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ABSTRACT

A process accident occurs as a result of a sequence of events initiated by deviation in the
process parameters and/or failure or malfunctioning of one or more components. Many
process accidents are controlled and mitigated before they escalate to major events.

Unfortunately some do go on to produce catastrophic consequences. As the size and

complexity of processing facilities increase, the potential risk posed by accidents is
increasing. Operational safety could be improved by giving emphasis to the prevention of
incidents, rather than relying on control and mitigative measures. This method is referred
to as an “inherently safer approach”. To prevent major, though infrequent, event
occurrence, it is important to consider accident precursors (symptoms of hazards) such as
operational deviations, mishaps, and near misses, in order to prevent abnormal events at
source rather than controlling or mitigating them.

The objective of this research is to present a novel methodology known as System

Hazards Identification, Prediction and Prevention (SHIPP) for process accident modeling

and prevention. In this methodology, a new process accident model with predictive
capabilities is developed. The SHIPP is a systematic methodology to identify, evaluate,
and model the accident process, thereby predicting and preventing future accidents in a
process facility. In this methodology, process hazard accidents are modeled using safety
barriers. The model relies on process history, accident precursor information, and
accident causation modeling. The fault tree and event tree analysis techniques are used to

enhance the accident model and to represent a holistic picture of the cause-consequence

mechanism of the accident process. Quantitative analysis has two aspects: updating and



prediction. The model is able to capture the process operational behaviour, and update the
accident likelihood using the Bayesian updating mechanism. The predictive model

forecasts the probability of a number of abnormal events occurring in the next time

interval. ication of this is by a case study. The

results that the ilities of abnormal events dramatically
change over time as new information is observed, and the adequacy and accuracy of

model prediction is better in short term prediction rather than long term prediction.

Through the SHIPP qualitative and quantitative analyses provide insight to
identify critical safety barriers and functions, and determine the likelihood of failure of

these measures. Combining management oversight, human factor and engineering

analyses, the SHIPP provides a ive, sy ic approach to

manage a process system risk.
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Chapter 1

INTRODUCTION

1.1 Accident Modeling in Process Industry

The process industry is a highly complex ical system ining large quantities
of i The i il ity of system elements such as people,

the operating software and hardware systems and
their interactions are leading to potentially disastrous failure modes. Over the years,
notable accidents such as the Bhopal toxic gas release disaster (Eckerman, 2005), the
Piper Alpha tragedy (Petrie, 1989), the Nypro factory explosion at Flixborough (Kletz,
2001), BP’s Texas city refinery explosion (CSB, 2007), the Imperial sugar refinery dust
explosion (CSB, 2009) and most recent BP's Deepwater Horizon offshore drilling rig
explosion and oil spill (BP, 2010) are examples of complex process systems failures that
led to serious loss of human lives and materials. Not only catastrophic or critical
accidents but also events such as incidents and mishaps are financially costly, interrupt
the production flow and cause human injuries. Therefore, prevention of these events is of
paramount important.

To achieve this goal the engineers must incorporate system safety into the system life
cycle. The different hazard and risk management methodologies have been used to
establish system safety for the particular processing facility. The overall purpose is to
identify the hazards, evaluate them, eliminate or control them and mitigate the residual

risk during the phases such as details design and operational stage.



A succinct definition for hazard is that any source of potential damage, harm or adverse
health effects on something or someone under certain conditions at work place. Hazards
in process industry can be categorized into three types: (1) occupational hazard, (2)
process hazard and (3) external hazard. It is observed that the majority of critical
accidents, such as fire, explosion and toxic release, are initiated by flammable and toxic
release and process upsets, which are known as process hazards. Therefore, the current
work focuses on the process hazard accidents. Process accidents are not usually caused by
a single failure or error. They are a result of sequence of events initiated by the deviation
of process parameters and/or failures or malfunctioning of one or more components. The
accident process usually follows three steps: (1) Initiation (the event where an accident
begins), (2) Propagation (the events or events that maintain or expand the accident) and
(3) Termination (the events or events where the accidents are stopped or diminished in
size) (Crowl and Louvar, 2002). It is important to view an accident as a sequence of event

because, in theory, cach indivi ing cvent an ity to

terminate the accident sequence or to lessen the severity of its ultimate outcome. Accident
models can help to understand the significance of potential accident sequences associated

with a process hazards. This ing and

lead to identification of ways
to prevent or reduce the frequency and severity of consequences of potential process

accidents, thus improving the safety of a process facility.

L1.1 Accident Models

The accident model is a i which izes how and why an

accident occurs and illustrates the relation between causes and consequences. Further,



such models define, structure and summarize all relevant data in a meaningful way.
Accident models are important to collect relevant information to study and prevent
accident risk and it also helps in safety-critical decision making. The effective use of
accident models together with accident investigation methods is capable of analyzing
accidents and providing numerical estimation of risk. It also helps to predict and prevent
such occurrences in the future.

Traditional accident models use the linear notion of causality to analyze the accident
process. A number of accident models and various approaches for accident modeling and
analysis have been developed and described in the literature (Heinrich, 1941; Reason,
1990; Rasmussen, 1997; Attwood et al., 2006; Ren et al., 2008; Kujath et al., 2010).

The sequential nature of causality was first adopted for accident modeling by Heinrich
(1941) who introduced the “Domino Theory”, in which an accident is described as a
chain of independent conditions or events that occurs in a particular order terminating at
an injury. This model indicated that an accident can be prevented by removing any single
factor from the accident sequence or through the reduction of these factors. The
International Loss Control Institute has modified the “Domino Theory™, developing a loss
causation model (ILCI model) to evaluate how unsafe acts and conditions are initiated
(Bird and Germain, 1996). The analysis begins with loss to people, property, and the
environment and steps back through the sequential events that contribute to loss
independently. Further, in the ILCI model, the immediate and root causes that lead to an
accident are described as management deficiencies, personal and job factors and
substandard acts and conditions. Further, these models explain the accident causation as a

one-dimensional sequence of events and do not take into account multiple causality of the



accident process (Kjellen, 2000). Reason (1990) proposed the “Swiss cheese” model to
demonstrate how human and organizational failures influence the accident process
independently, taking multi-causality of the accident into consideration. Svenson’s (1991)
“Accident Evolution and Barrier function (AEB)” model represents the development of

accidents as a sequence of events ing cither to a human/organizational system or a

technical system. This type of model is known as an epi i ical accident

model. The main feature of this type of model is the barrier that could prevent the

from ing; whereby the of an accident

process could be prevented. Attwood et al. (2006) developed a holistic, quantitative
model to predict occupational accident frequency in the offshore oil and gas industry.

This model has both qualitative and itati ilities. Three layers; the direct

layer, the corporate support layer and the external layer were introduced considering
factors that lead to occupational accidents in the offshore environment. In this model, the

reliability concept was used to evaluate the probability of an occupational accident under

various scenarios in an asset’s pment cycle. The prediction capability of this model
offers insight into safety improvement efforts in the offshore oil and gas industry. Ren et
al. (2008) developed a methodology to model the causal relationships of offshore safety
assessment focusing on human and organizational factors (HOF). The model addresses
latent failures within the causal sequence of events. Similar to Swiss cheese modeling
approach, five levels; root causes level, trigger event level, incidents level, accident level
and consequences level were placed in sequential order to depict accident due to HOF.
The model adopts the Bayesian network that is able to provide graphical representation of

cause-consequence relationship and to calculate numerical values of occurrence



likelihood for each failure event. Kujath et al. (2010) has proposed a conceptual process
accident model prioritizing the prevention of process accidents in an offshore
environment. This model is developed using features of both sequential and
epidemiological models. In this model, hydrocarbon release accidents were modeled
using the safety barrier concept.

Existing accident models have their own capabilities and limitations. They vary in the
areas of their application, purpose, and focus. The distinctions between the existing

accident models do not imply that one is unequivocally better than others.

1.1.2  Accident Precursors Information in Process Industry
Most accidents are preceded by deviations in the normal operational process.
Furthermore, many deviations are present that are not covered by current pro-active

safety indi These deviations are ized by a high likelihood and low

perceived safety related consequences (defined as precursors) and re-occur in the

process of the ization prior to an accident. However, these events are
sometimes omitted or unnoticed by operators due to the under estimation of their adverse
effects. In this work, the accident precursors (abnormal events) are classified as: (1) safe,
(2) near miss, (3) mishap, (4) incident and (5) accident, considering the probabilities and
degree of severities. In order to find these deviations in a real life operation and to find
their underlying causes, the concepts of re-occurring deviation and operational process

have to be explained in more detail.



1.2 Motivation of Research
The comprehensive study of how accidents evolve from the initiating events to their

propagating effects and final consequences is vital for integrating safety into systems for

accident prevention. In this aspect, accident models play an important role in accident
analysis and risk management. However, the literature indicates that existing accident
modeling approaches have certain limitations when modeling the accident process in
order to prevent the accidents. Each accident model has its own characteristics as to the
types of “causal factors™ that it highlights.

In the process industry, major accidents are often initiated through errors induced by
process, mechanical and operational hazards. Many traditional accident models were
developed mainly focusing on human, organizational and management factors. Thus, the
models focusing on process hazards are scarce. Other models have adopted a descriptive
approach to analyze an accident, but they are not able to offer a predictive model which
helps to guide safety related decisions. Also, available models are not able to
accommodate modeling of multiple risk factors considered in process systems where
interaction and inter-relationship of system elements are complex and non-linear. The
literature also describes that some models have adopted a quantitative approach using
historical statistics to study the existing relationship between causal factors. However,
these models are unable to update the risk during the life of the process. Further limitation
of quantification of existing method, models such as Management and Oversight Risk

Tree (MORT), is highly complex and it s difficult to provide quantified results.

cidents and accidents

Information on accident precursors such as near miss, mishaps.

often termed as accident precursors are ignored, leaving worth of information behind. The



available accident models were not able to make use of this information. This information
can be used in systematic manner to better learn the health of the process industry. It
helps to assess the accident likelihood in the given facility, and thus, suitable preventive

measurements could be taken against such occurrence.

1.3 Objectives of Research

The main objective of this research is to develop methodology that can be used to define,
illustrate, analyze and improve system safety in the operational phase of process facility
through accident modeling and prediction.

Based on this main objective, the following sub-objectives are developed for this work:

To fill the knowledge gap of accident process models that have been developed

focusing on process hazard accidents.

To develop the accident process model in terms of safety barriers rather than
causal factors that is capable of capturing multi-causality of accident and

providing holistic view of cause-consequence mechanism.

To develop the update mechanism to reduce the uncertainty of the probabilistic

quantification by using real plant abnormal event data (accident precursor data).

To develop predictive model by using probabilistic approach which can predict
the future likelihood of the accident (number of event occurring in the next time
interval). And, further, results are able to update and learn the system behavior

whenever new i ion is observed in the system.

* To carry out a case study to test and verify the method.



Towards these objectives, the System Hazard Identification, Prediction and Prevention

(SHIPP) methodology is proposed to identify process hazards, evaluate them, and model

the accident by means of icting and p; ing their

1.4 Thesis Structure

The thesis comprises of six chapters. The first chapter is a brief introduction on the
concept of accident modeling and prevention in process industries followed by the
motivations and objectives of this research. Chapter 2 gives a broad overview on the
development of accident models over the years and their significance, capabilities and
limitations in the process industry safety assessment. Further, this chapter evaluates
selected accident models using the several important characteristics as the literature
review of this thesis. Chapter 3 gives a detailed description of the development of
predictive accident modeling approach so called SHIPP methodology (System Hazard
Identification, Prediction and Prevention). This includes description of methodology and
steps of development of: (1) accident model, (2) generic event tree and fault tree, (3)
updating mechanism and (4) predictive model. Chapter 4 presents the results of a case
study conducted on a gas processing facility to validate the SHIPP methodology. This
chapter illustrates accident model development and cause-consequence analysis. The
updated results demonstrate that the probabilities of abnormal events dramatically change
over time as new information is observed. Further this chapter discussed two different

predictive models to estimate the number of abnormal event and expected time to the next

abnormal event The ificati is in two ways:

and ilistically. Chapter 5 ication of the SHIPP




methodology to an LNG processing facility. External validation method was used to
assess the predictive model results through regression of real data gathered from the LNG
facility examined. Chapter 6 concludes the study by a brief summary, conclusion and

future scope of research in this area.



Chapter 2

LITERATURE REVIEW

System safety assessment is an integral part the life cycle of a project, engineering design,
program, or activity either required by local or international regulation or carried out by
individual(s) within particular industry. The overall purpose is to identify hazards,
prevent or control them, and mitigate the residual risk. It is necessary to combine
management oversight and engincering analyses to develop a systematic and
comprehensive process to adequately manage the system risk (Bahr, 1997). The system
safety process should be able to apply to the entire system and the primary objective is

accident prevention. It could be achieved by identifying, assessing, and eliminating or

fety-related hazards, to levels. It is important that realistic
prediction is essential of accident prevention. However, lack of concentration of accident
prediction has been devoted of existing safety processes. A hazard is a condition, event,
or circumstance that could lead to or contribute to an unplanned or undesired event. Risk

is an expression of the impact of an undesired event in terms of event severity and event

likelihood. Therefore, throughout this process, hazards are identified, risks analyzed,

assessed, prioritized, and results d d for decisi king. The conti loop
process provides for validation of decisions and evaluation for desired results and/or the
need for further action. Several textbook and researchers have described the safety and
risk assessment process (Turney and Pitblado, 1996; CCPS, 2008; Mannan, 2005).
Typically, the system safety process comprised set of steps that provides guidelines to

obtain system safety.



However, none of system safety process has been adopted accident models to identify and
analysis the hazards. Accident models play a vital role in safety assessment. The accident

model is a i which izes what, how and why an accident

occurs and illustrates the relation between causes and consequences. Further, such models
define, structure, and summarize all relevant data in a meaningful way. The effective use
of accident models together with accident investigation methods is capable of analyzing

accidents and providing ical estimation of causes and It also helps to

predict and prevent such occurrences in the future.

Since the early 1930s, a number of accident models and various approaches for accident
modeling and analysis have been developed and described in literature (Heinrich, 1941;
Reason, 1990; Bird and Germain, 1996; Rasmussen, 1997; Attwood et. al., 2006; Ren, et
al., 2008; Kujath et al., 2010). Accident models have its own characteristics according to
their focus (causal factors), area of application and purpose. General classification and
evaluation of the accident models can also be found in literature, and related works have
been done by Benner (1978), Hollanagel (2004), Lehto and Salvendy (1991), Skelt
(2004), and Katsakiori et al., (2009).

Process accidents result from a sequence of events initiated by deviation of process

failures or ioning of one or more components. Lehto and Salvendy

(1991) systematically evaluated accident causation models and categorized accident
model in four types: general models of the accident process, models of human error and
unsafe behaviour, models of mechanic of human injury and application techniques.
Linearity among the causal factors for the accident is the main aspect of general process

accident models. This group is further categorized into four sub groups; sequential,



epidemiological, energy transfer and system model. These models describe the accident
process dynamic focusing on causal factors such as human, product, task or environment.

Hollnagel (2004) presented and discussed the need of accident models including accident

barriers and a i for izing how and why accidents occur.

Based on search principle and analysis goal, Hollnagel (2004) distinguished accident

models into three different types: i idemiological and ic. Kjellen

(2000) discussed five accident model types considering the design of modern Safety,
Health and the Environment (SHE) information system. Kjellen’s models are logical tree
and casual sequence model (classified as general model by Lehto and Hollnagel). The
other three models are process, energy and human processing information (similar term
used by Lehto to describe the models focusing on the flow of information through a
person while performing the task). Kjellen did not use the term “epidemiological model”
directly, but the energy model has been identified as a kind of epidemiological model.
Most recently, Katsakiori et al. (2009) divided accident models into three categories:

human i i ing and ic (similar to terms used by

Hollnagel and Lehto). Attwood et al (2006) compiled the accident models that focus on
occupational accident in the offshore oil and gas sector.

The key accident causation models were selected to conduct this study and are discussed
in the subsequent sections.

