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Abstract 

Rat C-reactive protein (CRP) is a member of a family of proteins, collectively 

termed C-reactive proteins, present in a variety of species, from simple invertebrates 

to humans. In this thesis, the effect of rat CRP on platelet function was examined. Rat 

CRP inhibited, in a dose-dependent manner, platelet aggregation and serotonin 

secretion using either ADP or thrombin as agonist. Inhibition of platelet aggregation 

induced by these agonists required the binding of rat CRP to platelets. This binding 

was specific, saturable, of high affinity and calcium-sensitive. The rat [125I]CRP 

bound to platelets was displaced by either unlabelled rat CRP or phosphorylcholine. 

This binding was also inhibited by either rabbit CRP or phosphorylcholine. 

Rat CRP inhibited platelet activating factor (PAF)-induced platelet aggregation. 

Results showed that the inhibition of PAP-induced platelet aggregation required the 

binding of rat CRP either to platelets or to P AF. 

Platelet functional responses are mediated by the participation of platelet 

phospholipases in signal transduction pathways. Therefore the effect of rat CRP on 

agonist-induced platelet phospholipase activity was examined. The results confrrmed 

the presence of phosphatidylcholine-specific phospholipase C (PC-PLC) in rat 

platelets. This platelet PC-PLC was inhibited by rat CRP in a dose-dependent manner. 

In contrast, rat CRP did not inhibit either phospholipase A2 or phosphatidylinositol­

specific phospholipase C activity. It was, therefore, concluded that if the formation of 
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phosphatidylcholine-derived diacylglycerol (DAG) by PC-PLC is involved in t~e 

regulation of platelet functional response, then the inhibition of DAG formation by rat 

CRP may be critical in the observed inhibition of platelet aggregation and serotonin 

secretion by rat CRP. 
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CHAPfER 1 

PLATELETS AND THEIR FUNCTION 

Platelets normally circulate in the blood stream in a resting state, showing little 

tendency to interact with each other or with blood vessel endothelium. Upon 

stimulation, however, platelets play a critical role in haemostasis through aggregatory 

reactions that could result in life threatening thrombotic events if not controlled. 

Mechanisms must, therefore, exist to limit and regulate platelet aggregatory response 

in order to maintain the vascular system without endangering life. 

There is considerable evidence for the involvement of platelets in the 

pathogenesis of a wide variety of diseases such as thrombosis and atherosclerosis 

(Becker, 1991). Platelets contribute to normal haemostasis by adhering to exposed 

proteins in the subendothelial tissue following vascular damage. This is immediately 

followed by the recruitment of additional platelets in a process known as platelet 

aggregation, which results in formation of a platelet plug. The subsequent activation 

of the clotting cascade forms a network of fibrin which reinforces the aggregated 

platelets (Packham and Mustard, 1984). The degree of platelet involvement is 

dependent on their level of activation. Overactive platelets are implicated in the 

pathogenesis of many diseases including cardiac infarction and stroke (Rink and 

Hallam, 1984; Sullivan, 1984). However, the most convincing evidence for the role 

of platelets in coronary heart disease is a marked reduction of pathogenic events by 
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the use of aspirin which inhibits cycloxygenase activity (Weissman, 1991). Platelets 

also play an important role in acute inflammation. During the acute phase response, 

platelets have been observed to become activated and release their granule contents, 

which may contribute to the inflammatory process (Page, 1989). 

Platelets can be activated by several physiological and non-physiological 

agonists, most of which are presumed to act on specific platelet membrane receptors 

(Colman, 1991). The platelets respond to these external stimuli with a series of 

cellular events that usually follow the same pattern: activation, shape change, 

aggregation and the secretion of substances from three types of granules (Holmsen, 

1989). The interaction between a primary stimuli or agonist and its receptor causes 

rapid mobilization of intracellular second messengers, as well as formation of certain 

intercellular messengers. These signal molecules play a central role in mediating 

cellular biochemical reactions leading to platelet aggregation and secretion (Holmsen, 

1989). 

Section I. Platelet Origin and Structure 

Platelets are non-nucleated, discoid cells that are 1 ~m thick and 3 ~m in 

diameter (Rink and Hallam, 1984). The platelet volume is roughly 1113 the volume 

of red blood cells and platelets number about 2.5-6.0 x lOS per ml of circulating 

human blood. illtrastructural features of platelets are shown in Fig. 1. The discoid 

shape of platelets is maintained by a circumferential band of long microtubules inside 
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Fig. 1. Ultrastructural features of platelets. Diagram shows a typical platelet and 
sub-cellular components that are visible by electron microscopy (Adapted from White, 
1984). 
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the external membrane which serve as a skeletal frame (White, 1987a&b). The 

cytoplasm contains a number of organelles including mitochondria, vacuoles, stored 

glycogen, and numerous open vesicles or membranous channels. These channels are 

connected to one another and to the surface of the platelet to form the open 

canalicular system (White, 1984), which provides access to the interior for plasma 

bound substances and an escape route for products released by activated platelets. 

Also localized in the cytoplasm is the dense tubular system, which, with the aid of 

Ca2+ -Mg2+ A TPase (Cutler et al., 1978), is the site of calcium sequestration and 

contains the enzymes responsible for prostaglandin synthesis (Gerrard et al., 1978). 

Platelet cytoplasm contains several types of granules which can be 

distinguished on the basis of their contents (White, 1984). The most dense granule, 

appropriately called dense granules, contain the vasoactive amine serotonin, calcium 

and a non-metabolic pool of ADP and ATP (Stenberg and Bainton, 1987). The 

second type of granule, the a-granule, is less dense and more numerous than dense 

granules. These granules contain platelet factor 4, factor 5, factor 7, platelet-derived 

growth factor, von Willebrand factor, thrombospondin, fi-thromboglobulin, fibrinogen 

and fibronectin (White, 1984; Stenberg and Bainton, 1987). The third type of granule 

are lysosomes which contain enzymes such as acid phosphatase, N-acetyl­

glucosaminidase and {3-glucuronidase, required for degradation of proteins and 

carbohydrate (Stenberg and Bainton, 1987). All three types of granules may be 

emptied into the extracelluar environment on platelet activation. 
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The plasma membrane of platelets contain a number of glycoproteins which 

are important to platelet function. In fact, the platelet glycocalyx is much thicker and 

more concentrated than that covering the outer surface of other blood cells (White, 

1984). While some of these glycoproteins are responsible for interactions of platelets 

with external surfaces and exogenous activators, others are modified on platelet 

activation and act as receptors. These glycoproteins are, therefore, of special 

importance to the haemostatic function of blood platelets (McEver, 1990). 

Platelets are formed by the fragmentation of their precursor cells, 

megakaryocytes, which arise from stem cells. Because of its large size and DNA 

content, each megakaryocyte is capable of producing approximately 2000 platelets 

(Mazur, 1987; Stenberg and Levin, 1989). At some point in their development, 

megakaryocytes enter a phase of cytoplasmic growth with acquisition of platelet 

proteins and organelles (Mazur, 1987; Ebbe, 1976). While the mechanism of platelet 

release is not completely understood, some researchers believe that prior to platelet 

production, the megakaryocytes acquire a network of channels and demarcation 

membranes which divide into platelet-sized domains (Radley and Haller, 1982; 

Radley, 1986). Platelets are believed to form in the lung when megakaryocytes or 

their fragments are released into venous circulation (Trowbridge et al., 1982). The 

nuclei remain behind in the bone marrow where they are destroyed by 

reticulo-endothelial cells (Radley and Haller, 1983). 

It is believed that enough nucleotides are contained in each platelet to maintain 
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it for a lifetime of 8-11 days. As platelets age they undergo changes in size, density, 

metabolism and function. Younger platelets are usually more active and larger in 

size. As they age their activity steadily decreases and terminates in their removal by 

the reticulo-endothelial system (Frujmovic and Milton, 1982; Wong et al., 1989). 

Section II. Platelet Responses 

Circulating platelets have two main functions in vivo: 1) to arrest bleeding and 

2) to maintain vascular integrity (Packham and Mustard, 1984). When certain foreign 

surfaces or specific agonists interact with receptors on platelets, they induce the 

platelet functional response which consists of shape change, adhesion, aggregation, 

and secretion of granule contents (Colman, 1991; Holmsen, 1989). 

A. Platelet Shape Change 

The response of platelets to certain stimuli involves a rapid shape change in 

which they loose their discoid shape to a more rounded form, extend pseudopods 

(Holme, 1986) and become adherent to exposed surfaces. Platelet shape change may 

begin less than 5 sec after exposure to stimuli and occurs independently of 

extracelluar calcium and fibrinogen (Holmsen, 1989). The formation of pseudopods 

is associated with altered membrane structure and glycoprotein rearrangement 

(Nurden, 1987), while microfilament formation provides a support structure for 

advancing pseudopods (Oster and Perelson, 1987). 
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B. Platelet Adhesion 

Following blood vessel injury, platelets adhere to collagen, basement 

membrane, and the myofibrils surrounding elastin in the subendothelium (Balduini et 

al., 1987). At high shear rates, as in capillaries and smaller blood vessels, platelet 

adhesion becomes dependent on the binding of von Willebrand factor to a specific 

adhesion receptor on platelet membranes (Balduini et al., 1987; Weiss, 1991). This 

receptor consist of a complex of two platelet membrane glycoproteins, glycoprotein lb 

and glycoprotein IX (Stel et al., 1985; McEver, 1990). The von Willebrand factor is 

believed to serve as a bridge between glycoprotein lb and llb-illa in platelets and 

vessel wall collagen (Weiss, 1991). Following adhesion, platelet secretion and 

thromboxane A2 production takes place which aids in recruitment of other platelets 

into the platelet plug (Packham and Mustard, 1984). 

C. Platelet Aggregation 

Platelet aggregation is distinct from platelet adhesion in that it involves the 

attachment of platelets to other platelets rather than to physiological barriers or in 

vitro surfaces. This process, in vivo, results when newly activated platelets adhere to 

each other, as well as, to collagen fibril-bound platelets. Platelet-platelet binding 

occurs following the expression of fibrinogen receptors on the surface of activated 

platelets (Apitz-Castro et al., 1991). This is dependent on calcium mobilization 

within the platelet allowing an increase in the accessibility of glycoprotein lib and rna 
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through the binding of these glycoproteins to calcium. The glycoprotein lib-Ilia 

complex then forms the fibrinogen receptor on the platelet surface, and fibrinogen 

links the adjoining platelets (Beardsley, 1990). These fibrinogen-bound platelets 

attach to other platelets and form a platelet clump or a thrombus. Other proteins like 

fibronectin, thrombospondin, and von Willebrand factor also bind to the glycoprotein 

lib-Ilia complex. The interaction of these proteins with the glycoprotein lib-lila 

complex is believed to increase aggregation and the adherence of platelets to exposed 

endothelial surfaces (Balduini et al., 1987). lnterplatelet bridging may also involve 

the binding of aggregated immunoglobulins to Fe receptors on the platelet surface 

(Packham and Mustard, 1984). lnterplatelet bridging mechanisms may occur 

independently or together to insure aggregation in vitro, or in vivo at the site of injury 

(Balduini et al., 1987). 

The measurement of platelet aggregation in vitro has played a major role in the 

development of our current understanding of platelet function. This is partly due to 

an assumed relationship between aggregation in vitro and platelet function in 

vivo(Bom and Hume, 1967; Huang and Detwiler, 1986). Under physiological 

conditions, platelets are usually exposed to more than one aggregating agent which 

augment the aggregation response to a level that is greater than the sum of the 

individual responses. 

Studies of platelet aggregation In vitro usually involve the use of a single 

platelet agonist and either platelet rich plasma (PRP) or platelets that are washed and 
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suspended in an appropriate buffer. Aggregation is observed by a photometric 

method using an aggregometer adjusted to detect changes in light transmission through 

a stirred suspension of platelets together with agonist. Any changes in light 

transmission are recorded as a function of time and can be compared for agonist 

effects (Zucker, 1980). Using this method, 80-90 % of all platelets aggregate before 

increased light transmission is observed. Therefore, what is measured are the events 

occurring later in the aggregation process, such as clumping together of platelet 

aggregates, which are largely dependent on earlier events (Jamaluddin and Krishnan, 

1987). This method offers the advantages of convenience and simplicity. 

Two patterns of aggregation can be distinguished in vitro depending on the 

strength of the aggregating stimuli (Balduini et al., 1987; Chario et al., 1977; Huang 

and Detwiler, 1986). Using a strong stimulus, such as thrombin, or high 

concentrations of other agonists, aggregation is a single phase event. However, with 

weak stimuli aggregation may occur in two phases. The frrst phase, known as 

primary aggregation, involves the binding of fibrinogen to platelets resulting in 

cell-cell linkages that are loose and reversible. Secondary aggregation is irreversible, 

possibly because of reinforcement of the fibrinogen cell-cell linkage with 

thrombospondin (Balduini et al., 1987). Complete irreversible aggregation can only be 

achieved during the secondary phase. 
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D. Platelet Secretion 

Platelets have some features of secretory cells. They take up and store 

compounds, and then release them by exocytosis during a secretion reaction 

(Holmsen, 1987). During platelet secretion, platelets release the contents of their 

three classes of secretory granules into the extracelluar environment to different 

degrees depending on the strength of stimulation (Huang and Detwiler, 1986). Some 

of the secreted substances are themselves platelet agonists and enhance platelet 

stimulation by positive feedback. These substances act synergistically with the 

primary agonist to augment the overall platelet response (Schror and Braun, 1990). 

Section ID. Signal Transduction Mechanisms in Platelets 

Platelet activation is dependent on the transferral of the surface signal by the 

activation of a number of signal transduction pathways. These pathways, therefore, 

mediate the morphological responses of platelets to stimuli. 

One of the flrst studied mechanisms of signal transduction involved modulation 

of adenylate cyclase by certain stimuli through stimulatory and inhibitory G-proteins 

(Litosch and Fain, 1986; Tremblay and Hamet, 1987). When cAMP concentrations 

increase in platelets, protein kinase A is dissociated to yield its free catalytic subunit. 

This kinase in tum phosphorylates several distinct membrane and cytosolic proteins 

(Scrutton and Knight, 1987). Protein kinase A-mediated phosphorylation of the 

membrane proteins P22 or P24 results in activation of calcium pumps which promptly 
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remove calcium from the cytosol into the dense tubular system and close calcium 

channels. A similar but controversial role for cGMP has also been suggested 

(Tremblay and Hamet, 1987). Although most platelet agonists inhibit adenylate 

cyclase, the physiological significance of this inhibition is unknown. Adenylate 

cyclase activity is increased by agents such as prostaglandin 12 or adenosine (Haslam 

et al., 1978a and b; Best et al., 1977), which inhibit platelet aggregation. 

Calcium is a key signalling substance which is mobilized on platelet activation. 

Calcium can enter the platelet cytosol via receptor-mediated gating in the plasma 

membranes in addition to that released from internal stores in response to inositol-

1,4,5-triphosphate (IP3) (Pollock et al., 1987; Merritt and Hallam, 1988; Magosci et 

al, 1989). The nature of these channels, however, is virtually unknown. 

Recently, attention has focused on the role played by hydrolysis of 

phospholipid in signal transduction mechanisms. This has lead to extensive study of 

the role of two enzymes, phosphatidylinositide-specific phospholipase C (PI-PLC) and 

phospholipase A2 (PLA2) in platelet activation (Fig. 2). These enzymes hydrolyse 

platelet membrane phospholipid, to generate two important second messengers, viz, 

1 ,2-diacylglycerol (DAG) and IP3, and also arachidonic acid which is subsequently 

metabolized to the potent but highly unstable interplatelet mediator, thromboxane A2 • 

A. Phospholipase A2 (PLA2) 

Activation of platelets with certain agonists results in a cascade of events 
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Fig. 2. Role of PLA2 and PI-PLC in platelet function. Pathways involved in the 
metabolism of platelet phospholipid when PI-PLC and PLA2 are activated as a result 
of the interaction of an agonist with its receptor. 
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eventually leading to activation of PLA2 (Billah et al, 1980; Billah et al., 1981). The 

action of this enzyme on membrane phospholipids result in hydrolysis at the sn-2 

position leading to a preferential release of arachidonic acid (Irvine, 1982) which may 

be converted to active metabolites like prostaglandins, thromboxanes (Arita et al., 

1989), and leukotrienes by the cyclo-oxygenase and lipoxygenase pathways (Siess et 

al., 1983). In addition, the hydrolysis of 1-0-alkyl-phosphatidylcholine by PLA2 

results in generation of 1-0-alkyl-2-lyso-sn-glyceryl-3-phosphocholine (lyso-PAF) 

which may be subsequently converted to 1-0-alkyl-2-acetyl-sn-glyceryl-3-

phosphocholine (platelet-activating factor; PAF), a potent inflammatory mediator 

(Koltai et al, 1991a and b). PLA2 activity appears to be quantitatively most important 

in the generation of arachidonic acid following platelet activation. The activity of 

DAG-lipase on arachidonic acid-rich DAG, formed following activation of PI-PLC 

(Bell et al., 1979; Rittenhouse, 1983) is believed to be only a minor contributor to 

arachidonic acid formation (Broekman, 1986). 

When arachidonic acid is added exogenously to human platelets or released as 

a result of agonist-induced stimulation, it is metabolized by 2 oxygenase enzyme 

systems (Needleman et al., 1986). The cycloxygenase/thromboxane synthetase 

pathway synthesises prostaglandin endoperoxides (prostaglandin G2 and prostaglandin 

H2) and thromboxane A2 (Hamberg et al., 1975) which induce platelet aggregation 

and secretion (Hamberg et al., 1974). Cycloxygenase activity also catalyses the 

formation of 12-hydroxyheptadecatrienoic acid (HHT) and malonyl dialdehyde 
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(Lagarde, 1988). The lipoxygenase pathway converts arachidonic acid into 12-

hydroperoxyeicosatetraenoic acid, which is further reduced by the associated 

peroxidase into 12-hydroxyeicosatetraenoic acid (HETE), believed to inhibit platelet 

aggregation by competing for the prostaglandin Hithromboxane A2 receptor (Croset 

and Legarde, 1983). 

Thromboxane A2 is the most important metabolite of arachidonic acid in 

platelets. Since its discovery in 1975 (Hamberg et al., 1975), activation mechanisms 

of thromboxane A2 in platelets have been extensively studied (Arita et al., 1989). 

The biological half life of thromboxane A2 is very short and it is quickly converted to 

its stable metabolite, thromboxane B2• Recent studies suggests that all its effects are 

mediated by specific receptor proteins present on the platelet membrane (Halushka et 

al., 1987). Studies using thromboxane A2-like agonist, U46619, reveal two classes of 

binding sites in human platelets, a high affinity binding site which mediates shape 

change and a low affinity binding site which results in aggregation and secretion 

reactions (Arita et al., 1989). Surprisingly, rat platelets contain only one class of 

binding sites which provoke only platelet shape change. For this reason, 

thromboxane A2 can be classified as a partial agonist in rat platelets (Arita et al., 

1989). 

The mechanisms of signal transduction leading to arachidonic acid mobilization 

by PLA2 are not well understood. There is, however, considerable evidence to 

suggest involvement of a specific G-protein (Greco and Jamieson, 1991). This G-
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protein is believed to be pertussis toxin-sensitive, associated with ADP-ribosylation of 

a 41 kDa membrane protein, and is independent of the G-protein involved in the 

hydrolysis of phosphatidylinositides (PI) by PI-PLC (Nakashima et al., 1987). A 

number of other factors such as the Na+ -H+ exchanger (Sweatt et al., 1986), 

lipocortin (Touqui et al., 1986), calcium (Baron and Limbird, 1988), protein kinase C 

(PKC) (Banga et al., 1991) and cGMP (Sane et al., 1989) have been implicated in the 

modulation of PLA2 activity. 

B. Phosphatidylinositide-Specific Phospholipase C (PI-PLC) 

Binding of a wide variety of agonist to their cell surface receptors results in 

increased PI turnover (Michell, 1975). The primary response to ligand-receptor 

interactions leads to activation of a PI-PLC which cleaves Pis, including 

phosphatidylinositol-4,5-bisphosphate (PIP2), and generates two second messengers, 

IP3 and DAG (Berridge, 1987). PI-PLC may also hydrolyse phosphatidylinositol and 

phosphatidylinositol-4-monophosphate which leads to generation of DAG but not IP3 

(Nishizuka, 1989a). However, the relative importance of the different Pis as 

substrates for PI-PLC remains unclear (Tysnes et al., 1991). PI-PLC is widely 

distributed in many mammalian tissues and is found as either a membrane bound 

form, sometimes linked to G-proteins (Carter et al., 1990), or as a cytosolic form. 

Purification and molecular cloning of these enzymes have revealed several families of 

PI-PLC (Rhee et al., 1989; Kritz et al., 1990; Meldrum et al, 1991). 
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Although little is known about the biochemistry of the events occurring 

between the receptors and PI-PLC activation, G-proteins are believed to mediate this 

interaction (Litosch and Fain, 1986; Hrbolich et al., 1987). Preceding platelet 

activation, a stimulatory agonist binds to its platelet membrane receptor, activates a 

G-protein which in tum activates PI-PLC (Fig. 2). The IP3 produced stimulates the 

release of calcium from internal stores (O'Rourke et al., 1985). DAG that remains in 

the membrane is involved in the activation of the calcium-activated phosphatidylserine 

(PS)-dependent PKC (Nishizuka, 1984). In the presence of released calcium, DAG 

converts inactive PKC into an active form, possibly by a covalent modification of the 
) 

enzyme within or near the catalytic domain (Pelech et al., 1990). Increasing evidence 

also points to a critical role for DAG in the development of membraneous 

intermediates that promote membrane fusion during exocytosis (Das and Rand, 1984; 

Siegel et al., 1989). 

Stimulation of PKC by a number of agonists has been shown to result in the 

phosphorylation of a 40-47 kDa platelet protein (Watson et al., 1988; Yamada et al., 

1987; Krishnamurthi et al., 1989) which is thought to aid in granule secretion by 

promoting association between the open canalicular system and the granule 

membranes (Gerrard et al., 1985). This process is also aided by granule 

centralization, mediated by IP3-induced release of calcium from intracellular stores 

(Isreals et al., 1985; Brasset al., 1987). Increased cytosolic calcium activates a 

calcium/calmodulin-dependent myosin light-chain kinase that phosphorylates myosin 
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light-chains. This is a prerequisite for the actin activation of the Mg2 + -ATPase 

activity and, therefore, contraction of the actin-myosin cytoskeleton (Dabrowska and 

Hartshorne, 1978; Hathaway and Adelstein, 1979) and centralization of granules, 

which plays an important role in platelet shape change, aggregation and secretion 

(Nishakawa et al., 1980; Daniel et al., 1984). Therefore, IP3 and DAG are thought 

to act in synergy to produce secretion and aggregation responses in the platelets 

(Kaibuchi et al., 1983). 

Both IP3 and DAG rapidly formed by PI-PLC are also rapidly removed by 

various conversions in which their chemical moieties rejoin the PI pool. Thus, the 

formation of the signal molecules are part of a cyclic process (Holmsen, 1989) which 

maintains steady state levels of phosphatidylinositol, phosphatidylinositol-4-phosphate, 

and PIP2• The transient accumulation of DAG following PI-PLC stimulation is 

quickly followed by phosphorylation of DAG to phosphatidic acid (PA) by DAG 

kinase and/or hydrolysis by DAG lipase (Rittenhouse-Simmons, 1979; Bell et al., 

1979; Billah et al., 1979). PA, is also a potential second messenger (Putney et al., 

1980; Imai et al., 1982) causing calcium influx across the plasma membrane in intact 

cells. 

Section IV. Role of Agonists in Platelet Activation 

Platelet agonists can be partially categorized as being either weak or strong 

(Charo et al., 1977). Weak agonists include ADP, PAF, and epinephrine, while 
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thrombin, collagen and A23187 (a calcium ionophore) are examples of strong 

agonists. Low concentrations of strong agonists behave in a fashion similar to that of 

a weak agonist (Huang and Detwiler, 1986). In vitro the activation by weak agonists 

may, however, more accurately reflect the regulatory mechanisms that are important 

in platelet physiological function (Weiss and Aledort, 1967; Huang and Detwiler, 

1986). Weak agonists will only trigger platelet shape change and aggregation, and 

cause secretion of granule contents through positive feedback mechanisms (Holmsen, 

1989). Strong agonists trigger all three platelet responses independently (shape 

change, aggregation and secretion) in vitro. 

A. Adenosine Diphosphate (ADP) 

ADP is not only released from injured endothelial or red cells, but is also 

released from platelet dense granules. ADP has been known to induce a number of 

responses in platelets through interaction with high and low affmity binding sites on 

the platelets (Fig. 3A) (Coleman, 1990). This is followed by a number of events 

including the formation of a complex between glycoprotein lib-Ilia and calcium, 

centralization of internal granules, mobilization of internal calcium, phosphorylation 

of several proteins, and inhibition of prostanoid-induced adenylate cyclase activity 

(Born, 1962; Mills, 1982; Hawiger et al., 1987). The binding sites responsible for 

calcium mobilization and inhibition of adenylate cyclase are distinct from those 

responsible for shape change and aggregation, that is, the ADP-receptor, aggregin 
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Fig. 3. Role of ADP. thrombin and PAF in platelet activation. General schemes 
for the involvement of receptors and signal transduction pathways in the response of 
platelets to A) ADP and thrombin, and B) PAF. Solid lines ( ) indicate 
stimulatory actions while dotted lines (- ···· ·· .. ·) indicate inhibitory actions (Adapted 
from Coleman, 1990; Greco and Jamieson, 1991; Braquet et al., 1987). 
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(Fig. 3A) (Mills, 1985; Rao and Kowalska, 1987; Colman et al., 1990). The role of 

PI-PLC in ADP-mediated platelet activation is controversial. Some studies have 

shown that ADP-induced platelet activation does not involve PI hydrolysis, since in 

the presence of indomethacin, neither A23187 (Rittenhouse, 1984) nor ADP (Fisher et 

al., 1985) could activate platelets through PI hydrolysis. Other reports have indicated 

an initial rapidly reversible phosphorylation of the 20 and 47 kDa proteins (Daniel et 

al., 1984; Carty and Gear, 1985), a process believed to be mediated by DAG­

activated PKC activity. In the presence of fibrinogen, and suppressed thromboxane 

A2 formation, one gets only primary aggregation and shape change without secretion 

(Rink and Hallam, 1984). Even though only modest amounts of thromboxane A2 are 

produced following stimulation with ADP, these amounts appear to be sufficient to 

stimulate a secretory response in most species. 

B. Platelet-Activating Factor (PAF) 

PAF was first discovered in the early 1970's by Benveniste et al. (1972) as a 

compound present in the plasma of rabbits undergoing anaphylaxis. The structure of 

the lipid factor was later determined to be 1-0-alkyl-2-acetyl-sn-glycerol-3-

phosphocholine (Benveniste et al., 1979; Demopoulos et al., 1979; Blanket al., 

1979). PAF is not only the most potent platelet aggregating agent known, but it is 

also highly active in several other systems and has been shown to be an important 

component in inflammatory and allergic responses (Braquet et al., 1987). PAF is 
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formed and released by immunoglobulin E-sensitized basophils, stimulated 

macrophages or neutrophils, or by platelets themselves following activation. 

