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Abstract 

A Skolem sequence of order n is a sequence Sn = ( s1, s2, ... , s2n) of 2n positive integers 
such that for each k E { 1, 2, ... , n } , there exists exactly two elements Si, s i E Sn such 
that Si = Bj = k and li - il = k. Skolem sequences and their generalizations have 
many applications and thus any new existence results concerning these sequences and 
their generalizations are welcome. 

In this thesis, we introduce near-A-fold Skolem sequences and extended near-A-fold 
Skolem sequences and show that the necessary conditions for their existence are also 

sufficient when A ~ 2. We also discuss the case for A = 1. We then prove that the 
necessary conditions are also sufficient for the existence of two new classes of near-Skolem

type sequences. The appendix also contains some computational results for near-Skolem 

and near-Skolem-type sequences. Finally, we discuss infinite Skolem sequences and their 

relationship to Beatty sequences and investigate whether or not this relationship can be 
extended to other generalizations of Skolem sequences. We also present a relationship 
between infinite Skolem sequences, Fibonacci numbers, and some restricted compositions 

and palindromes of n. 
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Chapter 1 

Introduction 

A Steiner triple system of order v, denoted STS(v), is a pair (V,B), where 
V is a set of v points and B is a collection of triples from V such that each 
unordered pair in V occurs in exactly one triple in B. For example, the blocks 
{ 0, 1, 3}, { 1, 2, 4}, { 2, 3, 5}, { 3, 4, 6}, { 4, 5, 0}, { 5, 6, 1} and { 6, 0, 2} con
stitute an STS(7). It was Kirkman, in [12], who showed that an STS(v) 
exists if and only if v = 1, 3 (mod 6). 

An automorphism 1r, of an ST S ( v) with element set V is a permutation of 
V which preserves the block set B, i.e., if B E B, then 
1r(B) E B. The set of all such automorphisms of STS(v) with the element 
set V form the automorphism group of the design. If (V,B) is an STS(v) 
which admits 1r as an automorphism, then 1r partitions the blocks B E B 
into equivalence classes, called orbits of 1r, such that B1 and B2 belong to 
the same orbit if and only if 1rm(B1 ) = B2 , for some positive integer m. Let 
(V,B) be an STS(v) which admits 1r as an automorphism, Oi an orbit in
duced by 1r, and Bi a block in Oi. Then we can find all B3 E Oi by evaluating 
1rk(Bi) for all k, where 1 :S k :S n and n is the order of 1r. The block Bi 
is called a base block of the STS(v) with respect to 1r. Thus, to construct 
an STS(v) which admits 1r as an automorphism, it is sufficient to construct 
base blocks for each of the orbits induced by 1r. 

An STS(v) is called cyclic if its automorphism group contains a v-cycle. 
It is known that an STS(v) is cyclic if and only if v = 1, 3 (mod 6), v =!= 9. 
This was shown by Peltesohn in [23]. Peltesohn did this by solving Heffter's 
first and second problem. Heffter's first problem asks: can one partition the 
numbers 1, 2, ... , 3n into n triples { ai, bi, Ci }, where 1 :S i :S n, such that 
ai + bi = Ci or ai + bi + Ci = 0 (mod 6n + 1)? Heffter observed that a solution 
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to this problem can be converted to a set of triples { 0, ai, Ci} when ai+bi = Ci 

or { 0, ai, 6n + 1- ci} when ai + bi + Ci = 0 (mod 6n + 1), which are base 
blocks of a cyclic STS(6n + 1) on the element set Z6n+l· Heffter's second 
problem asks: can one partition the numbers 1, 2, ... , 2n, 2n + 2, ... , 3n into 
n triples { ai, bi, Ci }, where 1 ~ i ~ n, such that ai +bi = Ci or ai + bi +ci = 0 
(mod 6n + 3)? Once again, a solution to this problem can be converted to 
a set of triples { 0, ai, Ci} when ai + bi = Ci or { 0, ai, 6n + 3 - Ci} when 
ai + bi + Ci = 0 (mod 6n + 3) which, along with the triple { 0, 2n + 1, 4n + 2 } , 
are base blocks of a cyclic STS(6n+3) on the element set Z6n+3 • (The reader 
is referred to [11] for more information on Heffter's problems.) 

It was in 1957, while studying cyclic Steiner triple systems, that Thoralf 
Skolem, in [36], asked if it was possible to partition the integers 1, 2, ... , 2n 
into n pairs (ai, bi) such that {I bi - ail I 1 ~ i ~ n} = { 1, 2, ... , n }. 
For example, for n = 4 we have the partition (7, 8), (2, 4), (3, 6), (1, 5). 
Skolem called such partitions a 1, +1 system (Skolem defines, in general, 
an l, +m system as a system of disjoint pairs with corresponding differences 
l, l + m, l +2m, ... ) and showed that such a partition exists if and only if 
n = 0,1 (mod 4) (although he attributes the majority of the proof to Bang). 
Although C.D. Langford was the first to write similarly defined partitions 
as sequences, see [13], it was Nickerson, in [20], who first wrote these par
ticular partitions of Skolem as sequences of length 2n, placing the integer i 
in positions ai and bi of the sequence. For example, the previous partition 
can be written as the sequence ( 4, 2, 3, 2, 4, 3, 1, 1). These sequences are now 
known as Skolem sequences. Given an admissible positive integer n, Skolem 
took the pairs (ai, bi) for each i, where 1 ~ i ~ n, and constructed the 
triples { i,ai + n,bi + n}, which form a solution to Heffter's first problem, 
and from these triples, constructed the base blocks {0, i, bi + n} of a cyclic 
STS(6n+ 1)(see [37]). For example, the previous partition gives us the base 
blocks { 0, 1, 12}, { 0, 2, 8}, { 0, 3, 10}, { 0, 4, 9} of an STS(25). 

Skolem also asked if it was possible to partition the integers 
1, 2, ... , 2n - 1, 2n + 1 into n pairs (ai, bi) such that {I bi - ail I 1 ~ 
i ~ n} = { 1, 2, ... , n }. For example, for n = 3 we have the partition 
(2, 3), (5, 7), (1, 4). When written in Langford's format, we place a '0' or'*', 
called a "hook", into the 2nth position of the sequence. For example, the 
latter partition gives us the sequence (3, 1, 1, 3, 2, 0, 2). These sequences are 
known as hooked Skolem sequences. However, it was O'Keefe, in [22], who 
showed that such a sequence exists if and only if n = 2, 3 (mod 4). These 
partitions can also lead to a solution to Heffter's first problem; we convert the 
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pairs (ai, bi) into the triples { i, ai+n, bi+n} for all i, where 1 :S i :S n. Then, 
using the same construction as was used with Skolem sequences, hooked 
Skolem sequences can also be used to construct an STS(6n + 1), for all 
n = 2, 3 (mod 4). Thus, the work of Skolem and O'Keefe combined to prove 
the sufficiency of the existence of cyclic STS(6n + 1) for all positive integers 
n. 

The sufficiency of the existence of cyclic STS(6n + 3) for all positive 
integers n was proven by Rosa in 1966 when he introduced Rosa and hooked 
Rosa sequences in [28]. A Rosa sequence (also known as split-Skolem) of 
order n is defined similarly to hooked Skolem sequences with the exception 
that the hook appears in position n + 1 of the sequence. For example, for 
n = 4 we have the sequence (1, 1, 3, 4, 0, 3, 2, 4, 2). Rosa showed that these 
sequences exist if and only if n = 0, 3 (mod 4). A hooked Rosa sequence 
of order n has a hook in positions n + 1 and 2n + 1 of the sequence. For 
example, for n = 5 we have the sequence (3, 1, 1, 3, 4, 0, 5, 2, 4, 2, 0, 5). Rosa 
showed that these sequences exist if and only if n = 1, 2 (mod 4). Given a 
Rosa (or hooked Rosa) sequence of order n, Rosa used the pairs ( ai, bi) for 
each i, where 1 :S i :S n, which arise from the sequence in a similar fashion 
as Skolem sequences, to construct the triples { i, ai + n, bi + n}, which form a 
solution to Heffter's second problem. He then used these triples to construct 
the blocks { 0, i, bi + n} which, in addition to the triple { 0, 2n + 1, 4n + 2 }, 
are the base blocks of a cyclic STS(6n + 3). 

These latter sequences introduced by Rosa, in addition to hooked Skolem 
sequences, are examples of extended Skolem sequences. Extended Skolem 
sequences may have a hook placed anywhere within the sequence. It was 
Abrham and Kotzig, in [1], who showed that extended Skolem sequences 
exist for all n, but it was Baker, in [4], who showed that these sequences 
exist for all admissible positions of the hook. 

In addition to extended Skolem sequences, there have also been other 
generalizations of Skolem sequences introduced since 1957. The earliest such 
generalization was Langford sequences, first introduced by C.D. Langford 
in 1958 in [13], who came upon the problem after observing his son play
ing a game with blocks. In 1959, see [24], Priday defined a perfect Lang
ford sequence as a sequence of 2(n- d + 1) positive integers, where each 
k E { d, d+ 1, ... , n } is placed twice within the sequence such that the two k's 
have k- 1 integers between them. In these sequences, n is the order of the se
quence and dis the defect. For example, the sequence (7, 5, 3, 6, 4, 3, 5, 7, 4, 6) 
is a Langford sequence of order 7 and defect 3. However, Langford only asked 
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for a treatment of the problem when d = 2. Even though Langford gave sev
eral examples with d = 2, it was the work of Friday in [24] and Davies in 
[8] who solved the case completely for d = 2. The case for din general was 
solved completely by Bermond, Brouwer, and Germain [6], who completed 
the case ford= 3, d = 4, and l = 2d -1 (mod 4), and Simpson in [35], who 
completed the case for l = 0 (mod 4), where l = n- d + 1. 

An extended Langford sequence of order n and defect d is defined in a 
manner analogous to extended Skolem sequences. Although the problem of 
the existence of these sequences remains open, some cases have been solved 
by Jiang, Linek, and Morin [15, 16], and hooked Langford sequences have 
been solved completely by Davies and Simpson (see [8, 35]). But extended 
Langford sequences have also been used by Friday in his concept of a looped 
set. He defined the set { d, d + 1, ... n} to be a looped set if there exist two 
extended Langford sequences of order n and defect d, one with a hook two 
places from the last entry of the sequence and one with a hook one place 
and two places from the last entry. For example, the set {2, 3, 4, 5} gives the 
sequences (2, 4, 2, 5, 3, 4, 0, 3, 5) and (3, 5, 2, 3, 2, 4, 5, 0, 0, 4). 

Another generalization, introduced by Stanton and Goulden in 1981 in 
[39], is m-near-Skolem sequences of order n, a Skolem-type sequence contain
ing the integers { 1, 2, ... , m- 1, m + 1, ... , n }. For example, the sequence 
(4, 1, 1, 2, 4, 2) is a 3-near-Skolem sequence of order 4. These sequences, in 
addition to hooked m-near-Skolem sequences, were solved completely by Sha
laby in [30]. The existence of extended m-near-Skolem sequences, which have 
the obvious definition, remains an open problem however. 

Using notation similar to that introduced by Stanton and Goulden, Billing
ton, in [7], introduced the pairings P 2 (1, n)/m- { j, k }, which form a parti-
tion of the integers { 1, 2, ... , 4n }, except j and k, into 2n-1 pairs such that 
each of the integers { 1, 2, ... , m- 1, m + 1, ... , n} appears exactly twice as 
a difference, while the integer m appears exactly once. Billington uses these 
partitions to construct balanced ternary designs. 

A balanced ternary design, BT D, is a pair (V, B), where V is a set of v 
elements and B is a collection of blocks of size k, such that each element in 
V occurs 0, 1 or 2 times in each block. We define the index of the design as 

IBI 
A= Lnimnjm, 

m=l 

where 1 ~ i < j ~ v and nim denotes the number of times the element i 
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occurs in block m. 
In particular, Billington used the pamngs of the form 

P 2 (1, m/2)/(m/2) - { m/2 + 1, 3m/2 + 1} to construct balanced ternary 
designs with block size 3 and index 2. She used these pairings to construct 
m- 1 triples of the form {Xi, Yi, Zi }, where xi+ Yi = zi, X2i-1 = x2i = i, 
for 1 ::::; i ::::; m/2 - 1, and Xm-1 = m/2. She then used these triples to 
construct blocks of the form { 0, xi, zi} (mod 3m), in addition to { 0, 0, m} 
(mod 3m), which were base blocks of a BTD of order V =3m and index 2. 
For example, for V = 12, the pairing P 2 (1, 2)/2- { 3, 7} can be used to con
struct the triples { 1, 2, 3 }, { 1, 5, 6 }, and { 2, 3, 5} which gives base blocks 
{ 0, 0, 4 }, { 0, 1, 3 }, { 0, 1, 6} and { 0, 2, 5} (mod 12). 

Shortly thereafter A-fold Skolem sequences and extended 
A-fold Skolem sequences were introduced, and their existence solved, by 
Baker, Nowakowski, Shalaby, and Sharary in 1994 in [3]. The former se
quences are similar to Skolem sequences with the exception that each integer 
from the set { 1, 2, ... , n} appears exactly 2A times within the sequence. 
For example, the sequence (3, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 3) is a 2-fold Skolem se
quence of order 3. Extended A-fold Skolem sequences of order n, which are 
defined in the expected way, were also solved in [3]. 

Skolem sequences and their generalizations have numerous mathematical 
and practical applications. They are used in constructing group divisible 
designs, rotational triple systems, graph factorizations, and starters, to name 
just a few applications in combinatorial designs. They are also used in coding 
and communication networks. 

