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Abstract

Cure rate estimatioll is one of the most important issues in clinical trials and

cure rate models are the main models. In the past decade, the standard cure

rate model has been discussed and used. However, this model involves several

drawbacks. Chen, Ibrahim and Sinha (1999) considered Bayesian methods for

right-censored survival data for populations with a surviving (cure) fractioH.

In that paper, the authors proposed the cure rate model under the Wcibull

distribution which is quite different from the standard cure rate model. This

proposed cure rate model overcomes the drawbacks of the standard cure rate

model. However, it is not clear from their work whether their proposed cure

rate models can be extended to other distributions. In this practicum, we shall

extend those proposed cure rate models in Chen et al (1999) to tbe following

distributions: log-logistic, Gompertz, and Gamma. Prior elicitat.ions will also

be discussed in detail, and classes of noninformative and informative prior

distributions wiil be proposed. Furtbermore, several theoretical properties of

the proposed priors and resulting posteriors will be derived.

At the end of this practiculll, a melanoma clinical trial is l15ed to illustrate



applications of the log-logistic, Gompertz and Gamma distributions to the

proposed cure rate models for Bayesian analysis.

KEY WORDS: Cure rate model; Historical data; Current data; Posterior

distribution; Gamma distribution; Log-logist.ic distribut.ion; Gompertz distri

bution.
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Chapter 1

Introduction

1.1 Motivation of the Problem

Cure rate models, which are survival models incorporating a cure fraction,

have been researched and practised for nearly 50 years. The most popular type

of cure ratc models introduced by Berkson and Gage (1952), is the mixture

model, which is also called the standard cure rate model. Let SI(t) be the

survivor function for the entire population, S'(t) be the survivor function for

the llon-cun..-d group in the populatioll, and 1T be the cure rate fraction. Then

the standard cure ratc model is given by

S,(t) ~. + (1- .)S"(t). (1.1)

Exponential and Weihull distributions arc commonly used for S·(t). This

model has been extensively discussed in the st8tisticallitcrature by many au-



thors, such as Farewell (1982,1986), Ghitany and Zhou (1995), Kuk and Chen

(1992), Peng and Dear (2000), Taylor (1995), and Yamaguchi (1992). Even

though this model is widely used, it still has several drawbacks. Firstly, Sj(t)

cannot have a proportional hazard structure, which is a desirable property for

survival models. Secondly, when including covariates through the parameter 11"

via a standard binomial regression model, the standard cure rate model yields

improper posterior distributions for many types of noninformative improper

priors, including the uniform prior for the regression coefficients. This is a cru

cial drawback of the standard cure rate model because it implies that Bayesian

inference with a standard cure rate model essentially requires a proper prior.

In 1999, Chen, Ibrahim and Sinha introduced a new model to overcome the

above mentioned drawbacks inherited in the standard cure rate model. Specif

ically, any standard cure rate model can be written as its proposed model and

vice versa. This implies that the resulting model has a mathematical rela

tionship with the standard cure rate model. An especially solid feature of

their model is that it yields a proper posterior distribution under a nonin

formative improper prior for the regression coefficient, including an improper

ulliform prior. However\ under the tloninformative priors, the standard cure

rate model in (1.1) always leads to an improper posterior distribution. This

result is stated in Theorem 1.1. This proposed model also leads to a straightfor-

ward informative prior scheme based on historical data, and the model based

on historical data yields a proper prior. But, this type of prior construction

based on the standard cure rate model (1.1) always leads to an improper prior



as well as an improper posterior distribution. This result is summa.rized in

Theorem 1.2. For completeness, we quote these theorems here. For detailed

proofs of these theorems, interested readers arc referred to Chen et. al (1999).

Theorem 1.1. We consider a joint noninformative prior for 11'(.0, 'Y.) ex: 11'(')'.),

where 'Y. = (0, A) are the parameters in f(yIY) which is the density function

of the random Yl,lriable Zi which is defined the random time for the ith clonD

genic cell to produce a detectable cancer mass. Detailed explanation can be

obtained in Chapter 3. In Theorem 1.2, we use the same definitions. For the

standard cure rate model given in (1.1), suppose that we relate the cure rate

fraction To to the co\'ariates via a standard binomial regression.

where GO is a continuous cdf, :t~ and .0 denote a k x 1 vector of covariates and

k x 1 \'"l!Ctor of regression coefficients respectively. The detailed explanation

can be obtained in Chapter 3. Assume that the survival function S'O for tbe

noncured group depends on the parameter 'Y•. Let L1(fl, 'Y' ID.) denote the

resulting likelihood function based on the ob5erved data. Then, if we take an

improper uniform prior for (J (i.e., 71'(.0) IX I), the posterior distribution

(1.2)

is always improper regardless of the propriety of 71'(')'").



Theorem 1.2. For the standard cure rate model givcn in {l.l}, suppose that

we relate the cure rate fraction. to the CO\iu1ates via a standard binomial

regression

where GO is a continuous cdf. Assume that the survival function for the

nOllcured group SoO del>cnds on the parameter 'Yo, Let L1{P,'Y'1 Do,,,,) and

L1(I3, 'Yo I D... )denote the likelihood functions based on the observed historical

and current data, ao denote the dispersion parameter for the historical data

which is between 0 and 1. Do,,,, and D06, denote the observed historical

and current data. Then, if v.'e take an improper uniform initial prior for 13

(i.e.,1f(I3) lX 1), the post-crior distribution is

where 60 and ~ are specified hyperparaIDCters. Then, 'lr1{fJ,'y",ao I Do..<*} is

always improper regardless of the propriety of 1f{'Y'). In addition, if we use

7r1{fJ,'Y',ao I Do....) as a prior, the resulting posterior, given by

is also improper.

Chen et al (1999) carried out Bayesian analysis for thc proposed model un

der the WeibulJ distribution, However, it is not clear frOIll their work whether



their results can be extcnded to other distributions. In this praclicum, we

extend their model to the log-logistic, Gompertz and Gamma distributions.

In Chapter 2, we provide the model ineluding its several at.tracti..'e prop

erties and its likelihood function with covariatcs.

In Chapter 3, when the log-logistic, Gompcrtz, and Gamma distributions

arc used in the model, we propose novel classes of noninformativc prior distri+

butiolls and derive some of the theoretical properties. We also derive several

properties of the resulting po.sterior distributions with detailed proofs.

In Chapter 4, we propose novel classes of informative priors that are based

on historical data. We find that the proposed modellcMs to an infonnative

prior elicitation scheme based on histocical data. This procedure yields a

proper prior for each distribution. These proper priors are not available using

the formulation in the standard cure rate model. We derive some of the new

model's theoretical properties and provide detailed proofs.

In Chapter 5, we demonstrate the proposed priors with a real data from

a phase 1lI melanoma clinical trial conducted by the Eastern Cooperative

Oncology Group (ECOC). The dataset is discussed in section 1.2.

In Chapter 6, \\'e conclude this practicum and discuss possible future re

search in this area.



1.2 Melanoma Data

The Mclanomadata are used in this practicum to illustrate Dayesian treatment

of the proposed model and examine several topics, including noninformative

and informative priors with covariates included.

Melanoma incidence is increasing at a rate that exceeds all solid tumors

Although education efforts have resulted in earlier detection of melanoma, pa

tients who have deep primary melanoma (>4mm) or melanoma metastatic to

regional draining lymph nodes classified as high-risk melanoma patients, con

tinue to have high relapse and mortality rates of 60% to 75% (Kirkwood et

al.,2000). No adjuvant therapy has previously shown a significant impact on

relapse-free and overall survival of melanoma. Several post,-.-operative (adju

vant) chemotherapies which arc interferon (IFN) alpha of leukocyte origin and

recombinant IFN alfa-2 (IFN a-2a, Rochl'O, Nutley, NJ; IFN a-2b, Schering

Plough, Kenilworth, NJ; and IFN a-2c, Boehringer, Indianapolis, IN) have

been proposed for this class of melanoma patients, and the one which seems to

provide the most significant impact on relapse-free survival is IFN a-2b. This

chemotherapy was used in two recent EeOG phase III clinical trials, E1684

and E1673. The first trial, E1684, was a two-arm clinical trial comparing high

dose IFN to observation. There were a total of 11.0=286 patients enrolled in this

study which covered the period from 1984 to 1990. The study was unblinded

in 1993. The results of this study suggested that IFN has a significant impact

on relapse-free survival and survival. These results led to U.S. Food and Drug



Administration (FDA) approval of this regimen as an adjuvant therapy for

high-risk melanoma patients. These results (EI684) have been published in

Kirkwood et al (1996).

Figure l.l displays a Kaplan-Meier plot for overall survival. We sec that

the right tail of the survival curve appears to 'plateau' after sufficient follow

up. Such a phenomenon hIlS become quite common in melanoma as well as

other cancers.

Figure 1.1: Kaplan-Meier Plot for E1684 Data



Table 1 l' Summary of E1684 Data

Survival time (year) Median 2.91

SO 2.83

Status (frequcncy) Censored 110

Death 174

Age (year) M,= 47.03

SO 13.00

Gender (frequency) Mal, 171

Female 113

PS (frequency) Fully active 253

Other 31

Ta.ble 1.1 provides a. summary of thc EI684 data. For the survival time

summary in Table 1.1, the Kaplan-Meier estimate of the median survival and

its standard deviation (SO) are given. PS means performance status.



The second trial, denoted by E1673, 5en""OO as the historical data for our

Bayesian analysis of EI684. Table 1.2 summarizes the historical data of E1673,

with a total of 110=650 patients. Three covariates which are age, gender and

perfonnance status arc considered. Chen et al (1999) compared inferences

betwccn the standard cure rate model to their proposed model using a WeibuU

distribution, and gave a complete Bayesian analysis of the treatment of the

cure rate model and examined several topics including noninformative prior

elicitation and informative prior elicitation under the Weibull distribution. In

this practicum, ....'C extend their results to some other distributions, such as the

log-logistic, Gompertz and Camma distributions. PS still means performance

status.



Table 1.2: Summary of E1673 Data

Survival time (year) Median 5.72

SD 8.20

Sta.tus (frequency) Censored 257

Death 393

Age (year) M,= 48.02

SD 13.99

Gender (frequency) Male 375

Female 275

PS (frequency) Fully active 561

Other 89

10



Chapter 2

The Cure Model and its

Likelihood Function

2.1 The Cure Model

The cure rate model is defined ill this section. For an individual in a popu-

latioll, let N denote the number of carcinogenic cells (often called clollogens)

left active for that individual after the initial treatment. Assume that N has

a Poisson distribution with mean 8, Le.

e-DO"
P(N = n) = ----ri!,n =0, I, ..

Let Zi' (i = 1,2, .... N) denote the random time for tho i-til clonogenic cell

to produce a detectable cancer mass, where Z; arc i.i.d with a common dis-

tribution function F(t) = 1 - S(t). Also assume that Ziti = 1,2, ... ) are

11
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independent of N. The time to relapse of the cancer can be defined by the

random variable

Y = min(Z;,O:O:; i:5 N),

where P(Zo = 00) = 1. Hence, the survival function for the population is

given by

sIlty) P(no cancer by time y)

P(N = 0) +P{Z\ > y, .... ,ZN > Y,N;::: 1)

exp(-O) + f. S(y)k~CXP(_(J)
k=\ k!

exp(~(} + OS(y))

"p(-OF(V))· (2.1)

Since S,,{oo) = exp(-O) > 0, (2.1) is not a proper survival function. We also

know frolll (2.1) that the cure fraction is given by

8,(00) ~ PIN ~ 0) ~ o>p(-O).