The amount of PAP present in biological fluids is regulated by a number of 

factors. These include the amount of PAP synthesised within the cell following 

stimulation, the amount of PAP that is actually released, and the rate of catabolism of 

PAP into inactive products (Snyder, 1985). PAP biosynthesis occurs predominantly 

through the activities of two membrane associated enzymes, PLA2 and 

acetyltransferase acting sequentially on 1-0-alkyl-2-acyl-glycerol-3-phosphocholine. 

The catabolism of PAP depends on the enzyme acetylhydrolase which degrades 

PAP to the inactive lyso-PAP (Braquet et al., 1987). This enzyme is localized in 

both the cytosol and in plasma. The plasma PAP-acetylhydrolase was first described 

by Parr et al. (1983) as a plasma acid-labile factor associated with lipoproteins (Parr 

et al., 1983; Stafforini et al., 1987). This extracelluar PAP-acetylhydrolase plays a 

central role in regulating extracelluar concentrations of P AF. 

At concentrations ranging from 1o-8-10-11 M, PAP causes platelet shape 

change, release of granule contents and thromboxane A2 , and aggregation of platelets 

(Braquet et al., 1987). The sensitivity of platelets to aggregation by PAP varies 

greatly from species to species, with the guinea pig being the most sensitive, followed 

by rabbit, which is one or two orders less sensitive, depending on the platelet 

suspension medium. Human, baboon, and canine platelets are even less sensitive to 

PAP (Braquet et al., 1987). The platelets of rats are refractory to PAP-induced 
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aggregation (Sanchez-Crespo et al., 1981) and high affinity receptors for PAF have 

not been found in r~t platelets (Inarrea et al., 1984). 

The first step in activation of platelets by PAF is believed to involve 

interaction of PAF with its receptor located on the platelet membrane (Fig. 3B). 

These receptors are of high affmity and low capacity, numbering between 42 and 

20,000 per platelet (Hwang, 1990). The binding of PAF to this receptor usually 

results in PI breakdown (Morrison and Shukla, 1988), mobilization of calcium (Sage 

and Rink, 1987), hydrolysis of GTP (Hwang et al., 1986), phosphorylation of 20 kDa 

and 40 kDa proteins by PKC (Sugatani and Hanahan, 1986) and release of 

arachidonic acid, followed by platelet aggregation and secretion (Hwang et al., 1983). 

C. Thrombin 

Thrombin is one of the most effective platelet stimuli. It can induce shape 

change, secretion, and full aggregation at concentrations as low as 0.04 U/ml 

(Lapetina, 1990; Greco and Jamieson, 1991). At low concentrations of thrombin, 

secretion from a-granules is required for aggregation (Harfenist et al., 1982). At 

high concentrations of thrombin platelet responses, such as aggregation and a- and 

dense-granule secretion, occur independently (Greco and Jamieson, 1991; Kunicki et 

al., 1983). 

Thrombin stimulates platelet aggregation and secretion through two receptors 

of high and moderate affinity on the platelet surface (Fig. 3A). The high affinity 
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receptor is believed to be associated with G-protein-dependent activation of PLA2 

(Greco and Jamieson, 1991) and inhibition of basal adenylate cyclase. Thrombin is 

very active in releasing arachidonic acid from platelets by PLA2 stimulation (Lapetina, 

1982 and 1990), making thrombin the most effective stimulus for thromboxane A2 

formation . The moderate affmity receptor, believed to be responsible for PI-PLC and 

PKC activation, may be linked to substrate proteolysis by thrombin. The activation 

of PI-PLC by thrombin appears to lead to preferential hydrolysis of PIP2 (Lapetina, 

1986), but phosphatidylinositol and phosphatidylinositol-5-monophosphate are also 

hydrolysed and serve as a source of DAG (Lapetina, 1990). Synergistic activation of 

both PLA2 and PI-PLC pathways are required for maximum activation of human 

platelets. 

D. Other Agonists 

The adherence of collagen to platelets is believed to provide the first step 

towards the formation of a haemostatic plug or a thrombus on the subendothelium. In 

fact, fibrillar collagen is considered the most thrombogenic agent of the vascular 

endothelium (Parmentier et al., 1990). The resultant platelet aggregation, which 

follows the adhesion of platelets to collagen, is believed to result from the presence of 

ADP and thromboxane A2 which are released from platelets. Therefore, removing 

ADP or inhibiting thromboxane A2 formation results in strong inhibition of collagen­

induced aggregation (Packham and Mustard, 1984). 
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The divalent cation ionophore, A23187 has been used extensively in the study 

of platelet responses to increased intracellular calcium. This agonist has been shown 

to cause platelet aggregation, secretion, and activation of the arachidonate pathway 

(Packham and Mustard, 1984). 

Other platelet activating substances acting through specific receptors are 

epinephrine, norepinephrine, and serotonin. Epinephrine and norepinephrine interact 

with the a 2-adrenergic receptors on the platelet surface and cause platelet aggregation 

along with inhibition of adenylate cyclase (Colman, 1990; Packham and Mustard, 

1984)). Platelets also have receptors for serotonin on their surface that are 

responsible for its weak aggregating effects (Baumgarter and Born, 1968). By itself 

serotonin can induce aggregation at unphysio1ogically high concentrations (Baumgarter 

and Born, 1968; Packham and Mustard, 1984). It is likely that the physiological role 

of these neuro-transmitters involves their ability to potentiate aggregation induced by 

low concentrations of other aggregating agents (DeClerck, 1990; Baumgarter and 

Born, 1968; Packham and Mustard, 1984). 

The platelets of certain species contain Fe receptors. (Packham and Mustard, 

1984). The binding of immunocomplexes to these receptors results in a sequence of 

reactions which include shape change, aggregation and secretion. The bridging of 

certain surface molecules with immunoglobulins may provide the signal for platelet 

activation (Henson and Ginsberg, 1981). 
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CHAPTER 2 

PHOSPHATIDYLCHOLINE-SPECIFIC 

PHOSPHOLIPASE C (PC-PLC) AND D (PLD) 

In chapter 1 the roles of PLA2 and PI-PLC in platelet function were described. 

Since a definitive role for PC-PLC and PLD in platelet function has not been 

reported, the role of these enzymes in mediating cellular reactions in other tissues are 

discussed separate! y in this chapter. 

Section I. Background and Cellular Origins 

Phosphodiesteric cleavage of phosphatidylcholine (PC) has been described in a 

number of different tissues. This hydrolysis of PC to form either phosphorylcholine 

and DAG, or choline and PA is due to the action of either phosphatidylcholine­

specific phospholipase C (PC-PLC) or phospholipase D (PLD), respectively. 

Although, PC-PLC or PLD in different tissues may carry out similar reactions, their 

substrate specificity and requirements for activity may differ. 

A number of cell-free preparations have been shown to degrade PC by PC­

PLC. Several criteria have been used to characterize these PC-PLCs including, pH 

optima, substrate specificity, detergent requirements, divalent cation requirements, 

subcellular localization and molecular size. For example, phospholipase C (PLC) of 
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lysosomal origin requires an acid pH for maximum activity, and it hydrolyses PE in 

addition to PC (Matsuzawa and Hostetler, 1980). PC-PLC from brain cytosol (Edgar 

and Freysz, 1982) and liver membranes (Irving and Exton, 1987) require alkaline pH 

for maximum activity. Cell-free preparations from rat endothelial cells also degrade 

exogenous PC by PC-PLC (Clark et al., 1986a; Martin et al., 1987). In contrast, 

PC-PLC from dog heart cytosol (Wolf and Gross, 1985), bull seminal plasma 

(Sheikhnejad and Srivastava, 1986), and promonocytic U937 cells (Clark et al., 

1986b) exhibit neutral pH optima and utilize exogenous PC but not Pl. 

PLD was first discovered in plants (Hanahan and Chaikoff, 1947), and was 

long thought to be absent from human tissue. In 1975 a mammalian form of PLD 

with an acid pH optimum was identified by Saito and Kanfer (1975) in solubilized 

brain membrane preparations. Subsequent studies demonstrated PC-preferring PLD 

activity in homogenates and membranes from a number of other tissues and cells. 

These include lung, liver, adipose tissue, endothelial cells, HL-60 cells and 

spermatozoa (reviewed in Billah and Anthes, 1990). PLD activities have been 

partially purified from rat brain (Taki and Kanfer, 1979), lung (Kater et al., 1976), 

and human endothelial cells (Martin, 1988) and found to be associated primarily with 

the particulate fractions. A cytosolic PLD has also been described in several bovine 

tissues (Wang et al., 1991). 
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Section IT. Role of PC-PLC and PLD in Si~:nal Transduction 

Mechanisms 

While the importance of PI as a source of signalling second messengers is now 

well established, it has become clear that PC can also generate lipid second 

messengers for signalling pathways (Billah and Anthes, 1990; Exton, 1990). 

The generation of PC-derived DAG is believed to occur by either an indirect 

or direct pathway (Huang and Cabot, 1990). The direct pathway is catalysed by PC­

PLC leading to generation of DAG. Operation of the indirect pathway results in 

generation of DAG by the sequential actions of PLD and PA phosphohydrolase. 

Receptor-linked activation of PC-PLC and PLD may occur via several distinct 

mechanisms involving multiple factors (Fig. 1). Recent studies have indicated that 

many of the agonists that stimulate PIP2 hydrolysis also stimulate PC-PLC and PLD 

which catalyse the breakdown of PC to form DAG, PA, choline and 

phosphorylcholine (reviewed by Billah and Anthes, 1990; Exton, 1990). This has 

presented the possibility that PI-PLC mediated increases in DAG and calcium levels 

may be a prerequisite for agonist-induced PC breakdown. This hypothesis is 

supported by studies showing that phorbol ester, an activator of PKC, stimulates PC 

hydrolysis leading to accumulation of PC-derived DAG and PA. DAG, a product of 

PI hydrolysis, and phorbol ester also act synergistically with A23187 to activate 

neutrophil PLD (Billah et al., 1989a). On the other hand, in studies using certain 

cultured cells, phosphodiesteric cleavage of PC was shown either to precede PI-
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hydrolysis (Slivka et al., 1988), or occur independently of PI hydrolysis (Duronio et 

al., 1989; Rosoff et al., 1988; Wright et al, 1988). These results indicate that 

although PI hydrolysis may be involved, it is neither essential nor sufficient for 

receptor-mediated PC breakdown. 

A number of studies have demonstrated the role of calcium in PC hydrolysis 

by PC-PLC or PLD. In particular, neutrophil PLD activity stimulated by either 

receptor agonists or A23187 can be inhibited by depletion of extracelluar calcium 

using EGTA (Billah et al., 1989a and b; Cockcroft, 1984; Pai et al., 1988). In 

spermatozoa, agonist-induced calcium influx and stimulation of PLD are inhibited by 

the calcium channel blocker verapamil (Domino et al., 1989). In cell-free 

preparations, PC-PLC from rat brain (Taki and Kanfer, 1979), granulocyte 

homogenates (Anthes et al., 1989), heart (Wolf and Gross; 1985), and promonocytic 

U937 cells (Clark et al., 1986b) require calcium for maximum activity. In contrast, 

PLD activity in hepatocyte membranes (Bocckino et al., 1987), endothelial cell 

homogenates (Martin, 1988) and spermatozoal extracts (Tettenborn and Mueller, 

1988) does not require calcium. It, therefore, appears that the requirement of 

exogenous calcium for PC hydrolysis may vary with tissue type. 

The involvement of PKC as a prerequisite for PC-PLC activity varies from 

tissue to tissue. PKC activators like phorbol esters or synthetic DAGs also activate 

PC hydrolysis by PC-PLC or PLD (Billah and Anthes, 1990). However, inhibition or 

down regulation of PKC blocked phorbol ester-induced PC-PLC or PLD activity 
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partially in some tissues, and completely in others. While there is no evidence that 

PKC is the sole target for phorbol ester, it is possible that phorbol ester may interact 

directly with PLD and PC-PLC (Billah and Anthes, 1990; Kiss and Anderson, 1989). 

Since receptor-mediated PC-PLC (Besterman et al., 1986; Slivka et al., 1988) and 

PLD (Billah et al., 1989b; Liscovitch and Amsterdam, 1989) activities are not 

inhibited by PKC inhibitors, their activities may be governed by mechanisms 

independent of enhanced protein phosphorylation. 

Emerging evidence suggests that G-proteins control PC hydrolysis by both PC­

PLC and PLD. GTP-yS, a G-protein activator, has been shown to activate PLD in 

hepatocyte membranes (Bocckino et al., 1987), granulocyte homogenates (Anthes et 

al., 1989), permeabilized endothelial cells (Martin and Michaelis, 1989) and PC-PLC 

in hepatocyte membranes (Irving and Exton, 1987; Bocckino et al., 1987). These 

effects could be inhibited by GTPJ3S, a G-protein antagonist. The effect of pertussis 

toxin is less clear, since in some tissues, pertussis toxin inhibits PC hydrolysis, while, 

in other tissues there is no effect. This indicates that PC-specific phosphodiesterases 

are regulated by distinct G-proteins that may, in some cases, be insensitive to 

pertussis toxin. 

Based on these findings several models have been derived to explain the 

mechanism of receptor-mediated PC hydrolysis by PLC or PLD (Fig. 1). One 

mechanism may involve the activation of PI-PLC which hydrolyses PIP2 to DAG and 

may activate PC-PLC or PLD by PKC. PC hydrolysis in some cells may be partially 
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due to the rise in cytosolic calcium by G-protein linked calcium channels or as a 

result of PI hydrolysis and subsequent calcium mobilization (Billah and Anthes, 

1990). 

The physiological significance of agonist-stimulated PC breakdown largely 

involves the important role of DAG in signal transduction pathways. It is believed that 

PC-breakdown could generate DAG for prolonged periods of time that would be 

required for sustained activation of PKC, since in most cells, the physiological 

response may persist long after the calcium signal returns to normal and the IP3 signal 

has weakened (Billah and Anthes, 1990; Exton, 1990). In addition, since DAG 

species containing various fatty acids are able to activate PKC, it is also possible that 

different DAG subspecies affect different PKC isoforms to produce distinct PKC 

activation patterns (Billah and Anthes, 1990; Nishizuka, 1986; Nishizuka, 1989b). 
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CHAPTER 3 

C-REACTIVE PROTEINS (CRP) 

Section I. Introduction 

A. Historical Background 

In 1930, Tillet and Francis discovered a substance, in the sera of acutely ill 

patients, that precipitated the pneumococcal C-polysaccharide (CPS). This factor was 

called C-precipitin or C-reactive substance. In 1941, Abernethy and Avery further 

characterized human CRP as a protein and designated it as "C-reactive protein". The 

calcium-dependent interaction of human CRP with CPS was later used to isolate CRP 

in a crystalline form from a lipoprotein-rich fraction of human serum by a process 

that involved precipitating with CPS (McCarty, 1947; Wood et al., 1954). Volanakis 

and Kaplan (1971) demonstrated that the presence of a phosphorylcholine moiety on 

CPS (Fig. 1) was a possible binding site for CRP. Subsequently, Jennings et al. 

(1980) demonstrated the attachment of a phosphorylcholine moiety to the CPS. 

B. Distribution of CRP 

Since its original discovery, analogues of human CRP have been found in a 

number of other species. Anderson and McCarty (1951) first reported the presence of 

CRP in the serum of rabbits during the acute phase response. Subsequently, CRP was 
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Fig. 1. Structure of the CPS from Streptococcus pneumoniae Type 1. Jennings et 
al. (1980) reported that CPS is a repeating unit composed of B-D-Glup-1-+3-a-AAT­
Galp-1-4-a-D-GalNAcp-1-+3-B-D-GalNH-zjJ-1-+1 'ribitol-5-phosphate, where 
phosphocholine substituents, believed to be the primary binding site for human CRP 
(Volanakis and Kaplan, 1971), are situated at 0(6) of the unacetylated galactosamine 
residues (AATGal is 2-acetamido-4-amino-2,4,6-trideoxygalactose). 
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found to be present in the sera of various species ranging from the invertebrates to the 

mammals. CRP has been found in lumpsucker (Fletcher et al., 1981), plaice (Pepys et 

al., 1982), rainbow trout (Winkelhake and Chang, 1982), dog fish (Robey et al., 

1983), horseshoe crab (Robey and Liu, 1981; Femandez-Moran et al., 1968), dog 

(Riley and Coleman, 1970), goat (Maudsley et al., 1987a), cow (Maudsley et al., 

1987b), rat (Nagpurkar and Mookerjea, 1981), female syrian hamster (Coe, 1977) and 

monkey (Riley and Coleman, 1970). One important feature of CRP that has been 

conserved within most of these species is the calcium-sensitive property to bind to the 

phosphorylcholine ligand. 

Section ll. Human CRP 

A. Biosynthesis 

Since its discovery, human CRP has been described as a marker in a number 

of disease states involving inflammation and tissue damage. For this reason human 

CRP has been considered one of the acute phase proteins, increasing in concentration 

more than 1000-fold on inflammation or infection to levels of approximately 0.1-0.2 

mg/ml of serum (Kilpatrick and Volanakis, 1991; Kushner, 1982). The induction of 

the CRP gene, located on the proximal arm of chromosome 1 (Floyd-Smith et al., 

1986; Goldman et al., 1987), during inflammation has been reported to be under the 

control of both interleukin 6 and interleukin 1 in adult hepatocytes (Moshage et al., 

1988) and human hepatoma cell lines (Goldman and Liu, 1987; Ganapathi et al., 
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1988). 

While the liver is believed to be the main site of CRP synthesis during acute 

phase response, a number of studies have suggested transcription and translation of 

CRP by a small number of peripheral blood lymphocytes (Ikuta et al., 1986; Kuta and 

Baum, 1986; Murphy et al., 1991). However, the relevance of this extrahepatic 

synthesis of CRP is not understood. 

B. Structure 

Among the different species that contain CRP, rabbit CRP appears to most 

closely resemble human CRP in molecular appearance, subunit composition and 

amino acid sequence (Bach et al., 1977; Pepys et al., 1978). When examined under 

an electron microscope, human and rabbit CRP appear as cyclic pentamers by the 

arrangement of their five identical subunits, and are, therefore, sometimes classified 

into a super family of proteins known as pentraxins (Osmand et al., 1977; Pepys and 

Baltz, 1983). The subunits of human and rabbit CRP contain 206 amino acids 

(Gotschlich and Edelman, 1965; Wang et al., 1982) and share significant amino acid 

sequence homology with each other (Gewurz et al., 1982; Bach et al., 1977). The 

protein is also non-glycosylated and the inter-subunit contacts are comprised of non­

covalent forces. There is also evidence of an intra-disulphide bond within each subunit 

(Baltz et al., 1982). Like human CRP, rabbit CRP is also an acute phase reactant. 
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C. Binding Properties 

1. Binding to Phosphorylcholine 

Equilibrium dialysis studies have shown human and rabbit CRP to bind to 

approximately 1 molecule of phosphorylcholine per subunit with ~of about 10 I-'M 

(Anderson et al., 1978; Rassouli et al., 1992). The binding specificity of human CRP 

for phosphorylcholine has an absolute requirement for both the choline and phosphate 

moieties. Substitution of the phosphate moiety with choline derivatives of sulphonate 

or sulphate either decreases or abolishes binding to human CRP (Young and 

Williams, 1978). However, the high binding affinity for phosphorylcholine compared 

to other phosphate monoesters also indicates the specificity of CRP for the positively­

charged tetra-methyl-ammonium groups. This suggests that the phosphorylcholine­

binding site on CRP may recognise the zwitterionic nature of phosphorylcholine 

(Barnum et al., 1982). 

CRP can bind to 1 or 2 molecules of calcium per subunit (Gotschlich and 

Edelman, 1965). Calcium is believed to mediate the binding of phosphorylcholine to 

CRP by inducing a conformational change in the CRP molecule (Gotschlich and 

Edelman, 1965). The binding of calcium to CRP is also believed to stabilize the CRP 

molecule and, thereby, making it more resistant to heat- and urea-induced 

denaturation (Potempa et al., 1981). 

Similarity has been recognised between the phosphorylcho1ine-binding site of 

anti-phosphorylcholine myeloma protein (HOPC 8) and the phosphorylcholine-binding 
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site on human CRP (Barnum et al. 1982). The sequence Phe-Tyr-Met-Glu which 

participates in phosphorylcholine-binding by myeloma proteins (Kabat et al., 1976) is 

believed to be analogous to Phe39-Tyr40-Thr41-Glu42 involved in phosphorylcholine­

binding by human CRP (Young and Williams, 1978). A more recent study has shown 

that human CRP displays the same idiotype as another anti-phosphorylcholine 

myeloma protein (TEPC-15) (Swanson et al . 1991). 

2. Binding to Ether Lipids 

Apart from phosphorylcholine and calcium, a number of other ligands have 

been shown to interact with human CRP. Of particular interest is the interaction of 

CRP with various ether lipids including glycerol-1-mono-palmitoyl and octadecyl­

glyceryl ethers. Interaction with the analogous ester substituted glycerols does not 

occur (Riley et al., 1958). 

3. Binding to Galactose-Containing Polysaccharides 

A number of laboratories have reported the binding of human CRP to 

galactose-containing polysaccharides, including de-pyruvated pneumococcal type 4 

capsular polysaccharide (Higginbotham et al., 1970), snail galactans (Uhlenbruck and 

Karduck, 1979), agarose (Volanakis and Narkates, 1981), and leishmania galactans 

(Pritchard et al., 1985). These interactions are calcium-sensitive and can be inhibited 

by phosphorylcholine. Although phosphate groups are involved in the interaction of 
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human CRP with Helix pomatia galactan (Soelter and Uhlenbruck, 1986), it is not 

clear whether phosphate groups or carbohydrates are involved in the binding of CRP 

to the other glycans (Kilpatrick and Volanakis, 1991). 

4. Binding to Cationic Molecules 

Human CRP has been shown to bind to a wide variety of cationic substances 

such as poly-L-lysine and poly-L-arginine polymers, lysine-rich and arginine-rich 

histones, myelin basic protein, and leucocyte cationic protein (Siegel et al., 

1974, 1975; Di Camelli et al., 1980; Potempa et al., 1981; Dougherty et al., 1991; 

Gewurz et al., 1982). In the absence of calcium, appropriate concentrations of CRP 

and cationic ligand form complexes which lead to aggregation and precipitation (Di 

Camelli et al., 1980). These events are inhibited by calcium in the absence of 

phosphorylcholine but stimulated by calcium in the presence of phosphorylcholine 

(Potempa et al., 1981). Therefore, the polycation-binding site on CRP is believed to 

be distinct from the phosphorylcholine-binding site, but may be in close proximity and 

under the regulation of both calcium and phosphorylcholine (Gewurz et al., 1982; Di 

Camelli et al., 1980; Dougherty et al., 1991). 

D. Biological Properties 

Despite the growing body of knowledge regarding the various ligand 

interactions and the physical properties of CRP, little is known of the actual in vivo 
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function of CRP. However, experimental evidence suggests that CRP is a 

multifunctional protein that can initiate and modulate a broad range of interactions. 

1. Complement Activation 

Human CRP has been shown to play a role in activation of the classical 

complement cascade by binding to CPS or other phosphorylcholine-containing ligands 

(Kaplan and Volanakis, 1974; Volanakis and Kaplan, 1974). Kaplan and Volanakis 

(1974) observed that the addition of CPS to CRP-containing acute phase sera resulted 

in depletion of the classical pathway components indicating involvement of CRP in 

complement activation. The involvement of C1q in this process was demonstrated by 

the requirement of human C1q in activation of the complement system in guinea pig 

serum (Volanakis and Kaplan, 1974). C1q was later shown to bind and agglutinate 

CRP-coated surfaces (Claus et al., 1977). 

The binding of human CRP to ligands like polycations (Siegel et al., 1975), 

positively charged liposomes (Richards et al., 1979), PC:lysophosphatidylcholine 

(LPC) liposomes (Volanakis, 1982; Volanakis and Narkates, 1981) and nuclear DNA 

(Robey et al., 1985) have also been shown to activate complement. Complement 

activation involving these ligands resulted in opsonization and haemolysis (Mortensen 

et al., 1976; Osmand et al., 1975), which were inhibited by phosphorylcholine. These 

studies indicate a role for CRP, and its phosphorylcholine-binding site, in host 

defence by activation of the complement. 
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2. Binding to Damaged Cells and Model Membranes 

It is believed that CRP does not bind to intact membranes of living cells but 

binds to cells with altered or damaged membranes (Volanakis and Wirtz, 1979; 

Volanakis and Narkates, 1981). In vitro studies of the binding of human CRP to PC­

containing liposomes indicated that a disturbance of the molecular organization of the 

bilayer, by LPC, was necessary for binding to human CRP to liposomes (Volanakis 

and Wirtz, 1979). These studies provide a possible biochemical explanation for the 

binding of CRP to damaged membranes. 

It is believed that CRP recognizes damaged cells in situ, and by activating the 

complement pathway (Volanakis and Wirtz, 1979), generates the chemotactic and 

opsonic activities required to promote phagocytosis. This leads to the eventual 

resolution and repair of the lesion (Volanakis, 1982). 

3. Binding to Nuclear Contents 

A number of nuclear contents including chromatin, histones, and small nuclear 

ribonuclear proteins have been shown to bind to human CRP (DuClos, 1989; Du 

Closet al., 1981, 1990, 1991; Robey et al., 1984, 1985). Human CRP has been 

shown to precipitate nucleosome core particles from chicken erythrocytes (Robey et 

al., 1984) and mediate the solubilization of chromatin by complement (Robey et al. , 

1985). In addition, human CRP was shown to bind to histone proteins in a manner 

that was calcium-sensitive and could be inhibited by phosphorylcholine (Du Clos et 
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al., 1991). It is believed that CRP may bind to chromatin that is released from dead 

cells during acute inflammation and mediate the removal of chromatin fragments from 

the body after cell death by complement-mediated phagocytosis (Robey et al., 1984). 

4. Role in Opsonic Processes 

It is generally believed that the function of CRP may be related to its specific 

recognition of foreign pathogens and damaged cells of the host and to initiate their 

elimination by interacting with humoral and cellular effector systems in the blood. 

The first opsonin-like property of CRP was demonstrated when human CRP was 

shown to induce agglutination and capsular swelling in certain types of Streptococcus 

pneumoniae (Lofstrom, 1944). Further support for a role of CRP as an opsonin came 

from studies which showed that certain bacterial species were more effectively 

phagocytosed in the presence of human CRP (Hokama et al., 1962). More recent 

studies have indicated that human CRP may bind, with certain components of the 

complement system, to cells and mediate phagocytosis by human monocytes 

(Mortensen et al., 1976). Other reports have shown the phagocytosis of CRP­

opsonized cells is independent of the presence of complement (Kilpatrick and 

Volanakis, 1985; Kilpatrick et al., 1987). It is likely that during the opsonization 

process the phosphorylcholine-binding property of CRP may be involved in 

recognition and in the binding of a wide range of microorganisms or their degraded 

J 
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products, by which their toxicity is reduced. 

