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ABSTRACT

A process accident occurs as a result of a sequence of events initiated by deviation in the

process parameters and/or failure or malfunctioning of one or more components. Many

process accidents are controlled and mitigated before they escalate to major events.

Unfortunately some do go on to produce catastrophic consequence s. As the size and

complexity of processing facilities increase, the potent ial risk posed by accidents is

increasing . Operational safety could be improved by giving emphasis to the prevention of

incidents, rather than relying on control and mitigative measures. This method is referred

to as an "inherently safer approach ". To prevent major, though infrequent, event

occurrence, it is important to consider accident precursors (symptoms of hazards) such as

operational deviations, mishaps, and near misses, in order to prevent abnormal events at

source rather than controllin g or mitigating them.

The objective of this research is to present a novel methodolo gy known as System

Hazards Identification , Predict ion and Prevention (SHIPP) for process accident modeling

and prevention . In this methodolo gy, a new process accident model with predictive

capabilities is developed. The SHIPP is a systematic methodo logy to identify , evaluate,

and model the accident process, thereby predicting and preventing future accidents in a

process facility. In this methodolo gy, process hazard accidents are modeled using safety

barriers . The model relies on process history, accident precursor information , and

accident causat ion modeling. The fault tree and event tree analysis techniques are used to

enhance the accident model and to represent a holistic picture of the cause-consequenc e

mechani sm of the accident process. Quantitati ve analysis has two aspects: updating and



predic tion. The model is able to capture the proces s operational behaviour, and update the

accident likel ihood using the Bayesian updating mechani sm. The predictive mode l

foreca sts the probability of a number of abnormal event s occurring in the next time

interval. Application of this methodology is demon strated by a case study. The

quan titative results demonstrate that the probabi lities of abnormal events dramatically

change over time as new informa tion is observed, and the adequacy and accuracy of

model predictio n is bette r in short term predic tion rather than long term prediction .

Throug h the SHIPP methodology, qualitative and quanti tative analyses provide insight to

ident ify critical safe ty barriers and functions, and determine the likel ihood of failure of

these measures. Com bining management oversig ht, human factor and eng ineering

ana lyses, the SHIPP methodo logy provides a comp rehensive, systema tic approac h to

manage a proces s system risk .
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Chapter 1

INTRODUCTION

1.1 Accident Modeling in Process Indu str y

The process industry is a highly complex technologica l system containing large quantities

of hazardous chemicals . The increasing complexity of system elements such as people,

equipment, the operating environment , procedures , software and hardware systems and

their interactions are leading to potentially disastrous failure modes. Over the years,

notab le accidents such as the Bhopal toxic gas release disaster (Eckerman, 2005), the

Piper Alpha tragedy (Petrie, 1989), the Nypro factory explosion at Flixboroug h (Kletz ,

2001), BP' s Texas city refinery explosion (CSB, 2007), the Imperial sugar refinery dust

. explosion (CSB, 2009) and most recent BP's Deepwater Horizon offshore drilling rig

explosion and oil spill (BP. 20 10) are examples of complex process systems failures that

led to serious loss of human lives and materia ls. Not only catastrophic or critica l

accidents but also events such as incidents and mishaps are financially costly, interrupt

the production flow and cause human injuries . Therefore , preven tion of these events is of

paramount important.

To achieve this goal the engineers must incorporate system safety into the system life

cycle . The different hazard and risk management methodologies have been used to

establ ish system safety for the particular processi ng facility. The overall purpose is to

identify the hazards, evaluate them, eliminate or control them and mitigate the residual

risk during the phases such as details design and operationa l stage.



A succinct definition for hazard is that any source of potential damage, harm or adverse

health effects on something or someone under certain condition s at work place. Hazards

in process industry can be categorized into three types: ( I) occupational hazard, (2)

process hazard and (3) external hazard. It is observed that the majority of critical

accidents, such as fire, explosion and toxic release, are initiated by flammable and toxic

release and process upsets, which are known as process hazards. Therefore , the current

work focuses on the process hazard accidents. Process accident s are not usually caused by

a single failure or error. They are a result of sequence of events initiated by the deviation

of process parameters and/or failures or malfunctioning of one or more components . The

accident proces s usually follows three steps: (1) Initiation (the event where an accident

begins), (2) Propagation (the events or events that maintain or expand the accident) and

(3) Termination (the events or events where the accidents are stopped or dimini shed in

size) (Crowl and Louvar, 2002). It is important to view an accident as a sequence of event

because, in theor y, each individual propagating event represents an opportunit y to

terminate the accident sequence or to lessen the severity of its ultimate outcome. Accident

models can help to understand the significance of potential accident sequences associated

with a process hazards. This understanding and knowledge lead to identification of ways

to prevent or reduce the frequency and severity of consequence s of potential process

accident s, thus improving the safety of a process facility.

1.1.1 Accident Models

The accident model is a theoretical framework which characterizes how and why an

accident occur s and illustrate s the relation between causes and consequence s. Further,



such models define, structure and summarize all relevant data in a meaningful way.

Accident models are important to collect relevant information to study and prevent

accident risk and it also helps in safety-critical decision making. The effective use of

accident models together with accident investigation methods is capable of analyzing

accidents and providing numerical estimation of risk. It also helps to predict and prevent

such occurrences in the future.

Traditional accident models use the linear notion of causality to analyze the accident

process. A number of accident models and various approache s for accident modeling and

analysis have been developed and described in the literature (Heinrich, 1941; Reason,

1990; Rasmussen , 1997; Attwood et al., 2006; Ren et al., 2008; Kujath et al., 2010).

The sequential nature of causality was first adopted for accident modeling by Heinrich

(1941) who introduced the "Domino Theory", in which an accident is described as a

chain of independent conditions or events that occurs in a particular order terminating at

an injury. This model indicated that an accident can be prevented by removing any single

factor from the accident sequence or through the reduction of these factors. The

International Loss Control Institute has modified the "Domino Theory ", developing a loss

causation model (ILCI model) to evaluate how unsafe acts and conditions are initiated

(Bird and Germain, 1996). The analysis begins with loss to people, property, and the

environment and steps back through the sequential events that contribute to loss

independently . Further, in the ILCI model, the immediate and root causes that lead to an

accident are described as management deficiencies , personal and job factors and

substandard acts and conditions. Further, these models explain the accident causation as a

one-dimensional sequence of events and do not take into account multiple causality of the



accident process (Kjellen, 2000) . Reason (1990) proposed the "Swiss cheese" model to

demonstrate how human and organizational failures influence the accident process

independently, taking multi-causality of the accident into consideration . Svenson's (1991)

"Accident Evolution and Barrier function (AEB)" model represents the development of

accidents as a sequence of events belonging either to a human/organizational system or a

technical system. This type of model is commonly known as an epidemiological accident

model. The main feature of this type of model is the barrier that could prevent the

unexpected consequences from occurring; whereby the development of an accident

process could be prevented . Attwood et al. (2006) developed a holistic, quantitative

model to predict occupational accident frequency in the offshore oil and gas industry.

This model has both qualitative and quantitative capabilities. Three layers; the direct

layer, the corporate support layer and the external layer were introduced considering

factors that lead to occupational accidents in the offshore environment. In this model, the

reliability concept was used to evaluate the probability of an occupational accident under

various scenarios in an asset's development cycle. The prediction capability of this model

offers insight into safety improvement efforts in the offshore oil and gas industry. Ren et

al. (2008) developed a methodology to model the causal relationships of offshore safety

assessment focusing on human and organizational factors (HOF). The model addresses

latent failures within the causal sequence of events . Similar to Swiss cheese modeling

approach, five levels; root causes level, trigger event level, incidents level, accident level

and consequences level were placed in sequential order to depict accident due to HOF.

The model adopts the Bayesian network that is able to provide graphical representation of

cause-consequence relationship and to calculate numerical values of occurrence



likelihood for each failure event. Kujath et al. (2010) has proposed a conceptual process

accident model prioritizing the prevention of process accident s in an offshore

environment. This model is developed using features of both sequential and

epidemiological models . In this model, hydrocarbon release accidents were modeled

using the safety barrier concept.

Existing accident models have their own capabilities and limitations . They vary in the

areas of their application , purpose, and focus. The distinctions between the existing

accident models do not imply that one is unequi vocally better than others.

1.1.2 Accident Precursors Information ill Process Industry

Most accident s are preceded by deviation s in the normal operational process.

Furthermore, many deviations are present that are not covered by current pro-active

safety indicators. These deviations are characterized by a high likelihood and low

perceived safety related consequence s (defined as precursors) and re-occur in the

operational process of the organization prior to an accident. However, these events are

sometimes omitted or unnoticed by operators due to the under estimation of their adver se

effects. In this work, the accident precursors (abnormal events) are classified as: (1) safe,

(2) near miss, (3) mishap, (4) incident and (5) accident, considering the probabilities and

degree of severitie s. In order to find these deviations in a real life operation and to find

their underlying causes , the concepts of re-occurring deviation and operational process

have to be explained in more detail.



1.2 Motivation of Research

The comprehensive study of how accident s evolve from the initiating events to their

propagating effects and final consequences is vital for integrating safety into systems for

accident prevention . In this aspect, accident models play an important role in accident

analysis and risk management. However, the literature indicates that existing accident

modeling approaches have certain limitations when modeling the accident process in

order to prevent the accident s. Each accident model has its own characteri stics as to the

types of "causal factors" that it highlights .

In the process industry, major accidents are often initiated through errors induced by

process, mechani cal and operational hazards. Many traditional accident models were

developed mainly focusing on human, organizational and management factors. Thus, the

models focusing on process hazards are scarce . Other models have adopted a descriptive

approach to analyze an accident , but they are not able to offer a predictive model which

helps to guide safety related decisions . Also, available models are not able to

accommodate modeling of multiple risk factors considered in process systems where

interaction and inter-relation ship of system element s are complex and non-linear. The

literature also describe s that some models have adopted a quantitative approach using

historical statistics to study the existing relationship between causal factors . However ,

these models are unable to update the risk during the life of the process. Further limitation

of quantification of existing method, models such as Management and Oversight Risk

Tree (MORT), is highly complex and it is difficult to provide quantified results.

Information on accident precursors such as near miss, mishaps, incidents and accident s

often termed as accident precursors are ignored, leaving worth of information behind. The



available accident model s were not able to make use of this information. This informati on

can be used in systematic manner to better learn the health of the process industry. It

helps to assess the accident likelihood in the given facility , and thus, suitable preventi ve

measurement s could be taken aga inst such occurrence.

1.3 Object ives of Research

The main objective of this research is to develop methodology that can be used to define,

illustrate, analyze and impro ve system safety in the operati onal phase of process faci lity

throu gh accident modeling and predicti on.

Based on this main objective, the following sub-objectives are developed for this work :

• To fill the knowledge gap of accident proce ss models that have been developed

focusing on proce ss hazard accident s.

• To develop the accid ent process model in terms of safety barriers rather than

causal factors that is capabl e of captur ing multi -causality of accident and

providing holistic view of cause-consequence mechani sm.

• To develop the update mechani sm to reduce the uncerta inty of the probab ilistic

quanti fication by using real plant abnorm al event data (accident precursor data).

• To develop predictive model by using probabili stic approach which can predict

the future likelihood of the accident (number of even t occurring in the next time

interval). And , further, results are able to update and learn the system behavior

dynamically whenever new information is obser ved in the system.

• To carry out a case study to test and verify the method .



Towards these objective s, the System Hazard Identification, Prediction and Prevention

(SHIPP) methodology is proposed to identify process hazards, evaluate them, and model

the accident sequences by means of predicting and preventing their occurrences.

1.4 Thesis Structure

The thesis compri ses of six chapte rs. The first chapter is a brief introduction on the

concept of accident modeling and prevention in process industries followed by the

motivations and objectives of this research. Chapter 2 gives a broad overv iew on the

development of accident models over the years and their significance, capabilities and

limitat ions in the process industry safety assessment. Further , this chapter evaluates

selected accident models using the several important characteristics as the literatu re

review of this thesis. Chapter 3 gives a detailed description of the development of

predictive accident modeling approach so called SHIPP methodology (System Hazard

Identification, Prediction and Prevention) . This includes description of methodolo gy and

steps of development of: ( I) accident model, (2) generic event tree and fault tree, (3)

updating mechanism and (4) predict ive model. Chapter 4 presents the results of a case

study conducted on a gas processing facility to validate the SHIPP methodolo gy. This

chapter illustrates accident model development and cause-consequence analysis. The

updated results demon strate that the probabilitie s of abnormal events dramat ically change

over time as new information is observed. Further this chapter discussed two different

predictive models to estimate the number of abnormal event and expected time to the next

abnormal event occurrence, The quantifi cation is performed in two ways:

determini stically and probabilistically. Chapter 5 demon strates application of the SHIPP



methodology to an LNG processing facility . External validation method was used to

assess the predictive model results through regression of real data gathered from the LNG

facility examined . Chapter 6 conclude s the study by a brief summary, conclu sion and

future scope of research in this area.
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Chapter 2

LITERATUREREVIEW

System safety assessment is an integral part the life cycle of a project, engineering design,

program , or activity either required by local or international regulation or carried out by

individual(s) within particular industry. The overall purpose is to identify hazards,

prevent or control them , and mitigate the residual risk . It is necessary to combine

management oversight and engineering analyses to develop a systematic and

comprehensive process to adequately manage the system risk (Bahr, 1997). The system

safety process should be able to apply to the entire system and the primary objective is

accident prevention. It could be achieved by identifying, assessing, and eliminating or

controlling safety -related hazards, to acceptable levels . It is important that realistic

prediction is essential of accident prevention. However, lack of concentration of accident

prediction has been devoted of existing safety processes. A hazard is a condition, event,

or circumstance that could lead to or contribute to an unplanned or undesired event. Risk

is an expression of the impact of an undesired event in terms of event severity and event

likelihood . Therefore , throughout this process , hazards are identified , risks analyzed,

assessed, prioritized, and results documented for decision -making. The continuous loop

process provides for validation of decisions and evaluation for desired results and/or the

need for further action. Several textbook and researchers have described the safety and

risk assessment process (Tumey and Pitblado, 1996; CCPS, 2008; Mannan, 2005) .

Typically, the system safety process comprised set of steps that provides guidelines to

obtain system safety.



II

However , none of system safety process has been adopted accident models to identify and

analysis the hazards. Accident models playa vital role in safety assessment. The accident

model is a theoretical framework which characterizes what, how and why an accident

occurs and illustrates the relation between causes and consequences . Further , such models

define. structure, and summarize all relevant data in a meaningful way. The effective use

of accident models together with accident investigation methods is capable of analyzing

accidents and providing numerical estimation of causes and consequence s. It also helps to

predict and prevent such occurrences in the future.

Since the early 1930s, a number of accident models and various approaches for accident

modeling and analysis have been developed and described in literature (Heinrich, 1941;

Reason, 1990; Bird and Germain, 1996; Rasmussen, 1997; Attwood et. al., 2006; Ren, et

al., 2008; Kujath et al., 2010). Accident models have its own characteristics according to

their focus (causal factors), area of application and purpose. General classification and

evaluation of the accident models can also be found in literature, and related works have

been done by Benner (1978), Hollanagel (2004), Lehto and Salvendy (1991), Skelt

(2004), and Katsakiori et al., (2009).

Process accidents result from a sequence of events initiated by deviation of process

parameters, failures or malfunctioning of one or more components . Lehto and Salvendy

(1991) systematically evaluated accident causation models and categorized accident

model in four types: general models of the accident process, models of human error and

unsafe behaviour, models of mechanic of human injury and application techniques.

Linearity among the causal factors for the accident is the main aspect of general process

accident models . This group is further categorized into four sub groups; sequential,
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epidemiological , energy transfer and system model. These models describe the accident

proce ss dynamic focusing on causal factors such as human , product, task or environment.

Hollnagel (2004) presented and discussed the need of accident models including accident

barriers and a theoretical framework for characterizing how and why accidents occur.

Based on search princip le and analy sis goal, Hollnagel (2004) distinguished accident

models into three differe nt types: sequentia l, epidemio logica l and systematic. Kjellen

(2000) discussed five accident model types considering the design of modern Safety,

Health and the Environment (SHE) information system. Kjelleri' s model s are logical tree

and casual seq uence model (classifie d as genera l model by Lehto and Hollnagel). The

other three model s are proce ss, energy and human processing informat ion (similar term

used by Lehto to describe the model s focusing on the flow of information through a

person while performi ng the task). Kjellen did not use the term "epidemiological model"

directly , but the energy model has been identified as a kind of epidem iological model.

Most recently, Katsakiori et al. (2009) divided acciden t mode ls into three categories:

sequent ial, human informa tion proce ssing and systematic (simi lar to terms used by

Hollnagel and Lehto) . Attwood et al (2006) compiled the accident model s that focus on

occupa tional accident in the offshore oil and gas sector.

The key accident causatio n models were selected to conduct this study and are discu ssed

in the subsequent sections .

Heinrich 's Domino Model

The sequential aspect of acciden t occurring was first used by Heinrich ( 1941) and thus

"Domino Theory" was introduced . This theory descri bes an accident as a natural

culmination of a serious of eve nts or circumstances, which invariably occur in spec ific
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logical order. Ancestry and social environment, fault of person , unsafe act and/or

mechanical or physical hazard that leads to an accident were identified and placed in

sequential order. The last block of the Domino model is injury, which is caused by the

action of a preceding factor. The unsafe act and condition is the central factor or main

link in the accident sequence and the removal of this factor makes propagation of

hazardous events ineffective. The main contribution of Domino theory is that the

accident can be prevented if this series is interpreted by elimination of one or more

domino blocks. However, this model implies that the accident is the result of a single

cause. But in reality, the accident is occurring due to the multiple causes . Therefore, this

model was unable to represent multiple causality of the accident.