Due to the importance of these sequences, in this thesis we deal with some 
other generalizations. In particular, looped Langford sequences and the work 
by Billington provide motivation for the sequences examined in this thesis. In 
chapter 3, we investigate m-near-A-fold and extended m-near-A-fold Skolem 
sequences. These sequences contain the integers {1, 2, ... , m-1, m+1, ... , n} 
exactly 2A times within the sequence, while they contain the integer m ex
actly 2A-2 times. For example, the sequence (4, 2, 3, 2, 4, 3, 1, 1, 4, 1, 1, 2, 4, 2) 
is a 3-near-2-fold Skolem sequence of order 4. We prove that the necessary 
conditions are also sufficient for the existence of these sequences when A > 1, 
and discuss the case when A = 1. In chapter 4, we prove that the neces
sary conditions are also sufficient for two new classes of near-Skolem-type 
sequences, namely (2n- 3)-extended m-near-Skolem sequences and hooked 
(2n- 2)-extended m-near-Skolem sequences, a near-Skolem-type sequence 
which contains a hook in positions 2n - 2 and 2n - 1 of the sequence. 
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Finally, in chapter 5, we discuss infinite Skolem sequences, another con
cept introduced by Skolem (see [36]). As mentioned earlier, Skolem sequences 
were first introduced in[36] when Skolem wondered if it was possible to parti
tion the integers 1 to 2n into n pairs (ai, bi) such that each i, where 1 ~ i ~ n, 
occurs as a difference exactly once amongst the pairs. However, in the same 
paper, he also considered the idea of partitioning the set N into similar pairs. 
He did this by setting a1 = 1, b1 = 2 and then setting ai, i 2: 2, to be the 
least available number not used in the partition and setting bi = ai + i. The 
first 10 pairs of such a partition are 

(1,2)(3,5)(4, 7)(6,10)(8,13)(9,15)(11,18)(12,20)(14,23)(16,26). 

(The first 60 values of an are contained in the appendix.) In the same paper, 
Skolem noticed that, in this partition, the pairs (an, bn) are equivalent to the 

. 1+v'5 
parrs ([an], [a2n]), for all n E N, where a = 

2 
and [x] denotes the 

greatest integer ~ x. Th. Bang, in [5], also elaborates on this idea. When 
the partition is written as a sequence we obtain 

1' 1 ,2,3,2,4,3,5,6,4, 7,8,5,9,6,10, 11 '7' 12,8,13, 14,9, 15, 16, 10 ... 

This was written as a sequence by Roselle in [29]. Although Roselle referred 
to this sequence as an "infinite version" of the Skolem partitioning problem, 
we call this an infinite Skolem sequence. In chapter 5, we try to extend 
this idea to some other generalizations of Skolem sequences. Chapter 5 also 
contains a relationship between infinite Skolem sequences, Beatty sequences, 
Fibonacci numbers, and some restricted compositions and palindromes of n. 

The final chapter contains the conclusion, which restates the results ob
tained in this thesis, as well as states some open problems and conjectures 
related to the topics discussed. The appendix contains computational results 
on near-Skolem-type sequences as well as a table of values of an in the infinite 
Skolem sequence. 
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Chapter 2 

Definitions and theorems 

This chapter contains some preliminary definitions, examples, and theorems 
which are relevant to the development of the topics and results presented 
in this thesis. It is noted that the majority of the definitions presented in 
this chapter are the formal definitions of what was already introduced in 
the introduction. It also contains definitions and examples of the two new 
sequences introduced in this thesis, m-near->.-fold Skolem sequences and 
t-extended m-near->.-fold Skolem sequences. 

2.1 Definitions and theorems 

Definition 1. A Skolem sequence of order n is a sequence Sn = ( s1, s2, ... , s2n) 
of 2n positive integers such that the following conditions hold: 

1. for each k E { 1, 2, ... , n}, there exists exactly two elements si, s i E Sn 
such that si = Sj = k, and 

2. if si = s i = k, then li - i I = k. 

The sequence (4, 2, 3, 2, 4, 3, 1, 1) is an example of a Skolem sequence of 
order 4. 

Theorem 2.1 (Skolem [36]). A Skolem sequence of order n exists if and only 
ifn = 0,1 (mod 4). 

Definition 2. A t-extended Skolem sequence of order n is a sequence 
Sn(t) = (s17 s2, ... , s2n+l) of 2n + 1 non-negative integers such that the fol
lowing conditions hold: 
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1. for each k E { 1, 2, ... , n}, there exists exactly two elements 
si, Sj E Sn(t) such that si = Sj = k, 

2. if si = si = k, then li- il = k, and 

3. St = 0, for some t E {1, 2, ... , 2n + 1}. 

The sequence (2, 0, 2, 3, 1, 1, 3) is an example of a 2-extended Skolem se
quence of order 3. 

A hooked Skolem sequence of order n, hSm is a (2n )-extended Skolem 
sequence of order n. 

Theorem 2.2 (Abrham and Kotzig [1]). An extended Skolem sequence of 
order n exists for all n. 

Since the construction used by Abrham and Kotzig to prove this theorem 
is relatively straightforward and is needed again in chapter 5, we will reiterate 
it here. The construction is as follows: 

Given a positive integer n, we construct the extended sequence 

2k+1, 2k-1, ... '5, 3, 1, 1,3, 5, ... '2k-1, 2k+1, 2l, 2l-2, ... '4, 2, 0, 2, 4, ... '2l-2, 2l 

where 2k + 1 and 2l are the largest odd and even numbers, respectively, in 
the sequence. 

This construction gives rise to the following definitions: 

Definition 3. An even Skolem sequence of order n is the sequence 
ESn = (2n, 2n- 2, ... , 2, 0, 2, ... , 2n- 2, 2n). 

For example, the sequence (6, 4, 2, 0, 2, 4, 6) is the even Skolem sequence 
of order 3. 

Definition 4. An odd Skolem sequence of order n is the sequence 
OSn = (2n- 1, 2n- 3, ... , 1, 1, ... , 2n- 3, 2n- 1). 

For example, the sequence (5, 3, 1, 1, 3, 5) is the odd Skolem sequence of 
order 3. 

Theorem 2.3 (Baker [4]). A t-extended Skolem sequence of order n exists 
if and only if one of the following is true: 

1. n = 0,1 (mod 4) and t is odd 

2. n = 2, 3 (mod 4) and t is even. 
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Definition 5. A (p, q)-extended Rosa sequence of order n is a sequence 
Rn(P, q) = (r1, r2, ... , r2n+2) of 2n + 2 non-negative integers such that the 
following conditions hold: 

1. for each k E {1, 2, ... , n}, there exist exactly two elements 
ri, r3 E R,.(p, q) such that ri = r3 = k 

2. if ri = r3 = k, then I j - i I = k, and 

3. rp = rq = 0, for some p, q E {1, 2, ... , 2n + 2}. 

The sequence (4, 0, 1, 1, 4, 2, 3, 2, 0, 3) is an example of a (2, 9)-extended Rosa 
sequence of order 4. 

A hooked t-extended Skolem sequence of order n, hSn(t), is a 
(2n + 1, i)-extended Rosa sequence of order n. 

Theorem 2.4 (Linek and Shalaby [14]). A (p, q)-extended Rosa sequence of 
order n exists for all admissible positions p, q of the hook if and only if one 
of the following holds: 

1. n = 0,1 (mod 4) and p and q are of opposite parity 

2. n = 2, 3 (mod 4) and p and q are of the same parity. 

The cases (n,p,q) = (1,2,3) and (n,p,q) = (4,5,6) are exceptions. 

For the following definitions and theorems concerning Langford sequences, 
we let l = n - d + 1 denote the length of the sequence. 

Definition 6. A Langford sequence of order n and defect d, n 2: d, is a 
sequence L~ = (it, l2 , ••• , h1) of 2l positive integers such that the following 
conditions hold: 

1. for each k E { d, d+ 1, ... , n}, there exist exactly two elements li, z3 E L~ 
such that li = l3 = k, and 

2. if li = Z3 = k, then li- il = k. 

This sequence is also known as a perfect Langford sequence. 
The sequence (7, 5, 3, 6, 4, 3, 5, 7, 4, 6) is an example of a (perfect) Langford 

sequence of order 7 and defect 3. 
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Theorem 2.5 (Davies, Bermond, Brouwer, Germa, and Simpson [8, 6, 35]). 
A Langford sequence of length l and defect d exists if and only if the following 
conditions hold: 

1. l ;:::: 2d - 1, and 

2. l = 0,1 (mod 4) ford odd or l = 0, 3 (mod 4) ford even. 

Definition 7. A t-extended Langford sequence of order n and defect d, 
n ;:::: d, is a sequence L~(t) = (lr, l2 , ... , l21H) of 2l + 1 non-negative inte
gers such that the following conditions hold: 

1. for each k E { d, d + 1, ... , n}, there exist exactly two elements 
li, li E L~(t) such that li = li = k, 

2. if li = li = k, then li - il = k, and 

3. lt = 0 for some t E { 1, 2, ... , 2l + 1 } . 

The sequence (2, 4, 2, 5, 3, 4, 0, 3, 5) is an example of a 7-extended Lang
ford sequence of order 5 and defect 2. 

A hooked Langford sequence of order n and defect d is a (2l)-extended 
Langford sequence of order n and defect d. 

We note here that the existence oft-extended Langford sequences of order 
n and defect d is not completely solved. To see what cases are solved, the 
reader is referred to Theorem 2.8 and [15] and [16]. However, the existence 
of hooked Langford sequences has been completed by Davies (ford= 2) and 
Simpson (for general d). 

Theorem 2.6 (Davies and Simpson [8, 35]). A hooked Langford sequence of 
length l and defect d exists if and only if the following conditions hold: 

1. l ( l + 1 - 2d) ;:::: 0, and 

2. l = 2, 3 (mod 4) ford odd or l = 1, 2 (mod 4) ford even. 
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Definition 8. A hooked t-extended Langford sequence of order n and defect 
d, n 2': d, is a sequence hL~(t) = (it, l2, ... , l21+2) of 2l + 2 non-negative 
integers such that the following conditions hold: 

1. for each k E {d, d + 1, ... , n}, there exist exactly two elements 
li, lj E hL~(t) such that li = lj = k, 

2. if li = lj = k, then li - il = k, and 

3. l21+1 = lt = 0, for some t E { 1, 2, ... , 2l, 2l + 2 }. 

For example, the sequence (5, 3, 4, 0, 3, 5, 4, 2, 0, 2) is a hooked 4-extended 
Langford sequence of order 5 and defect d = 2. 

Theorem 2.7 (Linek and Jiang [17]). A hooked t-extended Langford sequence 
of order n and defect d = 2 exists if and only if one of the following conditions 
hold: 

1. n = 0, 1 (mod 4) and t is even 

2. n = 2, 3 (mod 4) and t is odd. 

The cases (n,k) = (3,3) and (n,k) = (4,2) are exceptions. 

Definition 9. A looped Langford set is a pair of sequences (£~, K~) of order 
nand defect d,n 2': d,.Cn = (Zt,l2, ... ,l2l+1) and Kn = (k1,k2, ... ,k21+2), 
satisfying conditions (1), (2) of a Langford sequence such that the following 
conditions hold: 

1. for each k E {d, d + 1, ... , n}, there exist exactly two elements 
li, lj E .C~ and ka, kb E IC~ such that li = lj = ka = kb = k, 

2. if li = lj = ka = kb = k then I j- i I= I b- a I= k, and 

If such a set exists, we refer to the two sequences collectively as a looped 
Langford sequence of order n and defect d. 

For example, the set {2, 3, 4, 5} gives the sequences (2, 4, 2, 5, 3, 4, 0, 3, 5) 
and (3, 5, 2, 3, 2, 4, 5, 0, 0, 4), a looped Langford sequence of order 5 and de
fect 3. 
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Theorem 2.8 (Linek and Jiang [17]). A k-extended Langford sequence of 
order n and defect d = 2 exists if and only if one of the following conditions 
hold: 

1. n = 0,1 {mod 4) and t is odd 

2. n = 2, 3 (mod 4) and t is even. 

Corollary 2.1 {Shalaby and Stuckless [33]). A looped Langford sequence of 
order n and defect d = 2 exists if and only if n = 0, 1 (mod 4). 

Proof. Follows from Theorems 2.7 and 2.8. D 

Definition 10. An m-near-Skolem sequence of order n and defect m is a 
sequence m- Sn = {s1 , s2 , ••. , s2n-2 ) of 2n- 2 positive integers such that 
the following conditions hold: 

1. for each k E {1, 2, ... , m - 1, m + 1, ... , n }, there exist exactly two 
elements si, Sj Em- Sn such that si = Sj = k, and 

2. if si = Sj = k, then I j- i I= k. 

The sequence {4, 1, 1, 2, 4, 2) is an example of a 3-near-Skolem sequence 
of order 4. 

Theorem 2.9 {Shalaby [30]). An m-near-Skolem sequence of order n exists 
if and only if one of the following is true: 

1. n = 0, 1 {mod 4) and m is odd 

2. n = 2, 3 {mod 4) and m is even. 

We note that some computational results concerning m-Sn are contained 
in the appendix. 
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Definition 11. At-extended m-near-Skolem sequence of order n and defect 
m is a sequence m-Sn(t) = (sb s2, ... , s2n-1) of 2n-1 non-negative integers 
such that the following conditions hold: 

1. for each k E {1, 2, ... , m - 1, m + 1, ... , n }, there exist exactly two 
elements si, si Em- Sn(t) such that si = si = k, 

2. if si = si = k then I j- i I= k, and 

3. St = 0, for some t E {1, 2, ... , 2n- 2, 2n- 1 }. 

The sequence (4,2,0,2,4,1,1) is an example of a 3-extended 3-near
Skolem sequence of order 4. 