As (} --+ 00, the cure fraction tends to 0, whereas as (} ..... 0, the cure fraction

tends to 1. The density function corresponding to (2.1) is given by

f,(v) fuF,(v)

full - 5,(v)1

Of(V)"p(-OF(V))·

The hazard function is given by

h,(V) ~ ;,\~~
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Of(y) exp(-OF(y))

""( OFly))
Of(y)·

Since Sp(Y) is not a proper survival function, fp(Y) is not a proper probability

density function and h~(y) is not a hazard function corresponding to a prob

ability distribution. However, f{y) is a proper probability density function

and hp(y) is multiplicative in () aud f(y). Thus, it has the proportional haz-

[lrd structure with the covariates modelled through e, This structure is more

appealing than the one from the standard cure rate model in (Ll) and is com-

putationally attractive. The survival function for the nOllcured population is

given by

(2.2)

S'(y) PlY > yiN ~ I)

P(N) I,Y >y)

PIN~ I)
cxp(-OF(y)) - exp(-O)

1 exp( 8)

We note that 5'(0) = 1 and 5'(00) = O. So, we can say S'(y) is a proper sur-

vival function. The probability density function for the noncured population

i,

Fly) -f.s·(y)

~X~I::;~jiofIY),

and the hazard function for the noncured population is given by

h'ly) ~ ~:i~;
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""p(-OF(y)) Of(y)
oxp( BF(y)) ""p( 6)

pry < ~ IY > y)h,(y).

The above hazard function depends on y. We can say that h"(y) does not have

II. proportional hazard structure. The model can be written as

S,(y) oxp(-'Fly))

""1'(-6) + [1- ""p(-O)IS'(y),

where S'{y) is given by (2.2). Thus, Sv(y) is a standard cure rate model with

cure rate 1r = cxp( -0) and survival function for the nOll-cured population

given by S·(y). This shows a mathematical relationship between the model in

(1.1) and (2.1).

In this model (2.1), v.-e let the covariates depend on () through the rela

tionship () = cxp(x' f3), where x is a p x 1 vector of covariates and {3 is a p x 1

vector of regression coefficients which are the same as in (2.1).

2.2 The Likelihood Function

Following Chen, Ibrahim and Sinha (1999), we construct the likelihood func

tion as follows. Suppose we have n subjects, and we use the following notations:

tj : the fa.ilure time for the i-til ~ubjcd, i = 1,2, ..... , 7!.

c; censoring time for the i-th subject, i = 1,2, .... , n



i=I,2,..... ,11

15

{

I, failure time
6.=I(t;:5q)=

0, right censoring

y = (y),y<!, .... ,Yn) : the observed time, where Yi = min(t"oi), i = 1,2, . ... ,n.

0= (61,82 , ... " b,,) : censoring indicator.

Do = (n, y, J) : the observed data.

D = (n, y, 8, N) : the total data, where N is an ullobserwd vcctor of a latent

variable.

Ni : the number of carcinogenic cells for the i-th subject, following a Poisson

distribution with mean 0, i = 1,2, .... , n. That is,

In our model formation, the Ni's are not observed and can be viewed as latent

variables. FUrther, suppose that Z'l, Zi2, .... , ZiN; are the i.i.d. incubation

times for the N; carcinogenic cells for the i-th subject following a cdf F(·),

i = 1, .... ,n. In this practicum we specify a parametric form for F(.), such

as log-logistic, Gompertz or Gamma distribution. We denote the indexing

parameter by 1, and thus write F(-b) and 5(·11). We incorporate covariatcs

for thc cure rate model through the cure rate parameter O. When covariates

are included, we havc a different cure rate parameter, 0;, for each subject,

i"" 1, .... ,n. Let x; "" (Xii,""X'.d denote the k x 1 vector of covariates

for the ith subject, and let fl = (PI, ... ,flk) denote the corresponding vector

of regression coefficients. We relate 0 to the covariatl'S by 0; = exp(x;.a).

Therefore, the complete-data likelihood function of the parameters (1,.8) can



be written as

L(o,PI D)

where

and

16

f(D IO,m

f(n'Y",N I o,m
.n flY;,';, N; 10,P)

;n f(y",; 10, N,jP(N, I P)

{D!P(Yi I 'Y,Ni)i'Sp('IIi I 'Y,N;)I-"}. Lu e:~t';},

P.. (Z" > Yi,Z;2 > 1/;, ..... 'Z;N; > 'IIi r 'Y,N;)

P~(Z'I > V; I 'Y. N;) P..(Z,., > 'II. I 'Y. Ni ) ..• p..(ZiN, > Vi I 'Y, N
i
)

S(y; I o,N;)"',

dSp(Yi I"Y,Ni )
---d-y-,-

{fI (N;S(y; IO)N.-' fey; 10))· . (S(y; 17)N')'-.} . fI e-'~,of'
,,.1 ._1 •.

{fI(N,. fry, I0»·' (S(y; IO))N,-I,}. fI e-'~,O{"
_I _1 ,.

{f! SlY, IO)N.-I,. (N;f(y; 10))1,}
,,.1

x exp {t(N, log(O;) - 10g(N,!) _ O,)} .
;_1
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The complete-data likelihood function of ((J,,) becomes

L(~, 0 I D) ~ (.1] Sly, IO)N,-". (Nd(y, I 0))")

x exp{I::~INilog(Oi) -log(Ni !) -nO;}

Lu Sly, IO)N,-" (Nd(y, I011")
x ""p{DN,x;p -iog(N,!) - ""p(x;~))}, (2.3)

where Oi = cxp(x;m Following results of Chen et al (1999), by summing out

the observed latent vector N, the complete-data likelihood function given in

(2.3) can be reduced to

L(~,oIDoo.) ~L(~,O I D)

L 1[fI Sly, IO)N'-"(Nd(Y, I0))"] fI '-"~')Nli_1 ~I ~.

~ \.(\ [Sly, IO)N'-"(Nd(Y' I0))". ,-:~r'])

fI f(y, I0)" . ,-" .1L [fI S(y, I ,jN,-" . Nt' .~])
i.,1 1N i.,\ N,.

Lu f(y, I0)" .,-" .SlY, 10)-")

x1~ [ll Sly, IO)N,. Nt'.~])

,U(Od(Y, I,II"· ""p(-O,(1 - Sly, hI)). (2.4)



Chapter 3

The Noninformative Prior

Distribution

In this chapter, we discuss classes of noninforrnative prior distributions, and

examine some of their properties under log-logistic, Gompertz and Gamma

distributions for F(.).

We suppose a joint noninforma.tivc prior for 1r(f3, 1') of the form rr((J, "() ex

r.('y), where I = (a,>.) are the parameters in f(yl,). This noninformative

prior implies that j3 and 'Y are independent priors and that 11"(11) (X 1 is a

uniform improper prior. Hence, the posterior distribution of (/3,1') based on

the observed data Doo. = (n, y, x, 0) is given by

18



19

,(Doo• IP, 1)'(P, 1)
1T(Doo.l

£(P, 11 D",,) . ,(P, 1)
1l"{Doo.)

'" £(P,11 D",,)· 'b)· (3.1)

From (2.4),

piP, 11 D",,) '" t1 (O;1IY, 11))" . exp( -0,(1 - Sty, 11)))'b)· (3.2)

Chen et a1 (1999) proved that equation (3.2) with f(yl')') following a Weibull

di~tribution is propcr whether 7Th) is proper or not. In this chapter, \lIe

consider three distributions for f(ull,): log-logistic, Gompertz and Gamma

distributions. For each distribution we investigate properties of the posterior

distributions.

3.1 Log-logistic Distribution

When l(Yi Ii) follows a log-logistic distribution, we have f(Yi 1/) =~
and Sty. I ')') = l+lif;" where a > 0, >. > 0, Vi ;::.: 0, 0: is the shape parameter

and>.. is the scale parameter.

\Ve assume throughout this subsection that

where
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and Vo, TO are two specified hyperparameters. With these specifications, the

posterior distribution of (,8, "y) based on the observed data D. = (n, y, x, 6)

is gi'l.'ell by

The following theorem gives conditions concerning the propriety of the poste-

rior distribution ill (3.3), USillg the noninformativc 7r({3, 'of) ex: 7l-(-Y).

Theorem 3.1 Let (l = 2:;;"\ 0, and X' be an n x k matrix with rows 05,x;.

Then the posterior given ill (3.3) is proper jf the following conditions arc sat.

isfied:

(a) X' is of full rank,

(b) 1fp,) is proper,

(e) TO> 0 and VI) > -d.

Even though.., = (a, A) arc the log-logistic parameters in !(y!'Y), we can 0b

tain similar results as in Chen ct a.l (1999). To be more specific, a proper prior

for Q is not required to obtain a proper postenor-. This can be observed from

condition (e), because '/r(a I vo, TO) is no longer proper when 1'0 < O. Based on

condition (b), 11"(..\) is required to be proper. Although several choices can be

made, we prefer to lISC a norma.! density Cor 1f('\') in the data analysis, which

will be discussed ill Chapter 5,

Proof of Theorem 3,1: We adapt the proof of Chen et al (1999) for this

case, In order to pro\'e Theorem 3.1, we must first show that there exists tl
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constant AI > 1, such that

(801(., I,))'· ",p(-8;(1 - S(.; I,)))" 0" M. (3.4)

WhcnJi=O,

WhC1l8j = I,

(0;/(.; I,))" ."p(-8,(1 - S(., I,)))

~ O;/(y, I,)· "p(-8,(1 - S(•• 10)1)

~ 1 ~(~(~,~\) . (1 - SlY' I,)) .8, . "p( -0,(1 - SlY, I,)))

~ 1~ (1-S(.,h))O,·",p(-O,(I-S(., 10)))
-~

~"'·I+o,)/;'{(1-S(.,h))O, ·",p(-8,(I-S(.d,)))) (3.5)

Let

9, =
1

l+')/;"
{(1 - S(y, 1,»)0, . "p(-0,(1 - S(.; I,))))·

The equation (3.5) becomes

yi'o:- 91 "!h.

Since, a > 0, >. > 0 I Yi > 0, we know 9\ = Hiif,' :S 1 and 92 :S 1. Therefore,

it call be shown that there exists a common constant 90 > 0, such that

(3.6)



Using (3.6), (3.5) is less than y,-l ay5. Thus, taking M' = maxli:6,zl}{Y5y,-I}

and M = lIlax{l,M'}, we obtain (3.4), which is

Because X' is of full rank, there must exist k linearly independent row vectors

Xi"Xi" ••.•• ,x;., such that 15;1 =15;, = ..... = 6;. = L Using (2.4) and (3.4),

f f J~ L(ft, "'( 1D..)1f(o I &0'0, To)1l"(>')dlJdod>'

~[[1.. i'1(9;!(l/;I'))""'P(-9,(l-S(Yd,m

x1I"(a I Vo, To)1l"(>')dlJdod>'

~ [[I, TI(9;/(y, I,))" ·cxp(-9,(I-S(y, I,m
o 0 ~ i_I

X {,U (9;/(y" I ,))" .oxp(-9,(1 - Sty"~ I ,m}
x1f(a I Vo, To)'II"(>')d{3dodA

5 [ r-I, Yi(Q''')
o Jo ~"'I

x {fI(9',!(y" h))'" oxp(-9,,(1 - SlY"~ hm},-.
x1l"(a 11-'0, TO)1f(>')d,8dod>.

