0.10 0.15 0.22 
35 Hg Jlg/L <0.25 <0.27 <0.24 
36 Tl J.tg/L 0.03 0.02 0.04 
37 Pb )lg/L 2.00 4.72 1.79 
38 Bi )lg/L <0.03 <0.03 <0.03 
39 u Jlg/L 0.65 0.73 0.50 
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A.4 Water Composition at Different Volumes Recorded for R0-4 Test 

~-~~ ..J .... #_'~-t¥ !.J1(;'~"'& . 2._,, .Iili[ h • 
*" *' m .. '' x "'• -'!§"' ' ' - ,{,: 

Li 7 4. 1 6.6 4.6 4.6 6.5 7.4 7.2 10.1 2.9 1.5 4 .9 

Be 9.9 1.6 2.2 1.1 1.1 0.8 0.3 0.1 8.9 38.3 4.0 

8 38.8 65.6 33.4 26.2 20.8 32.0 25.9 36.0 38.8 66.6 17.3 ( 

Mg 3456.6 3791. 1 3230.9 3682.3 3643. 1 4 721.5 4284.5 6 115.4 4249.1 4276 .8 4471-9 41 

AI 27.0 25.7 88.8 19.3 19.2 295.5 67.4 22.5 88.1 56.3 69.9 ' 

Si 3535.6 52 10.6 43 12.6 4707.7 49 16.0 6786.1 5231.8 11321.2 645_.Q 7235.8 4778.5 8: 

p 700.0 477.1 341.6 10.1 13.7 19.4 18.7 846.3 143.0 482.6 293.0 3 

s 6149. 1 3917.5 2522.0 6146.6 5641.7 8 187.3 1486.0 6736.9 14090.0 29868.0 11578.0 18: 

Cl 4 1652.8 44072.7 383 12.6 55154.2 36137.4 50802.2 41 740.8 60653.0 106518.9 35588.8 37103.8 33 

Ca43 22589.7 36259.9 26138.5 34531 .0 32309.4 39503.2 34650.5 48387.1 2 198.5 ~57_21.1 32052.3 30 