Loss Causation Model

Bird (1974) updated the Domino theory proposing loss causation model or International

Loss Causation Institute (ILCI) model. In this model, management factor replaces

ancestry. social environment and fault of person. Greater emphasis is placed on loss that

includes harm to people , property , environment and progress. The term "accident" is

replaced with "incident" to represent all possible event scenarios such as near misses and

mishaps. In the loss causation model, there are five sequential blocks identified and

placed in sequential manner. The model starts with lack of control followed by basic

causes , immediate causes , incident and loss as shown in Figure 2.1.

Although Bird (1974) used same sequential approach as Domino theory, it is different

from the Domino theory in terms of causal factors that each models are highlighted. In

Domino theory, unsafe acts and conditions are only symptoms of deeper problem (Bird

and Germain, 1996).
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Figure 2.1: The ILCI or loss causation model (Bird and Germain, 1996)

Managemen t and organizat ional factors were emphasized in the loss causation model to

minimize losses. Through this type of modeling approach, the information flows to the

upper management to make the decisio n to stop the reoccurrence at any level in the chain

(Kujath, 2010) . However, Domino and Loss Causation model have no clear distinction

between the observable facts about accident sequences and uncertain causal relationship

at personal. organizational and management levels (Kjellen, 2000) .

Keltz Model

Keltz (1988) proposed a model oriented methodology for accident investigation. This

methodo logy uses the concept of accident causatio n chain in which an accident is placed

at top and the sequence of leading events and causes are developed beneath it (Figure

2.2). The strength of this approach is recommenda tions for accident prevention and

mitigation as it focuses on inherent safer design by the layer of avoiding the hazard. The

preventive recommendations comprised three aspects or layers: (I ) immediate technica l

recommendations, (2) avoiding the hazard and (3) improving the management system.

The model suggested possible technical , human and management preventive strategies.
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Figure 2.2: Keltz model of accident process (Khan and Abbasi, 1999)

Management Oversight and Risk Tree (MORT)

The MORT model was developed by Johnson in 1973 10 analyze the system and identify

the relationship between the management and organizationa l factors and plant operation s

(Johnson, 1980; Bhar, 1997). MORT gives an idealized safety system represented as a

logic tree, which contains specific control and general managemen t factors. The top event

of thc logic tree is injury , damage or system loss. Evaluating control and management

factors are used to identify the causal factors leading to the top event (Skelt, 2004).

MORT provides a large graphical checklist to help investigating the facts and looking for
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evidence. It penn its a large number of problems to be identified, and it prompts the

investigator to look for direct causes and for causal contribution at the management and

organizational levels.

Swiss cheese Model

Reason (1990) proposed the Swiss cheese model to demonstrate how human and

organizational failures influence the accident process independently taking multi causality

of accident into consideration. The Swiss cheese model is used in many industries ,

especia lly aviation industry, to prevent accident s due to human errors. Inthe Swiss cheese

model, four successive cheese slices are placed on sequential manner representing safety

barriers relevant to particu lar hazards, and the holes represent the latent errors. The

cheese slices behave as the defensive barriers against the accidents or incidents, and the

holes are subjected to change according to the failure types. When the holes are lined up

all barriers failed; hence an accident will occur. The holes in the first slice represent the

latent failures, such as poor designs, lack of supervisio n, undetected manufacturing

defec ts, defect or maintenance failures, lack of training and poor work procedures. Unsafe

acts are mostly situated in the last slices, while latent conditions are the holes throughout

the cheese .

Daryl's Occupational Accident Model

Attwood et al. (2006) proposed an accident model to predict the accident frequency and

associa ted cost of occupational accidents in the offshore oil and gas industry. Factors

affecting occupationa l accidents in oil and gas industries were identified and their

interrelationship determined to formulate this model. According to their hierarchical
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effect in the accident, the factors are divided into three layers: externa l, corporate and

direct.

Figure 2.3: The Swiss cheese model of human error (adopted from generic model
of Reason, 1990, 1996)

Each layer contains severa l elements. An arrangement of these elements in the accident

model is shown in Figure 2.4.

This model describes an influence of externa l elements on corporate actions which in tum

influence the direct accident process. It has also quantified influence of these factors

using quantita tive data derived from safety experts' survey. Similarities of physical

engineering system and corpora te safety programme are utilized in developing the model.

Based on this hypothesis, the mode l is rearranged using the reliability network for

quantification. Furthermore, this model uses ' influence coefficie nts' to quantify the

influence at the external -corporate and corpora te-direct interfaces .
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The model predict s a safety result that enhances individual element s of the direct ,

corporate or external layers. It also predicts financia l rewards and penaltie s associated

with changes in various safety factors. This model is capable of evaluating relative

probabilitie s of occupational accident s under various scenarios or during stages in an

asset' s deployment cycle.

EC? ~~~
Innll. ncc or eXlernal e,emenlS' on corpora te element s

I co,po" " ..'"' '' ''''' II Co'o·,"""'ninK.,,,,,,,n,m< I I s"",O"""'''' '
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Influence of corporate elements on dlrecr Iaetors
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Figure 2.4: Element arrangement of model to predict occupational accidents
(Attwood et aI., 2006)

Ren 's Human and Organization al Factors (HOFs) Model

Ren, et al. (2008) proposed a methodolo gy to model the accident s which are caused by

technica l and human and organizational malfunctions. Based on the Swiss cheese model,

a conceptual model is proposed to represent the latent failures due to human and

organizational factors within the causal sequence of accident process. This Ren' s HOF
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model uses five levels: consequence, accident, incident, trigger event and root cause.

Each level provides differen t cause of contributory to model. The arrangement of each

level in the model is shown in Figure 2.5 .

The HOFs mode l adopts Bayesian Network (BN) to enhance the graphica l demo nstra tion

of causa l interrelationship and to compute numerica l values of occurre nce likel ihood of

each failure levels. The advantage of this model is its ability for monitoring how safety

system changes when information flows forward and backward within the network.
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Figure 2.5: Concep tual model for HOFs (Ren et al., 2008)

Kujath's Conceptual Offshore Oil and Gas Process Accident Model

The conceptua l accident preven tion mode l highlights the vulnerabilities of an oil and gas

(0&0) operatio n and provides appropria te guideli nes to minimize the hazards and

associate d accidents before occurre nce (Kuja th et al., 20 10).

The safe ty barriers are identi fied to prevent , control or mitigate the acciden t process due

to hydrocarbon release . The barriers are placed sequentially sim ilar to Swiss cheese and

loss causation models (Figure 2.6). The mode l cons truction adopts safety barrier concep t

rather than causal factor, which is used in most of exist ing accident modeling approac hes.
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Kujath's model is flexible as identified safety barriers can be substituted with other

appropriate barriers for the specific facility. The safety barriers in the model have been

further branched to identify safety barrier sub-elements. This model is rather qualitative

than quantitative.

Figure 2.6: The conceptual offshore oil and gas accident model (Kujath et aI., 2010)

2.1 Overview of Accide nt Ana lysis Tec hniques

Accident models are theoretical frameworks which explain the accident causation

mechanism and it helps to identify and analyze the potential future outcomes . However,

accident models alone do not provide sufficient information to evaluate and prevent

accidents. Accident analysis techniques are systematic tools that evaluate causal and

consequences qualitatively and quantitatively . Therefore, accident model with analysis

technique or combination of techniques provide holistic and quantitative information of

cause-consequence relationship . Particular accident analysis technique or techniques are

not always necessarily linked to specific accident model (Katsakiori et al, 2009). In this

study, four key analysis techniques will be discussed.
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Fault Tr ee (FT) and Eve nt T ree (ET) Ana lyses

Fault tree and event tree analyses have been used extensively in probabilistic risk

assessment. Both investigation s methods are graphical design techniques (tree-network

design) for qualitativ e and quantitati ve assessment. Fault tree determin es accident causes.

The approach is top-down in which analysis begins with possible accident (top-event) and

propagates downward to basic events at the bottom of tree (Skelt, 2004 ; Lehto and

Salvendy , 1991). The logical arrangement to describe basic events propagation up to top­

event are represented with logical "AND" and "OR" gates. The qualitative structure of

how accident occur s can be analyzed using cut set analysis. Minima l cut set is the

smallest number of events that must occur to lead top-event. Furthermore, without any

quant ification, minim al cut set can imply the safety of the system (Woodward and

Pitblado, 2010). The fault tree analysis determines top-event frequency and intermediate

frequencies based on basic events data.

Event tree is used to analyze event sequence and outcome s from a specific initiating

event. It demon strates paths by which consequences occur and how various safety

barriers or safety functions can prevent or mitigate the event sequence. The event

sequence propagates to specific consequence with failure or success of specific safety

barrier/function. Event tree estimates frequencies of consequence s of each accident

scenario; thus, risk is estimated. Decisions are made based on the risk estimated. An

accident investigation carried out combining FT and ET is known as bow-tic analysis

(Dianou s and Fievez, 2006). Appropri ate safety barriers are identified and applied on

bow-tie diagram to prevent or mitigate accidents.
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Reliability Block Diagram (RBD)

Reliability Block Diagram (RBD) is a symbolic analytica l logic technique that can be

applied to analyze system reliability and rela ted charac teristics . It provides an alternate to

fault tree ana lysis . Reliability block diagram dea ls with reliab ility of component or

system. Nodes or blocks represent the system components, whereas lines descr ibe

connections betwee n the components. The logical flow of network diagram starts from an

input node and flow through intermedia te nodes, which has parallel or/and seria l

arrangements, to an outp ut node. Since reliabil ity block diagram often correspon d to

physical arrange ment of components in the system, it can be successf ully applied to a

particular sys tem to study the probabilistic events. The model proposed by Attwood et al.

(2006) has used reliability block diagram to model the occupa tiona l accident process for

offshore platforms. In addition to reliabi lity model, Markov method is lIsed for assess ing

time depending behaviour of many dynamic syste ms as a reliability modeling technique.

It is capable of capturing statistica l depe ndencies between failure events in comp lex

systems (Bucci et aI., 2008).

Bayesian Network (BN)

A Bayesian Network (BN) has been recognized as modeling and infere nce tool for

prob lems invo lving high degree of uncertainty (Pearl, 1988). BN is used in many

differen t fields such as medica l diagnosis (Hecke rman, 1990; Spiege lhalte r et al, 1989),

map learnin g and vision (Dean, 1990; Levitt et aI., 1989), structura l system reliability

assess ment (Mahadeva n et aI., 200 1) and decisio n making strategies (Jensen, 1996).

Recently, it has been used in risk assessmen t and accide nt inves tigation because of its

powerful and compre hensive qualitative and quant itative abili ties (Cas tillo et ai, 1999;
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Kang and Golay, 1999; Kim and Seong , 2006; Ren et al., 2008). BN provides

probabilistic graphical model, which describes cause-consequence relationship among

various factors and quantifie s their relationship in terms of conditional and joint

probabilitie s. It is able to perform adductive (diagnostic) reasoning, deductive (causal)

reasoning as well as inter-causal reasoning among a number of variable s or factors under

high level of uncertaint y. This helps to monitor system safety and changes when safety

critical informati on flows forward and backward within the causal network (Ren et al.,

2008). BN is able to update as new observations are incorporated into system, and

perform prediction of possible future observation , even though data is incompl ete or

missing (Heckerman and Breese, 1996; Heckerman, 1997). Dynamic Bayesian Network

(DBN) is used to model temporal dependencie s and applicable to the practical process

environment which is more complex ~nd dynamic.

2.2 Acciden t Models Eva luation

This section discusses the evaluation of key accident models and novelty of the proposed

accident model to process hazards accident s in O&G industries. The following seven

characteristics are chosen based on literature (Wagenaar and Schrier , 1997; Sklet , 2004;

Atwood et al., 2006 ; Katsakiori et al., 2009) to evaluate accident models .

I . Area of application : whether the model can be applied to the oil and gas industry.

2. Type of hazard (process hazards or occupational hazard).

3. Accident sequence modeling (steps of accident process)

4. Direct focus on Safety barrier (model development based on safety barrier or

causal factor)
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5. Alignment with accident investigation method

6. Qualitative application (to what extent can the model analyze cause -consequence

mechanism )

7. Quantitativ e application (updat ing and predictive capabilities)

Each model has different area of application and different qualitie s and deficiencies. It is

observed that many models have focused on general industrial settings (e.g. nuclear,

medical and transportation) . Less emphasize has been devoted to 0&0 industry

application particul arly. There fore, the first characteri stic is to discover whether the

application area of the models is for 0&0 industries specific or not. Models such as

Domino, Loss causation, MORT, Swiss cheese were mainly developed focusing on

general industrial application s, specifically nuclear industry . However, with the

increasing in offshore related accidents, research has been conducted to model 0&0

related accident s (Daryl et al., 2006 ; Aven et al., 2006; Ren et al., 2008 ; Kujath et al.,

2010).

Accident models vary depending on the types of 'causal factors' that are considered .

Many models concentrated in causal factors such as human errors, organi zation al and

management errors; and some direct factors such as unsafe equipm ent, poor quality of

personal protectiv e equipment. hazardous environment, defective tools and unsafe design

etc. These factors are commonly considered as 'occupational hazards' which lead to

occupational accidents . Domino theory implies that the accident is the result of unsafe act

(human error) or unsafe condition at the workplace. Subsequent application of this

method has led to the development of loss causation model in which management factors

were introduced . Furthermore, human and organi zational errors in accident are modeled



25

in Swiss cheese model. Kletz model analyzes sequence of decisions and action that lead

up to an accident , and the preventive action for each steps is recommend ed. Therefore,

Kltez model is capable of adopting both occupat ional hazards and process hazards for

analysis. Modeling accidents due to process hazards (fires, explosion and toxic releases)

has been conducted by Kujath et al. (2010) using conceptual accident prevention model.

The third characteristic is devoted to check whether the models provide graphical

representation of each steps of accident process. The Domino, Loss causation and Swiss

cheese models provide a graphical illustrat ion of the accident sequence steps by placing

or modeling factors on a horizontal axis. These models describe the accident as the result

of a sequence of events that occur in specific order. However, none of these models are

able to illustrate total accident scenario or to capture all steps of accident process.

However, steps of accident process may change according to initiating hazardous

condition s (e.g. is it process hazard or occupational hazard). MORT model is a

representation of multiple sequences of events in the form of hierarchical tree such as

fault tree. Such a representation of accident shows that the top-event (accident) is a result

of a sequence of combinations of other events or condition s. MORT can be argued as

sequential model that represent steps of accident process. However , authors ' subjec tive

opinion is that MORT does not provide the best overview the event sequence of accident

process, since it is a tree model rather than sequential model. Hierarchic al representation

of accident is also adopted by the model of Attwood et al. (2006) .

Many models focus on the concept of safety barrier without directl y involving the safety

barriers to develop the model. In the model of Kujath et al. (2010) , steps of the accident

process were described as failure of particular barriers . In this model, five safety barrier s
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were identified , and placed in sequential order to depict the accident process due to

hydrocarbon release (Figure 2.6). Each safety barrier was further analyzed to find sub­

safety element. In the Swiss cheese model, the different slices of the cheese represent the

layers of defenses, like barriers or safeguards. a company has installed as part of its risk

prevention program. MORT described potential causal factors for accident in a particular

order. An important part of MORT model was the relation between energy flow and

barriers that used to avoid contacting energy flow to vulnerable target. In MORT model,

different types of barriers in the branches can be found . Domino and Loss Causation

models suggested that accidents can be prevented through the reduction of unsafe act and

conditions. However, these models still empha size causal factors in the development of

accident process rather than the safety barrier. Kletz model shows recomm ended action s

and decisions to prevent the each step of the accident. This did not completel y reflect the

concept of safety barrier rather some suggestion and decision that would be taken after

incident happen to prevent future events. In the models of Attwood et al. (2006) and Ren

et al. (2008), causal factors were mainly highlighted rather than safety factors.

Most accident models are theoretical framework; therefore , alignment with the accident

investigation methods is paramount to provide comprehen sive quantitativ e and qualitati ve

analyses. Numerou s accident investigation methods that identify and analyze hazards

have been developed and combined with the accident models to varying degrees. A

subjective selection of a suitable accident investigation method depend s on model type,

purpose, input , output and developer' s expectation. In this work, four accident

investigation methods, fault tree analysis, event tree analysis, reliability block diagrams

and Bayesian networks were specifically considered. Table 2.1 summarizes the author ' s
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evaluation. Domino, Loss causation, Kletz, Swiss cheese models are more capable of

adopting accident investigation methods such as root cause analysis, systematic cause

analysis techniques (SCAT), hazard and operability studie s (HAZOP) and failure modes

and effect analysis than methods discussed in this work . These are qualitative analysis

rather than quantitative.

Each accident model (with or without accident investigation method) should provide

guidelines to analyze causes and their consequences relevance to the accident.

Concerning the qualitative ability of models, all model s have been able to provide details

description of cause-consequence mechanism with varying degrees . The qualitative

analysis of models such as Domino and Loss cau sation does not take multiple causality of

accident into account and not able to emphasize important factors in accident sequences

(Kjellen, 2000) . Swiss cheese model has been recognized as conceptual model that

provide s limited information on applying this model to real world application (Ren et al .,

2008). MORT analyzes a system and identifies the interrelationships among the plant

operation and management organizations. However, the tree is so large and complex.

Thus, it does not lend to tailoring the tree to a smaller problem. In the model of Ren et al.

(2008), Bayesian network is used to provide graphical description cause-consequence

relationship whereas Attwood et al. (2006) used reliability block diagram. Kujath et al.

(2010) combined of fault tree and event tree analyses to analyze and to provide complete

cause-consequence relationship.

The last characteristic assessed the quantitat ive ability of each model. To prevent the

accident, a realistic prediction (i.e. uncertainty of prediction is minimized) is important.

Therefore, in this study , model updating and prediction capabilities of accident models
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were assessed. Many sequential models are qualitative. However. these models are able to

adopt a statistical approach . often using the historica l data. to study existing relationship

between factors numeric ally. This approach does not offer predicti ve information . which

can be used to help management decisions. and it is unable to capture dynamic behaviour

of process system. Therefore . this type of quanti fication causes risk of misunderstand ing

and false interpret ation. espec ially at the higher management levels, where detailed

knowledge about the accident occurrences is lacking . In the mode l of Attwood et aI.

