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Abstract 

The scope of this thesis is to investigate robust methods of FEA to evaluate non-linear 

lower bound limit load estimates of ship type structures. The robust methods used in this 

thesis include the r-node method, Progressive Modulus Reduction (PMR) method~ and 

the mamethod. The results of each technique are compared to the results of full non­

linear finite element analysis, analytical solutions and lab test data where available. The 

structures modelled in this thesis included a rectangular indeterminate beam, three types 

of mainframe stiffeners (flat bar, angle and tee), a flat bar stiffened panel and an Arctic 

icebreaker grillage. 

Robust methods make use of a modulus reduction scheme to redistribute and relax peak 

stresses in the structure. By iterating and selectively correcting the local modulus in 

fmite element models, the form of a limit state stress distribution can be evaluated. In 

order for the limit loads evaluated based on this limit state stress distribution to be lower 

bound, the conditions of the stress field in the structure must be "statically admissible., 

The basis of the r-node method is the identification of redistribution nodes or r-nodes 

within a structure, which are essentially load-controlled locations. Identification of exact 

r-node locations may be difficult to achieve with finite mesh densities particularly in 

complex structures. As well, complicated structures pose added difficulties in achieving 

a progressive r-node stress relaxation with increased iterations. This may be partly 

attributed to the difficulty in locating exact r-node locations. 
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The mamethod was developed in an attempt to improve lower bound estimates of limit 

loads, making use of just two linear elastic analyses. The notion of a "reference volumen 

is used in conjunction with the "theorem of nesting surfaces" and the concept of leap­

frogging to a near limit state to evaluate lower and upper bounds on the limit load. The 

results of this thesis indicate that for complicated structures~ improved limit load 

estimates can be obtained if four or more iterations of moduli are carried out. Reducing 

the rate of relaxation (reducing modulus adjustment index q) may enhance convergence 

characteristics, but results in a higher state of limit stress evaluated. 

The Progressive Modulus Reduction (PMR) method, which is an extension of the elastic 

compensation method, systematically adjusts or reduces the moduli of the pseudo-elastic 

stressed elements of a structure to synthesise the growth of the yield zone. The PMR 

method is used to evaluate the non-linear deflection of the structure for applied loads up 

to the limit load. 

In general the robust methods are an attractive alternative for evaluating limit loads of 

ship type structures. Results are a significant improvement over classical methods and 

are either close for simple structures or sufficiently conservative when compared to full 

non-linear FEA results. Each robust method models material non-linearities and hence 

evaluates good estimates of a non-linear limit load. Also, because the solution process is 

stable, convergence difficulties, encountered with full non-linear analysis, are avoided. 

Limit loads can be evaluated in a cost effective manner, which is particularly attractive at 

the initial stages of design. 
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Chapter 1 

Introduction 

Stiffened panel structures are used extensively in structural design, particularly in the 

shipbuilding and offshore industry. A stiffened panel consists of a set of frames attached 

to a shell plate as shown in Figure 1.1. This is a typical example of a ship's structural 

grillage, and consists of three main classes of stiffening: main frame stiffeners, stringers, 

and transverse web frames. The main frame stiffeners make up the primary stiffening of 

the structure, the stringers the secondary stiffening and the transverse web frames the 

tertiary stiffening. 

1.1 Background 

Traditionally, frames have been designed elastically against first yield and checked for 

elastic buckling. Concern for the ultimate strength of structures has led to interest in the 

post-yield behaviour, which examines the collapse of structures due to the occurrence of 

large plastic deformations (Huges, 1988). Designers are therefore faced with the 

challenge of selecting the appropriate design and analysis tools to enable them to design a 
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safe and cost effective structure. Many tools are available to design and analyse 

structures and/or supporting members, but each tool has its own limitations. Simple 

analytical tools usually lead to over conservative designs, whereas more detailed 

numerical analysis tools which minimise the levels of conservatism generally have 

complex formulations and require huge amounts computer processing time. 

transverse 

web frame 

main frames 

shell plate 

Figure 1.1: Ship's Grillage 

stringer 

Analytical solutions, which are theoretical solutions to a simplified structural geometry 

and loading conditions, are quite attractive to designers. Designers or analysts can 

quickly and easily quantify a particular structural behaviour v:ith a few simple 

calculations and design against failure. However, analytical solutions require "idealised 

conditions" or details, which render them impractical for complex structures. In practice, 
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the structure (or problem) could be analysed in terms of the individual components. A 

disadvantage of this approach is that the boundary conditions are difficult to quantify and 

usually lead to extreme assumptions or idealised conditions. This results in designs that 

are often overly conservative depending on the overall complexity of the problem. For 

example, a main frame stiffener between two stringers on a ship's hull structure (grillage) 

could be analysed as a single beam with fixed or pinned end conditions where analytical 

solutions are readily available in literature. This suggests that the main frame stiffener 

running through a stringer is either rigidly attached or just simply supported at the 

stringer, both of which are incorrect from a practical point of view. The same conditions 

apply to a stringer supporting shell plate and main frame stiffeners between two 

transverse web frames. The assumed boundary conditions may render the design overly 

conservative. 

Sometimes structural geometry and interaction effects are too complex to warrant the 

formulation of a simple analytical solution and hence empirical solutions are developed. 

In such cases, test data results describing a particular behavioural phenomenon are 

described in terms of best-fit equations, which are a composition of the underlying 

parameters defining the phenomenon and appropriate scaling factors. However, such 

solutions are often specific to a range of behavioural characteristics and have limitations 

for general design purposes. 

Model tests are often carried out on structures to analyse performance characteristics. 

Using appropriate scaling laws, the analyst can model and test a structure to examine the 
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elastic behaviour effects up to first yield as well as the inelastic effects up to the point of 

total collapse. The inelastic effects include the formulation of plastic hinges, membrane 

effects and the ultimate load capacity of the structure at collapse. Although model tests 

are necessary for the purposes of research and the development of new or improved 

analytical solutions, the cost and time requirements rule them impractical as a design tool 

particularly at the initial stages of design. 

With the development of computers came the development of Finite Element Analysis 

{FEA) tools. Using a discritised modelling scheme, complete structures (including 

components) could be modelled as a geometric mesh of elements, interconnected, so as to 

synthesise the actual structure. Complex structural analysis, including interaction effects 

between the supporting members as illustrated in Figure 1.1, could be easily carried out. 

A classical approach to design using FEA is based on idealised linear elastic theory. 

Based on the maximum stress evaluated in a structure and the yield stress of the material, 

the load capacity of the structure up to first yield can be easily evaluated. This approach 

can be used to evaluate a lower bound limit load for a structure in a timely, cost effective 

manner. However, structures designed according to idealised elastic failure criteria 

(failure at first yield) are generally over designed. Since structures have significant load 

bearing capabilities beyond first yield, it is useful to design for inelastic behavioural 

characteristics. 
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Many finite element analysis packages have non-linear modelling capabilities making it 

possible to synthesise inelastic or post yield behaviour of a structure. Using appropriate 

mesh densities, boundary and loading conditions, and taking into account non-linearities 

associated with out of straightness, loss of stiffhess due to yielding, etc., an FEA model 

can predict the behaviour of a complex structure with remarkable accuracy. However~ 

carrying out a detailed non-linear analysis can prove to be very complex and time 

consuming. Depending on the geometric complexity of the model and the loading 

conditions, a full non-linear analysis may take days to complete. This is not attractive 

particularly at the initial stages of design. 

The focus of this thesis, is to "investigate robust techniques of finite element analysis to 

evaluate non-linear lower bound limit loads of plated structures and stiffening members.,, 

These robust techniques are attractive because they form a hybrid of both classical finite 

element and analytical solutions, and conform to the non-linear behaviour of a material. 

They have the advantage of classical solutions in that they are simple, reliable, 

repeatable, and time efficient. They also have the advantage of full non-linear solutions 

in that they account for material non-linearity in their approach. 

1.2 Ship Structural Design 

As previously mentioned, ship structures have been traditionally designed elastically on 

the assumption that once a portion of the structure has yielded, any furtJ1er increases in 

the load will result in pure plasticity or total collapse. However, it has been proven that 

these structures can sustain substantial structural damage and still operate safely. The 
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structures have significant amounts of plastic reserve capacity although they may have 

yielded in a localised zone. 

This extra capacity is of great interest in the design of ship shaped offshore structures that 

operate in iceberg infested waters. An iceberg collision may undoubtedly cause damage 

to an offshore structure, but not necessarily in a global catastrophic sense. Small icebergs 

may collide and cause local damage or permanent set but not to the extent that the 

structure is deemed inoperable. Thus, ship structures can be designed plastically, 

accounting for inelastic effects, thereby reducing the level of conservatism in the design. 

The object of this thesis is to introduce new improved methods of assessing the load 

capacity of a structure, accounting for inelastic or plastic effects in the material, for any 

given load configuration. For example, given an iceberg collision with a ship shaped 

offshore structure for a given contact configuration (i.e., size and shape of the contact 

zone assuming uniform pressure), robust methods of FEA can be used to predict the non­

linear estimate of the load capacity of the structure. It should be noted, however, that the 

technique is not a design tool, but rather an analysis tool. 

1.3 Scope of Work 

The scope of this work is to investigate various robust methods of finite element analysis 

to evaluate non-linear lower bound limit load estimates of stiffened plated structures. 

These robust methods include the r-node method, Progressive Modulus Reduction (PMR) 
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method, and the m0 method. The results of each method are compared to the results of 

full non-linear finite element analysis~ analytical solutions and lab test data where 

available. 
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Chapter 2 

Theoretical Background 

Structural analysis and design is generally carried out on the basis to two theoretical 

behaviour assumptions: the structure behaves either elastically or plastically. If the 

response of a structure without incurring any structural damage is of interest, then elastic 

theory is appropriate. However, if the ultimate capacity of a structure is of interest, then 

it would be necessary to use plasticity theory. 

Although both types of analysis are necessary in structural design, depending on the 

application, neither of these types reflects the actual behaviour of a structure but rather 

upper and lower limits on its true behaviour. Also, many of the parameters that influence 

the behaviour of the structure (i.e., strength and/or applied load) may not be constants but 

may vary from one event to another. In such cases, a statistical method is appropriate 

that addresses the randomness of these parameters and the structure is designed to have a 

"probability of failure." 
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It is therefore necessary to improve the methods of limit analysis such that structural and 

material non-linearities are accounted for in the design. This will alleviate some of the 

uncertainty associated with design, thereby reflecting safer crlesigns and improved design 

efficiency. 

2.1 Elastic and Plastic Design and Analysis 

The ideal elastic and elastic-perfectly plastic stress-strain beihaviour of a beam subject to 

pure bending is illustrated in Figure 2.1. The elasticity cwrve illustrates a linear stress 

distribution through the section of the beam. Once the load level reaches the structure's 

elastic limit7 the section starts to yield at the extreme fibres rthat are the greatest distance 

from the neutral axis. The plastic growth continues until the whole section of the beam 

has yielded. 

Based on the geometry, and assumed ideal conditions, one can determine the relationship 

between the elastic and elastic-perfectly plastic bending moxment capacities of the beam. 

The elastic bending moment capacity of the beam, assumin!1 a uniform cross-section of 

thickness t and depth h, can be written as 

( 2.1 ) 

where h is the through depth of the beam and cy is the yield s~ess of the material. 

-9-



\ 
\ 
~ 

N 

A 

M.e 

?!astic 
Growtr 

:-"ure 
01cs::c:::; 

\ 
\ 

' 

,, 
I:,~ 

'·' .~, .... \,.,. 

Figure 2.1: Stress and yielding of a beam section subject to pure bending 

The plastic bending moment capacity of the beam can be written as 

M = 2 * (!!... * CT J *I_ th = th 
2 

u y 

p 2 y 22 4 
( 2.2) 

From equations (2.1) and (2.2) 

( 2.3) 

2.1.1 Plastic Hinge Formation and Membrane Effects 

Ship structures generally have significant load bearing capacities beyond their material 

yielding limits. The structures exhibit what is commonly known as "structural 

plasticity." The extent of structural plasticity can be categorised according to two 

behavioural characteristics, namely "plastic hinge formationn and "membrane action.n 
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Rigid plastic hinge formation theory states that the collapse of a structure can be 

categorised by the formation of plastic hinges at particular locations within the structure, 

depending on the geometry and loading conditions. The location of plastic hinges for a 

fixed ended beam subject to uniform pressure is illustrated in Figure 2.2 (a). In practice, 

the collapse is not as sudden as idealised plastic hinge theory predicts because the theory 

ignores the elasto-plastic transition phase of the moment-curvature relationship (Huges, 

1988). 

Once the applied load reaches the yield capacity, permanent set will occur at the ends of 

the beam marking the beginning of inelasticity. Further increases in the loading will 

cause yielding to penetrate through the thickness of the beam until two plastic hinges or 

edge hinges form at the ends. The loss of st:iffuess is indicated by the reduction in the 

slope of the load deflection curve once the edge hinges have formed. Further increases in 

the load would result in the formation of a third plastic hinge at the midspan, representing 

a state of total collapse of the section. 

For many structures, particularly plated structures, the formation of three hinges does not 

physically mean the section has totally collapsed. A structure considered collapsed 

according to plastic hinge theory may continue to have load-bearing capacity because of 

a phenomenon known as ~~membrane action." A structure that has fully yielded and 

experiences membrane behaviour has little or no reserve bending capacity but has added 

load bearing capacity because of tension in the material fibres. The structure continues to 

stretch having increased load bearing capacity until the material reaches it tensile fracture 

point as shown in Figure 2.2 (b). 
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Figure 2.2: Plate failure by rigid plastic hinge formation and membrane action 
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Membrane effects become evident in flanged structures such as I beam, tee or angle 

sections but most significantly in plated structures such as a ship's hull structure. The 

structural members that form the support for the shell plate will exhibit a much higher 

load bearing capacity than predicted by elastic limits or plastic hinge formation theory. 

Once the structure has lost its bending and shear capacity, membrane action in the shell 

plate (and regions of tension in the stiffeners) will allow the structure to have increased 

load-bearing capacity until the frames or stiffeners puncture the shell plating or tensile 

fracture occurs. An example of a ship's grillage including shell plate and the supporting 

members is illustrated in Figure 1. L 

2.2 Bounding Theorems 

Limit states design is essentially the application of bounding theorems on the 

performance of a structure. The basis for design is that the structure is expected to 

behave within a set of bounding limits or it has a probability that it will fail under certain 

conditions. Generally, these limiting conditions are referred to as ~~ultimate limit states" 

and "serviceability limit statesn. The ultimate limit state criterion requires that a structure 

be designed to ensure that its factored strength is greater than the factored loads that will 

be imposed on the structure. The serviceability limit states criterion requires that the 

structure will function satisfactorily when subject to service loads {Adams et al.. 1979). 
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2.2.1 Statistical Analysis 

Limit states design is often carried out using statistical methods of analysis where the 

design carries with it a "probability of failure,n as demonstrated in Figure 2.3. Here, both 

the structural resistance and the applied loads acting are represented as probability or 

frequency distributions. The structural resistance distribution is a function of many 

distributions such as material strength, structural dimensions, etc., and the applied load is 

comprised of variable parameters such as wind, wave, current, water density, etc. 

Ideally, a safe design is one where the structural resistance always exceeds the applied 

load. However, statistically the two curves overlap (shaded region) such that the effect of 

the load may exceed the resistance of the structure, indicating failure. In these cases 

designers proportion the structure such that the overlap is minimal and the probability of 

failure is at an acceptable minimum. 

Statistical analysis provides a safe, effective means of evaluating the integrity of 

structural design. However, the structural reliability is only as good as the availability 

and quality of the variational data for the parameters that define applied loads (wind, 

current, ice, temperature, etc.) and the resistive strength of the structural material. 
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Figure 2.3: Frequency distribution curves (Sanderson, 1988) 

2.2.2 Classical Lower and Upper Bound Theorems 

The classical theorems of limit analysis are based on the upper and lower bound 

theorems. These theorems are based on the conditions of the stress fields and the strain 

fields respectively within a structure that has been subject to some externally applied 

load. 

The Classical Lower Bound Limit Theorem is based on a concept of "static admissibility'' 

of stress fields within a structure. A statically admissible stress field is one where the 

stress field throughout a structure for a given load application represents a state of 

equilibrium, in addition to satisfying the yield conditions. A safe field is one with all 

stresses inside the yield surface (Mangalaramanan, 1997). Thus the lower bound theorem 

can be stated as; uif a stress distribution can be found which satisfies equilibrium 

everywhere internally and balances the applied load, and is everywhere below yield, then 
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the structure is safe and will not collapsen (CaUadine, 1969). In other words~ a design is 

safe if the internal loads within a structure balance the externally applied loads and the 

stresses everywhere are below yield. This theorem gives lower safe bounds, and the 

maximum lower bound is the limit load. 

The Classical Upper Bound Limit Theorem is based on the concept of "kinematic 

admissibility" of strain fields witbin a structure. A strain rate field defmed throughout a 

structure is referred to as kinematically admissible for the given conditions of support if it 

is derived from a resultant strain :field that is compatible with the conditions of support 

and certain continuity conditions (Mangalaramanan, 1997). Such a strain field is safe if 

and only if the rate at which the external loads do work (on the structure) is less than or 

equal to the rate at which energy is dissipated internally (Prager and Hodge, 1951 ). 

Applied loads that satisfy such cOtnditions are considered upper bound. Thus the upper 

bound theorem can be stated as; "a structure experiencing plastic deformation will 

collapse if the rate of internal energy dissipation is equal to or less than the rate at which 

the external forces do work on tbat structure." An estimate of the plastic collapse by 

equating the rate of internal energy dissipation to the rate of work done in any 

deformation mechanism of the body will either be correct or high (Calladine~ 1969). The 

theorem essentially says that if a failure path exists, the structure will take it. Thus this 

load is an upper bound and the minimum upper bound is the limit load (Seshadri and 

Fernando, 1992). 
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2.2.3 Extended Variational Theorems of Limit Analysis 

In the past, researchers have used variational principles to derive statically admissable 

stress fields in limit analysis for perfectly plastic snuctures. It was Mura and Lee ( 1993) 

who demonstrated that variational principles can be used to evaluate a statically 

admissible multiplier, or safety factor, for a structure made of a perfectly plastic material 

subject to a given surface traction (Mangalaramanan, 1997). 

It was previously understood that in limit analysis a statically admissible stress field 

couldn't exist outside the yield criterion defining the hypersurface (Prager, 1959). 

However, Mura et a/. ( 1965) introduced a new concept, namely the "integral mean of the 

yield" criterion, which suggests that this requirement can be eliminated. They proposed 

that a stress distribution satisfying equilibrium and traction boundary condition, but 

violating yield, can still give a lower bound limit load provided the stress field does not 

violate the "integral mean of the yield" which is expressed as 

( 2.4) 

Based on the integral mean of the yield, where the yield criterion is given as 

( 2.5) 

A new lower bound safety factor or multiplier m 'can be evaluated and expressed as 
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( 2.6) 

which is valid for any set of v~ ,sg ,a-0
, m0 ,f.l ,¢0 satisfying 

inV ( 2.7) 

( 2.8) 

( 2.9) 

( 2.10) 

A detailed formulation of the above lower bound multiplier m 'is given in Appendix A 

(Mura eta!., 1965; Mangalaramanan, 1997). The application of the above formulation 

used with finite element analysis is given in section 3.5. This forms the basis for 

formulation of the mamethod of robust analysis given in section 3.6. 

2.2.4 Theorem of Nesting Surfaces 

The "theorem of nesting surfaces" was introduced by Calladine and Drucker (1962) and 

used to determine simple approximate solutions to the combined loading problems of 

power law creep. The theorem was developed based on elastic and plastic limit analysis 

results together with special solutions for single loads. Boyle (1982) later restated the 

theorem and used it to construct generalised models to simplify stress analysis of 
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complex structures under multiple loading. In essence, the theorem defines an "effective 

generalised stress," or "reference stress" stated in terms of energy dissipation rates within 

a structure under a system of loads. 

