
I

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAGES ONLY
MAY BE XEROXED

(Witho\lt Author a Perm11& on)

NOTE TO USERS

The original manuscript received by UMI contains pages with
indistinct print. Pages were microfilmed as received.

This reproduction is the best copy available

UMI

Modeling and Performance Analysis

St. John's

of ATM LANs

by

Michael E. Reid

A thesis submitted to the School of Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

April1997

Canada

1~1 National Ubrary
of Canada

Bibr10ttteque nationafe
du Canada

Acquisitions and
Bibliographic Services

Acquisitions et
services bibliographiques

395 Wellington Street
Ottawa ON K1 A ON4
Canada

395, rue Welfington
Ottawa ON K1A ON4
canada

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L' auteur a accorde une licence non
exclusive permettant a Ia
Bibliotheque nationale du Canada de
reproduire, preter, distnbuer ou
vendre des copies de cette these sous
Ia forme de microfiche/~ de
reproduction sur papier ou sm format
electronique.

L, auteur conserve Ia propriete du
droit d,auteur qui protege cette these.
Ni Ia these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou autrement reproduits sans son
autorisation.

0-612-36172-1

Can ad~

Abstract

Asynchronous Transfer Mode (ATM} is a method of data transmission using small

fixed-length cells. This thesis presents a model of an ATl\ti LAN which provides a

realistic representation of data transmission over the system by explicitly modeling

both the ATM network and the applications running over that network. Coloured

timed Petri nets are used to create a compact model that is capable of representing a

variety of different protocols at a high level of detaiL The model is designed to allow

easy reconfiguration or addition of detail at different levels of the system. Simulation

is used to evaluate the performance of the model, and results are compared to actual

data gathered from the Memorial University campus network.

ii

Contents

Abstract

Table of Contents .

List of Figures . .

List of Tables . .

A.cknowledgements

1 Introduction

2 Modeling Environment

2.1 Protocols

2.1.1 Application Protocols ..

2.1.2 TCP /IP .

2.1.3 Ethernet .

2.2 ATM

2.2.1 Basic Concepts

2.2.2 LAN Emulation .

2.3 l\ifemorial's Network . . .

iii

11

iii

vii

X

xi

1

5

5

6

7

8

9

9

11

12

2.4 Current Research . 15

3 Model

3.1 Petri Nets

3.1.1 Basic Properties .

3.1.2 Timed Nets ...

3.1.3 Coloured Petri Nets.

3.1.4 Model Semantics and Notational Conventions

3.2 Model Overview

3.3 User/ Application Level .

3.4 TCP /IP Level .

3.4.1 TCP

3.4.2 UDP

3.5 LAN (Ethernet) Level

3.6 ATM Level

3.6.1 AAL (SAR) Function.

3.6.2 ATM Switch .

3. 7 Generic Delay .

3.8 Discussion . .

3.8.1 Single versus Multi Session Models

3.8.2 Priority of Received Acknowledgements .

iv

17

. 20

20

23

24

..... 26

27

27

30

31

40

40

43

43

46

46

47

47

48

4 Model Performance

4.1 Data Collection

4.1.1 Network Monitoring Software: TCPDUMP .

4.1.2 Data Sources

4.2 Simulation Software . .

4.3 Model Tuning

4.3.1 Performance Parameters

4.3.2 Model Parameters .

4.3.3 Effect of Windowing in Trace Data

4.4 Model Results .

4.4.1 Model Validation

4.4.2 Protocol Results

4.5 Discussion ..

5 Extensions and Discussion

5.1 Extensions to the Model .

5.1.1 rviultiple Ethemets

..

5.1.2 Improving Packet Size Distribution

. ...

5.2 Discussion

6 Conclusions

Bibliography

v

.

50

50

51

51

53

55

55

60

68

68

69

75

86

88

88

89

89

93

94

98

A List of Acronyms 103

B Net Description Language 105

C Model- Net Description 108

vi

List of Figures

2.1 TCP /IP protocol stack. 8

2.2 AT~! protocol stack. ... 10

2.3 Typical data path - old backbone. 13

2.4 Typical data path - same virtual LAJ.\i. ... 14

2.5 Typical data path - different virtual LAN. 14

3.1 Reference :Niodel . 18

3.2 Basic Petri net model: producer/ consumer bounded-buffer model. 21

3.3 Basic Petri net model: coloured version. 24

3.4 High level view of modeL ... 28

3.5 User/ Application level model. 30

3.6 TCP /IP stack level model. 32

3. 7 Packet flows in model (single data type). 33

3.8 Packet flows in model (multiple data types). 35

3.9 TCP Source (SRC) process. 36

3.10 UDP Source (SRC) process. 41

Vll

3.11 Ethernet modeL

3.12 AAL (SAR) level- segmentation.

3.13 AAL (SAR) level - reassembly ..

3.14 ATM switch fabric.

3.15 Generic Delay

4.1 Data collection configuration.

4.2 Theoretical vs. actual Ethernet packet transmission rates.

4.3 Theoretical vs. actual cell transmission rates.

4.4 Model vs. actual ATM latency.

4.5 TELNET "'think time": actual and exponential modeL

4.6 Packet size distribution for FTP protocol (single value) ..

42

44

44

46

-!6

53

70

72

73

74

76

4. 7 Packet size distribution for FTP protocol (multiple packet types). 77

4.8 Network load by protocol- data rate. . 78

4.9 Network load by protocol- frame rate. 79

4.10 Network load by protocol- ATM data rate (send). . 80

4.11 Network load by protocol- ATM data rate (receive). 81

4.12 Network load by protocol - maximum ATM data rate per user (0.01 ms

burst)

4.13 ATM cell inter-arrival time distribution.

4.14 Load-induced network delay per packet ..

4.15 Load delay per packet - CU-SeeMe with TELNET /FTP.

Vlll

82

83

. 84

. 85

5.1 LAN Emulation configuration with multiple Ethernets

5.2 Effect on Ethernet and ATM load with multiple Ethemets. .

5.3 Revised packet size distribution for FTP protocol.

ix

90

91

92

List of Tables

3.1 Impact of TCP /IP functions on protocol behaviour ..

3.2 Mean size of data groups (in packets). . .

4.1 Relative Frequency of Network Protocols

4.2 "Next Packet Frequency" matrix for TELNET protocoL

4.3 "Next Packet Probability" matrix for TELNET protocol.

4.4 ''Timing'' matrix for TEL NET protocol (msec). . . .

4.5 Miscellaneous parameters for TEL NET protocol (1) ..

4.6 Miscellaneous parameters for TEL NET protocol (2). . .

4.7 Miscellaneous parameters for TELNET protocol (3) ..

4.8 List of model parameters (part 1).

4.9 List of model parameters (part 2) ..

4.10 Derivation of Group Band C timing parameters.

33

35

52

56

57

58

59

59

59

61

62

64

5.1 X: values for FTP packet size distribution. 93

X

Acknowledgements

I would like to thank the following:

• Dr. Wlodek Zuberek, my advisor, for his guidance and patience during the work
on this thesis,

• the thesis examiners, for their detailed comments,

• Memorial University, for financial support,

• the Department of Computing and Communications, for their willingness to grant
me both time and disk space,

• Rick Collins, who provided the CUSEEME data,

• my extended family, who provided sympathy, babysitting and meals,

but most of all my wife Susan and daughter Alicia. I could not have completed this
work without their patience and support.

xi

Chapter 1

Introduction

The transmission of information is usually performed by systems specialized for different

types of information. That is~ there are specific systems for data, others for video,

a third type for voice, and so on. A single system that can transport all types of

information has obvious advantages- for example, it could allow information carriers to

offer multiple services using one basic infrastructure. Another potential benefit could

be the true integration of services at the user station - i.e. voice, video, and data on

one user device.

One system that promises to deliver this integration is . .\.synchronous Transfer Mode.

or .ATM. The basic premise of ATM is that all information is divided into small fixed­

length data units (cells), which can then be sent across switching networks to be re­

combined at the receiving end. The challenge for an ATM designer is to ensure that

this cell transmission system can provide the correct behaviour for a video stream as

well as a phone call. This challenge has also resulted in a considerable body of research

1

into ATM related topics.

Since many of the performance promises of ATM depend on its ability to transmit

cells at extremely high rates with little or no loss of cells, much of the research has

focussed on switch design, with the input data represented by fairly simple models.

However, ATM systems are now starting to appear as data network backbones. One

particular method of using ATM to transmit data is LAN Emulation, which attempts

to simulate an Ethernet in such a way that the user is unaware that the AT~I network

exists. There has not been a great deal of study on how such an ATM backbone will

behave under a real network load, or how ATM will affect the applications using it.

This thesis presents a model of an A.TM LAN that provides a more realistic rep­

resentation of data transmission over ATM. It does this by explicitly modeling the

applications that are running over an ATM LAN, as well as the ATIVI network itself.

~Iost current research uses simple stochastic inputs or queuing models to describe an

ATM network; such an approach, however, ignores the synchronized nature of network

protocols. This synchronization is easily represented in the Petri net based model pre­

sented in this thesis. Furthermore, the model also represents the applications directly

in terms of protocols and number of active users, which permits the modeler to estimate

the impact of these variables on an ATlVI backbone.

Petri nets are a type of directed graph which have become quite popular for modeling

a wide variety of concurrent systems [41] _ Their similarity to finite automata eases the

understanding and utilization of Petri nets for most modelers of computer systems, and

the wide range of extensions to the basic net formalism allows the modeler to choose a

2

type of net that best matches his requirements.

Network protocols, especially those that have been continually refined like TCP /IP,

can exhibit quite complex behaviour. However, an analysis of network behaviour on

the campus backbone of Memorial University has shown that much of this behaviour

does not appear on a LAN in relatively non-congested periods of operation. If the

modeler assumes that behaviour under congested conditions is less important than

detecting when congestion might occur, then many elements of protocol behaviour can

be ignored. The behaviour that remains is remarkably similar across a set of protocols

carried on the Memorial network.

To capture this similarity of behaviour while still permitting the individual protocols

to act independently, the model is based on coloured timed Petri nets with exponen­

tially distributed firing times. Coloured Petri nets are useful for representing systems

that contain many repeated components; the different components can essentially be

superimposed on one another, and distinguished by associating the tokens in the net

with attributes called "colours". The coloured tokens can operate independently from

one another or interact as required by the designer. The structure of the net model rep­

resents the basic behaviour common to all the protocols, while the different colours are

used to represent the differences between the protocols, such as temporal characteristics

or packet size.

To allow the modeler to easily modify parts of the model, the net is designed in a

modular fashion in relation to a protocol stack description of the subject network. This

ability to easily change a particular section without affecting the surrounding parts of

3

the net permits separate testing of each module, as well as the power to re-arrange

or re-combine elements of the model to reflect different configurations of the subject

network.

Although analytical solutions are possible for many classes of Petri nets, the model

uses a number of theoretical extensions which prevent such analysis. Therefore, sim­

ulation is used to evaluate the performance of the net. This simulation is used to

investigate:

• the conformance of the model to real protocol behaviour,

• the cumulative effect of many users and protocols on a network,

• the effect of a particular protocol on an ATM LAN,

• the effect of different configurations of the subject network.

Where possible, the results from simulation are compared to data traces taken from the

subject network.

The systems and protocols modeled in this thesis, including a description of the

subject network, are discussed in Chapter 2. A brief survey of current research on

.ATM performance is also included there. Chapter 3 presents the model design in

greater detail, and describes some elements of the design process. Chapter 4 describes

the parameters of the model and the way they are determined; it also presents simulation

results and data trace comparisons. Some possible extensions to the model are discussed

in Chapter 5, with Chapter 6 summarizing the work and results.

4

Chapter 2

Modeling Environment

This chapter discusses some of the protocols and systems that make up the network

architecture modeled in this thesis. Some background information is provided, as well

as a description of how the systems are implemented in the Memorial University campus

environment. The chapter concludes with a brief survey of current research on modeling

and analysis of ATM networks.

2.1 Protocols

Protocol behaviour is a key part of any network. The discussion starts with the high

level application protocols, and proceeds down through the standard layer model to the

ATM cell level.

5

2.1.1 Application Protocols

The application protocols are those most familiar to network system users - they usually

act as the direct point of contact between the user and the network.

TELNET: provides a remote terminal connection from one host to another. TEL~ET

is normally used for text-based interactive computing. (RLOGIN, which performs

a similar function as TELNET, is combined with TEL NET in this thesis.) TEL­

NET is described in RFC 854 (see Section 2.1.2 for more detail on RFC's).

FTP: the File Transfer Protocol is probably the most commonly used application at

Memorial for transferring files from one host to another. It is described in RFC

959.

NNTP: the Network News Transfer Protocol is used for transferring USE!'J"ET news

articles from host to host. It is described in RFC 977.

WWW: the World Wide Web is the popular name for a global information system on

the Internet. The protocol used to transmit most WWW information is HTTP

(Hypertext Transfer Protocol), although actual WWW usage is often a mixture

of HTTP and other protocols. HTTP is specified in RFC 1945.

X Windows: 'X' is a client-server based system for the management of remote graphics

displays. X protocols and standards are maintained by the X Consortium, a group

of academic and industry users.

6

CU-SeeMe: Originally developed at Cornell University, CU-SeeMe is a videoconfer­

encing application designed to work over the Internet.

2.1.2 TCP /IP

The acronym TCP /fP (Transmission Control Protocol/Internet Protocol) [11) refers

to a suite of networking protocols that have gained wide acceptance as the basis for the

global Internet. TCP/IP was developed in the mid to late 1970s by DARPA, the Defense

Advanced Research Projects Agency. By early 1980 it had become the communication

standard for the ARPANET, the predecessor of the current Internet. The TCP /IP suite

has developed over time, with numerous extensions and improvements. All TCP /IP

standards are publicly accessible over the Internet, and are published in documents

called RFCs, or Requests For Comments.

The TCP /IP protocol stack (see Figure 2.1) is built on a connectionless datagram

service (IP), with primarily two higher level services- UDP, which offers a connectionless

service, and TCP, which provides a reliable connection-oriented service. Most Internet

applications use one of these two services to transmit data from one host to another.

Most of the protocols modeled in this thesis use TCP as their transport service, although

UDP is also discussed.

TCP (49] is designed to provide:

• basic data transfer,

• reliability (guaranteed delivery using positive acknowledgements),

7

TELNET FTP NNTP HTTP X OJ~~

TCP Layer UDP
Layer

IP Layer

Physical Layer

Figure 2.1: TCP /IP protocol stack.

• flow control {sliding windows),

• multiplexing (full duplex transmission),

• connection (handshaking for setting up and ending a connection, as

well as status information during the life of a connection).

There have been a number of additions to the TCP protocol. These are documented

in Internet RFCs.

2.1.3 Ethernet

Ethernet [37, 11] is a packet transmission system designed for Local A.rea Networks

(LANs). It is based on a shared bus topology, with control of the medium distributed

among the stations attached to the bus. A.ccess to the transmission medium is by a

method commonly known as CSMA/CD for Carrier Sensing Multiple Access/Collision

Detection. Each station can detect if another is transmitting, and, if so, refrains from

8

attempting to send. Once the medium is free, stations with data to transmit will

attempt to gain control. Since the start of the transmission takes a finite time to

propagate to all stations on the medium, it is possible that more than one station may

attempt to send at the same time (a "collision"). When transmitting stations detect a

collision, they immediately stop and wait a random period of time before attempting

to transmit again.

Ethernet normally operates at 10 Mbps, although there are recent standards for

operating Ethernet at 100 Mbps [39].

2.2 ATM

Memorial chose ATM technology to serve as the backbone of its campus network. This

section provides a brief description of ATNI and associated protocols.

2.2.1 Basic Concepts

Asynchronous Transfer Mode (ATM) [13, 18] is a method of transferring information

(i.e. data, voice, or video) using small fixed length cells. AT~I is connection-oriented; a

data transfer between two entities over an A.TlVI network will follow a path determined

before the transfer begins. Each data connection represents a different virtual channel

or 'circuit'. Although cells are always in sequence on any given virtual circuit, the

circuits are multiplexed together through switching devices and underlying media.

Although ATM is connection-oriented, it is intended to be used by a variety of

9

Higher Layer Applications

Ml-1 AAL-3/4 ML-5

L
cs cs cs

SAR SAR SAR AA

ATM ATM Layer

PHY Physical Layer

Figure 2.2: ATM protocol stack.

applications, such as LAN traffic or voice transmission. A number of interfaces called

A TM Adaptation Layers provide different classes of service to upper level applications

(Figure 2.2 shows the ATM protocol stack). AAL-1, for example, provides a constant

bit rate Time Division tvlultiplexor service suitable for voice transmission, while AAL-5

provides variable rate service for data blocks of varying sizes for LAN traffic. The AAL

layer is subdivided into two parts: Convergence Sublayer (CS), which prepares higher

level blocks of data for transmission, and the Segmentation and Reassembly (SAR),

which actually does the conversion of the data into cell payloads. In all cases, the

information is eventually broken into 53 byte (5 byte header, 48 byte payload) cells at

the ATM layer. The use of small fixed-length cells permits the design of very fast ATrvi

switching devices, as well as reducing queuing delay and jitter [13].

One of the strengths of ATM is that it is not tied to any particular physical medium

or transmission rate. ATM networks currently operate on both copper and fiber optic

10

media, with rates from Tl (1.544 Mbps) to OC-12 (622 Mbps). ATM standards are

set by the ATM Forum, an organization made up of telephone companies, software and

hard ware manufacturers, and interested user organizations.

2.2.2 LAN Emulation

Most existing applications requiring a network do not interface directly with ATM. Since

they are designed to use more traditional protocols such as IP or IPX [33}, there has

been a considerable amount of work in designing interfaces that allow these protocols

to operate over ATNL The upper level application is unaware that ATM is involved in

the data transfer- it merely sees the normal IP or IPX interface. The IP-over-A.TM

standards of the IETF (Internet Engineering Task Force) described in RFC1483 and

RFC1577, and MPOA [1] are examples of work in this area.

