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Abstract

Cardiac muscle from anoxia tolerant and intolerant fishes Wils used to im'csligate

the importance of AlP-sensitive potilSsium channels (Kul') in the control of anaerobic

cardiac function. KMI' channels contribute to anaerobic cardioprotection in mammals yet

lillie is known of their action in more hypoxia tolerant animals. Isometrically contracting

\'entricular muscle preparations \\cre USl:d 10 study sarcolemmal and mitochondrial !\.,Hr

channel acti\'ity in the myocardium of Ihl\.'<: species of teleost fishes (Lipf/.ut/n'/Is

parllufi.I·. Lill/unda Ji:rrllgineCl. and u",/us lII/lrIIlW) with varying cardiac hypoxia

toleranl:es. Channel a"i\'ity WilS ilSsessed phannal:ologically using thc non-spcl:ilic K.\T1'

channel blol:kl:r glibenclamidc. the mitochondriill specilic blocker 5-h~droxydccanoi..::

acid and the agonist. diazoxide to determine the in\'olvment of K,Hl' channels in

anaerobic cardial: pcrformance. Results suggest that cardiac K,\Il' channels from hypoxia

tolerant fishes arc tonically active. resulting in a constilnt cardioprotcction similar to the

"prL'ConditionL'U" state which can be induced by various methods in mammalian hems

These studies clearly show that K" n' channels arc imponilnt for anaerobic cardiac

function in anoxia tolerant lish.
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I Ion flux and Anaerobic Contractility in the fish Heart

1.1 Introduclion

The H:rtebratc hc3rt has been c:>':lensi\"dy studied and mueh of its complex

physiology has b.:en unco\"crcd. Fish hearts ha\"c been the tocus of substantial research.

in pan due to thdr rdati\'l~ anatomical simplidty when compared to mammals. and also

because lish show an exceptional ability to maintain cardiac function during temperature

extremes. low oxygen le\"cls and o\"er a wide range of extracellular ion concentrations"

This re\'iel\ will uutlinc thc dT<'--cts of extreme oxygen deprivation (anoxia) on ion l1ux

and contrJctility in the cardi:Jc muscle uf telcost fish. Where rdcvant. comparisons arc

made to inlormation :J\":Jilable tor dasmobr::mch fishes. reptiles and mammalian species.

1.2 Cardiac Anatom~" and Anoxic Exposure in Fish

The fish he:Jrt is a simpk linear pump system composed of lour chambc:rs aligncd

in scries and situato:d bctwo:o:n tho: systemic and gill circulmions of the animal. Thc sinus

"enosus. which collccts venous blood from the systemic circulation. is a thin walkd

\"essd madc up mostly of conncctivc tissuc with a small .:omplement of cardiac musek.

The atrium has a higher proportion of cardiac muscle than the sinus \"enosus and a

lumin:J1 capacity almost l,.-qui,"alent to that of thc \"cntrick. Atrial contraction mo\'Cs

blood into the lumen orthc highly muscular ventriclc which thcn contracts to pump blood



into the bulbus arteriosus. The bulbus arteriosus is an dastic chamber mad~ up of

wnn..."{;li\,e tissue which S<:f\'es as a compliance vessel in teleosllish (Olson \998).

Fish h~arts show consid~rabJe interspecilic ditlerences in myocardial analOmy.

Compar~d to mammals however. they have a much higher proportion ofspongiosum (Fig

1.1) or trabeculated myocardium in the \·cntriek. Compact myocardium (compactum).

which is untralx:culated and mor~ dense than spongiosum. makes up thc outermost laycr

oflh~ h~art in thos<: !ish possessing it. and thc fraction ofcompaclUm correlates well wilh

the cardiac demands of teleost fishes. For instance. active pelagic species such as luna

haw a high proportion of compactum (>30 %) whik sedental')' demersal spedes such as

cod haw no compactum (Satchell 199\). It is important 10 nole that the proportion of

spongiosum to compaclUm is delermined developmcnlally in lish and is not inllueneed b)

cxercise (Olson 1998). Intereslingly. all elasmobranchs examined to dall: display somc

de\'dopment of compactum reg:lrdless of pc:rcei\"ed cardiac dem:lnd (i.e. acti\"ity IC\'e!s)

lTola 1999}.

Important analomical dilTerences bc:twe~n the hearts of I1sh and those of birds and

m;unmals exist in lhe degr~e of coronary artery dcvelopment. Most species of lish

compkldy lack a system :Jf coronary aneries and the heart must recei\'e oxygen and

nutrients from the \"o:nous blood it pumps. Only in highly acti\'<: tekosts showing a

signilicanl fraction of compactum do coronary arteries supply tho: hcart with oxygenat~d

blood. and cwn then capillaries rarely extend beyond the compact layer of muscle (Olson

19(8). All elasmobranchs show some degree of coronary artery de\'elopment regardless

of acli\'ity lcvcl. Spongiosum is highl)' trabeculated to increase thc surfacc area of the

lumcn and cnhane,;- th,;- dilTusion of gasses and solutes into and out of the muscle.



Trabeculae also form "mini hearts". partially sub-dividing the ventricle into smaller

cavities or chambers in the ventricular wall. Cross-luminal bridges may also be formed

which may increase the efficiency of contraction in fish hearts (Olson 1998). The degree

of coronary artery development in fish may also be influenced by the size of the heart

(Olson 1998). Oxygen diffusion would be restricted to only the luminal surface layers in

very large hearts lacking coronary arteries. Though extensive comparisons have been

made concerning cardiac anatomy in smaller fish. infornmtion is sparse on arterial

development in very large fish.

Figure 1.1 Cross sectional view of a pelagic elasmobranch (Alpoias vu/pinus) ventricle

showing the lumen (Lu) as well as the spongy (SP) and compact myocardium (Co).

Taken from Tota 1989.



11k' delicicncy of adequate oxygen deli'"c!}" medunisms renders the majority of

lish highly prone: to cardix 3ll0xia. Fish inh:lbiting. cool waters "ith high dissolved

oxygen (e\"e1s may encounl~ cardiac hypoxia during vigorous exercise whc'n the

metabolism of skelclal musclc depletes blood oxygcn cOnlent. \'cntra! aonic dissol\"ed

ox~gen 1c\"c1s ha\e b«n shown to tall from 4.43 10 1.13 kPa during. ma.ximal acti\'ily in

the rainbo\\ trout (Dri~-dzic and G~ser 19941" Environmenul hypoxia is commonly

incurred by species inhabiting warm watcrs or areas of high organic acti\"ity such as

estuaries or eUlrophicated lakcs. ~1311Y bollom dwelling species also bury thcmsel\"es in

sediment for camoullage. predation. or thennal regulation. Winter !lounder

IP"'lId{JpIO:II'(JJI~'d~'!i IIm",immul all: routinely lound buri.:d in 1~·15 cm of scdimenl

during winter momhs when cpibenthic lemperatures arc slightly warmer than water

lemperatUI~ tFlclcher IlJ77). hen schooling lish "hich do 001 generally inhabil oxygen

depri\"<:d .......Iers may be c.'(posed to en\'ironmental hypoxia. lltrorclically. the respir:llion

uf a substantial number of tish could also draslically mlucc dissolwd oxygen IC\'ds in

the centre of a I~e- school. This is especially applicable 10 marinc lish such as Atlantic

coo. \\hich c311aggrcgate inlo schools iliat may be many kilometr~ in diametcr.

1.3 C2:'R~ulalion

The (a" neccssary lor contraction in fish cardiomyocytcs is dcri\'ed largely lrom

extracellular stores and mUSl cycle into and out of the- cdl during e-ach contractile- cycle

(Fig l.~l tTibbits ct aI. I9lJI). The dilTusion distance bclwe-en (a" and the comr.lCIik

dements of the catdiomyoc~1e would therefore be expeeled to be larger in fish than in



mammals. This is at kasl panially owrcome in lish by signilieantly smaller

eardiomyocyte diameters. Mammalian cardiom~'ocytes r.mgc in size lrom 15·~O /lffi

while: those oftdoosts are only ~·IO /lrn in diameter (Tibbits t:t al. I<)Qt). This increases

the surlace area to volume ratio of the cell which reduces diffusion distances across Ihe

sarcolemmal membrane.

Figure 1.2 Schematic of(;r~- regulating mechanisms in cardiac muscle. ATP, adenosine

triphosphate: ~HTO. mitochondrion: MF. myolilaments: Na-CaX_ Na'ICa~' exchanger:

SL. sarcolemma: SR. sarcoplasmic reticulum: Ic,. L.ty~ Cal' channel. Taken from

Tibbits ct al. IQ91.

The tr.msmembram: action potential duration (APD) of lish cardiomyocytes is in

Ihe upper range of that seen in mammals (Muller-Nielsen and Gcsscr IQ<)1: Vomancn



1996) and this may also help to compensah: lor the poor de\'.:!opment of sarcoplasmic

reticulum (5R) in most lish. Prolonged action potentials should allow more time for Ca~

to reach and bind with ttk: l"Ontractile proteins of the cdL :IS wdl as facilitating increased

Ca~- inl1u.,; across ~ sarcokmma (Dricdzic and Gcsser 1m). In addition_ the

contractile dements of lI"OUt catdiom)'ocytcs ~ inherently mo~ ~nsili\'e 10 Ca~- than

those of mammals and amphibians (Churcott et al. 19941. meaning !Loss Ca~' is r'l."quired to

initi::ne a contraction in !ish than in other vertebrates. Incre~'ti C3~- sens!li\·!ty ;n lish

may also facilitate the maintenance ofcardiac activit), at luw leffip.;ratures.

/.J./ Ca:~ IIIj1u:(

Ca~- enlers the lish cardiomyocytc through several channels on the sarcolemma

(Fig, 1.2). The l-typc Ca~- channel is generally thought 10 contribute the majority of

Ca:- requin...d for contraction (activator ci·). l-type Ca~- channel aclivit)' is temperature

scnsiti\'c in lish (Shiels et al. 2000, and can be: all~'Cted by circulating hormones.

eat~holaminl-s_ ATP supply. \'ohage and intraecllul:lf free Ca~- tVomanen 1998),

VUnlanen (1998: 1(99) has shown that approximately 213 uf acti\'alur Ca~- enters through

the I.-type channel in the crucian carp vemrick with the remaining Ca:-.... contributed

through ~a-/Ca:- exchange. In its forward orientation the N3-'Ca!- exchanger tah-s in

three Na' ions and extrudes one Ca:- ion from the myocyte (Reeves et a1. [994). This

cxchangt.'r is voltage galed and during the majority of the cardiac cycle it is pumping Ca:

out of the cell. Howe"er. during the initial portiun of the action potential the direction of

Na-/Ca:- exchange can be rc\'ersed. allowing Ca~- to now imo the cell (Vomant:n 1999).

C3~- inllux through the ~:<changer is driven by transient d~vation~ in Na'i nC:If the



sarcokmmal mltmbranlt IRl..~\·es Itt al. 199-4). r~ltinl:l pre$WTIably lrom inllu.'( through

\'olu~c gated Na- channds. In al:lrttment \\ith this ilSSumption. small changes in (Na-j

haw beltn shown to cause signific:ltlt alterations in Col!' nUll: in Ihe mammalian

cardiomyoc)"tlt (Rl..'t:\~ .:t at 1994). E.'(chanl:lcr acti\'ity and molecular makeup of the

protdn ha\·c ~n characterised by Tibbits el 011. (1Q9()} in isolalw sarcok'ffimal

mltmbrano:s of rainbow trout.