The average energy dissipation rate for a structure subject to an applied load is given as 

( 2.11 ) 

For a material behaviour expressed by the constitutive equation 

( 2.12) 

Using equivalent stresses and strains., equation (2.11) can be written as 

( 2.13) 

Further manipulation yields the reference stress (or "effective generalised stress") or the 

functional that forms the basis of the theorem of nesting surfaces (Calladine and Drucker, 

1963; Boyle, 1982) and is given as 

( 2.14) 
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The theorem essentially states that the functional is strictly monotonically increasing with 

the exponent n. Generally, if for a given stress space having hypersurfaces Qe( a-ij) = 

constan4 then for increasing n they must 'nest' inside each other as 

( 2.15 ) 

In other words, the envelope defining this stress space has two surfaces. It is bound on 

the outside by surface, n = 1, which is analogous to linear elasticity and on the inside by 

surface n = oo, which is the yield surface, assuming plasticity occurs at Qe = constant. 

For a linear elastic material, n = 1 and the effective generalised stress is given as 

I 

Q. =[:T I.r tr;dv r ( 2.16) 

To illustrate the notion of bounding surfaces that correspond to linear elasticity and 

perfect plasticity, consider the statically determinate structure shown in Figure 2.4. The 

two bars are of equal length with each pin-jointed to a rigid foundation. The loads Q1 and 

Q2 are applied at the central pin. The stress in each bar, assuming the cross-sectional 

areas are the same is given as 

( 2.17) 

Thus, we can write the generalised effective stress as 
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( 2.18 ) 

where V = 2LA. 

Figure 2.4: A two bar structure with pinned joints 

For a linear elastic material n = 1, 

- ~ +~ ( J
2 ( Jl 

Qe - .J2A .fiA ( 2.19) 

For a plastic material n = oo 

( 2.20) 
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If the effective stress is assumed to be unity (Qe = 1 ), then the bounding surfaces n = 1, n 

= oo and also, n = 3 can be defined to demonstrate the nesting effect as shown in Figure 

2.5. Also,the equation Qe/- ~ Qe 5limQe is verified. 
rr-1 n-+<Xl 

A 
I I Q2 
lv'U 

1 

J-1 
I 

Figure 2.5: Nesting surfaces in a two bar structure for generalised loading 
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Chapter 3 

Robust Techniques in Limit Load Determination 

Robust methods of evaluating limit loads are highly attractive when compared with the 

alternative analytical or non-linear finite element methods for complex problems. The 

robust methods are relatively simple to implement and evaluate limit loads that account 

for material non-Iinearities such as structural plasticity. The solution process is carried 

out as a set of static analyses, which ensures a stable process without convergence 

difficulties. Hence, solutions to complex problems can be obtained quickly and easily. 

Robust techniques used in the present thesis have been explored mainly for application to 

pressure vessel design. The objective of this thesis is to explore the effectiveness of 

using these robust methods to evaluate limit loads for ship structures. 
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3.1 Reduced Modulus Techniques 

The use of robust methods in limit design_ began in 1981 with the development of a 

reduced modulus technique to categorise stresses in pressure vessels (Jones and Dhalla, 

1981). A technique was developed to classify local clamp induced stresses in piping used 

in Liquid Metal Fast Breeder Reactors. It was found that clamp induced stresses 

redistribute due to material or geometric non-linearity and are therefore categorised as 

secondary. More importantly, however, it was found that the inelastic response of a 

structure could be investigated by systematically weakening the elastic modulus in the 

highly loaded regions of the structure. Comparisons with inelastic analysis indicated that 

this technique accurately simulated the inelastic behaviour of the clamped pipe for the 

purposes of design (Mackenzie and Boyle, 1993). 

This procedure was extended to analyse the inelastic response and follow up 

characteristics of piping systems. The analysis involved progressively modifying the 

elastic modulus at each stage by performing repeated linear elastic analyses (Dhalla, 

1984, and Severud, 1984). Dhalla later directed his efforts toward developing a simple 

procedure for classifying stresses at elevated temperatures using linear elastic analysis 

(Dhalla, 1987). The procedure was to carry out an initial elastic analysis and to identify 

the effective stress OA and strain 6A at the highly loaded locations. The inelastic strain &p 

was then estimated based on the calculated elastic stress. This strain may be a maximum 

strain for the assumed load control behaviour or a specific limit such as a 1% membrane 

strain defined in the code. The minimum secant modulus was then calculated as 
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&p ( 3.1 ) 

where OA is the element stress and &p is the estimated inelastic strain. At least three new 

values of reduced moduli were then defined between this minimum secant modulus and 

the original Young's modulus, and applied to the highest stressed regions of the structure. 

This procedure establishes a relaxation trend with repeated iterations. 

Marriott (1988) proposed a reduced modulus method for determining primary stresses in 

pressure vessel components and highlighted the possibility of determining limit loads. 

The analysis involved performing an initial elastic analysis and identifying all elements 

having stresses above the code allowable. The elastic modulus of these elements would 

be reduced on an element by element basis using the equation 

E =E Sm 
R 0 SI 

( 3.2) 

where Eo is the previous value of the modulus, Sm is the code allowable stress, and S/ is 

the element stress intensity. A second analysis would be carried out, evaluating a new 

stress distribution followed by a readjustment of the elastic moduli of critically stressed 

elements. This procedure would be iterated until the maximum stress intensity was less 

than Sm or some other convergence criteria. Reducing stresses in the structure so that the 

stresses are everywhere below the allowable or yield stress of the material suggests that a 

statically admissible stress field exists. Thus, the procedure of modulus reduction is one 

that yields a lower bound limit load, provided all stresses are everywhere below yield. 
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3.2 Generalised Local Stress Strain (GLOSS) 

Several papers by Seshadri et al. have applied the reduced modulus procedure in a 

number of areas. Elastic modulus adjustment techniques were developed with the 

introduction of a method of analysis called the Generalised Local Stress Strain (GLOSS) 

Analysis (Seshadri and K.izhatil 1990; Kizhatil and Seshadri 1991; Seshadri 1990). The 

typical GLOSS diagram is shown in Figure 3.1. 
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Figure 3.1: GLOSS diagram illustrating follmw-up angle 

The understanding behind the method is that inelastic stresses at given locations in a 

structure redistribute following a uniaxial stress relaxation pra.cess. Assuming an elastic 

perfectly plastic material and pure deformation control, inelasticity would cause stresses 

to relax to ( oe)i while maintaining strain at the original leveL The method suggests that 
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this inelastic effect can be incorporated in an elastic analysis by modifying the elastic 

modulus of a pseudo-elastically stressed element using the scheme 

( 3.3) 

where ( CTe)j is an arbitrarily chosen stress to modify the elastic modul~, ae; is the 

equivalent element stresses, and Eo is the previous value of the Young's modulus for an 

element. It was demonstrated that reduced modulus methods predict inelastic effects 

with sufficient accuracy in pressure component design. Stress categorisation procedures 

were also proposed. 

3.3 Elastic Compensation Method 

Mackenzie and Boyle used a reduced modulus technique to develop a method of 

estimating limit loads using a sequence of elastic finite element analyses (Mackenzie and 

Boyle, 1993). The method, termed elastic compensation, aims to evaluate a lower bound 

limit load that satisfies the lower bound theorem, producing a statically admissible stress 

field. The analysis aims at selectively reducing (or iterating) the elastic modulus of local 

pseudo-elastic stressed elements to redistribute the stresses in the structure and to 

synthesise the formation of a limit state stress distribution. Iteration zero would be the 

first of a series of linear elastic analyses. The modulus adjustment or modification is 

carried out as 
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( 3.4) 

where Git(i-IJ is the stress corresponding to the previous modulus E(i-IJ and OOrb is a stress 

level chosen to redistribute or reduce the stress. Provided Oizrb is carefully selected~ 

consecutive iterations should result in a net decrease in the maximum stress in the 

structure. Several iterations are carried out until the lowest value of the maximum stress 

in the structure is evaluated (peak stresses no longer reduce with increased iterations). 

Since the analysis giving CTmar is an elastic analysis, the resultant stress is proportional to 

the applied load P, given as 

O"max = jJP ( 3.5) 

where f1 is the proportionality constant based on geometry and loading conditions for the 

fmal analysis. To ensure a statically admissible stress field, the stresses in the structure 

must be everywhere equal to or less than yield. Therefore, an applied load satisfying this 

condition is a limit load given as 

( 3.6) 

Thus from equations {3.5) and (3.6) the expression for the limit load is 

( 3.7) 
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Mackenzie and Boyle demonstrated that the use of the elastic compensation method with 

the lower bound limit load theorem was very effective. The solutions were exact for 

simple components and sufficiently accurate for more complex structures analysed using 

FEA. However, an analyst must use caution in selecting a load or a limiting stress in 

defining the modulus modification function. 

3.4 GLOSS R-Node Method 

Seshadri (1991) proposed a reduced modulus method called the GLOSS r-node method to 

give approximate estimates of a limit load. The r-nodes are identified as load controlled 

locations within a structure, and the growth of an r-node peak (and the associated 

equivalent stress value) can characterise the nature of a plastic collapse mechanism. The 

locations of the r-node peaks indicate the precise positions of plastic hinges that would 

form in the structure. 

3.4.1 Redistribution Nodes and Load Control 

The basis for this work (Seshadri and Mangalaramanan, 1997) began in 1961 when 

Schulte recognised that in the solution of a creep analysis of beams, certain points in the 

cross section maintained the same stress level as the solution progressed from the initial 

elastic solution to the final stationary solution (Schulte, 1961). These points were later 

labelled "skeletal points" and were defined as locations within a structure where little or 

no change in stress levels occurred at intermediate states between the initial elastic and 
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final fully plastic (Marriott and Keckie, 1964). Seshadri and Marriott (1993), despite the 

belief that there was no significance attached to skeletal points, studied the notion of 

reference stress (or r-node stress) and limit loads, and demonstrated a unifying 

relationship based on the load-controlled nature of the r-nodes. 

Two types of controlled stresses within a structure are load-controlled and deformation 

controlled. Load-controlled stresses are induced stresses, which preserve equilibrium 

with externally applied forces and moment and are statically determinate. Deformation 

controlled stresses result from statically indeterminate actions. Once plasticity occurs, 

the statically indeterminate stresses redistribute themselves throughout the component or 

structure, except at the r-nodes which are statically determinate. On the GLOSS diagram 

in Figure 3.1, the r-nodes are positions where the follow up angle &would be 90 degrees 

indicating locations where stress levels remained unchanged from one iteration to the 

next (Managalaramanan and Seshadri, 1997). 

3.4.2 Plastic Collapse of Structures 

To illustrate the concept of plastic collapse and its relationship with r-nodes, and hence 

limit loads, consider a rectangular beam cross-section subject to pure bending. The 

material constitutive relationship is given by 

( 3.8) 
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where B and n are material parameters. If it is assumed that the structure behaves 

elastically, then n = 1, but if perfect plasticity is assumed then n = oo. The variations of 

the stress distributions for the beam are given in Figure 3 .2. The intersection of the 

stress distributions for n = 1 and n = oo is the location of the redistribution or r-node~ and 

all other stress distributions corresponding to all other n 's are assumed to passed through 

the same node (Mangalaramanan and Seshadri, 1997). 

n=oo n= l 

Note: 

Pseudo-elastic 
stress distribution 

Points A and B are 
r-node locations 

Figure 3.2: R-oode locations in a beam subject to bending 
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The method suggests that when inelasticity occurs, the inelastic stress will redistribute 

throughout the component or structure, except at specific locations where the stress is 

essentially statically determinate. These locations are called redistribution nodes or r-

nodes and represent load-controlled locations within the structure. The reference stress, 

or effective stress, at the r-node is related to the yield stress of an elastic perfectly plastic 

material by the expression 

( 3.9) 
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where p < 1 prior to the formation of a plastic hinge, and p = I when a plastic hinge 

forms. Since the r-nodes are load-controlled locations within a structure, the induced 

effective stresses are proportional to the applied load( s) given as 

(o-et-node = YrP 

(o-e)r-node = Yz {P,M} (3.10) 

where n and r2 are scaling parameters dependent on the loading, geometric 

configurations and material behaviour (Seshadri and Fernando, 1992). For an elastic 

perfectly plastic material, when the Von Mises equivalent r-node stress reaches yield 

stress, the externally applied load will correspond to a limit load given as 

o-y = YrPL 

Uy = Yz {PL,M L} 
( 3.11 ) 

Therefore from the r-node stress evaluated for a given load P, the limit load PL for a 

statically determinate structure is given as 

p -[ Uy ]p 
L - ( O'e) r-node 

{P,M}L = [ o-y ]{P,M} 
( o-e ) r-node 

( 3.12) 

If there are N r-node peaks or plastic hinge locations within a structure, the formation of a 

plastic collapse mechanism can be tracked by rearranging the peak equivalent reference 
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stresses in descending order. The equivalent reference stress used to evaluate the limit 

load can then be evaluated as the average of the r-node peaks in the structure and given as 

( 3.13 ) 

The limit load is therefore evaluated as 

( 3.14) 

Non-peak r-node stresses will also exist in a structure and may represent a large portion 

or volume of the structure. However, while these nodes are also load-controlled locations, 

they may not lead to cross-sectional plasticity (Managalaramanan and Seshadri, 1997). 

3.4.3 Location of the R-Nodes 

The r-node method provides a simple and systematic means of carrying out inelastic 

analyses of mechanical components and structures based on just two linear elastic finite 

element analyses. The first linear elastic analysis is carried out and a pseudo-elastic 

stress distribution 1 evaluated. The elastic modulus of each element within the model is 

modified according to the equation 

1 The elastic stress distribution for a structure evaluated numerically can be termed pseudo-elastic since it 

does not identify yielding limits and is hence not representative of the true stress-strain relationship for a 

structure. The stress-strain relationship for the structure is elastic for any level of applied load. 
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( 3.i5) 

where Eo is the original elastic modulus, oe is the element stress and O'izrb is an arbitrarily 

chosen stress to redistribute the pseudo-elastic stresses in the structure. 

A second analysis is performed evaluating a new stress distribution, which is compared to 

the stress distribution from the first analysis. Based on two consecutive linear elastic 

analyses, locations where stresses of the same element do not change (Llu = 0) are 

identified as r-nodes. In other words, the follow-up angle (} on the GLOSS diagram 

(Figure 3.1) is determined for each element and elements having 8= 90° are be identified 

as r-nodes. Seshadri later studied the locations of r-nodes within a structure, and provided 

guidance on the location of true r-nodes within any structure (Seshadri, 1997). The 

GLOSS r-node method has been used to evaluate limit loads for various pressure vessel 

components, (Seshadri, 1991; Seshadri and Fernando, 1992; Seshadri and Marriott, 

1993), framed structures and arches (Fernando and Seshadri, 1993), and symmetric and 

non-symmetric plate structures (Mangalaramanan and Seshadri, 1995). An r-node 

procedure has also been developed to perform a minimum weight design of mechanical 

components and structures using r-nodes (Mangalaramanan and Seshadri, 1997). 

3.5 Extended Lower Bound Theorem 

Mura and Lee (1965) proposed a method of determining limit loads using an extended 

lower bound theorem derived based on variational principles. They used this theorem to 
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evaluate the limit load of a structure subject to tension and obtained good limit load 

estimates. However, for more complicated structures, a procedure more generic in nature 

was necessary. Seshadri and Managalaramanan (1997) adopted the elastic modulus 

modification procedures in conjunction with the extended lower bound theorem and 

evaluated limit loads directly based on linear elastic stress distributions. The use of 

elastic modulus modification procedures ensured static admissibility in the evaluated 

stress distributions. 

Mura et al., (1965), demonstrated that the factors m0
, .tf and I' in the functional 

( 3.16) 

can be determined by rendering the function stationary, where f(sg) = .!_s;s; + k 2 and 
2 

!C = a/ 13. The formulation of the function F is given in Appendix A. 

In these equations, s g is the linear elastic stress distribution, which corresponds to an 

applied traction m0 P. If s~ is a statically admissible stress distribution corresponding to 

an applied traction P, then m 0 P would correspond to m 0s; , making it clear that 

o o-o 
sif = m sif ( 3.17) 

Therefore, equation (3 .16) can be rewritten as 

( 3.18) 
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The Von Mises equivalent for uniaxial state of stress yields the equations 

2 
2 (jy 

k =-
3 

Substituting equations (3.19) and (3.20) into equation (3.18) gives 

( 3.19) 

( 3.20) 

( 3.21 ) 

If the functional F is rendered stationary, the factors m0
, Ji', and I can be evaluated using 

the equations 

aF =O 
8m 0 ' 

( 3.22) 

Evaluating leads to 

( 3.23) 

( 3.24) 

where o-~kand LlV~care the Von Mises equivalent stresses and volumes of the respective 

elements in a given FEA discritised model (Seshadri and Mangalaramanan, 1997). 
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Comparing this formulation for m0 with that obtained by Calladine and Drucker ( 1961) 

and Boyle (1982) using the theorem of nesting surfaces, equation (2.16)7 it is seen that 

( 3.25) 

This implies that a monotonic increase in the reference stress in a structure will result in a 

monotonic decrease in m0 with increasing n. Since equation (2.14) gives a lower bound 

on the reference stress for n = oo, then m0 corresponding to n = 1 is an upper bound 

multiplier for limit loads. 

The lower bound theorem according to Mura et al. (1965) is given as 

( 3.26) 

Substitution of equations (2.5), (3 .19) and (3 .20) into equation (3 .26) and simplifying 

gives 

( 3.27) 

where (a-~ )M is the maximum equivalent stress in a structure for a prescribed load P. The 

evaluation of equations (3.24) and (3.27) becomes trivial when evaluated using linear 

elastic FEA. The limit load can then be evaluated as 

PLM =m'P ( 3.28) 
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It is also clear from the above formulation that the limit load is bound by 

( 3.29) 

3.6 maMethod 

In an attempt to improve lower bound estimates of limit loads, a method making use of 

just two linear elastic analyses was developed, designated as the ma method (Seshadri 

and Managalaramanan, 1997). The notion of reference volume is used in conjunction 

with the theorem of nesting surfaces to evaluate improved lower and upper bounds on the 

limit load. Also, reference volume evaluated for two linear elastic analyses is used to 

account for localised collapse, along with the technique ~~leapfrogging" to a limit state. 

These concepts, in conjunction with the elastic modulus adjustment technique (Seshadri 

and Fernando, 1992) are used to obtain improved lower estimates of the limit load. 

3.6.1 Theorem of Nesting Surfaces 

The theorem of nesting surfaces formally discussed in the previous chapter is generally 

illustrated with the equation 

I 

Q, = [ :T Ivr u;•• dV t ( 3.30) 

where Qe is the effective generalised stress which increases monotonically with the 

exponent n. 
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The theorem of nesting surfaces states that "if for a given stress space having a 

hypersurface Qe( crij) = constant, then for increasing n they must 'nest' inside each other 

as 

( 3.31 ) 

The stress space is bound on the outside surface n = 1, which is analogous to linear 

elasticity and on the inside surface n = co, which is the yield surface, assuming plasticity 

occurs at Qe = constant. For a linear elastic material, n = I and the effective generalised 

stress is given as 

1 

Q, =UT LT u;dv r ( 3.32) 

The same stress given as a FEA discretised scheme is given as 

( 3.33 ) 

where N is the number of elements and V r is the total volume of the component or 

structure. 
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3.6.2 Reference Volume and Local Plastic Collapse 

Structures that collapse as a result of inelastic action do so because a significant portion 

or section of the structure has yielded. Although the whole structure is considered 

collapsed, only a local region has experienced inelasticity. Thus, the upper bound limit 

load multiplier m0
, evaluated on the basis of total volume (Vr), will be overestimated and 

the lower bound limit load multiplier m 'will be underestimated. 