A hooked m-near-Skolem sequence of order n, h(m - Sn(t)), is a 
(2n- 2)-extended m-near-Skolem sequence of order n. 

Although the existence oft-extended m-near-Skolem sequences is still an 
open question for general t, the case has been solved fort= n (see [34]) and 
fort= 2n- 2 (and t = 2) by Shalaby: 

Theorem 2.10 (Shalaby [30]). A hooked m-near-Skolem sequence of order 
n exists if and only if one of the following is true: 

1. n = 0,1 (mod 4) and m is even 

2. n = 2, 3 (mod 4) and m is odd. 

We note that some computational results concerning m-Sn(t) for general 
t and fort= 2, 3, 2n- 3, 2n- 2 are contained in the appendix. 

Definition 12. A (p, q)-extended m-near-Skolem sequence of order n and 
defect m is a sequence m- Sn(P, q) = (s1, s2, ... , s2n) of 2n non-negative 
integers such that the following conditions hold: 

1. for each k E {1, 2, ... , m - 1, m + 1, ... , n }, there exist exactly two 
elements si, si Em- Sn(P, q) such that si = si = k, 

2. if si = si = k, then U- i I= k, and 

3. sp = Sq = 0, for some p,q E {1,2, ... ,2n}. 
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For example, the sequence (5, 0, 0, 4, 2, 5, 2, 4, 1, 1) is a (2, 3)-extended 
3-near-Skolem sequence of order 5. 

A hooked t-extended m-near-Skolem sequence of order n and defect m, 
h(m- Sn(t)), is (2n -1, t)-extended m-near-Skolem sequence of order nand 
defect m. 

The existence of these sequences still remains an open problem. However, 
in this thesis we prove that the necessary conditions are also sufficient for the 
existence of hooked (2n- 2)-extended m-near-Skolem sequences of order n. 

Definition 13. A >-.-fold Skolem sequence of order n is a sequence 
s~ = (sl, s2, ... 'S2>.n) of 2>-.n positive integers such that the following condi
tions hold: 

1. for each k E {1, 2, ... , n }, there exists exactly ).. disjoint pairs (ik, jk), 
where ik,jk E { 1, 2, ... , 2>.n }, and 

The sequence (3, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 3) is an example of a 2-fold Skolem 
sequence of order 3. 

Theorem 2.11 (Baker, Nowakowski, Shalaby, and Sharay [3]). A >-.-fold 
Skolem sequence of order n exists if and only if one of the following conditions 
hold: 

1. n = 0,1 (mod 4) 

2. n = 2, 3 (mod 4) and).. is even. 

Definition 14. A t-extended >-.-fold Skolem sequence of order n is a sequence 
S~(t) = (st, s2 , .•• , s2>.nH) of 2>-.n + 1 non-negative integers such that the 
following conditions hold: 

1. for each k E {1,2, ... ,n}, there exists exactly). disjoint pairs (ik,jk), 
where ik,jk E { 1, 2, ... , 2>-.n }, 

3. St = 0, for some t E {1, 2, ... , 2>-.n + 1 }. 
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The sequence (3, 1, 1, 3, 2, 2, 2, 2, 3, 1, 1, 3, 2, 0, 2, 3, 1, 1, 3) is an example of a 
14-extended 3-fold Skolem sequence of order 3. 

A hooked >..-fold Skolem sequence of order n is a (2>..n)-extended >..-fold 
Skolem sequence of order n. 

Theorem 2.12 (Baker, Nowakowski, Shalaby, and Sharay [3]). At-extended 
>..-fold Skolem sequence of order n exists for all admissible positions t of the 
hook if and only if one of the following hold 

1. n = 0, 1 (mod 4) and t odd 

2. n = 2, 3 (mod 4) and t and>.. are of opposite parity. 

Definition 15. A (p, q)-extended >..-fold Rosa sequence of order n is a se
quence R~(p, q) = (r1, r2, ... , r 2An+2) of 2>..n + 2 non-negative integers such 
that the following conditions hold: 

1. for each k E {1,2, ... ,n}, there exists exactly>.. disjoint pairs (ik,jk), 
where ik,jk E { 1, 2, ... , 2>..n }, 

2. rik' rJk E R~(p, q) and rik = rJk = k, and 

3. rp = rq = 0, for some p,q E {1,2, ... ,2>..n+ 2}. 

The sequence (2, 2, 2, 2, 3, 0, 0, 3, 3, 1, 1, 3, 1, 1) is an example of a 
(6, 7)-extended 2-fold Skolem sequence of order 3. 

Theorem 2.13 (Linek and Shalaby [14]). A (p, q)-extended >..-fold Rosa se
quence of order n exists for all admissible positions p, q of the hook if and 
only if one of the following holds: 

1. n = 0,1 (mod 4) and p and q are of opposite parity, 

2. n = 2, 3 (mod 4) and p and q are of the same parity when>.. odd, 

3. n = 2, 3 (mod 4) and p and q are of opposite parity when>.. even. 

We are now ready to introduce m-near->..-fold Skolem sequences and 
t-extended m-near->..-fold Skolem sequences. 
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Definition 16. An m-near->.-fold Skolem sequence of order n and defect m 
is a sequence m- S~ = (s1 , s2 , ... , s2An-2) of 2>.n- 2 positive integers such 
that the following hold: 

1. for each k E {1, 2, ... , m- 1, m + 1, ... , n }, there exists >.disjoint pairs 
(ik,jk),i E {1,2, ... ,2>-.n-2} such that sik' sik Em-S~ and 
sik = sik = k, and 

2. there exists >. - 1 disjoint pairs (im,jm) such that 
Sim' Sjm Em-S~ and Sim = Sjm = m. 

For example, ( 4, 1, 1, 2, 4, 2, 4, 2, 3, 2, 4, 3, 1, 1) is a 3-near-2-fold Skolem 
sequence of order 4. 

Definition 17. At-extended m-near->.-fold Skolem sequence of order n and 
defect m is a sequence m-S~(t) = (s1 , s2 , ... , s2An-l) of 2>.n-1 non-negative 
integers such that the following conditions hold: 

1. for each k E {1, 2, ... , m- 1, m + 1, ... , n}, there exists ).. disjoint 
pairs (ik,jk), i E {1, 2, ... , 2)..n- 2} such that Sik' Sjk E m- S~ and 
Sik = Sjk = k, 

2. there exist >. - 1 disjoint pairs (im,im) such that 
Sim, Sjm Em-S~ and Sim = Sjm = m, and 

3. St=O,forsomet E {1,2, ... ,2>-.n-1}. 

For example, (2, 4, 2, 3, 0, 4, 3, 1, 12, 4, 2, 1, 1, 4) is a 5-extended 
3-near-2-fold Skolem sequence of order 4. 

Definition 18. A Beatty sequence is a sequence NIL = { [J.tn] }~=l, where J.l 
is an irrational number and [x] denotes the greatest integer ~ x. 

Theorem 2.14 (Bang, [5]). Let NIL denote the Beatty sequence with J.l as 
its irrational base. Then the sequences NIL and Nv are mutually disjoint with 

the property that NIL U Nv = N if and only if ..!_ + ..!_ = 1. 
J.l ll 

Definition 19. Let m and l be arbitrary natural numbers. Then an l, +m 
system is a system of disjoint pairs such that the corresponding differences 
are l, l + m, l + 2m, .... 

For example, the pairs (4, 6), (3, 7), (2, 8), and (1, 9) constitute a 2, +2 
system. 
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Theorem 2.15 (Skolem, [36]). Let m be an arbitrary natural number and 
l E { 1, ... , m } . Further, let N1 be the set of integers of the form 

and N2 the set of integers of the form 

Then N 1 and N 2 are mutually disjoint sets with the property that N 1 U N2 = N, 
and the pairs (f(n),g(n)) constitute an l, +m system. 

Definition 20. A partition of a positive integer n is a collection of un
ordered positive integers ( .A1, .A2, ... Ar) such that L:~=l .Ai = n. 

Each .Ai is called a part or summand of the partition. The case where 
there is only one summand, n itself, is also considered a partition of n. 

For example, the collection (1, 1, 2, 4) is a partition of 8. 

Definition 21. A composition of a positive integer n is an ordered collec
tion of positive integers ( .A1, .A2, ... , Ar) such that 2:::~= 1 .Ai = n. 

For example, for n = 4, the partitions are (1, 1, 1, 1) (1, 1, 2) (2, 2) (1, 3) (4) 
and the compositions are (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (2, 1, 1)(2, 2) (1, 3) (3, 1) (4). 

Lemma 2.1 (MacMahon, [18]). The total number of compositions of n is 
equal to 2n-l. 

Definition 22. A palindrome of a positive integer n is a composition of n 
such that the summands of the composition are the same when read from 
left to right as they are when read from right to left. 

For example, for n = 4, the composition (1, 2, 1) is also a palindrome. 

Lemma 2.2 (MacMahon, [18]). Let N(n) denote the number of palindromes 
of n. Then N(2k + 1) = 2k and N(2k) = 2k. 

Definition 23. An odd summand composition (palindrome) of n is a com
position (palindrome) of n containing only odd summands. 

The composition (1, 3, 1, 5) is an odd summand composition of 10. 
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We now present some theorems on certain restricted compositions and 
palindromes of n. 

Theorem 2.16 (Grimaldi, [9]). Let Cn(O) denote the number of odd sum
mand compositions of n. Then we have the formula 

Cn(O) = Fn, 

where Fn is the nth Fibonacci number. 

Theorem 2.17 (Grimaldi, [9]). Let Pn(O) denote the number of odd sum
mand palindromes of n. Then we have the formula 

Pn(O) = { Fn/2 .if n even 
F(n+3)/2 if n odd, 

where Fn is the nth Fibonacci number. 

The restricted compositions presented in the remaining theorems are self
explanatory. 

Theorem 2.18 (Grimaldi, [10]). Let Cn(> 1) denote the number of compo
sitions of n without the summand 1. Then we have the formula 

Cn(> 1) = Fn-1, 

where Fn is the nth Fibonacci number. 

Theorem 2.19 (Grimaldi, [10]). Let Pn(> 1) denote the number of palin
dromes of n without the summand 1. Then we have the formula 

Pn(> 1) = { F(n+2)/2 .if n even 
F(n-1)/2 if n odd, 

where Fn is the nth Fibonacci number. 

Theorem 2.20 (Alladi and Hoggatt, [2]). Let Cn(1, 2) denote the composi
tions of n containing only 1 's and 2 's. Then we have the formula 

Cn(1, 2) = Fn+b 

where Fn is the nth Fibonacci number. 

Theorem 2.21 (Alladi and Hoggatt, [2]). Let Pn(1, 2) denote the palin
dromes of n containing only 1 's and 2 's. Then we have the formula 

Pn( 1, 2) = { F(n+4)/2 if n even 
F(n-1)/2 if n odd, 

where Fn is the nth Fibonacci number. 
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2.2 Notation 

We shall use the following notation throughout the remainder of the thesis: 

Sn Skolem sequence of order n 

Sn(t) t-extended Skolem sequence of order n 

hSn hooked Skolem sequence of order n 

hSn(t) hooked t-extended Skolem sequence of order n 

m - Sn m-near-Skolem sequence of order n 

m- Sn(t) t-extended m-near-Skolem sequence of order n 

h(m- Sn) hooked m-near-Skolem sequence of order n 

h(m- Sn(t)) hooked t-extended m-near-Skolem sequence of order n 

Rn(P, q) (p, q)-extended Rosa sequence of order n 

R~(p, q) (p, q)-extended >.-fold Rosa sequence of order n 

S~ >.-fold Skolem sequence of order n 

S~(t) t-extended >.-fold Skolem sequence of order n 

m- S~ m-near->.-fold Skolem sequence of order n 

m- S~(t) t-extended m-near->.-fold Skolem sequence of order n 

m- Sn(P, q) = (p, q)-extended m-near-Skolem sequence of order n 

L~ Langford sequence of order n and defect d 

L~(t) t-extended Langford sequence of order n and defect d 

hL~ hooked Langford sequence of order n and defect d 
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L~(p,q) 

(.C~, K~) 

Cn(O) 

Pn(O) 

Cn(1, 2) 

Pn(1, 2) 

Cn(> 1) 

Pn(> 1) 

Fn 

Np, 

= 

= 

= 

(p, q)-extended Langford sequence of order nand defect d 

looped Langford sequence of order n and defect d 

number of odd summand compositions of n 

number of odd summand palindromes of n 

number of compositions of n containing only 1 and 2. 

number of palindromes of n containing only 1 and 2. 

number of compositions of n without the summand 1 

number of palindromes of n without the summand 1 

the nth Fibonacci number 

the Beatty sequence with irrational base J.L 
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Chapter 3 

Near-A-fold and extended 
near-A-fold Skolem sequences 

In this chapter we show that the necessary conditions are also sufficient for the 
existence of m-near->.-fold Skolem sequences and t-extended 
m-near->.-fold Skolem sequences when >. ~ 2. (All results in this chapter 
can be found in [25].) 

3.1 Near-.A-fold Skolem sequences 

We first prove the necessary conditions for the sequence m - S~. 

Theorem 3.1. The sequence m- S~ exists only if one of the following con
ditions hold: 

1. n = 0,1 (mod 4) and m odd 

2. n = 2, 3 (mod 4) and m and>. are of opposite parity. 