Physiological data on Na'ICa> Itll:chanj;c 011 thlt tissult lewl is not available for fish:

howlt\'er, Gl..'S~r and Manj;or-JenSl:n (1984) havc shown that lowering Na'c, with no

concomitant change in osmolarity results in an increase: in ~~Ca~' uptake and potentiates

twitch force in th..: l10undcr Pfmidlfhp (PIr:/ir/lnl1CII!}·ljll!sIIJ. This charactcristic may lx:

ofphysiulugieal imponancc during hypoxia in the intact eardiomyocytc sine.: increases in

intracellular Na- INa',J arlt wdl dclcumented during periods uf metabolic stress in

mammals (Cannel Ie! 1999), Plasma Na- concentrations ha\'e becn shown to tluctuatc

seasonally by as much as 40 mM in cold water species such as Atlantic cod (Fktchcr el

31. 198~) and wintl-'r Iloundcr (Fktchcr 1977) to enhance Ireeling point depn:ssion lor

sun.-i'·31 in sub-zero waters. Exhausti\"l~ exercise has b«n SOO\\T1 to C3USo: small (1-]

mM) incn.~'S in N3-, and Ca~', in raiubow trout «()m.:(JrhyndIlL~myhn) white muscle as

well (W3rlg e! 011. 19941: howe\'er. it is not known whethltr parallel changc:s occur in

cardiac muscle. There is also e\'idltnclt that sub-sarcokmmal Na' concentrations may be

higher than those in the rest of the cytoplasm (Carmdiet 19(2) but the physiolugical

imponancc Uflhis is dillicuh to assess experimentally,



1.1.2 Cardiac RI!Ilr.'cation and Ca~· EfJlux

In oRkr for ttl.: lish cardiomyocyte to rda.'(. [Ca:-,I must be lowered to

approximately 100 nM 10 n.'TY1o\·e Ca> from troponin C and resel the contraclile

mechanisms of the: cdl (TibbilS el al. 1991). In Iish. [C:J.~-,I is lowered mainly through

passi\'e and aCli\'e elllux across the sarcolemma. The contribulion of the SR 10 low.:ring

ICa:-,1 \'ari~ widely 3fllOngsl spl:'Cies and is innuenced by Ihe acclimalion t.:mper.lIuK' of

the !ish. The Ca:-.ATPase pump on the SR is inefficient in 5equ\."Stering Ca:' at low

lempcf3tun:s. Aho and Vomanen (1~71 have shown tlut the SR is able to retain Ca:- at

low tempcrJtufes in the hean or iJinbow tfOUI. negating previous notions that SR Ca:

release channels may rcmainopcn at low temperatures (,\ho anu Vornancn 1998: K\.'Cn ct

al. 1(92). SR Cal' uptake is ;also strongly inllucnced by interspccies din~renccs in whole

animal acti\'it}' le\·e!s. The SR of cxtremely acti\'e f'ish such as yellowlin tuna (Thllflrrll.f

al!m(:orc.\-l plays a major role in cardiac relaxation tShiels ct a!' 1999). whik in a

motlef3tcly aClh'c tckost, II\.: rainbow trout. SR funclion is nO( as important 10 conlr.lctile

pcrlomtarlcc (Aho and Vomanen 1m). SR contribution was found to be ncgligibk in

Ilounder (PlC:flrorrcl'/l's}hmlS) (EI·$ayed and Gesser 1989) and crucian carp t('ariD'sillS

l'urussius) (Aha and Vomanen 1998) but unimpaired SR function was requin.-d tor

relaxation in Ihe American cd (....n/.:lli1fu rVi'/rll/ll) hcan at high [C.1:·~1 (Bailey .:t al.

2000). Most data suggest a long term Ca:-, butTering role tor the SR in lish

cardiom)'ocytcs rather than a direct participation in bc.1t to beal Ca:- cycling.

Mitochondri.1 may also have the potential to bc involved in beat to beat Ca~'

regulalion in fish myocardium. Mitochondrial Ca:- contribution is often dismissed in

routim: cardiac ion cycling: however. recenl mammalian studies have sho\\n that



milochondria are intimatdy in,'oh'ett in long lenn Ca~', homeostasis and that C01=-,

cycling across ca.rdiac mitochondrial mc:mbranes may be r.:apid enou~ to p<U1icipatc on 01

beat to bell b:1sis tn:\'i~wed by Berrordi 1999), Evidence is sp<ll"Se concerning

milochorxlrial Ca=-, cyclin8 in «tothennic "o:rtebr.lte5. although mitochondrial C01~'

contribution has bcrn implic01ted in contraetik fort~ recover)" of "o:ntriCUIOlC muscle from

the snake l"ipc.'ru hems during acidosis (G.:sser and Poup;! 1(79), A similar rccon:ry is

SI..-..:n under acidosis in \"enlricular musck from f!utiduhy.'J jl",sj~~ (Gesser and Poupa

19791 but not in muscle from other tdeosts such as cod ((julh~\' /III/rlllla) (Gesser and

Poupa 1979) and carp (()primIJ mrpio) (Gesscr and Poura 1<J78), Without further

im'estigation it is diJlkult to quantil~' the signilicancc of mitochondrial Ca"-j cycling in

lish cardiomyocytes. although. it 8enerally docs not seem critical to the beat to beat

functioning of cardiac muscle in the fishes e:<.aminoo to date,

In most lish the majority of C3~' in the cardiomyocyte must be extrud...-d passively

by Na-'Ca~- exchange or pumped out aclh"e1y by the sarcolemmal Ca~" -ATPase:, Cardiac

Ca~- pump at:tivity has nol lxen in\'estigaloo at all in fish and only minimally in other

Cl;tothennic vertebr-.lI...'S, Brommundl and Kavaler (1(85) suggl."Sted that ATP-<kpendent

Ca~' emu.'\: was mon: important than Na'-depcndent Ca~' dTIu.'\: in the bullfrog heart.

This has been questioned however. since the author"s interpretations were based on an

eXlremcly slow Ca~- dllux which would be irrcb'ant at physiological frequencil.'S of

Cal' c~-cling during nonnal contractions (Tibbits et at. 1(91)" D~spit~ thc paucity of

direct inlonnation. it sl.-..:ms genernlly accepted that the sarcolemmal Ca~'-ATPase pump

in lish cardiat: muscle is not critical for the majority ofCa~' emu:,,: and that it serves only

to maintain low [Ca~'d during diastole (Tibbils et at 1l)<}1),



~ hypothesis that Cil~"-:\TP3Se contribution is insignilici1llt in fish cilrdiac

relaxation is supported b~' a high d~nsity of Na"/Ci" ~xchang~ current in td\.'Ost

sarcolemmal membr.lnes. Vo~ (1999) IIOt~ that in crucian Cilrp. exchange ClltT'mt

densities W\.'Y'C higher than those obsen'ed in adult mammals but low~r than those s«n in

..:mbryonic mammals. This su~ests a correlation betw.xn the density of Na'/Ca~'

exchange cum:nt and the d\.·wlllpment ofSR in the heartS of\'ertebrates, In heart musck

with highly de\'dup:d SR. such as that ofaduh mammals" Na'!Ca"" .:x.:hang..: does not

playa dominant rok in rela..,:ation and high current densities arc not nec\.'S5a!1', In h.:arts

with poorly developed SR, such as those of embryonic mammals and many .:ctothennic

\'ertcbrates. the SR dll":S not dominate contractile Cal' tlux and Na'/Cal ' exchange

b\:cumcs more important,

Kin..:tic data from mammals sugg\.'Sts that at physiologicallc\'ds ufNa" and Cal".

th..: cx..:hang..:r is only wurkinl! at a portion of its ma.....imal capacity. This may nOI apply in

!ish howcn~r" since in mammals the exchanger com~tcs with the Cal"-ATPase pump on

Ihe SR lor Cal" which would not be the~ in catdiomyocytes lacking a well den~loped

SR. Intr.H:c1lular cornpartmcnl:llisalion of ions nu~' also signilicantl)' al1ixt Cal' dUu:,:

lhrough Na'ICa~" o:xchangc. but this phenomenon can nol b< readily sludk-d using current

1\.'Chnology tR...-.:\·\."S ..:1 OIl. 199~). Tibbits et 011. (1992) ha\'C shown that Na'/ Cal'

exchange in rainbow trout sarcolemmal membrancs is relati\'d~' :~nsiti\'c to

temperature changes (Ow - 1.2) when compared with that of mammals (QII) > 1). This is

consistent with the adcl.juate cardi3c pcrtonnance obser\'ed in lish at low temperatures

which would be cardioplegic tu hom...'Othermic mammals.

10



1.4 :"l:t" lind K~ ,-qullilion

Figure 1.3 illustrates the basic elements iO'·ol\'l:d in ion f\."gulation in til< lish

cardiom~-oc~1':. Na- and K- ions arc inlim.::u.:ly associated in cardiomyocytes of .111

,·enebr.nes and th\' maintenanc:\' of their gr.1dit:nts is crucial 10 the function of excitabk

cdls in g\'ner.d. K· is th<- major c~1oplasmic and mitochondrial cation and its

concentr.llion is de:'"al<.-d in the cytoplasm relati,"e to the: cxtracdlular l1uid. :'1101" is the:

dominant cation in tilt: cxttxellular fluid and c~"toplasmic concentr.ltions are sustained at

low lewIs" The \la"tK--ATPase is the ccntr.ll m~'Ch:lnism responsible for lhe

maintenance ofNa· and K- gradients. actin:ly cOlr.lJlsponing two Na" ions out ofthc cdl

in exchange: tor the: inl1ux ofthre:e K" ions. The pump is sensitive 10 ATP concenlrations.

or more spl.'t:ifically to the fret: e:nc'1:Y derived through ATP hydrolysis (phosphate

J"Ulentiall. This is a significant lactor to account lor when stud~"ing hypoxic ion

f\.~ulation in lish cardiac muscle since oxygm dcpri,·ation is otien associated with

de:polarisation of the cell membrane and increases in intracellular inorganic phosphal"-S

tP,). bOlh of which r..-duce th<- phosphate potential (Carmelict 19(9).

"



figul"l! 1.3 Schematic drawing of major ion llu.xes and regulating mechanisms in

eardiomyocytes

Although the Na·iK-·ATPase is an active cotran~portcr, it also possesses some

qualities common to ion channels which allows pump rate to be modulated somewhat by

changes in [Na-I and {K"]. (Na-<,I generally eXerts a moro: po.....erful inllucnce on pump

activity lhan [K',! because fNa".>] is at less than saturating le\'els and is subject to greater

change than [K·,! which is usually ncar saturation ((anoetiet 1999).

Tho: Na'/K-·ATPase pump is either directly or indireclly responsible for regulating

almost all ionic activity in cardiac muscle. As discussed above. changes in [Na"]. in

either lhe intrJcellular or extr:lceJlular l1uid, can cause profound alterations in Ca~- Ou.'(

via Na·iCa~- exchange, which will eHect cardiac pcrtonnance lhruugh changes in

cuntractile strength. K· concentrations control the degree of polarisation across the

sarcolemma which is central to the function of the cell sinco: most membrane proteins arc



scnsiti\·e to the electrical state of their em·ironment. Small changcs in the polarisation

state of the sarcoh:mma cau~-d by K- flux can thcrclore control contraclile perfonnance

\·ia modulation of membrane bound Ca> transporters. The transmembrane aClion

pOlential (AP) is also intimately tied to Ihe electrical characteristics of the sarcolemma

and it directl~- controls eontractik function in the fish cardiomYI)cyte. R!;'sting mcmbranc

potential. which is sct by K+ gradients. allects the amplitude of th!;' AP. which in tum

influences the dur.llion that the Na-lCa!- exchange remains in its I\:\·ers!;' oricntation. For

example. Vomanen (1999) found that lillie Ca> intlux occurred through Na-/Ca>

cxchange at m.:mbrane potentials bdow -:~O mV+ but that ci- inllux incl\:as.:d

signilicantly according to membrane polential at more positive voltagcs in

earJiomyocytes from both warm and cold-acclimaled crucian carp.

K- flux is also regulat ..-d by adenosine SO-triphosphate scnsilh·c potassium

channels \K-Hl') I"catcd on both the sarcolcmmaJ and inner mitochondrial membranes.

Sarcolcmm.aI "-HP ch.annds (sarc K_\l~) laeilitatc K+ elllux passi\cly across thc

sarcolemmal membrane whiJe mitochondrial K,\I'rchanncls (mito "",In') facililate K+ /lux

into the mitochondria. Doth sarcolemmal and milO K,H!' channds arc controlled by the

ratio of ATP to .adenosine diphosphate (ADP) as well as .a host of other modulators.

Channel activity is inhibited by high r.llios of t\TP/ADP .and enhanccd when the mtio of

ATPfADP declines. Sarc K.\Il' channels haw been associaled with membrane electrical

aeti\"ity. including modulation of APD and loss of K+ gradients during metabolic

inhibition (Gross 19(8). MilO K,\Tr channels influenc!;' inner mitochondrial membrane

polarisation and control electrical activities as well. but the~' :>cern to play .:l more active

role in regulaling mitochondrial matrix volume through osmotic m..'Chanisms, MilO K"TP

IJ



..hannels haw ,!Iso bl.><n implicated in milocoondrial Ca;' ho~'Oswis through m~mbr.anc

jXltaltial dTo:<:lS on Ca> rd~ channels (Bernardi 1m). Kur channels ha,\·c ~

inlimatdy linked with ~ b:neticial ~ITcclS of c:udiac -pn..'COnditioning- in the

nwnmali::L'l heart (Gron~r 3nd Garlid 1000). Pn:conditioning is th~ (>hI:oolTKnon by

uhich one or mor~ shon po:riods of hypoxia protC'Ct !he: he:art from a subseque:nt.

prolonged pc:riod of hypoxia.. Tho: funclional aspc:cts of Kul' ..hannds in lish cardiac

musdo: will b.: Jiscuss.:J more: in lat.:r ~..ctions and inwsligat..-d and discUSSt.'t.I fully in

Chapt~rs:!and 3.