Heinrich’s Domino Model

The sequential aspect of accident occurring was first used by Heinrich (1941) and thus
“Domino Theory” was introduced. This theory describes an accident as a natural

culmination of a serious of events or circumstances, which invariably occur in specific



logical order. Ancestry and social environment, fault of person, unsafe act and/or
mechanical or physical hazard that leads to an accident were identified and placed in
sequential order. The last block of the Domino model is injury, which is caused by the
action of a preceding factor. The unsafe act and condition is the central factor or main
link in the accident sequence and the removal of this factor makes propagation of
hazardous events ineffective. The main contribution of Domino theory is that the
accident can be prevented if this series is interpreted by elimination of one or more
domino blocks. However, this model implies that the accident is the result of a single
cause. But in reality, the accident is occurring due to the multiple causes. Therefore, this
model was unable to represent multiple causality of the accident.

Loss Causation Model

Bird (1974) updated the Domino theory proposing loss causation model or International
Loss Causation Institute (ILCI) model. In this model, management factor replaces
ancestry, social environment and fault of person. Greater emphasis is placed on loss that
includes harm to people, property, environment and progress. The term “accident” is
replaced with “incident” to represent all possible event scenarios such as near misses and
mishaps. In the loss causation model, there are five sequential blocks identified and
placed in sequential manner. The model starts with lack of control followed by basic
causes, immediate causes, incident and loss as shown in Figure 2.1.

Although Bird (1974) used same sequential approach as Domino theory, it is different
from the Domino theory in terms of causal factors that each models are highlighted. In
Domino theory, unsafe acts and conditions are only symptoms of deeper problem (Bird

and Germain, 1996).
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Figure 2.1: The ILCI or loss causation model (Bird and Germain, 1996)

and izati factors were ized in the loss causation model to

minimize losses. Through this type of modeling approach, the information flows to the
upper management to make the decision to stop the reoccurrence at any level in the chain
(Kujath, 2010). However, Domino and Loss Causation model have no clear distinction
between the observable facts about accident sequences and uncertain causal relationship
at personal, organizational and management levels (Kjellen, 2000).

Keltz Model

Keltz (1988) proposed a model oriented for accident i igation. This

methodology uses the concept of accident causation chain in which an accident is placed
at top and the sequence of leading events and causes are developed beneath it (Figure

2.2). The strength of this approach is i for accident p ion and

mitigation as it focuses on inherent safer design by the layer of avoiding the hazard. The

P i i ised three aspects or layers: (1) immediate technical
recommendations, (2) avoiding the hazard and (3) improving the management system.

The model suggested possible technical, human and management preventive strategies.



Recommendation for prevention and mitigation
1" layer: Immediate technical recommendation
2 layer: Avoiding the hazard

3 layer: Improving the management system

Final consequences.

Recommendation (3" layer)
Event 1

Recommendation (2™ layer)
Event 2

Recommendation (1* layer)
Event3
Cayse 1

Recommendation (3" layer)
Cause 2

Recommendation (2™ layer)
Cause 3

Recommendation (1* layer)
Cause 4

Figure 2.2: Keltz model of accident process (Khan and Abbasi, 1999)

Management Oversight and Risk Tree (MORT)

The MORT model was developed by Johnson in 1973 to analyze the system and identify
the relationship between the management and organizational factors and plant operations
(Johnson, 1980; Bhar, 1997). MORT gives an idealized safety system represented as a
logic tree, which contains specific control and general management factors. The top event
of the logic tree is injury, damage or system loss. Evaluating control and management
factors are used to identify the causal factors leading to the top event (Skelt, 2004).

MORT provides a large graphical checklist to help investigating the facts and looking for



evidence. It permits a large number of problems to be identified, and it prompts the
investigator to look for direct causes and for causal contribution at the management and
organizational levels.

Swiss cheese Model

Reason (1990) proposed the Swiss cheese model to demonstrate how human and
organizational failures influence the accident process independently taking multi causality
of accident into consideration. The Swiss cheese model is used in many industries,
especially aviation industry, to prevent accidents due to human errors. In the Swiss cheese
model, four successive cheese slices are placed on sequential manner representing safety
barriers relevant to particular hazards, and the holes represent the latent errors. The
cheese slices behave as the defensive barriers against the accidents or incidents, and the
holes are subjected to change according to the failure types. When the holes are lined up
all barriers failed; hence an accident will occur. The holes in the first slice represent the
latent failures, such as poor designs, lack of supervision, undetected manufacturing
defects, defect or maintenance failures, lack of training and poor work procedures. Unsafe
acts are mostly situated in the last slices, while latent conditions are the holes throughout
the cheese.

Daryl’s Occupational Accident Model

Attwood et al. (2006) proposed an accident model to predict the accident frequency and
associated cost of occupational accidents in the offshore oil and gas industry. Factors
affecting occupational accidents in oil and gas industries were identified and their

interrelationship determined to formulate this model. According to their hierarchical



effect in the accident, the factors are divided into three layers: extérnal, corporate and

direct.

Figure 2.3: The Swiss cheese model of human error (adopted from generic model
of Reason, 1990, 1996)

Each layer contains several elements. An arrangement of these elements in the accident
model is shown in Figure 2.4.

This model describes an influence of external elements on corporate actions which in turn
influence the direct accident process. It has also quantified influence of these factors
using quantitative data derived from safety experts’ survey. Similarities of physical
engineering system and corporate safety programme are utilized in developing the model.
Based on this hypothesis, the model is rearranged using the reliability network for

quantification. Furthermore, this model uses ‘influence coefficients’ to quantify the

influence at the I-corp and corp direct interfaces.



The model predicts a safety result that enhances individual elements of the direct,
corporate or external layers. It also predicts financial rewards and penalties associated
with changes in various safety factors. This model is capable of evaluating relative
probabilities of occupational accidents under various scenarios or during stages in an

asset’s deployment cycle.

G | [t ] [otrgme | [y
e R |

Influence of corporate v elements on direct factors

an...,.p-qmmH w )

Figure 2.4: Element arrangement of model to predict occupational accidents
(Attwood et al., 2006)

Ren’s Human and Organizational Factors (HOFs) Model

Ren, et al. (2008) proposed a methodology to model the accidents which are caused by
technical and human and organizational malfunctions. Based on the Swiss cheese model,
a conceptual model is proposed to represent the latent failures due to human and

organizational factors within the causal sequence of accident process. This Ren’s HOF



model uses five levels: consequence, accident, incident, trigger event and root cause.
Each level provides different cause of contributory to model. The arrangement of each
level in the model is shown in Figure 2.5.

The HOFs model adopts Bayesian Network (BN) to enhance the graphical demonstration

of causal interrelationship and to compute ical values of ikelil of
each failure levels. The advantage of this model is its ability for monitoring how safety

system changes when information flows forward and backward within the network.
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Figure 2.5: Conceptual model for HOFs (Ren et al., 2008)
Kujath’s Conceptual Offshore Oil and Gas Process Accident Model

The | accident p ion model highlights the ilities of an oil and gas

(O&G) operation and provides appropriate guidelines to minimize the hazards and

accidents before (Kujath et al., 2010).

The safety barriers are identified to prevent, control or mitigate the accident process due
to hydrocarbon release. The barriers are placed sequentially similar to Swiss cheese and
loss causation models (Figure 2.6). The model construction adopts safety barrier concept

rather than causal factor, which is used in most of existing accident modeling approaches.
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Kujath’s model is flexible as identified safety barriers can be substituted with other
appropriate barriers for the specific facility. The safety barriers in the model have been
further branched to identify safety barrier sub-elements. This model is rather qualitative

than quantitative.

CEREE

NN NP N =

Figure 2.6: The conceptual offshore oil and gas accident model (Kujath et al., 2010)

2.1 Overview of Accident Analysis Techniques

Accident models are theoretical frameworks which explain the accident causation
mechanism and it helps to identify and analyze the potential future outcomes. However,
accident models alone do not provide sufficient information to evaluate and prevent

accidents. Accident analysis techniques are systematic tools that evaluate causal and

qualitati and itatively. Therefore, accident model with analysis

ique or ination of provide holistic and quantitative information of
cause-consequence relationship. Particular accident analysis technique or techniques are
not always necessarily linked to specific accident model (Katsakiori et al, 2009). In this

study, four key analysis techniques will be discussed.
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Fault Tree (FT) and Event Tree (ET) Analyses
Fault tree and event tree analyses have been used extensively in probabilistic risk

assessment. Both investigations methods are graphical design techniques (tree-network

design) for qualitative and quantitati Fault tree ines accident causes.
The approach is top-down in which analysis begins with possible accident (top-event) and
propagates downward to basic events at the bottom of tree (Skelt, 2004; Lehto and
Salvendy, 1991). The logical arrangement to describe basic events propagation up to top-
event are represented with logical “AND™ and “OR™ gates. The qualitative structure of
how accident occurs can be analyzed using cut set analysis. Minimal cut set is the
smallest number of events that must occur to lead top-event. Furthermore, without any

quantification, minimal cut set can imply the safety of the system (Woodward and

Pitblado, 2010). The fault tree analysis ines top-event frequency and i
frequencies based on basic events data.

Event tree is used to analyze event sequence and outcomes from a specific initiating
event. It demonstrates paths by which consequences occur and how various safety
barriers or safety functions can prevent or mitigate the event sequence. The event
sequence propagates to specific consequence with failure or success of specific safety
barrier/function. Event tree estimates frequencies of consequences of each accident
scenario; thus, risk is estimated. Decisions are made based on the risk estimated. An
accident investigation carried out combining FT and ET is known as bow-tie analysis
(Dianous and Fievez, 2006). Appropriate safety barriers are identified and applied on

bow-tie diagram to prevent or mitigate accidents.
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Reliability Block Diagram (RBD)

Reliability Block Diagram (RBD) is a symbolic analytical logic technique that can be
applied to analyze system reliability and related characteristics. It provides an alternate to
fault tree analysis. Reliability block diagram deals with reliability of component or
system. Nodes or blocks represent the system components, whereas lines describe
connections between the components. The logical flow of network diagram starts from an
input node and flow through intermediate nodes, which has parallel or/and serial
arrangements, to an output node. Since reliability block diagram often correspond to
physical arrangement of components in the system, it can be successfully applied to a
particular system to study the probabilistic events. The model proposed by Attwood et al.
(2006) has used reliability block diagram to model the occupational accident process for
offshore platforms. In addition to reliability model, Markov method is used for assessing
time depending behaviour of many dynamic systems as a reliability modeling technique.
It is capable of capturing statistical dependencies between failure events in complex
systems (Bucci et al., 2008).

Bayesian Network (BN)

A Bayesian Network (BN) has been recognized as modeling and inference tool for
problems involving high degree of uncertainty (Pearl, 1988). BN is used in many
different fields such as medical diagnosis (Heckerman, 1990; Spiegelhalter et al, 1989),
map learning and vision (Dean, 1990; Levitt et al., 1989), structural system reliability

assessment (Mahadevan et al., 2001) and decision making strategies (Jensen, 1996).

Recently, it has been used in risk and accident i igation because of its

powerful and ive qualitative and quantitative abilities (Castillo et al, 1999;
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Kang and Golay, 1999; Kim and Seong, 2006; Ren et al., 2008). BN provides
probabilistic graphical model, which describes cause-consequence relationship among
various factors and quantifies their relationship in terms of conditional and joint
probabilities. It is able to perform adductive (diagnostic) reasoning, deductive (causal)
reasoning as well as inter-causal reasoning among a number of variables or factors under
high level of uncertainty. This helps to monitor system safety and changes when safety
critical information flows forward and backward within the causal network (Ren et al.,
2008). BN is able to update as new observations are incorporated into system, and
perform prediction of possible future observation, even though data is incomplete or
missing (Heckerman and Breese, 1996; Heckerman, 1997). Dynamic Bayesian Network
(DBN) is used to model temporal dependencies and applicable to the practical process

environment which is more complex and dynamic.

22 Accident Models Evaluation

This section discusses the evaluation of key accident models and novelty of the proposed
accident model to process hazards accidents in O&G industries. The following seven
characteristics are chosen based on literature (Wagenaar and Schrier, 1997; Sklet, 2004;

Atwood et al., 2006; Katsakiori et al., 2009) to evaluate accident models.

. Area of application: whether the model can be applied to the oil and gas industry.

)

. Type of hazard (process hazards or occupational hazard).

w

. Accident sequence modeling (steps of accident process)

&

. Direct focus on Safety barrier (model development based on safety barrier or

causal factor)



24

5. Alignment with accident investigation method
6. Qualitative application (to what extent can the model analyze cause-consequence

mechanism)

7. Quantitati ication (updating and predicti ilities)

Each model has different area of application and different qualities and deficiencies. It is
observed that many models have focused on general industrial settings (e.g. nuclear,
medical and transportation). Less emphasize has been devoted to O&G industry
application particularly. Therefore, the first characteristic is to discover whether the
application area of the models is for O&G industries specific or not. Models such as
Domino, Loss causation, MORT, Swiss cheese were mainly developed focusing on
general industrial applications, specifically nuclear industry. However, with the
increasing in offshore related accidents, research has been conducted to model O&G
related accidents (Daryl et al., 2006; Aven et al., 2006; Ren et al., 2008; Kujath et al.,
2010).

Accident models vary depending on the types of ‘causal factors’ that are considered.
Many models concentrated in causal factors such as human errors, organizational and

management errors; and some direct factors such as unsafe equipment, poor quality of

personal protecti i i defective tools and unsafe design

etc. These factors are i as i hazards’ which lead to

occupational accidents. Domino theory implies that the accident is the result of unsafe act
(human error) or unsafe condition at the workplace. Subsequent application of this
method has led to the development of loss causation model in which management factors

were i human and izati errors in accident are modeled
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in Swiss cheese model. Kletz model analyzes sequence of decisions and action that lead
up to an accident, and the preventive action for each steps is recommended. Therefore,
Kltez model is capable of adopting both occupational hazards and process hazards for
analysis. Modeling accidents due to process hazards (fires, explosion and toxic releases)
has been conducted by Kujath et al. (2010) using conceptual accident prevention model.

The third characteristic is devoted to check whether the models provide graphical
representation of each steps of accident process. The Domino, Loss causation and Swiss
cheese models provide a graphical illustration of the accident sequence steps by placing
or modeling factors on a horizontal axis. These models describe the accident as the result
of a sequence of events that occur in specific order. However, none of these models are
able to illustrate total accident scenario or to capture all steps of accident process.
However, steps of accident process may change according to initiating hazardous
conditions (e.g. is it process hazard or occupational hazard). MORT model is a
representation of multiple sequences of events in the form of hierarchical tree such as
fault tree. Such a representation of accident shows that the top-event (accident) is a result
of a sequence of combinations of other events or conditions. MORT can be argued as
sequential model that represent steps of accident process. However, authors’ subjective
opinion is that MORT does not provide the best overview the event sequence of accident

process, since it is a tree model rather than ial model. Hi

of accident s also adopted by the model of Attwood et al. (2006).
Many models focus on the concept of safety barrier without directly involving the safety
bartiers to develop the model. In the model of Kujath et al. (2010), steps of the accident

process were described as failure of particular barriers. In this model, five safety barriers
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were identified, and placed in sequential order to depict the accident process due to
hydrocarbon release (Figure 2.6). Each safety barrier was further analyzed to find sub-
safety element. In the Swiss cheese model, the different slices of the cheese represent the
layers of defenses, like barriers or safeguards, a company has installed as part of its risk
prevention program. MORT described potential causal factors for accident in a particular
order. An important part of MORT model was the relation between energy flow and
barriers that used to avoid contacting energy flow to vulnerable target. In MORT model,
different types of barriers in the branches can be found. Domino and Loss Causation
models suggested that accidents can be prevented through the reduction of unsafe act and
conditions. However, these models still emphasize causal factors in the development of
accident process rather than the safety barrier. Kletz model shows recommended actions
and decisions to prevent the each step of the accident. This did not completely reflect the
concept of safety barrier rather some suggestion and decision that would be taken after
incident happen to prevent future events. In the models of Attwood et al. (2006) and Ren
et al. (2008), causal factors were mainly highlighted rather than safety factors.

h ical therefore, ali with the accident

Most accident models are

methods is to provide ive quantitative and q
analyses. Numerous accident investigation methods that identify and analyze hazards
have been developed and combined with the accident models to varying degrees. A
subjective selection of a suitable accident investigation method depends on model type,
purpose, input, output and developer’s expectation. In this work, four accident
investigation methods, fault tree analysis, event tree analysis, reliability block diagrams

and Bayesian networks were specifically considered. Table 2.1 summarizes the author’s
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evaluation. Domino, Loss causation, Kletz, Swiss cheese models are more capable of
adopting accident investigation methods such as root cause analysis, systematic cause
analysis techniques (SCAT), hazard and operability studies (HAZOP) and failure modes
and effect analysis than methods discussed in this work. These are qualitative analysis
rather than quantitative.