5. Interaction with Lipoproteins 

Rabbit CRP in acute phase serum may exist as a complex with either low 

density lipoprotein (LDL) or very low density lipoproteins (VLDL) (Pontet et al., 

1979; Cabana et al., 1982). The formation of these complexes between rabbit CRP 

and lipoproteins depend on the presence of apoprotein B in serum lipoproteins (Rowe 

et al., 1984a). Human CRP, on the other hand, does not bind to lipoproteins or form 

complexes with them in vivo (De Beer et al., 1982b). Nevertheless, in the serum of 

patients with type III hyperlipoproteinimia, which contains the abnormal lipoprotein, 

B-VLDL, the formation of CRP-lipoprotein complexes was detected (Rowe et al., 

1984b). This may indicate a role of CRP as a scavenger of abnormal lipoproteins. 

It has also been suggested that the interaction between CRP and apoprotein B­

containing lipoproteins may have functional relevance in cellular metabolism at the 

site of injury (Pepys et al., 1988). The binding of CRP to damaged cell membranes 

followed by interaction with apoprotein B-containing lipoproteins may result in 

specific localization of lipoprotein particles required for active cellular metabolism 

and processes of repair. 

6. Effects on Phagocytic cells and lymphocytes. 

Evidence for an interaction between CRP and immune cells was first described 

in 1937, by Abernethy and Francis, who observed a delayed skin reaction to CPS in 



43 

patients with elevated serum levels of CRP. It was later reported that moderate 

concentrations of purified human CRP, or acute phase sera with low levels of CRP, 

stimulated human polymorphonuclear leukocytes migration, whereas, high 

concentrations of human CRP inhibited this migration (Wood, 1951). Later studies 

showed a stimulatory role for CRP on inflammatory cell function, particularly when 

CRP was bound to particular ligands (Hokama et al., 1962; Ganrot and Kindmark, 

1969; Kindmark, 1971; Mortensen et al., 1976). 

Recent reports have provided a rather complicated picture of the role played 

by CRP in the regulation of various inflammatory cells (Kolb-Bachofen, 1991b). For 

example, the nature of the various effects of human CRP on neutrophils appear to 

differ depending on whether CRP is aggregated, cleaved or present in its native state. 

The opsonin-like modulatory influence of CRP is believed to stimulate neutrophil 

motility (Wood, 1951) and phagocytosis (Hokama et al., 1962; Ganrot and Kindmark, 

1969; Kindmark, 1971), enhance neutrophil attachment to the endothelium (Muller 

and Fehr, 1986), increase monocyte chemotaxis (Whistler et al., 1986b), and increase 

tumourcidal activity (Barna et al., 1984). On the other hand, native CRP ( < 10 

J.tg/ml) can have a negative effect on cell function by inhibiting 0 2·- generation, 

chemotaxis, chemiluminescence, enzyme secretion, LPC-mediated lysis and protein 

phosphorylation in neutrophils (Buchta et al., 1987; Buchta et al., 1988; Tatsumi et 

al., 1988). Similarly, CRP hydrolysis products, formed by neutrophil-derived 

enzymes, also inhibit neutrophil function (Shephard et al., 1988). Likewise, the 
) 
) 
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interaction of CRP with lymphocytes has suggested a rather complicated role for 

CRP. Human CRP has been shown to inhibit rosette formation, proliferative 

responses to soluble antigens and to allogenetic cells (Mortensen et al., 1975), and 

inhibit the migration and formation of macrophage-chemotactic factor by stimulated 

lymphocytes (Mortensen et al., 1977). More recent studies have shown CRP to 

variously increase or decrease human B-lymphocyte colony formation (Whisler et al., 

1983; Mackiewicz et al., 1985; Whisler et al., 1986a), and increase plaque formation 

(Mortensen et al., 1982). CRP also increased cell-mediated cytoxicity by T­

lymphocytes (Vetter et al., 1986). 

The effects of human CRP on inflammatory cells are believed to be mediated 

by specific binding sites on the cells. Specific binding sites for human CRP have been 

detected on neutrophils (Dobrinich and Spagnuolo, 1991), monocytes (Zeller et al., 

1989; Ballou and Cleveland, 1991), macrophages (Zahedi et al., 1989), human 

promonocyte U-937 cells (Tebo and Mortenson, 1990), lymphocytes with natural 

killer activity (lkuta et al., 1986; Kuta and Baum, 1986), antigen-stimulated 

lymphocytes (Croft et al., 1976) and peripheral blood lymphocytes (Oishi et al., 

1973). Although, the calcium-dependent binding of human CRP to neutrophils 

(Dobrinich and Spagnuolo, 1991), and lymphocytes (Hornung, 1972) was inhibited by 

phosphorylcholine, the binding of human CRP to monocytes (Tebo and Mortenson, 

1990) may be independent of the phosphorylcholine-binding site. A sub-population of 

lymphocytes with natural killer activity synthesise CRP and retain it on the surface 
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even in the presence of chelating agents (lkuta et al., 1986; Kuta and Baum, 1986). 

Although a relationship between the CRP binding site on cells and the Fe receptor has 

been suggested, the nature of this relationship is not presently clear (Kilpatrick and 

Volanakis, 1991). 

7. Effects on Platelets 

Gewurz and Fiedel were first to demonstrate an inhibitory effect of human 

CRP on human platelet aggregation stimulated by ADP, epinephrine, collagen, poly­

L-lysine, or thrombin (Fiedel and Gewurz, 1976a; Fiedel and Gewurz, 1976b; Fiedel 

et al., 1977). This effect did not involve calcium mobilization and was overcome by 

larger amounts of the agonists (Fiedel and Gewurz, 1976a). Their results suggested 

that the inhibitory effect of human CRP on platelet activities might be due to an 

interference with prostaglandin metabolism (Fiedel et al., 1977). Since a similar 

inhibitory effect was observed using anti-phosphorylcholine myeloma protein it was 

postulated that phosphorylcholine-binding proteins in general could modulate platelet 

reactivity by binding to phosphorylcholine moietys on the platelet surface (Fiedel et 

al., 1976). However, because of inconsistencies in the effects of different human CRP 

preparations on platelet function, it was later suggested that a low molecular weight 

factor of 8.3 - 12.5 kDa co-isolated with human CRP from pleural or ascitic fluids 

was responsible for the inhibitory properties of human CRP preparations (Fiedel et 

al., 1982a). These inhibitory properties were not observed when human CRP was 
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used in absence of the low molecular weight factor. Surprisingly, the inhibitory 

property of human CRP-low molecular weight, but not low molecular \\Ieight factor 

alone, was substantially reversed in the presence of CPS. More recently, it has been 

shown that cleaved forms of CRP, isolated from inflammatory fluids , a~ well as 

enzyme degraded forms of CRP also inhibit platelet activation (Fiedel attd Gewurz, 

1986). In contrast, Vigo (1985) reported that highly purified human CRP inhibited 

aggregation of rabbit platelets stimulated by thrombin or P AF and protetted platelets 

against the 1 ytic effects of LPC. 

Studies using highly purified human CRP showed that aggregate<j or 

complexed CRP caused activation of platelets (Fiedel, 1988; Fiedel et al.., 1982b-d; 

Fiedel, 1985; Fiedel, 1984). Thermally aggregated complexes of CRP, ~ctive oxygen­

modified CRP (Miyagawa, 1988) and CRP-polycation complexes have been reported 

to activate or synergistically amplify platelet responsiveness similar to I~G (Fiedel, 

1985). Furthermore, thermally aggregated CRP can cause platelets to Ulldergo shape 

change, aggregation and secretion of ot- and dense granule contents by a mechanism 

involving thromboxane A2 production (Simpson et al., 1982). An unchatacterized 

receptor for aggregated CRP, distinct from the IgG Fe receptor has been proposed to 

mediate these responses (Fiedel et al., 1982b). Platelet aggregation induced by 

aggregated CRP is not inhibited by native CRP, indicating distinct receptors for 

aggregated and native CRP. 

There have been a number of reports which suggest that highly Purified human 
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and rabbit CRP inhibits PAF-induced aggregation of platelets (Vigo, 1985; Kilpatrick 

and Virella, 1985; Hokama et al., 1984; Filep et al., 1991). It was speculated that a 

CRP-PAF interaction played a role in the inhibitory effect of human and rabbit CRP 

on PAF-induced platelet aggregation. A recent study has also suggested that human 

CRP inhibited aggregation of human platelets by preventing the binding of P AF to its 

platelet membrane receptor (Filep et al., 1991). 

Section ill. Rat CRP 

A. Isolation 

During the course of a study on the effect of a serum protein factor in rat 

which inhibited the heparin-lipoprotein precipitation reaction (Mookerjea, 1978), a 

phosphorylcholine-binding protein was isolated and purified from rat serum by 

Nagpurkar and Mookerjea in 1981, using a sepharose-phenylphosphorylcholine 

affmity column. This protein was later shown to be identical to rat CRP 

independently isolated by Pontet et al. (1981) and De Beer et al. (1982a). 

B. Structure 

Rat CRP is a unique protein among CRPs of different species. Unlike CRP 

from human and rabbit, rat CRP is a normal component of rat serum (0.5-0.6 mg/ml) 

and a moderate acute phase protein that increases only 2 fold in response to injury 
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(Nagpurkar and Mookerjea, 1981; De Beer et al., 1982a). Although pentameric and 

composed of identical subunits, rat CRP contains an inter-chain disulphide bridge 

linking two of its five subunits. The remaining three subunits are non-covalently 

associated. This is in contrast to human and rabbit CRP in which all five subunits are 

held together non-covalently. Molecular cloning and amino acid analysis have 

revealed each of the subunits of rat CRP to be composed of 211 amino acids and each 

subunit having a molecular weight of approximately 26 kDa (Rassouli et al., 1992). 

However, a distinctive feature of rat CRP, not found in the human CRP amino acid 

sequence, is the presence of a heptapeptide sequence at the C-terminal of the molecule 

(Fig. 2). This sequence contains two cysteine residues that are believed to be 

responsible for inter-chain disulphide bonding between two of the rat CRP subunits. 

Nevertheless, the remaining amino acid sequence of rat CRP shares extensive identity 

( -60 %) with human CRP. 

Unlike human and rabbit CRP, rat CRP is a glycoprotein. Rat CRP contains 

18 % carbohydrate, composed mainly of aN-linked complex-type bi-antennary chains 

with some evidence of a small amount of tri-antennary chains. Glycosylation sites 

exist on each of the five subunits of rat CRP at position Asn-128 (Rassouli et al., 

1992; Sambasivam et al., 1992). The presence of N-acetyl-neuraminic acid in the 

covalently-bound carbohydrate on rat CRP, together with the high content of Asp and 

Glu relative to the content of basic amino acids (Rassouli et al., 1992), both account 

for the acidic nature of this protein (pi 3.8). 
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Fig. 2. Comparison of the primarv structure of rat CRP with human CRP. This 
figure was constructed using the results of Rassouli et al. (1992) and Sambasivam et 
al. (1992) for rat CRP, and Lei et al. (1985) for human CRP. 
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C. Binding Properties 

Unlike rabbit and human CRP which bind to five molecules of 

phosphorylcholine, rat CRP can only bind to three molecules of phosphorylcholine but 

with affinity similar to that of human CRP for phosphorylcholine (Rassouli et al., 

1992; Anderson et al., 1978). It is possible that the three non-covalently held 

subunits of rat CRP are involved in the binding to phosphorylcholine. 

Rat CRP also binds to multilamellar liposomes composed of PC. This property 

of rat CRP appears to be specific to phosphorylcholine-moieties on the surface of the 

liposomes and can be inhibited by phosphorylcholine (Nagpurkar et al., 1983). The 

binding of rat CRP to PC is much greater than that to PS or phosphatidylethanolamine 

(PE). 

D. Biological Properties 

One of the first recognised biological properties of rat CRP, was its ability to 

inhibit the calcium-dependent heparin-lipoprotein precipitation reaction, a property not 

shared by rabbit and human CRP (Nagpurkar and Mookerjea, 1981). Later studies 

revealed the ability of rat CRP to selectively bind to lipoproteins containing 

apoproteins B and E (Saxena et al., 1987) in a manner that was calcium-sensitive and 

this binding could be inhibited by phosphorylcholine. These findings compare with 

those showing human and rabbit CRP to bind specifically to lipoproteins containing 

apoprotein B (De Beer et al., 1982b; Rowe et al., 1984a). 
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The binding of rat CRP to LDL, which involves the phosphorylcholine-

binding domain of rat CRP, results in inhibition of the binding of LDL to receptors 

on liver cell membranes from estradiol-treated rats (Saxena et al., 1986). 

It has recently been shown that a galactose-specific receptor activity on the 

surface of rat liver macrophages is identical to membrane-bound rat CRP (Kempka et 

al., 1990; Kolb-Bachofen, 199la). This receptor mediates effective uptake of 

particulate material expressing multiple galactosyl groups on their surfaces (Kolb­

Bachofen, 1991b), thus providing direct proof that rat CRP triggers phagocytic 

events in macrophages. Furthermore, this receptor is recycled and can be substituted 

with heterologous human CRP while maintaining functional capacity (Kolb-Bachofen, 

1991a). 

The binding of rat CRP to macrophages is also believed to result in 

internalization and degradation of the bound CRP by lysosomes. This may indicate a 

role for rat CRP in the clearance of pathogens bearing the phosphorylcholine ligand 

(Nagpurkar et al. 1992). This reaction also compares well with the ability of human 

CRP to bind to phagocytic cells and undergo proteolytic degradation. 

Rat CRP can bind to rat hepatocytes. In vitro studies have shown that 

relatively large amounts of asialo-rat CRP, rat CRP and rabbit CRP bind to isolated 

rat hepatocytes, predominantly via the phosphorylcholine-binding domain on these 

proteins (Yang et al., 1992). It was also suggested that this binding was the result of 

disruption of the hepatocyte membrane. However, the in vivo clearance of asialo-rat 
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CRP, but not native rat CRP or rabbit CRP, occurs via the asialoglycoprotein 

receptors on the liver. 

Section IV. CRP-Like Proteins 

A. Serum Amyloid P-Component (SAP) 

CRP is structurally related to another group of proteins, called serum amyloid 

P-component (SAP), which bind to carbohydrate moieties (Osmand et al., 1977). SAP 

was first identified as a component of amyloid deposits in humans (Cathcart et al., 

1965) and was later described at a pentraxin (Osmand et al., 1977). In humans, SAP 

consists of 10 subunits, is a glycoprotein and is not an acute phase protein. SAP 

shares about 50% amino acid sequence identity with human CRP (Oliveira et al., 

1979; Anderson and Mole, 1982). 

SAP exhibits a Ca2+ -dependent binding to the pyruvate moiety of agarose 

(Pepys and Baltz, 1983; Skinner and Cohen, 1988) but does not bind to 

phosphorylcholine. 

SAP has been found in almost all vertebrate species examined, including 

rabbit, rat, mice and human (Pepys et al., 1978a). It is not uncommon for a given 

species to have both SAP- and CRP-like properties in one molecule (Kilpatrick and 

Volanakis, 1991). 
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B. Syrian Hamster Female Protein (FP) 

In syrian hamsters, a serum protein analogous to CRP is expressed in high 

levels only in females (Coe, 1977, 1982). Due to its sex-related distribution, this 

protein is designated as hamster female protein (FP). Unlike human CRP, FP is 

glycosylated and is only expressed in males during inflammation or following 

castration. In the normal adult female syrian hamster, this protein is present at high 

serum levels in the range of 0. 7-3.0 mg/ml, while in normal males the level is much 

less (0.01-0.02 mg/ml). FP has a molecular weight of about 150 kDa, and is 

assembled non-covalently into a pentagonal arrangement (Coe, 1982). 

The hamster FP has a binding affinity for both phosphorylcholine and agarose­

in the presence of calcium (Coe, 1983). It has also been shown to be a component of 

hamster amyloid deposits (Coe, 1983). The amino acid sequence of the FP has 69% 

identity to human SAP and 50% identity to human CRP (Dowton et al., 1980). 

C. Other Phosphorylcholine-Binding Proteins 

1. Anti-phosphorylcholine myeloma proteins 

Like CRP, anti-phosphorylcholine myeloma proteins have a phosphorylcholine­

binding property (Pollet and Edelhoch, 1973). The anti-phosphorylcholine myeloma 

proteins, however, show much less binding specificity for the phosphate-moiety of the 

ligand than CRP (Young and Williams, 1978). Certain anti-phosphorylcholine 

myeloma proteins also bind to CPS and B-lipoproteins (Leon and Young, 1971) and 
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inhibit platelet aggregation (Fiedel et al., 1976). 

2. Perforin 

Perforin, a pore-forming protein in cytolytic T-lymphocytes, has been 

demonstrated to bind to phosphorylcholine in a calcium-dependent manner. 

Phosphorylcholine is believed to be a receptor molecule for perforin (Tschopp et al., 

1989). 

Section V. Purpose of Present Research 

One of the least understood effects of CRP is the inhibition of platelet 

aggregation. Although, several studies in the past have described the inhibitory effect 

of rabbit and human CRP on platelet aggregation, very little has been reported on the 

mechanism by which CRP inhibits platelet aggregation. It is, therefore, important to 

study these mechanisms in platelets. No previous study has examined the effect of rat 

CRP on platelet aggregation. Rat CRP merits special consideration since it differs 

from rabbit and human CRP with respect to its a) glycosylation status and b) 

concentration in the blood. Hence, the purpose of this investigation was to examine 

the effect of rat CRP on various aspects of platelet function such as aggregation and 

secretion of serotonin. This thesis also attempts to elucidate the mechanisms involved 

in the regulation of platelet function by rat CRP. 

In order to elucidate the mechanism of action of CRP on platelets, it was 



55 

important to demonstrate a) the effect of rat CRP on platelet aggregation and b) the 

binding of rat CRP to platelets. It has been assumed that the binding of rat CRP to 

platelets may in tum affect the complex biological pathways involved in the regulation 

of platelet function. Because of the presence of PC-PLC in platelets and its possible 

role in the regulation of platelet function, the effect of rat CRP on PC-PLC and other 

platelet phospholipases were investigated. 
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CHAPI'ER 4 

METHODS AND MATERIALS 

Section I. Materials 

A. Animals 

1. Rats 

Male Sprague-Dawley rats (body weight 250-300g) were obtained from 

Canadian Hybrid Farms, Centerville, Nova Scotia and were fed Purina rat chow ad 

libitum (Ralston-Purina of Canada Ltd., Don Mills, Ontario). 

2. Rabbits 

Male New Zealand white rabbits (body weight 1.5-3.5 kg) were purchased 

from Memorial University's Animal Vivarium, St. John's, Newfoundland and were 

fed rabbit chow ad libitum (Robinhood Multifoods Inc., St. John's, Newfoundland). 

B. Chemicals and Reagents 

Unless otherwise specified, chemicals and reagents were of commercial origin 

and were of the highest grade available. 

Choline chloride was purchased from J. T. Baker Chemical Co., New Jersey, 

USA. Phospholipase C (from Cholistritium welchii; 10.6 U/mg protein), 
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phospholipase A2 (from Naja naja venom; 2000 U/mg protein), creatine 

phosphokinase (30 U/mg protein) , thrombin (bovine; 610 NIH units/mg), 

prostaglandin 12 , prostaglandin E1, imipramine, creatine phosphate, 1,2-dipalmitoyl­

sn-glycero-3-phosphocholine (DPPC), glyceryl-3-phosphocholine, palmitic acid, COP­

choline, PA, DAG, myristic acid, thromboxane ~' RETE, and HHT, Triton X-100, 

oleic acid, LPC, synthetic PAF (1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine) 

(2 mg/ml in chloroform), bovine serum albumin (BSA), rat fibrinogen, a 1-acid 

glycoprotein (bovine), human CRP, ADP, arachidonic acid, PC, PS, PE, PI, and 

phosphorylcholine chloride (calcium salt) were purchased from Sigma Chemical 

Company (St. Louis, Mo., USA). Sodium deoxycholate was obtained from Fisher 

Scientific Co., New Jersey, USA. Iodo-Gen (1 ,3,4,6-tetrachloro-3a,6a-diphenyl­

glycouril) was from Pierce, Rockford, ll., USA. Cyanogen bromide (CNBr)-activated 

sepharose 4B was purchased from Pharmacia, Baie D'Urte, Quebec. 

C. Radioisotopes 

1-Palmitoyl-2-[9, 10-3H]palmitoyl-sn-glycero-3-phosphocholine ([2-3H 

palmitoyl]DPPC; 32.9 Ci/mmol), 1 ,2-dipalmitoyl-sn-glycerol-3-[3H­

methyl]phosphocholine ([3H-choline]DPPC; 37 Ci/mmol), (myo-inositol-2-3H(N))­

phosphatidylinositol (phosphatidyl[3H]inositol; 5.2 Ci/mmol), myo-[2-3H(N)]-inositol 

([
3H]inositol; 12.3 Ci/mmol), Na1251 (reductant free, 2 mCi in 4-5 JLl 0.1 M NaOH), 

and [5,6,8,9, 11, 12, 14, 15-3H(N)]arachidonic acid ([3Hlarachidonic acid; 76.0 
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Ci/mmol) were products of Dupont, Canada. 5-[14C]Hydroxytryptamine 

([14C]serotonin; 57 mCi/mmol), (1-stearoyl-2-[5,6,8,9, 11, 12, 14, 151H]arachidonyl)­

phosphatidylcholine ([2-3H arachidonyl]PC; 120 Ci/mmol), 1-0-[3H]alkyl-2-acetyl-sn­

glyceryl-3-phosphorylcholine (mixture of C-16 and C-18 alkyl ethers) (eH-alkyl]PAF; 

81 Ci/mmol), [14C methyl]choline (55 mCi/mmol), and [9, 10(N)-3H]myristic acid 

([
3H]myristic acid; 54 Ci/mmol) were purchased from Amersham. [N-methyl-

14C]Lyso-PAF (55 mCi/mmol) was from American Radiochemical Corporation, St. 

Louis, Mo., USA. 

D. Buffers and Solutions 

Tyrode Solution: 137 mM NaCl, 2.6 mM KCl, 0.9 mM MgC12 , 5.5 mM D-glucose, 

0.25% (w/v) BSA, 12 mM NaHC03 and 0.4 mM NaH2P04 (pH 7.4). 

Calcium-Free Tyrode Solution: 137 mM NaCl, 2.6 mM KCl, 0.9 mM MgC12, 5.5 

mM D-glucose, 1 mM EGTA, 0.25% (w/v) BSA, and 12 mM NaHC03 (pH 6.5). 

Tyrode-HEPES Solution: 137 mM NaCl, 2.6 mM KCl, 0.9 mM MgC12 , 5.5 mM D­

glucose, 0.25% (w/v) BSA, and 5 mM HEPES (pH 7.4). 

3.6% Citrate Anticoa~ulant: 85 mM Trisodium citrate, 70 mM citric acid, and 110 

mM D-glucose. 
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Citrate-Buffered Platelet Washing Solution: 137 mM NaCl, 11 mM D-glucose, 

0.25% (w/v) BSA, 6 mM sodium citrate, and 4.8 mM citric acid (pH 6.5). 

Tris-HCl Buffered Platelet Washing Solution: 1.5 mM EDTA, 125 mM NaCl, 4 mM 

D-glucose, and 12 mM Tris-HCl (pH 7.4). 

E. Antiserum 

Rabbit-raised antiserum to rat CRP was prepared as described by Nagpurkar 

and Mookerjea (1981). Goat-raised antiserum to rabbit CRP was a gift from Dr. H. 

Gewurz, Department of Immunology, Rush Medical College, Chicago. 

Section IT. Induction of Inflammation in Rabbits 

Acute inflammation was induced in rabbits by subcutaneous injection of 

commercial grade turpentine (0.5 ml/kg body weight) into the dorsolumbar region. 

Blood samples was taken at 48 h after injection from the marginal ear artery. Rabbits 

were also bled by cardiac puncture under anaesthesia induced by sodium pentabarbital 

(1 ml/kg body weight). The serum from inflamed rabbits was checked for the 

presence of rabbit CRP by immunodiffusion analysis using antiserum to rabbit CRP. 
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Section m. Preparative Procedures 

A. Preparation of Sepharose-Phenylphosphorylcholine Affinity 

Adsorbent 

Sepharose-phenylphosphorylcholine affinity adsorbent was prepared as 

described by Nagpurkar and Mookerjea (1981) which involved reduction of 

p-nitrophenylphosphorylcholine with H2 and coupling the reduced product to CNBr­

activated sepharose 4B. The resulting affinity adsorbent was stored in 5 mM Tris-HCl 

buffer (pH 7.4) containing 0.01% sodium azide, at 4 °C. 

B. Isolation and Purification of Rat and Rabbit CRP 

1. Rat CRP 

Rat CRP was isolated from the serum of male Sprague-Dawley rats (300-450g) 

using sepharose-phenylphosphorylcholine affinity adsorbent equilibrated with 5 mM 

Tris-HCl buffer (pH 7.4) containing 150 mM NaCl as described by Nagpurkar and 

Mookerjea (1981). The protein concentration was determined by the method of Lowry 

et al. (1951). The purity of the protein was determined by SDS-PAGE using the 

Phastsystem (Pharmacia), and by high performance liquid chromatography (HPLC) 

gel filtration column (TSK-250 gel filtration column, 7.5 x 300 mm; Bio-Rad). 

Preparations with purity greater or equal to 97%, according to HPLC profile, were 

stored at -20 oc for use in experiments. 
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2. Rabbit CRP 

Rabbit CRP was isolated from serum of inflamed rabbits following a 

procedure similar to that used in the isolation of rat CRP, except that 5 mM Tris-HCl 

buffer (pH 7.4) containing 150 mM NaCl, and 2.5 mM CaC12 was used in 

purification of this protein. The isolated rabbit CRP was determined to be free of 

other proteins by analysis on SDS-PAGE and HPLC. The identity of the purified 

rabbit CRP was confirmed by immunodiffusion analysis using antiserum to rabbit 

CRP and was stored at -20 oc for use in experiments. 

C. Preparation of Platelet Sonicates 

1. Preparation of W asbed Platelets 

Rat blood was collected via the abdominal aorta of ether-anaesthetized rats into 

plastic syringes containing 0.1 vol of 3.6 % citrate anticoagulant. Rabbit blood was 

collected from the central ear artery into plastic syringes containing 0.1 vol of 3.6 % 

citrate anticoagulant. Human blood (4.5 mL) was collected in silicone coated tubes 

containing 0.5 ml of 0.129 M buffered citrate solution (16.0 mg sodium citrate 

dihydrate, 2.1 mg citric acid monohydrate) from healthy volunteers who had denied 

taking any drugs for at least 1 week prior to donation. 

Platelet rich plasma (PRP) was isolated as the supernatant resulting after 

centrifuging (220 x g) the blood for 8-10 min at 22 °C. 