1.5 Ion Flux and C:l.rdiac Pcrformllnce During AnOlili

,\noxia afT~clS cardiac muscle most proloundly through erealion of an energy

debt. Th~ hydrolysis of ATP 10 ..\OP pro\·idl,.'S Ihc: fn.-e o:ncTJJY n~ce:ssary 10 Iud active

cdlular acti\·ilil,.'S and tho: majority of ATP production occurs lJxidali\·dy. Anoxia din.'CtI~·

inhibits oxid:atin: production of ATP and the cdl musl rely on :UUcrobic ATP gcneration

to maint3in function. Anaerobic ATP production is inlk.-n:ntly k'!s cfficic:nt than

oxidati\·c m«:hanisms and this cwntually leads to a d...'Cr.::lSC in inlracdlular IATPI if

m~labolicdo:mand remains constant

Th.: actual frec: energy d...-ri\"ed from Ihc: hydrolysis of ATP can also fall durinl!

anoxia as e:xplainc:d earlier. Anoxia is roulinely associal ...'t.I with an intracellular build up

of ADP and P;. which reduccs the phosphatc polential and limits c:ncrgy availability.

Phosphate: potcntial has bc:en found to drop from a normmdc value of -6 I kJ/mol to less

than 50 kJ/mol during hypoxia in rat he:art (Carmeliet 19991. The: drop in phosphate:

potc:ntiallcnds 10 occur mOf\: qUickly than any signilicant d...'(;reak in (ATPI and il seems



more imporuntlhan aClualIATP] in d~tennining thl: inilial response ofa tissue 10 anoxia

IH3l1mund ;md G~r (996). Degradation of .:ontractile pcrfonn.11lce in anoxic fish

lOltdiac muscl~ is nol xcompani«l by:1 g.ross d«rease in intr.lCellular (ATP] {Purup

Hans.:n and G~ IQ87; Nidsen and G~r [QUI sUJ:l;esting some type of down·

regulation of ATP consumption.

San.: I<:.-\l~ channels an:: panicularly sensitiw to inll'Xellular {ATPI and :1cti\':11l-d

with J.,:CrcilSl-s in th.... I":uio of ATr/ADP. During. hypoxia in mammals. modest decreases

in [ATPI ha\'.... Ix-cn shown 10 cause acti\'alion of San.: K,\I'l' channels (D~utseh ....t al.

lQl)I). SaTe 1<:.,\[1' channds arc \"1:1')" abundant in ral heart (T~n;ic ct OIl. 19Q51 and th ...

3cli\'3tion or only a small ponion or lh....s.: channels can cause a signiticant increase in K"

dllux across th... sarcol ...mma. Though large changcs in cyluplasmic ATP concentr.ttions

arc nOI common under hypoxia in tish, (ATP] at the sarcolemmal margin may be more

\'ariable due 10 acti\'iIY of acti\"l,~ ion pumps.

Hypoxia :Jiso 0111«15 K" Ilu.x through th~ Na"lK"·ATPas;: pump. Th... acth'ity of

the pump is scositi\'c to ffil'lTtbr:me polarisation, extracdlolar K' and intr.lCdlular Na""

and the :l\-ailability of en.:rgy deri\'~ truro ATP hydrolysis. The Iau~r is potenliatly

I\.-sponsible lor initial inhibition of 11k: pump during hypoxia. The pump has a huge

capacity and rdali\'dy linle inhibition is required to bring about sig.nificant ch.11lgt:s in lhe

concentr.lIion or ions in the cytoplasm and extracdlular lluid (Carmdkt 1999). The

accumulalion or K'., obser\'ed during hypoxia may also Ix: mediak-d through Na'/K",

Arras.... inhibilion. A d....crease in K' innux lhrough the pump along with an incr~ase in

K" etllux through sa~ I\..HI.ehanncls is Jikdy n:sponsibl .... for lhe loss ofK·, in mammals

"



during hypoxia, though it is not clear al this lime how each of these processes inlluences

thc other (Kabakov 1998; Haruna ct al. 1998).

Signiticant increases in Na-; have b.:en direclly observed in mammalian

cardiomyocytl.-s during hypoxia though Ihe cause of lhis phenomenon is still under

dcb:lIe. Studies ha"c implic<lled decreased Na' d"llux through inhibition of the Na ':K'-

ATPase pump by mo:chanisms discusscd above (Dizon el al. [(98). while others f,:d thaI

activ:llion of a Na-/H' e:l:changer is responsible lor lhe observed changes (Park ct al.

1999; Tani and Neely 1989: Ho el al. ~OUO: reviewed by Murphy cl al. 1(99). Direct

obsen'ations on rNa';l and the Na'/H" exchanger during hypoxi<l arc nut available lor lish

cardiac muscle, though lhere is no e'idence suggesting th;]t the dynamics ofNu' !lux will

be dilTereOl lhan in mammals. Aho <Ind Vomanen (1997) ha"e reponed a decrease in the

acti\'ilY orlhe cardiac Na"/K'-ATPase during a 100 hour laboratory anoxia in cruei:m

carp. AltcrJlions in Na' may lead to signilicant alteratiuns in contmctilc perlonnance in

lish dUo.: 10 their reliance on trans-sarcolemmal C}" nu.'( lor contraclility and the relative

100ckofintracdlularCa:' bufkrs

When confronted with either environmental or physiological hypoxia, some fish

release eat<.-cholamines into the circulatory system, High levels of c<ltccholamincs can

signilicantly slimulale hean rate and vemilalion in lish through inlluence on nervous

("ontrol of the hcan (Perry and Gilmour 1996). Adrenaline also has a stimulating en,:et

on the function of the N<I'/K'·r\TPase as well as on Ca'- release from the SR in rainbo\\

trout (How-MOldsen and Gess<:r 1989) though it is nut clear how this m<l)' an,:cl hypoxic

cardiomyocyte function in the presence of olher changes in the cell. During nonnoxia the

addition of high b'ds of adrcnaline (10 IlM) to isolaled ventricular muscle strips of



minbow trout pot~ntiated rorc~ production by up to 50 'I. (Shiels and Farrell 1997; Hove-

~'ladscn and Gesscr 19891, At the whole aninul !I."\·d. contr.lctile force potentiation by

;wrenali~ would b.: Ixndidal in hdping. a fish to .:sot:l.p(: a hypoxic ~'TI\'irofllTk:nLbut it

may b.: dekterious to the SUI'ri\"aI of fish forced to endure extendc:d periods of h~'poxia_

An increase in hcan r:ue and force production would ele\":i1c ATP lkmand at a time when

tho: COrlS<:l"\':uion of eno:rl;y could b.: par.unount to the animal"S sUl"\·i,'al.

Table 1.1 Comparison ofanllxia toler.mco: using time: to 50 ~.Iorco: loss under simulato:d

anoxia in ventricular strip pn:p:lr.llions of\'arious SIX'Cit.'s of lish.

Specic)' Beut~per Timetuj() " tt../crcnce:
fflin filrc.. lau(ffli,,)

I S'III<I"l~ ''''<llI/hi(l~ " " GeSkrandPoupa (1914)

C;,j(h~~ nlOr/WI( " Gcsserand Poupa (1974)

J Sl'r'llllllSl'rUlIIlf " -- G~~randPoupa (197~)

, _x·umft.:r.lL"lJnlb.!r " 3. Gcsscrand Poupa (197~)

j 1'f.../(nJl"·~-'O!S plul.·...SU " 7. Gesscr;mdPoupa (l97~). L.dtrusQ..'iSifhl}:us " J; Geiser and Poupa (197~)

lIip~frJU<J.J...,;plul.:ssulJ,,:S " " Ges~andPoupa (197~1. VrN;fHh:o",H.-/rus"f)·kw )0 II Bailey d al. (1999), l'..rnlj1<J\-,,:!;n·ns ). Bailey el al. (1999)

f{/ _-lslrt>tlUfusocclfutus 3. ID Bailep:lal. (1999)

/I l·,,f'USQItI<ll/ltJC'rUp,,nl/llfl 3. Oaikyetal. (19'Xl)

" n"plust"-r/lumlitwrul.. 3. II Oaile)<ct:l1. (19'Xl)

IJ Lip<Ill<lrt-.IS/"udu/is ;. II tklileyd:ll.(lml

II AII~"i/J"<IIIi:ui/l" " ;>60 " H:lnmllnd:lndG<sS<r (1992)

15 _-l"g/liIJ"rostrUIa ;. 11"" Baik)' d at t [999)

" k/u/urIlSp/lnC/tl/ILI' 30 2["" Oaiteyctal. {1999}

" Force del etopment rem:t1ned abolc 60% of milial tor lhe dural10n ot the expenment.

"" These species sho\\cd rapid lossofli>rcc followed by slabilisation below SO 0/. inili:ll fOl"lhe

duration ofexperimen I_

"



Variability in cardiac anoxia tol~r.uK:e is illustr:ned in Tab!.: 1.1. which giws

repn:scnutiw "alu\-'S lor tim~ to 50 ~'e fon:e loss und~r simulated anoxia in isolated.

contr:lCting n~ntricular strips from \"';Irious species offish, Twitch force gener.llion under

anoxia is considered a good indiC<ltor of cardiac anoxia toltt:lnCe and it g~nerally

~ponds in one of scwral charxtcristic manners in fish. Force g.:n.:ration in

anoxia intol~rant speci.:s such as minbow trout (On,·"r/'.l'ndllo' myki.r.t) d..-cays in a lin.:ar

and cOnlinuous lashion "ith a concomitant increase in rt.'Sting tension. prt.'Sumably du~ to

a lailur~ of the Ca~', extruding mechanisms of the cell (Dril-dzie and Gesser [99~1,

Twitch torc~ dC"dopmcnt under anoxia in highly tolerant specics. such as American eel

tAIlK/lil/(1 rfJJ/ru/(I). falls rapidly during the onset of anoxia. butlhcn stabilises at a lower

le"d when: it remains lor the duration of tho: insult with link change in r\-'Sting tension

(Bailey et al. 1999). TheS!: r\-'SponS\.'S will be slt,Jdk-d in lho: following chapters with

n..'Sp..'t:tlo the acti"ity ofK,u. channds.

In conclusion. lish cardiac musck o:xhibits substanlial difl\:rences from mammalian

caniiac muscle "ilh the most notabk bl:ing tho: gcm.·rod lack of SR function. Tho: anoxic

eonlr.lCtilc performance of tcJ..'OSt cardiac muscle is ,'ariablc ::ulIongst species and aooxi:l

tok'r.mce S<.'\:ms to b.: relat~ to physiological adaptations to both metabolic and ion

regulating mo:chanisms in the cardiom~·ocyte. Altering th~ dynamics of anaerobic o:ncrg~'

production and consumption in the hean may help to a,"oid depIction of intr.l.cdlular ATP

and allo\\" tor the rnainterunce of contractile function during anoxia. The adaptation of

ion regulating mechanisms may aid in the prescrvation of E-C coupling in the

cardiomyocyte during m~tabolic inhibition and aids in avoiding permanent cellular injury

through th~ accumulatiun uf ions.
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2 Mitochondrial ATP-sensitive IC Channels Contribute to Heart

Anoxic Resistance in the Amazonian Armoured Catfish Acari-bodo

(Lipossarcus pardalis).

2.1 Intmduction

~lany lishc:s inhabiting th.: watcrs of the Amazon drain<lge basin exhibit extreme

whole anim<ll and tissue hypoxia rcsistance IAlm.:ida-Val and Farias 19(6). Se\'cral

bcha\'ioural <lnd biochemical strategies are emplo~-ed by th.:se lishes to deal with

extended hypoxia. including aerial respiration. surface skimming. clevated anaerobic

metabolism and metabolic depression (Almeida· Val .:\ al. [999: MuuSl.e c:t al. 1998: Val

[9961. Ventricular musck preparations from the air.breathing armoured catlish. acari

bodo (Uro.uarms r<1rd(lIi.~I. showc:d e,'.;c.:ptional ana.:robic capacity. maintaining roughly

50 % of isometric lorce devclopment alicr 75 min of c~'anide (CNI poisoning at 25°C

(Bailey ct ;,II. 19991. [n addition 10 thc maintenance of twitch lorcc development.

\'cntride preparations from Amazonian fishcs wcre bettcr able to prescrvc resting tension

under CN poisoning than north.temperate spL"Cies. I-Iowc:\'cr. whc:n comparing the two

groups of lish.:s. \Vest.:t al. ([ 9(9) could lind no ob\'ious correlation betwec:n maximal ill

l"ilro activilies of glycolytic enzymes and the ability of heart tissue to function under

impair.:d oxidative phosphof)'lation. The objectivc of this study was to identify

ffiL'"Chanisms responsible for the cXlr':ffiC anoxic resist,lOce observed in the heart of acari·

budo with relerence to Caz
+ and K- traflicking.



