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Abstract 

For the commercial fishing industry, efficiency and sustainability are key aspects of 

business. Knowing when and where to harvest, along with the environmental traits 

associated with good fishing grounds, minimizes costly fuel and time spent searching for 

fish. Quantifying this knowledge not only creates a baseline of habitat information, but 

also preserves fishing patterns for use by future harvesters or in developing fisheries. This 

study investigates temporal and spatial patterns in the catch rates of yellowtail flounder 

(Limandaferruginea) recorded by factory freezer trawlers operating on the Grand Bank 

ofNewfoundland and Labrador, Canada. The temporal analysis revealed that 

commercial catch rates are higher at night as well as during winter and summer. The 

findings suggest that ambient light levels and environmental factors are important for 

successful yellowtail flounder- trawl interactions. Spatial analysis is used to show the 

interactions between environmental variables and yellowtail flounder catch rates. It was 

found that wind speed, water depth, sediment type, and bottom water temperature all 

relate to catch rate, but in varying degrees. The results of this project provide evidential 

support for improved data collection, storage, and analysis by our industry partner. 
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Chapter 1: Introduction and Overview 

1.1 Yellowtail Flounder 

The yellowtail flounder (Limandaferruginea) is a ground-fish found in the western 

North Atlantic whose habitat ranges along the continental shelves between Labrador and 

Chesapeake Bay, the commercial concentrations of which reach a northern limit on the 

Grand Bank off the coast ofNewfoundland and Labrador, Canada (Bigelow and 

Schroeder, 1953; Walsh, 1992). Additional distinct stocks exist on Georges Bank and 

Cape Cod, off Southern New England (Cadrin, 201 0). Yellowtail flounder are a shallow 

water species found at depths between 40 - 100m in sandy, muddy, or gravelly-sand 

substrate (Walsh, 1992). In this habitat yellowtail flounder, a small-mouthed 

pleuronectid, feed on benthic invertebrates including polychaetes, amphipods, small 

crustaceans and very small fish (Bigelow and Schroeder, 1953; Pitt, 1976). The species 

can tolerate water temperatures between -1 to 7°C, but they are generally found between 

3 to 5 oc (Pitt, 1970; Walsh, 1992). Sexual maturity is reached at age five for males and 

age 6 for females; furthermore, spawning occurs between May and September, but peaks 

in late June (Pitt, 1970). While spawning has never been witnessed, the concentration of 

adult and juvenile flounder on the shallow Southeast Shoal hints that this region may be 

the most important spawning and nursery grounds on the Grand Bank (Frank et al., 1992; 

Walsh, 1992; Walsh et al. , 2004). 

Lying to the Southeast of Newfoundland, the Grand Bank is a raised marine plateau 

jutting into the Atlantic Ocean (Fig. 1.1 ). The Bank, which is characteristically flat and 



shallow, has water depths ranging from 30 to 190m (Walsh et al., 2006; Kulka, 2009). 

Water properties are largely influenced by the Labrador Current, which provides sub-zero 

temperature polar water. Secondarily, the Grand Bank is influenced by warmer waters 

from the Gulf Stream (Helbig et al., 1992). 

1.2 Newfoundland Commercial Yellowtail Flounder Fishery 

The establishment of an international fishery for yellowtail flounder in the 1960s 

launched the commercial importance of this species in Newfoundland (Brodie et al., 

201 0); it had already been commercially significant off Southern New England since the 

1930s (Cadrin, 2003). In Atlantic Canada the fishery had a slow start, but quickly grew 

into a profitable endeavor with the Total Allowable Catch (TAC) peaking in 1973 

(Brodie et al., 201 0). In the late 1980s to early 1990s catches were not properly reported 

by Canadian and foreign vessels, but surveillance estimates suggested they were 

exceeding the TAC (Fig. 1.2). Additionally, inadequate size and age sampling was 

taking place resulting in an indeterminate amount of undersize and juvenile yellowtail 

flounder being harvested (Brodie et al. , 1993; Brodie et al., 1994). Total stock collapse 

lead to a mora tori urn in 1994 for the directed fishing of yellowtail flounder, which lasted 

until August 1998; by that time the species had recovered enough to support a 

commercial industry again. 

Today the yellowtail flounder fishery is prosecuted in the Northwest Atlantic 

Fisheries Organization (NAFO) Divisions 3LNO, where it constitutes a 16 500 t quota 
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and represents significant revenue to Ocean Choice International (OCI), the fishery's 

leading company. OCI has operated within the industry since 2007 when it purchased a 

majority of company shares from the former owners, Fishery Products International 

(FPI). FPI was a vertically integrated company created in the 1980s by consolidating a 

variety of inshore and offshore fishing companies in Newfoundland. Dedicated to the 

fishery with four offshore factory stem trawlers (> 100 ft), OCI has over 90% of Canadian 

yellowtail flounder quota, employs skilled Newfoundlanders, and contributes to rural 

economies in the province. 

The recovery of the yellowtail flounder stock provides a unique opportunity to 

observe a resilient population in a habitat shared with other less resilient species; 

American plaice (Hippoglossoides platessoides), Atlantic cod (Gadus morhua), and 

witch flounder ( Glyptocephalus cynoglossus) also collapsed in the early 1990s on the 

Grand Bank, but these stocks have yet to be removed from fishing moratoriums. 

American plaice, which shares much of its habitat on the Grand Bank with yellowtail 

flounder, may be caught as bycatch, however, a strict 15% annual limit is enforced 

(NAFO, 2011 ). Subsequent avoidance of this species often leads to increased catch of 

smaller yellowtail flounder (28 - 35 em; NAFO minimum legal length is 28 em) which, 

due to economic reasons, are transported to China instead of being processed in 

Newfoundland, resulting in processing plant closures and the loss of local jobs. Pressure 

to harvest profitably sized fish while avoiding bycatch puts a strain on captains to steam 

for long periods of time searching for optimum fishing grounds, burning costly fuel in the 

process. The Grand Bank yellowtail flounder fishery, which has recently been awarded 
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Marine Stewardship Council certification, is increasingly invested in performing 

efficiently and sustainably. 

1.3 Temporal and Environmental Effects on Commercial Fisheries 

Industry will be more economic and environmentally sustainable by maximizing 

efficiency when locating and harvesting yellowtail flounder. One way to achieve 

efficiency is by quantifying patterns in the fishery, including when and where catch rates 

are high, and the environmental attributes associated with these locations. Catchability is 

related to the availability and vulnerability of a species to capture (Parrish, 1963), both of 

which depend on fish behaviour and trawl efficiency (Walsh, 1991). Time of day, 

season, and environment are among the factors impacting fish behaviour and trawl 

efficiency (Laevastu and Favorite, 1988), and consequently catchability. Ambient light 

levels on the seafloor due to time of day and season have been shown to impact fish 

behaviour in response to trawl interaction (Glass and Wardle, 1989; Ryer and Barnett, 

2006). Scientists found low-light conditions, such as at night, have a positive effect on 

catch rate for many species including yellowtail flounder (Walsh, 1991 ). 

Environmental factors also influence fish behaviour and trawl efficiency; 

understanding environmental impacts on commercial fisheries is increasingly more 

important and difficult to do given our current changing climate. It is important for 

industry to have a baseline of knowledge related to fish and environmental interaction, 

and to monitor changes in these interactions to maintain a sustainable, long-term fishery. 
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Past research has shown that fish catchability is affected by wind speed, bathymetry, 

sediment type, and water temperature among other factors (Harden Jones and Scholes, 

1980; Walsh et al. , 2004; Politis et al., 2012). Vulnerability of some marine species is 

impacted by increasing wind speed and thus turbidity; turbulence may reduce visibility so 

that individuals cannot detect and avoid the trawl mouth (Perry et al., 2000). Ocean 

bathymetry affects fish vulnerability to capture by changing net geometry and efficiency; 

for example, varying fishing depths during a tow leads to less contact between the 

footrope and seafloor and a greater chance that fish will escape from a trawl (Queirolo et 

al., 20 12). Bathymetry also affects availability of fish by influencing their habitat. 

Sediment type impacts fish availability by affecting feeding habits and predator-prey 

interactions; certain sediments, like large rocks or boulders, also provide safety for 

juvenile and adult fish (Walsh, 1992; Simpson and Walsh, 2004). Lastly, water 

temperature is known to affect vulnerability of fish to approaching trawls. This factor is 

generally thought to impact both the response threshold and swimming capability of fish, 

which enhances herding capabilities in the mouth of a trawl (see Winger et al., 201 Oa for 

review). These environmental variables change on multiple temporal scales ranging from 

diurnal to seasonal to decadal; therefore, the decision of when and where to fish becomes 

increasingly complicated. 

The complex temporal and spatial patterns that make up an ecosystem are part and 

parcel of a captain's ecological knowledge of his/her fishery. In order for this knowledge 

to be shared with new captains, used in developing fisheries, or analyzed by scientists for 

information on stock abundance, we must first collect relevant environmental data and 
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quantify the patterns in commercial fisheries. Analyzing the relationships between catch 

rate and temporal and environmental variables is one of many steps that can lead to a 

more efficient and sustainable fishery, one that is less reliant on fossil fuels for lengthy 

trips in search of fish. Collection, storage, and usage of in situ data including ambient 

light level near the seafloor, sea state, bathymetry, sediment type, and bottom water 

temperature will help in building a holistic understanding of yellowtail flounder and how 

to harvest them. 

1.4 Thesis Outline 

The objective of this study was to investigate the impacts of temporal and 

environmental variables on commercial catch rates of yellowtail flounder. Variables of 

interest included temporal factors (i.e. , time of day and season) and environmental factors 

(i.e., wind speed, water depth, substrate type, and bottom water temperature). Separate 

analyses were conducted for each of these two distinct groups of variables. 

In the first experimental chapter (Chapter 2) I investigated the effects of time of day 

and season on catch rate using classical statistics. This project aimed to quantify catch 

rates in order to give objective results on when the highest catch rates occurred during the 

study period. This task was completed using one and two-way Analysis of Variance tests 

and t-tests. Results showed that the highest seasonal catch rates occurred in winter and 

summer during nighttime. I discuss possible reasons for these findings as well as 

implications for industry. 
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In the second experimental chapter (Chapter 3) I examined the relationships between 

catch rate and environmental variables using spatial statistics. The goal of this project 

was to use Geographically Weighted Regression analysis, an innovative tool for 

analyzing local spatial variation, to examine and quantify the environmental factors 

influencing commercial catch rate of yellowtail flounder. Results showed that catch rates 

had negative relationships with wind speed (i.e., as wind speed increased, catch rate 

decreased), positive relationships with water depth in spring and summer (i.e., as water 

depth increases, catch rate increases), and negative relationships with water depth in fall 

(i.e., as water depth increases, catch rate decreases). I found conflicting relationships 

between water depth and catch rate in winter for both vessels; during this season other 

variables may be more statistically significant. Substrate type was the least statistically 

significant variable. Catch rate showed positive relationships with bottom water 

temperature in winter, but relationships were less clear in other seasons. The results of 

this chapter were synthesized and discussed with respect to their impacts on this 

important commercial industry. 

The final thesis chapter summarizes the temporal and environmental experiments, 

discusses the benefits and limitations of both studies, and proposes suggestions to 

industry for future projects in this area. 