PRP was diluted 1:1 with Tris-HCl buffered platelet washing solution (pH 7.4) 
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containing 2 mM phosphorylcholine and centrifuged (900 x g) for 10 min at 22 oc to 

sediment platelets (modified from Choudhury et al. 1987). The platelet pellet was re­

suspended, by gentle agitation, into fresh washing solution without 2 mM 

phosphorylcholine and re-centrifuged (900 x g) for 10 min. This step was repeated 2 

times and the platelet pellet was finally re-suspended in a solution of 25 mM Tris-HCl 

buffer (pH 7.4) containing 125 mM NaCl, and 2.5 mM CaC12• 

The platelet concentration was determined by microscopy using a counting 

chamber (1/400 mm2 x 1110 mm deep) from Hausser Scientific Pa. and the platelets 

were diluted to a concentration of 5 x 108/ml. Platelets were then sonicated on ice, 

3x for 30 sec, using a Branson Sonifier fitted with a microtip at 60 Watts (Hayakawa 

et al., 1988). In some cases the concentration of protein in the platelet sonicates was 

determined by the method of Lowry et al. (1951). 

2. Fractionation of Platelet Sonicates 

Rat platelet sonicates were fractionated by centrifuging ( 105,000 x g) in a 

Beckman Type 40 rotor for 60 min at 4 oc using a Beckman Model L3-50 

Ultracentrifuge (Hayakawa et al., 1988). The supernatant of the centrifuged sonicates 

was removed and was representative of a soluble fraction. The pellet was re­

suspended in a volume equal to the volume of the supernatant, by agitation and 

sonication for three 5 sec intervals to give a re-suspended particulate fraction. 
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D. Radioiodination Procedures 

Rat CRP was radioiodinated by the iodogen method (Pierce) utilizing carrier­

free Na125I. Rat [125I]CRP was purified by chromatography on a Sephadex G-25 

Medium column (20 ml bed volume; Pharmacia) and a Sepharose­

phenylphosphorylcholine affmity column, and typically had a specific activity of 6.1 x 

105 cpm/ J.'g (2. 8 J.tCi/ J.tg) or greater. Rat [125I]CRP was diluted with unlabelled CRP 

to give the working concentrations. 

Section IV. Analytical Procedures 

A. Electrophoresis 

The Phastsystem electrophoresis unit (Pharmacia) was used to analyze CRP 

samples by SDS-PAGE. Typically rat or rabbit CRP at concentrations of 1-2 mg/ml 

were analyzed. Electrophoresed samples were stained with Coomassie Brilliant Blue 

R 250 dye (Pharmacia Blue R) by the development unit of the Phastsystem. A typical 

SDS-PAGE of purified rat and rabbit CRP is shown in Fig. 1. 

B. High Performance Liquid Chromatographic (HPLC) Analysis 

The purity of rat and rabbit CRP, isolated from sepharose­

phenylphosphorylcholine affinity columns, was determined on a Perkin-Elmer series 4 

HPLC system using a TSK-250 gel filtration column (7.5 x 300 mm; Bio-Rad). 
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Fig. ·1. SDS-PAGE of purified rat and rabbit CRP. SDS-PAGE was performed on 
7.5% polyacrylamide gels (Pharmacia) using 2.5% SDS buffer strips (Pharmacia) by 
Phastsystem (Pharmacia). Lane #1 and #8 are low molecular weight standards 
(Pharmacia), lanes #2 and #7 do not contain any sample, lane #3 is rabbit CRP 
treated with B-mercaptoethanol, lane #4 is rabbit CRP (untreated), lane #5 is rat CRP 
treated with B-mercaptoethanol, and lane #6 is rat CRP (untreated). The low 
molecular weight standards are phosphorylase b (94 kDa; A), BSA (67 kDa; B), 
ovalbumin (43 kDa; C), carbonic anhydrase (30 kDa; D), trypsin inhibitor (20.1 kDa; 
E), and a-lactalbumin (14.4 kDa; F). 
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Protein samples were filtered through 0.45 I'm filters to remove particulate matter. 

Typically 10-50 J.'g of protein were injected to the column, which had been 

equilibrated with 10 bed volumes of 0.05 M Na2S04 , 0.02 M NaH2P04 buffer (pH 

6.8) at a flow rate of 1.0 mllmin. The eluent from the column was continuously 

monitored at 280 nm using a LC-95 UV /visible spectrophotometer detector (Perkin­

Elmer). The area under the absorbance peak from eluted protein was determined 

using a LCI-100 Laboratory Computing Integrator (Perkin-Elmer) and area % was 

reported as % purity of protein. Typical HPLC profiles for rat and rabbit CRP are 

shown in Fig. 2. 

C. Thin Layer Chromatography (TLC) 

TLC was used to separate DAG, choline metabolites, PA, or various 

phospholipids from other lipids. This involved the application of aliquots of lipid 

dissolved in chloroform/methanol solvent or aliquots of the aqueous layers of 

extracted samples to Whatman K5 silica gel 150A TLC plates (layer thickness of 250 

I'm) for chromatography. In each case, except when choline metabolites were 

measured, a large strip of filter paper was placed in each TLC development chamber 

to aid in saturation of the chamber atmosphere with the mobile phase. 

1. Separation of Choline Metabolites 

Identification of the aqueous soluble products of PC metabolism was made by 
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Fig. 2. HPLC protlle of purified rat and rabbit CRP. A) rat (20 p.g) or B) rabbit 
CRP (20 p.g) in a fmal volume of 20 p.l was applied to a HPLC gel filtration column. 
Trace represents the absorbance detected at 280 nm by LC-95 UV /Visible 
Spectrophotometer Detector as CRP was eluted from the column. 
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applying (50-400 ~-tl) aliquots of the aqueous layers of extracted samples to Whatman 

K5 silica gel 150A TLC plates and developing them in methanol/0.9% 

NaCl/ammonium hydroxide (10/10/1, v/v/v) to separate water soluble choline 

metabolites (Vance et .al., 1980). Authentic standards consisting of DPPC (5 ~-tg) , 

LPC (5 ~-tg), glyceryl-3-phosphocholine (20 ~-tg), COP-choline (20 ~-tg), 

phosphorylcholine (20 ~-tg) and choline (20 ~-tg) were chromatographed with the 

aqueous extract. After development, the plates were air dried and were stained with 

iodine vapour to aid in localization of the products. Radioactive products were 

scraped from the plates into vials containing 10 ml of Ready Safe liquid scintillation 

cocktail (Beckman) and counted by Wallac 1209 Rackbeta Liquid Scintillation 

Counter. 

2. Separation of Phospholipids 

To measure incorporation of [3H]myristic acid or [3H]arachidonic acid into 

platelet lipids, re-suspended lipid was applied to Whatman K5 silica gel 150A TLC 

plates and developed in chloroform/methanol/H20 (65/25/4; v/v/v) (Rouser et al., 

1976). This solvent system allows separation of neutral lipids from phospholipids. 

PC and PE are well separated from other lipids. PS and PI, however, have similar 

mobilities in this system and were, therefore, quantified as one unit. Authentic 

standards consisting of PC (5 ~-tg), PE (5 ~-tg), PI (5 ~-tg), LPC (5 ~-tg), PS (5 ~-tg), PA 

(10 ~-tg), DAG (5 ~-tg) and fatty acids (10 ~-tg) were chromatographed with each sample 
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to confirm adequate separation of metabolites. After air drying the plates, the 

products were visualized by staining with iodine vapour. Radioactive lipids were 

scraped from the plate and were counted for radioactivity. 

3. Separation of Arachidonic Acid Metabolites 

The solvent used for separation of arachidonic acid and its lipoxygenase and 

cycloxygenase products was the upper phase of ethylacetate/2,2,4-

trimethylpentane/acetic acid/H20 (9/5/2/10, v/v/v/v) which gave good separation of 

phospholipids, PA, arachidonic acid and its metabolites (Billah et al., 1980). 

Authentic arachidonic acid (10 p.g), thromboxane Bz (1 p.g), HHT (0.5 p.g), HETE 

(0.5 p.g), PA (10 p.g) and PC (5 p.g) standards were chromatographed with each 

sample to aid in identification of the labelled metabolites. After developing the plate 

the various lipid standards were visualized by iodine vapour. Radioactive products 

were scraped from the plate and counted for radioactivity. 

4. Separation of DAG 

In PC-PLC assays using [2-3H palmitoyl]DPPC as substrate, the identification 

and separation of DAG was made from aliquots of the non-aqueous layers of 

extracted samples that were removed and applied to silica gel 60 TLC plates Qayer 

thickness of 250 p.m; Merck). The plates were developed in hexane/diethylether/90% 

formic acid (60/4011, v/v/v) to isolate [3H]DAG (Huang and Cabot, 1990). Authentic 
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standards consisting of DPPC (5 p.g), LPC (5 p.g), PA (10 p.g), palmitic acid (10 p.g) 

and DAG (5 p.g) were chromatographed with each sample to aid in identification of 

the labelled metabolites. The lipids on the developed plates were stained with iodine 

vapour. The stained lipids were scraped from the plate and counted for radioactivity. 

To measure formation of DAG from platelets labelled by [3H]myristic acid, re­

suspended lipid was applied to Whatman K5 silica gel 150A TLC plates and 

developed in hexane/diethylether/90% formic acid (60/40/1, v/v/v). In this case 

authentic standards consisting of PC (5 p.g), LPC (5 p.g), PA (10 p.g), DAG (5 p.g), 

and myristic acid (10 p.g) or arachidonic acid (10 p.g) were also chromatographed on 

each plate as standards, and stained by iodine vapour. The stained lipids were 

scraped from the plate and counted for radioactivity. 

5. Separation of PA 

In PC-PLC assays using [2-3H palmitoyl]DPPC as substrate, the extracted 

lipids suspended in chloroform/methanol (111, v/v) was applied to silica gel 60 TLC 

plates (layer thickness of 250 p.m; Merck) and developed in chloroform/pyridine/70% 

formic acid (50/25/7, v/v/v) to separate PA from other lipid (Huang and Cabot, 

1990). Plates were allowed to air dry for at least 24 hours to evaporate the solvent, 

before staining with iodine vapour. In this case authentic standards consisting of PC 

(5 p.g), LPC (5 p.g), palmitic acid (10 p.g), PA (10 p.g) and DAG (5 p.g) were also 

chromatographed with each sample, and stained with iodine vapour. The stained 
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lipids were scraped from the plate and counted for radioactivity. 

Section V. Platelet Function Studies 

A. Platelet Aggregation Studies using PAF or ADP 

1. Preparation of Platelet Rich Plasma 

Rat PRP was prepared from blood using 0.1 vol of 90 mM EGTA in 0.35 % 

(w/v) NaCl as anticoagulant. PRP was prepared by centrifuging (220 x g) blood for 

8-10 min at 22 °C. Human PRP was isolated from 4.5 ml portions of blood collected 

in silicone coated tubes containing 0.5 ml of 0.129 M buffered citrate solution (16.0 

mg sodium citrate dihydrate, 2.1 mg citric acid monohydrate) from healthy volunteers 

who had denied taking any drugs for at least 1 week prior to donation. PRP was 

isolated from New Zealand white rabbit blood using 0.1 vol of 3.6 % citrate 

anticoagulant. 

Platelet poor plasma (PPP) was prepared by centrifuging (900 x g) blood 

minus PRP for 10 min at 22 °C. In cases where platelet aggregation was to be 

measured in PRP, the platelet concentration was diluted to 4 x 10S/ml using PPP. 

2. Preparation of Washed Platelets 

Washed rat platelets were prepared from PRP by washing 2x in a solution 

containing 2 mM phosphorylcholine and 2x in a solution without phosphorylcholine 

by a method similar to that described in section III.C.l. The washed platelets were 
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re-suspended, by gentle agitation, in 16 mM NaH2P04 buffer (pH 7.4) containing 125 

mM NaCl, 5 mM KCl, and 4 mM D-glucose and diluted to a concentration of 4 x 

108/ml. No rat CRP was detected on the platelets by immunodiffusion analysis 

against antiserum to rat CRP. 

Rabbit platelets were isolated from PRP by centrifugation (900 x g) for 10 min 

at 22 °C. The platelet pellet was then washed twice in citrate-buffered platelet 

washing solution (pH 6.5) as described by Vigo (1985). The washed platelets were 

fmally re-suspended in Tyrode solution (pH 7.4), counted, and diluted to 4 x 108/ml 

to be used in platelet aggregation studies. 

3. Platelet Aggregation Assays 

Platelet aggregation was monitored in a dual channel Chrono-log aggregometer 

(Model 440) in siliconized cuvettes containing PRP, or suspension of washed platelets 

taken from rat, rabbit or human using a previously published procedure (Choudhury 

et al. 1987). To measure PAF- or ADP-induced platelet aggregation, aliquots of the 

appropriate platelet suspension (concentration of 4 x 10S/ml), were added to 

siliconized cuvettes and continuously stirred. Varying amounts of either rat CRP, 

other proteins or the antiserum to rat CRP were added to the cuvettes and equilibrated 

at 37 oc in presence of 1.5 mM CaC12• Finally platelet agonist, ADP (44 J.tM) or 

PAF (0.5 J.tM}, was added to the platelets and the amount of light transmitted through 

the stirred platelet suspension was recorded. PPP or the appropriate platelet 
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suspension buffer was used as a blank to represent 100 % light transmission. 

B. Platelet Aggregation and [l 4C]Serotonin Secretion Studies using 

Thrombin as Agonist 

1. Preparation of (14C]Serotonin-Labelled Platelets 

Blood was collected from the abdominal aorta of ether-anaesthetized male 

Sprague-Dawley rats, into plastic syringes containing 0.1 vol of 3.6 % citrate 

anticoagulant. Platelet rich plasma (PRP) was obtained by centrifuging (220 x g) 

blood for 8-10 min at 22 °C. The PRP was diluted 1:1 with calcium-free Tyrode 

solution (pH 6.5). Diluted PRP was centrifuged (900 x g) for 10 min at 22 octo 

sediment the platelets. The platelet pellet was then re-suspended in calcium-free 

Tyrode solution (pH 6.5) and loaded with (14C]serotonin following the method of 

Holmsen and Dangelmaier (1989), but with certain modifications. Briefly, there­

suspended platelets were incubated with (14C]serotonin (0.1 JLCi/ml) for 30 min at 22 

°C to allow incorporation of the [14C]serotonin into dense granules. Platelets were 

then washed (x2) by centrifugation (900 x g) for 10 min to remove un-incorporated 

label. The washed platelets were finally re-suspended into Tyrode solution (pH 7.4) 

and the platelet concentration was adjusted to 4 x 10S/ml. 

To determine incorporation of P4C]serotonin into platelets an aliquot (100 JLl) 

of the platelet suspension was transferred to a scintillation vial containing 10 ml of 

scintillation cocktail and counted for radioactivity. This labelling protocol usually 
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resulted in incorporation of approximately 50,000 DPM/4 x 108 platelets. 

2. Platelet Aggregation and [14C]Serotonin Secretion Assays 

Platelets loaded with [14C]serotonin were used to study thrombin-induced 

platelet aggregation and [14C]serotonin secretion. The protocol for aggregation was 

similar to that described in section V .A.3. [14C]Serotonin secretion was measured as 

described by Holmsen and Dangelmaier (1989) with certain modifications. Briefly, 

[
14C]serotonin-loaded platelets (4 x 108/ml; 50,000 DPM/ml) in Tyrode solution (pH 

7.4) were incubated with 1.5 mM CaC12 for 15 min either in the absence or presence 

of rat CRP. Imipramine (2 JLM) was added to platelets prior to stimulation to inhibit 

re-uptak:e of released serotonin. Thrombin (0.05-2.0 U/ml) was finally added to the 

stirred platelets and the aggregation was monitored for 3 min in a dual-channel 

Chrono-log aggregometer (model 440). The final volume of assays after adding 

thrombin were either 500 JLl or 1 ml. The extent of aggregation was expressed as the 

percent increase in light transmission after the addition of thrombin. To determine 

the secretion of [14C]serotonin from the platelets, a 100 JLl aliquot of the platelet 

suspension was transferred from the aggregometer to an eppendorf microfuge tube 

containing 25 JLl of ice-cold formaldehyde (0.633 M) and EDTA (50 mM). The 

mixture was centrifuged at 12,800 x g for 1 min and an aliquot of the supernatant 

containing [14C]serotonin was counted for radioactivity. The [14C]serotonin secreted 

from activated platelets was calculated as a percentage of the total radioactivity in 4 x 
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108 platelets/mi. 

Section VI. Platelet Binding Studies 

A. Preparation of Washed Platelets 

1. Rat Platelets 

Washed platelets were prepared from rat PRP containing 3.6% citrate 

anticoagulant following the protocol described in section V.A.2. and finally re­

suspended in 20 mM Tris-HCl buffer (pH 7.4) containing 0.25 % (w/v) BSA, 0.15 M 

NaC1, and 5 mM CaC12 to be used for CRP-platelet binding studies. No CRP was 

detected on the platelets by immunodiffusion analysis against antiserum to rat CRP. 

2. Rabbit Platelets 

Washed rabbit platelets were prepared as described in section V.A. for rabbit 

platelets and finally re-suspended in 20 mM Tris-HCl buffer (pH 7.4) containing 0.25 

% (w/v) BSA, 0.15 M NaCl, and 5 mM CaC12 to be used for CRP-platelet binding 

studies. 

3. Human Platelets 

Washed human platelets were prepared from PRP after diluting 1: 1 with 

citrate-buffered platelet washing solution (pH 6.5) and centrifuging (900 x g) for 10 

min at 22 °C. The sedimented platelets were then re-suspended in the same buffer 



75 

and washed as described for rabbit platelets in section V .A. The washed platelets 

were fmally suspended in 20 mM Tris-HCl buffer (pH 7.4) containing 0.25 % (w/v) 

BSA, 0.15 M NaCl, and 5 mM CaC12 to be used in CRP-platelet binding studies. 

B. Binding Assays 

Platelet binding studies were performed by incubating different amounts of rat 

[
125I]CRP (0.5-16.0 mg/ml) with washed platelets from rat, rabbit, or human. 

Binding studies were performed in 1.5 ml Eppendorf microfuge tubes which had been 

pre-soaked in a solution of 0.25 % (w/v) BSA. Rat [125I]CRP was added to 

suspensions of freshly prepared washed platelets in 20 mM Tris-HCl buffer (pH 7.4) 

containing 0.25 % (w/v) BSA, 0.15 M NaCl and 5 mM CaC12 in a final volume of 

0.5 ml and incubated at 37 oc for 30 min in a shaking water bath. Immediately 

following incubation the reaction mixture was centrifuged (12,800 x g) for 2 min at 4 

oc in a Beckman Microfuge which resulted in complete sedimentation of the platelets. 

The supernatant was carefully aspirated and the platelet pellet was washed (lx) in ice 

cold buffer. The tips of the tubes were cut off just above the pellet and the 

radioactivity was counted by a ')'-counter (Beckman). Non-specific binding was 

measured in parallel incubations containing a 25-400 fold molar excess of unlabelled 

rat CRP. Specific binding of rat CRP to platelets was calculated by subtracting non­

specifically bound CPM from the total CPM bound and was expressed as p.g of rat 

CRP bound per 2 x 107 platelets. 
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Binding data was analyzed by means of the computer software program 

Enzfitter (Elsevier-Biosoft) using non-linear regression analysis. The binding data 

was used for Scatchard plots using linear regression analysis, and the binding 

parameters Kd and the number of binding sites were estimated using the equation: 

Where the value v is the average number of rat CRP molecules bound to each 

platelet. N represents the number of binding sites on each platelet for CRP and Kd is 

the dissociation constant. 

Section VII. Binding of £3H-alkyi]PAF to Rat CRP 

To study the binding of [3H-alkyl]PAF to rat CRP, a HPLC gel filtration 

method was used. Purified rat CRP (0.5 nmol) was pre-incubated with PH-alkyl]PAF 

(0.05 nmol; 81 Ci/mmol) in a fmal volume of 50 Jtl. The mixture was then applied 

to an equilibrated HPLC gel filtration column (TSK-Sperogel gel filtration column, 

7 .5mm x 300mm; Beckman) maintained at a flow rate of 0. 8 ml/min. The 

equilibration buffer contained 50 mM Na2S04, 20 mM NaH2P04 (pH 6.8) in the 

presence or absence of 2.5 mM CaC12• Elution of the protein from the column was 

monitored at 280 nm by Perkin-Elmer LC-95 UV /Visible Spectrophotometer 

Detector. Elution of the eH-alkyl]PAF was synchronously monitored by a Beckman 

171 Radioisotope Detector utilizing Ready Flow ill liquid scintillation cocktail. The 
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column was subsequently washed between runs with 0.1% SDS in equilibration buffer 

without calcium to remove radioactivity remaining on the column. 

Section Vlll. Assays for Purified Phospholipases 

A. Assay for PC-PLC from C. welchii 

To measure PC-PLC activity in enzyme isolated from C. welchii, assays were 

carried out in incubation mediums containing 25 mM Tris-HCl buffer (pH 7.4), 125 

mM NaC1, 2.5 mM CaC12 and 150 JLM [3H-choline]DPPC (1000-1500 DPM/JLM) as 

substrate and maintained at 37 oc in a shaking water bath. In some experiments rat 

CRP was also incubated with the substrate before adding enzyme. Reactions were 

started by adding 0.02 U C. welchii PC-PLC/ml and typical reactions (0.5 ml final 

volume) were allowed to proceed for 2 min. Reactions were quenched by adding 

3. 75 vol of chloroform/methanol containing 2% acetic acid (112, v/v) and was 

extracted (Bligh and Dyer, 1959). The aqueous layer containing water soluble 

[
3H]phosphorylcholine, was counted for radioactivity. The identity of 

[
3H]phosphorylcholine as the released product was confirmed by TLC. 

B. Assay for PLA2 from Naja naja venom 

PLA2 assays, using enzyme isolated from Naja naja venom were carried out in 

standard incubation mediums containing 100 mM Tris-HCl buffer (pH 7.4), 5 mM 
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CaC12 and 160 J.C.M [2-3H palmitoyl]DPPC (1000 DPM/J.C.M) as substrate. The final 

assay volume was 100 J.tl which included the enzyme and in some cases rat CRP. 

Reactions were started by adding 0.02 U Naja naja venom PLA/ml to the incubation 

medium, maintained at 37 oc in a shaking water bath, and allowed to proceed for 5 

min. Reactions were terminated by adding 32.5 vol of chloroform/methanol/heptane 

(1.41/1.25/1.0, v/v/v) followed by 7.5 vol of 0.14 M borate buffer (pH 10.5) and 4 

vol H20 (Puolakkainen et al., 1987), and mixed by vortexing. The 2 layers were 

separated by centrifugation (2600 x g) for 20 min at 4 °C. The upper phase, 

containing the free [3H]palmitic acid was counted for radioactivity. 

Section IX. Assays for Phospholipases from Platelet Sonicates 

A. Assay for PLA2 

The activity of PLA2 in rat platelet sonicates was measured in a standard 

incubation medium containing 25 mM Tris-HCl buffer (pH 7.4), 125 mM NaCl, 2.5 

mM CaC12 , using 50 J.C.M [2-3H arachidonyl]PC (900 DPM/ J.C.M) as substrate. In 

typical assays the reaction was begun by adding platelet sonicates (8 x 107/ml; 50 1-'g 

protein/ml) to the incubation medium equilibrated at 37 oc in the absence or presence 

of rat CRP, in a final volume of 120 J.C.L The reaction was stopped after 20 min and 

lipids were extracted as described for snake venom PLA2 assay. The upper phase, 

containing the [3H]arachidonic acid was counted for radioactivity. 
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B. Assay for PI-PLC 

The PI-PLC activity in rat platelet sonicates (2.5 x 107/ml; 15 p.g protein/ml) 

was measured in a standard incubation medium containing 25 mM Tris-HCl buffer 

(pH 7.4), 125 mM NaCl, 2.5 mM CaC12, and 16 p.M phosphatidyl[3H]inositol (3050 

DPM/ p.M) and 6.4 p.M PEas substrate (final volume of 100 p.l) in the presence or 

absence of rat CRP. This procedure was modified from a previously described assay 

for PI-PLC using sonicated human platelets (Bleasdale et al., 1990). Reactions were 

allowed to proceed for 3 min at 37 oc after adding the platelet sonicates. Reactions 

were quenched by adding 3. 75 vol of chloroform/methanol containing 2% acetic acid 

(112, v/v) and extracted (Bligh and Dyer, 1959). A portion of the aqueous layer 

which contained water soluble [3H]inositol phosphates were added to 10 ml of Ready 

Safe liquid scintillation cocktail and counted for radioactivity. 

C. Assay for PC-PLC 

The PC-PLC activity in rat, rabbit or human platelet sonicates (5 x 107 

cells/ml; 30 p.g/ml) were measured in standard incubation mixtures containing 25 mM 

Tris-HCl buffer (pH 7.4), 125 mM NaCl, 2.5 mM CaC12, tritium-labelled substrate, 

(18 p.M; 10,000-30,000 dpm/ p.M) [3H-choline]DPPC or [2-3H palmitoyl]DPPC, in the 

presence or absence of rat CRP in a fmal volume of 400 p.l. Incubations were carried 

out for 20 or 40 min at 37 oc in a shaking water bath. Reactions were stopped by 

adding 1.875 ml of a mixture of chloroform/methanol (112, v/v) containing 2% acetic 
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acid. This was immediately followed by the addition of 100 J.tl of 

phosphorylcholine/choline (20 mg/ml each) as internal standards. The assays were 

extracted (Bligh and Dyer, 1959) and centrifuged (1000 x g) for 15 min to separate 

aqueous and non-aqueous layers. Aliquots of aqueous layers containing 

[
3H]phosphorylcholine were added to 10 ml of Ready Safe scintillation cocktail and 

counted for radioactivity. 

In certain cases, aqueous layers or organic layers were analyzed by 

TLC for formation of eHJDAG or for formation of (3H]phosphorylcholine. 

D. Choline Kinase Activity 

Choline kinase assays were carried out using rat platelet sonicates in order to 

determine if choline kinase was responsible for the (3H]phosphorylcholine that was 

formed by platelet sonicates in PC-PLC incubation medium, containing [3H­

choline]DPPC. The standard incubation mixture contained 25 mM Tris-HCl buffer 

(pH 7.4), 125 mM NaCl, 2.5 mM CaC12, 0.6 JLM [14C-methyl]choline as substrate and 

was equilibrated at 37 °C. Platelet sonicates (5 x 107 cells/ml; 30 J.tg protein/ml) were 

added to the incubation mixture to give a final volume of 400 JLL Reaction was 

stopped after 20 min by adding 1.875 ml of chloroform/methanol (1/2, v/v) 

containing 2% acetic acid and 100 J.tl of a mixture of phosphorylcholine/choline (20 

mg/ml each). The assays were extracted (Bligh and Dyer, 1959) and the aqueous 

layer was chromatographed by TLC. Bands corresponding to phosphorylcholine and 
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choline were scraped and counted as described for the PC-PLC assay using platelet 

sonicates. 