Another attempt to interface traditional protocols and systems with :\. T~1 is LA.N

Emulation [31]. This standard simulates a MAC layer (either Ethemet/IEEE 802.3

or Token Ring) over an ATM network. Any application or protocol that would nor­

mally operate over an Ethernet or Token Ring network can work without modification

on a LAN Emulation network - the presence of ATN[is hidden from the upper level

applications.

Each host that is part of an Emulated LAN is called a LAN Emulation Client

(LEC). Each Emulated LAN must also have devices that perform certain functions for

the Emulated LAN - these functions are:

11

• LAN Emulation Configuration Server, which provides locations

of other services,

• LAN Emulation Server, which provides locations of other clients in

the same Emulated LAN,

• Broadcast and Unknown Server, which simulates the broadcast

behaviour of a LAN by replicating broadcast type packets to all clients

of a particular Emulated LAN.

Most of these services are activated when a client (which can be a single computer or a

bridge between an ATM and an older type of network) first joins an Emulated LAN or

sends a broadcast packet. When one host wishes to send data to another on the same

emulated LAN, it uses the LES for that LAN to find the ATM level address of the other

host. It then sets up a direct ATM VC (Virtual Circuit) between the two devices for

the actual data transfer.

2.3 Memorial's Network

The data in this thesis are taken from the campus network of Memorial University of

Newfoundland .. At the time this thesis is being written, the University is transitioning

from a campus backbone based on Ethernet over fiber optic cable to an A.TM network

using LAN Emulation.

Figure 2.3 shows a typical data path over the old backbone at the University. Both

the backbone and the end-point LANs are 10 Mbps Ethernet, while the intervening

12

End-point
Ethernet

SRC
Host

devices are routers.

Router

End-point
Backbone Ethernet Ethernet

Router 0
DST
Host

Figure 2.3: Typical data path - old backbone.

The new ATM backbone replaces the Ethernet and routers in the middle of the

data path with an emulated LAN built on . .\TM. The end-point LANs attach to

ATM/Ethernet bridges which act as LAN Emulation clients. If the two end-point

LANs are in the same virtual LAN, then the data path is as shown in Figure 2.4; the

data flows between the two ATM/Ethernet bridges via a direct ATM VC. However! if

traffic is between two end-point LANs that are not in the same virtual LA.N, then the

data path is as shown in Figure 2.5; the data path includes a router as an intervening

device.

The links between the ATM devices are fiber optic cables using OC-3c SO NET

framing. (SONET stands for Synchronous Optical NETwork [18].) The normal raw

transmission rate of OC-3c is 155.52 Nlbps.

13

SRC
Host

End-point
Ethernet

1---- Bridge

OC-3c

Opflcaf
Rber

ATM
Switch

OC-3c

Op1fcol
Aber

Bridge

End-point
Ethemet

~ j
DST
Host

Figure 2.4: Typical data path - same virtual LAN.

SRC
Host

End-point
Ethernet

OC-3c ~\.....
Op1fcd

Rber
- Bridge ATM

Switch

Router

OC-3c

Op1lcat
Aber

Bridge

End-point
Ethemet

-)

DST
Host

Figure 2.5: Typical data path- different virtual LAN.

14

2.4 Current Research

ATl\11 is still very much a system under development. The .A.Tl\1[Forum is continually

producing new standards, and revising current ones. ~Iany aspects of ATM generate

fierce debate between researchers, vendors, and users of ATM equipment.

A considerable variety of modeling and analysis methods have been applied to ATM,

the main focus being the representation of input traffic to a switch or network of

switches. A summary of such methods can be found in [55]. Conti [12] provides an

exhaustive list of models applied to FDDI [28} and DQDB [9], while an older survey

in (51] categorizes modeling methods according to the OSI Reference Nlodel.

A common input model used in ATl\JI analysis is the l\JIMPP (Markov wiodulated

Poisson Process) [44]. This and related models are used in (58) and [14] to estimate cell

loss probabilities in ATl\JI networks. Queueing models are used to study transmission

delays in ATM networks [42, 43], and also buffer allocation within an A.T~I switch [32].

A "'fluid flow" model is used in [6] as an alternative to queueing models in studying

the ~leaky bucket" policing mechanism 1 in ATM. Other such mechanisms are studied

in (50] using an 1\IIMPP related model, while [16] uses teletraffic and signal processing

theory.

Direct simulation has also been used to analyze ATM performance. A. simulation

comparison of .ATJ\'1, Frame Relay [24], and DQDB is described in (48). (22] analyzes

a policy mechanism, and [8] describes a distributed simulation of a multi-node ATlVI

1 ATM supports Quality of Service (QoS) parameters; policing mechanisms are devices that ensure
a source complies with the contracted service levels in the network.

15

network. A simulator specifically built for ATM-based systems is described in [36].

The issues involved in operating traditional protocols over ATM has generated a

number of studies of IP performance over ATM. These studies have concentrated on

directly attached workstations - i.e. a host with an ATlVI interface card. The issue of

protocol overhead is examined in (7, 2], while (19, 46, 57] analyze the effects of TCP /IP

and system design on IP-ATM performance. [53] evaluates two strategies for effective

discard of packets in an ATM environment, while [38) examines in detail a deadlock

situation that can occur with TCP over ATM.

The study presented in this thesis uses a simple behavioural model of ATM. A

good agreement of simulation results with measurements indicates that even this simple

model is quite satisfactory for many performance analyses. The next section describes

the conceptual model used in this thesis, some background on the modeling technique

employed (timed coloured Petri nets)~ and the derivation and construction of the model

itself.

16

Chapter 3

Model

The interconnection of LANs with ATM networks is still a fairly new area of interest.

Many standards are still under development, and there remain some areas of fierce

debate, such as the best deployment of routing traditional protocols over an .. A.Tivl switch

network. Much of the research has concentrated on the behaviour of the ATM switches

themselves using abstract models to represent the data passing through the switch.

These models have generally represented broad classes of input - ~'data:' versus ""video" ~

for example. This creates an extremely abstract environment outside the switch. It was

felt that explicitly representing the higher-level protocols that drive the network would

provide a more detailed and realistic input model for an A.TM network. Furthermore,

in a production ATM environment such as the one at Memorial, the emphasis is usually

not the expected cell loss rates of the switches (for example), but rather what effect

using an ATM network has on the users who pass data across it.

The system modeled in this thesis is described in the reference model (Figure 3.1).

17

USER System

Application
Peer-nrPeer Communication

Appllccr.ton
Protocol ~·) Protocol

TCP/IP rc· Peer-tc:H'eer Communication) TCP/IP
Stack

f I
Stack

Bridge Bridge

Ethernet SAR SAA I Efhemet

I

ATMLayer

Figure 3.1: Reference Model

This reference model can be thought of as a "cross-section" through the backbone

configuration shown in Figure 2.4, using the classic network layer modeL

In designing the model, a number of broad goals were identified:

• The model should be modular. It should be possible to change the

behaviour of sections of the model without requiring major changes

to other sections. The modular approach also allows the designer to

gradually build the model from smaller pieces.

• The model should be closely tied to the physical implementation and

18

behaviour of the system studied.

• The model should have a high degree of flexibility. It should be possible

to easily re-arrange modules to represent different environments.

The modeling method used in this thesis is based on Petri nets [52, 41, 47]. Petri

nets have a number of advantages for modeling:

• Concurrency and synchronization is "naturally'' represented in Petri

net models.

• A sound theoretical foundation has been developed for Petri nets, as

well as a number of extensions to the basic concept. The many exten­

sions allow a modeler to choose a construct that best suits the system

to be modeled.

• There are a large number of software tools available for analyzing var­

ious types of Petri nets.

• Petri nets can be studied by analytical methods as well as simulation.

It was decided that the model will follow the layered structure of the reference model.

Each layer will be represented by a module of the net, allowing the modeler to change

a particular layer independently of the others. Where peer-to-peer conversations [56]

are involved (at the User/ Application and TCP /IP layers, for example), the preference

was to closely imitate the action of realistic peer-to-peer conversations - the data flow is

actually down through the lower layers in the stack and back up to the peer level in the

19

other half of the conversation. It was also decided to have all conversations originate

from one side of the network. This is a typical pattern for much of Memorial's network,

with many end-point LANs consisting entirely of personal computers that interact with

central servers for various functions. In this case, network conversations almost always

start from the PC end of the link.

Section 3.1 describes the basic theory of Petri nets, and the extensions used in this

thesis. Section 3.3 introduces the model for the upper layers of the reference model

(i.e., User/ Application), while Section 3.4 models the TCP/IP protocol stack. Sec­

tions 3.5 and 3.6 describe how the model represents an Ethernet and the AT~I network

respectively. Finally, some key model design decisions are discussed in Section 3.8.

3.1 Petri Nets

This section gives a short introduction to Petri nets and the extensions to Petri nets that

are used in the model. Some of the general references, such as [41], can be consulted

for further information and sources.

3.1.1 Basic Properties

The basic form of Petri nets, as defined in [47, 52, 41], is a bipartite graph made up

of a set of places P, a set of transition T, and a set of directed arcs A which connect

places with transitions and transitions with places. Tokens are assigned to places, with

the particular distribution of tokens among the places at any one time being called a

20

P2 P4 P6

Pl P3 P5

Figure 3.2: Basic Petri net model: producer/consumer bounded-buffer model.

marking. The behaviour of a petri net is controlled by the distribution of tokens and

the firing of transitions; a transition is enabled for firing when all the input places to

that transition contain tokens. The firing of a transition removes one token from each

of the input places and adds a token to each of the output places of that transition.

Figure 3.2 is an example of a simple Petri net. It represents two processes com­

municating via a buffer - one writes to the buffer and the other reads from the buffer

assuming the buffer is non-empty. The ''write" process is represented by place Pl and

P2 and transitions Tl and T2. When T2 fires, it removes one token from Pl and P3

and deposits single tokens into P2 and P4. This represents a "write" action to the

buffer. (The sum of tokens in P3 and P4 determines the buffer capacity.) vVith a token

in P4, T3 is now enabled, and on firing, removes the token from P4 (a '"read" action)

and deposits tokens into P3 and P5. Both Tl and T4 can fire, returning the producer

and consumer back to their original states.

21

The theoretical bases of Petri nets are well-explored; [41] provides an overview of

the subject. Petri nets can be used to determine a wide range of properties about

modeled systems. For example, [15] and [3) describe the use of Petri nets in protocol

verification - that is, ensuring that protocols operate as intended and are free from

deadlock or other design flaws.

There are a number of extensions to basic Petri nets. Inhibitor arcs (61] provide a

''test if zero" condition; a transition with inhibitor arcs is enabled if the places attached

to those arcs are empty of tokens. Another extension is the use of multiple arcs from the

same place and transition, allowing a transition to remove or deposit multiple tokens

at one firing.

Some properties of Petri nets are determined by the structure of the net without

reference to a particular marking. Part of this work is the study of conflicts, where

multiple transitions are enabled by the same marking, and the firing of one transition

prevents the other from firing. The simplest type of conflict in a Petri net is known as

a "free-choicen type, where multiple transitions share the same input places. Since all

such transitions are enabled simultaneously, the resolution of the conflict can be made

by assigning probabilities to each transition and making a random choice.

Two extensions to Petri nets that are important to performance modeling are de­

scribed in the next two sections: associating timing information with a net, and the use

of "colours" to distinguish tokens from one another. A. third section discusses in more

detail which extensions are employed in the modeL

22

3.1.2 Timed Nets

While basic Petri nets are useful in a variety of modeling applications, they do not repre­

sent events that take place over time. For example, the simple net in Figure 3.2 cannot

model the speed at which the read and write actions occur. There have been a variety

of methods proposed to add timing information to Petri nets. Timed nets (59] associate

a deterministic or exponentially distributed firing time with each transition. Stochastic

Petri nets (SPN's) [40] also assign exponentially distributed firing times to transitions~

but the two types use different procedures for handling the interaction between tran­

sitions and tokens. (This interaction is called the ''firing semantics" of the model.)

Some other classes of nets with timing information are Generalized Stochastic Petri

Nets (GSPN's)[34] which include both exponential and immediate (non-timed) tran­

sitions, and Extended Stochastic Petri Nets (ESPN's) [17] which use non-exponential

firing time distributions.

The model used in this thesis follows the timed net paradigm of firing semantics.

When a transition fires, the token(s) from the input places are removed at the beginning

of the firing duration, and then token(s) are deposited into the output places at the

end of the firing period. For example, to turn the sample net in Figure 3.2 into a timed

net~ we would associate exponentially distributed firing times with T2 and T3. When

T2 fires, the token would be removed from Pl until the end of the duration of that

firing, at which time tokens are placed in P2 and P4. Therefore, the transition T3 is

not enabled until the end of the T2 firing time.

23

P2

P3

Pl

Figure 3.3: Basic Petri net model: coloured version.

Nets with timing information have become quite common in performance modeling.

[35] describes a model of a LAN system similar to Ethernet, while [21] uses Stochastic

Reward Nets (a modified version of SPN's) to model operating systems.

3.1.3 Coloured Petri Nets

In basic Petri nets, all the tokens are considered identical- only the number of tokens in

each place is important. In coloured Petri nets [27], however, the tokens have attributes

called colours which make the tokens distinct from one another. Since there are now

different classes of tokens, transitions and transition firings become much more com­

plicated. To be enabled, a transition must not only have sufficient numbers of tokens

in its input places, but the tokens must be of the required colours. The number and

colours of tokens deposited in the output places when the transition fires must also be

specified.

24

The chief benefit of coloured nets is that they simplify the overall structure of the net.

Many net models, if designed using non-coloured nets, are made up of repeated subnets

combined together. For example, the net model of a LAN in [35] uses an identical

subnet for each station attached to the network. By using different colours of tokens,

these sub nets can be "folded" onto one another, and yet still operate independently.

Figure 3.3 shows a coloured version of the net in Figure 3.2. The ~'read" and "'write"

processes have now been folded together, with one token of colour r and another of

colour w in place Pl. Transition T2 now operates in two ways:

1. If a token of colour w is in PI and in P3, then T2 is enabled and, on

firing, removes a token of colour w from each of PI and P3 and places

a token of colour w in P2 and a token of colour r in P3.

2. If a token of colour r is in PI and in P3, then T2 is enabled. On firing,

it removes one token r from PI and one token r from P3, depositing a

token of colour r into P2 and one into P3.

The two events represented by T2 enabling are called "'occurrences17 of the transition,

each corresponding to one of the original transitions in the non-coloured net. It is

possible to fold the net even further into one with only a single place and transition. This

requires an additional colours and a more complicated transition description. Generally,

increased folding (reduced structure) results in more colours and greater transition

complexity.

Some simple examples of coloured Petri nets can be found in [27]. [23] discusses

25

hierarchical structures using coloured nets.

3.1.4 Model Semantics and Notational Conventions

This thesis uses timed coloured Petri nets to model the network system described in

the previous chapter. Infinite timed firing semantics is employed - tokens are removed

from the input places at the beginning of the transition firing time~ and several firings

of the same transition can overlap.

The model makes frequent use of free-choice structures, described by "'choice:' prob­

abilities. The model also uses ''marking-dependent" probabilities where the probability

of firing a particular occurrence is determined by the relative number of tokens of a

particular colour in an input place.

The following notation is used in the diagrams in this thesis. Places are notated by

the usual hollow circles. Immediate transitions are indicated by thin bars and timed

transitions by hollow bars. The notation 'kn', where n is a number indicating the

packet type from Section 3.4, is used next to arcs to indicate the particular packet type

removed or deposited by a transition. (All occurrences in the User/Application and

TCP /IP stack levels have the same packet types per arc.) If this notation is missing

from an arc in the User/ Application or TCP /IP modules, the arc is assumed to be "kO'

(i.e. a control token). If the notation is missing from arcs in the network layers, the

arc is assumed to have an occurrence for multiple packet types, as is the case for most

of the arcs in the Ethernet and ATM layers.

26

3.2 Model Overview

The complete Petri net model is shown in Figure 3.4 indicating the sections correspond­

ing to the layers of the reference model {Figure 3.1). The model can be considered as

a stack of identical superimposed nets, one for each application-level protocol. The

superimposed nets are wholly independent at the source and destination processes at

either side, but there are links between the layers at the intervening network sections,

representing resources such as an Ethernet which can only transmit one frame at a time.

Inside each layer, each transition can be thought of as a list of occurrences. This list

can grow up to the maximum number of sessions per application-level protocol. Agdin,

each session is independent of the others at the User/ Application and TCP /IP sections,

but interact at the network levels.

The remainder of this Chapter describes each section of the model in more detail in

relation to the reference model (Figure 3.1).

3.3 User/ Application Level

The basic model at this level is of a user running an upper level application (such as

TELNET, FTP, etc.) between two computers connected by a network. The user is

assumed to operate in the following way:

1. There is a thinking state, in which no transmissions occur.

27

Figure 3.4: High level view of model.

28

2. A request (e.g., a command) is sent to the remote computer. This

causes a data transmission from the originating host (labelled SRC or

" Source") to the destination host (DST or "Destination").

3. The SRC host then waits for a reply from the DST host (i.e., a new

screen or a data transfer).

4. The SRC host returns to the original thinking state, and repeats the

cycle.

Figure 3.5 shows the net model of the User/A.pplication level. The thinking time is

represented by the transition S_TNK, while the data transmissions are represented by

the "Network" transitions and dotted arcs. Control is transferred to the DST process,

which has a certain delay to process the request (D_TNK) before replying with a data

transmission back to the SRC process.

The token indicated in Figure 3.5 represents the initial marking for the model. Each

token indicates a single session (user) using a particular application-level protocol. Each

protocol is represented by a different token colour. Since the behaviour of the S_TNK

transition can be different for each colour, the colours separate the behaviour of different

protocols. The multiplicity of tokens of each colour in place S_8END represents the

number of simultaneous sessions of each protocol type. The infinite firing semantics

used in this model ensures that each session operates independently of all other sessions

in the model.

29

SRC DST
Nelwcrk

·······+·ORA···
D_WDAT

D_SEND

Figure 3.5: User/ Application level modeL

3.4 TCP /IP Level

When originally designed for the ARPANET, TCP /IP was built to work over slow point-

to-point connections. Sliding windows, positive acknowledgements, re-transmissions,

and piggybacking helped improve reliability and performance of the protocol on con-

gested links. In a LAN environment, however, some of these techniques are rarely seen.