7 



/ 
55' W SO' W 

Figure 1.1: Map of the study area. NAFO Div. 3LNO are located partially within the 
exclusive economic zone (EEZ), shown by the curved line. 
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Catch (split in Canadian and non-Canadian) and T AC of yellowtail flounder in NAFO Divisions 
3LNO. 
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Figure 1.2: Canadian and non-Canadian catch and total allowable catch (TAC) of 
yellowtail flounder in NAFO divisions 3LNO between 1960 and 2010 (Brodie et al. , 

2010). 
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Chapter 2: Seasonal and diurnal effects on commercial catch rate of 

yellowtail flounder (Limanda ferruginea) on the Grand Bank of 

Newfoundland 

Abstract 

Diel and seasonal variation in catch rate of yellowtail flounder (Limanda ferruginea) 

were analyzed using commercial vessel logbook data from the Grand Bank, 

Newfoundland and Labrador, Canada. Data from two vessels, the FIV Mersey Viking 

(1224 tows) and the FIV Aqviq (1612 tows) were used in this study. Temporal data were 

compared using one and two-way Analysis of Variance tests and t-tests. Season and time 

of day significantly affected catch rate for both vessels. Daytime catch rates for the 

Mersey Viking were significantly higher in winter and summer (mean: 14.15 kg/min and 

16.50 kg/min, respectively vs. spring: 9.02 kg/min, fall: 11 .35 kg/min). Nighttime catch 

rates for the Mersey Viking were higher in winter and summer, though it was not always 

statistically significant (mean: 15.72 kg/min and 16.67 kg/min, respectively vs. spring: 

8.64 kg/min, fall: 13.67 kg/min). Daytime catch rates for the Aqviq were significantly 

higher in winter and summer (mean: 16.18 kg/min and 18.02 kg/min, respectively vs. 

spring: 12.40 kg/min, fall: 11.19 kg/min). Nighttime catch rates for the Aqviq were 

significantly higher in winter and summer (mean: 18.26 kg/min and 19.32 kg/min, 

respectively vs. spring: 12.38 kg/min, fall: 12.78 kg/min). Both vessels revealed higher 

catch rates at night, though these results were not always statistically significant. The 
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results are discussed in relation to possible changes in availability and vulnerability of 

yellowtail flounder to trawl capture. 

2.1 Introduction 

The efficiency of a bottom trawl to capture fish is known to be affected by many 

factors related to vessel operations, gear technology, the availability of fish, and their 

vulnerability to capture once in the path of a trawl (Glass and Wardle, 1989; Walsh, 

1991 ; Casey and Myers, 1998; Petrakis et al. , 2001; Ryer and Barnett, 2006; Ryer, 2008). 

Factors affecting fish behaviour and therefore their vulnerability to capture are numerous 

(see review by Winger et al., 201 Oa). Since the 1960's, researchers have used various 

techniques, including underwater camera systems at sea (Blaxter et al., 1964; Glass and 

Wardle, 1989; Underwood et al. , 2012), laboratory observations of captive animals 

(Blaxter et al. , 1964; Ryer and Barnett, 2006), and the analysis of trawl catch (Beamish, 

1966; Casey and Myers, 1998; Petrakis et al., 2001) to determine the role and influence 

of different factors on fish behaviour and subsequent trawl capture. 

Industry, government, and academia all benefit from the understanding of fish and 

gear interactions. Knowledge of fish behaviour in response to trawls can lead to gear 

modifications that greatly improve capture efficiency and reduce ecological impacts such 

as bycatch, seabed impacts, and fuel consumption/carbon footprint (011a et al., 2000; 

Hannah et al. , 2005). Research surveys designed to estimate population abundance will 

have unknown biases if fish distributions and availability to gear are unknown (Walsh, 
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1988; Casey and Myers, 1998). When fish and gear interact, trawl technology aims to 

take advantage of predator avoidance behaviour by herding fish into the path of the 

oncoming net (Ryer and Barnett, 2006; Winger et al., 2010a). Blaxter et al. (1964) 

observed that when fish come in contact with a trawl, their response - both in a laboratory 

and at sea - is highly affected by the quantity of light available. 

Of the factors affecting fish behaviour in response to an approaching bottom trawl, 

visual stimuli are the most important (Blaxter et al., 1964; Glass and Wardle, 1989; 

Walsh, 1991; Ryer and Barnett, 2006; Arimoto et al., 2010; Winger et al., 2010a). Glass 

and Wardle (1989) found that vision influenced herding behaviour more than any other 

sense. Ryer and Barnett (2006) observed that fish, particularly flatfish, display 

disordered actions when confronted with a trawl in low light conditions, leading to larger 

catches. This theory is supported by at-sea studies which have found nighttime catch 

rates to be greater than daytime catch rates for multiple species of fish including 

yellowtail flounder (Limandaferruginea) (Walsh, 1991 ; Casey and Myers, 1998; Petrakis 

et al., 2001). 

In this research I hypothesized that low ambient light conditions (i.e. nighttime and 

seasons with fewer and darker daylight hours) lead to higher catch rates in commercial 

tows of yellowtail flounder on the Grand Bank, Newfoundland and Labrador, Canada. 

Data coverage in previous studies has been limited temporally because research cruises 

only operate for relatively short time periods. By using industry logbooks, which have a 

broad temporal scale due to the nearly year-round operation of vessels, I investigated the 
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die! and seasonal patterns of catch rate (kg/min) to determine the effect of ambient light 

on gear and yellowtail flounder interactions. 

2.2 Materials and Methods 

Statistical analysis was completed on catch rate data from two vessels: the FIV 

Mersey Viking and the FIV Aqviq (henceforth referred to as the Viking and Aqviq, 

respectively). Both vessels were equipped with Goldentop bottom trawls, Thyboron 

trawl doors, and rock hopper footgear. During the study period the codend mesh size for 

both vessels ranged from 145-152 mm, the headline length was 31m, and Suzuki 

sounders were used (for more information please see Winger eta!., 201 Ob ). The Viking 

completed tows in every month of 2008 (Table 2.1 ), however, in that year, the Aqviq only 

completed tows from January to September (Table 2.2). In order to have a complete 

dataset for the Aqviq, tows from October to December 2009 were incorporated. We 

recognize that this may introduce bias as the conditions during 2009 may have been 

different from 2008, however, the benefits of analyzing a complete year outweigh the 

impacts of combining data. Seasons were defined as follows, winter: January, February; 

spring: March, April, May; summer: June, July, August, September; fall: October, 

November, December. The fishery was conducted on the Grand Bank ofNewfoundland 

in NAFO Divisions 3LNO at water depths ranging from 40 to 83 m (Fig. 2.1 and 2.2). 

Tows occurred at all times of the day and night; however, in order to strictly compare day 

tows to night tows all trips were divided into three periods: day, night, and twilight. 
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Twilight was defined as any tow starting in the period between one hour before civil 

twilight starts (when the center of the sun is 6 degrees below the horizon) and actual 

sunrise. At the end of the day, twilight is defined as a tow starting in the period between 

one hour before sunset and the end of civil twilight (when the center of the sun is again 6 

degrees below the horizon). In this way, tows occurring during dawn and dusk- and 

thus receiving an indeterminate amount of sunlight - could be disregarded. Catch rates 

were calculated as total catch (kg) divided by tow duration (minutes). 

A Two-Way ANOV A was used to detect effects of season and time of day (i.e., day 

or night) and their combined interaction effects on catch rate (kg/min). Data distributions 

were checked and deemed normal prior to proceeding with analysis. A Tukey's honestly 

significant difference test was then used to conduct post hoc comparisons of catch rate. 

A Bonferroni correction was applied as part of the Tukey's HSD test to the probability 

level to reduce the family-wise type I error rate (a 0.05 divided by the number of tests 

(n=6); giving p<0.008). One-way ANOVAs were used to determine whether daytime 

and nighttime catch rates were different between seasons. A Tamhane' s post hoc test 

was used, and a Bonferroni correction was applied to the probability level to reduce the 

family-wise type I error rate (a 0.05 divided by the number oftests (n=6); giving 

p<0.008). Independent t-tests were used to determine whether catch rates varied among 

time periods in each season. Separate tests were conducted on the Viking and Aqviq in 

order to control for differences in gear modifications and harvesting strategies between 

the vessel captains. All statistical tests were performed using IBM SPSS Statistics 19. 

15 



2.3 Results 

In 2008, the Viking completed 1224 tows excluding those that occurred in twilight 

(winter [n=241]; spring [n=353]; summer [n=330]; fall [n=300]). Ofthese, 668 occurred 

during the day and 556 occurred during the night. Catch rates for individual tows ranged 

from 0.00 to 62.25 kg/min. Mean seasonal rates ranged from 8.86 kg/min in spring to 

16.55 kg/min in summer. The mean daytime catch rate for all seasons combined was 

12.76 kg/min which fell within a range from 9.02 kg/min in spring to 16.50 kg/min in 

summer. The mean nighttime catch rate for all seasons combined was 13.68 kg/min 

which fell within a range between 8.64 kg/min in spring and 16.67 kg/min in summer 

(Table 2.3). 

A two-way analysis of variance test revealed significant effects of both time of day 

and season on Viking catch rate (F[! , t2t6J = 6.97; p = 0.008 and F [3, t216J = 102.05; p < 

0.001 , respectively), as well as their interaction (F[3,1216J = 3.41; p = 0.017). Tukey's 

honestly significant difference post hoc test with a Bonferroni correction (a 0.05/6 = 

0.008) revealed that catch rate was significantly different between all seasons except for 

winter and summer (Table 2.4). 

When comparing daytime catch rates, a one-way analysis of variance test revealed 

significant differences between seasons (F[3,6641 = 81.93; p < 0.001 ). Tamhane's post hoc 

test with a Bonferroni correction (a 0.05/6 = 0.008) found that daytime catch rate was 

significantly different between winter and spring, spring and summer, spring and fall, and 

summer and fall, but this difference could not be detected between winter and summer, 
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and winter and fall (Table 2.5). When comparing daytime catch rates between seasons, 

catch rates were significantly higher in summer and winter compared to spring or fall. 

Fall daytime catch rates were significantly lower than summer, but significantly higher 

than spring. During spring, the daytime catch rates were significantly lower than all other 

seasons (Fig. 2.3). 

When comparing nighttime catch rates, a one-way analysis of variance test revealed 

significant differences between seasons (F[3,ss2] = 34.78; p < 0.001). Tamhane's post hoc 

test with a Bonferroni correction (a 0.05/6 = 0.008) revealed that nighttime catch rate was 

significantly different between winter and spring, spring and summer, spring and fall, and 

summer and fall (Table 2.5). When comparing nighttime catch rates between seasons, 

catch rates were significantly higher in summer than in spring or fall. During winter, 

nighttime catch rates were significantly higher than during spring. Fall nighttime catch 

rates were significantly higher than spring, and significantly lower than those during 

summer. Lastly, nighttime catch rates were significantly lower in spring than in any 

other season (Fig. 2.4). 