:S 10
00.r ftt' (aA-f)d-1: i~l f(Yij I "'()

x exp(x:jlJ - (1 - S(Yij I "'()) exp(x:jlJ))

x'II"(a IIIo,TO)'II"(.\)d.oda:d>', (3.7)

where R'" denotes k-dimensiollal Euclidean space. We make the transformation
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11; = x;/l for j = 1,2, .... j k This is a one-to-one linear transformation from

(3 to 11 = (111,112, .....uS Thus, (3.7) is proportional to

roo roo r. a'-' IT fry"~ I oj
)0 Jo JR j~l

X exp(uj - (1 - S(Yij I,)) cxp(Uj))

X1I"(0 I 110, TO)lI"(A)dudad),

~ f f "'-'ITo 0 j=]

[f(YiJ 11) loCO cxp(Uj - (1 -S(Yi; 1'Y»exp(Uj»dUj)

X1I"(0 I vo,ro)lI"(>')dad)'

~ roo roo Q'-' fIT~]
Jo Jo U..! 1- S(Yij 1-.,.)
X11"(0' 1110, TO)lI"()')dod>'. (3.8)

In (3.8), using (3.6), we have

~=~<Koo
1- S(Yi; II) 1 + All? - ,

where Ko = 90 ma.x{l9:5k}{Yi~1}. Thus, (3.8) is less than or equal to

10"'" 1""" ad
-

k Ii (koa)Jr(a 1110, TI))1l"(>')dad'\
o 0 ;=1

= kg foOCJ fooo a:dll"(O: I liD, TO)lI"(>')da:d)'

= kg fo"'" 1000
o:d+<-tl-

1 exp( -roa)lI"(A)da:d>.. (3.9)

Oy noticing that 11"(0" 1110' TO) ex 0",,-1 exp(-Toa), TO > 0, Vo > -d lind 1T()') is

proper. Therefore, (3.9) < 00. This completes the proof. o
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3.2 Gompertz Distribution

When f(yb) follows the Gompcrtz distribution, we have

f(y, h)

S(y, 17)

ae.\~1 exp {x(1- cAy;) } ,

eXP{~(l- e>'lI<)} ,

where 0' > 0, A > 0, y; ~ 0, (\' is the shape parameter, and A is the scale

parameter. From (3.2), we know the posterior distribution is

where "( = (0',.\) is the Gompertz parameters in f(yb). We assume through-

out this subsection that

and

where vo, TO are two specified hyperparameters.

When

1r(-y) = 7f(a: I Vo,To)rr(A),

where

1r{O: I vo, TO) IX 0:",,-1 exp(-700:),
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the posterior distribution of ({3, 1) based on the observed data Dab. = (n, y, x, 6)

is given by

The following theorem gives conditions for the propriety of the posterior dis

tribution in (3.10). Using the noninformativc 1r(P,'Y) (X 1r('y), we get the first

theorem.

Theorem 3.2 Let d = L::'=I,sj and X' be an n x k matrix with rows o;x;.
Then the posterior (3.10) is proper if the following conditions are satisfied:

(a) X' is of full rank,

(b) 1l"(~) is proper,

(c) TO >Oand VI) > ~d.

When

where

11"(-\ I lin, TO) 0< e1"O~ exp {~ [1 - e){rQ+lnal]},

the posterior distribution of ((1,,-) based on the observed data Dab. = (n, y, x,a)

is given by

Therefore, we obtain the second theorem

Theorem 3.2' Let d = I::'=1 6; and X' be an n x k matrix with rows o;x;.
Then the posterior (3.11) is proper if the following conditions are satisfied:
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(a) X' is of full rank,

(b) 1r(a) is proper,

(c) TO> 0 and Vo > -k'd, where k' = max{y;}.

The conditions stated in the above two theorems are sufficient but not nec-

essary for the propriety of the posterior distribution. In Theorem 3.2, we note

that a proper prior for 0' is not required and proper prior for A is required to

obtain a proper posterior. However, in Theorem 3.2', we note that a proper

prior for .x is not requirt-d and proper prior for a is requin,,-'d to obtain a proper

posterior.

Proof of Theorem 3.2: The proof is very similar to the proof of Theorem

3.1. In order to obtain the propriety of the posterior distribution, we still need

to show that there exists a constant M > 1 such that

(8;/(y, 10))"· ",p(-8,(1 - SlY, 17))) ~ a"· M. (3.12)

When 0; = 0, (3.12) is obviously true. When 0; = 1 ,the left side of (3.12)

can be written as:

(8;/(y, 17))"· ,",p(-8,(I- SlY, 17)))

~Bd(y, 17) ·""p(-8,(I-S(y, 10)))

~ 1 !~(~,~\) .(1- Sly, 10)) ·8, ·""p(-8,(I- SlY, 10)))
aeA~, exp{!f{1 _ eA~,)}

1 ",p{~(1 ,"')} ·(1-5(y;lo))·0,,,,,p(-8,(1-8(y;l7)))

~""" exp();(1 - ,"')) . ((1- SlY, 17))· 8,exp(-8,(1 - Sly, 17))}
1 exp{~(l eA~i)}



where

=0..9192

g,

e~V; cxp{·Hl - e.l.y,)}

1 exp{~(l cAy,)}'

{(1- SlY, hl) ·0, ·""p(-O,(I-S(y, hlll

27

(3.13)

If we trea.t 91 as the function of A, and lct

89\ _ ).1/, ~( _ "(I_e~~<)I)'_O:'\Yie)'II;+a:(l-e>'!I;)}~o
""[ji - e e Yi Vie ,\2 '

then>" = >'0. We also know that 91 is a continuous function, and

lim e),tliexp{x(l- e.l.y,)}

)........., 1- exp{X(l - e).Y;)}
e Ay,

l~efe~.;

0,

lim e).Y'exp{X(l-e).II;)}
>'-(1 1 exp{~(l e),I/,)} ,

).2y; _ 0: - ae).l/; • Vi . >.. + ae),l/; • e.l.1/;

l~ a).y,e-W;+a(l e),Yi)

= L

Therefore, there exists a common constant 90 > 0, such that

91::;90 and 92:590· (3.14)

Using (3.14), (3.13) :5 095- Let M = max{l,gn. Thus, we get the result

(3.12) which is
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Because X· is of full rank, there must exist k linearly independent row \"eCtors

:t.,,%;., ..... ,x;•. such thSl6/, = 0;, = ..... = 6;. = 1. Using (3.12),

f .f /~ ~ L{ft,.., I D)'lr(O I "b, To):lI"()')d,8dadA

~ f f J. n(0;/(y;17))'·exP(-0,(I-S(y,17)))
o 0 H";.. l

X1I"(0 I Vo, To)7l"(..\)d,Bdad..\

~ f~ f f Yr'r9d(y, I7))" . exp(-0,(1 - S(y, 17)))
10 0 in" i_I

X lQ(O.,!(YiJ I ,))d;J . cxp(-Oi,{l - S(YIJ I"1m]
x1r(a I vo,To)1r(>.)dtJdadA

~ff J. W(.-Ai)
o 0 R" i_I

X l~,(O',/(Y', 17»<><p(-O"(I-S(y,, 17)))]

xr(a I VO, To)r(>')d,8dad>.

~ f ( JR"(oM)tt-1t

x l~, J(y" I 7) <><p(x;,P - (1 - S(y" I7)) <><P(X;,P))]

xr(a I t-b,To)ll'(..\)dfidad>'. (3.15)

We make the transformation Uj = x;/3 for j = 1,2, .... ,k. This is a one

to-one linear transformation from fJ to 1.1 = (1.lJ,U1," •..1.I1t)'. Thus, (3.15) is

proportional to
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x oxp(", - (1 - sty" h))oxp(uj)).(a I""T,)

x.(')dudad'

~ffa'-'n
o 0 i-I

X [f(YIJ I,.)· f cxp(Uj - (1- S(Y,} 17))exP(uj))duj]

Xll'(o I /10, TO)1l'(A)dadA. (3.16)

Integrating out U , (3.16) reduces to

Using (3.14), we have

~ _ e'\~'.exp{X(l-e.\1';)} <
1- S(Yl

j
h) - Q 1 exp{~(l ~)} koa,

where ko = max{l,90}. Thus, (3.17) is less than or equal to

f f a d
-

t n(koo)%(a I "'0, To)'lI"(..\}dod..\
o 0 j ...1

=~ f f a"lf(a I Vo, To)lr(..\)dod..\

= kO f looo 0"+....-1 exp(-'oQ)'II'(>')dod..\. (3.18)

Noticing that 11"(0' I VO, TO) ex a ....- I cxp( ~ToO), TO > 0, /10 > -d and 71'(>') is

proper. Therefore, (3.18) < 00. This completes the proof. o

Proof of Theorem 3.2': III order to obtain the propriety of the posterior

distribution, we still need to show that there exists Ii constant M > I, such
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that

(B;/(y; 11))'; . exp( -B;(1 - Sly; 11))) ~ 0" .M. (3.19)

When 6, = 0 , (3.19) is obviously true. When 8; = 1 , the left side of (3.Hl)

can be written as:

(B;/(y; 11))"· exp(-B;(1 - Sly; 11)))

= e~Y; aexp{!}(l- e
Alli

)}

l-cxp{x(l-eAYi )}

x(1 - Sly; 11))·8;· exp(-8;(1 - Sly; 11)))

(3.20)

where

91 = a:exp{x(1-eAY
,)}

l-exp{x(1-eAY,)}'

g, (1- Sly; 11))·0;· exp(-B;(1 - Sly; 11))).

We treat 91 as the function of 0:. It is very easy to see that the function of 91

is a continuous function, and at the same time,

lim aexp{x(l-eAY
,)}

<>_00 1 cxp {Hl- CAY,)}

E.llJ., aexp {~(l ~ eAII')}

lim a
"_00 exp{:HeAY, -I)}
0,

lim acxp {X(l - eAII<)}

"-01 - exp {x (1 - e),I/,)}

O.
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Therefore, there exists a OOllllllOIl constant 90 > 0, such that

9' :5 90 and 92 $; 90' (3.21)

Using (3.21), we establish that (3.20) :5 e),1I'9J. Let k' = max{i,~,~l}{Y;} and

M = max{l,gn. Then, (3.20):5 ek'>'M. Thus,

(O;fIY, 10))"· ""pI-O,ll- SlY, I0))) S 10"')'" M. 13.22)

Because X· is of full rank, there must exist k linear independent row vectors

X",Xi., .•..• ,x;.' such that bi, = 0;1 = ..... = Oil = 1.

10''''' faOO L. ~L«(J,11 D)1T(>' IVo,To)1T(ald/Mad.\

~ I~ 1~!.fIIO;fIY;IO))"'''''P(-O;(I-S(Y,lo)))
io 10 R i=l

)(11"('\ I /10, To)rr(o)d(Jdad>'

~ I~ I~! ITIO;fIY; 10))',,,,,pI-O,ll-SIY; h)))
io io R" ;,.,.J

x lQ1o,,!IY;, 10))',· ""pI-O"ll- SlY;, 10)))]
X1I"(.\ I Vo, TO)7l"(a)d(Jdad..\

:5 10
00

10
00

fn.tJyek'),)~'M)

x lQ10;,!IY;, 10))', ""pI-O,,(I- SlY;, 10)))]

><11"(>' I 110, TO}1r(a)dfido:d>.

