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Abstract 

The present study concerns the analysis of bending of plates and shells subjected to 

various boundary conditions and load. Bending stress intensity factors for plates 

containing through thickness crack under edge bending load are evaluated. To 

accomplish the task, hierarchical degenerated plate/shell element and hierarchical 18-

node solid thick shell element are developed. 

The hierarchical degenerated plate shell element has four comer nodes, four mid­

side nodes and one central node on the mid-surface of the shell geometry with five 

degrees of freedom at each node. For defining the geometry, Lagrangian shape functions 

were employed. P-version shape functions upto order seven were used for defining the 

displacement field. Crack tip singular plate/shell element was developed by enriching the 

displacement field of the element with the asymptotic displacement field near the crack 

tip. A hierarchical 18-node solid thick shell element has been developed. Sixteen nodes 

consisting 8 comer nodes and 8 mid-side nodes are used to define the geometry and 

eighteen nodes for defining the displacement field. Each node has three degrees of 

freedom. 

Some benchmark problems were analyzed in order to check correctness the 

elements of both plate/shell and thick solid elements. Analyses were performed to obtain 

the stress intensity factors of plate with through thickness crack using hierarchical 

degenerated plate/shell element. Numerical results obtained from the present element 

formulations are compared with analytical/numerical solutions available from literature. 

It is inferred that numerical results are in good agreement with the benchmark plate and 

shell problems. 
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Chapter 1 

INTRODUCTION AND OVERVIEW 

1.1 Finite Element Method 

The finite element method is a numerical approach by which general 

differential equations can be solved in an approximate manner. It is the characteristic 

feature of finite element method that instead of seeking approximations that hold directly 

over the entire region, the region is divided into smaller parts, called finite elements, and 

the approximation is carried out over each element. As the FE method is a numerical 

means of solving governing differential equations, it can be applied to various physical 

phenomena. Applications of finite element method include structural analysis, heat 

transfer, fluid flow, mass transfer and electromagnetic potential [1] etc. The steps 

involved in the FEM are: the discretization of the domain into a number of finite domains 

called elements, evaluation of element properties in the form of element stiffness and 

load matrices to obtain global stiffness and load matrices and finally solving the resulting 

linear algebraic equations to obtain the displacements at the nodes. 

The discretization process divides the domain into small units, each 

represented by an element. The discretization is suitably carried out to improve the 

accuracy and convergence of the solution. The density of the elements at a location in the 

domain depends upon the geometry and the external load distribution. A sub-domain 

where there is a complex geometry and sharp edges or stress raiser needs a fmer mesh i.e. 
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higher element density. The discretization should be optimal. It should not lead to too 

many elements, which increases computational effort. Once the elements are created, 

element matrices are calculated and then assembled. The resulting system of equations is 

solved to obtain the solution. Since Finite Element Method is an approximate method, 

the solution for any analysis is not exact, unavoidable modeling and numerical errors are 

introduced. Therefore a systematic approach must be implemented to determine the 

accuracy of the analysis in the finite element solutions. 

The most effective approach for determining the accuracy of the solution in finite 

element solution is to perform 'extensions'. Extensions are step by step changes in the 

finite element discretization that cause the number of degrees-of-freedom (DOF) to 

increase at each step, with the goal of reducing numerical error in the solution. DOF can 

be increased by increasing the number of elements or the polynomial levels of the 

elements. Reduction of error can be accomplished in h-refinement or h-extension and p­

extension. The h-extension is carried out by increasing the number or density of the finite 

elements while holding the polynomial order constant. In the second approach (p­

extension) the order of the approximation polynomial for the unknown displacement 

field is increased while maintaining the number and density of element constant. In 

practice, the h-extension process is the least efficient numerically (lowest convergence 

rates) and the most cumbersome to implement. The p-refinement can be done for the 

domain or selectively for few elements where there is a high strain gradient. 
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1.2 P-version Finite Element Method 

P-version finite element refinement can be performed by two methods. In the first 

method regular interpolation functions of higher order are employed by increasing the 

number of nodes in each element. The second method uses hierarchical interpolation 

functions as shape functions. The lower order hierarchical shape functions are the subset 

of the higher order functions. This property of hierarchical shape functions enables the 

enhancement of computational effort. The element matrices required for the additional 

degrees of freedom are only needed to be evaluated and assembled thus reducing 

computational effort. As the regular interpolation functions in the first method do not 

exhibit this hierarchical property, the element matrices need to be evaluated afresh and 

assembled. 

The hierarchical elements [2] have many advantages over the h-version. The p­

version element shows good numerical convergence and the mesh design is less critical 

because there is always a possibility to increase the element order without changing the 

mesh division. In h-version, mesh modification by element division is necessary to 

achieve convergence. Hierarchical shape functions allow more accurate mapping of 

geometry shapes such as circles. In h-version geometry shapes are mapped with quadratic 

functions. The size of the input file is small in p-version, as there are fewer elements. 

These merits contribute to the reduced computational effort and time. The resulting 

matrices are better conditioned and hence they converge for solving. Also it provides an 

immediate estimation of the error by comparing successive solutions. 
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1.3 Plate and Shell with through cracks 

Plate and curved structural elements in the form of general shells are common in 

engineering practice. They are observed in pressure vessels, nuclear reactors, aircraft and 

roof structures. Hence, a significant effort has been directed to the development of a 

suitable finite element procedure for the analysis of general shell structures. Over the 

years, hundreds of elements have been developed. 

A number of plate elements are available in the literature, which does not use the 

concept of hierarchical analysis. These elements employ h-version analysis for 

convergence, which demands more computational effort. Moreover many of these 

elements suffer from a problem called "Shear locking". These elements become too stiff 

and produce displacements far less than the actual value when the thickness is small. This 

problem is overcome chiefly by modifying the transverse shear strain field, which is 

cumbersome and involves additional computational effort. 

Structural shells [3] are widely used in a broad spectrum of industries e.g. 

aerospace, automotive, power generation, railroad, ship building and chemical. Very 

often the usage is characterized by irregularities in the form of discontinuities, complex 

loading and support conditions over the surface and at the edges. 

In the design of such shells it is necessary to account for the aforementioned 

irregularities, which become the source of singularities in the stress field and hence the 

potential seat for crack initiation and propagation, affect the fatigue life of the shell under 

cyclic loading conditions. 

The sources of singularities can be classified under three headings 
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1. Geometric: Re-entrant comers, cracks, cutouts with sharp comers, discontinuities in 

curvature and thickness, presence of stiffeners, mixed boundary conditions etc. 

2. Loading: concentrated sources over the surface and at the edges line sources over the 

surface, and sudden changes in the intensity of the external sources. 

3. Material: Sudden changes in material properties, as in the case oflaminated materials. 

The stress intensity factors for plane extension and plate bending problems are 

often useful in discussing the fracture of various structures. For the plane extension 

problem of cracked plates, many effective finite element codes have been developed and 

some of them are available for engineers [4] and [5]. For the plate-bending problem of 

cracked plates, on the other hand, only a few finite element methods have been published 

[6]. Some investigators [7] and [8] have obtained the singularity solutions for problems 

based on classical bending theory for stress intensity factors. These values cannot be 

combined in plane extension and plate bending problems, as the angular distributions of 

the stress fields in these problems are different around the crack tip [9]. 

1.4 Objective of the thesis 

The objective of this work is to, 

• Develop a hierarchical nine-node degenerated plate/shell element, incorporating 

through thickness crack singularity, with inplane displacement u and v, out of plane 

displacement w and rotations of normal to the mid surfaces as degrees of freedom for 

obtaining the stress intensity factors. 
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• To develop solid thick shell element with in plane displacement u and v, and out of 

plane displacement w as degrees of freedom for the analysis of thick/ thin plates and 

shells. 

• Demonstrate the advantage of the singular element over the existing ones in the 

development of finite element code. 

To accomplish these objectives, the major requirement is the development of a 

finite element program for the developed singular shell element. A computer program is 

developed for obtaining SIF for through cracks in plates and shells. A number of bench 

mark problems are solved to show the effectiveness and use of the element. 

1.5 Layout of the thesis 

The first chapter gives an introduction to the various concepts and terminologies 

relevant to the present work. Chapter two gives a detailed review of the literature and 

defines the scope of the study. Chapter three gives the formulation of the 9-node 

hierarchical plate/shell and 18-node solid thick shell elements. It also includes the 

derivation of various equations and matrices for stress intensity factor evaluation. The 

computer implementation of the finite element formulation using objected oriented 

approach is discussed in chapter four. Chapter five presents the numerical results 

obtained from the analysis of test problems. Conclusions and recommendations are given 

in chapter six. 
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Chapter 2 

BACKGROUND AND SCOPE OF WORK 

2.1 Literature Review 

Finite element analysis is widely applied in many fields of engineering. Almost 

all finite element problems include the following steps: 1. Data input 2. Calculation of 

element stiffness matrix and load vectors 3. Assembly of global stiffness and load 

matrices 4. Application of boundary conditions 5. Solution of equations 6. Post 

processing the solutions and results output. 

These fundamentals are very well explained in the textbooks by many authors like 

Zienkiewicz [10], Bathe [11] etc. The following sections give a detailed account of 

literature relevant to the current work. 

2.1.1 Plate and Shell elements 

Plates and Shells [12] are three-dimensional bodies characterized by the fact that 

one of the dimensions is much smaller than the other two. The various theories of plates 

and shells recognize and exploit this. These theories are useful because the quantities of 

interest in the analyses of plates and shells, such as membrane forces, bending moments 

and shear forces, are related to certain averages of the displacement across the small 

dimensions of these three dimensional bodies. This permits reduction of the dimensions 

in the case of plates and shells from three to two. 
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Usually plates and shells are stiffened and/or joined with solid bodies. If we have 

to ensure the reliability and accuracy of computed data without sacrificing computational 

efficiency then we must be able to model these parts of the structure with three 

dimensional theories while retaining the simplified assumptions incorporated in plate and 

shell theories where those assumptions hold. 

Several plate and shell theories have been developed by two approaches. The first 

approach, favored in the engineering literature [13-15] is by prior assumptions 

concerning the mode of deformation. The second approach is that the solution of the 

three dimensional differential equations of elasticity expanded by power series so that the 

powers of thickness parameters are factored. There are several possible variants for this 

approach [16-19]. The power series expansion can be applied to the differential equations 

of elasticity or any of the variational formulations of the differential equations of 

elasticity. 

The most widely used conventional plate and shell theories are Kirchoff's plate 

theory and Reissner-Mindlin theory. In Kirchoff's plate theory transverse shear strains 

and normal strains are neglected; whereas Reissner-Mindlin theory takes into account 

deformations caused by transverse shear forces. Over the years, hundreds of plate and 

shell elements have been developed. They are put into three categories depending upon 

the mathematical principles employed. 

Bathe and Ho [20] suggested that were three approaches were being 

followed in the development of plate and shell elements. 

1. A particular shell theory is used and discretized. 

2. Three dimensional continuum equations were used and discretized. 
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3. Plate bending and membrane element stiffness were superimposed and assembled in a 

global co-ordinate system. 

The three approaches have advantages and disadvantages, and it is still difficult to 

state which of the three approaches is most effective based on criteria combining 

accuracy, computational cost and simplicity in use. Considering approach three, 

triangular flat elements having displacements and rotations at the comer nodes as degrees 

of freedom are particularly appealing for many practical reasons; for example, arbitrary 

shell geometries, general supports and cut outs, and beam stiffeners can be modeled. 

Alternative formulations of three noded triangular plate-bending elements have been 

presented in the literature vide; a DKT (Discrete Kirchhoff theory) element, a HSM 

(Hybrid Stress Model) element and a SRI (Selective reduced integration) element. 

Displacement based Kirchhoff plate theory element formulation [21 and 22] was 

based on the principle of minimum potential energy, where the compatibility 

requirements involve displacements and rotations. Their ineffectiveness is due to 

incompleteness, incompatibility, and lack of in variance with regard to element orientation 

and singularity. It was then realized that it is impossible to formulate a compatible 

triangular element with nine degrees of freedom with a single-field polynomial expansion 

for w. One of the first compatible triangular elements is the well-known HCT element. 

Its formulation was based on the subdivision of the complete element into three sub 

triangles. An incomplete cubic (9- term) polynomial was used in each sub region for the 

displacement w, and the normal slope along the exterior edge of each region varies 

linearly. The HCT element has frequently been regarded as a reference element for 

bending analysis of plates, mainly because of the extensive numerical results presented 
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with its formulation. However, the formulation involves cumbersome algebraic 

manipulations and the element is rather stiff. 

The hybrid stress method [23] was developed to overcome the difficulties that 

were encountered in the development of pure displacement models due to element 

compatibility requirements. The most effective and also simplest element is called the 

HSM element. This triangular bending element was derived :from Kirchhoff plate theory. 