The concept of reference volume is introduced to identify the 'kinematically active' 

portion of the structure that is influenced most by plastic action (Seshadri and 

Mangalaramanan, 1997). It basically confines the zones of plastic collapse to a local sub 

region of the structure as shown in Figure 3.3. Thus the magnitude of the upper bound 

multiplier would be based on the sub-volume given as 

(3.34) 

To effectively carry out the various summations in identifying this region of plasticity, it 

is necessary to carry out the following sequence based on decreasing energy dissipation: 

( 3.35) 

where N represents the sequential ordering of the element energy levels in a decreasing 

manner and e is the element number. 
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Figure 3.3: Total and reference volumes 

If we assume only one element for the structure then fl=l and equation (3.24) evaluates a 

classical lower bound given as 

(3.36) 

3.6.3 Iteration Variable, l; 

It is necessary to define the iteration variable ( 0 such that infinitesimal changes to the 

elastic modulus of the various elements during subsequent linear elastic analyses (two, 

three, etc.) would induce a change in "or ~"(Seshadri and Mangalaramanan, 1997). The 

change in ~(would depend on the nature of the modulus adjustments. 
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It is understood that with iterations of the elastic modulus and consecutive linear elastic 

FEA that the peak stresses in the resultant stress distribution will decrease and level off. 

If this is true, then for the degenerate case2 of equation (3.36), an increase in t;'\vould 

result in an increase in the upper bound multiplier m0
• However, based on total volume, 

m0 decreases with increased t;. Therefore, there must be some sub-volume, ( VR), such 

that ~ v; < VR ~ Vr where the multiplier m0 is invariant for two consecutive linear elastic 

finite element analyses and the theorem of nesting surfaces is barely satisfied. The 

identification of the reference volume based on the upper bound multiplier m0 evaluated 

for two consecutive iterations is illustrated in Figure 3.4. 

Multiplier 
(mo) 

-+ 
I 

Validity ofTheorem 
ofNesting Surfaces 

Volume(V) 

I 

I 

>I 

Figure 3.4: Determination of reference volume Va and Mura's upper bound 
multiplier m 0 (V R) on the basis of two consecutive linear elastic analyses such that 

the theorem of nesting surfaces is barely satisfied 

l Degenerate case refers to the evaluating of limit loads or m0 based on the maximum stress in the structure. 
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3.6.4 Improved Lower Bound Limit Load- maMethod 

The rna method is essentially an improved limit load formulation~ which is extended from 

Mura's variational formulation. The rna multiplier can be obtained by simply "leap-

fragging" to the limit state on the basis of just two linear elastic finite element analysis 

(Seshadri and Mangalaramanan, 1997). 

The elastic modulus of the elements are modified in the same manner as the GLOSS r-

node method according to the equation 

( 3.37) 

where q is an arbitrarily chosen stress and q is a modulus adjustment index (nominally 

taken as 1). Elements are modified on an element by element basis (k = 1 toN for N 

elements). Seshadri and Mangalaramanan (1997) have shown that for q < 1, the 

behaviour of sensitive structures can be stabilised. 

On the basis of two consecutive linear elastic finite element analyses, and the equation 

for the upper bound multiplier given as 

( 3.38) 

rn° 1 and m0 
11 Can be obtained as 
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( 3.39) 

where c1 and cz are constants. The theorem of nesting surfaces asserts that 

m~ ~ m~ ~ m, where m is the exact factor of safety. 

The lower bound formula according toM~ et al. (1965) as a function of the iteration 

variable(?) can be expressed as 

(3.40) 

where u~ (() = ( o-~) M is the maximum equivalent stress at iteration ?;. All quantities 

m', m0
, and o-M are functions of(. Unlike the upper bound multiplier, the lower bound 

multiplier should increase with successive iterations where m; ~ m; ~ m . 

With successive iterations (beyond two), m' and m0 should converge to the exact safety 

factor or multiplier m for a given structural geometry and loading conditions as shown in 

Figure 3.5. 

Differentiating both sides of equation (3.40) with respect to ?will give 

dm' am' dm 0 am' do-~ --= ----+----
d? 8m 0 d? au~ d? 

( 3.41 ) 
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This equation~ written as finite differences, gives 

Multiplier 

A 
! 

I 

Iteration Variable (l;) 

( 3.42) 

Exact Multiplier (m) 

Figure 3.5: Variation of m 'and m 0 with linear elastic FEA iterations 

This equation is valid for any iteration. Next we defme the following quantities in terms 

t!m' = m -m~ a 1 

t!m 0 =m -m~ a 1 
( 3.43) 
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where i subscript refers to the iterations number. It is clear from equation (3 .27) that with 

increased iterations as m0 ~ ma and m' ~ ma, and insisting that u~a: ~ uy I ma, that 

ma will be a lower bound. 

Making use of equations (3.40), (3.42) and (3.43) and carrying out the necessary 

algebraic manipulations, the following quadratic equation can be obtained: 

Am; +Bma +C =0 ( 3.44) 

where 

o 4 -o 4 o 2 -o 2 
A =(m;) (CYM;) +(m;) (UM;) -1 

o 3 -o 3 
B =-8(m;) (O"M;) 

and 

The coefficients A, B, and C can be evaluated based on the results of any linear elastic 

FEA. To ensure real root, the discriminate must be greater than zero. 

( 3.45) 

The notion of "leapfrogging'' using two consecutive linear elastic FEA iterations is 

illustrated in Figure 3.6. It is possible to carry out this formulation on the basis of one 

linear elastic FEA, but results may be improved with the notion of reference volume 

determined on the basis of two consecutive analyses. Instead of evaluating the upper 
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bound multiplier on the basis of the total volume of the structure, a slightly more 

conservative estimate can be evaluated for some sub-volume of local plasticity involving 

a elements (a multiplier m based on a elements - ma). It is worth noting that increased 

iterations of the elastic modulus (up to three or four) would result in a more relaxed 

structure and hence a further improved estimate of the ma lower bound multiplier. 

l 
c:-i 

I 

~i+l 

Iteration Variable (() 

Exact 
Multiplier (m) 

-

Figure 3.6: Leapfrogging to a near limit state using elastic FEA iterations 

3.6.5 Classes of Components and Structures 

It is useful to carry out a number of iterations of elastic finite element analysis to assess 

the behaviour of the structure both locally and globally (SeshacL.-i, 1991; Seshadri and 
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Fernando, 1992). The analyst can observe the behaviour of the upper and lower limit 

load multipliers m0
, m 'and the maximum equivalent stresses CTM as a function of the 

iteration number ( t;;) to ensure convergence criteria and the theorem of nesting surfaces 

are satisfied. Seshadri and Mangalaramanan ( 1997) suggest that a large number of 

iterations are not necessary because the behaviour is dependent on the geometry and 

loading configurations as well as the elastic modulus modification scheme. However, 

increased iterations do progressively relax the structure and hence enhance the accuracy 

of the limit load estimates. What is important for GLOSS r-node and ma methods is that 

for any two consecutive iterations, proper convergence behaviour and the theorem of 

nesting surfaces are satisfied. The trend of convergence of any two consecutive linear 

elastic analyses is necessary for setting bounds on the structure. They suggest 

categorising the structure as demonstrating either a Class I, Class II or Class m type 

behaviour. 

3.6.5.1 Class I 

Class I type structures are categorised by monotonic convergence behaviour. Typically, 

ma limit load estimates of structures having this classification are reliable. The 

convergence behaviour is based on the inequalities 

dm 0 

--:SO 
d~ 

dm' ~O 
d~ 

do-1, 0 --< 
d~ -
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3.6.5.2 Class ll 

Structures categorised as Class II type exhibit a behaviour where the maximum 

equivalent stress in the structure increases with an increase in the iteration number l; or a 

further iteration of elastic moduli of the elements. The classification is based on the 

inequalities 

dm 0 

--s;O 
d( 

dm' 

d( 
Fluctuate 

du0 
_2!_ 

d( 

(3.47) 

Should a structure be classified as a Class II type, reducing the elastic modulus 

adjustment index number (q) from 1 to 0.5 or 0.25 may result in the structure exhibiting a 

Class I type behaviour. 

3.6.5.3 Class ill 

Class ill type structures do not follow normal convergence criteria, thus violating the 

theorem of nesting surfaces. Results in such cases are invalid. These structures are 

categorised by the inequalities 
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dm 0 

-->0 
d(' 

dm' 

Fluctuate 

( 3.48) 

As with Class II type structures~ changing or reducing the elastic modulus adjustment 

index number (q) from 1 to 0.5 or 0.25 may result in the structure exhibiting a Class I 

type behaviour. 

3. 7 Progressive Modulus Reduction (PMR) Method 

Another method of modulus reduction used in limit load determination is the Progressive 

Modulus Reduction (PMR) which is an extension to the elastic compensation method 

(Mackenzie and Boyle, 1993; Marriott, 1988) and GLOSS r-node method (Seshadri, 1991 

and Mangalaramanan and Seshadri, 1997). As previously stated, when a structure is 

loaded beyond its yield capacity, the stress redistribution that takes place because of 

inelastic effects should be accounted for in the analysis. This effect can be accounted for 

by systematically reducing the elastic modulus of elements having pseudo-elastic stresses 

(stress exceeding the yield stress of the material) with several iterations. This essentially 

mimics the form of a limit state stress distribution. 

The main purpose of the PMR method was to use stress relaxation techniques to evaluate 

the load deflection curve for a structure. The growth of the yield zone up to the point of 
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plastic collapse was captured by progressively increasing the applied load and iterating 

the elastic modulus until static admissibility is achieved. 

This method satisfies the lower bound static admissibility criteria which states that if the 

maximum Von Mises equivalent stresses are everywhere below yield, and equilibrium is 

attained between internal forces and external applied loads such that the stress 

distribution is statically admissible, the applied load is a lower bound. 

The PMR method models the growth of the plasticity zone in an iterative fashion. An 

initial analysis is carried out for a given geometry and loading conditions and a stress 

distribution is evaluated. As with GLOSS and r-node methods, the elastic modulus of the 

elements having stresses above the yield stress uy of the material are reduced according 

to E; = ./{ oe. uy), normally given as 

( 3.49) 

A second analysis is carried out with the new stiffuess distribution E,- (i.e., yield zone) 

and a new stress distribution is evaluated. The process is iterated until static admissibility 

is achieved (element stresses are in equilibrium with the external load and are everywhere 

below yield). In this way a growing yield or plasticity zone is synthesised in a nominally 

elastic modeL This iteration process is illustrated in Figure 3.7. By choosing a reference 

stress uR that is slightly below yield (i.e., replacing Uy in equation (3 .49) with UR -

0.95 uy), the iteration process can be optimised. This increases the extent of relaxation for 
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a given iteration and hence reduces the number of iterations required to achieve 

convergence or the reducing the pseudo-elastic stresses (i.e., oe > o-y) to the yield stress 

level. 

The PMR technique is not subject to the possibility of local instabilities. It evaluates the 

limit load and the non-linear response of a structure by progressively increasing the 

applied load and iterating the elastic modulus at each stage until static admissibility is 

achieved. 

The method at present does not account for large deformations, although this is an area 

for further development. The PMR method is another suitable way to compare the plastic 

hinge load values with a more precise estimate of the true load-deflection behaviour. The 

algorithmic approach to implementing the technique is discussed in the next chapter. 
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Chapter 4 

Structural Analysis Using Finite Element Analysis 
Tools 

4.1 Elastic Finite Element Analysis 

With the onset of finite element analysis (FEA):. the classical approach to elastic design 

became more versatile. Where analytical solutions required structures to be grossly 

simplified into individual components for analysis, FEA made it possible to model and 

analyse complex structures accounting for interaction effects between the various 

components. 

Conventional methods of ship design use a classical approach for evaluating limit loads. 

Once a component or element in the structural model has yielded, the structure is 

assumed to have failed. Based on the elastic modulus and the yield stress for the material, 

a static solution can be easily obtained. The analysis evaluates a stress strain distribution 

as a function of the geometry and loading conditions. Since the applied load is 

proportional to the stress distribution in the structure, the material yield stress is 

proportional to the limit load of the structure. Therefore, the stress field that corresponds 

-54-



to the limit load is statically admissible (i.e., the stress everywhere in the structure is 

below yiel~ and equilibrium conditions between the applied load and internal stresses are 

satisfied). The limit load of a structure for a given geometry and applied load can be 

evaluated as 

p =P tTy 
L 

{Tmax ( 4.1 ) 

where P is the applied loa~ cry is yield stress of the material and CTMAX is the maximum 

evaluated stress in the structure. This is a very simple yet improved method of analysing 

ship structures. However, the results are often over conservative. The level of 

conservatism is influenced by the number of elements used in the model and the assumed 

boundary conditions. In the case of a ship's hull, ideally the analyst would model the 

complete hull structure with a large number of elements, but at the cost of enormous 

amount of processing time. In practice, the complete hull would be modelled with a 

moderate number of elements to quantify a global behaviour, and the results used to 

define bounding conditions for a more detailed model of a section of the hull. 

A further cause of over-conservatism in using elastic FEA is ignoring the inelastic effects 

and structural plasticity. To account for material inelastic effects, full non-linear FEA can 

be used but at the expense of extended processing time. 
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4.2 Non-linear Finite Element Analysis 

Full non-linear finite element analysis can be used to analyse ship structures. Detailed 

modelling with provision for inelastic effects makes it possible to simulate the behaviour 

of a structure having applied loads well in excess of the yielding limit. The ability to 

assess the added capacity of a structure beyond yield is important in reducing 

conservatism in the design. With appropriate models, the analyst can provide guidance 

on a structure's true behaviour at the initial design phase, at various construction phases 

and during deployment or operation. 

In the present study, full non-linear finite element analysis was carried out using the finite 

element software ANSYS (1992). The ANSYS program performs non-linear analyses by 

solving a series of linear approximations (equations) to the non-linear problem, where 

each successive approximation is corrected based on the previous results. 

According to the guidelines set out in the ANSYS user manual (ANSYS, 1992), an 

approach to non-linear solutions is to subdivide the applied load into a series of load 

increments. The load increments can then be applied over several load steps or several 

sub-steps within a load step. At the completion of each incremental solution, the program 

adjusts the stiffuess matrix to reflect the non-linear changes in structural stiffness before 

proceeding to the next load increment. To minimise error that can accumulate with each 

load increment, causing the final result to be out of equilibrium, a Newton-Raphson 

method of iterations was used. This method drives the solution to an equilibrium 

convergence (or tolerance limit) at the end of each load step. Before each solution, the 
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Newton-Raphson method evaluates the out-of-balance load vector or the difference 

between the restoring forces (loads corresponding to the element stresses) and the applied 

loads. If the convergence criteria (limit on allowable difference) are not satisfied~ the 

out-of-balance load vector is re-evaluate~ the stiffuess matrix is updated and a new 

solution is obtained. Iterations continue until convergence criteria is met. The load 

increases until convergence criteria cannot be satisfied for a given load step at which 

point the analysis terminates. The convergence can be enhanced using automatic time 

stepping, and bisection. 

Material non-linearities were accounted for in this thesis by assuming the material of the 

structures to be elastic-perfectly plastic. An example of a run file for a full non-linear 

analysis is given Appendix C. 

4.3 Robust Techniques: An Improved Lower Bound Approach 

The previous chapter discussed the various robust methods that can be used in 

conjunction with linear elastic FEA to evaluate lower bound limit loads that account for 

inelasticity in the structure. Three of these techniques are implemented with linear elastic 

FEA. These include Progressive Modulus Reduction (PMR), GLOSS R-Node and the 

ma-method. Each of these methods are essentially modulus reduction methods that 

satisfy the criteria identified for a lower bound liwit load theorem and are therefore an 

improvement to the traditional classical approach to limit load analysis. The lower bound 

limit load theorem essentially states that for a limit load to be lower bound and valid, the 
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stress distribution evaluated for a given geometry and applied loading must be ustatically 

admissible." This means that equilibrium is attained between the internal and external 

forces, and the stresses are everywhere below the yield stress of the structure's materiaL 

4.3.1 Progressive Modulus Reduction (PMR) Method 

One robust method of analysing ship structures is the Progressive Modulus Reduction 

(P:MR) method, which is an extension of the elastic compensation method and GLOSS r­

node methods. While robust methods, including P~ use modulus reduction algorithms 

to mimic a limit state stress distribution (Marriott, 1988; Mackenzie and Boyle, 1993; 

Seshadri, 1991; Mangalaraman and Seshadri, 1997), the PMR method used in this thesis 

essentially models the growth of the yield or plastic zone in an iterative fashion up to 

plastic collapse. 

The method evaluates the inelastic response of the structure to an applied load. The 

applied load is increased until a limit load is reached and static admissibility cannot be 

achieved (the maximum stress cannot be relaxed to the material yield level). The applied 

load corresponding to the last converging solution is the limit load for the structure. The 

ANSYS runfile used to implement the PMR algorithm for various structures is given in 

Appendix Dl and Dl-1. 

The algorithm for the PMR method is outlined below: 
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1. Carry out initial linear elastic analysis evaluating the stress distribution·associated 

with the geometry and loading conditions. All pseudo-elastic element equivalent 

stresses (i.e., ae > uy) are identified. 

2. Adjust the modulus of all the pseudo-elastically stressed elements according to 

the equation (see Appendix C 1-l) 

( 4.2) 

where Eo is the original elastic modulus, ae is the equivalent element stress, G"arb is 

the arbitrary stress chosen to relax the elastic modulus of the pseudo-elastically 

stressed elements (nominally taken as the yield stress uy) and q is the modulus 

adjustment index (nominally taken to be unity). A second analysis is carried out 

and a new stress distribution evaluated. As with step 1, the pseudo-elastic stresses 

are identified on an element by element basis and the elastic moduli are modified 

according to equation (4.2). Choosing G"arb slightly below uy (<5%) can reduce the 

number of iterations required to achieve convergence or static admissibility. 

3. Iterations continue until static admissibility is achieved or all stresses in the 

structure are below the yield stress ay for a given structural geometry and loading 

condition. The deflection of the structure can then be determined. 

4. The applied load is increased in conjunction with steps 1 to 3 until further 

increases do not satisfy the conditions necessary to achieve static admissibility. 
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4.3.2 GLOSS R-Node Method 

The GLOSS r-node method is essentially a modulus modification technique. However, 

with the r-node method, all element moduli are modified and not just pseudo-elastically 

stressed elements. This redistributes the stresses about specific load controlled locations 

within the structure. These load-controlled locations are identified as regions where the 

stress does not change with consecutive linear elastic finite element analyses and are 

called redistribution nodes orr-nodes. The ANSYS run file used to implement the r-node 

algorithm for various structures is given in Appendix D2 and 02-1. The algorithmic 

procedure for the GLOSS r-node method is outlined below (Mangalaramanan and 

Seshadri, 1997): 

1. Carry out initial linear elastic analysis evaluating the stress distribution associated 

with the geometry and loading condition for the structure. Element stresses are 

stored in an output file for post-processing involving identification of r-node 

locations. 

2. Adjust the modulus of each element on an element by element basis regardless of 

the magnitude of the stress according to the equation (see Appendix 02-1) 

( 4.3) 

where Eo is the original elastic modulus, oe is the element stress, CTarb is an 

arbitrarily chosen stress to redistribute the stresses in the structure and q is the 

modulus adjusnnent index (nominally taken to be 1). 
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3. Carry out a second analysis to evaluate a new equivalent stress distribution. Since 

r-nodes are Load-controlled locations within a structure, they can be isolated as 

elements where the follow up angle (}from one analysis to the next is 90° or 

where the stress does not change from one analysis to the next. For simple two-

dimensional structures, only two linear elastic analyses are required, but for 

structures having more complex geometry in three dimensions, three or more 

analyses may be required (i.e., two or more iterations). Element stresses are again 

stored in an output file for post-processing involving identification of r-node 

locations. 