T -tests examining differences between day and night for each season on the Viking 

revealed that the only season with significant differences between daytime and nighttime 

catch rates was fall, where night rates were significantly higher than day rates (p = 0.002) 

(Fig. 2.5). Winter and summer mean nighttime catch rates were also higher than daytime 

though they were not statistically significant. 
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For the Aqviq, 1612 tows were included in this study (winter [n=257]; spring 

[n=388]; summer [n=598]; fall [n=369]), of which 878 occurred during the day and 734 

at night. Catch rates for individual tows ranged from 0.00 to 52.55 kg/min. Mean 

seasonal rates ranged from 12.13 kg/min in fall to 18.49 kg/min in summer. The mean 

daytime catch rate for all seasons combined was 14.45 kg/min, ranging from 11.19 

kg/min in fall to 18.02 kg/min in summer. The mean nighttime catch rate for all seasons 

combined was 15.69 kg/min, ranging from 12.38 kg/min in spring to 19.32 kg/min in 

summer (Table 2.6). 

A two-way analysis of variance test showed significant effects of time of day and 

season on catch rate (F(l ,I604J = 11.05; p = 0.001 and F[3, I604J = 96.97; p < 0.001 , 

respectively). Unlike the Viking, the interaction term was non-significant (F[3,I604J = 1.35; 

p = 0.256) (Table 2.7). Tukey's post hoc test with a Bonferroni correction (a 0.05/6 = 

0.008) revealed that catch rate was significantly different between all seasons except for 

winter and summer, and spring and fall. 

A one-way analysis of variance test comparing daytime catch rates revealed 

significant differences between seasons (F[3,8741 = 63 .19; p < 0.001). Tamhane's post hoc 

comparisons tests with a Bonferroni correction (a 0.05/6 = 0.008) revealed that daytime 

catch rate was significantly different between winter and spring, winter and fall, spring 

and summer, and summer and fall , but this difference could not be detected between 

winter and summer, and spring and fall (Table 2.8). When comparing daytime catch rate 
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between seasons, rates were significantly higher in summer and winter compared to 

spring or fall (Fig. 2.6). 

When comparing nighttime catch rates, a one-way analysis of variance test revealed 

significant differences between seasons (F[3,7301 = 40.35; p < 0.001). Tamhane's post hoc 

comparison tests with a Bonferroni correction (a 0.05/6 = 0.008) revealed that nighttime 

catch rate was significantly different between winter and spring, winter and fall, spring 

and summer, and summer and fall. Significant differences were not found when 

comparing winter and summer and spring and fall (Table 2.8). When comparing 

nighttime catch rates between seasons, catch rates were significantly higher in summer 

and winter than in spring or fall (Fig. 2. 7). 

T -tests were used to analyze differences between mean night and day catch rates for 

the Aqviq. These results showed that only summer and fall have significant differences 

between night and day catch rates; night rates are significantly higher than day rates for 

both seasons (p = 0.026 and p = 0.025, respectively). Winter mean nighttime catch rates 

are also higher than day rates, though they are not statistically significant (Fig. 2.8). 

2.4 Discussion 

The results of the analysis revealed that season had a statistically significant effect on 

mean catch rate for two Ocean Choice International (OCI) vessels fishing yellowtail 

flounder on the Grand Bank in 2008 - 2009. The results of the seasonal trend analysis 

showed higher catch rates occurring in summer and winter for both vessels which is 
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different from the original hypothesis that stated only seasons with fewer, darker daylight 

hours would have the highest catch rates. Our findings are consistent with Walsh and 

Brodie (2006) who found commercial yellowtail catch per unit effort (CPUE) highest in 

January and June; our results are also consistent with Maddock Parsons et al. (2005) who 

found catch rate lowest in March. However, opposite from our results, Walsh and Brodie 

(2006) also found April to have a relatively high CPUE. Why do these patterns of 

high/low catch rates change between years? 

When investigating these temporal patterns it is important to note that yellowtail 

flounder generally do not migrate or aggregate to feed and spawn (Walsh and Morgan, 

2004). Therefore we may reason that the observed high catch rates in our study period 

are not due to fish forming large assemblages, but instead may be due to seasonal 

variation in local environmental patterns. During winter 2008, mean temperature near the 

seafloor was around 3°C, the warmest seasonal average for that year (see Chapter 3 for 

review of environmental data). Higher water temperature enhances swimming capability 

and endurance, enabling flatfish in the sweep zone -the area between the trawl wings and 

door- to enter the path of an oncoming bottom trawl for subsequent capture (Winger et 

al., 1999). Trawls are designed to take advantage of fish avoidance behaviour by herding 

them to a center point and minimizing escapes (Ryer, 2008). We speculate that the high 

catch rates observed in winter in this study are the result of increased water temperatures 

near the seafloor, increasing the herding capability of yellowtail flounder, and as a result, 

increasing the volume of fish arriving in the net mouth which become vulnerable to 
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capture. This would be consistent with the temperature-dependent herding of flatfish 

predicted by Winger et al. (1999) using laboratory observations. 

Environmental conditions may also be the cause for high catch rates in summer. 

During summer 2008, mean wind speeds on the Grand Bank were about 6 m/sec, the 

lowest seasonal average for that year (see Chapter 3 for review of environmental data). 

Vessel motion due to high wind speed impacts trawl efficiency through alteration of trawl 

geometry and contact with the seabed (Stewart et al., 2010; Politis et al., 2012). Towing 

parallel to wind and wave direction can somewhat mitigate vessel response to sea state, 

however, past research shows that catch rates decrease as wave heights increase (Stewart 

et al., 2010). We speculate that high catch rates observed in summer are the result of low 

wind speeds, which would otherwise alter trawl performance and decrease catch rate. 

The importance of seasonally varying factors will be explored further in the next chapter. 

The results of the analysis also revealed that time of day had a statistically significant 

effect on catch rate for both vessels in some seasons. In general, daytime and nighttime 

catches were highest in summer and lowest in spring. Winter had the second highest 

catch rates. These patterns were observed for both vessels. Although not always 

statistically significant, we found mean night catch rates to be higher than day catch rates 

in all seasons except for spring. Previous research supports these findings; during 

nighttime, low light levels and nocturnal movements off of the sea floor may cause 

yellovvtail flounder to become more vulnerable to trawl capture (Walsh, 1988). 

Laboratory tests conducted on flatfish by Ryer and Barnett (2006) found when flatfish are 
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confronted with trawl components at night there were more startle responses and less 

herding. Additionally, Walsh and Morgan (2004) found that yellowtail flounder rise off 

the sea floor at night. The findings from our study suggest that the absence of visual 

stimulus at night may lead to unordered interactions between fish and trawls; we 

speculate that this may result in higher catches. Also, rising off of the seafloor may make 

yellowtail flounder more available to trawls by putting them into the direct path of the 

gear. 

Overall, there was a noticeable difference of seasonal catch rates between vessels. 

This may be attributed to the auto-trawl system on the Aqviq, a device on the winch that 

maintains trawl geometry even in windy and stormy conditions (G. Thorbjornsson, 

personal communication, March 8, 2012). Gear technology is a crucial factor in trawl 

efficiency, and as such we did not perform in-depth analysis between the Aqviq and the 

Viking . 

2.4.1 Limitations to Approach 

It is important to note the limitations in this study. The use of a single year' s worth of 

data warrants caution when interpreting and applying results. Future projects would 

benefit from a longer, uninterrupted study period and the inclusion of environmental data 

in analysis. It should also be mentioned that commercial catch rates are influenced by 

more than just fish availability: operational variation due to crew experience or gear 

attributes, and avoidance of by catch, undersize, and poor quality fish all impact catch and 
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effort. Market conditions determining retail price and demand for product are also 

important factors influencing catch. 

2.5 Conclusion 

In conclusion, we found that commercial catch rates of yellowtail flounder were 

influenced by time of day and season. We speculate that high nighttime catch rates are 

attributed to reduced ambient light intensity near the seafloor and a concomitant 

reduction in avoidance capability, leading to increased vulnerability to capture. High 

catch rates during winter with relatively warm water temperatures are attributed to 

increased herding, owing to the fact that warmer water temperatures are known to 

enhance swimming speed and endurance, both of which are necessary for flatfish to reach 

the trawl path. High catch rates during summer are attributed to enhanced trawl 

performance due to low wind speeds which, in other seasons, may alter trawl geometry 

and contact with the seabed. The results from this research quantified and confirmed 

temporal patterns in this fishery. It is recommended that fewer fishing trips be made in 

spring, and more effort put into winter and summer trips. I also recommend future 

multiyear analysis and further research on diurnal patterns in order to verify these 

findings and enhance industry practices. 
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Table 2.1: Mean monthly catch rate (kg/min) from the Viking. SD = Standard deviation. 

2008 
Month 
January 
February 
March 
April 
May 
June 
July 
August 
September 
October 
November 
December 

Mean 
13 .72 
16.18 
8.06 
7.21 

10.93 
17.20 
17.44 
15 .39 
19.75 
9.98 

15.27 
13.18 

SD 
7.77 
7.80 
5.32 
3.44 
4.45 
4.72 
4.53 
4.1 1 
6.41 
4.13 
6.93 
7.39 

Table 2.2: Mean monthly catch rate (kg/min) from the Aqviq. SD = Standard deviation. 

2008 
Month 
January 
February 
March 
April 
May 
June 
July 
August 
September 

October 
November 
December 

• 

Mean 
15.90 
19.19 
9.67 

10.84 
15.59 
19.28 
2 1.32 
18.34 
15.57 

13.81 
13.43 
7.23 
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2009 

SD 
9.52 
9.53 
5.70 
4.48 
5.68 
4. 17 
5.28 
7.27 
6.80 

7.43 
5.65 
4.70 



Table 2.3 : Mean seasonal catch rate (kg/min) caught by the Viking. SD =Standard 

deviation. 

Da~ Night 
Season Tows (N) Mean Mean SD Mean SD 
Winter 241 15.08 14.15 7.04 15.72 8.52 
Spring 353 8.87 9.02 4.31 8.64 4.88 
Summer 330 16.55 16.50 4.42 16.67 5.00 
Fall 300 12.64 11.35 5.90 13.67 6.86 

Table 2.4: Two-way analysis of variance for the effect of season, time of day, and their 

interaction on Viking catch rates. Tukey's HSD post hoc seasonal comparisons (winter: 

W; spring: Sp; summer: S; fall : F). Significant values shown in bold. 

Tukey's HSD post hoc 
Source ss df MS F p Season Sp s F 
Time 239.30 I 239.30 6.97 0.008 w .000 .016 .000 
Season 10514.28 

,., 
.) 3504.76 102.05 <0.0001 Sp .000 .000 

Interaction 351.32 3 117.11 3.41 0.017 s .000 
Error 41762.92 1216 34.35 
Total 263295.12 1224 

Table 2.5: One-way analysis of variance for the effect of season on daytime and 

nighttime Viking catch rates. Tamhane's post-hoc seasonal comparisons (winter: W; 

spring: Sp; summer: S; fall: F). Significant values shown in bold. 
Time Tamhane's post hoc 
of Day Source ss df MS F p Season Sp s F 
Day Between 6553 .28 3 2 184.43 81.93 .000 w .000 .0 17 .010 

Seasons 
Within 17702.70 664 26.66 Sp .000 .001 
Seasons 
Total 24255.98 667 s .000 

Night Between 4634.71 3 1544.90 34.78 .000 w .000 .662 .214 
Seasons 
Within 24516.79 552 44.41 Sp .000 .000 
Seasons 
Total 29151.50 555 s .000 
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Table 2.6: Mean seasonal catch rate (kg/min) caught by the Aqviq. SD =Standard 
deviation. 