The element has a linear distribution of bending moments in the interior and a cubic 

displacement variation with a linear normal slope variation along the edges of the 

element. The derivation of the stiffness matrices of hybrid stress elements appears to be 

rather cumbersome, and the evaluation of the element matrices appears to involve more 

algebraic manipulations and computer storage than comparative displacement models. 

The formulation of elements based on the discrete Kirchhoff theory for bending of 

thin plates was obtained by first considering theory of plates including transverse shear 

deformations. The transverse shear energy is neglected altogether and the Kirchhoff 

hypothesis is introduced in a discrete way along the edges of the element to relate the 

rotations to the transverse displacements. This approach has been used to formulate 

effective nine degrees of freedom triangular bending elements that converge to the 

classical thin plate solution. The final result is that the DKT element has not received 

widespread adoption and has also not been implemented in any major computer code. 

Recent and somehow successful developments of a beam element, quadrilateral 

plate elements and axisymmetric shell elements, based on selective reduced integration 

concepts and the theory of plates including transverse shear effects, suggest that a simple 

selectively integrated triangular plate element with 9 degrees of freedom may be 
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effective. Based on the results employing this element, it was concluded that the element 

is not effective when compared with the HSM and DKT elements. 

The theory of plates with transverse shear deformations included (the plate theory 

of Reissner or Mindlin) uses a generalization of the Kirchhoff hypothesis 'a point of the 

plate originally on the normal to the undeformed middle surface'. For thin plates the 

transverse shear strains and therefore the transverse shear strain energy Us are negligible 

compared to the bending energy. 

Cook [24] developed a 24-degree of freedom quadrilateral shell element 

by the very simple process of combining standard membrane and bending formulation 

with a device for membrane-bending coupling and a device for inclusion of warping 

effects. The membrane element is of the isoparametric type and is numerically integrated 

using a 2x2 Gauss rule. For membrane action there is three DOF at each comer i, 

consisting of x and y translations ui and vi and drilling rotation 8zi, positive counter 

clockwise. 

Roufaeil [25] developed three rectangular plate-bending elements. They have 14 

and 16 degrees of freedom and are displacement based Mindlin plate theory elements. 

The shape functions of the displacement and rotations are not completely independent. 

Numerical results were presented for problems involving rectangular plates of different 

aspect ratios and support conditions. The elements perform quite well for the class of 

problems studied and do not show any sign of the 'shear locking' phenomenon for thin 

plates. 
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2.1.2 P-version FEM 

The concept of p-version finite element analysis is relatively new. A large number 

of papers have been published on this subject and its merits over h-version are well 

proved. One of the first works on p-version FEM is by Peano [26]. New hierarchies of 

this family of the finite element is that the shape functions corresponding to an 

interpolation of order p, constitute the subset of higher order interpolation functions 

greater than p. Hence the stiffness matrix of the element of order p, forms the subset of 

stiffness matrices of higher orders greater than p. This development gives rise to new 

families of finite elements, which are computationally efficient. 

The elemental arrays of higher polynomial order can be efficiently computed 

using hierarchical elements with precomputed arrays. These precomputed arrays are 

computed once and stored in a permanent file, which can be used in all subsequent 

applications of the program. Rossow and Kutz [27] showed that the use of hierarchical 

elements with precomputed arrays are competitive in terms of computational efficiency 

compared to conventional fmite element method. 

The advantages of the hierarchical approach are presented by Zienkiewicz et al 

[28]. They showed the hierarchical nature of the stiffness matrices. The condition of the 

stiffness matrix increases because of the appearance of hierarchical variables as a 

perturbation on the original solution. This ensures a faster rate of iteration convergence. 

The perturbation nature of the hierarchical form has a further merit of providing an 

immediate measure of the error in the solution, by analyzing the displacement solutions 

of successive orders. 
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A proper mesh design increases the performance of p-refinement attainable by the 

finite element method. Szabo [29] gives the guidelines for prior mesh design for the P­

version FEM. Babuska et al [30] discuss the optimal selection of shape functions for p­

type finite elements. They also discuss the efficacy of the conjugate gradient and 

multilevel iteration methods for solving the linear system. 

The hierarchical linear equation sets can be efficiently solved by using a proper 

solution strategy. Morris et al [31] developed an algorithm, which has the ability to 

choose dynamically between iterative and direct solvers. It can also adjust the 

preconditioning in iterative solvers dynamically. The combination of direct and iterative 

solvers gives an efficient solution path, combining the advantages of both the solvers. 

Woo and Basu [32] presented a new hierarchical p-version cylindrical shell 

element for the analysis of singular cylindrical shells. They used the Legendre 

polynomial shape functions for the approximation of the displacement field. A blend 

mapping function exactly maps the curved boundaries using the exact geometric 

parameters. The Legendre polynomials are able to oscillate with increased frequency near 

the end points and thus are better suited to approximating singular behavior. The 

stiffness matrix based on this element is well conditioned even at higher p-levels and 

hence gives faster convergence. This p-version cylindrical shell element is very efficient 

in terms of accuracy and computational efficiency compared to h-version cylindrical 

elements. 

Szabo and Sahrmann [33] presented a 4-node 2-D element and an 8-node 3-D 

solid element for the analysis of shells. The work done by Surana and Sorem [34] is of 

special interest here. They developed hierarchical three-dimensional curved shell element 
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based on the p-version concept. The geometry of the element is described by the 

coordinates of the nodes in its middle surface and nodal vectors describing its top and 

bottom surfaces. The element displacement function can be of any arbitrary and different 

polynomial order. The approximation functions and their corresponding hierarchical 

variables are obtained by first constructing the approximation functions and nodal 

variables for each of the three directions and then taking the tensor product. Here both the 

displacement functions and nodal variables are hierarchical and hence so are the element 

matrices. The formulation is effective for both thin and thick plates. The usage of 

hierarchical variables in the thickness direction increases the number of degrees of 

freedom greatly, which increases the computational burden. Sethuramalingam [35] has 

used similar concept to develop plate/shell element for analyzing plate and shell problems 

and showed the advantages ofusing p-version FEM. 

2.1.3 Crack tip element 

Plate and shell formulations are widely used to analyze thin-walled structures 

such as aircraft fuselages subjected to bending and pressure loads. Through-the-thickness 

cracks (often called as through cracks) may develop when these structures are subjected 

to cyclic loads, and the determination of mixed-mode stress intensity factors is critical to 

the modeling of fatigue crack propagation. Despite the practical importance, relatively 

little research has focused on developing robust numerical methods to determine fracture 

parameters and simulate crack growth in thin plates. 

The finite element method has been used extensively in fracture mechanics and 

numerous singular elements have been developed. The analysis of plate members 
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containing through thickness flaws and subjected to bending load has been a subject of 

controversy during the past decade. Unlike the case of thin plates acted on by in-plane 

loads, where the use of two dimensional elasticity theory, provides an effective means of 

deriving stress intensity factor solutions predictions of elastic fields for comparable 

structures subjected to bending loads is influenced by the specific plate theory by which 

the analysis is performed [extended finite element method]. 

Ganti [36] has developed two dimensional crack tip p-version plane elements 

incorporating near crack tip displacement field to obtain stress intensity factors ofr plane 

elasticity problems. Ahmad and Loo [37] developed a special crack-tip finite element to 

obtain the bending and shear stress intensity factors for thin elastic plates containing 

crack. The bending and shear stress intensity factors were then used to compute the Strain 

Energy Density factor and the direction of crack initiation. A triangular crack tip element, 

which was based on a displacement function derived from William's expansion [7], was 

developed. The crack tip elements were used only in the vicinity of the tip of the crack 

while conventional 9 degrees of freedom triangular plate bending elements were used in 

the rest of the domain. Yagawa and Nishioka [38] analyze stress intensity factors for 

plates in bending where the displacement field was made up of terms from the 

isoparametric shell element of Zienkiewicz, Taylor and Loo [39], supplemented by terms 

from the crack tip solution of Williams. They employed singular element where behavior 

of the in plane displacements is based on transverse shear while out-of-plane 

displacements were governed by classical plate theory. Reasonable results were obtained 

despite the apparent conflict of physical theories. 
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Chen and Chen [ 40] proposed a hybrid-displacement finite element model for the 

bending analysis of thin cracked plates subjected to static and dynamic loading. The 

variational principle, governing the assumed hybrid displacement finite element model 

for the fracture mechanics of the singular region, is the modified Hamilton's principle. In 

this functional the transverse shear effect is ignored due to the use of Kirchoff s 

hypothesis. 

Y e and Gallagher [ 41] created yet another singularity element based on classical 

plate theory for analysis of plate bending problems. Singularity formulation of a 

triangular plate-bending element is by approximation of the displacement field by the 

combination of the singular solutions of the plate bending equation. The bending 

intensity factor Ks for a rectangular plate containing a center crack and subjected to 

purely cylindrical bending was studied. Singular elements were used only in the region 

surrounding the crack tip while the DKT element was used in the rest of the plate. 

Explicit integration was carried out to compute the stiffness matrix terms. 

Watanabe et.al [42] proposed a new evaluation method using thick shell elements 

to calculate the distribution of the J-integral values along crack fronts of through-wall 

cracks in plate and shell structures. Dividing tentatively the thick shell element into 

several layers in the thickness direction, integral paths were defined at each layer to 

obtain the thickness distributions of the J-integral values of through-wall cracks in plate 

and shell structures. Curved quadrilateral reduced integration thick shell element derived 

from 20-node isoparametric solid element proposed by Ahmad et.al [43] was employed 

to analyze the stress of plate and shell structure. Stiffuess matrix was evaluated using 

reduced integration technique. The distributions of the J-integral values along the crack 
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fronts are compared between the present method using the thick shell element and that 

using the three-dimensional solid elements. 

Go et al [ 44] formulated a super-element for the dynamic problem of a cracked 

plate by considering a geometric series of similar elements. This group of elements was 

generated layer-by-layer approaching infmitely small size around the point of singularity. 

Ehlers [ 45] used eight-noded isoparametric shell element with three translational 

and two rotational degrees of freedom. Due to the rotational degrees of freedom the 

element is capable of transverse deformation; thus its formulation corresponds to a 

general thin shell theory. Results for stress intensity factors derived from shallow shell 

theory are rigorously valid only for very short cracks. 

Agnihotri [ 46] proposed a two-dimensional fmite element model to study the 

stress distribution of a cracked plate subjected to mechanical "mode I" loading and a 

plane strain constraint. The effect of singularity near the crack tip has been examined and 

is overcome by introducing 12-noded cubic isoparametric elements. The cubic 

isoparametric element is collapsed into a triangular element by placing the two side nodes 

of a side at 1/9 and 4/9 of the length of the side from the crack tip. 

Vafai and Estekanchi [47] studied the overall behavior of plates and shells as 

affected by the presence of a through crack in the elastic range. This overall view is 

important if the general stability and integrity of the structure as a whole is to be 

investigated. Due attention has been focused on FE modeling of the problem and the 

significance of various parameters such as the order of mesh refmement at the crack tip 

area and the effect of the boundary conditions on the results obtained from the analysis. 
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The effect of Poisson's ratio and geometric parameters such as crack length and shell 

curvature were also studied. 

Murthy et al [ 48] developed a general solution to the symmetric bending stress 

distribution at the tip of a crack in a plate taking shear deformation into account through 

Reissner's theory. The solution was obtained in terms of polar coordinates at the crack tip 

and includes the complete class of solutions satisfying all the three boundary conditions 

along the crack. Analysis in their work took finiteness of the plate into account. The aim 

was to develop a general solution, which could be readily applied to wide class of 

problems. While the analysis in earlier studies was based on the integral equation 

approach, this analysis used the differential equation approach. 

The complete class of possible solutions was obtained for symmetric bending 

stresses in the vicinity of a crack tip in a plate taking shear deformation into account 

through the use of Reissner' s theory. 

The analysis was carried out for the case of symmetric bending of the plate with 

respect to the crack. Also, the analysis was carried out for the case where there was no 

normal loading on the plate. In other words, the solutions obtained could be used in a 

situation where the plate is subjected only to known edge loads or known kinematic 

constraints on the exterior boundary. 

2.2 Scope of the study 

P-version hierarchical crack tip element and plate shell element is developed 

using OOP concept. The plate shell element has five degrees of freedom, three 

translations in the global cartesian directions and two rotations in the local axes. 
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Isoparametric element is used to define the geometry of the element having nodal co­

ordinates and the nodal vector perpendicular to the midplane. The displacement 

approximation functions are hierarchical in nature and derived from Lagrangian family. 