4. Identify the peak r-node stress locations or locations where plastic hinges will 

potentially form by plotting r-node stresses on a section by section basis. The plot 

is trivial for two-dimensional analyses (i.e., beam bending for a flat bar) but for 

three-dimensional structures or models (i.e., beams with flanges or ship grillages) 

the plot becomes complex and difficult to represent. 

5. Track the r-node stresses until a local or global collapse mechanism is detected. 

Depending on the structure and loading conditions, a mechanism may be defined 

by just one peak r-node stress (or plastic hinge) or by many peak r-node stresses 

in the modeL If N hinges must form to define a collapse mechanism in a 

structure, the effective r-node stress can be evaluated as 

( 4.4) 
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4.3.3 ma-Method 

The rna-method is essentially an improved limit load approach to Mura' s limit load. It 

predicts limit loads by leapfrogging based on two consecutive linear elastic finite element 

analyses to a limit state from which the limit load multiplier can be evaluated. As with 

the r-node method, all elastic moduli are modified on an element by element basis such 

that the stresses are permitted to redistribute about specific load controlled locations 

within the structure. Also, on the basis of two consecutive linear elastic finite element 

analyses, the sub-region of a structure exhibiting the most inelastic action can be 

identified, from which an improved upper bound multiplier m0 can be evaluated where 

the theorem of nesting surfaces is barely satisfied (Mura et al., 1965). Thus the ma 

estimate evaluated on the basis of this new upper bound multiplier m0 is an improved, 

more conservative estimate over the same multiplier evaluated on the basis of the total 

volume of the structure. The ANSYS run file used to implement the r-node algorithm for 

various structures is given in Appendix D2 and D2-l. The algorithmic procedure to 

evaluate the ma limit load multiplier is outlined as (Mangalaramanan and Seshadri, 

1997): 

1. Carry out initial linear elastic analysis evaluating the stress distribution associated 

with the geometry and applied loading. Element stresses are stored in an output 

file for post-processing. 

2. As with the r-node method, adjust the modulus of all elements on an element by 

element basis regardless of the magnitude of the stress, according to the equation 

-62-



( 4.5) 

where Eo is the original elastic modulus, oe is the element stress, ffarb is an 

arbitrarily chosen stress to redistribute the stresses in the structure and q is the 

modulus adjustment index (nominally taken to be 1). 

3. Carry out a second linear analysis to evaluate a new equivalent stress distribution. 

Element stresses are again stored in an output file for post-processing. 

4. For each linear elastic analysis, calculate energy dissipation d ~ V for each 

element in the structure and sort them in descending order. Evaluate the upper 

bound multiplier m0 for each element for each of the two consecutive analyses 

and plot the variation of m0 
1 and m0 

2 against increasing volume ~ V for both 

analyses. The volume identified at the intersection of the two curves is the 

reference volume where the theorem of nesting surfaces is barely satisfied and 

from which the reference volume upper bound multiplier m0 
R can be obtained. 

5. The upper and lower bound multipliers m0
, m 'and can then be evaluated for 

increasing volume. The trends must be checked to ensure compliance with the 

theorem of nesting surfaces. 

dm 0 

--~0 
d( 

dm' ;:::o 
d( 

du~ 
0 --< d(' -
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6. The ma multiplier can then be evaluated by solving the quadratic equation 

( 4.7) 

where 

o 4 -o 4 o 2 -o 2 
A=(mi) {UM;) +(m;) (o-M;) -1 

o 3 -o 3 
B = -8(m;) (UM;) 

o 3 -o 
C =(m;) (UMi) 

and 

The coefficients A, B, and C can be evaluated based on the results of any linear 

elastic finite element analysis. To ensure real root, the discriminant must be 

greater than zero. 

( 4.8) 

Should the structure fail to satisfy the theorem of nesting surfaces, yielding a Class II or 

Class ill type of structure, the modulus adjustment index should be reduced from 1 to 0.5 

or 0.25 and the preceding steps re-worked. 
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Chapter 5 

FEA Models and Testing Program 

5.1 Structural Models 

To explore the effectiveness of using robust methods to evaluate lower bound limit loads, 

three types of structures were analysed. These include beam type structures or main­

frame stiffeners including rectangular and flanged stiffeners, a flat bar stiffened panel, 

and an arctic icebreaker grillage. The stiffeners include a flat bar (FB) stiffener, an angle 

(L) stiffener and a tee (T) stiffener. The particulars of these are given in the following 

sections. The ANSYS input files used to generate these models are given in Appendix B. 

5.1.1 Indeterminate Beam (model- ffi) 

A statically indeterminate rectangular beam was modelled for this work. The beam 

geometry and loading conditions are illustrated in Figure 5.1, (Seshadri and 

Mangalaramanan, 1997). A uniformly distributed load was applied over the top surface 
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of the beam. The shaded or hatched regions indicate zones of plasticity that would 

develop as the beam is loaded beyond its elastic yielding limit. According to plastic 

hinge theory, the beam is considered collapsed when the two zones of plasticity develop 

until through section yielding occurs or plastic hinges form. The particulars of the beam 

are given in Table 5.1. 

Distriloutecl Loo.d - P 

Plo.sticity Spreo.d 
DeFines the Plo.st;c Zone 

Figure 5.1: Indeterminate Beam {model- ffi) 

Table 5.1: Indeterminate Beam {model- ffi) particulars 

Length(mm) 50.8 

Web Height (mm) 2.54 

Thickness (mm) 1 

Elastic Modulus (MPa) 206850 

Yield Strength (MPa) 206.85 

Applied Distributed load (N/mm) 0.1274 

-66-



5.1.2 Mainframe Stiffeners 

Three types main frame stiffeners were modelled and amalysed including a flat bar 

(model - FB), an angle (model- L) and a tee (model - T) shoewn in 

Figure 5.2, Figure 5.3 and Figure 5.4 respectively. The rmainfrarne stiffeners represent 

the structure of components that form the primary support on a ship's grillage as 

illustrated in Figure 1.1. The ends of the beams are assumed fixed on all six degrees of 

freedom indicating a rigid connection to the stringer. The .-estraining effect of the shell 

plate is modelled by restraining the nodes on the top edge: of the stiffener from lateral 

displacement. A uniformly distributed load was applied over the full length of the 

stiffener. To break lateral symmetry in the flat bar and tee stiffeners, a small eccentric 

transverse load was applied at the free edge (less than 0.5~ of the bending load). The 

particulars for the different stiffeners are listed in Table 5.2. 

Table 5.2: Mainframe stiffener pamculars 

Particular Flat Bar Angle Tee 
(model- FB) (Illlodel- L) _(model- T) 

Length(mm) 1200 1200 1200 

Web Height (nun) 200 200 200 

Web Thickness (mm) 15 15 15 

Flange Width (nun) - 60 120 

Flange Thickness (mm) - 15 15 

Elastic Modulus (MPa) 207000 207000 207000 

Yield Strength (MPa) 245 245 245 
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c:> f"";x~cl End Concli'ticn 

-cAu oon 

r.xed [nd 

C-"t< non 

Figure 5.2: Flat bar (model - FB) stiffener 

c> F"ixl!c:l End Condi'tion 
CAll DOF> 

Figure 5.3: Angle (model- L) stiffener 
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Figure 5.4: Tee (model - T) stiffener 

5.1.3 Flat Bar Stiffened Panel (model - FBSP) 

A flat bar stiffened panel was modelled and analysed as illustrated in Figure 5.5. The 

model resembles a structural assembly between two stringers and main transverse frames. 

The particulars of the panel are given in Table 5.3. The boundary conditions applied to 

the model include fixed conditions at both ends of the panel and restraining conditions 

preventing lateral displacement and axial rotation at the edges of the plate. A uniformly 

distributed load was applied over the shell plate surface. To break the lateral symmetry in 

the flat bar stiffeners, a small eccentric transverse load was applied at the free edges (less 

than 0.5% of the bending load). 
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Figure 5.5: Flat Bar Stiffened Panel (model- FBSP) 

Table 5.3: Flat bar stiffened panel (model- FBSP) particulars 

Length (mm) 1200 

Breadth (mm) 1600 

Plate thickness (mm) 15 

Stiffener: Thickness (mm) 15 

Height(mm) 200 

Spacing {mm) 400 

Young's Modulus (MPa) 207000 

Yield Strength (MPa) 245 

5.1.4 Arctic Icebreaker Grillage (model - AI G) 

A model of an arctic icebreaker grillage as shown in Figure 5.6 was also analysed. This 

model was previously analysed by Mil Systems for Transport Canada in 1995 (Bond and 

Kennedy, 1998). Their objective was to test a physical model in the lab and attempt to 

correlate the results with full non-linear analysis. 
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The grillage was analysed using robust techniques to predict the lower bound limit load 

of the structure, accounting for non-linear effects. The results were then compared to a 

full non-linear analysis, as well as full-scale lab results (Bond and Kennedy, 1998). 

Figure 5.6: ~ model of ;~n arctic icebreaker grillage (model- AI G) 

The grillage was modelled as a one quarter symmetrical panel in order to reduce the 

number of elements, nodes, and hence the total number of degrees of freedom, thereby 

reducing the computer processing time. 

The main dimensions of the test panel were 2600 x 5000 mm. The grillage (AIG) 

particulars are iisted in Table 5.4. A pressure load was applied to the structure in the lab 

spread out over 5 patches, each having an area of60,000 mm2 (200mm x 300mm), for a 
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total area of 300,000 mm2
• The fmite element model was one quarter of this structure, 

modelling symmetry in two directions or planes. Load deflection plots were obtained 

where the method of analysis permitted. 

Table 5.4: Grillage (model- AIG) particulars (actual structure values) 

Particular Thickness Height 
(mm) (mm) 

MainFrame 1 10.88 133 

2 10.88 133 

3 10.88 133 

4 5.965 190 

5 8.185 159 

6 9.805 144 

7 10.88 133 

8 6.33 * 124 

Stringer WEB 11.0125 -
FLG. 11.0125 -

Transverse WEB 10.94 -
Web Frames 

FLG. 8.325 -
Shell Plate 10.98 

Young's Modulus, E 207000 -
(Nimmz) 

• Center mainframe on line of symmetry. Frame thickness is halved. 

5.2 Types of Analysis 

Two types of analyses are used in this work, namely elastic analysis and non-linear 

analysis. Elastic analysis is basically the evaluation of a static solution on the basis of a 
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structure's stiffness, applied loading and bounding conditions. Evaluated limit loads are 

lower bound, satisfying the conditions of static admissibility. Non-linear analysis is a 

time history analysis that accounts for changes in the structural sti:ffuess as a structure 

deforms over time or with increased loading. ANSYS performs a non-linear analysis by 

solving a series of linear approximations (equations) to the non-linear problem. Each 

successive approximation is corrected based on the previous result. 

Full non-linear analyses were carried out by breaking the applied load into a series of 

load increments, which were applied over several sub~steps. At the completion of each 

increment, ANSYS readjusted the stiffness matrix to reflect the non-linear changes 

(material or geometric) in structural stiffness before proceeding to the next step. 

To model the material non-linearity, such as structural plasticity, non-recoverable stress­

strain relationships for the materials used in the model must be defined. The models used 

in this thesis assumed the stress-strain condition of the material to be elastic-perfectly 

plastic. 

5.3 Imperfections 

To effectively perform a full non-linear analysis and to predict the true behaviour of a 

structure, imperfections must be accounted for in the model, including material non­

linearity and out of frame straightness in the structural component. However, for this 

study such detail was not necessary since the purpose was to compare robust techniques 
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w-ith full non-linear analysis and generally, physical lab test data was not available. The 

111:lain concern was that the same model was used for the robust and the non-linear 

analyses. Imperfections were introduced just to break numerical symmetry where 

necessary. This was achieved by applying a small lateral force on the free edge of 

stiiffeners (< 0.5% of the applied load). 

For Arctic ice breaker grillage, imperfections such as variations in the thickness and out 

oF frame straightness were measured from the experimental model and incorporated into 

th-e numerical model as forced displacements (Bond and Kennedy, 1998). This ensured 

th:at the numerical model was a true representation of the structure tested in the lab. 

5 .. 4 Meshing 

5.-4.1 Element Type 

Tine element type chosen for the analysis was a plastic shell element called a shell-43. 

Tlnis element type represents a quasi-3D element in that it models in three dimensions, 

bwt the element itself is a 2-D element. It is well suited to model thin or moderately 

thiick, non-linear, flat, or warped shell structures in three dimensions. The element is 

de:fined by four nodes, each having six degrees of freedom allowing translations and 

ro11ations in and about the nodal x, y and z directions respectively. The element also has 

plasticity, creep, stress stiffening, large deflection and large strain capabilities. 
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5.4.2 Meshing Densities 

Models constructed in this study were meshed using a moderate mesh density. The 

meshing density was selected such that sufficient elements were used to allow adequate 

deformations in the modeL Using a moderate number of elements gave satisfactory 

results for comparison and increased the run time efficiency. 

The size of the mainframe stiffener elements was limited to 20 mm x 20 nun throughout 

the model. The number of elements along the length, height and flange widths was 60, 

20, and 3 respectively. This applies to model- FB, model-Land model- T mainframe 

stiffeners. 

For the flat bar stiffener panel (model - FBSP), the element size was selected as 50 mm x 

50 mm. The number of elements along the length and width of the panel and the height 

of the main frames were 24, 32 and 4 respectively. 

The mesh density varied in the arctic icebreaker grillage (model - AIG) model (Bond and 

Kennedy, 1998). A much finer mesh density was used to define the main frame stiffeners 

near the centre of the grillage, and at points of load application where deformations were 

critical. The length and height of main frame stiffeners was defined using 30 and 4 

elements respectively. The mesh density was reduced (i.e., coarser elements were used) 

outside critical areas where deflection was less significant. For example, the height of the 

stiffeners outside of the critical areas where the load was applied was defined with a 

single element since lateral deflections would be insignificant. 
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Chapter 6 

Results and Discussion 

The results of the robust methods discussed in Chapter 4 are presented and discussed in 

this Chapter. Limit loads were evaluated for several types of structures described in 

Chapter 5 including: 

i) indeterminate beam (model- ffi); 

ii) three mainframe stiffeners including flat bar (model- FB), angle (model- L) and 

tee (model- T) each modelled with a shell plate restraining boundary condition 

iii) flat bar stiffened panel (model - FBSP); and 

iv) one quarter symmetrical model of an arctic icebreaker grillage (model -AI G). 

The ma and the r-node methods are discussed in detail in terms of stress relaxation and 

numerical convergence of bounding limit loads toward the exact value of the collapse 

load of the structure. The evaluated limit loads for all robust methods, including ma, r­

node and Progressive Modulus Reduction (PMR) for the different models or structures 
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are presented and discussed in the last section of this chapter. Comparisons are made to 

full non-linear analysis results and lab test results where available. 

6.1 R-Node Method 

The results of the r-node method are formally presented in this section. Each of the 

models or structures listed above and described in Chapter 5 have been analysed to study 

the effect of progressive elastic modulus relaxation and the influence of the modulus 

adjustment index q on the maximum equivalent stresses and r-node stresses. As 

previously discussed, the stress relaxation process is synthesised by continuously 

adjusting the elastic modulus of each element in the structure based on newly evaluated 

stresses. For the robust methods of analysis to be valid, the convergence of the stresses 

must satisfy the theorem of nesting surfaces and the resultant stress distribution must be 

statically admissible. With increased iterations, there should be a progressive reduction 

in the maximum equivalent and maximum r-node stresses in the structure. This suggests 

that the r-node stress for the structure should converge toward the exact value of the limit 

stress of the structure's material. The limit load of the structure can be evaluated based 

on this level of limit stress. 

6.1.1 Indeterminate Beam (model - ffi) 

The distribution of r-node stresses in the indeterminate beam is illustrated Figure 6.1. 

The figure identifies two well-defined r-node stress peaks. These are located near the 
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locations where plastic hinges would form should the structure be loaded to collapse; one 

at the fixed end of the beam and the other at the approximate mid-span of the beam. 

The r-node stress for this structure is calculated as the average of the two r-node peaks 

(Seshadri, 1997). The limit load multiplier is then the ratio of yield stress of the material 

to the r-node stress. The estimate of the collapse load can be obtained as 

= 25.95 + 21.93 = 23 94MP 
a-r-node 2 . a 

PL = a-Y P= 206·85 x0.1724Nimm 
G"r-node 23.94 

PL =1490 kN/m 

The r-node estimate of the collapse load is compared to other robust limit load estimates 

in Table 6.13. The variations of the r-node stresses and the influence of the modulus 

relaxation index for the frrst four iterations are given in Table 6.1. 

With increased iterations (modifying the elastic modulus and reanalysing) the stresses in 

the structure redistribute causing the two r-node stress peaks to relax and also level off to 

some limiting level, as illustrated in Figure 6.2 (r-node stress curve corresponding to q = 

0.5). The levelling off of the peak stresses is most evident in Table 6.1. The difference 

between the two peak stresses at iteration four (4.02 MPa) is much less than the 

difference evaluated for iteration one (8.32 :MPa). The result is a lower estimate of the r-

node stress, corresponding to an improved estimate of the limit load of the structure that 

more closely reflects the exact limit load. 
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Also illustrated in Figure 6.2 is the influence of the modulus adjustment index q. At 

iteration 7 the r-node stress for modulus reduction using the nominal value of the 

modulus adjustment index, q = I, dropped considerably. This resembles a numerical 

instability that results from an excessive rate of modulus reduction (i.e., the modification 

factor <7R I Uei is too large). Reducing the modulus adjusttnent index q, and hence the 

modification factor, can alleviate this problem. The result is a smoother relaxation 

process and decrease in the average r-node stress with increased iterations as shown in 

the r-node stress vs. iteration number curve for q = 0.5. 

25 

~20 
~ -f/l 
~ 15 
~ 
Cl) 

-g 10 
z 

I 

a:: 
5 

Peak 1 = 25.95 

10 20 

Peak 2 = 21.93 

Average Rnode Stress= 23.94 

30 40 50 60 
Beam Segment 

70 80 90 100 

Figure 6.1: R-oode stress distribution along the length of the indeterminate beam 
(model- ffi) for iteration t; = 4; q = 0.5 
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Figure 6.2: Variation of average r-node stresses for increasing l; and influence of 
modulus adjustment index q for indeterminate beam (model - m) 

Table 6.1: Variations ofr-node stresses and maximum equivalent stresses for 
increasing l; for indeterminate beam (model - ffi) 

Peak r-node stresses Average Maximum 
Iteration (MPa) q=0.5 r-node stress equivalent 
number<; 0"1 + 0"2 stress O"max 

crt Cf2 2 (MPa) 

0 34.54 26.22 30.38 44.99 

1 31.47 23.81 27.64 35.68 

2 28.74 22.62 25.68 30.51 

3 27.62 22.10 24.86 27.23 

4 25.95 21.93 23.94 25.35 
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6.1.2 Mainframe Stiffeners 

Three types of mainframe stiffeners were analysed using the r-node method, including a 

flat bar (model- FB), angle (model- L) and tee (model- T). The distribution ofr-node 

stresses in the mainframe stiffeners, modelled with fixed end conditions and uniformly 

distributed load, is illustrated in Figure 6.3. The figure identifies three r-node stress 

peaks positioned at the precise locations of the plastic hinges that would form should the 

structure be loaded to collapse. 