Proof. We use a proof similar to the one used in [3]. Let m-S~ = (s1, s2, ... , s2.\n-2) 
be an m-near->.-fold Skolem sequence of order nand defect m. Let the >.n-1 
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disjoint pairs be denoted by {( iik• iik + k) 11 ::; j ::; A, 1 ::; k::; n }. Then 

n .X .X-1 

L L(ijk + k) + L(ijm + m) 
k=l j=l 
k#m 

j=l 

1 (2-Xn-2 ) 
2 ~ i+(An(n+1))/2-Am+(A-1)m 

= [(2An- 1)(2An- 2) + An(n + 1)- 2m] /4. 

This last expression must be an integer, and we see that this is only true 
when m, n, and A satisfy the necessary conditions. D 

In the proof of the following Theorem, we make use of a method incor
porated in [24], where the author notes that two hooked sequences can be 
hooked together to form a sequence with no hooks. This is done by "hook
ing" the first sequence together with the reverse of the second. The last 
entry in the first sequence replaces the hook in the reverse of the second, and 
the first entry in the reverse of the second sequence replaces the hook in the 
first. For example, (3, 1, 1, 3, 2, 0, 2) and (1, 1, 2, 0, 2) can be hooked together 
to give (3, 1, 1, 3, 2, 2, 2, 2, 1, 1). 

Theorem 3.2. The sequence m- S~ exists if and only if one of the following 
conditions hold: 

1. n = 0,1 (mod 4) and m odd 

2. n = 2, 3 (mod 4) and m and A are of opposite parity. 

Proof. Necessity was shown in Theorem 3.2. The sufficient conditions for 
A = 1 was done by Shalaby in [30]. For A > 1, we consider three separate 
cases: 
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Case 1: Now we first consider the case for n = 0, 1 (mod 4) and m odd. 
We note that Sn and m- Sn exist by Theorems 2.1 and 2.9, respectively. 
To construct m - S~, we simply concatenate A - 1 copies of Sn and attach 
m- sn to the end. 

Case 2: We now consider the case n = 2, 3 (mod 4), m odd and A even. We 
first note that hSn, h(m- Sn) and S~ exists by Theorems 2.3, 2.10 and 2.11, 
respectively. For A= 2, we can hook together hSn and h(m- Sn), giving us 
m- s~. For A> 2, we can concatenate A~2 copies of s; with m- s;. 

Case 3: We now consider the case n = 2, 3 (mod 4), m even and A odd. We 
note that m- Sn and s;_ exists by Theorems 2.9 and 2.11. We can string 
together A~l copies of s~ and attach m - sn to the end. D 

3.2 Extended near-.X-fold Skolem sequences 

We now present our results on extended near-A-fold Skolem sequences. 

Theorem 3.3. The sequence m- S~(t) exists for all admissible positions t 
of the hook only if one of the following conditions hold: 

1. n = 0,1 (mod 4) and m and t have the same parity 

2. n = 2, 3 (mod 4), >. even and m and t have the same parity 

3. n = 2, 3 (mod 4), A odd and m and t are of opposite parity. 

Proof. We use a proof similar to that of Theorem 3.2. Let 
m - S~(t) = (sll s2, ... , s2An-1) be a t-extended m-near->.-fold Skolem se
quence of order n and defect m. Let the An - 1 disjoint pairs be denoted by 
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n A A-1 

I: I:(ijk + k) + I::(ijm + m) 
k=l j=l 
kf'm 

j=l 

1 [2An-1 l = 2 ~i-t+ (An(n+1))/2-Am+(A-1)m 

= [2An(2An- 1)- 2t + An(n + 1)- 2m] /4. 

This last expression must be an integer, and we see that this is only true 
when m, n, and A satisfy the necessary conditions. 0 

Theorem 3.4. For A ~ 2, the sequence m- S~(t) exists for all admissible 
positions t of the hook if and only if one of the following conditions hold: 

1. n = 0, 1 (mod 4) and m and t have the same parity 

2. n = 2, 3 (mod 4), A even and m and t have the same parity 

3. n = 2, 3 (mod 4), A odd and m and t are of opposite parity. 

Proof. Necessity was done in Theorem 3.3. For sufficiency, we first note that 
the reverse of a t-extended m-near-A-fold Skolem sequence of order n is a 
(2An- t)-extended m-near-A-fold Skolem sequence of order n, so we only 
need to consider the cases when t ::=:; An. We shall also make use of the 
"hooking" method incorporated in the proof of Theorem ?? . We now con
sider six separate cases: 

Case 1: We first consider the case for n = 0,1 (mod 4), m odd, and t 
odd. We note that Sn, Sn(k) and m- Sn exists for all k odd, k :::; 2n + 1, 
by Theorems 2.1, 2.3 and 2.9, respectively. For A= 2, we concatenate Sn(t) 
with m- Sn to give us m- S~(t). For example, for n = 4, m = 3, and t = 5, 
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we have 54(5) = (2,4,2,3,0,4,3,1,1) and 3-54 = (2,4,2,1,1,4) which, 
when concatenated, gives 3- 5l(5) = (2,4,2,3,0,4,3,1,1;2,4,2,1,1,4) 1. 

For .A> 2, we construct .A- 2 copies of 5n and one copy each of m- 5n and 
5n(k) such that k = t- 2n L~J. We then concatenate l 2~j copies 

of 5n, followed by m- 5~(k) and .A- 2- l 2~J copies of 5n. For 

example, for .A = 4, n = 4, m = 3 and t = 13, we need k = 13 - 8 l1
8
3 j = 5. 

Hence we need 2 copies of 54 = (4, 2, 3, 2, 4, 3, 1, 1) and one copy each of 
54 (5) (2,4,2,3,0,4,3,1,1) and 3- 54 = (2,4,2,1,1,4), giving 
3-5t(13) = (4, 2, 3, 2, 4, 3, 1, 1; 2, 4, 2, 3, 0, 4, 3, 1, 1; 2, 4, 2, 1, 1, 4; 4, 2, 3, 2, 4, 3, 1, 1). 

Case 2: We have n = 0,1 (mod 4), m even, and t even. We note that 
5n, h(m- 5n) and Rn(k, 2n + 1) exist for all k even, k ~ 2n + 2, by Theo
rems 2.1, 2.10 and 2.4, respectively. For .A= 2, we hook Rn(t, 2n+1) together 
with h(m- 5n) to give m- 5~(t). For .A> 2, we construct h(m- 5n), .A- 2 

copies of 5n and one copy of Rn(k, 2n + 1) such that k = t- 2n l2tnJ. We 

then concatenate l 2~j copies of 5n with m- 5~(k), followed by .A- 2- l 2~j 
copies of 5n. 

Case 3: We haven= 2, 3 (mod 4), .A odd, m even, and todd. We note that 
m- 5n and 5~(k) exists fork odd, k ~ 4n + 1, by Theorems 2.9 and 2.12, 
respectively. For .A= 3, we concatenate 5;(t) with m- 5n to give m- 5~(t). 
For .A > 3, we construct m- 5n, .x~3 copies of 5~ and one copy of 5; ( k) such 

that k = t- 4n l 4~J. We then concatenate l 4~J copies of 5~ with m- 5;!(k), 

followed by .X~J - l4~J copies of 5~. 

Case 4: We haven= 2, 3 (mod 4), .A odd, m odd, and t even. We first note 
that h(m- 5n), 5~ and R~(k, 4n + 1) exists for all k even, k ~ 4n + 2, by 
Theorems 2.10, 2.11 and 2.13, respectively. For .A= 3, we hook R~(t, 4n + 1) 
together with h(m - 5n) to give m - 5~(t). For .A > 3, we construct 
h(m- 5n), .X~J 

copies of 5~ and one copy of R~(k, 4n + 1) such that k = t- 4n l 4~J. We 

then concatenate l 4~J copies of 5; with m- 5~(k), followed by .x~3 - l 4~J 
copies of 5~. 

1the semicolon (;) within the final sequence represents the dividing line between the 
sequences used 
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Case 5: We haven= 2,3 (mod 4), A even, m odd, and todd. We note that 
h(m-Sn), Rn(k,2n+1) and s;_ exist for all k odd, k:::::; 2n+1, by Theorems 
2.10, 2.4 and 2.11, respectively. For A = 2, we hook Rn(t, 2n + 1) together 
with h(m- Sn) to give m- s;_(t). For A> 2, we construct h(m- Sn), >.~2 

copies 

of s; and one copy of Rn(k, 2n + 1) such that k = t- 4n l 4~J. We then 

concatenate l4~J copies of s; with m- s;,(k), followed by >.~2 -l4~J copies 
of s;. 
Case 6: We haven= 2, 3 (mod 4), A even, m even, and t even. We note 
that Sn(k), m- Sn and s;_ exists for all k even, k:::::; 2n, by Theorems 2.3, 2.9 
and 2.11, respectively. For A= 2, we concatenate Sn(t) with m- Sn to give 
us m-s;,(t). For A> 2, we construct m-Sn, >.~2 copies of s; and one copy 

of Sn(k) such that k = t- 4n l 4~J. We then concatenate l 4~J copies of s; 

with m- s;_(k), followed by >.~2 - l 4~J copies of s;_. D 
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Chapter 4 

The existence of two new types 
of extended and hooked 
extended near-Skolem 
sequences 

In this chapter, we consider examples of the sequences m- S~(t) when A= 
1. In particular, we show that the necessary conditions are also sufficient 
for the existence of (2n- 3)-extended m-near Skolem sequences of order n, 
m- Sn(2n- 3), and hooked (2n- 2)-extended m-near-Skolem sequences of 
order n, h(m- Sn(2n- 2)). We then present some constructions of other 
near-Skolem-type sequences using the latter two sequences. But first we 
present some simple lemmas which we need to prove the main theorems 
presented in this chapter. (All results in this chapter can be found in [26].) 

Lemma 4.1. If n = 2, 7 (mod 8) and n > 2, then 4 - Sn(2n- 3) and 
h(4- Sn(2n- 2)) exist. 

Proof. Let n = 8s + 2. For s = 1 we have the sequences 

h(4- 8 10 (18)) = (8, 6, 2, 9, 2, 5, 7, 6, 8, 10, 5, 3, 9, 7, 3, 1, 1, 0, 0, 10), 
4- 810 (17) = (3, 10, 8, 3, 5, 1, 1, 7, 9, 5, 8, 10, 6, 2, 7, 2, 0, 9, 6). 

So assume s 2:: 2. By Theorem 2.6, we can construct hL~. We can then 
hook this sequence together with the sequences (2, 0, 2, 1, 1, 3, 0, 0, 3) and 
(3,0,2,3,2,0,1,1) to form h(4- Sn(2n-2)) and 4- Sn(2n-3), respec
tively. 

28 



Similarly, we can construct 4- 8n(2n- 3) and h(4- 8n(2n- 2)) for 
n = 8s + 7, s ~ 1. We simply construct hL~, which exists by Theorem 2.6, 
and hook this sequence together with the sequences (2, 0, 2, 1, 1, 3, 0, 0, 3) and 
(3, 0, 2, 3, 2, 0, 1, 1). For n = 7, we have the sequences 

4- 87(11) = (6, 7, 3, 1, 1, 3, 6, 5, 7, 2, 0, 2, 5), 
h( 4- 87(12)) = (2, 7, 2, 1, 1, 5, 3, 6, 7, 3, 5, 0, 0, 6). 

D 

Lemma 4.2. Ifn = 8s, then m- 8n(2n- 3) and h(m- 8n(2n- 2)) exist, 
where m = 2t - 1, for all 1 ~ t ~ s. 

Proof. Let n = 8s, where s ~ 1. For s = t = m = 1, we can construct a 
(£;, K~). So we can assumes~ t ~ 2. We distinguish between two separate 
cases: 

Case 1: We first consider the case t = 0 (mod 2). By Theorems 2.4 and 2.5, 
we can construct the sequences L~t+l and h82t_2(2t- 1). We then place the 
difference 2t in position s2t-l of h82t-2(2t-1) and also at the end. Appending 
this newly constructed sequence to the end of L~t+l gives m- 8n(2n- 3). 

Next, we construct 8 2t_2(2t), which exists by Theorem 2.3. We then re
place the hook in this sequence with the difference 2t and append 0, 0, 2t 
to the end. Appending this newly constructed sequence to the end of L~t+l 
gives h(m- 8n(2n- 2)). 

Case 2: We now consider the case t = 1 (mod 2). By Theorems 2.4 and 
2.5, we can construct the sequences L~t and h82t_2 (4t - 4). Appending 
h82t_2(4t- 4) to the end of L~t gives h(m- 8n(2n- 2)). 

Next, we construct 8 2t_3(4t-5), which exist by Theorem 2.3. Appending 
82t_3(4t- 5) to the end of L~t gives m- 8n(2n- 3). D 

Lemma 4.3. For all admissible n, the sequences m - 8n(2n- 3) and 
h(m- 8n(2n- 2)) exist, where m = 1 or m = n. 

Proof. We first note that the sequence m - 8n(2n- 3) does not exist for 
n = 1 and (n, m) = (3, 2), and the sequence h(m- 8n(2n- 2)) does not 
exist for n = 1 and n = 2. For n = 0,1 (mod 4), n ~ 4 and m = 1, we have 
(£~, K:~J For n = 1, 2 (mod 4), n ~ 5, and m = n, we have £~_1 with 1,1 
appended to the end. D 
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4.1 (2n - 3)-extended near-Skolem sequences 

We are now ready to present our results on (2n- 3)-extended near-Skolem 
sequences. 

Theorem 4.1. The sequence m- Sn(2n- 3) exists only if one of the fol
lowing is true: 

1. n = 0,1 (mod 4) and m is odd 

2. n = 2, 3 (mod 4) and m is even. 