The degrees of freedom at mid nodes are hierarchical in nature. The degrees of freedom 

at the comer nodes are the displacements u, v, and win the global X, Y, Z-axes and the 

rotations in the local axes. The element matrices are evaluated by using both full 

integration (p+ 1) and reduced integration (p) techniques. 

The element matrices are evaluated using numerical integration. As the order of 

the approximation polynomial function increases, the number of Gaussian points has to 

be increased to obtain the element matrices. This increases the computational effort 

required for element generation. 

Standard example problems from references are chosen for verifying the 

performance of the element. A square isotropic plate subjected to different boundary and 

loading conditions is analyzed. The plate is also analyzed by varying the thickness. 

Results are compared with the analytical solutions. A cylindrical barrel vault under self­

weight is analyzed. This is a test example for shells in which the bending action is severe. 

A pinched cylindrical shell is also analyzed. Bending Stress intensity factor for an infinite 

plate with a through-thickness central crack subjected to a far end moment is determined. 

For rectangular plate subjected to edge moment away from the crack region, bending 

stress intensity factors are evaluated for various crack length to width ratios. The results 

are compared with the reference values from the literature. The effectiveness of the 

element is demonstrated. 
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Chapter 3 

ELEMENT FORMULATION 

The present work discusses the isoparametric formulation of the plate and shell 

element including geometric definition of the element, shape functions, displacement 

fields, Jacobian matrix, strain-displacement matrix and stress-strain matrix. The principle 

of displacement finite element approach is used to determine the stiffness matrix and 

nodal force vector. Solution method involves finding the displacements from the equation 

[ K]{ o} = { F} where [ K] is the global stiffness matrix, { o} is displacement vector and 

{ F} is load vector. The analysis includes development of p-version finite element model 

for the bending of thin/moderately thick plates by enriching the displacement field with 

nearfield crack displacements and bending of shells. 

3.1 Hierarchical Degenerated Plate/Shell Element 

In this study, the displacement finite element approach is used. In this 

formulation, it is assumed that the normal to the middle surface remains practically 

normal after deformation. This assumption permits the shear deformation, which is very 

important in the thick shell situation. The strain energy corresponding to the strain 

perpendicular to the middle surface is ignored for simplification. The element has four 

corner nodes, four mid side nodes and one central node with five degrees of freedom at 

each node. The degrees of freedom consist of displacements in the X, Y, Z directions and 
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rotations of vector normal to the middle surface about two orthogonal directions normal 

to it. 

3.1.1 Geometric definition of the element 

Consider a typical shell element in Figure 3.1. The geometry of the element is 

defined using eight nodes as shown in figure. The nodes are located at the middle surface. 

The external surfaces of the element are curved and the sections across the thickness are 

straight. Two curvilinear coordinates ~,17 in the middle plane and a linear coordinate s 
in the thickness direction are used to define the geometry. The local coordinates ~, 17 and 

s vary between -1 and 1. The top and bottom coordinates define the shape of the 

element. The relationship between the cartesian coordinates and the curvilinear 

coordinates for any point in the element is given by: 

(3.1) 

where, 

{
X;} {X;} 

V3; = Y; - Y; 

Z; mid Z; bollom 

(3.2) 

N; ( ~, 17) is a serendipity approximation shape function. The subscript top, bottom and 

mid indicates top, bottom and mid planes respectively. The subscript i refer to the 

element node number. The mid-plane coordinates are evaluated from the average of top 

and bottom co-ordinates. 
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Figure 3.1 : Hierarchical Degenerated plate shell element 
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3.1.2 Displacement field 

The inplane displacements u(s) and v(s) and out of plane displacements 

w( s) along the thickness direction at each node is given as 

(3.3) 

where u oi, voi and W
0

i are displacement components at node i on mid-surface, hi, 

thickness of the plate/shell at node i, ai and /3i are rotations of normal to the surface about 

x and y axes respectively, vi1i is the fh component of vector { v1i} at node i and v1 
2i is the 

fh component of vector { v2i} at node i and s is the curvilinear co-ordinate along the 

normal to mid surface. The vectors vii and v 2i are normal to the vector v 3i • v 3i is the 

vector normal to the middle surface as defined in equation ( 3.2) . The vectors v1i and v2i 

are uniquely defmed as: 

v3 . XV1. 
V 

_ I I 

2 " -

I lv3i x viii 

The membrane displacement u ( s) within the element in terms of curvilinear co-

ordinates ~ and 7J can be written as 
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=[P]{a} (3.4) 

The displacement components at the nodes are determined by substituting 

appropriate curvilinear co-ordinates of the nodes. At the comer nodes, the displacement 

components u, v and w and rotations of the normal to the mid-surface are the degrees of 

freedom. The hierarchical degrees of freedom of the displacement components and 

rotations used as degrees of freedom at the mid-side nodes and central node are as 

follows: 

By substituting appropriate curvilinear co-ordinates at the nodes, into equation 

(3.4), we get 

{<>(s)}=[C]{a} (3.5) 

{a} =[cr {<>(s)} (3.6) 

where {<>(s)} is given by 
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fori= 1,2,3,4 

fori= 5 and 7 

fori= 6 and 8 

fori= 9 

Substituting equation (3.6) into equation (3.4) we get 

u(s)=[P][cr {c5} (3.7) 

Instead of inverting [ C] matrix and pre-multiplying with [ P] matrix, we can rewrite the 

equation (3.7) using standard procedure involving shape functions as 

u(s) = [ N]{c5} (3.8) 

where [ N] is the hierarchical shape function (see Appendix ). Substituting for { c5} in 

terms of displacement degrees of freedom, we can write second order displacement 

interpolation function for u(~,7J,s)as 

(3.9) 

where 
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The equation (3.9) can be rewritten as 

4 4 

u(;-,1'/,s) = LN;uo; + LNg; ( v\;a; - v
12;P;) 

i= l i= l 

9 9 

+ LN;u;; + LNg; ( v\;a; - v\;,8/') (3.10) 
i=5 i=5 

where ( )" denotes the partial derivative with respect to ;,17 at the respective nodes on 

mid sides 

Similarly the displacement distribution for v and w can be written as 

4 4 

v(;-,1'/,s) = LN;v0 ; + LNg; ( v\a; - v\;,8;) 
i=l i= l 

9 9 

+ L N; v;; + L N gi ( v
2 lia; - v\; ,8/') (3.11) 

i=5 i=5 

4 4 

w(;-,1'/,s) = LN;wo; + LNg; ( V3
t,a; 

i= l i=l 

9 9 

+LNiw~i+ LNgi(v\a; - V3ziPt) (3.12) 
i=5 i=5 

Following the same procedure higher order displacement functions can be written as 

4 4 

u(;-,1'/,s)= LN;U0;+ LNg; (v\;a; - v1
2;,B,) 

i=l i=l 

Pmax 9 Pm." 9 

+ LLNp;u;'+ LLNgp;(v\;at - vt2;,Bt) (3.13) 
p=2 i=5 p=2 i=5 

where u~; =mid surface displacement at the corner nodes 'i' 

u' P - (JPuo; at node i fori= 5 and 7 
oi - a;p 
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aPuoi 
a77p 

at node i for i = 6 and 8 

82Pu . 
= 0

' at central node i = 9 
a~pa 77 p 

ai, pi = Rotation of normal about x and y axes at comer nodes i, i = 1 to 4 

a'P = apai at node i, i = 5 and 7 
I a~p 

8Pa. 
= ' at node i, i = 6 and 8 

877p 

82Pa 
= 1 at central node i = 9 
a~pa 77p 

fl iP = ap pi at node i, i = 5 and 7 
I a~p 

ap Pi 
at node i, i = 6 and 8 

a77p 

a2p Pi 
= at central node i = 9 
a~p a77 P 

Similarly, the other displacement components can be written as 

4 4 

v(~.77.s) = LNivoi + LNgi ( v\ai - v\iPi) 
i=l i=l 

4 4 

w(~.77.s)= LNiwoi+ LNgi (v\ai - V
3
2iPi) 

i=l i=l 
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3.1.3 Stress Strain relationship 

The strain [1 0] components in directions of orthogonal axes related to the surface 

where t; is constant are essential if account is to be taken of the basic shell assumptions. 

Thus the strain components normal to this surface z' and along the two orthogonal axes 

x' and y' are given simply with strain in direction z' neglected. 

The strain matrix is given by 

t: x' 
au' 
ox' 

av' 
E: y' 

ay' 

{t:'}= au' av' (3.16) Yx'y' - + -
ay' ox' 

aw' au' 

Yx'z' 
- + -
ox' oz' 

aw' av' 
r y'z' 

- + -
ay' oz' 

To derive the properties of a finite element the essential strains and stresses have 

to be defined. If the element is assumed to be a basic shell element, the strain component 

along z' direction (normal to the surface s = constant) is assumed to be zero or 

neglected. Thus at any point in this surface ( s = constant ) if we erect a normal z' with 

two other orthogonal axes x' and y' tangent to it, the stain components are simply given 

by the three-dimensional relationships. Neglecting normal strain in direction z' in 

accordance with shell assumption. The stress-strain relationships can now be written as 

(3 .17) 

where D' is the isotropic material property matrix and is given by 
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1 v 0 0 0 

v 1 0 0 0 

0 0 
1-v 

0 0 
[D']=~ 2 (3.18) 

1-v 
0 0 0 

1-v 
0 

2k 

0 0 0 0 
1-v 
--
2k 

Here E and vare Young's modulus and Poisson's ratio. The factor k is included 

to improve shear displacement approximation. The value of k is 6/5 and it is the ratio of 

relevant strain energies. 

3.1.4 Element Matrices Evaluation 

The derivatives of the displacement with respect to the global X,Y,Z coordinates 

are given by the relation, 

w~ ] 
w,, 

w,, 

(3.19) 

where [ J] is the Jacobian matrix given by: 

[J]=[:.: ~:: :::] 
x.,; Y,,; z.,; 

(3.20) 

Here a comma (,) followed by a subscript indicates the partial differentiation with 

respect to the subscript. These derivatives of the displacements are transformed to the 

local displacement directions x', y', z' for the evaluation of strains. The directions of the 

local axes are established by the following method. 
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A vector normal to the shell surface is found by the cross product of two vectors 

tangential to the surface and it is given by: 

The other two directions are uniquely defmed as: 

V, = jx ~ 
I ljx~l 

V:- ~X~ 
2 -~~x~l 

(3.21) 

Th I I I e x,y,z directions are obtained by reducing the above vectors to unit 

magnitude. 

(3.22) 

The local derivatives of the displacement are given by 

[ 

I I I l r l U 'x' V 'x' W 'x' U x V x W x 

u~'y' v~,y' w~'y' = [ er u,y v,y w,y [ e] 
U 'z' V 'z' W 'z' u,z v,z w,z 

(3.23) 

Substitution of these components in equation (3 .16) gives the strain components 

in terms of displacement degrees of freedom of the element as, 

{ &
1

} = [ B']{ 8} = [ B'] (3.24) 
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V; 

where { J;} = w; for comer nodes 

and 

u'P 
I 

v'P 
I 

w'P 
I 

a'P 
I 

for hierarchical nodes 

where the matrix [ B'] is called the strain displacement matrix. The displacement matrix 

{ J} is partitioned into sub-matrices containing the nodal variables corresponding to the 

particular node i. The value of n depends upon the number of nodes in the element 

including the hierarchical nodes. 

The element stiffness matrix and load vector is evaluated by the following defmitions. 

[xe]= f[Bf'[D][B]dn (3.25) 
Q 

(3.26) 
r r 

The integration process is done in the local coordinate system. Changing the limits o 

local coordinate system gives, 

(3.27) 

Gauss quadrature rule is used to numerically integrate the element stiffness matrix. 

Gaussian integration using NGk x NG j x NG; points is given by 
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Nd NGj NG; T 

[ Ke J = L L :L[ B(~i.17j>Sk)] [ n][ B(~i.17j'Sk) ]IJ(~i .17j>Sk )iwiwjwk (3.28) 
k=l j=l i= l 

where wi , wj and wk are the Gaussian weights corresponding to the i,j and l(h gauss 

points. NG;, Nd and NG k are number of Gaussian points along ~, 17 and s directions. 

Two-point integration is used along the s direction, as s is a linear coordinate. The 

order of integration along the ~ and 17 directions depends upon the hierarchical order 

chosen along the respective directions. 

Once the stiffness and load matrices for all the elements are evaluated, they are 

assembled to form the global stiffness matrix and load matrix. 

(3.29) 

The above equation is solved to get the global vector of nodal displacements { t5} . 

The stresses evaluated by equation are in the local coordinate system. Since the stresses 

in the local coordinate system are not easily visualized, it is conveniently transformed to 

the global system using the following expression. 

