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Abstract 

Asynchronous Transfer Mode (ATM} is a method of data transmission using small 

fixed-length cells. This thesis presents a model of an ATl\ti LAN which provides a 

realistic representation of data transmission over the system by explicitly modeling 

both the ATM network and the applications running over that network. Coloured 

timed Petri nets are used to create a compact model that is capable of representing a 

variety of different protocols at a high level of detaiL The model is designed to allow 

easy reconfiguration or addition of detail at different levels of the system. Simulation 

is used to evaluate the performance of the model, and results are compared to actual 

data gathered from the Memorial University campus network. 
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Chapter 1 

Introduction 

The transmission of information is usually performed by systems specialized for different 

types of information. That is~ there are specific systems for data, others for video, 

a third type for voice, and so on. A single system that can transport all types of 

information has obvious advantages- for example, it could allow information carriers to 

offer multiple services using one basic infrastructure. Another potential benefit could 

be the true integration of services at the user station - i.e. voice, video, and data on 

one user device. 

One system that promises to deliver this integration is . .\.synchronous Transfer Mode. 

or .ATM. The basic premise of ATM is that all information is divided into small fixed­

length data units (cells), which can then be sent across switching networks to be re­

combined at the receiving end. The challenge for an ATM designer is to ensure that 

this cell transmission system can provide the correct behaviour for a video stream as 

well as a phone call. This challenge has also resulted in a considerable body of research 

1 



into ATM related topics. 

Since many of the performance promises of ATM depend on its ability to transmit 

cells at extremely high rates with little or no loss of cells, much of the research has 

focussed on switch design, with the input data represented by fairly simple models. 

However, ATM systems are now starting to appear as data network backbones. One 

particular method of using ATM to transmit data is LAN Emulation, which attempts 

to simulate an Ethernet in such a way that the user is unaware that the AT~I network 

exists. There has not been a great deal of study on how such an ATM backbone will 

behave under a real network load, or how ATM will affect the applications using it. 

This thesis presents a model of an A.TM LAN that provides a more realistic rep­

resentation of data transmission over ATM. It does this by explicitly modeling the 

applications that are running over an ATM LAN, as well as the ATIVI network itself. 

~Iost current research uses simple stochastic inputs or queuing models to describe an 

ATM network; such an approach, however, ignores the synchronized nature of network 

protocols. This synchronization is easily represented in the Petri net based model pre­

sented in this thesis. Furthermore, the model also represents the applications directly 

in terms of protocols and number of active users, which permits the modeler to estimate 

the impact of these variables on an ATlVI backbone. 

Petri nets are a type of directed graph which have become quite popular for modeling 

a wide variety of concurrent systems [41] _ Their similarity to finite automata eases the 

understanding and utilization of Petri nets for most modelers of computer systems, and 

the wide range of extensions to the basic net formalism allows the modeler to choose a 
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type of net that best matches his requirements. 

Network protocols, especially those that have been continually refined like TCP /IP, 

can exhibit quite complex behaviour. However, an analysis of network behaviour on 

the campus backbone of Memorial University has shown that much of this behaviour 

does not appear on a LAN in relatively non-congested periods of operation. If the 

modeler assumes that behaviour under congested conditions is less important than 

detecting when congestion might occur, then many elements of protocol behaviour can 

be ignored. The behaviour that remains is remarkably similar across a set of protocols 

carried on the Memorial network. 

To capture this similarity of behaviour while still permitting the individual protocols 

to act independently, the model is based on coloured timed Petri nets with exponen­

tially distributed firing times. Coloured Petri nets are useful for representing systems 

that contain many repeated components; the different components can essentially be 

superimposed on one another, and distinguished by associating the tokens in the net 

with attributes called "colours". The coloured tokens can operate independently from 

one another or interact as required by the designer. The structure of the net model rep­

resents the basic behaviour common to all the protocols, while the different colours are 

used to represent the differences between the protocols, such as temporal characteristics 

or packet size. 

To allow the modeler to easily modify parts of the model, the net is designed in a 

modular fashion in relation to a protocol stack description of the subject network. This 

ability to easily change a particular section without affecting the surrounding parts of 
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the net permits separate testing of each module, as well as the power to re-arrange 

or re-combine elements of the model to reflect different configurations of the subject 

network. 

Although analytical solutions are possible for many classes of Petri nets, the model 

uses a number of theoretical extensions which prevent such analysis. Therefore, sim­

ulation is used to evaluate the performance of the net. This simulation is used to 

investigate: 

• the conformance of the model to real protocol behaviour, 

• the cumulative effect of many users and protocols on a network, 

• the effect of a particular protocol on an ATM LAN, 

• the effect of different configurations of the subject network. 

Where possible, the results from simulation are compared to data traces taken from the 

subject network. 

The systems and protocols modeled in this thesis, including a description of the 

subject network, are discussed in Chapter 2. A brief survey of current research on 

.ATM performance is also included there. Chapter 3 presents the model design in 

greater detail, and describes some elements of the design process. Chapter 4 describes 

the parameters of the model and the way they are determined; it also presents simulation 

results and data trace comparisons. Some possible extensions to the model are discussed 

in Chapter 5, with Chapter 6 summarizing the work and results. 
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Chapter 2 

Modeling Environment 

This chapter discusses some of the protocols and systems that make up the network 

architecture modeled in this thesis. Some background information is provided, as well 

as a description of how the systems are implemented in the Memorial University campus 

environment. The chapter concludes with a brief survey of current research on modeling 

and analysis of ATM networks. 

2.1 Protocols 

Protocol behaviour is a key part of any network. The discussion starts with the high 

level application protocols, and proceeds down through the standard layer model to the 

ATM cell level. 
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2.1.1 Application Protocols 

The application protocols are those most familiar to network system users - they usually 

act as the direct point of contact between the user and the network. 

TELNET: provides a remote terminal connection from one host to another. TEL~ET 

is normally used for text-based interactive computing. (RLOGIN, which performs 

a similar function as TELNET, is combined with TEL NET in this thesis.) TEL­

NET is described in RFC 854 (see Section 2.1.2 for more detail on RFC's). 

FTP: the File Transfer Protocol is probably the most commonly used application at 

Memorial for transferring files from one host to another. It is described in RFC 

959. 

NNTP: the Network News Transfer Protocol is used for transferring USE!'J"ET news 

articles from host to host. It is described in RFC 977. 

WWW: the World Wide Web is the popular name for a global information system on 

the Internet. The protocol used to transmit most WWW information is HTTP 

(Hypertext Transfer Protocol), although actual WWW usage is often a mixture 

of HTTP and other protocols. HTTP is specified in RFC 1945. 

X Windows: 'X' is a client-server based system for the management of remote graphics 

displays. X protocols and standards are maintained by the X Consortium, a group 

of academic and industry users. 
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CU-SeeMe: Originally developed at Cornell University, CU-SeeMe is a videoconfer­

encing application designed to work over the Internet. 

2.1.2 TCP /IP 

The acronym TCP /fP (Transmission Control Protocol/Internet Protocol) [11) refers 

to a suite of networking protocols that have gained wide acceptance as the basis for the 

global Internet. TCP/IP was developed in the mid to late 1970s by DARPA, the Defense 

Advanced Research Projects Agency. By early 1980 it had become the communication 

standard for the ARPANET, the predecessor of the current Internet. The TCP /IP suite 

has developed over time, with numerous extensions and improvements. All TCP /IP 

standards are publicly accessible over the Internet, and are published in documents 

called RFCs, or Requests For Comments. 

The TCP /IP protocol stack (see Figure 2.1) is built on a connectionless datagram 

service (IP), with primarily two higher level services- UDP, which offers a connectionless 

service, and TCP, which provides a reliable connection-oriented service. Most Internet 

applications use one of these two services to transmit data from one host to another. 

Most of the protocols modeled in this thesis use TCP as their transport service, although 

UDP is also discussed. 

TCP (49] is designed to provide: 

• basic data transfer, 

• reliability (guaranteed delivery using positive acknowledgements), 
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TELNET FTP NNTP HTTP X OJ~~ 

TCP Layer UDP 
Layer 

IP Layer 

Physical Layer 

Figure 2.1: TCP /IP protocol stack. 

• flow control {sliding windows), 

• multiplexing (full duplex transmission), 

• connection (handshaking for setting up and ending a connection, as 

well as status information during the life of a connection). 

There have been a number of additions to the TCP protocol. These are documented 

in Internet RFCs. 

2.1.3 Ethernet 

Ethernet [37, 11] is a packet transmission system designed for Local A.rea Networks 

(LANs). It is based on a shared bus topology, with control of the medium distributed 

among the stations attached to the bus. A.ccess to the transmission medium is by a 

method commonly known as CSMA/CD for Carrier Sensing Multiple Access/Collision 

Detection. Each station can detect if another is transmitting, and, if so, refrains from 
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attempting to send. Once the medium is free, stations with data to transmit will 

attempt to gain control. Since the start of the transmission takes a finite time to 

propagate to all stations on the medium, it is possible that more than one station may 

attempt to send at the same time (a "collision"). When transmitting stations detect a 

collision, they immediately stop and wait a random period of time before attempting 

to transmit again. 

Ethernet normally operates at 10 Mbps, although there are recent standards for 

operating Ethernet at 100 Mbps [39]. 

2.2 ATM 

Memorial chose ATM technology to serve as the backbone of its campus network. This 

section provides a brief description of ATNI and associated protocols. 

2.2.1 Basic Concepts 

Asynchronous Transfer Mode (ATM) [13, 18] is a method of transferring information 

(i.e. data, voice, or video) using small fixed length cells. AT~I is connection-oriented; a 

data transfer between two entities over an A.TlVI network will follow a path determined 

before the transfer begins. Each data connection represents a different virtual channel 

or 'circuit'. Although cells are always in sequence on any given virtual circuit, the 

circuits are multiplexed together through switching devices and underlying media. 

Although ATM is connection-oriented, it is intended to be used by a variety of 
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Higher Layer Applications 

Ml-1 AAL-3/4 ML-5 

L 
cs cs cs 

SAR SAR SAR AA 

ATM ATM Layer 

PHY Physical Layer 

Figure 2.2: ATM protocol stack. 

applications, such as LAN traffic or voice transmission. A number of interfaces called 

A TM Adaptation Layers provide different classes of service to upper level applications 

(Figure 2.2 shows the ATM protocol stack). AAL-1, for example, provides a constant 

bit rate Time Division tvlultiplexor service suitable for voice transmission, while AAL-5 

provides variable rate service for data blocks of varying sizes for LAN traffic. The AAL 

layer is subdivided into two parts: Convergence Sublayer (CS), which prepares higher 

level blocks of data for transmission, and the Segmentation and Reassembly (SAR), 

which actually does the conversion of the data into cell payloads. In all cases, the 

information is eventually broken into 53 byte (5 byte header, 48 byte payload) cells at 

the ATM layer. The use of small fixed-length cells permits the design of very fast ATrvi 

switching devices, as well as reducing queuing delay and jitter [13]. 

One of the strengths of ATM is that it is not tied to any particular physical medium 

or transmission rate. ATM networks currently operate on both copper and fiber optic 

10 



media, with rates from Tl (1.544 Mbps) to OC-12 (622 Mbps). ATM standards are 

set by the ATM Forum, an organization made up of telephone companies, software and 

hard ware manufacturers, and interested user organizations. 

2.2.2 LAN Emulation 

Most existing applications requiring a network do not interface directly with ATM. Since 

they are designed to use more traditional protocols such as IP or IPX [33}, there has 

been a considerable amount of work in designing interfaces that allow these protocols 

to operate over ATNL The upper level application is unaware that ATM is involved in 

the data transfer- it merely sees the normal IP or IPX interface. The IP-over-A.TM 

standards of the IETF (Internet Engineering Task Force) described in RFC1483 and 

RFC1577, and MPOA [1] are examples of work in this area. 

Another attempt to interface traditional protocols and systems with :\. T~1 is LA.N 

Emulation [31]. This standard simulates a MAC layer (either Ethemet/IEEE 802.3 

or Token Ring) over an ATM network. Any application or protocol that would nor­

mally operate over an Ethernet or Token Ring network can work without modification 

on a LAN Emulation network - the presence of ATN[ is hidden from the upper level 

applications. 

Each host that is part of an Emulated LAN is called a LAN Emulation Client 

(LEC). Each Emulated LAN must also have devices that perform certain functions for 

the Emulated LAN - these functions are: 
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• LAN Emulation Configuration Server, which provides locations 

of other services, 

• LAN Emulation Server, which provides locations of other clients in 

the same Emulated LAN, 

• Broadcast and Unknown Server, which simulates the broadcast 

behaviour of a LAN by replicating broadcast type packets to all clients 

of a particular Emulated LAN. 

Most of these services are activated when a client (which can be a single computer or a 

bridge between an ATM and an older type of network) first joins an Emulated LAN or 

sends a broadcast packet. When one host wishes to send data to another on the same 

emulated LAN, it uses the LES for that LAN to find the ATM level address of the other 

host. It then sets up a direct ATM VC (Virtual Circuit) between the two devices for 

the actual data transfer. 

2.3 Memorial's Network 

The data in this thesis are taken from the campus network of Memorial University of 

Newfoundland .. At the time this thesis is being written, the University is transitioning 

from a campus backbone based on Ethernet over fiber optic cable to an A.TM network 

using LAN Emulation. 

Figure 2.3 shows a typical data path over the old backbone at the University. Both 

the backbone and the end-point LANs are 10 Mbps Ethernet, while the intervening 
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End-point 
Ethernet 

SRC 
Host 

devices are routers. 

Router 

End-point 
Backbone Ethernet Ethernet 

Router 0 
DST 
Host 

Figure 2.3: Typical data path - old backbone. 

The new ATM backbone replaces the Ethernet and routers in the middle of the 

data path with an emulated LAN built on . .\TM. The end-point LANs attach to 

ATM/Ethernet bridges which act as LAN Emulation clients. If the two end-point 

LANs are in the same virtual LAN, then the data path is as shown in Figure 2.4; the 

data flows between the two ATM/Ethernet bridges via a direct ATM VC. However! if 

traffic is between two end-point LANs that are not in the same virtual LA.N, then the 

data path is as shown in Figure 2.5; the data path includes a router as an intervening 

device. 

The links between the ATM devices are fiber optic cables using OC-3c SO NET 

framing. (SONET stands for Synchronous Optical NETwork [18].) The normal raw 

transmission rate of OC-3c is 155.52 Nlbps. 
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SRC 
Host 

End-point 
Ethernet 

1---- Bridge 
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Switch 
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Bridge 

End-point 
Ethemet 

~ j 
DST 
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Figure 2.4: Typical data path - same virtual LAN. 
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Host 
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- Bridge ATM 

Switch 

Router 
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End-point 
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- ) 

DST 
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Figure 2.5: Typical data path- different virtual LAN. 
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2.4 Current Research 

ATl\11 is still very much a system under development. The .A.Tl\1[ Forum is continually 

producing new standards, and revising current ones. ~Iany aspects of ATM generate 

fierce debate between researchers, vendors, and users of ATM equipment. 