Section X. Assays for Phospholipases in Intact Platelets 

A. Isolation of Platelets from PRP 

Blood was collected from the abdominal aorta of ether-anaesthetized male 

Sprague-Dawley rats into plastic syringes containing 0.1 vol of 3.6 % citrate 

anticoagulant. PRP was obtained by centrifuging (220 x g) blood for 8-10 min at 22 

°C. The PRP was diluted 1:1 with calcium-free Tyrode solution (pH 6.5) containing 

0.5 p.g prostaglandin 12/ml, 0. 7 mM creatine phosphate, 2.0 U creatine 

phosphokinase/ml and 2 mM phosphorylcholine. Diluted PRP was centrifuged (900 x 

g) for 10 min to sediment platelets. The platelet pellet was re-suspended in fresh 

solution and used for labelling platelets. 

B. Preparation of Labelled Platelets 

1. Labelling with eH]Arachidonic Acid 

Platelets suspended in calcium-free Tyrode solution (pH 6.5) containing 0.5 p.g 

prostaglandin E/ml, instead of prostaglandin 12 , 0. 7 mM creatine phosphate, and 2.0 

U creatine phosphokinase/ml, were incubated with [3H]arachidonic acid (7.5 p.Ci/ml) 

for 90 min as described by Nakano et al. (1987). Platelets were then washed (x3) by 
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centrifugation (900 x g) for 10 min in calcium-free Tyrode solution (pH 6.5) 

containing 0.5 p.g prostaglandin E1/ml, 0.7 mM creatine phosphate and 2.0 U creatine 

phosphokinase/m1, to remove the unincorporated radioactivity. Platelets were re­

suspended in fresh solution by gentle agitation after each centrifugation step. The 

washed platelets were finally re-suspended in Tyrode-HEPES solution (pH 7.4) 

containing 0.25% (w/v) BSA and the platelet concentration was determined. 

2. Labelling with [3H]Inositol 

Rat platelets were labelled with [3H]inositol following a previously described 

procedure (Nakano et al., 1987). Briefly, platelets suspended in calcium-free Tyrode 

solution (pH 6.5) containing 0.5 p.g prostaglandin E/ml, 0. 7 mM creatine phosphate 

and 2.0 U creatine phosphokinase/ml were incubated with [3H]inositol (50 p.Ci/ml) for 

90 min at 37 °C. Platelets were subsequently washed as described in section X.B.l. 

The washed platelets were re-suspended in albumin-free Tyrode-HEPES solution (pH 

7.4) and platelet concentration was determined. 

3. Labelling with [3H]Myristic Acid 

Platelets were labelled with [3H]myristic acid following the procedure similar 

to that used by Huang and Cabot (1990) to provided a PC pool specifically enriched 

by [3H]myristic acid in fibroblasts. Platelet phospholipids were labelled by incubating 

platelets with [3H]myristic acid (33 p.Ci/ml) for 90 min at 37 oc in calcium-free 
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Tyrode solution (pH 6.5) containing 0.5 1-'g prostaglandin E.fml, 0. 7 mM creatine 

phosphate, and 2.0 U creatine phosphokinase/mi. Platelets were washed as described 

in section X.B.1. The washed platelets were finally re-suspended in Tyrode-HEPES 

solution (pH 7.4) containing 0.25% (w/v) BSA and the platelet concentration was 

determined. 

To characterize the incorporation of [3H]myristic acid into platelet lipids, the 

organic layer of extracted platelets (Bligh and Dyer, 1959) was evaporated to dryness, 

re-suspended in chloroform/methanol (1: 1 v/v) and analyzed by TLC. This protocol 

usually resulted in incorporation of approximately 2,400,000 DPM/1(/ platelets. 

4. Labelling with P4C-methyl]Lyso PAF 

The procedure used to label the choline phospholipid pool with either 1-0-

[3H]alkyl-LPC or 1-0-alkyl-[32P]LPC in human platelets (Huang et al., 1991) was 

used to label rat platelets. Briefly, platelets were incubated with [N-methyl-14C]lyso­

PAF (2.5 1-'Ci/ml) for 90 min at 37 oc in calcium-free Tyrode solution (pH 6.5) 

containing 0.5 1-'g prostaglandin E.fml, 0. 7 mM creatine phosphate, and 2.0 U 

creatine phosphokinase/mi. Platelets were washed as described in section X.B.l. 

The washed platelets were finally re-suspended in Tyrode-HEPES solution (pH 7.4) 

containing 0.25% (w/v) BSA and the platelet concentration was determined. 
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C. Assay for PLA2 

To measure PLA2 activity in intact platelets, [3H]arachidonic acid-labelled 

platelets (5 x 108/ml) suspended in Tyrode-HEPES solution (pH 7.4) were incubated 

at 37 oc for 15 min with 1.5 mM CaC12 • Platelets were then stimulated by thrombin 

in a platelet aggregometer with constant stirring and the reaction was allowed to occur 

for 5 min. In some cases platelets were pre-incubated in the presence of rat CRP 

(0.48 I-'M) and calcium for 15 min at 37 oc before adding thrombin. The 1 ml assay 

was finally stopped by adding 0.15 ml of 100 mM EDTA at pH 5.0 and cooling on 

ice. The reaction mixtures were extracted (Bligh and Dyer, 1959). The final organic 

layer removed from extracted samples was evaporated to dryness under a stream of 

N2 and re-suspended in 150 1-'1 of chloroform/methanol (111, v/v). Radioactive 

arachidonic acid metabolites or arachidonate-containing phospholipid in the organic 

extract were then separated by TLC. 

D. Assay for PI-PLC 

[
3H]inositol-labelled platelets (5 x 10S/ml) in albumin-free Tyrode-HEPES 

solution (pH 7.4) containing 1.5 mM CaC12 and 10 mM LiCl were equilibrated in the 

absence or presence of rat CRP (0.48 I-'M) for 15 min. Platelets were then stimulated 

for 3 min by thrombin (0.05 U/ml or 2 U/ml) in a platelet aggregometer with 

constant stirring. The reaction was stopped by addition of 3. 75 vol of 

chloroform/methanol (112, v/v) containing 1 N HCl and was extracted (Bligh and 
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Dyer, 1959). The aqueous layer was analyzed by ion-exchange chromatography 

(Dowex AG1-X8 formate form) for [3H]inositol phosphates following the procedure (])f 

Berridge et al. (1983) with some modification. Briefly, the aqueous layer containing! 

the water soluble inositol metabolites was neutralized with KOH (2 M) and diluted 

with 2 vol of distilled water. This solution was applied to a 1 ml column of AG 1-X3 

Dowex (formate form) ion exchange resin which had been equilibrated in 6 bed 

volumes of distilled water. [3H]Inositol and glycerol-[3H]inositol were eluted together 

in 5 ml of 60 mM ammonium formate/5 mM disodium formate. A second washing 

step consisting of 2 washings with 2.5 ml of 0.2 M ammonium formate/0.1 M formiiic 

acid eluted [3H]inositol-1-phosphate. A third washing phase consisting of 2 washing:> 

with 2.5 ml of 0.4 M ammonium formate/0.1 M formic acid eluted [3H]inositol-1,4- · 

biphosphate while a fourth wash consisting of 2 washings of 2.5 ml of 1.0 M 

ammonium formate/0.1 M formic acid eluted [3H]IP3• The formation of [3H]inosito l1-

l-phosphate, [3H]inositol-1 ,4-biphosphate and [3H]IP3 was measured by counting tlte 

fractions eluted from the column. 

E. Assay for PC-PLC 

1. Using Platelets Labelled with [3H]Myristic Acid 

Washed [3H]myristic acid-labelled platelets (5 x 108/ml) suspended in Tyrode 

HEPES solution (pH 7.4) were allowed to equilibrate for 15 min before use. The 

labelled platelets (1 ml) were then equilibrated in presence of 1.5 mM CaC12 and 
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presence or absence of rat CRP (0.48 ~M) for 15 min at 37 oc before adding 

thrombin. After equilibration, eH]myristic acid-labelled platelets were stirred in a 

platelet aggregometer and were then stimulated for 3 min by thrombin (0.05 U/ml or 

2 U/ml). The reaction was stopped by addition of 3. 75 vol of chloroform/methanol 

(1/2, v/v) containing 2% acetic acid and extracted (Bligh and Dyer, 1959). The 

organic layer was evaporated to dryness under N2 and the lipid residue was re­

suspended in 100 ~I of chloroform/methanol (1/1, v/v). Aliquots (50 ~1) of there­

suspended lipid were analyzed by TLC to separate [3H]DAG from other lipids. The 

radioactivity associated with DAG was expressed as a percentage of total radioactive 

lipid. 

2. Using Platelets Labelled with [N-methyl-14C]Lyso PAF 

The [N-methy/-14C]lyso-PAF-labelled platelets (5 x 108/ml) were fmally re­

suspended in Tyrode-HEPES solution (pH 7.4) and allowed to equilibrate for at least 

15 min at 37 oc. Platelets were incubated in presence of 1.5 mM CaC12 and presence 

or absence of rat CRP (0.48 ~M) for 15 min before stimulation. Stirred [N-methy/-

14C]lyso-PAF-labelled platelets were stimulated for 3 min by thrombin (0.05 U/ml or 

2 U/ml). The reaction was stopped by addition of 3.75 vol of chloroform/methanol 

(1/2, v/v) containing 2% acetic acid and extracted (Bligh and Dyer, 1959). Aliquots 

of both the aqueous and organic layers of extracted samples were counted for 

radioactivity. An aliquot of the equilibrated platelet suspension was also stopped 
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immediately to act as a zero time control (to determine the background levels of 

radioactive products). The radioactivity associated with e4C]phosphorylcholine that 

formed during each experiment was expressed as a percentage of total radioactivity 

after subtraction of zero time control. Identification of the aqueous soluble product as 

[
14C]phosphorylcholine was made by analysis of a 400 ~1 aliquot of the aqueous layers 

by TLC. 
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CHAPTER 5 

STUDIES ON THE EFFECT OF RAT CRP ON 

PLATELET AGGREGATION 

Section I. Introduction 

While the precise physiological function of CRP remains to be established, its 

participation in various reactions, in vitro, may be of some relevance to its 

physiological function. Previous studies have shown an inhibitory effect of rabbit and 

human CRP on platelet aggregation induced by a number of agonists; however, the 

effect of rat CRP on platelet aggregation has not been investigated. The present study 

was, therefore, carried out to determine if rat CRP has an inhibitory effect on ADP-, 

thrombin- and PAP-induced platelet aggregation. 

The refractory property of rat platelets to P AF has been reported in the 

literature (Cargill et al., 1983; Sanchez-Crespo et al., 1981; Vargiftig et al., 1981). 

One explanation put forward for this resistance to P AF may be the absence of high 

affinity PAP-binding sites on rat platelets (lnarrea et al., 1984). However, in view of 

the well known property of rat CRP to bind to the phosphorylcholine ligand, which is 

a part of the PAF molecule (Fig. 1), an alternate explanation may be that rat CRP, by 

interacting with P AF through the phosphorylcholine moiety, may inhibit the 

physiological action of P AF. 
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Fig. 1. Structure of PAF and possible bindine; site for rat CRP. 1-0-alkyl-2-acetyl­
sn-glycero-3-phosphocholine. The alkyl chain is typically 16-18 carbons in length. 
Boxed is the phosphorylcholine moiety believed to be the binding site for rat CRP. 
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Section ll. Results 

A. PAP-Induced Aggregation of Rat Platelets 

The results presented in Fig. 2 (bottom trace) confirms the previously reported 

observation of the refractory property of rat platelets to PAF-induced aggregation. Rat 

platelets in PRP did not aggregate in the presence of 0.5 JLM PAF, which is a 

concentration of PAF that would normally result in maximum aggregation of human 

or rabbit platelets. However, when 25 JLl of the rabbit antiserum to rat CRP was pre­

incubated for 5 min with rat PRP, there was a marked increase in the aggregation of 

platelets by PAF (Fig. 2, top trace). A control experiment in which non-immune 

rabbit serum was pre-incubated with rat PRP did not show any P AF-induced platelet 

aggregation (result not shown). 

Additional experiments to establish a role of rat CRP in the resistance of rat 

platelets to PAF were carried out using washed and unwashed rat platelets. Washed 

rat platelets were prepared using a 2 mM phosphorylcholine solution to remove any 

rat CRP bound to the platelet surface. When P AF (0. 5 JLM) was added to the platelets 

that had not been washed in phosphorylcholine-containing solution there was very 

little aggregation of the platelets (Fig. 3, bottom trace). In contrast, platelets that had 

been washed by the phosphorylcholine-containing solution showed a marked increase 

in aggregation by PAF (Fig. 3, top trace). Furthermore, when rat CRP (0.25 JLM) 

was pre-incubated with washed platelets, platelets were once again shown to be 

resistant to PAF-induced aggregation (Fig. 4, bottom trace) compared to platelets in 
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Fig. 2. Effect of incubation of rabbit antiserum to rat CRP with rat PRP on 
PAF-induced a~:~:re~:ation of rat platelets. PAF (0.5 J-LM) was added to rat PRP 
( 1. 7x 108 in 450 J-Ll) in the absence of the antiserum to rat CRP and the aggregation 
was recorded (Bottom trace). PRP was pre-incubated with antiserum to rat CRP (25 
J-Ll) for 5 min (Top trace). At the end of the incubation PAF (0.5 J-LM) was added and 
the platelet aggregation was recorded. Other experimental conditions were as 
described in Methods and Materials (section V .B.3). Results are typical of 4 
experiments. 
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Fig. 3. Effect of PAF on the aggregation of washed and unwashed rat platelets. 
(Bottom trace) PAF (0.5 JLM) was added to unwashed rat platelets (1.7 x 108 in 450 
JLl) that had been isolated from plasma by centrifugation (900 x g) for 10 min and re­
suspended in 16 mM NaH2P04 (pH 7.4) buffer containing 124 mM NaCl, 5 mM KCl, 
4 mM glucose, and 1.5 mM CaC12 • The aggregation was recorded after adding PAF 
to the platelets. (fop trace) PAF (0.5 JLM) was added to rat platelets which were 
washed (x 2) in buffer containing 2 mM phosphorylcholine and (x 2) in buffer without 
phosphorylcholine. The washed platelets were re-suspended in 16 mM NaH2P04 (pH 
7.4) buffer containing 124 mM NaCl, 5 mM KCl, 4 mM glucose, and 1.5 mM 
CaC12 , and the aggregation was recorded after adding PAF. Results are typical of 2 
experiments. 



93 

40 
-+--> ,....---..... 

...c: ~ j Control j 
b.() ~ 

,...--..._. 

·~ 30 ~ 
....--4 c :::i. 

0 c ·~ LD 
·~ \/) 

20 . 
\/) 0 

Q) •....-I 
~ 

\/) s (lj \/) ~ 
Q) d 1 0 ~ 
S-.-4 (lj ~ u 
c ~ Rat CRP 

E--t ~ 0 ( 0. 25 J.l.M) 

0 1 2 3 4 5 
Time (min) 

Fig. 4. Effect of incubation of rat CRP with washed rat platelets on PAF-induced 
platelet aggregation. (Top trace) PAF (0.5 ~tM) was added to washed rat platelets 
(1.7 x 108 in 450 fC.l) suspended in 16 mM NaH2P04 (pH 7.4) buffer containing 124 
mM NaCl, 5 mM KCl, 4 mM glucose, and 1.5 mM CaC12, and the aggregation was 
recorded. (Bottom trace) PAF (0.5 I-'M) was added to washed rat platelets which had 
been pre-incubated with rat CRP (0.25 ~tM) for 5 min and the aggregation was 
recorded. Results are typical of 2 experiments. 
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the absence of rat CRP (Fig. 4, top trace). 

B. Effect of Rat CRP on PAF-Induced Platelet Aggregation 

The property of rat CRP to inhibit PAF-induced platelet aggregation was also 

studied using human PRP and washed rabbit platelets. The platelets from these 

species are known to aggregate in the presence of PAF. Because CRP is not normally 

present in rabbit and human plasma, the platelets from these species were not 

expected to possess any surface-bound CRP. Therefore, the addition of PAF to human 

PRP and rabbit platelets resulted in platelet aggregation (shown in Figs. 5 and 6). In 

the presence of increasing concentrations of rat CRP (0-0.27 I'M) there was a dose­

dependent inhibition of PAP-induced aggregation of human PRP (Fig. 5A). In this 

experiment rat CRP was pre-incubated with PRP before the addition of PAF (0.5 

I'M). In another experiment rat CRP (5 I'M) was pre-incubated with PAF (0.5 I'M) 

which was then added to the PRP (Fig. 5B). Experiments following either protocol 

resulted in the inhibition of PAF-induced platelet aggregation by rat CRP. In 

experiments using washed rabbit platelets, rat CRP also inhibited PAF-induced 

platelet aggregation (Fig. 6) 

C. Binding of Rat CRP to PH-alkyl]PAF 

eH-alkyl]PAF (0.05 nmol) in 50 mM Na2S04 , 20 mM NaH2P04 buffer (pH 

6.8) containing 2.5 mM CaC12 was applied to a TSK-Sperogel (7.5 X 300 mm; 
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Fig. 5. Effect of rat CRP on PAF-induced aggregation of human platelets. (A) 
Increasing amounts of rat CRP (0-0.271-'M) were pre-incubated for 5 min with human 
PRP (1.7 x 108 platelets in 450 1-'1). At the end of the incubation period PAF (0.5 
J.'M) was added and the aggregation was recorded. The upper most trace (control) 
shows the result of incubation in absence of rat CRP. (B) Rat CRP (5 I-'M) was also 
pre-incubated with PAF (0.5 I-'M) for 10 min and then added to human PRP (bottom 
trace), and aggregation was recorded. Aggregation induced by addition of PAF (0.5 
I-'M) alone to human PRP is shown in the upper trace (control). Results are typical of 
2 experiments. 
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Fig. 6. Effect of rat CRP on PAF-induced agp-egation of washed rabbit olatelets. 
(Top trace; control) PAF (5 nM) was added to washed rabbit platelets (1. 7 x lOS 
platelets in 450 ,ul) suspended in Tyrode solution containing 1 mM CaC12 and 
aggregation was recorded. (Middle trace) Rat CRP (1.4 ,uM) was pre-incubated for 10 
min with P AF (5 nM). At the end of the incubation period the mixture was added to 
the washed rabbit platelets and the aggregation was recorded. (Bottom trace) PAF (5 
nM) was added to washed rabbit platelets that had been pre-incubated for 10 min with 
rat CRP (1.8 ,uM) and aggregation was recorded. Results are typical of 3 
experiments. 
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Beckman) HPLC gel-filtration column maintained at a flow rate of 0.8 ml/min and 

connected to a radioisotope detector. The eH-alkyl]PAF eluted from the column at 18 

min (Fig. 7A, bottom trace). No corresponding absorbance peak was detected using a 

UV detector (Fig. 7A, top trace). Under identical conditions the elution of rat CRP 

from the HPLC gel filtration column occurred at 9.5 min (Fig. 7B, top trace). No 

corresponding radioactive peak was detected by the radioisotope detector (Fig. 7B, 

bottom trace). The formation of a rat CRP-[3H-alkyl]PAF complex occurred on 

incubation of 0.5 nmol rat CRP with 0.05 nmol [3H-alkyl]PAF and was observed by 

chromatography on HPLC gel filtration column (Fig. 8). Most of the rat CRP bound 

[
3H-alkyl]PAF eluted with a higher molecular weight species, possibly an aggregated 

complex of native rat CRP. A minor peak with an elution time similar to that of 

native rat CRP was also observed. This complex formation did not occur in the 

absence of calcium (Fig. 9) and was inhibited by the pre-incubation of rat CRP with 

phosphorylcholine in the rat CRP-[3H-alkyl]PAF incubation mixture (Fig. 10). 

Inhibition of the rat CRP-[3H-alkyl]PAF complex formation by phosphorylcholine was 

dose-dependent (result not shown). The binding of rat CRP to [3H-alkyl]PAF could 

also be inhibited by excess unlabelled PAF (result not shown). The binding of [3H­

alkyl]PAF to albumin and acacid glycoprotein, which was previously reported 

(Matsumoto and Miwa, 1985; McNamara et al., 1986), is shown in Fig. 11. The 

PAF complex formed with these proteins was not affected by phosphorylcholine or 

calcium. 
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Fig. 7. HPLC elution prortle of rat CRP and [3H-alkyiJPAF. A) [3H-alkyl]PAF 
(0.05 nmol) in a final volume of 50 J.tl and absence of rat CRP was applied to a 
HPLC gel filtration column. B) Rat CRP (0.5 nmol) in a final volume of 50 J.tl and 
absence of [3H-alkyl]PAF was applied to a HPLC gel filtration column. The upper 
trace represents the absorbance elution profile detected at 280 nm by LC-95 
UV /Visible Spectrophotometer Detector. The lower trace is the radioactivity trace as 
detected by a Beckman 171 Radioisotope Detector with windows set for tritium as 
described in Methods and Materials (section VII.A.). 
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Fig. 8. HPLC elution profile of rat CRP-[3H-alkylJPAF complex. Rat CRP (0.5 
nmol) was pre-incubated for 10 min with rH-alkyl]PAF (0.05 nmol) in a final volume 
of 50 JLL The mixture was then applied to a HPLC gel filtration column (TSK­
Sperogel; (7.5 mm x 300 mm)) equilibrated with 2.5 mM CaC12, 50 mM Na2S04 , 20 
mM NaH2P04 buffer (pH 6.8) at a flow rate of 0.8 ml/min. The upper trace 
represents the absorbance elution profile detected at 280 nm by LC-95 UV /Visible 
Spectrophotometer Detector. The lower trace is the radioactivity trace as detected by 
a Beckman 171 Radioisotope Detector with windows set for tritium as described in 
Methods and Materials (section VILA.). 
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Fig. 9. Effect of absence of calcium on formation of the rat CRP-f3H-alkyllPAF 
complex. Rat CRP (0.5 nmol) was pre-incubated for 10 min with [3H-alkyl]PAF 
(0.05 nmol) in absence of calcium in a final volume of 50 J.Ll. The mixture was then 
applied to a HPLC gel filtration column equilibrated with 50 mM Na2S04, 20 mM 
NaH2P04 buffer (pH 6.8). The upper and lower traces are as described in Fig. 8. 
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Fig. 10. Effect of phosphorylcholine on formation of the rat CRP-eH-alkyllPAF 
complex. Rat CRP (0.5 nmol) in presence of phosphorylcholine (0.5 /!mol) was pre­
incubated for 10 min with [3H-alkyl]PAF (0.05 nmol) in a final volume of 50 f!l. 
Other experimental conditions were as described for Fig. 8. 
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Fig. 11. HPLC elution prof"IIes of albumin-l~-alkylJPAF complex and a 1-acid 
glycoprotein-[3JI-alkyllPAF complex. A) Albumin (0.5 nmol) was pre-incubated for 
10 min with eH-alkyl]PAF (0.05 nmol) in a final volume of 50 J.tl and then applied to 
a HPLC gel filtration column. B) a 1-Acid glycoprotein (0.5 nmol) was pre-incubated 
for 10 min with rH-alkyl]PAF (0.05 nmol) in a final volume of 50 J.tl and applied to 
a HPLC gel filtration column. The upper and lower traces are as described for Fig. 8. 
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D. Effect of Rat CRP on ADP- and Thrombin-Induced Aggregation 

of Rat Platelets 

To determine if the inhibitory effect of rat CRP on platelet aggregation was 

specific to P AF, the effect of rat CRP on platelet aggregation induced by other 

agonists was examined. The addition of ADP (44 ~-tM) to washed rat platelets resulted 

in platelet aggregation (Fig. 12). When increasing concentrations of rat CRP (0-0.36 

~-tM) were pre-incubated with the platelets, there was a dose-dependent inhibition of 

ADP-induced platelet aggregation. In contrast, when rat CRP was pre-incubated with 

ADP and then added to the platelets, there was no inhibition of platelet aggregation 

(result not shown). The inhibition of platelet aggregation by rat CRP was also 

examined in the presence of phosphorylcholine (0.31-31 ~-tM). The result in Fig. 13 

shows a dose-dependent inhibition of the effect of rat CRP on ADP-induced platelet 

aggregation by phosphorylcholine. 

To determine whether the observed inhibition of platelet aggregation by rat 

CRP was specific to rat CRP, the effect of other serum proteins on ADP-induced 

platelet aggregation was examined. Fig. 14 shows that the property to inhibit platelet 

aggregation was specific to rat CRP (0.36 J.tM} and a 1-acid glycoprotein (1 J.tM} since 

ovalbumin (0. 71 ~-tM) and fetuin (0. 71 ~-tM) did not inhibit the ADP-induced platelet 

aggregation. In contrast, a 1-acid glycoprotein (1 ~-tM) inhibited the ADP-induced 

platelet aggregation. The inhibition of ADP-induced platelet aggregation of human 

platelets by a 1-acid glycoprotein was previously reported (Costello et al., 1979). 
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Fig. 12. Effect of rat CRP on ADP-induced aggregation of washed rat olatelets. 
Washed rat platelets (1. 7 x 108 in 450 J.Ll) were pre-incubated for 5 min with varying 
amounts of rat CRP (0-0.36 J.LM). At the end of the 5 min incubation, ADP (44 J.LM) 
was added to each incubation and the platelet aggregation was recorded. The upper 
most trace is the control which refers to ADP-induced aggregation of washed rat 
platelets in the absence of rat CRP. Results are typical of 4 experiments. 
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Fig. 13. Reversal of the inhibition of ADP-induced rat platelet aggregation by 
phosphorylcholine. Rat CRP (0.27 J.'M) which was pre-incubated for 1 min in 
presence or absence of increasing concentrations of phosphorylcholine (0.31-31.0 
J.'M). This mixture was added to washed rat platelets (1. 7 x lOS in 450 J.'l) and 
allowed to incubate for another 5 min, after which time ADP (44 J.'M) was added and 
the aggregation was recorded. Control refers to ADP-induced aggregation of washed 
rat platelets in the absence of rat CRP. Results are typical of 2 experiments. 



106 

80 /Control (No Rat CRP) I 

......-... 
~ 

-..__.; 

j Fetuin (0 .7 1 ~M) j 
c 
0 

60 Ovalbumin ( 0 .7~ . ....... 
(/) 
(/) 

. ....... 

s 
(/) 

c 
cO 
I-. 

E--< 
...,; 40 

j a 1-Acld Glycoprotein ( 1. 0 ~M) j ..d 
tl.O . ....... 

.....J 

c . ....... 

<lJ 
(/) 

cO 20 
<lJ 
I-. 
(J 

c ........ 