(2006) reliabilit y concept is used to predict occupational accident frequenc y and financial

rewards and penalties associated with changes in various safety factors. Bayesian network

has the ability to update whenever incorporat e new informati on and to predict the future

observation. This method has been utilized by Ren et aI. (2008) on his occupationa l

accident model to perform much better quantific ation .

Table 2.[ lists the summary of compari son.

2.3 Summary of Comparison

A review of literature that describe s key existing accident models revealed a gap in the

knowledge related to oil and gas process accident modeling. Numerous accident models

have been developed during last decade s. Each of models has different area of

application . capabilities and limitations. Furthermore. the model characteristic s depend on

the types of "causal factor" that it highlights . Accident models in safety assessment plays

an important role. They are theoretical framework that is used to establish shared

understanding within the organization of how and why accidents happen. Accident

investigation techniques which are used to identify and analyze the cause-consequence



29

relationship in order to develop suitable risk reducing measures to prevent future accid ent

combine to accid ent model s in varying degr ees.

Table 2.1:Summary of compari son

o 0 OIP 0 0 0 0 P ~.can investigaleboln~oI

Yes Yes Yes No Yes No Yes Yes ~~~~~=~~ DaryrS model iSUsed

Kuplll'smode laccidenlr"",esentasarallure
No No No Yes Yes No No Yes ~~e~rrier.Olher$usell1econceplol

GI = General Industr ial, NU= Nuclear, AV= Aviation and O&G= Oil and Gas . * Yes means method might
fulfill the requirement. "0 " means "occ upational hazard s" and "P" means "Process hazard s"

Early accident model s were developed mainly focusing on areas such as nuclear, medic al

and transportation. And later , with the increasing complexity in high technological

systems and operations of oil and gas related indu stries , approache s to model oil and gas

related accident were taken. However , it is noticed that less attention has been devoted

specifically for chemical and process industry . This fact took considerable attention of

related individual s and groups to develop compr ehen sive safety assessment methodology

for proce ss industry .

Some model s have been developed focusing on process industry, but the approach has

usuall y applied to occupational accident s rather than catastrophic accident s such as fires,
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explosions and toxic releases which are generated from process hazards . Even though,

these models describe process hazard accidents, they were unable to adopt holistic view

of accident. They were not able to represent steps of accident sequence and describe all

the risk factors or causal factors that influence of each stage of accident proce ss. Some

models used the concept of safety barrier s to analysis the accident , but they were not

directly applied safety barrier s in model development to represent the accident proce ss. In

the model of Kujath et al. (2010), model used barrier s directly depict the accident and

describ e an accident as the result of failure of set of particular safety barri ers .

Several method s were capable of providing quantitative analy sis in terms of either

updating or prediction or both . Other model s have adopted a statistical approach based on

historical data to study existing relationship of causal factors. This way, it will not

provide predictive details and quantification consi sts of significant uncertainty. All

model s studied here provide graphical demon stration of causal factors of accident proce ss

to certain extend. The quantitative and qualitative ability depends on ability of accident

investigation method that model can easily adopted. However , no presently available

model has adopted a holi stic, quantitative approach to chemical and proce ss accident s.

Based on the findin gs of this literature review and focusing on author' s objectives, a new

model is proposed to perform safety assessment of process industry. This model is based

on the model of Kujath et al. (2010) and set of hypothe ses. The novel model is described

in subsequent chapters .
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Chapter 3

SHIPP METHODOLOGY: PREDICTIVE ACCIDENT MODELING
APPROACH
METHODOLOGY AND MODEL DESCRIPTION

Focusing on process hazards, this project aims to contribute to chemica l and process

industry' s safety assessment by proposing a methodolo gy called System Hazard

Identification, Prediction and Prevention (SHIPP). The SHIPP methodo logy can be used

to identify most possible process hazards, evaluate , analyze the accident sequences and

their consequences, control , and prevent future accident s with knowledge of future

likelihood (with prediction capabilitie s). The process accident model is proposed as the

extension of ~ujath et al. (20 10). In this work , the model of Kujath et al (20 10) was

modified so that it could be used in any process industr ies, and it would better represent

the accident process. The proposed accident process model can accommodate multip le

risk factors considered in chemica l and process industry (CP I).

3.1 System Hazard Identification, Prediction and Pr evention (SHIPP)
Methodolog y

The purpose of the SHIPP methodo logy is to identify hazards, evaluate them, predict and

prevent their occurrence s, and continue monitoring . The SHIPP methodology is a

systematic and comprehen sive safety analysis procedure that demonstrate s how the

process accident model integrate s process system safety, and is developed by focusing on

accident analysis of process hazards. The advantages of the SHIPP methodology are that

it can be applied to assess the risk of the entire process system, as well as subsystems, and

that it can also identify the system's hidden interactions and their consequences through



32

modelin g the accident proce ss using safety analysis technique s. Appli cation of this

methodo logy helps to determine the critica l safety area s that should be prioriti zed and

implemented in order to prevent future accidents based on predicti ve accident occurrence

and accident precur sor data. The SHIPP methodology compri ses four phases: (I) system

definition, (2) hazard identi fication and analysis, (3) accident modelin g and prediction ,

and (4) updating, decision makin g and implementation of accident prevention strategies.

Thi s methodol ogy is shown in Figure 3.1.

3.1.1 System Defin ition

The first step of the SHIPP methodol ogy is to define the system and its bound aries. The

system is compo sed of many interacting subsys tems such as process units, people,

software, hardwar e, procedures , support equipment, facilities and the operatin g

environment. The nonl inearit y and complexity of the system's interaction s can cause

failure with severe consequences. Therefore, it is important to identify major subsystems,

their functions, interactions and their depend encies. Understanding of the systems,

subsystems, system interface s and their interactions is critical to identify the hazards,

accident process and required safety barrier s (Bahr, 1997).

3.1.2 Hazard Identification and Analysis

Once the system is defined, the next step is to identif y and analyze the hazards. The

primary objecti ve of the hazard identification and anal ysis phase is to identif y all

potential proce ss hazards and analy ze how these hazards would lead to an accident.
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It must categori ze the hazards in terms of severity of consequence s, and then accident

process steps (accident sequence process) are evaluated and related to each possible

accident scenario. There are several technique s and methodologies available to carry out

hazard analysis in the process industry. Khan and Abb?si (1998) reviewed their

applicability , limitation s and capabilitie s.

The Americ an Institute of Chemic al Engineers has published a manual called "Guidelines

for Hazard Evaluation Procedure s" (2008) providing guideline s on how to use these

technique s. The following methods may be used to identify the hazards: what-if analysis,

accident and failure statistics, hazards and operability study (HAZOP), preliminary

hazard analysis (PHA) and failure modes and effects analysis (FMEA). However, the

choice of the particular hazard identification technique depends on the purpose for which

the study is done.

Typicall y, in the process facility, types of hazards are characterized as: (1) occupational

hazard, (2) process hazard , and (3) external hazard. This work focuses on process hazard.

The following scenarios characterize process hazards commonly observed in a process

facility :

• Unexpected releases of toxic , reactive and flammable liquids and gases

• Unexpected energy release such as mechanical, electrical, thermal or radiation

• Process upsets such as high temperature s, cryogenic temperatur es, high pressures,

vacuum, pressure cycling, temperature cycling , and vibration/liquid or steam

hammering
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Process hazards are likely to be generated within an operating plant. Thus, the hazard and

operabi lity (HAZO P) study is more suitable for process hazard investiga tion. Further, for

identification of the sources of release, it is necessary to carry out a specific review of

such sources. However, it is always advisable to ensure that significant hazards are not

overlooked.

Once the process hazards, including the causal factors, have been identified, it is

important to evaluate accident sequences and their consequences. Identification of safety

barriers planned to prevent an accident sequence is important in accident analysis. Thus,

an accident could be described as the result of a relevant safety barrier failure . In studies

of accident analysis, application of the concept of the safety barrier has been discussed in

the literature extensively. John son' s (1980) MORT accident model discussed the

relationship between energy transportation and barriers. Further, the MORT model

discussed the purpose of barrier s in three different ways: prevention , control and

minimization (Hollnagel , 2004). Svenson (1991) described barrier functions and barrier

systems and their distinction in the Accident Evaluation and Barrier (AEB) model.

Application of the bow-tie method in risk analysis was used in the ARAMIS project

(Dianous and Fievez, 2006) combining safety barrier s to analyze hazards. BORA-Relea se

(Aven et al., 2006) analyzed the effect of safety barriers to prevent hydrocarbon releases,

and how plant-specific condition s such as technical, human , operational and

organizational risk-influencing factors affect barrier performance.

Therefore , integration of hazard and barrier analysis provides comprehensive results for

accident analysis rather than just causal -consequences analysis . Further, it may be noted
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that human, management and organizational elements contribute significantly not only

initiate the accident process, but may also propagate the accident sequences.

3.1.2.1 HI/man Factors/HI/man Errors and Organizational Factors

The area of human factors is the scient ific study of the interaction between man and

machine (Gordon, 1998). Literature reveals different definition s for human error.

Rasmussen (1993) defined human error as "human acts which are judged by somebody to

deviate from some kind of reference act; they are subjective and vary with time". Sender s

and Moray (1991) defined human error as the result of observable behavior originating

from psychological processes on different levels . These behaviors can be evaluated using

performance standards, initiated by an event in a situation where it was possible to act in

another way than that assumed to be correct. According to Hollangel (1998), human error

cannot be observed directly. The terms "human factor" and "human error" are often used

interchangeably in the literature , and can be distinguished as the underlying causes of

accident s (human factors) and immediate causes (human errors) (Schondeck et aI., 2009) .

Wagenaar et al. (1994) pointed out that accident s occurring due to human behavior

constitute a necessary condition. Such human behavior is called an unsafe act. This

unsafe act may cause accident s. However, the accidents are not always caused purely by

an unsafe act. This is reflected in the proposed methodology (Figure 3.1).

Management and organizational factors involved in accident causation have received

considerable attention . There are correlations between the organizational factors and

safety performance. yet the way they influence safety performance is not clear.

Organizational factors such as leadership, motivation, safety management procedure ,
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training , and safety culture play major roles in system safety and lack of these factors

contribute s to causing accidents.

3.1.2.2 The Accident Process Sequence

The accident process usually follows three steps (Crowl and Louvar, 2002):

• Initiation (the event where an accident begins)

• Propagation (the events or events that maintain or expand the accident )

• Terminati on (the events or events where the accidents are stopped or diminished

in size)

It is important to study the accident sequence pattern in order to prevent the initiation and

progression of the accident process. It also helps to identify the safety functions and

barriers related to different accident levels. Figure 3.2 depict s a simplified illustration of

the event sequence s and safety functions .

In a typical process accident , the event sequence is initiated with a material or energy

release, and is followed by dispersion of material and/or energ y, ignition of flammable

material, escalation of fire or strong explosion, and exposure to property, human s and the

environment. Finally, the accident terminate s, causing substantial loss and harm to

humans, property and producti on.

The main safety barriers used to prevent , control and mitigate the consequences of the

accident process need to prevent release of material/energy, dispersion of material or

energy , ignition, explosion or escalation of fire or release of toxic gas and control the

damage and prevent fatalities. The determination of the type, performan ce, and
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requirement of safety barriers and their functions depends on specific hazardous events

and severity of consequences.

Figure 3.2: Accident process sequence and relevant barriers

3.1.2.3 Definition of Safety Barrier (SB) and Safety Function (SF)

In a general sense, a barrier is an obstacle, a hindrance, or an obstruction that prevents the

event occurs and mitigates the impact of the consequences. However, Skelt (2006) has

proposed a definition as "the safety barriers are physical and/or non physical means
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planned to prevent, mitigate, or contro l undesired events or accidents", and "a barrier

functio n is a func tion planned to preven t, contro l, or mitiga te undesired events or

accidents" .

There are other definitions that are introduced by Hollnagel (2004), Johnson (1980) in the

MORT accident model, Duijm (2009). A barrier function represents the action which

ass igned for particular safety function can be arrest the accident proces s, so that the next

event in the acc ident seq uences will not occur. The performance of the barrier func tion is

important in accident ana lysis beca use of it is direct ly relations hip to the occurrences of

consequences .

3.1.3 Accident Modeling and Prediction

The process accident mode l is proposed based on the following considera tions :

• Accidents are events resulting from a series of failures or errors; i.e. acc idents cannot

be descr ibed by using a single cause. The causal relationshi p of the accident proce ss is

represented by causal cha ins or networks .

• The accident seq uential path can be blocked by applying a suitable barrier. In so

doing, the severity of undesire d consequences can be preve nted, co ntrolled or

mitigated .

• Releases of materia l or energy and/or process upsets are cons idere d as initiating

• The performance (fai lure or success) of a safety function determi nes the progre ssion

of the accident process; i.e. the accident is described as one or more barriers that have

failed.
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• Management and organizational and human element s are influenced during all stages

of the accident process . Therefore. these two factors are considered as common

influencing factors.

As previously described, Kujath et al. (2010) developed a conceptual accident model for

the offshore oil and gas process environment. In their model, five safety element s were

considered and placed in sequential order to depict a hydrocarbon release accident. The

model is a qualitative description of accident propagation initiating with hydrocarbon

release in terms of the safety barrier. However, it has not considered the intervention s of

human, management and organizational factors in the accident process. Therefore , in the

current work, the conceptual model limitations have been overcome and a new updated

quantitative process accident model is proposed. The proposed process accident model

uses a sequential modeling approach by applying five distinct safety barrier s to describe

the accident process in conjunction with two common safety barriers. The additional two

barriers were not considered in the model of Kujath et al. (2010). Further , in the propo sed

model, the last two barriers of the model of Kujath et al. (20 I0) (harm and loss prevention

barriers) were replaced by one single barrier called damage control and emergency

management barrier. Also, a new barrier called dispersion prevention was placed between

the release and ignition prevention barriers. The logical relationship of different stages is

shown in Figure 3.3.
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Management and Organizational Barr ier (M&OB)

TennlnB tion
(Catll strophlc

Bee/dent)

Management and Organ ization al Barr ier (M&OB)

Figure 3.3: The process accident model

The sequential cause-con sequence relation ship is presented with the help of fault tree and

event tree analysis. The safety barriers in the process accident model are analyzed using

fault tree analysis (FTA) to establish causal relationship. The top event denote s the failure

of the safety barrier. The second layer of the fault tree associated with each safety barrier

represents sub safety-barriers; their failure will cause a top event failure. Further

analyzing these sub-safety elements, it is recognized subsequent events that cause the

failure of sub-safety barriers are causal factors rather than safety element s. A description

of the safety barriers and their sub-safety barrier s is given in the following paragraphe .

The logical relationship between sub-safety elements and main safety barriers is

constructed using fault tree analysis.

Release Prevention Barrier (RPB): In most cases, the release of material s is the main

initiating event that causes loss of containment. Each release scenario can be described
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using different initiating events. The main sub-safety element s that cause RPB failure are:

(1) operational error prevention barrier failure (Failures occur when the system is in an

operating condition . Manual operational errors are often recognized as the main cause for

this sub-safety element failure) , (2) physical/technical prevention barrier failure (3)

maintenance prevention barrier failure (Poor maintenanc e, release during maintenance,

and erroneou s maintenance are some of causes for the failure this sub-safety element) and

(4) process upsets prevention barrier failure . The function of this last barrier is to prevent

releases occurr ing by providing early warning or information , or activating the safety

system automatically (Figure A.I).

Dispersion Prevention Barrier (DPB): The function of the DPB is to limit the extent

and/or duration of hazardous events to prevent the spreading of material or energy.

Passive and active barriers are applied to prevent and mitigate the dispersion of hazardous

energy. The fault tree for this safety barrier (Figure A.2) identified passive barriers such

as bunds, retention walls, dikes and drainage and active barriers such as inerting,

ventilation and detection systems as sub-safety element s. Safety elements such as manual

and automatic isolation and emergency shut down systems are also applied to limit the

dispersion of hazardou s material. Such types of barriers are known as activated - manual , ­

automated , and -procedural barriers (Skelt, 2006) .

Ignition Prevention Barrier (IPB): Ignition prevention is very important in facilities that

handle flammable material such as oil and gas, paints, adhesives and cleaning agents .

When the DPB fails, a flammable chemical mixture may ignite causing a fire and

explosion. Therefore, to prevent fires and explosions, safety barriers must be applied by

focusing on all possible ignition sources existing in a process facility. There are a number
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of ignition sources in a process facility , such as flames, hot works, hot surfaces, hot

materials and gases, friction and impact and static electric ity sparks. Perman ent passive

barriers such as insulation and hot surface shielding, and permanent passive controller s

such as inadvertent flame detection, function to avoid flammable mixtures contacting

ignition sources. Hot-work permits and check lists fall into the category of procedural

barriers that are extensively used in the process industry. Figure A.3 shows the fault tree

for this safety barrier failure.

Escalation Prevention Barrier (EPB): Once ignition occurs, the hazardous event

propagate s to nearby equipment, triggering one or more secondary events. This process is

known as a "domino accident" . Secondary events occur after primary events due to

physical effects such as heat radiation , overpressure and fragment projection . The

severities of domino or secondary events are significantly higher with respect to primary

accident scenarios. Therefore, the relevant and adequate active and passive barriers must

be installed to isolate the surroundings to prevent domino accident scenarios. Passive

safety barrier s such as physical barriers (e.g. fire wall, blast wall, etc.) and protection

systems must be installed to be activated on demand without any internal intervention.

Active barriers such as fire suppress ion systems are used to prevent accident s such as jet

or pool fires (Figure A A ).

Damage Control and Emergency Management Barrier (DC&EMB): Emergency

management and damage control is the last layer of protection that is intended to control

hazardous events as much as possible or to reduce their consequence s. The main objective

of this barrier is to prevent fatalities. The three main elements of the DC&EMB are

preparedness, response and recovery. Emergency planning and inherent safety designs are
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integral and essent ial parts of safety and loss prevention. Adequate capabi lities of onsite

medica l facilitie s would be able to provide a considerable contribution to minimize

impact. Emergency safe places and persona l protective equipment (PPE) are also helpfu l

to mitigate or contro l human injuries and fatalities. Figure A.5 shows the fault tree for this

barrier.