A considerable variety of modeling and analysis methods have been applied to ATM, 

the main focus being the representation of input traffic to a switch or network of 

switches. A summary of such methods can be found in [55]. Conti [12] provides an 

exhaustive list of models applied to FDDI [28} and DQDB [9], while an older survey 

in (51] categorizes modeling methods according to the OSI Reference Nlodel. 

A common input model used in ATl\JI analysis is the l\JIMPP (Markov wiodulated 

Poisson Process) [44]. This and related models are used in (58) and [14] to estimate cell 

loss probabilities in ATl\JI networks. Queueing models are used to study transmission 

delays in ATM networks [42, 43], and also buffer allocation within an A.T~I switch [32]. 

A "'fluid flow" model is used in [6] as an alternative to queueing models in studying 

the ~leaky bucket" policing mechanism 1 in ATM. Other such mechanisms are studied 

in (50] using an 1\IIMPP related model, while [16] uses teletraffic and signal processing 

theory. 

Direct simulation has also been used to analyze ATM performance. A. simulation 

comparison of .ATJ\'1, Frame Relay [24], and DQDB is described in (48). (22] analyzes 

a policy mechanism, and [8] describes a distributed simulation of a multi-node ATlVI 

1 ATM supports Quality of Service ( QoS) parameters; policing mechanisms are devices that ensure 
a source complies with the contracted service levels in the network. 

15 



network. A simulator specifically built for ATM-based systems is described in [36]. 

The issues involved in operating traditional protocols over ATM has generated a 

number of studies of IP performance over ATM. These studies have concentrated on 

directly attached workstations - i.e. a host with an ATlVI interface card. The issue of 

protocol overhead is examined in (7, 2], while (19, 46, 57] analyze the effects of TCP /IP 

and system design on IP-ATM performance. [53] evaluates two strategies for effective 

discard of packets in an ATM environment, while [38) examines in detail a deadlock 

situation that can occur with TCP over ATM. 

The study presented in this thesis uses a simple behavioural model of ATM. A 

good agreement of simulation results with measurements indicates that even this simple 

model is quite satisfactory for many performance analyses. The next section describes 

the conceptual model used in this thesis, some background on the modeling technique 

employed (timed coloured Petri nets)~ and the derivation and construction of the model 

itself. 
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Chapter 3 

Model 

The interconnection of LANs with ATM networks is still a fairly new area of interest. 

Many standards are still under development, and there remain some areas of fierce 

debate, such as the best deployment of routing traditional protocols over an .. A.Tivl switch 

network. Much of the research has concentrated on the behaviour of the ATM switches 

themselves using abstract models to represent the data passing through the switch. 

These models have generally represented broad classes of input - ~'data:' versus ""video" ~ 

for example. This creates an extremely abstract environment outside the switch. It was 

felt that explicitly representing the higher-level protocols that drive the network would 

provide a more detailed and realistic input model for an A.TM network. Furthermore, 

in a production ATM environment such as the one at Memorial, the emphasis is usually 

not the expected cell loss rates of the switches (for example), but rather what effect 

using an ATM network has on the users who pass data across it. 

The system modeled in this thesis is described in the reference model (Figure 3.1). 
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USER System 

Application 
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Appllccr.ton 
Protocol ~· ) Protocol 

TCP/IP rc· Peer-tc:H'eer Communication ) TCP/IP 
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Bridge Bridge 

Ethernet SAR SAA I Efhemet 

I 

ATMLayer 

Figure 3.1: Reference Model 

This reference model can be thought of as a "cross-section" through the backbone 

configuration shown in Figure 2.4, using the classic network layer modeL 

In designing the model, a number of broad goals were identified: 

• The model should be modular. It should be possible to change the 

behaviour of sections of the model without requiring major changes 

to other sections. The modular approach also allows the designer to 

gradually build the model from smaller pieces. 

• The model should be closely tied to the physical implementation and 
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behaviour of the system studied. 

• The model should have a high degree of flexibility. It should be possible 

to easily re-arrange modules to represent different environments. 

The modeling method used in this thesis is based on Petri nets [52, 41, 47]. Petri 

nets have a number of advantages for modeling: 

• Concurrency and synchronization is "naturally'' represented in Petri 

net models. 

• A sound theoretical foundation has been developed for Petri nets, as 

well as a number of extensions to the basic concept. The many exten­

sions allow a modeler to choose a construct that best suits the system 

to be modeled. 

• There are a large number of software tools available for analyzing var­

ious types of Petri nets. 

• Petri nets can be studied by analytical methods as well as simulation. 

It was decided that the model will follow the layered structure of the reference model. 

Each layer will be represented by a module of the net, allowing the modeler to change 

a particular layer independently of the others. Where peer-to-peer conversations [56] 

are involved (at the User/ Application and TCP /IP layers, for example), the preference 

was to closely imitate the action of realistic peer-to-peer conversations - the data flow is 

actually down through the lower layers in the stack and back up to the peer level in the 
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other half of the conversation. It was also decided to have all conversations originate 

from one side of the network. This is a typical pattern for much of Memorial's network, 

with many end-point LANs consisting entirely of personal computers that interact with 

central servers for various functions. In this case, network conversations almost always 

start from the PC end of the link. 

Section 3.1 describes the basic theory of Petri nets, and the extensions used in this 

thesis. Section 3.3 introduces the model for the upper layers of the reference model 

(i.e., User/ Application), while Section 3.4 models the TCP/IP protocol stack. Sec­

tions 3.5 and 3.6 describe how the model represents an Ethernet and the AT~I network 

respectively. Finally, some key model design decisions are discussed in Section 3.8. 

3.1 Petri Nets 

This section gives a short introduction to Petri nets and the extensions to Petri nets that 

are used in the model. Some of the general references, such as [ 41], can be consulted 

for further information and sources. 

3.1.1 Basic Properties 

The basic form of Petri nets, as defined in [47, 52, 41], is a bipartite graph made up 

of a set of places P, a set of transition T, and a set of directed arcs A which connect 

places with transitions and transitions with places. Tokens are assigned to places, with 

the particular distribution of tokens among the places at any one time being called a 
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P2 P4 P6 

Pl P3 P5 

Figure 3.2: Basic Petri net model: producer/consumer bounded-buffer model. 

marking. The behaviour of a petri net is controlled by the distribution of tokens and 

the firing of transitions; a transition is enabled for firing when all the input places to 

that transition contain tokens. The firing of a transition removes one token from each 

of the input places and adds a token to each of the output places of that transition. 

Figure 3.2 is an example of a simple Petri net. It represents two processes com­

municating via a buffer - one writes to the buffer and the other reads from the buffer 

assuming the buffer is non-empty. The ''write" process is represented by place Pl and 

P2 and transitions Tl and T2. When T2 fires, it removes one token from Pl and P3 

and deposits single tokens into P2 and P4. This represents a "write" action to the 

buffer. (The sum of tokens in P3 and P4 determines the buffer capacity.) vVith a token 

in P4, T3 is now enabled, and on firing, removes the token from P4 (a '"read" action) 

and deposits tokens into P3 and P5. Both Tl and T4 can fire, returning the producer 

and consumer back to their original states. 
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The theoretical bases of Petri nets are well-explored; [41] provides an overview of 

the subject. Petri nets can be used to determine a wide range of properties about 

modeled systems. For example, [15] and [3) describe the use of Petri nets in protocol 

verification - that is, ensuring that protocols operate as intended and are free from 

deadlock or other design flaws. 

There are a number of extensions to basic Petri nets. Inhibitor arcs (61] provide a 

''test if zero" condition; a transition with inhibitor arcs is enabled if the places attached 

to those arcs are empty of tokens. Another extension is the use of multiple arcs from the 

same place and transition, allowing a transition to remove or deposit multiple tokens 

at one firing. 

Some properties of Petri nets are determined by the structure of the net without 

reference to a particular marking. Part of this work is the study of conflicts, where 

multiple transitions are enabled by the same marking, and the firing of one transition 

prevents the other from firing. The simplest type of conflict in a Petri net is known as 

a "free-choicen type, where multiple transitions share the same input places. Since all 

such transitions are enabled simultaneously, the resolution of the conflict can be made 

by assigning probabilities to each transition and making a random choice. 

Two extensions to Petri nets that are important to performance modeling are de­

scribed in the next two sections: associating timing information with a net, and the use 

of "colours" to distinguish tokens from one another. A. third section discusses in more 

detail which extensions are employed in the modeL 
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3.1.2 Timed Nets 

While basic Petri nets are useful in a variety of modeling applications, they do not repre­

sent events that take place over time. For example, the simple net in Figure 3.2 cannot 

model the speed at which the read and write actions occur. There have been a variety 

of methods proposed to add timing information to Petri nets. Timed nets (59] associate 

a deterministic or exponentially distributed firing time with each transition. Stochastic 

Petri nets (SPN's) [40] also assign exponentially distributed firing times to transitions~ 

but the two types use different procedures for handling the interaction between tran­

sitions and tokens. (This interaction is called the ''firing semantics" of the model.) 

Some other classes of nets with timing information are Generalized Stochastic Petri 

Nets (GSPN's)[34] which include both exponential and immediate (non-timed) tran­

sitions, and Extended Stochastic Petri Nets (ESPN's) [17] which use non-exponential 

firing time distributions. 

The model used in this thesis follows the timed net paradigm of firing semantics. 

When a transition fires, the token(s) from the input places are removed at the beginning 

of the firing duration, and then token(s) are deposited into the output places at the 

end of the firing period. For example, to turn the sample net in Figure 3.2 into a timed 

net~ we would associate exponentially distributed firing times with T2 and T3. When 

T2 fires, the token would be removed from Pl until the end of the duration of that 

firing, at which time tokens are placed in P2 and P4. Therefore, the transition T3 is 

not enabled until the end of the T2 firing time. 
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P2 

P3 

Pl 

Figure 3.3: Basic Petri net model: coloured version. 

Nets with timing information have become quite common in performance modeling. 

[35] describes a model of a LAN system similar to Ethernet, while [21] uses Stochastic 

Reward Nets (a modified version of SPN's) to model operating systems. 

3.1.3 Coloured Petri Nets 

In basic Petri nets, all the tokens are considered identical- only the number of tokens in 

each place is important. In coloured Petri nets [27], however, the tokens have attributes 

called colours which make the tokens distinct from one another. Since there are now 

different classes of tokens, transitions and transition firings become much more com­

plicated. To be enabled, a transition must not only have sufficient numbers of tokens 

in its input places, but the tokens must be of the required colours. The number and 

colours of tokens deposited in the output places when the transition fires must also be 

specified. 
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The chief benefit of coloured nets is that they simplify the overall structure of the net. 

Many net models, if designed using non-coloured nets, are made up of repeated subnets 

combined together. For example, the net model of a LAN in [35] uses an identical 

subnet for each station attached to the network. By using different colours of tokens, 

these sub nets can be "folded" onto one another, and yet still operate independently. 

Figure 3.3 shows a coloured version of the net in Figure 3.2. The ~'read" and "'write" 

processes have now been folded together, with one token of colour r and another of 

colour w in place Pl. Transition T2 now operates in two ways: 

1. If a token of colour w is in PI and in P3, then T2 is enabled and, on 

firing, removes a token of colour w from each of PI and P3 and places 

a token of colour w in P2 and a token of colour r in P3. 

2. If a token of colour r is in PI and in P3, then T2 is enabled. On firing, 

it removes one token r from PI and one token r from P3, depositing a 

token of colour r into P2 and one into P3. 

The two events represented by T2 enabling are called "'occurrences17 of the transition, 

each corresponding to one of the original transitions in the non-coloured net. It is 

possible to fold the net even further into one with only a single place and transition. This 

requires an additional colours and a more complicated transition description. Generally, 

increased folding (reduced structure) results in more colours and greater transition 

complexity. 

Some simple examples of coloured Petri nets can be found in [27]. [23] discusses 
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hierarchical structures using coloured nets. 

3.1.4 Model Semantics and Notational Conventions 

This thesis uses timed coloured Petri nets to model the network system described in 

the previous chapter. Infinite timed firing semantics is employed - tokens are removed 

from the input places at the beginning of the transition firing time~ and several firings 

of the same transition can overlap. 

The model makes frequent use of free-choice structures, described by "'choice:' prob­

abilities. The model also uses ''marking-dependent" probabilities where the probability 

of firing a particular occurrence is determined by the relative number of tokens of a 

particular colour in an input place. 

The following notation is used in the diagrams in this thesis. Places are notated by 

the usual hollow circles. Immediate transitions are indicated by thin bars and timed 

transitions by hollow bars. The notation 'kn', where n is a number indicating the 

packet type from Section 3.4, is used next to arcs to indicate the particular packet type 

removed or deposited by a transition. (All occurrences in the User/Application and 

TCP /IP stack levels have the same packet types per arc.) If this notation is missing 

from an arc in the User/ Application or TCP /IP modules, the arc is assumed to be "kO' 

(i.e. a control token). If the notation is missing from arcs in the network layers, the 

arc is assumed to have an occurrence for multiple packet types, as is the case for most 

of the arcs in the Ethernet and ATM layers. 
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3.2 Model Overview 

The complete Petri net model is shown in Figure 3.4 indicating the sections correspond­

ing to the layers of the reference model {Figure 3.1). The model can be considered as 

a stack of identical superimposed nets, one for each application-level protocol. The 

superimposed nets are wholly independent at the source and destination processes at 

either side, but there are links between the layers at the intervening network sections, 

representing resources such as an Ethernet which can only transmit one frame at a time. 

Inside each layer, each transition can be thought of as a list of occurrences. This list 

can grow up to the maximum number of sessions per application-level protocol. Agdin, 

each session is independent of the others at the User/ Application and TCP /IP sections, 

but interact at the network levels. 

The remainder of this Chapter describes each section of the model in more detail in 

relation to the reference model (Figure 3.1). 

3.3 User/ Application Level 

The basic model at this level is of a user running an upper level application (such as 

TELNET, FTP, etc.) between two computers connected by a network. The user is 

assumed to operate in the following way: 

1. There is a thinking state, in which no transmissions occur. 
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Figure 3.4: High level view of model. 
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2. A request (e.g., a command) is sent to the remote computer. This 

causes a data transmission from the originating host (labelled SRC or 

" Source") to the destination host (DST or "Destination"). 

3. The SRC host then waits for a reply from the DST host (i.e., a new 

screen or a data transfer). 

4. The SRC host returns to the original thinking state, and repeats the 

cycle. 

Figure 3.5 shows the net model of the User/A.pplication level. The thinking time is 

represented by the transition S_TNK, while the data transmissions are represented by 

the "Network" transitions and dotted arcs. Control is transferred to the DST process, 

which has a certain delay to process the request (D_TNK) before replying with a data 

transmission back to the SRC process. 

The token indicated in Figure 3.5 represents the initial marking for the model. Each 

token indicates a single session (user) using a particular application-level protocol. Each 

protocol is represented by a different token colour. Since the behaviour of the S_TNK 

transition can be different for each colour, the colours separate the behaviour of different 

protocols. The multiplicity of tokens of each colour in place S_8END represents the 

number of simultaneous sessions of each protocol type. The infinite firing semantics 

used in this model ensures that each session operates independently of all other sessions 

in the model. 
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Figure 3.5: User/ Application level modeL 

3.4 TCP /IP Level 

When originally designed for the ARPANET, TCP /IP was built to work over slow point-

to-point connections. Sliding windows, positive acknowledgements, re-transmissions, 

and piggybacking helped improve reliability and performance of the protocol on con-

gested links. In a LAN environment, however, some of these techniques are rarely seen. 