Re-transmissions, for example, are relatively rare in Memorial's internal traffic (intra-

LAN or inter-LAN) as opposed to LAN to Internet traffic. This is a function of both the

small delay times found in the LAN environment as well as the much smaller probabil-

ity of packet loss. Since increased functionality results in increased model complexity,

a trade-off point must be reached where enough functionality is included to provide a

reasonable approximation of system behaviour.

30

3.4.1 TCP

Figure 3.6 shows an outline of a net model of the User/ .A.pplication level with a

TCP /IP stack. (A more detailed diagram of the TCP /IP stack is shown in Figure 3.9.)

The stack provides a TCP (connection-oriented) path between the SRC and DST pro­

cesses at the User/Application level. It provides the following functionality:

• Transmission and reception of data packets.

• Positive Acknowledgements. The SRC or DST processes send back a

packet to acknowledge the successful receipt of a data packet.

• Piggybacking. Rather than send a specific packet to acknowledge a

previously received data packet, the process may embed the acknowl­

edgement in the first data packet that it returns to the other process.

• Sliding Windows. A process does not wait for an acknowledgement

before sending the next packet. Instead, it has a "window" of unac­

knowledged packets at any one time.

The TCP /IP model shown in Figure 3.6 assumes that packets cannot be lost, and

that a SRC or DST process will always respond fast enough to prevent re-transmissions.

Table 3.1 shows the number of packets involved in a particular TCP function for various

packet traces from Memorial's network backbone. Note that the functions are not

mutually exclusive- a packet can be both an acknowledgement and a re-transmission.

(The relatively large number of re-transmissions for the X protocol are probably the

31

t­
CI)

0

()
a:::
Cl)

Figure 3.6: TCP /IP stack level model.

32

Function Frequency in Trace Data
TEL NET FTP NNTP X

.Acknowledgements 33% 35% 33% 24%
Piggybacking 31% 18% 21% 74%
Re-transmissions 1.5% 2.9% 8% 27%
Sliding Windows 1.9% 31% 31% 26%

Table 3.1: Impact of TCP /IP functions on protocol behaviour.

OATA(3)

aSRC -:::::~------------A
... ----- ~tL----:0

... __ -- ~~- ----

Figure 3.7: Packet flows in model (single data type).

result of a long network path from source to destination across the campus network for

the connections included in the raw data.)

While the User/ Application level is only concerned with the data flowing between

the SRC and DST processes, the TCP /IP level deals with data and acknowledgements,

since TCP provides guaranteed delivery. We can broadly characterize the types of

packets flowing between SRC and DST into four types (see Figure 3.7):

1. DATA{1}: SRC to DST: data packet,

2. ACK(2}: SRC to DST: acknowledgement packet,

3. DATA{3): DST to SRC: data packet,

4. ACK(4): DST to SRC: acknowledgement packet.

33

(The notation DATA{l} describes the type of packet. The numeral in parentheses

distinguishes the different packets, while the remainder of the name is a reminder of

the packet's function. For example, a DATA(3) packet is type 3 - a data packet from

the DST process to the SRC process. The 'DATA' part of the name indicates that the

packet carries actual application protocol data.)

Piggybacking is assumed to be a part of all data packets. That is, if a process

expects an ACK for a previous transmission, it will accept a DATA. packet as both a

new data transmission and an implicit acknowledgement of the previous transmission.

However, most network applications send a group of data packets, wait for a group

of packets in reply, send another group, and so on. Table 3.2 shows typical data group

sizes (in packets) for various application-level protocols. For real network processes, the

end of a group can be detected through the data contained in the packets. A TELNET

session, for example, echos keystrokes until it reads a carriage return character, at which

point it processes the command. The model does not have any information about the

contents of the packets, so a different mechanism had to be found to signal the end of

a data group. This was done by creating two more packet types (LST(2) and LST(5))

to represent the last packet in a data group (one for each direction). This brings the

total number of packet types (per application protocol) to six. The revised packet flow

diagram is shown in Figure 3.8.

Each process sends a certain number (possibly zero) of MID packets, followed by

a single LST data packet. (It is assumed that the receiving process is sending back

34

II TELNET I FTP I NNTP I X I
SRC to DST 1.32 11.6 1.02 1.70
DST to SRC 1.46 9.8 5.75 1.72

Table 3.2: Mean size of data groups (in packets).

---~---

Q
SRC,,: _:-:: :::i%-_-_-_-~ .. --..

0
... : OST

... ~

-- - -- -~)-- - --
... ... ---- -~~- ----... , ____ ~) _____ ...

Figure 3.8: Packet fiows in model (multiple data types).

acknowledgment packets for each data packet sent.) When the receiving process detects

a LST packet, it knows that the sender has finished the data group and is now ready

to receive data packets in reply.

In the model, one colour is used for the User/ .Application level, and a further six

colours are used for the six packet types representing the lower level behaviour of an

application protocol. For example, a model of FTP applications would use one colour

for the user session state, and six more for packet types transmitted between processes.

A model of FTP and TELNET would require 14 colours, and so on.

This distinguishing of packet types also allows the model to represent behaviour

based on packet size. For example, the transmission delay of a packet through a network,

which is often dependent on the size of the packet, can be based on the mean packet

size for each type, rather than the overall mean packet size.

35

S_LAK

Figure 3.9: TCP Source (SRC) process.

36

Figure 3.9 shows the model of a SRC process combining the User/ Application level

and the TCP/IP leveL Control tokens cycling through places S...IDLE, s_sEND, and

S_ WDAT represent the User/ A.pplication level shown in Figure 3.5. vVhen the control

token is in place S...SEND~ both transitions S_8MD ('Send MID') and S_8LT (~Send

LST') are enabled. This forms a free-choice structure, which is controlled by choice

probabilities assigned to the two enabled transitions. For example, by assigning choice

probabilities we can cause S.-SMD to fire in 20% of cases, and S....SLT in 80% of cases.

When S...SMD fires, it places a token representing packet type :VIID(1} into place

N_8END...S, modeling the host attempting to transmit a data packet through the next

layer in the reference model. .A control token is also removed from place S _WIND. If no

tokens are present in S_ WIND, it indicates that the number of unacknowledged packets

in the sliding window is at maximum, and no more data packets can be transmitted until

some acknowledgments arrive. Control tokens are also deposited in places S_ WACK

and S..MSNT. At this point, the token in S_WACK waits until an acknowledgment

packet (ACK) arrives from the DST process, at which time transitionS_ WAK fires and

deposits a control token back in place S_ WIND (i.e. the sliding window moves forward

by one packet). S_FTR will fire as well, returning a control token to place S_9END.

Since we have returned to the free-choice structure described earlier, this cycle will

continue for each time S-.SMD is fired (sending a MID{l) packet) until S_8LT fires

(sending a LST{2) packet indicating the end of a data group).

The size of the data group is determined by the probability assigned to S...SLT. If

pis the probability of choosing S..SLT, then the size of the data group is a geometric

37

random variable (54] with probability density:

P{ ... Y = n} = {1- p)n- 1p, n = 1, 2, ... {3.1)

Since p can be different for each application protocol, it is possible to model the mean

data group size on a per-protocol basis.

When S_8LT fires, transmitting a LST(2) packet and ending the data group trans­

mitted by the SRC process, it deposits a control token into S_WDAT. This represents

the User/ Application level in "wait" mode; a command or request has been sent to the

DST process and a reply should arrive at some point. The model needs to handle the

arrival of~IID{4), LST(5), and ACK(6) packets in place N...RECVS, which represents

the TCP /IP stack accepting a packet from the lower layer in the reference modeL

An ACK(6) packet is handled by transition S_KAK, which removes the token from

NRECV _s and simply returns the control token back to S_ WDAT. The inhibitor arc

from place S_WACK to S.KAK enforces priority for received ACK(6) tokens. (See

section 3.8.2.)

A MID{4) packet arriving in placeN_RECVSis handled by the transition S_WMD~

which deposits an ACK(3) packet in place N..SEND....S to acknowledge the MID(4)

packet. (MID type packets are always acknowledged in the model.)

i\.n arriving LST(5) packet in place N...RECV _s indicates the end of the data

group from the DST process. At this point, the SRC process can either return an

acknowledgement for the LST(5) packet, or start the transmission of the next data

38

group immediately, which implies that the acknowledgement is piggybacked onto the

first data packet. This is modeled using a free-choice structure. When a control token is

in place S_WDAT and a LST(5) token arrives in place N_RECV _s, either transition

S..LPB will fire with probability a, or S_LAK with probability 1 - a. Piggybacking

is dependent on host and application factors; if an application is ready to send data

when a LST{5) packet arrives, or the host/application can generate a response within

a short period of time, the TCP /IP stack will send the data with the piggybacked

acknowledgement. Otherwise, it will send a specific ACK(3) packet to inform the DST

process of the successful arrival of the LST(5) packet. The parameter o can vary for

each application-level protocol.

Once an arriving MID(4), LST(5), or ACK(6) packet is handled by the SRC process,

the process reverts to the start state, either through the transition S_IDLE, indicating

that the User/ Application level requires processing time (and an acknowledgement has

been sent), or directly to place S.J)END to start the next data group from the SRC.

This represents the piggybacked case, where the User/ Application is ready to send data.

The DST process is an exact mirror image of the SRC process from a structural

point of view, and follows the same cycle. However, it exists in the opposite state as

the SRC process (i.e. it waits while the SRC process is sending data, and vice versa),

and it typically has different timing parameters, since the responses of the DST usually

represent software replies to a command or query.

39

3.4.2 UDP

UDP provides connection-less service between two hosts. ~Iuch of the functionality

required in a TCP model is not needed for UDP; UDP leaves reliability of service issues

to the higher layers in the protocol stack. As a result, a UD P model does not need

the windowing, acknowledgement, or piggybacking functions described in the previous

section.

A UDP process is modeled as a subnet of the TCP process. Figure 3.10 shows a

UDP process subnet, with the unused TCP portions shown by dotted lines. The UDP

model basically trades data groups, with the SRC process sending a series of ~IID(l)

packets followed by a single LST(2) packet to the DST process. (UDP does not use

acknowledgements, so the timing between packets is dependent on the application.)

.-\s in the TCP process, the size of the data group is modeled as a geometric random

variable.

Once the DST process receives the LST{2) packet, it begins transmitting its own

data group, finishing with a LST(5) packet. The SRC process then begins again.

3.5 LAN (Ethernet) Level

The Ethernet level of the reference model is described by a simple net structure that

performs two basic functions: a) it adds a transmission delay for each packet, and

b) it forces the different application protocols to interact. (Except for the windowing

mechanism at the TCP /IP level, each session of each protocol has, until now, been able

40

N_seiD_S

S_l.AK

Figure 3.10: UDP Source (SRC) process.

41

AE_IDLE

Figure 3.11: Ethernet model.

to operate independently of the other sessions.)

This Ethernet model assumes that all sessions are on unique hosts. That is, inter­

actions between sessions on the same host are ignored. This is reasonably accurate for

the SRC processes if we assume that these processes orginate on PCs on an end-point

LAN. It is less accurate for the DST processes, since these typically represent a smaller

number of servers. However, delays caused by buffering on the host are included by de­

fault in the timing parameters used in the modeL The collision mechanism of Ethernet

is not modeled.

Figure 3.11 shows the model of the Ethernet layer. The controlling place AE..IDLE

contains one token, which ensures that only one occurrence of transition AE_8 can

fire at the same time. The actual transmission times are modeled by deterministic

transitions, which are unique to each packet type of each application protocol. The

occurrence probabilities of AE-.S are marking-sensitive, which results in a colour being

chosen based on the relative frequency of that colour versus the other colours in the

42

input place of the Ethernet.

3.6 ATM Level

The ATl\vi level of the reference model has two subsections: the A.A.L layer~ which

provides the Segmentation and Reassembly (SAR) functionality (i.e. dividing packets

into cells and vice versa), and the cell switching functionality of the ATlVI layer itself.

3.6.1 AAL {SAR) Function

The AAL layer is modeled in two sections. The first (Figure 3.12) shows the "segmen­

tation" part of the layer - it takes a token in the input place representing the arrival

of a packet, and generates a series of tokens representing a number of cells for trans­

mission over an ATM switching network. The second section (Figure 3.13) represents

the reverse process. It inputs a number of cells and re-creates the original packet for

transmission to the next layer.

These SAR layer models take advantage of the fact that AT~I is connection-oriented

- cells for a particular packet must arrive in order, and there cannot be any interleaving

of cells.

In the segmentation section, a token deposited in place SAR...IN ..PDU represents

the arrival of a packet at the AAL level. Place SAR_IN ..Pl, containing one control

token, ensures that only one packet is segmented at a time (i.e. only one "packet"

token passes through to SAR..lN..P2). Place SAR_IN..P3 controls the number of

43

Figure 3.12: AAL (SAR) level - segmentation.

SAR_ our_ POtJ

Figure 3.13: AAL (SAR) level - reassembly.

44

cells that are generated by each individual packet type. For example, if packet MID(I)

of the TELNET protocol is, on average, divided into 5 cells, then 5 tokens of the colour

representing the TELNET MID(I) packet are placed in place SAR...IN _F3. When a

token is deposited in place SAR_IN _F2, transition SAR...IN _T3 will fire a set number

of times determined by the colour of the token in place SAR...IN _p2, thus generating

a specific number of cells for each packet type. When the last cell has been generated,

all tokens of the current colour have been removed from place SAR...IN _F3. This

enables transition SAR_IN _T2, which removes the token from place SAR_.IN ..P2

(indicating that all cells have been generated), replaces the required number of tokens

in SAR...IN ..P3 (to segment the next packet of this type), and returns the control token

to place SAR...IN_Fl, to start the segmentation of the next packet.

The reassembly section (Figure 3.13) operates in a similar manner to represent the

re-creation of packets from a stream of cells. Tokens are deposited in place

SAR_OUT _CELL representing the arrival of cells at the SAR layer. Place

SAR_OUT_pl contains a number of coloured tokens for each packet type equal to

one less than the number of cells the packet is divided into. As cells arrive, they are

removed by transition SAR_QUT_Tl. Place SAR_OUT..P2 contains one control

token to ensure that only one cell is "re-assembled" at a time. When all the cells for

a packet have arrived (indicated by the removal of all the tokens for that colour from

place SAR_QUT_Fl), transition SAR_OUT_T2 fires, depositing a single token of the

re-assembled packet's colour in the output place SAR_OUT_pnu. SAR_OUT_T2

also returns the correct number of tokens to place SAR_OuT_pl in preparation for

45

UNKl_IDI.E SW_IOLE I..!Nk2 _IDLE

Figure 3.14: AT~l switch fabric.

DLY_IOLE

Figure 3.15: Generic Delay.

the next cell stream for that colour.

3.6.2 ATM Switch

The A.TM switching fabric is modeled by a series of delay modules as shown in

Figure 3.14. The delays represent the latencies of the two OC-3c SO NET links and the

ATM switch (Figure 2.4). The use of three delays rather than one longer delay allows

a stream of cells to move through the layer with several in the system at any one time.

3.7 Generic Delay

Figure 3.15 shows a generic delay mechanism for adding timing delays in the model

46

where appropriate. Transition DLY _Tl has an occurrence for each packet type, so the

delay can be set uniquely for each type. Place DLY _IDLE contains a single control

token to ensure that only one occurrence fires at a time. Delays such as this are used

to model bridge latency, for example.

If a delay is required where uniqueness is not needed, a simple transition is sufficient.

3.8 Discussion

In any model design process, the modeler must make design decisions that can have a

major effect on the usefulness of the model. This section describes two such decisions

in greater detail.

3.8.1 Single versus Multi Session Models

A key element of the design of the model is that it should be able to represent multiple

simultaneous conversations of a set of application-level protocols. Some information

is lost, however, in the multi-session version. There are multiple control tokens in

operation, and there is no way to exactly match a particular control token with the

other tokens it generates. For example, S-.SLT fires, sending a LST(2) packet to the

DST process and placing a control token in S_ WDAT. There is no difference between

an arriving LST(5) caused by our particular control token, and by an earlier or later

firing of S....SLT.

To verify that the multi-session model is still valid, a model with a single protocol

47

and n sessions was compared to a model with n unique single-session protocols, each

with parameters identical to the multi-session model. The multi-protocol model more

closely resembles reality, since the unique protocols completely separate the n sessions

in the same way that connection ID's and sequence numbers separate packets on a real

network. (The multi-protocol model requires many more colours and is not feasible for

large numbers of sessions, however.) It was found that the multi-session model gave

slightly higher results for packets and bytes per second, but the differences between

the models were not statistically significant (p = 0.552) when compared using standard

hypothesis testing [25].

3.8.2 Priority of Received Acknowledgements

An A.CK(6) packet deposited in place N ...RECV ..S (Figure 3.6) is either acknowledging

a previously transmitted ~IID(l) or a LST(2) packet. TCP normally uses sequence

numbers (see [49]) to differentiate between the two cases. However, since the model

does not reflect that level of detail, a simpler mechanism is required. In a single-session

case, where there is only one user per protocol, the location of the control packet

determines which data packet is being acknowledged. That is, if a control token is in

place S_WACK, representing a transmitted MID(l) packet, then the acknowledgement

is for that packet. Otherwise, if a control token is in place S_WDAT, then the model

correctly accepts the acknowledgement for a transmitted LST(2) packet.

In the multi-session version of the model, however, there is no way to match a

particular ACK(6) packet with the MID(l) or LST{2) packet that generated it. Fur-

48

thermore, since the place S_KAK will accept ACK(6) packets and return control to

place S_WDAT, it will tend to leave session control tokens in S_WACK, eventually

leading to a deadlock in the net.

Two solutions were developed for this problem. The first was to put an inhibitor arc

between place S_WACK and transition S.KAK. This effectively gives MID(l) packets

priority for any arriving ACK(6) packet, and removes the potential for deadlock. The

other option was to add an additional packet type and have an ACK(6) for MID(I)

acknowledgements and an ACK(7) for LST(2) acknowledgements. The second solution~

while somewhat more realistic, also adds two colours per protocol and two occurrences

per transition for the intervening layers in the reference model. As well, no additional

benefit regarding packet size distribution is realized, since both types would be the same

size. (The split between MID and LST packet types, in contrast, actually improves the

size distribution because the two types typically have different mean sizes.)