Da~ Night 
Season Tows (N) Mean Mean SD Mean SD 
Winter 257 17.41 16.18 8.68 18.26 10.20 
Spring 388 12.39 12.40 5.55 12.38 6.42 
Summer 598 18.49 18.02 5.91 19.32 7.33 
Fal l 369 12.13 11.19 6.20 12.78 7.04 

Table 2. 7: Two-way analysis of variance for the effect of season, time of day, and their 

interaction on Aqviq catch rates. Tukey' s HSD post hoc seasonal comparisons (winter: 
W; spring: Sp; summer: S; fall : F). Significant values shown in bold. 

Tukey's HSD post hoc 
Source ss df MS F p Season Sp s F 
Time 539.74 I 539.74 11.05 0.001 w .000 .161 .000 
Season 14212.90 3 4737.63 96.97 0.000 Sp .000 .954 
Interaction 198.29 3 66.10 1.35 0.256 s .000 
Error 78363.35 1604 48.86 
Total 475371 .92 1612 

Table 2.8: One-way analysis of variance for the effect of season on daytime and 
nighttime Aqviq catch rates. Tarnhane' s post-hoc seasonal comparisons (winter: W; 

spring: Sp; summer: S; fall: F). Significant values shown in bold. 
Tamhane Post-hoc 

Comparison 
Data 
Set Source ss df MS F p Season Sp s F 

Day Between 7434.55 3 2478.18 63.19 .000 w .000 .233 .000 
Seasons 
Within 34274.57 874 39.22 Sp .000 .269 
Seasons 
Total 41709.11 877 s .000 

Night Between 73 10.59 3 2436.86 40.35 .000 w .000 .853 .000 
Seasons 
Within 44088.78 730 60.40 Sp .000 .994 
Seasons 
Total 51399.37 733 s .000 
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Figure 2.1: Map of Newfoundland (insert), showing the study area location in the Atlantic Ocean . 

Locations of Viking tows are distributed between NAFO Divisions 3LNO. 
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Figure 2.2: Map ofNewfoundland (insert), showing the study area location in the Atlantic Ocean. 

Locations of Aqviq tows are distributed between N AFO Divis ions 3LNO. 
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Figure 2.3: Mean daytime catch rate (kg/min) for the Viking by season with standard 

deviation bars. 
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Figure 2.4: mean nighttime catch rate (kg/min) for the Viking by season with standard 

deviation bars. 

30 



30 

25 

~ 20 
E 
0, 
6 

"* 15 a: 
.s:::. 
.l:l 
ro 10 
() 

5 

P=O. I95 

0 -'----

Winter 

- Day 
-Night 

P=0.745 

P=0.002 

Spring Summer Fall 

Seasons 

Figure 2.5 : Mean daytime and night catch rate (kg/min) per season with standard 

deviation for the Viking. Fall has a significant difference (shown in bold) between 

daytime and nighttime mean catch rates. 
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Figure 2.6: Mean daytime catch rate (kg/min) for the Aqviq by season with standard 

deviation bars. 

32 



30 1- Night 

25 

c 20 
E -... 
en 
6 
Q) 15 iii 

0::: 
..c 
(.) 

iii 10 
() 

5 

0 
Winter Spring Summer Fall 

Season 

Figure 2.7: Mean nighttime catch rate (kg/min) for the Aqviq by season with standard 
deviation bars. 
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Figure 2.8: Mean daytime and nighttime catch rate (kg/min) per season with standard 

deviation for the Aqviq. Summer and fall have significant differences (shown in bold) 

between daytime and nighttime mean catch rates. 
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Chapter 3: Environmental impact on commercial catch rate of 

yellowtail flounder (Limanda ferruginea) on the Grand Bank of 

Newfoundland 

Abstract 

Wind speed, water depth, sediment type, and bottom water temperature were related 

to commercial catch rate of yellowtail flounder (Limandaferruginea) from the FIV 

Mersey Viking (1405 tows) and FIV Aqviq (1563 tows) on the Grand Bank, 

Newfoundland and Labrador, Canada. Relationships were examined using 

Geographically Weighted Regressions (GWR) and linear regressions. High catch rates 

were related to low wind speeds, deep fishing depths in spring and summer, shallow 

fishing depths in fall, fine-grained sediment type, and warm bottom water temperatures in 

the winter. Sediment type was the least statistically significant variable. Bottom water 

temperature had mixed negative and positive relationships in spring, summer, and fall. 

GWR was an improvement over classical statistical methods as evidenced by lower 

Akaike Information Criterion (AICc) values and higher r2 values. 

3.1 Introduction 

Interactions between fish and their habitat have been known about since time 

immemorial (Rose, 2005). This knowledge shifted from anecdotal to systematic studies 

with the creation of fisheries oceanography, and it was found that environment could 

impact fish growth, recruitment, and behaviour (Frank et al. , 1990; Helbig et al. , 1992; 
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Lehodey et al., 2006; Winger et al., 2010a). With increasing evidence that our climate is 

changing it is even more important to understand the connections between climate, the 

physical environn1ent, and fish species. The effects of habitat on commercial fisheries 

has been studied before in the Pacific Ocean (Perry et al. , 2000), North Sea (Wieland et 

al., 2009), Lake Winnipeg (Speers, 2006), and Atlantic Ocean (Walsh and Brodie, 2006). 

However, these studies are often done using data averages applied to whole study areas, 

resulting in a global model which masks local heterogeneity (Windle et al. , 2009). The 

acceptance of spatial non-stationarity (i.e. relationships between variables that are not 

constant over large spatial ranges) in statistical modeling allows us to investigate 

relationships between commercial catch rate and environmental variables on a variety of 

scales, including local. 

In Newfoundland, commercial fisheries on the Grand Bank have been studied in 

relation to their environment. The yellowtail flounder (Limandaferruginea) is one such 

species that has received much interest due to its economic value, recent stock collapse, 

and subsequent recovery (Brodie et al. , 201 0). It is known to inhabit waters from 3.0° C 

to 5.0° C and live at water depths of 35 to 85 meters; water depth is more limiting to the 

distribution of this species than bottom temperature (Bowering and Brodie, 1991 ; 

Murawski, 1993 ). The sand, shell, and gravel substrates of the Grand Bank provide ideal 

foraging habitat and safety for juvenile and adult yellowtail flounder (Walsh, 1992; 

Simpson and Walsh, 2004). 
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In this research, I hypothesized that: 

1) catch rate will increase with decreasing wind speed, 

2) catch rate will increase with deepening water depths, 

3) catch rate will increase with decreasing sediment size, and 

4) catch rate will increase with increasing bottom water temperatures. 

These variables were included because of their roles in fish distribution and their impact 

on captains' decision making processes, both of which directly and indirectly influence 

catch rate. Until recently, the analysis of these relationships would be limited to global 

regression models which average values over large areas. However, recent studies using 

local regression methods such as Geographically Weighted Regression (GWR) have 

shown that the relationships between catch rates and environmental variables are likely to 

be non-stationary (Windle et al. , 2009). Given these findings, I investigated the 

relationships between yellowtail flounder commercial catch rate and wind speed, water 

depth, sediment type, and bottom water temperature using GWR. 

3.1.1 Geographically Weighted Regression 

A major issue facing scientists is the need to perform statistical analysis with spatially 

varying relationships and processes. Non-stationarity exists when relationships change 

over space, a common occurrence in ecological studies of such things as tree growth 

patterns, density of animals, and the distribution of wildlife (Zhang and Shi, 2004; Shi et 

al. , 2006; Osborne et al. , 2007). Classical statistics are incapable of producing reliable 

analyses when non-stationarity and spatial autocorrelation, or dependence between data 
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points, is present (Legendre and Fortin, 1989). Additionally, classical statistics tend to 

generalize relationships over global areas, thus smoothing local variation. We can 

address both non-stationarity and local issues using spatial statistical tools. GWR is a 

relatively new technique used to incorporate local spatial variation into statistical 

analyses by modifying regression models to produce local parameter estimates for each 

set of relationships (Fotheringham et al., 2002; Charlton et al., 2006). Each point in a 

study area is influenced by its surrounding observed data which is weighted more than 

points located farther away (Charlton et al., 2006). 

A global regression equation takes the form: 

(1) 

Where Yi is the response variable, J30 is the intercept coefficient, J3k is the coefficient for 

the explanatory variable (k = 1,2,3, ... , n), Xik is a matrix of the predictor variables (i = 

1,2,3, ... , n ; k = 1,2,3, .. . , p) and Ei is the random error term in the model. In GWR, 

geographic coordinates of the ith point are incorporated as follows: 

Where (ui, vi) represents the coordinates at point i. GWR uses a weighted least squares 

regression model to weight different coefficients (Brunsdon et al., 1996): 

(2) 

Bo(Ui, Vi) = (XTW(ui,Vi) X)"1XTW(ui,Vi) y (3) 

Weights, or kernels, are determined using exponential distance decay functions with 

varying bandwidths to delimit proximal neighbourhoods. To determine bandwidth value, 

the Akaike Information Criterion (AICc) minimization can be used. Bandwidths can be 

adaptive (i.e., varied over space depending on point density) or constant (i.e. , constant 
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over space regardless of point density). For more information on GWR please see 

Fotheringham et al. (2002). 

3.2 Materials and Methods 

Global and local regression analyses were used to investigate the relationship 

between commercial catch rate of yellowtail flounder and the following environmental 

variables: wind speed, water depth, substrate type, and bottom water temperature. Catch 

rates were taken from the commercial logbooks of the FIV Mersey Viking and the FIV 

Aqviq (henceforth referred to as the Viking and Aqviq, respectively) for the fishing 

seasons of2007 - 2009, however, due to incomplete data, only logbooks from 2008 were 

used in analysis. These vessels are owned and operated by Ocean Choice International 

(OCI). Both vessels were equipped with Goldentop bottom trawls, Thyboron trawl 

doors, and rock hopper footgear. During the study period the codend mesh size for both 

vessels ranged from 145-152 mm, the headline length was 31m, and Suzuki sounders 

were used (for more information please see Winger et al. , 201 Ob ). Each vessel dataset 

was divided into subsets by season (winter: December of previous year, January, 

February; spring: March, April, May; summer: June, July, August; fall: September, 

October, November). Tows took place on the Grand Bank, offNewfound1and, in NAFO 

Divisions 3LNO (Fig. 3.1 and 3.2). Digitized industry logbooks were obtained from the 

Department of Fisheries and Oceans (DFO). These documents provided total catch of 

legal size yellowtail flounder (>300g; NAFO minimum legal size 28cm; round kg), tow 

duration (minutes), and the location of the vessel at tow start (latitude and longitude). 
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Catch rate (kg/min) was chosen as the dependent variable. The two vessels were 

examined individually to control for differences in captains' harvesting styles; though 

both captains have similar levels of experience fishing yellowtail flounder for OCI, their 

fishing strategies may be different. 