Re-transmissions, for example, are relatively rare in Memorial's internal traffic (intra-

LAN or inter-LAN) as opposed to LAN to Internet traffic. This is a function of both the 

small delay times found in the LAN environment as well as the much smaller probabil-

ity of packet loss. Since increased functionality results in increased model complexity, 

a trade-off point must be reached where enough functionality is included to provide a 

reasonable approximation of system behaviour. 

30 



3.4.1 TCP 

Figure 3.6 shows an outline of a net model of the User/ .A.pplication level with a 

TCP /IP stack. (A more detailed diagram of the TCP /IP stack is shown in Figure 3.9.) 

The stack provides a TCP (connection-oriented) path between the SRC and DST pro­

cesses at the User/Application level. It provides the following functionality: 

• Transmission and reception of data packets. 

• Positive Acknowledgements. The SRC or DST processes send back a 

packet to acknowledge the successful receipt of a data packet. 

• Piggybacking. Rather than send a specific packet to acknowledge a 

previously received data packet, the process may embed the acknowl­

edgement in the first data packet that it returns to the other process. 

• Sliding Windows. A process does not wait for an acknowledgement 

before sending the next packet. Instead, it has a "window" of unac­

knowledged packets at any one time. 

The TCP /IP model shown in Figure 3.6 assumes that packets cannot be lost, and 

that a SRC or DST process will always respond fast enough to prevent re-transmissions. 

Table 3.1 shows the number of packets involved in a particular TCP function for various 

packet traces from Memorial's network backbone. Note that the functions are not 

mutually exclusive- a packet can be both an acknowledgement and a re-transmission. 

(The relatively large number of re-transmissions for the X protocol are probably the 

31 



t­
CI) 

0 

() 
a::: 
Cl) 

Figure 3.6: TCP /IP stack level model. 
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Function Frequency in Trace Data 
TEL NET FTP NNTP X 

.Acknowledgements 33% 35% 33% 24% 
Piggybacking 31% 18% 21% 74% 
Re-transmissions 1.5% 2.9% 8% 27% 
Sliding Windows 1.9% 31% 31% 26% 

Table 3.1: Impact of TCP /IP functions on protocol behaviour. 

OATA(3) 

aSRC -:::::~------------A 
... ----- ~tL----:0 

... __ -- ~~- ----

Figure 3.7: Packet flows in model (single data type). 

result of a long network path from source to destination across the campus network for 

the connections included in the raw data.) 

While the User/ Application level is only concerned with the data flowing between 

the SRC and DST processes, the TCP /IP level deals with data and acknowledgements, 

since TCP provides guaranteed delivery. We can broadly characterize the types of 

packets flowing between SRC and DST into four types (see Figure 3.7): 

1. DATA{1}: SRC to DST: data packet, 

2. ACK(2}: SRC to DST: acknowledgement packet, 

3. DATA{3): DST to SRC: data packet, 

4. ACK(4): DST to SRC: acknowledgement packet. 
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(The notation DATA{l} describes the type of packet. The numeral in parentheses 

distinguishes the different packets, while the remainder of the name is a reminder of 

the packet's function. For example, a DATA(3) packet is type 3 - a data packet from 

the DST process to the SRC process. The 'DATA' part of the name indicates that the 

packet carries actual application protocol data.) 

Piggybacking is assumed to be a part of all data packets. That is, if a process 

expects an ACK for a previous transmission, it will accept a DATA. packet as both a 

new data transmission and an implicit acknowledgement of the previous transmission. 

However, most network applications send a group of data packets, wait for a group 

of packets in reply, send another group, and so on. Table 3.2 shows typical data group 

sizes (in packets) for various application-level protocols. For real network processes, the 

end of a group can be detected through the data contained in the packets. A TELNET 

session, for example, echos keystrokes until it reads a carriage return character, at which 

point it processes the command. The model does not have any information about the 

contents of the packets, so a different mechanism had to be found to signal the end of 

a data group. This was done by creating two more packet types (LST(2) and LST(5)) 

to represent the last packet in a data group (one for each direction). This brings the 

total number of packet types (per application protocol) to six. The revised packet flow 

diagram is shown in Figure 3.8. 

Each process sends a certain number (possibly zero) of MID packets, followed by 

a single LST data packet. (It is assumed that the receiving process is sending back 
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II TELNET I FTP I NNTP I X I 
SRC to DST 1.32 11.6 1.02 1.70 
DST to SRC 1.46 9.8 5.75 1.72 

Table 3.2: Mean size of data groups (in packets). 

---~---

Q
SRC,,: _:-:: :::i%-_-_-_-~ .. --.. 

0 
... : OST 
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-- - -- -~)-- - --
... ... ---- -~~- ----... , ...... ____ ~) _____ ... 

Figure 3.8: Packet fiows in model (multiple data types). 

acknowledgment packets for each data packet sent.) When the receiving process detects 

a LST packet, it knows that the sender has finished the data group and is now ready 

to receive data packets in reply. 

In the model, one colour is used for the User/ .Application level, and a further six 

colours are used for the six packet types representing the lower level behaviour of an 

application protocol. For example, a model of FTP applications would use one colour 

for the user session state, and six more for packet types transmitted between processes. 

A model of FTP and TELNET would require 14 colours, and so on. 

This distinguishing of packet types also allows the model to represent behaviour 

based on packet size. For example, the transmission delay of a packet through a network, 

which is often dependent on the size of the packet, can be based on the mean packet 

size for each type, rather than the overall mean packet size. 
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Figure 3.9: TCP Source (SRC) process. 
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Figure 3.9 shows the model of a SRC process combining the User/ Application level 

and the TCP/IP leveL Control tokens cycling through places S...IDLE, s_sEND, and 

S_ WDAT represent the User/ A.pplication level shown in Figure 3.5. vVhen the control 

token is in place S...SEND~ both transitions S_8MD ('Send MID') and S_8LT (~Send 

LST') are enabled. This forms a free-choice structure, which is controlled by choice 

probabilities assigned to the two enabled transitions. For example, by assigning choice 

probabilities we can cause S.-SMD to fire in 20% of cases, and S....SLT in 80% of cases. 

When S...SMD fires, it places a token representing packet type :VIID( 1} into place 

N_8END...S, modeling the host attempting to transmit a data packet through the next 

layer in the reference model. .A control token is also removed from place S _WIND. If no 

tokens are present in S_ WIND, it indicates that the number of unacknowledged packets 

in the sliding window is at maximum, and no more data packets can be transmitted until 

some acknowledgments arrive. Control tokens are also deposited in places S_ WACK 

and S..MSNT. At this point, the token in S_WACK waits until an acknowledgment 

packet (ACK) arrives from the DST process, at which time transitionS_ WAK fires and 

deposits a control token back in place S_ WIND (i.e. the sliding window moves forward 

by one packet). S_FTR will fire as well, returning a control token to place S_9END. 

Since we have returned to the free-choice structure described earlier, this cycle will 

continue for each time S-.SMD is fired (sending a MID{l) packet) until S_8LT fires 

(sending a LST{2) packet indicating the end of a data group). 

The size of the data group is determined by the probability assigned to S...SLT. If 

pis the probability of choosing S..SLT, then the size of the data group is a geometric 
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random variable (54] with probability density: 

P{ ... Y = n} = {1- p)n- 1p, n = 1, 2, ... {3.1) 

Since p can be different for each application protocol, it is possible to model the mean 

data group size on a per-protocol basis. 

When S_8LT fires, transmitting a LST(2) packet and ending the data group trans­

mitted by the SRC process, it deposits a control token into S_WDAT. This represents 

the User/ Application level in "wait" mode; a command or request has been sent to the 

DST process and a reply should arrive at some point. The model needs to handle the 

arrival of~IID{4), LST(5), and ACK(6) packets in place N...RECV ....S, which represents 

the TCP /IP stack accepting a packet from the lower layer in the reference modeL 

An ACK(6) packet is handled by transition S_KAK, which removes the token from 

N ....RECV _s and simply returns the control token back to S_ WDAT. The inhibitor arc 

from place S_WACK to S.KAK enforces priority for received ACK(6) tokens. (See 

section 3.8.2.) 

A MID{4) packet arriving in placeN_RECV ....Sis handled by the transition S_WMD~ 

which deposits an ACK(3) packet in place N..SEND....S to acknowledge the MID(4) 

packet. (MID type packets are always acknowledged in the model.) 

i\.n arriving LST(5) packet in place N...RECV _s indicates the end of the data 

group from the DST process. At this point, the SRC process can either return an 

acknowledgement for the LST(5) packet, or start the transmission of the next data 
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group immediately, which implies that the acknowledgement is piggybacked onto the 

first data packet. This is modeled using a free-choice structure. When a control token is 

in place S_WDAT and a LST(5) token arrives in place N_RECV _s, either transition 

S..LPB will fire with probability a, or S_LAK with probability 1 - a. Piggybacking 

is dependent on host and application factors; if an application is ready to send data 

when a LST{5) packet arrives, or the host/application can generate a response within 

a short period of time, the TCP /IP stack will send the data with the piggybacked 

acknowledgement. Otherwise, it will send a specific ACK(3) packet to inform the DST 

process of the successful arrival of the LST(5) packet. The parameter o can vary for 

each application-level protocol. 

Once an arriving MID( 4), LST(5), or ACK(6) packet is handled by the SRC process, 

the process reverts to the start state, either through the transition S_IDLE, indicating 

that the User/ Application level requires processing time (and an acknowledgement has 

been sent), or directly to place S.J)END to start the next data group from the SRC. 

This represents the piggybacked case, where the User/ Application is ready to send data. 

The DST process is an exact mirror image of the SRC process from a structural 

point of view, and follows the same cycle. However, it exists in the opposite state as 

the SRC process (i.e. it waits while the SRC process is sending data, and vice versa), 

and it typically has different timing parameters, since the responses of the DST usually 

represent software replies to a command or query. 
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3.4.2 UDP 

UDP provides connection-less service between two hosts. ~Iuch of the functionality 

required in a TCP model is not needed for UDP; UDP leaves reliability of service issues 

to the higher layers in the protocol stack. As a result, a UD P model does not need 

the windowing, acknowledgement, or piggybacking functions described in the previous 

section. 

A UDP process is modeled as a subnet of the TCP process. Figure 3.10 shows a 

UDP process subnet, with the unused TCP portions shown by dotted lines. The UDP 

model basically trades data groups, with the SRC process sending a series of ~IID(l) 

packets followed by a single LST(2) packet to the DST process. (UDP does not use 

acknowledgements, so the timing between packets is dependent on the application.) 

.-\s in the TCP process, the size of the data group is modeled as a geometric random 

variable. 

Once the DST process receives the LST{2) packet, it begins transmitting its own 

data group, finishing with a LST(5) packet. The SRC process then begins again. 

3.5 LAN (Ethernet) Level 

The Ethernet level of the reference model is described by a simple net structure that 

performs two basic functions: a) it adds a transmission delay for each packet, and 

b) it forces the different application protocols to interact. (Except for the windowing 

mechanism at the TCP /IP level, each session of each protocol has, until now, been able 
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Figure 3.10: UDP Source (SRC) process. 
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AE_IDLE 

Figure 3.11: Ethernet model. 

to operate independently of the other sessions.) 

This Ethernet model assumes that all sessions are on unique hosts. That is, inter­

actions between sessions on the same host are ignored. This is reasonably accurate for 

the SRC processes if we assume that these processes orginate on PCs on an end-point 

LAN. It is less accurate for the DST processes, since these typically represent a smaller 

number of servers. However, delays caused by buffering on the host are included by de­

fault in the timing parameters used in the modeL The collision mechanism of Ethernet 

is not modeled. 

Figure 3.11 shows the model of the Ethernet layer. The controlling place AE..IDLE 

contains one token, which ensures that only one occurrence of transition AE_8 can 

fire at the same time. The actual transmission times are modeled by deterministic 

transitions, which are unique to each packet type of each application protocol. The 

occurrence probabilities of AE-.S are marking-sensitive, which results in a colour being 

chosen based on the relative frequency of that colour versus the other colours in the 
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input place of the Ethernet. 

3.6 ATM Level 

The ATl\vi level of the reference model has two subsections: the A.A.L layer~ which 

provides the Segmentation and Reassembly (SAR) functionality (i.e. dividing packets 

into cells and vice versa), and the cell switching functionality of the ATlVI layer itself. 

3.6.1 AAL {SAR) Function 

The AAL layer is modeled in two sections. The first (Figure 3.12) shows the "segmen­

tation" part of the layer - it takes a token in the input place representing the arrival 

of a packet, and generates a series of tokens representing a number of cells for trans­

mission over an ATM switching network. The second section (Figure 3.13) represents 

the reverse process. It inputs a number of cells and re-creates the original packet for 

transmission to the next layer. 

These SAR layer models take advantage of the fact that AT~I is connection-oriented 

- cells for a particular packet must arrive in order, and there cannot be any interleaving 

of cells. 

In the segmentation section, a token deposited in place SAR...IN ..PDU represents 

the arrival of a packet at the AAL level. Place SAR_IN ..Pl, containing one control 

token, ensures that only one packet is segmented at a time (i.e. only one "packet" 

token passes through to SAR..lN..P2). Place SAR_IN..P3 controls the number of 
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Figure 3.12: AAL (SAR) level - segmentation. 

SAR_ our_ POtJ 

Figure 3.13: AAL (SAR) level - reassembly. 
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cells that are generated by each individual packet type. For example, if packet MID( I) 

of the TELNET protocol is, on average, divided into 5 cells, then 5 tokens of the colour 

representing the TELNET MID( I) packet are placed in place SAR...IN _F3. When a 

token is deposited in place SAR_IN _F2, transition SAR...IN _T3 will fire a set number 

of times determined by the colour of the token in place SAR...IN _p2, thus generating 

a specific number of cells for each packet type. When the last cell has been generated, 

all tokens of the current colour have been removed from place SAR...IN _F3. This 

enables transition SAR_IN _T2, which removes the token from place SAR_.IN ..P2 

(indicating that all cells have been generated), replaces the required number of tokens 

in SAR...IN ..P3 (to segment the next packet of this type), and returns the control token 

to place SAR...IN_Fl, to start the segmentation of the next packet. 

The reassembly section (Figure 3.13) operates in a similar manner to represent the 

re-creation of packets from a stream of cells. Tokens are deposited in place 

SAR_OUT _CELL representing the arrival of cells at the SAR layer. Place 

SAR_OUT_pl contains a number of coloured tokens for each packet type equal to 

one less than the number of cells the packet is divided into. As cells arrive, they are 

removed by transition SAR_QUT_Tl. Place SAR_OUT..P2 contains one control 

token to ensure that only one cell is "re-assembled" at a time. When all the cells for 

a packet have arrived (indicated by the removal of all the tokens for that colour from 

place SAR_QUT_Fl), transition SAR_OUT_T2 fires, depositing a single token of the 

re-assembled packet's colour in the output place SAR_OUT_pnu. SAR_OUT_T2 

also returns the correct number of tokens to place SAR_OuT_pl in preparation for 
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UNKl_IDI.E SW_IOLE I..!Nk2 _IDLE 

Figure 3.14: AT~l switch fabric. 