In mammals. cardiac ATP-~nsiti\'e poussium channels (K,HI') are thought to play

an imponant role in reducing infarct size and imprQ\'ing n.'Co\·ery of perlormance

lollo\\;ng ,] hypo~ic challenge (Gross and Fryer 1999). K"HI' channels. which are

JCli\OI.tt:d whc-n the ATP/ADP r.:ltio declines. ha\'e b«n described on both the

sarcolemmal membrane lsarc KArP) (Noma 1983) and on the inner mitochondrial

membrane- lmito K"rl') (Inoue ct .11. 1991) of mammalian cardiomyocytes_ As sarc K,ul'

channels facilitate K' emu:\:. their 3Cti\'ity has been associated with dli.octs on

transmembrane aetion potential dUr.:ltilln (Ganim et al. 1998) and the concentration of

e.'l:tracellular K· (Kantorcl at. 1990: Venkatesh el .11. 1991: Wilde etal. 1(90). MilO K,\rr

channels promote K' inllu:\: across the inner mitochondrial membrane. Ieadinl; 10 a loss of

membrane potential and osmolic swelling of the matr~:(. The depolarisation of the inner

membrane can atli..oct mitochondrial Ca:' handling and d..ocrcasc the r.ne of ATP synth..'Sis.

~Iito K.\ll' channels arc also acti\'ak'l,\ during chronic hypoxia in the immature rabbit h.."3fI

(Eells ct al. :!OOO). This inv\.'Stigalion examiO\."S the rok of KArl' channels in anoxic

cardiac function and f\.'CO\"Cr~" of the 3Can-bodo heart. The problem was approached by

:LSSo.'Ssing the impact of j.hydroxydecanoic acid (5HD). a highly specilic mito KATI'

dWUlel antagonist. on hean per1ormanCl:. Based on tnc available literature [ would

expo..oct milO K,ur channels to Open when acari·bodo heart muscle is exposed to anoxia.

The etTL'Cts of opening mito KAlI' channels on contractility in the lish hcan is dillicult to

predicl. These channds have not previousl~' been investigated in fish and their

contribution to contractility in mammalian cardiac muscle is still unclcar.

In order to address thc observed prcscn'ation of resting tcnsion in the acari-bodo

heart. wc in\'cstigatL'd thc contribUlion ofthc sarcoplasmic reticulum (SR) to intracellular

"



Ca~' cycling. Incrt:3S\.'S in resting. ll:nsion are consider~d 10 resull lrom ele\';llions in

cyloplasmic Ca~' (Ca~',) acli\'il~' (Driedzic and Gessc:r 1994). A redUClion of Ca~',

acti\;IY is gCl\l:raJly achi~\'ed \'i3- active Ca~' elllu:t across the- sarcolemma or by the SR

acth'dy ~uC:Sh:ring Ca=- from Ilk: cytoplasm. Ahhough this function of Ilk: SR is

lhought 10 Ix minor und~r mosl condilions in north-temp.:rate !ish tDriedzic and GI:SSc:'r

I~) it is considered imponanllo Ca=- cycling in \'entricular muscle lrom rainbow Irout

(Shiels e( a!. 1997) and tide pool fish (Rantin et:ll. 1998) al high temperatures and in

atrial muscle of yellowlin tuna (Shiels et al. 1999). The hH)othesis that SR function is

important under anoxia and reoxygenation was tested by treating ventricle strips with

ryanodine. an agent that locks the SR Ca~' release channel in the open position.

The key linJings oflhis study are that mito Kup channels play an important role in

Ihe anoxia defence strategi\'S of the acan-bodo heart. The opening of mito Kul' channels

down R.'gulatcs force dC\'e1opmenl_ possibly to preserve: energy and minimise lissue

tiamage during anoxia arnJ recove~·. Blocking SR funclioo did not dT.:ct the n.'Sponsc: of

acari-bodo n:ntricle preparations to anoxia or /'l,."Oxygenalion.

Z.Z Matcri:.llls:.llnd Melhods

1.1.1 Ani_Is

,\nnoured catlish commonl~' referred to as aeari·bodo (LiplI.\·.wjrnL.~pard"lis) (body

mass I-l-L6 ± 8.3 g.l were purchased from an aquaculture Ihcility (Amazon Fish.

ltaeoatiara Road. AM-IO. km 251. Manaus) and hdd at the Instiluto Nacional Pesquisa da

Amazonia (INPA). Manaus. Brazil. in indoor tanks suppli ...-d with recirculating. at:raled

lap water.



2.2.1 VI!"tricular strip prl!paratio"s

Fish wen: kill~d by a sharp blow to the h~ad.the h~art was immediatdy t:xeised and

placcd in oxygl.'nated medium. Tht: bathing medium lor isolated muscle preparations

included 115 mil..1 NaCI. 3.0 mM KCl. 1.0 mM MgSO~. 1.5 m/vl CaCl~. 0.18 mM

NaH~POr 3.12 mM Na,HPO~. and 5.0 mM glucose was addcd as a mt:labolic fuel

(Drit:dzic and Bailey 1994). Mcdium was ga.sst:d with 100 % O~ and pH sct to 7.8 at 25

~c. :'\'ormally for \'cntricular preparations. mt:dium is gassed with a mixturt: containing

0.5 % CO, to mimick the physiological t:n\"ironment of the lish hean. Mix...-d gases were

not available lor the t:xpc:rimcnts howt:\"cr. For the initial isolalion. bathing m...'dium was

maintained at room tcmperaturt: «!2 ~C) to a\"oid mpid cooling e!l;''Cts un the

preparation. Thc \'entricle was dissected Itee ot"the bulbus arteriosus and atrium and thcn

splayed open \"ia a longitudinal cut through tht: dorsal II-all. Two strips approximately 5-7

mm long and I mOl wide wcre cut. Each strip was mounted in a tissul.' bath via a

Plt:xiglas clamp betlleen two platinum electrodes and til.'d to a l~ar\"ard Apparatus

isometric force tmnsducer (model 6O·2<)<)·H using surgif.:al silk. Chambers f.:ontained]O

ml ofm...-dium held at 15 ~C and were continuously gassed with 100 % O~. Strips were

stimulatcd to contract by lield stimulation using a Gross model 59 square wa\"e generalOr

set at 150 % threshold voltage and 5 rosec duration. Preparations were stretched to the

optimum length lor loree production and equilibratcd lor 10 min at a pacing rate at 0.5

liz. Stimulation rate was maintained at 0.5 Hz and tempc:ratun: at 25°C lor all

cxperlments
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Anoxia was quickly and rcvcrsibly induccd in some cxp<::riments by nushing the

tissue bath with 150 ml of medium equilibr.:llCd with 100 "/" N~ and gassing with 100 %

N~. Tissu~ disturbance during. thc switch was minimal with th~ procedure r~quiring

approximately I min to complcte and resulting in dissolved oxygen levels of 0.\ mgtlor

less. Preliminar)' experiments on other species using oxygenak'd medium during. the

switch have shown the procedure to h:lve no ellect on tissue contractility. Following the

;moxic period. medium was regassed with 100 % O~ and reach'...d S3turnted levels in less

than I min.

Force transducers wen~ interfaced with a MacL:lb/:?E (AOlnstrumcnts) and data

w..:r..: collected using Chart sotlwan: tor the Macintosh. Twitch lorce and resting tension

were calculated using Chart soliwarc and arc c.xpress..:d as percent of initial torce

dcvelopment.

1.1.1 Drugs

The contribution of the SR during normo.xia. anoxia and rcoxygen:llion was

assessed usinl! ryanodine (Sigma. 51. Louis. MO. USA). a spt..'Citie agent which. at the

concentration used. locks the SR Ca~' release channel in th~ open position (Coronado et

a!. 1()()4). A I mM stuck solution was prepared in ethanol .lOd stOl\."(f at ~20 °C until just

bctorc us..:. This stock solution rcsult..:d in a linal ethanol concentr.uion of 0.1 % in the

tissuc ch:Jmb~r. Preliminar)' trials found that this concentr.ltion of ethanol did not atlect

twitch torce developmcnt. Mitochondrial K,HP channel activity was addressed using

sodium 5·hydro.'(ydecanoic acid (5HD) (ICN Biomedicals. Aurora. OH. USA). which



sdectin:ly inhibits mito K,lrp channd acti\·ity without allccting sarc K,\rr channels at th~

conccntr:ltion used (Hu ct al. (999). A 100 mM stock solution was prepared in bathing

mcdium and frozcn at -20°C until just before usc.

1.1.4 Statut;cs

For wntricular performance studies statistical sil!nilicance bctwL't:n trcatm~n1S was

lcstL-J usinl! a paramctric repcatcd measurcs analysis with a Bonlcronni adjustment for

multiple comparisons. Due to a limitation in thc availability of expt:rimental animals.

most vcntricle strip experiments wc:rc not run in concert with paired controls with the

exc~ption of trials involving SHO. A P value < 0.05 was considered to be significant.

2.3 Results

1.3. J Direct impact ofallo.ria and reo.Yygenal;on

Figurc 2.1 shows twitch lorce dc\·dopment and resting tcnsion for ventricular

strips from aeari-bodo subjectc:d to oxygenation and anoxia<fL'Oxygenation. Aller one

hour undcr o.'<ygenated conditions. force dL'{;reas.:u by approximately 15 %. Twitch force

decay was accompanic:d by a highly I'anable JL'crcasc in resting tcnsion (i.c. strips

lengthened). When exposed to anoxia. lorec dewlopm~nt fdl rapidly during the lirst 15

min but thcn stabilised at approximatcly 40 % of initial oxygenatcd Icwls. Rale of force

decay following stabilisation was Icss than oX)'genated controls for the duration of the

insult. Twitch loree was significantly lower under anoxia than oxygenation lor all time

points. Strips maintainL'd resling tension for the majority of anoxia. showing a trend to

inereas.: only after 2 hours. which recovcred following reoxygcnation. Twitch force also
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reco\'en:d quickly upon reoxy~en:llion to a [en'l not significanlly differenl from oonnoxic

controls. Further experi~ts showed that neither anoxic force development nor recO\'ery

were aff~tc:rl by reducing lhe duration of the anoxia from IJ5 to 30 min (see below),

figure 2.1 Twitch fom: and resting lension (expressed as ·4 of inili:ll force

development) (± SE) for \'Cntricular strip preparalions from acari-bodo hean exposed 10

oxyg.enated conditions (eXn '" 4) and anoxia tollowed by fl.'Oxygenalion (.Xn" 4), All

points under anoxia arc significantly different than oxygenated treatment.
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A separate series of experiments was conducted over a shoneI' time COUr51: to

assess the elTecls of ryanodine and 5HD on anoxic hean pcrlonnance. Figure 1.1A

presents the appropriate untreated. anoxia-reoxygenatL-d control for these studies. During

the initial oxygenatL-d period force dcvelopr.lcnt decreased to 60 % after 40 min, under



anoxia to 15 %. and upon n:oxn~enation loree recov.:red to 45 %. Recovered loree was

similar to pre3IIoxic kvels. Figure ~.~B shows force and resting tension data lor

ryanodincllO ~M) treated wntricularslrips from acari-bodo. Alier 15 min 3IId 45 min of

ryar;odin.: treatment under oxygenat.:d conditions. lorce de\'dopment was abom 80 % 3IId

0) % of the initial b'd respecti\·ely. Anoxia resulted in a r.:Jpid l.kcrease in force

ue\-e1opment 10 approximately 15 % of initial l"orcealler 30 min. Preparations declined tu

this level of po:rfonn3IIce regardless of kngth of pretreatment with ryanodine. The: degree

of recovery 10llowing reoxygenation was not afTected by changes in the duration of

ryanodine treatment and was similar to untreate:d controls. Untreated preparations

ro..'(o\-ered to appro.\:imately 48 ~'o of initial loree de\'e1opment while strips treated with

ryanoJine lor 15 and 45 min showed luree r.:-cowry to JJ O;g and 43 '% of initial levels.

respectively. Ryanodine had no noticeable eni:ct on resting tension during either

oxygenatcd conditions or anoxia.

1.3.3 5HD treatment

Figun: ~.~C illustrates loree and n:sting tension lor 5HD (l00 ~M) trealed

prepar.:Jtions. Under oxygenation. blocking mho K-\fp channels with 5HD tended to

allenuate twitch loree decay in ventricle strips. Aller 40 min. lorce de\-e!opment in 5HD

treated preparations was 79.8 ± 7.5 % of initial compared to 60.2 ± 7.9 % lor untreated

comrols. Following the onset of anoxia. force fell significantly less in 5HD treated than

in untreated strips so that alier 30 min 5HD treated preparations maintained more than

twice the % initialloree of untreated preparations (39.5 ± 7.5 % vs. 15.0 ± 1.7 %). Upon

reoxygenation. 5HD treilted tissue recovered significantly more contractile force than



untreated tissue. 10 a ma.ximum of on:r 91 % at ~O min reoxygcnation. compared to

approximately ~5 % of initial lor unln.-atoo strips Treating strips with 5HD did not

noticeably al1ect resting. tension.

Figure 2.2 Twilch force and rcsting tension (:i:: SEI for \·entricul.:lr strips from acari-bodo

exposed to anoxia (at ~5 min for all panels) and reoxygenation (at 75 min for all panels).