In simulation tests, the first option showed slightly higher values for throughput and

average burst rate. When compared using hypothesis testing [25] the results were not

found to be statistically significant (p = 0.514). It was decided to use the first option.

This chapter described the derivation and construction of a timed, coloured Petri net

model of an ATM-based network. The next chapter discusses how the implementation

details of the model (i.e. actual timing and probability values) are determined. It also

covers the data collection process that resulted in those values, and some results from

simulation of the model.

49

Chapter 4

Model Performance

This chapter describes how data was gathered from Memorial's campus network. how

that data was analyzed! and how it was used to derive the model parameter values.

The chapter concludes with some validation results (i.e. tests that ensure that model

behaviour is a reasonable estimate of actual system behaviour)~ and some simulation

results from the model.

4.1 Data Collection

The collection and analysis of actual network data formed a key part in both the

development of the structure of the model and the derivation of model parameters for

simulation. This section presents some the details of the data collection process.

50

4.1.1 Network Monitoring Software: TCPDUMP

TCPDUMP [26J is a public domain TCP /IP monitoring program that has become a

commonly used tool for network management. It normally produces a line of ASCII

output describing each packet that appears on an attached network. The user can filter

the output to select certain events - specific TCP port numbers. or a particular IP

subnet! for example. Although TCPDU:\IP is limited by the host computer hardware

in both event granularity, (i.e. the smallest time interval it can recognize), and the

maximum monitoring speed, it is an ~"Ccellent tool for network monitoring over long

time periods.

4.1.2 Data Sources

The collection of data for the model started with an examination of protocol frequency

on the Memorial network. The Ethernet backbone of the campus network was monitored

for a week. and packet and byte counts per protocol (as determined by TCP /CD P port

numbers) were recorded. Table 4.1 shows the relative frequencies for the most common

protocols.

Traces of some of the most common protocols were then taken over the space of a

week. Each trace was made up of at least four separate sub-traces randomly spaced

over the week to reduce bias from system load, both on the network and the monitoring

system(s) themselves. Since the author expects the usage of the network to include

more sound and video applications in the future, an additional trace was made of a

51

I Protocol I Packets I Bytes
SHELL 13.80% 33.69%
TELNET 40.18% 14.45%
NNTP 5.99% 12.11%
NFS 7.75% 9.71%
SMTP 3.80% 9.37%
X 11.10% 7.21%
LOGIN 8.25% 3.97%

I FTP (DATA) 1.46% 3.76%
IW\VW 1.43% 1.59%

OTHER 6.24% 4.14%

Table 4.1: Relative Frequency of ~ etwork Protocols.

CU-SeeMe session for comparison purposes.

Since many of the model parameters are estimated from timing data taken at the

network level, it was necessary to take two trace sets for each protocol - one for the

source processes~ and one for the destination processes. (Figure 4.1 shows the data

collection locations in relation to the system modeL) Locating the monitoring stations

as close to the end-systems as possible reduced measurement errors caused by network

delay.

Since we are interested in the network load of a single user~ a further com plication

was determining what actually constituted a ~er session". _-\ TCP connection has

distinct start and end points that can be detected by the TCP flags reported in the

data traces. For a TELNET session, a TCP connection and a ~er session" are equal

- the connection is set up when the user logs in to the remote host! and remains until

the user is finished his terminal session. For other protocols, however, a single ""user

session" (such as someone accessing a WWW site with a browser) may create multiple

52

End-point
Ethemet

Monitor

' .. -~

SRC
Host

-

OC-3c OC-3c

Optfcol Op1ical
Fiber Rber

Bridge ATM Bridge
Switch

Figure 4.1: Data collection configuration.

End-point
Ethemet

Manito

-

-

DST
Host

r

TCP connections. For these protocols, two models were made from each trace. The first

equates a "user session" with each TCP connection. The second model was generated

by erasing either the source port numbers or the destination IP addresses (depending

on the protocol) in the data trace. This had the effect of concatenating consecutive

TCP connections into one longer connection representing the total activity of the user.

(Since most of the sessions were from individual personal computers, the unique IP

addresses of the source hosts served to separate the different user sessions.) It is felt

that the actual load of a user session lies somewhere between the two extremes.

4.2 Simulation Software

Two software packages were used in the design and simulation of the model in this

thesis. The first package, Visual SimNet [20], is a PC based Petri Net simulator. It was

53

used extensively in the early design stage of building the model, primarily because the

graphical interface was a significant aid in laying out and testing various parts of the

model. However, the program did not support ''infinite firing semantics" for transitions

(i.e. multiple transition firings with overlapping times). An attempt to approximate

this behaviour by creating multiple transitions for each single transition in the model

was not successful due to internal limitations in the software.

Following a survey of Petri net software, a second software package, TPNsim [60],

was chosen as the simulation software for this thesis. In addition to supporting "infinite

firing semantics", the software had some additional features that made it attractive

for this work: the author of the software was available to add features as required,

output routines specific to this model could be added easily, and the program could be

integrated into a suite of programs and scripts to perform various types of simulations

and data comparisons.

TPNsim reads a net represented in a Net Description Language. This language is

briefly described in Appendix B, while Appendix C contains a specification of a version

of the model discussed in this thesis. The simulation portion of the software implements

the event-driven approach [30]. The package also supports structural analysis (i.e.

analysis of net properties based solely on the topology of the net [41]), as well as

reachability analysis of Petri nets.

54

4.3 Model Tuning

The model described in Chapter 3 captures the basic behaviour of a multi-protocol

environment over .-\.TM. A key premise of the model, however, is that while the basic

behaviour of the various protocols is similar (represented by the structure of the coloured

Petri net model), the individual protocols can behave differently. The use of individual

colours allows the modeler to separate the protocols by assigning different timing and

probability parameters to different colours. This section discusses how those parameters

are determined.

4.3.1 Performance Parameters

Since the model used in this thesis was developed in sections representing various layers

of a communication system, the preferred method of gathering actual performance

data would be to analyze each layer independently. This did not prove to be feasible

in all cases, however. Analyzing the User/ Application and TCP /IP stack layers in

specific detail requires modifying code and gaining access to systems and resources that

are beyond the scope of this thesis. For example, existing studies of TCP /IP stack

performance involved either detailed code analysis or modification [10] or the use of

a hardware logic analyzer (29]. Neither of these methods were possible on the scale

required for this work.

It was therefore decided to estimate these parameters based on what could be ob­

served at the network level.

55

Second Packet
MID(l) LST(2) ACK(3) MID(4} LST(5) ACK(6)

MID(l) 12 4 1 0 0 97
LST{2) 0 0 9 236 1579 409

First ACK(3) 36 1351 27 461 430 3
Packet MID(4) 0 0 879 67 76 0

LST(5) 13 819 1401 0 0 1
ACK(6) 52 49 1 258 150 0

Table 4.2: "Next Packet Frequency'' matrix for TELNET protocol.

The first step in defining the timing and probability parameters is evaluating the

actual behaviour of a protocol in reference to the basic model shown in Figure 3. 7.

Since the model has six distinct packet types for each protocol, one obvious metric is

the number of occurences of each type. However, this provides little useful information

on the nature of a particular protocol.

The SRC and DST processes are synchronized with packets representing the com-

munication between the two. Since each packet signals an event or state change for

one or both of the processes, the relationship between adjacent packets should provide

far more information on the behaviour of the protocol than simple packet counts. An

example of such a "next packet" matrix is shown in Table 4.2.

The matrix shows the number of occurrences of each packet type given that the

previous packet was of type n. For example, the top right location in the matrix shows

that a MID(l) type packet was followed by an ACK(6} packet 97 times in the data

trace. It is important to note that the "next packet" data is on a per-connection basis.

That is, we are interested in how many times an ACK(6) follows a MID(I) for the same

56

Second Packet
MID(1) LST(2) ACK(3) MID(4) LST(5) ACK(6)

MID(1) 10.5 3.5 0.9 0.0 0.0 85.1
LST(2) 0.0 0.0 0.4 10.6 70.7 18.3

First ACK(3) 1.6 58.5 1.2 20.0 18.6 0.1
Packet MID(4) 0.0 0.0 86.0 6.6 7.4 0.0

LST(5) 0.6 36.7 62.7 0.0 0.0 0.0
ACK(6) 10.2 9.6 0.2 50.6 29.4 0.0

Table 4.3: "Next Packet Probability" matrix for TELNET protocoL

user session.

Some useful versions of this matrix are generated by scaling. The "probability

matrix" (Table 4.3) is formed by treating each row as a probability density. This

"probability matrix" is similar to a transition matrix of a Markov process [54}.

A similar matrix is generated for timing information. Table 4.4 shows the "'timing"

matrix for the same TELNET data trace. The matrix shows the average observed delay

(in milliseconds) between packets of different types. Measurements are from the start of

each packet. Zero values indicate either that no packet combinations of that type were

observed, or that the difference was smaller than the clock granularity of the measuring

device (approximately 1 J.LSec.).

Other important parameters are shown in Tables 4.5, 4.6, and 4. 7. SWIN and

RWIN (Table 4.5) refer to the average data group size (in numbers of packets) from

the SRC and DST process, respectively. The SOUT and ROUT parameters show

the average unacknowledged packet window size for the two processes. The THINK

parameter (Table 4.6) shows the average delay between the last data packet from the

57

Second Packet
MID(1) LST(2) ACK(3) MID(4) LST(5) ACK(6)

MID(1) 0.159167 0.040000 0.150000 0.000000 0.000000 0.041959
LST(2) 0.000000 0.000000 0.052222 0.018347 0.009417 0.047262

First ACK(3) 1.961111 3.701066 36.984074 0.187874 0.096419 0.026667
Packet MID(4) 0.000000 0.000000 0.134903 0.107761 0.202895 0.000000

LST(5) 0.053077 0.150708 0.184104 0.000000 0.000000 0.010000
ACK(6) 0.309615 0.982245 0.060000 0.199574 0.088000 0.000000

Table 4.4: "Timing" matrix for TEL NET protocol (msec).

DST process and the first data packet from the SRC process; For a TELNET session this

could approximate the time a user takes to respond to a screen of data. The DREPLY

parameter is the opposite - it shows the average delay between the arrival of the last

data packet from the SRC and the first data packet from the DST process; DREPLY

approximates the processing time of the host. The last parameter in Table 4.6 is the

average inter-arrival times between packets. This parameter is on a per-connection basis

- the inter-arrival times are for the same user session. All measurements are taken from

the beginning of each packet.

Table 4. 7 shows basic packet counts, relative frequencies, and average packet sizes

for the six packet types (packet sizes are Ethernet frame sizes). The total number of

packets in the trace and the global average size is also shown.

58

Parameter Count Average (Packets) Variance Maximum
SWIN 2236 1.050984 0.273015 -
RWIN 2236 1.457066 1.166389 -
SOUT 2236 1.173443 0.317880 a

ROUT 2236 1.116657 0.199538 5

Table 4.5: Miscellaneous parameters for TELNET protocol (I).

Parameter Count A. verage (sec.) Variance
THINK 2221 2.456006 330.749099

DREPLY 2233 0.046740 0.018706
Packet Inter- 8421 0.818788 107.531884
Arrival Time

Table 4.6: Miscellaneous parameters for TELNET protocol (2).

Parameter Count Freq. Average (Bytes) Variance
Packet Size: :NIID (I) 114 0.01% 60.736842 5.505356
Packet Size: LST(2) 2236 0.26% 60.036225 0.365130

Packet Size: ACK(3) 2321 0.28% 60.000000 0.000000
Packet Size: MID (4) 1022 0.12% 401.822896 102815.225215
Packet Size: LST (5) 2236 0.26% 167.937835 45783.729020

Packet Size: ACK (6) 511 0.06% 60.000000 0.000000
TOTAL 8440 - 130.006754 36900.417895

Table 4.7: Miscellaneous parameters for TELNET protocol (3).

59

4.3.2 Model Parameters

Given the performance parameters determined in Section 4.3.1, the next step is to find

a set of model parameters for which the model behaviour matches the actual system

behaviour as closely as possible.

Tables 4.8 and 4. 9 show the parameters of the model. Each parameter is classified

as one of the following types:

Operational : unique text strings that serve to separate different protocols

and sections of the model from each other.

Structural : a parameter which alters the basic structure of the model.

UDP models, for example, do not use all the transitions and places of

TCP models.

Marking : a parameter which determines the initial marking of a place.

Time : a parameter which determines the firing time of a transition.

Probability : a parameter which determines the choice probability in a

free-choice configuration.

The actual values for the various parameters are derived from a number of sources.

Parameters in group A (Table 4.8) are determined by the particular protocol. Parame­

ters in group B (Table 4.8) control the operation of the User/ Application and TCP /IP

stack levels in the model for the SRC process. (The actual net transitions or places of

60

I Group I Parameter Name I Type I Transition/Place
A name Operational -

abbr Operational -
Protocol Structural Various
ns Marking S_IDLE,D_WDAT

B Think Time S_TNK
SendMidProb Probability S_8MD
SendLstProb Probability S_8LT
PTRTime Time s_pTR
WinSize Marking S_WIND
SendDelayl Time S_WAK
MidAckDelay Time S_WMD
LstPBDelay Time S..LPB
LstAckDelay Time S_LAK
RecvPBProb Probability S_LPB
RecvThProb Probability S..LAK

c DThink Time D_TNK
DSendMidProb Probability D_8MD
DSendLstProb Probability D_8LT
DPTRTime Time n_pTR
DWinSize Marking D_WIND
DSendDelay 1 Time D_WAK
D MidAckDelay Time D_WMD
D LstPBDelay Time D_LPB
DLstAckDelay Time D..LAK
DRecvPBProb Probability D..LPB
DRecvThProb Probability D..LAK

Table 4.8: List of model parameters (part 1).

61

I Group I Parameter Name I Type I Transition/Place I
D E.J. Time E_8

E_2 Time E_8
E..3 Time EJ3
E_4 Time E_8
E..5 Time E_8
E_6 Time E_8

E P.J. Marking -
P.-2 lVIarking -
P..3 Marking -
P_4 Marking -
p_s Marking -
P_6 Marking -

F SAR.J. Marking SAR...IN_F3
s~ Marking SAR_IN_p3
SAR.3 Marking SAR...IN_F3
SAR_4 Marking SA.R_IN_F3
SA.R_5 Marking SAR_IN_F3
SAR_6 Marking SAR_.IN_p3

G SAR_MAX Time SAR_IN_T3
BR._LAT Time Bridge Delay
OC3..LAT Time LINKI_Tl
ATM..LAT Time SW_Tl

Table 4.9: List of model parameters (part 2).

62

the model that are affected by each parameter are also listed in Tables 4.8 and 4.9.)

Group C parameters are the DST process analogues for the group B parameters.

Ethernet timing parameters are listed in group D, while groupE parameters govern

the actual size (at the Ethernet frame level) for each packet type. The ATM SAR

level functions are partially controlled by parameters in group F. Group G contains

parameters used in the bridge and ATM layers of the model.

The assignment of values to the various parameters is discussed in more detail in

the remainder of this section.

Group B Parameters

This group contains timing and probability parameters. The SendMidProb and SendL-

stProb parameters control the average number of packets in a data group transmitted

by the process. Since we know that the size of the data group (in the model) is a

geometric random variable (see Equation 3.1, page 38), it follows that:

1
p=­

k
(4.1)

where p (i.e. parameter SendLstProb) is the probability of sending a LST(3) packet, and

k is the SWIN value measured from the trace data (see Section 4.3.1). SendMidProb

is simply 1 - p.

The marking parameter WinSize is determined by the maximum outstanding packet

window parameter SOUT from the trace data (Section 4.3.1).

63

I Parameter ~arne I Time (1) I Time (2) I Ethernet Delav I
w

Think {3,1) {3,2} €3

PTRTime (1,1} (1,2) -
SendDelayl {6,1} (6,2} fs

MidAckDelay (4,3} €4

LstPBDelay {5,1} (5,2} fs

LstAckDelay {5,3} fs
I
I

DThink {6,4) {6,5) fs 1
DPTRTime (4,4) (4,5) - 1

DSendDelay 1 {3~4) {3,5) €3

D MidAckDelay {1,6) ft

DLstPBDelay {2,4} {2,5) €2 I
DLstAckDelay {2,6) €2

Table 4.10: Derivation of Group Band C timing parameters.

The timing parameters in group B are derived from the timing and packet count

matrices from the trace data. Each element of the ~ext packet~ timing matri..x is

evaluated using a simple structural or path trace through the net. The value of the

element can then be used to estimate the timings of the transitions involved. For

example. the {4,3) element of the timing matrix (i.e .. the average time between a

MID(4) packet and an ACK(3) packet), upon inspection. will be equal to the average

time of transition S_ W'MD (parameter MidAckDelay) plus a delay € representing the

average transmission time of a MID(4) packet. (The timing matrices are based on trace

data which only logs the beginning of each packet. The packet hasn~t really .. arrived!!

until the end of the packet, however, so this delay must be included.) The parameter

MidAckDelay can thus be estimated as t- f, where tis the (4,3) element of the timing

matrix and f is the packet transmission delay.

64

Table 4.10 shows the derivation of the group B and C timing parameters. Parameters

with a single time are derived as already discussed. Other parameters1 however, affect

two elements in the timing matrix because of the various free-choice situations in the

model. In these cases, the time parameter is estimated by using a linear combination

of the two times scaled by the relative packet counts of each element (Table 4.2). That

is, given the timing matrix T and the packet count matrix P, if parameter k is involved

in times T(l,ji) and T(l,j2), then k is estimated by:

k = T(l, jt)P(l, jr) + T(l, i2)P(l, i2) _ EL

P(l, jr) + P(l, i2)
(4.2)

The remaining parameters in group B, RecvPBProb and RecvThProb, determine

whether the SRC process returns a unique ACK(3) packet or sends another data packet,

implying a piggybacked acknowledgement. These parameters are estimated from the

packet count matrix (Table 4.2). The frequency of piggybacking is simply the frequency

of an LST(5) packet being followed by either a MID(I) or LST(2) packet (P(5, I) +

P(5, 2)), while the sending of an explicit acknowledgement is indicated by an LST(5)

packet followed by an ACK(3) packet (P(5, 3)). RecvPBProb is thus:

P(5, 1) + P(5, 2)
(4.3)

P(5, 1) + P(5, 2) + P(5, 3)

with RecvThProb = 1- RecvPBProb.