DLY_IOLE 

Figure 3.15: Generic Delay. 

the next cell stream for that colour. 

3.6.2 ATM Switch 

The A.TM switching fabric is modeled by a series of delay modules as shown in 

Figure 3.14. The delays represent the latencies of the two OC-3c SO NET links and the 

ATM switch (Figure 2.4). The use of three delays rather than one longer delay allows 

a stream of cells to move through the layer with several in the system at any one time. 

3.7 Generic Delay 

Figure 3.15 shows a generic delay mechanism for adding timing delays in the model 
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where appropriate. Transition DLY _Tl has an occurrence for each packet type, so the 

delay can be set uniquely for each type. Place DLY _IDLE contains a single control 

token to ensure that only one occurrence fires at a time. Delays such as this are used 

to model bridge latency, for example. 

If a delay is required where uniqueness is not needed, a simple transition is sufficient. 

3.8 Discussion 

In any model design process, the modeler must make design decisions that can have a 

major effect on the usefulness of the model. This section describes two such decisions 

in greater detail. 

3.8.1 Single versus Multi Session Models 

A key element of the design of the model is that it should be able to represent multiple 

simultaneous conversations of a set of application-level protocols. Some information 

is lost, however, in the multi-session version. There are multiple control tokens in 

operation, and there is no way to exactly match a particular control token with the 

other tokens it generates. For example, S-.SLT fires, sending a LST(2) packet to the 

DST process and placing a control token in S_ WDAT. There is no difference between 

an arriving LST(5) caused by our particular control token, and by an earlier or later 

firing of S....SLT. 

To verify that the multi-session model is still valid, a model with a single protocol 
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and n sessions was compared to a model with n unique single-session protocols, each 

with parameters identical to the multi-session model. The multi-protocol model more 

closely resembles reality, since the unique protocols completely separate the n sessions 

in the same way that connection ID's and sequence numbers separate packets on a real 

network. (The multi-protocol model requires many more colours and is not feasible for 

large numbers of sessions, however.) It was found that the multi-session model gave 

slightly higher results for packets and bytes per second, but the differences between 

the models were not statistically significant (p = 0.552) when compared using standard 

hypothesis testing [25]. 

3.8.2 Priority of Received Acknowledgements 

An A.CK(6) packet deposited in place N ...RECV ..S (Figure 3.6) is either acknowledging 

a previously transmitted ~IID(l) or a LST(2) packet. TCP normally uses sequence 

numbers (see [49]) to differentiate between the two cases. However, since the model 

does not reflect that level of detail, a simpler mechanism is required. In a single-session 

case, where there is only one user per protocol, the location of the control packet 

determines which data packet is being acknowledged. That is, if a control token is in 

place S_WACK, representing a transmitted MID(l) packet, then the acknowledgement 

is for that packet. Otherwise, if a control token is in place S_WDAT, then the model 

correctly accepts the acknowledgement for a transmitted LST(2) packet. 

In the multi-session version of the model, however, there is no way to match a 

particular ACK(6) packet with the MID(l) or LST{2) packet that generated it. Fur-
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thermore, since the place S_KAK will accept ACK(6) packets and return control to 

place S_WDAT, it will tend to leave session control tokens in S_WACK, eventually 

leading to a deadlock in the net. 

Two solutions were developed for this problem. The first was to put an inhibitor arc 

between place S_WACK and transition S.KAK. This effectively gives MID(l) packets 

priority for any arriving ACK(6) packet, and removes the potential for deadlock. The 

other option was to add an additional packet type and have an ACK(6) for MID(I) 

acknowledgements and an ACK(7) for LST(2) acknowledgements. The second solution~ 

while somewhat more realistic, also adds two colours per protocol and two occurrences 

per transition for the intervening layers in the reference model. As well, no additional 

benefit regarding packet size distribution is realized, since both types would be the same 

size. (The split between MID and LST packet types, in contrast, actually improves the 

size distribution because the two types typically have different mean sizes.) 

In simulation tests, the first option showed slightly higher values for throughput and 

average burst rate. When compared using hypothesis testing [25] the results were not 

found to be statistically significant (p = 0.514). It was decided to use the first option. 

This chapter described the derivation and construction of a timed, coloured Petri net 

model of an ATM-based network. The next chapter discusses how the implementation 

details of the model (i.e. actual timing and probability values) are determined. It also 

covers the data collection process that resulted in those values, and some results from 

simulation of the model. 
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Chapter 4 

Model Performance 

This chapter describes how data was gathered from Memorial's campus network. how 

that data was analyzed! and how it was used to derive the model parameter values. 

The chapter concludes with some validation results (i.e. tests that ensure that model 

behaviour is a reasonable estimate of actual system behaviour)~ and some simulation 

results from the model. 

4.1 Data Collection 

The collection and analysis of actual network data formed a key part in both the 

development of the structure of the model and the derivation of model parameters for 

simulation. This section presents some the details of the data collection process. 
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4.1.1 Network Monitoring Software: TCPDUMP 

TCPDUMP [26J is a public domain TCP /IP monitoring program that has become a 

commonly used tool for network management. It normally produces a line of ASCII 

output describing each packet that appears on an attached network. The user can filter 

the output to select certain events - specific TCP port numbers. or a particular IP 

subnet! for example. Although TCPDU:\IP is limited by the host computer hardware 

in both event granularity, (i.e. the smallest time interval it can recognize), and the 

maximum monitoring speed, it is an ~"Ccellent tool for network monitoring over long 

time periods. 

4.1.2 Data Sources 

The collection of data for the model started with an examination of protocol frequency 

on the Memorial network. The Ethernet backbone of the campus network was monitored 

for a week. and packet and byte counts per protocol (as determined by TCP /CD P port 

numbers) were recorded. Table 4.1 shows the relative frequencies for the most common 

protocols. 

Traces of some of the most common protocols were then taken over the space of a 

week. Each trace was made up of at least four separate sub-traces randomly spaced 

over the week to reduce bias from system load, both on the network and the monitoring 

system(s) themselves. Since the author expects the usage of the network to include 

more sound and video applications in the future, an additional trace was made of a 
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I Protocol I Packets I Bytes 
SHELL 13.80% 33.69% 
TELNET 40.18% 14.45% 
NNTP 5.99% 12.11% 
NFS 7.75% 9.71% 
SMTP 3.80% 9.37% 
X 11.10% 7.21% 
LOGIN 8.25% 3.97% 

I FTP (DATA) 1.46% 3.76% 
IW\VW 1.43% 1.59% 

OTHER 6.24% 4.14% 

Table 4.1: Relative Frequency of ~ etwork Protocols. 

CU-SeeMe session for comparison purposes. 

Since many of the model parameters are estimated from timing data taken at the 

network level, it was necessary to take two trace sets for each protocol - one for the 

source processes~ and one for the destination processes. (Figure 4.1 shows the data 

collection locations in relation to the system modeL) Locating the monitoring stations 

as close to the end-systems as possible reduced measurement errors caused by network 

delay. 

Since we are interested in the network load of a single user~ a further com plication 

was determining what actually constituted a ~er session". _-\ TCP connection has 

distinct start and end points that can be detected by the TCP flags reported in the 

data traces. For a TELNET session, a TCP connection and a ~er session" are equal 

- the connection is set up when the user logs in to the remote host! and remains until 

the user is finished his terminal session. For other protocols, however, a single ""user 

session" (such as someone accessing a WWW site with a browser) may create multiple 
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TCP connections. For these protocols, two models were made from each trace. The first 

equates a "user session" with each TCP connection. The second model was generated 

by erasing either the source port numbers or the destination IP addresses (depending 

on the protocol) in the data trace. This had the effect of concatenating consecutive 

TCP connections into one longer connection representing the total activity of the user. 

(Since most of the sessions were from individual personal computers, the unique IP 

addresses of the source hosts served to separate the different user sessions.) It is felt 

that the actual load of a user session lies somewhere between the two extremes. 

4.2 Simulation Software 

Two software packages were used in the design and simulation of the model in this 

thesis. The first package, Visual SimNet [20], is a PC based Petri Net simulator. It was 
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used extensively in the early design stage of building the model, primarily because the 

graphical interface was a significant aid in laying out and testing various parts of the 

model. However, the program did not support ''infinite firing semantics" for transitions 

(i.e. multiple transition firings with overlapping times). An attempt to approximate 

this behaviour by creating multiple transitions for each single transition in the model 

was not successful due to internal limitations in the software. 

Following a survey of Petri net software, a second software package, TPNsim [60], 

was chosen as the simulation software for this thesis. In addition to supporting "infinite 

firing semantics", the software had some additional features that made it attractive 

for this work: the author of the software was available to add features as required, 

output routines specific to this model could be added easily, and the program could be 

integrated into a suite of programs and scripts to perform various types of simulations 

and data comparisons. 

TPNsim reads a net represented in a Net Description Language. This language is 

briefly described in Appendix B, while Appendix C contains a specification of a version 

of the model discussed in this thesis. The simulation portion of the software implements 

the event-driven approach [30]. The package also supports structural analysis (i.e. 

analysis of net properties based solely on the topology of the net [ 41]), as well as 

reachability analysis of Petri nets. 

54 



4.3 Model Tuning 

The model described in Chapter 3 captures the basic behaviour of a multi-protocol 

environment over .-\.TM. A key premise of the model, however, is that while the basic 

behaviour of the various protocols is similar (represented by the structure of the coloured 

Petri net model), the individual protocols can behave differently. The use of individual 

colours allows the modeler to separate the protocols by assigning different timing and 

probability parameters to different colours. This section discusses how those parameters 

are determined. 

4.3.1 Performance Parameters 

Since the model used in this thesis was developed in sections representing various layers 

of a communication system, the preferred method of gathering actual performance 

data would be to analyze each layer independently. This did not prove to be feasible 

in all cases, however. Analyzing the User/ Application and TCP /IP stack layers in 

specific detail requires modifying code and gaining access to systems and resources that 

are beyond the scope of this thesis. For example, existing studies of TCP /IP stack 

performance involved either detailed code analysis or modification [10] or the use of 

a hardware logic analyzer (29]. Neither of these methods were possible on the scale 

required for this work. 

It was therefore decided to estimate these parameters based on what could be ob­

served at the network level. 
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Second Packet 
MID(l) LST(2) ACK(3) MID(4} LST(5) ACK(6) 

MID(l) 12 4 1 0 0 97 
LST{2) 0 0 9 236 1579 409 

First ACK(3) 36 1351 27 461 430 3 
Packet MID(4) 0 0 879 67 76 0 

LST(5) 13 819 1401 0 0 1 
ACK(6) 52 49 1 258 150 0 

Table 4.2: "Next Packet Frequency'' matrix for TELNET protocol. 

The first step in defining the timing and probability parameters is evaluating the 

actual behaviour of a protocol in reference to the basic model shown in Figure 3. 7. 

Since the model has six distinct packet types for each protocol, one obvious metric is 

the number of occurences of each type. However, this provides little useful information 

on the nature of a particular protocol. 

The SRC and DST processes are synchronized with packets representing the com-

munication between the two. Since each packet signals an event or state change for 

one or both of the processes, the relationship between adjacent packets should provide 

far more information on the behaviour of the protocol than simple packet counts. An 

example of such a "next packet" matrix is shown in Table 4.2. 

The matrix shows the number of occurrences of each packet type given that the 

previous packet was of type n. For example, the top right location in the matrix shows 

that a MID(l) type packet was followed by an ACK(6} packet 97 times in the data 

trace. It is important to note that the "next packet" data is on a per-connection basis. 

That is, we are interested in how many times an ACK(6) follows a MID( I) for the same 
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Second Packet 
MID(1) LST(2) ACK(3) MID(4) LST(5) ACK(6) 

MID(1) 10.5 3.5 0.9 0.0 0.0 85.1 
LST(2) 0.0 0.0 0.4 10.6 70.7 18.3 

First ACK(3) 1.6 58.5 1.2 20.0 18.6 0.1 
Packet MID(4) 0.0 0.0 86.0 6.6 7.4 0.0 

LST(5) 0.6 36.7 62.7 0.0 0.0 0.0 
ACK(6) 10.2 9.6 0.2 50.6 29.4 0.0 

Table 4.3: "Next Packet Probability" matrix for TELNET protocoL 

user session. 

Some useful versions of this matrix are generated by scaling. The "probability 

matrix" (Table 4.3) is formed by treating each row as a probability density. This 

"probability matrix" is similar to a transition matrix of a Markov process [54}. 

A similar matrix is generated for timing information. Table 4.4 shows the "'timing" 

matrix for the same TELNET data trace. The matrix shows the average observed delay 

(in milliseconds) between packets of different types. Measurements are from the start of 

each packet. Zero values indicate either that no packet combinations of that type were 

observed, or that the difference was smaller than the clock granularity of the measuring 

device (approximately 1 J.LSec.). 

Other important parameters are shown in Tables 4.5, 4.6, and 4. 7. SWIN and 

RWIN (Table 4.5) refer to the average data group size (in numbers of packets) from 

the SRC and DST process, respectively. The SOUT and ROUT parameters show 

the average unacknowledged packet window size for the two processes. The THINK 

parameter (Table 4.6) shows the average delay between the last data packet from the 
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Second Packet 
MID(1) LST(2) ACK(3) MID(4) LST(5) ACK(6) 

MID(1) 0.159167 0.040000 0.150000 0.000000 0.000000 0.041959 
LST(2) 0.000000 0.000000 0.052222 0.018347 0.009417 0.047262 

First ACK(3) 1.961111 3.701066 36.984074 0.187874 0.096419 0.026667 
Packet MID(4) 0.000000 0.000000 0.134903 0.107761 0.202895 0.000000 

LST(5) 0.053077 0.150708 0.184104 0.000000 0.000000 0.010000 
ACK(6) 0.309615 0.982245 0.060000 0.199574 0.088000 0.000000 

Table 4.4: "Timing" matrix for TEL NET protocol ( msec). 

DST process and the first data packet from the SRC process; For a TELNET session this 

could approximate the time a user takes to respond to a screen of data. The DREPLY 

parameter is the opposite - it shows the average delay between the arrival of the last 

data packet from the SRC and the first data packet from the DST process; DREPLY 

approximates the processing time of the host. The last parameter in Table 4.6 is the 

average inter-arrival times between packets. This parameter is on a per-connection basis 

- the inter-arrival times are for the same user session. All measurements are taken from 

the beginning of each packet. 

Table 4. 7 shows basic packet counts, relative frequencies, and average packet sizes 

for the six packet types (packet sizes are Ethernet frame sizes). The total number of 

packets in the trace and the global average size is also shown. 
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Parameter Count Average (Packets) Variance Maximum 
SWIN 2236 1.050984 0.273015 -
RWIN 2236 1.457066 1.166389 -
SOUT 2236 1.173443 0.317880 a 

ROUT 2236 1.116657 0.199538 5 

Table 4.5: Miscellaneous parameters for TELNET protocol (I). 