Human Factor Barrie r (HFB): Modem contro l, automate d safety and structured

documentatio n systems are able to achieve a safer operationa l environment. However, the

process operator still has the overall immediate responsibilit y for the safe operation of the

facility. Therefore , human intervention at all levels (not jus t at the operator level) is a

crucial element in the accident process. In the current work, studies were carried out to

find possible accident scenarios related to human errors. It is suggested that seventeen

major factors may cause HFB failure, and they are allocated to five sub-safety barriers as

shown in Figure A.6. These sub-barriers can be categorized in to four types of barriers :

procedural, symbolic, activa ted-warned and activate d-automated barrier s. For instance, a

human-system interface barrier containing displays and alarms, labels and signs , and field

contro l panels are some of the safety elements .

Management & Organizational Barrier (MOB): Often the most important underlying

causes for accident s are manageme nt and organizationa l factors. The intervention of these

factors may exis t at all stages of the accident process ; however, their effect is difficu lt to

assess qualitatively as they may change from industry to industry. Similar to previous

analysis in the HFB, seventeen causal factors are identified, and they are alloca ted to two

sub-safety barriers which are known as the management barrier and the organizatio nal

barrier. The logical relationship of these factors is shown in Figure A.7.
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Event tree analysis is used to depict the consequence s at each stage of the accident

process. The qualitative description of consequences related to each stage of the accident

process associate d with failure of each safety barrier in the accident chain is shown by an

accident sequence event tree as shown in Figure 3.4.

Deviation
from safe

slate

Figure 3.4: Accident sequence event tree based on process accident model
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3.J.3.J Defin ition s f or Abnormal Events

Words and phrases such as ' incident', 'accident' and 'near miss' are often used

interchangeably. However, in the context of accident analysis these words need to be

tightly defined. The following definitions are introduced for these words using the

information derived from a review of relevant literature (Mannan, 2005, Phimister et aI.,

2003) and also considering the probabilities and consequence levels.

Near Miss: The term 'near miss' describes an event that does not result in an actual loss

but that has the potential to do so. For instance, if the process conditions go outside safe

operating limits but do not cause a release, then the incident is termed a near miss. The

following event scenarios are examples for events that are the result of near miss.

• An emergency shutdown system is unnecessarily activated;

• A safeguard such as a relief valve or fire suppression system is called upon to

operate;

• A hazardous chemical is released but does not affect workers in the area.

Mishap : A mishap is an event or sequence of events that could cause minor health effects

and/or minor impact to property and the environment. The effect of mishap events could

cause production loss or work hours loss.

Incident: An incident is an event that may cause considerable harm or loss. It may also

cause a major health effect or injury (temporary disability or permanent minor disability),

localized damage to assets and environment, considerable loss of production and

considerable impact to company reputation.
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Accident: An Event that may cause one or more fatalities or permanent major disabilities,

and/or heavy financial loss is considered as accident. An event like this receives national

media attention .

Catastrophic accident or disaster: A catastrophic accident or disaster is an event that may

cause multiple fatalities and extensive damage to property, system and production . It may

cause a shut down of the plant for a significant time period and sometimes forever. It may

also cause massive environmental effects. Such an event receives international media

attention.

The categorization may vary from industry to industry according to different definitions .

3.1.3.2 Predictive Modeling

Accident prediction based on available information about abnormal events or accident

precursor data is the most important aspect of the current model. A predictive model is

requested to enhance existing safety strategies to prevent accidents by using the latest

information. The prediction model includes two main features: qualitative and

quantitative analysis . Quantitative analysis estimates the numerical values about any

future likelihood of an abnormal event, while qualitative analysis helps to provide

information about specific safety systems that need to be implemented or strengthened so

that particular failure modes can be avoided . Event tree and fault tree analysis are

combined to develop the predictive model. The event tree (ET) represents all possible

accident scenarios associated with the failure of the safety barrier, while fault tree (FT)

analysis visualizes all possible causal factors that lead to the failure of a particular safety

barrier. The FT-ET model is comprehensive and flexible for accident forecasting, and the
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analysis pro vides a holi stic picture of accident s (Zheng and Liu, 2009). Numerical

estimation is performed based on determini stic values becau se this method is quick and

easy to apply and also avoid s the problem of communicating risk in terms of probability

and statistics that non-expert s often find difficult to follow. In this section. the predictive

model is introduc ed to estimate the number of abnormal event s in the next time interval.

The general pred ictive equation for the discret e random variable z. given observed data

can be estimated by using equation 3. I (Hamada et al., 2008):

p( zITr) =~P(ZlfJ)P(fJITr) (3. 1)

where . fJ denotes the unknown parameter, p(fJ I Tr) is the posterior distribution based on

data zr = (TrI. Tr2 . TrJ ••••• Trn ) . and p(zlfJ) is the sampling distribution of z given fJ.

Using equation (3. I). the number of abnorma l events in the next time interval. Y t+1 given

the observed information, i.e. abnormal event data. is established as equation (3.2). This

assumes the number of abnormal events is discrete and an independent random variable.

P(Y'+I I data) =~ P(Y'+I I A)p (AI data) (3.2)

where. data =(YI ' Y2' YJ•...•Y,) is the observed number of abnormal events data in the

time t, p(AI data) is the posterior distribution of A. P(Y'+II A) is the sampling

distribution. and A is the average number of abnormal event s. The commonly used prior
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distribution for A is the gamma distribution (Hamada et aI., 2008). The gamma

distribution is a conjugate prior distribution and has a probability density given by :

(3 .3)

where , a and fJ are distribution parameters.

The number of abnormal events y, is con sidered as a Poisson distribution with rate A.

Then the likelihood distribution for data =(YI' Y2' Y3,..., Y,) given A can be writt en as:

(3.4)

Based on the conjugate property, the posterior distribution of A , p(AI data ) is also a

gamma distribution with the parameter a p and fJp, having a p= a+ ~Yn and

where , ~ Yn is the total number of abnormal events in /I time interval s.

Howe ver , the mean value of posterior distribution of A provides an updated value that it

can be written as:

(3.5)
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To simply the predictive model which is shown in equation (3.2) , it is approximated to a

Poisson process, with the parameter Ap • Thus , the predictive probability distribution of

occurrence of an abnormal event in the next time interval given observed data can be

written as:

AY"'e"p
P(Y'+1/ data) =- p­

Y'+l!
(3.6)

The cumulative probability distribution can be simply estimated taking a cumulative

value for different numbers of abnormal events .

3,1.4 Updating, Decision Making, Implementation of Accident Prevention Strategies

Apart from qualitative analysis, The Ff-ET model provides quantitative analysis. The

objective of quantification is to estimate failure probabilities of safety barrier s and

occurrence probabilities of consequences. However, this procedure includes uncertainties.

In the fault tree calculation, basic event probabilities used in point value form which are

adopted from reliability data bases, literature and expert judgment can be utilized to

estimate the system failure and occurrence probabilities (Yang et al., 2010) . However,

these data may increase the uncertainty of quantification; thus the accuracy of the results

is reduced. Therefore, the Bayesian updating mechanism is used to minimize the

uncertainty and to improve accuracy of the quantification.

The prior probabilities estimated using the Ff-ET model represent the initial beliefs about

the system before observing the new information. Bayes' theorem updates the initial

estimate using the newly observed data as likelihood probabilities.
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The failure probabilit y of the safety barrier x;, is assumed to be an identical and

independent random variable. The updated failure probab ility or posterior failure

probability is estimated using Bayes' theorem as shown in equat ion (3.7):

p( x ;/data)
p(data / x;) p( Xi )

L p(data / Xi) p( Xi)
(3.7)

where , p(x;) is the prior probability of Xi ' p(data / X;) is the likelihood probability based

on the abnormal event data , and data is the new information or evidence observed in the

system. The denominator denote s the normali zing factor.

The prior probability p(x;) is estimated using fault tree analysis. The likelihood

probability is estimated using real plant abnormal event data as follows:

• Find the number of abnormal events in each month

• Using these numbers, estimate the number of potential success and failure states

for each barrier

Nsi =N cx . for k =i

N r: =f;N C.k' for k > i ; i =1,2,3,4 and k =1,2,3,4,5

Where, Nc.k is the number of abnormal events of consequence k" level, and N S.i and

N r: are the number of success and failures, respectively, for the i'"barrier .
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• Once the success and failure are estimated for each barrier , the likelihood

probab ilities, i.e. the probabiliti es of particular abnormal events' occurrence

given the failure of safety barriers , P(data / Xi) is calculated as:

P(data/ Xi )=~ (3 .8)
N F.i +Ns.i

Substitutin g prior and likelihood probabiliti es into equation (3.7), the posterior failure

probabilities are estimated.

Event tree analysis is used to estimate updated occurrence probability. This can be

obtained by equat ion (3-9):

P(Ck / data ) =IT(Xi / data )o..• (1- (Xi / data ))1- 0•.• k =1,2,3,4,5 (3.9)
i=SB!

Where, P(Ck / data ) is the updated occurrence probabilit y of the k 'h severity level, SBk

denote s the safety barrier associated with the level, and

f)i.k=I if the level k failure passes the down-bran ch of safety barrier i

f)i.k=0 if the level k failure passes the up-branch of safety barrier i

The SHIPP methodology provides comprehensive safety analysis and precise informati on

in the process of decision making in risk management , and also supports the critical

process safety design implementation.
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Chapter 4

MODEL TESTING WITH CASE STUDY
DETERMINSTIC AND PROBABILISTIC APPROACH

Validation of SHIP P methodology is demo nstrated in case study related to the process

industry. The required data were collected from part icular oil and gas industry within

defi ned bound ary conditio n. The quanti tative analysis is performed using deterministic as

well as probabilistic approach. Results of case study show that the methodology is

approp riate to apply real time app lication. Furthermore, the results prov ide significant

insight how safety barriers deteriora te with time and how the like lihood of accident

occurrence increases with time. In a deterministic approach, the predictive model

estimates the expecte d num ber of abnorma l events in the next time interval.

Instead of a point value, to represent resu lts in terms of distribution, the probabilities

approac h is used. However, comparison of the two approaches did not show significant

devia tion. This proves further confirmi ng the model is suitable for rea l applicat ion. In

addition the predictive mode l to estimate time to observe next abnormal event is

deve loped using probabi listic approach .

The following sections desc ribe steps of SHIPP methodo logy; hazard identification and

ana lysis, predictive modeling and updating , and quantification is performed in both

deterministic and probabilistic approach respec tive ly.

4.1 Hazard Id entification and Analysis

Event scenarios associated with process hazards were identified by analyzing incident

noti fication records of the process facility. As a process hazard ana lysis method, a
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HAZOP study (Crowl and Louvar, 2002) is used because it is one of the most systematic

hazard identification methods that can be used especially when system is in operating

condition. Therefore. HAZOP study is used to identify and develop incident scenarios .

Once the event scenarios had been identified . they were subjected to event sequence

analysis . First. all possible hazards, for example a significant inventory of flammable and

toxic materials were identified . Subsequently, initiating, propagating and terminating

events were determined for each event scenario. Then, the consequences of each event

scenario were assessed, and severity levels were assigned accordingly. The significant

factor of this analysis is the determination of safety functions which should apply to

prevent initiation . prevent or mitigate propagation and terminate the accident process.

The results of the analysis illustrate that four severity levels were observed, which are

known as: near miss, mishap, incident and accident in this particular case study. The

severity level "safe" denotes that the system has started to deviate from normal operation.

but the accident initiating event has not yet triggered. Table 4.1 lists the event scenario s

and severity levels associated with them for the month of January. 2009 .

As an example, the severity level of consequence for the event scenario. "Gland leak from

level control valve when open flame job was in progress inside the low pressure knock ­

out-drum", was classified as "Incident". The definitions for each severity level were

discussed in chapter 3. This particular event scenario started with hydrocarbon release

while an open flame job was ongoing. The potential hazard is flammable gas

(hydrocarbon gas).
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Table 4.1: Incident scenario analysis and severity level of consequences

No. Date Scenarios Severity Level

04Jan 09 Steam hammering in the low pressure steam line Near miss
caused a valve stem cover for a gear operated
gate valve to loosen and fall approximately 15 m
to the ground

12Jan09 Upper master valve did not close as required Safe
During train three depressurization

l3Jan09 Inadvertent flaring due to wrong opening Near miss
of pressure control valve on flare line

l4Jan 09 Gland leak from level control valve when Incident
open flame job was in progress inside
low pressure knock-out-drum

15Jan 09 Inadvertent flaring due to wrong opening Near miss
of pressure control valve on flare line

l7Jan09 Welded foundation of davit cracked Near miss
completely and damaged

20Jan09 Start compressor did not build pressure due to Safe
broken link

19Jan09 Flame noticed from main combustion Mishap
chamber of sulphur recovery unit top side

20Jan 09 Emergency shutdown valve found stuck in Safe
closed condition

10 21.Jan 09 Gas leak from pressure transmitter tapping Mishap
due to corroded stainless steel bolts failure

II 21.Jan09 Emergency shutdown valve closed inadvertently Safe
12 24Jan 09 Job carried out on east crane without isolation Safe

while starting up

The safety function applied to prevent release failed and led to initiat ion release.

Hydrocarbon then started to disperse inside the knock-out-drum. Further, the safe ty

barriers installed to prevent or minimize the spreading of gas also failed. An open flame

was the ignit ion source that may have caused fire. To avoid contact of flammable material

with ignit ion sources, ignition prevention barriers were introduced. Hot work perm it is
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normally used in the industry as a safety barr ier to prevent ignition and other potential

hazards while hot work is progressing. However, a failure or inadequate work perm it

procedure caused a minor fire. The fire was extingui shed as escalation prevention barriers

were successful. The accident process of this event scenario can be described in terms of

accident barrier failures as follows: the accident process initiated , causing release

prevention barrier (RPB) failure, followed by failure of the dispersion prevention barrier

(DPB) and ignit ion prevention barrier. Finally, the esca lation prevention barrier (EPB)

was successful, and at this stage the accident process was terminated.

4.2 Accident Pr ocess Modeling an d Pr ediction

The third phase of the SHIPP methodology is to set up the accident model and predict

future outcome s based on available data. The proposed process accident model (Figure

3.3) is used to describe the accident scenarios in the LNG facility. An analysis carried out

in phase two illustrates that only the first four barriers were involved with all event

scenarios. These barriers are the release prevention barrier (RPB), dispersion prevention

barrier (DPB), ignition prevention barrier (lPB ), and escalation prevent ion barrier (EPB).

However, other barriers still exist within the model, but their effects are negligible for this

case study . Therefore , the accident process model for this LNG case study comprises

release prevention, dispersion prevention. ignition prevention, and escalat ion prevent ion

barrier s. The model of safety barriers and consequences associated with their failure is

shown in Figure 4.I .Phase three is further discussed in terms of fault tree and event tree

construction to depict the cause-consequence relation ship and to perform quantifi cation .
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Devialionfr om
normal opration

Figure 4.1: Event sequence diagra m for case study process facility

4.2.1 Fault Tree (FT) Construction

The fault trees for each safety barrier are shown in Figures 81 -8 4. They are constructed

using the proposed generic fault tree models as discussed in chapter 3. The failure

probabilities of basic events were estimated by using OREDA (Offshore Reliability Data

Handbook. 2002), Lees' Loss Prevention in the Process Industries Handbook (Man nan,

2005), literature (Skelt et al., 2006 and Khan et al., 2002), and using data directly

gathered from the plant. Tables C I-C4 list the failure probabilities of each basic event.

The results obtained using the fault tree simulations are shown in Table 4.2.
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Table 4.2: Failure probability data for each primary safety barrier

Safety barrier (xj )

Release Prevention Barrier (RPB)
Dispersion Prevention Barrier (DPB)
Ignition Prevention Barrier (lPB)
Escalation Prevention Barrier (EPB)

Failure Probability P(xj )

0.0527
0.0616
0.1060
0.0271

The failure of barriers is assumed to be independent and mutuall y exclusive. The

probability of failure is denoted by x j (i.e. failure probability of i" safety barrier which is

also known as prior probabilit y or initial belief). The prior failure probabilit y p( x j ) ,

where i = I, 2, 3, 4 denote s the failure probabilitie s for the safety barriers, RPB, DPB,

IPB and EPB, respectively.

4.2.2 Event Tree Construction

The event tree model associated with the event scenarios was developed as shown in

Figure 4.2. Initiall y, the release prevent ion barrier (RPB) is triggered. The two branches

in the tree represent failure and success of a particular safety barrier. If RPB is success ful,

the favourable consequence is "safe" which is denoted by "C/'. If it is unsuccessful, the

next safety barrier , DPB is activated. The end state " Cz" denote s "ncar miss" if this

branch is successful. Then , the safety function of IPB is triggered . The branch ' s

successful consequence is denoted by " C)" , which is called "mishap". EPB is the last

safety barrier involved is the escalation prevention barrier. When EPB is success ful,

following the upper branch, the end state is "C/', which is the " incident". When EPB is

unsuccessful , following the lower branch , the end state results in "Cs"; this is the

"accident" .
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Deviation
from safe

mode

C2- Nearm iss

X, C3-Mishap

Cs -tnckiem

X. Cs-A ccident

Figure 4.2 : Event tree analysis for LNG facility

The failure probabilities of safety barriers are estimated using fault tree analysis as

discussed earlier. Then these failure probabilities are used in the event tree branch es to

estimate the occurrence probabilities of con sequence s. The prior probability of

consequen ce of severity level k ( k =1, 2,3,4,5), denot ed by P(ck ) , is given as:

P(Ck) = nX~·· (l - Xi ) I -I!, .•
jeSBk.

where , SB k denote s the safety barrier associated with the level k and;

(4.1)

{}i .k =I if the level k failure passes the down-branch (failure) of safety barrier i ;

{} j,k =0 if the level k failure passes the up-branch (success ) of safety barrier i ;

Table 4.3 illustrates prior probabilities of occurrence of consequence for the event tree.
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Table 4.3: Prior estimate of occurrence s probability of each consequence

Consequence s (C k )

C1 (Safe)

C2(NearMiss)

C3 (Mishap)

C4 (Incident)

Cs (Accident)

4.2.3. Predictive Modeling

Occurrence Probability P(Ck )

9.4 xlO -1

4.9 xlO -2

2.9 xlO -3

3.3 xlO -4

9.3xlO -{)

The most significant factor of the SHIPP method ology is its predictive abilit y. This helps

to forecast future outcome s based on existing information . The predictiv e model to

estimate the number of abnormal events in the next time interval Y,+l' given observed

data. is estimated using equation 4.2. The derivation of this model has been discussed in

the Chapter 3.