Each accident model (with or without accident investigation method) should provide
guidelines to analyze causes and their consequences relevance to the accident.

Concerning the qualitative ability of models, all models have been able to provide details

of s i with varying degrees. The qualitative
analysis of models such as Domino and Loss causation does not take multiple causality of
accident into account and not able to emphasize important factors in accident sequences
(Kjellen, 2000). Swiss cheese model has been recognized as conceptual model that
provides limited information on applying this model to real world application (Ren et al.,
2008). MORT analyzes a system and identifies the interrelationships among the plant
operation and management organizations. However, the tree is so large and complex.
Thus, it does not lend to tailoring the tree to a smaller problem. In the model of Ren et al.
(2008), Bayesian network is used to provide graphical description cause-consequence
relationship whereas Attwood et al. (2006) used reliability block diagram. Kujath et al.
(2010) combined of fault tree and event tree analyses to analyze and to provide complete

cause-consequence relationship.

The last istic assessed the quantitative ability of each model. To prevent the

accident, a realistic iction (i.e. inty of ion is minimi. is important.

Therefore, in this study, model updating and prediction capabilities of accident models
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were assessed. Many sequential models are qualitative. However, these models are able to
adopt a statistical approach, often using the historical data, to study existing relationship
between factors numerically. This approach does not offer predictive information, which
can be used to help management decisions, and it is unable to capture dynamic behaviour

of process system. Therefore, this type of quantification causes risk of misunderstanding

and false i i speci at the higher levels, where detailed
knowledge about the accident occurrences is lacking. In the model of Attwood et al.
(2006) reliability concept is used to predict occupational accident frequency and financial
rewards and penalties associated with changes in various safety factors. Bayesian network
has the ability to update whenever incorporate new information and to predict the future
observation. This method has been utilized by Ren et al. (2008) on his occupational
accident model to perform much better quantification.

Table 2.1 lists the summary of comparison.

2.3 Summary of Comparison

A review of literature that describes key existing accident models revealed a gap in the
knowledge related to oil and gas process accident modeling. Numerous accident models
have been developed during last decades. Each of models has different area of

and limitations. the model characteristics depend on

the types of “causal factor” that it highlights. Accident models in safety assessment plays
an important role. They are theoretical framework that is used to establish shared

within_the ization of how and why accidents happen. Accident

investigation techniques which are used to identify and analyze the cause-consequence



relationship in order to develop suitable risk reducing measures to prevent future accident
combine to accident models in varying degrees.

Table 2.1:Summary of comparison

Type of model g
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GI = General Industrial, NU= Nuclear, AV= Aviation and O&G= Oil and Gas. * Yes means method might
fulfill the requirement. "O" means “occupational hazards” and "P" means "Process hazards"

Early accident models were developed mainly focusing on areas such as nuclear, medical

and transportation. And later, with the i i ity in high
systems and operations of oil and gas related industries, approaches to model oil and gas
related accident were taken. However, it is noticed that less attention has been devoted

specifically for chemical and process industry. This fact took considerable attention of

related individuals and groups to develop ive safety

for process industry.

Some models have been developed focusing on process industry, but the approach has

usually applied to occupational accidents rather than catastrophic accidents such as fires,
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explosions and toxic releases which are generated from process hazards. Even though,
these models describe process hazard accidents, they were unable to adopt holistic view
of accident. They were not able to represent steps of accident sequence and describe all
the risk factors or causal factors that influence of each stage of accident process. Some
models used the concept of safety barriers to analysis the accident, but they were not
directly applied safety barriers in model development to represent the accident process. In
the model of Kujath et al. (2010), model used barriers directly depict the accident and
describe an accident as the result of failure of set of particular safety barriers.

Several methods were capable of providing quantitative analysis in terms of either
updating or prediction or both. Other models have adopted a statistical approach based on
historical data to study existing relationship of causal factors. This way, it will not
provide predictive details and quantification consists of significant uncertainty. All
models studied here provide graphical demonstration of causal factors of accident process
to certain extend. The quantitative and qualitative ability depends on ability of accident
investigation method that model can easily adopted. However, no presently available
model has adopted a holistic, quantitative approach to chemical and process accidents.
Based on the findings of this literature review and focusing on author’s objectives, a new
model is proposed to perform safety assessment of process industry. This model is based
on the model of Kujath et al. (2010) and set of hypotheses. The novel model is described

in subsequent chapters.



Chapter 3

SHIPP METHODOLOGY: PREDICTIVE ACCIDENT MODELING
APPROACH
METHODOLOGY AND MODEL DESCRIPTION

Focusing on process hazards, this project aims to contribute to chemical and process

industry’s safety by a called System Hazard

Identification, Prediction and Prevention (SHIPP). The SHIPP methodology can be used
to identify most possible process hazards, evaluate, analyze the accident sequences and
their consequences, control, and prevent future accidents with knowledge of future

(with predicti ilities). The process accident model is proposed as the

extension of Kujath et al. (2010). In this work, the model of Kujath et al (2010) was
modified so that it could be used in any process industries, and it would better represent
the accident process. The proposed accident process model can accommodate multiple
risk factors considered in chemical and process industry (CPI).

3.1 System Hazard Identification, Prediction and Prevention (SHIPP)

Methodology

The purpose of the SHIPP methodology is to identify hazards, evaluate them, predict and
prevent their occurrences, and continue monitoring. The SHIPP methodology is a
systematic and comprehensive safety analysis procedure that demonstrates how the
process accident model integrates process system safety, and is developed by focusing on
accident analysis of process hazards. The advantages of the SHIPP methodology are that
it can be applied to assess the risk of the entire process system, as well as subsystems, and

that it can also identify the system’s hidden interactions and their consequences through
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modeling the accident process using safety analysis techniques. Application of this
methodology helps to determine the critical safety areas that should be prioritized and
implemented in order to prevent future accidents based on predictive accident occurrence
and accident precursor data. The SHIPP methodology comprises four phases: (1) system

definition, (2) hazard identification and analysis, (3) accident modeling and prediction,

and (4) updating, decision making and i of accident p; ion strategie:

This methodology is shown in Figure 3.1.

3.1.1 System Definition

The first step of the SHIPP methodology is to define the system and its boundaries. The

system is p of many i i such as process units, people,
software, hardware, procedures, support equipment, facilities and the operating
environment. The nonlinearity and complexity of the system’s interactions can cause
failure with severe consequences. Therefore, it is important to identify major subsystems,

their functions, i i and their ies. L ing of the systems,

subsystems, system interfaces and their interactions is critical to identify the hazards,

accident process and required safety barriers (Bahr, 1997).

3.1.2 Hazard Identification and Analysis
Once the system is defined, the next step is to identify and analyze the hazards. The
primary objective of the hazard identification and analysis phase is to identify all

potential process hazards and analyze how these hazards would lead to an accident.
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1* Phase

2" Phase

3" Phase

4" Phase

Figure 3.1: System Hazard Identification, Prediction, and Prevention (SHIPP)
methodology



It must categorize the hazards in terms of severity of consequences, and then accident
process steps (accident sequence process) are evaluated and related to each possible
accident scenario. There are several techniques and methodologies available to carry out
hazard analysis in the process industry. Khan and Ahbf\si (1998) reviewed their

and

The American Institute of Chemical Engineers has published a manual called “Guidelines
for Hazard Evaluation Procedures™ (2008) providing guidelines on how to use these
techniques. The following methods may be used to identify the hazards: what-if analysis,
accident and failure statistics, hazards and operability study (HAZOP), preliminary
hazard analysis (PHA) and failure modes and effects analysis (FMEA). However, the
choice of the particular hazard identification technique depends on the purpose for which
the study is done.
Typically, in the process facility, types of hazards are characterized as: (1) occupational
hazard, (2) process hazard, and (3) external hazard. This work focuses on process hazard.
The following scenarios characterize process hazards commonly observed in a process
facility:

e Unexpected releases of toxic, reactive and flammable liquids and gases

e Unexpected energy release such as mechanical, electrical, thermal or radiation

*  Process upsets such as high temperatures, cryogenic temperatures, high pressures,

vacuum, pressure cycling, cycling, and vibration/liquid or steam
q

hammering
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Process hazards are likely to be generated within an operating plant. Thus, the hazard and
operability (HAZOP) study is more suitable for process hazard investigation. Further, for
identification of the sources of release, it is necessary to carry out a specific review of
such sources. However, it is always advisable to ensure that significant hazards are not
overlooked.

Once the process hazards, including the causal factors, have been identified, it is

important to evaluate accident and their ification of safety

barriers planned to prevent an accident sequence is important in accident analysis. Thus,
an accident could be described as the result of a relevant safety barrier failure. In studies
of accident analysis, application of the concept of the safety barrier has been discussed in
the literature extensively. Johnson's (1980) MORT accident model discussed the
relationship between energy transportation and barriers. Further, the MORT model
discussed the purpose of barriers in three different ways: prevention, control and
minimization (Hollnagel, 2004). Svenson (1991) described barrier functions and barrier
systems and their distinction in the Accident Evaluation and Barrier (AEB) model.
Application of the bow-tie method in risk analysis was used in the ARAMIS project
(Dianous and Fievez, 2006) combining safety barriers to analyze hazards. BORA-Release
(Aven et al., 2006) analyzed the effect of safety barriers to prevent hydrocarbon releases,
and how plant-specific conditions such as technical, human, operational and
organizational risk-influencing factors affect barrier performance.

Therefore, integration of hazard and barrier analysis provides comprehensive results for

accident analysis rather than just causal-consequences analysis. Further, it may be noted



that human, and izati elements i igni not only

initiate the accident process, but may also propagate the accident sequences.

3.1.2.1 Human Fac, Errors and Organizatic Factors

The area of human factors is the scientific study of the interaction between man and
machine (Gordon, 1998). Literature reveals different definitions for human error.
Rasmussen (1993) defined human error as “human acts which are judged by somebody to
deviate from some kind of reference act; they are subjective and vary with time”. Senders
and Moray (1991) defined human error as the result of observable behavior originating
from psychological processes on different levels. These behaviors can be evaluated using
performance standards, initiated by an event in a situation where it was possible to act in
another way than that assumed to be correct. According to Hollangel (1998), human error
cannot be observed directly. The terms “human factor” and “human error” are often used
interchangeably in the literature, and can be distinguished as the underlying causes of
accidents (human factors) and immediate causes (human errors) (Schondeck et al., 2009).
Wagenaar et al. (1994) pointed out that accidents occurring due to human behavior
constitute a necessary condition. Such human behavior is called an unsafe act. This
unsafe act may cause accidents. However, the accidents are not always caused purely by
an unsafe act. This is reflected in the proposed methodology (Figure 3.1).

Management and organizational factors involved in accident causation have received

considerable attention. There are ions between the izati factors and

safety performance, yet the way they influence safety performance is not clear.

Organizational factors such as i ivation, safety p
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training, and safety culture play major roles in system safety and lack of these factors

contributes to causing accidents.

3.1.2.2  The Accident Process Sequence

The accident process usually follows three steps (Crowl and Louvar, 2002):

Initiation (the event where an accident begins)

Propagation (the events or events that maintain or expand the accident)

Termination (the events or events where the accidents are stopped or diminished
in size)

It is important to study the accident sequence pattern in order to prevent the initiation and

progression of the accident process. It also helps to identify the safety functions and
barriers related to different accident levels. Figure 3.2 depicts a simplified illustration of
the event sequences and safety functions.

In a typical process accident, the event sequence is initiated with a material or energy
release, and is followed by dispersion of material and/or energy, ignition of flammable
material, escalation of fire or strong explosion, and exposure to property, humans and the
environment. Finally, the accident terminates, causing substantial loss and harm to
humans, property and production.

The main safety barriers used to prevent, control and mitigate the consequences of the
accident process need to prevent release of material/energy, dispersion of material or
energy, ignition, explosion or escalation of fire or release of toxic gas and control the

damage and prevent fatalities. The determination of the type, performance, and
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requirement of safety barriers and their functions depends on specific hazardous events

and severity of consequences.

Initiating
vent

Propagation

Termination

Figure 3.2: Accident process sequence and relevant barriers

3.1.2.3 Definition of Safety Barrier (SB) and Safety Function (SF)
In a general sense, a barrier is an obstacle, a hindrance, or an obstruction that prevents the
event occurs and mitigates the impact of the consequences. However, Skelt (2006) has

proposed a definition as “the safety barriers are physical and/or non physical means
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planned to prevent, mitigate, or control undesired events or accidents”, and “a barrier
function is a function planned to prevent, control, or mitigate undesired events or
accidents”.

There are other definitions that are introduced by Hollnagel (2004), Johnson (1980) in the
MORT accident model, Duijm (2009). A barrier function represents the action which
assigned for particular safety function can be arrest the accident process, so that the next
event in the accident sequences will not occur. The performance of the barrier function is
important in accident analysis because of it is directly relationship to the occurrences of

consequences.

3.1.3  Accident Modeling and Prediction

The process accident model is proposed based on the following considerations:
® Accidents are events resulting from a series of failures or errors; i.e. accidents cannot
be described by using a single cause. The causal relationship of the accident process is

represented by causal chains or networks.

The accident sequential path can be blocked by applying a suitable barrier. In so

doing, the severity of undesired can be pi 5 or

mitigated.

Releases of material or energy and/or process upsets are considered as initiating
events.

e The performance (failure or success) of a safety function determines the progression
of the accident process; i.e. the accident is described as one or more barriers that have

failed.
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* Management and organizational and human elements are influenced during all stages
of the accident process. Therefore, these two factors are considered as common
influencing factors.

As previously described, Kujath et al. (2010) developed a conceptual accident model for

the offshore oil and gas process environment. In their model, five safety elements were

considered and placed in sequential order to depict a hydrocarbon release accident. The

model is a qualitati iption of accident ion initiating with
release in terms of the safety barrier. However, it has not considered the interventions of
human, management and organizational factors in the accident process. Therefore, in the

current work, the model limitati have been and a new updated

quantitative process accident model is proposed. The proposed process accident model
uses a sequential modeling approach by applying five distinct safety barriers to describe
the accident process in conjunction with two common safety barriers. The additional two
barriers were not considered in the model of Kujath et al. (2010). Further, in the proposed
model, the last two barriers of the model of Kujath et al. (2010) (harm and loss prevention
barriers) were replaced by one single barrier called damage control and emergency
management barrier. Also, a new barrier called dispersion prevention was placed between
the release and ignition prevention barriers. The logical relationship of different stages is

shown in Figure 3.3,
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Figure 3.3: The process accident model
The ial caus i ip is presented with the help of fault tree and

event tree analysis. The safety barriers in the process accident model are analyzed using
fault tree analysis (FTA) to establish causal relationship. The top event denotes the failure
of the safety barrier. The second layer of the fault tree associated with each safety barrier
represents sub safety-barriers; their failure will cause a top event failure. Further
analyzing these sub-safety elements, it is recognized subsequent events that cause the
failure of sub-safety barriers are causal factors rather than safety elements. A description
of the safety barriers and their sub-safety barriers is given in the following paragraphe.
The logical relationship between sub-safety elements and main safety barriers is
constructed using fault tree analysis.