.-I: untreated tn = 5) 8: ryanodine (10 /lM)treatl,."<! (n = ~ lor 45 min inculxltion. n = 2 for

15 min incubation)C': 5HD (100 !-1M) treated tn = 5). ·P< 0.05 \"S. untreated

prep.:lrations exposed to anoxia and rcoxygenation (tl).

A c
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A funher experiment was performed 10 discern the time frame when 5HD was

exening its etTeets. Paired \·cntricul.:lr preparations were exposed 10 30 min anoxia

followed by reoxygenation with each strip receiving SHD (100 /lM) at a ditTerent time



(Fi\; 2.31. One p~par:llion was tre:lled throu\;hout the cxpcriml:nt whik tht: othcr

~o:i\.~ SHD in tnt: lilUl 5 min of the anoxic pt:riod. just belore rroxy\;cnation.

Prepar:J.tions pretre:l.led \\ith SHD tended to be slrongcr dwing anoxia. Reco\"~' was

similar in both treatments. suggesting that SHD W:iS affecting recovcry during

reoxygenation and oot during anoxia. Interestingly. !he force rc'C(wcry observed in both

tre:ltments of this protocol WilS less than that secn in tltt: prc\'ious set of expt:rimcnts in

which strips wt:re incubaled wilh SHD for 45 min befall: being subjected to anoxia I

reoxygenation. Changes in the lcn\;th of SHD incubation prior to ischemia can allcr the

agent's ability to inhibit preconditioning in rat hcart (Fryercl al. 2000). The rnl,.'Chanism

underlying this observation is not known.

Figure 2.3 Twitch lore.: and f'('stin\; tension (± SEller acari-bodo \'cntride strip

preparations treated with SilO (100 IJM) throughout anoxia and rt:Oxygen.1tion tA) and

strips treated. with SHD 5 min before reoxygenation (II)(n = 5).
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Discuuion

Hearts from :.c:1ri·bodo exhibited :. rern:l.fk3ble :.bilily 10 rccO\'er COntr.K:tilily

tallowin!; anoxia. ~p«:i3I1y considering the rel:'lin~ly high temper.uun: (25°C) :md

P3Cin~ r.uc (0.5 Hz) used in tI'M: presenl study. Anoxi:1 consisl~t1y n:su[ted in :1 rapid

dl.-'Crc~ in force in pn:p3r.:llions without pharm3Colo~ic:1[ 3gents (Fig 2.1. 2.2).

1)n:p3ralions Ihcn S<."eml.--d to reach 3 lower. conlrolkd siddy state which thcy m:.inl3ined

for at least 2 hours. substanti3ting previous obsc..'rvlItions on the exceptional anoxia

lokr.mce of this tissue tB::Iih::y et ::II. 1999). Ventricular strips maintained a levd of force

de\"dopment approximately half th3t of oxygenated controls alier 2 hours of anoxia. A

pn:\'ious observation of recovery of lorce during simulated anoxia (I mM sodium eN)

(Bailey et al. IQq9j WilS not seen with the experimental approoch USl:d in this study. Onl:

explanation olli:~ by Bailey et a!. (19QQ) W3S th3t ATP production ma)' havc been

impain.:d so quieL:l~' by eN thai energy demand initi311y outstripped supply but ATP

production was thl:n activated. le3ding to rttow!,)·. Thl: 13d: of 3 n:CO\'C!')' phase during

anoxi:1 in this study is consistent with this viewpoint. since oxidatin' phosphoryl3tion

would bo: impain..'1J mon: prugressi\'dy using N:. The non:1 finding of the current sludy is

th:11 toHowing n..'Oxygenation twitch lorce development rc:covers to levels ..-quivalent to

oxygenated. controls.

The loss of lorce obser.·ed during oxygenation has been obser.'cd for other species

in previous experimenls of this t)'PC: (Bailey cl al. 1(99). but the mechanism oflorcc loss

is unknown. Gesscr and Poupa (1981) lound that in resting flounder (Platk'hlhys Jll!.\·IL~)

myocardium. ~5Ca~' elllux decreased over 60 min. suggesting an over31110ss ofCa~·I.

Though similar c:vidence is not available lor acari-bodo myocardium. the obsc:rved force



loss may han: occurred because of a similar loss in Ca:-, activity on~r the experimenIal

period. The composition of the bathing medium used may nOi han: been optimal for this

species. resulting in a loss orCa:-; to the medium and a concominant d~line in loree. It

is also possible that prepar.ltions were over oxygenated and that the formalion of reactive

oxygen species IROS) damaged the myocardium. II is wdl established that ROS are a

major contribUlor to myocardial damage in mammalian hearts (Sa""'yer and Colucci

:!OOO). [n pn:liminaJ}' experimcms on ydlowtai[ lloundcr CLimanJa./i:rrll!:inl!t.l). the ROS

sca\"enger N-C2-mercaptopropionyll-glycine reduced lorce loss O\'er a similar time period

{data not shownl. suggesting ROS may impact on pcrlonnancc in the lish heart during

oxygenation.

Preparations also maintained resting tension during anoxia. suggesting no

significant increasc in Ca>; activity. Only following:! hours of anoxia was there any

\:vid"nce of an increase in resting tension. This is in contrast to studies with nonh

tempe",te fish that show large incn:ilSCs in resting tension lollowing :111 impairment of

oxidath'c phosphul}·lJtion. usually auribuh..d to an increase in Ca", acti\'ity (Dricdzic and

Gesscr 1994). Thc hean of <Ieari-bodo clearly has mechanisms to deli:nd against such.

1\'!any prepar..llions actually lengthened during the experimental period. The mechanism

responsible for loss of resting tcnsion during oxygenation and anoxia is not clear. [t is

possible that preparations were unable to maintain Ca:'; or that the composition of the

bathing medium used in this slUdy resulted in osmotic swelling of cardiomyocytes. which

lead to an increase in the o\"eratllcngth of the prepa"'tion (Carmcliet 1(99). Low-Oow

ischemia has also been shown to incrcase the dimensions of mammalian cardiomyocytes.

possibly as a result of collagen damage flu et al. 1999). Rcgardless. the important point
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in the context of this study is that resting tension is maintained under anoxia in acari-bodo

hean lor a considerable kngth of time.

2.3.4 Down regula/ion is probably due to decreased Ca!·;Qctivity

Ryanodine was used as an agent to assess the role ofSR in the down regulation of

twitch lorce and maintenance of resting lension. Ryanodine had no alfect on twitch lorce

or resting tension during ant>xia. indicating that the SR dues not contribute to Ca!"

trallicking on a beat to Ix:at basis in acari·bodo hean. If the SR was important. ryanodine

treatment should result in a decrease in lorcc as seen in ~'ellowfin tuna (Shids et al. 1(99)

or an increase in resting lensiun as occurs in eel heart preparalions (Bailey et al. 2000).

The Col> required 10 activate contraction in acari·bodo heart is probably derived from

inllux across the safl:okmm:Jl m..:mbrane dOl L·typc Col> channds and the Na"/Ca!'

exchanger as is the case in other lish species (Vomanen 11.J9S: 1(99). Mitochundrial Ca!

trallicking may also impact contrac:iJity in the acari·bodo heart. and this will Ix: discussed

below.

The r.Jpid down regulalion of force development and maintenance of resting tension

may in part be: a result of action potential shortening under anoxia leading to dL'Creascd

Ca!- entry across the sarcokmmal membr.,me mL-diated by sarc K,\l'I' channds as has been

hypothesised lor mammalian heart (Noma 1(83). Studies of this nature :Ire limited for

fish heart. but in r.Jinbow trout the rapid phase of force decre:lSC under anoxia is

associated with a transient decrease in action potential duration lollowed by a lengthening

to preanoxic \·alues in association with an increase in resling tension (Gesser and

Hoglund 1(88). In addition. Ganim et al. (1998) have shown that glibenclamide. a

)9



~.:ner.t1 KArP antag.onisl. can al1«t action IXltential dur.uion und.:r some circumstanc.:s in

g.oldlish. A componenl of fore.: down regulation may be attributable to san: K.u ,

opening.

1.3.5 .'lito Ii tTl' chnnrls "ndrr anoxia

SHD is consickred 10 ~ a hi~h1y sdective antag.onist of mito Kup activity in

mammalian heart IHu.:t at 199CJ). The cone.:ntr;llion of sUO US<.'d in Ihis sludy {I00

1J.1\·11 is at Ihe luwer end of those typically used in in\'estig:ltions on isolmed perfused

mammali3fl hearts (lor example Baker .:t al. 1998). Althuugh nothing is known

cuncerning dTceti\"c concenlr;uions of this agcnl in lish. Ihe nature of Ihe cu~nt model

madc il impossible to establish an optimal dose withoUl cafrlo'ing out an inordinale

number of addilional trials.

H...-ans lreal~ \\ith SUO developed grroler force under 3floxia lhan control

pr.:parallons. This is Ihe first evid.:nce. allJ,:it indirecl. of mito Ko\l1' ch:ll1nCls in Ihe lish

1\Qn. I am nol aware of any studies thaI relate mito K... l1' channd aeth'ity 10 ~rformance

during oxygen limitalion in~ from any olher species. A milochondrial contribulion

10 Ca~-. may be im'ol\"~ in Ihis response. MilO K,H' channels ha\"C be1::n linked 10

changes in mitochondrial Ca.:' Ou;< during ischemia in mammalian heart. AClivalion of

mito K,\ TI' channels results in a dcpolarisation of the mitochondrial membrane and leads

to reduc.:d Ca:' uplake and a releasc of stored mitochondrial Ca:- {Holmuhamcdo\' ct al.

1998: Holmuhamcdo\' et al. 1999). Since forcc dcvelopmcnt is inlimmely associated with

Ca:-j activity. alteralions in mitochondrial Ca:- cycling n~sulting from 5HD treatment

could conceivably alrC'C1 twitch lorce developmenl. Irres!,,-'Cli\"e of their mechanism of



Jction. the physiological implications of milo K,HP channel activation during anoxia

appear to be imponant in the hean of acan-bOOo. Resetting contractility to a lower steady

state during anoxia should conserve gl~'colytic energy stores and protect the heart from

injury al n..-oxygenation. Cardiac muscle is susceptibk to Ihe accumulation or Na-; and

Ca!-, ions during anoxia. which. along with s<:\"o:ral other factors. can damage the tissue

l!uringrL'Oxygenation.

1.1.6 Blocking J/ito KifI' ChUllllf!U 'f!sullJ ;n hypercont,actu,e

The extent of reco\"ery in acari-bodo heart lollo\\'ing an anoxic challenge is

masked by the fact that preparations maintained under oxygenated conditions also

shuwed a decrease: in twitch lorce. Reoxygenating untreated \'entrieular strips tollowing

J p<riod of anoxia resulted in a recowry of twitch lorce den:lopment to levels similar 10

oxygenated controls. Treatment with 5110 either before anoxia. or immediately prior to

rcoxygcnation resulted in significant hyperconlracture during n:o.'\ygenation. The

'!uestion arises as to \~hy the blockade of opened mito K.lTp channels leads to

hYP<fl:untracture in a tissuc that has thc capacity 10 reco\"er to control levels after an

anoxic episode. Studies with rabbit hean may lend insight into this paradox. Heart

mitochondria isolalL-d from chronically hypoxic rabbits ha\'e higher rates of ATP

synthesis than hearts from cOnlrol animals in associatiun with increased mito K,HP

channel aeti\'ity (Eells ct aJ. :WOO). 5HD treatment fL"Sults in a dccr<::asc in mitochondrial

A.TP synthesis in hi.'arts from hypoxic but not nonnoxic rabbits

I suggest that application of 5HD to the post-anoxic acan-bodo hean leads to the

closure of open mito K,\TP channels and subsequenlly impairs ATP synthesis. Given that



SR function is apparently lacking under these conditions. the dependence of

cardiomyocytes on extracellular Ca> may cause decreases in ATP production to

transiently potcntiatc force de"elopment via changcs in Na",. Inhibition of the Na"!K"·

ATPase. owing to decreases in [ATPJ. would re:sult in increased fNa",1 and a concomitant

rise in sarcolemmal C3'- innux "i3 re"erse Na-ICa"" exchange. Vomanen (1999) has

shown that rewrse N3"iCa'" exchange contributes at leasl 1/3 of the Ca'" required to

activatc contraction in the fish hean. In addition. decrcasing cxtracellular Na" rcsults in a

largc increase: in twitch lorce in eel and rainbow trout hC<lrt (Nielsen and Gessel 1(84).

Sincc lhe N<I"iCa> exchanger is sensitive 10 lhc e1eclrochcmical gradicnts for Na" and

Ca'" IVomanen 19991. incre<lSing Na", via inhibition of the Na"/K""ATP<lsc should mimic

lhc: dTc:cts of decreasing extr.1cellular Na". resulling in increased sarcolemmal (<I'" inllux

and the obserycd potentiation of twitch force. Once morc. <llihough lhis intcrprclation

must Ix vicwed with caution thc importance of mito K-Hp channds in acari·bodo heart

scemsclcar.