AYH'eAp

ris.; /data) = - p­

Yr+l!
(4.2)

where. data =(Yl' Y2' Y3•...•Y, ) is the number of abnormal event data in the time t, Ap is

the updated rate of abnormal events as estimated using equation 4.3:

(4.3)
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where , a and fJare gamma distribution parameter s of A(i.e. average number of

abnormal event s in the time interval), and ~ Yn is the total number of abnormal events in

the time interval II.

Table 4.4 lists the cumulative number of abnorma l events of each severity level over the

first ten months of year 2009, and obtained using the hazard identification and analysis

process.

Table 4.4: Cumulati ve number of abnormal events over first ten months of year 2009
(real data gathered through analysis of event scenarios of LNG facility)

Month
N C 1 N C2 NC 3 N C 4 NC 5

Safe Near miss Mishap Incident Accident
1 5 4 2 1 0
2 9 10 4 1 0
3 14 17 6 2 0
4 32 61 18 10 1
5 37 79 23 12 1
6 40 88 24 13 I
7 44 94 24 14 2
8 48 101 27 15 2
9 51 111 30 16 2
10 53 114 32 18 2

Prior distribution for Ais considered as the gamma distribution with the distribut ion

parameters a and fJ (Hamada et al., 2008). The gamma distribution is a conjugate prior

distribution . As enough informati on are not available to determine prior distributi on

parameters , i.e. the prior distribution of A is non-informative prior, a and fJ are taken as

0.01 providing a uniform distribution . Thus the posterior value of average abnormal

events Ap is estimated using Equation 4.3 . Then, this value is substituted in the Poisson



62

predictive model, and the results are presente d in the form of probability mass and densi ty

functions as shown in Figure 4.3.

Accord ing to probability plots in Figure 4.3, the mean value of the number of events is

estima ted as 22. This implies that the average number of events predicted in the eleventh

month is 22.

i 0.06

i 00 5

~0.04

'il

~ 0.03

0.8 .§

~
0 6 ~

oj

!_ Probability mass hJOCbon-+-probabilltyd lstnlJution !

Figure 4.3: Probability mass and density function of number of abnorma l events in the
next time interval

4.3 Updating Mechanism

The last phase of the SHIPP methodology is to conduct follow-up activities which include

updating, implementation of accident preven tion strategies and safety critical decision

making . Further, it is importan t to monitor the system to assure the effectiveness of the

implemented and existing safe ty functions (hazard controls).

Basic event failure rates of the fault tree are derived using reliability data bases, literature,

and availa ble data in process plants. These failure rates often have significant uncertainty
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associated with them. Therefore, to minimize uncertainty of the quantification, a Bayesian

updating mechanism is used to update the prior failure probabi lity of safety barrier . By

using updated failure probabi lities, the consequence occurrence probabilities are also

updated using event tree analysis. As described in Chapter 3, Bayes' theorem is used to

update the failure probability of safety barriers using data adopted from the plant. This

process converges theoretica lly to more realistic quantification.

The failure probability of a safety barr ier Xi is cons idered as an independent random

variable, which represent initial belief or prior informa tion about safety barrier failure.

Then, the posterior failure probability is obtained using Bayes' theorem (Bedford &

Cooke, 200 1) as shown in Equation 4.4:

p (xildata )
p(data I Xi) p(xj )

I pidata I Xi) p(X i)
(4.4)

where, p (x i ) is the prior probability of x., pida ta I Xi) is the likelihood or samp ling

probability derived from abnorma l event data from the plant, and data is the new

information or evidence from the plant. The denom inator denotes the normalizing factor.

4.3.1 Estimation ofLik elihood Failur e Probability

To estimate the likelihood failure probabil ity, plant real time abnormal event data are

used. These data are regularly collected in process facilities for further investiga tion and

to diagnose system faults. Table 4.4 lists the cum ulative abnormal event data adopted

from the LNG facility studied here. The likelihood probabilities are estimated using

subse quent steps:
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• Find the number of abnorm al events in each month (Table 4.4),

• Using these number s, estimate the number of potential success and failur e state s

for each barrier , and

N S .i = N C•k , for k =; (4.5)

N F.i=t; N c.k , fork >;; ;= 1,2.3,4 and k= I, 2,3,4, 5 (4.6)

Where , Nc.t is the numb er of abnormal events of consequence eh level, N ssand N r:

are the numb er of success es and failure s for the r barrier. For instance, for month one

and the first barrier (i.e. ; = I ),

Ns.J = Nc., = 5

N F .J = ~ Nc» = N C.2 + NC.3 + NC.4 + N C.S = 4 + 2 + I + 0 = 7

• Once the number of successes and failures are estimated for each barri er, calcul ate

the likelihood probability (i.e. the probabilit y of particul ar abnormal event

occurrence given that failure of safety barr iers) , p(data I Xi)'

p(datalxi)=~
N F.i +Ns.i

For the abo ve example:

P(datalx, ) = 7 :5 = 0.583

(4.7)

Similarly, the likel ihood failure probabilitie s for all safety barriers are estimated using

equation 4.7 . These are listed as in Table 4.5.
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Table 4.5: Likelihood probability data for each barrier

Likelihood probabilities p(data / X i)

RPB DPB IPB EPB
Month ----,--- ------ -

1
2
3
4
5
6
7
8
9
10

0.583 0.429 0.333 0.000
0.625 0.333 0.200 0.000
0.641 0.320 0.250 0.000
0.738 0.322 0.379 0.091
0.757 0.313 0.361 0.077
0.759 0.302 0.368 0.071
0.753 0.299 0.400 0.125
0.751 0.303 0.386 0.118
0.757 0.302 0.375 0.111
0.758 0.313 0.385 0.100

4.3.2 Posterior Estimation of Failure Probability

Using prior and likelihood probabilities, the posterior probabilities (updated probabilities)

for the safety barriers are derived using Bayes' equation (equation 4.4). Table 4.6 lists the

updated failure probability for ten months and Figure 4.4 illustrates their distribution with

the time.

Table 4.6: Posterior failure probability data for safety barriers over ten months

Month
Posterior failure probabilities p(x j / data)

RPB DPB IPB EPB
1
2
3
4
5
6
7
8
9
10

0.0729 0.0469 0.0560 0.0000
0.0856 0.0318 0.0288 0.0000
0.0911 0.0300 0.0380 0.0000
0.1364 0.0303 0.0676 0.0028
0.1486 0.0290 0.0628 0.0023
0.1503 0.0276 0.0647 0.0021
0.1461 0.0272 0.0733 0.0040
0.1450 0.0278 0.0695 0.0037
0.1490 0.0276 0.0664 0.0035
0.1496 0.0291 0.0690 0.0031
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Figure 4.4 : Posterior failure probabil ity distribution of safety barr iers for ten months

4.3.3 Estimation of Updated Consequence Occurrence Probability

With the updating of the failure probabilities of safety barriers, probabi lities of occurring

consequences of each severity level are updated. It implies that, as new observa tions

arrive, the consequence occurrence probability will update according ly. This is estimated

using event tree analysis.

The updated failure probabi lities are used in relevant branches of the event tree. The

failure probabilities are propagated through the event tree branches. Using equation 4.1,

the posterior occurrence probabilities of each severi ty level are estimated for ten months,

and the results are listed in Table 4.7.

Figures 4.5 to 4.9 illustrate the variation of updated conseque nce occurrence probabi lity

distributions over a period of ten months.
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Table 4.7: Posterior occurrences of each abnormal event over ten month s

o
o
o

7.68xlO-7

6.24 xIO -7

5.69 xlO-7

1.I4 xlO-6

1.03x 10-6

9A2 X 10-7

9.2I xlo-7

Cs(Accidcnt)

6.90xlO '2 3.20xlO '3 1.90xlO '4
8.30xlO '2 2.60xlO '3 8.00xlO '5
8.80xlO ·2 2.60xlO '3 I.OOxlO-4
1.32xlO ,I 3.80xlO ,3 2.80xlO -4

IA4xlO·1 4.00xlO '3 2.70xlO '4

1.46xlO ,I 3.90xlO ·3 2.70xlO -4

IA2xlO·1 3.70xlO '3 2.90xlO -4

IAlxlO·1 3.80x10 '3 2.80xlO -4

1.45x 10'1 3.80xlO '3 2.70xlO -4

IA5xlO'i 4.00x10 '3 3.00xlO '4

Posterior probabilities over ten months

C2(Nearmiss) C3(Mishap) C4(1ncidcnt)

9.27xlO,1
9.14xlO·1

9.09xlO ' l

8.64xlO 'l
8.51xlO 'l

8.50xlO 'l

8.54xlO ·1

8.55xlO 'l

8.5IxlO·1

8.50xlO 'l

1
2
3
4

5
6
7

8
9
10

Month -----------'---'---------------- - -

5
Month

0.84
1
'-----'-- --'-- -----'---- -----'---- -'-- -'-- -'--- -'-----'

6 °·91
Ii:" 0.9
i­
:5 0.89
1l
[ 0.88

j 0.87

0. 0.86

fi gure 4.5: Updated consequence occurrence probab ility distribution of safe events over
tcn month s
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0.06
1
'-_-'--_--'--_--'--_-'--_'------'_---..L_--'--_----l

5
Month

Figure 4.6: Updated consequence occurrence probability distribution of near miss even ts
over ten months

5
Month

11'---'-----'-----'----'---'------'----'--------'----'

Figure 4.7: Updated consequence occurrence probability distributio n of mishap events
over ten months



69

x 10"
3.5.----..- --r- ---.-- --,-- -.---- ---.--- --.--- .----------,

0.5
1 5

Month

Figure 4.8: Updated consequence occurrence probability distribution of incident events
over ten months

X 10.6

1.2.----..- --r- ---.-- --,-- -.---- ---,---- --.--- -.---------,

5
Month

Figure 4.9: Updated consequence occurrence probability distribution of accident events
over ten months
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4.4 Quantification using Probabilistic Approach

The quantification can be performed in two differen t ways. One method is the single

point estimates, or is deterministic in nature. The quantification of previous sectio ns is

discussed by using first approach. Using deterministic approach, an analyst may assign

values for discrete scenarios to see what the outcome might be in each. The advantage of

this approach is that it is quick and easy to apply . It also avoids the problems of

comm unicating risk in terms of probability and statistics that are often difficult to follow

for non-experts. However, in this deterministic approach, uncerta inty is not exp licitly

addressed. Therefore, the deterministic approach may give false sense of accuracy and

ignores variability in the population. As well as, it is evident that, the failure probabi lities

of the safety systems are not deterministic in the nature and tends to follow distribution

(Kalantamia et aI., 2009).

The probabi listic approach takes variabi lity and uncertainty in to account of by using

probability distributions rather than point estimates (Vose, 2000) . They can be used to

estimate distributions for occurrence probabilities, which provide a more comp lete and

balanced description of risk for the decision-maker.

4.4.1 Estimation of Prior ProbabilityDensity Functionfor Top Event of Fault Tree
(Main Safety Barriers)

The input failure probabili ty (failure probabi lity of basic event) data are assigned as a

distribution . The reliability data of OREDA (2002) were estimated by collecting data

from multiple companies. The variation from multiple samples is described by a gamma

distrib ution. Lognormal distribution is chosen for input failure rates which are derived

from the CCPS hand book and literature due to the genera l shape and ease of calculation
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(Yang et aI., 20 10). The failure probabilities derived by expert judgment and the Lees '

Loss Prevention Handbook (Mannan , 2005) are assumed as a normal distribution because

of ease of data analysis.

Monte Carlo simulation was performed to obtain the top event probabilit y distribution .

Random number s were generated for input failure rates using their distributions. The

failure probabiliti es of input variables or basic events are assumed as exponentially

distributed the time. Hence, the failure probabiliti es can be estimated using equation 4.8.

(4.8)

where:

Pj =failure probab ility of fh basic event

Aj= Failure rate of jlh basic event

t =operational time (considered as 8760hrs)

The fault tree calculat ion is coded by using the MATLAB simulation tool. Finally ,

sufficient numbers of simulations are performed to obtain a steady state condition and

then, data are fitted to the most suitable distribution. Based on the simulation results, the

prior distribution for the i'h safety barrier can be modeled by Beta distribut ion with

(4 .9)

The mean and variance for the prior failure probabiliti es of safety barriers can be

calculated using equation s (4.10) and (4.11) respectively .
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lIlean = E(x; ) =~
a;+f3;

(4.10)

Varia nce =Var(x;) (4. 11)

The results of Monte Carlo simulation are shown in Table 4.8.

Tab le 4.8: Prior distr ibution of failure of safety barrie rs and its parameter s

Safety Barrier Distribut ion
Release prevention Beta
Dispersion prevention Beta
Ignit ion prevention Beta
Escalation prevention Beta

Parameters
a=16.4 p=294.5
a=21.2 p=339.7
a=199.1 p=1679.7
a=49.9 p=1385.8

Mean
5.27x lO·2

5.87x lO-2

1.06xlO-1

3.46xlO -2

Variance
1.60x 104

1.53x 10-4

5.04x I0-5

2.3 1xlO-5

4.4.2 Prior Occurrence Probability Density ofthe Consequences

The probabi lity propagatio n of the event tree is coded using the MATLA B simulation

tool to perform the Monte Carlo simulation. Probabilities of breaching the barriers are

estimated using fault tree analysis . The event tree for this case study is shown in Figure

4.2. The results are shown in Table 4.9.

Table 4.9 : Prior occurrence probability distribution of the consequences and its
parameters

Conseque nces Distribution
C/ Beta
Cz Beta
C) Beta
C4 Beta
C5 Beta

Parameters
a=293.7 p= 16.4
a=16.4 p= 313.2
a=9.8 p=3525.4
a=9.4 p=29724.3
a=8.0 p=70 1547

Mean
9.47xlO -1

4.97x lO-2

2.77x lO-3

3.16x lO-4
1.14xlO-5

Variance
1.61x104

1.43xl 0-4
7.82xlO -7

1.06xlO·
g

1.63xlO -11
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4.4.3 Estimation of Likelihood Failure Probability Function of Safety Barrier

The determination of an appropr iate likel ihood functio n is ofte n more prob lematic .

However, assuming the failure probabilities are random numbers and independent of their

conseque nces, the like lihood function is approximated by a binomial distribution. Hence ,

the likel ihood function for the i1h safety barrier is given as a binom ial distribution with the

where :

f tdata / x) = (IIi )X;'-i(1- Xi)""', i = 1,2,3,4
1If,i

IIJ,; =cumu lative number of failures associated with the i th safety barrier

li s.; =cumulative numb er of successes assoc iated with the i th safe ty barr ier .

(4. 12)

II; = tota l number of events associated with the i th safety barrier, i.e. lip + nu-

X; =failure probab ility of i1h safety barrier.

The parameters li s.; and IIJ,; can be estimated using the da ta in Tab le 4.4.

4.4.4 Estimation of Posterior Probability of Safety Barriers

The posterior probabi lity density func tion for contin ues random variable (J is given by :

f( O/ y) = g(Y:2;/(0)

where, ley) = fg(y / O)h(O)dO.

(4. 13)
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The function f( 8 /y)is the posterior density, h(8)is the prior density, g(y/8) is the

likelihood density or sampling density of the data, and ley) is the marginal density or

norma lization density.

Equat ions 4.9 and 4.10 are substituted for Bayes ' theorem to generate the posterior

distribut ion. In this case, the likelihood function has been chosen as the binomial

function, then their conjugate prior exists, often also in the Beta fami ly. Hence, we have

the posterior function in the form of Beta with the parameters a j' andfJ j·' The derivation

is shown in the Appendix D.

i=I,2,3,4 (4.14)

Then, the posterior distribut ion parameters are given by:

Table 4. 10 lists the updated distribut ion parameters of safety barrier failure .