Release Prevention Barrier (RPB): In most cases, the release of materials is the main

initiating event that causes loss of containment. Each release scenario can be described
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using different initiating events. The main sub-safety elements that cause RPB failure are:
(1) operational error prevention barrier failure (Failures occur when the system is in an
operating condition. Manual operational errors are often recognized as the main cause for

this sub-safety element failure), (2) physical/technical prevention barrier failure (3)

maintenance prevention barrier failure (Poor mai: release during

and erroneous maintenance are some of causes for the failure this sub-safety element) and
(4) process upsets prevention barrier failure. The function of this last barrier is to prevent
releases occurring by providing early warning or information, or activating the safety
system automatically (Figure A.1).

Dispersion Prevention Barrier (DPB): The function of the DPB is to limit the extent
and/or duration of hazardous events to prevent the spreading of material or energy.
Passive and active barriers are applied to prevent and mitigate the dispersion of hazardous
energy. The fault tree for this safety barrier (Figure A.2) identified passive barriers such
as bunds, retention walls, dikes and drainage and active barriers such as inerting,
ventilation and detection systems as sub-safety elements. Safety elements such as manual
and automatic isolation and emergency shut down systems are also applied to limit the
dispersion of hazardous material. Such types of barriers are known as activated- manual, -
automated, and -procedural barriers (Skelt, 2006).

Ignition Prevention Barrier (IPB): Ignition prevention is very important in facilities that
handle flammable material such as oil and gas, paints, adhesives and cleaning agents.
When the DPB fails, a flammable chemical mixture may ignite causing a fire and
explosion. Therefore, to prevent fires and explosions, safety barriers must be applied by

focusing on all possible ignition sources existing in a process facility. There are a number
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of ignition sources in a process facility, such as flames, hot works, hot surfaces, hot
materials and gases, friction and impact and static electricity sparks. Permanent passive
barriers such as insulation and hot surface shielding, and permanent passive controllers
such as inadvertent flame detection, function to avoid flammable mixtures contacting
ignition sources. Hot-work permits and check lists fall into the category of procedural
barriers that are extensively used in the process industry. Figure A.3 shows the fault tree
for this safety barrier failure.

Escalation Prevention Barrier (EPB): Once ignition occurs, the hazardous event
propagates to nearby equipment, triggering one or more secondary events. This process is
known as a “domino accident”. Secondary events occur after primary events due to
physical effects such as heat radiation, overpressure and fragment projection. The
severities of domino or secondary events are significantly higher with respect to primary
accident scenarios. Therefore, the relevant and adequate active and passive barriers must

be

stalled to isolate the surroundings to prevent domino accident scenarios. Passive
safety barriers such as physical barriers (e.g. fire wall, blast wall, etc.) and protection
systems must be installed to be activated on demand without any internal intervention.
Active barriers such as fire suppression systems are used to prevent accidents such as jet
or pool fires (Figure A.4).

Damage Control and Emergency Management Barrier (DC&EMB): Emergency
management and damage control is the last layer of protection that is intended to control
hazardous events as much as possible or to reduce their consequences. The main objective
of this barrier is to prevent fatalities. The three main elements of the DC&EMB are

preparedness, response and recovery. Emergency planning and inherent safety designs are



integral and essential parts of safety and loss prevention. Adequate capabilities of onsite
medical facilities would be able to provide a considerable contribution to minimize
impact. Emergency safe places and personal protective equipment (PPE) are also helpful
to mitigate or control human injuries and fatalities. Figure A.5 shows the fault tree for this
barrier.

Human Factor Barrier (HFB): Modern control, automated safety and structured
documentation systems are able to achieve a safer operational environment. However, the
process operator still has the overall immediate responsibility for the safe operation of the
facility. Therefore, human intervention at all levels (not just at the operator level) is a
crucial element in the accident process. In the current work, studies were carried out to
find possible accident scenarios related to human errors. It is suggested that seventeen
major factors may cause HFB failure, and they are allocated to five sub-safety barriers as

shown in Figure A.6. These sub-barriers can be categorized in to four types of barriers:

p symbolic, activated: d and activated: barriers. For instance, a
human-system interface barrier containing displays and alarms, labels and signs, and field
control panels are some of the safety elements.

Management & Organizational Barrier (MOB): Often the most important underlying
causes for accidents are management and organizational factors. The intervention of these
factors may exist at all stages of the accident process; however, their effect is difficult to
assess qualitatively as they may change from industry to industry. Similar to previous
analysis in the HFB, seventeen causal factors are identified, and they are allocated to two

sub-safety barriers which are known as the barrier and the

barrier. The logical relationship of these factors is shown in Figure A.7.
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Event tree analysis is used to depict the consequences at each stage of the accident

process. The qualitati iption of related to each stage of the accident
process associated with failure of each safety barrier in the accident chain is shown by an

accident sequence event tree as shown in Figure 3.4.
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|
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Figure 3.4: Accident sequence event tree based on process accident model
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3.1.3.1 Definitions for Abnormal Events

Words and phrases such as ‘incident’, ‘accident’ and ‘near miss’ are often used
interchangeably. However, in the context of accident analysis these words need to be
tightly defined. The following definitions are introduced for these words using the

information derived from a review of relevant literature (Mannan, 2005, Phimister et al.,

2003) and also idering the ilities and levels.

Near Miss: The term ‘near miss’ describes an event that does not result in an actual loss
but that has the potential to do so. For instance, if the process conditions go outside safe
operating limits but do not cause a release, then the incident is termed a near miss. The

following event scenarios are examples for events that are the result of near miss.

* Anemergency shutdown system is unnecessarily activated;
« A safeguard such as a relief valve or fire suppression system is called upon to
operate;

* A hazardous chemical is released but does not affect workers in the area.

Mishap: A mishap is an event or sequence of events that could cause minor health effects
and/or minor impact to property and the environment. The effect of mishap events could

cause production loss or work hours loss.

Incident: An incident is an event that may cause considerable harm or loss. It may also

cause a major health effect or injury (temporary disability or permanent minor disability),

localized damage to assets and i 3 i loss of ion and

considerable impact to company reputation.
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Accident: An Event that may cause one or more fatalities or permanent major disabilities,
and/or heavy financial loss is considered as accident. An event like this receives national
media attention.

Catastrophic accident or disaster: A catastrophic accident or disaster is an event that may
cause multiple fatalities and extensive damage to property, system and production. It may
cause a shut down of the plant for a significant time period and sometimes forever. It may
also cause massive environmental effects. Such an event receives international media

attention.

The categorization may vary from industry to industry according to different defi

3.1.3.2 Predictive Modeling

Accident prediction based on available information about abnormal events or accident
precursor data is the most important aspect of the current model. A predictive model is
requested to enhance existing safety strategies to prevent accidents by using the latest
information. The prediction model includes two main features: qualitative and
quantitative analysis. Quantitative analysis estimates the numerical values about any
future likelihood of an abnormal event, while qualitative analysis helps to provide
information about specific safety systems that need to be implemented or strengthened so
that particular failure modes can be avoided. Event tree and fault tree analysis are
combined to develop the predictive model. The event tree (ET) represents all possible
accident scenarios associated with the failure of the safety barrier, while fault tree (FT)
analysis visualizes all possible causal factors that lead to the failure of a particular safety

barrier. The FT-ET model is comprehensive and flexible for accident forecasting, and the
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analysis provides a holistic picture of accidents (Zheng and Liu, 2009). Numerical
estimation is performed based on deterministic values because this method is quick and
easy to apply and also avoids the problem of communicating risk in terms of probability
and statistics that non-experts often find difficult to follow. In this section, the predictive
model is introduced to estimate the number of abnormal events in the next time interval.

The general predictive equation for the discrete random variable z, given observed data

can be estimated by using equation 3.1 (Hamada et al., 2008):
paim) =Y p(z/6)p(6!x) 3.1
]
where, @ denotes the unknown parameter, p(6/7)is the posterior distribution based on
dataz = (7,,7,,7;,....7,), and p(z/6) is the sampling distribution of z given&.

Using equation (3.1), the number of abnormal events in the next time interval, y,,, given

the observed information, i.e. abnormal event data, is established as equation (3.2). This

assumes the number of abnormal events is discrete and an independent random variable.
P(y,/data)=y" p(y,,,/ A)p(A] data) (32)
it
where, data=(y,, . ysry,)is the observed number of abnormal events data in the

time t, p(A/data)is the posterior distribution of 2, p(y,,/A)is the sampling

distribution, and Ais the average number of abnormal events. The commonly used prior
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distribution for Ais the gamma distribution (Hamada et al., 2008). The gamma

is a conjugate prior distribution and has a ility density given by:
p(l/a‘ﬂ)=%lﬂe"” (3.3)

where, @and 3 are distribution parameters.
The number of abnormal events y,is considered as a Poisson distribution with rate 4.

Then the likelihood distribution for data = (y,,y,, ... y,) given A can be written as:

I
pldatal 2) = % 34

Based on the conjugate property, the posterior distribution of 4, p(4/data)is also a

gamma distribution with the parameter @, and/,, having @,=a+)y,and
f

B, =a+n.

where, 2 Y, is the total number of abnormal events in n time intervals.
=1

However, the mean value of posterior distribution of 4 provides an updated value that it

can be written as:

a+zn:y,

A, = E[A/ data) = # @3.5)
n
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To simply the predictive model which is shown in equation (3.2), it is approximated to a

Poisson process, with the 4, Thus, the predicti ility distribution of
occurrence of an abnormal event in the next time interval given observed data can be

written as:

A
(Y, data) = (3.6)

Yia!

The cumulative probability distribution can be simply estimated taking a cumulative

value for different numbers of abnormal events.

3.1.4  Updating, Decision Making, Impl ion of Accident
Apart from qualitative analysis, The FT-ET model provides quantitative analysis. The
objective of quantification is to estimate failure probabilities of safety barriers and

of However, this dure includes

In the fault tree calculation, basic event probabilities used in point value form which are
adopted from reliability data bases, literature and expert judgment can be utilized to
estimate the system failure and occurrence probabilities (Yang et al., 2010). However,
these data may increase the uncertainty of quantification; thus the accuracy of the results
is reduced. Therefore, the Bayesian updating mechanism is used to minimize the
uncertainty and to improve accuracy of the quantification.

The prior probabilities estimated using the FT-ET model represent the initial beliefs about
the system before observing the new information. Bayes’ theorem updates the initial

estimate using the newly observed data as likelihood probabilities.
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The failure probability of the safety barrierx,, is assumed to be an identical and
independent random variable. The updated failure probability or posterior failure
probability is estimated using Bayes” theorem as shown in equation (3.7):

p(datal x)p(x,)

p(x; / data) = W

3.7

where, p(x,)is the prior probability of x;, p(data/x,)is the likelihood probability based
on the abnormal event data, and data is the new information or evidence observed in the

system. The denominator denotes the normalizing factor.

The prior probability p(x;)is estimated using fault tree analysis. The likelihood

probability is estimated using real plant abnormal event data as follows:

*  Find the number of abnormal events in each month

* Using these numbers, estimate the number of potential success and failure states
for each barrier

for k=i

NSJ :Nc‘k'

N =Y Ney, fork>i: i=1234 and k=12345
&

Where, N, is the number of abnormal events of consequence k" level, and N, and

N, are the number of success and failures, respectively, for the i" barrier.



® Once the success and failure are estimated for each barrier, the likelihood
probabilities, i.e. the probabilities of particular abnormal events’ occurrence
given the failure of safety barriers , P(data/x,)is calculated as:

N,
P(datal x) = —L2— (3.8)
NF,A ot NS.‘

prior and likeli ilities into equation (3.7), the posterior failure

probabilities are estimated.
Event tree analysis is used to estimate updated occurrence probability. This can be
obtained by equation (3-9):

P(c, /data) = [ (x,/ data)** (1~ (x, / data)) ** k =12345 (3.9)
=

Where, P(c, /data) is the updated occurrence probability of the k” severity level, SB,
denotes the safety barrier associated with the level, and
6., = 1 if the level k failure passes the down-branch of safety barrier i

6,,=0if the level  failure passes the up-branch of safety barrieri

The SHIPP methodology provides comprehensive safety analysis and precise information
in the process of decision making in risk management, and also supports the critical

process safety design implementation.



Chapter 4

MODEL TESTING WITH CASE STUDY
DETERMINSTIC AND PROBABILISTIC APPROACH

Validation of SHIPP methodology is demonstrated in case study related to the process

industry. The required data were collected from particular oil and gas industry within

defined boundary condition. The quantitative analysis is using inistic as
well as probabilistic approach. Results of case study show that the methodology is
appropriate to apply real time application. Furthermore, the results provide significant
insight how safety barriers deteriorate with time and how the likelihood of accident
occurrence increases with time. In a deterministic approach, the predictive model
estimates the expected number of abnormal events in the next time interval.

Instead of a point value, to represent results in terms of distribution, the probabilities
approach is used. However, comparison of the two approaches did not show significant
deviation. This proves further confirming the model is suitable for real application. In
addition the predictive model to estimate time to observe next abnormal event is
developed using probabilistic approach.

The following sections describe steps of SHIPP methodology; hazard identification and

analysis, predictive modeling and updating, and quantification is performed in both

ic and ilistic approach

4.1 Hazard Identification and Analysis
Event scenarios associated with process hazards were identified by analyzing incident

notification records of the process facility. As a process hazard analysis method, a
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HAZOP study (Crowl and Louvar, 2002) is used because it is one of the most systematic
hazard identification methods that can be used especially when system is in operating
condition. Therefore, HAZOP study is used to identify and develop incident scenarios.
Once the event scenarios had been identified, they were subjected to event sequence

analysis. First, all possible hazards, for example a significant inventory of flammable and

toxic materials were identified. y, initiating, ing and

events were determined for each event scenario. Then, the consequences of each event
scenario were assessed, and severity levels were assigned accordingly. The significant
factor of this analysis is the determination of safety functions which should apply to
prevent initiation, prevent or mitigate propagation and terminate the accident process.

The results of the analysis illustrate that four severity levels were observed, which are
known as: near miss, mishap, incident and accident in this particular case study. The
severity level “safe” denotes that the system has started to deviate from normal operation,
but the accident initiating event has not yet triggered. Table 4.1 lists the event scenarios
and severity levels associated with them for the month of January, 2009.

As an example, the severity level of consequence for the event scenario, “Gland leak from
level control valve when open flame job was in progress inside the low pressure knock-
out-drum”, was classified as “Incident”. The definitions for each severity level were
discussed in chapter 3. This particular event scenario started with hydrocarbon release
while an open flame job was ongoing. The potential hazard is flammable gas

(hydrocarbon gas).
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Table 4.1: Incident scenario analysis and severity level of consequences

No. Date Scenarios Severity Level

1 04.Jan 09 Steam hammering in the low pressure steam line ~ Near miss.
caused a valve stem cover for a gear operated
gate valve to loosen and fall approximately 15 m

to the ground

2 12.Jan 09 Upper master valve did not close as required Safe
During train three depressurization

3 13.Jan 09 Inadvertent flaring due to wrong opening Near miss
of pressure control valve on flare line

4 14Jan09  Gland leak from level control valve when Incident

open flame job was in progress inside
low pressure knock-out-drum

! 15.Jan 09 Inadvertent flaring due to wrong opening Near miss
of pressure control valve on flare line

6 17.Jan09  Welded foundation of davit cracked Near miss
completely and damaged

78 20.Jan 09 Start compressor did not build pressure due to Safe
broken link

8 19.Jan 09 Flame noticed from main combustion Mishap
chamber of sulphur recovery unit top side

9 20.Jan 09 Emergency shutdown valve found stuck in Safe
closed condition

10 21.Jan 09 Gas leak from pressure transmitter tapping. Mishap
due to corroded stainless steel bolts failure

11 21.Jan 09 hutds valve closed i Safe

y
12 24.Jan 09 Job carried out on east crane without isolation Safe
while starting up

The safety function applied to prevent release failed and led to initiation release.
Hydrocarbon then started to disperse inside the knock-out-drum. Further, the safety
barriers installed to prevent or minimize the spreading of gas also failed. An open flame
was the ignition source that may have caused fire. To avoid contact of flammable material

with ignition sources, ignition prevention barriers were introduced. Hot work permit is
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normally used in the industry as a safety barrier to prevent ignition and other potential
hazards while hot work is progressing. However, a failure or inadequate work permit
procedure caused a minor fire. The fire was extinguished as escalation prevention barriers
were successful. The accident process of this event scenario can be described in terms of
accident barrier failures as follows: the accident process initiated, causing release
prevention barrier (RPB) failure, followed by failure of the dispersion prevention barrier
(DPB) and ignition prevention barrier. Finally, the escalation prevention barrier (EPB)

was successful, and at this stage the accident process was terminated.