T i 4.8 2.0 4.7 5. 1 5.0 15.5 3.2 1.3 25.0 143.6 34.6 I 

v 0.5 1.8 0.0 18.0 16.2 0.6 0.3 15.8 15.8 8.2 3.4 

Cr 52 2.7 1.5 3.6 2.2 0.7 1.4 0.8 1.4 131 .3 5.9 3.5 

Fe 54 294.0 597.2 910.0 994.9 1133.9 1183.6 60 1.5 171.4 110.0 1184.0 1200.0 I 

Mn 79.7 24.4 15.8 1.3 1.0 27.4 5.4 1.9 41.6 11 68.3 399.4 I 

Co 4.7 §} 7.7 6.6 3.2 8.9 3.5 5.4 2.9 4.1 3.0 

Ni 2.3 5.9 2.8 5.7 2.2 5.2 2.4 5.3 783.6 2.3 -

C u 280.7 367.6 458.0 509.7 514.8 572.3 53_8.1_ 3_6t§ IQ4~. 1 171.2 95.8 I 

Zn 347.1 514.1 41 1.4 790.1 587.5 1096.5 667.9 735.7 2594.3 98.9 252.6 I 

As 2.7 4.8 5.7 7.1 7.0 §.2 4.4_ 1.4 I.7 4.5 7.0 

Se 23. 1 3.8 3.8 6.7 6.2 1.6 2. 1 98.3 28.0 31.2 7 .9 ( 

Br 90.1 75.0 87. 1 97.8 82.9 98.9 79.9 121.2 15.9 83.6 76.6 

Rb 59.1 10.0 12.8 5.5 6. 1 8.0 4.7 6.8 3.0 27.0 2.8 

Sr 153.0 24 1.5 219.2 282.5 285.0 353.7 296.9 450.2 6 .0 159.6 273.0 2 

Mo 0.8 0 .7 0.7 0.6 0.4 1.0 0.5 1.0 10.4 1.0 1.9 

Ag 0.2 0. 1 0.0 0.7 0.3 0.2 0.0 0.7 0.6 1.2 0.3 

Cd 0.9 1.2 0.5 0.2 0.1 0.3 0.2 3. 1 1.2 3.3 1.4 

Sn 0.3 0.1 0.7 0.5 0.2 0.2 0 .3 1.1 0.7 1.0 1.6 

Sb 0.1 1.0 0.3 _QJ 0.1 0.3 0 .3 0.3 1.8 0.6 0.4 

I 16.3 13.1 12.5 157.4 129.7 15.0 9.5 20.7 4.0 17.1 13.2 

Cs 2.5 0.2 0.2 0.2 0.2 0.3 0.2 0.3 0 .1 0.2 0 .2 

Ba 22. 1 20.0 20.7 23.8 50.5 47. 1 42.8 68.6 6.4 28.2 37.9 

La 11.3 1.4 2.2 2.0 2.9 5.3 1.8 Q.2 0.2 1.0 1.3 

Ce 0.2 0.2 0.3 0.2 0.3 2.3 0 .6 0.1 0. 1 0.8 1.1 

Pb 12.2 18.0 18.7 27. 1 51.3 30.4 24.7 9.0 209.8 5.5 10. 1 

u 0.9 0.3 0.7 1.2 0.6 1.6 0.7 1.0 0 .1 1.6 1. 1 

All the concentrations are in ~g/L 
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A.S Water Composition at Different Volumes Recorded for R0-4(b) Test 

lf!!l:tll! 1
·" ,.,.;~,"'~'"~l:.t.J~ 

-: v .····· . i I ~, .. ·~ . ±·~£~ .~v "' 
., ~;,p. ,.,~t~15ool ~~¥ ~, 1:1 "sbop, ~~ .. !J;uw~. m· }) 

Li7 2.6 13.9 12.6 14.4 I 5.8 15. 1 11.2 1.9 18.1 I 5.4 

Be 2.2 1.2 0.4 7.8 3.2 I 1. 1 37.3 8.4 22.1 21.7 

8 26.2 27.5 27.9 26.6 31.7 65.2 65.0 16.3 22.6 16.2 

l\llg 3669.7 4265. 1 4364.7 473 1.9 4639.2 4387.4 4 158.6 3554.0 3479.1 3290.2 

AI 21.7 48.8 29.7 24.8 39.9 32.1 37. 1 45.2 33.8 46.3 

Si 3797.0 4920.3 4684.3 3863.3 4436.6 6782.2 6323 .3 5268.6 9537.0 9434.1 

p 73.7 28.4 18.7 125.6 23 1.0 146.1 358.5 133.8 I 55.0 152.0 

s 372.7 7 172.2 2164.6 12343.0 47 16.3 184266.6 183604.0 4332.3 99724.8 98 164.0 

C l 34878.8 35598.5 36528.0 34767.4 34453.0 34302.0 33040.7 37630.0 32959.7 3 1885.4 

Ca 43 30395.6 36675. 1 35326.3 34270.2 33240.8 35203.2 33909.0 30680.2 32029.9 30824.7 