Proof. Let m- Sn(2n- 3) = (si> s2 , ... s2n-I) be the sequence in question. 
For each k E { 1, 2, ... , m- 1, m + 1, ... , n} let the ordered pairs (ik,jk) be 
the subscripts of sik and sik when sik = sik = k. Then 

(a) 

(b) 

t(ik + jk) = (2n)(~n - 1
) - (2n- 3) = 2n2 - 3n + 3, and 

k=l, 
k#m 

tuk- ik) = (n)(~ + 1) - m. 
k=l, 
k#m 

Adding (a) and (b) together gives us 

~. _ 5n2 -5n-2m+6 
~)k- 4 . 
k=l, 
k#m 

Since the left hand side of the equation must be an integer, the number 
(5n2 - 5n- 2m+ 6) must be divisible by 4. When we solve for n and m, we 
obtain the necessary conditions. 0 

Theorem 4.2. The sequence m- Sn(2n- 3) exists if and only if one of the 
following is true: 

1. n = 0, 1(mod 4) and m is odd 

2. n = 2, 3(mod 4} and m is even. 

The cases n = 1 and (n, m) = (3, 2) are exceptions. 

30 



Proof. Necessity was shown in Theorem 4.1. For sufficiency, we first look at 
some cases with small m. For n = 0,1 (mod 4) and m = 1, see Lemma 4.3. 
For n = 1, 2 (mod 4) and m = n, see Lemma 4.3. For n = 2, 7 (mod 8) and 
m = 4, see Theorem 4.1. For n = 2, 3 (mod 4), n ~ 7 and m = 2, we have 
L~, which exists by Theorem 2.5, with 0, 1,1 appended to the end. For the 
remaining n and m, we distinguish eight cases. In each case, the solution 
is given in the form of a table, where the columns i,j denote the first and 
second appearance, respectively, of the difference k. 

Case 1: n = 0 (mod 8). 
Let n = 8s, m = 2t + 1. For m :::; 2s -1, see Theorem 4.2. For n > m > 2s -1 
and n > 8, the solution is given by the following table (ignore the lines * 
when s = 2). 

2 J k 
l+r 8s- r 8s- 2r -1 0:::; r:::; 4s- t- 2 
4s-t+r 4s + t- r -1 2t- 2r -1 o:::;r:::;t-s-1 
4s + t 4s+t+1 1 0. 0 0. 0 

3s +r lls-r 8s- 2r 0:::; r:::; 2s- 1 
8s + r + 1 12s- r + 1 4s- 2r o:::;r:::;s-1 
lls+1 13s 2s -1 0 ••• 0. 

14s -1 16s- 1 2s ••• 0 •• 

12s + r + 2 14s- r- 2 2s- 4- 2r o:::;r:::;s-4 
*13s- 1 15s- 3 2s- 2 ...... 
*13s + 1 15s- 2 2s- 3 0 0 0 0 •• 

14s +r 16s- r- 5 2s- 5- r o:::;r:::;s-4 
16s- 4 16s- 2 2 • 0 0 ••• 

To complete the proof, we list below the sequence m- S8(2n- 3) and all 
required defects: 
For n = 8 and m = 3, 5, 7: 

(7,5,6,1,1,8,5,7,6,2,4,2,0,8,4) 
(7,3,6,2,3,2,8,7,6,4,1,1,0,4,8) 
(5,3,8,6,3,5,2,4,2,6,8,4,0,1,1) 

Case 2: n = 1 (mod 8). 
Let n = 8s + 1, m = 2t + 1. For n > m > 1, the solution is given by the 
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following table (ignore the line * when 8 = 1). 

2 j k 
1+r 88- r + 2 88- 2r + 1 0 :S r :S 48 - t - 1 
48- t + r + 1 48 + t- r 2t- 2r -1 O:Sr:St-2 
48 + t + 1 48 + t + 2 1 ••• 0 •• 

48 +r 128- r 88- 2r O:Sr:S1 
88 + 2r + 4 168- 2r 88- 4r- 4 0:Sr:S8-2 
*88 + 2r + 3 168- 2r- 3 88- 4r- 6 0:Sr:S8-1 
108+r+2 148- r- 2 48- 2r- 4 0 :S r :S 28- 4 
128 + 1 168 + 1 48 •• 0 0. 0 

148 148 + 2 2 0 0 0 0 •• 

Case 3: n = 2 (mod 8). 
Let n = 88 + 2, m = 2t. For n ~ m > 4 and n > 10, the solution is given by 
the following table (ignore the line *when 8 = 2). 

i J k 
1+r 88- r + 3 88- 2r + 2 0 :S r :S 48- t 
48- t + r + 2 48+t-r 2t- 2r- 2 O:Sr:St-4 
48 + t + 1 48 + t + 2 1 0. 0 ••• 

48 + r -1 128- r 88- 2r + 1 O:Sr:S4 
88 + 2r + 5 168- 2r- 4 88- 4r- 9 O:Sr:S8-3 
*88 + 2r + 4 168- 2r -7 88- 4r -11 0:Sr:S8-2 
108+r+1 148- r- 2 48- 2r- 3 0 :S r :S 28- 5 
128 + 1 168 48-1 0 0 •••• 

168-3 168 + 2 5 0 0. 0. 0 

168- 1 168 + 3 4 • 0 ••• 0 

168-5 168-2 3 0 ••••• 

148-2 148 2 ...... 

To complete the proof, we list below the sequences m- S2(2n- 3) and 
m- S 10(2n- 3) and all remaining defects: 

For n = 2: (0, 1, 1) 

For n = 10 and m = 6, 8: 
(3,10,6,3,1,1,4, 7,6,9,4,10,5,2,7,2,0,5,9) 
(3,10,8,3,9,1,1,2, 7,2,8,10,5,9,4,7,0,5,4) 



Case 4:n = 3 (mod 8). 
Let n = 8s + 3, m = 2t. For n 2: m > 2 and n > 11, the solution is given by 
the following table. 

i j k 

I+r 8s- r + 3 8s- 2r + 2 0 :::::; r :::::; 4s - t 
4s- t + r + 2 4s + t- r 2t- 2r- 2 o:=;r:=;t-3 
4s + t + 1 4s + t + 2 1 ...... 
4s +r 12s- r + 3 8s- 2r + 3 o::;r::;2 
8s + 2r + 5 16s- 2r + 2 8s- 4r- 3 o:=;r:=;s-3 
8s + 2r + 4 16s- 2r -1 8s- 4r- 5 o:::::;r::::;s-2 
lOs+ r + 1 14s- r + 2 4s- 2r + 1 0 :::::; r :::::; 2s - 2 
12s 16s + 5 4s+5 0 •••• 0 

16s + 1 16s+4 3 • 0 •••• 

14s + 4 14s+6 2 ••• 0 •• 

To complete the proof, we list below the sequence m - 8 11 {2n - 3) and 
all required defects: 
For n = 11 and m = 4,6,8, 10 

{3, 7,10,3,1,1,8,6,7,11,9,5,10,6,8,2,5,2,0,9,11) 
{11,9,7,5,3,10,8,3,5,7,9,11,1,1,8,10,4,2,0,2,4) 
{11,9, 7,5,3,10,6,3,5, 7,9,11,6,1,1,10,4,2,0,2,4) 
(11,9,7,5,3,8,6,3,5, 7,9,11,6,8,1,1,4,2,0,2,4) 

Case 5: n = 4 (mod 8). 
Let n = 8s + 4, m = 2t + 1. For n 2: m > 1 and n > 4, the solution is given 
by the following table. 
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i J k 
1+r 8s- r + 4 8s- 2r + 3 0 ~ r ~ 4s- t 
4s- t + r + 2 4s+t-r+1 2t- 2r- 1 O~r~t-2 

4s + t + 2 4s + t + 3 1 • 0 0 0 •• 

4s + r + 1 12s- r + 5 8s- 2r + 4 O~r~1 

8s + 2r + 6 16s- 2r + 6 8s- 4r O~r~s-2 

8s + 2r + 5 16s- 2r + 3 8s- 4r- 2 O~r~s-1 

10s+r+4 14s- r + 4 4s- 2r 0 ~ r ~ 2s- 2 
12s +3 16s + 7 4s+4 • 0 •••• 

14s + 6 14s + 8 2 ••• 0. 0 

To complete the proof, we list below a sequence 3- S4(2n- 3): 

(1,1,4,2,0,2,4) 

Case 6: n = 5 (mod 8). 
Let n = 8s + 5, m = 2t + 1. For n ~ 13 and m = 3, we have L~, which exists 
by Theorem 2.5, with 1, 1, 4, 2, 0, 2, 4 appended to the end. For n ~ 16 and 
m = 5, we have L~ with 3, 1, 1, 3, 4, 2, 0, 2, 4 appended to the end. (Both L~ 
and L~ exist by Theorem 2.5.) For n ~ m > 5 and n > 13, the solution is 
given by the following table (ignore the line *when s = 2). 

2 J k 
1+r 8s- r + 6 8s- 2r + 5 0 ~ r ~ 4s- t + 1 
4s- t + r + 3 4s+t-r+2 2t- 2r- 1 O~r~t-4 

4s + t + 3 4s + t + 4 1 .••. 0. 

4s +r 12s- r + 4 8s- 2r + 4 O~r~5 

8s + 2r + 8 16s- 2r 8s- 4r- 8 O~r~s-3 

*8s + 2r + 7 16s- 2r- 3 8s- 4r -10 O~r~s-2 

10s+r+4 14s- r 4s- 2r- 4 0 ~ r ~ 2s- 6 
12s + 5 16s + 5 4s • 0 0 0 •• 

16s +3 16s + 9 6 0 0 0 ••• 

16s + 1 16s + 6 5 0 •••• 0 

16s + 4 16s + 8 4 ••• 0 •• 

16s- 1 16s + 2 3 • 0 0. 0. 

14s + 2 14s + 4 2 .... 0. 

To complete the proof, we list below the sequences m- S5(2n- 3) and 
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m- s13(2n- 3) and all remaining defects: 
For n = 5 and m = 3: (4, 1, 1,5,4,2,0,2,5) 

For n = 13 and m = 5, 7,9,11: 

(12,10,8,6,13,3,9,11,3,6,8,10,12,1,1,9,7,13,11,2,4,2,0, 7,4) 
(12,10,8,6,13,3,9,11,3,6,8,10,12,1,1,9,4,13,11,5,4,2,0,2,5) 
(12,10,8,6,13,3,7,11,3,6,8,10,12, 7,5,1,1,13,11,5,4,2,0,2,4) 
(12,10,8,6,13,3, 7,9,3,6,8,10,12, 7,4,5,9,13,4,2,5,2,0,1,1) 

Case 7: n = 6 (mod 8). 
Let n = 8s + 6, m = 2t. For n ~ m > 2 and n > 6, the solution is given by 
the following table. 

~ J k 
1+r 8s- r + 7 8s- 2r + 6 0 ::; r ::; 4s - t + 2 
4s- t + r + 4 4s+t-r+2 2t- 2r- 2 o:::::;r:::::;t-3 
4s + t + 3 4s + t + 4 1 0 0 ••• 0 

4s + r + 2 12s- r + 7 8s- 2r + 5 O:Sr:S2 
8s + 2r + 9 16s- 2r + 8 8s- 4r- 1 o::;r::;s-2 
8s + 2r + 8 16s- 2r + 5 8s- 4r- 3 O::Sr::Ss-1 
10s+r+7 14s- r + 6 4s- 2r -1 0 ::; r ::; 2s - 3 
12s + 8 16s + 11 4s+3 ...... 
16s + 7 16s + 10 3 ••• 0. 0 

14s + 8 14s + 10 2 •• 0 0. 0 

To complete the proof, we list below the sequence m- S6(2n- 3) and all 
required defects: 
For n = 6 and m = 2, 4: 

(6,4,1,1,5,4,6,3,0,5,3) 
(6,3,1,1,3,5,6,2,0,2,5) 

Case 8: n = 7 (mod 8). 
Let n = 8s + 7, m = 2t. For n ~ m > 4 and n > 7, the solution is given by 
the following table. 
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i j k 
l+r 8s- r + 7 8s- 2r + 6 0:::; r:::; 4s- t + 2 
4s- t + r + 4 4s+t-r+2 2t- 2r- 2 O::Sr::St-4 
4s + t + 3 4s+t+4 1 • 0 ••• 0 

4s + r + 1 12s- r + 8 8s- 2r + 7 O::Sr::S4 
8s + 2r + 9 16s- 2r + 6 8s- 4r- 3 O::Sr::Ss-3 
8s + 2r + 8 16s- 2r + 3 8s- 4r- 5 O::Sr::Ss-2 
lOs+ r + 5 14s- r + 6 4s- 2r + 1 0:::; r:::; 2s- 3 
12s + 3 16s + 8 4s+5 •• 0 ••• 

16s + 7 16s + 12 5 .... 0. 

16s + 5 16s + 9 4 ••• 0 •• 

16s + 10 16s + 13 3 0. 0 0 0 0 

14s + 8 14s + 10 2 • 0 •••• 

To complete the proof, we list below a sequence 6- S7 (2n- 3): 

(7,5,3,1,1,3,5,7,4,2,0,2,4) 

D 

4.2 Hooked (2n-2)-extended near-Skolem se
quences 

In this section we present our results on hooked (2n - 2)-extended near
Skolem sequences. 

Theorem 4.3. The sequence h(m- Sn(2n- 2)) exists only if one of the 
following conditions holds: 

1. n = 0,1 (mod 4) and m is odd 

2. n = 2, 3 (mod 4) and m is even. 