The analysis used environmental data collected from multiple sources, and as such, 

data manipulation was required. Wind speed was determined using a DFO hind cast 

dataset, MSC50, which used climate models and historical meteorological records to 

simulate surface winds and ocean waves. These predictions were validated in situ with 

Canadian and international buoys and measurement platforms; they were also compared 

with weather ship and satellite data to ensure accuracy (Swail et al., 2006). The resulting 

grid points are 30 nautical miles apart and contain hourly hindcasted wind and wave 

conditions. In order to match irregularly spaced tow locations with these gridded data, a 

computer programmer at the Marine Institute was enlisted to write SQL script which 

would link tow locations to the nearest grid point in space and time. To decrease 

processing time, wind speeds were averaged over 6-hour time periods, and tow locations 

were linked to these averages. 

Water depths from logbooks were deemed to be inaccurate. Inconsistent units, 

imprecise rounding, and differences between recorded depths and oceanic charts led to a 

search for more accurate data from the Canadian Hydrographic Services (CHS). The 

Northwest Atlantic database is a regional compilation of bathymetric data points from 

different sources which have been carefully checked for accuracy, precision and error 

(Varma et al., 2008). These data points were interpolated using the inverse distance 

40 



weighted (IDW) technique in the Spatial Analyst toolbox in ArcGIS 10. IDW, a 

commonly used technique, was chosen as it minimizes the root mean square error 

(RMSE), works well in dense data sets, and gives more weight to proximal data points. 

As the Grand Bank is relatively flat and unchanging, this interpolation method was 

deemed the most appropriate. The output raster cell size was 0.0083 decimal degrees, the 

exponent of distance (p value) was 2 (asp increased distant points were given less 

weight), and the search radius was 12 points. 

Substrate type was obtained from DFO ROXANN data which have been previously 

used in habitat studies of yellowtail flounder (Simpson and Walsh, 2004) and cold water 

crab species (Mullowney et al., 2012). Data were opportunistically collected year-round 

between 1994 and 2005 aboard the CCGS Templemen using a Simrad EK500 

echo sounder placed on the middle of the hull, with data collection intervals of 4 seconds. 

Data points consisted of sediment signatures at locations along survey tracks, on which 

ordinary kriging methods were performed to interpolate a surface. Neither 

transformations nor trend removals were performed, and a Stable semivariogram model 

type was used. The lag size was 0.012 decimal degrees, and there were 12 lags. All 

specifications were done in order to minimize the RMSE. Using this estimated surface of 

sediment classification, interpolated substrate type was extracted at each tow location. 

Monthly average bottom water temperatures were obtained from Integrated Science 

and Data Management, a service run by DFO, who maintain an open access archival 

hydrographic database. The data were gathered by Canadian and international sources 

using various methods: hydrographic bottles, CTD casts, profiling tows, Batfish tows, 
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and bathythermographs. Data points containing latitude, longitude, and average bottom 

temperature were grouped into the same seasons as catch rate and then mapped in 

ArcGIS 10. The spatial analyst technique IDW was used to interpolate smooth surfaces 

for each season. While there were fewer data points in this data set as compared to wind 

speed, IDW was determined to be the most appropriate test given that it minimized 

RMSE and predicted values using proximal temperatures. The output raster cell size for 

each seasonal surface was 0.016 decimal degrees, the exponent of distance (p) was 2, and 

the search radius was 12 points. Lastly, interpolated values of water temperatures near 

the seafloor were extracted at each tow location. 

After the manipulation of data, a linear regression and GWR were performed on catch 

rate and the environmental variables. The linear regression was conducted using IBM 

SPSS Statistics 19 and the GWR was conducted using GWR 3.0 software (available at 

http://ncg.nuim.ie/ncg/GWR/). Variance Inflation Factors (VIF), or correlation values 

among multiple variables, were reported with the linear regression results. GWR weights 

were assigned following a Gaussian curve, and optimal bandwidths were chosen using 

AICc. An adaptive kernel was used, allowing kernel size to change with density of 

points. Local and global models were compared by their AICc value and r2 values in 

order to determine whether the local GWR models were an improvement over the global 

linear regression models. Residuals, the model error that is the difference between the 

observed and predicted variable value, were analyzed for spatial autocorrelation using the 

global Moran' s I tool in ArcGIS Spatial Statistics toolbox. Lastly, a Monte Carlo 

significance test was run for each GWR model which indicated if there was significant 
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spatial non-stationarity in each local parameter estimate (Charlton et al. , 2006). GWR 

results, the model parameter coefficients, and model fit (r2
) were mapped and compared 

visually in ArcGIS 10. 

3.3 Results 

3.3.1 Viking 

A wide range of environmental conditions existed in NAFO Divisions 3LNO during 

the 2008 Viking fishing season (Fig. 3.3). In winter, average hourly wind speeds ranged 

from 1.7 to 19.4 m/s (mean ± SD; 9.5m/s ± 3.7m/s), depth of catch ranged from 40 to 70 

m (57 .1m ± 4.3m), and bottom water temperatures were between 1.9 and 3.5°C (2.8°C ± 

0.3°C). In spring, wind speeds ranged from 1.7 to 18.4 m/s (7.9m/s ± 3.4m/s), water 

depths ranged from 42 to 78 m (61.8m ± 5.8m), and bottom water temperatures were 

between 0.3 and 3 .8°C (1 .8°C ± 0.9°C). In summer, wind speeds ranged from 1.0 to 10.6 

m/s (5.5m/s ± 2.1m/s), water depths were the deepest, ranging from 53 to 83m (68.3m ± 

8.2m), and bottom water temperatures were the coldest, varying between -0.1 and 2.7°C 

(1.3° C± 0.6°C). In fall, wind speeds varied from 1.7 to 15.3 m/s (7.8m/s ± 3.0m/s), 

water depths ranged from 51 to 83 m (62.lm ± 7.2m), and bottom water temperatures 

were the warmest, ranging between 0.1 and 4.9°C (1.9°C ± 0.6°C). For all four seasons, 

yellowtail flounder were mostly caught in areas classified as gravel substrate based on 

ROXANN acoustic surveys. Mean catch rates were highest in summer (16.50 kg/min; 

range: 5.5 - 39.2 kg/min), second highest in winter (14.52 kg/min; range: 1.2 - 62.2 
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kg/min), third highest in fall (12.86 kg/min; range: 1.6-41.4 kg/min), and lowest in 

spring (8.94 kg/min; range: 0.8-37.7 kg/min). 

In 2008, the Viking completed 1405 tows (winter [n=349]; spring [n=414]; summer 

[n=375]; fall [n=267]). Seasonal comparisons between the global and local regression 

analyses revealed a significant difference between these two techniques (Table 3.1). The 

GWR models were a statistically significant improvement over the linear regression 

model for predicting yellowtail flounder catch rate as indicated by the lower AICc values 

and higher r2 values. AICc values provide a way to measure model performance, and 

were lower for GWR than for linear models by a range of 18- 25 points. The coefficient 

of determination for GWR models ranged between 13 and 35%, whereas linear models 

ranged between 6 and 14%. 

Visual analysis of the local pseudo-r2 values revealed seasonal differences in the 

models' explanatory powers (Fig. 3.4). These models explained up to 66% of variance. 

The strongest model (shown with the highest r2 values) used the fall dataset, and the 

weakest used the spring dataset. Generally, within the seasons the strongest explanatory 

power occurred in NAFO Divisions 30 and 3N. 

Results from GWR were analyzed by mapping and visualizing in a Geographic 

Information System (GIS). Significance of relationships between environmental 

variables and catch rate was determined using a 95% confidence interval threshold which 

was applied to the t-value results for each coefficient. Non-significant t-values lay 

between -1.96 and 1. 96, and were marked with an X in Figures 3.5 - 3.8 and 3.11 - 3 .14. 

Significant parameter estimates are represented by the black and white circles in these 
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figures. Positive relationships between yellowtail flounder catch rate and the explanatory 

variables describe changes in one variable that are associated with changes in the other 

variable in the same direction. For example, a positive relationship was observed when 

water depths were shallower (i.e., changed from 80m to 60m) and catch rates decreased 

(i.e., changed from 20 kg/min to 10 kg/min). Negative relationships describe changes in 

one variable that are associated with changes in the other variable in the opposite 

direction. For example, a negative relationship was observed when sediment grain size 

diminished (i.e., changed from boulder to sand) and catch rate increased (i.e., changed 

from 10 kg/min to 20 kg/min). 

In winter, the Viking fished in NAFO Divisions 30 and 3N, however, significance in 

the relationship between yellowtail flounder catch rate and the environmental variables 

occurred mostly in 3N (Fig. 3 .5). During this season, wind speed had a negative 

relationship with catch rate (Fig. 3.5a), depth had a mostly positive relationship except 

for a single tow location in 30 (Fig. 3.5b), sediment had a non-significant relationship 

with catch rate (Fig. 3 .5c ), and bottom temperature had a strongly positive relationship 

(Fig. 3 .5d). 

During spring, the Viking had significant relationships with environmental variables 

in all three NAFO Divisions (Fig. 3.6). Wind speed and sediment type showed negative 

relationships (Fig. 3.6a and 3.6c), whereas depth showed positive relationships (Fig. 

3.6b). Bottom temperature revealed both negative and positive significant relationships, 

additionally there appeared to be a spatial dichotomy between the two: positive 
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relationships occurred in northern areas, and negative relationships occurred in southern 

areas (Fig. 3.6c). 

During summer, statistically significant relationships between catch rate and 

environmental variables occurred in all three NAFO Divisions, the strongest were located 

in 30 and 3N (Fig. 3.7). Wind speed and sediment type had negative relationships of 

varying strengths; sediment type revealed stronger relationships with catch rate (Fig. 3.7a 

and 3.7c). Depth showed positive but weak relationships with catch rate (Fig. 3.7b). 

Temperature showed strong negative and positive relationships, with an apparent spatial 

dichotomy: positive relationships occurred further south than negative relationships (Fig. 

3.7d). 

Lastly, Viking catch rates from fall 2008 revealed all negative relationships except for 

substrate type, which had no significance (Fig. 3.8a-3.8d). Significant catch rates 

occurred in Divisions 30 and 3N. The three significant variables had differences in 

strength of relationship with catch rate; temperature was the strongest and wind speed 

and water depth had roughly even strengths. 

In general, the Viking parameter estimates were non-stationary and the residuals were 

randomly distributed throughout the study area as evidenced in the parameter values, the 

Monte Carlo results, and the global Moran's I results. Summary statistics for seasonal 

environmental variables revealed broad variance in the parameter values (Tables 3.2 -

3 .5). Results from the Monte Carlo significance test showed parameters with significant 

spatial variation as having p-values <0.05 (Table 3.6). We may therefore conclude that 

local parameter estimates vary spatially for depth and temperature in any season (p < 
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0.001). Wind speed varied significantly in spring and fall (p = 0.03 for each), but lacked 

significance in winter and summer (p = 0.76 and p = 0.44, respectively). Sediment varied 

significantly in summer and fall (p < 0.001 for each), but lacked significance in winter 

and spring (p = 0.38 and p = 0.07, respectively). The results from these Monte Carlo 

tests support the need for a local statistical method to be used in analyzing these data. 