Ti 2. 1 5.3 0.7 21.9 27.3 140.7 140.2 3.5 37.6 37.0 

v 1.0 17.7 0.5 2.2 2.8 8.1 8.0 2.3 3.4 3.4 

Cr 52 1.6 1.6 1.3 4.0 3.4 5.7 5.7 1.3 1.8 1.3 

Fe 54 94.9 200.0 353.0 454.4 606.0 525.0 456.0 392. 1 198.2 808.2 

Mn 13.0 6.5 4.2 18.0 6.9 4.9 1.7 1188.8 4.1 5.3 

Co 3.4 1.8 1.5 1.7 1.9 1.5 1.5 0.5 2.1 1.5 

Ni 2.8 2.6 2.6 172. 1 1719.8 1.2 2.8 49.3 1.4 1.5 

Cu 120.4 126.4 53.2 147.2 92.6 168.2 104.0 396.3 90.8 84.9 

Z n 2 13.5 154.0 126.4 198.5 248.6 236.3 176.1 2236.9 172.8 88.5 

As 1.5 3. 1 4 .0 5.7 6 .2 4.8 3.8 2.5 2.7 5.2 

_§I!_ 4.9 7.0 2.1 24.5 6.2 30.5 30.4 26. 1 40.0 38.9 

Br 72.6 74.4 71.2 71.8 53.7 74.4 81.5 69.8 39.4 48.0 

Rb 10.1 5.5 4.4 3.4 3.2 2.6 2.9 4 .5 4.5 4.2 

Sr 242.8 355.6 340.6 37 1.0 359.5 329.4 321. 1 176.0 679.6 652.6 

Mo 0.6 0.5 0.4 0.5 1.5 0.6 1.0 1.5 0.6 0.6 

Ag 0 .0 0.2 0.0 0.4 0.3 1.2 1.2 0.2 0.6 0.6 

Cd 0.3 0.2 0.2 1.0 1.1 3.3 3.3 1. 1 2. 1 2.1 

Sn 0.2 0.2 0.2 0.6 1.5 0.9 1.1 0 .6 1.3 0.4 

Sb 0. 1 0. 1 0.1 0.2 0.2 0.5 0.5 0.5 0.0 0. 1 

I 13.4 143.1 10.4 10.8 12.9 16.7 16.6 6.6 8.4 8.3 

Cs 0.2 0. 1 0.1 0. 1 0. 1 0.2 0.2 0. 1 0.2 0.2 

Ba 24.0 24.4 23.2 30.6 29.8 3 1.4 36.2 27.4 65 .0 64.9 

La 4.0 1.3 0.7 0.7 0.9 0.7 0.4 2.8 0.4 1.4 

Ce 0.2 0.3 0.2 0.2 0.2 0.2 0.2 1. 1 0. 1 0.4 

Pb 8.4 11 .2 11.6 7.5 15.5 11.5 7.0 83.6 11 .0 7.6 

u 1.5 0.4 0.5 0.4 0.3 0.2 0.2 1.0 0. 1 0.1 

All the concentratiOns are m jlg/L 
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,..--------------------------------------------------