Parameter Count A. verage (sec.) Variance 
THINK 2221 2.456006 330.749099 

DREPLY 2233 0.046740 0.018706 
Packet Inter- 8421 0.818788 107.531884 
Arrival Time 

Table 4.6: Miscellaneous parameters for TELNET protocol (2). 

Parameter Count Freq. Average (Bytes) Variance 
Packet Size: :NIID (I) 114 0.01% 60.736842 5.505356 
Packet Size: LST(2) 2236 0.26% 60.036225 0.365130 

Packet Size: ACK(3) 2321 0.28% 60.000000 0.000000 
Packet Size: MID ( 4) 1022 0.12% 401.822896 102815.225215 
Packet Size: LST ( 5) 2236 0.26% 167.937835 45783.729020 

Packet Size: ACK ( 6) 511 0.06% 60.000000 0.000000 
TOTAL 8440 - 130.006754 36900.417895 

Table 4.7: Miscellaneous parameters for TELNET protocol (3). 
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4.3.2 Model Parameters 

Given the performance parameters determined in Section 4.3.1, the next step is to find 

a set of model parameters for which the model behaviour matches the actual system 

behaviour as closely as possible. 

Tables 4.8 and 4. 9 show the parameters of the model. Each parameter is classified 

as one of the following types: 

Operational : unique text strings that serve to separate different protocols 

and sections of the model from each other. 

Structural : a parameter which alters the basic structure of the model. 

UDP models, for example, do not use all the transitions and places of 

TCP models. 

Marking : a parameter which determines the initial marking of a place. 

Time : a parameter which determines the firing time of a transition. 

Probability : a parameter which determines the choice probability in a 

free-choice configuration. 

The actual values for the various parameters are derived from a number of sources. 

Parameters in group A (Table 4.8) are determined by the particular protocol. Parame­

ters in group B (Table 4.8) control the operation of the User/ Application and TCP /IP 

stack levels in the model for the SRC process. (The actual net transitions or places of 
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I Group I Parameter Name I Type I Transition/Place 
A name Operational -

abbr Operational -
Protocol Structural Various 
ns Marking S_IDLE,D_WDAT 

B Think Time S_TNK 
SendMidProb Probability S_8MD 
SendLstProb Probability S_8LT 
PTRTime Time s_pTR 
WinSize Marking S_WIND 
SendDelayl Time S_WAK 
MidAckDelay Time S_WMD 
LstPBDelay Time S..LPB 
LstAckDelay Time S_LAK 
RecvPBProb Probability S_LPB 
RecvThProb Probability S..LAK 

c DThink Time D_TNK 
DSendMidProb Probability D_8MD 
DSendLstProb Probability D_8LT 
DPTRTime Time n_pTR 
DWinSize Marking D_WIND 
DSendDelay 1 Time D_WAK 
D MidAckDelay Time D_WMD 
D LstPBDelay Time D_LPB 
DLstAckDelay Time D..LAK 
DRecvPBProb Probability D..LPB 
DRecvThProb Probability D..LAK 

Table 4.8: List of model parameters (part 1). 
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I Group I Parameter Name I Type I Transition/Place I 
D E.J. Time E_8 

E_2 Time E_8 
E..3 Time EJ3 
E_4 Time E_8 
E..5 Time E_8 
E_6 Time E_8 

E P.J. Marking -
P.-2 lVIarking -
P..3 Marking -
P_4 Marking -
p_s Marking -
P_6 Marking -

F SAR.J. Marking SAR...IN_F3 
s~ Marking SAR_IN_p3 
SAR.3 Marking SAR...IN_F3 
SAR_4 Marking SA.R_IN_F3 
SA.R_5 Marking SAR_IN_F3 
SAR_6 Marking SAR_.IN_p3 

G SAR_MAX Time SAR_IN_T3 
BR._LAT Time Bridge Delay 
OC3..LAT Time LINKI_Tl 
ATM..LAT Time SW_Tl 

Table 4.9: List of model parameters (part 2). 

62 



the model that are affected by each parameter are also listed in Tables 4.8 and 4.9.) 

Group C parameters are the DST process analogues for the group B parameters. 

Ethernet timing parameters are listed in group D, while groupE parameters govern 

the actual size (at the Ethernet frame level) for each packet type. The ATM SAR 

level functions are partially controlled by parameters in group F. Group G contains 

parameters used in the bridge and ATM layers of the model. 

The assignment of values to the various parameters is discussed in more detail in 

the remainder of this section. 

Group B Parameters 

This group contains timing and probability parameters. The SendMidProb and SendL-

stProb parameters control the average number of packets in a data group transmitted 

by the process. Since we know that the size of the data group (in the model) is a 

geometric random variable (see Equation 3.1, page 38), it follows that: 

1 
p=­

k 
( 4.1) 

where p (i.e. parameter SendLstProb) is the probability of sending a LST(3) packet, and 

k is the SWIN value measured from the trace data (see Section 4.3.1). SendMidProb 

is simply 1 - p. 

The marking parameter WinSize is determined by the maximum outstanding packet 

window parameter SOUT from the trace data (Section 4.3.1). 
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I Parameter ~arne I Time (1) I Time (2) I Ethernet Delav I 
w 

Think {3,1) {3,2} €3 

PTRTime (1,1} (1,2) -
SendDelayl {6,1} (6,2} fs 

MidAckDelay (4,3} €4 

LstPBDelay {5,1} (5,2} fs 

LstAckDelay {5,3} fs 
I 
I 

DThink {6,4) {6,5) fs 1 
DPTRTime (4,4) (4,5) - 1 

DSendDelay 1 {3~4) {3,5) €3 

D MidAckDelay {1,6) ft 

DLstPBDelay {2,4} {2,5) €2 I 
DLstAckDelay {2,6) €2 

Table 4.10: Derivation of Group Band C timing parameters. 

The timing parameters in group B are derived from the timing and packet count 

matrices from the trace data. Each element of the ~ext packet~ timing matri..x is 

evaluated using a simple structural or path trace through the net. The value of the 

element can then be used to estimate the timings of the transitions involved. For 

example. the {4,3) element of the timing matrix (i.e .. the average time between a 

MID(4) packet and an ACK(3) packet), upon inspection. will be equal to the average 

time of transition S_ W'MD (parameter MidAckDelay) plus a delay € representing the 

average transmission time of a MID(4) packet. (The timing matrices are based on trace 

data which only logs the beginning of each packet. The packet hasn~t really .. arrived!! 

until the end of the packet, however, so this delay must be included.) The parameter 

MidAckDelay can thus be estimated as t- f, where tis the (4,3) element of the timing 

matrix and f is the packet transmission delay. 
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Table 4.10 shows the derivation of the group B and C timing parameters. Parameters 

with a single time are derived as already discussed. Other parameters1 however, affect 

two elements in the timing matrix because of the various free-choice situations in the 

model. In these cases, the time parameter is estimated by using a linear combination 

of the two times scaled by the relative packet counts of each element (Table 4.2). That 

is, given the timing matrix T and the packet count matrix P, if parameter k is involved 

in times T(l,ji) and T(l,j2 ), then k is estimated by: 

k = T(l, jt)P(l, jr) + T(l, i2)P(l, i2) _ EL 

P(l, jr) + P( l, i2) 
(4.2) 

The remaining parameters in group B, RecvPBProb and RecvThProb, determine 

whether the SRC process returns a unique ACK(3) packet or sends another data packet, 

implying a piggybacked acknowledgement. These parameters are estimated from the 

packet count matrix (Table 4.2). The frequency of piggybacking is simply the frequency 

of an LST(5) packet being followed by either a MID(I) or LST(2) packet (P(5, I) + 

P(5, 2)), while the sending of an explicit acknowledgement is indicated by an LST(5) 

packet followed by an ACK(3) packet (P(5, 3)). RecvPBProb is thus: 

P(5, 1) + P(5, 2) 
(4.3) 

P(5, 1) + P(5, 2) + P(5, 3) 

with RecvThProb = 1- RecvPBProb. 
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Group C Parameters 

These parameters are exact analogs of the group B parameters, and are derived in the 

same manner. 

Group D Parameters 

Group D parameters are the transmission times for Ethernet frames~ and are used both 

in the derivation of group Band C parameters (as the fc in Table 4.10), and the timing 

of the Ethernet section of the model. They are derived by taking the average frame size 

for each packet type from the data trace. 

Group E Parameters 

These parameters are simply the average frame size (in bytes) of each packet type~ as 

determined from the data trace. 

Group F Parameters 

Group F parameters control the division of Ethernet frames into cells at the SAR layer. 

Each parameter SAR_n represents the number of cells required to transmit a packet of 

type n from a higher layer. 

Group G Parameters 

These parameters control various parts of the ATM and bridge layers. 
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SAR_MAX: The maximum rate at which cells are generated at the SAR 

layer. It is reported in [4] that the ATM bridge device (Cisco Catalyst 

5000) 1 can generate cells at the maximum rate of an OC-3c SONET 

connection. Since the theoretical maximum for cell transmission over 

OC-3 is 149.76 Mbps [7], or 353,207.5 cells/sec, a deterministic delay 

of 2.831 J.LSeC per cell will generate cells at that rate. 

BR.LAT : This parameter represents the average delay between the last 

bit of a packet/frame to arrive at a device and the first bit to appear 

on another port (LIFO latency) [5]. It is reported in [4] that the Cisco 

Catalyst 5000 has an Ethernet-to-Ethemet latency of 8 f.JSec. It is 

assumed that the per-frame latency of the device for Ethernet-to-ATM 

is at least as great~ and that value was used in the simulations in this 

thesis. Further discussion on this value can be found in section 4.4.1. 

OC3.-LAT : The average transmission delay across an OC-3c SONET link. 

Ignoring propagation delay, this value is set to provide the maximum 

per-cell transmission rate: 2.831 J..LSec. 

ATM.LAT: The average delay (latency) across the ATM switch. The 

switch (Cisco Lightstream A100) backplane is rated at 2.4 Gbps, and 

is capable of switching multiple OC-3c SONET cell streams simulta­

neously. The switch latency is set at 2.831 p.sec per cell as well, since 

1 "Cisco" and "Catalyst 5000" are trademarks of Cisco Systems Inc. 
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it can easily switch one OC-3c SONET cell stream at the maximum 

transmission rate. 

4.3.3 Effect of Windowing in '!race Data 

The derivation of the Group Band C timing parameters was found to produce reason­

able results for protocols with small amounts of windowing (e.g., TELNET). However~ 

as windowing increased the model results began to vary from the actual data. \Vindow­

ing results in a looser relationship between a packet and its explicit acknowledgment -

to the point where there is little guarantee that the .~CK packet that follows a DAT.o\ 

packet in a trace is acknowledging that particular packet. To solve this problem. the 

method described in the previous section was applied to the data traces with the TCP 

sequence numbers used to correctly match the DATA and ACK packets. This greatly 

improved the accuracy and stability of the model. 

4.4 Model Results 

This section presents some results from simulation of the model, starting with validation 

data, which compares the model to actual network behaviour. The section concludes 

with a series of results showing the effect of various application protocols on parts of 

the network system. 
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4.4.1 Model Validation 

An important part of the modeling process is validation (30], which is comparing the 

model results with actual measurements to determine if the model is a reasonable ap­

proximation of the modeled system. Since many of the timing parameters are deter­

mined from measurements on an Ethernet, we can compare the behaviour of the model 

with actual data from an Ethernet. However, direct comparisons at the user, system 

stack, or ATM level require measurement devices that were unavailable for this work. 

Despite that, some measurements were obtained from a number of sources that could 

be used in model validation. 

A version of the model with a single Ethernet connecting a SRC and DST process 

was compared to actual user sessions on an Ethernet. Figure 4.2 shows a scattergram 

of packet rates for a number of observed sessions and the model results for each trace. 

The dashed line is the ideal; it represents an exact match between the model and the 

actual data. 

At the AT~1 level, it was possible to compare cell rates at a fairly coarse level of 

granularity (i.e., every minute) by gathering cell transmission totals from the ATM 

switch. A trace was recorded at the Ethernet level of data coming from the ATM link 

of the Catalyst 5000. At the same time, cell totals were recorded from the ATM switch 

for that data VC. The two traces could be accurately synchronized because the packet 

transmission containing the data from the A.TM switch was embedded in the Ethernet 

trace. A theoretical cell value could be computed from the Ethernet trace and compared 
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Figure 4.2: Theoretical vs. actual Ethernet packet transmission rates. 
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with the measured cell totals. Figure 4.3 shows a scattergram of the theoretical and 

measured cell totals. The linearity of the graphs indicates a good match between the 

model and actual data. 

The performance statistics on the Catalyst 5000 reported in [4] used an ATM test 

configuration almost identical to the system modeled in this thesis. Of particular in­

terest are the Ethemet-to-Ethernet (across ATM) latency measurements. Figure 4.4 

compares the latency values reported in (4] with the values produced by the model. 

Both show similar slopes, indicating the model is a good predictor of overall behaviour. 

The gap between the two lines indicates that there is some latency not accounted for in 

the model. This suggests that the 8 p,sec latency value for the Catalyst 5000 is probably 

too low for Ethemet-to-ATJ\11 transmission. 

The current version of the model uses either deterministic or exponentially dis­

tributed firing times for transitions. Since some transitions (such as the S_TNK or 

"thinking time" transition) can have a major impact on the performance of the whole 

system, the distribution of those times could have an impact as well. Figure 4.5 com­

pares the actual "thinking time" distribution of a TELNET session with an exponential 

distribution with the same mean value, as would be used in the equivalent model. The 

two are roughly similar, although the actual distribution has less data in the tail of the 

graph. 

Since the model uses six different packet types, the mix of packet sizes can be 

closer to reality than a single average value. Figure 4.6 compares the actual packet size 

distribution of an FTP protocol data trace and a single average packet size. Figure 4. 7 
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compares the same FTP packet size distribution and the model using six packet types. 

The model distribution reflects the bi-modal nature of the real FTP distribution -

most of the packets are either at the minimum or the maximum size for an Ethernet. 

(Table 5.1 shows the results of the x2 goodness-of-fit test between the distributions in 

Figures 4.6 and 4. 7). 

A method of improving the accuracy of the model packet size distribution is de­

scribed in Chapter 5. 

4.4.2 Protocol Results 

This section presents some simulation results from the model. Figures 4.8 and 4.9 

show the average load placed on the Ethernet in Figure 2.4, on a per-protocol basis, by 

number of concurrent user sessions. The protocols ending in ~u' (i.e. 'VV\V\VU! etc.) 

are the versions with concatenated TCP connections as discussed in Section 4.1.2. 

Figures 4.10 and 4.11 show the A.TM send and receive data rates for the same data 

traces. Figures 4.12 and 4.13 show some of the various types of information that can be 

obtained from the model. Figure 4.12 compares the maximum ATM burst rate for two 

protocols, using a 10 msec window. Figure 4.13 shows part of the .A.TM cell inter-arrival 

distribution for 64 concurrent TELNET users. Figure 4.14 shows the one-way delay per 

packet caused by network load (i.e. delays caused by other packets in the system, 

but not including the average latency caused by hardware). Figure 4.15 compares the 

network delay effect of FTP and TELNET on a single CU-SeeME session. 
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4.5 Discussion 

The network load graphs (Figures 4.8 and 4.9) show significant differences between the 

various protocols. CU-SeeMe appears to have a major impact on network performance. 