The estimate of the r-node limit load evaluated as the average of three r-node peaks for 

the flat bar (FB) ~ = 4, q = 0.5 is calculated as 

= 54.32 + 43.92 + 54.32 = 50_85MP 
o-r-node 3 a 

P = 245 
xlOOkN 

50.85 

PL =482 kN 

The influence of the iteration number l:;; on the r-node stresses of the ship type stiffeners is 

illustrated in Figure 6.4, Figure 6.5 and Figure 6.6. In general, as the iteration number 

increases, the maximum stresses in the structure redistribute and progressively relax, 

resulting in a progressive decrease in the average r-node stresses in each structure. This 

results in a lower estimate of the r-node stress that corresponds to an improved estimate 

of the limit load of the structure, more closely reflecting the exact limit load. 
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However7 increased iterations do not always result in a progressive decrease in the r-node 

stress as illustrated in Figure 6.6. As noted for iteration four, unexpected jumps or 

increases in the r-node stress curves may occur. This may be a result of numerical 

instabilities induced if the modulus of certain elements is over relaxed from one iteration 

to the next. Another cause is linked to the numerical limitations surrounding proper 

identification the exact locations of the r-node stresses. Previous authors utilising the r­

node method state that r-node locations have the same stress for any two consecutive 

linear elastic analyses. Theoretically, this is true but realistically the locations may vary 

slightly. Direct locations of r-nodes may be difficult to identity since the stresses are 

only relatively the same for two consecutive linear elastic analyses. Using a finer 

element mesh density may alleviate the problem, but at the expense of increased CPU 

time. 

Reducing the value of the modulus adjustment index q can help alleviate the problem. 

Reducing q slows down the rate of relaxation resulting in a progressive reduction in r­

node stress with increased iterations. The notion of relaxation behaviour is discussed later 

in section 6.2 for the ma method analysis. 

However, reducing the modulus adjustment index q may increase the r-node stress for a 

given iteration (i.e., O'r-nodc (q = I; c; = I) < O'r-nodc (q = o.s; c; = 1)). This is because reducing the 

modulus modification index q reduces the magnitude of the modulus adjustment factor 

( urlu;)q. Thus, for a given iteration (particularly iterations one or two) the evaluated r­

node stress, based on reduced q, may be considerably higher. The margin, however, is 
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most significant for the first one to four iterations and reduces with further iterations as 

shown in Figure 6.4. 

The r-node stresses and maximum equivalent stresses for the flat bar (model- FB), angle 

(model - L) and tee (model- T) stiffeners for the first four iterations are listed in Table 

6.2, Table 6.3 and Table 6.4 respectively. It is clear from these tables that r-node stresses 

are considerably lower than the maximum equivalent stresses, particularly the equivalent 

stresses evaluated at first yield (iteration 0), which is the stress generally used in classical 

design of ship structures. The r-node stresses are based on the average of peak r-node 

stresses in the structure. 

The analyst may also use the maximum r-node peak stress as the scaling stress, ensuring 

that the limit load estimate for the structure is more conservative. As with the averaged r­

node stress calculations, increasing the number of iterations progressively relaxes the 

structure, thereby lowering the maximum equivalent stresses and giving an improved 

estimate of a limit load. It is recommended that a minimum of three or four iterations be 

carried out to ensure the peak stresses are sufficiently relaxed and the stresses are 

converging properly. The added CPU time is not significant. 

-83-



60~~--~----~--~--~--~--~--------~--~--~--~ 

50 

-m 

~40 -1/J 
1/J 

~ 30 
(J) 
Q) 

"'0 

~20 
ri:. 

10 

Peak 1 = 54.32 

Average R-Node stress = 50.8533 

o~~--~----~--~--~--~--~--~----~--~--~--~ 
5 10 15 20 25 30 35 40 45 50 55 60 

Beam Segment 

Figure 6.3: Typical r-node stress distribution for main frame stiffeners having 
ilxed end conditions and uniformly applied load for l; = 4; q = 0.5 for model - FB; 
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Figure 6.4: Variation of average r-node stresses for increasing l; and the influence 
of the modulus adjustment index q for the flat bar stiffener (model- FB) 
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Figure 6.5: Variation of average r-node stresses and influence of modulus 
adjustment index q for the angle stiffener (model - L) for increased iterations l; 
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Figure 6.6: Variation of average r-node stresses for increasing l;, and influence of 
modulus adjustment index q for tbe tee stiffener (model- T) 
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Table 6.2: Variations of r-node stresses and maximum equivalent stresses for 
increasing l; for the Oat bar stiffener (model - FB) 

Peak r-node stresses (MPa) Average Maximum 
Iteration q=0.5 r-node Stress equivalent 
number l:; 0"'1 +Uz +cr3 stress O"ma:r 

(j'l cr2 0'3 3 (Mpa) 

0 65.43 44.08 65.43 58.31 96.70 

1 60.39 42.55 60.39 54.44 76.83 

2 57.27 42.47 57.27 52.34 65.22 

3 54.45 43.07 54.45 50.66 58.39 

4 54.32 43.92 54.32 50.85 54.32 

Table 6.3: Variations of r-node stresses and maximum equivalent stresses for 
increasing l; for the angle stiffener (model - L) 

Peak r-node stresses (MPa) Average Maximum 
Iteration q=0.5 r-node stress equivalent 
Numberl:; 0"'1 +Uz +cr3 stress Uma:r 

cr1 0'2 0'3 
3 (MPa) 

0 57.57 38.21 57.57 51.12 88.07 

1 53.99 35.26 53.99 47.75 68.40 

2 50.05 34.20 50.05 44.77 57.15 

3 47.87 34.03 47.87 43.26 50.55 

4 47.44 34.33 47.44 43.07 47.44 
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Table 6.4: Variations of r-node stresses and maximum equivalent stresses for 
increasing l; for the tee stiffener (model - T) 

Peak r-node stresses (MPa) Average Maximum 
Iteration q =0.25 r-node stress equivalent 
Numberl:; 0"1 + 0"2 + 0"3 StreSS Umax 

3 (MPa) 
cr1 0'2 cr3 

0 51.77 29.86 51.77 44.47 75.48 

1 47.88 28.30 47.88 41.35 65.72 

2 45.00 27.22 45.00 39.07 58.09 

3 43.21 26.49 43.21 37.64 52.10 

4 47.48 26.02 47.48 40.33 47.48 

6.1.3 Flat Bar Stiffened Panel (model- FBSP) 

The variations of the average r-node stresses and the influence of the iteration number for 

increased iterations for the flat bar stiffened panel (model- FBSP) is illustrated in Figure 

6. 7. The calculated values for the average r-node stresses and maximum equivalent 

stresses for the irrst 4 iterations are given Table 6.5. The average r-node stresses are 

calculated as the average of the peak stress in each shell plate panel (between stiffeners) 

and the peak stresses in each stiffener. As mentioned in the previous section, if and when 

convergence difficulties occurred, the elastic modulus adjustment index q was reduced to 

stabilise the relaxation process. It is again demonstrated that with increased iterations, 

the r-node stress and the maximum equivalent stress in the structure converge to some 

limiting value. This is because the redistribution of stresses in the structure results in a 

relaxation of the maximum stresses. 
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Figure 6. 7: Variation of average r-node stresses for increasing ~ and influence of 
modulus adjustment index q for the flat bar stiffened panel (model - FBSP) 

Table 6.5: Variation of average r-node stresses and maximum equivalent stresses for 
increasing ~ for the flat bar stiffened panel (model - FBSP) 

Iteration Average r-node stress Maximum equivalent stress 
Number lTr-node uMAX (MPa) 
(l;) 

q = 1 q =0.5 q=I q=0.5 

0 23.39 24.47 35.70 35.70 

1 22.31 23.71 25.32 30.87 

2 22.28 22.91 24.63 26.86 

3 21.68 22.45 24.00 24.50 

4 21.19 22.16 23.06 24.45 
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6.1.4 Arctic Icebreaker Grillage (model - AIG) 

The variations of the maximum r-node stresses and the influence of the iteration number 

for increased iterations for the arctic icebreaker grillage (model - AIG) is illustrated in 

Figure 6.8. The values of the maximum r-node stresses and maximum equivalent stresses 

for the first four iterations are listed Table 6.6. Because of the level of complexity 

associated with the structure and the variation in the mesh density, it was difficult to 

identify precise locations of all r-node peaks. Thus, the limit loads were evaluated on the 

basis of the maximum r-node stress in the structure. 

The plot of r-node stress and iteration number ~ in Figure 6.8 shows that the structure is 

not relaxing with increased iterations. Reducing the value of the modulus adjustment 

index q smoothes the curve, but does not initiate a monotonic decrease in the r-node 

stresses in the structure. As with the angle and tee stiffeners, this is attributed to 

numerical instabilities induced from over relaxation from one iteration to the next, as well 

as the numerical limitations surrounding proper identification of the exact locations of the 

r-nodes. Variations in the size and shape of elements used to construct the grillage model 

make even the selection of relative r-node locations difficult to identify for two 

consecutive iterations. The use of finer, uniformly shaped element meshing might help 

alleviate the problem, but again, at the expense of increased CPU time. 

Even though the r-node stresses encounter numerical relaxation difficulties, the values of 

the maximum equivalent stresses do progressively reduce, as illustrated in Table 6.6. 
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Given that the applied load (pressure) to the structure is 1.8 N/mm2 over an area of 

300,000 mm2
, with a yield stress of 345 MPa, the resulting estimates of load capacities 

for each iteration can be evaluated. The results for iteration four are presented later in 

section 6.3, Table 6.13. 
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Figure 6.8: Variation of average r-node stresses for increasing f; and influence of 
modulus adjustment index q for the arctic icebreaker grillage (model - AIG) 

Table 6.6: Variation of maximum r-node stresses and maximum equivalent stresses 
for increasing l; for arctic the icebreaker grillage (model- AIG) 

Iteration Maximum r-node stress Maximum equivalent stress 
number CT r-node (MPa) CTMAX (MPa) 
cc;> q=l q=O.S q=1 q=O.S 

0 94.80 99.49 233.3 233.0 

1 94.00 98.81 227.6 155.8 

2 101.99 108.08 369.8 115.3 

3 112.61 107.70 207.9 107.7 

4 113.02 104.72 127.4 104.7 
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6.2 The maMethod 

Analysis using the ma method is carried out in a similar manner as the r-node method. 

Each of the models listed in Chapter 5 were analysed to study the effect of elastic 

modulus adjustment and the influence of the modulus adjustment index q on the ma lower 

bound limit load estimates. Iterative adjustments of the elastic modulus of the elements 

of a structure are carried out to redistribute and relax peak stresses in the structure to a 

limit state from which a lower bound limit load can be evaluated. The ma method 

calculates a limit load multiplier based on any two consecutive linear elastic analyses. 

Previous authors suggest that just two linear elastic analysis (one iteration) are required to 

predict an improved lower bound multiplier (Seshadri and Mangalaramanan, 1997). The 

results presented in this section suggest that one iteration (or two analyses) may not be 

sufficient, and three or more iterations are necessary. Eight iterations were carried out on 

all structures to study their convergence behaviour. In the event that proper convergence 

behaviour was not achieved, the nominal value of modulus adjustment index (q = 1) was 

reduced. Also, the structures are classified according to the convergence behaviour of the 

limit load multipliers based on guidelines presented by Seshadri and Mangalaramanan 

(1997). 

6.2.1 Indeterminate Beam (model - ffi) 

To accurately determine the optimum ma multiplier, it is necessary that the reference 

volume be determined. On the basis of two consecutive linear elastic analyses for any 

given iteration, the variation of the upper bound multipliers can be plotted against the 
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percent volume of the structure, as illustrated in Figure 6.9. The reference volume (VR) 

and reference volume multiplier (m0 R) can be determined from these curves. The two 

curves m0
; and m0

;; each represent the upper bound multiplier for linear elastic analysis 

one and linear elastic analysis two respectively after the elastic moduli have been 

adjusted. The reference volume ( VR) and the reference volume upper bound multiplier 

(m0 R) are identified as the intersection of the two curves and are locations where the 

energy dissipation for both analyses is the same. This intersection defines the extent of 

the sub-region of the structure that encounters the most significant amount of plastic 

action or where the most energy is dissipated due to plasticity. According to Seshadri 

and Mangalaramanan ( 1997), it is also the location where the theorem of nesting surfaces 

is barely satisfied. This assumption is similar a plastic hinge formation mechanism where 

the indeterminate beam is considered collapsed when two plastic hinges have formecL 

even though the whole structure has not encountered plasticity. 

Figure 6.10 illustrates the convergence of the upper bound multiplier m 0 (Calladine and 

Druker, 1962 and Boyle, 1982), lower bound multiplier m '(Mura et el., 1963 and 1965) 

and the ma multiplier (Seshadri and Mangalaramanan, 1997) toward the exact limiting 

value with increased iterations. The upper bound multiplier progressively reduces while 

the lower bound multiplier increases as the stresses within the structure are relaxed. The 

rna multiplier lies between the two. 
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Figure 6.9: Determination of the reference volume multiplier as function of 
normalised volume VIVr for l; = 4; q = O.S for the indeterminate beam (model - ffi) 
The reference volume and reference volume multiplier m 0 is taken at intersection 

Calculation of the ma limit load for the indeterminate beam based on the reference 

volume multiplier from Figure 6.9 is illustrated as 

Structure: Indeterminate beam subject to uniform pressure 

Applied Load 
Yield Stress 

Upper Bound Multiplier 

p 

oy 
8.75 
206.85 

N (Distributed over length) 
MPa 

Linear Analysis I m0
1 14.04 

Linear Analysis II m0 
II 13 .66 

Max Equivalent Stress 
Linear Analysis I 
Linear Analysis II 

Classical Limit Load for 
linear analysis II 

[(ue)M]1 27.63 
[(ue)M]ll 25.95 

MPa 
MPa 

(PLdii= p X oy/ {(ue)MJII 
- 69.80 KN 
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Upper Bound Multiplier m0 
R 9.63 

(Reference Volume) 
Upper Bound Limit load Pu = 

= 
0 Maximum Normalised 

Stress 
-o (TM 
G"M=--

Coefficients A~ B, C for 
quadratic equation 

Am!+Bma+C 

Uy 

= 

A =Cm:)4 (0"~i)4 +4(m:)2 (0"~i)2 -1 

B =-8(m:)3(u~)2 

C=4(m:)3 (a~;) 

0.1255 

A= 6.97 
B = -112.47 
C= 448.20 

Discrm = 152.13 

Multiplier ma 

malimit load 

Discrim > 0 -Two Real roots 

ma= Max ( 8.95 , 7.18 ) 
ma - 8.95 

= 

ma*P 
78.4 N 
1543 kPa 

The values of m0
, m ~ ma for the first four iterations are listed in Table 6. 7. It can be 

noted that the multiplier for the maximum equivalent stress evaluated as ( oy I o-MAX) is 

actually the same as the lower bound multiplier (eg. for q = 1, l; = 1 the multiplier for 

maximum equivalent stress is evaluated as 206.85 /27.61 = 7.49). This basically states 

that the lower bound multiplier is no better than the same evaluated using the maximum 

equivalent stress in the structure. 
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The convergence behaviour of a structure can be classified according to guidelines set 

forth by Seshadri and Mangalaramanan (1997) in section 3.6.5. The maximum 

equivalent stress progressively reduces and hence there is a progressive increase in the 

lower bound multiplier, but the upper bound multiplier does not progressively decrease. 

Thus, the indeterminate beam is considered a Class II type structure. By reducing the 

value of the modulus adjustment index q, the numerical instabilities stabilise and the 

structure exhibits a Class I type behaviour. 

The variation of the upper bound multiplier m0
, Mura's lower bound multiplier m 'and the 

resultant ma multiplier for increased volume is shown in Figure 6.11. The values of limit 

load multipliers m0
, m 'and ma are the same when based on the single element having the 

highest energy dissipation or highest stressed element. The limit load evaluated on the 

basis of these values is the same as the classical lower bound limit load. The reference 

volume evaluated in Figure 6.9 accounts for approximately 39% of the total volume of 

the structure and identifies the sub-region where plasticity leading to collapse is 

concentrated. 

It should be noted in Figure 6.11, that the influence of volume (V!Vr), on the ma 

multiplier is minimal. This suggests that ma limit loads are valid for any volume (V!Vr), 

provided the theorem of nesting surfaces is satisfied. Identifying the sub-region is 

important if limit loads are to be evaluated on the basis of m0 and m ~ 
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Figure 6.10: Variation of m0
, m: ma with increasing iteration number~ and 

influence of modulus adjustment index q, for the indeterminate beam (model - IB) 

Table 6.7: Variation of m0
, m: maand u,..~ for increasing iteration number l; for the 
indeterminate beam (model - m) 

Iteration q=1 q=0.5 
Number mo m' mo m' 
(C) ma G'MAX ma O"MAX 

0 15.43 4.60 - 44.99 15.43 4.60 - 44.99 

1 13.70 7.49 8.85 27.61 15.16 5.80 6.97 35.68 

2 13.28 8.13 9.39 25.43 14.57 6.78 8.34 30.51 

3 13.16 8.55 9.35 24.20 14.04 7.49 8.79 27.63 

4 13.60 9.02 11.0 22.94 13.66 7.97 8.95 25.95 
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Figure 6.11: Variation of m 0
, m: ma with normalised volume V/Vr for~= 4; q = 0.5, 

for the indeterminate beam (model - ffi) 

6.2.2 Mainframe Stiffeners 

The variations of the upper and lower bound multipliers m0 and m 'and the ma multiplier 

for increased iterations for the three mainframe stiffeners, flat bar (model - FB), angle 

(model - L) and tee (model - T) are illustrated in Figure 6.12, Figure 6.13 and Figure 

6.14. The values for these parameters for the first four iterations are listed in Table 6.8, 

Table 6.9 and Table 6.10. The ma limit loads for these structures are listed in Table 6.13. 
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Figure 6.12: Variation of m0
, m: ma with increasing iteration number l; and 

influence of modulus adjustment index q for the flat bar stiffener (model- FB) 
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Figure 6.13: Variation of m0
, m: ma with increasing iteration number e; and 

influence of modulus adjustment index q for the angle stiffener (model - L) 
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Figure 6.14: Variation of m0
, m ~ ma with increasing iteration number l; and 

influence of modulus adjustment index q for the tee stiffener (model - T) 

Table 6.8: Variation of m 0
, m ~ ma and O"m~~r for increasing iteration number l; for the 

flat bar stiffener (model- FB) 

Iteration q=l q=0.5 
Number 
(') 

mo m' ma mo m' ma 

0 7.95 2.53 - 7.95 2.53 -
1 7.37 4.23 5.05 7.83 3.19 3.75 

2 6.97 4.82 5.09 7.59 3.76 4.63 

3 6.8 4.84 5.08 7.35 4.20 4.92 

4 6.72 4.91 5.09 7.15 4.51 5.03 
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Table 6.9: Variation of m 0
, m : ma and u,..a for increasing iteration number c; for the 

angle stiffener (model- L) 

Iteration q=l q=0.5 
Number rno m' mo rn' 
(l;) 

rna rna 

0 8.88 2.78 - 88.88 2.78 -

1 7.88 2.96 3.44 8.72 3.58 4.10 

2 7.65 5.09 6.12 8.39 4.29 5.32 

3 7.38 5.61 6.23 8.08 4.85 5.88 

4 7.15 4.56 5.45 7.83 5.16 6.02 

Table 6.10: Variation of m 0
, m : ma and uiiiCIX for increasing iteration number c; for 
the tee stiffener (model - T) 

Iter'n q=1 c7 = 0.5 q = 0.25 
No. (l;) mo m' rna mo m' ma mo rn' rna 

0 12.58 3.25 - 12.58 3.25 - 12.58 3.25 -
1 12.01 6.10 7.56 12.57 4.34 - 12.63 3.73 4.63. 

2 10.88 3.62 4.50. 12.26 5.37 6.54 12.61 4.22 5.23. 