A.6 Water Composition at Different Times Recorded for Mix-1 Test 

~~ ' 10 fkw 

Li 7 1.0 1.9 2.5 2.9 2Jl 4.7 3.7 4.3 

Be 9. 1 3.2 2.2 3.5 2.8 3.2 3.5 3.7 

B 10.5 14.3 13.4 16.3 13.6 16.0 11.7 18.2 

Mg 765.1 7369.2 808 1.1 7362.6 7171.6 954 1.1 8857.3 9588.4 

AI 7.7 13.8 19.6 49.6 17.8 19.3 20.8 21.5 

Si 1019.1 3659.5 3602.3 3650.9 3641.1 459 1.9 39 19.1 4425.5 

P_ 14§_.Q_ 32.2 27.Q 35.8 28.0 6 1.6 66.2 69.5 

s 143 18.0 6247.3 13509.2 5437.5 4370.7 63426.3 68 199.6 7 1532.2 

CI 115175.3 9202 1.0 92373.5 91051. 1 88251.7 140799.8 132160.2 141 403.9 

Ca 43 1625. 1 4 11 67.7 39608.4 41386.8 39711.1 52327.0 4820 1.6 5 1316.4 

Ti 25.4 5.3 6.0 5.9 4.7 15.8 17.0 17.8 

v 34.8 3.2 1.0 3.4 2.9 1.9 2.1 2.2 

Cr 52 1.1 0.3 1.2 1.9 2.2 1.3 0.9 3.0 

Fe 54 11 .0 19.Q 11·± 21.2 16.7 30. 1 66.7 203.2 

Mn 21.3 11 7.9 249.2 2 19.1 218.3 204.3 173.2 177.9 

Ni 47.9 18.9 14.1 13.6 9.1 2.8 1.5 2.3 

Cu 103.8 5 1.9 59.9 42.9 44.9 60.4 14.6 16.4 

Zn 1069. 1 595.8 665.7 29 1.2 328.4 397.9 11 7.9 98.2 

A_s 2.0 4.5 6.3 5.9 11 .5 16.9 20.4 23.9 

Se 28.4 4.6 5.6 7.6 4.0 7.0 7.6 7.9 

Br 20.3 11 5.3 110.5 11 9.6 120.3 18 1.5 172.5 180.8 

Rb 1.2 1.9 l-6 1.6 l1 1.! 1.0 1.0 

Sr 7.5 225.0 226.9 224.5 220.0 302.7 279.0 294.8 

Mo 8.6 2.9 3.0 2.9 2.6 3.6 3.0 3.4 

Ag 2.7 0.1 0.1 0.1 0.1 0.0 0.0 0. 1 

Cd 1.2 0.2 0.3 0.2 0.2 0.4 0. 1 0.5 

Sn 0.7 0.3 0.1 0.3 0.2 0.4 0.4 0.4 

Sb 0.4 2.7 2.6 2.7 2.4 2.6 2.5 2.7 

Cs 0. 1 0. 1 0.1 0.1 0. 1 0. 1 0.1 0. 1 

Ba 2.0 24. 1 22.6 22.4 22.2 20.5 17.0 17.0 

La 0.1 0.1 0. 1 0. 1 0.2 0.2 0.2 0.4 

Ce 0. 1 0.0 0.0 0.0 0 .1 0. 1 0.1 0. 1 

Tl 0. 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Ph 2.7 1.4 1.8 4.9 1.6 5.5 3.2 3.4 

Bi 0 . 1 0.0 0. 1 0. 1 0.2 0 .6 0.5 0.5 

u 0. 1 0.9 0.7 0.6 0.6 0.8 0.8 0.9 

All the concentratiOns are m J.lg/L 
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A.7 Water Composition at Different Times Recorded for Mix-2 Test 