The versions of the protocols representing multiple TCP sessions appear to have little 

impact. The lower data rates are caused by the user's thinking time between actions. 

Generally, the two sides of the ATM link show quite different data rates (Figures 4.10 

and 4.11). The curved behaviour of the CU-SeeMe graph is caused by the protocol 

saturating the Ethernet. The ATM burst rate (Figure 4.12) shows that even a low­

impact protocol like TELNET can create short bursts of cells at high speeds far above 

the average behaviour. The ATM cell inter-arrival distribution (Figure 4.13) shows a 

large spike (representing over 50% of the distribution), a gap, and then a long even taiL 

The initial spike is caused by the fast cell generation rate at the SA.R layer, while the 

tail represents the longer gaps between packets at the Ethernet layer. 

The load delay graph (Figure 4.14) shows odd behaviour of CU-SeeMe caused by a 

saturated Ethernet, while the similar graph showing the effect of two protocols on CU­

SeeME (Figure 4.15) demonstrates that load delay could be used to find the network 

congestion point. For example, Figure 4.15 suggests that the number of users in the 

system should be less than 64 (the point at which the delay graph climbs steeply). 

However, the linearity of most of the graphs suggests the a more detailed model of 

Ethernet collision behaviour may be required before more accurate load decisions can 

be made. 
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The next chapter describes some extensions to the model - relatively simple modi­

fications that expand the range of network configurations the model can simulate. 

87 



Chapter 5 

Extensions and Discussion 

One of the goals in the design of the model presented in this thesis was to ensure that 

new network configurations could be modeled with relatively simple modifications to 

the basic structure. This chapter describes two such modifications. 

5.1 Extensions to the Model 

This section describes two extensions to the basic model to simulate alternate network 

design situations. The first is a small change to the actual model to describe the effect of 

multiple Ethemets instead of the single Ethernet used in the previous chapter. The sec­

ond extension doesn't actually change the model, but rather exploits the model's ability 

to handle multiple application-level protocols to provide a more accurate representation 

of the packet size distribution of a single application-level protocoL 
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5.1.1 Multiple Ethernets 

The basic configuration of the model (Figure 2.4) has one source Ethernet and one 

destination Ethernet. In many cases, however, a single emulated LAN will involve 

multiple Ethernets at one or both sides of the ATM link (Figure 5.1). As a first step 

in modeling this configuration, we can simply change the number of control tokens at 

the Ethernet level model in place AE_IDLE. This allows multiple simultaneous firings 

of the Ethernet transition, up to the number of tokens in AE....IDLE. thus simulating 

multiple Ethernets. 

The effect of spreading 16 FTP sessions over multiple Ethemets is shown in Fig­

ure 5.2 .. As the number of Ethemets increases, the average load per network drops. 

The ATM load starts at an initial rate where the Ethernet is the bottleneck and rises 

to a new equilibrium value. The fact that the :\TM data rate doesn~t rise further indi­

cates that there is a new limiting factor in the system- either the protocol itself or the 

A.TM-to-Ethemet bridge. 

5.1.2 Improving Packet Size Distribution 

The packet size distributions in Figures 4.6 and 4. 7 show that the use of si.-x: packet 

types gives a much better approximation of the actual FTP packet size distribution. It 

is possible to improve this approximation even more, however, by using multiple FTP 

sessions. Essentially, we create two versions of the FTP protocol with the same timing 

parameters, but with different mean packet sizes. Figure 5.3 shows the revised packet 
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Figure 5.1: LAN Emulation configuration with multiple Ethernets. 

size distribution created by taking one of the packet types, splitting it in two at the 

median and using two "FTP" protocols, each set at the mean of one half of the data 

for that type. 

Table 5.1 shows the results of the x2 goodness-of-fit test for a single average (Fig-

ure 4.6), the 'six packet type' distribution shown in Figure 4. 7, and the revised distri-

bution in Figure 5.3. As long as the number of sessions for each "protocol" are equal, 

the average packet size distribution will be as shown in Figure 5.3. This procedure 

increases model complexity by doubling the number of occurrences, however, so there is 

a balance point at which the gain of an improved distribution is offset by the increased 

model size. 
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Single Average Value Single Protocol Double Protocol 
x:l 493.3 41.2 25.7 

Table 5.1: x2 values for FTP packet size distribution. 

5.2 Discussion 

The examples in this chapter are illustrations of the flexibility in the modeL It is 

possible to re-combine various modules to represent other types of configurations. For 

example, we could add multiple bridges feeding the same switch, with token colours 

separating the different ATM virtual circuits. Another possibility would be to examine 

the configuration shown in Figure 2.5 which adds a router between the two bridges. 

This would require four more SAR sections (since cells would have to be combined back 

into packets for level 3 routing to occur) and a new module representing the behaviour 

of the router. Software support for this type of modular model design exists [45]. 

The FTP example shows the possiblities of using multiple protocols in the model. 

In addition to packet size distribution, it would be possible to create a protocol with 

more complex timing behaviour by combining multiple versions with slightly different 

parameters to obtain the desired results. 
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Chapter 6 

Conclusions 

The goal of the research presented in this thesis was to create a performance model of 

an A. TM LAN that would provide a reasonable representation of system behaviour. As 

well, the model should provide a flexible framework for more detailed investigation of 

various sections of the model without requiring drastic changes throughout the entire 

structure. The preference was to design a model with clearly defined layers, and have 

the interface between the layers closely tied to the physical model. This would allow the 

re-design of a module to stay localized within that section. Most of the current models 

of ATM have tended to focus on one section of the system- the switch, for example, 

or policing mechanisms. Here the goal was to create a more generic model that could 

absorb the results of some of these detailed studies. 

Since the model had to represent both hardware and software behaviour, a modeling 

paradigm was required that could easily represent both. .A variety of modelling methods 

have been used for similar work (see Section 2.4), such as queueing models, or analytical 
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work based on Markovian models. It was felt that these methods did not capture 

the synchronization inherent in network protocols, and were not capable of providing 

the variety of functionality required. Therefore, it was decided to base the model on 

Petri nets, which have been used to model a wide variety of concurrent systems. This 

proven flexibility was felt to be a significant advantage in a model intended to allow 

easy re-design. Petri nets naturally represent concurrency and synchronization~ there 

are a variety of extensions to basic Petri nets which allow the modeler to choose the 

functionality required, and a number of software packages are available to analyze the 

model. 

To provide the modularity required of the model, the ATM LAN system was di­

vided into layers. At the interfaces between the layers, the tokens in the Petri net 

model represent actual Ethernet frames or ATM cells. To allow the representation of 

multiple high level network protocols, an extension to basic Petri nets called coloured 

timed Petri nets was used. The use of coloured tokens allows the different protocols to 

operate independently, yet use the same abstracted net model. The results in Chapter 4 

demonstrate that the model can accurately represent the packet size distribution and 

data rates of a variety of quite distinct protocols. Furthermore, since the tokens in the 

model represent actual packets or cells, the model is capable of producing the equivalent 

of a network trace, which can be analyzed in the same way as real network data to gain 

other statistics of interest. 

The flexibility of the model is demonstrated by the extensions discussed in Chap­

ter 5. The modeller can easily create alternate configurations by removing or altering 
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specific modules, or making multiple copies. For example, the model can be modified 

to study the direct interaction of TCP /IP with ATM, or the introduction of routing 

functionality in the bridge devices. The ability to represent multiple distinct protocols 

can be extended past the basic concept to provide greater detail or study the interac­

tions between protocols, such as how other protocols introduce specific timing delays, 

and where those delays occur. 

It can therefore be concluded that the proposed model satisfies the four major 

objectives indicated in the introduction: 

• the model provides good conformance to protocol behaviour under nor­

mal load, 

• the model directly represents network traffic in terms of users and pro­

tocols, 

• the model can produce a variety of information about the modeled 

system, 

• the model structure is easily modified to study different network con­

figurations. 

The model as presented in Chapter 3 has some limitations. The model becomes less 

accurate as it passes the point of congestion~ although some indication of where this 

point lies is discernible from the model results. To proceed past this point will require 

a more complex Ethernet model that includes more of the collision behaviour of the 

medium, as well as a protocol structure that models re-transmissions or lost packets, 
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although this may require breaking down the strict interfaces between layers. However, 

the model is accurate under current performance levels of Memorial's campus backbone. 

As further detail is added, some additional constructs would be of benefit. The 

AT~f layer is complicated by the requirement that cells remain in strict order, yet can 

be buffered at various points in the system. A. single place as defined in this model 

cannot provide that, so a special "queue" entity would simplify the addition of detail 

in this area. As well, current work on hierarchical net structures would be applicable 

to this modeL Such structures would help the introduction of a lost packet mechanism, 

since such a mechanism may require a module that all others would have to be able to 

access. Arc weights that can vary depending on other factors may help provide a more 

flexible windowing system in the TCP layer. 
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Appendix A 

List of Acronyms 

AAL: ATM Adaptation Layer 

ATM: Asynchronous Transfer Mode 

ASCII: American Standard Code for Information Interchange 

BUS: LAN Emulation Broadcast-and-Unknown Server 

CS: Convergence Sub-layer 

CSMA/CD: Carrier Sensing Multiple Access/Collision Detection 

DQDB: Distributed Queue Double Bus 

FDDI: Fiber Distribution Data Interface 

FTP: File Transfer Protocol 

HTTP: HyperText Transfer Protocol 

IETF: Internet Engineering Task Force 

IP: Internet Protocol 

IPX: Internet Packet Exchange 

LAN: Local Area Network 

LEC: LAN Emulation Client 
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LECS: LAN Emulation Configuration Server 

MAC: Medium Access Control 

NNTP: Network News Transfer Protocol 

OSI: Open Systems Interconnection 

QoS: Quality of Service 

RFC: Request For Comments 

SAR: Segmentation And Reassembly 

SONET: Synchronous Optical NETwork 

TCP: Transport Control Protocol 

UDP: User Datagram Protocol 

VC: ATM Virtual Circuit 

WWW: World Wide Web 
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Appendix B 

Net Description Language 

The following description of the net description language is taken from (61]. 

Net description is 'transition oriented', i.e., nets are specified a.s collections of tran-

sitions, and each transition contains all parameters associated with it. 

The syntax of model description, in the BNF notation, is as follows: 

<model-descr> ::=<color-list> <net-class> <net-descr> <~king> 

<color-list>::= <colors> I <empty> 

<net-class>::= <class> I <empty> 

<net-descr> ::=<net-header> (<transitions>) 

<net-header>::= Mnet I Dnet I net 

<transitions>::= <transition> I <transitions>; <transition> 

<transition>::= <t-header> =<input-output-list> 

I <t-header> <occurrence-list> 

<occurrence-list> ::=<occurrence> I <occurrence-list>, <occurrence> 

<occurrence>::= { <o-name> <type> <time> <prob> =<input-output-list>} 

<t-header> ::= <t-indent> <type> <time> <prob> 

<t-ident> ::=#<integer> I# <name> 

<o-name> ::=<name> I <empty> 

<type> : := :D I :M I :X I <empty> 

<time> ::=*<rational> I <empty> 
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<prob> ::= , <rational> I , <integer> I <integer> I <ref> I <empty> 

<rational> ::=<integer> I <integer> . <integer> 

<ref> ::= [ <place_id>] I [ <place_id> : <color>] 

<input-output-list> : : = <input-list> 

I <input-list> I <output-list> 
<input-list> : := <arc> I <input-list> , <arc> 

<output-list>::= <arc> I <output-list> , <arc> 

<arc> ::= <place-id> I <place-id>- I <place-id> <veight> <color> 

<place-id> : : = <integer> I <name> 

<veight> ::=<integer> 

<color>::= <name> I <empty> 

<name> ::=<letter> I <name> <letter> I <name> <digit> I <name>_ 

The type of the net can be indicated in the net header or in the class directive: 

<class>::= class= D I class = M 

The type of a transition or an occurrence (i\'1-tim.ed, 0-timed) can also be indicated 

by the type elements; such a specification overrides the net type. The specification X 

indicates the type opposite to the one indicated for the net. 

For occurrences without type, time, or prob elements~ the values of type, time 

and prob specified for the transition are used. Transitions and occurrences with empty 

time elements denote immediate transitions and occurrences, and are equivalent to 

time equal to 0. 

Probability element prob specifies the free-choice probabilities of occurrences or 

relative frequencies of conflicting occurrences. Empty element prob is equivalent to 

probability equal to 1. 

Marking-dependent relative frequencies are indicated by place/ color references ref 

of the prob element. During conflict resolution, the number of (colored) tokens in the 
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place indicated by ref is used as the relative frequency of transition/ occurrence firings. 

Usually ref is one of the transition's input places. 

Arcs without weight are equivalent to arcs with weight equal to 1. Inhibitor arcs 

are specified as arcs with weight equal to 0. 

A.ll colors used in net descriptions must be declared in the list of colors. This list 

must precede the net description: 

<colors> ::=color (<color-list>) ; 

<color-list> ::=<color> I <color-list> , <color> 

<color> : : = <name> 

The initial marking function is specified as a list of marked places: 

<ima.rking> : : = mark ( <marking-list> ) ; 

<marking-list>::= <marked-place> I <marking-list> , <marked-place> 

<marked-place>::= <place> I <place> : <count> <color> 
<count> : : = <integer> 

<color> ::=<name> I <empty> 
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Appendix C 

Model - Net Description 

This version of the model has two protocols: CU-SeeMe (1 user) and FTP (1024 users). 