0 

0 2 3 4 5 
Time (min) 

Fig. 14. Effect of certain elycoproteins on the ADP-induced aeereeation of 
washed rat platelets. Washed rat platelets (1. 7 x lOS in 450 ,ul) were incubated for 5 
min with either fetuin (0. 71 ,uM), ovalbumin (0.71 ,uM), o:cacid glycoprotein (1.0 
,uM) or rat CRP (0.36 ,uM). After the incubation platelet aggregation was initiated by 
addition of ADP (44 ,uM). In the control experiment the platelets were incubated for 
5 min in the absence of rat CRP or other proteins, and the platelets were aggregated 
with ADP (44 ,uM) . Results are typical of 2 experiments. 
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In addition to studying the effect of rat CRP on PAF and ADP-induced platelet 

aggregation, the effect of rat CRP on thrombin-induced platelet aggregation was also 

examined. The inhibitory effect of rat CRP on platelet aggregation induced by 0.1 U 

thrombin/ml, was dependent on the concentration of rat CRP pre-incubated with the 

platelets (Fig. 15). The maximal inhibitory effect of rat CRP on thrombin-induced 

platelet aggregation was observed when 0.48 JLM rat CRP was pre-incubated with the 

platelets. Higher concentrations of rat CRP {up to 1.6 JLM) did not increase the 

inhibitory effect. Studies carried out in which rat CRP was pre-incubated with 

thrombin before the addition to platelets had no effect on thrombin-induced platelet 

aggregation (result not shown). 

Section ill. Discussion 

Although, PAF is a very potent inducer of platelet aggregation in many species 

(Vargiftig et al., 1981), rat platelets are refractory to PAP-induced platelet 

aggregation and are not stimulated beyond shape change (Cargill et al., 1983). One 

explanation for this anomalous behaviour of rat platelets is that the resistance of rat 

platelets to P AF-induced platelet aggregation could be due to the absence of specific 

PAP-receptors on rat platelets (lnarrea et al., 1984). However, when rabbit 

antiserum to rat CRP was incubated with rat platelets the results showed a very 

pronounced PAP-induced aggregation of platelets (Fig. 2). This suggests that the 

refractory property of rat PRP to PAP-induced platelet aggregation was due to the 
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Fig. 15. Effect of increasing concentrations of rat CRP on thrombin-induced 
platelet aggregation. Washed rat platelets (4 x 10S/ml), suspended in Tyrode solution 
(pH 7.4), were pre-incubated in presence of increasing concentrations of rat CRP (0-
0.48 J.LM) for 15 min at 37 °C. Platelet aggregation was measured after adding 
thrombin (0.1 U/ml) to the suspension. In the control experiment (top trace) , rat 
platelets were pre-incubated in the absence of rat CRP and platelets were aggregated 
with thrombin (0.1 U/ml). Results are typical of 4 experiments. 
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presence of rat CRP in the PRP preparation. This conclusion was further substantiated 

by the results of experiments using unwashed rat platelets and platelets washed with a 

solution containing 2 mM phosphorylcholine (to remove platelet-bound CRP). When 

P AF was added to unwashed rat platelets there was very little PAP-induced platelet 

aggregation. In contrast, the platelets that were washed with a phosphorylcholine­

containing solution aggregated by the addition of PAF to the suspension (Fig. 3). 

Furthermore, the PAP-induced aggregation of washed platelets was subsequently 

inhibited when rat CRP was added to the platelets (Fig. 4). The underlying 

conclusion, therefore, is that rat CRP was bound to the surface of unwashed platelets 

and that washing of the platelets with a solution containing phosphorylcholine resulted 

in the removal of surface-bound rat CRP. These observations provide convincing 

evidence that the presence of rat CRP in rat PRP is responsible for the inhibition of 

PAP-induced platelet aggregation. In support of this observation, a previous report 

has also suggested that the presence of certain plasma proteins may inhibit PAP­

induced platelet activation (Lanara et al., 1982). 

Rat CRP which is normally present in rat PRP could inhibit the PAP-induced 

platelet aggregation by two possible mechanisms: 1) by interacting with PAF, or 2) 

by interacting with the platelets. These possibilities were examined by incubating rat 

CRP with either platelets or PAF and examining the effect on platelet aggregation. 

The results showed that the incubation of rat CRP with either P AF or with platelets 

resulted in an inhibitory effect on PAP-induced platelet aggregation (Figs. 5 and 6). 
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This indicates that rat CRP could effectively inhibit PAF-mediated platelet aggregation 

by interacting with either platelets or with PAF. Experiments in which human or 

rabbit CRP was used to study P AF-induced platelet aggregation also produced results 

which showed that CRP could inhibit PAF-induced platelet aggregation by interacting 

with PAF or with platelets (Hokama et al., 1984; Vigo, 1985; Kilpatrick and Virella, 

1985; Filep et al., 1991). 

Evidence for an inhibitory effect of rat CRP on PAF-induced platelet 

aggregation, along with the presence of a phosphorylcholine moiety on the PAF 

molecule presented the possibility of a fluid-phase interaction between rat CRP and 

P AF. The extreme insolubility of P AF coupled with its high non-specific binding to 

glassware, made it impossible to demonstrate a rat CRP-PAF interaction using 

conventional techniques like equilibrium dialysis or equilibrium gel-filtration. 

However, the co-elution of [3H-alkyl]PAF with rat CRP, using a HPLC gel-filtration 

technique, clearly indicates a fluid-phase rat CRP-PAF interaction. Unlike the binding 

of PAF to either albumin or acacid glycoprotein which was independent of calcium, 

the rat CRP-PAF interaction was clearly dependent on the presence of calcium, since 

in its absence there was no co-elution of [3H-alkyl]PAF with rat CRP. Results also 

clearly demonstrate the involvement of the phosphorylcholine-binding site of rat CRP 

and the corresponding involvement of the phosphorylcholine moiety of P AF on the rat 

CRP-PAF interaction. Although attempts were made to determine the stoichiometry of 

the binding of rat CRP to P AF, the results obtained were inconclusive and therefore 
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an estimate of the number of PAF molecules bound to rat CRP was not possible. 

However, based on the results of a previous study which showed that rat CRP has a 

capacity to bind to 3 molecules of phosphorylcholine (Rassouli et al., 1992), it is 

possible that this stoichiometric relationship may also be true for PAF. 

The bulk of the protein-bound PAF eluted as a higher molecular weight 

species (8.5 min). This indicated that eH-alkyl]PAF bound to an aggregated form of 

rat CRP. A smaller peak, however, co-eluted with rat CRP (9.5 min) which 

corresponds to the molecular weight of native rat CRP (Fig. 8). In support of the 

existence of aggregated forms of rat CRP, it should be pointed out that human CRP 

and its analogues have been shown to aggregate by calcium (Baltz et al. , 1982) or by 

polycations and in high temperature (Fiedel et al., 1982c and d; Fiedel, 1985). 

A complex between PAF and CRP, a circulating serum protein (in humans 

during acute phase response), may have some potential significance to the regulation 

of the biological activity of PAF. The existence of rat CRP as an inhibitor of some of 

the very destructive biological effects of PAF may, therefore, be essential to the 

survival of the rat, especially during inflammation or allergic responses when P AF is 

produced in significant quantities. 

Fiedel and co-workers were first to demonstrate that human CRP inhibits 

platelet aggregation stimulated by ADP as well as other agonists like epinephrine, 

collagen, poly-L-lysine, and thrombin (Fiedel and Gewurz, 1976a and b; Fiedel et al. , 

1977). Rat CRP, like human CRP, showed a dose-dependent inhibitory effect on the 
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ADP-induced aggregation of washed rat platelets (Fig. 12). The inhibitory action of 

rat CRP on ADP-induced platelet aggregation, may be attributed to the 

phosphorylcholine-binding site on rat CRP, since experiments carried out in the 

presence of phosphorylcholine showed a dose-dependent reversal of rat CRP-induced 

inhibition of platelet aggregation (Fig. 13). Fiedel et al. (1976) also reported the 

inhibition of platelet aggregation by a specific anti-phosphorylcholine myeloma protein 

(T-15 mouse IgA myeloma protein) was reversed by phosphorylcholine, indicating the 

importance of the phosphorylcholine-binding site in inhibition of platelet function. It 

is most likely that in the case of ADP-induced platelet aggregation, rat CRP could 

inhibit platelet aggregation by binding to the platelet PC, and not to ADP, as results 

obtained on pre-incubation of rat CRP with ADP showed no inhibitory effect on 

platelet aggregation. 

The inhibitory effect on ADP-induced platelet aggregation was specific to rat 

CRP and a 1-acid glycoprotein. This conclusion was supported by results from 

experiments using two other glycoproteins, fetuin and ovalbumin (Fig. 14). It is 

interesting to note that a.-acid glycoprotein also inhibited ADP-induced platelet 

aggregation, but the concentration for inhibition was much greater than that of rat 

CRP. The inhibitory effect of a 1-acid glycoprotein on ADP-induced platelet 

aggregation was also described in a previous study (Costello et al., 1979). It is 

possible that the acidic nature of the two proteins (a1-acid glycoprotein pi 2.9-3.4; rat 

CRP pi 3.8) may in some way contribute to their inhibitory effect on platelet aggregation. 
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The effect of rat CRP on platelet aggregation was also examined using 

thrombin as an agonist. Thrombin is a strong agonist and is one of the most effective 

platelet stimuli. At low concentrations, thrombin behaves as a weak agonist and can 

induce platelet aggregation at concentrations as low as 0.04 U/ml (Lapetina, 1990; 

Greco and Jamieson, 1991). Rat CRP had a dose-dependent inhibitory effect on 

thrombin-induced platelet aggregation (Fig. 9). The platelet aggregation that resulted 

in response to thrombin was accompanied by dissociation of the platelet aggregates in 

the presence of rat CRP. This may suggest that the mechanisms responsible for 

formation of stable aggregates during platelet activation may also be inhibited by rat 

CRP. 

In conclusion, the results indicate an inhibitory role of rat CRP in the 

regulation of platelet aggregation induced by PAF, ADP or thrombin. It is possible 

that either a rat CRP-platelet interaction or, in the case of PAF, a rat CRP-PAF 

interaction may be involved in the inhibitory effect of rat CRP on platelet 

aggregation. Based on these results, the biochemical basis of the rat CRP-platelet 

interaction was further examined and is reported in chapter 6. 
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CHAPTER6 

STUDIES ON THE INTERACTION OF RAT CRP 

WITH PLATELETS 

Section I. Introduction 

The results in Chapter 5 indicated the involvement of an interaction between 

rat CRP and platelets in the inhibition of platelet aggregation induced by PAF, ADP, 

or thrombin. In addition, the reversal of the inhibitory effect of rat CRP on platelet 

aggregation by phosphorylcholine, indicated the involvement of the 

phosphorylcholine-binding site on rat CRP in its interaction with the platelets. 

Therefore, in order to confmn the involvement of a rat CRP-platelet interaction in the 

inhibition of platelet aggregation, it was necessary to determine the nature of the 

interaction between rat CRP and platelets. Furthermore, there has been no published 

report that characterized the binding of rat CRP to platelets, although the binding of 

rat CRP to platelets during platelet-mediated cytoxicity against schistomaisis has been 

reported (Bout et al., 1986). In this chapter, the binding of rat CRP to rat, rabbit and 

human platelets has been studied and the nature of the binding has been characterized. 
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Section II. Results 

A. Conditions for Binding of Rat [125I]CRP to Platelets. 

In order to demonstrate the binding of rat CRP to platelets a binding assay was 

developed which involved incubating rat platelets (4 x 107 platelets/ml) with rat 

[
125I]CRP at 37 oc in an incubation medium composed of 20 mM Tris-HCl buffer (pH 

7.4) containing 0.25 % BSA (w/v), 0.15 M NaCl, and 5 mM CaC12 • The binding 

assays were carried out in 1.5 m1 Eppendorf microfuge tubes previously coated with 

0.25% BSA solution. The number of platelets (4 x 107/ml) used in the binding assays 

was selected from the platelet dose curve (Fig. 1). 

The binding of rat [125I]CRP to platelets was dependent on the time of 

incubation and calcium concentration used. The time-dependent binding of rat CRP 

to rat platelets is shown in Fig. 2A. Maximum specific binding was observed at 30 

min of incubation with no significant increase in binding after this time period. The 

calcium dependence of the binding of rat CRP to rat platelets is shown in Fig. 2B. 

Binding did not occur when calcium was absent from the incubation mixture. 

However, an extracelluar calcium concentration of about 5 mM was required for 

maximum binding. 

B. Binding of Rat [i25I]CRP to Rat, Rabbit and Human Platelets. 

The binding of rat CRP to rat, rabbit, and human platelets was examined 
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Fig. 1. Bindin& of rat [125llCRP to rat platelets as a function of platelet 
concentration. Binding studies were carried out with increasing concentrations of 
washed rat platelets (2 x 107-12 x 107/ml) and rat [125I]CRP (2 JLg/ml) for 30 min in 
20 mM Tris-HCl (pH 7.4) containing 0.15 M NaCl, 5 mM CaC12 , and 0.25% BSA 
(w/v). Assay was stopped by centrifuging at 12,800 x g for 2 min. The platelet pellet 
was washed (1 x) in ice cold buffer and radioactivity associated with it was counted 
by ,-counter. Non-specific binding was determined by adding 50-fold excess of 
unlabelled rat CRP. Data are mean of 2 experiments. 
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Fig. 2. Bindin& of rat [u5DCRP to rat platelets as a function of calcium 
concentration and time of incubation. A) Time-dependent binding of rat P25I]CRP 
to rat platelets. Rat P25I]CRP (2 p.g/ml) was added to washed rat platelets (4 x 107/ml) 
and incubated at 37 °C. Incubation was stopped at 1, 5, 15, 30, and 60 min. B) 
Calcium-dependence of the binding of rat CRP to rat platelets. Rat [125I]CRP (2 
p.g/ml) was incubated with washed platelets (4 x 107/ml) in presence of increasing 
concentrations of CaC12 (0-15 p.M) at 37 oc. Incubation was stopped at 30 min and 
the amount of rat [125I]CRP bound to the platelets was determined as described in Fig. 
1. Data are mean of 2 experiments. 
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under optimum time and calcium concentration. The binding of rat [125I]CRP to rat 

platelets was dose-dependent, saturable, and specific at 37 oc (Fig. 3). Similarly, the 

binding of rat CRP to rabbit and human platelets was also dose-dependent, saturable 

and specific (Fig. 4). Scatchard analysis of the binding data revealed the existence of 

a single class of high affmity CRP binding sites on rat, rabbit and human platelets 

(Figs. 3 and 4; Table 1). The rat, rabbit and human platelet binding capacity for rat 

[
125I]CRP ranged from 7.5 x 1()3 + 1.9 x 103 sites/platelets for human platelets to 52 

x 103 + 15 x 1()3 sites/platelets for rabbit platelets. The dissociation constants (KJ for 

Table. 1. Scatchard analysis parameters for binding of rat £125UCRP to platelets. 

Statistics are mean + S.D. for four separate experiments. 

Source 

Rat 

Rabbit 

Human 

Sites/Platelet 

37 X 1()3 + 10 X 1()3 

52 X 1()3 + 15 X 1()3 

7.5 x 1()3 + 1.9 x1Q3• 

45.2+ 14.9 nM 

26.1+8.3 nM 

32.2+9.9 nM 

·Binding curve plateau indicates approximately 5 x 1()3 sites/platelet. 
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Fig. 3. Specific bindin& of rat [125DCRP to rat platelets. Binding studies were 
carried out with increasing concentrations of unlabelled rat CRP and fixed rat 
P25I]CRP incubated for 30 min with washed rat platelets (4 x 107/ml) in 20 mM Tris­
HCl buffer (pH 7.4) containing 0.15 M NaCl, 5 mM CaC12 , and 0.25% BSA (w/v). 
Assay was stopped by centrifuging at 12,800 x g for 2 min. Platelet pellet was 
washed (1 x) in ice cold buffer and radioactivity associated with it was counted by 'Y­
counter. Non-specific binding was determined by adding 25-400 fold excess of 
unlabelled rat CRP. Inset is scatchard plot analysis of the binding of rat [125I]CRP to 
rat platelets. Data are mean + S.D. for 4 separate experiments. 
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Fig. 4. Saturable specific bindin& of rat [125UCRP to rabbit and human platelets. 
Binding studies were carried out with increasing concentrations of unlabelled rat CRP 
and fixed rat [125I]CRP incubated for 30 min with washed A) rabbit, or B) human 
platelets (4x107/ml) in 20 mM Tris-HCl buffer (pH 7.4) containing 0.15 M NaCl, 5 
mM CaC12, and 0.25% BSA (w/v). Assay was stopped and the amount of rat 
P25I]CRP bound to the platelets was determined as described to Fig. 3. Inset are 
scatchard plot analysis of the binding of rat P25I]CRP to the platelets. Data are mean 
+ S.D. for 4 separate experiments. 
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rat [125I]CRP binding sites on rat, rabbit and human platelets were similar (Table 1). 

C. Inhibition of the Binding of Rat [1 25I]CRP to Rat Platelets. 

Phosphorylcholine, a ligand of rat CRP, inhibited and displaced the binding of 

rat CRP from rat platelets. Pre-incubation of increasing concentrations of 

phosphorylcholine (0-160 /lM) with rat [125I]CRP (2 llg/ml) for 10 min, followed by 

incubation with platelets for a further 30 min resulted in a dose-dependent inhibition 

of rat CRP-platelet binding with an IC50 value of 5.6 llM for phosphorylcholine (Fig. 

5). Similarly, the addition of phosphorylcholine (0-50 /lM) to binding assays in 

which platelets had been pre-incubated with rat [125I]CRP (2 llg/ml) for a 30 min 

period resulted in the displacement of rat [125I]CRP from rat platelets (Fig. 6). 

The ability of unlabelled rat CRP to displace the binding of rat [125I]CRP to rat 

platelets was also examined. These assays were carried out by adding increasing 

concentrations of unlabelled rat CRP (0-200 llg/ml) to platelets which had been pre­

incubated with rat [125I]CRP (2 /lg/ml) for 30 min at 37 °C. In these studies a 100-

fold molar excess of the unlabelled rat CRP almost completely displaced the binding 

of rat [125I]CRP to platelets (Fig. 7). 

The effect of unlabelled rabbit CRP on the binding of rat [125I]CRP to rat 

platelets was also examined. These assays were carried out by incubating increasing 

concentrations of unlabelled rabbit CRP (0-100 llg/ml), rat [125I]CRP (2 llg/ml) and 

platelets together at 37 oc for 30 min. Unlabelled rabbit CRP competed with rat 
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Fig. 5. Effect of phosphorvlcholine on binding of rat fl25flCRP to rat platelets. 
Rat [125l]CRP (2 J.'g/ml) was incubated with different concentrations of 
phosphorylcholine (0-160 J.tM) for 10 min at room temperature. After this pre­
incubation stage, platelets (4 x 107/ml) were added and incubated for a further 30 min 
at 37 oc. Assay was stopped and the amount of rat [125I]CRP bound to the platelets 
was determined as described in Fig. 3. The amount of rat P25I]CRP bound to the 
platelets in the absence of phosphorylcholine was defmed as 100% bound. Data are 
mean of 2 experiments. Inset is a Hill plot of the binding data. 
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Fig. 6. Displacement of the binding of rat £125llCRP to rat platelets by 
pbospborylcboline. Rat [l25I]CRP (2 JLg/ml) was incubated with platelets (4 x 
107/ml) for 30 min. Phosphorylcholine (0-50 JLM) was added and platelets were 
incubated for a further 10 min at 37 °C. Assay was stopped and the amount of rat 
[

125I]CRP bound to the platelets was determined as described for Fig. 3. Data are 
mean + S.E. of 3 experiments. 
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Fig. 7. Displacement of the binding of rat rusnCRP to rat platelets by unlabelled 
rat CRP. Rat P25I]CRP (2 #lg/ml) was incubated with platelets (4 x 107/ml) for 30 
min. Unlabelled rat CRP (0-200 #lg/ml) was added and platelets were incubated for a 
further 10 min at 37 °C. Assays was stopped and the amount of rat [125I]CRP bound 
to the platelets was determined as described for Fig. 3. Data are mean for 2 
experiments. 
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[
125I]CRP for binding to platelets with an IC50 value of 1.6 ~M for rabbit CRP (Fig. 

8, inset). At the highest concentration used, rabbit CRP significantly inhibited 

(p < 0.05) the specific binding of rat P25l]CRP to platelets by approximately 40%. 

Section ill. Discussion 

In Chapter 5 of this thesis rat CRP was shown to inhibit in vitro aggregation 

of rat, rabbit and human platelets and it was apparent that during the inhibition of 

platelet aggregation a rat CRP-platelet interaction was involved. However, no 

previous study had characterized the binding of rat, rabbit or human CRP to platelets. 

Therefore, in order to prove a rat CRP-platelet interaction as a possible mechanism 

for inhibition of platelet aggregation, binding studies were carried out using rat 

[
125I]CRP and washed platelets from rat, rabbit and human plasma. The results of this 

binding study demonstrated a specific saturable binding of rat CRP to rat, rabbit and 

human platelets (Figs. 3 and 4). Scatchard analysis of the binding data revealed a 

single class of specific high affinity CRP binding sites on rat, rabbit and human 

platelets. The number of binding sites for rat CRP were greatest for rabbit platelets, 

followed by rat and human platelets (Table 1). This variation in the number of 

binding sites could be due to the differences in the actual number of binding sites 

present on the platelets or the availability of the binding sites for rat CRP. The 

concentration of rat CRP (16 ~g/ml or 0.128 ~M) which achieved near saturation of 

the binding sites on the platelets was within the range (0.04-0.48 ~M) required for 
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Fig. 8. Effect of unlabelled rabbit CRP on the bindine of rat fusllCRP to rat 
platelets. Rat [125I]CRP (2 J.tg/ml) and different concentrations of unlabelled rabbit 
CRP (0-100 J.tg/ml) were incubated with rat platelets (4 x 107/ml) for 30 min at 37 

100 

°C. Assays were stopped and the amount of rat P25I]CRP bound to the platelets was 
determined as described for Fig. 3. The amount of rat [125I]CRP bound to the platelets 
in the absence of rabbit CRP was defmed as 100% bound. Data are mean for 2 
experiments. Inset is a Hill plot of the binding data. 
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inhibition of platelet aggregation (Chapter 5). 

The binding of rat CRP to platelets was time-dependent and required the 

presence of calcium in the incubation medium. Furthermore, this binding was 

inhibited by 50% in the presence of 5.6 p.M phosphorylcholine (that is, IC50 = 5.6 

p.M). The inhibition of the binding of rat CRP to platelets in the presence of 

increasing concentrations of phosphorylcholine suggested the involvement of the 

phosphorylcholine-binding site on rat CRP in the binding process. This observation is 

consistent with the reversal of the inhibitory effect of rat CRP on ADP-induced 

platelet aggregation by phosphorylcholine. 

The platelet-bound rat [125I]CRP was displaced by the addition of either 

phosphorylcholine or unlabelled rat CRP. This displacement was dose-dependent and 

may suggest that the surface bound rat CRP was not modified as a consequence of the 

binding. Therefore, the inhibitory effect of rat CRP on platelet function appears to be 

mediated through reversible binding of rat CRP to sites on the outer surface of the 

plasma membrane. 

The results suggest that the binding of rat CRP to platelets is specific, 

saturable and reversible. The binding of rat CRP to the surface of the platelet may be 

involved in the inhibition of platelet aggregation. Based on these observations the 

binding of rat CRP to platelets appeared to be receptor mediated. Furthermore, the 

results of experiments in which rabbit CRP competed with rat CRP for binding to 

platelets, suggest that the binding sites on platelets are common to both rat and rabbit 
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CRP. However, the observation that the inhibition was less than 50% in the presence 

of 100 p.g/ml (- 0.8 p.M) rabbit CRP suggest that the binding affinity for rat CRP to 

rat platelets is greater than that for rabbit CRP. 

In conclusion, the results of binding studies of rat CRP to platelets have shown 

that the binding of rat CRP to washed rat platelets may be receptor mediated. This is 

based on the observations that the rat CRP-platelet binding process met all the 

requirements for receptor mediated binding, viz., it is calcium-sensitive, saturable, 

specific and reversible by phosphorylcholine or unlabelled rat CRP and led to a 

physiological event which in this case was the inhibition of platelet aggregation. The 

binding of rat CRP to the platelet surface may play a role in the regulation of platelet 

response by the different biochemical pathways involved in signal transduction. This 

possibility was examined and is reported in the following chapter. 
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CHAFfER 7 

STUDIES ON THE EFFECT OF RAT CRP ON 

PLATELET PHOSPHOLIPASES 

Section I. Introduction 

Agonist-induced stimulation of platelets result in platelet shape change, 

aggregation and secretion. These responses are often initiated by receptor-mediated 

activation of certain phospholipases, such as PI-PLC and PLA2 (Huang and Detwiler, 

1986). The role of PLA2 in platelet function has been well documented in the 

literature (Huang and Detwiler, 1986; Lagarde, 1988; Needleman et al., 1986). In 

platelets, PI-PLC mediated hydrolysis of PIP2 leads to generation of two signalling 

substances, IP3 and DAG (Berridge, 1984; Berridge and Irvine, 1984). In the 

presence of calcium, DAG activates PKC which results in the phosphorylation of a 

number of proteins involved in the control of platelet cellular responses (Huang and 

Detwiler, 1986; Friesen and Gerrard, 1985). 

Recent evidence suggesting agonist-induced DAG-generation from PC in a 

variety of tissues, has challenged the classical scheme involving inositol lipids as the 

only source of DAG during signal transduction (Billah and Anthes, 1990; Exton, 

1990). DAG can be produced from PC by the action of PC-PLC or by a combined 

action of PLD and PA phosphohydrolase (Fig. 1) (Billah and Anthes, 1990; Exton, 
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phospho hydrolase 

(signalling substance) 
Pi 

Fig. 1. Mechanisms for formation of DAG by either PC-PLC or PLD/PA 
phosphohydrolase activity. 



131 

1990). Studies (Rubin, 1988; Marche et al., 1990; Remmal et al., 1988; Nazih et 

al., 1990; VanDerMeulen and Haslam, 1990) have also reported the formation of 

radioactively labelled DAG and PA from labelled PC in activated platelets. However, 

none of these studies have conclusively shown the presence of PC-PLC enzyme in 

platelets. One purpose of the present study was to determine if PC-PLC activity was 

present in rat platelets. 

The involvement of rat CRP in inhibiting ADP-, PAF-, and thrombin-induced 

platelet aggregation was discussed in Chapter 5. This inhibitory effect of rat CRP is 

believed to be mediated by the binding of rat CRP to its binding sites on platelets 

(Chapter 6). The purpose of this study was also to determine if any changes in the 

activity of platelet phospholipases, involved in signal transduction mechanisms, 

occurred as a consequence of the binding of rat CRP to the platelets. 