65

Group C Parameters

These parameters are exact analogs of the group B parameters, and are derived in the

same manner.

Group D Parameters

Group D parameters are the transmission times for Ethernet frames~ and are used both

in the derivation of group Band C parameters (as the fc in Table 4.10), and the timing

of the Ethernet section of the model. They are derived by taking the average frame size

for each packet type from the data trace.

Group E Parameters

These parameters are simply the average frame size (in bytes) of each packet type~ as

determined from the data trace.

Group F Parameters

Group F parameters control the division of Ethernet frames into cells at the SAR layer.

Each parameter SAR_n represents the number of cells required to transmit a packet of

type n from a higher layer.

Group G Parameters

These parameters control various parts of the ATM and bridge layers.

66

SAR_MAX: The maximum rate at which cells are generated at the SAR

layer. It is reported in [4] that the ATM bridge device (Cisco Catalyst

5000) 1 can generate cells at the maximum rate of an OC-3c SONET

connection. Since the theoretical maximum for cell transmission over

OC-3 is 149.76 Mbps [7], or 353,207.5 cells/sec, a deterministic delay

of 2.831 J.LSeC per cell will generate cells at that rate.

BR.LAT : This parameter represents the average delay between the last

bit of a packet/frame to arrive at a device and the first bit to appear

on another port (LIFO latency) [5]. It is reported in [4] that the Cisco

Catalyst 5000 has an Ethernet-to-Ethemet latency of 8 f.JSec. It is

assumed that the per-frame latency of the device for Ethernet-to-ATM

is at least as great~ and that value was used in the simulations in this

thesis. Further discussion on this value can be found in section 4.4.1.

OC3.-LAT : The average transmission delay across an OC-3c SONET link.

Ignoring propagation delay, this value is set to provide the maximum

per-cell transmission rate: 2.831 J..LSec.

ATM.LAT: The average delay (latency) across the ATM switch. The

switch (Cisco Lightstream A100) backplane is rated at 2.4 Gbps, and

is capable of switching multiple OC-3c SONET cell streams simulta­

neously. The switch latency is set at 2.831 p.sec per cell as well, since

1 "Cisco" and "Catalyst 5000" are trademarks of Cisco Systems Inc.

67

it can easily switch one OC-3c SONET cell stream at the maximum

transmission rate.

4.3.3 Effect of Windowing in '!race Data

The derivation of the Group Band C timing parameters was found to produce reason­

able results for protocols with small amounts of windowing (e.g., TELNET). However~

as windowing increased the model results began to vary from the actual data. \Vindow­

ing results in a looser relationship between a packet and its explicit acknowledgment -

to the point where there is little guarantee that the .~CK packet that follows a DAT.o\

packet in a trace is acknowledging that particular packet. To solve this problem. the

method described in the previous section was applied to the data traces with the TCP

sequence numbers used to correctly match the DATA and ACK packets. This greatly

improved the accuracy and stability of the model.

4.4 Model Results

This section presents some results from simulation of the model, starting with validation

data, which compares the model to actual network behaviour. The section concludes

with a series of results showing the effect of various application protocols on parts of

the network system.

68

4.4.1 Model Validation

An important part of the modeling process is validation (30], which is comparing the

model results with actual measurements to determine if the model is a reasonable ap­

proximation of the modeled system. Since many of the timing parameters are deter­

mined from measurements on an Ethernet, we can compare the behaviour of the model

with actual data from an Ethernet. However, direct comparisons at the user, system

stack, or ATM level require measurement devices that were unavailable for this work.

Despite that, some measurements were obtained from a number of sources that could

be used in model validation.

A version of the model with a single Ethernet connecting a SRC and DST process

was compared to actual user sessions on an Ethernet. Figure 4.2 shows a scattergram

of packet rates for a number of observed sessions and the model results for each trace.

The dashed line is the ideal; it represents an exact match between the model and the

actual data.

At the AT~1 level, it was possible to compare cell rates at a fairly coarse level of

granularity (i.e., every minute) by gathering cell transmission totals from the ATM

switch. A trace was recorded at the Ethernet level of data coming from the ATM link

of the Catalyst 5000. At the same time, cell totals were recorded from the ATM switch

for that data VC. The two traces could be accurately synchronized because the packet

transmission containing the data from the A.TM switch was embedded in the Ethernet

trace. A theoretical cell value could be computed from the Ethernet trace and compared

69

5.5----------~.--------~.----------.~--------~.--------,,---------,,--------~
Ideal Match ----

8 5 1- <> -

4.5 1- -

4 -

3.5 r- -

<>

3 r- -

2.5 -

-

1 ~--------L-·--------~·----------~--------._--------~·--------~·--------~
1.5 2 2.5 3 3.5 4 4.5 5

Data (packets/sec.)

Figure 4.2: Theoretical vs. actual Ethernet packet transmission rates.

70

with the measured cell totals. Figure 4.3 shows a scattergram of the theoretical and

measured cell totals. The linearity of the graphs indicates a good match between the

model and actual data.

The performance statistics on the Catalyst 5000 reported in [4] used an ATM test

configuration almost identical to the system modeled in this thesis. Of particular in­

terest are the Ethemet-to-Ethernet (across ATM) latency measurements. Figure 4.4

compares the latency values reported in (4] with the values produced by the model.

Both show similar slopes, indicating the model is a good predictor of overall behaviour.

The gap between the two lines indicates that there is some latency not accounted for in

the model. This suggests that the 8 p,sec latency value for the Catalyst 5000 is probably

too low for Ethemet-to-ATJ\11 transmission.

The current version of the model uses either deterministic or exponentially dis­

tributed firing times for transitions. Since some transitions (such as the S_TNK or

"thinking time" transition) can have a major impact on the performance of the whole

system, the distribution of those times could have an impact as well. Figure 4.5 com­

pares the actual "thinking time" distribution of a TELNET session with an exponential

distribution with the same mean value, as would be used in the equivalent model. The

two are roughly similar, although the actual distribution has less data in the tail of the

graph.

Since the model uses six different packet types, the mix of packet sizes can be

closer to reality than a single average value. Figure 4.6 compares the actual packet size

distribution of an FTP protocol data trace and a single average packet size. Figure 4. 7

71

11~~------r-------r-------r-------~.------.~----~.~-----.,,------,,-------,

100000 1-

80000 -

crJ c 8 70000 -

iii
u

~
!
g 60000 1-

~

50000 -

40000 -

30000 r-

<>

<>

<>
<>

<>
<>

Actual vs. TheoreticaJ <>

<>
<>

-

-

-

-

-

-

2~~------~·------~·------~·------~·------~·------~·------·~----~.~~----~
20000 30000 40000 50000 60000 70000 80000 90000 100000 110000

Actual Cell Counts

Figure 4.3: Theoretical vs. actual cell transmission rates.

72

1000

u
G)
tiJ e
u
§.
~ 800 c

3
G)
a
!
G)

~
600

o~------~--------._------~--------~--------._ ______ _. ________ ~------~
0 200 400 600 800 1000 1200 1400 1600

Ethernet Frame Size

Figure 4.4: Model vs. actual ATM latency.

73

0.6~--------~,----------r-,--------~T~--------~r----------~.--------~.----------,

0.5 -

0.4

0.3

t .
0.2 r:

II
II
II
II
II
I 0
I I
I I
I I I:

' I
I

I

0.1 - ;
:
I
I
I
I

' I

I
I

Model -+­
Actual -+--

-

-

-

~
0 L_--~~!!~~~~~~~~ ... ~t. .. ~~~~~~~~ ~44~~~·~~~ ~ .. ~~~__j

0 2 3 4 5 6 7
Time Interval (msec)

Figure 4.5: TELNET ''think time": actual and exponential model.

74

compares the same FTP packet size distribution and the model using six packet types.

The model distribution reflects the bi-modal nature of the real FTP distribution -

most of the packets are either at the minimum or the maximum size for an Ethernet.

(Table 5.1 shows the results of the x2 goodness-of-fit test between the distributions in

Figures 4.6 and 4. 7).

A method of improving the accuracy of the model packet size distribution is de­

scribed in Chapter 5.

4.4.2 Protocol Results

This section presents some simulation results from the model. Figures 4.8 and 4.9

show the average load placed on the Ethernet in Figure 2.4, on a per-protocol basis, by

number of concurrent user sessions. The protocols ending in ~u' (i.e. 'VV\V\VU! etc.)

are the versions with concatenated TCP connections as discussed in Section 4.1.2.

Figures 4.10 and 4.11 show the A.TM send and receive data rates for the same data

traces. Figures 4.12 and 4.13 show some of the various types of information that can be

obtained from the model. Figure 4.12 compares the maximum ATM burst rate for two

protocols, using a 10 msec window. Figure 4.13 shows part of the .A.TM cell inter-arrival

distribution for 64 concurrent TELNET users. Figure 4.14 shows the one-way delay per

packet caused by network load (i.e. delays caused by other packets in the system,

but not including the average latency caused by hardware). Figure 4.15 compares the

network delay effect of FTP and TELNET on a single CU-SeeME session.

75

0.8

0.6

0.4

0.2

oL-~--~~-2._~~~~.-~_.~~._~~~~==~~~~~~----~
1600 0 200 400 600 800 1000 1200 1400

Ethemet Frame Size

Figure 4.6: Packet size distribution for FTP protocol (single value).

76

Actual ..._...
~ ----

:
l

0.4

0.35

0.3 I

i
• I

0.25
J

>- 1
= I

I
::ii I G

~ j
Q.. ! 0.2 c

t
;· ..
::
.,
'· .,

0.15 •, ,.

0.1

0.05

oLL~--~~--~~~~--~~~==~~~~~--~~~--~~~~----~
0 200 400 600 800 1000 1200 1400 1600

Elhemet Frame Size

Figure 4.7: Packet size distribution for FTP protocol (multiple packet types).

77

~~--------~----------~-----------T----------~-----------r----------~

1500

!

1000
_,

!

!

!

!

500
.'

·'

_,

_,
,·

I

..... -·

,

... -·

TELNET _._
X-+-­

CU..seeMe -a·· www -)(­
wwwu ~-­

NNTP _..
NNTPU ·<>-- ·

__ .. .X

0--~==~--~~~----~----~----~---------L----------~--------~
0 200 400 600

Number of Users
800

Figure 4.8: Network load by protocol- data rate.

78

1000 1200

"S
1D

~ a;
~
u as
.9;
1D ;;
a:
as
iii
0

1~~--------~-----------r----------~----------r---------~-----------,

800

600

$

400

200

TELNET-+­
X -+-­

CU-5eeMe -e-­
www -:k'­

wwwu -4--­
NNTP ..,..

NNTPU -~--

.. .X

0--~~~--~~_.------~----~~--~----------._--------~~--------~
0 200 400 600

Number of Users
800

Figure 4.9: Network load by protocol- frame rate.

79

1000 1200

~~--------~-----------r----------~----------~----------r----------,

450

400

350

300

250

200

150

100

50

,

_/:'<······/·:
.. -/~-·-

_ .. a:>/

,

,
,

,

,
,

, , , ,
, ,

.,.· .·]a/:'/// - ::.:.:_:::::;: > .. , ... -/

. ,// - "",.::¥;.~:::.:>·
ci _,., <>···
: .. / .'.:-~ ,....- ~-~

,

,

,
,

.... ~·
... ·····

TELNET ~
X-+-­

~-5eeMe -a--
_, 'IINIYI -*-

,-' YI'NWU -4--·
,' NNTP -IE-·

/ NNTPU -~--

.0

.X

0--~~~~--.__. ________ ~----~----~----------~----------~--------~
0 200 400 600

Number of Users
800 1000

Figure 4.10: Network load by protocol- ATM data rate (send}.

80

1200

20CO~--------~~--------~----------~----------~--~~--~~---------,

1500

,

,

500

, .-~----

, _,.·· •

,

_ .. -·

.--··

_ .. -·

TELNET ~
X-+-­

ClJ-SeeMe ·El- · www -)f­

wwwu -4.--·
NNTP,.

NNTPU -o--·

.. X

-------------~

0~~~~~--~~------~----~~--~----------~----------~--------~
0 200 400 600

Number of Users
800 1000

Figure 4.11: Network load by protocol- ATM data rate (receive).

81

1200

~~--------~--------~----------~---------r----------.---------~

8000

7000

6000

3000

2000

1000

'\.
' ' .
' ' .
\\.

'
'

'
'
'

'
'
' '

'

i---

TELNET +­
FTP -+--

0~--------~--------~----------~--------_.----------~--------~
0 200 400 600

Number of Users
800 1000 1200

Figure 4.12: Network load by protocol - maximum ATM data rate per user (0.01 ms
burst).

82

0.015

~ 1 0.01

Q..

0.005

o~------~~~~~~~~~~~~~~~~~~~~~~~~~~~~

0 0.05 0.1 0.15
Time (sec.)

02

Figure 4.13: ATM cell inter-arrival time distribution.

83

0.25 0.3

0~~----------~----------~--------~~--------~.-----------~.--------~

0.2 ~

0.15 1-

0.1 1-

0.05 -

Gl
f.

I\
f \

I \,
·' .'

••
·'·

_,

.. ,·;

_,

·'

,·
_,

'

.'
'

I

I

'

.'

~····-·-·

JETELNET-+­
. X -t--

' ' cu-seeMe -e · ·
www-~ ,· wwwu _....~-

NNTP
NNTPU ·0.··

.X
.... ~·

-

-

-

1200

Figure 4.14: Load-induced network delay per packet.

84

5 r----------~~--------~,r----------~~--------~r--------~~--~--------~,-----------~~----,

3 -

2 -

I
I
I
I
I
I
I
I
I
I

I
I
I
I

I
I
I

I
I
I
I
I
I
I

' '
I
I
I

I
I

' I
I

I

'

I

'

I

I
I
I

I
I

__________________ _;

0 ~...._ ____ ...__.-------1;--- - I

I
I

0 ~ ~ 00 00

I
I
I

I
I

'

I

I

'

Number ot Users

I
I

'

I
I

' '

I TELNET-+-
/ FTP-+-
' ' '

100 120 1~

Figure 4.15: Load delay per packet - CU-SeeMe with TELNET /FTP.

85

-

-

-

-

4.5 Discussion

The network load graphs (Figures 4.8 and 4.9) show significant differences between the

various protocols. CU-SeeMe appears to have a major impact on network performance.

The versions of the protocols representing multiple TCP sessions appear to have little

impact. The lower data rates are caused by the user's thinking time between actions.

Generally, the two sides of the ATM link show quite different data rates (Figures 4.10

and 4.11). The curved behaviour of the CU-SeeMe graph is caused by the protocol

saturating the Ethernet. The ATM burst rate (Figure 4.12) shows that even a low­

impact protocol like TELNET can create short bursts of cells at high speeds far above

the average behaviour. The ATM cell inter-arrival distribution (Figure 4.13) shows a

large spike (representing over 50% of the distribution), a gap, and then a long even taiL

The initial spike is caused by the fast cell generation rate at the SA.R layer, while the

tail represents the longer gaps between packets at the Ethernet layer.

The load delay graph (Figure 4.14) shows odd behaviour of CU-SeeMe caused by a

saturated Ethernet, while the similar graph showing the effect of two protocols on CU­

SeeME (Figure 4.15) demonstrates that load delay could be used to find the network

congestion point. For example, Figure 4.15 suggests that the number of users in the

system should be less than 64 (the point at which the delay graph climbs steeply).

However, the linearity of most of the graphs suggests the a more detailed model of

Ethernet collision behaviour may be required before more accurate load decisions can

be made.

86

The next chapter describes some extensions to the model - relatively simple modi­

fications that expand the range of network configurations the model can simulate.

87

Chapter 5

Extensions and Discussion

One of the goals in the design of the model presented in this thesis was to ensure that

new network configurations could be modeled with relatively simple modifications to

the basic structure. This chapter describes two such modifications.

5.1 Extensions to the Model

This section describes two extensions to the basic model to simulate alternate network

design situations. The first is a small change to the actual model to describe the effect of

multiple Ethemets instead of the single Ethernet used in the previous chapter. The sec­

ond extension doesn't actually change the model, but rather exploits the model's ability

to handle multiple application-level protocols to provide a more accurate representation

of the packet size distribution of a single application-level protocoL

88

5.1.1 Multiple Ethernets

The basic configuration of the model (Figure 2.4) has one source Ethernet and one

destination Ethernet. In many cases, however, a single emulated LAN will involve

multiple Ethernets at one or both sides of the ATM link (Figure 5.1). As a first step

in modeling this configuration, we can simply change the number of control tokens at

the Ethernet level model in place AE_IDLE. This allows multiple simultaneous firings

of the Ethernet transition, up to the number of tokens in AE....IDLE. thus simulating

multiple Ethernets.

The effect of spreading 16 FTP sessions over multiple Ethemets is shown in Fig­

ure 5.2 .. As the number of Ethemets increases, the average load per network drops.

The ATM load starts at an initial rate where the Ethernet is the bottleneck and rises

to a new equilibrium value. The fact that the :\TM data rate doesn~t rise further indi­

cates that there is a new limiting factor in the system- either the protocol itself or the

A.TM-to-Ethemet bridge.

5.1.2 Improving Packet Size Distribution

The packet size distributions in Figures 4.6 and 4. 7 show that the use of si.-x: packet

types gives a much better approximation of the actual FTP packet size distribution. It

is possible to improve this approximation even more, however, by using multiple FTP

sessions. Essentially, we create two versions of the FTP protocol with the same timing

parameters, but with different mean packet sizes. Figure 5.3 shows the revised packet

89

Multiple
Etheme1s

l

SRC
Host

Bridge

QC-3c

Optlcof
F1ber

ATM
Switch

OC-3c

Optical
Aber

Bridge

End-point
Ethernet

HI
~
DST
Host

Figure 5.1: LAN Emulation configuration with multiple Ethernets.

size distribution created by taking one of the packet types, splitting it in two at the

median and using two "FTP" protocols, each set at the mean of one half of the data

for that type.