[ ~. r xy '~ ] [ ~. r x'y' :;}or r xy (Yy r yz =[B] r xY (Yy' (3.30) 

rxz r yz (Yz ' x'z' r y'z' 
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3.1.5 Displacement field near the crack tip for a 

plate with through thickness crack 

Consider the problem of a through crack in a plate shown in the figure 3 .2, where 

for convenience a local polar co-ordinate system centered at the crack tip was adopted. 

As opposed to the stress intensity factors obtained in classical elasticity, in plate theory 

the quantities of interest are moment and shear intensity factors. 

/ / 

y 

- r 

.,"::::====== Xex " " " " ...£.. 
/ 

v 
Figure 3.2: Local polar coordinate system for through crack in plate 

Considering variation in stress components through the plate thickness a link to 

the stress intensity factors of three-dimensional elasticity is made. There are five crack 

modes in plate bending and tension analysis as shown in the figure 3.3. The stress 

resultant intensity factor K1, K2 and K3 are usually used instead of K~, Ku and Km. The 
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relationship between the stress resultant intensity factors and stress intensity factors are 

given by [ 49]. 

(a) 
(b) 

(d) 
(e) 

Figure 3.3: Modes offracture 

(a) mode I due to membrane load (b) mode II due to membrane load (c) mode I due 

to bending (d) mode II due to torsion load and (e) mode III due transverse shear load 

[49] 

The in plane stresses are constant throughout the thickness of the plate. The bending 

stresses vary linearly through the plate thickness, where as the transverse shear stresses 

vary parabolically. These considerations typically motivate the following relationships. 
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where Z is coordinate in thickness direction and membrane stress resultant intensity 

factors are given by 

The "membrane" in-plane shear [50], "bending", "twisting" and "transverse 

shear" components are related to the modes I, II and III stress intensity factors at any 

point in through thickness direction along the crack front are given by 

K1 (z) =K1m +K1bZ 

Ku ( Z) = K 2m + K 2bZ 

Km (z)~H~-e:JJK" 
In crack problems, the most information is in the asymptotic solution around the 

crack tip. It would be preferable that the approximate theory used satisfies certain 

minimum requirements namely the asymptotic results given by the plate theory (i.e. the 

singularity and the angular distribution of stresses) should be compatible with the 

corresponding plane and anti plane elasticity solutions. 

The local polar co-ordinate axes are shown in the Figure 3.2 with origin 

coincident with the crack tip. The Z-axis crack edge is parallel to global z-axis 

coinciding with the normal to the mid surface of the plate. The near crack tip 

displacements Uc,Vc and We along X, Y and Z directions and rotations of normal to the 

mid-plane at the vicinity of crack tip are given as follows. 

The in plane displacements Uc and Vc along the mid-surface is given [51] as 

uc = K1mfj (r,B)+K2 mgl (r,B) 

vc = Klm/2 (r,B)+ K2mg2 (r,B) 
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where 

f, = c~ ~){<2r -!)cos(~)- cos(~)} 

g, =( 4~ ~){<2r +J}sin(~)-sine;)} 

t , =( 4~ ~){<2r +i)sin(~)-sine;)} 

g , = L~ ~){<2r -J)cos(~)+cose:)} 
and transverse displacement We and rotations of normal to the mid surface is given [52] as 

we = K1bh (r,B) + K2bg3 (r,B) + Ki1:3 (r,B) 
a c = K1bF; (r ,B) + K2bG1 (r,B) 
f3c = K1bF; (r,B) + K 2bG2 (r,B) 

where 

6Er (e) F; =-
3
-cos - [ 4-(l+v)(l+cos(e))] 

Et 2 

6Er . (e)c J G1 = -
3
-sm - 4 + (1 + v)(I + cos(e)) 

Et 2 
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3 

f3 = 
6~;2 G(7+u)cof:)-(I-u)cos(~)] 

3 

g3 = 
6~;2 

[ +5+3u)sin( 3:)+(1-u)sin(~)] 

f"J = 65 sin(B) 
5tf-L 2 

3.1.6 Enrichment of displacement field for plate 

element 

The geometry of a typical plate element with through crack located at one of the 

corner node is shown in figure number 3.4. 

4 7 3 

crack tip 

6 

2 

crack plane 

Figure 3.4: Geometry of plate element with through crack 
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The displacement field of plate element described in earlier section is enriched by 

augmenting the equations such as (3.4) with the near crack tip displacement field 

described in the earlier section. 

The membrane displacement field u(S'), equation (3.4) is enriched by the near 

field crack displacement functions (Eqns 3.31 to 3.32) as 

h h 
u (r) =u(~")+K f +K g +K r -F +K r -G 

en '=' '=' lm 1 2m I lb '=' 2 I 2b '=' 2 I 

h h 
v (~")=v(~")+K f +K g +K ~"-F +K ~"-G 

en '=' '=' lm 2 2m 2 Jb'=' 2 2 2b'=' 2 2 
(3.33) 

w (s)=w(S')+K F +K G +K H 
en lb 3 2b 3 3 3 

where K is the mode I membrane stress intensity factor, K is the mode II membrane 
1m 2m 

stress intensity factor, K is the mode I bending stress intensity factor, K is the 
lb 2b 

mode II bending stress intensity factor and K 
3 

is the shear stress intensity factor. 

Considering the membrane displacement u ( s) within the element in terms of 
en 

curvilinear coordinates ~ and 77 can be written as 

(3.34) 

Proceeding in a similar way as described in section 3.3, the constants in vector 

{a} can be determined as described below. The displacement components at the nodes 

are determined by substituting appropriate curvilinear coordinates of nodes to obtain 

{o(s)} and are given below for second order: 

for i = 1 to 4 (3.35) 
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fori= 5 and 7 

(3.36) 

fori= 6 and 8 

fori= 9 

Substituting (3.33,3.34) into (3.1), we get 

u(s)=[P][cr1 {8(s)} (3.37) 

Following the procedure explained in section 3.1 , the displacement function u ( s) 

can be written as 

(3.38) 

where [ N] is the hierarchical shape function. Substituting for { 8 ( s)} in terms of 

displacement degrees of freedom, we can write displacement interpolation function for 

u en (~,1/, s) as 

(3.39) 
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Defining 
4 9 

Fim = ft- LN;ft;- LN;ft; 
i=l i=5 

4 9 

Glm = gl- LN;gii- LN;gr; 
i=l i=5 

and 

The enriched form of equation (3.9) can be rewritten as 

4 9 

uen (~, 7J,s)= LNiuOI + LNgi(v\;a; - V12;/J;) 
i=l 1=5 

9 9 

+ L N;u;; + L Ng; ( vll,a; - v2 2i ,B;") + KlmF.. + K2mGI 
i=5 i=5 (3.40) 

where ( )" denotes the partial derivative with respect to ~,7J at the respective nodes on 

mid sides 

Similarly the displacement distribution for v and w can be written as 

4 9 

v(~,7J,s) = LN;voi + LNg; ( v\;a; - v12;/J;) 
i=l i=5 
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9 9 

+ LN;v;i + LNgi (v\p; - v\ JJt)+K1mF; + K2mG2 
i=5 i=5 (3.41) 

4 9 

w(~, 7J , s)= 'Z:Niwo; + LNg; (v
1
1P; 

i= l i=5 
9 9 

+ LN;w;; + LNgi (v\p; - v2
2;fJ/')+K1bF; +K2bG3 +K3H3 (3.42) 

i=5 i=5 
Following the same procedure higher order displacement functions can be written as 

4 4 

u(~, 7J , s)= LN;uo;+ 'Z:Ngi(v\p; - v12;fJ;) 
i=l i=l 

Pmax 9 Pmax 9 

+'Z:'Z:Npiuo/ P+ LLNgpi (v\p? - vl2ip;P) 
p=2 i=5 p=2 i=5 

+KimF; + K2mGI + KlbF; B + K 2bGI B (3.43) 

Similarly, the other displacement components can be written as 

4 4 

v(~,7J , s) = LNYoi + 'Z:Ngi ( v
2

1;a ; - v\;/3;) (3.44) 
i=l i=l 

Pmax 9 Pma, 9 

+LLNPivo/ P+ LLNgp; (v
2
1P? - v\; fJ;P) 

p=2 i=5 p=2 i=5 

+KimF;_ + K2mG2 + KlbF;_ B + K2bG2B 

4 4 

w(~, 7J , s) = 'Z:Niwoi + 'Z:Ngi ( v\ p ; - V32;/J;) 
i=l i=l 

Pm. ... , 9 Pm..x 9 

+ LLNpiwo/ P + LLNgp; (v
3
J;a? - v\; fJt ) +KibF; +K2bG3 +K3H3 (3.45) 

p=2 i=5 p=2 i=5 

Using the above equation, the strain-displacement relations are evaluated as 

B' 2 B~ ...... B' n 

where the vector { 8} is given as 
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{8} = 

{ 8; } are defined in equation (3.24) and { 8k} consist of stress intensity factor as given 

below. 

Kim 

K 2m 

{8k} = Kl b 

K 2b 

K 3 

The stiffuess matrix for the enriched plate element is then evaluated using the standard 

procedure described in previous section. 
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3.2 Hierarchical18 node Solid Thick Shell Element 

Review ofthe literature on analysis of plate bending problems indicates, the effect 

of crack closure on the compressive side in plate bending problems are not included in 

the analysis [38]. Almost all the researchers assumed that there is no crack surface 

interference (on compression side) in the bending problem [50]. Thus, the results 

published in literature should be considered together with the solutions corresponding to 

generalized plane stress problems. The crack closure effect on bending can only be 

studied by considering the combined effect of membrane and bending singularities across 

the thickness without separately considering membrane, bending stress intensity factors. 

Keeping this in view, plate with crack problems can be analyzed using 18-node solid 

plate element that is presented in this section. 

The idea proposed here is to use 18-noded solid element by removing mid-side 

nodes from 20-noded solid element. The basic solid element with 18 nodes for general 

plates and shells is shown in the figure 3.5. The element properties are derived by 

prescribing linear displacement variations across the thickness of the element and the 

strain energy due to stress normal to the shell mid plane is neglected. Thus the element 

avoids the Kirchoff's assumption and agrees with higher order theories for thick shells 

and plates. 

3.2.1 Geometric definition of the element 

A typical shell element is shown in the Figure 3.5. The geometry of the element is 

defmed using sixteen nodes. The nodes are located at top and bottom surface. The 

external surfaces of the element are curved and the sections across the thickness are 
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straight. Two curvilinear coordinates ~, 7] in the middle plane and a linear coordinate t; 

in the thickness direction are used to define the geometry. The local coordinates ~, 7] and 

t; vary between -1 and 1. The top and bottom coordinates define the shape of the 

element. The relationship between the cartesian coordinates and the curvilinear 

coordinates for any point in the element is given by: 

(3.46) 

N; (~,7],t;) is a serendipity approximation shape function (see Appendix). The subscript 

i refer to the element node number. 

16 

8 

1 

15 7 

--------------------
11 

--4~----~.--------r-r--•3 

13 6 

----------------------

9 2 

Figure 3.5: Hierarchical 18 node solid plate element 

44 



3.2.2 Displacement field 

The higher order finite element approach for three-dimensional thin and thick-

walled structures is based on a hierarchical element, applying the shape functions 

proposed by Szabo and Babuska [53). The figure 3.5 depicts a hexahedral shell-like solid 

element. This element may be doubly curved with a non-constant thickness. The shell-

like solid may be doubly curved with a non-constant thickness. When thin-walled 

structures are to be discretized it is important to treat the in-plane direction and thickness 

direction differently. Since the p-version is less prone to locking effects [53,54,55] a 

pure, strictly three-dimensional displacement formulation can be applied. Once the shape 

functions have been defmed, the element formulation follows the procedure described in 

earlier section. 

Let ; , 17 be two curvilinear coordinates on the mid surface of the shell, s 
orthogonal to ; and 17 • The basic property of the hierarchic shell model is that the 

kinematics of lower order model are fully embedded in the defmition of the higher 

model. The polynomial expansion of the displacements are given by 

nk k 

u(;,17,s)= :L(s) u(;,17) 
0 

nk k 

v(;,17,s) = :L(s) v(;,17) (3.47) 
0 

nk k 

w(;,17,s) = :L(s) w(;,17) 
0 

where nk denoted highest order of polynomials in thickness direction. As nk approaches 

oo, the solution converges to the exact three-dimensional solution. The displacement 

components of u(;,17),v(;,17) and w(;,17) can be approximated by any suitable shape 
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functions. The present implementation for hierarchical shell model is based on 

quadrilateral element formulation using shape functions developed in earlier sections. 

Following the procedure explained in the earlier section the displacement polynomial 

expression can be written as described below. 