3.3.2Aqviq 

A broad range of environmental conditions were analyzed during the 2008 fishing 

season of the Aqviq (Fig. 3.9). In winter, average hourly wind speeds were between 1.7 

and 19.1 m/s (mean± SD; 9.5m/s ± 3.7m/s), depth of catch ranged from 44 to 72 m 

(56.7m ± 4.6m), and bottom water temperatures varied from 1.8 to 3.7°C (2.8° C± 

0.3°C). In spring, wind speeds were between 1.7 and 20.1 rn/s (8.2rn/s ± 3.2rn/s), water 

depths ranged from 40 to 78 m (62.0m ± 6.lm), and bottom water temperatures varied 

from 0.3 to 4.0°C (2.1 o C± 0.9°C). In summer, wind speeds were between 1.1 and 19.0 

m/s (6.0m/s ± 2.7m/s), water depths ranged from 51 to 82 m (67.0m ± 7.7m), and bottom 

water temperatures were the coolest, they varied from 0.0 to 2.8°C (1.2° C± 0.6°C). In 

fall, wind speeds were between 1.9 and 14.3 m/s (6.6m/s ± 3.0m/s), water depths ranged 

from 54 to 83 m (66.3m ± 5.lm), and bottom water temperatures varied between 0.7 to 

3.3°C (1.9° C± 0.6°C). For all four seasons, yellowtail flounder were mostly caught in 

. areas classified as gravel substrate based on ROXANN acoustic surveys. Mean catch 

rates were the highest in summer (19.43 kg/min, range: 3.0 - 44.9 kg/min), second 

highest in winter (17.42 kg/min, range: 1.2 - 52.6 kg/min), third highest in fall (16.07 

47 



kg/min, range: 4.4- 51.2 kg/min), and lowest in spring (12.33 kg/min, range: 0.4- 33.6 

kg/min). 

In 2008, the Aqviq completed 1563 tows (winter [n=419]; spring [n=454]; summer 

[n=507]; fall [n=183]). Seasonal comparisons between the global and local regression 

analysis revealed significant differences between these two techniques (Table 3.7). 

Based on AICc minimization scores and r2 values for each season, local models were a 

statistically significant improvement over global models. Analysis of the AICcresults 

showed lower values for the GWR models by 22 to 123 points. The coefficient of 

determination for the GWR model values ranged from 26 to 48% whereas linear models 

ranged between 1 to 14%. 

Visual analysis of the local pseudo-/ values revealed seasonal differences in the 

models' explanatory power (Fig. 3.10). These models explained between 8.9-76% of 

variance. The strongest model (shown with the highest r2 values) used the fall dataset, 

and the weakest used the summer dataset. In general, the strongest explanatory power 

existed in NAFO Division 3N. 

In winter 2008, all significant relationships between environmental variables and 

catch rate occurred in NAFO Division 3N (Fig. 3.11). Wind speed, water depth and 

sediment type had varying strengths of negative relationships with catch rate: sediment 

had the strongest relationship, and wind speed and water depth had similar strengths (Fig. 

3.11a - 3.11c). Temperature had both strong negative and strong positive relationships, 

and there appeared to be a spatial dichotomy between the two: negative relationships 

occurred north of positive relationships (Fig. 3.11 d). 
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In spring, Aqviq catch rates revealed significant relationships with all four variables in 

NAFO Divisions 3LNO (Fig. 3.12). Wind speed, water depth, and temperature showed 

both negative and positive effects on catch rate (Fig. 3.12a, b, d). Bottom water 

temperature had the strongest relationships with catch rate regardless of sign; wind speed 

and water depth had equal strengths of relationships with catch rate. Sediment type 

showed a strong negative relationship but only in one concentrated area on the Bank (Fig. 

3.12c). 

In summer, significant relationships with catch rate existed in all three NAFO 

Divisions (Fig. 3.13). Wind speed had weak negative relationships with catch rate in 3N, 

and on the border of 3N and 3L (Fig. 3.13a). Water depth had weak positive 

relationships in 30 and on the border of3N and 3L (Fig. 3.13b). Sediment type had 

strong negative relationships in 30 but had very few significant points (Fig.3 .13c ). 

Lastly, temperature had both strong negative and positive relationships with catch rate; 

the negative coefficients occurred primarily in 30 whereas the positive occurred only in 

3N (Fig. 3 .13d). 

In fall, Aqviq tows only occurred in NAFO Divisions 30 and 3N (Fig. 3.14). Wind 

speed, water depth, and temperature all had negative relationships with catch rate (Fig. 

3 .14a, b, d). Bottom water temperature had the strongest relationship, followed by water 

depth and then wind speed. Sediment type had a mix of negative and positive 

coefficients, with the negative occurring to the west of the positive (Fig. 3 .14c ). 

The Aqviq parameter estimates displayed non-stationarity and randomly distributed 

residuals throughout the study area as evidenced by the parameter variance, the Monte 
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Carlo results, and the global Moran's I results. Summary statistics for each 

environmental variable in each season revealed broad variance in parameter values 

(Tables 3.8- 3.11). Results from the Monte Carlo significance test show parameters 

with significant spatial variation as having p-values <0.05 (Table 3.12). We may 

therefore conclude that parameter estimates are not constant within the study for wind 

speed, water depth and temperature (p < 0.05). The only statistically stationary variable 

(i.e. lacking significant variation) was sediment type in winter (p = 0.20). The results 

from these Monte Carlo tests support the need for a local statistical method to be used in 

analyzing these data. 

3.4 Discussion 

The results of this study indicated statistically significant relationships between 

commercial catch rate arid the chosen environmental variables for yellowtail flounder 

caught by two industry vessels fishing on the Grand Bank in 2008. In general, catch rates 

for both vessels had negative relationships with wind speed. Positive relationships 

between water depth and catch rate existed in spring and summer for both vessels; 

negative relationships existed in fall for both vessels. However, winter patterns were 

different: the Viking catch rate had mostly positive relationships with water depth, 

whereas the Aqvik catch rate had only negative relationships. Substrate type had mostly 

negative relationships with catch rate of both vessels, although it was the least 

statistically significant parameter. For both vessels, catch rates showed positive 

relationships with bottom water temperature in winter, and mixed relationships in other 
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seasons. Additionally, GWR produced statistically improved models over linear 

regression as demonstrated by the significantly lower AICc values as well as the 

increased r2 values. In this section I present in-depth examination of these results. 

3.4.1 Wind Speed 

For the Viking, wind speed had a significant negative relationship with catch rate 

throughout the study period. For the Aqviq, wind speed also had a significant negative 

relationship with catch rate in all seasons except for spring where it had both negative 

and positive relationships. Originally we hypothesized that only negative coefficients 

would exist between catch rate and wind speed because this variable has previously been 

shown to affect fish availability, trawl efficiency, and harvesting strategy. Availability 

for capture is influenced by wind induced movement in the water column, which, when it 

is rough enough, may be felt at the seafloor causing demersal species to move to deeper 

water or burrow into the substrate (Harden Jones and Scholes, 1980). Trawl efficiency 

can be influenced by high winds which affect vessel pitch resulting in surges of the trawl 

offthe ocean bottom (Politis et al., 2012; Queirolo et al., 2012). Stewart et al. (2010) 

found that changes in trawl shape and contact with the seafloor affects trawl performance 

by allowing fish to escape, thus lowering catch rate. Lastly, wind speed influences 

tactical decisions made by captains in order to minimize risk to their gear, vessel, and 

crew (Queirolo et al. , 2012). The Aqviq spring fishing season was inconsistent compared 

with all other seasons: catch rates had both negative and positive relationships with wind 

speed. Negative relationships fit the previous explanations, but the positive did not. 
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However, the positive relationships may reflect areas where decreasing catch rates 

coincided with decreasing wind speeds, which makes sense given spring had the lowest 

catch rates. As most of our results fit with previous literature, we can conclude that our 

original hypothesis is correct: catch rate increases with decreasing wind speed. 

3.4.2 Water Depth 

For the Viking, water depth had a significant positive relationship with catch rate for 

all seasons except fall. The Aqviq by comparison, revealed positive coefficients in spring 

and summer, but negative coefficients in winter and fall. Though the relationship sign 

varied between vessels, the locations of significant parameter coefficients were similar 

between seasons. For example, in winter the Viking fished in a concentrated area on the 

western side of the Southeast Shoal which was delineated by a cluster of significant 

positive parameter coefficients. During winter, the Aqviq also revealed significant 

coefficients near this region, though they were negative. Walsh and Brodie (2006) also 

found the Canadian yellowtail flounder fleet to concentrate their effort in these shallow 

areas in the winter, where catch per unit effort was the highest. As for the opposite signs 

of the relationship between the vessels in winter, the significant relationships for the 

Viking appear to occur directly on the edge of the Southeast Shoal -the shallowest area 

of the Bank - whereas the significant relationships for the Aqviq occur northwest of the 

Shoal. Though this represents only a small difference in depth, it has resulted in varied 

relationships. Given the homogenous bathymetry of the Grand Bank, changes in depth 
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may be too small to be reflected in our statistical model; alternatively, another factor may 

be more important than water depth for causing these patterns during winter. 

The remaining seasons have similar patterns for both vessels. Spring and summer 

revealed both vessels moving into deeper and more dispersed fishing locations with 

resulting positive relationships with catch rate. The abundance of American plaice 

(Hippoglossoides platessoides), a species under a fishing moratorium and listed as 

threatened by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC), increases in summer making it necessary for vessels to move further north 

and west to avoid excessive bycatch (Walsh and Brodie, 2006). Depth is an important 

variable for fish survival as it allows for protection, influences habitat, impacts sediment 

type, and relates to prey distribution (Murawski and Finn, 1988; Walsh et al. , 2004; 

Methratta and Link, 2007; Walsh and Colbourne, 2007). From our results we conclude 

that in spring and summer catch rate increases with water depth which fits with our 

original hypothesis. However, the results in fall and winter are contrary to our 

hypothesis : catch rates decrease in deeper water in fall, and relationships vary in winter 

suggesting depth may not be an influential variable during this season. 

3.4.3 Sediment Type 

Sediment type was the only variable which lacked statistically significant 

relationships with catch rate in some seasons of the study. For the Viking, sediment was 

non-significant in winter and fall. While sediment did not lack significant relationships 

with the Aqviq catch rate, there were very few significant parameter coefficients in most 
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seasons. When significant, sediment type generally had negative relationships with catch 

rate, meaning as sediment size decreased catch rate increased. This supported our 

original hypothesis. Tows in this study occurred mostly on areas classified as sand and 

shell hash, gravel, and small rock based on ROXANN acoustic surveys carried out by 

DFO. These results agree with previous literature which found the habitat of yellowtail 

flounder on the Grand Bank to include gravelly sand, sand and shell, and rocky sand 

(Simpson and Walsh, 2004). Substrate type may impact catch rate in two ways. First, 

yellowtail flounder spatial distribution is influenced by the availability of prey and 

suitable habitat (Walsh, 1992; Methratta and Link, 2007). In our study, the negative 

association with larger grain sizes suggested that sand and gravel provide more suitable 

environments for survival and thus more opportunities to be available for capture. 

Second, trawl efficiency can be affected by substrate type due to its influence on gear 

effectiveness by altering net width and contact with the seafloor (Wieland et al. , 2009). 