I~ I~!' •
:5 io io n> (e

k
)' M)d-' Il f(YiJ I ,)

x cxp(x:JP - (1 - S{Y'j 11')) exp(x;J13))

>or(>.. I /10, TO)7l"(a)d(Jdad.\. 13.23)
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We make the transformation tlj = x;,f3 for j = 1,2, , k. This is a one-

to-one linear transformation from {3 to u = (U\,U2, tI..;,)'. Thus, (3.23) is

proportional to

100> 100> h.(ek'A)d-k

,
x IT fry"~ I1) ",p(u, - (1- SlY"~ I ,))",p(u,))

j=1

X7r(>' Ivo, To)Jr(o:)dudad>'

= 100<> fo''''(e*'>.)d-k

x TI(f(YiJ I ,) lXl exp(uj - (1- S(Y'j I 'Y))exp(uj))duj)
j=1 0

X1r(.\ I vo,ro}7r(a)dad>.

~rooroo(,"')Hrfr~]
io io U=l 1 - S(Y'j 1/,)
x 11"(>' 1 vo,ro}rr(a)dad>.. (3.24)

Let k' = max\;:6,=I}{Yi}. Using (3.21), we e!:ltablish that

~) ).1"Cl:.exp{r(1-e>'Yi)} 1;'.1-

1 - Sty,; I -y) = e •1 expC(l e>'Yi)}:S: e . 90-

Thus,

(3.24) :5 1"'" !o""'(eH'yJ-k ir(e).'\:' . 9o}7I"(>"1 vo,To)1f(o:)dad.\
o 0 j~1

9~ 1000

[o(e>'k'yj
1f()., I vQ,rO}1T(o:)dad>.

g~ foOC> 1000

e).(11l+k'dj

x exp {~(l - e.l.(1\l+lna») } 1T(a)dadA. (3.25)
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Noticing that

11"(>"1 Vu,TO) ex: eTO.\exp {~(l _e~(TQ+lnG)}

Ina k'd,

TO> a,VO > -k'd and 11"(0') is proper. Thus, (3.25) < 00. This completes the

proof. 0

3.3 Gamma Distribution

When [(yh) follows a Gamma distribution, we have

f(y, I,)

S(y, 1 ,)

'\<>yf-l cxp( -AY;)

r(a)

1-1(AY')

r~i >'''Yi-I exp( ->'v;}
1 - Jo f(o:) dYi

1 _ ('!Ii (),Yj)<>-l exp( ~'\Yi) 1(.1 .)
Jo f(o:) (Y, ,

where 0:' > 0, >. > 0, Yi 2:: 0, 0: is the shape parameter, ). is the scale parameter.

We assume throughout this subsection that

where

11"(0' 1110, TO) 0:: 0'",,-1 cxp( -roa),

and £10, TO are two specified hypcrparameters. With these specifications, the

posterior distribution of (;3,"'() based on the observed data DoN = (n,y,x,o)
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is given by

p(Jl" I D...l <X L(Jl" I D...)· r(a I"", TO)r('). (3.20)

The following theorem gh'al conditions for the propriety of the posterior dis

tribution in (3.26) using the nOllinformative 7'f(I1, '7) oc 7'f(-y).

Theorem 3.3. Let d = E~_I 0. and X' be an n x k matrix with rows o;x;.
Then the posterior (3.26) is proper if the following conditions arc satisfied:

(II.) X' is of full rank,

(b) 7r(~) is proper,

(c) TO> 0 and Va > -d.

In this theorem, we ohtain similar results as in Chen ct 801 (1999). There

fore, vo'c can extend Chen ct al (1999)'s work not only to the log-logistic and

Compertz distributions, but also to the Gamma distribution.

Proof of Theorem 3.3: In order to prove Theorem 3.3, first v.-e need to

show that there exists a constant AI > 1 such that

(8;/(., I,))' .oxp( -6,(1 - S(., I,m ~ aJ, . M. (3.27)

When 0; = 0, (3.27) is obviously true. When 0, = 1 , the left side of (3.27) is

written as

16.11., h»)' ·"",,1-6,(1- SI., h)))

~ 6.11., hl .""pi-6,11 - S(., I,m
~ 1:~(;,~\) . (1 - S(., I,)) .9, . exp( -6,(1 - S(., I,))). (3.28)
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In the first. part of (3.28),

fry; I1)
1- S(y;l 1) f;1/, (),l1'}<>-;t::r( ),Vi)d(>.y;)

>'''Yf-1 exp( -Ay;}

ftVi(>..y,)<> 1 exp( ->'V;}d(>.y;)
),<>yf-l exp{ ~>'Yi)

Jo>"lI'{t)"-1 exp(-t)d(t)'

where t = )..y;. It is very easy to see that the range of the integration is

0< t < Ay;.

For the denominator,

1),1/, t",-l exp( -t)dt > e-),lI, 10),1/, t"-ldt

= ~(>'Yite-),Y;.

Thus,

~< ),"yf-1exp(->'Yi) _oy-l
1 - S(Yi I ,) ~ (>,Y;)"e All' - ;.

If we take M' = max{i:6,:]}{Yi1} and AI = max{l,goM'}, then we get

1 !~(~;~)1) < aM"

and

Because X' is of full rank, there must exist klincar independent row vectors

x;"x." ..... ,x;.' such that 6;, = 6'2 = ..... = "i. = 1.

10
00

10
00

In'<~ L({3, "'f I D)1f{O' 1110, TO}1!'(>.)d/3dad>.



~ rOO roo ( rrIO<!lyolo»)"·O'pl-e,11-Sly, h»)
io Jo Jn~ ;=\

x1I"(0'1 vo,Tolrr(>')dtJdad'\

~ roo roo ( IT(o<!IYolo)".O'pl-e,u-S(Yolo)))
Jo Jo JR" i_I

x lu,e,,!,y,, h))'" .O'pl-e,,11- SlY" 10)))]

X1f(a I Vll, TO}7T()·)d[3do:d>.

~ roo roo (. IT(o"M)
Jo Jo in ...\

x [b,r0"fIY" h))'" .O'pl-e,,(l - SlY" 10)))]

X1I"(0: I vo, ro}rr(>.)d/3dad>.

~ roo t LloM)'-' IT fry"~ I0)io () Ii. j_1

X exp(x;i1- (1 - S(Yij II)) exp(x:jp))

X1I"(0' I vo, Tolr.('\)d,Bdad>.,

36

(3.29)

where Rk denotes k-dimensional Euclidean space. \Ve make the transformation

Uj = x;/3 for j = 1,2, .... , k. This is a one-to-one linear transformation from

{3 to u = (Ui,U2, .....Uk)' Thus, (3.29) is proportional to

roo roo (. 0'-' IT flY"~ 10)
io Jo in ;=1

x exp(Uj - (1 - Sty;; 11'))cxp(Uj))

X1I"(0' I 110, Toln"(>.. )dudad>.

= 10<>0 10
00

ad- k Ii f(YiJ I/,)
(} (} j~l

X foe.:; exp(uj - (1 - Sty;; 11'))exp(uj))duj)
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X1T(Il]VO, TO)1T(.\)dad>'

~ 1
00

1
00

a'-' [IT~]i o io j=J 1 - S(Yij 11')

x7r(a I ti~, TO)1T(>')dad.\

:s: f" f" ad.-I< fI (Ma}rr(a I Vo, rO)1T(>')dad>'
o 0 j=l

=(MO)'" 10'>0 10"" adrr(a IVo, To)1T(>')dad>'

= (MO)'" 10'''''' 1000
a'*I<-1 exp(-Toa)rr('\)dad>'. (3.30)

Noticing that 1~~it;I;"II~j:5 aM', 1T{a: I 110, TO) IX a"O-ICxp(-Toa), TO > O,vo >

-d and H()') is proper. Thus, (3.32) < 00. This completes the proof. 0

From above, we obtain the same properties of the posterior distributions as

those of Chen et a1 (1999). Therefore, by incorporating noninformative priors

in the proposed models, the results of Chen ot al (1999) can be extended to

the log-logistic, Gompcrtz and Gamma distributions.



Chapter 4

Informative Prior Distribution

In this chapter, we examine classes of informative prior distributions with

the use of historical data. This enables us to obtain more precise posterior

estimates of the parameters ill the proposed model compared to posterior

estimates without the use of historical data.

Following Chen ct a1 (1999), we now propose the informative prior COIl

!itruction for the proposed cure rate modeL In this chapter as well as in

Chapter 5, we maintain the same notations as in Chapter 3. Let no denote

the sample size for the historical data, Yo be a no x 1 vector of right-censored

failure times for the historical data with censoring indicators JOI No be the

uncensored vector of latent counts of carcinogenic cells, and Xo be an no x k

matrix of covario.tcs corresponding to Yo- Let Do - (no, Yo, Xo, 00, No) denote

the complete historical data. Further, let 1ro(J3,1) denote the initial prior dis-

38
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tribution for ({3,"'Y). We propose a joint informative prior distribution of the

form

,(P" I D" .... ,"") oc [~L(P,' I D,)r ,,(P,,), (4.1)

where L(fi,"l"IDo) is the complete data likelihood given in (2.3) with D being

replaced by the historical data Do, and Do,oIn = (no, Yo, Xo, So). We take a

noninformative prior for 1To(t3,,), SllCIJ as Jro(lJ,'}') IX 7To('Y), which implies

?to(3) ex: 1. A beta prior is chosen for flo leading to the joint prior distribution

1T(fJ,"f,OOIDo,<>b8) ex [~L(f3''YIDo)}<I\I1TO(,6,'Y)
xago-1(1- 00).1.0-1, (4.2)

where (l5u, >'0) arc specified prior parameters.

Chen et al {1999} proved that equation (4.2) with !(yl!) following a Weihull

distribution is proper whether '/foUl,,,) is proper or not. In this chapter, we

extend this property to the log-logistic, Gornpertz and Gamma distributions.

4.1 Log-logistic Distribution

We usc the same log-logistic distribution as in Section 3.1 in this section. The

following theorem characterizes the property that equation (4.2) with f(yh)

following a log-logistic distribution is proper when 1To({3, 1') is improper.

Theorem 4.1. Assume that
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where Vo and TO arc specified hyperpaxameters. Let do ::::: Ei:1 00. and Xobe

an flo x k matrix with rows CoiX~. Then the joint prior given in (4.2) is proper

if the following conditions are satisfied:

(a) X ois of full rank,

(b) Ill) > 0 and TO > 0,

(c) 11"0('\) is proper, and

(d) Jo > k and >.a > o.

Proof of Theorem 4.1: This proof is similar to that for Theorem 3.t.

First, W~ write the complete-daLa likelihood function as

L: L(P",I Do) ~ ii,e."".. I ,))'" . ,-<""'-S'""hll. (4.3)
No ial

In order to prove Theorem 4.1, we first show duu. there exisLS a constant

AI > 1 such that

When 80; = 0 1 (4.4) is obviously true. When 00; = 1, the left side of (4.4) can

be written as

1 !(~(~:~'Y)(1 - S(Ymb))· Oo;cxp(-8oo(l - S(YOib)))

~
~ -"-""'\'-(1 - S(".. I ,)) .e.

l-I+AII&



XCXp(-8o;(l-S(yOi I "f)))

=YO/ l+~lIf;;(l-S(YoiI1')) 00;

x "pi -0,(1 - 51"" 11)))·
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(4.5)

We let 91 = l+1~8.' and 92 = (1 ~ S(yOi Ii)) '(}o; 'CXp(-OOi(l-S(1/Qj 11')))·

Using the same idea as in the proof of Theorem 3.1, we know that there exists

a common constant 9G > 0 such that

91::::90 and 92::::90·

It is very easy to see that

Take MI; = 95 max{;:~ .. l}{yo;l} and Mo = max(l, Mo}, we then obtain

(Bod(YfJi 11'))601. exp(-Oo;(1- S(yOi I"Y))) :5 a6ol Mo.