1.J.7 Conclusions

This study clearly shows the presence: of mito K.-\H channcls in lhe fish hean and

indicates their invoh'cment in a controlled down-regulation of twitch lorce during

impaired oxidativc phosphorylation. Rcseuing contractility to a lower steady state during

anoxia should conSCf\'c glycolytic energy stores and protc.'Ct the hean from injury al

n:oxygcnation. Funher study is necessary 10 charactcrise the activity of beth milo and

sarc K,\!p channels in the anoxia tolerant fish hean and define the mechanism by which

these channels control contractility. and to assess the functional difTerences between fish



.1nd mammals in the rok of K-np ch.:umels. Tho: o:xtremc anacrobic capacity along with

the rdali\-o: cdlular and whole organ simplicity of the acari·bodo ho:3f1 rnay pro\·o: to be a

powo:rful tool in clarifying the role of K.-nl' channels in dinical modds of hypoxic and

ischemicheandiseas<.
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J Evidence for M~'ocardial ATP·sensitive Ie Channels in Yellowtail

Flounder but not Atlantic Cod

3.1 Introduction

BOltom dwdling !latlish.:s ar~ known 10 ~xhibit substantial tolerance 10 cardiac

acidosis and impainnenl of oxidatin~ metabolism. \\ben subjt.'Cled 10 acidosis. cardiac

loree is initially potentiated in the llounder before slowl~- declining o\-er lime (G<:sser and

Poupa 19791. Gesser and Poupa (1978; 1(79) ha\'e suggested thaI inlrncellular acidosis

may trigger a rcleas~ of stor~d milochondrial Ca~' resulling in lhe obsen.'l.:d polenliation

of force production. ahhough this hypolh...sis remains untested in Ihe !lounder hean.

:\. r\'C~nt study b~' Ganim et al. (19981 un goldlish. as well as Ihc investigations

presented in Chapter 2 on the Amazonian armoured callish acari-bodo (Upo.uarL'll.l"

rwrd"lis). have implicaled adenosine 5'-lriphosphate sensitive potassium (1\..\1'1') channels

in the conlrol of contrncti!e funclion in anoxia tolerant fish h...ans. KoHl' channels arc

;lcti\'ated by;l dl.'cJine in the ratio of ATP/ADP and are therefore mostlikdy 10 contribute

to cardiac funl.'lion throughout periods of impairL"d ATP production. such as during

hypoxia. The obj<.'Ctiw of this study was 10 e\-aluale whl.'ther KArP channds an: involved

in the phenoml.'non of hypoxic force potentiation in the yello\\1ail J10under (Limundu

/i.'rruxim!u) hean. and 10 inn:stigate their role in cardiac perlonnance during anoxia and

rcoxygenation in lish species wilh ditTering tolerances to cardiac anoxia. Atlantic cod

jC;uJm' murhUUj was chosen lor comparison as it is gcnemlly believed to l.'xhibil poor

cardiac anoxia tolerance (Gesser and Poup:! 1l.J74; Hartmund and Gesscr 1996).



In mammalian heart KMI' channels have been described on both the sarcolemmal

membrane tsarc KHI') (Noma 1983) and on the inner mitochundrial membrane (mito

K,UI') (lnow: et al. 19911 and their activity has been linked with the cardioprotection

allorded by various means of preconditioning. Sarc Kup channels facilitatc cellular K'

dllux in mammalian cardiomyocytes and can therefore inl1uence membmne e1eclrical

properties (Ganim et al. 19(8) and extl.lcdlular K" concentrations (Kantor et .11. 19QO:

Vcnkalesh et al. 19QI: Wilde et al. lQQ01. Milo K,m channels allow mitochondrial K'

intlux. leading to declines in membrane potential and swelling of the matrix in the rilt

heart. D...polarisation ...an also ellcct mitochondrial Ca:' handling (Holmuham....dov et al.

19Q<}1. increase respiration. and alter the mtc of mitochondrial ATP synthesis

(Holmuhamedo\" el al. 1(98). Despile extensi\'e study in mammals. it is still not clear

whether the hypoxic cardioprotl"1:tion associated with the opening of K,\ 1"1' channels is

mediatcd by sarcolemmal or mitochondrial channels. or if both play an important role

(Sato"'l al. 1999: revie\\l'<i by Gross and Fryer 19(9).

Dillcrences in excilation-eontraction (E·C) coupling belween lish and mammalian

cardiac muscle may contribute to significant dillcrences in thc functionality of

sarcolemmal and mito K,\TI' channels in lish cardiomyocytcs. Unlike mammalian

cardiomyocytes which derive tilt: Ca~" needed lor contraction from intracellular stores

such as Ihe sarcoplasmic reticulum (SRI. fish cardiamyocytes rely heavily on trans

sarcolemmal Ca1
" inJlux to achic\'e conlraction (Vomanen IQ98: 1(99). The dependence

of tish cardiomyocytes on sarcolemmal Ca> tlux enhanccs the importance of membrane

bound ion channels and transporters in the modulation of contl.lctility. The role of KArr•
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channels in fish cardiomyocytes may. therefore. be quite different Ihan that of mammals

and could Ix: important in lhe beal 10 beat control of c3tdiac function in fish.

Thc contribution of K.~ rp channels \0 heart perlCmnance during anoxia and

reoxygenation was studied using isohlled wnlricular muscle strip preparations and

pharmacological agcnts largeling both sarcolemmal and milO KMP channd activit)·. This

study pn:senls c\'idence th:lt agents altering K,HP channel :lcti\'ity can impact on anoxic

contractility in wntricular muscle from yelIO\\lail !lounder. but not Allanlic cod. Species

spt:cilic dilrerences shown in fish cardiac K.Hr channels may therefore ha\'e implicalions

in anaerobic heart po:rlonnan<:e.

3.2 Malerials and Methods

Cultured yellO\\lailllounder (body mass 108.5 ± 5.1 g) and Atlanlic cod (body

mass 391.0 = 99.9 gJ m:re maintained in aerated. Ilow-Ihrough seawater tanks at bctWl.:.:n

6.5 and 7 "C and neutral photoJ>!:riod. YellolllaiJ Ilounder wcn: held in either ::!J5 or

I::!OU L tanks and I"-d commercial l~ed while cod were hdd in 8100 L tanks and led

c:ither commercial li.:ed or frozen herring.

3.1.J Tissue prepQrQI;On

Animals were killed b) a sharp blow to the head and doubl)' pithed. The heart ....as

quickly excised and placed in cold. oxygenated bathing solution. The balhing medium

was a standard solution lor marine telcosts and included 150 mM NaC!. 5.0 mM KCL

0.17 mM MgS04• l.5 mM CaCho 0.17 mM NaH~PO~. 2.33 mM Na~HPO~. 11.0 mM

NaHC03• with pH set 10 7.8 at 6 "c. 5.0 mM glucose was added as a metabolic fuel

"



(Dricdzic and Bail~,· \994). The '·~ntride was dissectt.'<i lree of th~ atrium and bulbus

arteriosus. bisected. and a strip approximately 1.5 mOl wide and <: [0 mOl in kngth was

l.:ut longitudinally Irom each s~ctiun.

Strips were moum<XI v~nicany in a tissue bath via a PI~xiglas clamp and allixed to

a Harvard Apparatus isometric torce transducer (Model 60·2994) using )-0 surgical silk.

Each bath comained 30 mJ of bathing medium held at 6 "c and gassed with either 0.5 %

CO~. balance O~ (oxygenalt.'li) or OJ % COl. balance N! (anoxia). Gassing with a

mixture rich in O~ ensurL'S adequate oxygen delivery. while the addition of a small

amount or CO~ provides a morc physiological environment lor the muscle preparation

(Oriedzic and Baiky 1(94). Mixcd gasses were not available lor previous e:<periments

(Chapter 2). Ganim et al. f \(98) han~ shown K,\rr channels to Ix: sensitive to acclimation

temperatufC in lish. so in an attempt to renect physiological conditions. experiments were

run as close as possibk to the acclimation temperature of the animals.

Strips were position...-d ~tween two platinum electrodes on the Plexiglas clamp and

stimulated to contract via lidd stimulation using a Grass model S<J stimulator with

\-oltage SCi aliSO % threshold and 5 msec duration. Strips were stretched to optimum

length tor loree production and allowed 30 min to acclimate at a pacing ratc ur 0.2 Hz.

Padng frcquency was 0.2 I-Iz for all experimems and spontaneously contracting strips

w~rc eliminated l'rom statistical analysis. A pacing rate of 0.2 Hz was chosen for

comparison with cxisting data on cardiac performance in other flattish and on Atlantic

cod (Gessel" and Poupa 1974).

Anoxic conditions were induced rapidl~ and re,·ersibJy by replacing the

oxygenat~d medium in the tissue bath with nitrogen gass~d medium. A reservoir of

"



medium was maintained at 6 ,'c in a waler-jacketed condenser and ~uilibrated with 0.5

% CO". balance N". During the switch to anoxia the tissue bath was gassed with 0.5 %

CO~. balance N~ and llushed with 150 ml of anoxic medium. Mechanical disturbance

was minimal during. the switch and preliminary experiments using a reservoir of

oxygcnalLoJ medium found the process did not aflectlarce de\·elopmcnt or the contractile

charactcristics of the preparation. The switch from oxygenated to ano:-;ic medium

required < I min and dissolVL-d oxygen in the balh was routinely < 0.1 mg/I. TI,) achie\"!;:

reoxygenation the uath was gassL>U with 0.5 % CO~, balance 0", resulting in saturation

within approximately I min.

The response of ventricular muscle to anoxia and reoxygenation was lirst assessed

in the abs..:ncc of phannacological agents. Control strips were gassed with 0.5 % CO~.

balance O~ for 85 min while treatment preparations were subjected to a 35 min period of

anoxia lallowed by 30 min of reox~·genalion,

The contribution of KMr channels to the response of ycllo"'ail tloundcr and cod

ventricular muscle to ano.xia was next assessed using glibcnclamide, an inhibitor of both

sarcolemmal and mito K,ur channels (Hu et al. 1999). 130lh control and trealment strips

\\we subj<:ctLoJ to a 35 min period of anoxia follow..-o. by 30 min of reo:-;ygenalion.

Glibcnclamide (5 11M) was initially applied 10 the treatment bath during the lirst minute

lallowing acclimation with the control bath receiving vehicle dimethyl-sulfoxide

(DMSO). Chemicals were reapplied immediately following the switch to ano:-;ia 10

maintain a constant concentration of agent in the bath. As discussed in Chaptcr 2, the

nature of the CUrTent experimental model makes it ditliculllO eStablish optimal dosages

for phannacolugical agents. Dosages lor all agents were chosen from the lower end of



the ran£~ of concenlr.ltions commonly employed in mammalian literature in an attcmplto

minimise the risk of non-specific or 10xic side elTeets.

The functiorul contribution of milo K-ur channels in the ydlo\\t3il flounder hI."3lt

"as I1Cxt in\-~ti£ated using. sodium 5·hydroxyckcanoic acid (SHOt a sP'>*'Cilic inhibitor of

mito Kur channl::1 funclion. Trials were run as alxn·e with glibenclamide ceplaced by

5HD 1100 I-l~·l) in ,.:ach insunce. Th<:: cllnct:tur.nion of5HD~ hl."re is al the low end of

those normally used in inwstigalions on isolalo..-d perfu~ mammalian hl."arts (Ioc

....xample Bakl."rclal. lQQ8).

In addition 10 5HD. diazoxide. a specilic milO K>\fp channel ope-ncr. was also used

to asSl."SS lhe cllcclS of mito KMI' channl."ls in ana....robic perlormance and r....cO\·.... ry in

ydlowtail 110undl."c and coo '"enlricular strips. Trials wer.... run as abo\·c with SHD

replaced with diazoxide (50 1J..\11 (Hu e::t al. [QQQ).

J.1.1 Drugs

.-\11 chemicals WI."C<." purchasl:d from Sigma 1St. Louis. MO. USA) with th<::

e::xc<."plion of 5HD .....hich \\as purchilSl:d from leN Bioml."dicals Inc. IAurora.. OH. USA).

B«ausc of their low solobility in walet". stock solulions of glibenclarnide (5 mM) and

diazoxidl." (l8 mM) were prepared in DMSO and stored al -20 "c in aliquots until just

before us<:. A 100 mM stock solution of 5HD was prcpar<::d in bathing medium and .....as

also frozen in aliquots unlil just bdorc usc. All chemicals were:: pipetted directly inlo lhe

tissue bath.