The lack of statistical significance for the Viking in winter and fall may be a consequence 

of homogeneity of the surficial geology on the Grand Bank. This, coupled with low 

resolution data, may have resulted in an overly smoothed data layer. However, it may be 

that sediment does not have a great influence on catch rate distribution. Walsh et al. 

(2004) found it to have less impact on juvenile yellowtail flounder distribution than depth 

or temperature. Given our results we can conclude that catch rate increases with 

decreasing sediment size, but sediment type is the least statistically significant variable in 

this study. 
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3.4.4 Bottom Water Temperature 

Bottom water temperature had a significant albeit varied relationship with catch rate 

for both the Viking and the Aqviq. Throughout 2008, temperature parameter coefficients 

changed in sign (negative and positive) and location. During winter, when mean bottom 

temperatures were the highest, there were mostly positive relationships with catch rate for 

both vessels. The warmer water temperatures in winter may affect the swimming ability 

and endurance of yellowtail flounder, thus enhancing herding and increasing catch rate 

(Winger et al., 1999). This hypothesis would support the positive relationships seen in 

our results. Additionally, this warmer water may be reduced to certain regions causing 

fish aggregations in those areas and thus higher catch rates. Conversely, catch rates for 

both vessels during summer had negative and positive relationships with temperature: 

positive relationships (where the two variables changed in the same direction) occurred in 

shallow areas near the Southeast Shoal, and negative relationships (where the two 

variables changed in the opposite direction) occurred to the north and west. Bottom 

water temperatures were cooler in summer than winter, therefore, we speculate that the 

positive relationships reflect decreased catch rate due to lower temperatures consistent 

with the temperature-dependent herding of flatfish predicted by Winger et al. ( 1999). 

Additionally, the absence of warm water pockets may have lead to fewer aggregated fish 

and lower catch rates. During summer, the negative relationships occurred in northern 

regions for the Viking and in western regions for the Aqviq; these two areas have been 

noted in previous literature as places to harvest in order to avoid American plaice bycatch 

(Brodie et al. , 2006). We may conclude that, though temperature is low and herding 
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abilities are decreased, the areas to the north and west of central 3N provide superior 

catch rates during summer resulting in a negative relationship with temperature. Our 

original hypothesis is supported in winter: catch rate increases with increasing bottom 

water temperature. However, this does not hold for other seasons when catch rate may be 

more dependent on external factors such as bycatch avoidance. 

3.4.5 Viking and Aqviq 

Differences observed between the two vessels may arise from variation between 

captains' strategies or differences in gear used. The two captains running the Aqviq and 

Viking are both experienced fishers, having fished for yellowtail flounder since the 1990s, 

but they likely have different fishing strategies. Effort allocation (Hilborn, 1985), or 

deciding when and where to fish, is an element of fleet dynamics that influences the 

spatial distribution of a fishery. The dynamic choices made by captains are reflected in 

the patterns seen in this study. Additionally, while the two vessels use the same mesh 

dimensions and similar trawl gear, captains may make individual modifications to the 

gear to meet their needs (G. Thorbjornsson, personal communication, March 8, 2012). 

Therefore some variation in catch rates might occur even when the vessels are harvesting 

in proximal locations at similar times of the year. 

3.4.6 Geographically Weighted Regression 

GWR, as indicated by our results, provided better models for the relationships 

between commercial catch rate of yellowtail flounder and the chosen environmental 

variables as compared to a global linear regression. This improved performance is 
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evident in the significantly lower AICc values and higher proportion of explained 

variance (r2
). The Monte Carlo significance test was used to examine the spatial 

variation of each predictor variable in the models. The p values in tables 3.6 and 3.12 

indicated that there were models in which either wind speed, sediment, or both are not 

spatially non-stationary. However, Brunsdon et al. (1998) points out that the Monte 

Carlo significance test is not without its issues: it may be better to know how a variable 

changes over space, instead of the mere fact that it changes. They propose checking the 

variability of the coefficients against their standard errors, a method also used by Windle 

et al. (2009). Spatial non-stationarity is reflected by a ratio > 1 when comparing the 

coefficient inter-quartile range (the difference between the lower and upper quartile of the 

coefficients) to twice its standard error (Brunsdon et al. , 1998). This additional 

comparison still results in some stationarity of variables which may be due to the choice 

of bandwidth. In GWR, a bandwidth is chosen by minimizing the AICc but it still may 

not be the right scale for detecting variability in spatial stationarity of relationships 

between variables (Windle et al., 2009). The ability of GWR to explore spatial non­

stationarity in addition to the benefits of visualizing parameter coefficients supports the 

use of GWR in this study. 

3.4. 7 Limitations to Approach 

Several issues in data collection and manipulation should be considered when 

interpreting these results. All environmental variables were collected independently of 

the commercial catch rate data, and thus, at different spatial and temporal locations. In 
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order to associate the dependent and independent variables, surfaces were interpolated 

and points were extracted, however, interpolation- the prediction of un-sampled points 

using sampled data- may be subject to unknown error. Short of ground truthing the 

created surfaces, every attempt was made to insure they were accurate and within reason 

by manually checking the layers and comparing them with other environmental research 

from the Grand Bank. Additionally, it should be noted that certain key variables, such as 

predator and prey distribution, bycatch, and trawl door spread (trawl door geometry 

changes throughout a tow and can impact catch) were beyond the scope of this project 

but may have added to the predictive powers of the GWR model. This study is limited 

temporally with only a single year of data. Multiyear analysis may have provided a 

clearer picture of changing relationships between catch rate and environmental variables. 

The use of industry-dependent data also posed hurdles: logbook data are biased because 

they are not collected using scientific methods. Also, they may contain errors and 

inaccuracies. Furthermore, although the VIF between variables was always less than 3 

(convention follows that a VIF over 4 warrants further investigation), there still may have 

been some multicollinearity between variables. Lastly, the use of GWR was not without 

drawbacks. The local nature of GWR results prohibits the prediction of catch rate 

beyond this specific study area. G WR has great potential for use in fisheries research, 

but analysts should be aware of the possible limitations. Future studies of commercial 

yellowtail flounder catch would benefit from in situ data collection, ground truthing 

sediment classifications, and the addition of other key data layers. 
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3.5 Conclusion 

In summary, statistically significant relationships existed between all environmental 

variables and catch rate of both vessels. These relationships varied in strength, direction, 

and location between seasons and boats. In general, Viking and Aqviq catch rates had 

negative relationships with wind speed (i.e., as wind speed increased, catch rate 

decreased). Positive relationships between water depth and catch rate existed in spring 

and summer for both vessels (i.e., as water depth increases, catch rate increases); negative 

relationships between depth and catch rate existed in fall for both vessels (i.e., as depth 

increases, catch rate decreases). Conflicting relationships between water depth and catch 

rate were seen in winter for both vessels, therefore other variables may be more 

statistically significant during this season. Substrate type was the least statistically 

significant variable. For both vessels, catch rate showed positive relationships with 

bottom water temperature in winter, but mixed relationships in other seasons; external 

factors, such as bycatch avoidance, may be more influential on catch rate. Through this 

research we quantified catch rate patterns in the fishery and determined environmental 

variables that affect them. 

Industry-dependent data were a crucial part of this project. We used commercial 

logbooks which are a form ofVolunteered Geographic Information (VGI), meaning they 

contain geographic data collected voluntarily by non-specialists who, though they were 

trained fishers, were untrained in data collection (Goodchild, 2007). By avoiding 

scientific protocol these data are subject to concerns of data quality and credibility 

(Flanagin and Metzger, 2008). However, VGI also has the potential to cheaply and 
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efficiently aid scientific research (Connors et al., 2011 ). An increasing number of studies 

are now using this kind of data to address questions of scientific relevance (Pattengill­

Semmens and Semmens, 2003; Kalabokidis et al., 2008; Arrigo, 2011). In order to 

operate an efficient and sustainable industry it is recommended that industry better 

understand yellowtail flounder and their environment. The systematic collection of other 

VGI such as sea state, water temperature, substrate type and turbidity by commercial 

vessels, using established protocols wherever possible and practical, will strengthen this 

knowledge. Given the small number of data collectors (i.e., captains and first mates), 

training in data collection can be done to ensure quality and credibility, and steps can be 

taken to ensure data accuracy. It is recommended that more research be done into the 

steps needed for industry to collect, manage and use more environmental data on a 

voluntary basis. 
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Table 3.1: Comparison of linear regressions and GWR model fit for each season of 
commercial yellowtail flounder catch rate for the Viking in 2008. 
Model N AICcLinear AICcGWR r2 Linear r2 GWR 
Winter 349 2365.2 2342.6 7% 22% 
Spring 414 2438.6 2415.7 6% 13% 
Summer 375 2191.4 2165.8 8% 26% 
Fall 267 1732.3 1714.2 14% 35% 

Table 3.2: Summary statistics for GWR parameter coefficients for the Viking during 
winter 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -193 .31 -88.90 -51 .25 -37.60 89.93 11.53 

Wind Speed -0.57 -0.40 -0.34 -0.28 -0.04 0.11 

Depth -0.62 -0.32 0.19 0.41 1.55 0.12 

Sediment -1.53 -0.84 -0.41 0.35 2.35 0.69 

Temperature -21.60 9.41 18.34 37.78 92.33 1.91 

Table 3.3: Summary statistics for GWR parameter coefficients for the Viking during 
spring 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -8.03 2.16 9.37 18.93 24.79 2.55 

Wind Speed -0.36 -0.07 0.05 0.06 0.11 0.07 

Depth -0.22 -0.10 0.01 0.07 0.23 0.04 

Sediment -1.28 0.35 0.54 0.74 0.97 0.28 

Temperature -4.09 -1.45 -0.98 0.30 1.59 0.24 
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Table 3.4: Summary statistics for GWR parameter coefficients for the Viking during 
summer 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -28.27 -9.38 -2.67 9.38 45.32 3.03 

Wind Speed -0.89 -0.28 -0.22 -0.07 0.01 0.11 

Depth -0.38 0.10 0.25 0.39 0.80 0.04 

Sediment -2.80 -0.69 -0.12 1.11 1.91 0.29 

Temperature -21.72 -2.22 -1.19 4.28 8.32 0.59 

Table 3.5: Summary statistics for GWR parameter coefficients for the Viking during fall 

2008. S .E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -32.10 -1.38 18.00 164.28 177.33 4.80 

Wind Speed -1.48 -0.85 -0.77 -0.25 -0.09 0.13 

Depth -1.55 -1.34 0.01 0.35 0.70 0.07 

Sediment -10.24 -7.44 -2.10 0.80 3.76 0.71 

Temperature -21.38 -20.73 -3.63 -0.31 13.17 0.66 

Table 3.6: Tests for local non-stationarity of parameter estimates for the Viking in winter, 
spring, summer and fall 2008. ** =Significant at 1%. * = Significant at 5%. 

P Value 

Variable Winter Spring Summer Fall 

Intercept 0.00000** 0.00000** 0.00000** 0.00000** 

Wind Speed 0.76000 0.03000* 0.44000 0.03000* 

Depth 0.00000** 0.00000** 0.00000** 0.00000** 

Sediment 0.38000 0.07000 0.00000** 0.00000** 

Temperature 0.00000** 0.00000** 0.00000** 0.00000** 
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Table 3.7: Comparison of linear regression and GWR model fit as applied to yellowtail 
flounder commercial catch rate on the Aqviq in 2008. 