All the displacement components are assumed to vary linearly in c:; direction. At 

comer nodes, the displacement components u, v and w are the degrees of freedom. The 

hierarchical degrees of freedom of the displacement components are higher order 

derivatives with respect to ~' 11 directions at mid-side nodes on top and bottom surface 

edges. At central nodes on the top and bottom surfaces, higher order derivatives taken in 

~' 11 are used as degrees of freedom. For second order, hierarchical degrees of freedom 

are as follows: 

82u 82v. 82 w. __ , __ , __ , 
8~2 , 8~2 , 8~2 

at nodes 9, 11,13 and 15 

at nodes 10,12,14 and 16 

84ui 84vi 84wi 

8~28r/ '8~287]2 '8~287]2 
at central nodes 1 7 and 18 

Following the similar proceeding described earlier, in plane displacement u(~,7J,c:;) can 

be given as u (~, 7], e;;) = [ N]{ 8} 

where for second order, the { 8} and [ N] are given as below and 

fori= 1,2,3 and 4 

fori= 9,11,13 and 15 
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fori= 10,12,14 and 16 

for i = 1 7 and 18 

The equation (3.52) can be rewritten as 

8 18 

u(~,T/,s) = 'LN;u; + 'LN;u; (3.48) 
i=1 i=9 

where ( )" denotes the partial derivative with respect to ~, T7 at the respective nodes on 

mid sides 

Similarly the displacement distribution for v and w can be written as 

8 18 

v(~,T/, s) = LN;V; + 'LNivi" (3.49) 
i=1 i=9 

8 18 

w(~,T/,s) = LN;w; + LN;w; (3.50) 
i=1 i=9 

Following the same procedure higher order displacement functions can be written as 

(3.51) 

where u; = in plane displacement along X -direction at the comer nodes 'i' 

u'P = aPui atnodeifori=9,11,13 and 15 
0 1 a~p 

aPu 
--' at node i fori= 10,12,14 and 16 
a TIP 

B2Pu 
= ; at central node i = 17 and 18 
a~pa71p 

Similarly, the other displacement components can be written as 
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(3.52) 

8 Pmax 18 

w(;,77,S')= LN;wo; + LLNP;wt (3.53) 
i= l p=2 i=9 

3.2.3 Element Stiffness matrix generation 

As regards the material properties, the continuum mechanics of hierarchic shell 

models are based completely on a three-dimensional theory. Consequently, hierarchical 

shell models can be combined with arbitrary material laws. Since, in this formulation, 

displacement components vary linearly across the thickness, the same material law that is 

used in section 3.1.3 is used assuming basic shell assumption. Thus, the strain 

components normal to the shell surface are neglected and strain-correction factor k is 

used. 

Thus, the stiffness matrix is obtained using the methods as described in sections 

3.1.3, 3.1.4. But in this case displacement vectors at each node are given as 

{0,} ={~J for comer nodes 

and 

for hierarchical nodes at mid-sides 
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Chapter 4 

COMPUTER IMPLEMENTATION 

4.1 Computer Program 

Most of the programs that were developed in the past were written in 

FORTRAN, which lacks many of the new features available in the present day computer 

languages. Object oriented programming has brought some new frontiers in the field of 

computer programming. The modem day computer programming languages use object­

oriented approach that has many advantages compared to other programming languages. 

A p-version finite element analysis program is developed in JAVA programming 

language. The capabilities include analysis of general plate and shell structures subjected 

to various loading conditions and stress intensity factor evaluation of plates containing 

through thickness cracks. 

The hierarchical 9-node plate/shell and 18 node solid thick elements are used in 

the program development. The three main segments of the program are: Element 

stiffness matrix formulation, Global assembly of element stiffness matrices and load 

vectors and the solution routine. 

The program is organized in various steps 

1) Main program 

2) Input 
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3) Calculation of shape functions its derivatives with respect to local coordinates 

4) Formulation of stiffness matrix 

5) Assembly of stiffness matrices 

6) Solving the global stiffness matrix 

The flow chart of the complete program organization is given in figure 4.1. The 

program code in the main file coordinates with other parts of the program. 

4.1.1 Input 

The input obtains the data required for modeling and analysis of the problem 

such as the order of polynomial, type of element, the total number of nodes and elements, 

boundary conditions, loading information etc. and allocates memory required for element 

stiffness, global matrices and load vectors. Location vectors required for the assembly of 

sky line diagonal and compact off-diagonal matrices are also generated. 
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Calculate crack element 
stiffness matrix 

If element 
is a crack 

Assembly of Global 
Stiffness Matrices 

Calculate normal 
element stiffness matrix 

Solve resulting equations using Conjugate 
Gradient iterative method 

Output 

End 

Figure 4.1 Organization ofthe computer program 
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4.1.2 Shape Function Derivatives 

The derivatives of the shape functions are done in the starting of the analysis. 

For convenience, the code for the calculation of the derivatives of shape functions is 

written in a separate file. 

The number of Gaussian points of integration and Gaussian weight at these points are 

chosen depending on the order of the elements. The inputs to the methods in this file are 

the polynomial order and element type. Based on the element used in the analysis it 

calculates the shape functions, and its derivatives at all the Gaussian integration points. 

The values of the derivatives and shape functions are stored in arrays and they are 

returned to the program for the calculation of the local stiffness matrices. 

4.1.3 Element stiffness matrix evaluation and 

assembly 

The order of the element is always greater than unity as p is successively 

increased. A geometric shape function of order two is used to model the element. 

Gaussian integration is employed for the evaluation of stiffness matrices. The (p+ 1) 

integration rule is used along the locals and 11 direction on the mid surface and two-point 

integration is used in the thickness direction. Since diagonal and off diagonal matrices 

are assembled in order to use Conjugate gradient method for the solution, the element 

matrices are generated as partitioned matrices. For example the element stiffness matrix 

for the order 3 is partitioned as given below. 
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K e11 K e12 K e13 

[K]e = Ke22 Ke23 

(4.I) 

~)lf.n Ke33 

where K: II , K: 22 and K: 33 are diagonal matrices corresponding to order I ,2 and 3 and 

K: 12 is off diagonal matrix corresponding to order I and 2 and K: 13 is off diagonal 

matrix corresponding to order 1 and 3 and so on. 

The diagonal matrices of all the elements are assembled into global diagonal 

matrix as a skyline matrices corresponding to each order. Similarly each off diagonal 

matrix of all the elements are assembled into global-off diagonal matrices in compact 

form including only non zero element in order to avoid the multiplication or division on 

non zero elements. The assembled matrices are as shown below: 

Kg11 Kg12 Kgl3 £51 F; 

Kg22 Kg23 £52 = F2 (4.2) 

~)lf.n Kg33 £53 F; 

~ 11 , ~22 .•• are sky line global diagonal stiffness matrices corresponding to the order 1 ,2 

and so on. J(6ij are the global-off diagonal compact matrices corresponding to order i and 

j. 81 corresponds to nodal displacement vector corresponding to first order for the entire 

structure and 82 corresponds to nodal displacement vector corresponding to hierarchical 

degrees of freedom for order 2 and so on. Similarly, the load vector F 1 corresponds to 

force components offrrst order and F2, F3 .. .. etc for higher orders. 
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4.2 Solution Procedure 

The use of hierarchical elements results in an improved stiffness matrix that 

contain lower order stiffness as sub-matrix. The improved stiffness matrix differs from 

the previous lower stiffness matrix in that it contains rows and columns corresponding to 

additional nodal variables. Hence the effort spent in triangularizing the previous stiffness 

matrix is entirely saved and improved solutions are obtained by iterative procedures. It is 

time consuming and costly to solve the simultaneous linear equations of equation 4.2 by 

direct methods such as Gaussian elimination or any other method. Therefore an iterative 

technique is employed to solve the equation of type in Equation ( 4.2). A large number of 

iterative techniques are available that use successive approximations in order to obtain 

more accurate solution. 

There are many iterative techniques, which have advantages over others. 

Iterative techniques are classified as 

a) Stationary iterative methods 

b) Non-stationary iterative methods. 

Stationary iterative methods perform the same operations on current iterative 

vectors/approximations and some of the methods used in this category are Jacobi method, 

Gauss-Seidel method, successive over relaxation method, symmetric successive over 

relaxation method etc. 

Non-stationary methods use the transformation matrix that is referred as 

preconditioner and perform operations on iterative vector and this method may even fail 
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to converge without preconditioner. Some of the common examples of this category are 

Conjugate Gradient method (CG), Conjugate gradient on normal equations, generalized 

Minimal residual (GMRES), Bi-conjugate gradient method (BiCG), Conjugate gradient 

squared method (CGS), Preconditioned conjugate gradient method (PCG) etc. In the 

present work preconditioned conjugate gradient method is employed for solving the 

equations. 

4.2.1 Preconditioned Conjugate Gradient Method 

The iterative method used in the present solution procedure is preconditioned 

Conjugate gradient method. In this method the preconditioned matrix 

[

K 
II 

[M]= ~ 

0 

K 
22 

0 

; ] is used where K1 1, K22 and K33 are the diagonal global stiffness 

33 

matrices for the order 1, 2 and 3 respectively. The preconditioner is a transformation 

matrix, which transforms the coefficient matrix into one of the favorable spectrum on 

which the convergence rate depends. In this method successive vector sequences or 

successive approximations are generated and residuals corresponding to iterates are used 

in updating the iterates. The main concept is to find the search direction vectors Pi fori= 

1 ,2,3 ... n which satisfies the condition and as efficiency is concerned, only small number 

of approximations are stored in the memory which increases the performance of the 

computer 
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The linear system that has to be solved is represented as [K]{o} = {F}. Usually 

'K' has a large condition number when used in conjugate gradient method and so it is 

preconditioned. Preconditioning essentials means to replace the system with an 

equivalent system [M][K]{o} = [M]{F} 

The Preconditioned conjugate gradient method consists of essentially 5 steps: 

1. Initialization 

2. Begin Iteration 

3. Perform Updates 

4. Check for Convergence 

5. Prepare for next CG update 

The Preconditioned conjugate gradient method starts with an initial guess { 8} 0 of 

the results and then it is multiplied by the preconditioned conjugate gradient matrix. Even 

though the matrices [K] and [M] are symmetric it is not necessary that [MK] be a 

symmetric matrix. A good preconditioner is the starting point in the PCG method, which 

should satisfy two criteria a) It should be able to contract the eigen spectrum of the 

original system. b) It should be easy to factorize relative to the original system. c) It 

should be cheap for storage and fast to evaluate. 

In this implementation diagonal matrices of global stiffness matrix is used as a 

preconditioner and it was observed that convergency of the results wass good. 
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A pseudo code for preconditioned conjugate gradient method is given below: 

{r} 0 = {F} -[K]{£5} 0 for some initial guess {£5} 0 

fori= 1,2,3 ... 

Solve 

[M]{z} i-l = {r} i-l where [M] is a preconditioned matrix 

p i-l = {r} (;-I)T {z} i-1 

ifi = 1 

else 

fJ = {Pi-1} 
i - 1 {P } 

1-2 

{p;} = {z i-1} + fJ i-l {p i-l } 

end if 

{q;}=[KJ{p;} 

a = {P;_I} 
i {pi}T{qr 

{Jr = {Jr-l +a i {p} i 

{r} i = {r} i-1 -a i {qr 

Check convergence and continue if necessary 

Figure 4.3 Pre-conditioned Conjugate Gradient Method 
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Chapter 5 

Numerical Studies and Discussions 

In order to verify the correctness of the element formulation and the software 

written, various benchmark plate and shell problems are analyzed. 

1. Square plate under concentrated and distributed load with different boundary 

conditions. 

2. A Barrel vault (Cylindrical roof) loaded by its self-weight. 

3. A Pinched Cylindrical shell problem. 

4. Infinite plate with central crack 

5. Rectangular plate with central and edge crack 

The numerical results obtained from the present work are compared with the 

analytical solutions and the results available in the literature. The results obtained are in 

excellent agreement with the reference values and they are sometimes more accurate with 

fewer degrees of freedom. 

5.1 Square plate problem 

An isotropic square plate shown in the Figure 5.1 is analyzed under different loading 

and boundary conditions. Using the symmetry, only one quarter of the plate is modeled 

for the analysis. The plate deforms under bending action and the inplane displacements 

are constrained in the tangential directions. The analysis is carried out for various 

thickness ratios to study the element behavior under thick and thin shell situations. The 

analysis is also carried out for different meshes. The results are compared with the exact 
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values given by Zienkiewicz [10]. Different cases considered in the analysis ofthe plate 

are: 

1. Simply supported plate under concentrated load at the center. 

2. Simply supported plate under uniformly distributed load. 

3. Clamped plate under concentrated load at the center. 

4. Clamped plate under uniformly distributed load. 

All the four cases are analyzed for different thickness using 2x2, 3x3 and 4x4 meshes 

for orders upto seven. For the cases where concentrated load is applied at the center of 

the plate, the analysis are carried out with uniform mesh and refined mesh with element 

sizes in the ratio of 3 to 7. 