(4.6)

Because Xli is of full rank, there must exist k linearly independent row vectors

Xlh"XOi., .....,x~.' such that 60., = 50;. = ..... = 80;. = 1. Following the proof

of Theorem 3.1, we have

l' f f /"/'5;' LIP, 11 D,))~

x1To(a I vo, TO)1l"O(-~)at'-l(l - ao)""'-ldfJdadMao

l' f f L [!JIO,!IY,I ,))""expl-O~11- SIY,11))f
X1fo(O: I Vo,TO) ·1fo{A)a~-I(l-I.l(I)>.o-ldtJdo:dAdao

l' f f L [rrIO,!IY,11))~" "p(-O,(l - 5("" h)))]~
o 0 I} R i..\



(4.7)
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x l~,("',f("" h))"" ."'P(-6.,(I -5("" 11)))r x(o I "",TO)

X"K(..\)a:-I(l _1l()Ao-'dfjdod>'doo

:5 10' f f fR'(aMo)OO(do-*l

X Ii (J(Yoo, 11))"" exp [aox~J'1J - ao(1 - S(lXJij 11)) exp(x~J,B)J
j-I

x1ro(a lvo, To}l'I"o(),,)a~-I(l - ao):>.o-ld/1dadAdao.

We make the transformation Uoj = x~JP for j = 1,2, .... , k and ignore the con

stant. This is a one-to-one linear transformation from {3 to u = (UOl, Uo2, .....UOIo)'.

We also know Mo 2: 1 and 0 < Uo < 1, so MOO ::5 Mo. Thus, (4.7) is propor

tional to

1'[[ 1o-''o-''IiU(Yo,ll»)-Jo 0 0 ill" ;_1

x "'p(....j - ..(I - 5("" 1,») ",p("",))

X1I"0(0' J £.'0, To)'lI"o(.\)a:-1(1 - ao)Ao-lduodod>.dao

10' f f 0-0(4-*)

x Ii [/("" 11)- [ "'P("u, - ..(I - 5("" 11))",p("",»)d"",)
j_1 0

x'lro(a 1111. TO)'lI"O(..\)a:- I(1 - ao)Ao-1dod,\dao

1'[[0-''0-'' Ii[~l- r(~)
)0 0 0 i_I l-S(Yoi/I,.,) ~

x1ro(a I VO,TO)1l"O(>.)~-I{I - oor'''-'dad>'dao, (4.8)
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where ro denotes the Gamma function.

Using (4.6), it can be shown that

~<~a and
1 - SlY" 10) -

Since K j = kn40 is a positive constant, we have

[~]~<K'O~.1 - SlY"~ I 0) -

Because 0 < UQ < 1,

where K 2 is a positive constant. Then,

[~]~. f(",) < (K K) ~ -,
I-S(y;; Ii) a6' - 1 20: an .

Thus,

(4.8) ::; 10' 1''''' 1''''' o:<I()(d-k) TItkjQ'''OK2ao l
)

o () () j~l

X1fo(o: I vo,To)1ro(),)a~-I(l- ao)4- 1dad>.dao

(k j k2)k [1"'" l"" aaodoa;kJro(a I liD, TO)

X1To(,~)ago-l(l - ao)4-1dad>.dao

(k j k2)k 10' loCO loco a~1ro(a I Vo, TO)

X1To(>.)a~-k-1 (1 - uo)Ao-1dad>.dao

:S {k 1k2)k 10' fo"" {'"(1 + ado)O'",,-l exp(-TOO)

X1To(),)ago-t-1(1_ ao):o.o-Idad>.dao. (4.9)
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Noticing that ?r(O: I "O,TO) or:. o:~-ICXp(-TOO:) and 0::5 0():5 1, /10 > 0 and

TO > 0, 11"0(>') is proper and 60 > k and >'0 > O. Thus, (4.9) < 00. This

cornplct~ the proof.

4.2 Gompertz Distribution

o

We use the same Gompertz distribution as in Section 3.2. When f(y Ii) £01-

lows a Gompcrtz distribution, we have results for noninformative priors similar

to there obtained ill Section 3.2. The following two theorems characterize this

property that equation (4.2) with f(yh) following a Gompertz distribution is

proper when 1[0(13,1') is improper.

Theorem 4.2. Assume that

lI"oUJ,l') O::1To(1')

:= 11'"(1(0: I 1/0,1"0)11"0(>')

oc~-lexp(-O"To)1ro(>'),

where /10 and TO are specified hypcrparameters. U!t do = L:~l Co; and Xij be

an no x k matrix with rows Co.X~. Then the joint prior given in (4.2) is proper

if the following conditions are satisfied:

(a)Xois of full rank,

(b) /10 > 0 and 'To > 0,

(c) ?ro(>') is proper, and

(d) 60 > k and Act > o.
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Theorem 4.2'. Assume that

11"0(>.1 VO,TO)1TO(O:)

ex: ,\'tI-1exp(-),To)Jro(a),

where 110 and TO are specified hypcrplI.rameters. Let do = L~l 00; and Xc be

an no x k matrix with rows 8o;X~. Then the joint prior

rr(j3,')',ao I Do,oi>o) 1l"(13,11 DO,06"ao)1T(Gfl I Do.oo.)

[~L(~'O IDr rr.(~,o)
xago-1{1 ~ ao).I<>-1 (4.10)

is proper if the following conditions are satisfied:

(a) XC; is of full rank,

(b) 110 > 0 and TO > k'do

(e) '/rota) is proper, and

(d) 00 > k and Ao > o.

Proof of Theorem 4.2: We can write the complete-data likelihood func-

tion as

L £({3,)',1 Do) = ll((}o;!(Yfh 11'))"";' e-O",(l-S(w;Ii». (4.11)
No ;=1
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In order to prove Theorem 4.2, we first show that there exists a constant

M > 1 such that

Similar to the proof of Theorem (3.2), we have

(Oot!{Yrn 1'Y»doi ·exp(-Ot);{1- S(YOi 11)))::: o:60.Mo,

where Mo > 1 is a constant.

Because XO' is of full rank, there must exist k linearly independent row

vectors xOi"XOO.' ..... ,x~., such that do;, = 80i• = ..... = Do;. = L

k' f f L [pIP, 0 I Dof
)(71"0(0' 1110, To}7r(}C>..)a~-l(l - iJ{Jr"<J~ldl3do:d>"dao

[' [00 [00 [ [Ii (8.!("", I0))'- . ,xp(-8.11 _ S("", 10)))]00
10 Jo Jo in" ;=1

><11"0(0: I va, To)1ro(>.. )at"-I(1-Ilo)"o-ld/3dad>'dao

[' [00 [00 [ [rr'tB.!(Y. 10))"" oxp(-O.(l- S("", I0)))]"Jo Jo Jo lno i~l

x LQ(OOi;!(Yo;; Ii»)""';· exp(-OOij(1- S(yOi; Ii)))]"" ;r(a Ivo,70)

X1l"(>.)ato-1(1 - (4)4-
1d/3do:d>.dG{j

$ [' [00 [00 I ITla"'M.)OO
Jo 10 Jo JR> ;=1

x [Jl(OOi;!(Yo;; I')'))""'; .exp(-Ornj(l-S(YOij Ii»))]""

x1I"(a I /10, TO)1l"o(..\)at"-l(l - aoVo- l d/3dad>.dao
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:s {ff lH.'(O-1\1o)..<·-t).
x IlU("", 17»-"p ["",,~,p- ",,(I - S("", 17»"p(x~,P)]

j-I

X'II"o(a I "tI, TO)'lro(A)a:-I(l - ao)J.o-1dfJdad>.dao· (4.13)

Because Mf} ~ 1 and 0 < ao < 1, MOO ::s Mo, we make the transformation

Uoj = :r~jP for j _ 1,2, .... ,k and ignore the constant. This is a one-to

one linear transformation from {3 to u = (UollUo2," ...uoS. Thus, (4.13) is

proportional to

I' [ 1
00

1 0-''''-') IiU(Yo, 17»-10 0 101ft'< ;=1

x exp(aoUo; - (lo(1 - S(Yoij I')')) exp(Uoj))

)('11"0(0 I Vo. ro)l'I"o('\)a:~I(1 - ao).\o-ldUodadMao

fo' f f oGO(dt-
lt

) II(f(YooJ 17))-

f exp{aoUj - ag(l - S(YoiJ 11'»exp(Uo,»dUoj'

)('11"0(011"0, 7"o)lI"o(,\)a:- 1(1 - ao)J.o-ldodMao

1'[[0-''''-') Ii [ f("",I7) ]- r(",,)
10 0 0 j~1 1 - S(Yoi j I,.) ao"O

x'lto(a I /10, To)1fo().)a:-I(l - ao)"cI-'dod,\dao, (4.14)

where ro denotes the Gamma function. Using 91 $ 90 and f/2 :S 90. it can be

shown that
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Because a< Go < 1,

where K 2 is a positive constant. Then,

Thus,

(4.14) s: [l'" fooc O",,(d-k) TI(klOG<lK2UOI)
o 0 0 ,_I

X1To(O: I1I0,7o)1To(,\)at"-1(1- ao)J..o-1do:d>.dao

(k1k:!)k l 10''''' 10"'" a oodoail k1To(O: I va, TO)

X1ro(,\)ato-l(l- ao)).,,-ldad>.dao

(k1kz)k fol 1000 1000
a""do1To (O: I Vo,TO)

x1To{-X.)a~-k-l(l- ao)"o-ldad,\dao

s: (k]kd llX> 10
00

(1 + a do )al1l- 1exp( -Toer)

x1ro(,x.)at"-k-l(l - ao)\o-Idad>..dao. (4.15)

Noticing that 11"(0: I Vo,To) ex ol1l- l exp(-TOO) and 0:5 ao:$ 1, Vo > 0 and

TO> 0, 1TO(,~) is proper and 050 > k, and Ao > O. Thus, (4.15) < 00. This



completes the proof.