It was used to generate the delay data in Figure 4.15. 

class=M; 
color(C9,FO 
,Fl 
,F2 
,F3 
,F4 
,F5 
,F6 
,cuo 
,CU1 
,CU2 
,CU3 
,CU4 
,CU5 
,CU6 
) ; 
net( 

#AS_TNK:M 
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{•341.750900=AS_IDLE:1FO/AS_SEND:1FO}, 
{•23.636933=AS_IDLE:1CUO/AS_SEND:1CUO}; 

#AS_SMD:D 
{,0.990894=AS_SEND:1FO,AS_WIHD:1FO/AS_WACK:1FO, 

AS_MSNT:1FO,N_SEND_S:1F1}, 
{,0.004303=AS_SEND:1CUO/AS_MSHT:1CUO,N_SEHD_S:1CU1}; 

#AS_PTR:K 
{•1.190548=AS_MSNT:1FO/AS_SEND:1FO}, 
{•88.400000=AS_MSNT:1CUO/AS_SEHD:1CUO}; 

#AS_WAK:K 
{•2.086557=AS_WACK:1FO,N_RECV_S:1F6/AS_WIND:1FO}; 

#AS_SLT:D 
{,0.009106=AS_SEND:1FO,AS_WIRD:1FO/AS_WIND:1FO, 

AS_WDAT:1FO,N_SEHD_S:1F2}, 
{,0.995697=AS_SEND:1CUO/AS_WDAT:1CUO,N_SEND_S:1CU2}; 

#AS_WMD:K 

#AS_KAK:D 

{•9.244022=AS_WDAT:1FO,N_RECV_S:1F4/AS_WDAT:1FO, 
N_SEND_S:1F3}, 

{=AS_WDAT:1CUO,N_RECV_S:1CU4/AS_WDAT:1CUO}; 

{=AS_WDAT:1FO,AS_WACK:OFO,N_RECV_S:1F6/AS_WDAT:1FO}; 
#AS_LPB:M 

{•0.627875,0.508772=AS_WDAT:1FO, 
N_RECV_S:1F5/AS_SEND:1FO}; 

#AS_LAK:K 
{•6.290358,0.491228=AS_WDAT:1FO,H_RECV_S:1F5/AS_IDLE:1FO, 

N_SEND_S:1F3}, 
{,1.0=AS_WDAT:1CUO,H_RECV_S:1C05/AS_IDLE:1CUO}; 

#BR_SSRC_S_Tl:D 
{•0.00817=N_RECV_S:1F1,BR_SSRC_S_P1:1C9/ATM_SNDS:1F1, 

BR_SSRC_S_P1:1C9}, 
{•0.00817=N_RECV_S:1F2,BR_SSRC_S_P1:1C9/ATM_SNDS:1F2, 

BR_SSRC_S_P1:1C9}, 
{•0.00817=N_RECV_S:1F3,BR_SSRC_S_P1:1C9/ATM_SNDS:1F3, 

BR_SSRC_S_P1:1C9}, 
{•0.00817=N_RECV_S:1CU1,BR_SSRC_S_P1:1C9/ATM_SHDS:1CU1, 

BR_SSRC_S_P1:1C9}, 
{•0.00817=N_RECV_S:1CU2,BR_SSRC_S_P1:1C9/ATM_SHDS:1CU2, 

BR_SSRC_S_P1:1C9}, 
{•0.00817=N_RECV_S:1CU3,BR_SSRC_S_P1:1C9/ATM_SNDS:1CU3, 

BR_SSRC_S_P1:1C9}; 
#ASAR_IH_S_Tl:D 

{=ATM_SNDS:1Fl,ASAR_IN_S_P1:1C9/ASAR_IN_S_P2:1F1}, 
{=ATM_SNDS:1F2,ASAR_IH_S_P1:1C9/ASAR_IN_S_P2:1F2}, 
{=ATM_SNDS:1F3,ASAR_IH_S_P1:1C9/ASAR_IH_S_P2:1F3}, 
{=ATM_SNDS:1CU1,ASAR_IH_S_P1:1C9/ASAR_IH_S_P2:1CU1}, 
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{=ATK_SHDS:1CU2,ASAR_IH_S_P1:1C9/ASAR_IN_S_P2:1CU2}, 
{=ATM_SBDS:1CU3,ASAR_IN_S_P1:1C9/ASAR_II_S_P2:1CU3}; 

#ASAR_IN_S_T2:D 
{=ASAR_IN_S_P2:1Fl,ASAR_IH_S_P3:0F1/ASAR_IN_S_P1:1C9, 

ASAR_IN_S_P3:25F1}, 
{=ASAR_IN_S_P2:1F2,ASAR_IN_S_P3:0F2/ASAR_IN_S_P1:1C9, 

ASAR_IN_S_P3:3F2}, 
{=ASAR_IN_S_P2:1F3,ASAR_IN_S_P3:0F3/ASAR_IN_S_P1:1C9, 

ASAR_IN_S_P3:2F3}, 
{=ASAR_IN_S_P2:1CU1,ASAR_IN_S_P3:0CU1/ASAR_IH_S_P1:1C9, 

ASAR_IH_S_P3:3CU1}, 
{=ASAR_IN_S_P2:1CU2,ASAR_IN_S_P3:0CU2/ASAR_IH_S_P1:1C9, 

ASAR_IN_S_P3:4CU2}, 
{=ASAR_IN_S_P2:1CU3,ASAR_IN_S_P3:0CU3/ASAR_IH_S_P1:1C9, 

ASAR_IN_S_P3:2CU3}; 
#ASAR_IN_S_T3:D 

{•0.0028312=ASAR_IN_S_P2:1F1,ASAR_IH_S_P3:1F1/ATM_S1:1F1, 
ASAR_IN_S_P2:1F1}, 

{•0.0028312=ASAR_IH_S_P2:1F2,ASAR_IH_S_P3:1F2/ATM_S1:1F2, 
ASAR_IN_S_P2:1F2}, 

{•0.0028312=ASAR_IH_S_P2:1F3,ASAR_IR_S_P3:1F3/ATM_S1:1F3, 
ASAR_IN_S_P2:1F3}, 

{•0.0028312=ASAR_IN_S_P2:1CU1, 
ASAR_IN_S_P3:1CU1/ATM_S1:1CU1,ASAR_IN_S_P2:1CU1}, 

{•0.0028312=ASAR_IN_S_P2:1CU2, 
ASAR_IN_S_P3:1CU2/ATM_S1:1CU2,ASAR_IN_S_P2:1CU2}, 

{•0.0028312=ASAR_IN_S_P2:1CU3, 
ASAR_IH_S_P3:1CU3/ATM_S1:1CU3,ASAR_IN_S_P2:1CU3}; 

#OC3_SND1_S_T1:D 
{•0.0028312=ATM_S1:1F1,0C3_SND1_S_P1:1C9/ATK_S2:1F1, 

OC3_SHD1_S_P1:1C9}, 
{•0.0028312=ATM_S1:1F2,0C3_SND1_S_P1:1C9/ATK_S2:1F2, 

OC3_SND1_S_P1:1C9}, 
{•0.0028312=ATK_S1:1F3,0C3_SND1_S_P1:1C9/ATM_S2:1F3, 

OC3_SNDl_S_P1:1C9}, 
{•0.0028312=ATM_S1:1CU1,0C3_SHD1_S_P1:1C9/ATM_S2:1CU1, 

OC3_SND1_S_Pl:1C9}, 
{•0.0028312=ATM_S1:1CU2,0C3_SHD1_S_P1:1C9/ATM_S2:1CU2, 

OC3_SHD1_S_P1:1C9}, 
{•0.0028312=ATM_S1:1CU3,0C3_SND1_S_P1:1C9/ATM_S2:1CU3, 

OC3_SND1_S_P1:1C9}; 
#ATMSW_SND_S_Tl:D 

{•0.0028312=ATM_S2:1F1,ATKSW_SND_S_P1:1C9/ATM_S3:1F1, 
ATMSW_SND_S_P1:1C9}, 

{•0.0028312=ATK_S2:1F2,ATMSW_SND_S_P1:1C9/ATK_S3:1F2, 
ATMSW_SND_S_P1:1C9}, 
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{•0.0028312=ATK_S2:1F3,ATMSW_SND_S_P1:1C9/ATM_S3:1F3, 
ATMSW_SND_S_P1:1C9}, 

{•0.0028312=ATM_S2:1CU1,ATMSW_SND_S_P1:1C9/ATM_S3:1CU1, 
ATMSW_SND_S_P1:1C9}, 

{•0.0028312=ATM_S2:1CU2,ATMSW_SND_S_P1:1C9/ATM_S3:1CU2, 
ATMSW_SND_S_P1:1C9}, 

{•0.0028312=ATM_S2:1CU3,ATHSW_SND_S_P1:1C9/ATM_S3:1CU3, 
ATHSW_SND_S_P1:1C9}; 

#OC3_SND2_S_T1:D 
{•0.0028312=ATM_S3:1F1,0C3_SND2_S_P1:1C9/ATM_S4:1F1, 

OC3_SND2_S_P1:1C9}, 
{•0.0028312=ATM_S3:1F2,0C3_SND2_S_P1:1C9/ATM_S4:1F2, 

OC3_SND2_S_P1:1C9}, 
{•0.0028312=ATM_S3:1F3,0C3_SND2_S_P1:1C9/ATM_S4:1F3, 

OC3_SND2_S_P1:1C9}, 
{•0.0028312=ATM_S3:1CU1,0C3_SND2_S_P1:1C9/ATM_S4:1CU1, 

OC3_SND2_S_P1:1C9}, 
{•0.0028312=ATM_S3:1CU2,0C3_SND2_S_P1:1C9/ATM_S4:1CU2, 

OC3_SND2_S_P1:1C9}, 
{•0.0028312=ATM_S3:1CU3,0C3_SND2_S_P1:1C9/ATM_S4:1CU3, 

OC3_SND2_S_P1:1C9}; 
#ASAR_OUT_S_Tl:D 

{•0.0028312=ATM_S4:1F1,ASAR_OUT_S_P1:1F1, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}, 

{•0.0028312=ATM_S4:1F2,ASAR_OUT_S_P1:1F2, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}, 

{•0.0028312=ATM_S4:1F3,ASAR_OUT_S_P1:1F3, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}, 

{•0.0028312=ATM_S4:1CU1,ASAR_OUT_S_P1:1CU1, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}, 

{•0.0028312=ATM_S4:1CU2,ASAR_OUT_S_P1:1CU2, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}, 

{•0.0028312=ATM_S4:1CU3,ASAR_OUT_S_P1:1CU3, 
ASAR_OUT_S_P2:1C9/ASAR_OUT_S_P2:1C9}; 

#ASAR_OUT_S_T2:D 
{•0.0028312=ATM_S4:1F1,ASAR_OUT_S_P1:0F1/ATM_SNDD:1F1, 

ASAR_OUT_S_P1:24F1}, 
{•0.0028312=ATM_S4:1F2,ASAR_OUT_S_P1:0F2/ATM_SNDD:1F2, 

ASAR_OUT_S_P1:2F2}, 
{•0.0028312=ATM_S4:1F3,ASAR_OUT_S_P1:0F3/ATM_SNDD:1F3, 

ASAR_OUT_S_P1:1F3}, 
{•0.0028312=ATM_S4:1CU1,ASAR_OUT_S_P1:0CU1/ATM_SNDD:1CU1, 

ASAR_OUT_S_P1:2CU1}, 
{*0.0028312=ATM_S4:1CU2,ASAR_OUT_S_P1:0CU2/ATM_SNDD:1CU2, 

ASAR_OUT_S_P1:3CU2}, 
{•0.0028312=ATM_S4:1CU3,ASAR_OUT_S_P1:0CU3/ATM_SNDD:1CU3, 
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ASAR_OUT_S_P1:1CU3}; 
#BR_SDST_S_Tl:D 

{•0.00817=ATM_SNDD:1F1,BR_SDST_S_P1:1C9/N_SEND_D:1F1, 
BR_SDST_S_P1:1C9}, 

{•0.00817=ATM_SNDD:1F2,BR_SDST_S_P1:1C9/N_SEND_D:1F2, 
BR_SDST_S_P1:1C9}, 

{•0.00817=ATM_SNDD:1F3,BR_SDST_S_P1:1C9/N_SEND_D:1F3, 
BR_SDST_S_P1:1C9}, 

{•0.00817=ATM_SNDD:1CU1,BR_SDST_S_P1:1C9/N_SEND_D:1CU1, 
BR_SDST_S_P1:1C9}, 

{•0.00817=ATM_SNDD:1CU2,BR_SDST_S_P1:1C9/N_SEND_D:1CU2, 
BR_SDST_S_P1:1C9}, 

{•0.00817=ATM_SNDD:1CU3,BR_SDST_S_P1:1C9/N_SEND_D:1CU3, 
BR_SDST_S_P1:1C9}; 

#BD_TNK:M 
{•58.319897=BD_IDLE:1FO/BD_SEND:1FO}, 
{•25.740089=BD_IDLE:1CUO/BD_SEND:1CUO}; 

#BD_SMD:D 
{,0.897980=BD_SEND:1FO,BD_WIND:1FO/BD_WACK:1FO, 

BD_MSNT:1FO,N_SEND_D:1F4}, 
{,0.975946=BD_SEND:1CUO/BD_MSNT:1CUO,N_SEND_D:1CU4}; 

#BD_PTR:M 
{•9.884468=BD_MSNT:1FO/BD_SEND:1FO}, 
{•30.077134=BD_MSNT:1CUO/BD_SEND:1CUO}; 

#BD_WAK:M 
{•28.673214=BD_WACK:1FO,N_RECV_D:1F3/BD_WIND:1FO}; 

#BD_SLT:D 
{,0.102020=BD_SEND:1FO,BD_WIND:1FO/BD_WIND:1FO, 

BD_WDAT:1FO,N_SEND_D:1F5}, 
{,0.024054=BD_SEND:1CUO/BD_WDAT:1CUO,N_SEND_D:1CU5}; 

#BD_WMD:M 
{•32.810188=BD_WDAT:1FO,N_RECV_D:1F1/BD_WDAT:1FO, 

N_SEND_D:1F6}, 
{=BD_WDAT:1CUO,N_RECV_D:1CU1/BD_WDAT:1CUO}; 

#BD_KAK:D 
{=BD_WDAT:1FO,BD_WACK:OFO,N_RECV_D:1F3/BD_WDAT:1FO}; 

#BD_LPB:M 

#BD_LAK:M 

{•2888.667632,0.003228=BD_WDAT:1FO, 
N_RECV_D:1F2/BD_SEND:1FO}; 

{•0.301882,0.996772=BD_WDAT:1FO,N_RECV_D:1F2/BD_IDLE:1FO, 
N_SEND_D:1F6}, 

{,1.0=BD_WDAT:1CUO,N_RECV_D:1CU2/BD_IDLE:1CUO}; 
#BR_RDST_R_Tl:D 

{•0.00817=N_RECV_D:1F4,BR_RDST_R_P1:1C9/ATM_RCVD:1F4, 
BR_RDST_R_P1:1C9}, 
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{•0.00817=1_RECV_D:1F5,BR_BDST_R_P1:1C9/ATM_RCVD:1F5, 
BR_RDST_R_P1:1C9}, 

{•0.00817=1_RECV_D:1F6,BR_RDST_R_P1:1C9/ATM_RCVD:1F6, 
BR_BDST_R_P1:1C9}, 

{•0.00817=R_RECV_D:1CU4,BR_RDST_R_P1:1C9/ATK_RCVD:1CU4, 
BR_BDST_R_P1:1C9}, 

{•0.00817=1_RECV_D:1CU5,BR_RDST_R_P1:1C9/ATK_RCVD:1CU5, 
BR_RDST_R_P1:1C9}, 

{•0.00817=R_RECV_D:1CU6,BR_RDST_R_P1:1C9/!TK_RCVD:1CU6, 
BR_RDST_R_P1:1C9}; 

#BSAR_IN_R_Tl:D 
{=ATH_RCVD:1F4,BS!R_IN_R_P1:1C9/BSAR_II_R_P2:1F4}, 
{=ATK_RCVD:1F5,BSAR_II_R_P1:1C9/BSAR_II_R_P2:1F5}, 
{=ATK_RCVD:1F6,BSAR_II_R_F1:1C9/BSAR_II_R_P2:1F6}, 
{=ATK_RCVD:1CU4,BSAR_IR_R_P1:1C9/BSAR_IH_R_P2:1CU4}, 
{=ATM_RCVD:1CU5,BSAR_IH_R_P1:1C9/BSAR_II_R_P2:1CU5}, 
{=ATM_RCVD:1CU6,BSAR_IB_R_P1:1C9/BSAR_II_R_P2:1CU6}; 