The displacement solutions obtained are normalized using the following formulae. 

where 

a= WmaxD for a uniformly distributed load q. 
qa4 

f3 = WmaxD for a central concentrated load P. 
Pa2 

Wmaxis the maximum displacement at the center ofthe plate, 

D -Flexural rigidity and 

a - length of the plate. 

A square plate with aft equal to 66.66 was considered first to compare the 

numerical results with reference values. Numerical results obtained using Hierarchical 

degenerated plate/shell element for concentrated load and uniformly distributed load is 

presented in tables 5.1 to 5.5. The result show that numerical results obtained agree very 

well with the reference values. In order to study the effect of aft on the results, the same 
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square plate is analyzed for various thickness ratios vide aft equal to 10, 20, 100 and 200. 

The resulting numerical results are presented in tables 5.5 to 5.8. 

For all the cases graphs (Figures 5.2 to 5.11) showing the variation of deflection 

along the central line as a ratio of w/wmax vs. coordinate distance along the central line 

were presented. Wmax is the central deflection obtained from thin plate theory. From 

Figures 5.2 to 5.5 we see that the present analysis will give consistent results and agree 

very well with reference values. Figures 5.5 to 5.9 show the variation of deflection along 

the central line as a ratio of w/wmax V s. coordinate distance along the central line for 

different thickness to span ratios. From these graphs one can see that for thin plate 

situations (aft = 100 and 200) the results agree very well and no shear locking is 

observed. For reasonably thick situations (aft= 10 and 20) the results are similar and 

give the additional shear deformation not available by thin plate theory. 
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Figure 5.1: Square plate and meshes used for the analysis 
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Table 5.1: SS Plate under CL: Displacements for different orders (a/t = 66.66) 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

Mesh Order DOF /3= Wmax.D 
Pa2 

2x2 2 125 0.01429 

3 205 0.01067 

4 285 0.011308 

5 365 0.011601 

6 445 0.01143 

7 525 0.01183 

3x3 2 245 0.02833 

3 410 0.01163 

4 575 0.01162 

5 740 0.01162 

6 905 0.01163 

7 1070 0.01159 

4x4 2 405 0.01135 

3 685 0.01165 

4 965 0.01078 

5 1245 0.01165 

6 1525 0.01164 

7 1805 0.01165 

Reference value [1 0] 0.01160 
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ss_point 

1.20£+00 

1.00£+00 

[ B.OOE-01 
t:: 

< 
~ 6.00£-01 ~ s:: 
-~ 

--+--exact@ a/t = 66.67 

----calculated@ a/t = 66.67 
t; 
~ 

~ 
"1:3 

4.00£-01 

2.00£-01 

0.00£+00 

10 11 12 13 14 15 16 17 18 19 20 

displacement x 

Figure 5.2: Plot of deflection of SS plate under CL at a/t equal to 66.67 for 4x4 refined 

mesh (w max is the central deflection according to thin plate theory) 
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Table 5.2: SS Plate under UDL: Displacements for different orders (alt = 66.66) 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

Mesh Order DOF WmaxD 
a= 

qa4 

2x2 2 125 0.004142 

3 205 0.004085 

4 285 0.004083 

5 365 0.0040819 

6 445 0.004083 

7 525 0.004083 

3x3 2 245 0.0040807 

3 410 0.004071 

4 575 0.004072 

5 740 0.004072 

6 905 0.004072 

7 1070 0.0040719 

4x4 2 405 0.004071 

3 685 0.004069 

4 965 0.004069 

5 1245 0.004069 

6 1525 0.004069 

7 1805 0.004069 

Reference value [1 0] 0.004062 
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Figure 5.3: Plot of deflection of SS plate under UDL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 
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Table 5.3: Clamped Plate under CL: Displacements for different orders (aft = 66.66) 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

Mesh Order DOF /3 = WmaxD 
Pa2 

2x2 2 125 1.0275e-4 

3 205 0.005591 

4 285 0.005569 

5 365 0.0055507 

6 445 0.005522 

7 525 0.005545 

3x3 2 245 2.1862e-4 

3 410 0.005629 

4 575 0.004339 

5 740 0.005523 

6 905 0.005473 

7 1070 0.005619 

4x4 2 405 3.8044e-4 

3 685 0.005629 

4 965 0.005488 

5 1245 0.005655 

6 1525 0.005637 

7 1805 0.005668 

Reference value [1 0] 0.0056 
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Figure 5.4: Plot of deflection of clamped plate under CL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 
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Table 5.4: Clamped Plate under UDL: Displacements for different orders (a/t = 66.66) 

(Hierarcrucal nine noded Degenerated Plate/Shell Element) 

Mesh Order DOF Wmax.D 
a= 

qa4 

2x2 2 125 0.001284 

3 205 0.001266 

4 285 0.0012609 

5 365 0.001262 

6 445 0.001261 

7 525 0.001262 

3x3 2 245 0.001273 

3 410 0.0012708 

4 575 0.0012705 

5 740 0.0012706 

6 905 0.0012705 

7 1070 0.0012706 

4x4 2 405 0.001271 

3 685 0.0012709 

4 965 0.0012709 

5 1245 0.0012709 

6 1525 0.0012709 

7 1805 0.0012709 

Reference value [1 0] 0.00126 
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Figure 5.5: Plot of deflection of clamped plate under UDL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is central deflection according to thin plate theory) 
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Table 5.5: SS Plate under UDL: Displacements for different orders for 2x2 mesh 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 125 0.004233 200 0.004135 

3 205 0.004189 0.0040705 

4 285 0.004188 0.004064 

5 365 0.004188 0.004066 

6 445 0.004188 0.0040602 

7 525 0.004188 0.004061 

10 2 125 0.004492 100 0.004139 

3 205 0.004462 0.004076 

4 285 0.004452 0.004073 

5 365 0.004454 0.004072 

6 445 0.004454 0.004073 

7 525 0.004454 0.004074 

Reference value [10] 0.004062 
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Figure 5.6: Plot of deflection of SS plate under UDL for various a/t ratios for 2x2 mesh 

(w max is central deflection according to thin plate theory) 
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Table 5.6: SS Plate under UDL: Displacements for different orders for 4x4 mesh 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

alt Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 405 0.004128 200 0.004065 

3 685 0.004128 0.004063 

4 965 0.004126 0.004063 

5 1245 0.004126 0.004063 

6 1525 0.004126 0.004064 

7 1805 0.004126 0.004063 

10 2 405 0.004304 100 0.004067 

3 685 0.004305 0.004066 

4 965 0.004302 0.004066 

5 1245 0.004303 0.004065 

6 1525 0.004303 0.004065 

7 1805 0.004303 0.0040659 

Reference value [1 0] 0.004062 
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Figure 5.7: Plot of deflection of SS plate under UDL for various a/t ratios for 4x4 mesh 

(w max is central deflection according to thin plate theory) 
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Table 5.7: Clamped Plate under UDL: Displacements for different orders for 2x2 mesh 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 125 0.001341 200 0.001279 

3 205 0.001325 0.001258 

4 285 0.001324 0.001229 

5 365 0.001324 0.001235 

6 445 0.001324 0.0012306 

7 525 0.001324 0.001231 

10 2 125 0.001581 100 0.001281 

3 205 0.001503 0.001262 

4 285 0.001503 0.0012507 

5 365 0.001503 0.001254 

6 445 0.001503 0.001252 

7 525 0.001503 0.001253 

Reference value [1 0] 0.00126 
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Figure 5.8: Plot of deflection of clamped plate under UDL for various a/t ratios for 2x2 

mesh (w max is central deflection according to thin plate theory) 
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Table 5.8: Clamped Plate under UDL: Displacements for different orders for 4x4 mesh 

(Hierarchical nine noded Degenerated Plate/Shell Element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 405 0.001328 200 0.001266 

3 685 0.001327 0.001265 

4 965 0.001327 0.001265 

5 1245 0.001327 0.001265 

6 1525 0.001327 0.001265 

7 1805 0.001327 0.001265 

10 2 405 0.001505 100 0.001268 

3 685 0.001504 0.001267 

4 965 0.001504 0.001267 

5 1245 0.001504 0.001267 

6 1525 0.001504 0.001267 

7 1805 0.001504 0.001267 

Reference value [1 0] 0.00126 
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Figure 5.9: Plot of deflection of clamped plate under UDL for various a/t ratios for 4x4 

mesh (w max is central deflection according to thin plate theory) 

The bench mark problems were also analyzed using 18 noded hierarchical solid 

thick shell elements using the same mesh divisions as were used with degenerated plate/ 

shell element. The results are presented in tables and graphs. The results obtained for 

thickness to span ratio of 66.66 are presented in tables 5.9 to 5.12 for three different 

meshes. These tables compare the central deflection with reference values for b th 

central concentrated load and uniformly distributed load cases for both simply supported 

and clamped cases. For all the cases uniform meshes were considered. From these tables 

it can be seen the results obtained from the 18 noded thick solid shell agree very well. 

The plots of deflection along the central line (Figures 5.10 to 5.13) for all boundary 

conditions and load cases show a very good agreement with thin plate theory. For 
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concentrated load uniform mesh is used. The deflections obtained for simply supported 

square plate with central concentrated load agree very well. In the case of degenerated 

plate/shell element a refined mesh is necessary for concentrated load case. From this it 

can be inferred that solid thick shell element perform very well compared to degenerated 

plate/shell element. 

The central deflection for variOus thicknesses to span ratios with uniformly 

distributed load were presented in Tables 5.13 to 5.16. It can be seen that the results 

agree very well with reference values for thin plate situations for the maximum order of 

five. As noted by some authors that for higher orders, there will be some oscillations in 

the results. But this was not observed in the case of hierarchical plate/shell element. 

Figures 5.14 to 5.17 show the variation of deflection along the central line. The results 

are plotted for the order five. It can be seen that the results obtained agree very well 

with thin plate theory and as expected for thick plate situations the results show an 

additional shear deformation not available from thin plate theory. 
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Table 5.9: SS Plate under CL: Displacements for different orders (aft= 66.66) 

(Hierarchical 18 node solid thick shell element) 

Mesh Order DOF f3 = WmaxD 
Pa2 

2x2 2 150 0.01043 

3 246 0.01149 

4 342 0.01158 

5 438 0.01161 

6 534 0.011603 

7 630 0.01161 

3x3 2 294 0.01105 

3 492 0.011607 

4 345 0.01164 

5 444 0.01165 

6 543 0.01165 

7 642 0.01165 

4x4 2 486 0.01133 

3 822 0.01164 

4 1158 0.01166 

5 1494 0.01166 

6 1830 0.01166 

7 2166 0.01166 

Reference value [10] 0.0116 
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Figure 5.10: Plot of deflection of SS plate under CL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 

80 



Table 5.10: SS Plate under UDL: Displacements for different orders (a/t = 66.66) 

(Hierarchical 18-node solid thick shell element) 

Mesh Order DOF WmaxD 
a= 

qa4 

2x2 2 125 0.0040095 

3 205 0.004093 

4 285 0.004095 

5 365 0.004101 

6 445 0.00410 

7 525 0.004101 

3x3 2 245 0.004054 

3 410 0.004091 

4 575 0.004095 

5 740 0.004099 

6 905 0.004099 

7 1070 0.004099 

4x4 2 405 0.004071 

3 685 0.004091 

4 965 0.004094 

5 1245 0.004097 

6 1525 0.004097 

7 1805 0.004097 

Reference value [1 0] 0.004062 
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Figure 5.11: Plot of deflection of SS plate under UDL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 
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Table 5.11 : Clamped Plate under CL: Displacements for different orders ( a/t = 66. 66) 

(Hierarchical 18-node solid thick shell element) 

Mesh Order DOF fJ= WmaxD 
Pa2 

2x2 2 125 0.004105 

3 205 0.005457 

4 285 0.005529 

5 365 0.005557 

6 445 0.005551 

7 525 0.00557 

3x3 2 245 0.004936 

3 410 0.005601 

4 575 0.005631 

5 740 0.005637 

6 905 0.005632 

7 1070 0.005637 

4x4 2 405 0.005263 

3 685 0.005636 

4 965 0.0056508 

5 1245 0.005653 

6 1525 0.005648 

7 1805 0.005653 

Reference value [10] 0.0056 
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Figure 5.12: Plot of deflection of clamped plate under CL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 
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Table 5.12: Clamped Plate under UDL: Displacements for different orders (a/t = 66.66) 