3 10.54 5.85 7.18 11.83 5.22 6.48 12.52 4.70 5.16 

4 10.11 6.03 7.31 11.48 5.05 6.26 12.37 5.16 3.61 
* A reference volume was not attainable since the two upper bound multiplier (mj curves for two 

consecutive iterations did not intersect. Values represent maximum attainable ma. 

The results for the flat bar (model- FB) indicate that with increased iterations l; and a 

reduced modulus adjustment index number q, proper convergence behaviour is achieved. 

The upper bound multiplier rn° decreases and the lower bound multiplier m 'increases as 

the iteration number (increases. Thus, based on classification guidelines proposed by 

Seshadri and Mangalaramanan (1997), the structure is a Class I type structure. The 
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theorem of nesting surfaces is satisfied, and an ma multiplier evaluated on the basis of 

any iteration is valid. 

Proper convergence behaviour for increased ("for the angle stiffener (model- L) was not 

achieved using the nominal value of the modulus adjustment index number (q = 1). The 

upper bound multiplier m0 decreased but the lower bound multiplier m 'fluctuated at 

iteration four. This structure is therefore classified as a Class II type structure at this 

iteration. Reducing the modulus reduction index number q to 0.5 satisfied the 

convergence requirements for upper and lower bound multipliers. This structure was 

therefore transformed into a Class I type structure, thereby satisfying the criteria of the 

theorem of nesting surfaces, and validated the calculation of ma multiplier for all such 

iterations. 

Achieving proper convergence behaviour for increased ("for the tee stiffener (model - T) 

was somewhat difficult. Using the nominal value of the modulus reduction index number 

(q = 1), the upper bound multiplier m0 decreased but the lower bound multiplier m' 

fluctuated. This structure is therefore classified as a Class II type structure. Reducing q 

to 0.25 resulted in a continued decrease in the upper bound multiplier m0 and an increase 

in the lower bound multiplier m ~ This structure was therefore transformed into a Class I 

type structure. 

The variation of the m0
, m 'and ma multipliers, for increasing elemental volume, for the 

three mainframe stiffeners after four iterations of the elastic modulus is illustrated in 
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Figure 6.16 (model- FB), Figure 6.18 (model- L) and Figure 6.20 (model- T). Seshadri 

and Managalaramanan, (1997) have suggested that the ma multiplier be evaluated on the 

basis of the upper bound multiplier at the reference volume or reference volume 

multiplier, m0 (VR) of the structure. However, it is apparent that the ma multiplier is valid 

for any volume, provided the theorem of nesting surfaces is not violated. The influence 

of volume or VIV ron the ma multiplier is minimal for any region provided the theorem of 

nesting surfaces is satisfied. 
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Figure 6.15: Variation of the m0 for two consecutive linear elastic FEA with 
normalised volume VIVT for <; = 4; q = 0.5, for the flat bar stiffener (model • FB). 

Reference volume and reference volume multiplier m0 is taken at intersection. 
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Reference volume and reference volume multiplier m0 is taken at intersection. 
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Figure 6.20: Variation of m 0
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0.25 for the tee stiffener (model- T). 

6.2.3 Flat Bar Stiffened Panel (model - FBSP) 

Variations of the upper and lower bound multipliers m0 and m 'and the ma multiplier for 

increased iterations l; for the flat bar stiffened panel (model - FBSP) are illustrated in 

Figure 6.21. The values for these parameters for four iterations of the elastic modulus are 

listed in Table 6.11. 

This structure demonstrated a progressive decrease in the upper bound multiplier m0 and 

a progressive increase in the lower bound multiplier m ~ Based on the classification 

guidelines proposed by Seshadri and Mangalaramanan (1997), this structure analysis can 

be classed as a Class I type structure. Reducing the modulus index number (q = 0.5) has 
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no significant effect in this case because the theorem of nesting surfaces is satisfied with 

the nominal value (q = 1). It does however, show that reducing q results in much 

smoother relaxation process or smooth monotonic convergence behaviour. The variation 

of m0
, m 'and ma for increased volume V!Vr for the flat bar stiffened panel (model -

FBSP) is illustrated in Figure 6.23. Here, the region of plasticity or where energy 

dissipation due to plasticity is the greatest accounts for approximately 40% of the whole 

structural volume. 
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Figure 6.21: Variation of m0
, m: ma with increasing l; and influence of modulus 

adjustment index q for the flat bar stiffened panel (model - FBSP) 
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Table 6.11: Variation of m 0
, m ~ maand CTmax for increasing iteration number l; for 

the Oat bar stiffened panel (model - FBSP) 

Iteration q=l q=0.5 
Number(l;) mo m' ma mo m' ma 

0 14.56 6.86 - 14.56 6.86 -
1 13.71 9.68 11.01 14.39 7.94 9.79 

2 12.77 9.95 10.68 13.98 9.12 10.68 

3 12.36 10.21 10.73 13.53 10 10.92 

4 12.22 10.62 10.98 13.13 10.02 10.79 
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Figure 6.22: Variation of the m 0 for two consecutive linear elastic FEA with 
normalised volume V/Vr for l; = 4; q = 0.5 for the stiffened panel (model- FBSP). 

Reference volume and reference volume multiplier m0 is taken at intersection. 
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O.S for the fLat bar stiffened panel (model - FBSP). 

6.2.4 Arctic Icebreaker Grillage 

Variations of the upper bound multiplier m0
, lower bound multiplier m' and the mu 

multiplier for increased iterati~n number ? for the arctic icebreaker grillage (model -

AIG) are shown in Figure 6.24. The values of these parameters for the first four 

iterations are given in Table 6. I. 2. 
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Table 6.12: Variation of m0
, m 'and mafor increasing iteration number c; for the 

arctic icebreaker grillage {model ... AIG) 

Iteration q=1 q=O.S 
Number(l;) mo m' ma mo m' ma 

0 11.25 1.48 - 11.25 1.48 -
1 8.79 1.52 1.88. 10.75 2.21 2.75. 

2 6.96 0.93 r.so· 9.74 2.16 3.72. 

3 6.84 1.22 1.69. 8.77 2.31 3.96. 

4 6.51 2.70 3.02 8.31 2.54 4.09. 
* A reference volume was not attainable since the two upper bound multiplier (m'J curves for two 
consecutive iterations did not intersect. Values represent maximum attainable ma-

The use of the nominal modulus modification index number was not satisfactory for this 

structure, as convergence requirements were not met. The upper bound multiplier m0 

increased after iterations four and five and lower bound multiplier m 'fluctuated (see 
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Figure 6.24 ). Based on the classification guidelines proposed by Seshadri and 

Mangalaramanan (1997), this structure is deemed a Class ill type structure which does 

not satisfy the theorem of nesting surfaces. Reducing the modulus index number (q = 

0.5) resulted in a continued decrease in m0 and a general increase in m 'except for a slight 

decrease at iteration two. Reducing q to 0.25 cause the structure to behave as a Class I 

type structure. Convergence requirements and the theorem . of nesting surfaces were 

satisfied. 

The variation of the m0
, m 'and ma multipliers for increased volume is illustrated in 

Figure 6.26. This figure points out that the energy disspation rates fluctuate throughout 

the structure, as opposed to the smooth dissapation rates observed with the other models. 

This may be attributed to the non-uniform element sizes used in meshing the model. 

Also, the two upper bound multipliers m0 for two linear elastic analyses at iteration four 

did not intersect thereby not identifying a reference volume. However, as illustrated in 

Figure 6.26, the ma multiplier can still be evaluated based on the upper bound multipliers 

for the whole structure. The limiting ma multiplier can be taken as the maximum 

evaluated multiplier for the structure. 

It should be noted that evaluation of the ma multiplier may not be numerically possible 

for the total volume for complex geometric structures such as the arctic icebreaker 

grillage. As shown in Figure 6.26, the ma multiplier can only be evaluated for a structural 

volume up to 93% (approx.) of the total volume, at which point the quadratic equation 

used to evaluate ma calculates imaginary roots. 
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6.3 Limit Loads 

The limit loads for the various structures analysed are evaluated on the basis of four 

linear elastic iterations and a value of the modulus adjustment index q that ensures the 

stress convergence behaviour matches that of a Class I type structure. The limit loads are 

plotted as load levels on a load deflection diagram that compares the load deflection 

results for non-linear analysis and the progressive modulus reduction method of analysis. 

The limit loads for the various structures are illustrated in Figure 6.27 through to Figure 

6.32. The values ofthe limit loads are recorded in Table 6.13. 

The load curves illustrate limit load capacities of the structures for the first yield 

condition (classical lower bound limit load), second analysis yield condition, non-linear 

analysis, analytical solution (where available), the robust techniques namely Progressive 

Modulus Reduction (PMR), r-node, ma and full scale lab test results where available. 

The first yield limit load is classical limit load, based on the maximum Von Mises 

equivalent stresses in the model for the initial analysis with homogeneous elastic modulus 

throughout the structure. The second analysis yield limit load is also a classical limit 

load, but is based on the maximum Von Mises equivalent stresses in the second analysis 

or after the initial homogeneous elastic modulus distribution have been modified or 

adjusted on the basis of the stress distribution of the first analysis. Modifying. the elastic 

modulus redistributed and relaxed the peak stresses in the structure, causing the stress 

peaks to level off and reduce. The result is an improved estimate of a lower bound limit 

load for of the structure. 
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The analytical estimates of the limit loads were evaluated for the indeterminate beam 

(model- ffi), mainframe stiffeners (model- FB, model- L, model - T) and the flat bar 

stiffened panel (model - FBSP). The analytical limit load for the indeterminate beam 

(model- ffi) was evaluated asP = 11.66*Mp/L2 (Mendelson, 1968). The mainframe 

stiffeners (model- FB, model- L, model- T) and the flat bar stiffened panel (model­

FBSP) were evaluated using rigid plastic hinge formation theory (Huges, 1988). The 

analytical curves evaluated using rigid plastic hinge formation theory, indicate the loads 

and corresponding deflections at which edge hinges form (first change in slope) and the 

collapse load as the third hinges form (second change in slope = 0). The slope of the 

elastic portion of the load deflection curves evaluated using rigid plastic hinge formation 

theory is generally steeper than those evaluated using FEA. This is because the analytical 

plastic hinge deflections are evaluated at the neutral axis whereas the FEA deflections 

represent maximum section deflections taken at the point of load application and include 

deformation in the elements. 

The limit load levels for the non-linear and PMR analyses are represented by the 

asymptotic behaviour in the load deflection curves. This identifies the load at which full 

plastic hinge collapse occurs. Physically the structures would have an increased load 

bearing capacity after the structure yields as a result of membrane action. However, 

numerically this is difficult to model since deformations in the structure at limiting load 

levels cause numerical instabilities (i.e., presence of negative stiffuess terms on the 

diagonal of the stiffuess matrix) that prevent further analysis. 
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The results demonstrate that robust methods can be use to evaluate limit loads. Also, the 

load levels are a significant improvement over the traditional classical lower bound limit 

load estimates for a single linear elastic analysis. In the cases of the indeterminate beam 

(model - ffi) and the flat bar stiffener (model -FB), the robust methods predict load 

levels up to 100% higher than classical limit loads and are essentially the same as those 

predicted using full non-linear analysis. 

The limit load evaluated on the basis of the second linear elastic analysis after the 

element moduli have been adjusted is a significant improvement over the classical single 

linear elastic approach. This improved load level from this second analysis demonstrates 

the effect of stress relaxation in lowering the peak stress levels in a structure. 

6.3.1 Influence of the Flange 

The addition of the flange to the stiffening members slightly increases the modelling 

complexity and appears to increase the difficulty in attaining proper convergence 

behaviour with the peak r-node stresses and the upper and lower bound multipliers in the 

ma methods. Reducing the modulus adjustment index q and hence the rate of relaxation 

helps alleviate the fluctuation, but results in a higher state of limit stress evaluated for a 

given iteration. AS a result, a lower value of the limit load would be evaluated for such 

structures. This is illustrated in Figure 6.30 for the tee stiffener where q was reduced to 

0.25 to obtain proper convergence characteristics. The limit load evaluated using the r-
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node and ma methods was significantly lower then those evaluated using the PMR 

method and full non-linear methods. 

It is noted in Figure 6.28 that limit loads predicted using full non-linear analysis and 

robust methods for a flat bar stiffener are higher than those predicted using the analytical 

method which is based on rigid plastic hinge theory. However, for the angle and tee 

stiffeners in Figures 6.29 and 6.30 respectively, the non-linear and robust methods predict 

similar limit loads to the analytical solutions. Since the analytical method and robust 

methods both account for material non-linearities, it is expected that the predicted limit 

loads be similar, as illustrated in the angle and tee stiffeners in Figures 6.29 and 6.30. 

This suggests that the flat bars have more plastic load-bearing capacity than that 

predicted using rigid plastic hinge theory. 

The fact that the limit loads predicted by non-linear and robust methods are no higher 

than the analytical predictions for flanged members indicates that the influence of the 

flange is not as effective for plastic behaviour as it is for elastic behaviour. While tees 

and angles do exhibit increased load bearing capacities for elastic and plastic behaviour, 

the effect of the flange is optimised for elastic behaviour and reduces for plastic 

behaviour. 

6.3.2 Influence of the Shell Plating 

The effect of membrane action is evident in the flat bar stiffened panel (model- FBSP) 

(Figure 6.31) and the Arctic icebreaker grillage (model- AIG) (Figure 6.32). The limit 
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load level predicted by the non-linear analysis and full scale lab tests is considerably 

higher than that predicted using the robust methods. This is becaue the added stiffening 

that results from geometric nonlinearities were accounted for in non-linear analyses but 

not in the robust methods used in this thesis. However, the limit load estimates evaluated 

using the robust methods are still in excess of 50% higher than that predicted using the 

classical lower bound limit load approach based on a single linear elastic analysis, and 

predictions are well into plastic load levels. Also, the three robust methods r-node, ma 

and P:MR predict similar limit load levels for each of the plated structure models. 

It should be noted in the results of the arctic icebreaker grillage (model- AIG), Figure 

6.32, that the full scale and full non-linear load deflection curves are only plotted for 

deflections up to 60 nun and do not represent the limit load of the structure. The actual 

curves extend much further, but results are only plotted up to a level necessary to 

compare estimates using robust methods. As shown in the load curves, the robust 

estimates of the load capacity are well within the plastic regions of the structure, but 

sufficiently conservative for initial design purposes. Bond and Kennedy (1998) discuss 

the suitability of the non-linear prediction against the full-scale lab test. 
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Figure 6.28: Limit load levels for mainframe Oat bar stiffener (model- FB) 
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Figure 6.29: Limit load levels for mainframe angle stiffener (model- L) 
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Figure 6.30: Limit load levels for mainframe tee stiffener (model- T) 
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6.3.3 Limit Load Summary 

A summary of the various limit loads for the different structures analysed using robust 

methods for an iteration number l;; = 4, q = 0.5 (unless noted otherwise) are given in 

Table 6.13. Limit loads evaluated on the basis of robust methods are compared to 

analytical solutions, full non-linear analysis solutions and full-scale lab results, where 

available. 

Seshadri and Mangalaramanan, (1997) state that limit loads can be evaluated on the basis 

of two iterations. This is true for structures modelled in two dimensions, but for 

structural geometry with stiffening in three dimensions (i.e., stiffeners having flanges), 

three or more iterations may be necessary. This ensures that the stresses in the structure 

are sufficiently redistributed and relaxed with peak stresses levelled off and that limit 

load multipliers convergence toward an exact limiting stress level occurs. 

The results suggest that lower bound limit loads of structures evaluated using robust 

techniques offer an attractive alternative to non-linear analysis techniques. Not only are 

the results for plated structures and stiffening structures sufficiently accurate, there are 

enormous CPU time savings. For the structures analysed in this thesis, a maximum of 

four linear elastic analysis iterations were required to obtain sufficiently accurate results, 

which are completed in only a few minutes. The PMR method requires more CPU time 

since a sufficient number of analyses must be carried out to defme a load deflection curve 

for the structure. However, depending on the analysis results required, the PMR method 

may be best suited to predict the expected non-linear response of the structure for the 
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limit load estimates evaluated using other robust methods, and then used to confirm the 

limit load estimates. 

In addition to CPU time savings, the fact that all robust analysis techniques are carried 

out based on linear elastic analysis generally ensures that the solutions are stable. 

Numerical convergence difficulties encountered with full non-linear FEA (i.e., balancing 

the internal forces with the applied load) are avoided. This alone makes the use of robust 

techniques attractive. 
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Table 6.13: Summary of robust limit loads evaluated for the various structures 
for l; = 4; q = 0.5 (unless otherwise noted) 

Limit Load (kN) 
STRUCTURE 

(PLc)I (PLc)ll PANAL PR-Node Pma PPMR PNL 
• •• 

Indeterminate 
Beam 40.28 65.63 76.5f? 75.69 78.33 - 78.79 

{model-m) 

Flat Bar 
Stiffener 

253 423 408++ 499 509 508 509 
{model-FB) 

Angle 
Stiffener 

278 358 635++ 597 602 650 667 
{modei-L) 

Tee 
Stiffener 

1\. 

325 373 788++ 608 631 840 830 
{modei-T) 

Flat Bar 
Stiffened 
Panel 2058 2382 2844++ 3316 3236 3300 4237xx 

{model- FBSP) 

Arctic 
Icebreaker 

1196 - 1779 X 2925"" Grillage 799 2203 2380 

(modei-AIG) 

* Von Mises equivalent classical lower bound limit load for l st linear elastic analysis 

** Von Mises equavalent lower bound limit load based on 2nd linear elastic analyis 

+ Analytical limit load proposed by Mendelso~ 1968. P ANAL = 11.66*Mp/L 2 

++ Analytical limit load proposed by Huges. 1988 (see appendix F) 

Modulus Softening index q = 0.25 

X R-node limit load evaluated on the basis of the maximum r-node stress in the structure 

Pus 

-

-

-

-

-

3275xx 

xx Values correspond to displacement of structure that corresponds to maximun iterated displacement for 
the PMR method. Values are for comparison and do not represent the maximum load .level for the 
structure. 
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Chapter 7 

Conclusions 

Based on the results of the present thesis, it may be concluded that robust methods of 

finite element analyses are an attractive alternative to full non-linear analyses for 

estimating limit loads of structures. The methods are also an improvement over 

traditional classical lower bound limit load techniques. Each robust method accounts for 

material non-linearities in the solution process and consequently gives a good estimate of 

the non-linear design load of the structure. 

Although full non-linear analysis give the best representation of structural plasticity, 

obtaining solutions may be difficult. After hours of runtime, there is no guarantee of a 

numerical solution. The process may terminate as a result of numerical convergence 

errors, and require the. analysis be restarted with necessary modifications made to the 

geometry, applied loading conditions, or the predefined convergence criteria. Thus, 

robust techniques have advantages over the non-linear analysis techniques. The methods 

are fast and efficient, utilising a minimal amount of CPU time. Also, because these 

methods are based on a series of linear elastic analysis, convergence difficulties are 

avoided and the solution process is stable. 
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The solutions of robust analysis do not reflect the exact non-linear collapse loads of 

structures, but rather improved limit load estimates of the collapse load, over the classical 

limit loads evaluated on the basis of uniform strengths and yield criteria. 

Methods of robust FEA involve elastic modulus adjustment techniques that redistribute 

pseudo-elastic stresses. This is to ensure that a structure behaving inelastically will 

achieve equilibrium with internal and external forces and the stresses everywhere are 

below yield, thus satisfying the requirements of a statically admissible stress field and 

hence the evaluation of valid lower bound limit load. 