#BSAR_IN_R_T2:D 
{=BSAR_IH_R_P2:1F4,BSAR_II_R_P3:0F4/BSAR_IB_R_P1:1C9, 

BSAR_II_R_P3:30F4}, 
{=BSAR_IH_R_P2:1F5,BSAR_II_R_P3:0F5/BSAR_IH_R_P1:1C9, 

BSAR_IN_R_P3:4F5}, 
{=BSAR_IR_R_P2:1F6,BSAR_II_R_P3:0F6/BSAR_IH_R_P1:1C9, 

BSAR_IH_R_P3:2F6}, 
{=BSAR_IR_R_P2:1CU4,BS!R_IK_R_P3:0CU4/BSAR_IH_R_P1:1C9, 

BSAR_IH_R_P3:11C04}, 
{=BSAR_IH_R_P2:1CU5,BSAR_IH_R_P3:0CU5/BSAR_IH_R_P1:1C9, 

BS!R_IN_R_P3:6CUS}, 
{=BSAR_IH_R_P2:1CU6,BSAR_II_R_P3:0CU6/BSAR_IH_R_P1:1C9, 

BS!R_IH_R_P3:2CU6}; 
#BSAR_IN_R_T3:D 

{•0.0028312=BSAR_II_R_P2:1F4,BSAR_IH_R_P3:1F4/ATK_R1:1F4, 
BSAR_IH_R_P2:1F4}, 

{•0.0028312=BSAR_IR_R_P2:1F5,BSAR_IH_R_P3:1F5/ATM_R1:1F5, 
BSAR_IH_R_P2:1F5}, 

{•0.0028312=BS!R_lN_R_P2:1F6,8SAR_IH_R_P3:1F6/ATK_R1:1F6, 
BS!R_IH_R_P2:1F6}, 

{•0.0028312=BSAR_II_R_P2:1CU4, 
BSAR_IR_R_P3:1CU4/ATK_R1:1C04,BSAR_IN_R_P2:1CU4}, 

{•0.0028312=BSAR_IR_R_P2:1CU5, 
BSAR_IH_R_P3:1CU5/ATK_R1:1CU5,BSAR_IH_R_P2:1CU5}, 

{•0.0028312=BSAR_II_R_P2:1CU6, 
BSAR_IR_R_P3:1CU6/ATM_R1:1CU6,BSAR_II_R_P2:1CU6}; 

#OC3_RCV1_R_T1:D 
{•0.0028312=ATM_R1:1F4,0C3_RCV1_R_P1:1C9/ATM_R2:1F4, 

OC3_RCV1_R_P1:1C9}, 
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{*0.0028312=ATM_R1:1F5,0C3_RCV1_R_P1:1C9/ATK_R2:1F5, 
OC3_RCV1_R_P1:1C9}, 

{•0.0028312=ATM_R1:1F6,0C3_RCV1_R_P1:1C9/ATK_R2:1F6, 
OC3_RCV1_R_P1:1C9}, 

{•0.0028312=ATK_R1:1CU4,0C3_RCV1_R_P1:1C9/ATM_R2:1CU4, 
OC3_RCV1_R_P1:1C9}, 

{•0.0028312=ATM_R1:1CU5,0C3_RCV1_R_P1:1C9/ATK_R2:1CU5, 
OC3_RCV1_R_P1:1C9}, 

{•0.0028312=ATM_R1:1CU6,0C3_RCV1_R_P1:1C9/ATK_R2:1CU6, 
OC3_RCV1_R_P1:1C9}; 

#ATMSV_RCV_R_Tl:D 
{•0.0028312=ATM_R2:1F4,ATMSW_RCV_R_P1:1C9/ATK_R3:1F4, 

ATMSV_RCV_R_P1:1C9}, 
{•0.0028312=ATM_R2:1F5,ATMSV_RCV_R_P1:1C9/!TM_R3:1F5, 

ATKSV_RCV_R_P1:1C9}, 
{•0.0028312=ATM_R2:1F6,ATMSV_RCV_R_P1:1C9/ATM_R3:1F6, 

ATMSV_RCV_R_P1:1C9}, 
{•0.0028312=ATK_R2:1CU4,1TMSV_RCV_R_P1:1C9/ATM_R3:1CU4, 

1TMSV_RCV_R_P1:1C9}, 
{•0.0028312=ATM_R2:1CU5,ATKSV_RCV_R_P1:1C9/ATM_R3:1CU5, 

ATMSV_RCV_R_P1:1C9}, 
{•0.0028312=ATM_R2:1CU6,ATMSV_RCV_R_P1:1C9/ATM_R3:1CU6, 

ATMSW_RCV_R_P1:1C9}; 
#OC3_RCV2_R_Tl:D 

{•0.0028312=ATM_R3:1F4,0C3_RCV2_R_P1:1C9/ATH_R4:1F4, 
OC3_RCV2_R_P1:1C9}, 

{•0.0028312=ATM_R3:1F5,0C3_RCV2_R_P1:1C9/ATM_R4:1F5, 
OC3_RCV2_R_P1:1C9}, 

{•0.0028312=ATM_R3:1F6,0C3_RCV2_R_P1:1C9/ATM_R4:lF6, 
OC3_RCV2_R_P1:1C9}, 

{•0.0028312=ATM_R3:1CU4,0C3_RCV2_R_P1:1C9/ATK_R4:1CU4, 
OC3_RCV2_R_P1:1C9}, 

{•0.0028312=ATM_R3:1CU5,0C3_RCV2_R_P1:1C9/ATM_R4:1CU5, 
OC3_RCV2_R_P1:1C9}, 

{•0.0028312=ATM_R3:1CU6,0C3_RCV2_R_P1:1C9/ATM_R4:1CU6, 
OC3_RCV2_R_P1:1C9}; 

#BSAR_OUT_R_Tl:D 
{•0.0028312=ATM_R4:1F4,BSAR_OUT_R_P1:1F4, 

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}, 
{•0.0028312=ATK_R4:1F5,BSAR_OOT_R_P1:1FS, 

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}, 
{•0.0028312=ATM_R4:1F6,BSAR_OUT_R_P1:1F6, 

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}, 
{•0.0028312=ATM_R4:1CU4,BSAR_OUT_R_P1:1CU4, 

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}, 
{•0.0028312=ATK_R4:1CU5,BSAR_OUT_R_P1:1CU5, 
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BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}, 
{•0.0028312=ATK_R4:1CU6,BSAR_OUT_R_P1:1CU6, 

BSAR_OUT_R_P2:1C9/BSAR_OUT_R_P2:1C9}; 
#BSAR_OUT_R_T2:D 

{•0.0028312=ATM_R4:1F4,BSAR_OUT_R_P1:0F4/ATM_RCVS:1F4, 
BSAR_OUT_R_P1:29F4}, 

{•0.0028312=ATM_R4:1FS,BSAR_OUT_R_P1:0F5/ATM_RCVS:1F5, 
BSAR_OUT_R_P1:3F5}, 

{•0.0028312=ATM_R4:1F6,BSAR_OUT_R_P1:0F6/ATM_RCVS:1F6, 
BSAR_OUT_R_P1:1F6}, 

{•0.0028312=ATM_R4:1CU4,BSAR_OUT_R_P1:0CU4/ATM_RCVS:1CU4, 
BSAR_OUT_R_P1:10CU4}, 

{•0.0028312=ATM_R4:1CU5,BSAR_OUT_R_P1:0CU5/ATM_RCVS:1CU5, 
BSAR_OUT_R_P1:5CU5}, 

{•0.0028312=ATM_R4:1CU6,BSAR_OUT_R_P1:0CU6/ATM_RCVS:1CU6, 
BSAR_OUT_R_P1:1CU6}; 

#BR_RSRC_R_Tl:D 
{•0.00817=ATM_RCVS:1F4,BR_RSRC_R_P1:1C9/N_SEND_S:1F4, 

BR_RSRC_R_P1:1C9}, 
{•0.00817=ATM_RCVS:1F5,BR_RSRC_R_P1:1C9/N_SEND_S:1F5, 

BR_RSRC_R_P1:1C9}, 
{•0.00817=ATM_RCVS:1F6,BR_RSRC_R_P1:1C9/N_SEND_S:1F6, 

BR_RSRC_R_P1:1C9}, 
{•0.00817=ATM_RCVS:1CU4,BR_RSRC_R_P1:1C9/H_SEND_S:1CU4, 

BR_RSRC_R_P1:1C9}, 
{•0.00817=ATM_RCVS:1CU5,BR_RSRC_R_P1:1C9/N_SEND_S:1CU5, 

BR_RSRC_R_P1:1C9}, 
{•0.00817=ATM_RCVS:1CU6,BR_RSRC_R_P1:1C9/N_SEND_S:1CU6, 

BR_RSRC_R_P1:1C9}; 
#AE_S:D 

{•0.935812,[N_SEND_S:Fl]=N_SEND_S:1F1, 
AE_IDLE:1C9/N_RECV_S:1Fl,AE_IDLE:1C9}, 

{*0.082118,[N_SEND_S:F2]=N_SEND_S:1F2, 
AE_IDLE:1C9/N_RECV_S:1F2,AE_IDLE:1C9}, 

{•0.057600,(N_SEND_S:F3]=N_SEND_S:1F3, 
AE_IDLE:1C9/N_RECV_S:1F3,AE_IDLE:1C9}, 

{•1.136963,[N_SEND_S:F4]=N_SEND_S:1F4, 
AE_IDLE:1C9/N_RECV_S:1F4,AE_IDLE:1C9}, 

{•0.147639,[N_SEND_S:F5]=N_SEND_S:1F5, 
AE_IDLE:1C9/N_RECV_S:1F5,AE_IDLE:1C9}, 

{•0.057600,[N_SEND_S:F6]=N_SEND_S:1F6, 
AE_IDLE:1C9/N_RECV_S:1F6,AE_IDLE:1C9}, 

{•0.081600,[N_SEND_S:CU1]=N_SEND_S:!CU1, 
AE_IDLE:1C9/N_RECV_S:1CU1,AE_IDLE:1C9}, 

{•0.149749,[N_SEND_S:CU2]=N_SEND_S:1CU2, 
AE_IDLE:1C9/N_RECV_S:1CU2,AE_IDLE:1C9}, 
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#BE_S:D 

{•0.009600,[H_SEND_S:CU3]=N_SEND_S:1CU3, 
AE_IDLE:1C9/N_RECV_S:1CU3,AE_IDLE:1C9}, 

{•0.413363,[H_SEND_S:CU4]=N_SEND_S:1CU4, 
AE_IDLE:1C9/N_RECV_S:1CU4,AE_IDLE:1C9}, 

{•0.207520,[H_SEND_S:CU5]=N_SEND_S:1CU5, 
AE_IDLE:1C9/N_RECV_S:1CU5,AE_IDLE:1C9}, 

{•0.009600,[H_SEND_S:CU6]=N_SEND_S:1CU6, 
AE_IDLE:1C9/N_RECV_S:1CU6,AE_IDLE:1C9}; 

{•0.935812,[N_SEND_D:F1]=N_SEND_D:1Fl, 
BE_IDLE:1C9/N_RECV_D:1Fl,BE_IDLE:1C9}, 

{•0.082118,[N_SEND_D:F2]=N_SEND_D:1F2, 
BE_IDLE:1C9/N_RECV_D:1F2,BE_IDLE:1C9}, 

{•0.057600,[N_SEND_D:F3]=N_SEND_D:1F3, 
BE_IDLE:1C9/N_RECV_D:1F3,BE_IDLE:1C9}, 

{•1.136963,[N_SEHD_D:F4]=N_SEND_D:1F4, 
BE_IDLE:1C9/N_RECV_D:1F4,BE_IDLE:1C9}, 

{•0.147639,[N_SEHD_D:F5]=N_SEND_D:1F5, 
BE_IDLE:1C9/N_RECV_D:1F5,BE_IDLE:1C9}, 

{•0.057600,[N_SEHD_D:F6]=N_SEND_D:1F6, 
BE_IDLE:1C9/N_RECV_D:1F6,BE_IDLE:1C9}, 

{•0.081600,[N_SEND_D:CU1]=N_SEND_D:1CU1, 
BE_IDLE:1C9/N_RECV_D:1CU1,BE_IDLE:1C9}, 

{•0.149749,[N_SEND_D:CU2]=N_SEND_D:1CU2, 
BE_IDLE:1C9/N_RECV_D:1CU2,BE_IDLE:1C9}, 

{•0.009600,[N_SEND_D:CU3]=N_SEND_D:1CU3, 
BE_IDLE:1C9/N_RECV_D:1CU3,BE_IDLE:1C9}, 

{•0.413363,[N_SEND_D:CU4]=N_SEND_D:1CU4, 
BE_IDLE:1C9/N_RECV_D:1CU4,BE_IDLE:1C9}, 

{•0.207520,[N_SEND_D:CU5]=N_SEND_D:1CU5, 
BE_IDLE:1C9/N_RECV_D:1CU5,BE_IDLE:1C9}, 

{•0.009600,[N_SEND_D:CU6]=N_SEND_D:1CU6, 
BE_IDLE:1C9/N_RECV_D:1CU6,BE_IDLE:1C9}) 

mark(AS_IDLE:1024FO 
,AS_IDLE:lCUO 
,AS_WIND:16384FO 
,8R_SSRC_S_P1:1C9 
,ASAR_IN_S_P1:1C9 
,ASAR_IN_S_P3:25F1 
,ASAR_IN_S_P3:3F2 
,ASAR_IN_S_P3:2F3 
,ASAR_IN_S_P3:3CU1 
,ASAR_IN_S_P3:4CU2 
,ASAR_IN_S_P3:2CU3 
,OC3_SND1_S_P1:1C9 
,ATMSW_SND_S_P1:1C9 
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,OC3_SND2_S_P1:1C9 
,ASAR_OUT_S_P2:1C9 
,ASAR_OUT_S_P1:24F1 
,ASAR_OUT_S_P1:2F2 
,ASAR_OUT_S_P1:1F3 
,ASAR_OUT_S_P1:2CU1 
,ASAR_OUT_S_P1:3CU2 
,ASAR_OUT_S_P1:1CU3 
,BR_SDST_S_P1:1C9 
,BD_WDAT: 1024FO 
,BD_WDAT: 1CUO 
,BD_WIND:22528FO 
,BR_ROST_R_P1:1C9 
,BSAR_IN_R_P1:1C9 
,BSAR_IN_R_P3:30F4 
,BSAR_IN_R_P3:4F5 
,BSAR_IN_R_P3:2F6 
,BSAR_IN_R_F3:11CU4 
,BSAR_IN_R_P3:6CU5 
,BSAR_IN_R_P3:2CU6 
,OC3_RCV1_R_P1:1C9 
,ATMSW_RCV_R_P1;1C9 
,OC3_RCV2_R_P1:1C9 
,BSAR_OUT_R_P2:1C9 
,BSAR_OUT_R_P1:29F4 
,BSAR_OUT_R_P1:3F5 
,BSAR_OUT_R_P1:1F6 
,BSAR_OUT_R_P1:10CU4 
,BSAR_OUT_R_P1:5CU5 
,BSAR_OUT_R_P1:1CU6 
,BR_RSRC_R_P1:1C9 
,AE_IDLE: 1C9 
, BE_ IDLE: 1C9 
) ; 

simulate(2050); 
simres; 
end.-
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