Table 5.1 shows the results of the x2 goodness-of-fit test for a single average (Fig-

ure 4.6), the 'six packet type' distribution shown in Figure 4. 7, and the revised distri-

bution in Figure 5.3. As long as the number of sessions for each "protocol" are equal,

the average packet size distribution will be as shown in Figure 5.3. This procedure

increases model complexity by doubling the number of occurrences, however, so there is

a balance point at which the gain of an improved distribution is offset by the increased

model size.

90

l
il
.9
~
0
.!
CD z

90

80

70

60

50

40

30

20

10
,'

,,'

,'
,,'

Ethernet+­
ATM (Send} -+-­

ATM (ReceN&) -a--

,,~----------~----------+----------~--

---- G----- -------a---------- --a---------- --a--
0~----~------~------~----~~-----L------~------~----~------~

1 2 3 4 5 6 7 8 9 10
Number of Ethemets

Figure 5.2: Effect on Ethernet and ATM load with multiple Ethernets.

91

0.3

0.25

0.2

0.15

0.1

0.05

I I
l •

I :

I
I
I
I
I
I
I . . .
I

: .
: .
I

:
I
I
I
I

:
I
I

' I
I
I
I
I
I
I
I
I
I

:
:
I
I
I
I . .
I
I
I
I
I

:
I
I
I

:
I
I
I

l
:
I

:
:

Revised

. ----! ,----.
I I
I I
I I
1 I
I I
I I
I I

I :

I

I
I
I
I
I
I
I
I
I .
I
I
I
I
I

:
I

:
I

:
I

0 l_~!_l_ __ !_~------~==~~~------2!~:t===t===t~=e==:!==~~L----!~~~~--~~==~~!-~--li ____ _J

0 200 400 600 800 1000 1200 1400 1600
Ethemet Frame Size

Figure 5.3: Revised packet size distribution for FTP protocol.

92

Single Average Value Single Protocol Double Protocol
x:l 493.3 41.2 25.7

Table 5.1: x2 values for FTP packet size distribution.

5.2 Discussion

The examples in this chapter are illustrations of the flexibility in the modeL It is

possible to re-combine various modules to represent other types of configurations. For

example, we could add multiple bridges feeding the same switch, with token colours

separating the different ATM virtual circuits. Another possibility would be to examine

the configuration shown in Figure 2.5 which adds a router between the two bridges.

This would require four more SAR sections (since cells would have to be combined back

into packets for level 3 routing to occur) and a new module representing the behaviour

of the router. Software support for this type of modular model design exists [45].

The FTP example shows the possiblities of using multiple protocols in the model.

In addition to packet size distribution, it would be possible to create a protocol with

more complex timing behaviour by combining multiple versions with slightly different

parameters to obtain the desired results.

93

Chapter 6

Conclusions

The goal of the research presented in this thesis was to create a performance model of

an A. TM LAN that would provide a reasonable representation of system behaviour. As

well, the model should provide a flexible framework for more detailed investigation of

various sections of the model without requiring drastic changes throughout the entire

structure. The preference was to design a model with clearly defined layers, and have

the interface between the layers closely tied to the physical model. This would allow the

re-design of a module to stay localized within that section. Most of the current models

of ATM have tended to focus on one section of the system- the switch, for example,

or policing mechanisms. Here the goal was to create a more generic model that could

absorb the results of some of these detailed studies.

Since the model had to represent both hardware and software behaviour, a modeling

paradigm was required that could easily represent both. .A variety of modelling methods

have been used for similar work (see Section 2.4), such as queueing models, or analytical

94

work based on Markovian models. It was felt that these methods did not capture

the synchronization inherent in network protocols, and were not capable of providing

the variety of functionality required. Therefore, it was decided to base the model on

Petri nets, which have been used to model a wide variety of concurrent systems. This

proven flexibility was felt to be a significant advantage in a model intended to allow

easy re-design. Petri nets naturally represent concurrency and synchronization~ there

are a variety of extensions to basic Petri nets which allow the modeler to choose the

functionality required, and a number of software packages are available to analyze the

model.

To provide the modularity required of the model, the ATM LAN system was di­

vided into layers. At the interfaces between the layers, the tokens in the Petri net

model represent actual Ethernet frames or ATM cells. To allow the representation of

multiple high level network protocols, an extension to basic Petri nets called coloured

timed Petri nets was used. The use of coloured tokens allows the different protocols to

operate independently, yet use the same abstracted net model. The results in Chapter 4

demonstrate that the model can accurately represent the packet size distribution and

data rates of a variety of quite distinct protocols. Furthermore, since the tokens in the

model represent actual packets or cells, the model is capable of producing the equivalent

of a network trace, which can be analyzed in the same way as real network data to gain

other statistics of interest.

The flexibility of the model is demonstrated by the extensions discussed in Chap­

ter 5. The modeller can easily create alternate configurations by removing or altering

95

specific modules, or making multiple copies. For example, the model can be modified

to study the direct interaction of TCP /IP with ATM, or the introduction of routing

functionality in the bridge devices. The ability to represent multiple distinct protocols

can be extended past the basic concept to provide greater detail or study the interac­

tions between protocols, such as how other protocols introduce specific timing delays,

and where those delays occur.

It can therefore be concluded that the proposed model satisfies the four major

objectives indicated in the introduction:

• the model provides good conformance to protocol behaviour under nor­

mal load,

• the model directly represents network traffic in terms of users and pro­

tocols,

• the model can produce a variety of information about the modeled

system,

• the model structure is easily modified to study different network con­

figurations.

The model as presented in Chapter 3 has some limitations. The model becomes less

accurate as it passes the point of congestion~ although some indication of where this

point lies is discernible from the model results. To proceed past this point will require

a more complex Ethernet model that includes more of the collision behaviour of the

medium, as well as a protocol structure that models re-transmissions or lost packets,

96

although this may require breaking down the strict interfaces between layers. However,

the model is accurate under current performance levels of Memorial's campus backbone.

As further detail is added, some additional constructs would be of benefit. The

AT~f layer is complicated by the requirement that cells remain in strict order, yet can

be buffered at various points in the system. A. single place as defined in this model

cannot provide that, so a special "queue" entity would simplify the addition of detail

in this area. As well, current work on hierarchical net structures would be applicable

to this modeL Such structures would help the introduction of a lost packet mechanism,

since such a mechanism may require a module that all others would have to be able to

access. Arc weights that can vary depending on other factors may help provide a more

flexible windowing system in the TCP layer.

97

Bibliography

[1] ,ALLES, A. ATM Intemetworking. Tech. rep., Cisco Systems Inc. 1 1995.

[2] ARMITAGE, G. J., AND ADAMS, K. M. How inefficient is IP over A.TM anyway?
IEEE Network 9, 1 (Jan. 1995), 18-26.

(3] BERTHELOT, G., AND TERRAT, R. Petri nets theory for the correctness of proto­
cols. In Protocol Specification, Testing, and Verification: Proceedings of the IFIP
WG 6.1 Second International Workshop (1982), C. Sunshine, Ed., North-Holland,
pp. 325-342.

[4] BRADNER, S. Bradner Report- Catalyst 5000 switch. Tech. rep., Cisco Systems
Inc., Sept. 1995.

[5] BRADNER, S., AND McQUAID, J. Benchmarking methodology for network in­
terconnect devices. Tech. rep., Internet Engineering Task Force - Benchmarking
Methodology Working Group, 1994.

(6) BUTTO, M., CAVALLERO, E., AND TONIETTI, A. Effectiveness of the ''leaky
bucket" policing mechanism in A.TM networks. IEEE Journal on Selected Areas in
Communications 9, 3 (Apr. 1991), 335-342.

[7] CAVANAUGH, J. D. Protocol overhead in IP /ATM networks. Tech. rep .. Minnesota
Supercomputer Center, Inc., Aug. 1994.

[8] CHAI, A., AND GHOSH, S. Modeling and distributed simulation of a broadband­
ISDN network. COMPUTER 26, 9 (Sept. 1993), 37-51.

(9) CHEN, C. Y. R., MAKHOUL, G. A., AND MELIKSETIAN, D. S. A queueing
analysis of the performance of DQDB. IEEE-ACM Transactions on Networking 3,
6 (Dec. 1995), 872-881.

[10] CLARK, D. D., JACOBSEN, V., ROMKEY, J., AND SALWEN, H. An analysis
of TCP processing overhead. IEEE Communications Magazine 27, 6 (June 1989),
23-29.

(11] CoMER, D. E. Internetworking with TCP /IP, 2nd ed. Prentice-Hall, Inc., Engle­
wood Cliffs, N.J., 1991.

98

[12] CoNTI, M., GREGORI, E., AND LENZINI, L. Metropolitan area networks
(MAN's): Protocols, modeling and peerfonnance evaluation. In Performance Eval­
uation of Computer and Communication Systems, L. Donatiello and R. Nelson,
Eds., voL 729 of Lecture Notes in Computer Science. Springer-Verlag, 1993, pp. 81-
120.

[13] DE PRYCKER, M. Asynchronous Transfer Mode - Solution for Broadband ISDN,
2nd ed. Ellis Horwood, 1993.

[14] DESCLOUX, A. Stochastic models for AT~I switching networks. IEEE Journal on
Selected Areas in Communications 9, 3 (Apr. 1991), 45(}-457.

[15] DIAZ, M. Modelling and analysis of communication and cooperation protocols
using Petri net models. In Protocol Specification, Testing, and Verification: Pro­
ceedings of the IFIP WG 6.1 Second International Workshop (1982), C. Sunshine,
Ed., North-Holland, pp. 465-510.

[16] DITTMAN, L., JACOBSEN, S. B., AND MOTH, K. Flow enforcement algorithms
for ATM networks. IEEE Journal on Selected Areas in Communications 9! 3 (Apr.
1991), 343-350.

[17) DUGAN, J. B., TRIVEDI, K. S., GEIST, R. M., AND NICOLA, V. F. Extended
stochastic Petri nets - applications and analysis. In Performance '8..{., E. Gelenbe.
Ed. North-Holland, 1984.

(18] FLANAGAN, W. A. ATM User's Guide. Flatiron Publishing, Inc .. 1994.

[19] FOUQUET, Y. A., SCHNEEMAN. R. D., CYPHER~ D. E., AND MINK, A. ATN1
performance measurement: Throughput bottlenecks and technology barriers. Tech.
rep., National Institute of Standards and Technology, Gaithersburg, M.D., 1994.

[20] GARBE, W. Visual SimNet Manual, 1.31 ed., 1995.

[21] GREINER, S., BOLCH, G., PULIAFITO, A., AND TRIVEDI, K. S. Performance
evaluation of dynamic priority operating systems. In Petri Nets and Performance
Models (1995), Center for Advanced Computing and Communications, IEEE Com­
puter Society Press, pp. 241-250.

[22] Hsu, S., AND ILYAS, M. A simulation study of bursty data traffic with hybrid
source smoothing in an ATM node. Computers and Industrial Engineering 25, 1-4
(1993), 151-154.

[23] HUBER, P ., JENSEN, K., AND SHAPIRO, R. M. Hierarchies in coloured Petri
nets. In Advances in Petri Nets 1990: Lecture Notes in Computer Science vol..{.83,
G. Rozenberg, Ed. Springer-Verlag, 1991, pp. 313-341.

99

[24) HUNT, R. Frame relay - protocols, architecture, operation and performance.
Computer Communications 19, 9-10 (Aug. 1996}, 83Q-847.

(25) HUNTSBERGER, D. 'i., AND BILLINGSLEY, P. Elements of Statistical Inference,
5th ed. Allyn and Bacon, Inc., Boston, 1981.

[26] JACOBSON, V.~ LERES, C., AND McCANNE, S. TCPDUMP man page (version
2.0}. Lawrence Berkely Laboratory, 1991.

(27) JENSEN, K. Coloured Petri Nets, vol. 1. Springer-Verlag, 1992.

[28) JoSHI, S. P. High-performance networks: A focus on the fiber distributed data
interface (FDDI) standard. IEEE Micro 6, 3 (June 1986), 8-14.

(29] KAY, J., AND PASQUALE, J. The importance of non-data touching processing
overheads in TCP /IP. SIGCOMM 99 23, 9 (1993}, 259-268.

[30] KOBAYASHI, H. Modeling and Analysis: An Introduction to System Performance
Methodology. Addison-Wesley Publishing Company, Inc., 1978.

[31] LAN EMULATION SUB-WORKING GROUP, A. F. LAN emulation over ATM -
version 1.0. Tech. Rep. af-lane-0021.000, ATM Forum, 1995.

(32] LIN, A. Y. M.~ AND SILVESTER~ J. A. Queuing analysis of an A.TM switch with
multichannel transmission. Performance Evaluation Review 18, 1 (:tvlay 1990), 96-
105.

[33] MADRON, T. w. Local Area Network- The Next Generation, 2nd ed. John vViley
and Sons, Inc., New York, 1990.

[34] MARSAN, A. M., CONTE, G., AND BALBO, G. A class of generalized stochas­
tic Petri nets for the performance evaluation of multiprocessor systems. A CM
Transactions on Computer Systems 2, 2 (1984), 93-122.

[35] MARSAN, M. A., CHIOLA, G., AND FUMAGALLI, A. An accurate performance
model of a CSMA/CD BUS LAN. Advances in Petri Nets 1987 LNCS 266 (1987),
146-161.

[36] MARSAN, M. A., CIGNO, R. L., MUNAFO, M., AND TONIETTI, A. Simula­
tion of ATM computer networks with CLASS. In Computer Performance Evalua­
tion: Modelling Techniques and Tools. 7th International Conference, G. Haring and
G. Kotsis, Eds. Springer-Verlag, Vienna, Austria, May 3-6, 1994, 1994, pp. 159-
179.

(37] METCALFE, R. M., AND BOGGS, D. R. Ethernet: Distributed packet switching
for local computer networks. Communications of the ACM 19, 7 (July 1976},
395-404.

100

(38) MOLDEKLEV, K., AND GUNNINGBERG, P. How a large ATM ~1TU causes dead­
locks in TCP data transfers. IEEE-ACM Transactions on Networking 3, 4 (Aug.
1995), 409--422.

(39) MOLLE, M., AND WATSON, G. 100Base-T/IEEE 802.12/Packet Switching. IEEE
Communications Magazine 34, 8 (Aug. 1996), 64-73.

(40] MOLLOY, M. K. Performance analysis using stochastic Petri nets. IEEE Trans­
actions on Computers 31, 9 (Sept. 1982), 913-917.

(41] MURATA, T. Petri nets: Properties, analysis, and applications. Proceedings of the
IEEE 17, 4 (Apr. 1989), 541-580.

[42] OHBA, Y., MURATA, M., AND MIYIHARA, H. Analysis of interdeparture pro­
cesses for bursty traffic in ATM networks. IEEE Journal on Selected Areas in
Communications 9, 3 (Apr. 1991), 468-476.

(43] ONVURAL, R. 0. On performance characteristics of ATM networks. In Super­
CommjiCC '92 {1992), IEEE Press, pp. 1004-1008.

[44] ONVURAL, R. 0. Asynchronous Transfer Mode Networks: Performance Issues.
Artech House, Boston, 1994.

[45] OSWALD, H., EsSER, R., AND MATTMAN, R. An en'\ironment for specifying
and executing hierarchical Petri nets. In Proceedings of the 12th International
Conference on Software Engineering (1990), IEEE Press, p. 164.

[46] PERLOFF, M., AND REISS, K. Improvements to TCP performance in high-speed
ATM networks. Communications of the ACM 38, 2 (Feb. 1995), 91-109.

[47] PETERSON, J. L. Petri net theory and the modelling of systems. Prentice-Hall,
1981.

[48] PETR, D. w., FROST, v. s., NEIR, L. A., DEMIRTJIS, A., AND BRAUN, c.
Simulation comparison of broadband networking technologies. SIMULATION 64,
1 (1995), 42-50.

[49] POSTEL, J. Transmission Control Protocol - DARP . .\ Internet program protocol
specification. Tech. Rep. RFC 793, USC/Information Sciences Institute, Sept.
1981.

[50] RATHGEB, E. P. Modeling and performance comparison of policing mechanisms
for ATM networks. IEEE Journal on Selected Areas in Communications 9, 3 (Apr.
1991), 325-334.

101

(51] REISER, M. Communication-system models embedded in the OSI reference model,
a survey. In Computer Networking and Performance Evaluation. Proceedings of the
IFIP WG 7.3 International Seminar on Computer Networking and Performance
Evaluation (1985), T. Hasegawa, H. Takagi, andY. Takahashi, Eds., IFIP WG 7.3,
North-Holland, pp. 85-111.

(52] REISIG, W. Petri nets - an introduction. Springer Verlag, 1985.

(53] ROMANOW, A., AND FLOYD, S. Dynamics of TCP traffic over ATM networks.
IEEE Journal on Selected Areas in Communications 15, 4 (Niay 1995), 633-641.

[54] Ross, S. M. Introduction to Probability Models~ 3rd ed. Academic Press~ Inc.,
1985.

[55] STAMOULIS, G. D., ANAGNOSTOU, M. E., AND GEORGANTAS, A. D. Traffic
source models for ATM networks: a survey. Computer Communications 17, 6
(1994), 428-438.

(56] TANENBAUM, A. S. Computer Networks. Prentice-Hall, Inc., Englewood Cliffs~
N.J., 1981.

(57) WOLMAN, A., VOELKER, G., AND CHANDRAMOHAN, A. T. Latency analysis of
TCP in an ATM network. Tech. Rep. 93-03-03, Department of Computer Science
and Engineering, Unviversity of Washington, 1993.

[58] YAMADA, H., AND SUMITA, S. A traffic measurement method and its application
for cell loss probability in ATM networks. IEEE Journal on Selected Areas in
Communications 9, 3 (Apr. 1991), 305-314.