(Hierarchical 18-node solid thick shell element) 

Mesh Order DOF WmaxD 
a= 

qa4 

2x2 2 125 0.001025 

3 205 0.001276 

4 285 0.001274 

5 365 0.001275 

6 445 0.001275 

7 525 0.001275 

3x3 2 245 0.001189 

3 410 0.001285 

4 575 0.001285 

5 740 0.001285 

6 905 0.001285 

7 1070 0.001285 

4x4 2 405 0.001229 

3 685 0.001285 

4 965 0.001285 

5 1245 0.001285 

6 1525 0.001285 

7 1805 0.001285 

Reference value [1 0] 0.00126 
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Figure 5.13: Plot of deflection of clamped plate under UDL for a/t equal to 66.67 for 4x4 

uniform mesh (w max is the central deflection according to thin plate theory) 
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Table 5.13: SS Plate under UDL: Displacements for different orders for 2x2 mesh 

(Hierarchical 18-node solid thick shell element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 125 0.004278 200 0.003983 

3 205 0.004353 0.004066 

4 285 0.004368 0.004062 

5 365 0.004376 0.004065 

6 445 0.004729 0.004308 

7 525 0.004732 0.004337 

10 2 125 0.005029 100 0.003993 

3 205 0.005084 0.004077 

4 285 0.005094 0.004076 

5 365 0.005096 0.004079 

6 445 0.005494 0.004343 

7 525 0.005496 0.004354 

Reference value [1 0] 0.004062 
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Figure 5.14: Plot of deflection of SS plate under UDL for various a/t ratios for 2x2 mesh 

(w max is the central deflection according to thin plate theory) 
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Table 5.14: SS Plate under UDL: Displacements for different orders for 4x4 mesh 

(Hierarchical 18-node solid thick shell element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 405 0.004307 200 0.004046 

3 685 0.004321 0.004065 

4 965 0.004323 0.004066 

5 1245 0.004324 0.004067 

6 1525 0.004768 0.004326 

7 1805 0.0047707 0.004333 

10 2 405 0.004979 100 0.004056 

3 685 0.004987 0.004075 

4 965 0.004988 0.004077 

5 1245 0.004988 0.004079 

6 1525 0.005511 0.004373 

7 1805 0.005513 0.004378 

Reference value [I 0] 0.004062 
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Figure 5.15: Plot of deflection of SS plate under UDL for various a/t ratios for 4x4 mesh 

(w max is the central deflection according to thin plate theory) 
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Table 5.15: Clamped Plate under UDL: Displacements for different orders for 2x2 mesh 

(Hierarchical 18-node solid thick shell element) 

a/t Order DOF WmaxD a/t WmaxD 
a= a= 

qa4 qa4 

20 2 125 0.001328 200 9.9173e-4 

3 205 0.001482 0.001233 

4 285 0.001482 0.001218 

5 365 0.001482 0.0012302 

6 445 0.001519 0.001252 

7 525 0.001519 0.0012549 

10 2 125 0.002071 100 0.0010044 

3 205 0.002134 0.001261 

4 285 0.002134 0.001255 

5 365 0.002134 0.001258 

6 445 0.002188 0.001281 

7 525 0.002189 0.001283 

Reference value [1 0] 0.00126 
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Figure 5.16: Plot of deflection of clamped plate under UDL for various a/t ratios for 2x2 

mesh (w max is the central deflection according to thin plate theory) 
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Table 5.16: Clamped Plate under UDL: Displacements for different orders for 4x4 mesh 

(Hierarchical 18-node solid thick shell element) 

alt Order DOF Wmax.D alt Wmax.D 
a= a= 

qa4 qa4 

20 2 405 0.001466 200 0.001199 

3 685 0.001485 0.001267 

4 965 0.001485 0.001267 

5 1245 0.001485 0.001267 

6 1525 0.001552 0.001304 

7 1805 0.001553 0.001304 

10 2 405 0.0021306 100 0.0012109 

3 685 0.002136 0.001273 

4 965 0.002136 0.001274 

5 1245 0.002136 0.001274 

6 1525 0.002237 0.001316 

7 1805 0.002237 0.001316 

Reference value [1 0] 0.00126 
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Figure 5.17: Plot of deflection of clamped plate under UDL for various a/t ratios for 4x4 

mesh (w max is the central deflection according to thin plate theory) 

Discussions: 

1. The results obtained are in excellent agreement with the exact values given by 

Zienkiewicz [1 0]. 

2. The solution converges to the exact value when a 4x4 mesh is used. 2x2 mesh 

gives reasonable good results with an error of 0.9 % in displacement. 

3. For a particular mesh type, reasonably good results are obtained at order 3. For 

orders above 3, the change in the displacement solution is marginal and it 

converges towards a particular value. 
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4. The solution obtained for thickness ratios 100 and 200 indicates (refer Figure 5.5) 

that the element gives accurate results for all the thin plate cases. This shows that 

the element is free of shear locking in thin plate cases. However, for obtaining 

accurate results, the analysis should be carried using higher orders (orders > 3) 

5. The solutions obtained for moderately thick plate (thickness ratios 10 and 20) 

deviate marginally from the exact thin plate solution. This is due to shear 

deformation effect in thick plates that is not considered in thin plate theory. Thus 

the developed element works well for both the thin and moderately thick plate 

analysis. 

6. For the cases where central concentrated load is applied a refined mesh is 

necessary with degenerated plate/shell element. Where as for solid thick shell 

element, the refmement of mesh is not required. 

7. The Hierarchical 18 noded solid element performs very well and gives the good 

results that agree with reference values. This element can be used for thick plates 

by employing higher orders in thickness direction. 
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5.2 Barrel Vault problem 

A barrel-vault supported by rigid diaphragms supported at both ends and loaded by its 

self-weight is shown in Figure 5.18. The diaphragm prevents the displacement in the Y 

and Z directions but allows displacements in the X directions. The shell is analyzed for 

both 2x2 and 4x4 meshes for different orders. The analyses were carried using both 

element types. The equivalent loads were obtained using mid surface and equally 

distributed for top and bottom nodes for plate/shell and thick solid shell elements. The 

numerical values for deflections obtained are at points Band C shown in Figure 5.10 are 

compared with reference values given by Scrodelis and Lo [56]. The results are given in 

tables 5.17 and 5.18. 

Discussions: 

1. The deep shell theory solution for the vertical deflection is -3.613 inches. The 

results obtained are in good agreement with the reference values. 

2. The solution converges towards the reference values for both 2x2 and 4x4 cases. 

However, the results obtained deviates from the reference values by a margin of 1.3% for 

degenerated hierarchical plate/shell element and 2.4 to 5% for 18-node solid thick shell 

element for 4x4 mesh for displacement at key points. 

3. Improved results are obtained with lesser number of degrees of freedom 

compared to the references. 
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Figure 5.18: Barrel vault and its finite element meshes 
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Table 5.17: Displacements at B and C of cylindrical roof 

(Hierarchical Degenerated plate/shell element) 

Order DOF ub(inches) Wb(inches) 

2 150 -2.0093 -3.8003 

3 246 -1.9869 -3.7576 

4 342 -1.9899 -3.7635 

5 438 -1.9493 -3.6904 

6 534 -1.92401 -3.6447 

7 630 -1.9143 -3.6267 

2 486 -1.7485 -3.31609 

3 822 -1.6797 -3.1848 

4 1158 -1.6517 -3.1314 

5 1494 -1.7549 -3.3279 

6 1830 -1.8521 -3.5127 

7 2166 -1.9309 -3.6626 

Reference value [56] -1.904 -3.613 
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Wc(inches) 

0.6107 

0.5796 

0.5807 

0.56709 

0.5545 

0.5462 

0.4973 

0.4759 

0.46809 

0.4976 

0.5252 

0.5475 

0.5412 
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Table 5.18: Displacements at B and C of cylindrical roof 

(Hierarchical 18 noded solid thick shell element) 

Order DOF ub(inches) wb(inches) 

2 150 -2.0902 -3.8569 

3 246 -2.0366 -3.7617 

4 342 -2.0012 -3.7028 

5 438 -2.03165 -3.7506 

6 534 -2.01835 -3.7276 

7 630 -2.0215 -3.7326 

2 486 -2.0518 -3.7906 

3 822 -2.04115 -3.7713 

4 1158 -2.0398 -3.7688 

5 1494 -2.0397 -3.7686 

6 1830 -2.0385 -3.7667 

7 2166 -2.0388 -3.7671 

Reference value [56] -1.904 -3.613 
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Wc(inches) 

0.5686 

0.5288 

0.51875 

0.5252 

0.5211 

0.5195 

0.53315 

0.5286 

0.5283 

0.5282 

0.5279 

0.5278 

0.5412 



5.3 Pinched Cylindrical Shell 

A cylindrical shell shown in Figure 5.19 is loaded by two centrally located and 

diametrically opposed concentrated forces is analyzed. Two types of boundary conditions 

are considered. 

1. The ends are covered by a rigid diaphrarn, which allow displacement only in 

the axial direction and rotation about the tangent to the shell boundary. 

2. The ends are free. 

Using the double symmetry, only one eighth of the cy Iinder is modeled. The deflection 

obtained at load application point is compared with values given by Cook [24]. The 

results obtained are given in tables 5.19 and 5.20. 

Discussions: 

1. The results are in good agreement with the reference values [24]. In the case of 

hierarchical degenerated plate shell element, 4x4 mesh gives a displacement of 

1.7093e-5 with an error of 7.3 %. In the case of 18 node solid thick element, 4x4 

mesh gives a displacement ofwith an error of6.3%. 

2. As seen in the previous example problems, p integration gives fairly good 

displacement solution at lower orders. 
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R 

F 

L 

F 

R= 300 in 
L= 600in 
F= 1.0 lb 
thickness= 3 in 
E=30X10" 6 psi 

\1 = 0.3 

Figure 5.19: Pinched cylindrical shell, loading and dimensions. 
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Table 5.19: Deflection under the load ofPinched cylinder 

(Hierarchical Degenerated Plate/Shell Element) 

Mesh Order DOF Deflection at 
Loaded point 

(inches) 
2 125 2.3932e-5 

3 205 1.14904e-5 

2x2 4 285 1.2374e-5 

5 365 1.2744e-5 

6 445 1.30407e-5 

7 525 1.3243e-5 

2 405 1.9129e-5 

3 685 1.7389e-5 

4x4 4 965 1.7624e-5 

5 1245 1.7345e-5 

6 1525 1.7207e-5 

7 1805 1.7093e-5 

Reference value [24] 1.8248e-5 
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Table 5.20: Deflection under the load of Pinched cylinder 

(Hierarchical 18-node Solid thick shell element) 

Mesh Order DOF Deflection at 
Loaded point 

(inches) 
2 125 2.55305e-5 

3 205 1.43225e-5 

2x2 4 285 1.03445e-5 

5 365 1.15779e-5 

6 445 1.2778e-5 

7 525 1.1443e-5 

2 405 2.0175e-5 

3 685 1.72035e-5 

4x4 4 965 1.73481e-5 

5 1245 1.724403e-5 

6 1525 1.72595e-5 

7 1805 1.72279e-5 

Reference value [24] 1.8248e-5 

From the analysis of the benchmark problems, it can be seen that both hierarchical shell 

element and solid thick shell elements do not have shear locking and membrane locking 

problems. 
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5.4 Stress Intensity Factors Evaluation for Plates 

subjected to Bending Loads 

In the previous sections, the correctness of the plate/shell elements derived and 

the software developed has been checked by considering some benchmark problems. In 

this section the accuracy of the bending stress intensity factors is examined as a function 

of plate thickness for a benchmark problem using the enriched crack tip plate/shell 

element. The material properties are assumed to be isotropic with Young's modulus E = 

200 GPA and Poisson's ratio v = 0.3. 

5.4.1 Benchmark problem 

As a benchmark problem, an infinite plate with a through thickness crack subjected to 

a far-field moment Mo was considered. The geometry of the problem considered is 

shown in Figure 5.20. In this configuration, the loading is purely mode I. To 

approximate an infmite plate, the plate width '2b' is taken to be 20 times the half crack 

length. The half crack length is taken to be a= 1.0 for the results presented in this study. 

Taking advantage of the symmetry about y-axis only one-half of the plate is considered to 

analyze the problem. The problem is analyzed for various discretizations, varying size 

and number of elements around the crack tip. Very coarse mesh is used away from the 

crack tip. The obtained results are compared with the results given by Bodurogulu and 

Erdogan [50]. The normalized (K11/Mo-.{ct) values are presented for various b/h ratios 

(vide b/h = 2, 4, 6, 8, and 10) in the Table 5.21. From the table it can be seen that there 
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is an excellent correlation of the present results with reference values. Also the size of 

the elements near the crack tip affects the results as expected. 

y 
2a 

E( .,. 