4.2 Accident Process Modeling and Prediction

The third phase of the SHIPP methodology is to set up the accident model and predict
future outcomes based on available data. The proposed process accident model (Figure
3.3) is used to describe the accident scenarios in the LNG facility. An analysis carried out
in phase two illustrates that only the first four barriers were involved with all event
scenarios. These barriers are the release prevention barrier (RPB), dispersion prevention
barrier (DPB), ignition prevention barrier (IPB), and escalation prevention barrier (EPB).
However, other barriers still exist within the model, but their effects are negligible for this

case study. Therefore, the accident process model for this LNG case study comprises

release prevention, dispersion prevention, ignition prevention, and ion p
barriers. The model of safety barriers and consequences associated with their failure is

shown in Figure 4.1.Phase three is further discussed in terms of fault tree and event tree

to depict the caus i ip and to perform
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Deviation from
‘normal opration

Figure 4.1: Event sequence diagram for case study process facility

4.2.1 Fault Tree (FT) Construction

The fault trees for each safety barrier are shown in Figures B1-B4. They are constructed
using the proposed generic fault tree models as discussed in chapter 3. The failure
probabilities of basic events were estimated by using OREDA (Offshore Reliability Data
Handbook, 2002), Lees’ Loss Prevention in the Process Industries Handbook (Mannan,
2005), literature (Skelt et al., 2006 and Khan et al., 2002), and using data directly
gathered from the plant. Tables C1-C4 list the failure probabilities of each basic event.

The results obtained using the fault tree simulations are shown in Table 4.2.



Table 4.2: Failure probability data for each primary safety barrier

Safety barrier (x,) Failure Probability P(x;)
Release Prevention Barrier (RPB) 0.0527
Dispersion Prevention Barrier (DPB) 0.0616
Ignition Prevention Barrier (IPB) 0.1060
Escalation Prevention Barrier (EPB) 0.0271

The failure of barriers is assumed to be independent and mutually exclusive. The

i

probability of failure is denoted by x,(i.c. failure probability of i" safety barrier which is

also known as prior probability or initial belief). The prior failure probability p(x;),

where i=1, 2, 3, 4 denotes the failure probabilities for the safety barriers, RPB, DPB,

IPB and EPB, respectively.

4.2.2  Event Tree Construction

The event tree model associated with the event scenarios was developed as shown in
Figure 4.2. Initially, the release prevention barrier (RPB) is triggered. The two branches
in the tree represent failure and success of a particular safety barrier. If RPB is successful,
the favourable consequence is “safe” which is denoted by “C;”. If it is unsuccessful, the
next safety barrier, DPB is activated. The end state “C;” denotes “near miss” if this
branch is successful. Then, the safety function of IPB is triggered. The branch’s
successful consequence is denoted by “C;”, which is called “mishap”. EPB is the last
safety barrier involved is the escalation prevention barrier. When EPB is successful,
following the upper branch, the end state is “C,”, which is the “incident”. When EPB is
unsuccessful, following the lower branch, the end state results in “Cs™; this is the

“accident”.
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Figure 4.2: Event tree analysis for LNG facility

The failure probabilities of safety barriers are estimated using fault tree analysis as
discussed earlier. Then these failure probabilities are used in the event tree branches to

estimate the ilities  of The prior ility of

consequence of severity level k (k=1, 2,3, 4,5), denoted by P(c,), is given as:
Ple)= T a-x)™ @1
Jasi,

where, SB, denotes the safety barrier associated with the level k and;
6, = 1if the level k failure passes the down-branch (failure) of safety barrier ;

6,

=0 if the level k failure passes the up-branch (success) of safety barrieri ;

Table 4.3 illustrates prior ilities of of for the event tree.



Table 4.3: Prior estimate of ility of each
Consequences (C,) Occurrence Probability P(c,)
C, (Safe) 9.4x10™"

C, (Near Miss) 49x107

C; (Mishap) 29x107

C, (Incident) 33x10*

C; (Accident) 93x10°

4.2.3. Predictive Modeling

The most significant factor of the SHIPP methodology is its predictive ability. This helps
to forecast future outcomes based on existing information. The predictive model to
estimate the number of abnormal events in the next time interval y,,,, given observed
data, is estimated using equation 4.2. The derivation of this model has been discussed in

the Chapter 3.

it e

Aye
POy, data) ==2— “2)

where, data = (y,., Yy, ¥v..y,) is the number of abnormal event data in the time 1, 4, is

the updated rate of abnormal events as estimated using equation 4.3:

a+) .y,

2
A, = E[A/ data]= ﬁ% @3)
n
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where, @and § are gamma distribution parameters of A(i.. average number of
abnormal events in the time interval), and )" y, is the total number of abnormal events in
=

the time interval n.

Table 4.4 lists the cumulative number of abnormal events of each severity level over the
first ten months of year 2009, and obtained using the hazard identification and analysis
process.

Table 4.4: Cumulative number of abnormal events over first ten months of year 2009
(real data gathered through analysis of event scenarios of LNG facility)

RN RGN oo SN N N
Safe  Near miss Mishap Incident Accident
1 b 4 2 1 0
2 9 10 4 1 0
3 14 17 6 2 0
4 32 61 18 10 1
5 32 79 23 12 1
6 40 88 24 13 1
7 44 94 24 14 2
8 48 101 27 15 2
9 51 111 30 16 2
10 53 114 32 18 2

Prior distribution for Ais considered as the gamma distribution with the distribution
parameters @ and # (Hamada et al., 2008). The gamma distribution is a conjugate prior
distribution. As enough information are not available to determine prior distribution
parameters, i.e. the prior distribution of A is non-informative prior, @and f are taken as
0.01 providing a uniform distribution. Thus the posterior value of average abnormal

events 4, is estimated using Equation 4.3. Then, this value is substituted in the Poisson
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predictive model, and the results are presented in the form of probability mass and density
functions as shown in Figure 4.3.

According to probability plots in Figure 4.3, the mean value of the number of events is
estimated as 22. This implies that the average number of events predicted in the eleventh

month is 22.

1 5 9 3 w 2 E » B 4 el
Number of abnormal events.

Figure 4.3: Probability mass and density function of number of abnormal events in the
next time interval

4.3 Updating Mechanism

The last phase of the SHIPP methodology is to conduct follow-up activities which include

updating, i ion of accident p ion strategies and safety critical decision

making. Further, it is important to monitor the system to assure the effectiveness of the
implemented and existing safety functions (hazard controls).
Basic event failure rates of the fault tree are derived using reliability data bases, literature,

and available data in process plants. These failure rates often have significant uncertainty
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associated with them. Therefore, to minimize uncertainty of the quantification, a Bayesian

updating mechanism is used to update the prior failure probability of safety barrier. By

using updated failure ilities, the ilities are also
updated using event tree analysis. As described in Chapter 3, Bayes” theorem is used to
update the failure probability of safety barriers using data adopted from the plant. This
process converges theoretically to more realistic quantification.

The failure probability of a safety barrierx; is considered as an independent random
variable, which represent initial belief or prior information about safety barrier failure.
Then, the posterior failure probability is obtained using Bayes’ theorem (Bedford &

Cooke, 2001) as shown in Equation 4.4:

pldatal x,) p(x;)

4.4
> p(datal x,) p(x,) “4h

p(x;/ data) =
where, p(x;)is the prior probability ofx,, p(datalx,)is the likelihood or sampling
probability derived from abnormal event data from the plant, and data is the new

information or evidence from the plant. The denominator denotes the normalizing factor.

4.3.1 Estimation of Likelihood Failure Probability

To estimate the likelihood failure probability, plant real time abnormal event data are
used. These data are regularly collected in process facilities for further investigation and
to diagnose system faults. Table 4.4 lists the cumulative abnormal event data adopted

from the LNG facility studied here. The likeli ilities are estimated using

subsequent steps:



64

* Find the number of abnormal events in each month (Table 4.4),
* Using these numbers, estimate the number of potential success and failure states

for each barrier, and

Ny, =Ney.for k=i “.5)
Ny =Y Ney, fork>is i=1,2,3,4and k=1,2,3,4,5 (4.6)
=

Where, N, , is the number of abnormal events of consequence k" level, Ny and N,
are the number of successes and failures for the i barrier. For instance, for month one
and the first barrier (i.e.i=1),
Ngy=N¢, =5
Ny =2 Ney =Nep # Ny # Ny #Neg =4+2+140=7
ot
e Once the number of successes and failures are estimated for each barrier, calculate

the likelil ility (i.e. the ility of particular abnormal event

occurrence given that failure of safety barriers), p(data/x,),

p(datal x,) = @7

.
Nf‘: ¥ NL:
For the above example:
7
P(datal x,) = ——=0.583
7+5

Similarly, the likelihood failure probabilities for all safety barriers are estimated using

equation 4.7. These are listed as in Table 4.5.
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Table 4.5: Likelihood probability data for each barrier

Likelihood probabilities p(data/ x;)

Month

RPB DPB IPB EPB
1 0.583 0.429 0.333 0.000
2 0.625 0.333 0.200 0.000
8 0.641 0.320 0.250 0.000
4 0.738 0.322 0.379 0.091
5 0.757 0.313 0.361 0.077
6 0.759 0.302 0.368 0.071
7 0.753 0.299 0.400 0.125
8 0.751 0.303 0.386 0.118
9 0.757 0.302 0.375 0.111
10 0.758 0.313 0.385 0.100

4.3.2  Posterior Estimation of Failure Probability

Using prior and likelihood probabilities, the posterior probabilities (updated probabilities)
for the safety barriers are derived using Bayes’ equation (equation 4.4). Table 4.6 lists the
updated failure probability for ten months and Figure 4.4 illustrates their distribution with

the time.

Table 4.6: Posterior failure probability data for safety barriers over ten months

Posterior failure probabilities p(x, / data)
RPB DPB IPB EPB
0.0729 0.0469 0.0560  0.0000
0.0856 0.0318 0.0288  0.0000
0.0911  0.0300  0.0380  0.0000
0.1364 0.0303 0.0676  0.0028
0.1486 0.0290 0.0628  0.0023
0.1503 0.0276 0.0647  0.0021
0.1461 0.0272 0.0733 0.0040
0.1450 0.0278 0.0695 0.0037
0.1490 0.0276 0.0664  0.0035
0.1496 0.0291 0.0690  0.0031

Month

SCeXNaUE WD~
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Figure 4.4: Posterior failure probability distribution of safety barriers for ten months

433 Estimation of Updated C: 0 I

With the updating of the failure probabilities of safety barriers, probabilities of occurring
consequences of each severity level are updated. It implies that, as new observations
arrive, the consequence occurrence probability will update accordingly. This is estimated
using event tree analysis.

The updated failure probabilities are used in relevant branches of the event tree. The
failure probabilities are propagated through the event tree branches. Using equation 4.1,
the posterior occurrence probabilities of each severity level are estimated for ten months,
and the results are listed in Table 4.7.

Figures 4.5 to 4.9 illustrate the variation of updated consequence occurrence probability

distributions over a period of ten months.
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Table 4.7: Posterior occurrences of each abnormal event over ten months

Month Posterior_probabilities over ten months
C,(Safe)  C,(Nearmiss) C;(Mishap) C, (Incident) C,(Accident)

1 9.27x10" 6.90x10° 3.20x10°  1.90x10* 0
2 9.14x10" 8.30x10” 2.60x10°  8.00x10° 0
3 9.09x10™ 8.80x10? 2.60x10°  1.00x10* 0
4 8.64x10" 1.32x10" 3.80x10°  2.80x10*  7.68x107
3 8.51x10" 1.44x10" 4.00x10°  2.70x10*  6.24x107
6 8.50x10™ 1.46x10" 390x10°  270x10* 569107
% 8.54x10" 1.42x10™ 370x10°  2.90x10*  1.14x10°
8 8.55x10" 1.41x10™" 3.80x10°  2.80x10*  1.03x10°
9 8.51x10" 1.45x10™ 3.80x10°  270x10*  9.42x107
10 850x10" 1.45x10"! 4.00x10°  3.00x10*  9.21x107
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Figure 4.5: Updated ility distribution of safe events over

ten months
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4.4 Quantification using Probabilistic Approach

The quantification can be performed in two different ways. One method is the single

point estimates, or is inistic in nature. The ification of previous sections is
discussed by using first approach. Using deterministic approach, an analyst may assign
values for discrete scenarios to see what the outcome might be in each. The advantage of
this approach is that it is quick and easy to apply. It also avoids the problems of

risk in terms of ility and statistics that are often difficult to follow

for non-experts. However, in this deterministic approach, uncertainty is not explicitly

dd d. Therefore, the inistic approach may give false sense of accuracy and

ignores variability in the population. As well as, it is evident that, the failure probabilities
of the safety systems are not deterministic in the nature and tends to follow distribution
(Kalantarnia et al., 2009).

The probabilistic approach takes variability and uncertainty in to account of by using
probability distributions rather than point estimates (Vose, 2000). They can be used to
estimate distributions for occurrence probabilities, which provide a more complete and

balanced description of risk for the decisi ki

4.4.1 Estimation of Prior Probability Density Function for Top Event of Fault Tree
(Main Safety Barriers)

The input failure probability (failure probability of basic event) data are assigned as a
distribution. The reliability data of OREDA (2002) were estimated by collecting data
from multiple companies. The variation from multiple samples is described by a gamma
distribution. Lognormal distribution is chosen for input failure rates which are derived

from the CCPS hand book and literature due to the general shape and ease of calculation
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(Yang et al., 2010). The failure probabilities derived by expert judgment and the Lees’
Loss Prevention Handbook (Mannan, 2005) are assumed as a normal distribution because
of ease of data analysis.
Monte Carlo simulation was performed to obtain the top event probability distribution.
Random numbers were generated for input failure rates using their distributions. The
failure probabilities of input variables or basic events are assumed as exponentially
distributed the time. Hence, the failure probabilities can be estimated using equation 4.8.

py=1-e* (4.8)
where:

P;= failure probability of j" basic event

J= Failure rate of " basic event

t = operational time (considered as 8760hrs)
The fault tree calculation is coded by using the MATLAB simulation tool. Finally,
sufficient numbers of simulations are performed to obtain a steady state condition and
then, data are fitted to the most suitable distribution. Based on the simulation results, the
prior distribution for the i" safety barrier can be modeled by Beta distribution with

parameters &, andf3, :

fx)= f-x), i=1234 4.9)

B@,.f)

The mean and variance for the prior failure probabilities of safety barriers can be

calculated using equations (4.10) and (4.11) respectively.
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mean= E(x,)=—2— (4.10)
a+p,
) B,
Variance = Var(x,) = ———5 4.11)
; (@, + B + )@, + P’ £
The results of Monte Carlo simulation are shown in Table 4.8.
Table 4.8: Prior distribution of failure of safety barriers and its parameters

Safety Barrier Distribution _ Parameters Mean Variance
Release prevention ~ Beta 0=164 P=294.5 5.27x107  1.60x10™
Dispersion prevention Beta =212 P=339.7 5.87x10%  1.53x10*
Ignition prevention  Beta a=199.1 B=1679.7  1.06x10"  5.04x10°
Escalation prevention Beta 0=49.9 P=13858  3.46x10° 231x10°

4.4.2  Prior I ility Density of the Ce

The probability propagation of the event tree is coded using the MATLAB simulation

tool to perform the Monte Carlo si ion. P ilities of ing the barriers are
estimated using fault tree analysis. The event tree for this case study is shown in Figure

4.2. The results are shown in Table 4.9.

Table 4.9: Prior probability distribution of the and its
parameters

Ce Distributi P: Mean Variance
[ Beta 0=293.7 p=16.4 9.47x10" 1.61x10"
e Beta a=164 p=313.2 4.97x10°? 1.43x10*
C; Beta =98 p=3525.4 2.77x10° 7.82x10”7
Cy Beta =94 3.16x10* 1.06x10*

Cs Beta 0=80 p=701547 1.14x10° 1.63x10""
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4.4.3  Estimation of Likelihood Failure Probability Function of Safety Barrier
The determination of an appropriate likelihood function is often more problematic.
However, assuming the failure probabilities are random numbers and independent of their

the likeli function is i by a binomial distribution. Hence,

the likelihood function for the i safety barrier is given as a binomial distribution with the

parameters 7, andn,;:

f(dam/x,):[:‘ ]xf'/‘(l—x_)"", i=1234 (“.12)
fi

where:
ny; = cumulative number of failures associated with the i " safety barrier
ny; = cumulative number of successes associated with the i " safety barrier.
ni= total number of events associated with the i " safety barrier, i.e. ny; + ..
x; = failure probability of i safety barrier.