Section II. Results 

A. Evidence for PC-PLC activity in Rat Platelets 

The presence of PC-PLC activity in rat platelet sonicates was examined using 

either [3H-choline]DPPC or [2-3H palmitoyl]DPPC vesicles as substrate. When rat 

platelet sonicates (from 5 x 107 cells/ml) were incubated with [3H-choline]DPPC the 

formation of [3H]phosphorylcholine resulted. Identification of this metabolite was 

made by TLC in methanol/0.9% NaCl/ammonium hydroxide (10/10/1, v/v/v), using 

authentic standards (Fig. 2A). The identification of [3H]phosphorylcholine was also 
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Fig. 2. TLC of aqueous metabolites of [3H-cholinelDPPC. [3H-choline]DPPC (18 
J.LM) was incubated for 40 min with A) rat platelet sonicates (5 x 107 cells/ml) or B) 
bacterial phospholipase C (0.02 U/ml). An aliquot (100 J.Ll} of aqueous layer was 
applied to the plate and developed to separate the choline metabolites as described in 
Methods and Materials (section IV.C.l.). Each lane was divided into 1 em segments 
which were scraped and counted. Panel C shows the profile in the absence of any 
enzyme. TLC profiles shown are typical of at least 5 profiles giving similar results. 
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confirmed by comparing the Rr of eH]phosphorylcholine formed by platelet sonicate 

PC-PLC with the Rr of [3H]phosphorylcholine formed by the action of bacterial (C. 

welchii) phospholipase C on [3H-choline]DPPC (Fig. 2B). Fig. 2C shows the TLC 

profile from control incubations of [3H-choline]DPPC without any enzyme. Based on 

these results, the product of the [3H-choline]DPPC hydrolysis by platelet sonicates 

was identified as [3H]phosphorylcholine. Formation of eH]choline was not detected in 

these assays. When [2-3H palmitoyl]DPPC and [3H-choline]DPPC were used as 

substrates with platelet sonicates, the formation of [3H]DAG and 

[
3H]phosphorylcholine were monitored as a function of time by TLC. The rate of 

formation of [3H]DAG and [3H]phosphorylcholine were similar (Fig. 3). 

The production of [3H]phosphorylcholine was dependent on the concentrations 

of eH-choline]DPPC and platelet sonicates (Fig. 4A and B). [3H]Phosphorylcholine 

production increased with increasing concentrations of [3H-choline]DPPC (Fig. 4A). 

Transformation of this data produced a linear double reciprocal plot (Fig. 4A, inset) 

which gave a Km of approximately 100 ~-tM. Fig. 4B shows a linear increase of 

eHJphosphorylcholine formation with increasing platelet sonicate concentrations up to 

the equivalence of lOS platelets/mi. 

Fig. 5 shows the platelet sonicate PC-PLC activity as a function of increasing 

calcium concentrations. The enzyme was active over the entire range of calcium 

concentrations (25 nM-25 mM) tested. 

The PC-PLC activity in sonicated platelets from human or rabbit were also 
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Fig. 3. Time course of the formation of £3IDDAG and emphosphorvlcholine by 
rat platelet sonicates. Platelet sonicates (5 x 107 cells/ml) were incubated with [2-3H 
palmitoyl]DPPC (18 I'M) or [3H-choline]DPPC (18 ~tM). The reaction was stopped at 
the specified times and the aqueous and non-aqueous layers of extracted assays were 
analyzed by TLC as described in Methods and Materials (sections IV.C.l. and 
IV.C.4.). Data points are the mean of 2 determinations for PH]phosphorylcholine and 
3 determinations for [3H]DAG. 
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Fig. 4. Formation of [3Hlphosphorvlcholine as a function of [3H-cholinelDPPC 
and rat platelet sonicate concentration. A) Platelet sonicates (5 x 107 cells/ml) were 
incubated with increasing concentrations of rH-choline]DPPC (0-45 I-'M). Inset is a 
double reciprocal plot of the substrate dose curve data. B) Increasing amounts of rat 
platelet sonicates (0-1 x lOS cells/ml) were incubated with 18 I-'M [3H-choline]DPPC. 
Reactions were stopped after 40 min of incubation and the production of 
[
3H]phosphorylcholine was measured by TLC as described in Methods and Materials 

(section IV.C.l.). Data points are the mean + S.E. of 3 determinations. 
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Fig. 5. Effect of calcium concentration on formation of l3Hlphosphorvlcholine 
from [3H-cholinelDPPC by rat platelet sonicates. Platelet sonicates (5 x 107 

cells/ml) were incubated with eH-choline]DPPC (18 I'M) in presence of increasing 
concentrations of calcium (2.5 x 1(}"8-2.5 x 10-2 M). Reactions were stopped after 40 
min of incubation and the formation of [3H]phosphorylcholine was measured by 
counting aqueous layers of extracted samples as described in Methods and Materials 
(section IX. C.). Data points are the mean + S.E. of 3 determinations. 
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examined under optimized conditions. PC-PLC activity associated with the rat platelet 

sonicates was approximately 4-fold greater than the activity found in rabbit and human 

platelet sonicates (Fig. 6). 

The effects of deoxycholate, Triton X-100, and oleate on PC-PLC activity in 

rat platelet sonicates were studied and the results are shown in Fig. 7. Deoxycholate 

(0.01 %) increased PC-PLC activity by as much as 130% (2.3 times), while 0.01% 

Triton X-100 increased activity by 10 to 20% (1.1 to 1.2 times). Higher 

concentrations of deoxycholate, Triton X-100 or oleate inhibited the enzyme activity. 

PC-PLC activity was assayed in platelet sonicates fractionated by 

ultracentrifugation at 105,000 x g for 1 h. The particulate and the supernatant 

fractions had almost equal PC-PLC activity (Fig. 8). The combined recovery of 

activities in the two fractions was greater than 75%. Both forms of the enzyme were 

inhibited by 2 mM EDTA when assayed in a calcium-free incubation medium (Fig. 

9). The PC-PLC activity in the particulate fraction was increased by 0.01% 

deoxycholate and 0.01% Triton X-100, while, the PC-PLC activity in the supernatant 

was marginally increased by 0.01% deoxycholate but was inhibited by 0.01% Triton 

X-100. 

Fig. 10 shows the pH profile of PC-PLC activity in platelet sonicates, 

particulate and supernatant fractions. The pH optima for PC-PLC activity in platelet 

sonicates, particulate and supernatant fraction were in the range of pH 7.2 to 7.6. The 

enzyme showed very low activity below pH 6.0. 
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c=J Rat platelet s o nicates 
cs;sJ Human platelet s o nicates 
~ Rabbit platelet sonicates 

Fig. 6. Comparison of PC-PLC activity of rat. rabbit and human platelet 
sonicates. Platelet sonicates (5 x 107 cells/ml} from rat, rabbit, or human were 
incubated with [3H-choline]DPPC (18 J.'M} for 20 min. Production of 
[
3H]phosphorylcholine was measured by TLC as described in Methods and Materials 

(section IV.C. l.). Values are the mean + S.D. using 3 different individuals for each 
group. 
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Fig. 7. Effect of detergents on £3Hlphosohorylcholine fonnation by rat platelet 
sonicates. Platelet sonicates (5 x 107 cells/ml) were incubated with [3H-choline]DPPC 
(18 JLM) in presence or absence of deoxycholate, Triton X-100, or oleate. After 40 
min the reactions were stopped, extracted, and analyzed by TLC for formation of 
[

3H]choline metabolites as described in Methods and Materials (section IV. C. 1.). 
Values are the mean + S.E. of 3 determinations. 
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Fig. 8. The distribution of PC-PLC activity in fractionated platelet sonicates. 
Sonicated rat platelets (5 x 108/ml) were centrifuged (105,000 x g) in a Beckman 
Model L3-50 Ultracentrifuge for 60 min at 4 oc in Beckman Type 40 rotor. The 
supernatant fraction was removed and the pellet was re-suspended (particulate 
fraction), in a volume equal to the volume of the supernatant fraction, by agitation 
and sonication for three 5 sec intervals . Aliquots ( 40 JLl) of the fractions were 
assayed by 40 min incubations using [3H-choline]DPPC (18 JLM) as described in Fig. 
3. Values shown are mean + S.E. of triplicate determinations using 2 animals. 
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Fig. 9. Effect of detereents and EDTA on fractionated platelet sonicate PC-PLC 
activity. Aliquots (40 J.tl) of the A) supernatant and B) particulate fractions of platelet 
sonicates prepared as described in Fig. 8 were assayed using [3H-choline]DPPC (18 
J.tM) in absence or presence of 0.01% deoxycholate, 0.01% Triton X-100, or 2 mM 
EDTA. After 40 min the reactions were stopped, extracted, and the aqueous layers 
were counted for radioactivity as described in Methods and Materials (section IX.C.). 
Values shown are mean + S.E. of 3 determinations. 
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Fig. 10. Effect of pH on formation of [3Hlphosphorylcholine from [3H­
cholinelDPPC by whole and fractionated platelet sonicates. A) Platelet sonicates (5 
x 107 cells/ml) were incubated with increasing concentrations of [3H-choline]DPPC 
(18 J.tM) for 40 min in buffered (pH 5.2-8.4) 50 mM Tris-maleate solution containing 
2.5 mM CaC12• Aliquots (40 J.tl) of B) particulate and C) supernatant fraction were 
prepared and assayed as described in Fig. 8. Data points are the mean + S.E. of 3 
determinations. 
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Table 1. Percentage incorooration of emmyristic acid and £3Hlarachidonic acid into 
platelet lipids. Statistics are mean + S.D. for 4 separate experiments. 

Incorporation (%) 

lipids [ 3H]Myristic acid PH]Arachidonic acid 

PC 54.0+9.8 42.0+2.6 

PE 8.8±2.7 38.1+2.2 

PS & PI 2.3±0.4 16.0+3.0 

PA 0.4±0.1 1.7+0.4 

DAG 1.8±0.6 0.3+0.1 

Others • 32.3+7.8 1.9+0.4 

·composed of monoacylglyerol, triacylglycerol, free fatty acid, alkyldiacylglyerol and 
cholesterol ester. 

In order to determine if the activity of platelet PC-PLC could be affected by 

thrombin, platelets labelled with [3H]myristic acid or [N-methyl- 14C]lyso-PAF were 

used. Labelling platelets with radioactive lyso-PAFhas been previously shown to 

enrich the platelet PC pool (Huang et al., 1991). 'J1able 1 compares the incorporation 

of the [3H]-label into lipids when platelets were labelled with either [3H]myristic acid 

or PH]arachidonic acid. The enrichment of PH]myristic acid in the PC pool agrees 

well with the previously published results of Huang and Cabot (1990) who labelled 
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neutrophils with [3H]myristic acid. 

When [3H]myristic acid-labelled platelets were stimulated by thrombin, there 

was a time-dependent formation of [3H]DAG, which plateaued after approximately 

120 sec (Fig. 11). The amount of [3H]DAG formed when platelets were stimulated by 

2 U/ml thrombin was about 1 % of the total labelled lipids. Since only 50% of the 

[
3H]myristic acid is incorporated in to PC (Table 1), it is possible that as much as 2% 

of total labelled PC was hydrolysed by platelet PC-PLC. A similar result has been 

reported with fibroblasts stimulated by bradykinin, in which about 2% of PC was 

hydrolysed to form DAG (Van Blitterswijk et al., 1991). 

In order to confirm that the formation of DAG was from PC hydrolysis, [N­

methyl-14C]lyso-PAF-labelled platelets were used. The action of PC-PLC in [N­

methyl-14C]lyso-PAF-labelled platelets would result in the formation of 

[14C]phosphorylcholine. A time-dependent formation of r4C]phosphorylcholine from 

[N-methyl-14C]lyso-PAF-labelled platelets with the addition of thrombin (2 U/ml) is 

shown in Fig. 12. The kinetics of the formation of [14C]phosphorylcholine was similar 

to that of [3H]DAG formation from platelets labelled by [3H]myristic acid (Fig. 11). 

The formation of [14C]phosphorylcholine as a function of increasing concentrations of 

thrombin (0-2 U/ml) is shown in Fig. 13. In some experiments, the treatment of 

platelets with 0.05 U/ml thrombin resulted in a net utilization of water-soluble 

[14C]choline metabolites below basal levels. This may have been the result of 

increased synthesis of PC and utilization of background [14C]phosphorylcholine during 
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Fig. 11. Time-deoendence of the fonnation of (3ffiDAG from thrombin-stimulated 
platelets labelled with l3IDmyristic acid. Platelets (5 x 10S/ml), labelled with 
[
3H]myristic acid, were incubated in the absence (O) or presence of thrombin (2 

U/ml-•) for up to 180 sec. At the indicated times the reaction was stopped by 
chloroform/methanol and the organic phase containing [3H]DAG was analyzed by 
TLC as described in Methods and Materials (section IV.C.4). Each point is the mean 
+ S.E. of 4 separate experiments. The formation of [3H]DAG is expressed as percent 
of total labelled lipid. The background value for [3H]DAG present before the addition 
of thrombin was subtracted from the individual measurements. 
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Fig. 12. Time-dependence of the formation of [14Clphosphorylcholine from 
thrombin-stimulated platelets labelled with £N-methyl-14Cllyso-PAF. Platelets (5 x 
108/ml), labelled with [N-methyl-14C]lyso-PAF, were incubated in the absence (O) or 
presence (•) of thrombin (2.0 U/ml) for up to 180 sec. The reactions were stopped 
by chloroform/methanol and extracted (Bligh and Dyer, 1959). Aqueous extracts 
containing [14C]phosphorylcholine were counted for radioactivity. The formation of 
[

14C]phosphorylcholine is expressed as percent of total labelled lipid. The background 
value for [14C]phosphorylcholine present before the addition of thrombin was 
subtracted from the individual measurements. Values are mean + S.E. from 4 
separate experiments. 
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Fig. 13. Effect of thrombin concentration on £1"Clphosphorylcholine formation 
from platelets labelled with lN-methyl-14Cllyso-PAF. Washed rat platelets, pre­
labelled with [N-methyl-14C]1yso-PAF, were exposed to thrombin (0.0-2.0 U/ml) for 
exactly 3 min. Incubations without added thrombin were also carried out and the 
results were subtracted, as blanks, from the results of assays with thrombin. The 
formation of [14C]phosphorylcholine was measured as described in Fig. 12. Values are 
mean + S.E. for 4 experiments. 
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stimulation (Remmal et al., 1988). However, higher doses of thrombin resulted in a 

net formation of [14C]phosphorylcholine in platelets. There was no formation of either 

[
14C]phosphorylcholine or [3H]DAG from platelets in the absence of thrombin. These 

results strongly suggests that DAG and phosphorylcholine are formed by the action of 

PC-PLC on PC in thrombin-stimulated rat platelets. 

Although [N-methy/-14C]lyso-PAF-labelled platelets were exhausively washed, 

whole lipid extraction of the unactivated platelets revealed approximately 20-25% of 

the total radioactivity from the platelets to be free [14C]phosphorylcholine. The 

formation of a substantial labelled pool of phosphorylcholine in platelets during 

labelling procedures using [3H]choline have been reported by others (Nakashima et 

al., 1991). Because of the high background levels of [14C]phosphorylcholine, 

expression of PC hydrolysis in terms of % increase above control levels would not 

provide an accurate picture of the actual stimulation of PC hydrolysis by PC-PLC and 

the corresponding production of DAG. Therefore, expression of 

[
14C]phosphorylcholine formation in terms of % hydrolysis of [14C]PC (total), after 

subtracting background, was used to estimate of the stimulation of PC-PLC by 

thrombin. 

B. Effect on Rat CRP on Thrombin-Induced Platelet Aggregation 

and [14C]Serotonin Secretion. 

The effect of rat CRP on thrombin-induced platelet aggregation and serotonin 
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secretion was studied using [14C]serotonin-loaded platelets. The inhibitory effect of rat 

CRP on [14C]serotonin secretion, induced by 0.1 U/ml thrombin, was dependent on 

the concentration of rat CRP used (Fig. 14). The maximal inhibitory effect of rat 

CRP on thrombin-induced secretion of [14C]serotonin was observed at 0.48 J.tM rat 

CRP. Higher concentrations of rat CRP (up to 1.6 J.tM) did not further increase the 

inhibitory effect. 

The effect of rat CRP on platelet aggregation and P4C]serotonin secretion as a 

function of thrombin concentration was examined (Figs. 15 and 16). Platelet 

aggregation was dependent on the concentration of thrombin used to stimulate the 

platelets. Maximum aggregation occurred with 0.5-2 U/ml thrombin (Fig. 15). Rat 

CRP (0.48 J.tM) had no effect on platelet aggregation when 0.2-2 U/ml thrombin was 

used. In contrast, platelet aggregation was inhibited by rat CRP when either 0.1 or 

0.05 U/ml of thrombin was used to stimulate the platelets (Fig. 15). Similarly, the 

release of [14C]serotonin from platelets was also dependent on the thrombin 

concentration (Fig. 16). Approximately 90% of the platelet-incorporated 

[
14C]serotonin was secreted in the presence of 2 U/ml thrombin which represented 

maximum secretory response. The percentage [14C]serotonin secretion in the presence 

of 0.1 and 0. 05 U I ml thrombin was approximate! y 35% and 10% , respectively (Fig. 

16). Rat CRP significantly inhibited (p<0.05) the secretion of [14C]serotonin by 

approximately 35% and 60% when 0.1 and 0.05 U/ml of thrombin was used, 

respectively. 
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Fig. 14. The influence of increasing concentrations of rat CRP on thrombin­
induced platelet [14Clserotonin secretion. Washed platelets (4 x 108 platelets/ml) 
pre-labelled with P4C]serotonin were incubated in presence of increasing 
concentrations of rat CRP (0-1.6 J.tM) for 15 min, prior to stimulation with thrombin 
(0.1 U/ml). Platelets were allowed to aggregate for exactly 3.0 min and then 100 J.t1 
of mixture was transferred to an eppendorf tube containing 25 J.tl of ice-cold 
formaldehyde (0.63 M)-EDTA (50 mM) solution to stop secretion. The mixture was 
centrifuged and the supernatant counted for radioactivity as described in Methods and 
Materials (section V.B.2.). Results are expressed as percentage of the maximum 
serotonin release. Results are mean + S .E. for 4 experiments. 
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Fig. 15. Effect of rat CRP on thrombin-induced platelet aggregation. Washed rat 
platelets (4 x 10S/ml) suspended in Tyrode solution (pH 7.4) were incubated in 
absence or presence of rat CRP (0.48 JLM) at 37 °C. Platelet aggregation was 
measured for 3 min after increasing concentrations of thrombin (0.05-2 U/ml) were 
added to the suspension with constant stirring. 100% platelet aggregation was defined 
as maximum aggregation induced by 2 U/ml thrombin. Results are typical of 4 
experiments. 
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Fig. 16. Effect of rat CRP on platelet £14Clserotonin secretion induced by 
increasine concentrations of thrombin. Washed platelets (4 x lOS platelets/ml) were 
pre-labelled with [14C]serotonin prior to stimulation with various concentrations of 
thrombin (0.05-2 U/ml). Platelets, pre-incubated in the absence or presence of rat 
CRP (0.48 J.LM) for 15 min, were allowed to aggregate for exactly 3.0 min after 
adding thrombin, and reactions were stopped for determination of [14C]serotonin 
secretion as described in Fig. 14. Results are means + S.E. of 4 separate 
experiments. * Differences are statistically significant (p < 0.05) by the students T -test 
as compared to control values obtained under similar conditions but in absence of rat 
CRP. 
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The effect of rat CRP (0.48 JLM) on [14C]serotonin secretion by 0.1 U/ml 

thrombin was also studied as a function of time (Fig. 17). The results of this 

experiment indicated that the secretion of [14C]serotonin was complete within 1 min 

after the addition of thrombin to the platelet suspension and this secretion was 

inhibited by rat CRP. 

C. Effect of Rat CRP on PC-PLC Activity in Intact Labelled 

Platelets, Platelet Sonicates and on PC-PLC Activity from C. 

welchii 

The effect of rat CRP on PC-derived DAG from [3H]myristic acid-labelled 

platelets is shown in Fig. 18. Rat CRP (0.48 JLM) significantly (p<0.05) inhibited the 

formation of [3H]DAG by 55 and 70 % when platelets were stimulated by either high 

(2 U/ml) or low (0.05 U/ml) concentrations of thrombin, respectively. Likewise, rat 

CRP reduced the formation of P4C]phosphorylcholine, by 40%, from [N-methyl-

14C]lyso-PAF-labelled platelets stimulated by 2 U/ml thrombin (Fig. 19). 

The effect of rat CRP on platelet sonicate PC-PLC activity was examined. The 

formation of [3H]phosphorylcholine and [3H]DAG by the action of PC-PLC, from 

platelet sonicates, on exogenous eH-choline]DPPC or [2-3H palmitoyl]DPPC was 

inhibited by rat CRP (0.4-2.4 JLM) in a dose-dependent manner (Fig. 20A and B). 

The effect of rat CRP on the PC-PLC activity in platelet sonicates fractionated 
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Fig. 17. Effect of rat CRP on the secretion of [14Clserotonin induced by thrombin 
as a function of time. Washed platelets (4 x 108 platelets/ml), pre-labelled with 
P4C]serotonin, were incubated in absence (O) or presence of rat CRP (0.48 I'M; •) 
for 15 min, prior to stimulation with thrombin (0.1 U/ml) . Platelets were allowed to 
aggregate for specific time periods (0-3.0 min.) and then 100 f'l of reaction mixture 
was stopped for determination of P4C]serotonin secretion as described in Fig. 14. 
Results are means of 3 determinations. 
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Fig. 18. Effect of rat CRP on thrombin-induced formation of [3HlDAG from 
platelets labelled with [lmmyristic acid. [3H]Myristic acid-labelled platelets were 
incubated for 15 min either in the absence or presence of rat CRP (0.48 J.tM). 
Platelets were activated by the indicated amount of thrombin for 3 min. The [3H]DAG 
formation was measured as described in Fig. 11. Each value is the mean + S.E. of 4 
separate experiments. The individual measurements were expressed as percentages of 
total labelled phospholipid and basal levels, determined in incubations without 
addition of thrombin, were subtracted. * Differences are statistically significant 
(p < 0. 05) by the students T -test as compared to control values obtained under similar 
conditions but in absence of rat CRP. 
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Fig. 19. Effect of rat CRP on the formation of £14Clphosphorvlcholine by 
thrombin-activated rat platelets labelled with IN-methyl-14Cllyso-PAF .. Platelets 
labelled with [N-methyl-14C]1yso-PAF were incubated in the absence or presence of rat 
CRP (0.48 J.tM) for 15 min. Platelets were activated by thrombin (2.0 U/ml) for 3 
min. The formation of [14C]phosphorylcholine was measured as described in Fig. 12. 
Values are mean + S.E. from 10 experiments. * Difference is statistically significant 
(p < 0.05) by the students T-test as compared to control values obtained under similar 
conditions but in absence of rat CRP. 
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Fig. 20. Effect of rat CRP on PC-PLC in rat platelet sonicates. Platelet sonicates 
(4 x 107/ml) were added to standard incubation medium containing A) 18 JLM PH­
choline]DPPC or B) [2-3H palmitoyl]DPPC and were carried out in presence of 
increasing concentrations of rat CRP (0-2.4 JLM). After 20 min the reaction was 
stopped and the amount of either eHJphosphorylcholine and [3H]DAG formed was 
determined. The data are mean + S.E. of 3 determinations and are representative of 
3 experiments. 
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by ultracentrifugation at 105,000 x g for 1 h was also examined. Rat CRP (2.4 J.£M) 

specifically inhibited the PC-PLC activity in the supernatant (p < 0.05), while the 

effect on the particulate form was marginal (Fig. 21). 

The effect of rat CRP on PC-PLC activity from C. welchii was studied. Fig. 

22 shows a dose-dependent inhibition of bacterial PC-PLC activity by rat CRP (0.4-

1.6 J.!M). 

D. Effect of Rat CRP on PLA2 activity in Intact Labelled Platelets, 

Platelet Sonicates and on PLA2 from Snake Venom (Naja naja) 

In order to measure PLA2 activity in intact rat platelets, platelets were labelled 

with [3H]arachidonic acid, which provided an endogenously labelled pool of 

phospholipid (Table 1). The platelets were stimulated with high (2 U/ml) or low (0.05 

U/ml) concentrations of thrombin, which resulted in the formation of free 

eHJarachidonic acid, predominantly by hydrolysis of PC (Fig. 23). 

The effect of rat CRP on the formation of [3H]arachidonic acid and its 

metabolites from thrombin-stimulated platelets, labelled with [3H]arachidonic acid, 

was examined. The stimulation of platelets by thrombin (0.05 and 2 U/ml) resulted in 

the formation of eHJarachidonic acid and its metabolites, HHT, HETE, and 

thromboxane ~(from thromboxane A2), formed by the cycloxygenase or the 

lipoxygenase pathways (Fig. 24). In the presence of rat CRP (0.48 J.£M) there was no 

inhibition of the formation of eHJarachidonic acid or its metabolites (Fig. 24). This 
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Fig. 21. Effect of rat CRP on PC-PLC activity in particulate and supernatant 
fractions of rat platelet sonicates. Platelet sonicates (5 x 107/ml) were centrifuged at 
105,000 x g for 1 h to produce a supernatant (SUP1) and pellet (PEL1). There­
suspended particulate fraction (PEL1) was re-centrifuged (105,000 x g) for 1 h to 
produce a supernatant (SUP2) and pellet (PEL2), which was re-suspended. The 
supernatant and particulate fractions (40 J.Ll of each) were assayed for PC-PLC activity 
in absence or presence of rat CRP (2.4 J.LM). PC-PLC assays were performed using 
[
3H-choline]DPPC as substrate as described in Fig. 20. Values are mean + S.E. of 3 

determinations. * Differences are statistically significant (p < 0.05) by the students T­
test as compared to control values obtained under similar conditions but in absence of 
rat CRP. 
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Fig. 22. Effect of rat CRP on bacterial PC-PLC activity. Bacterial PC-PLC assays 
were performed with 0.02 U/ml of enzyme using 150 J.tM [3H-choline]DPPC as 
substrate, in the presence of increasing concentrations of rat CRP (0-1. 6 J.tM) as 
described in Methods and Materials (section VIlLA.). The data are mean of duplicate 
determinations and are representative of at least 6 experiments. 
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Fig. 23. Effect of thrombin on the release of £3Hlarachidonic acid from olatelet 
phospholipid labelled with Fmarachidonic acid. Platelets (5 x 108/ml), labelled 
with eHJarachidonic acid, were incubated in the absence or presence of thrombin 
(0.05 U/ml or 2 U/ml) for 15 min. Reaction was stopped by adding 3. 75 vol. of 
chloroform/methanol (1/2) and extracted (Bligh and Dyer, 1959). The organic layer 
of extracted samples were applied to TLC and phospholipids were separated as 
described in Methods and Materials (Section IV.C.2.). The radioactivity associated 
with each lipid group was expressed as a percentage of total radioactivity in that lane. 
Results are mean + S.E. for 4 experiments. 
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Fig. 24. Effect of rat CRP on thrombin-stimulated formation of £3Hlarachidonic 
acid metabolites by platelets labelled with (3ffiarachidonic acid. Platelets 
(5xl08/ml) labelled with [3H]arachidonic acid were incubated in the absence or 
presence of rat CRP (0.48 J!M) for 15 min prior to the addition of indicated amount 
of thrombin. Platelets were activated for 5 min before stopping reactions and 
extracting the lipids, which were analyzed by TLC (section IV.C.3.). The 
radioactivity associated with arachidonic acid and its metabolites (thromboxane B2, 

HETE, HHT) were counted and is expressed as percent of total labelled lipid. Results 
are mean + S.E. from 4 different experiments. 
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indicated that rat CRP inhibited neither PLA2 activity nor the subsequent metabolism 

of arachidonic acid by lipoxygenase or cycloxygenase. 