[59] ZuBEREK, W. M. Timed Petri nets - definitions, properties and applications.
Microelectronics and Reliability (Special Issue on Petri Nets and Related Graph
Models) 31, 4 (1991), 627-644.

[60] ZUBEREK, W. M. Modeling using timed Petri nets - event-driven simulation.
Tech. Rep. #9602, Department of Computer Science, ~Iemorial University of New­
foundland, St. John's, NF, Canada AlB 3X5, 1996.

[61] ZUBEREK, W. M. Modeling using timed Petri nets - model description and
representation. Tech. Rep. #9601, Department of Computer Science, ~Iemorial
University of Newfoundland, St. John's, NF, Canada AlB 3X5, 1996.

102

Appendix A

List of Acronyms

AAL: ATM Adaptation Layer

ATM: Asynchronous Transfer Mode

ASCII: American Standard Code for Information Interchange

BUS: LAN Emulation Broadcast-and-Unknown Server

CS: Convergence Sub-layer

CSMA/CD: Carrier Sensing Multiple Access/Collision Detection

DQDB: Distributed Queue Double Bus

FDDI: Fiber Distribution Data Interface

FTP: File Transfer Protocol

HTTP: HyperText Transfer Protocol

IETF: Internet Engineering Task Force

IP: Internet Protocol

IPX: Internet Packet Exchange

LAN: Local Area Network

LEC: LAN Emulation Client

103

LECS: LAN Emulation Configuration Server

MAC: Medium Access Control

NNTP: Network News Transfer Protocol

OSI: Open Systems Interconnection

QoS: Quality of Service

RFC: Request For Comments

SAR: Segmentation And Reassembly

SONET: Synchronous Optical NETwork

TCP: Transport Control Protocol

UDP: User Datagram Protocol

VC: ATM Virtual Circuit

WWW: World Wide Web

104

Appendix B

Net Description Language

The following description of the net description language is taken from (61].

Net description is 'transition oriented', i.e., nets are specified a.s collections of tran-

sitions, and each transition contains all parameters associated with it.

The syntax of model description, in the BNF notation, is as follows:

<model-descr> ::=<color-list> <net-class> <net-descr> <~king>

<color-list>::= <colors> I <empty>

<net-class>::= <class> I <empty>

<net-descr> ::=<net-header> (<transitions>)

<net-header>::= Mnet I Dnet I net

<transitions>::= <transition> I <transitions>; <transition>

<transition>::= <t-header> =<input-output-list>

I <t-header> <occurrence-list>

<occurrence-list> ::=<occurrence> I <occurrence-list>, <occurrence>

<occurrence>::= { <o-name> <type> <time> <prob> =<input-output-list>}

<t-header> ::= <t-indent> <type> <time> <prob>

<t-ident> ::=#<integer> I# <name>

<o-name> ::=<name> I <empty>

<type> : := :D I :M I :X I <empty>

<time> ::=*<rational> I <empty>

105

<prob> ::= , <rational> I , <integer> I <integer> I <ref> I <empty>

<rational> ::=<integer> I <integer> . <integer>

<ref> ::= [<place_id>] I [<place_id> : <color>]

<input-output-list> : : = <input-list>

I <input-list> I <output-list>
<input-list> : := <arc> I <input-list> , <arc>

<output-list>::= <arc> I <output-list> , <arc>

<arc> ::= <place-id> I <place-id>- I <place-id> <veight> <color>

<place-id> : : = <integer> I <name>

<veight> ::=<integer>

<color>::= <name> I <empty>

<name> ::=<letter> I <name> <letter> I <name> <digit> I <name>_

The type of the net can be indicated in the net header or in the class directive:

<class>::= class= D I class = M

The type of a transition or an occurrence (i\'1-tim.ed, 0-timed) can also be indicated

by the type elements; such a specification overrides the net type. The specification X

indicates the type opposite to the one indicated for the net.

For occurrences without type, time, or prob elements~ the values of type, time

and prob specified for the transition are used. Transitions and occurrences with empty

time elements denote immediate transitions and occurrences, and are equivalent to

time equal to 0.

Probability element prob specifies the free-choice probabilities of occurrences or

relative frequencies of conflicting occurrences. Empty element prob is equivalent to

probability equal to 1.

Marking-dependent relative frequencies are indicated by place/ color references ref

of the prob element. During conflict resolution, the number of (colored) tokens in the

106

place indicated by ref is used as the relative frequency of transition/ occurrence firings.

Usually ref is one of the transition's input places.

Arcs without weight are equivalent to arcs with weight equal to 1. Inhibitor arcs

are specified as arcs with weight equal to 0.

A.ll colors used in net descriptions must be declared in the list of colors. This list

must precede the net description:

<colors> ::=color (<color-list>) ;

<color-list> ::=<color> I <color-list> , <color>

<color> : : = <name>

The initial marking function is specified as a list of marked places:

<ima.rking> : : = mark (<marking-list>) ;

<marking-list>::= <marked-place> I <marking-list> , <marked-place>

<marked-place>::= <place> I <place> : <count> <color>
<count> : : = <integer>

<color> ::=<name> I <empty>

107

Appendix C

Model - Net Description

This version of the model has two protocols: CU-SeeMe (1 user) and FTP (1024 users).

It was used to generate the delay data in Figure 4.15.

class=M;
color(C9,FO
,Fl
,F2
,F3
,F4
,F5
,F6
,cuo
,CU1
,CU2
,CU3
,CU4
,CU5
,CU6
) ;
net(

#AS_TNK:M

108

{•341.750900=AS_IDLE:1FO/AS_SEND:1FO},
{•23.636933=AS_IDLE:1CUO/AS_SEND:1CUO};

#AS_SMD:D
{,0.990894=AS_SEND:1FO,AS_WIHD:1FO/AS_WACK:1FO,

AS_MSNT:1FO,N_SEND_S:1F1},
{,0.004303=AS_SEND:1CUO/AS_MSHT:1CUO,N_SEHD_S:1CU1};

#AS_PTR:K
{•1.190548=AS_MSNT:1FO/AS_SEND:1FO},
{•88.400000=AS_MSNT:1CUO/AS_SEHD:1CUO};

#AS_WAK:K
{•2.086557=AS_WACK:1FO,N_RECV_S:1F6/AS_WIND:1FO};

#AS_SLT:D
{,0.009106=AS_SEND:1FO,AS_WIRD:1FO/AS_WIND:1FO,

AS_WDAT:1FO,N_SEHD_S:1F2},
{,0.995697=AS_SEND:1CUO/AS_WDAT:1CUO,N_SEND_S:1CU2};

#AS_WMD:K

#AS_KAK:D

{•9.244022=AS_WDAT:1FO,N_RECV_S:1F4/AS_WDAT:1FO,
N_SEND_S:1F3},

{=AS_WDAT:1CUO,N_RECV_S:1CU4/AS_WDAT:1CUO};

{=AS_WDAT:1FO,AS_WACK:OFO,N_RECV_S:1F6/AS_WDAT:1FO};
#AS_LPB:M

{•0.627875,0.508772=AS_WDAT:1FO,
N_RECV_S:1F5/AS_SEND:1FO};

#AS_LAK:K
{•6.290358,0.491228=AS_WDAT:1FO,H_RECV_S:1F5/AS_IDLE:1FO,

N_SEND_S:1F3},
{,1.0=AS_WDAT:1CUO,H_RECV_S:1C05/AS_IDLE:1CUO};

#BR_SSRC_S_Tl:D
{•0.00817=N_RECV_S:1F1,BR_SSRC_S_P1:1C9/ATM_SNDS:1F1,

BR_SSRC_S_P1:1C9},
{•0.00817=N_RECV_S:1F2,BR_SSRC_S_P1:1C9/ATM_SNDS:1F2,

BR_SSRC_S_P1:1C9},
{•0.00817=N_RECV_S:1F3,BR_SSRC_S_P1:1C9/ATM_SNDS:1F3,

BR_SSRC_S_P1:1C9},
{•0.00817=N_RECV_S:1CU1,BR_SSRC_S_P1:1C9/ATM_SHDS:1CU1,

BR_SSRC_S_P1:1C9},
{•0.00817=N_RECV_S:1CU2,BR_SSRC_S_P1:1C9/ATM_SHDS:1CU2,

BR_SSRC_S_P1:1C9},
{•0.00817=N_RECV_S:1CU3,BR_SSRC_S_P1:1C9/ATM_SNDS:1CU3,

BR_SSRC_S_P1:1C9};
#ASAR_IH_S_Tl:D

{=ATM_SNDS:1Fl,ASAR_IN_S_P1:1C9/ASAR_IN_S_P2:1F1},
{=ATM_SNDS:1F2,ASAR_IH_S_P1:1C9/ASAR_IN_S_P2:1F2},
{=ATM_SNDS:1F3,ASAR_IH_S_P1:1C9/ASAR_IH_S_P2:1F3},
{=ATM_SNDS:1CU1,ASAR_IH_S_P1:1C9/ASAR_IH_S_P2:1CU1},

109

{=ATK_SHDS:1CU2,ASAR_IH_S_P1:1C9/ASAR_IN_S_P2:1CU2},
{=ATM_SBDS:1CU3,ASAR_IN_S_P1:1C9/ASAR_II_S_P2:1CU3};

#ASAR_IN_S_T2:D
{=ASAR_IN_S_P2:1Fl,ASAR_IH_S_P3:0F1/ASAR_IN_S_P1:1C9,

ASAR_IN_S_P3:25F1},
{=ASAR_IN_S_P2:1F2,ASAR_IN_S_P3:0F2/ASAR_IN_S_P1:1C9,

ASAR_IN_S_P3:3F2},
{=ASAR_IN_S_P2:1F3,ASAR_IN_S_P3:0F3/ASAR_IN_S_P1:1C9,

ASAR_IN_S_P3:2F3},
{=ASAR_IN_S_P2:1CU1,ASAR_IN_S_P3:0CU1/ASAR_IH_S_P1:1C9,

ASAR_IH_S_P3:3CU1},
{=ASAR_IN_S_P2:1CU2,ASAR_IN_S_P3:0CU2/ASAR_IH_S_P1:1C9,

ASAR_IN_S_P3:4CU2},
{=ASAR_IN_S_P2:1CU3,ASAR_IN_S_P3:0CU3/ASAR_IH_S_P1:1C9,

ASAR_IN_S_P3:2CU3};
#ASAR_IN_S_T3:D

{•0.0028312=ASAR_IN_S_P2:1F1,ASAR_IH_S_P3:1F1/ATM_S1:1F1,
ASAR_IN_S_P2:1F1},

{•0.0028312=ASAR_IH_S_P2:1F2,ASAR_IH_S_P3:1F2/ATM_S1:1F2,
ASAR_IN_S_P2:1F2},

{•0.0028312=ASAR_IH_S_P2:1F3,ASAR_IR_S_P3:1F3/ATM_S1:1F3,
ASAR_IN_S_P2:1F3},

{•0.0028312=ASAR_IN_S_P2:1CU1,
ASAR_IN_S_P3:1CU1/ATM_S1:1CU1,ASAR_IN_S_P2:1CU1},

{•0.0028312=ASAR_IN_S_P2:1CU2,
ASAR_IN_S_P3:1CU2/ATM_S1:1CU2,ASAR_IN_S_P2:1CU2},

{•0.0028312=ASAR_IN_S_P2:1CU3,
ASAR_IH_S_P3:1CU3/ATM_S1:1CU3,ASAR_IN_S_P2:1CU3};

#OC3_SND1_S_T1:D
{•0.0028312=ATM_S1:1F1,0C3_SND1_S_P1:1C9/ATK_S2:1F1,

OC3_SHD1_S_P1:1C9},
{•0.0028312=ATM_S1:1F2,0C3_SND1_S_P1:1C9/ATK_S2:1F2,

OC3_SND1_S_P1:1C9},
{•0.0028312=ATK_S1:1F3,0C3_SND1_S_P1:1C9/ATM_S2:1F3,

OC3_SNDl_S_P1:1C9},
{•0.0028312=ATM_S1:1CU1,0C3_SHD1_S_P1:1C9/ATM_S2:1CU1,

OC3_SND1_S_Pl:1C9},
{•0.0028312=ATM_S1:1CU2,0C3_SHD1_S_P1:1C9/ATM_S2:1CU2,

OC3_SHD1_S_P1:1C9},
{•0.0028312=ATM_S1:1CU3,0C3_SND1_S_P1:1C9/ATM_S2:1CU3,

OC3_SND1_S_P1:1C9};
#ATMSW_SND_S_Tl:D

{•0.0028312=ATM_S2:1F1,ATKSW_SND_S_P1:1C9/ATM_S3:1F1,
ATMSW_SND_S_P1:1C9},

{•0.0028312=ATK_S2:1F2,ATMSW_SND_S_P1:1C9/ATK_S3:1F2,
ATMSW_SND_S_P1:1C9},

110

{•0.0028312=ATK_S2:1F3,ATMSW_SND_S_P1:1C9/ATM_S3:1F3,
ATMSW_SND_S_P1:1C9},

{•0.0028312=ATM_S2:1CU1,ATMSW_SND_S_P1:1C9/ATM_S3:1CU1,
ATMSW_SND_S_P1:1C9},

{•0.0028312=ATM_S2:1CU2,ATMSW_SND_S_P1:1C9/ATM_S3:1CU2,
ATMSW_SND_S_P1:1C9},

{•0.0028312=ATM_S2:1CU3,ATHSW_SND_S_P1:1C9/ATM_S3:1CU3,
ATHSW_SND_S_P1:1C9};

#OC3_SND2_S_T1:D
{•0.0028312=ATM_S3:1F1,0C3_SND2_S_P1:1C9/ATM_S4:1F1,

OC3_SND2_S_P1:1C9},
{•0.0028312=ATM_S3:1F2,0C3_SND2_S_P1:1C9/ATM_S4:1F2,

OC3_SND2_S_P1:1C9},
{•0.0028312=ATM_S3:1F3,0C3_SND2_S_P1:1C9/ATM_S4:1F3,

OC3_SND2_S_P1:1C9},
{•0.0028312=ATM_S3:1CU1,0C3_SND2_S_P1:1C9/ATM_S4:1CU1,

OC3_SND2_S_P1:1C9},
{•0.0028312=ATM_S3:1CU2,0C3_SND2_S_P1:1C9/ATM_S4:1CU2,

OC3_SND2_S_P1:1C9},
{•0.0028312=ATM_S3:1CU3,0C3_SND2_S_P1:1C9/ATM_S4:1CU3,

OC3_SND2_S_P1:1C9};
#ASAR_OUT_S_Tl:D

{•0.0028312=ATM_S4:1F1,ASAR_OUT_S_P1:1F1,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9},

{•0.0028312=ATM_S4:1F2,ASAR_OUT_S_P1:1F2,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9},

{•0.0028312=ATM_S4:1F3,ASAR_OUT_S_P1:1F3,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9},

{•0.0028312=ATM_S4:1CU1,ASAR_OUT_S_P1:1CU1,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9},

{•0.0028312=ATM_S4:1CU2,ASAR_OUT_S_P1:1CU2,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9},

{•0.0028312=ATM_S4:1CU3,ASAR_OUT_S_P1:1CU3,
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9};

#ASAR_OUT_S_T2:D
{•0.0028312=ATM_S4:1F1,ASAR_OUT_S_P1:0F1/ATM_SNDD:1F1,

ASAR_OUT_S_P1:24F1},
{•0.0028312=ATM_S4:1F2,ASAR_OUT_S_P1:0F2/ATM_SNDD:1F2,

ASAR_OUT_S_P1:2F2},
{•0.0028312=ATM_S4:1F3,ASAR_OUT_S_P1:0F3/ATM_SNDD:1F3,

ASAR_OUT_S_P1:1F3},
{•0.0028312=ATM_S4:1CU1,ASAR_OUT_S_P1:0CU1/ATM_SNDD:1CU1,

ASAR_OUT_S_P1:2CU1},
{*0.0028312=ATM_S4:1CU2,ASAR_OUT_S_P1:0CU2/ATM_SNDD:1CU2,

ASAR_OUT_S_P1:3CU2},
{•0.0028312=ATM_S4:1CU3,ASAR_OUT_S_P1:0CU3/ATM_SNDD:1CU3,

111

ASAR_OUT_S_P1:1CU3};
#BR_SDST_S_Tl:D

{•0.00817=ATM_SNDD:1F1,BR_SDST_S_P1:1C9/N_SEND_D:1F1,
BR_SDST_S_P1:1C9},

{•0.00817=ATM_SNDD:1F2,BR_SDST_S_P1:1C9/N_SEND_D:1F2,
BR_SDST_S_P1:1C9},

{•0.00817=ATM_SNDD:1F3,BR_SDST_S_P1:1C9/N_SEND_D:1F3,
BR_SDST_S_P1:1C9},

{•0.00817=ATM_SNDD:1CU1,BR_SDST_S_P1:1C9/N_SEND_D:1CU1,
BR_SDST_S_P1:1C9},

{•0.00817=ATM_SNDD:1CU2,BR_SDST_S_P1:1C9/N_SEND_D:1CU2,
BR_SDST_S_P1:1C9},

{•0.00817=ATM_SNDD:1CU3,BR_SDST_S_P1:1C9/N_SEND_D:1CU3,
BR_SDST_S_P1:1C9};

#BD_TNK:M
{•58.319897=BD_IDLE:1FO/BD_SEND:1FO},
{•25.740089=BD_IDLE:1CUO/BD_SEND:1CUO};

#BD_SMD:D
{,0.897980=BD_SEND:1FO,BD_WIND:1FO/BD_WACK:1FO,

BD_MSNT:1FO,N_SEND_D:1F4},
{,0.975946=BD_SEND:1CUO/BD_MSNT:1CUO,N_SEND_D:1CU4};

#BD_PTR:M
{•9.884468=BD_MSNT:1FO/BD_SEND:1FO},
{•30.077134=BD_MSNT:1CUO/BD_SEND:1CUO};

#BD_WAK:M
{•28.673214=BD_WACK:1FO,N_RECV_D:1F3/BD_WIND:1FO};