The Progressive Modulus Reduction (Pl\1R) method of robust analysis achieves this by 

modifying the elastic modulus of the pseudo-.elastically stressed elements or elements 

having stresses that exceed the yield limit, until all the stresses are below the yield limit 

or static admissibility is achieved. The maximum applied load to which static 

admissibility can be achieved is the collapse load. PMR, as used in this thesis, is not a 

direct limit load determination technique as are the other proposed robust methods (r­

node, and ma), but is rather a method that gives the non-linear response of a structure for 

a given load condition. A limit load can be determined from a generated load deflection 

plot attained through a process of manually incrementing the load, iterating the elastic 

modulus until static admissibility is achieved and evaluating the resultant non-linear 

displacement. This curve forms an asymptote that represents limit load of the structure. 
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The modulus adjustment technique ursed in the r-node method adjusts all element moduli 

on an element by element basis swch that the stresses are redistributed about load­

controlled locations or redistributiom nodes within the structure. With two consecutive 

linear elastic analyses, the r-nodes c=an be identified as locations or elements where the 

stress remains constant. The r-node peaks form at locations where plastic hinges are 

assumed to form using plasticity theory. In the same way that the progressive formation 

of plastic hinges lead to collapse of tthe structure, the r-node peaks can be traced until a 

collapse mechanism is formed. Wlhere the structural geometry and loading conditions 

result in the formation of two or more r-node peaks, the r-node stress can be evaluated as 

the average of these peaks. 

It has been stated in the literature t:Jhat solutions can be obtained with just two linear 

elastic analyses, although better res.Uts can be obtained if four or more iterations of 

elastic moduli are carried out. Incre:ased iterations redistribute stresses in the structure, 

thereby further relaxing and levelling off the peak stresses. Limit loads evaluated from 

these relaxed stress distributions are an improvement over those for previous stress 

distributions. 

Keeping track of r-node locations is: trivial for simple structures such as single beam 

geometry and an r-node stress curve for peak r-node stresses in each section can be 

plotted. However, for more complex . structures such as the arctic icebreaker grillage, this 

becomes difficult. In such cases, the analyst would need to rely on practical experience 

to identify r-node locations, extract tlbe locations from the stress results and evaluate an 
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average value. A more conservative approach is to locate the peak r-node stress in the 

modeL 

The r-node method, although more robust then the PMR method, is not a direct method 

of obtaining limit loads. The exact locations of r-node peaks are difficult to identify 

within a discretised structure. It appears that the exact locations of r-nodes can only be 

identified if the elements are infinitely small. Hence, a region of redistribution stress 

must be identified. 

The ma method, as well as the r-node method, uses a modulus adjustment scheme where 

each element modulus in the structure is adjusted. The ma method, on the basis of two 

consecutive linear elastic analyses, evaluates the energy dissipation in the structure. This 

is used to evaluate upper bound and lower bound multipliers according to Mura and Lee 

( 1965) and hence the ma multiplier according to Seshadri and Mangalaramanan ( 1997). 

The convergence of the evaluated upper and lower bound multipliers for each iteration 

must adhere to the conditions set forth in the "theorem of nesting surfaces., The surfaces 

represented by the multipliers must nest inside the two extreme surfaces represented on 

one side by elastic assumptions and the other by full plasticity. Hence, the upper bound 

multiplier m0 must monotonically decrease and the lower bound multiplier m ' must 

monotonically increase toward the exact value of the limit load of the structure. 

maestimates evaluated for such conditions are valid. 
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Since the rna multiplier is evaluated on the basis of a mathematical formulation relating 

upper and lower bound multipliers, the method is more direct then the PMR or r-node 

methods. However, because the solutions to limit loads are evaluated on the basis of a 

quadratic equation, satisfactory results are not always achieved. On occasion, the 

conditions of the structure and applied loading lead to the evaluation of imaginary roots 

as solutions to the quadratic equation. In such cases a further iteration can result in 

satisfactory results provided convergence requirements are met for the two consecutive 

linear elastic analysis. 

ma solutions to problems where the model meshing has variations in the element size are 

somewhat unstable and difficult to obtain, as was encountered with the arctic icebreaker 

grillage (model- AIG). However, increased iterations seemed to alleviate the problem. 

The modulus adjustment index q. nominally taken to be unity ( 1 ), can be reduced to 

achieve monotonic convergence behaviour in the ma method. While reducing q does 

appear to improve convergence behaviour, it essentially reduces the rate of relaxation and 

hence evaluates a higher state of limit stress for a given iteration. Thus, a lower limit 

load for the structure is predicted. Also, problems with fluctuation may just be delayed. 

Reducing the value of the modulus adjustment index q. did not appear as effective at 

improving r-node stress relaxation behaviour characteristics with increased iterations. 

While reducing q reduces the rate of relaxation and hence smoothes the relaxation 

process by alleviating fluctuation, a progressive relaxation of the r-node stresses could 
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not be obtained for structures such as the tee stiffener and the Arctic icebreaker grillage. 

While this may be attributed to the difficulty in locating precise locations of r-nodes 

using finite mesh density, the influence of q needs to be researched further. 

The use of q also suggests that the selection of a relaxation stress is not necessarily 

arbitrary. Reducing q essentially adjusts the value of the term CTartlur to reduce the 

variation between Oizrb and Uy and hence the rate of relaxation. It may be the case that the 

selection of the relaxation stress is not arbitrary but rather should be chosen carefully. 

Research is necessary to determine if this relaxation stress is a deterministic quantity. 

The results of robust methods indicate a significant improvement in the lower bound 

estimates of limit loads of ship type structures, and the results are conservative when 

compared to the non-linear FEA results. Also, because the solution process is a stable 

one, convergence difficulties encountered with full non-linear analysis are avoided. 

Limit loads can be evaluated in a very timely, cost effective manner, which is particularly 

attractive at the initial stages of design. 
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Chapter 8 

Recommendations 

Authors Seshadri and Mangalaramanan (1997), who previously developed the r-node and 

ma techniques suggest that a lower bound limit load can be evaluated based on just two 

linear elastic iterations. This work, however, suggests that more iterations are necessary 

first of all to ensure convergence requirements are satisfied and second, to ensure that the 

peak stresses are sufficiently relaxed. 

More research is needed on the influence of the modulus adjustment index q. Seshadri 

and Mangalaramanan (1997), state that reducing q will stabilise the relaxation process 

such that monotonic convergence behaviour is exhibited among the upper and lower 

bound limit multipliers with increased iterations. While this appears effective .for the ma 

algorithms, it is not as effective with the r-node method. In some cases such as the tee 

stiffener and the Arctic icebreaker grillage, a monotonic relaxation of the r-node stresses 

could not be obtained. Also, the selection of q is still arbitrary on the interval 0 < q ~ 1, 

and dependent on the complexity of the structure. A deterministic means of selecting q 

based on model geometry and complexity would be an asset and should be further 

explored. 
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It is also noted that the influence of q is simply to minimise the variation between the 

element stress and the arbitrarily chosen relaxation stress, which essentially reduces the 

rate of relaxation. It might be the case that judgement is needed in the selection of the 

relaxation stress (as opposed to choosing an arbitrary value) rather then appropriately 

selecting q. Further research needs to be carried out to determine if the relaxation stress 

is a deterministic quantity. 

The PMR method used in this thesis is not a direct method of evaluating limit loads such 

that with just two linear elastic analyses the limit load can be predicted. Rather, it predicts 

the response of the structure for an applied loading condition. The limit load can be 

evaluated but only after repeatedly increasing the applied load until static admissibility 

can no longer be iterated or achieved. However, from the incremental loads a load 

displacement curve can be plotted. It is suggested that the r-node or ma method be used 

to initially predict the lower bound load estimates, which can then be applied to the PMR 

model to investigate the non-linear response of the structure at the limit load. Achieving 

static admissibility in the structure at this load level using PMR is a check that the limit 

load is valid. 

A parametric study on meshing density should be carried out to determine the optimum 

density necessary to yield more stable solutions and to achieve time efficiency with the 

solution process. Also, the effect of element size variation should be further studied. 
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Robust methods have great potential because of the added benefits that repeated elastic 

analysis has over full non-linear analysis. The main advantage is the numerical stability 

associated with the solution process. The methods should therefore be developed and 

incorporated into a robust finite element analysis software package. This would be useful 

to designers and analysts particularly at the initial stages of design. The non-linear 

behaviour of a structure can be explored with sufficient accuracy in an efficient, robust 

manner. 
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Appendix A 

Extended Theorems of Limit Analysis 

The formulation ofMura's lower bound multiplier m 'is based on the functional 

F(v.,s .. ,u.,R.,m., u.,~) = r s .. -
2

1 (v .. +v .. )dV + r s .. o-t5 .. v .. dV 
' I) ' l l ,-, 'II' J v I) l,j j,l J v lJ l,J l,j 

(A.l) 

with the constraint condition p;;::: 0 where Vi is the velocity vector, Sij is the stress 

deviator, a; R, m, p and ¢are Lagrangian multipliers, Tis the surface traction on Sr, Vis 

the velocity of Svand Sr+ Svequals the total volume of the structure. The yield criterion 

is given by 

(A.2) 

Mura and Lee (1963) showed that for a given state of plastic flow, a statically admissible 

multiplier, or safety factor could be evaluated, such that the function is rendered 

stationary. 
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Taking the variation of the functional F gives 

t5F(v.,s .. ,a-.,R.,m.,,LJ.,t/i)= J ~---21 (v.- +v .. )dV + J s .. -
2

1 (~-. +~--)dV 
1 lJ 1 1 1 c V lJ '·1 1.1 v y '·1 1 .r 

+f 8ut5 .. v .. dV- r utf. -~- .dV- J t5R.v.dS- f R.Civ.dS 
V '·1 t,j J V r.1 1,1 Sv l r Sv 1 l 

-an( fsr J;v;dS -1 )-m( fsr T;CividS-1)- Jvop[f(sq) +¢
2

]dV 
(A.3 ) 

-f P of asrdv- r p2¢tS¢dV 
v as.. IJ Jv 

lJ 

Setting the variation to zero and integrating by parts yields the natural boundary 

conditions given as 

-
2

1 (v .. + v . . ) =, iJf in V 
'·' J.l r as .. 

lJ 

( A.4) 

p~O in V ( A.5) 

in V (A.6) 

onST ( A.7) 

(s .. +t5 .. u)n. = R. S 
lf y r r on T ( A.8) 

inV (A.9) 

,A.= 0 
r'l' in v ( A.lO) 

( A.ll ) 
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vi =0 on Sv ( A.12) 

f T:v.dS=l 
Sr r ' 

( A.13) 

The Lagrangian multipliers given here are mean stress ( o), the reaction on Sv (Ri), the 

safety factor (m), the positive scalar of proportionality (p) and the yield parameter(¢). 

It can be noted from the formulation of the natural boundary conditions that when 

¢*0and p=O, thenf(sif)<O. Also, the ~f(sif)=O. Setting equation (A.13) to 

unity simply illustrates the positive definite nature of the integral, but determines only the 

scalar (or size) of an arbitrary velocity vector. 

Consider the arbitrary arguments 

v~ =vi +~i 

sg = sif + t%if 

a-0 =u+ou 

m0 = m+tin 

¢a =t/J+o¢ 

Po =p+op 

( A.14) 

where vi, Sif, o; ... represent the stationary sets of arguments of (A.l ), and ~;, &;if, b"o; ... 

are the variations. Substituting (A.l4) into (A.l) regarding the natural boundary 

conditions (A.4) to {A.l3) the functional F can be written as 
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F[v? ,s~,o-0 , R? ,m0 ,p0
, ~0 ]= m + J £% __ -2

1 (~- • + /N .. )dV 
I lJ l V' V lJ l.j J ,l 

+ r oo-t5 . . v . . dv- J t>R.v.ds-lin(J r:v.ds-1) J V I.J '·1 s., I ' Sr ' ' 
( A.l5) 

Making use of the boundary conditions (A.6), (A.7) and (A.8), the requirements for a 

statically admissible stress field is given as 

( A.l6) 

( A.17) 

and stipulating that ( A.l8) 

where R/ represent the reaction of the stress field on Sv, equation (A.l5) can be 

transformed to 

( A.l9) 

Also, integrating equation (A.l) with the arbitrary arguments 

v~ ,s~ ,o-0 ,R;0 ,m0 ,J.l ,t/J0 and the constraints (A.6), (A.7) and (A.8) we get 

( A.20) 

The integral mean of the yield can be expressed as 
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( A.21 ) 

where ( A.22) 

Given equation (A.20) and equation (A.21), it is clear that 

( A.23) 

From equations (A.l9), (A.20) and (A.21) and also given that fv Pt:t£%if£%if +(g¢)2 is 

always positive definite, we have 

( A.24) 

Since p 0 = p+ t5p then the integral mean of yield given in equation (A.21) can be 

expressed as 

( A.25) 

Therefore equation (A.24) can be rewritten as 

( A.26) 

Taking the maximum of the integrand equation (A.26) can be expressed as 
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( A.27) 

Because ofthe nature of equations (A.21) and (A.22), max{r(sg +{¢0
/ }~ 0. 

Given that 

m = m fsr I;v;dS = fs(sif +8ifo-)njv,dS = 

( (s .. + t5 .. o-)v .. dS = ( (s .. + t5. .. cr)v .. dV = J V lj I) I,J J V IJ I) I,J 

J s---
2

1 (v .. +v .. )dS = J s .. ps .. dV = 2k 2 J pdV V I) I,J j,l V I) lj V 

it is evident that 

( A.28) 

By substituting equation (A.28) back into equation (A.27), the expression for the lower 

bound multiplier ( m j is given as 

( A.29) 

which holds valid for any set of v~ ,s;, o-0
, m 0 ,p0 ,1)0 satisfying 

inV ( A.30) 
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( A.31 ) 

( A.32) 

( A.33) 

Using a special form of equation (A.32) and stipulating that f(sZ + (¢0 
)

2 = 0, equation 

(A.29) forms a classical definition of the lower bound. The max.{f(sg + (¢0 
)

2
} vanishes 

and equation (A.29) reduces to 

( A.34) 

Here, the new lower bound (expressed by m ' holds for a broader stress field than for the 

statically admissible stress field using the integral mean of the yield criterion of equation 

(A.32). 
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Bl 

B2 

B3 

B4 

AppendixB 

Models and Boundary Conditions 

Indeterminate Beam 

Main Frame Stiffeners 

Flat Bar (FB) Stiffener 

Angle (L) Stiffener 

Tee (T) Stiffener 

Flat Bar Stiffened Structural Panel 

Uniformly Distributed Load 

Arctic Icebreaker GriUage (file available opon request) 
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Bl -Indeterminate Beam 

!INPUT MODEL FOR ANALYSIS OF INDETERMINATE BEAM 

/prep7 

L=50.8 
H=2.54 
t=l 

YM=206850 
YS=206.85 
RS=250 

r,l,t 
r,2,t 

xdiv=l 
ydiv=lO 
zdiv=lOO 

!DEFINE MATERIAL PROPERTIES 

et, 1 ,shell43 
!et,2,solid73 

ex,l,YM 
ex,2,YM/5 
nuxy,l,0.3 

tb,bkin,l 
tbdata,l,ys,O 

type, I 
real, I 
mat,l 

!keypoints 
K,l,O,O,O 
K,2,0,0,-L 
K,3,0,H,-L 
K,4,0,H,O 

!lines 
L,l,2 
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LESIZE, 1 ,zdiv 
L,2,3 
LESIZE,2,ydiv 
L,4,3 
LESIZE,3 ,zdiv 
L,1,4 
LESIZE,4,,ydiv 

!STIFF AREA MESHING 
A,1,2,3,4 
amesh,all 

nummrg,all 
fini 

! APPLYING BOUNDARY CONDffiONS AND LOADS TO OBTAIN 
! A STATIC SOLUTION 

/solu 
antype,static 

! END CONDTIONS 

!End A - Fixed 
nsel,s,loc,z,O 
d,all,all,O 
nsel,all 

!End B - Pinned 

nsel,s,loc,z,-L 
nsel,r ,loc,y, 0 
d,all,uy,O 
nsel,all 

!FORCE LOAD 
force=8.75791100 

nsel,s,loc,y ,h 
nsel,r,loc,z,-L/1 00+0.1 ,-L 
f,all,fy,-force 
nsel,all 

save 
solve 
fini 
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B2 -Main Frame Stiffeners 

!INPUT MODEL FOR ANALYSIS OF FLAT BAR STIF'F'ENER 

/prep7 

L=l200 
H=200 
t=l5 

YM=207000 
YS=245 
RS-300 
q=l 

r,l,t 
r,2,t 

xdiv=l 
ydiv=lO 
zdiv=60 

!DEFINE MATERIAL PROPERTIES 

et, l,shel143 
! et,2,solid73 

ex,l,YM 
ex,2,YM/5 
nuxy,l,0.3 

type,l 
real, I 
mat, I 

!keypoints 
K,l,O,O,O 
K,2,0,0,-L 
K,3,0,H,-L 
K,4,0,H,O 

!lines 

-146-



L,1,2 
LESIZE, l,zdiv 
L,2,3 
LESIZE,2,ydiv 
L,4,3 
LESIZE,3,zdiv 
L,1,4 
LESIZE,4,ydiv 

!STIFF AREA MESHING 
A,l,2,3,4 
amesh,all 

nurnmrg,all 

fmi 

! APPLYING BOUNDARY CONDffiONS AND LOADS TO OBTAIN 
! A STATIC SOLUTION 

/solu 
antype,static 

! END CONDTIONS 

!End A - Fixed 
nsel,s,loc,z,O 
d,all,all,O 
nsel,all 

!End B - Fixed 
nsel,s,loc,z,-L 
d,all,all,O 
nsel,all 

!PLATE EDGE RESTRAINT 
nsel,s,loc,y ,h 
d,all,ux,O 
nsel,all 

!EXCENTRIC FORCE 
fdist=200/61 
nsel,s,loc,y,O 
nsel,r ,loc,x, 0 
f,all,fx,-fdist 
nsel,all 

-147-



! LOAD APPLIED 
force= l 00* 1000/61 

nsel,s,loc,y ,h 
f,all,fy, -force 
nsel,all 

save 
solve 
save 
fini 

!INPUT MODEL FOR ANALYSIS OF ANGLE STIFFENER 

/prep7 

L=1200 
H=200 
t=l5 
wf=60 

YM=207000 
YS=245 
RS=300 
q~1 

r, 1,t 
r,2,t 

xdiv=1 
xfdiv=3 
ydiv=lO 
zdiv=60 

!DEFINE MATERIAL PROPERTIES 

et, 1 ,shell43 
!et,2,solid73 

ex,l,YM 
ex,2,YM/5 
nuxy,1,0.3 
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1:yJ>e, I 
real, I 
mat, I 

!keypoints 
K,.l,O,O,O 
K-2,0,0,-L 
K,3,0,H,-L 
K,-4,0,H,O 
K,..S,wf,O,O 
K,·6,wf,O,-L 

!limes 
L,l,2 
LESIZE, l,,,zdiv 
L,2,3 
LESIZE,2,ydiv 
L,4,3 
LESIZE,3,,zdiv 
L,i,4 
LESIZE,4,,ydiv 
L,2,6 
LESIZE,5,,xfdiv 
L,5,6 
LESIZE,6,,zdiv 
L,I,S 
LESIZE, 7 ,xfdiv 

!STIFF AREA :MESHING 
A,l,2,3,4 
A,l,2,6,5 
armesh,all 

nllDlmrg,all 
fitri 

! A..PPL YING BOUNDARY CONDITIONS AND LOADS TO OBTAIN 
! A. STATIC SOLUTION 

/so]u 
antype,static 

! END CONDTIONS 

!End A- Fixed 
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nsel,s,Ioc,z,O 
d,all,all,O 
nsel,all 