(4. 15)

(4.16)

4.4.5 Estimation ofUpdated (Posterior) Occurrence Probability of Consequences

Using the posterior failure distribut ion, the event tree estimates the posterior occurrence

probability distributions. The posterior distributions are also fitted to a beta distribu tion

and the distribution parameters are shown in Table 4. I I.
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Table 4.10: Posterior distribution parameters

I
2
3
4
5
6
7
8
9
10

RPB (xl)

a; P;
23.4 299.5
31.4 303.5
41.4 308.5
78.4 318.5
101.4 321.5
110.4 324.5
118.4 328.5
129.4 332.5
143.4 335.5
150.4 337.5

OPB (x2)

a; P;
24.2 343.7
26.2 349.7
29.2 356.7
39.2 383.7
47.2 398.7
49.2 405.7
51.2 411.7
55.2 418.7
59.2 428.7
63.2 431.7

IPB (x3)

a; P;
200.1 1681.7
200.1 1683.7
201.1 1685.7
205.1 1691.7
207.1 1697.7
208.1 1698.7
210.1 1698.7
211.1 1701.7
212.1 1704.7
214.1 1706.7

EPB (x4)

a; P:
49.9 1386.8
49.9 1386.8
49.9 1387.8
50.9 1390.8
50.9 1392.8
50.9 1393.8
51.9 1394.8
51.9 1395.8
51.9 1396.8
51.9 1398.8

Table 4.11: Posterior occurrence probability distributions parameters

I C/ c. CJ C4 Cs
Month

al•p A p o .; P2.P «; P3.P a4.p P4,P as.p Ps.P
1 297.6 23.2 23.2 321.1 13.1 2937.1 12.4 24361.7 10.1 551319.0
2 301.4 31.2 31.2 326.7 15.3 2609.2 14.5 21562.0 11.4 470923.0
3 307.5 41.3 41.2 335.6 18.9 2344.2 17.6 19059.9 13.1 394895.0
4 317.1 78.1 78.2 358.1 29.2 1759.7 26.2 13693.8 17.6 251968.0
5 320.6 101.1 101.0 370.0 37.0 1596.3 32.4 12148.4 20.3 208364.0
6 325.3 110.7 110.1 376.3 38.9 1554.9 34.2 11822.1 20.9 198450.0
7 329.7 118.9 118.2 383.3 41.3 1539.2 35.9 11493.8 21.9 189484.0
8 329.6 128.3 127.8 388.2 44.7 1496.4 38.4 11039.5 22.5 174241.0
9 337.5 144.2 143.1 400.9 49.4 1479.5 42.0 10789.8 23.9 165558.0
10 336.3 149.8 148.8 404.7 52.3 1444.1 44.2 10390.3 24.4 155725.0

Based on these parameters, the mean probabil ity of the consequences over ten months of

2009 are shown in Table 4.12.
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Table 4.12: Poster ior occurrence prob ab ilit y (mean) ove r ten month s

I Posterior occurrence probability (Mean)
Month

Safe (C I ) Near miss (C 2 ) Mishap (C 3 ) Incident (C 4 ) Accident (Cs)

I I 9.28xlO' 6.74xlO' 4.44xlO'· 5.09xlO· 1.83xlO-

2 9.06xlO'l 8.72xIO'2 5.83xlO'3 6.72xlO-4 2.42xlO'5

3 8.82xlO' l 1.09xIO,I 7.99xlO·3 9.23xlO-4 3.32x1O '5

4 8.02xlO,1 l.79xlO·1 1.63xlO·2 1.91X 10'3 6.98xlO·5

5 7.60xlO,1 2.14xlO·1 2.27xlO·2 2.66xlO·J 9.74xlO·5

6 7.46xlO·1 2.26xIO·1 2.44xI0·2 2.88x1O '3 1.05xlO'4

7 7.35xlO,1 2.36xlO·1 2.6IxlO·2 3.llxlO·3 1.15xlO-4

8 7.20xlO'l 2.48xlO,1 2.90xlO·2 3.47xlO,J 1.29xIO,4

9 7.01xlO,1 2.63xlO'l 3.23xlO,2 3.88xlO'3 1.44xIO-4

10 6.92xlO'l 2.69xlO'l 3.50xlO,2 4 .24 xI0·3 1.57xIO-4

4.4.6 PredictiveMechanism

Th e model to predi ct the numb er of abnorma l eve nt in the next tim e inte rva l is devel op

and discu ssed in Ch apter 3. Th e pred iction of the time for the next abnor ma l eve nt to

occur is di scu ssed in thi s section.

The genera l predi ct ive equation for continues rand om var iable can be esti ma ted by using

the equation 4 .17 (Hamada et al., 2008).

f(zl y) =19(z l B)h(BI y)d B

where. B is a variable. h(B I y) its posterior distribu tion based on.

data y =(YpY2.Y 3...•Yn), and g( z I B) is the sampling distribution of z given B.

(4 .17)
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The predictive distribut ion to estimate the time to an event of severity level k,lk.i+I' is

written as equation 4.18.

(4.18)

where, Akis the rate of e" severity level, i.e. the mean number of failures per unit time is

the rate parameter. The commonly used prior distribution for Akis the gamma distributi on

(Hamada et al., 2008). The gamma distribut ion is a conjugate prior distribution and has a

probability density given by:

(4.19)

where, a (>0) is the shape parameter and p(>0) is the scale parameter.

Considering I , the time of event occurrence, is following exponential distribu tion with the

rate Ak. Then the distribution for I given Akcan be written as:

(4.20)

Suppose that we observe /I conditionall y independent events in the time interval 1/ to In,

and each follow exponential distribution, then the sampling distribution can be written as

(Bedford and Cooke, 200 1):
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(4.2 1)

where:

t; =~ti (The total time period).

Applying Bayes' theorem , with an exponential likelihood function , the posterior

distributi on of Ak can be estimated using Equation 4 .22.

h(A kldata) p(dataIAk)p(Ak)

jp (data I Ak) p (Ak)dAk

A.~.t +n-le -( Pt +T" ) ..i.t

jA ;.+n-le-<p.+T.).l'dA
k

(4.22)
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a p = a, + II ; the posterior shape parameter.

fJp =fJk +Tn; the posterior scale parameter.

The posterior distr ibution of Akis also a gamma distribution with the parameters Q pand fJp.

The posterior distributi on of ).k and the sampling distribution are substituted for equation

4.18 to estimate the predictive density function of time to the next event occurrence.

(4.23)

By integrating equation 4.23 :

(4.24)

As we know a, andfJ k ' we substitut e a p,fJ pby a, andfJ k. Then the prediction density

become s:

f (tk.i+J / data )
(a k+II)(fJk+T" t ,+n

(tk.i+J +fJk +T,,>Q,+n+J
(4.25)

Finally, equation 4.25 turns into the Pareto distribution as shown in equation 4.26.

Considering a =(ak + II), r =(b, +T,,) and variable x =(b, +T; + tk) , the Pareto

distribution can be rearranged as:

ar Q

f (x =tk•i+1 I data) =? (4.26)
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where, a and r are para meters of Pareto distri bution, and mean and varia nce can be

est imated using the Equation (4.27) and (4.28) respective ly.

mean =~ , a> 1
a- I

ar?
Variance =(a- I) 2(a- 2) , a> 2

(4.27)

(4.28)

The values for ak and b, are assumed as 0.0 1. The mean time to the occurrence of the

next even t is estimated using relevant pred ictive probability distribution. Table 4. 13 lists

the result s of predictive model.

Table 4. 13: Predictive time to the occurrence of the next event

Severity level

Mean time to next
event (days)

Near miss Mishap

3.5 12

Incident

30

Accident

717

4.5 Analys is of Results

During the seco nd phase of the SHIPP methodology, the potential process related

accident scenarios in the LNG facility were identifie d. Ana lyzing those acciden t

scenarios , the accident sequence process, their causes, consequences and severi ty leve ls

assoc iated with each conse quence were determined. This informa tion was includ ed in the

accident model to illustra te the accident process. The model uses fou r sequentia l barriers,

release prevention , dispersion prevention , ignition prevention and esca lation prevention ,

to depict the acciden t process . To test the models ' validity, a quantit ative assessment was

performe d. The failure probabilities of each safety barrie rs and conseq uence occurrence

probab ilities were estimated using combination of fault tree and event tree analyses .
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These probabil ities are known as prior estimates or initial beliefs. According to the prior

results, the consequences of having higher severity have low probabilitie s of occurrence ,

while the consequences of having less severity have higher probabilitie s of occurrence.

The probability of the system remaining safe is obtained as 0.947, whereas the

probabilitie s of severity levels, near misses, mishaps and incidents are dramati cally low.

The probabilit y of an accident is estimated as 9.32 x 10-6, which is considerabl y low. The

past accident statistical data in different process industries displayed the same

phenomen a. In reality, events, such as near misses and mishaps, are more frequent than

incidents or accident s. The relation ship of industrial accident statistical data and

quantified results obtained illustrates that the proposed model is applicable to real

applications. A similar conclusion can be made using the results obtained by probab ilistic

approach. Therefore, this model is able to provide both qualitati ve and quantitati ve risk

information of the process facility.

The prior failure probabil ities of safety barrier s were updated using the Bayesian theorem

as new information was observed. Plant real-time abnormal events data is used to

formulate the likelihood probabilitie s. Bayesian posterior probabilit y values of safety

barriers depict the degradation of safety barriers with the time (Figure 4.4). In

deterministic approach, the failure probability of RPB has drastically increased within

first five month. Then, it shows slow increasing, whereas, in probabili stic approa ch it is

significantly increasing throughout the period. In deterministic approach, the failure

probabilit y of DPB has remained steady for ten months. However, the results in

probabili stic approa ch illustrate that it also increasing throughout the period of ten
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months. In the both approach the failure probabilitie s of IPB and EPB are also slowly

degrad ing with the time.

The event tree analysis is employed to estimate the updated occurrence probabiliti es

based on posterior failure probabilitie s of safety barrier s. These results show that end­

state probabil ity or consequences occurren ces probability change dramaticall y over the

period of ten month s as new information integrated into analysis. Probabilit y distribution s

of five severity levels are illustrated this phenomenon (Figures 4.5 to 4.9).

Accordin g to results of determini stic approach, although the prior probabil ity of safe

(C\) condition has a very high probability of occurrenc e, as times goes by its posterior

probabil ity is gradually reduced from 0.927 to 0.850 (Figure 4.5). However, in

probabili stic approach, the posterior probability is reduced from 9.28x lO-\ to 6.92x lO-' .

This implies that the system degrades with time. Consequently, its performance is

reduced . As a result of system degrad ation, the posterior probabilitie s of occurrence of

near misses, mishaps, incident s and accident are increased. The posterior probabil ity of

near miss (C 2 ) shows significant improvement with the time (Figure 4.6), whereas

mishap (C3)shows slow fluctuation (Figure 4.7), with an increasing tendency. Most

significantly, posterior occurrence probabilities of incidentf'C j j and accidentf'C j ) are

dramatically increased (Figures 4.8 and 4.9).When an event occurs (i.e. accident) , the

preventi ve measures are applied based on its causal factors. However, as time goes by,

the system shows impairment in its performance . The zigzag behaviour of posterior

probability distribution of accident indicates this process (Figure 4.9) .
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In determin istic approach, the predictive model estimates the probabilit y distribution of

the number of abnormal events occurring in the next time interval. The average rate of

occurring of abnormal events A is updated whenever a new observation arrives. This is

known as updated or posterior rate Ap • The predictive model is derived based on Poisson

distribution with updated rate Ap • Therefore , the prediction based on updated failure rate

information has lower uncertainty than a prediction based on prior information. The mean

of the predictive accident in the next time interval is 22 and the standard deviation is 5

events. This means that in eleventh month , 22 events are expected to occur.

In probabili stic approach , the predictive distribution to estimate the time to occurrence of

an event with different severity level is developed. Based on predicti ve results, in this

particular proces s facility, the expected time for an accident to occur is 717 days.

However, the plant will observe a near miss, mishap and incident within the first month.

According to these results, the expected number of days for a near miss, mishap and

incident to occur are 3.5, 12 and 30, respectively. The model updates the predictive

results dynamically whenever a new event occurs in the system and continually learns

system behaviour as same as determini stic approach .

An uncertainty analysis through the both approach reveals that (I) uncertainty of top

event probability or failure probability of safety barrier is reduced significantly by using

Bayesian updating method and real life abnormal event data. (2) uncertaint y of is

reduced significantly using posterior parameters and (3) uncertainty of consequences

occurrence probability is also reduced . Furthermore, in probabili stic approach, Using

Monte Carlo simulation, the distribution of top event probability and distribution of the
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consequence s probability were obtained the characteri ze the uncertainty of the results.

This way. the SHIPPprovides precise information of how system degrading with time. It

also helps to increase the overall safety and performance of the system by applying

preventi ve measures with the knowled ge of realistic prediction .
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Chapter 5

APPLICATION OF SHIPP METHODOLOGY TO AN LNG
PROCESSING FACILITY

Natural gas is considered to be a green fue l as it burns with very few pollutants . In

addition, it is relati vely safe and economically feasible for storage and distr ibution to a

diver se group of consumers. Globa l consumption reached 2600 billion m3 per year in

2003 and there has been continuous growth at an annual rate of 1.8% (Huang et al.,

2007 ). To meet this rapid growth in global demand for natural gas, especiall y for use as a

fuel for power generation in modern combined-cycle gas turb ine plants, new LNG

processing plants (liquefaction facilities or proce ss trains) need to be designed and

existing facilities need to be modified. Complex technologies, production and operati on

optimization methods and cost reduction strategies are needed to obtain high efficiency

and economical feasib ility. On the other hand , developm ent in such areas leads to

potential disastrou s failure mode s and new safety issues. In addition , the volatil e and

cryogenic propertie s of LNG along , with the flammab le and explosive beha viour of its

vapour s, create risks for those who handle it, for industrial assets and for the general

public (Horn and Wilson , 1977). Thu s, comprehensive and systematic risk and safety

management are of paramount importance during the planning , designing and operatin g

phases of LNG process trains. The objective of this chapter is to test and validate the

predictive accident modeling approach.
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5.1 Liquefied Natural Gas (LNG) Facility

The LNG value chain is compr ised of four compo nents: (I) exp loration and production,

(2) liquefaction, (3) shipping and (4) storage and regasification. In this work, the

liquefaction plant is subjected to a safety assess ment using the SHIPP methodology.

5.1.1 The LNG no« and Process Description

The liquefaction plant is the main capital-intensive unit in the LNG supply chain. A

liquefaction facility receives natural gas from the field reservoi r through pipeline s, and

lowers its temperature to liquid form for storage and later shipment to customer s. The

plant is constructed as one or more processing "tra ins" which receive the gas, filter and

cool it, and store the liquid in a tank until a tanker ship picks it up. The overall process

plant contains primary processes such as gas treating, dehydration, acid gas removal,

nitrogen (N2) removal, liquefaction and fractionation, as well as utility supply units. The

utilities required to support the main processing unit cons ist of heating and cooling media

(steam, cooling water, chill water, etc.) and a compression unit.

The processes at the liquefac tion plant are divide d into three main areas: feed gas

preparation, fractionation and liquefaction. There are several licensed processes availa ble

for liquefaction. Three main processes are commercially used for LNG liquefaction,

namely: (I) propane pre-coo led mixed refrigerant (C3MR) liquefact ion process . (2)

ConocoPhillips Optimized Cascade process (Ca paC) and (3) multi-fluid cascade process

(MFC) (Huang et al., 2007).
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Figure 5.1 represents the simplified process flow diagram for the basic C3MR

liquefaction process which is used in the majority of LNG plants built to date. The LNG

processing facility which is used as the case study in this research employs C3MR

liquefaction technology. All LNG plants have field operations and a network of pipeline s

that feed the raw natural gas and liquid into the plants. The liquefaction cycle requires

cooling of natural gas to about -160 °C. Therefore, the incoming gas needs to be cleaned

from substances that could freeze at low temperatures and may plug up the equipment.

These substances are typically water vapour (H20), carbon dioxide (C02) and higher

molecular weight hydrocarbons which may be commercially useful. Process units

involved with this operation include acid gas removal, dehydration, propane refrigeration

and heavy hydrocarbon removal. The main processes are refrigeration, absorption and

adsorption. The bottom part of the heavy hydrocarbon removal unit entering the plant

fractionation unit consists of a de-ethanizer, de-propanizer and de-butanizer,

In the de-ethanizer, most of the ethane and light components are removed. High

molecular weight hydrocarbons are removed in the Liquefied Petroleum Gas (LPG)

fractionation . process. This is a marketable by-product of the LNG plant. Therefore,

fractionation is an important unit operation in the overall plant economy . Purified LNG is

then sent to the Main Cryogenic Heat Exchanger (MCHE) to liquefy, and the product is

sub-cooled through the heat exchange with a circulating Mixed Refrigerant (MR) system.

The next step is to decrease the pressure to near storage tank pressure. This is achieved by

sending sub-cooled liquefied natural gas through a liquid expander . In the flash unit,

vapour and the liquid fraction are further separated. During this process, nitrogen is

preferentially ejected to the vapour phase. After heat exchange for refrigeration recovery ,
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the nitrogen enriched flash vapours are compressed in a motor-driven centrifugal

compressor and sent on to the plant fuel system. Finally, the low pressure LNG fraction is

recovered and pumped through the LNG rundown line to LNG storage .

5.1.2 LNG Properties and Associated Hazards

Natural gas is composed almost entirely of methane with trace amounts of ethane ,

propane, butane, nitrogen and carbon dioxide. The percentages of each component

depend on the location of origin of the natural gas . As previously discussed, the hazards

associated with LNG are mainly due to properties such as cryogenic temperature,

flammability and vapour dispersion characteri stics.

The boiling point of LNG is typically -162 DC at 1.7 kPa, i.e. LNG is a cryogenic liquid .

Its direct contact with skin causes freeze bums and in contact with the eyes may cause

damage . It also causes brittle fracture of metals. The main component of LNG (methane)

is considered to be an asphyxiant gas. LNG is a flammable substance of which the

flammability range in air is between 5% and 15% by volume . In the presence of an

ignition source, a flammable cloud is ignited causing a flash fire or vapor cloud

explosion. Upon exposure to an ambient heat source, LNG vapourizes rapidly. The

ignition of vapour over an evaporating pool cause s a pool fire. LNG has a slightly higher

(10-11 %) energy density than gasoline. Therefore, it develops a relatively high flame

temperature for small fires that are not oxygen starved . Natural gas is lighter than air at

standard temperature. However, when LNG is spilled at -162 DC,the vapour is heavier

than air until it warms up to approximately -110 Dc.
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In this condition, the vapour cloud travels a relatively long distance before dispersing to

its lower flammability level (LFL) (Woodward and Pitblado, 2010). Natural gas in liquid

form does not explode. However, when LNG is spilled into water , the explosion scenario

known as "Rapid Phase Transition" (RPT) is observed . This happens due to violent

vapourization of very cold liquid contacting the water. RPT develops an overpres sure

which creates low damage . (Woodward and Pitblado , 2010).