"



J.1.3 Data rmrllysis and Jtalislics

Force transducers \\ere intertaced to a Mxlab ~E computerised unil and data

wac coll~lc:d onlin.: using th.: :lCcompanying Chart soflware (or M3Cintosh. Data \\ere

recorded for a duration of 30 5« al 5 min int.:r\·als for all experimenlS and Sl.atislical

analysis is baso:d on the ;lxerag.e of 6 conlr.lctions at each recording interval. Peak t.:nsion

(~.. lorce) and ~Iing lension were calculated using Microsofl Excd and are expressed 35

a percenl of inilial t.:nsl0n dc\·dopmeni. DUt: to the high \'ariability observed. dal.a from

untreated. anoxia I reoxygenation tri:J.ls were pooled for more accurate comparisons with

untrealL-d o;"ygcnated preparations and 5HO tn:31ed preparations. Anoxia I reoxyg.:nation

tri3ls in which OMSO 1\'35 appliL-d 10 preparations were also pookd to pro\·id.: mon:

accurate comparisons with glibo:nclamide and diazoxido: treated strips. Slatislieal anal~'sis

of dala Wil5 perlonncd using the statistical packag.: SPSS \'ersiun 10.1 for Windows.

Sig.nilie:uu:e wil5tO:Slcd bl:lw.:en treatments using. a parnmctric r,:pc-.Jted measun..'S analysis

with a Bonferroni adjustmenl for multipk comparisons. Within tn:alment din~renccs

\\ere t.:sled using a one-way ANOVA.. P \';dues less th3n 0.05 were considered

sl.alisticallysig.nilicanl.

,.



J.J R"ulu

J.J./ "'"ox;Qlrwxygr"aliolf

rl!lIuwtuil jllJlmJl!r. Figure 3.1 sho""S peak lension 01tId resting tension for

untreated ~'ellowtail !lounder \'entrieular prepar.llions exposed 10 anoxi3 :lnd

reoxygenation. V..'TItricular strips from ydlowtail !launder show..od a consistent dccay in

loree dcwlopmcnt under I,lxygenal..od ..'Onditions 10 approxim:lIdy 57.5 % of inilial after

60 min. Resting lension also 1~11 by about 10 % during. oxygenation. The d...·dine in

resting tension accounh:d lor approximately I0 ~o of obscr......-d lorce loss alkr 85 min as

the museit' kngthencd and slretch dropped to less th3n optimum lor peak tension

Je\"clopm<:nt.

Force: produclion increased signilicantly abo\'<: o:<ygenalcd lcvds in yellowtail

Hounder following exposuTC to anoxia. peaking at 122 "I: 13 'I. aller 10 min. Force Ihen

J ...·dinc.-d O\'er the balance of Ihe anoxic period but remained ab()\'e I;:\'ds obseT\'ed for

preparations under oxygenaled conditions. Foree recO\'ct<d signilicanlly above anoxie

lc\'ds al n.'Oxygenalion before continuing to <kcline at a role 3pproximately cqual to thai

obseT\'ed belorc tclJxygcnation. Resting tension consistenlly 1~1I t:lpidly by

approximalely 10~'" during the inilial IU min of anoxia. before stabilising and lalling al a

ratc similar to oxygenaled controls. Reoxygen:nion did nol 3neet resting tension.

"



rigU" 3.1 Twitch f~ and resting t~nsion l± SE) for yello"uill1ounder and Atl3lltic

cod \"enlricular prepar.1tions exposed to oxygenatcl conditions (flounder n '"' 6. cod n • S)

and to 35 min of::moxia followed by rwxygenation (n" 10. both sp.:cies). Arrows

indicate points at which anoxia was induced (at time 20 min) and wh~n pI"C'par.ltions were

reoxygenatcd (at time S5 min). (J indicates signific3lltdifference between tre3tmenl. b

indiC3tes a sigJIifiC3l\t decrease or increase from measurelTk:l\ts within the treatment taken

immediately before hand.

Vello~'lail flounder

Alluticcod
- Anoxi:J I Rrox~,gen:llion

80 100

Time (min) Time (min)



Allunfic" CoJ. V~ntrick strips from ,"od exhibited 3. dec3.y in force production and

resting I~ion under oXYi;en:lIed conditions similar to ilial observed lor yellowuil

!launder. E.,:posing prep:lt3.tions to anoxia resulted in 3 signilicant decline in force

produclion relati"e to pre-anoxic Ie\"els. falling to 34.6 t 6.3 0/. of initial 3f1er 30 min;

howewr. anoxic tore..: d~\"I::lopment W;)S nol signilicantly ditTen:nt than that obser\'('(j for

oxygenall'1i controls, Following n..'oxygenalion. lore< r,,"Co\',,:n..'1i 10 !c"e!s much higher

lhan those ODs<:r\'ed lor o,,:ygenah:d controls (78.3 ± 10.9 % compared 10 46,0 ± IS'" %),

Although prcpar3tions show..:d signilicant lorce r,,-co\'cry rcl3tive to anoxic k\'c1s.

reco\'ery was non-si~!;ni ticant when compared to oxyg..:n:lled prepar3tions. owing to high

\'ariation in the rc..:o\'..:ring strips, Resting t..:nsion in cod pr..:par3tions did nOi ..:xhibit th~

same rapid decay at the ,.mS~1 of anoxia as exhibited by y-::llo\\1ail !lounder preparations.

and was generally nOI all\."Cled by anoxia or n:oxygenalion.

J.J.1 f( ,t,. contribution

Ji:llou·tuil jl"'ffldr:r. Figure 3..2 shows ~ak lension and r~ling lension dala for

ydlo\\tail nounder \"..:ntricul3.I mUSl.:lc preparations .:xpos.:d II,> anoxia and reoxygenation

and treated with 3g..:nts 10 alter KMI' channel 3Cli\'ity. Blocking KuI' channels with

glibcnclamidc d,,"Crc:lSl.'<i lorc..: production signiflC;J,ntly under oxygenated condilions in

preparations from ydlo\\1ail !launder, Although. despil~ an lwcraJt decrease in fore..:

de\'dopment. preparations continued to respond similarly to anoxi3 and reoxygen3tion.

Glibcncl3mide h3d no elli:et on resting tension in yeIlo\\1ail Ilounder \'cntricl..:

preparations,
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Inhibiting milo K,np channds with 5HD initially preser.cd force development

under oxygenation in yello\\taiJ llounder heart: however. it did not signilicam.y alleet

pt:ak tension during anoxia and reox~l!en:ltion. The milo K"'IP channd agonist diazoxide.

on the other hand. signilicantly diminat~-d the potentiation of lo('(;c production ob~l"'ed

in untrcated preparations exposed 10 anoxia. Diazoxide treated preparations did show

signitkant lorce rccovc~' over anoxic kn:ls when reoxygenatcd. but still tended to be

weaker than untreated strips. Resting h:nsion also tended to be more stablc during anoxia

in diazoxide treated strips. with nu rapid decline obscl"'ed at the onset of ano.'-.:ia.

Ditlcrem:es were nul statistically signiiicant howt:\"Cr.

.·fffwuit" ('od Figurc 3.3 givo.:s lorce and r~"Sting tension lor Atlamic cod \'entricul:lr

muscle preparations e.'\posed to anoxia and rcoxygenation and treated \\-ith agents 10 alter

KUI' channel aeti\·ily. Neither glibcnclamide. 5HD. nor diazoxide had any noticeable

ancct on lorce de\'elopment or ro.:sting tension in cod \"Cntrick preparations under the

eonditiuns lested. All preparations show a decrease in lorce development under anoxia 10

approximalely 33 % of inilial. Upon reoxygenation. strips immediately l\.'Covt:r to

approximaldy 88 % of initial torec dcvclopment.
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Figure 3,2 Twitch lorce and resting tension (= SEl tor yeIlO\.\,aillloundcr \'entricular

preparalions subjected to anoxia and reoxygenation and treated with agents to alrect K,\Tp

channel activity. Arrows indicate points al which anoxia was induced (at time 20 min)

and whcn preparations were reoxygenated (at time 55 min). .-I: DMSO treah:d (+)(n =

13) B: glibenclamide treated (_lIn = 81 (': 5HD treated (.l(n =6) 0: diazo,-.;ide treated

(eltn = 51. tJ indicates significant ditl\:rence ~tween tre:llmenl. h indicates a significant

decrcase or increase from measurements within the tr<:atment taken immedi:llely bclore

hand.





3.4 Discussion

The polentialion or loree exhibited by ydlowuil l10under \"entricle preparalions

ex~ !O nitrogen-induced 3Il0xia is similar to llut shown by other species of l1atlish

subjecled 10 acidosis IGo:s<r 3Ild Poupa. 1979: Hog.lund and G~ 1987: Poupa. and

Johansen 1975). locl"\::l$d in cardiac milch force production in lish an: generally agreed

10 resuh lrom incrc:l$t.-d intracdlular Ca~- (Ca!-;) acti\'ilY (Tibbits 1,.'1 a1. 19(1). It has bc..-en

hypothesised that :lcidutic force potentiation in c..'Ctothennic \"cncbratl,.-s may be du.: to :I

release of stored mitochondri31 Ca~' IGesser and Poupa 1978). Gesser and Poupa (1978)

found thal \"entricular strips from rainbow trout and l"i/Nra hl'rll~" exhibited increased

resting tension when pcrfusc..-d with :1 medium fr-:e of Na- and Ca~' Altering

sarcupla.~mie reliculum :K:ti,"ity with calkine did not all;"~t these changes. lhcrelore

Ic:n-ing mitochondrial C3> sto~s as the most likely explan:llion.

"



Figure J.J Twitch lorcl::ltld f\.'Sting tension (= SEI for .-\t1antic cod n:nlricular

p!"Cparations subj ...'t:t..-d to anoxi:13nd reoxygl:n:ltion and In:at...>d with ag.:nlS to alleet K,ul'

dunnel activity. Arrows indicat\: points at which anoxia was induc...>d lal timl: 10 min)

and when prepar.ttions w 'Tl: rroxygl:lJ:1ted lat time 55 mini, A: DMSQ t!"Calo:d (.)(n '"

131 B: gli~nclamidl: Irl:at -d (_lin'" 81 (': 5HD t(Qtcd ("J(n '" 5) D: diaroxide tI"Cak'd

te)(n '" 5), h indk,n 'S a signilicanl do:<:reaso: or incre:JS<: from masurcments within thl:

Ir\:atm,;-nt tak,;-n imm >diatcly 'xtore hand,
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In tht: current study di3Zoxide clearly diminat,:J anoxic 10m: pOIcntiation in the

yello\\t:til Ilournkr heart and it also tended [0 stabilise restinj; tension. Acute activation

of mito K.HP channels with diazoxidc h:ls be.:n shown to depolarise the iMer

milOchondrial membl"3nl: in the r;J.t he:art at 30 DC. kading to a rapid reduction in

mitochondrial Ca:· ~"Ont~1 and inhibitl,-''(I mitochondrial Ca:- uptake tHolmuhamo:do\· ci

al. 1(99). If the polentiation of force during: anoxia in flounder is duc 10 a bolus rckasc

of mitochondrial Ca:·. as sugj;esh."d by previous iO\·estigations. Ih...n our R.>sullS S\.'l:m 10

contrast Ihus..- observed in mammals. in that the activation of mito K,ur channels in the

Ilounder heart seems tll stabilise Ca"', during: anoxia. Its possible that in the fluunder

heart. Jiazoxidc rele3ses milllchondrial <.:a:· more slowly than in Ihe r;J.t hC3rt. likely due

to the rclath·e1y extn,:mc low tempo:raturc (6 DCI uS\.-u in this e:-.:pcriment. Follllwing a

period of di3Zoxide treatment. mitochondrial Ca:- I:ontent should ~ ncglibk. so that

\\hcn subj..~Ir,..d to anoxi:l. any large lorec pot...ntiation resulting. from a bolus rel...as.: of

mitochondrial Ca:' \\ould bt: dimilUto:d.

Thr.: obs<.'I'\·..-'d pt'I:S<.'rvation of n.>sting k'f\sion in diazoxidc treated pn.'par:llions

supports thc abo\·... h~ poth..>sis. Chang:~ in n.>Sling tension an.- lhoug:ht 10 relket

alter.:ations in r..>sting Ca:', tDrio:dzic and Gesscr 19Q~). th"'rclorc the obscl'\'lXI decrease in

n.osling tension al the onset of anoxia in untrt:aled Strips would pn:sumably be dlK to a

d..~rcase in Cil~-, activity. If diazoxide lreatment triggers a more gr;J.dual releas.: of

mitllchondrial Cal' 10 the cytoplasm. it could hdp to maintain [(a:';1 during anoxia and

,n-creom<: a net loss in Ca:', acti\"ity. kading to a prcs<:f\'ution of resting t<:nsion.

Although the abo\"!: result seems unexpcet.."d bas.."d on mammalian data. it is in lint: with



pre\"ious ObSCf\'alions on the anoxia loleranl armoured catlish heart in which blocking

<lctiw mito "-up channels <It .:!5 "C c<lused an increase ;n an<lerobie lorce dewlopmenl

(l:haptcr ':!I. 5HD had liltk ell,:et on the !launder hean at 6 ~C: however. it did

signitk<lnlly <llIenu<lle force loss during oxygenall:d conditions. suggesting that milo K,HP

channds may be <lcti\"<: 10 some extent umkr thes.: conditions. Since most studies

in\-oh'ing 5HD h<l\e been carried out on mamm<llian lissues al rdatively high

lemperalures. the dlicacy of 51-10 inhibition allow lemperatures is unclear. It is possible

,hal al 6 ole. 5HD is unable to elli;:(;ti\"ely block milo "--\lP channels to an eXlenl where

IlK'yean iniluencccontraclility in lhe fish heart.