The effect of rat CRP on PLA2 activity in sonicated rat platelets was studied. 

Concentrations of rat CRP ranging from 0.8-3.2 I-'M did not inhibit the PLA2 activity 

(Fig. 25). 

The effect of rat CRP on PLA2 from snake venom (Naja naja) was also 

examined. However, rat CRP at concentrations ranging from 0.4-3.2 I-'M was found 

to have no effect on the enzyme activity (Fig. 26). 

E. Effect of Rat CRP on PI-PLC Activity in Intact Labelled Platelets 

and Platelet Sonicates 

The effect of rat CRP on thrombin-induced PI-PLC activity was examined 

using platelets labelled with [3H]inositol. When platelets were stimulated by either 

0.05 or 2 U/ml thrombin for 3 min it resulted in dose-dependent formation of 

[
3H]inositol phosphates, including [3H]inositol-1-phosphate, [3H]inositol-1 ,4-

biphosphate and [3H]IP3 (Fig. 27A-D). However, rat CRP (0.48 I-'M) did not alter the 

formation of either [3H]inositol-1-phosphate, [3H]inositol-1 ,4-biphosphate or the 

second messenger, [3H]IP3 , in platelets stimulated by either high or low concentrations 

of thrombin (Fig. 27 B-D). 

The effect of rat CRP on PI-PLC activity in rat platelet sonicates was 

examined (Fig. 28). Concentrations of rat CRP ranging from 0.8-2.4 I-'M had no 
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Fig. 25. Effect of rat CRP on PLA2 in platelet sonicates. Platelet sonicate PLA2 

assays were performed using platelet sonicates (8.1 x 107 !Jn1) and [2-3H 
arachidonyl]PC (50 JLM) as the substrate, in the presence of rat CRP (0-3.2 JLM), as 
described in Methods and Materials (section IX.B.). The data are mean + S.E. of 3 
determinations. 
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Fig. 26. Effect of rat CRP on PLA2 purified from snake venom. Snake venom 
PLA2 assays were performed using 0.02 U/ml of enzyme and 160 JLM [2-3H 
palmitoyl]DPPC as the substrate, in the presence of increasing concentrations of rat 
CRP (0-3.2 JLM), as described in Methods and Materials (section VIII.B.). The data 
mean + S.E. of 3 determinations. 
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Fig. 27. Effect of rat CRP on thrombin-stimulated formantion of [3ffiinositol 
phosphates by platelets labelled with myo-[3Hlinositol. Platelets (5 x lOS/ml), 
labelled with [3H]inositol, were incubated in the absence or presence of rat CRP (0.48 
JtM) for 15 min. Platelets were then activated for 3 min by the indicated amount of 
thrombin. Inositol phosphates were extracted and separated as described in Methods 
and Materials (section X.C). Values are mean + S.E. of 4 separate experiments and 
are expressed as radioactivity (DPM's) associated with total A) [3H]inositol 
phosphates, B) eHJinositol-1-phosphate, C) eH]inositol-1,4-biphosphate and D) 
[

3H]IP3 • 
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inhibitory effect on the PI-PLC activity in platelet sonicates. 

Section ill. Discussion 

The activation of phospholipases by various agonists has been well documented 

in the literature (Billah and Anthes, 1990). The interaction of thrombin with its 

specific receptors on platelet membranes leads to increased turnover of phospholipids 

by activation of specific phospholipases (Greco and Jamieson, 1991). This turnover 

of phospholipid in tum mediates the platelet functional responses by the generation of 

intercellular mediators and second messengers which regulate platelet aggregation and 

secretion. It is, therefore very likely that rat CRP may inhibit thrombin-induced 

platelet aggregation and secretion by affecting the platelet phospholipases mediating 

these responses. Therefore, in this study, the effect of rat CRP on agonist-inducible 

platelet phospholipases was examined. 

The present study demonstrated that rat platelet sonicates hydrolyse [3H­

choline]DPPC and [2-3H palmitoyl]DPPC to produce [3H]phosphorylcholine and 

[
3H]DAG, respectively, thus confmning the presence of PC-PLC activity in normal 

rat platelets. Furthermore, the activity of this enzyme was dependent on time (Fig. 3), 

substrate (Fig. 4A) and platelet sonicate (Fig. 4B) concentrations. Analysis of the 

products of PC hydrolysis, revealed phosphorylcholine to be the only labelled 

metabolite recovered in the aqueous phase. DAG and palmitic acid were the only 

labelled products in the non-aqueous phase. The formation of DAG was a result of the 
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Fig. 28. Effect of rat CRP on PI-PLC in platelet sonicates. Platelet sonicate PI­
PLC assays were performed using platelet sonicates (2.5 x 107/ml) and 
phosphatidyl[3H]inositol/PE (16 JLM; 1:0.4 molar ratio) as the substrate, in presence 
of rat CRP (0-2.4 JLM). Reactions were allowed to proceed for 3 min and were then 
stopped and extracted as described in Methods and Materials (section IX.C.). The 
data are mean + S.E. of 3 determinations. 
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action of PC-PLC while palmitic acid was formed by PLA2 activity in the platelet 

sonicates (Hayakawa et al., 1988). There was no choline and P A formation, or 

choline kinase activity in the platelet sonicates. This indicates that PC-PLC activity, 

and not PC-PLD, was responsible for the generation of phosphorylcholine and DAG. 

The PC-PLC activity in platelet sonicates was calcium-dependent, and was active over 

a wide range of calcium concentrations (25 nM- 25 mM) (Fig. 5). This may suggest 

a role for this enzyme both in the platelet cytosol, where calcium levels are at 0.1 to 

3 JA.M, and maybe outside the platelet where calcium levels are above 1 mM. In 

addition to rat platelet sonicates, human and rabbit platelet sonicates also showed PC­

PLC activity, but the activity was less than 25% of that found in rat platelets. The 

low activity of PC-PLC activity in rabbit or human platelets may explain why it is not 

often detected in intact platelets from these species. 

Platelet sonicates when fractionated by ultracentrifugation resulted in a pellet 

and a supernatant fraction. The PC-PLC in the supernatant was designated as the 

soluble form, while, the PC-PLC in the re-suspended pellet was designated as the 

particulate form of PC-PLC. Both fractions contained almost equal PC-PLC activity 

(Fig. 8) which was inhibited by 2 mM EDTA (Fig. 9). The similarities in calcium 

requirement and substrate specificity for the two forms could indicate a common 

cellular origin of the enzyme. 

The effect of pH on the PC-PLC activity in platelet sonicates, and of the 

particulate and soluble forms of PC-PLC was determined (Fig. 10). The PC-PLC in 
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all three cases was found to be optimally active between pH 7.2 and 7.6. It has been 

reported that PLC with broad substrate specificity exist in lysosomes isolated from rat 

liver (Matsuzawa and Hostetler, 1978). This lysosomal enzyme was found to be 

optimally active below pH 5, and was inhibited by divalent cations. It is, therefore, 

unlikely that the PC-PLC activity associated with platelet sonicates is of lysosomal 

origin considering its pH optimum and calcium-dependent activity. 

Membrane-bound PC-PLD activity has been detected in most rat tissues in the 

presence of certain detergents (Chalifa et al., 1990; Martin, 1988; Qian and Drewes, 

1990). Deoxycholate and t3-octylglucoside have been used to measure PC-PLC 

activity (Anwer et al., 1988; Matozaki and Williams, 1989). The effect of 

deoxycholate, Triton X-100, and oleate on PC-PLC activity was, therefore, examined 

(Fig. 7). Of the 3 detergents used in this study only 0.01% deoxycholate and 0.01% 

Triton X-100 increased the PC-PLC activity. These detergents appeared to have their 

greatest stimulatory effect on the particulate form of PC-PLC (Fig. 9). The activity of 

the soluble form of PC-PLC was only moderately increased by 0.01% deoxycholate 

but was inhibited by 0.01% Triton X-100. No PC-PLD activity was detected , in the 

platelet sonicates, in the presence of these detergents. 

Although there have been several reports of thrombin-induced stimulation of 

PLD in platelets, there has been no previous report describing the effect of thrombin 

on rat platelet PC-PLC activity. The results showing a time-dependent increase in 

DAG- and phosphorylcholine-formation from rat platelets stimulated by thrombin 
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indicate that the rat platelet PC-PLC is agonist-inducible (Fig. 11-13). Furthermore, 

the activity of this enzyme requires the presence of thrombin and is not active in 

unstimulated resting platelets. A number of studies have indicated the possibility of a 

role for PC-PLC activity in platelets. In a recent study, using platelets from 

spontaneously hypertensive rats, the generation of PC-derived DAG required for PC 

synthesis was hypothesised to arise from increased PC-PLC activity in rat platelets 

(Remmal et al., 1988). It has also been reported that DAG generated by the action of 

bacterial (C. welchii) phospholipase Con platelet plasma membrane PC, resulted in 

the activation of PKC (Anwer et al., 1988). This PKC is known to phosphorylate a 47 

kDa protein involved in platelet responses. This indicates that the generation of PC­

derived DAG by PLC can precede the onset of platelet activation and aggregation. A 

more recent study, in support of this claim, has shown that stimulation of human 

platelets by HD~ resulting in generation of DAG from PC and activation of PKC 

(Nazih et al., 1990). It is possible that the activation of rat platelet PC-PLC by 

thrombin is involved in platelet signal transduction pathways. 

It has been reported that in a number of tissues, agonist-induced generation of 

DAG occurs not only from PI hydrolysis but also through the hydrolysis of PC 

following the activation of PC-PLC or PLD (Billah and Anthes, 1990; Exton, 1990). 

PI hydrolysis and DAG formation are the earliest signalling events in thrombin­

stimulated platelets and DAG is believed to mediate primary (reversible) and 

secondary (irreversible) aggregation and secretion (Greco and Jamieson, 1991; 
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Werner et al., 1992). The endogenous production of DAG by either PC or PI is 

critical in signal transduction presumably through the activation of PKC which is 

involved in the regulation of cellular responses. 

CRP from rat (Chapter 5), rabbit and human have been shown to inhibit 

platelet aggregation and secretion induced by a variety of agonists (Fiedel and 

Gewurz, 1976a and b; Fiedel et al., 1977; Vigo, 1985; Kilpatrick and Virella, 1985; 

Hokama et al., 1984; Filep et al., 1991). In this study the effect of rat CRP on 

thrombin-activated platelet aggregation and serotonin secretion was examined. The 

results of this study showed that rat CRP inhibits platelet aggregation and serotonin 

secretion in a dose-dependent manner when platelets were activated by a low 

concentrations of thrombin (Figs. 15 and 16). However, rat CRP had little effect on 

platelet aggregation or serotonin secretion when platelets were activated by high 

concentration of thrombin. Although previous reports have described the inhibitory 

effect of CRP on platelet responses, this is the first time the possible role of CRP in 

the regulation of signalling pathways in platelets has been examined. One previous 

report does describe the inhibition of platelet PLA2 by human CRP (Vigo, 1985). The 

results from this chapter showed that rat CRP inhibited the endogenous formation of 

both DAG and phosphorylcholine in thrombin-stimulated platelets (Figs. 18 and 19). 

PC-PLC activity in platelet sonicates and isolated from C. welchii were also inhibited 

by rat CRP (Figs. 21 and 22). Considering that rat CRP inhibited not only the PC­

PLC activity in intact platelets but also in platelet sonicates and from bacteria, it is 
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possible that some CRP-PC interaction on the various membranes may play a key role 

in the inhibition of this enzyme, since previous studies have shown that rat CRP 

specifically binds PC-containing liposomes (Nagpurkar et al., 1983). In the PC-PLC 

assays no formation of choline was observed, consistent with the observation showing 

the absence of PLD activity in rat platelet sonicates. 

The inhibitory effect of rat CRP was specific to PC-PLC since rat CRP did not 

inhibit PLA2 or PI-PLC in platelet sonicates or thrombin-activated platelets. This 

result with PLA2 is surprising given the known inhibitory effect of human CRP on 

PLA2 activity (Vigo, 1985). It is likely that this is due to the significant differences 

known to exist between human and rat CRP (Saxena et al., 1985; Rassouli et al., 

1992). 

The production of DAG (from either PC or PI) may be crucial to the agonist­

induced platelet responses (Werner et al., 1991a and b). If DAG is acting as a 

common and necessary second messenger for the control of cellular responses leading 

to platelet aggregation and secretion, then modulation of DAG would be an important 

target for the action of inhibitors of platelet aggregation and secretion. Therefore, 

platelet inhibitors could prevent aggregation by directly or indirectly inhibiting 

agonist-induced stimulation of DAG production, which would result in the prevention 

of the PKC activation required for platelet aggregation and secretion (Werner et al., 

1991b). Based on the results showing rat CRP-mediated inhibition of thrombin­

induced platelet aggregation, serotonin secretion and specific inhibition of platelet PC-
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PLC, it is possible that the inhibition of thrombin-induced platelet aggregation and 

secretion may be the result of specific inhibition of platelet PC-PLC by rat CRP. 

Inhibition of PC-PLC activity in platelets by rat CRP in the presence of thrombin 

would lead to a decrease in the production of PC-derived DAG, which would result in 

reduced platelet aggregation and serotonin secretion (Fig. 29). 

It is significant that rat CRP-mediated inhibition of PC-PLC activity in 

platelets has been confrrmed by examining the effect of rat CRP on PC-PLC activity 

in platelet sonicates and from C. welchii. Since both CRP and PC-PLC enzyme 

recognise the phosphorylcholine-moiety of PC, recognition of a common substrate 

might be the key factor in determining the observed specificity of the rat CRP 

inhibitory action on PC-PLC activity (Fig. 30). By this mechanism rat CRP may 

bind, via its phosphorylcholine-binding site, to the platelet membrane PC and thus 

prevent access of PC-PLC to phospholipid. The operation of this mechanism would 

require that PC-PLC gain access to the PC in the outer leaflet of the platelet plasma 

membrane. If during platelet activation PC-PLC is situated on the inner leaflet of the 

platelet plasma membrane, then transmembrane movement of PC (flip-flop) from the 

outer surface of the platelet plasma membrane should provide PC to the enzyme. 

Therefore, the binding of rat CRP to PC, which in normally enriched on the outer 

leaflet of the plasma membrane, may limit the transmembrane movement of PC. This 

process will limit access of the enzyme to PC and therefore inhibit its activity. The 

operation of this mechanism in not unlikely considering the increased membrane 
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Fig. 29. Scheme for the proposed role of rat CRP in the inhibition of DAG 
formation durin& thrombin-induced platelet activation. 
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Fig. 30. Specificity of the interactions of rat CRP and platelet phospholipases 
with different components of PC structure. 
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fluidity and rapid loss of asymmetric distribution of phospholipid, across the platelet 

plasma membrane during platelet stimulation which increases PC concentrations on 

the inner leaflet of the plasma membrane (Bevers et al., 1983 and 1990). Another 

likely mechanism may involve the binding of rat CRP to platelets via some 

unidentified receptor and, thereby, specifically inactivating or preventing the 

activation of PC-PLC by thrombin. 

Based on the recent report by Werner et al. (199la), which shows a 

correlation between DAG levels and platelet aggregation and secretion, the range 

between threshold DAG levels and those required to induce a maximal response of 

platelet aggregation or secretion are quite narrow (Fig. 31). DAG levels must reach 

threshold concentrations in order to perform as an effective second messenger to 

evoke platelet response. At concentrations of DAG much higher than the responsive 

range minor changes in DAG concentration apparently will not lead to changes in the 

platelet response caused by DAG. On this basis, it is likely that the stimulation of 

platelets by high concentrations of thrombin results in both PI- and PC-derived DAG 

levels to rise far beyond the responsive range, in which a small reduction in PC­

derived DAG levels by rat CRP would not be sufficient to bring about any inhibition 

in platelet aggregation or serotonin secretion. Furthermore, high concentrations of 

thrombin result in increased activation of PLA2, and the consequent formation of 

arachidonic acid and its metabolites which may augment subsequent platelet responses 

(Alita et al., 1989). Therefore, in the presence of high concentrations of thrombin, 
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Fig. 31. Relationship between inhibition of PC-derived DAG by rat CRP. and 
platelet a&&re&ation and serotonin secretion. In a recent report by Werner et al. 
(48), showing a quantitative correlation between endogenous DAG levels and human 
platelet aggregation and secretion, it was found that the responsive range between 
threshold DAG levels and DAG levels required to induce a maximal platelet response 
was quite narrow (A). When the concentration of DAG was above the responsive 
range maximum platelet aggregation and secretion occurred and beyond this range 
minor changes in DAG concentration did not lead to corresponding changes in platelet 
response. Based on these findings the result of the lack of inhibition of platelet 
aggregation and secretion by rat CRP (Figs. 15 and 16) when high concentration of 
thrombin was used can be explained. It is likely that stimulation of platelets by high 
concentration of thrombin results in the formation of DAG from both PI and PC. This 
the DAG concentration would be far beyond the responsive range. Therefore, in the 
presence of high concentration of thrombin the inhibition of PC-PLC by rat CRP 
would not be sufficient to bring DAG levels within the responsive range (B). In 
contrast, when low concentration of thrombin was used, the level of DAG formed 
from both from PI and PC would be within the responsive range, in which a small 
reduction in the PC-derived DAG by rat CRP would be sufficient inhibit platelet 
aggregation and secretion. 
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PI-PLC and PLA2 would generate sufficient levels of appropriate mediators to induce 

maximum platelet aggregation and serotonin secretion. This may explain why platelet 

responses were not inhibited by rat CRP when high concentrations of thrombin were 

used to stimulate the platelets. In contrast, when sub-maximal aggregation or secretion 

is evoked, a minor decrease in the amount of DAG produced will lead to profound 

inhibitory effects on the observed response. In the presence of low concentrations of 

thrombin, which stimulates the production of sub-maximal total DAG levels and, 

therefore, sub-maximal response, it is possible that the reduction in total DAG levels 

by rat CRP results in the observed inhibition of platelet aggregation and serotonin 

secretion. Under these conditions the activity of PLA2 and production of biologically 

active eicosanoids is also minimal (Fig. 24). 

The binding of rat CRP to specific sites on the platelets was shown in Chapter 

6. It was proposed that this binding was a requirement for the inhibition of platelet 

aggregation (Chapter 5). It is equally possible that rat CRP-mediated inhibition of 

thrombin-induced platelet aggregation also requires the binding of rat CRP to 

platelets. The possibility that rat CRP inhibits platelet responses, by preventing the 

binding of thrombin to its platelet receptors, is unlikely since this would result in 

decreased activities of both PI-PLC and PLA2 , in addition to PC-PLC activity. 

Therefore, the rat CRP binding site on rat platelets is most likely unrelated to the 

thrombin receptors on platelets. 

A rather simple mechanism is presented by which rat CRP may inhibit platelet 
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function, however, it is recognised that the mechanisms of signal transduction in 

platelets are complex with many potential interrelationships between the various 

pathways. The relationship of PC-PLC activity to other signal transduction pathways 

has not been worked out. It is, therefore, not possible to unequivocally attribute the 

inhibitory effect of rat CRP on platelet aggregation to the inhibited action of PC-PLC 

activity alone or generalize these observations to explain the inhibitory effects of 

rabbit or human CRP on platelet aggregation in other species, although rabbit and 

human CRP have been shown to inhibit the PC-PLC activity in rat platelet sonicates 

(result not shown). The activation of rat platelet PC-PLC activity by thrombin may 

be a property unique to this species. 
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CHAPTER 8 

PERSPECTIVE AND FUTURE DIRECTIONS 

This thesis has examined the role of rat CRP in the modulation of agonist­

induced platelet function. Rat CRP has been shown to specifically inhibit only weak 

stimuli-induced platelet aggregation and secretion. This inhibitory effect involved a rat 

CRP-platelet interaction. Further characterization indicated this binding to be specific, 

saturable and reversible. The possibility of a rat CRP-agonist interaction was also 

examined. Such interaction, in addition to the rat CRP-platelet interaction, occurred 

only when PAF was used as an agonist. The binding of rat CRP to P AF was calcium­

dependent and involved the phosphorylcholine-binding site on rat CRP. A role for rat 

CRP in the refractory property of rat platelets to PAF has also been assigned. 

The finding of an agonist-inducible PC-PLC in platelets and its likely 

involvement in the regulation of platelet function through the formation of DAG, led 

to the studies on the effect of rat CRP on platelet phospholipases. Rat CRP 

specifically inhibited PC-PLC but not PLA2 or PI-PLC. It was concluded that if the 

PC-derived DAG is critical to signal transduction pathways in the regulation of 

platelet function, then the inhibition of DAG production mediated by PC-PLC is a 

likely mechanism for the action of rat CRP on platelet aggregation and secretion. 

Since the normal concentrations of rat CRP in blood (approximately 0.5-0.6 

mg/ml or 4-5 I'M) is much greater that the amounts required for maximum inhibition 
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of platelet aggregation and secretion, it is possible that the inhibitory effect of rat 

CRP on platelet function may be relevant to events that may take place the animal 

following injury. Injury, involving damage of endothelium surrounding blood vessels, 

usually results in the release of platelet stimuli such as ADP, exposure of collagen in 

the basement membrane, activation of the clotting cascade and formation of thrombin 

in blood. If the activity of platelet agonists such as thrombin and ADP are left 

unregulated, such injury could lead to uncontrolled thrombotic events with fatal 

consequences. Therefore, the existence of control mechanisms for thrombotic events 

are imperative to the survival of the animal. Rat CRP may be one component by 

which thrombotic events are controlled. 

The binding of rat CRP to platelets may be a prerequisite for the inhibitory 

effect of rat CRP on platelet function. Furthermore, binding sites for rat CRP present 

on rat, rabbit and human platelets are not unique for rat CRP, since rabbit CRP 

competitively inhibited the binding of rat CRP to platelets. It is possible that human 

CRP, which is structurally very similar to rabbit CRP, would also behave like rabbit 

CRP with respect to binding to platelets. In connection with this point, both rabbit 

and human CRP have been shown to inhibit platelet aggregation, indicating that the 

binding sites on platelets would recognise CRP's from different species and inhibit 

platelet aggregation. 

Although the results presented in this thesis were obtained using rat CRP, 

rabbit and human CRP were also used in certain experiments involving platelet 
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aggregation , and platelet phospholipases. The results from these experiments were 

similar to those obtained with rat CRP with respect to its inhibition of platelet 

aggregation and platelet sonicate PC-PLC activity (Results not shown). It could, 

therefore, be argued that in spite of the significant differences (for example: 

glycosylation, subunit composition, pi, levels in blood, minor amino acid sequence 

differences) between rat CRP, and human and rabbit CRP, these CRP's may work in 

the platelets through a common mechanism. 

It is interesting to note that the same pathological conditions which give rise to 

increased P AF concentrations also result in a rise in CRP concentrations. The specific 

binding of CRP to PAF suggest a relationship between these coincidental events. It is, 

therefore, not difficult to envision a role for rat CRP as a protective molecule which 

prevents escalation of the harmful effects of PAF activity in the body during disease. 

If this is true, then the rat CRP-PAF binding process may not only inhibit PAP­

induced platelet function, but also inhibit the effect of PAF on other systems. 

The results in this thesis clearly show that the generation of the second 

messenger DAG from hydrolysis of PC by PC-PLC occurs in rat platelets. The 

interesting observation that the inhibitory effect of rat CRP is specific to PC-PLC, 

made in this thesis, may be extended to other blood cells like monocytes, 

macrophages or neutrophils, that bind to CRP. There have been recent reports 

describing the involvement of PC-PLC in mediating cellular function in other tissues 

including certain blood cells (reviewed by Billah and Anthes, 1990; Exton, 1990). It 
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is possible that the regulation of the function of these cells might be dependent on the 

generation of DAG through the action of PC-PLC. It is equally conceivable that CRP 

as a consequence of the binding to these cells may modulate cellular function by a 

mechanism that involves inhibition of PC-PLC as proposed for rat platelets. 

Future Directions 

The results of this thesis indicate that rat and rabbit CRP have common 

specific binding sites on platelets. However, the molecular mechanism by which 

these binding sites inhibit PC-PLC activity and mediate platelet function remains 

unknown. It would, therefore, be interesting to further characterize these binding 

sites by use of specific proteases or phospholipases to identify whether these binding 

sites involve receptor proteins or lipids. If the binding site appears to be a protein, 

then isolation of this receptor protein could be carried out. These studies may also aid 

in establishing the relationship between the binding sites for rat CRP on platelets and 

PC-PLC activity. 

CRP has been shown to bind to cells of the immune system (monocytes, 

neutrophils, macrophages) and modulate their function. Since these cells may also 

have PC-PLC activity modulating cellular reactions, it would be interesting to a) 

confirm/determine the presence of PC-PLC in these cells and b) determine if CRP has 

any effect on this enzyme in these cells. 

The subcellular location of certain enzymes are good indications of their role 
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in cellular function. Therefore, to further determine the role of PC-PLC in platelet 

function it would be interesting to determine the sub-cellular location(s) of PC-PLC in 

the platelet. Based on the results in this thesis it appears that PC-PLC is present as a 

soluble and also as a membrane bound form in platelets. This may indicate different 

roles for the two forms. In addition, previous reports have suggested that the release 

of certain soluble phospholipases occurs during platelet activation (Horigome et al., 

1987; Haya.kawa et al., 1988). Therefore, it would be interesting to determine that if, 

as a result of agonist-induced activation of platelets, PC-PLC is released as a soluble 

enzyme into the extracellular medium. The potential role for the release of this 

enzyme on platelet function could also be examined. 

The presence of an agonist-inducible PC-PLC activity in rat platelets is 

indicative of a role for this enzyme in regulating platelet functional response. Because 

of the important role played by DAG in signal transduction mechanisms, it is very 

possible that this enzyme may play a role in mediation of platelet responses to other 

agonists besides thrombin. While, evidence for a role of PI hydrolysis in ADP­

mediated platelet activation has been controversial, no previous study has examined 

the possibility of PC-derived DAG as playing a second messenger role during ADP­

induced platelet activation. If PC-derived DAG does participate in signal transduction 

mechanisms stimulated by ADP, then further work may establish an essential role for 

PC-PLC activity in ADP-induced platelet aggregation. Such findings would 

revolutionize our current understanding of the mechanisms of platelet activation, 
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particularly when weak agonists are involved. 

It would be important to characterize the mechanisms of activation of PC-PLC 

by agonists. Because experiments using platelet sonicates indicated that the activity of 

this enzyme requires calcium, it is possible that an increase in intracellular calcium 

concentrations may be the stimuli of this enzyme activity in intact platelets. 

Examining the effect of calcium mobilizing agents, as well as G-protein and PKC 

activators or inhibitors, on the activity of this enzyme may provide useful clues to its 

regulation by known pathways of activation. Furthermore, an examination of the 

DAG species produced as a result of stimulation of platelets may determine the 

relative importance of PI- and PC-derived DAG in platelet activation. 

In any case, the results presented in this thesis have provided some basic 

information on the role played by CRP in platelet function. Based on this information, 

the future research directions suggested in this section, when carried out, would 

eventually clarify the physiological role of CRP in regulation of PC-PLC activity and 

platelet function. 
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