5.2 Accident Mode ling for an LNG Processing Fac ility

Prior to developing the process accident model, hazard evaluation studies are performed

using available process information of the plant such as incident notification records, flow

sheet sketches, piping and instrumentation diagram s, data sheets and procedure s. Throu gh

HAZOP study, it is possible to identify and understand the potential accident sequences,

causal factors and their consequences . Assigning severity for consequenc es is based on

the definition s described in the Chapter 3. The process accident scenario is then

developed using the Hazards and Operability Study (HAZOP) to identify the safety

barrier s that are in place, which have been discussed in the process accident model.

prevent the scenario proceeding to end results (consequences) facility during the time

period of 2007 to 2009 . It is noticed that there were no catastrophic accident s recorded in

this time period . Then, it is determined that the barriers : release prevention , disper sion

prevention , ignition prevention , escalation prevention, human factor and management and

organizational factor were only involved with the process accident scenario s in this

particular case study. Although damage control and emergency management barrier exists

in the model, its effect has been assumed negligible as it has no involvement with the



91

acc ident scena rios . Therefore an acciden t model is modifie d accor ding to particular case

study.

5.2.1 Failure Assessment of Safety Barriers

Fault trees of release , dispersion , ignit ion and esca lation prevention . hum an factor and

management and organizational barriers are constructed to analyze LNG proce ss

accidents using the generic FT models. Figures B.5 and B.6 are the resulting fault tree of

the human factor and management and orga nizationa l barrier s. In the human factor tree,

sub-safety element s logically connec t throug h an "OR" gate with the top even t, whereas

in the management barr ier, this is done by means of an "A ND" gate. This indicates that

one sub-eleme nt failure can lead to failure of the human factor barrier. However, both

sub-elements of the management and organizational factor barrier need to fail for the top

event occur. Con struction of fault trees for rema ining barriers were deve loped and

discussed in the previous chapter and comb ined with this work. The failure probab ilities

of basic events for these two barriers are assigned using plant specific component failure

data and industrial expert opinion. Tables C.5 and C.6 list the failure probabilities of each

basic even ts.

The resu lts are obtained by simulating the relevant fault trees and presented in Ta ble 5.1.

Assumptions are made that the failures do not occur simultaneously, and they are

indepe ndent. The probabi lity of failure is denoted by x, (i.e. the failure probability of the

r safety barrier which is also known as the prior probabilit y or initial belief). The prior

failure probabi lity p(Xj), where i =1, 2, 3, 4, 5, 6, deno tes the failure probabilities for the

safe ty barri ers, RPB . OPB , IPB, EPB. HFB and M&OB , respectiv ely.
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Table 5.1 : The failure probability data of each prim ary safe ty barrier

Safety barr ier Lr.)

Release Prevention Barrier (RPB)
Dispersion Prevention Barrier (DPB)
Igniti on Prevention Barrier (IPB)
Esca lation Prevention Barrier (EPB)
Human Factor Barrier (HFB)
Manag ement and Organizational Barrier (M&OB)

Failur e Probability P(x j )

0.0527
0.06 16
0. 1060
0.02 7 1
0.0029
0.042 1

Based on the data avai lable for the LNG facility, the computed results (Table 5.1 ) are in

good agreement with real plant data. This helps to conclude that the developed model is

app licable to real situations. However, the result s contain a certain degree of uncertaint y

in quantification. Uncertain ty may be reduced using a probabi listic approach as discussed

by Kalantam ia et al. (2009), Yang et al. (2010) and and also in this work (Chapter s 3 and

4).

5.2.2 Estimation of Occurrence Probabilities of Consequences

An event tree (ET) ana lysis is used to assess the consequences . Event tree represen tation

of accident scenario s for this particular case study is shown in Figure 5.2. The initiating

event is caused by the syste m deviating from its norma l operating conditions . Each of the

initiating events of this prob lem is studied . The frequency of initiating event s is estimated

using plant specific historica l data. For this case study, the probabi lity of initiating events

is considered to be unity to simplify the quanti fication Probabilities of breachin g the

barriers are estima ted using faul t tree ana lysis as discu ssed above . A particular initiating
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event has six barriers to prevent a hazardous outcome. The effects of human factor and

management and organi zational factor are the most significant.

As described in the model development, the intervention of these in the accident process

is applied throughout the proce ss. Con sidering their independent hierarchical effect and

the simplicity of event tree development, they are placed and branched in the event tree as

shown in Figure 5. The end states C/. C2. C3. C-/and C, denote severity levels assigned to

each consequence, i.e. safe, near miss, mishap, incident and accident. Fault trees are used

as inputs to this event tree, and the top-e vent probabi lity in the fault tree is the failure

probability of safety barriers in the event tree . Thus, the probability of final dama ge states

(severity levels) is estimated and presented in Table 5.2.

Table 5.2: Prior estimate of occurrences probability of each consequence

Severity level C/

Probability of 9.07xlO -1 8.7IxlO-2

occurrence
4.85xlO -3

The degree of seve rity of final outcome s, C/ to Cj • is increasing , whereas their

probabilities are gradually decreasing. This inverse relation ship between degree of

severity and probability reflects the fact that events such as near misses and mishap s

occur more frequently than an event such as an accident in this facility . The event tree

result s are comp ared with 'real plant data to test the validity of result s. The numb er of

events occurred in different severity levels are estimated using the HAZOP study and its

cumulative values have been listed in Table 5.3.
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Figure 5.2: Event tree analysis for LNG facility

9.0~ x lO· '

2-C2 3.97x 1O"'

3-C I 2.59x IO·J

l.I~ xlO-l

~ .72 xlO·'

2.07xlO·J

1.35xlO-l

5.95xlO"

2.77xlO·J

IO-C~ 1.22x lO-l

II -C3 7.95x lO"

3.49 x lO·'

3.20XIO·'

I.~O xlO··

9.17x lO·'

~.03 XIO-·

8.91x 10"

3.9 Ix lO·'

2.55xI O"

I. I2x 10"



95

According these results, it is clear that the numbers of events such as near misses and

mishaps which occurred in this LNG facility are higher than events such as incidents and

accidents. Therefore, the results follow the real plant accident statistics. It is thus

concluded that the developed process accident model is able to represent real life acc ident

scenarios.

Table 5.3: Cumu lative number of abnorma l events for each month of years 2008 and
2009

Time Severity Level
interval C/ I C2 I C3 I C~ I C5

1 3 4 0 0 0
2 5 6 2 1 0
3 10 8 2 1 0
4 21 34 10 2 0
5 24 39 11 2 0
6 26 42 11 2 0
7 30 44 12 3 0
8 31 46 12 6 0
9 33 47 12 6 0

10 35 50 13 6 1
11 36 54 15 6 1
12 40 56 15 6 1
13 45 60 17 7 1
14 49 66 19 7 1
15 54 73 21 8 1
16 64 100 27 11 2
17 67 115 33 13 2
18 70 122 34 14 2
19 74 128 34 15 3
20 78 135 37 16 3
21 81 145 40 17 3
22 83 148 42 19 3
23 90 158 44 19 3
24 94 162 46 19 3

Furthermore, the event tree shows the route through which consequences may occur and

how various safety functions might prevent and/or mitigate the event. An important point
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to highlight is that this quantifi cation inherit s uncertainty. The uncertainty is due to

determination of basic event probability, development of fault tree analysis (are we

capturing all the failures that lead to the top event?), and modeling and determination of

hazard s (are all the hazard s modeled correctly?). As mentioned in Chapt ers 3 and 4,

Bayesian updating is used to update the prior knowledge and thus to reduce the

uncertainty in the quantification.

5.3 Predictive Modeling

The expected number of abnormal event s in the next time interval predict s using the

predictive model discus sed in the SHIPP methodology (Chapter 3). In this model, the

model parameter (rate of occurrence of abnormal event, A) is updated using the Bayesian

updating mechani sm which can be employed to combine sample information (likel ihood

information) with prior information to arrive at more accurate posterior (updated)

information, The prior information is the original distribution of the parameter to be

updated and likelihood information related to the data on the parameter collected directly

from the LNG processing facility. The se two distribution s are then combin ed to arriv e at

the Bayesian (updated) distrib ution of the parameter. It is important that the models with

the updated parameters had better predictive capability than the model s developed using

the prior information, and the Bayesian model performed better than all the other updated

model s.

The prior probability distribution of the rate of abnormal event occurrence, A. , is

considered to follow a gamma distribution with distribution parameters a andjJ (Vose,

2008). Assuming Poisson likelihood function for observing Yn event s in period II,
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posterio r distribution of rate of occurrence of an abnorma l event p()./ data) follow s

gamma distributi on with the parameter a+ ~Yn and p+n (Hamada et al., 2008). Then

the expected posterior (update) rate of abnorma l event s is estimated using these two

parame ters .

The model discussed in Chapter 3 is modified to obta in the predicti ve model to estimate

the numb er of abnormal events in the m'h time interva l YI+..., give n observed data , as

equation 5.1 .

(5.1)

where, data =(YI ' Yz' YJ,..., Y,) is the number of abnormal event data in the time t, ). p is

the updated rate of abnorma l events and ~ Y" is the total number of abnorma l events in

the time interval n. 'm ' denote s the number of future time intervals and it can be varied

from one to infinity. The equation can be simplified for next time interval, by substituti ng

111equal s toone.

5.3.1 Validating of Predictive Model

The mathematical and probability model s are genera lly evaluated in terms of several

aspects such as their clari ty, genera lity and testability (also know n as validity) . Herein,

the predictive model is evaluated in terms of testability or validity . Validation is the task

of demonstrating that the model is a reasonab le representation of an actual system. There
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are several approaches such as sensitivity analysis, response analysis, response surface

modeling and external validation and they are applied as appropriate to the different

aspects of the particular model. In the current work, an externa l validation approach is

used. In this approach the predictive model results are compared with real data. "Real

data" refers to the abnormal event data gathered from the particular LNG facility.

The predictiv e model is used to predict the number of events in the different months of

years 2008 and 2009. Tab le 5.3 lists the cumulative number of events with their severity

levels for each month of years 2008 to 2009 (real plant data).

The updated model parameter Ap , which is the updated abnormal event occurrence rate, is

estimated based on event information from the month Januar y to December 2007 using

Equation 5.1. To begin, the prior distribution of model parameter A is considered as a

non-informati ve prior, and parameter s a and fJ are taken as 0.001 (Meel and Seider,

2006). With this prior, 98 events were recorded within this year (2007) . The poster ior

(updated) paramet er value of occurrence rate is then estimated as 8.16 based on this

information . Using the updated model , the predictive probability mass function for the

next time interval (m= l ) and for the next two time intervals (m=2) of the year 2008 are

estimated and shown in the Figure 5.3.

The predictive mean numbers of event for each month of the years 2008 and 2009 were

also estimated. The predicted values were then regressed with the observed values in the

LNG facility to check the amount of variation explained by the predictive model. The

results of this exerci se are given in Table 5.4.
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When the predicted number of event s is regressed with the observed number of events in

the first three time intervals, 14% of the variation (absolute error) is identified, and the

predicted value s are overestimated. However, when the number of time interval is

increased, it can be seen that the model predictions are always less than the observed

values (underestimated), and the model predicts event s 20 to 50% less than those

observed . The se result s demon strate that the propo sed predictive model is more accurate

for short term prediction than for long term prediction.
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Figure 5.3: Predictive probability mass function of number of abnormal

The model paramet er A. is updated continually whenever a new observation arrives in the

system. In this case study, the predicted values of the next time interval is estimated and

compared with the actual value that has already occurred within this time interval. Figure

5.4 illustrates the variation of predictive mean and actual value . According to the graph ,

the predictive results fluctuate close to observed value with two exceptions.
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Furthermore, the particular LNG facility is observed to have a unique pattern of increased

abnorma l events in the fourth month (time interva l) of each year for which data were

ana lyzed. The reasons for this observa tion are plant specific and exp lanations of this are

yet to be estabi lised .

Table 5.4: The predictive mean, actual number of abnorma l events, and error of
predictio n for the years 2008 and 2009.

Actual Predictive
Absolute

number of number of Standard
Month

abnormal abnormal deviation
error

events events
percentage

1 7 8 3 14
2 14 16 4 14
3 21 24 5 14
4 67 33 6 5 1
5 76 4 1 7 46
6 81 49 7 40
7 89 57 8 36
8 95 66 8 31
9 98 74 9 24
10 105 82 9 22
11 112 90 10 20
12 118 98 10 17
13 130 106 11 18
14 142 114 11 20
15 157 122 11 22
16 204 131 11 36
17 230 139 12 40
18 242 147 12 39
19 254 155 12 39
20 269 163 13 39
2 1 286 171 13 40
22 295 180 13 39
23 3 14 188 14 40
24 324 196 14 39
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In this plot, the signif icant behav ior of predicted value can 'be observed . The predicted

values have been increased or decreased according to the deviation of observed number

of events. For an instance, the predicte d value has increased in the 5th time interva l

because of number of observed event has increased significantly in the 4th time interva l.

Similar behavior of predicted value can be seen in the 10, 17 and 23 time intervals. This

can be explained by fact that the predicted model parameter is continuously learning from

actua l system output and update the predicted results according to system behavior.

- e-e-e-e __ . _e_. ·· _._._ . __ _- • .- • .- .--.

10 12 14
Time interval (Monlhs)

Table 5.5: The variation of prediction mean and actual number of abnormal events from
January 2008 to December 2009
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Chapter 6

SUMMARY, CONCLUSION AND FURTHE R RESE RCH

6.1 Summary

A review of existing accident modeling approaches provided insight into limitations for

applications to modern complex process systems. It is evident, the majority of existing

models have focused on occupational accidents, whereas models focusing on process

hazards have been scant. Further, existing models are unable to present a holistic picture

of system safety, and are not capab le of accounting for multip le causal factors. Since,

they are descriptive mode ls, rather than predictive models.

The System Hazard Identifica tion, Prediction and Prevention (SHIPP) methodology is

proposed to identify process hazards, evaluate them, model probable accidents, predict,

prevent, contro l and mitigate their occurrence s in a process facility. The model has been

set up placing five success ive safety barriers in sequential order together with two

additiona l safety barriers placed common to all. The five safety barriers: release

prevention, dispersion prevention. ignition prevention, escalation prevention and damage

control and emergency manageme nt, are introduced as necessary safety functions for

process accidents. Furthermore, to depict human, manageme nt and organizational factors

throughout the accident process , two additional safety barriers (human factor, and

management and organizat ional factor) have been kept commo n to all main safety

barriers. To obtain holistic view of cause consequences mechanism, it has been enhanced

using accident analysis techniques such as fault tree and event tree. To minimize

uncertainty in the quantitative analysis, Bayesian updating is used. Another important
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feature of the SHIPP methodology is its predictive capability . The predictive mode l

provides quantitative information that helps to identify the particular failure modes. The

SHIPP methodology provides comprehensive safe ty analysis and precise informatio n in

the process of decision making for risk management , and also supports the critical process

safety design implementation.

The case study examined here confirms that the proposed accident model can exp lain the

logic of an accident process in the LNG processing facility. Hazards related to LNG

properties and process were identified and analyzed to investigate the possible accident

scenarios, causes and their consequences. The logical relationship of an accident

sequence was modeled using safety barrier s. Qualitative validity of accident model is

establi shed by corresponding to the real process. A second level of model validation was

achieved through compar ison of numerical analysis with data. The results (prior

estimation) obtained through the fault and event tree analyses are directly supported by

plant specific data . A conceptual validation of the model provides confidence that the

model could be used for depicting real life process accident. The number of events

predicted by the updated predictive model was regressed with the observed number of

events to validate the model. The model parame ter A., the rate of abnorma l events

occurring, was dynamica lly updated. The adequacy and accuracy of model predic tion

were better in short term prediction than long term prediction .

Based on the present study, it was observed that the proposed accident model with

predictive capabilities can be applied to study real life accident situations .
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6.2 Conclusions

Th is case study illus trates that the SHIPP methodology pro vide s realistic and reliabl e

information for accident modeling and prediction. Thi s in tum provides comprehensive

and sys tematic method to assess and man age the risk by implementing acc ident

prevention strateg ies (inherent safer design approach) . Furth ermor e, th is study shows that

the proposed accident model and fault and event tree anal yses can be jointly used to

depi ct the process accident sequence. In the present study, uncert ainty analysis throu gh

the Bayesian updat ing reveals that (I ) uncertaint y of the top eve nt prob ab ility or failure

probability of safety barrier was reduced significantly by using Baye sian updatin g method

with real life abnorma l event dat a, (2) uncert ainty in the numbc r of abnormal eve nt

prediction in the next time interval was reduced significantly using posterior rate of eve nt

occurrence and (3) uncertainty of consequence occurrence probability was also reduced,

Th is way, the SHIPP pro vide s preci se information of how sys tem is degradin g with time.

The other principal finding was that the predicti ve model performs precise predi ction for

short term interval s. It also helps to increa se the overall safety and performance of the

system by appl ying preventi ve measures with the knowledge of realistic pred ict ion.

Ther efore, it is concluded that the propo sed methodology including accident proce ss

model with predicti ve capabilities is applicable to real world application to assess sys tem

safety.
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6.3 Future Research

The present study includes following assumptions:

• Occurrence of events are independent (event dependencies are not incorporated)

• Failure of the safety barrier follows a sequential order. The safety barrier failure

generally starts from the failure of release prevention barriers and propagates

towards to termination by failing sequential manner.

• Prior information of model parameters is selected using conjugate properties .

Additional research with respect to further development of SHIPP methodology should

focus on the following main areas:

• Application of Bayesian Network (BN) instead of fault and event analyses to

develop the cause-consequences relationship and accident process sequence.

Bayesian network is able to capture the event dependencies and to infer causal

relationship both backward and forward. Further, dynamic Bayesian network is

able to update the model dynamically.