Proof of Theorem 4.2': Similar to the prof of Theorem 3.2', we ha\"e

where Mo > 1 is a constant.
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o

Because Xois of full rank, there must exist k linear independent row vectors

XOi"xlli., .....,x~. such that DOl, = 00;, = .... = 80;. = L Following the proof

of Theorem 3.2', we have

j,' f f I... [P(P,> ID{ .,(AI ""T,)

x,,"o(a)a:-I(l - ao)Ao-ld/Jdad>.dao

J,' f f I... lu (/io;J(", hll'" .oxp(-B.{1 - S(", hllf

X1fop. 11.\1,1"0)'11"0(0')'0:-1(1 - o.o)Jla-'d/JdadMao

:s Iff fR"(tI'),Mo)"OCdo-*l.
x nU("" h))-oxp(_~'p-..(I - S("" I>))

j-I

xexp(X~i1))lI"o()"IVo,To)1l"o(a) .0:-1(1- ao)J.o-Id/Jdad>.dao. (4.16)

Because Alo ;?: 1 and 0 < Go < 1, AI:' :S: Mo, we make the transformation

UOj = x~,/3 for j = 1,2, .... , k and ignore the constant. This is a one-to

one linear transformation from {J to u = (UOl,U()2, . ..•.U(lk)' Thus, (4.16) is

proportional to
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x CXp(~Uoj - ao(1 - S(Yoij 11'))cxp(Uoj))

X1l"o(>'.IIIo,TO)7rO(a)a~-l(l- ao)4~ldUodad)"e:ta.J

lfo"'" fo""'(ek'>')O(j(do- k)

x TIU(Yoi; I ,))"" fo"'" exp(auUoj - ao(l - S(yOi; 11'))exp(u{Jj))dUoj)'
j=1 0

x1To(>'.IIIO,TO)1rO(a)a~-I(l- ao)),o-Idad>.dao

I' 100 loo(,.. ,)oo(~_') IT [~)]oo f(::o)
io io Jo ]:1 1 - S(yOi; 11') no"
x1To(>'IIIO,TO)1l"O(a)a~-l(l- ao)>..:.-ldadAdao, (4.17)

where r(.) denotes the Gamma function. From Theorem 3.2', it can be shown

that

Let K, = 96' be a positive constant. Then,

Because 0 < ao < 1,

where K 2 is a positive constant. Then,

Thus,

(4.17) ~ l 1000

fo""'(ek '),)'.Io(do- k) TI(Klek'AaoK2U01)1l"o(A I IIQ,TO)
00 0 j",1
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X1ro(o:)a:-1(1- ao)~-Idad>"dao

(K1Kz)k l 10'>::> 1000

/ .I.aolioaok1rO(>' I VO, TO)

Xll"O(Ct)~-l(l- ao)-"o-ldad.\dao

S (K1K'}:)k l 10"'" 1000
>..",,-lexp [->'(70 - k'dol] 1I"0(A)

xa~-k-l(l _ ao)>.o-ldad>..dao. (4.18)

Noticing that 1r(>"1 VO,TO) ex ""Il-1CXp(-TO>'), /10 > 0 and TO > k'c4J, ;ro(.),) is

proper and 00 > k and Ao > O. Thus, (4.18) < 00.

4.3 Gamma Distribution

We use the same Gamma distribution as in Section 3.3 and assume that

lI"o(fJ,,) ex: 1l"oh)

11"0(0' 1110,70)11"0(>.')

C( a"Q-lexp(-aTo)1To(>'),

where 110 and TO are specified hyperparameters. OUf last theorem is.

o

Theorem 4.3. Let rk = L:~1 00; and XC; be an no x k matrix with rows

6o;X:n. Then the joint prior

1f(!3,1,ao I Do,oo.,) tr(f3,"f I DO,obo,ao)tr(ao I 0 0,01>.)

oc [~L({3,'Y I Do)"" 1ro(jJ,1')a~-l(l- t1{))>.o-1

is proper if the following conditions are satisfied:

(a) Xli is of full rank,
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(b) /10 > 0 and TO > 0

(c) 1rO(A) is proper and

(d) Ju > k and Ao > o.

Proof of Theorem 4.3: Similar to the proof of Theorem 3.3, we know

that there exists a constant Mo > 1 such that

Because Xu is of full rank, there must exist k linear independent row vectors

X~"X;"2' ..... ,x;..~, such that 80;. = 00i1 = ..... = 80i~ = 1. Following the proof

of Theorem 3.3, we have

J,' f f J"" [P(~'" I D,f' .,(0 I ,,",T,).,(')

xago- I (1- ao)>.<J- 1dj3dad>.dao

:5 [['" {" ],.(o:Mo)'J<J(d<J-l:l nU(YI);J 11'))"0
o 0 0 n j=1

x exp(aox~;.B - utJ(l - S(Yr;;J I,)))·

x exp(x:nJ.B)1To(a I Vo, TO)1TO(>')

xago-1(1 - ao)"o-ldj3do:d..\dao. (4.19)

Because Mo ~ 1 and 0 < ao < 1, MOO ::; Mo, we make the transformation

Uoj = x;"J3 for j = 1,2, .... , k and ignore the constant. This is a one-to

one linear uansformation from {3 to u = (UohU02, .....uoS Thus (4.19) is
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proportional to

I'[[J. 000<"'-') nu("", 1,))-
io 0 0 R'< i")

x OXp(....., - ..(I - S("", I,))oxp(...,))

XlfO(a I Vo, TO)lfO(..\)a:-I(l- ~)~-ldU1)dod)'dao

1'[[0_''''-')n[~]- q..,
in 0 0 j ..1 1~ S(tAliJ 11) l1tJGO

X1I"0(0 IIIo,TO)lfO(..\)~-l(l-O(J)~-'dad..\dlll), (4.20)

where r(·) denotes the Gamma. functioll. From Theorem 3.3, it can be shown

that

~<~cr and
I-S(y" 11)-

Let K1 = 1.0..... which is a positive collstant. Then,

Because 0 < Go < I,

r{ao) _ ao1r(ao + 1) < K -I
agAO - aO" - 2llo,

where K2 is a positive constant. Then

Thus,

(4.20) ~ l fo"'" [" a"o(d-k) fr(k10'''OK2ai)l)
o 0 0 j=1

xlfo(a I Vo, TO)1l"O(..\)a:-1(1 - ao).\o-Idad..\dao
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(k 1k2)*t fooo {'" OGOdoau*
>1:11"0(0 1110, To)1To(>.)a;T-I(l - ao)-,<>-Idad>.dao

(k,k,)'/,'ff-
X1I"0(0 I "'0,70)'-0(>')0:-*-1(1 - ao)-,<>-ldadNlao

:5 (k\k2)'" 10
1f f (1 +040)~-1

x exp(-rOO)1fo().)a:-k-l(l - ao)Ao-1dad>.dao. (4.21)

Noticing that 11"(0 I 110, TO) IX 0'''0-
1CXp( -roct), va > 0 and To > 0, no(>'} is

proper, 00 > k and Ao > O. Thus, (4.21) < 00. This completes the proof. 0



Chapter 5

Data Analysis

In this chapter, we demonstrate the applica.tions of our proposed model based

on (2.1) in previous chapter~ to the phase III melanoma clinical trial data. de

scribed in Chapter 1. Our first goal is to find maximum likelihood estimates

(MLE's) of the parameters for the proposed model (2.1) under log-logistic,

Gompertz and Gamma distributions, and to compare our results with the

model under the Weibull distribution proposed in Chen et a1 (1999). Our

second goal is to carry ont a Bayesian analysis with covariates using the non

informative priors introduced in Chapter 3. Furthermore, using maximum pos

terior density function and second derivatives of the posterior density function.

We obtain the posterior estimates of the parameters for the proposed moo-

els under log-logistic, Gompertz and Gamma distributions, and compare the

inferences bet",oeen each of the three proposed models and Chen et al (1999).

55
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The third goal is to carry out a Bayesian analysis with covariates using the

informative priors proposed in Chapter 4. We obtain posterior estimates of

the model parameters under log-logistic, Gompertz and Gamma distributions

using informative priors, and compare each result with Chen et al (1999). The

three covariates that are considered in the analysis are age (Xl), gender (X2:

male, female), and performance status (PS) (X3: fully active, other).

5.1 MLE's of the Model Parameters for the

E1684 Data

We now consider the analysis for the MLE's of the proposed model (2.1) with

covariates to demonstrate the application of the proposed models under log

logistic, Gompertz and Camma distributions. We also compare inferences of

the proposed models under log-logistic, Gompertz and Gamma distributions

with the model under the Weibull distribution, which was discussed ill Chen

et al (1999).

Table 5.1 reports the MLE's, their standard deviations and p-values for the

proposed model under the Weihull distribution. Our estimates for the model

parameters have some minor differences. However, these differences do not

influence the results.

Table 5.2, Table 5.3 and Table 5.4 report the maximum likelihood esti

mates, standard deviations and p-values for the proposed models under log-
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Table 5.1: MLE" ~f I-h~ orln! D ... ·an-..<>+-..r'. w;!-]., ,.v"bull Distribution

Variable MLE SD P-value

Ag, 0.006 0.004 0.12

Gender -0.15 0.12 0.22

PS -0.20 0.26 0.44

1.31 0.09 0.00

-1.34 0.12 0.00

logistic, Gompertz, and Gamma distributions, respectively. Comparing the

results of Table 5.1 with each of Tables 5.2, 5.3 and 5.4, we find that all results

are similar. The p-values associated with the covariates are all greater than

0.05. This implies that none of age, gender and PS is statistically significant

at level 0: = 0.05.



Table 5.2: ~'ILE's or the Model Parameters with \Ol!:-logtStic Distribution

Variable MLE SD P-\iuue

Age 0.007 0.004 0.06

Gender ~O.13 0.12 0.31

PS -0.20 0.26 0.44

1.61 0.13 0.00

-1.28 0.16 0.00

Table 5.3: MLE's of the Model Parameters with Gom rtz Distribution

Variable MLE SD P-vaIue

Age 0.006 0.004 0.12

Gender -0.15 0.12 0.22

PS -0.20 0.26 0.43

0.27 0.03 0.00

-1.97 0.19 0.00

58
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Table 5.4: MLE's of t • M,fl"l P"n~mptpr' wi h r.amma Distribution

Variable MLE SD P-vaIue

Age 0.006 0.004 0.12

Gender -0.15 0.12 0.22

PS -0.20 0.26 0.44

1.56 0.12 0.00

-0.51 0.14 0.00

5.2 The Posterior Estimates of the Model Pa-

rameters with Noninformative Priors

We carry out a Bayesian analysis with covariates Ilsing the proposed nonill

formatiw priol"5 to demonstrate OUf second application of the propooed model

(2.1) under the log-logistic, Gompertz and Gamma distributions. To be more

specific, we compare results among the proposed models under the log-logistic,

Gompertz and Gamma distributions with the proposed model (2.1) under the

Weibull distribution which was discussed in Chen et al (1999).

In this section, we use the El684 study as current data and consider all

analysis with the proposed priors (3.2). For 1l"(!1), we take an improper uniform

prior, and for lI"(alvo, TO), we takc vo - 1 and TO - 0.01 to cnsurc a propcr

prior. The parameter). is taken to have a normal distribution with mean 0
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and variance 10,000. We use maximum posterior density function and second

deri\"'ath--es of the posterior density function to find the posterior estimates,

posterior standard deviation and p-\"3lues.

Table 5.5 reports the posterior estimates of the model parameters with the

Weihull distribution using noninformative priors. Comparing the results of

Table 5.1 with Table 5.5, ....-e find that the results are the same. Therefore, the

result that incorporation of noninformative priors cannot affect the posterior

estimates of the model parameters was discussed by Chell ct al (1999).