The parameters n,; and ng; can be estimated using the data in Table 4.4.

4.4.4 Estimation of Posterior Probability of Safety Barriers

The posterior probability density function for continues random variable @ is given by:
16)h(8)
FO1y)=ELONE) *.13)
1(y)

where, [(y) = [¢(y/O)n(6)d6 .
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The function f(8/y)is the posterior density, h(6)is the prior density, g(y/6) is the
likelihood density or sampling density of the data, and /(y)is the marginal density or
normalization density.
Equations 4.9 and 4.10 are substituted for Bayes’ theorem to generate the posterior
distribution. In this case, the likelihood function has been chosen as the binomial
function, then their conjugate prior exists, often also in the Beta family. Hence, we have
the posterior function in the form of Beta with the parameters a, and ;. The derivation
is shown in the Appendix D.

1 a-1 pi-1 =
f(x, I data) :Wx, a-x), i=1234 (4.14)
Then, the posterior distribution parameters are given by:

(4.15)

(4.16)

Table 4.10 lists the updated distribution parameters of safety barrier failure.

4.4.5 Estimation of Updated (Posterior) I ility of Ce

Using the posterior failure distribution, the event tree estimates the posterior occurrence

The posterior distributions are also fitted to a beta distribution

and the distribution parameters are shown in Table 4.11.
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Table 4.10: Posterior distribution parameters

Months. RPB (x1) DPB (x2) IPB (x3) ___EPB(x4)
. epS s A RS ol P ol O
T 242 3437 2001 16817 499 1386,
) 262 3497 200.1 16837 499
&7 292 356.7 201.1 1685.7 - 499
oak 392 3837 2051 16917 509
5 72 3987 2071 16977 509
6 492 4057 208.1 1698.7 50.9
g 512 4117 2101 16987 519
i 552 4187 2111 17017 519 i
9 592 4287 2121 17047 519 13968
10 632 4317 2141 17067 519 13988

Table 4.11: Posterior

Based on these the mean ility of the over ten months of

2009 are shown in Table 4.12.
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Table 4.12: Posterior occurrence probability (mean) over ten months

4.4.6  Predictive Mechanism

‘The model to predict the number of abnormal event in the next time interval is develop
and discussed in Chapter 3. The prediction of the time for the next abnormal event to
occur is discussed in this section.

The general predictive equation for continues random variable can be estimated by using

the equation 4.17 (Hamada et al., 2008).
FGly)= [8(z/OWO1)d0 @17

where, @ is a variable, h(8/ y)its posterior distribution based on,

datay = (y,,¥;,¥5--»,), and g(z/8) is the sampling distribution of z given@.
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The predictive distribution to estimate the time to an event of severity level k.7, ,,, is

written as equation 4.18.
f by data) = [t/ 2 )N(A, | data)dd (4.18)
0

where, / is the rate of K" severity level, i.e. the mean number of failures per unit time is

the rate The y used prior distribution for 4 is the gamma distribution

(Hamada et al., 2008). The gamma distribution is a conjugate prior distribution and has a

probability density given by:

P ) = r’%l:" Aehh @.19)
.

where, a (>0) is the shape parameter and f (>0) is the scale parameter.
Considering #, the time of event occurrence, is following exponential distribution with the
rate J;. Then the distribution for 7 given 4 can be written as:

pt 14)=Ae™ (4.20)

Suppose that we observe n conditionally independent events in the time interval #; to ,,
and each follow exponential distribution, then the sampling distribution can be written as

(Bedford and Cooke, 2001):

Plliatytysnty 1 A) = Ao X o™t x Qe x . X Ay o™



78

pldatal A,) = ll[/l,e"'“
0

s
= qehn

421
where:

data =1ty t5,...t,

t, (The total time period).

Applying Bayes’ theorem, with an exponential likelihood function, the posterior
distribution of 4, can be estimated using Equation 4.22.

G datay = 2191 20

[pdatar 2,)p(3,)dA,
f
Pehn B T B Jatn BT
R re, " _ Ta "
T . T pa =
Jaresn B Jacle g, B [z ani g,
0" Ta, Ta, ;

el (BT a,
Aprleth 5 AP
= 5

— 4.22)
J‘Ikx.wueu..r, g, Ta,
H

g

Where: agmietemrag,
J

Ta,
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@, =a, +n; the posterior shape parameter.
B, = B, +T,; the posterior scale parameter.

‘The posterior distribution of  is also a gamma distribution with the parameters a, and f,.
The posterior distribution of 4; and the sampling distribution are substituted for equation

4.18 to estimate the predictive density function of time to the next event occurrence.

[ty data) = [A e A Arle Py
0 I‘al'
By e Bt
=r_;”;[1‘ e da, 4.23)

By integrating equation 4.23:

a5,

/data) = ————L—
St data) Gt B

(4.24)
As we know @, and B, , we substitute,, f,by @, and 3, . Then the prediction density

becomes:

(@, +m(p, +T)""

/data) =
Pt data) =

(4.25)

Finally, equation 4.25 turns into the Pareto distribution as shown in equation 4.26.
Consideringa = (a, +n), r=(b,+T,)and variablex=(b, +T,+t,), the Pareto

distribution can be rearranged as:

Fx=t,, data) =2 (426)
¥
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where, o and r are parameters of Pareto distribution, and mean and variance can be
estimated using the Equation (4.27) and (4.28) respectively.

mean =

”’1 Lasl @27)

Variance = >2 (4.28)

ar
i
(@-D*(a-2)

The values for a,and b, are assumed as 0.01. The mean time to the occurrence of the
next event is estimated using relevant predictive probability distribution. Table 4.13 lists
the results of predictive model.

Table 4.13: Predictive time to the occurrence of the next event

Severity level Near miss ~ Mishap Incident Accident
Mean time to next 3.5 12 30 77
event (days)

4.5 Analysis of Results

During the second phase of the SHIPP methodology, the potential process related
accident scenarios in the LNG facility were identified. Analyzing those accident
scenarios, the accident sequence process, their causes, consequences and severity levels

with each were i This i ion was included in the

accident model to illustrate the accident process. The model uses four sequential barriers,

release p ion, dispersion p ion, ignition p ion and fon pi
to depict the accident process. To test the models’ validity, a quantitative assessment was
performed. The failure probabilities of each safety barriers and consequence occurrence

probabilities were estimated using combination of fault tree and event tree analyses.
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These probabilities are known as prior estimates or initial beliefs. According to the prior

results, the consequences of having higher severity have low probabilities of occurrence,

while the consequences of having less severity have higher probabilities of occurrence.
The probability of the system remaining safe is obtained as 0.947, whereas the
probabilities of severity levels, near misses, mishaps and incidents are dramatically low.
The probability of an accident is estimated as 9.32x10°®, which is considerably low. The
past accident statistical data in different process industries displayed the same
phenomena. In reality, events, such as near misses and mishaps, are more frequent than
incidents or accidents. The relationship of industrial accident statistical data and
quantified results obtained illustrates that the proposed model is applicable to real
applications. A similar conclusion can be made using the results obtained by probabilistic
approach. Therefore, this model is able to provide both qualitative and quantitative risk
information of the process facility.

The prior failure probabilities of safety barriers were updated using the Bayesian theorem
as new information was observed. Plant real-time abnormal events data is used to
formulate the likelihood probabilities. Bayesian posterior probability values of safety
barriers depict the degradation of safety barriers with the time (Figure 4.4). In
deterministic approach, the failure probability of RPB has drastically increased within
first five month. Then, it shows slow increasing, whereas, in probabilistic approach it is
significantly increasing throughout the period. In deterministic approach, the failure
probability of DPB has remained steady for ten months. However, the results in

probabilistic approach illustrate that it also increasing throughout the period of ten



months. In the both approach the failure probabilities of IPB and EPB are also slowly
degrading with the time.
The event tree analysis is employed to estimate the updated occurrence probabilities

based on posterior failure probabilities of safety barriers. These results show that end-

state pi ility or ility change i over the
period of ten months as new information integrated into analysis. Probability distributions
of five severity levels are illustrated this phenomenon (Figures 4.5 to 4.9).

According to results of deterministic approach, although the prior probability of safe
(C,)condition has a very high probability of occurrence, as times goes by its posterior
probability is gradually reduced from 0.927 to 0.850 (Figure 4.5). However, in
probabilistic approach, the posterior probability is reduced from 9.28x10" t0 6.92x10".

This implies that the system degrades with time. Consequently, its performance is

reduced. As a result of system ion, the posterior ilities of of
near misses, mishaps, incidents and accident are increased. The posterior probability of
near miss (C,) shows significant improvement with the time (Figure 4.6), whereas

mishap (C,)shows slow fluctuation (Figure 4.7), with an increasing tendency. Most

y, posterior ilities of incident(C,)and accident(C;) are
dramatically increased (Figures 4.8 and 4.9).When an event occurs (i.e. accident), the
preventive measures are applied based on its causal factors. However, as time goes by,
the system shows impairment in its performance. The zigzag behaviour of posterior

probability distribution of accident indicates this process (Figure 4.9).



In deterministic approach, the predictive model estimates the probability distribution of
the number of abnormal events occurring in the next time interval. The average rate of
occurring of abnormal events 4 is updated whenever a new observation arrives. This is

known as updated or posterior rate 4, The predictive model is derived based on Poisson
distribution with updated rate 4, . Therefore, the prediction based on updated failure rate

information has lower uncertainty than a prediction based on prior information. The mean
of the predictive accident in the next time interval is 22 and the standard deviation is 5
events. This means that in eleventh month, 22 events are expected to occur.

In probabilistic approach, the predictive distribution to estimate the time to occurrence of
an event with different severity level is developed. Based on predictive results, in this
particular process facility, the expected time for an accident to occur is 717 days.
However, the plant will observe a near miss, mishap and incident within the first month.
According to these results, the expected number of days for a near miss, mishap and
incident to occur are 3.5, 12 and 30, respectively. The model updates the predictive
results dynamically whenever a new event occurs in the system and continually learns
system behaviour as same as deterministic approach.

An uncertainty analysis through the both approach reveals that (1) uncertainty of top
event probability or failure probability of safety barrier is reduced significantly by using

Bayesian updating method and real life abnormal event data, (2) uncertainty of is

reduced signifi ly using posterior and (3) inty of

occurrence probability is also reduced. Furthermore, in probabilistic approach, Using

Monte Carlo simulation, the distribution of top event probability and distribution of the



consequences probability were obtained the characterize the uncertainty of the results.
This way, the SHIPP provides precise information of how system degrading with time. It
also helps to increase the overall safety and performance of the system by applying

preventive measures with the knowledge of realistic prediction.



Chapter 5

APPLICATION OF SHIPP METHODOLOGY TO AN L
PROCESSING FACILITY

Natural gas is considered to be a green fuel as it burns with very few pollutants. In
addition, it is relatively safe and economically feasible for storage and distribution to a
diverse group of consumers. Global consumption reached 2600 billion m’ per year in
2003 and there has been continuous growth at an annual rate of 1.8% (Huang et al.,
2007). To meet this rapid growth in global demand for natural gas, especially for use as a

fuel for power ion in modern bined-cycle gas turbine plants, new LNG

processing plants (liquefaction facilities or process trains) need to be designed and
existing facilities need to be modified. Complex technologies, production and operation
optimization methods and cost reduction strategies are needed to obtain high efficiency
and economical feasibility. On the other hand, development in such areas leads to
potential disastrous failure modes and new safety issues. In addition, the volatile and
cryogenic properties of LNG along, with the flammable and explosive behaviour of its
vapours, create risks for those who handle it, for industrial assets and for the general
public (Horn and Wilson, 1977). Thus, comprehensive and systematic risk and safety

are of il during the planning, designing and operating

phases of LNG process trains. The objective of this chapter is to test and validate the

predictive accident modeling approach.
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5.1 Liquefied Natural Gas (LNG) Facility

The LNG value chain is ised of four [O)) ion and
(2) liquefaction, (3) shipping and (4) storage and regasification. In this work, the

liquefaction plant is subjected to a safety assessment using the SHIPP methodology.

5.1.1 The LNG Plant and Process Description
The liquefaction plant is the main capital-intensive unit in the LNG supply chain. A
liquefaction facility receives natural gas from the field reservoir through pipelines, and

lowers its temperature to liquid form for storage and later shipment to customers. The

plant is as one or more ing “trains” which receive the gas, filter and
cool it, and store the liquid in a tank until a tanker ship picks it up. The overall process
plant contains primary processes such as gas treating, dehydration, acid gas removal,
nitrogen (N;) removal, liquefaction and fractionation, as well as utility supply units. The
utilities required to support the main processing unit consist of heating and cooling media

(steam, cooling water, chill water, etc.) and a compression unit.

The processes at the liquefaction plant are divided into three main areas: feed gas

and li ion. There are several licensed processes available
for liquefaction. Three main processes are i used for LNG
namely: (1) propane pr led mixed refri (C3MR) li ion process, (2)

ConocoPhillips Optimized Cascade process (COPOC) and (3) multi-fluid cascade process

(MFC) (Huang et al., 2007).



Figure 5.1 represents the simplified process flow diagram for the basic C3MR
liquefaction process which is used in the majority of LNG plants built to date. The LNG
processing facility which is used as the case study in this research employs C3MR
liquefaction technology. All LNG plants have field operations and a network of pipelines
that feed the raw natural gas and liquid into the plants. The liquefaction cycle requires
cooling of natural gas to about -160 °C. Therefore, the incoming gas needs to be cleaned
from substances that could freeze at low temperatures and may plug up the equipment.
These substances are typically water vapour (H;0), carbon dioxide (CO;) and higher
molecular weight hydrocarbons which may be commercially useful. Process units
involved with this operation include acid gas removal, dehydration, propane refrigeration
and heavy hydrocarbon removal. The main processes are refrigeration, absorption and
adsorption. The bottom part of the heavy hydrocarbon removal unit entering the plant

fractionation unit consists of a de-ethanizer, d izer and de-b

In the de-ethanizer, most of the ethane and light components are removed. High
molecular weight hydrocarbons are removed in the Liquefied Petroleum Gas (LPG)
fractionation - process. This is a marketable by-product of the LNG plant. Therefore,
fractionation is an important unit operation in the overall plant economy. Purified LNG is
then sent to the Main Cryogenic Heat Exchanger (MCHE) to liquefy, and the product is
sub-cooled through the heat exchange with a circulating Mixed Refrigerant (MR) system.
The next step is to decrease the pressure to near storage tank pressure. This is achieved by
sending sub-cooled liquefied natural gas through a liquid expander. In the flash unit,
vapour and the liquid fraction are further separated. During this process, nitrogen is

preferentially ejected to the vapour phase. After heat exchange for refrigeration recovery,



the nitrogen enriched flash vapours are compressed in a motor-driven centrifugal
compressor and sent on to the plant fuel system. Finally, the low pressure LNG fraction is

recovered and pumped through the LNG rundown line to LNG storage.