!End B - Fixed 
nsel,s,loc,z,-L 
d,all,all,O 
nsel,all 

tPLATE EDGE RESTRAINT 
nsel,s,loc,y ,h 
d,all,ux,O 
nsel,all 

~ LOAD APPLIED 
force= 1 00* 1000/61 

nsel,s,loc,y,h 
f,all,fy,-force 
nsel,all 

save 
solve 
save 
fini 

!INPUT MODEL FOR ANALYSIS OF TEE STIF'FENER 

/prep7 

L=1200 
H=200 
t=15 
wf=60 

YM=207000 
YS=245 
RS=300 
q=l 

r,l,t 
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r,2,t 

xdiv=l 
xfdiv=3 
ydiv=lO 
zdiv=60 

!DEFINE MATERIAL PROPERTIES 

et, 1 ,shell4 3 
!et,2,solid73 

ex,l,YM 
ex,2,YM/5 
nuxy,1,0.3 

type,1 
real, I 
mat, I 

!keypoints 
K,l,O,O,O 
1(,2,0,0,-L 
K,3,0,H,-L 
K,4,0,H,O 
K,S,wf,O,O 
K,6,wf,O,-L 
K, 7,-wf,O,O 
K,8,-wf,O,-L 

!lines 
L,l,2 
LESIZE, 1 ,zdiv 
L,2,3 
LESIZE,2,ydiv 
L,4,3 
LESIZE,3 ,zdiv 
L,l,4 
LESIZE,4,ydiv 
L,2,6 
LESIZE,S,xfdiv 
L,5,6 
LESIZE,6,zdiv 
L,l,S 
LESIZE, 7 ,,xfdiv 
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L,2,8 
LESIZE,8mxfdiv 
L,7,8 
LESIZE,9 ,zdiv 
L,l,7 
LESIZE, 1 O,,xfdiv 

!STIFF AREA MESHING 
A,l,2,3,4 
A,l,2,6,5 
A,l,2,8,7 
amesh,all 

nummrg,all 
fini 

! APPLYING BOUNDARY CONDITIONS AND LOADS TO OBTAIN 
! A STATIC SOLUTION 

/solu 
an type, static 

r END CONDTIONS 

!End A- Fixed 
nsel,s,loc,z,O 
d,all,all,O 
nsel,all 

!End B - Fixed 
nsel,s,loc,z,-L 
d,all,all,O 
nsel,all 

!PLATE EDGE RESTRAINT 
nsel,s,loc,y,h 
d,all,ux,O 
nsel,all 

!EXCENTRIC FORCE 
fdist=200/61 
nsel,s,loc,y,O 
nsel,r,loc,x,O 
f,all,fX,-fdist 
nsel,all 
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! LOAD APPLIED 
force= 1 00* I 000/61 

nsel,s,Ioc,y,h 
f,all,fy,-force 
nsel,all 

save 
solve 
save 
fmi 
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B3 - Flat Bar Stiffened Structural Panel 

!INPUT MODEL FOR ANALYSIS OF S'I'IF'FENED PANEL 

/prep7 

L=1200 
S=400 
B=2*S 
H=200 
t=15 
w=50 
nst=3 

rYoungs Modulus 
!Yield Stress 

YM=207000 
YS=245 
RS=400 
q=0.5 

!Reference Stress 
!Modulus Softening Index 

r,l,t 
r,2,t 

Shell plate thickness = t 
Stiffener thickness = t 

xdiv=32 !Element size 50 x 50 mm 
ydiv=4 
zdiv=24 

!DEFINE MATERIAL PROPERTIES 

et, 1 ,shell43 
! et,2,solid73 

mp,ex,l,YM 
mp,ex,2, YM/5 

nuxy,l,0.3 
! tb,biso, 1, 1 
!tbdata,1,245,0 

!SHELL PLATE 

type, I 
real, I 
mat,1 

!keypoints 
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K,l,B,O,O 
K,2,B,O~-L 

K,3,-B,O,-L 
K,4,-B,O,O 

!lines 
L,l,2 
LESIZE, l,zdiv 
L,2,3 

. LESIZE,2,xdiv 
L,4,3 
LESIZE,3 ,zdiv 
L,l,4 
LESIZE,4,xdiv 

!PLATE AREA MESHING 
A,l,2,3,4 
amesh,all 

!STIFFENERS 

type,l 
real,2 
mat,l 

!STIFF I 

*DO,c,l,nst 

!keypoints 
K,5+4 *( c-1 ),-S+S *(C-1 ),0,0 
K,6+4*( c-1 ),-S+S*(C-1 ),0,-L 
K, 7+4*(c-l),-S+S*(C-l),H,O 
K.,8+4*(c-l),-S+S*(C-l),H,-L 

!lines 
L~5+4 *( c-l ),6+4 *( c-1) 
LESIZE,5+4 *( c-l ),,zdiv 
L,6+4 *( c-1 ),8+4 *( c-1) 
LESIZE,6+4*( c-l ),ydiv 
L,7+4*(c-1),8+4*(c-l) 
LESIZE, 7+4 *( c-1 ),zdiv 
L,5+4*(c-l), 7+4*(c-l) 
LESIZE,8+4 *( c-1 ),ydiv 

!STIFF AREA MESHING 

!plate 

! stiffener 1 
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A~5+4*(c-1)~6+4*(c-l},8+4*(c-1),7+4*(c-1) !stiffener 1 
AMESH,c+1 

*END DO 

nCEPATCH 
!type,2 
!mat,2 
! tb,biso,3, 1 
!tbdata,l,lE6,0 

!block,-w,w,O,-t,-L/2+w,-L/2 
! lsel,s,loc,y,-t/2 
! lesize,all, 1 

!lsel,s,line,9,20, 1 
Hsel,r,loc,x,O 
! lesize,all,4 
!lsel,all 

!lsel,s,line,,9,20,1 
! Isel,r,loc,z,-L/2+ 25 
! lesize,all,2 
!Isel,all 

! vsel,s,loc,y ,-t/2 

!vmesh,l 

nummrg,all 
fini 

! APPLYING BOUNDARY CONDITIONS AND LOADS TO OBTAIN 
! A STATIC SOLUTION 

/solu 
antype,static 

!BOUNDARY CONDffiONS 

!PLATE EDGE RESTRAINT 
nsel,s,loc,x,-B 
d,all,ux,O 
d,all,uy,O 
d,all,rotz,O 
nsel,all 
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nsel,s,loc,x,B 
d,all,ux,O 
d,all,uy,O 
d,all,rotz,O 
nsel,all 

! END CONDITIONS 

! FIXEDEND 
nsel,s,Ioc,z,O 
d,all,all,O 
nsel,all 
nsel,s,loc,z,-L 
d,all,all, 0 
nsel,all 

save 
fini 

/solu 

! DISTURBING FORCE -to break eccentricity in the stiffeners 
fdist=l50 
nsel,s,loc,y,H 
nsel,r,loc,x,S 
nsel,r,loc,z,-L/2 
f,all,fx,fdist 
nsel,all 
nsel,s,loc,y ,H 
nsel,r ,loc,x, 0, -S 
nsel,r,loc,z,-L/2 
f,all,fx,-fdist 
nsel,all 

! APPLIED LOAD 
!force=300000/825 
force=300* 1000/125 
!force=300000/49 

!Uniformly Distributed Surface Load 
!nsel,s,loc,y,O 

!Rectangular Strip Load 
nsel,s,loc,z,-L/2+ I *L/zdiv+ 1 ,-L/2-3 *L/zdiv-1 
nsel,r,loc,y,O 
nsel,r,loc,x,-s-3*(2*B/xdiv)-l,s+5*(2*B/xdiv)+l 
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!Square Patch load 
!nsel,s,loc,z,-L/2+3*L/zdiv+l,-L/2-3*L/zdiv-l 
!nsel,r,loc,y,O 
!nsel,r,loc,x,-2*(2*B/xdiv)-1,4*(2*B/xdiv)+ 1 

f,all,fy ,force 
nsel,all 

save 
solve 
finish 
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AppendixC 

Nonlinear Analysis Run File 
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RUN FILE FOR A FULL NONLINEAR ANALYSIS OF A STRUCTURAL 
PANEL 

!IMPORT MODEL OF STIFF 
/inp,nlmodel (flat bar stiffened panel Appendix B3) 

save 
fini 

!APPLYING LOADS TO OBTAIN A SOLUTION 

/solu 

antype,static 
nlgeom,on 
sstif,on 
!autots,on 
neqit,30 
nropt,auto 
cnvtol,F ,0.0 1,1 
cnvtol,M,O.Ol,,l 
ncnv,O 
pred,on,on 
outres,basic,all 

! contol,lab, value,toler,norm,minref 
!cnvtol,lab,SSRC(or Minref),O.OO 1(0.1 %),2(SSRC), 1 

!BOUNDARY CONDITIONS 

! SYYMETRY 
! nsel,s,loc,z,-L/2 
!d,all,uz,O 
!nsel,all 

!PLATE EDGE RESTRAINT 
nsel,s,loc,x,-B 
d,all,ux,O 
d,all,uy,O 
d,all,rotz,O 
nsel,all 
nsel,s,loc,x,B 
d,all,ux,O 
d,all,uy,O 
d,all,rotz,O 
nsel,all 
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! END CONDffiONS 

end con-I 

! FIXEDEND 
*if, end_ con,eq, I, then 

nsel,s,loc,z, 0 
d,all,all,O 
nsel,all 
nsel,s~Joc,z, ... L 
d,all,all,O 
nsel,all 

*endif 

save 
fini 

/solu 

! DISTURBING FORCE 
fdist=ISO 
nsel,s,loc,y,H 
nsel,r,loc,x.,S 
nsel,r,loc,z, -L/2 
f,all,fx,fdist 
nsel,all 
nsel,s,loc,y ,H 
nsel,r ,loc,x, 0, -S 
nsel,r,loc,z,-L/2 
f,all,fx,-fdist 
nsel,all 

! LOAD APPLIED 

!finax=5500*1000/825 
~fjr=2000*1000/825 
fmax-2500* I 000/125 
fy=507* 1000/125 
pressure= I 00000/36 

!Uniformly Distributed Surface load 
!nsel,s,loc,y,O 
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!Rectangular Strip Ice Load 
nsel,s,loc,z,-L/2+1 *L/zdiv+l,-L/2-3*L/zdiv-l 
nsel,r,loc,y,O 
nsel,r,loc,x,-s-3 *(2 *B/xdiv)-l,s+5*(2 *B/xdiv)+ I 

f,all,fy ,fy 
nsel,all 

time,fy 
nsubst,4 

save 
solve 
save 

!Load up to approx Yield 

!Uniformly Distributed Surface load 
rnsel,s,loc,y,O 

!Rectangular Strip Ice Load 
nsel,s,loc,z,-L/2+1 *L/zdiv+l,-L/2-3*Uzdiv-1 
nsel,r,loc,y ,0 
nsel,r,loc,x,-s-3 *(2*B/xdiv)-l,s+5*(2*B/xdiv)+ 1 

f,all,fy,fmax 
nsel,all 

time,fmax 
! nsubst, 1 00 
deltim,IOO,l0,500 
autots,on 

save 
solve 
save 
finish 

!analysis up to max load capacity 
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Dl 

D2 

AppendixD 

Robust Analysis Run Files 

Progressive Modulus Reduction 

Dl-1 -Modulus Reduction file for PMR 

ma Method and R-Node Method 

D2-1 - Modulus Reduction file for ma and r-node 
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Dl - Progressive Modulus Reduction 

t PROGRESSIVE MODULUS REDUCTION (PMR) ALGORITHM AS A ROBUST 
tTECHNIQUE FOR PREDICTING A LOWER BOUND LIMIT LOAD 

!IMPORTING MODEL FOR STATIC ANLAYSIS 
/inp,pmnnodel 
/inp,pmrbc 
save 

!Models and B.C.'s from Input files given in appendix A 

fini 

tSTRESS RESULTS FOR THE FIRST STATIC ANALYSIS 

/postl 
set, 1,1 
etab,seqv,s,eqv 
etab,epteqv,epto,eqv 
I output,stress I 
pretab,seqv ,epteqv 
/out 

!DEFINE CRITERIAN TO ITERATE STIFF REDUCTION UNTIL 
!ALL ELEMENTS WITH STRESSES >YIELD ARE RELAXED 

*SET,mni,3 
*SET,mnii,3 

*DO,z,l,SO 

/postl 
set, 1,1 
etab,seqv,s,eqv 

!DETERMINE THE MAXIMUM ELEMENT STRESS 

*GET ,k,elem,O,count 

stmax=O 

*DO,t,1,k 
*GET ,s~elem,t,etab,seqv 
*IF ,st,GT ,stmax, THEN 

stmax=st 
*END IF 

*END DO 
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*CFOPEN,max 
*VWRITE,z,stmax 
( 1 Ox,f5 .1 ,3 x,fl5 .3) 
*CFCLOS 

!TERMINATE STIFFNESS REDUCTION IF ALL STRESS 
!ARE BELOW YIELD STRESS 

*IF,stmax,L T,ys,EXIT 

!PERFORM STIFFNESS REDUCTION 

/inp,pmrstiffredii 

/prep7 
mp,ex,l,ym 
mp,ex,2,ym/5 
/inp,exval 
/inp,exmod 

/solo 
save 
solve 

*END DO 

fini 

/post I 
resume 
set, 1, I 
etab,seqv ,s,eqv 
etab,ept,epto,eqv 
I output,stress2 
pretab,seqv ,ept 
/out 
/output,disp 
pmsol,uy 
/out 

fini 

! Stiffness reduction algorithm. creates files 'exval' and 'exmod ' 

!Inputs new stiffness values for modified elements 
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Dl-1 !STIFFNESS REDUCTION ALGORITHM: TO MODIFY THE ELASTIC 
!MODULUS OF SELECTED ELEMENTS 

/post I 

!resume,file,db 

!*DIM,DUMl,ARRAY,l 
!*DIM,DUM2,ARRAY,l 
!*DIM,DUM3,ARRAY,I 
!*DIM,DUM4,ARRAY,l 

SET,l,l 
ET ABLE,seqv,s,eqv 

MN=mni 

*CFOPEN,exval 
*GET,C,ELEM,O,COUNT 

*DO,I,l,C 
*GET,steq,ELEM,I,ET AB,seqw 
*GET,matno,ELEM,I,ATIR,:rn=at 
*GET,mtex,EX,matno,TEMP,()I 
*IF,steq,GE,rs,THEN 

ered=mtex*(rs/steq)**q 
*CFWRITE,mp,ex,mn,ered 
MN=MN+l 
mni=mni+l 

*END IF 
*END DO 
*CFCLOSE 

MN=mnii 

*CFOPEN,exmod 
*DO,L,l,C 

*GET,steq,ELEM,L,ET AB,seq"' 
*IF,steq,GT,rs, THEN 

*CFWRITE,emodif,L,rmat,MN 
MN=MN+l 
mnii=mnii+ 1 

*END IF 
*END DO 
*CFCLOSE 
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D2- R-Node and M-alpha 

!ALGORITHM TO IMPLEMENT THE R-NODE & M-ALPHA ROBUST METHODS 
!FOR DETERMINING THE LOWER BOUND LIMIT LOAD OF A STRUCTURE 

*DIM,strs l,ARRA Y,2500 
*DIM,strs2,ARRA ¥,2500 
*DIM,strsavg,ARRA Y,2500 
*DIM,diff,ARRA Y,2500 
*DIM,perc,ARRA Y,2500 

*SET,mni,3 
*SET ,mnii,3 

tiMPORTING MODEL FOR ANALYSIS 
/inp,mmodel 
/inp,mbc 
save 
fini 

!DO LOOP TO PERFORM 'IT' ITERATIONS OF MODULUS ADJUSTMENT 

IT=3 
*DO,a,l,IT 

tSTRESS RESULTS FOR THE FIRST STATIC ANALYSIS 

/postl 
resume 
set, I, 1 
etab, vol, volu 
etab,seqv,s,eqv 
etab,epteqv,epto,eqv 

/output,stress 1 
pretab,seqv ,epteqv 
/out 

! STORE STRESS IN AN ARRAY STR.Sl(T) 

!UNSORTED ENERGY RESULTS FOR LINEAR ELASTIC ANALYSIS I 
!ARE STORED IN FILE energyl 

*GET ,k,elem,O,count 

*CFOPEN,energyl !storing stress and vol forMa 
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*DO,t,l,k 
*GET,s~elem,t,etab,seqv 

*GET, voll ,elem,t, volu 
strs 1 ( t )=st 

*VWRITE,t, voll ,st 
(2x,fl 0.1 ,5 x,fl5 .3 ,5 x,fl5 .3) 

*END DO 
*CFCLOSE 

! storing first run stresses in array 

!PERFORM STIFFNESS MODIFICATION 

/inp,mstiffmod 

/prep7 
mp,ex,l,ym 
mp,ex,2,ym/5 
/inp,exval 
/inp,exmod 

/soln 
save 
solve 
fini 

*END DO 

/postl 
resume 
set, 1,1 
etab, vol, volu 
etab,seqv,s,eqv 
etab,ept,epto,eqv 
/output,stress2 
pretab,seqv,ept 
lout 
Uoutput,disp 
!pmsol,uy 
!lout 

!Stiffness reduction algorithn1. creates files ~exval' and ~exmod ~ 

!Inputs new stiffuess values for modified elements 

!End of Iteration loop 

!UNSORTED ENERGY RESULTS FOR LINEAR ELASTIC ANALYSIS II 
!ARE STORED IN FILE energy2 

! STORE STRESS IN AN ARRAY STRS2(T) 

*GET,k,elem,O,count 
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*CFOPEN,energy2 !storing stress and vol forMa 
*DO,t,l,k 

*GET ,st,elem,t,etab,seqv 
*GET ,vol2,elem,t, volu 
strs2(t)=st !storing first run stresses in array 

*VWRITE,t,vol2,st 
(2x,fl 0.1 ,5 x,fl5 .3 ,5 x,fl5 .3) 

*END DO 
*CFCLOSE 

!********************************************** 
!R-NODE SELECTION CRITERION 

*GET ,k,elem,O,count 

*CFOPEN,mode 

*DO,t,l,k 
diff{t)=SQRT((strsl(t)-strs2(t))**2) 
strsavg(t )=( strs I ( t)+strs2(t) )/2 
perc(t)=diff(t)/strsavg(t) 

! *IF ,strs l(t),GT,strs2(t), THEN 
! diff=strs I ( t )-strs2( t) 

!*ELSEIF,strsl(t),LT,strs2(t),THEN 
!diff=strs2(t)-strs l(t} 

!*ENDIF 

*IF,perc(t),LT,O.l,THEN 
*CFWRITE,elem,t,strsavg(t),perc(t) 
!(5x,f5.1,3x,fl0.3,3x,fl0.3) 

*END IF 
*END DO 
*CFCLOSE 

*CFOPEN,stress 

*DO,t,l,k 
*CFWRITE,e,t,strsl(t),strs2(t) 
*END DO 

*CFCLOSE 
fini 
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D2-l !STIFFNESS REDUCTION ALGORITHM TO MODIFY THE ELASTIC 
!MODULUS OF SELECTED ELEMENTS 

/post! 

!*DIM,DUMI,ARRAY,l 
!*DIM,DUM2,ARRAY,l 
~*DIM,DUM3,ARRAY,l 

!*DIM,DUM4,ARRAY~I 

SET,l,l 
ET ABLE,seqv,s,eqv 

MN=mni 

*CFOPEN,exval 
*GET,C,ELEM,O,COUNT 

*DO,i,l,C 
*GET,steq,ELEM,i,ET AB,seqv 
*GET,matno,ELEM,i,A TTR,mat 
*GET,exold,EX,matno, TEMP ,0 

exnew=exold*(rs/steq)**q 
*CFWRITE,mp,ex,MN,exnew 
MN=MN+l 

*END DO 
*CFCLOSE 

MN=mnii 

mni=mni+l 

*CFOPEN,exmod 
*DO,L,l,C 

*CFWRITE,emodif,L,mat,MN 
MN=MN+l 
mnii=mnii+ I 

*END DO 
*CFCLOSE 
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