#BD_SLT:D
{,0.102020=BD_SEND:1FO,BD_WIND:1FO/BD_WIND:1FO,

BD_WDAT:1FO,N_SEND_D:1F5},
{,0.024054=BD_SEND:1CUO/BD_WDAT:1CUO,N_SEND_D:1CU5};

#BD_WMD:M
{•32.810188=BD_WDAT:1FO,N_RECV_D:1F1/BD_WDAT:1FO,

N_SEND_D:1F6},
{=BD_WDAT:1CUO,N_RECV_D:1CU1/BD_WDAT:1CUO};

#BD_KAK:D
{=BD_WDAT:1FO,BD_WACK:OFO,N_RECV_D:1F3/BD_WDAT:1FO};

#BD_LPB:M

#BD_LAK:M

{•2888.667632,0.003228=BD_WDAT:1FO,
N_RECV_D:1F2/BD_SEND:1FO};

{•0.301882,0.996772=BD_WDAT:1FO,N_RECV_D:1F2/BD_IDLE:1FO,
N_SEND_D:1F6},

{,1.0=BD_WDAT:1CUO,N_RECV_D:1CU2/BD_IDLE:1CUO};
#BR_RDST_R_Tl:D

{•0.00817=N_RECV_D:1F4,BR_RDST_R_P1:1C9/ATM_RCVD:1F4,
BR_RDST_R_P1:1C9},

112

{•0.00817=1_RECV_D:1F5,BR_BDST_R_P1:1C9/ATM_RCVD:1F5,
BR_RDST_R_P1:1C9},

{•0.00817=1_RECV_D:1F6,BR_RDST_R_P1:1C9/ATM_RCVD:1F6,
BR_BDST_R_P1:1C9},

{•0.00817=R_RECV_D:1CU4,BR_RDST_R_P1:1C9/ATK_RCVD:1CU4,
BR_BDST_R_P1:1C9},

{•0.00817=1_RECV_D:1CU5,BR_RDST_R_P1:1C9/ATK_RCVD:1CU5,
BR_RDST_R_P1:1C9},

{•0.00817=R_RECV_D:1CU6,BR_RDST_R_P1:1C9/!TK_RCVD:1CU6,
BR_RDST_R_P1:1C9};

#BSAR_IN_R_Tl:D
{=ATH_RCVD:1F4,BS!R_IN_R_P1:1C9/BSAR_II_R_P2:1F4},
{=ATK_RCVD:1F5,BSAR_II_R_P1:1C9/BSAR_II_R_P2:1F5},
{=ATK_RCVD:1F6,BSAR_II_R_F1:1C9/BSAR_II_R_P2:1F6},
{=ATK_RCVD:1CU4,BSAR_IR_R_P1:1C9/BSAR_IH_R_P2:1CU4},
{=ATM_RCVD:1CU5,BSAR_IH_R_P1:1C9/BSAR_II_R_P2:1CU5},
{=ATM_RCVD:1CU6,BSAR_IB_R_P1:1C9/BSAR_II_R_P2:1CU6};

#BSAR_IN_R_T2:D
{=BSAR_IH_R_P2:1F4,BSAR_II_R_P3:0F4/BSAR_IB_R_P1:1C9,

BSAR_II_R_P3:30F4},
{=BSAR_IH_R_P2:1F5,BSAR_II_R_P3:0F5/BSAR_IH_R_P1:1C9,

BSAR_IN_R_P3:4F5},
{=BSAR_IR_R_P2:1F6,BSAR_II_R_P3:0F6/BSAR_IH_R_P1:1C9,

BSAR_IH_R_P3:2F6},
{=BSAR_IR_R_P2:1CU4,BS!R_IK_R_P3:0CU4/BSAR_IH_R_P1:1C9,

BSAR_IH_R_P3:11C04},
{=BSAR_IH_R_P2:1CU5,BSAR_IH_R_P3:0CU5/BSAR_IH_R_P1:1C9,

BS!R_IN_R_P3:6CUS},
{=BSAR_IH_R_P2:1CU6,BSAR_II_R_P3:0CU6/BSAR_IH_R_P1:1C9,

BS!R_IH_R_P3:2CU6};
#BSAR_IN_R_T3:D

{•0.0028312=BSAR_II_R_P2:1F4,BSAR_IH_R_P3:1F4/ATK_R1:1F4,
BSAR_IH_R_P2:1F4},

{•0.0028312=BSAR_IR_R_P2:1F5,BSAR_IH_R_P3:1F5/ATM_R1:1F5,
BSAR_IH_R_P2:1F5},

{•0.0028312=BS!R_lN_R_P2:1F6,8SAR_IH_R_P3:1F6/ATK_R1:1F6,
BS!R_IH_R_P2:1F6},

{•0.0028312=BSAR_II_R_P2:1CU4,
BSAR_IR_R_P3:1CU4/ATK_R1:1C04,BSAR_IN_R_P2:1CU4},

{•0.0028312=BSAR_IR_R_P2:1CU5,
BSAR_IH_R_P3:1CU5/ATK_R1:1CU5,BSAR_IH_R_P2:1CU5},

{•0.0028312=BSAR_II_R_P2:1CU6,
BSAR_IR_R_P3:1CU6/ATM_R1:1CU6,BSAR_II_R_P2:1CU6};

#OC3_RCV1_R_T1:D
{•0.0028312=ATM_R1:1F4,0C3_RCV1_R_P1:1C9/ATM_R2:1F4,

OC3_RCV1_R_P1:1C9},

113

{*0.0028312=ATM_R1:1F5,0C3_RCV1_R_P1:1C9/ATK_R2:1F5,
OC3_RCV1_R_P1:1C9},

{•0.0028312=ATM_R1:1F6,0C3_RCV1_R_P1:1C9/ATK_R2:1F6,
OC3_RCV1_R_P1:1C9},

{•0.0028312=ATK_R1:1CU4,0C3_RCV1_R_P1:1C9/ATM_R2:1CU4,
OC3_RCV1_R_P1:1C9},

{•0.0028312=ATM_R1:1CU5,0C3_RCV1_R_P1:1C9/ATK_R2:1CU5,
OC3_RCV1_R_P1:1C9},

{•0.0028312=ATM_R1:1CU6,0C3_RCV1_R_P1:1C9/ATK_R2:1CU6,
OC3_RCV1_R_P1:1C9};

#ATMSV_RCV_R_Tl:D
{•0.0028312=ATM_R2:1F4,ATMSW_RCV_R_P1:1C9/ATK_R3:1F4,

ATMSV_RCV_R_P1:1C9},
{•0.0028312=ATM_R2:1F5,ATMSV_RCV_R_P1:1C9/!TM_R3:1F5,

ATKSV_RCV_R_P1:1C9},
{•0.0028312=ATM_R2:1F6,ATMSV_RCV_R_P1:1C9/ATM_R3:1F6,

ATMSV_RCV_R_P1:1C9},
{•0.0028312=ATK_R2:1CU4,1TMSV_RCV_R_P1:1C9/ATM_R3:1CU4,

1TMSV_RCV_R_P1:1C9},
{•0.0028312=ATM_R2:1CU5,ATKSV_RCV_R_P1:1C9/ATM_R3:1CU5,

ATMSV_RCV_R_P1:1C9},
{•0.0028312=ATM_R2:1CU6,ATMSV_RCV_R_P1:1C9/ATM_R3:1CU6,

ATMSW_RCV_R_P1:1C9};
#OC3_RCV2_R_Tl:D

{•0.0028312=ATM_R3:1F4,0C3_RCV2_R_P1:1C9/ATH_R4:1F4,
OC3_RCV2_R_P1:1C9},

{•0.0028312=ATM_R3:1F5,0C3_RCV2_R_P1:1C9/ATM_R4:1F5,
OC3_RCV2_R_P1:1C9},

{•0.0028312=ATM_R3:1F6,0C3_RCV2_R_P1:1C9/ATM_R4:lF6,
OC3_RCV2_R_P1:1C9},

{•0.0028312=ATM_R3:1CU4,0C3_RCV2_R_P1:1C9/ATK_R4:1CU4,
OC3_RCV2_R_P1:1C9},

{•0.0028312=ATM_R3:1CU5,0C3_RCV2_R_P1:1C9/ATM_R4:1CU5,
OC3_RCV2_R_P1:1C9},

{•0.0028312=ATM_R3:1CU6,0C3_RCV2_R_P1:1C9/ATM_R4:1CU6,
OC3_RCV2_R_P1:1C9};

#BSAR_OUT_R_Tl:D
{•0.0028312=ATM_R4:1F4,BSAR_OUT_R_P1:1F4,

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9},
{•0.0028312=ATK_R4:1F5,BSAR_OOT_R_P1:1FS,

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9},
{•0.0028312=ATM_R4:1F6,BSAR_OUT_R_P1:1F6,

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9},
{•0.0028312=ATM_R4:1CU4,BSAR_OUT_R_P1:1CU4,

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9},
{•0.0028312=ATK_R4:1CU5,BSAR_OUT_R_P1:1CU5,

114

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9},
{•0.0028312=ATK_R4:1CU6,BSAR_OUT_R_P1:1CU6,

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9};
#BSAR_OUT_R_T2:D

{•0.0028312=ATM_R4:1F4,BSAR_OUT_R_P1:0F4/ATM_RCVS:1F4,
BSAR_OUT_R_P1:29F4},

{•0.0028312=ATM_R4:1FS,BSAR_OUT_R_P1:0F5/ATM_RCVS:1F5,
BSAR_OUT_R_P1:3F5},

{•0.0028312=ATM_R4:1F6,BSAR_OUT_R_P1:0F6/ATM_RCVS:1F6,
BSAR_OUT_R_P1:1F6},

{•0.0028312=ATM_R4:1CU4,BSAR_OUT_R_P1:0CU4/ATM_RCVS:1CU4,
BSAR_OUT_R_P1:10CU4},

{•0.0028312=ATM_R4:1CU5,BSAR_OUT_R_P1:0CU5/ATM_RCVS:1CU5,
BSAR_OUT_R_P1:5CU5},

{•0.0028312=ATM_R4:1CU6,BSAR_OUT_R_P1:0CU6/ATM_RCVS:1CU6,
BSAR_OUT_R_P1:1CU6};

#BR_RSRC_R_Tl:D
{•0.00817=ATM_RCVS:1F4,BR_RSRC_R_P1:1C9/N_SEND_S:1F4,

BR_RSRC_R_P1:1C9},
{•0.00817=ATM_RCVS:1F5,BR_RSRC_R_P1:1C9/N_SEND_S:1F5,

BR_RSRC_R_P1:1C9},
{•0.00817=ATM_RCVS:1F6,BR_RSRC_R_P1:1C9/N_SEND_S:1F6,

BR_RSRC_R_P1:1C9},
{•0.00817=ATM_RCVS:1CU4,BR_RSRC_R_P1:1C9/H_SEND_S:1CU4,

BR_RSRC_R_P1:1C9},
{•0.00817=ATM_RCVS:1CU5,BR_RSRC_R_P1:1C9/N_SEND_S:1CU5,

BR_RSRC_R_P1:1C9},
{•0.00817=ATM_RCVS:1CU6,BR_RSRC_R_P1:1C9/N_SEND_S:1CU6,

BR_RSRC_R_P1:1C9};
#AE_S:D

{•0.935812,[N_SEND_S:Fl]=N_SEND_S:1F1,
AE_IDLE:1C9/N_RECV_S:1Fl,AE_IDLE:1C9},

{*0.082118,[N_SEND_S:F2]=N_SEND_S:1F2,
AE_IDLE:1C9/N_RECV_S:1F2,AE_IDLE:1C9},

{•0.057600,(N_SEND_S:F3]=N_SEND_S:1F3,
AE_IDLE:1C9/N_RECV_S:1F3,AE_IDLE:1C9},

{•1.136963,[N_SEND_S:F4]=N_SEND_S:1F4,
AE_IDLE:1C9/N_RECV_S:1F4,AE_IDLE:1C9},

{•0.147639,[N_SEND_S:F5]=N_SEND_S:1F5,
AE_IDLE:1C9/N_RECV_S:1F5,AE_IDLE:1C9},

{•0.057600,[N_SEND_S:F6]=N_SEND_S:1F6,
AE_IDLE:1C9/N_RECV_S:1F6,AE_IDLE:1C9},

{•0.081600,[N_SEND_S:CU1]=N_SEND_S:!CU1,
AE_IDLE:1C9/N_RECV_S:1CU1,AE_IDLE:1C9},

{•0.149749,[N_SEND_S:CU2]=N_SEND_S:1CU2,
AE_IDLE:1C9/N_RECV_S:1CU2,AE_IDLE:1C9},

115

#BE_S:D

{•0.009600,[H_SEND_S:CU3]=N_SEND_S:1CU3,
AE_IDLE:1C9/N_RECV_S:1CU3,AE_IDLE:1C9},

{•0.413363,[H_SEND_S:CU4]=N_SEND_S:1CU4,
AE_IDLE:1C9/N_RECV_S:1CU4,AE_IDLE:1C9},

{•0.207520,[H_SEND_S:CU5]=N_SEND_S:1CU5,
AE_IDLE:1C9/N_RECV_S:1CU5,AE_IDLE:1C9},

{•0.009600,[H_SEND_S:CU6]=N_SEND_S:1CU6,
AE_IDLE:1C9/N_RECV_S:1CU6,AE_IDLE:1C9};

{•0.935812,[N_SEND_D:F1]=N_SEND_D:1Fl,
BE_IDLE:1C9/N_RECV_D:1Fl,BE_IDLE:1C9},

{•0.082118,[N_SEND_D:F2]=N_SEND_D:1F2,
BE_IDLE:1C9/N_RECV_D:1F2,BE_IDLE:1C9},

{•0.057600,[N_SEND_D:F3]=N_SEND_D:1F3,
BE_IDLE:1C9/N_RECV_D:1F3,BE_IDLE:1C9},

{•1.136963,[N_SEHD_D:F4]=N_SEND_D:1F4,
BE_IDLE:1C9/N_RECV_D:1F4,BE_IDLE:1C9},

{•0.147639,[N_SEHD_D:F5]=N_SEND_D:1F5,
BE_IDLE:1C9/N_RECV_D:1F5,BE_IDLE:1C9},

{•0.057600,[N_SEHD_D:F6]=N_SEND_D:1F6,
BE_IDLE:1C9/N_RECV_D:1F6,BE_IDLE:1C9},

{•0.081600,[N_SEND_D:CU1]=N_SEND_D:1CU1,
BE_IDLE:1C9/N_RECV_D:1CU1,BE_IDLE:1C9},

{•0.149749,[N_SEND_D:CU2]=N_SEND_D:1CU2,
BE_IDLE:1C9/N_RECV_D:1CU2,BE_IDLE:1C9},

{•0.009600,[N_SEND_D:CU3]=N_SEND_D:1CU3,
BE_IDLE:1C9/N_RECV_D:1CU3,BE_IDLE:1C9},

{•0.413363,[N_SEND_D:CU4]=N_SEND_D:1CU4,
BE_IDLE:1C9/N_RECV_D:1CU4,BE_IDLE:1C9},

{•0.207520,[N_SEND_D:CU5]=N_SEND_D:1CU5,
BE_IDLE:1C9/N_RECV_D:1CU5,BE_IDLE:1C9},

{•0.009600,[N_SEND_D:CU6]=N_SEND_D:1CU6,
BE_IDLE:1C9/N_RECV_D:1CU6,BE_IDLE:1C9})

mark(AS_IDLE:1024FO
,AS_IDLE:lCUO
,AS_WIND:16384FO
,8R_SSRC_S_P1:1C9
,ASAR_IN_S_P1:1C9
,ASAR_IN_S_P3:25F1
,ASAR_IN_S_P3:3F2
,ASAR_IN_S_P3:2F3
,ASAR_IN_S_P3:3CU1
,ASAR_IN_S_P3:4CU2
,ASAR_IN_S_P3:2CU3
,OC3_SND1_S_P1:1C9
,ATMSW_SND_S_P1:1C9

116

,OC3_SND2_S_P1:1C9
,ASAR_OUT_S_P2:1C9
,ASAR_OUT_S_P1:24F1
,ASAR_OUT_S_P1:2F2
,ASAR_OUT_S_P1:1F3
,ASAR_OUT_S_P1:2CU1
,ASAR_OUT_S_P1:3CU2
,ASAR_OUT_S_P1:1CU3
,BR_SDST_S_P1:1C9
,BD_WDAT: 1024FO
,BD_WDAT: 1CUO
,BD_WIND:22528FO
,BR_ROST_R_P1:1C9
,BSAR_IN_R_P1:1C9
,BSAR_IN_R_P3:30F4
,BSAR_IN_R_P3:4F5
,BSAR_IN_R_P3:2F6
,BSAR_IN_R_F3:11CU4
,BSAR_IN_R_P3:6CU5
,BSAR_IN_R_P3:2CU6
,OC3_RCV1_R_P1:1C9
,ATMSW_RCV_R_P1;1C9
,OC3_RCV2_R_P1:1C9
,BSAR_OUT_R_P2:1C9
,BSAR_OUT_R_P1:29F4
,BSAR_OUT_R_P1:3F5
,BSAR_OUT_R_P1:1F6
,BSAR_OUT_R_P1:10CU4
,BSAR_OUT_R_P1:5CU5
,BSAR_OUT_R_P1:1CU6
,BR_RSRC_R_P1:1C9
,AE_IDLE: 1C9
, BE_ IDLE: 1C9
) ;

simulate(2050);
simres;
end.-

117

I
!....&. ..
...

IMAGE EVALUATION
TEST TARGET (QA-3)

11
1.0 :~ ~
~ ~ !3.2 == ~ 12.2

~~

lllu L~ ~
II~

Ill~ 1.
25

11111
1
·
4

111111.
6

- 150mm ______ _....1,

_____ _j_
6" - 1,

APPLIED ..::i IMAGE I - .nc .:= 1653 East Main Stree ~ Rochester. NY 14609 t USA
-==:-~ Phone: 7161482..0000

- .= Fax: 716f288.59S9

c·993 · ' Applied Image. Inc.. AD RJghts Raser.ted

I