Proof. Let h(m- Sn(2n- 2)) = (s1 , s2 , ... s2n) be the sequence in question. 
For each k E { 1, 2, ... , m- 1, m + 1, ... , n }, let the ordered pairs (ik,jk) be 
the subscripts of sik and sik when sik = sik = k. Then 
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(a') 

~ . . (2n)(2n + 1) 
L.,., ( zk + Jk) = 

2 
- (2n- 1) - (2n - 2) = 2n2 

- 3n + 3, 
k=l, 
k#m 

(b') 

~(. . ) (n)(n + 1) 
L.,., Jk - Zk = 

2 
- m. 

k=l, 
k#m 

Adding (a') and (b') together gives us 

~ . _ 5n2 
- Sn - 2m + 6 

L.,., Jk- 4 . 
k=l, 
k#m 

and 

Since the left hand side of the equation must be an integer, the number 
(5n2 - Sn- 2m+ 6) must be divisible by 4. When we solve for nand m, we 
obtain the necessary conditions. D 

Theorem 4.4. The sequence h(m- Sn(2n- 2)) exists if and only if one of 
the following is true: 

1. n = 0, !{mod 4) and m is odd 

2. n = 2, 3{mod 4} and m is even. 

The cases n = 1 and 2 are exceptions. 

Proof. Necessity was shown in Theorem 4.3. For sufficiency, we first look at 
some cases with small m. For n = 0, 1 (mod 4) and m = 1, see Lemma 4.3. 
For n = 1, 2 (mod 4) and m = n, see Lemma 4.3. For n = 2, 7 (mod 8) and 
m = 4, see Theorem 4.1. For n = 2, 3 (mod 4), n 2: 10 and m = 2, we have 
L~, which exists by Theorem 2.5, with 1, 1, 3, 0, 0, 3 appended to the end. For 
the remaining n and m, we distinguish eight cases. In each case, the solution 
is given in the form of a table, where the columns i,j denote the first and 
second appearance, respectively, of the difference k. 

Case l:n = 0 (mod 8). 
Let n = 8s, m = 2t+ 1. Form ::; 2s -1, see Theorem 4.2. For n > m > 2s -1 
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and n > 8, the solution is given by the following table. 

i j k 
1+r 8s- r 8s- 2r -1 0:::; r:::; 4s- t- 2 
4s- t + r 4s + t- r -1 2t- 2r -1 o:::;r:::;t-s-1 
4s + t 4s + t + 1 1 ...... 
3s +r lls-r 8s- 2r 0:::; r:::; 2s- 1 
8s + r + 1 12s- r + 1 4s- 2r o:::;r:::;s-1 
lls+l 13s 2s -1 •• 0 •• 0 

12s + r + 2 14s- r -1 2s- 2r- 3 o:::;r:::;s-3 
13s + 1 15s -1 2s- 2 ...... 
14s 16s 2s ...... 
14s + r + 1 16s- r- 3 2s- 2r- 4 o:::;r:::;s-3 

To complete the proof, we list below the sequence h(m- S8(2n- 2)) and 
all required defects: 
For n = 8 and m = 3, 5, 7: 

(6,1,1,4,8,5,6,4,7,2,5,2,8,0,0, 7) 
(6,4,1,1,8,4,6,3,7,2,3,2,8,0,0,7) 
(6,1,1,4,8,3,6,4,3,2,5,2,8,0,0,5) 

Case 2: n = 1 (mod 8). 
Let n = 8s + 1, m = 2t + 1. For n > m > 1, the solution is given by the 
following table. 

i j k 
l+r 8s- r + 2 8s- 2r + 1 0:::; r:::; 4s- t- 1 
4s- t + r + 1 4s + t- r 2t- 2r- 1 o:::;r:::;t-2 
4s + t + 1 4s + t + 2 1 • 0 0 0. 0 

4s+r 12s- r 8s- 2r o:::;r:::;l 
8s + r + 3 16s- r- 1 8s- 2r- 4 0:::; r:::; 2s- 3 
12s + 2 16s + 2 4s • 0 0 ••• 

lOs+ 2r + 2 14s- 2r 4s- 2- 4r o:::;r:::;s-2 
lOs+ 2r + 1 14s- 2r- 3 4s- 4- 4r o:::;r:::;s-2 
14s -1 14s + 1 2 0 ••• 0. 
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Case 3: n = 2(mod 8). 
Let n = 8s + 2, m = 2t. For n > m > 4 and n > 10, the solution is given by 
the following table (ignore the line * when s = 2). 

i J k 
l+r 8s- r + 3 8s- 2r + 2 0 ~ r ~ 4s- t 
4s- t + r + 2 4s + t- r 2t- 2r- 2 O~r~t-4 
4s + t + 1 4s + t + 2 1 0 ••••• 

4s+r-1 12s- r 8s- 2r + 1 O~r~4 
8s + 2r + 5 16s- 2r- 4 8s- 4r- 9 O~r~s-3 

*8s + 2r + 4 16s- 2r -7 8s- 4r -11 O~r~s-2 
12s + 1 16s 4s -1 ...... 
lOs+ r + 1 14s- r- 4 4s- 2r- 5 0 ~ r ~ 2s- 6 
16s- 1 16s + 4 5 0. 0 ••• 

16s- 3 16s + 1 4 0 0. 0 •• 

16s- 5 16s- 2 3 ...... 
14s- 2 14s 2 • 0 0. 0. 

To complete the proof, we list below the sequence h( m- S 10 ( 2n - 2)) and 
all required defects: 
For n = 10 and m = 6, 8: 

(8,4,2,9,2,4,5,7,8,10,3,5,9,3,7,1,1,0,0,10) 
(6,4,2,9,2,4,6,3,7,10,3,5,9,1,1, 7,5,0,0,10) 

Case 4: n = 3 (mod 8). 
Let n = 8s + 3, m = 2t. For n ~ m > 2 and n > 3, the solution is given by 
the following table (ignore the line* when s = 1). 
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i j k 
1+r 8s- r + 3 8s- 2r + 2 0 ~ r ~ 4s- t 
4s- t + r + 2 4s + t- r 2t- 2r- 2 O~r~t-3 

4s + t + 1 4s + t + 2 1 .... 0. 

4s +r 12s- r + 3 8s- 2r + 3 O~r~2 
8s + 2r + 5 16s- 2r + 2 8s- 4r- 3 O~r~s-2 

*8s + 2r + 4 16s- 2r- 1 8s- 5- 4r O~r~s-1 

lOs+ r + 3 14s- r 4s- 3- 2r 0 ~ r ~ 2s- 4 
12s 16s + 1 4s+ 1 0. 0 ••• 

16s + 3 16s + 6 3 0. 0. 0. 

14s + 2 14s + 4 2 •• 0. 0. 

To complete the proof, we list a sequence for h(2-S3 (2n- 2)): (1, 1, 3, 0, 0, 3) 

Case 5: n = 4 (mod 8). 
Let n = 8s + 4, m = 2t + 1. For n ~ 11, m = 3 , we have L~, which exists 
by Theorem 2.5, with 1, 1, 2, 4, 2, 0, 0, 4 appended to the end. For n ~ m > 3 
and n > 4, the solution is given by the following table (ignore the lines * 
when s = 1). 

i j k 

1+r 8s- r + 4 8s- 2r + 3 0 ~ r ~ 4s- t 
4s- t + r + 2 4s + t- r + 1 2t- 2r -1 O~r~t-3 

4s + t + 2 4s+t+3 1 ...... 
4s +r 12s- r + 4 8s- 2r + 4 O~r~3 

*8s + 2r + 6 16s- 2r 8s- 4r- 6 O~r~s-1 

8s + 2r + 7 16s- 2r + 3 8s- 4r- 4 O~r~s-2 

10s+r+5 14s- r + 1 4s- 2r- 4 0 ~ r ~ 2s- 5 
*8S + 5 12s + 5 4s .... 0. 

16s + 4 16s + 8 4 • 0. 0. 0 

16s + 2 16s + 5 3 .••• 0. 

14s + 3 14s +5 2 0 0 0. 0 0 

To complete the proof, we list a sequence for h(3-S4(2n- 2)): (1, 1, 2, 4, 2, 0, 0, 4). 
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Case 6: n = 5 (mod 8). 
Let n = 8s + 5, m = 2t + 1. For n 2: m > 1 and n > 13, the solution is given 
by the following table. 

i J k 
l+r 8s- r + 4 8s- 2r + 3 0 ~ r ~ 4s- t 
4s- t + r + 2 4s + t- r + 1 2t- 2r- 1 O~r~t-2 

4s + t + 2 4s + t + 3 1 ...... 
4s + r + 1 12s- r + 5 8s- 2r + 4 O~r~1 

8s +6 12s + 6 4s ...... 
8s +5 16s + 10 8s+5 0. 0 •• 0 

10s+7 12s + 7 2s ••• 0. 0 

8s +r+ 7 16s- r + 7 8s- 2r 0 ~ r ~ 2s -1 
12s + 3 14s + 7 2s+4 • 0 •• 0 0 

lOs+ r + 8 14s- r + 6 4s- 2r- 2 O~r~s-4 

lls+5 13s + 7 2s+2 ...... 
lls+r+6 13s- r + 4 2s- 2- 2r O~r~s-4 

13s + 5 13s + 9 4 0 0 •••• 

13s + 6 13s + 8 2 0. 0 0. 0 

To complete the proof, we list below the sequences h(m- S5(2n- 2)) and 
h(m- s13(2n- 2)) for all remaining defects: 
For n = 5 and m = 3: 

(1,1,4,2,5,2,4,0,0,5) 

For n = 13 and m = 3, 5, 7, 9, 11: 

(11,9, 7,5,12,10,1,1,5,7,9,11,13,6,8,10,12,4,2,6,2,4,8,0,0,13) 
(11,9, 7,3,12,10,3,1,1,7,9,11,13,6,8,10,12,4,2,6,2,4,8,0,0,13) 
(11,9,5,3,12,10,3,5,1,1,9,11,13,6,8,10,12,4,2,6,2,4,8,0,0,13) 
(11, 7,5,3,12,10,3,5,7,1,1,11,13,6,8,10,12,4,2,6,2,4,8,0,0,13) 
(9, 7,5,3,12,10,3,5, 7,9,1,1,13,6,8,10,12,4,2,6,2,4,8,0,0,13) 

Case 7: n = 6 (mod 8). 
Let n = 8s + 6, m = 2t. For n 2: m > 2 and n > 14, the solution is given by 
the following table. 

41 



i j k 
1+r 8s- r + 7 8s- 2r + 6 O~r~4s-t+2 
4s- t + r + 4 4s+t-r+2 2t- 2r- 2 O~r~t-3 

4s + t + 3 4s + t + 4 1 ••••• 0 

4s + r + 2 12s- r + 7 8s- 2r + 5 O~r~2 
8s + 2r + 8 16s- 2r + 5 8s- 4r- 3 O~r~s 
8s + 2r + 9 16s- 2r + 8 8s- 4r- 1 O~r~s-1 

10s+r+9 14s- r + 4 4s- 2r- 5 0 ~ r ~ 2s- 5 
12s + 8 16s+7 4s -1 0 0 0 ••• 

16s + 9 16s + 12 3 ••• 0. 0 

14s + 6 14s + 8 2 0 0 0. 0 0 

To complete the proof, we list below the sequences h(m- S6(2n- 2)) and 
h(m- s14(2n- 2)) for all remaining defects: 
For n = 6 and m = 2, 4: 

(6,4,5,1,1,4,6,5,3,0,0,3) 
(6,2,5,2,1,1,6,5,3,0,0,3) 

For n = 14 and m = 4,6,8, 10,12: 

(14,12,10,8,6,1,1,13,11,9,6,8,10,12,14,2, 7,2,9,11,13,3,5, 7,3,0,0,5) 
(14,12,10,8,1,1,4,13,11,9,4,8,10,12,14,2, 7,2,9,11,13,3,5,7,3,0,0,5) 
(14,12,10,1,1,6,4,13,11,9,4,6,10,12,14,2, 7,2,9,11,13,3,5,7,3,0,0,5) 
(14,12,1,1,8,6,4,13,11,9,4,6,8,12,14,2,7,2,9,11,13,3,5, 7,3,0,0,5) 
(14,1,1,10,8,6,4,13,11,9,4,6,8,10,14,2, 7,2,9,11,13,3,5, 7,3,0,0,5) 

Case 8: n = 7 (mod 8). 
Let n = 8s + 7, m = 2t. For n > m > 4 and n > 7, the solution is given by 
the following table (ignore the line * when s = 1). 
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i j k 
1+r 8s- r + 7 8s- 2r + 6 0 ~ r ~ 4s- t + 2 
4s- t + r + 4 4s + t- r + 2 2t- 2r- 2 O~r~t-4 

4s + t + 3 4s + t + 4 1 .... 0. 

4s + r + 1 12s- r + 8 8s- 2r + 7 O~r~4 
8s + 2r + 10 16s- 2r + 7 8s- 4r- 3 O~r~s-2 

*8s + 2r + 9 16s- 2r + 4 8s- 4r- 5 O~r~s-1 

*8S + 8 12s + 9 4s + 1 •• 0 0. 0 

10s+r+8 14s- r + 5 4s- 2r- 3 0 ~ r ~ 2s- 5 
16s + 9 16s + 14 5 •• 0 ••• 

16s + 6 16s + 10 4 0. 0. 0. 