Table 5.6, Table 5.7 and Table 5.8 report the posterior estimates of the

model parameters with the log-logistic, Gompertz and Gamma distributions

using noninformative priors. Comparing the results of Table 5.2 with Table

5.6, Table 5.3 with Table 5.7 and Table 5.4 with Table 5.8, we find similar

results. Thus, incorporation of noninformativc priors cannot affect the pas

terlor estimate! of the model parameters even though F(·) follows different

distributions. This result is similar to that of Chen ct al (1999).
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Table 5.5: The Posterior &;;timates of the Model Parameters with Weibull

Distribution Using Noninformative Priors, 0' '" fel, 0.01 and A '" N(O, 100(0)

Variable Posterior estimate Posterior SD P-vnlue 95% CI

Ag, 0.006 0.004 0.12 (-0.002,0.014)

Gender -0.15 0.12 0.22 (-0.385,0.085)

PS -0.20 0.26 0.44 (-0.710,0.310)

1.31 0.09 0.00 (1.134,1.486)

-1.34 0.12 0.00 (-1.575,-1.105)

Table 5.6: The Posterior Estimates of the Model Parameters with log-logistic

Distribution Using Noninformative Priors, a '"" [(1,0.01) and'\ '" NCO, 10000)

Variable Posterior estimate Posterior SD P-value 95% CI

Ag, a.CH)7 0.004 0.06 (-0.001,0.015)

Gender -0.13 0.12 0.31 (-0.365,0.105)

PS -0.20 0.26 0.44 (-0.710,0.310)

1.61 0.13 0.00 (1.355,1.865)

-1.28 0.16 0.00 (-1.594, -0.900)
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Table 5.7: The Posterior Estimates of the Model Parameters with Gompertz

Distribution Using Noninformative Priors, 0' "" qt, 0.01 and'\ '" N(O, 10000)

Variable Posterior estimate Posterior SO P-\IlI.lue 95%cr

Ag, 0.006 0.004 0.12 (-0.002,0.014)

Gender -0.15 0.12 0.22 (-0.385,0.085)

PS -0.20 0.26 0.43 (-0.710,0.310)

0.27 0.03 0.00 (0.211,0.329)

-1.97 0.19 0.00 (-2.342, -1.598)

Table 5.8: The Posterior E~tirnate of the Model Parameters with Gamma

Distribution Using Noninformative Priors, a,...., r{l, 0.01) and ,\ '" N(O, 100(0)

Variable Posterior estimate Posterior SO P-value 95%CI

Ag, 0.007 0.004 0.12 (-0.001,0.015)

Gender -0.20 0.12 0.22 (-0.435,0.035)

PS -0.05 0.24 0.44 (-0.520,0.420)

1.49 0.11 0.00 (1.274,1.706)

-0.60 0.15 0.00 (-0.894, -0.306)
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5.3 The Posterior Estimates of the Model Pa-

rameters with Informative Priors

In Section 5.2, .....-e used the noninformative priors to conduct the Bayesian

analysis. In this section we use the informative priors for the Bayesian analysis.

Similar to Section 5.2, we use the results of the proposed model (2.1) under

the log-logistic, Gompertz and Gamma distributions to compare with those in

the model (2.1) under the Weibull distribution.

In this section, E1673 serves as the historical data for our Bayesian analysis

of EI684. Table 5.9 rcports the posterior estimates for the Wcihull distribu

tions based on several choices of (00, "0) using informative priors. We compare

the results of Table 5.9 with each of Tables 5.10, 5.11 and 5.12 which report

the posterior estimates of the parameters for the proposed models under the

log-logistic, Gomperti:: and Gamma distributions using informative priors, re

spectively, it is easy to see that the results are similar to those of Chen et

a1 (1999) which incorporating historical data can yield more precise posterior

estimates of model parameters of age, gender and PS. The posterior estimates,

their standard deviations and 95% confidence intervals of age, gender and PS

do not change a great deal if a low or moderate weight is given to the histori

cal data. However, if a higher than moderate weight is given to the historical

data, these postl::rior :lummtlofies Ctl.1l chtl.lIge :lubstalltitl.Uy. For example, ill

Table 5.9, when the posterior estimate of ao is less than 0.06, we can find
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that all 95% confidence intervals for age, gender and PS include O. When the

posterior estimate of U(J is greater than or equal to 0.21, the posterior 95%

confidence intervals for age and gender do not include O. In Tables 5.10, 5.11

and 5.12, we obtain the similar results. Therefore, even though we usc differ

ent models, we obtain the same results which suggest that age and gender are

potentially important prognostic factors for predicting survival in melanoma.

We also find the posterior estimate for age is positive, implying that as age

goes up, the number of carcinogenic cells increases. Increased carcinogenic

cells counts are associated with shorter relapse-free survival. Therefore, older

patients have shorter relapse-free survival. the posterior estimate of gender

is negative, implying that the number of carcinogenic cells for females are

less than the number of carcinogenic cells for males. Therefore, females have

longcr relapse-free survival than males. This finding is very important. In

addition, when the historical data and current data are equally weighted (i.e.,

au =:= 1), the 95% confidence intervals for age and gender both do not include 0,

therefore demonstrating again the importance of age and gender in predicting

overall survival. These results arc the same as those of Chen et al (1999).

Secondly, as the posterior estimate of {to increases, the posterior estimate

for age becomes larger while the posterior estimates for gender and PS become

smaller. The posterior standard deviations of the model parameters become

smaller and the 95% confidence intervals become narrower as the posterior

estimate of ao increases. This demonstrates that incorporation of histori

cal data can yield precise posterior estimates of age, gender and PS parame-
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ters. For example, in Table 5.10, when G{) = 1, the posterior estimates, stan

dard deviations, and 95% confidence intervals for age and gender coefficients

arc 0.012/0.002/(0.008,0.016) and - a.31/0.G7/t -0.447, -0.173), respectively,

whereas when we do not incorporate any historical dat.a ( Le., ao = 0), these

values are 0.007 jO.OO4j( -0.001,0.015) and -O.13jO.12/( -0.365,0.105) respec

tively. We can see that there is a large difference in these estimates, especially

in the standard deviations and 95% confidence intervals. We obtain similar

results in Table 5.9, Table 5.11 and Table 5.12. Therefore, we can say that

precise estimates of the model parameters can be obtained by incorporating

historical data.

Thirdly, when a low weight is given to the historical data, the posterior

estimate of PS is negative. It implies that carcinogenic cell counts for the

patients whose PS is fully active are more than that when PS is not fully active

after the initial treatment. When a higher weight is given to the historical

data, the posterior estimate of PS becomes positive which implies that patients

whose PS is fully active have longer relapse-free survival than patients whose

PS is not fully active. The posterior estimates for age are all positive and

their values increase when the posterior estimate of ao increases. This implies

that as age goes up, the number of carcinogenic cells increases. Increased

carcinogenic cell counts are associated with shorter relapse-free survival and

when r,he posterior estimate of ao is increasing, the carcinogenic cell counts

increase quickly. Therefore, the relapse-free survival decreases quickly. This

tells us that incorporation historical data, we can obtain better results. We
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also find that the posterior estimates for gender are all negative and becomes

smaller when the power (ao) is increasing. Therefore, in the sense that there is

a gender difference, where the number of carcinogenic cells for females is less

than the number of carcinogenic cells for males. Thus, females have longer

relapse-free survival than males. When we incorporate historical data, the

difference becomes significant.
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Table 5.9: The Posterior Estimates of the Model Parameters with Weibull

Distribution Using Informative Priors, 0' '" r(l, 0.01) and >. '" N(O, 100(0)

Variable Posterior estimate Posterior SO 95%Cr (00,>'0)

Age 0.007 0.004 ~ -0.001, O.O15l
Gender -0.15 0.14 -0.424,0.124

PS -0.17 0.25 -0.660,0.320 (49,49)
a 1.17 0.07 (Ji:~3~: :r~lJ5)A -1.44 0.13

'" 0.03 0.0035 (0.022,0.037)

Age 0.008 0.005 ~ -0.002, a.Dl8lGender -0.16 0.19 -0.532,0.212
PS -0.14 0.24 -0.610,0.330 (99,99)

~
1.12 0.07 (J?:f~g; :I~lJ5)~1.51 0.13

'" 0.06 0.006 (0.05,0.07)

Age 0.009 0.005 (0.000 0.019j
Gcnaer -0.19 0.17 f~0.523,0.14l

PS -0.08 0.21 -0.492,0.332 (199,0)
a 1.06 0.06

(J?:~~~::F~J4)A -1.61 0.11

'" 0.14 0.0115 (0.12,0.16)

Age 0.01 0.003 (J8\'8~''':8'ti4)Gender -0.21 0.10
PS -0.04 0.20 (~0.432,0.352) (399,399)
a 1.04 0.05 (J?:§~~: :t~:J4)A -1.65 0.10

"0 0.21 0.011 (0.19,0.23)

Age 0.01 0.002 (J ''':810~3)Gender -0.23 0.08
PS 0.00 0.18 ((., ) (399,0)

~
1.03 0.05

-1.69 0.09 (~to8~~:"M 4)

'" 0.29 0.0161

Age 0.01 0.001 (0.008,0.0121Gender -0.33 0.03 (~0.3895~0.2 I)
PS 0.15 0.12 (~0.08 ,0.385)
a 1.00 0.04 (J?:§5§: ~?:~d3)A -1.82 0.06

'" 1
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Table 5.10: The Posterior Estimate~ of the Model Parameters with log-logistic

Distribution Using Informative Priors, a""' r(1, 0.01) and >. ,..., N(O, 10000)

Variable Posterior estimate Posterior SO 95%C( ('0,,,")

Ag, 0,007 0.004 \-0.001,O.OJ5}
Gender -0.14 0.12 ~~.~1~ gRjgPS -0.16 0.25 (45,45)

Q 1.56 0.13 (Jl~gl: ~~lt16)A -1.34 0.16

'" 0.03 0.004 (0.021,0.038)

Ago 0.008 0.003 (0.0020.0146Gender -0.16 0,12 i-0395,007l
(95,;:)PS -0.13 0.23 -0.581,0.321 (95,95)

1.52 0.12 (-(llgl,'~Iifu)A -1.39 0.15

'" 0.06 0.006 (0.050,0.070)

Age 0.009 0.003
i(OoOS&?oOJ~alGender -0.19 D.ll

PS -0.08 0.21 -0.492,0.332 (194,0)
Q 1.46 0.11 (JU~:~17~J,;)A -1.48 0.14

'" 0.14 O.OlD (0.120,0.159)

Ag, 0.009 0.003 (~~:m' ~g~g;4)Gender -0.21 0.10
PS -0.04 0.20 (-0.432,0.352) (395,395)

~
l.42 0.10

(~U~~: ~~~~15)-1.53 0.13

'" 0.21 0.010 (0.190,0.230)

Ago 0.010 0.003 (~g:~~: ~g~8J4)Gender -0.23 0.10
PS 0.00 0.18 (-0.353,0.353) (390,0)
Q 1.40 0.09

(iU~~: :~~~J5)A -1.59 0.12

"" 0.29 0.015 (0.262,0.318)

Ag, 0.012 0.002 (J8:~~' ~8.1N3)Gender -0.31 0.07
PS 0.14 0.13 ((m~~\04~~d)
~

1.31 0.06
-1.78 0.09 (-1.956,-1.64)

'" 1
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TableS.II: The Posterior Estimates of the Model Parameters with Gompenz

Distribution Using Informative Priors, a '" r(l,O.Ol) and), '" N(O, 10000)

Variable Posterior estimate Posterior SO 95%CI (",,-'0)

Ago 0.007 0.004
Genoer -0.13 0.12

PS -0.17 0.25 (46,46)
a 0.25 0.04
,\ -9.45 8.02

a, 0.03 0.004

Ag, 0.008 0.004 (Oooo,OOlgJ
Gender -0.15 0.12 f-038 ,0.0 l

PS -0.14 0.24 (96,96)

~
0.23 0.03 ~~i~\Ob~2~~

-10.23 11.26 (- 2.36,\".80)
a, 0.06 0.006 (0.048, .072)

Ag, om 0.003
CenCIer -0.18 0.11

PS -0.08 0.21 (239,239)
a 0.21 0.03
,\ -10.87 13.98

a, 0.14 0.009

Ag, 0.010 0.003
Gender -0.21 0.10

PS -0.03 0.20 (399,399)
a 0.20 0.02
,\ -11.13 14.77

a, 0.21 0.010

Ag, 0.01 0.003
Gender -0.23 0.10

(399,0) PS 0.004 0.19 (399,0)