5.1.2  LNG Properties and Associated Hazards

Natural gas is composed almost entirely of methane with trace amounts of ethane,
propane, butane, nitrogen and carbon dioxide. The percentages of each component
depend on the location of origin of the natural gas. As previously discussed, the hazards
associated with LNG are mainly due to properties such as cryogenic temperature,
flammability and vapour dispersion characteristics.

The boiling point of LNG is typically -162 C at 1.7 kPa, i.e. LNG is a cryogenic liquid.
Its direct contact with skin causes freeze burns and in contact with the eyes may cause
damage. It also causes brittle fracture of metals. The main component of LNG (methane)
is considered to be an asphyxiant gas. LNG is a flammable substance of which the
flammability range in air is between 5% and 15% by volume. In the presence of an
ignition source, a flammable cloud is ignited causing a flash fire or vapor cloud
explosion. Upon exposure to an ambient heat source, LNG vapourizes rapidly. The
ignition of vapour over an evaporating pool causes a pool fire. LNG has a slightly higher
(10-11%) energy density than gasoline. Therefore, it develops a relatively high flame
temperature for small fires that are not oxygen starved. Natural gas is lighter than air at
standard temperature. However, when LNG is spilled at -162 °C, the vapour is heavier

than air until it warms up to approximately -110 °C.
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In this condition, the vapour cloud travels a relatively long distance before dispersing to
its lower flammability level (LFL) (Woodward and Pitblado, 2010). Natural gas in liquid
form does not explode. However, when LNG is spilled into water, the explosion scenario
known as “Rapid Phase Transition” (RPT) is observed. This happens due to violent
vapourization of very cold liquid contacting the water. RPT develops an overpressure

which creates low damage. (Woodward and Pitblado, 2010).

5.2 Accident Modeling for an LNG Processing Facility

Prior to developing the process accident model, hazard evaluation studies are performed
using available process information of the plant such as incident notification records, flow
sheet sketches, piping and instrumentation diagrams, data sheets and procedures. Through
HAZOP study, it is possible to identify and understand the potential accident sequences,
causal factors and their consequences. Assigning severity for consequences is based on
the definitions described in the Chapter 3. The process accident scenario is then
developed using the Hazards and Operability Study (HAZOP) to identify the safety
barriers that are in place, which have been discussed in the process accident model,

prevent the scenario ing to end results ) facility during the time

period of 2007 to 2009. It is noticed that there were no catastrophic accidents recorded in

this time period. Then, it is determined that the barriers: release prevention, dispersion

p ion, ignition pi ion, ion p ion, human factor and management and
organizational factor were only involved with the process accident scenarios in this
particular case study. Although damage control and emergency management barrier exists

in the model, its effect has been assumed negligible as it has no involvement with the
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accident scenarios. Therefore an accident model is modified according to particular case

study.

5.2.1 Failure Assessment of Safety Barriers

Fault trees of release, dispersion, ignition and ion prevention, human factor and

and izati barriers are to analyze LNG process
accidents using the generic FT models. Figures B.5 and B.6 are the resulting fault tree of
the human factor and management and organizational barriers. In the human factor tree,
sub-safety elements logically connect through an “OR” gate with the top event, whereas
in the management barrier, this is done by means of an “AND™ gate. This indicates that

one sub-element failure can lead to failure of the human factor barrier. However, both

sub-el ts of the and organizati factor barrier need to fail for the top
event occur. Construction of fault trees for remaining barriers were developed and
discussed in the previous chapter and combined with this work. The failure probabilities
of basic events for these two barriers are assigned using plant specific component failure
data and industrial expert opinion. Tables C.5 and C.6 list the failure probabilities of each
basic events.

The results are obtained by simulating the relevant fault trees and presented in Table 5.1.
Assumptions are made that the failures do not occur simultaneously, and they are
independent. The probability of failure is denoted by x; (i.e. the failure probability of the

i* safety barrier which is also known as the prior probability or initial belief). The prior

failure probability p(x;), where i =1, 2, 3,4, 5, 6, denotes the failure probabilities for the

safety barriers, RPB, DPB, IPB, EPB, HFB and M&OB, respectively.
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Table 5.1: The failure probability data of each primary safety barrier

Safety barrier (x,) Failure Probability P(x,)
Release Prevention Barrier (RPB) 0.0527
Dispersion Prevention Barrier (DPB) 0.0616
Ignition Prevention Barrier (IPB) 0.1060
Escalation Prevention Barrier (EPB) 0.0271
Human Factor Barrier (HFB) 0.0029
Management and Organizational Barrier (M&OB) 0.0421

Based on the data available for the LNG facility, the computed results (Table 5.1) are in
good agreement with real plant data. This helps to conclude that the developed model is
applicable to real situations. However, the results contain a certain degree of uncertainty
in quantification. Uncertainty may be reduced using a probabilistic approach as discussed

by Kalantarnia et al. (2009), Yang et al. (2010) and and also in this work (Chapters 3 and

4.
522 Estimation of I ilities of C
An event tree (ET) analysis is used to assess the Event tree

of accident scenarios for this particular case study is shown in Figure 5.2. The initiating
event is caused by the system deviating from its normal operating conditions. Each of the
initiating events of this problem is studied. The frequency of initiating events is estimated

using plant specific historical data. For this case study, the probability of initiating events

is considered to be unity to simplify the ification P ilities of ing the

barriers are estimated using fault tree analysis as discussed above. A particular initiating
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event has six barriers to prevent a hazardous outcome. The effects of human factor and
management and organizational factor are the most significant.

As described in the model development, the intervention of these in the accident process
is applied throughout the process. Considering their independent hierarchical effect and
the simplicity of event tree development, they are placed and branched in the event tree as
shown in Figure 5. The end states C;, C;, C, Cyand Cs denote severity levels assigned to
each consequence, i.e. safe, near miss, mishap, incident and accident. Fault trees are used
as inputs to this event tree, and the top-event probability in the fault tree is the failure
probability of safety barriers in the event tree. Thus, the probability of final damage states

(severity levels) is estimated and presented in Table 5.2.

Table 5.2: Prior estimate of occurrences probability of each consequence

Severity level C Cs Cy Cs
Probability of ~ 9.07x10" 8.71x10? 4.85x10° 452x10*  1.45x10°
occurrence

The degree of severity of final outcomes, C; to Cs, is increasing, whereas their
probabilities are gradually decreasing. This inverse relationship between degree of
severity and probability reflects the fact that events such as near misses and mishaps
occur more frequently than an event such as an accident in this facility. The event tree
results are compared with real plant data to test the validity of results. The number of
events occurred in different severity levels are estimated using the HAZOP study and its

cumulative values have been listed in Table 5.3.
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Figure 5.2: Event tree analysis for LNG facility
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According these results, it is clear that the numbers of events such as near misses and
mishaps which occurred in this LNG facility are higher than events such as incidents and
accidents. Therefore, the results follow the real plant accident statistics. It is thus
concluded that the developed process accident model is able to represent real life accident

scenarios.

Table 5.3: Cumulative number of abnormal events for each month of years 2008 and
2009

1 3 4 0 0 [
2 5 6 2 1 0
3 10 8 2 1 0
4 21 34 10 2 0
5 24 39 11 2 0
6 2 42 1 2 0
7 30 44 12 3 0
8 31 46 12 6 0
9 33 47 12 6 0
10 35 50 13 6 1
1 36 54 15 6 1
12 40 56 15 6 1
13 45 60 17 7 1
14 49 66 19 7 1
15 54 73 21 8 1
16 64 100 27 " 2
17 67 115 33 13 2
18 70 122 34 14 2
19 74 128 34 15 3
20 78 13 37 16 3
21 81 145 40 17 3
22 83 148 42 19 3
23 % 158 44 19 3
24 94 162 46 19 3

Furthermore, the event tree shows the route through which consequences may occur and

how various safety functions might prevent and/or mitigate the event. An important point
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to highlight is that this ification inherits inty. The inty is due to

determination of basic event probability, development of fault tree analysis (are we
capturing all the failures that lead to the top event?), and modeling and determination of
hazards (are all the hazards modeled correctly?). As mentioned in Chapters 3 and 4,
Bayesian updating is used to update the prior knowledge and thus to reduce the

uncertainty in the quantification.

5.3 Predictive Modeling

The expected number of abnormal events in the next time interval predicts using the
predictive model discussed in the SHIPP methodology (Chapter 3). In this model, the
model parameter (rate of occurrence of abnormal event, 1) is updated using the Bayesian
updating mechanism which can be employed to combine sample information (likelihood
information) with prior information to arrive at more accurate posterior (updated)
information. The prior information is the original distribution of the parameter to be
updated and likelihood information related to the data on the parameter collected directly
from the LNG processing facility. These two distributions are then combined to arrive at
the Bayesian (updated) distribution of the parameter. It is important that the models with

the updated had better predicti pability than the models developed using

the prior information, and the Bayesian model performed better than all the other updated
models.
The prior probability distribution of the rate of abnormal event occurrence, 4, is

considered to follow a gamma distribution with distributi aand B (Vose,

2008). Assuming Poisson likelihood function for observing y, events in period n,
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posterior distribution of rate of occurrence of an abnormal event p(A/data) follows
gamma distribution with the parameter a+z v, and S+n (Hamada et al., 2008). Then
=)

the expected posterior (update) rate of abnormal events is estimated using these two
parameters.

The model discussed in Chapter 3 is modified to obtain the predictive model to estimate

0

the number of abnormal events in the m" time intervaly,,, , given observed data, as

equation 5.1.

(ma,)" &

P(3yo ! data) = 5.

where, data=(y,,y,,y;.....y,)is the number of abnormal event data in the time 1, 4,is

the updated rate of abnormal events and z ¥, is the total number of abnormal events in
=

the time interval n. ‘m’ denotes the number of future time intervals and it can be varied
from one to infinity. The equation can be simplified for next time interval, by substituting

m equals to one.

5.3.1 Validating of Predictive Model
The mathematical and probability models are generally evaluated in terms of several
aspects such as their clarity, generality and testability (also known as validity). Herein,
the predictive model is evaluated in terms of testability or validity. Validation is the task

of demonstrating that the model is a reasonable representation of an actual system. There



are several approaches such as sensitivity analysis, response analysis, response surface
modeling and external validation and they are applied as appropriate to the different
aspects of the particular model. In the current work, an external validation approach is
used. In this approach the predictive model results are compared with real data. “Real
data” refers to the abnormal event data gathered from the particular LNG facility.

The predictive model is used to predict the number of events in the different months of
years 2008 and 2009. Table 5.3 lists the cumulative number of events with their severity
levels for each month of years 2008 to 2009 (real plant data).

The updated model parameter %, which is the updated abnormal event occurrence rate, is
estimated based on event information from the month January to December 2007 using

Equation 5.1. To begin, the prior distribution of model parameter % is considered as a

prior, and aand f are taken as 0.001 (Meel and Seider,
2006). With this prior, 98 events were recorded within this year (2007). The posterior
(updated) parameter value of occurrence rate is then estimated as 8.16 based on this
information. Using the updated model, the predictive probability mass function for the
next time interval (m=1) and for the next two time intervals (m=2) of the year 2008 are
estimated and shown in the Figure 5.3.
The predictive mean numbers of event for each month of the years 2008 and 2009 were
also estimated. The predicted values were then regressed with the observed values in the
LNG facility to check the amount of variation explained by the predictive model. The

results of this exercise are given in Table 5.4.
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‘When the predicted number of events is regressed with the observed number of events in
the first three time intervals, 14% of the variation (absolute error) is identified, and the
predicted values are overestimated. However, when the number of time interval is
increased, it can be seen that the model predictions are always less than the observed
values (underestimated), and the model predicts events 20 to 50% less than those
observed. These results demonstrate that the proposed predictive model is more accurate

for short term prediction than for long term prediction.

Probability mass function (pmf)

o
10 15
Number of abnormal events

Figure 5.3: Predictive probability mass function of number of abnormal

The model parameter A is updated continually whenever a new observation arrives in the
system. In this case study, the predicted values of the next time interval is estimated and
compared with the actual value that has already occurred within this time interval. Figure
5.4 illustrates the variation of predictive mean and actual value. According to the graph,

the predictive results fluctuate close to observed value with two exceptions.



Furthermore, the particular LNG facility is observed to have a unique pattern of increased
abnormal events in the fourth month (time interval) of each year for which data were
analyzed. The reasons for this observation are plant specific and explanations of this are

yet to be estabilised.

Table 5.4: The predictive mean, actual number of abnormal events, and error of
prediction for the years 2008 and 2009.
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In this plot, the significant behavior of predicted value can be observed. The predicted
values have been increased or decreased according to the deviation of observed number
of events. For an instance, the predicted value has increased in the 5™ time interval
because of number of observed event has increased significantly in the 4" time interval.
Similar behavior of predicted value can be seen in the 10, 17 and 23 time intervals. This
can be explained by fact that the predicted model parameter is continuously learning from

actual system output and update the predicted results according to system behavior.

~e— Predictive mean
——=— Actual number

—

Number of abnormal events

10 12 14 16 18 20 22 24
Time interval (Months)

Table 5.5: The variation of prediction mean and actual number of abnormal events from
January 2008 to December 2009
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Chapter 6

SUMMARY, CONCLUSION AND FURTHER RESERCH

6.1 Summary

A review of existing accident modeling approaches provided insight into limitations for
applications to modern complex process systems. It is evident, the majority of existing
models have focused on occupational accidents, whereas models focusing on process
hazards have been scant. Further, existing models are unable to present a holistic picture
of system safety, and are not capable of accounting for multiple causal factors. Since,
they are descriptive models, rather than predictive models.

The System Hazard Identification, Prediction and Prevention (SHIPP) methodology is
proposed to identify process hazards, evaluate them, model probable accidents, predict,
prevent, control and mitigate their occurrences in a process facility. The model has been
set up placing five successive safety barriers in sequential order together with two
additional safety barriers placed common to all. The five safety barriers: release

prevention, dispersion prevention, ignition prevention, escalation prevention and damage

control and are i as necessary safety functions for
process accidents. Furthermore, to depict human, management and organizational factors
throughout the accident process, two additional safety barriers (human factor, and
management and organizational factor) have been kept common to all main safety
barriers. To obtain holistic view of cause consequences mechanism, it has been enhanced
using accident analysis techniques such as fault tree and event tree. To minimize

uncertainty in the quantitative analysis, Bayesian updating is used. Another important
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feature of the SHIPP is its predicti ility. The predictive model

provides quantitative information that helps to identify the particular failure modes. The

SHIPP provides ive safety analysis and precise information in

the process of decision making for risk management, and also supports the critical process
safety design implementation.

The case study examined here confirms that the proposed accident model can explain the
logic of an accident process in the LNG processing facility. Hazards related to LNG
properties and process were identified and analyzed to investigate the possible accident

scenarios, causes and their The logical i ip of an accident

sequence was modeled using safety barriers. Qualitative validity of accident model is
established by corresponding to the real process. A second level of model validation was
achieved through comparison of numerical analysis with data. The results (prior
estimation) obtained through the fault and event tree analyses are directly supported by
plant specific data. A conceptual validation of the model provides confidence that the
model could be used for depicting real life process accident. The number of events
predicted by the updated predictive model was regressed with the observed number of
events to validate the model. The model parameter A, the rate of abnormal events
occurring, was dynamically updated. The adequacy and accuracy of model prediction
were better in short term prediction than long term prediction.

Based on the present study, it was observed that the proposed accident model with

predictive capabilities can be applied to study real life accident situations.



6.2 Conclusions

This case study illustrates that the SHIPP methodology provides realistic and reliable
information for accident modeling and prediction. This in turn provides comprehensive
and systematic method to assess and manage the risk by implementing accident
prevention strategies (inherent safer design approach). Furthermore, this study shows that
the proposed accident model and fault and event tree analyses can be jointly used to
depict the process accident sequence. In the present study, uncertainty analysis through
the Bayesian updating reveals that (1) uncertainty of the top event probability or failure
probability of safety barrier was reduced significantly by using Bayesian updating method
with real life abnormal event data, (2) uncertainty in the number of abnormal event
prediction in the next time interval was reduced significantly using posterior rate of event

and (3) inty of ility was also reduced.