16s + 8 16s + 11 3 • 0 •••• 

14s + 7 14s + 9 2 • 0. 0 •• 

To complete the proof we, list below the h(m- S7(2n- 2)) and all re
maining defects: 
For n = 7 and m = 2, 6: 

(7,5,1,1,6,3,5,7,3,4,6,0,0,4) 
(7,5,3,1,1,3,5, 7,2,4,2,0,0,4) 

D 

We note that some computational results concerning h(m- Sn(2n- 2)) 
are contained in the appendix. 

The sequences presented in the following Corollaries are simple conse
quences of Theorems 4.2 and 4.4. We simply reverse the sequences presented 
in the theorems. 

Corollary 4.1. The sequence m - Sn(3) exists if and only if one of the 
following is true: 

1. n = 0, 1{mod 4) and m is odd 

2. n = 2, 3{mod 4) and m is even. 

The cases n = 1 and (n, m) = (3, 2) are exceptions. 

Corollary 4.2. The sequence m- Sn(2, 3)exists if and only if one of the 
following is true: 

1. n = 0, 1{mod 4} and m is odd 

2. n = 2, 3{mod 4) and m is even. 

The cases n = 1 or 2 are exceptions. 
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4.3 Constructions 

In this section, we show how the sequences m - Sn(2n- 3) and 
h(m- Sn(2n- 2)) can be used to construct other generalizations of Skolem 
sequences. 

Corollary 4.3. When n = 0,1 (mod 4), the existence of m- Sn(2n- 3) 
and/or h(m- Sn(2n- 2)) implies the existence ofm- s;. 

Proof. The sequence hSn(2n), which exists by Theorem 2.7, can be hooked 
together with m- Sn(2n- 3) to form m- s;, and the sequence hSn, which 
exists by Theorem 2.3, can be hooked together with h(m- Sn(2n- 2)) to 
~mm-~. D 

Corollary 4.4. For admissible n and k, the existence of m- Sn(2n- 3) 
implies the existence of 

1. m-s;(k,4n-2) 

2. m- S~(3,4n+ 1- k) 

3. m- S~(2n- 3, 2n- 1 + k) 

4. m- S~(2n + 2- k, 2n + 4) 

5. m-S~(4n-3) 

6. m- 8~(3) 

7. m- S~(2n- 3) 

8. m- S~(2n + 3). 

Proof. Given m- Sn(2n- 3), we can construct Sn(k), which exists by The
orem 2.3, and append this to the beginning [end], giving (1) [(3)]. We can 
then reverse the resulting sequence to give (2) [(4)]. Or we can construct 
Sn, which exists by Theorem 2.1, and append it to the beginning [end] of 
m- Sn(2n- 3) to get (5) [(7)]. Reversing the resulting sequence then gives 
(6) [(8)]. D 
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Corollary 4.5. For admissible n and k, the existence of h(m- Sn(2n- 2)) 
implies the existence of 

1. m- s;(k, 4n- 1, 4n) 

2. m- s;(2, 3, 4n + 2- k) 

3. m- s;(2n- 2, 2n- 1, 2n + k) 

4. m- s;(2n + 2- k, 2n + 3, 2n + 4) 

5. m-s;(4n-2,4n-1) 

6. m- s;(2, 3) 

7. m-S;(2n-2,2n-1) 

8. m-S;(2n+2,2n+3). 

Proof. Given h(m- Sn(2n- 2)), we can construct Sn(k), which exists by 
Theorem 2.3, and append this to the beginning [end], giving (1) [(3)]. We 
can then reverse the resulting sequence to give (2) [(4)]. Or we can construct 
Sn, which exists by Theorem 2.1, and append it to the beginning [end] of 
h(m- Sn(2n- 2)) to get (5) [(7)]. Reversing the resulting sequence then 
gives (6) [(8)]. D 
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Chapter 5 

Infinite Skolem sequences 

In this chapter, we investigate a relationship between infinite Skolem se
quences and Beatty sequences, as well as present a relationship between in
finite Skolem sequences, Fibonacci numbers and restricted compositions and 
palindromes of n {all results in this chapter can be found in [27]). 

5.1 Infinite Skolem sequences and Beatty se
quences 

When an infinite Skolem sequence is generated according to the method
presented in the introduction to this thesis, Skolem noticed that for each 
positive integer n, the pair (an, bn) is given by the formula ([an], [a2n]), 
where a = 1+2¥5 and [x] denotes the greatest integer :::; x. In fact, it is well 
known that, given irrational numbers p and v, such that 

1 1 - +- = 1, 
f.-l ll 

(5.1) 

the pair of sequences N~-' and Nv are mutually disjoint and partitions the set 
N. (See Theorem 2.14 as well as [40] exercise 9, p. 98, for more information 
on the relationship given by equation (5.1).) These sequences are examples 
of Beatty sequences. (For more examples of Beatty sequences, the reader is 
referred to [38].) 

Given a pair of Beatty sequences with p and v as the irrational base, we 
can generate another infinite Skolem-type sequence by setting 
S[J.n] = [vn] - [pn] = S[vn], where sk denotes the kth position of the sequence. 
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With this idea in mind, in this chapter we pose the question, "Do there exist 
irrational numbers J.l and v which generate infinite generalizations of Skolem 
sequences using the above method?" Thus, throughout the remainder of the 
thesis, when we refer to an infinite Skolem-type sequence, we are referring to 
one constructed using this method. 

Now we first notice that for J.l = J2 and v = 2 + J2 (note that these 
values are obtained from Theorem 2.15 by setting l = 2 and m = 2), we have 
the pairs 

(1,3)(2,6)(4,10)(5,13)(7,17) ... 

which gives us the sequence 

2,4,2,6,8,4,10,12,14,6,16,18,8,20,22,24,10 ... 

We call this an infinite even Skolem sequence. 
We make a here that, interestingly, any finite even Skolem sequence con

tains a hook, while the infinite version does not. For example, the sequence 
(8, 6, 4, 2, 0, 2, 4, 6, 8) contains a hook in the middle of the sequence. 

So we now ask: for what irrational numbers J.l and v, if any, do there exist 
sequences N,_. and N11 which generate an infinite odd Skolem sequence? 

Theorem 5.1. There are no irrational numbers J.l and v such that the se
quences N,_. and N 11 generates an infinite odd sequence. 

Proof. Assume that such a J.l and v exists. So we have the sequence 

1,1,3,5,7,3,9,11,5, ... 

Consider the Beatty sequence N 11 • Then we have [v] = 2 and [2v] = 6. 

Therefore, we need [2.:p] = 2, where 0 < x < 1. However, this is not 

possible since ~ = 3 =? [ 6~x] # 2. Contradiction. D 

However, it is possible to obtain expressions which generate disjoint pairs 
(f(n), g(n)) whose union is N and which generate an infinite odd Skolem 
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sequence by setting f(n) = g(n)- f(n) = g(n). We do this by using Theo
rem 2.15 and setting l = 1 and m = 2. These expressions are as follows: 

f(n) [V2(n-~)+1] 

g(n) = [(2+V2)(n-~)+1]. 
Now, we also notice that for J.L = J3, v = H3 + J3), we have the pairs 
(1,2)(3,4) (5, 7)(6,9) (8,11)(10,14) (12,16) (13,18)(15,21),whichgenerates 
the sequence 

1,1,1,1,2,3,2,3,3,4,3,4,5,4,6,4,6,5,7,8,6, ... 

This sequence is similar to an infinite 2-fold Skolem sequence, with the 
exception that some differences only appear once amongst the pairs (e.g. 2 
and 5). So we naturally ask ourselves: for what irrational numbers J.L and v, 
if any, do there exist sequences N~-' and Nv which generate an infinite 2-fold 
Skolem sequence? 

This is settled by the following theorem: 

Theorem 5.2. There are no irrational numbers J.L and v such that the se
quences N~-' and Nv generate an infinite 2-fold Skolem sequence. 

Proof. Assume that such a p and v exist. Then we have the sequence 

1,1,1,1,2,2,2,2,3,3,4,3,3, ... 

The first few terms of the Beatty sequence N~-' are 

[J.L] = 1' [2p] = 3, [3p] = 5, [4p] = 6, [5p] = 9 ... 

Since [5p] = 9 and [4p] = 6, we need [ 4<
9:x) J = 6, where 0 < x < 1. Thus 

we need [3
5
6 + ~] = 6, which is impossible. Contradiction. 0 
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In fact, we can prove that no such irrational numbers 1-L and v exist 
which give the sequences NJJ. and Nv which generate an infinite >.-fold Skolem 
sequence, for all >.. 

Theorem 5.3. There are no irrational numbers 1-L and v such that the se
quences NJJ. and Nv generate an infinite >.-fold Skolem sequence. 

Proof. We consider two cases,>. even and>. odd. 
For >. even: Assume that such 1-L and v exist. Then we have the sequence 

2>. 2-X 
~~ 
1, 1, ... '1, 1, 2, 2, ... '2, 2, 3, ... 

Consider the Beatty sequence NJJ.: 

[J.L] = 1, [2!-L] = 3, ... ' [2>.!-L] = 4>.- 2, [(2>. + 1)!-L] = 4>. + 1, ... 

So we need [2>. ( 4;tlix)] = 4>.- 2, where 0 < x < 1. However, 

2>.(4-X+l) - 4'- 1 - 1- 4'- 1 Th r [2' ( 4-X+l+x)] ...J. 4'- 2 
2>.+1 - A + 2>-+l > A . ere1ore A 2>-+l r A • 

Contradiction. 

For >. odd: Assume that such 1-L and v exist. Then we have the sequence 

2-X 
~ 
1, 1, ... '1, 1, 2, 2, 2, 2 ... 

This time we consider the Beatty sequence Nv: 

[v] = 2, [2v] = 4, ... , [(>. + 1)v] = 2>. + 3, [(>. + 2)v] = 2>. + 4, ... 

Then we have [(>. + 2)v] = 2>. + 4 and 

[(>. + 1)v] = 2>. + 3, which means we need (<2
>-Ht:J(>-+1)] = 2>. + 3, where 

0 <X< 1. However, [(2
A+

4
t:J(A+l)] = [2>. + 2 + x~~21)] = 2>. + 2. Contra

diction. 0 

Another generalization which we could investigate is Langford sequences. 
Does there exist irrational numbers 1-L and v which gives us the sequences NJJ. 
and Nv and generates an infinite Langford sequence? This is settled by the 
following theorem: 
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Theorem 5.4. There are no irrational numbers J.L and v such that the se
quences NJ.L and N 11 generate an infinite Langford sequence. 

Proof. Assume that such a J.L and v exists. Then we have the sequence 

d,d + 1,d + 2, ... 2d- 1,d,2d,d + 1, ... 

Let's consider the Beatty sequence N 11 • Then we have [v] = d + 1 and 

[2v] = d + 3. Thus we need [d+~+xj = d + 1, where 0 < x < 1. But 

[d+~+xj < [d~4 ] < d + 1. Contradiction. D 

The reader is referred to [27] for more information on infinite Langford 
sequences. 

5.2 Infinite Skolem sequences and restricted 
compositions of n 

We now present an interesting relationship between infinite Skolem sequences, 
Fibonacci numbers, and restricted compositions and palindromes of n. 

Theorem 5.5. Let (an, bn) denote the positions of the positive integer n in 
the infinite Skolem sequence, and let {3 = (1 - v's)/2. Then we have the 
following identities: 

1. an = [ (P + v'5Fn) ~ n J 

2. an= [(P + v'5Cn(O))~ n] 

{ 

[(P+v'5P2n(O))~n] 
3
. a,.~ [ (!3" + v'5P,._

3
(0)); n] 

4. an= [(P + v'SCn-1(1,2))~ n] 

[ (P + v'5P2n-4(1, 2)) ~ n] 

[(P + v'5P2n+l(1,2))~ n] 
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n is odd 

n is even 

n is odd 



6. an= [(,en+ J5Cn+l(> 1)) ~ n] 

7. an = { [ (/i" + v'5P,,_,( > 1)}: n] 
[ (,trt + J5P2n+l(> 1)) n n] 

n is even 

n is odd. 

1 + J5 1 - J5 O:n _ ,en 
Proof. Let o: = 

2 
and /3 = 

2 
, then we know that Fn = J5 , 

for all n E N. Solving this equation foro:, we have 

Now, using the fact that an= [o:n], for each n in the infinite Skolem sequence, 
and using the theorems on compositions and palindromes in chapter 2, our 
results follow. 0 

We also note that, for n sufficiently large, the ,en term in each of the 
formulas in Theorem 5.5 is negligible and wecan compute an without having 
to calculate ,en. 
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Chapter 6 

Conclusions and further 
research 

In this thesis, we first proved that the necessary conditions are also sufficient 
for the existence of m-near-.X-fold Skolem sequences and extended m-near
.X-fold sequences. We then showed that the necessary conditions are also 
sufficient for the existence of {2n - 3)-extended m-near-Skolem sequences 
and hooked {2n- 2)-extended m-near-Skolem sequences. It is hoped that 
these sequences may be used in the construction of group divisible designs, 
rotational triple systems, and graph factorizations, or any other designs, and 
we are now investigating to see whether or not this can, in fact, be done. 

However, we also note that the existence of t-extended m-near-Skolem 
sequences and (p, q)-extended m-near-Skolem sequences, for all admissible 
positions of the hooks, is still open. It is not hard to see that the necessary 
conditions for the existence of these sequences are: 

Corollary 6.1. At-extended m-near-Skolem sequence of order n exists only 
if one of the following is true: 

1. n = 0,1 (mod 4) m and t are of the same parity 

2. n = 2, 3 (mod 4) and m and t are of opposite parity. 