Li7 3.2 3.0 3.7 4 .1 3.4 2.4 3.9 3.0 4.1 

10.0 3.3 3.1 1.8 3.2 3.2 3.6 3.3 3.5 

B II. I 15.7 15.8 14.9 13.4 10.5 14.0 10.4 14.3 

M 11 25.4 6993.3 6704.5 6762.1 6659.9 6450.3 83 10.0 6985.3 8184.9 

AI 33.6 6.7 12.6 24.6 15.8 21. 1 10.6 21. 1 28.2 

Si 870.3 4073 .3 3900.8 4 160. 1 4000.3 3703.8 41 92.1 3550.8 4191.3 

p 97.4 33.7 31.3 21.0 32.2 32.0 68.6 62.5 65.9 

s 15798.0 1.0 74 19.4 7 10.3 70687. 1 64338. 1 67860.8 

11 2945 .5 8 18 13.9 78521.9 12477 1.9 118573.9 123135.6 

Ca43 784.0 4 1218.4 39485.6 35684.2 38552.2 37 112.1 4642 1.0 39387.6 4 7049.9 

Ti 28.1 5.6 5.2 5.0 5.3 5.3 17.6 16.0 16.9 

v 14.2 3.2 3.0 1.0 3.1 3.0 2. 1 2.0 2. 1 

C r 52 12.9 0.8 1.8 1.9 2. 1 1.9 0.6 0.6 0.8 

Fe 54 23.0 17.9 18.5 717.1 122.0 156.7 137.4 180.6 87. 1 

Mn 10.4 205.3 346.5 944.5 357.7 243.7 251 .6 16 1.4 296.7 

Co 1.1 1.6 0.2 1.3 0. 1 0.7 1.9 0. 1 0.6 

Ni 153.8 56. 1 5.7 2.6 23.0 12.5 18.0 20.4 37. 1 

C u 663.9 40.3 43.7 40.2 36.7 36.6 24.3 32.9 37.7 

Zn 2037. 1 90 1.9 283.0 107.3 145.1 135.3 16 1.9 239.0 119.4 

As 1.9 3.4 5.7 11.0 7.0 9.6 6.6 8.4 8.7 

Se 3 1.4 7. 1 6.8 4.5 4.6 4 .6 7.8 7. 1 7.5 

Br 17.2 11 2.3 108.9 105.2 105.7 11 1.4 161.0 157.0 160.5 

Rb 1.0 2. 1 1.8 1.5 1.4 1.2 1.2 1.0 1. 1 

Sr 2.0 225.7 2 17.0 213.4 2 18.5 203.4 268.9 232.2 269.9 

Mo 11.9 2.4 2.8 2.2 2.5 2.3 2.9 3. 1 2.8 

All the concentrations are in !J.g/L 
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A.8 Water Composition at Different Times Recorded for Mix-3 Test 

Li7 2.6 3.5 3.4 4.4 3.4 3.7 5.6 3.6 4.5 

Be 2.5 2.9 3.0 2.0 3. 1 2.8 3.4 3.6 3.7 

B ll.l 13.6 14.2 10.8 16.8 13.8 18.0 17.9 19.9 

823.6 6622.5 6 182. 1 7000.7 5628. 1 579 1.9 7963.6 6595.3 7563.9 

AI 8.6 5.1 16.3 23.0 34.3 35.6 15.3 30.2 21.5 

Si 608. 1 4292. 1 4138.6 4230.0 380 1.6 3937.9 4 19 1.0 3637.4 4240.0 

p 130.0 29. 1 30.0 24.0 3 1.8 29.0 64.1 68.1 70.1 

s 3444.1 3352.1 5066.4 12114.0 10856.1 4576.2 6598 1.4 70077.4 722 12.7 

Cl I 13607.5 82988.9 77755.6 80392.9 87843.0 78674.3 11 8484.0 115274.5 111 405.0 

Ca 43 2 10 1.1 40513. 1 37534.8 36840.3 32991.2 34486.8 4620 1.8 38543.2 44377.4 

Ti 22.8 4.8 5.0 5.1 5.2 4.7 16.4 17.5 18.0 

v 81.6 2.9 2.9 0.8 3.1 2.8 2.0 2. 1 2.2 

Cr 52 3. 1 1.6 1.8 1.8 1.9 1.9 2.8 2.9 3.0 

Fe 54 100.0 17.2 86.7 588.2 665 .8 1086.3 164.3 690.0 518.2 

Mn 8.8 892.3 775.3 920.9 374.9 415.0 598.4 406.2 493.7 

0.6 3.4 0.2 0.6 1.7 0.8 l. l 1.0 0.3 

Ni 56.6 6.8 3.1 3. 1 8.8 10.3 3. 1 3.7 2.3 

Cu 3 16.6 29.1 33.4 49.5 43.2 166.2 39.9 64.5 36.4 

Zn 2442.7 57.3 9 1.8 11 0.9 236.9 346.3 182.4 265. 1 139.7 

As 1.5 2.7 5.8 10.9 11.5 14.3 7.7 l 3 12.3 

Se 25.4 6.4 6.4 5.0 4.5 4.1 7.3 7.8 8.0 

Br 22.1 11 2.2 104.6 104. 1 11 9.0 113.4 150.7 153.4 139.4 

Rb l.O 1.8 1.6 1.6 1.4 1.8 1.4 1.3 1.2 

Sr 6.3 226.2 2 13.6 22 1.1 185.9 194.2 273.9 224.8 252.8 

29.5 2.9 2.4 2.5 3.0 2.6 2.5 3.0 2.7 

Ba 1.6 38.2 33.6 39.8 47.8 40.3 44.4 35.2 39.0 

All the concentrations are in j.!g/L 
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