~
0.19 0.Q2

-11.33 15.18
a, (}.29 0.013

G~jer om 0.002 (0.006,0.016J
-0.33 0.Q7 (-0.467,-0.13)

PS 0.15 0.13 ((O°i\~ bOi~~~)a 0.16 0.01
,\ -12.14 14.97 (-41.48i,17.2 1)

a, I
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Table 5.12: The Posterior Estimates of the Model Parameters with Gamma

Distribution Using Informative Priors, a....., r{I,D.Ot) and>. "" N(O, 10000)

Variable Posterior estimate Posterior SO 95% CJ (",,"0)

Ag, D.DO? 0.004 ~ -0.001, O.O15~
GenQcr -0.16 0.12 -0.385,0.075

PS -0.17 0.25 -0.660,0.320 (49,49)
a L38 0.10 (J16~:: ~87~J,;)" -0.80 0.15

"" 0.03 0.004 (0.021,0.038)

Ag, 0.008 0.0034
f~o02J5~oOJgllGender -0.17 0.12

PS -0.14 0.23 -0.591,0.311 (99,99)
a 1.29 0.09 (JUt1;~~~6~6)" -1.00 0.16

ao 0.06 0.006 (0.05,0.072)

Ag, 0.009 0.0032 {O.OO3 a.GlsJ
Gender -0.19 0.11 f-OAOt,002l

(199'2) PS ~O.O8 0.21 -0.492,0.332 (199,0)
1.19 0.08

(JU~l: ~~:'.'16)" -1.25 0.16

"" 0.14 0.0115 (0.12,0.16)

Ag, 0.01 0.003 (J8~?~' ~8It)4)Cenaer -0.22 0.10
(39g,ag9) PS -0.034 0.20 (-0.426\0.358) (399,399)

1.15 0.08
(J?:~~: ~r?J)6)" -1.37 0.15

a, 0.21 0.011 (0.19,0.23)

Ag, 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436

6
-0.0 4)

PS 0.004 0.18
((O°JL\.I°2~~l (399,0)

a 1.13 0,07

" -1.46 0.14 (-1.734,-1.1 G)

"" 0.29 0.016 (0.26,0.32)

Ag, 0.012 0.002
(Jg:Sg~~ ~g\6J3)Gender -0.33 0,07

PS 0.15 0.13 (-0.10;),0.405)
a 1.07 0.05 (J?!~: ~16tJ4)" -1.70 0.10

"" I



71

5.4 Detailed Sensitivity Analysis by Varying

the Hyperparameters

We now discuss a detailed sensitivity analysis for the regression coefficients

by varying the hyperparameters for "'( = (a, '\). For illustration purposes,

we only show results with a fixed value for ao. When other values of G{I

arc chosen, similar remits can be obtained. To be more specific, we fix the

hypcrparameters for 11(1 = 0.29 and vary the hyperparameters for 'Y. Firstly,

varying the variance of ,\ and a from small value to large value which implies

that shape of the>' or 0' becomes from narrow to flat. Secondly, varying the

mean of >. and 0' from the small to large. Based on the two conditions, we check

the influence on the rcgrCSliioll coefficients. Through these detailed sensitivity

analysis, we find that the posterior estimates of age, gender and PS are also

robust for a wide range of hyperparamcter values.

Table 5.13 reports the posterior estimates of the model parameters with

the Weibull distributioll whieh was discussed by Chen et al (1999). Tables

5.14, 5.15 and 5.16 report the posterior estimates of the model parameters

with the log-logistic, Gompertz and Gamma distributions. Comparing the

results of Table 5.13 with each of Tables 5.14, 5.15 and 5.16, we see that the

posterior estimates of age, gender and PS are almost the same for we choose

different hyperparamctcr values for (0:, >.). To be lIlore specific, when F(t)

follows a log-logistic, Weibull or Gamma distribution, the posterior estimates
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of age, gender and PS are the same. However, when F(t) follows the Gompertz

distribution, the posterior estimates of gender and PS have change somewhat,

but the posterior estimates of age remain the same. Overall, moderate to

informative choices of the hyperpanuneters for (a,>.) led to almost the same

posterior estimates of age, gender and PS.
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Table 5.13: The Posterior Estimates of the Model Parameters with Weibull

Distribution, ao = 0.29

Variable Posterior Posterior 95%CI

estimate SD

Age 0.01 0.002 (0.006,0.014)
Geuder -0.23 0.08 (-0.387, -0.073)

PS 0.00 0.18 (-0.353,0.353) f(l,O.Ol) N(O, (ooסס1

1.03 0.05 (0.932,1.128)
~L69 0.09 (-1.866,-1.514)

Age 0.01 0.002 (0.006,0.014)
Gender -0.23 0.08 (-0.387, -0.073)

PS 000 0.18 (-0.353,0.353) f(l,l) N(O, 10)
a 1.03 0.05 (0.932,1.128)
.\ -1.68 0.09 (-1.856,-1.504)

Age om 0.002 (0.006,0.014)
Gender -0.23 0.08 (-0.387, -0.073)

PS 0.00 0.18 (~O.353,0.353) r(10,0.01) N(O, 10)
1.05 0.05 (0.952,1.148)

-1.71 0.09 (-1.886,-1.534)

Age om 0.002 (0006,0.014)
Gender -0.23 0.08 (-0.387, -0.073)

PS 0.00 0.18 (-0.353,0.353) r(1O,1) N(IO,IO)
1.05 0.05 (0,952,1.148)

-1.69 0.09 (-1.866,-1.514)

Age 0.01 0.002 (0.006,0.014)
Cender -0.23 0.08 (-0.387, -0.073)

PS 0.00 0.18 (-0.353,0.353) f(O.Ol,l) N(IO,IO)
1.03 0.05 (0.932,1.128)

-1.67 0.09 (-1.846,-1.494)
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Table 5.14: The Posterior Estimates of the Model Parameters with log-logistic

Distribution, Go = 0.29

Variable Posterior Posterior 95%Cl

estimate SD

Ag, 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.0004 0.18 (-0.352,0.353) r(I,O.OI) N(O, 100(0)
lAO 0.09 (1.224,1.576)

-1.59 0.12 (-1.825, -1.355)

Age 0.01 OJXJ3 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.00 0.18 (-0.353,0.353) r(1,1) N(O,IO)
a 1.39 0.09 (1.214,1.566)
A -1.58 0.13 (-1.835,-1.325)

Ag, 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.00 0.18 (-0.353,0.353) r(10, 0.01) N(O, 10)
a 1.45 0.09 (1.274,1.626)
A -1.58 0.12 (-1.815,-1.345)

Age 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.00 0.18 (-0.353,0.353) r(1O,1) N(IO, 10)
1.44 0.09 (1.264,1.616)

-1.57 0.12 (-1.805, -1.335)

Age 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.00 0.18 (-0.353,0.353) r(0.01,1) N(lO,lO)
a 1.38 0.09 (1.204,1.556), -1.57 0.12 (-1.805,-1.335)
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Table 5.15: The Posterior Estimates of the Model Parameters with Gompertz

Distribution, ao = 0.29

Variable Posterior Posterior 95%CI Q A

estimate SO

Ago 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.004 0.19 (-0.368,0.376) ['(1,0.01) N(O,loooo)
Q 0.10 0.02 (0151,0.229)
A -11.33 15.18 (-41.083,18.423)

Age 0.01 0.003 (0.004,0.016)
Gender -0.23 0.10 (-0.426, -0.034)

PS 0.004 0.19 (-0.368,0.376) r(1,1) N(O,IO)
Q 0.19 0.Q2 (0.151,0.229)
A -5.29 0.77 (-6.800, -3.781)

Ag. am 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.00 0.19 (-0.372,0.372) r(1O,0.01) N(O,IO)
Q 0.21 0.Q2 (0.171,0.249)
A -5.42 0.86 (-7.106,-3.734)

Ago 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.00 0.19 (-0.372,0.372) r(1O,1) N(10,1O)
Q 0.20 0.02 (0.161,0.239)
A -4.56 0.63 (-5.795, -3.325)

Ago 0.01 0.003 (0.004,0.016)
Cender -0.23 0.10 (-0.426, -0.034)

PS 0.005 0.19 (-0.367,0.377) rlO.Ol,l) N(IO,IO)
Q 0.18 0.Q2 (0.141,0.219)
A -4.41 0.55 (-5.488, -3.332)
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Table 5.16: The Posterior Estimates of the Model Parameters with Gamma

Distribution, flo = 0.29

Variable Posterior Posterior 95%CI Q A

estimate SO

Ag. 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.004 0.18 (-0.349,0.357) r(I,O.OI) N(O, (ooסס1

Q 1.13 0.07 (0.993,1.267)
A -1.46 0.14 (-1.734,-1.186)

Ag. 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.004 0.18 (-0.349,0.357) r(1,1) N(O, 10)
Q 1.12 0.07 (0.983,1.257)
A ~1.46 0.14 (-1.734,-1.186)

Age om 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.004 0.18 (-0.349,0.357) r(1O,0.01) N(O, 10)
Q 1.18 0.07 (1.043,1.317)
A -1.38 0.13 (-1.635,-1.125)

Age 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.004 0.18 (-0.349,0.357) r(10, 1) N(1O,1O)
Q 1.18 0.07 (1.043,1.317)
A -1.37 0.13 (-L625,-1.115)

Age 0.01 0.003 (0.004,0.016)
Gender -0.24 0.10 (-0.436, -0.044)

PS 0.004 0.18 (-0.349,0.357) r(O.Ol,l) N(1O,10)
Q 1.13 am (0.993,1.267)
A -1.45 0.14 (-1.724,-1.176)



Chapter 6

Conclusion and Discussion

In this practicuill, we extended the work of Chen, Ibrahim and Sinha (1999) to

the case where F(t) follows a log-logistic, Gompertz and Gamma distribution.

Comparing the inferences betwccn each of the proposed models under the log

logistic, Gompertz and Gamma distributions and the proposed model under

the Wcihull distribution, we have discovered that the corresponding results

are similar. To be morc specific, when v,'e propose novel classes of noninforma

tive and informative priors for (lJ, ,), we obtain the results that the posterior

distributions of parameters are proper using an improper uniform prior with

the proposed models under different distributions. This enables us to carry

out noninformative or informative Bayesian inference for the regression coeffi-

dents.

We have also investigated the melanoma data using three different methods

77
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for each distribution: firs!', for data wit.h MLE's; then data with noninforma~

tive priors; finally, data with an informative prior. We found that the results

arc the same not only for the Weibull distribution, but also for the log-logistic,

Gompenz and Gamma distributions. To be more specific, Ilsing the current

data El684, if we compare the data (E1684) Ilsing the MLE's with data from

Ilonillformative priors using the results with respect to p-values, we find the V

values arc almost the same. Similarly, the vaJues for the MLE's and posterior

estimates of parameters are almost the same when we compare data using the

MLE's with data using noninformative priors respectively. And using different

distributions do not affect the result that the incorporation of historical data

can improve the posterior estimates, standard deviations and 95% confidence

intervals of age, gender and PS. And age and gender are potentially important

prognostic factors for predicting overall survival in melanoma. This demon

strates a desirable feature of our model. Sueh a conclusion is not possible

based only on a frequentist or a Bayesian analysis of the current data alone.

Thus, incorporating hi~torical data. can yield more precise posterior estimates

of age, gender and PS.

It is possible that other distributions can be handled in a similar way.

Natural candidates for this kind of extension include generated Gamma or

generated F distributions. These problems require further investigations which

are beyond the scope of this practicum
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