This way, the SHIPP provides precise information of how system is degrading with time.
The other principal finding was that the predictive model performs precise prediction for
short term intervals. It also helps to increase the overall safety and performance of the
system by applying preventive measures with the knowledge of realistic prediction.

Therefore, it is concluded that the proposed methodology including accident process

model with predicti ilities is i to real world ication to assess system

safety.
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6.3 Future Research

‘The present study includes following assumptions:

o O of events are i (event ies are not i
o Failure of the safety barrier follows a sequential order. The safety barrier failure
generally starts from the failure of release prevention barriers and propagates

towards to termination by failing sequential manner.

o Priori ion of model is selected using conjug

Additional research with respect to further development of SHIPP methodology should

focus on the following main areas:

e Application of Bayesian Network (BN) instead of fault and event analyses to
develop the cause-consequences relationship and accident process sequence.
Bayesian network is able to capture the event dependencies and to infer causal
relationship both backward and forward. Further, dynamic Bayesian network is

able to update the model dynamically.

Utilization of non-conjugate prior-posterior distribution. The available data was

fitted to most suitable distribution rather than using conjugate pairs.
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i

Figure A.2: Proposed generic fault tree model for dispersion prevention barrier (DPB)
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Figure A.4: Proposed generic fault tree model for escalation prevention barrier (EPB)
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Figure A.5: Proposed generic fault tree model for damage control and emergency management barrier (DC&EMB)
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Figure A.6: Proposed generic fault tree model for human factor barrier (HFB)
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Figure A.6: Proposed generic fault tree model for human factor barrier (HFB) (cont..)
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Figure A.7: Proposed generic fault tree model for management and organizational barrier (M&OB)
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Figure B.1: Fault tree analysis of Release Prevention Barrier (RPB) failure
(Continuing)
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Figure B.1: Fault tree analysis of Release Prevention Barrier (RPB) failure (Continuing)
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‘ault tree analysis of Dispersion Prevention Barrier (DPB) failure
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Figure B.2: Fault tree analysis of Dispersion Prevention Barrier (DPB) failure (Continuing)
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Figure B.4: Fault tree analysis of Escalation Prevention Barrier (EPB) failure (Continuing)
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Figure B.4: Fault tree analysis of Escalation Prevention Barrier (EPB) failure
(Continuing)
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Figure B.5: Fault tree analysis of Human Factor Barrier (HFB) failure
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Figure B.5: Fault tree analysis of Human Factor Barrier (HFB) failure (continuing)
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Figure B.6: Fault tree analysis of Management and Organizational Barrier (IPB) failure
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APPENDIX C: Basic event failure probability Tables

Table C.1 : Basic event failure probability for Release Prevention Barrier (RPB)

Locking of manual actuator / valve / blinding failure

Labelmg of valve / blinding failure

Automatic activation of blinding failure

Check list for control operation failed to perform

Adequate safety operations are not specified

Operating with out Permit to Work (PTW)

Redundant indicators failed to initiate manual safety system

©|oo|<|or|u| s |w o=

Valve positioning sensor failure ( function on demand)

5]

Valve positioning control system failure

Sensors failed to initiate the safety system

Inspection of valve positioning performed but failed to
detect

Inspection specified but not performed

Inspection is not specified in program

Regular inspection for mechanical failure did not perform

Regular inspection perform but did not identified the fault

Construction deficiency

Instruments (bolt) failure due to corrosion

Compressor_failure due to material deficiency

O|x|3| %= |S|s|=

Physical barriers are not available

High external load

Inadequate corrosion inspection program or method

Poor inspection

Long delay in inspection schedule

Area based leak search specified but did not perform

Area based leak search is not specified in program

Failed to detect minor release by area based leak search

Regular leak inspection specified but did not perform

Regular leak inspection is not specified in program

Failed to detect minor release by Regular inspection

‘Welding degrading monitoring performed but failed to
detect

2l2|12|12(2(2|2)f
2122|2322

3

Welding degrading monitoring specified but did not perform

0.050




134

Table C.2: Basic event failure probability for Dispersion Prevention Barrier (DPB)

1 Automatic gas detection sensor failure 0.128
2 Automatic gas detection controller failure 0.001
3 Automatic gas detection Alarm failure 0.020
4 Inadequate detector coverage .05(
5 Long delay in Inspection .01
6 lanual detection of minor release failure .05
il anual inspection did not perform .05
8 nadequate Ventilation or forced dilution .06
9 Ventilation or forced dilution failure .040
Manual closing of release failure (Clamping,
Remediation, etc...) 0.025
‘Wrong Inflow valve selection or valve not accessible 0.050
Long delay in response .010
Operator awareness failure .040
4 | Operator response failure .050
5 Long delay in manual response .01
16 | ESD sensor failure .024
7 ESD controller Failure .25
ESD valve delayed operation .05
ESD valve failure to close on demand .13
Physical barrier not available .00
Inadequate barrier performance .010
Inerting not available .050
Inerting failure .080
Drainage not available 0.001
Inadequate functioning 0.001
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Table C.3: Basic event failure probability for Ignition Prevention Barrier (IPB)

Hot work permit has not been issued 0.033
Inadequate procedures or instruction in work permit 0.067
Risk assessment not performed prior to issue work
permit

External supervision failure

Inadequate trained operator .
Operation with wrong work permit .04€
Failure to follow work permit .045
Operation without work permit .010
Hot surface shielding not available .067

)

S|

©oo|<|on || |w

Burner shielding failure .01

Inadvertent burner flare trip failure 0.044

Flame detector failure

Flame detector not available

Manual inspection of ignition source failure

Insulation of fuel line failure
7 Insulation of burner failure

0.
0.
4| Inadequate detector coverage 0.
0.
0.
0.
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Table C.4: Basic event failure probability for Escalation Prevention Barrier (EPB)

Inadequate flaring 0.001

Inadequate blow down 0.001

Inadequate chemical scrubbers 0.008

Inadequate air ventilation .067

Air ventilation failure .030

Inadequate water spraying .067

Water spraying failure .045

Fire detection Sensor failure .080

Fire detection Controller failure .001

Se|eo|<|a|u|a]wfo]—

Fire Alarm failure .021

11 Inadequate detector coverage 0.200

12| Operator did not detect the fire 0.050

13 Operator unable to activate the manual fire alarm .00

14 | Manual fire alarm activator failure .00

15 Smoke detection sensor failure

6 | Smoke detection Controller failure

Smoke Alarm failure

Inadequate detector coverage

S|=|S

.07
Inadequate smoke isolation or venting .06(

Smoke isolation failure

Inadequate fire resistant barrier .003

Fire resistant failure

Sprinkler not available

0.

.0
Inadequate sprinkling .04
Sprinkler failure 04:

P3RS

Inadequate Fire fighting in given duration .020

27 long delay Fire fighting .080
28 | Fire fighting did not perform 0.0001

2 Closing release failure 0.013

3 Inflow valve not accessible or wrong valve 0.050

3 Long delay in manual operation 0.010

32 Operator awareness failure 0.040

33 | Operator response to activate manual ESD failure

4 Long delay in response

ESD sensor failure

ESD Controller Failure

3

ESD valve delayed operation

8 | ESD valve failure to close on demand 70
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Table C.5: Plant specific and expert opinion data of basic event for Human Factor Barrier
(HFB)

Wrong action locking device failure .050
‘Warning display failure
‘Warning alarm failure .02
Incorrect labeling .
Labeling not available 0.1
Unreliable measurement of instrumentation 0.

Inadequate tools or equipments 0.0:
False indication 0.0:
Inadequate work instruction or procedures 0.0:
Inadequate communication 0

Communication failure
Inadequate lightin,

0.
[
High level noise or mechanical vibration [iX
0.
0.

5

©oo|<|ar|u|s|wlof—

>

4 | Uncomfortable temperature extremes

Presence of fumes or gases or lack of oxygen
6 | Physical incapability .050
7__| Inadequate knowledge .100
8 | Operator skill improvement program failure .020
9

0

Regular operator training and awareness failure .034
Inadequate skill .05
21 _| Operator motivation program failure .02
22 | Lack of supervision .05
23| Supervision failure .02
24 nclear job description .034
25 | Inadequate permit-to-work .050
26 | High work stress .067
27 | Continuous night work .050
Influence of other people (Colleague,
‘management, senior workers, etc.) .02

2
2 Unscheduled working hours .034
3
3

Inadequate workplace accessibility .02(
Poor house-keeping .05/
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Table C.6: Plant specific and expert opinion data of basic event for Management and
Organizational Barrier (M&OB)

Inadequate safety program 0.010
Inadequate supervision .034
Inadequate communication .050
Inadequate maintenance system .020
Inadequate control system .025
Poor or no work permit procedures .050
Inadequate audit and operating procedures .034
Inadequate training
Inadequate company polices
Inadequate staff resources
Inadequate planning and organization
Poor decision making or failure
Inadequate management job knowledge
4 Inadequate management polices
Leadership failure
16 | Poor communication

1 Incompetent or insufficient management behaviors

©loo|<|or|w| s |w o=

ISHRIEREIE
S|a|S

clelelale

I~
S(3|3|x|S
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Table C.7: Basic event Failure rates di

for Release Pr

Barrier (RPB)
Normal =585 0=5.85x10"
Normal 1=9.17x10"6=9.20x10"
Gamma a=3.97x10"T_ b=1.712x10’
Normal o=1.14x10"
Normal 0=4.66x10"
Normal 0=1.14x10"
Gamma b=1.41x10"
8 | Lognormal 6=9.97x10"
9 [ Gamma b=7.2x10°
10 [ Normal 0=1.69x10"
11| Lognormal 0=9.97x10”
1 Lognormal 0=9.97x10"
1 ormal 85x10T
14| Normal 14x107
Normal .85x107
Normal 5x1i
Lognormal .97x10°
Gamma b=1.39x10"
ormal 5x.
Lognormal 7x
Lognormal 7x
Lognormal 7%10"
Normal T
4| Normal T
5 | Normal M
6| Normal e
7 lormal T
Normal i
Normal T
Normal i
1 jormal T
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Table C.8: Basic event Failure rates distribution parameters for Dispersion Prevention
Barrier (DPB)

Q
B
E]
|

2 Gamma
3 Lognormal 06=9.97x10"
4| Normal 0=5.85x10"
5 [log normal 6=9.97x10°
6 | Normal 6=5.85x10"
7 jormal 0=5.85x10"
8 Normal 0=7.92x10"
9 jormal 0=4.66x10"
Normal 0=2.89x10"
ormal 6=5.85x10"
Lognormal 0=9.97x10"
Normal 6=4.66x10"
4 [ Normal 6=5.85x10"
£ Lognormal 0=9.97x10"
6 [ Gamma b=2.04x10°
7| Lognormal 6=9.97x10°
8 | Gamma b=2.44x10°
9 | Gamma b=2.43x10"
0 jormal 0=1.14x10"
1| Normal 0=1.15x10"
2 [ Normal 0=5.85x10"
3 | Normal 6=9.52x10"
4| Normal p=1.14x10" o=1.14x10"
S jormal p=1.14x10"  0=1.14x10"
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Table C.9: Basic event Failure rates distribution parameters for Ignition Prevention
Barrier (IPB)

Normal 0=3.83x10"
Normal 6=7.92x10"
ormal 0=12
4 Normal 6=9.89x10"
jormal o=1.2
6 | Normal 0=4.66x10"
7 | Normal 6=5.26x10"
8 | Normal o=1.15x10"
9 | Normal 6=7.92x10"
Log normal 6=9.97x10"
Gamma b=1.10x10"
Gamma b=6.61x10°
Normal 0=5.85x10"
jormal 6=8.30x10"
jormal 6=5.85x10"
Log normal 6=9.97x10°
Log normal 6=9.97x10"
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Table C.8: Basic event Failure rates distribution parameters for Escalation Prevention
Barrier (EPB)

1 ormal p= 1.14x10° 0=1.14x10"
2 Normal u=1.14x107 0=1.14x10"
3 Normal 1=9.17x10" 6=9.20x10"
4 ormal u=792 0=7.92x10"
5 Log normal p=-1.26x10" 6=9.97x10°
6 | Normal 6=7.92x10"
7 Log normal 0=9.97x10"
8 Gamma b=7.635x10°
9 jormal 0=1.14x10"

Log normal 6=9.97x10°
lormal 0=2.55
jormal 0=5.85x10"
ormal o=1.14x10"

4| Normal o=1.14x10"
5 | Gamma b=7.635x10"
6 | Normal p=1.14x10" 0=1.14x10"
7 | Log normal p=-1.29x10" 6=9.97x10°

Normal u=8.28 0=8.30x10"

Normal p=7.06 0=7.10x10"

Normal p=5.72x10" 0=5.70x

21| Normal p=3.43x10" 0=3.43x
22 | Log normal =-1.26x10" 0=9.97x
3 Normal p= 115 o=1.15x10"
4 ormal u=4.66 0=4.66x10"
5| Log normal = -1.22x10" 6=9.97x10°
26| Normal n=2. 0=2.31x10"
27 | Normal p=9. 6=9.52x10"
8 Normal p=1.14x10° o0=1.14x10"
9 | Normal =14 49x10”
0 | Normal 1= 5.86 .85x107
1| Log normal 37x10" 6=9.97x10’
32| Normal = 4.66 0=4.66x10"
33 ormal =5.86 6=5.85x10"
4 Log normal p=-1.37x10" 6=9.97x10°
Gamma a=1.64 ©
36| Log normal p=-1.13x10" 3
37 | Gamma a=2.22 M
38 [ Gamma a=6.56x10" H
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APPENDIX D: Derivation of Beta-Binomial model

The estimation of posterior probability density function using beta-binomial model is
followed below steps.

The prior probability density function for continues random variable x, , failure

probability of safety barrier, is considered as Beta distribution,

fx)= “1-x)"", 0<x, <1 (D.1)

B(a,.f)
Where, @, and /3, are shape parameters.
The beta function, B(e,,/,)in the equation (1) can be shown to be,
i
B, )= 5" 1=x)"dx, ©2)
0

The integration can be simplifies as,

Ta,l'f

Ble,p)= T@+8)

(D.3)
The likelihood probability density function is considered as Binomial distribution as
equation (4).
oo "
f(datal x,) =[ ]x, Hl-x)™  i=1234 (D.4)
Py
Where, Where, 7, is the cumulative number of failures associated with i " safety barrier
and n, is the total number of events associated with i " safety barrier, i.e. ng, +n,,. The

n, is the cumulative number of successes associated with i " safety barrier.



The Bayes’ theorem can be expressed as equation D.5 to estimate posterior density

funvtion for failure probability of safety barrier.

f(x,/data) = M s
If(duw/x, )/ (x,)dx,
3
Equation D.1 and D.2 are substitute for Bayes® formula:
[n, ] e | - .
b (= x)"™ ———x, " (1= x)"
Ba;,
f(x,/data) = My (a,, )
" "N“(l_")n”;xm"(l—x)’r‘dx
s\ ) BB Z 2
™ 1 a1 ponl
£, 247 (1 x, ) A
["/..Jﬂ(d,vﬂ,)
W L NP B,
L [ty
["/« B(anﬂ.).!x' (=2 )Ty
i (g = Aot
- (1-x,) oo
0
0
Let @ =@, +n,,and | = 8, +n, . then, equation D.6 is further simplified:
EEPRY =
f(x,/data) = M .

Jr ey

0
According to equation D.2, the denominator of equation D.7 can be written as Beta
function,

TS

LAY D8
@ +4) 9

] .
B@ . B) =[x (=x) M, =
H
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Therefore, the equation D.8 is turned in to beta distribution with the parameters @, and

A

X a=x)

1
(x;/ data) = ————x;
I date) = g o B

This model called beta-binomial model. Prior distributions that take the same functional

form as the posterior distribution are called ji prior di:
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