Proof. These conditions follow from Theorem 4.1 with A = 1. 0 

Theorem 6.1. A (p, q)-extended m-near-Skolem sequence of order n exists 
only if one of the following is true: 
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1. n = 0,1 (mod 4), m even, and p and q are of the same parity 

2. n = 0,1 (mod 4), m odd, and p and q are of opposite parity 

3. n = 2, 3 (mod 4), m odd, and p and q are of the same parity 

4. n = 2, 3 (mod 4), m even, and p and q are of opposite parity. 

Proof Let m-Sn(p, q) = (s1, s2, ... , s2n) be a (p, q)-extended m-near-Skolem 
sequence of order nand defect m. For each k E { 1, 2, ... , m-1, m+1, ... , n }, 
let the ordered pairs (ik,jk) denote the subscripts of sik and sik when 
sik = sik = k. Then 

(a) 

(b) 

~(· . ) (2n)(2n + 1) 2 L...J zk + ]k = 
2 

- p- q = 2n + n- p- q, 
k=l, 
kf.m 

~(jk- ik) = (n)(n + 1) - m 
L...J 2 . 
k=l, 
kf.m 

Adding (a) and (b) together gives us 

~. _ 5n2 +3n-2m-2p-2q 
L...J ]k- 4 . 
k=l, 
kf.m 

and 

Since the left hand side of the equation must be an integer, the number 
(5n2 + 3n- 2m- 2p- 2q) must be divisible by 4. When we solve for n, m, 
p, and q, we obtain the necessary conditions. 0 

Another Skolem generalization similar to the ones presented in this thesis 
is (m1 , m2 )-near-Skolem sequences, which contain two defects in the sequence 
as opposed to the one in the traditional m-near-Skolem sequences. For ex
ample, the sequence (5, 3, 1, 1, 3, 5) is an example of a (2, 4)-near-Skolem se
quence of order 5. Again, it is not hard to see that the necessary conditions 
for the existence of these sequences are : 
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Theorem 6.2. An (m17 m2)-near-Skolem sequence of order n exists only if 
one of the following is true: 

1. n = 0,1 (mod 4) and m1 and m2 are of the same parity 

2. n = 2, 3 (mod 4) and m1 and m2 are of opposite parity. 

Proof. Let (m1, m2) -Sn = (s1, s2, ... , s2n-2) be an (m1, m2)-near-Skolem se
quence of order nand defects m1 and m2. For each k E { 1, 2, ... , n }- { m 17 m2 }, 
let the ordered pairs (ik,jk) denote the subscripts of sik and sik when 
sik = sik = k. Then 

(a) 

n 

( . . ) (2n- 4)(2n- 3) 2 2 7 6 and 
tk + Jk = 

2 
= n - n + , 

(b) 
n 

I: . . (n)(n + 1) 
(Jk - tk) = 

2 
- m1 - m2. 

Adding (a) and (b) together gives us 

~ . _ 5n2 - 13n - 2m1 - 2m2 + 12 
6 )k- 4 . 
k=l, 

k#m1.m2 

Since the left hand side of the equation must be an integer, the number 
(5n2 - 13n - 2m1 - 2m2 + 12) must be divisible by 4. When we solve for n, 
m1, and m2 we obtain the necessary conditions. D 

The existence of all three of these sequences is still an open question and 
we reiterate some conjectures which have been mentioned through conversa
tion: 

1. The necessary conditions for the existence of a k-extended m-near
Skolem sequence of order n are also sufficient. 

2. The necessary conditions for the existence of a (p, q)-extended m-near
Skolem sequence of order n are also sufficient. 

54 



3. The necessary conditions for the existence of an (mi. m2)-near-Skolem 
sequence of order n are also sufficient. 

The construction of these sequences seem difficult at this point and require 
methods other than those presented in the thesis. We do note, however, that 
the necessary conditions have been shown to be sufficient for the existence 
oft-extended m-near-Skolem sequences when t = 2, 3, n, 2n- 3, 2n- 2 (see 
[34, 30, 26]). 

Finally, in this thesis we also discussed a relationship between infinite 
Skolem sequences and Beatty sequences and proved that a similar relation
ship could not be extended to infinite -\-fold Skolem sequences and infinite 
Langford sequences. We also showed that the relationship could not be ex
tended to infinite odd Skolem sequences despite the fact that it could be 
extended to infinite even Skolem sequences. We did, however, produce ex
pressions which could generate an infinite odd Skolem sequence using The
orem 2.15. (The reader is referred to [27] for similar expressions involving 
infinite Langford sequences.) 

A natural question to ask is whether there exists irrational numbers a1 , 

a2 , ... , an which generate n mutually disjoint sets whose union is N via the 
sequences N/1-P N/1-2 , ••• , NIJ.n· Skolem proves in [36] that this is impossible, 
but he showed that it is possible to get expressions which satisfy this property. 
For example, the three expressions 

[a[an]], [a[a2n]], [a2n] 

generate three mutually disjoint sequences which have N as their union. 
In this thesis, we also presented a relationship between infinite Skolem 

sequences, Fibonacci numbers and restricted compositions and palindromes 
of n. 
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and the columns represent the defects), as well as some values of an in the infinite Skolem sequence. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

an 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

an 25 27 29 30 32 33 35 37 38 40 42 43 45 46 48 

n 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

an 50 51 53 55 56 58 59 61 63 64 66 67 69 71 72 

n 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

an 74 76 77 80 82 84 85 87 88 90 92 93 95 97 98 

Table 1: Values of an in the infinite Skolem sequence 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
2 0 1 
3 0 1 0 
4 2 0 2 0 
5 2 0 4 0 6 
6 0 6 0 8 0 10 
7 22 0 24 0 38 0 
8 52 0 88 0 108 0 128 0 
9 300 0 340 0 416 0 480 0 504 
10 0 1444 1760 0 2004 0 2352 0 2656 
11 0 7052 0 8784 0 10,012 0 11,472 0 12,704 0 
12 35,288 0 43,296 0 50,936 0 59,384 0 66,720 0 72,976 0 
13 216,288 0 260,296 0 305,840 0 353,344 0 398,104 0 434,992 0 455,936 

Table 2: Computational results for m-near-Skolem sequences 



nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 1 0 1 
4 0 1 0 2 
5 0 2 0 4 0 
6 6 0 10 0 8 0 
7 18 0 24 0 28 0 38 
8 0 66 0 84 0 114 0 124 
9 0 304 0 368 0 392 0 504 0 
10 1,348 0 1,492 0 1,728 0 2;112 0 2,392 0 
11 6,824 0 7,456 0 8,944 0 10,488 0 11,624 0 12,808 
12 0 38,396 0 46,032 0 53,004 0 60,704 0 67,848 0 72,648 
13 0 233,216 0 276,152 0 319,912 0 364,960 0 405,016 0 439,048 0 

Table 3: Computational results for t-extended m-near-Skolem sequences for t = 2 and t = 2n - 2. 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 0 0 0 
4 1 0 1 0 
5 2 0 2 0 4 
6 0 6 0 10 0 8 
7 0 20 0 22 0 32 0 
8 62 0 76 0 80 0 98 0 
9 260 0 304 0 348 0 452 0 452 
10 0 1,396 0 1,504 0 1,724 0 2,112 0 102,316 
11 0 6,992 0 7,660 0 8,848 0 10,361 0 11,404 0 
12 35,880 0 39,400 0 46,560 0 53,152 0 60,376 0 66,352 0 
13 223,352 0 239,240 0 281,176 0 323,960 0 364,072 0 405,136 0 433,920 

Table 4: Computational results for t-extended m-near-Skolem sequences for t = 3 and t = 2n - 3. 



nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 2 
3 2 2 2 
4 6 2 6 6 
5 10 8 16 12 22 
6 22 32 36 48 34 48 
7 76 120 108 152 136 204 160 
8 354 368 540 484 624 612 736 636 
9 1,876 1,800 2,340 2,272 2,848 2,544 3,416 3,104 3,556 
10 8,316 10,816 10,196 13,144 12,256 15,136 14,408 17,792 16,348 19,488 
11 46,768 58,704 56,480 71,632 67,952 82,448 79,664 96,072 88,336 105,136 95,872 
12 320,208 312,776 385,104 375,816 457,296 436,936 529,312 504,328 597,696 560,480 651,216 594,320 
13 2,127,544 2,071,232 2,517,040 2,460,624 2,960,120 2,848,336 3,413,576 3,264,672 3,857,808 3,649,232 4,233,968 3,923,744 4,459,88i 

Table 5: Computational results for extended m-near-Skolem sequences 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 0 1 0 
4 1 0 1 0 
5 2 0 2 0 4 
6 0 6 0 6 0 12 
7 0 24 0 18 0 24 0 
8 74 0 68 0 88 0 110 0 
9 288 0 308 0 372 0 428 0 492 
10 0 1,416 0 1,528 0 1,788 0 2,056 0 2,412 
11 0 7,404 0 7,772 0 9,128 0 10,272 0 11,916 0 
12 37,224 0 40,552 0 47,520 0 54,944 0 61,312 0 69,352 0 
13 227,896 0 248,096 0 287,688 0 331,272 0 369,880 0 409,320 0 445,952 

Table 6: Computational results for (p, q)-extended m-near-Skolem sequences for (p, q) = (2, 3) and (p, q) = (2n- 2, 2n- 1). 
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and the columns represent the defects), as well as some values of an in the infinite Skolem sequence. 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

an 1 3 4 6 8 9 11 12 14 16 17 19 21 22 24 

n 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

an 25 27 29 30 32 33 35 37 38 40 42 43 45 46 48 

n 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

an 50 51 53 55 56 58 59 61 63 64 66 67 69 71 72 

n 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 

an 74 76 77 80 82 84 85 87 88 90 92 93 95 97 98 

Table 1: Values of an in the infinite Skolem sequence 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
2 0 1 
3 0 1 0 
4 2 0 2 0 
5 2 0 4 0 6 
6 0 6 0 8 0 10 
7 22 0 24 0 38 0 
8 52 0 88 0 108 0 128 0 
9 300 0 340 0 416 0 480 0 504 
10 0 1444 1760 0 2004 0 2352 0 2656 
11 0 7052 0 8784 0 10,012 0 11,472 0 12,704 0 
12 35,288 0 43,296 0 50,936 0 59,384 0 66,720 0 72,976 0 
13 216,288 0 260,296 0 305,840 0 353,344 0 398,104 0 434,992 0 455,936 

Table 2: Computational results for m-near-Skolem sequences 



nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 1 0 1 
4 0 1 0 2 
5 0 2 0 4 0 
6 6 0 10 0 8 0 
7 18 0 24 0 28 0 38 
8 0 66 0 84 0 114 0 124 
9 0 304 0 368 0 392 0 504 0 
10 1,348 0 1,492 0 1,728 0 2,112 0 2,392 0 
11 6,824 0 7,456 0 8,944 0 10,488 0 11,624 0 12,808 
12 0 38,396 0 46,032 0 53,004 0 60,704 0 67,848 0 72,648 
13 0 233,216 0 276,152 0 319,912 0 364,960 0 405,016 0 439,048 0 

Table 3: Computational results for t-extended m-near-Skolem sequences fort= 2 and t = 2n- 2. 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 0 0 0 
4 1 0 1 0 
5 2 0 2 0 4 
6 0 6 0 10 0 8 
7 0 20 0 22 0 32 0 
8 62 0 76 0 80 0 98 0 
9 260 0 304 0 348 0 452 0 452 
10 0 1,396 0 1,504 0 1,724 0 2,112 0 102,316 
11 0 6,992 0 7,660 0 8,848 0 10,361 0 11,404 0 
12 35,880 0 39,400 0 46,560 0 53,152 0 60,376 0 66,352 0 
13 223,352 0 239,240 0 281,176 0 323,960 0 364,072 0 405,136 0 433,920 

Table 4: Computational results for t-extended m-near-Skolem sequences for t = 3 and t = 2n - 3. 



nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 2 
3 2 2 2 
4 6 2 6 6 
5 10 8 16 12 22 
6 22 32 36 48 34 48 
7 76 120 108 152 136 204 160 
8 354 368 540 484 624 612 736 636 
9 1,876 1,800 2,340 2,272 2,848 2,544 3,416 3,104 3,556 
10 8,316 10,816 10,196 13,144 12,256 15,136 14,408 17,792 16,348 19,488 
11 46,768 58,704 56,480 71,632 67,952 82,448 79,664 96,072 88,336 105,136 95,872 
12 320,208 312,776 385,104 375,816 457,296 436,936 529,312 504,328 597,696 560,480 651,216 594,320 
13 2,127,544 2,071,232 2,517,040 2,460,624 2,960,120 2,848,336 3,413,576 3,264,672 3,857,808 3,649,232 4,233,968 3,923,744 4,459,88 

Table 5: Computational results for extended m-near-Skolem sequences 

nlm 1 2 3 4 5 6 7 8 9 10 11 12 13 
1 0 
2 1 0 
3 0 1 0 
4 1 0 1 0 
5 2 0 2 0 4 
6 0 6 0 6 0 12 
7 0 24 0 18 0 24 0 
8 74 0 68 0 88 0 110 0 
9 288 0 308 0 372 0 428 0 492 
10 0 1,416 0 1,528 0 1,788 0 2,056 0 2,412 
11 0 7,404 0 7,772 0 9,128 0 10,272 0 11,916 0 
12 37,224 0 40,552 0 47,520 0 54,944 0 61,312 0 69,352 0 
13 227,896 0 248,096 0 287,688 0 331,272 0 369,880 0 409,320 0 445,952 

Table 6: Computational results for (p, g)-extended m-near-Skolem sequences for (p, qr= (2, 3) and (p, q) = (2n- 2, 2n- 1). 
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