2b 

Mo 

'2b 

'--------~x E=200 GPa 
v= 0.3 

Figure 5.20: Centre crack under bending moment 
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Table 5.21: Normalized Stress Intensity factors in a plate containing central crack 

subjected to uniform bending Mo away from the crack region. alb = 0.1 

b/h 10 8 6 4 2 

Reference values 

Bodurogulu and Erdogan [50] 0.7526 0.7737 0.8045 0.853 0.9296 

Element length No. of elements 

near crack tip at the crack tip 

0.5 I 0.68461 0.717346 0.76565 0.850018 1.03089 

2 0.720625 0.7518 0.80112 0.89518 1.1079 

3 0.72867 0.7572 0.804014 0.8957 1.11401 

0.4 1 0.72892 0.75469 0.790467 0.868185 1.02228 

2 0.78517 0.813304 0.85757 0.94205 1.1323 

3 0.7952 0.820511 0.86279 0.947824 1.14479 

0.3 1 0.7405 0.75764 0.78925 0.84309 0.961509 

2 0.83035 0.84887 0.88368 0.95123 1.1065 

3 0.7173 0.7669 0.8375 0.94101 1.0796 

0.2 1 0.703664 0.71178 0.7323 0.76973 0.850073 

2 0.82995 0.83712 0.858168 0.90334 1.01398 

3 0.85599 0.86209 0.88333 0.933574 1.0569 

0.1 1 0.60181 0.60576 0.61995 0.645305 0.69066 

2 0.7414 0.74184 0.75463 0.783718 0.85026 

3 0.7739 0.77339 0.78548 0.81715 0.89339 
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5.4.2 Bending Stress Intensity factors for plate with 

central and edge cracks. 

The bending stress intensity factors are evaluated for rectangular plate subjected 

an edge bending moment away from the crack region for various crack length to width 

ratios. The analyses are carried for two different thickness ratios. The stress intensity 

factors for central crack problem have been calculated by Bodurogulu and Erdogan [50]. 

Dirgantara and Aliabadi [ 49] gave numerical results for both central and edge cracks. 

The numerical results obtained from the present formulation along with the reference 

values are presented in Figures 5.21 to 5.25. 

Centre crack @ blh = I 0 

2 ~~--~~--~--~~--------~~ 
I.8 
I.6 

;;;-- I . 4 
c:i 
~ I.2 
*0 I -1--+-

~ 08 "-.:: . 
~ 0.6 

0.4 
0.2 

0 -r--r. --~~--~~.--~--~----~~ 

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

alb 

--+-- Calculated 

-e- Reference [50] 

___...__Reference [49} 

Figure 5.21: Plot of Bending Stress Intensity factor for centre-crack plate under bending 

moment for different crack lengths at b/h equal to I 0 
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Centre crack @ blh = 2 

3.5 

3 

): V)' 2.5 
<:::) -+-- Calculated < 2 -~ 

* ----- Reference [50] 0 
~ 1.5 
::::::- ~ ---....--Ref erence [49] 
~ 1 

0.5 

0 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

alb 

Figure 5.22: Plot of Bending Stress Intensity factor for centre-crack plate under bending 

moment for different crack lengths at b/h equal to 2 
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Edge crack @ blh = I 0 

2.5 

2 
~ ~. c::) 
1:: I.5 

~ 
--+-- Calculated 

* 
~ I - ~ - Ref erence [49} 
~ .... ~ ~ 
~ ....-

0.5 

0 

0 O.I 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I 

alb 

Figure 5.23: Plot of Bending Stress Intensity factor for edge-crack plate under bending 

moment for different crack lengths at b/h equal to 1 0 
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Edge crack @ blh = 2 

3 

2.5 -

'0' 2 ~· c:i 
< 

--+--- Calculated Cl 
*0 I .5 
~ --- Reference [49] 
::;§ I 
~ 

0.5 

0 ' 
0 O.I 0.2 0.3 0.4 0.5 0.6 0. 7 0.8 0.9 I 

alb 

Figure 5.24: Plot of Bending Stress Intensity factor for edge-crack plate under bending 

moment for different crack lengths at b/h equal to 2 
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Discussions: 

A benchmark problem of an infinite plate with through-thickness central crack 

subjected to far field end moment was analyzed. In order to study the effect of element 

size and mesh discretization on stress intensity factor centrally cracked plate with crack 

length to plate width ratio (alb) of 0.1 was analyzed with various mesh discretizations, 

varying the size and number of elements around the crack tip for different plate width to 

thickness ratios. The results obtained from the present analysis were compared with 

those reference values given by Bodurogulu and Erdogan [50] in the Table 5.21. 

From this table it was observed the size of the element and number of elements 

surrounding the crack tip has an effect on the calculated SIF. From the analysis an 

element size of 0.1 with 2x2 or 3 x3 mesh surrounding the crack tip gives good results. 

The mesh division away fro the crack tip do not affect the results. 

The results obtained for central cracked and edge cracks for two plate width to 

thickness ratios (b/h) for different crack length to plate width ratios are presented in the 

Figures 5.21 to 5.24 along with reference values. From these Figures it can seen the 

results obtained from the present analysis compare very well with the reference values 

except for very high alb ratios. For central crack the numerical results are in good 

agreement for thin and moderately thick plates. In the case of edge crack, for thin plates 

(blh = 1 0) the results deviate marginally from the solutions given by Dirgantara and 

Aliabadi [49]. For moderately thick plates, (b/h = 2) the solutions are in excellent 

agreement. 

From the results presented it can be concluded that the element developed in the 

present analysis can be used for thin and moderately thick plates. 
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Chapter 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

Nine-node hierarchical degenerated plate shell element and eighteen-node 

hierarchical degenerated solid thick shell element are developed for analyzing the 

bending of plates and shells and also to perform crack analysis at centre and edge 

portions of the plate. The correctness of the developed formulation is verified by 

comparing the solutions with benchmark plate and shell problems. It is observed that both 

the elements perform very well and the results obtained are compared with reference 

values. They do not exhibit any shear and membrane locking. In closing, the following 

section deals with the results for the present formulation in comparison with benchmark 

problems available in literature. 

Square Plate Problem 

1. The numerical results obtained are in excellent agreement with the exact values 

available in literature for thin and moderately thick plates. 

2. Refmed mesh was employed for analyzing simply supported plate subjected to 

concentrated load for hierarchical degenerated plate shell element. 

3. For hierarchical eighteen-node solid thick shell element uniform mesh gave 

compatible results. Therefore, it is concluded that solid thick shell element 

performs better than plate/shell element. 
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Barrel vault problem 

1. The results for the cylindrical roof cylinder show that the element formulation 

developed in the present work is free from shear and membrane locking for both 

hierarchical degenerated plate shell element and 18-node degenerated solid thick 

shell element. 

2. The solid thick shell element converged well when compared to the reference 

values. Thus it is concluded that solid thick shell element performs well m 

comparison with hierarchical degenerated plate shell element 

Pinched Cy Iinder 

1. Deflection at the load application point is in good agreement in correlation with 

the reference values 

2. From the former examples it is concluded that p integration gives good results. 

Bending Stress Intensity factors for plate with central and edge crack 

1. Bending Stress intensity factor obtained for infmite plate having central crack 

subjected to far moment are in good agreement with reference values given by 

Bodrogulu [50]. 

2. Rectangular plate with an edge crack under bending moment was analyzed. The 

numerical results were compared with Bodrogulu et al [50] and Dirgantara et al 

[49]. 

3. At centre crack length equal to 0.1 the hierarchical degenerated plate shell 

element gave excellent results for thin and moderately thick plates. 

4. Also the same plate was analyzed for varying crack length from 0.1 to 0.9 for 

central crack and edge crack. For central crack, the numerical results are in good 
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agreement for thin and moderately thick plates. In case of edge crack, for thin 

plates (b/h equal to 1 0) the results deviate marginally from the solutions given by 

Dirgantara and Aliabadi [49]. For moderately thick plates, (b/h equal to 2) the 

solutions are in excellent agreement. 
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6.2 Recommendations 

1. In the present work plate/shell element was used to obtain bending stress intensity 

factors. Solid thick shell element incorporating near crack tip displacement could 

be developed to obtain stress intensity factors of plates with through thickness 

cracks. Using thick solid element the interference of crack faces on compression 

side can be investigated. 

2. Three dimensional crack front elements can be included along with the thick solid 

element to obtain stress intensity factors for part through thickness cracks in 

plates and shells. 
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APPENDICES 

Shape functions 

A.l Hierarchical degenerated plate element 

N1 = _ _!_(1-~)(1-77 )(1 +¢ + 77) 
4 

N2 = _ _!_(1 +~)(1-77 )(1 +¢ -77) 
4 

N3 = - _!_ ( 1 + ¢) ( 1 + 77) ( 1-¢- 77) 
4 

N4 = _ _!_(1-¢){1 + 77 ){1 +¢ -77) 
4 

N5 =-~(1-¢2 ){1-77) 

N6=-~(1+¢)(1-772 ) 

N7 =-~(1-¢2 )(1+77) 

N8 = -~(1-¢)(1-772 ) 
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A.2 Displacement field shape functions for 

hierarchical degenerated plate element 

N1 = ~ ( 1-7] H 1-~n 

N2 =: (1-7J)(1+~) 
N3 = _!_(1 + 1J )(1 +~) 

4 

N4 = _!_(1 + 1J )(1-~) 
4 

N5 = ~(1-7J)(~2 -1) 

N 6 = ~ ( 1 + ~) ( 7]
2 

-1) 

N7 = _!_(1+7J)(~2 -1) 
4 

N8 = ~ (1- ~) ( 7]
2 -1) 

N9 = ~ ( 7]
2 -1) ( ~2 -1) 
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A.3 Hierarchical18 node solid plate element 

N1 = _!(1-~)(1-ry )(1 +~ + 17 )(1 +s) 
8 

N2 = -!(1 +~)(1-77 )(I+~ -17 )(I +s) 
8 

N3 = -!(1 +~)(I+ 17 )(1-~ -17 )(1 +s) 
8 

N4 = _!(1-~)(1 +77)(1 +~ -ry)(l +s) 
8 

Ns = _!(t-~)(1-ry )(I+~+ 17 )(I-s) 
8 

N6 = _!(t+~)(t-ry)(I +~ -17 )(I-s) 
8 

N7 = _!(1 +~)(I+ 77)(1-~ -ry)(1-s) 
8 

N8 = _!(t-~)(1 + 17 )(1 +~ -17 )(I-s) 
8 

N9 = _ _!_( 1- ~2 )(1-77 )(1 +s) 
4 

1 
N10 = - 4(1 +~)(1-ry2 )(1 +s) 

Nil= -~(1-~2 )(1 +17)(1 +s) 

1 
NI2 = -4 (1-~)(1-772 )(t +s) 

NI3 = -~( 1-~2 )(1-77 )(1-s) 

NI4 = -~(1 +~)(1-772 )(1-s) 

1 
N1s = - 4( 1-~2 )(t + 17 )(1-s) 

N16 = - ~ ( 1 - ~) ( 1 -772 
) ( 1 - s) 
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A.4 Displacement field shape functions for 

hierarchical IS node solid plate element 

For comer nodes 

1 
N1 = -(1-77 )(1 - ~)(1 +s) 

8 
1 

N2 = - (1-11 )(1 +~)(1 +s) 
8 
1 

N3 = - (1 + 11 )(1 +~)(1 +s) 
8 
1 

N4 = - (1 + 17 ){1-~){1 +s) 
8 
1 

N5 = - (1-77 ){1-~){1-t;) 
8 
1 

N6 = - (1-77 ){1 + ~)(1-t;) 
4 
1 

N7 = -(1 + 17 )(1 +~){1-t;) 
8 
1 N8 = - (1 + 17 )(1- ~)(1-t;) 
8 
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for mid side nodes and central node 

1 
N9 = 8 (1-77)(~2 -1 )(1 +s) 

1 
N10 = g-(1 +~)( 772 -1)(1 +s) 

Nll =~(1+77)(~2 -1){1+s) 

N12 =!(I-~)( 772 -1 )(1 +s) 
8 

NI3 =~(1-77)(~2 -1)(1-s-) 

1 N14 = -(1 +~)( 772 -1 )(1-s) 
8 

N15 = ~(1 +77)(~2 -1 )(1-s) 

N16 =~(I-~)( 772 -1 )(1-s) 

N17 =~(772 -1)(~2 -1)(1+s) 

NI8 = ~ ( 772 -I) ( ~2 -1) ( 1-s-) 
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