• Utilization of non-conjugate prior-posterior distribution. The available data was

fitted to most suitable distribution rather than using conjugate pairs.
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Figure A.2: Proposed generic fault tree model for dispersion prevention barrier (DPS)
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Figure A.4: Proposed generic fault tree model for escalation prevention barrier (EPB)
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Figure A.5: Proposed generic fault tree model for damage control and emergency management barrier (DC&EMB)
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Figure A.6: Proposed generic fault tree model for human factor barrier (HFB)
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Figure A.6: Proposed generic fault tree model for human factor barrier (HFB) (cont.i)
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Figure A.7: Proposed generic fault tree model for management and organizational barrier (M&OB)
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APPENDIX C: Basic event failure probability Table s

Table C.1 : Basic event failure probability for Release Prevention Barrier (RPB)

Event Event Descrip tion
Assigned

probability
I Locki ng of manua l actuator / valve / blinding failure 0.050
2 Labeling of valve / blinding failure 0.008
3 Automatic activation of blinding failure 0.071
4 Check list for control operation failed to perform 0.010
5 Adequat e safety operations are not specified 0.040
6 Operatin g with out Permit to Work (PTW) 0.010
7 Sensors failed to initiate the safety system 0.024
8 Redundant indicator s failed to initiate manual safety system 0.020
9 Valve pos ition ing sensor failure (funct ion on demand) 0.090
10 Valve pos itioning contro l system failure 0.0 147

Inspection of valve position ing performed but failed to
11 detec t 0.150
12 Inspection specified but not performed 0.015
13 Inspection is not specified in program 0.050
14 Re ular inspection for mechan ical failure did not perform 0.010
15 Regular inspection perform but did not ident ified the fault 0.050
16 Construction deficiency 0.010
17 Instruments (bo lt) failure due to corrosio n 0.0138
18 Com pressor failure due to materia l defic iency 0.0 198
19 Physical barriers are not ava ilable 0.0 10
20 High extema l load 0.0 10
2 1 Inadequate corros ion inspect ion program or method 0.090
22 Poor inspect ion 0.100
23 Long delay in inspection schedule 0.050
24 Area based leak searc h specified but did not perform 0.050
25 Area based leak searc h is not specified in program 0.070
26 Failed to detect minor release by area based leak search 0.050
27 Regular leak inspection specified but did not perform 0.050
28 Regular leak inspectio n is not specified in program 0.010
29 Failed to detec t minor release by Regular inspection 0.050

Welding degra ding monitoring performed but failed to
30 detect 0.066
3 1 Welding degrading monitoring specif ied but did not perform 0.050
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Table C.2 : Basic event failure probabili ty for Dispersion Prevention Barrier (DPB)

Event Event Description
Assigned

orobabil itv
I Automat ic gas detection sensor failure 0. 128
2 Automatic gas detection con tro ller failure 0.00 1
3 Automatic gas detection Alarm failure 0.02 0
4 Inadequate detector cove rage 0.050
5 Long delay in Inspection 0.0 10
6 Manu al detection of minor release failure 0.050
7 Manu al inspection did not perform 0.050
8 Inadequate Venti lat ion or forced dilution 0.067
9 Venti lation or forced dilution failure 0.040

Manual closing of release failure (Clamping,
10 Remediation, etc...) 0.025
II Wrong Inflow valve selectio n or valve not accessib le 0.050
12 Long de lay in response 0.0 10
13 Operator awarene ss failure 0.040
14 Operator response failure 0.050
15 Long delay in manual respon se 0.010
16 ESD sensor failure 0.024
17 ESD controll er Failure 0.250
18 ESD valve delayed operation 0.050
19 ESD valve failure to close on demand 0. 130
20 Physical barrier not available 0.00 1
2 1 Inadequate barri er performance 0.0 10
22 Inerting not ava ilable 0.050
23 Inerting failure 0.080
24 Drainage not available 0.001
25 Inadequ ate functioning 0.00 1
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Table C.3: Basic event failure probab ility for Igniti on Prevent ion Barrier (IPB)

Event Event Description
Ass igned

nrobabllitv
I Hot work permit has not been issued 0.033
2 Inadequate procedur es or instruction in work permit 0.067

Risk assessment not performed prior to issue work
3 permit 0.100
4 External supervision failure 0.083
5 Inadequ ate trained operator 0.100
6 Operation with wrong work perm it 0.040
7 Failur e to follow work permit 0.045
8 Operat ion without work permit 0.0 10
9 Hot surface shielding not availabl e 0.067
10 Burner shielding failure 0.010
II Inadvertent burner flare trip failure 0.044
12 Flame detector failure 0.056
13 Flame detector not availabl e 0.050
14 Inadequ ate detector coverage 0.070
15 Manu al inspection of ignition source failure 0.050
16 Insulat ion of fuel line failure 0.010
17 Insulation of burner failure 0.010
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Table C.4: Basic event failure probabil ity for Escalation Prevent ion Barrier (EPB)

Event Event Description
Assigned

orobabilitv
I Inadequate flaring 0.00 1
2 Inadequat e blow down 0.00 1
3 Inadequate chemica l scrubbers 0.008
4 Inadequat e air ventilation 0.067
5 Air ventilation failure 0.030
6 Inadequate water sprayi ng 0.067
7 Water spravin failure 0.045
8 Fire detection Sensor failure 0.080
9 Fire detect ion Controll er failure 0.00 1
10 Fire Alarm failure 0.021
II Inadequ ate detector coverage 0.200
12 Operator did not detect the fire 0.050

13 Operator unab le to activate the manual fire alarm 0.001
14 Manual fire alarm activator failure 0.001
15 Smok e detection sensor failure 0.080
16 Smoke detection Controll er failure 0.00 1
17 Smoke Alarm failure 0.02 1
18 Inadequ ate detector coverage 0.070
19 Inade uate smoke isolation or venting 0.060
20 Smoke isolation failure 0.005
2 1 Inadequat e fire resistant barrier 0.003
22 Fire resistant failure 0.030
23 Sprinkler not avai lable 0.010
24 Inadequate sprinkling 0.040
25 Sprinkler failure 0.045
26 Inadequat e Fire fighting in given duration 0.020
27 Ion delay Fire fi htin 0.0 80
28 Fire fightin g did not perform 0.0001
29 Closing release failure 0.013
30 Inflow valve not accessible or wron valve 0.050
31 Long delay in manua l operation 0.010
32 Operator awarene ss failure 0.040
33 Operator respon se to activate manual ESD failure 0.050
34 Long delay in respo nse 0.010
35 ESD sensor failure 0.024
36 ESD Controller Failure 0.100
37 ESD valve delayed operation 0.050
38 ESD valve failure to close on demand 0.070
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Table C.5: Plant specific and expert opinion data of basic event for Human Factor Barrier
(HFB)

Event Event Description
Assigned

nrobabilitv
I Wrong action locking device failure 0.050
2 Warn ing display failure 0.050
3 Warnin g alarm failur e 0.020
4 Incorrect labelin g 0.100
5 Labeling not available 0.100
6 Unreli able measurement of instrumentation 0.00 1
7 Inadequate tools or equipme nts 0.020
8 False indica tion 0.020
9 Inadequate work instruction or procedures 0.025
10 Inadequat e communication 0.050
II Communication failu re 0.025
12 Inadequate lightin g 0.034
13 High level noise or mechanical vibration 0.050
14 Uncomfo rtable temp erature extre mes 0.100
15 Presence of fumes or gases or lack of oxygen 0.034
16 Physical incapability 0.050
17 Inadequ ate knowl edge 0. 100
18 Operator skill improv ement program failure 0.020
19 Regular operator train ing and awarene ss failure 0.034
20 Inadequate skill 0.050
2 1 Oper ator moti vation pro ram failure 0.020
22 Lack of supervision 0.050
23 Supervis ion failu re 0.020
24 Unclea r job descript ion 0.034
25 Inadequate permit -to-work 0.050
26 High work stress 0.067
27 Continuou s night work 0.050

Influence of other people (Colleague.
28 manage ment, senior workers, etc.) 0.020
29 Unscheduled working hours 0.034
30 Inadequ ate workpl ace accessibility 0.020
3 1 Poor house-keepin g 0.050
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Table C.6: Plant specific and expert opinion data of basic event for Management and
Organizational Barrier (M&OB)

Event Event Description
Assigned

orobabilitv
I Inadequate safety program 0.0 10
2 Inadequate supervision 0.034
3 Inadequate commu nication 0.050
4 Inadequate maintenan ce system 0.020
5 Inadequat e control syste m 0.025
6 Poor or no work permit procedur es 0.050
7 Inadequate audit and operating procedur es 0.034
8 Inadequate training 0.025
9 Inadequate company polices 0.020
10 Inadequate staff resources 0.020
II Inadequate plannin g and organization 0.025
12 Poor decision makin g or failure 0.040
13 Inadequate mana gement .ob knowledge 0.020
14 Inadequ ate manage ment polices 0.025
15 Leadership failure 0.010
16 Poor communica tion 0.050
17 Incompetent or insufficie nt management behav iors 0.020
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Tab le C.7: Basic event Fai lure rates distribution para meters for Release Prevent ion
Barrier (RPB)

Event
Probability

Parameters
distribution

I Norm al Jl=5 .85 cr=5 .85xI0-
2 Norm al = 9. 17xlO - cr=9.20x I0-
3 Gamma a=3.97x I0- b=1.7 12xlO -
4 Normal 11=1.14 cr=1.I4xI 0-
5 Norma l Jl=4.66 cr=4.66x I0-
6 Normal Jl= 1.14 cr= 1.I4xlO -
7 Gamma a= 1.99 b=1.4 IxlO-
8 Lognorm al 1= -1.30 xlO cr=9.97xlO-
9 Gamma a= I.49 b=7 .2xlO "
10 Norm al ~l= 1.69 cr=1. 69xlO -
II Lognor mal ~l= - 1.09x lO cr=9.97x lO·
12 Lognormal ~l= - 1.33x lO cr=9.97xlO -
13 Norm al 1= 5.86 cr=5.85xlO -
14 Norma l ~l= 1.14 cr= 1.14x10 -
15 Norma l Jl=5.86 e-s.ss»to
16 Norm al Jl=1.I5 cr=1.I5xlO -
17 Lognorm al 11=- 1.27xlO cr=9 .97xlO -
18 Gamma a= 1.65x lO- b= I.39x I0-
19 Normal Jl= 1.15 cr=1.15x 10-
20 Lognormal Jl= -1.37 xlO cr=9.97x I0-
2 1 Lognorm al Jl= - 1.I4xlO cr=9.97xlO -
22 Lognormal 11=- 1.I4xlO cr=9.97xlO -
23 Norm al 11=5.86 e-s.ss«:o
24 Norma l 11=5.86 e-s.ss«:o
25 Normal 1= 8.28 cr=8.28xI0-
26 Normal 11= 5.86 cr=5.85xlO -
27 Norma l Jl=5 .86 cr=5.85xlO-
28 Norm al 11=1.14 cr= 1.I4xlO-
29 Norm al 11=5.86 cr=5.85xlO-
30 Norm al Jl=7 .79 cr=7.80xlO -
3 1 Norm al Jl=5 .86 e-s.ssxro
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Table C.8: Basic event Failure rates distribution parameters for Dispersion Preventi on
Barri er (DPB)

Event
Probability

Parameters
distribu tion

I Gamma a=1.01 b= 1.31x lO"
2 Gamma a=1.0 2 b=1. 63x1O'
3 Lognormal ~= -1.30xlO <J=9.97xlO '
4 Normal ~=5.86 <J=5.85xIO'
5 lognormal ~= -1.37xlO <J=9.97xlO '
6 Normal u=5.86 <J=5.85xlO ·
7 Normal u=5.86 <J=5.85xlO'
8 Normal ~=7.92 <J=7.92xlO '
9 Normal ~=4.66 <J=4.66xI O'
10 Normal ~= 2.89 <J=2.89xlO '
II Normal u=5.86 <J=5.85xlO'
12 Lognormal ~=-1.37xIO <J=9.97 xIO '
13 Normal ~=4.66 <J=4.66xIO '
14 Normal ~=5.86 <J=5.85xlO '
15 Lognormal ~= -1.37 xlO <J=9.97xlO '
16 Gamm a a=1. 64 b=2.04xIO '
17 Lognormal ~= -1.0 3x10 <J=9.97xIO·
18 Gamma a=2 .23 b=2.44x IO'
19 Gamma a=6.56xlO' b=2.43 xlO '
20 Normal u=1.14xlO' <J=1.14x10'
2 1 Normal ~=1.15 <J=1.15xlO ·
22 Normal ~=5 . 86 <J=5.85xlO'
23 Norm al u= 9.52 <J=9.52xlO'
24 Normal ~=1.14xlO' <J=1.14xlO ·
25 Normal ~=1.14xlO· <J=1.14x10'
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Table C.9: Basic event Failure rates distribution parameter s for Ign ition Prevention
Barr ier (IPB )

Event
Probability

Parameters
distribution

I Norma l J.1= 3.83 a= 3.83xlO'
2 Norma l J.1=7.92 a=7 .92xlO '
3 Normal 11= 1.20xl 0 a = 1.2
4 Normal 11=9.89 a=9 .89x I0·
5 Norma l J.1= 1.20xlO a = 1.2
6 Norma l J.1=4.66 a=4 .66x I0'
7 Norma l J.1=5.256 a= 5.26xlO '
8 Norm al 11= 1.15 a= 1.15x 10'
9 Norm al 11=7.92 a=7 .92xlO '
10 Log normal J.1= - 1.37xlO a= 9.97x I0'
II Gamma a=4 .13x lO' b= l. lOx IO'
12 Gamma a= 1.0 b=6 .6 Ix I0·
13 Norm al 11=5.86 a =5.85xlO·
14 Norm al 11=8.28 a =8.30x I0·
15 Norm al J.1=5.86 a=5 .85xlO '
16 Log norma l 1l=-1.37xlO a =9.97xlO·
17 Lognormal 1l= -1.37xlO a =9.97xlO '
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Tab le C.8: Basic event Failure rates distribu tion parameters for Escalation Prevention
Barrier (EPB)

Event
Probability

Parameters
distribution

I Normal Il= L l-lx fO' a=l.l4xlO-
2 Normal Il= l.l4xlO- a=l.l4xlO-
3 Normal 1l=9. 17xlO - a=9 .20xlO -
4 Normal 1J=7.92 a=7.92xlO-
5 Log norma l 1J=- 1.26xlO a=9 .97xlO -
6 Norma l 1J=7.92 a=7 .92xlO ·
7 Log norma l Il= - 1.21xlO a=9.97xlO-
8 Gamma a= 1.22 b=7.635xlO-
9 Norma l IJ= l.l 4xI 0- a=1. 14x I0-
IO Lo normal Il= - 1.29xlO a =9.97x lO-
II Normal 1l= 2.55xlO a=2.55
12 Normal 1l= 5.86 a=5 .85x I0-
13 Normal IJ= i .u xro a= 1.14x lO-
14 Normal = Ll -lx lO' a= l.l4x I0-
15 Gamma a= 1.22 b=7.635xlO-
16 Norma l IJ= l.l 4x lO- a= l.l4xlO-
17 Log norma l 1J=- 1.29x I0 a=9.97x I0-
18 Norma l 1J=8.28 a=8 .30x I0-
19 Norma l 1l=7 .06 a=7 .10xlO -
20 Norma l 1l=5.72xlO- a=5.70x I0-
2 1 Normal 1J=3.43xlO- a=3.43xlO-
22 Log norma l 1l=- 1.26xlO a=9.97xlO-
23 Norma l Il= l.l5 e-i .is» to
24 Normal 1J= 4.66 a=4.66xI0-
25 Lognormal 1J=-1.22xlO a=9.97xlO-
26 Normal 1l= 2.31 a=2.3 lxlO-
27 Normal 1J=9.52 a=9.52xlO-
28 Norma l IJ= L l-lx lO' a=1. 14xlO-
29 Normal Il= 1.49 a=1.49xlO-
30 Normal 1l= 5.86 a=5 .85xlO-
3 1 Lognormal 1J=-1.37 x lO a=9 .97xlO -
32 Normal 1l=4 .66 a=4.66x I0·
33 Normal 1l=5.86 a =5.85xI0-
34 Lognorm al 1J=-1.37xlO a =9.97xlO ·
35 Gamm a a= 1.64 b=2.04xI 0-
36 Log norm al Il= - l.l3x lO a =9.97xlO -
37 Gamma a=2.22 b=2.44x I0·
38 Gamma a=6.56x I0- b=2.42xlO-
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APPENDIX D: Derivation of Beta-Binomial model

The estimation of poster ior probability dens ity functio n using beta-binomial mode l is

followed below steps.

The prior probability density function for con tinues random variable x;, failure

probability of safety barrier, is considere d as Beta distribution ,

Where, a;and 13;are shape param eters.

The beta function, Bta .,13;) in the equation (I ) can be shown to be,

The integra tion can be simplifies as,

B(a ;,fJ; ) = f a ;f fJ;
r(a; +13;)

(D. l)

(D.2)

(D.3)

The likelihood probability density function is consi dered as Binom ial distribution as

equation (4).

f( data / x;) =("i ]x;"'" (1- x;)n... i =1,2,3,4
" f .;

(D.4)

Where , Where, " f .; is the cumulative numb er of failures associa ted with i th safety barrier

and II; is the total number of events associated with i th safety barrier, i.e. II f .; + 11., .; ' The

11, .; is the cumulat ive number of successes assoc iated with i th safety barrier.
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The Bayes' theorem can be expres sed as equation 0 .5 to estimate posterior density

funvtion for failure probab ility of safety barrier.

!(.\ I data)
!(data l x;)!(.\)

I ! (data Ix)!(.\ )d t ;

(0 .5)

Equation 0 . \ and 0 .2 are substitute for Bayes ' formula:

!(x;ldata)

x;a,+11I ';-'(I _x;) p'+n•.i - ,

I

Ix;a;+nu -' (1- x
j
)P,+n•.i- I dx,

(0. 6)

Let a ;' =a ; + /I I .;and Pi' =P;+ /I , .;, then, equation 0 .6 is further simplified:

!(.\ I data)
x;a;-' (I_X;)P:-I

I x ;a;-'(I-xj) P:-'(Lt ;

(0 .7)

According to equation 0. 2, the denominator of equation 0 .7 can be written as Beta

function,

(0.8)
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Therefore, the equation 0 .8 is turned in to beta distribution with the parameter s a i' and

This model called beta-binomial model . Prior distributions that take the same functional

form as the posterior distribution are called conjugate prior distribution.
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