Model N AICc Linear AICcGWR r2 Linear r2 GWR 

Winter 419 3050.5 2971.5 1% 30% 

Spring 454 2913.0 2789.8 3% 38% 

Summer 507 3185.7 3123.7 7% 26% 

Fall 183 1222.5 1199.8 14% 48% 

Table 3.8: Summary statistics for GWR parameter coefficients for the Aqviq during 
winter 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -484.08 -142.28 -61 .25 31.36 200.20 13 .08 

Wind Speed -1.17 -0.24 -0.12 -0.03 0.49 0.13 

Depth -1.98 -0.85 -0.46 0.28 0.98 0.13 

Sediment -7.09 -2.32 -0.36 0.50 3.92 0.71 

Temperature -47.02 17.76 24.85 50.13 198.67 2.16 

Table 3.9: Summary statistics for GWR parameter coefficients for the Aqviq during 
spring 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
guartile Quartile 

Intercept -85.75 -37.81 -6.31 4.06 57.63 3.10 

Wind Speed -0.85 -0.50 -0.01 0.21 1.05 0.09 

Depth -0.88 0.01 0.28 0.79 1.35 0.05 

Sediment -5.08 -0.03 0.76 1.18 3.45 0.37 

Temperature -9.45 -0.92 0.49 2.41 16.42 0.31 
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Table 3.10: Summary statistics for GWR parameter coefficients for the Aqviq during 
summer 2008. S.E.= Standard error of parameter estimate. 

Variable Minimum Lower Median Upper Maximum S.E. 
quartile Quartile 

Intercept -43.07 -9.21 -1.93 5.09 42.07 3.31 

Wind Speed -0.80 -0.64 -0.41 -0.27 0.44 0.10 

Depth -0.23 0.13 0.32 0.41 0.80 0.04 

Sediment -2.42 -0.62 -0.44 0.06 1.97 0.34 

Temperature -13.91 -4.86 2.39 7.76 33 .14 0.68 

Table 3.1 1: Summary statistics for GWR parameter coefficients for the Aqviq during fall 
2008. S.E.= Standard error of parameter estimate. 
Variable Minimum Lower Median Upper Maximum S.E. 

quartile Quartile 
Intercept -68.59 62.94 134.81 203 .61 242.95 8.31 

Wind Speed 

Depth 

Sediment 

Temperature 

-1.66 -0.12 

-3.24 -2.50 

-8.52 -4.65 

-23.57 -18.38 

0.04 

-1.58 

-3.47 

-9.84 

0.22 

-0.18 

-0.61 

-3.98 

0.59 0.19 

1.31 0.14 

13.26 0.86 

2.94 1.14 

Table 3.12: Tests for local non-stationarity of parameter estimates for the Aqviq in winter, 
spring, summer and fall 2008. ** = Significant at.1 %. * =Significant at 5%. 

P Value 

Variable Winter Spring Summer Fall 

Intercept 0.00000** 0.00000** 0.00000** 0.00000** 

Wind Speed 0.00000** 0.01000* 0.00000** 0.04000* 

Depth 0.00000** 0.00000** 0.00000** 0.00000** 

Sediment 0.20000 0.04000* 0.03000* 0.01000* 

Temperature 0.00000** 0.00000** 0.00000** 0.00000** 
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Figure 3.1 : Map of Newfoundland (insert), showing the study area location in the 

Atlantic Ocean. Locations of Viking tows are distributed between NAFO Divisions 

3LNO. Symbol size denotes catch rate (kg/min). 
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Figure 3.2: Map of Newfoundland (insert), showing the study area location in the 

Atlantic Ocean. Locations of Aqviq tows are distributed between NAFO Divisions 

3LNO. Symbol size denotes catch rate (kg/min). 
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Figure 3.3: Viking seasonal median values for (a) catch rate, (b) wind speed (1 m/s = 1.94 
knots), (c) depth and (d) bottom water temperature. As sediment is categorical, it was not 
included. Black dots represent 5th/95th percentile outliers. 
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Figure 3.4: Local pseudo r2 values from the Viking tows of2008 for (a) winter, (b) spring, 

(c) summer, and (d) fall. 
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Figure 3.5: Local coefficient estimates for the Viking in winter 2008 for (a) wind speed, 
(b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
commercial catch rate. Significance was determined using a 95% threshold, which is 
shown as "x". Positive values are shown as white circles and negative values are black 
circles. See map legend for symbol value. 
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Figure 3.6: Local coefficient estimates for the Viking in spring 2008 for (a) wind speed, 
(b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
commercial catch rate. Significance was determined using a 95% threshold, which is 
shown as "x" . Positive values are shown as white circles and negative values are black 
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Figure 3.7: Local coefficient estimates for the Viking in summer 2008 for (a) wind speed, 
(b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
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Figure 3.8: Local coefficient estimates for the Viking in fall 2008 for (a) wind speed, (b) 
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Figure 3.9: Aqviq seasonal median values for (a) catch rate, (b) wind speed (1 m/s = 1.94 

knots), (c) depth and (d) bottom water temperature. As sediment is categorical, it was not 
included. Black dots represent 5th/95th percentile outliers. 
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Figure 3.11: Local coefficient estimates for the Aqviq in winter 2008 for (a) wind speed, 
(b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
commercial catch rate. Significance was determined using a 95% threshold, which is 
shown as "x" . Positive values are shown as white circles and negative values are black 
circles. See map legend for symbol value. 
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Figure 3.12: Local coefficient estimates for the Aqviq in spring 2008 for (a) wind speed, 
(b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
commercial catch rate. Significance was determined using a 95% threshold, which is 
shown as "x". Positive values are shown as white circles and negative values are black 
circles. See map legend for symbol value. 

76 



NL 

NL 

(a) 

30 

3N 

\ . ~ 
• ~ x . r~ 

X·~ X 

, (c) 

i peed 

• .v eo . .on 

• .(l i:':--065 

• • .¢65 --C5i 

· • -~':5 --:;'20 
' e -::::::o--:- '' 
' . -213 - -:::05 

• -: 05- -! 9::: 

. -1 9:.'--113 

(b) 

30 

(d) 

30 

3N 

0 0)6 -0..1 1 

0 'j 4 1-048 

0 0 -'e -OM 

0 0 66 -0 78 

X "lot 

Figure 3.13: Local coefficient estimates for the Aqviq in summer 2008 for (a) wind 
speed, (b) depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder 
commercial catch rate. Significance was determined using a 95% threshold, which is 
shown as "x". Positive values are shown as white circles and negative values are black 
circles. See map legend for symbol value. 
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Figure 3.14: Local coefficient estimates for the Aqviq in fal12008 for (a) wind speed, (b) 
depth, (c) sediment, and (d) temperature as predictors of yellowtail flounder commercial 
catch rate. Significance was determined using a 95% threshold, which is shown as "x". 
Positive values are shown as white circles and negative values are black circles. See map 
legend for symbol value. 
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Chapter 4: Summary 

The objective of this study was to examine the influence of temporal and 

environmental conditions on commercial catch rate of yellowtail flounder (Limanda 

ferruginea) on the Grand Bank ofNewfoundland and Labrador, Canada. The temporal 

analysis (Chapter 2) quantified the variation in catch rate among times of day and seasons 

using historical logbooks from the FIV Aqviq and FIV Mersey Viking. Results revealed 

that daytime and nighttime catch rates were higher in winter and summer for both 

vessels, and catch rates were higher during nighttime compared to daytime. The original 

hypothesis stated that catch rates would be highest during the night and during seasons 

with little sunlight due to the influence of low ambient light levels on yellowtail flounder 

catchability. Analysis of the results points to a combination of environmental causes 

(i.e., temperature and sea state) in addition to light availability as contributors to high 

catch rates. By quantifying the temporal patterns in this fishery, we have outlined the 

optimum fishing periods for industry. 

Environmental analysis (Chapter 3) investigated the relationships between 

commercial catch rate and environmental variables using spatial statistics novel to 

fisheries research, in order to identify influential habitat parameters important to 

successful harvesting. A local spatial statistic, Geographically Weighted Regression 

(GWR) analysis, was used to determine the strength of relationship between catch rate 

and wind speed, water depth, sediment type, and bottom water temperature. The outputs 

of this analysis, which can be mapped, also provided visualization of strong statistical 
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relationship locations in the study area. The results suggested that high catch rates were 

related to low wind speeds, shallow fishing depths in winter, deep fishing depths in other 

seasons, fine-grained sediment type, warm bottom water temperatures in winter and cool 

bottom water temperatures in summer. Additionally, GWR was compared with global 

linear regression analysis. Findings were consistent with Windle (2009) who found an 

improvement of GWR over global linear regression analysis. The combination of this 

method with more data collected in situ has the potential to be useful in predicting 

yellowtail flounder commercial catch rates. Therefore, the equipping of OCI vessels with 

environmental data collection devices will provide more opportunities for future studies 

to enhance the spatial understanding of this species, efficiency of harvesting, and 

sustainability of industry. 

The limitations to the approaches in this thesis should be considered when 

interpreting the results. Both experimental chapters (Chapters 2 and 3) were limited by 

using only one year of data, a result of gaps in historical logbooks. In Chapter 2, another 

limitation was that temporal patterns may have been masked by other external factors 

impacting catch rate. These factors include the company' s avoidance ofbycatch, 

undersize fish, and poor quality fish, as well as their dependence on market conditions. 

All of these can introduce bias in temporal and spatial patterns of commercial logbook 

data, masking effects of other factors. 

Data limitations also arose in Chapter 3. Due to the industry-independent collection 

of environmental data, independent variables varied spatially and temporally from 
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logbook data. This resulted in the necessity of interpolation, a process subject to 

unknown error. Additionally, certain key variables were beyond the scope of this study 

but would have enhanced the predictive powers of the GWR model. These variables 

include predator and prey distribution, bycatch levels, and trawl-door spread. The used 

variables may have been correlated, although multi-collinearity analysis indicated that 

they were not. Lastly, while GWR offered many benefits, such as the ability to visualize 

the data and compare relationships on a local scale, the localized nature of the results 

prohibit prediction of catch rate beyond the study area. 

The use of industry logbooks as the source of dependent variables in both Chapters 2 

and 3 posed interesting challenges, but also provided many benefits. The logbooks were 

a form of Volunteered Geographic Information (VGI) because they were a compilation of 

data that were not randomly stratified or collected under scientific control; instead they 

were a voluntary creation of geographic information by scientifically untrained 

individuals (Goodchild, 2007). The use of VGI presents some hurdles such as concerns 

of data quality and credibility (Flanagin and Metzger, 2008), but it can also be beneficial 

for increasing the quantity of available data in a cost efficient way and by involving 

citizens in decision making (Connors et al. , 2011). By collecting environmental data 

aboard industry vessels, either through hull-mounted recording systems or additional 

fields to the hand-written logbooks, captains are contributing to the over-all knowledge 

surrounding the fishery and taking part in its sustainability. This thesis represents the 

first study in the relationships between commercial catch rate of OCI vessels and 
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temporal and environmental variables, and it outlines the importance of analyzing these 

factors for an efficient and sustainable industry. 
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