Cilibl·m:lamide. \I-hich inhibits both sarcolemmal and mito KHI' channels.

signifieanlly reduced lorcc dc\c1opment in !launder \'entrick prepa:-alions during

oxygenation. but did nOl all':l:t the characlcriSlics of forcc Jc\"Clopmcnt during anoxia or

n."CI.l\'et:', This obscf\·ation. along with facl that 51-10 seemcd to hal'c thc opposite cll':ct

on lwitch force dcwlopment in !lounder \"Cnlriclc strips. suggesls lhat the lorce loss

incurred with gIibenciamidl;.' may be a result of a sarcolemma! rather lhan mito K.lfl,

ehannd contribution.

San.: K,\Tp channel aclil'ilY inl:rl;.'ascs in isolaled goldfish cardiomyocyles acclimated

to low temperatures (7 "C) (Ganim et al. 1(98). Channel actidty docs not Sl.'1:m to

inllucnce the characteristics of the action potential however. as glibcnclamide had no

ell,:ct on action potential duration when h.~sted at the acclimation temperature (Ganim et

al. 1<J98). Taking inlo account the Obl';OllS species specitic dilTerences fCI'caled by our

study. howel'er. Wi.': cannot rule out the possibility that glibcnclamidc could at1ect the

charocteristics of the action potenlial in ydJO\11ail llounder cardiomyoc)"tes. Our results



su!,;gest that safC K-\fl' channels are nonnally a<:tin: on a ~at to bc:at basis in the

yello\ltail !lounder hem at lhis h:mperaturc. and may thercli:m: be important in the

regulation ofeomr:letilit~

The observation of impaired lorel: dl:\'e!opml:m in glibc:nclamide trl:at.:d

preparations can not be explained based upon available literaturl: dealing with E-C

l.:ouplin!,; in eith.:r mammalian or !ish cardiomyo<:ytes. ThL"Orctically. blo<:king.sare KATP

ehannd acti\'ity with glibcndamidl.: should lengthen the duration of thl: aelion potential

and enhance Ca~' intlux through L-type ehannds. Inhibiting sarl.: KM1, a<:ti\'ity would

decreasl: net edlular K' elllux and cause the sarcolemmal membrane potential to become

mor.: positi\"C. r\ more positive membrane potential could. in tum. increase reverse

Na-/Ca~- e.'\change. which has been shown 10 contribule a signilicant amount ofacti\'awr

Cae.- at more depolarisd membrane potentials in the tish heart {Vomanen IQ9Q\. By all

accounts. glibcnclamide should haw raeilitatL'<! an increase in twitch loree del'dopment

through enhanced Ca::- inl1ux across Ihe sarcolemmal membr.me. Further investigations

on thl: membrane events associated with .sare K-Hl' l.:hannc1 opening are necessary to

explain this observation.

Altering K-\lp channel acli\'ity in cod ventricle strips did nol alll,."<:t lorcc

den:lopment or resting. tension under any or the conditions tested. The dala suggcstlhat

Atlantic cod do nol possess cardiac KxlP channels s.:nsiti\·e to thc pharmacological agcnts

US<.-d. or Ihat all of the factors nC<.-ded to aller Kup channel ,activity are nol present in Ihis

tissuc. KoHl' channel activily is sensitive 10 IATPj. Mg!·. and other nucleolide

concentrations as well as a host of olher I";}ctors (Terzic o:t al. 1995). The characteristics

of the intracellular .:nvironment in cod may lead to dillcrcnces in the activalion slate of
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KHl, .:hannds. and h~nce the dli:::ctivl:ness of channd modulators in this animal.

E\'olution:u:' dill'erl:ncl:s within tdl"OSt fishes. and bctwl:l:n fishes and mammals may

inllu.:nce the sl:nsitivity of K.HP channels to pharmacological manipulation which could

also haw implications when studying Ihe5l:' channels in more primati\'e wrtebr.lte he::ans.

This stud~'. along with the in\'estigation pre5l:'nted in Chapter :!. havt." shown the

potl:ntial importance of 1'.,\ Tr channels in the modulation of cardiac function in anoxia

tokrant fishes. The nO\'d dli:::cts of mito Knp channel modulators in the anoxia tolerant

lish heart modd suggests substantial ditlerences in the role of these channels o\'er Ihose

descriix'd tor morl: cumplex mammalian systems. Future studies should address in more

detail the exact mechanisms by which these channels inl1uence contractility in the fish

hl'art as well as their role in hypoxic cardioprulection in other cctothcrmic \·crtebnltcs.
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.. Summary

T'h.: 1l."Sc:3fch within this thl:5is tOcUS0:5 on th.: dTttlS of low oxygrn I':\'ds on ion

tr.1l1id.ing in the !ish h.:art. Cardiac muscle in fishes has ~n well studied: howe\"~r.

many drt:lils conc~ming ion flu.>; in cardiomyoc~'(es during anoxia are unkoo\\n. O\·.:r

the past dccade dinical e\'idence has accumu13ted showing ATP-sensiti\'e K' ctunnels

11\:-\.11" playa major role in protecting mammalian ocarts from injury during periods of

hypo.>;ia or ischemia yet almost nothing is known ofthesc channels in !ish. Ganim et al.

(19911) studied I\:UI' channels in goldtish cardiomyocyles but their IOl:uS W.:lS on the

wntribution uf theS!: channels to the physiology of t<:mpcr.lture acclimation. h HI'

channels op.:n when intracellular [ATPI falls. rendering them most likd~ to contribute to

hean function undcr conditions of metabolic Slfess. such as hypoxia. The dinical

J"no\\I<."C1ge~.along with the abo\'c memion..-d stud~ prompt..'\! my I'I:SCaICh into h.ur

channels in the anoxic fish heart.

Ctuptd I pro\·idl.'S background laJowlcdge on analOmy and ion cycling in Ihe lish

hean which is rcquir.."C1 to understand the cytological cn\'ironment in which K... rr channels

function and 00\\ they imeract \\;th other ccllular proccsses. 10 chaplt.:r ::!:. mito KArl'

chanod acti\'iIY \\35 consider\-d in acan-bodo. a sp..'\;ics of lish living at high

tcmperatures and showing cxtn:me cardiac anoxia tolerancc. Sincc acari-bodo inhabits

waters of 25 ~C or higher. the processes underlying contr.lctility were likely to be much

quicker and more pronounced than expected lor nonh tc:mpcrate zone lish ....s. which arc

gener.!lly acclimated to waters bdow - 15 "C.



Chapter 2 locussed on mito K,\TI' acti\'it)' due to the emerging consensus in the

literature tha! this channel was more imponant 10 mammalian cardioproteetion than the

sarcolemmal channel. Mito K,up channels had also ne\'cr been studied in the lish hean

and it S<..'Cm ...-d imponant to establish their presence belore continuing on to more detailed

investigations. It was also logistically more dillicult to study sare K,\II' channels due to

time constraints in th... lidd and because s~cilic agents lor manipulating sarc Kup

activity I\'erenot readily available.

In Chapter 3 an attempl was made to address both mitochondrial and sarcolemmal

Kul' channel actidly in two spcci ...s of cold-water marine tdeosts. Ydlo\\1ailllounder.

like acari-bodo. is thought to han: good whole animal and cardiac hypoxia toler-mce. As

ll<.:seribcd in chapter 3. most !latlish also exhibit a non-lypical cardiac response 10 ano.'da

relative to other species studied. Based on the results of the tir.;t study and b<:cause KUI'

channels arc so intimately in\'oh·...-d in hypoxic cardioprotection in mammals. I felt it

would be interesting to compare cardiac muscle from an anoxia tokrant spt.-cies

lycllo\\1ail !lounder). with thaI from a less hardy animal. Atl.:lnti..: cod was chosen for Ihe

comparison since previous !n\'esligalions have shown cod to haw rather poor cardiac

anoxia wleranee. The exp.:riment was designed to compliment the first study in Ihat it

prm·ided funher evidence lor the presence of milo KHI' channels in the Iish heart and

extended our knowkdge concerning lhe implications of channel opening under

physiologically relevant conditions.

The resulls presented in Chapter 2 showed that mito K\lI' ..:hannels were

imponant in acari-bodo hean. and they pointed toward a clear lunction of these channels

under physiological conditions. When myocardium from acari-bodo was subjected to

"



anoxia. mitochondrial K.\Ip ch3l1llels contributed to a do\\n rc:gulation of cardiac

contractility: an imponant function which would presl:Tve energy resc:rvc:s and allow the

heart to survi\·e long bouts hypoxia typically incurred by this animal. MilO K.\fl' channels

also contributc:d 10 a reduction in (a"-, loading in the acari-bodo heart during

reoxygenatlon. Reoxygenalion tollowing extendc:d hypoxia otien results in much more:

extensi\c: cardiac injury than hypoxia alone. a component of which is due 10 (a"',

loading. As such. limiting Ca"", loading and reoxygenation inju~' may b.: an important

part ufo\'erall cardiac hypoxia tokrance.

Chaptcr 3 pT<:sentcu c\·idence of interspecies dilli:T<:nces in the ability of KM1,

chann.:! modulators to alTcrt contractility in Ihe tish hcart. Though altering mito K-Hl'

channel acti\'ity in Ihc: ydlo\\tail Ilounder hean atli:cted contractility. a clear role lor

thes.: channels under physiological conditions was not clear. Blocking mito Ko\tp

channels reduced the dedine in lorce productiun observed during oxygenatL-d conditions

Lut had liule dl~ct on anoxic l,:ontractility in thc !lounder hean. [\·idence was presented

that sarc K \fl' channels may playa r..,1e in the regulati..,n of contractility on a i>o:at 10 bcat

basis in Ilounder heart. although further study with more specific pharmacological agents

would be useful in claril~·ing this. Interestingly. no evidence of K-\lp channels could be

found in Atlantic cod hean.

Flounder arc: generally thought to be more lolerant to anoxia than cod. and the

prc:sence of K.-\IP activity in the ycllo\\lail llounder heart is consistilnt with the hy'pothesis

thai thes<: channels contribute to hypoxia tolerance in the tish hean. Unfortunately thc

results preS<:nted in Chapter 3 did not point 10 a clear rok lor these channels in cardiac

anoxia tokrance. Rc:sults from cxperiments involving thc mito K,\l'l' blockcr 5HD were



somewhat oonsislant with those g:llhcr<.-d from acari·bodo hean in Chapt,;'r::!: howc\'er,

the extreme inllTSpecies diITL'fenct.'S belw~n ~ fish make il dillicult to draw

t.'Omparisons. Din~n:no:s in I~ characteristics uf the wool\: anim31 n=sponse 10 hypoxia

in~ lish may It.'ad to misleading rt.'SullS using an in \';Irv model. Ydlo\\t:Jillloundcr

:Ire normally Sl...ssile. spt.'T'Iding much of their time laying inacli\',;' on the boltom. whik

Atlantic cod at\' more ::.ctive. schooling fish. beu~ abk 10 <:s(:alX hypoxic walCrs lhan lhe:

!lounder. Unlonunatdy. il is urtekar how beha\'ioral dill~rences may inlluence hypoxic

contractility at the cellular l\:wl in thc tish hean,

The d:llu presented within this repon kuds to :Jdditiunal 4uestions regarding K,Hr

channels in the lish hean, The inl1uence or pharmacological channel blockers on

contlilctilit~' during oxygenat..:d conditions suggesl th:Jt in some lish. either mitochondrial

or san: K.\ II' channels may bc aClive un :J bcat to beat b~is. Wilh the exceptions

mcntion<."d earlier. mammalian studies ha\"l,~ gencr.tlly found Ihat ~,\II' channels:lre oot

aclin' undC'r oolTll:ll conditions. Elucid:lling IhC' l.'Ontrioolion of KArl' channels in thc

normoxic lish hl.-an nuy help to clarify PIOC\:SSeS in\'olvOO in E-e coupling and C'xplain

the apparenl differences bclwttn fish and mammals. Morco\·er. additional slUdy is

required on the rel:uionship betw«n milO K-\TP channels:md cardiac hypoxia lolerance in

lish. Hypoxia tokrance has bet:n extensi\'dy studied in lish: oowC'\'cr. Ihe inlormalion

prcsent<.-d within !"t:n:'-1ls :J new. pr':\'iously umkscrib.:rl m.:chanism by which prol<."Ction

may be achie\'<:d in the fish hean, The description of a nO\'l:1 means of increasing cardiac

hypoxia sUl'\'i,al in lish emphasises the need tor continuctl inwsligation into Ihis field.
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