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Abstract 

The importance of the island of Newfoundland as a place to 

study genetics stems from the history of its early settlement. 

Beginning in the early part of the 17th century, the island was settled 

by fewer than 25 000 founders. The genetic structure of the modern­

day descendants of these settlers is expected to be influenced both by 

the initial founder effects and subsequent inbreeding and genetic drift. 

Therefore, it is of interest to explore the population genetic structure 

of Newfoundlanders for evidence of these phenomena. 

Complete (16 570 bp) mitochondrial DNA sequences were 

obtained for 27 individual Newfoundlanders by conventional dideoxy 

sequencing as well as a novel microarray technology (GeneChip: 

Affymetrix). A total of 220 SNPs were found; every individual had a 

unique sequence. Two individuals were sequenced by both methods. 

In both cases, microarray sequencing was shown to be highly efficient 

and accurate: 99.99°/o and 99.97°/o of bases were called by the 

algorithm, and 100.0°/o of SNPs were detected, with no false positives. 

In combination with published data from 42 other European, 

Eurasian, and First Nations individuals, phylogenetic analysis showed 

that 25 Newfoundland individuals could be associated with one of five 

major haplogroups (H, J, K, T, and U) previously identified in 

Europeans from mtDNA Control Region (CR) profiles. Phylogenetic 

analysis of complete genomes more clearly defines the relationships 

among these haplogroups than do CR profiles alone, and shows that 

haplogroups U (with respect to K) and H (with respect to subtypes H3 

and H16) are not monophyletic. One individual was assignable to 

haplogroup A, which has not previously been seen in Europeans but 
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which is common in northeastern First Nations peoples. Another 

individual had a signature most similar to haplogroup I, a rare 

Scandinavian type: the phylogenetic relationships of this lineage to H, 

(U+K), and (J+ T) are unresolved. 

In contrast with expectations from the genetics of small 

populations and the historical settlement patterns, "genome-type" 

diversity in the Newfoundland samples is high and closely parallels 

patterns in western Europeans, with no loss of haplotypes or 

significant shifts in their relative frequencies. 
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1.0 Introduction 

1.1 History of the Settlement of Newfoundland 

The importance of Newfoundland as a place to study genetics 

stems from the history of its early settlement. The island of 

Newfoundland is thought to have been founded by less than 25 000 

settlers beginning in the early part of the 17th century (Prowse, 1972). 

Historical records indicate that these settlers were of three main ethnic 

groups: English, Irish, and French. The vast majority of current 

Newfoundlanders are the descendants of immigrants from the British 

Isles. They came from highly localized regions of southwest England, 

including Devon, Dorset and Cornwall (Figure 1), and the southeast of 

Ireland (Prowse, 1972; Mannion, 1977; Rowe, 1980). Descendants of 

French settlers are less numerous and many are believed to have 

subsequently relocated to St. Pierre et Miquelon. Much less is known 

about the history of the French settlers. 

The first settlements of Newfoundland by the English were 

seasonal. English migrants would venture to Newfoundland during the 

summer to take advantage of the fishery and return home in the 

winter (Prowse, 1972; Mannion, 1977; Rowe, 1980). It was not until 
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the early 17th century that any permanent settlement was attempted. 

One of the first successful settlements in Newfoundland was in 

Conception Bay; several families were resolute in their desire to stay, 

instead of returning to England (Mannion, 1977). Between 1675 and 

16 77, the English inhabited more than 30 sites, ranging from 

Trepassey to Salvage on the eastern shore. In consequence, the area 

from Cape Race to Cape Bonavista is known as the English shore 

(Figure 2) (Rowe, 1980; Prowse, 1972). 

The origin of Irish settlement in Newfoundland is controversial. 

However, there is clear evidence that there were Irish settlers in St. 

John's prior to 1675 (Rowe, 1980). Early potato famines induced 

thousands of Irish people to immigrate to Newfoundland. By 1753, all 

major communities on the Avalon Peninsula had Irish majorities; they 

constituted nearly half the total population (Rowe, 1980; Parfrey eta!., 

2002). The Irish tended to segregate themselves geographically during 

the settlement of Newfoundland. Almost all the southern shore, 

Trepassey, St. Mary's, Placentia and the Placentia Bays had 

settlements that comprised entirely Irish Roman Catholics (Figure 2) 

(Prowse, 1972; Rowe, 1980). Protestant English and Roman Catholic 

Irish both inhabited the larger towns of St. John's and Harbour Grace. 

Although they lived in close proximity to one another, there was 
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limited intermarriage due to the religious barrier. When the Irish 

settled away from the Avalon Peninsula in areas such as Bonavista, 

Notre Dame Bay and White Bay, they tended to keep to themselves 

and to settle harbours that were not occupied by the Protestant 

English (Rowe, 1980). This religious barrier maintained such 

segregation until recent times. 

In the early 16th century, the fishery on the south, west, and 

northeast coasts was a French monopoly (Prowse, 1972; Rowe, 1980). 

The area north of Cape Bonavista and down the west coast of the 

island was known as the French Shore (Figure 2), and constituted 

nearly half of the island's circumference (Rowe, 1980). The majority of 

the French were seasonal residents. In their absence, the English and 

Irish encroached on their territory. The French lost their claim to the 

island during Queen Anne's war in 1767; today they inhabit the two 

islands of St. Pierre et Miquelon, just off the southern coast of 

Newfoundland. 

In addition to religion, the English, Irish and French settlers are 

believed to have had limited intermarriage due to language, 

socioeconomic, and geographic barriers. It is thought that the progeny 

of the settlers remain near the original settlements, such that current 

regional populations are thought to be relatively genetically 
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homogeneous (Young eta/., 1999; Parfrey eta/., 2002). As an 

example, a study of three outports found that only 1-8°/o of the 

population were immigrants to the area, and 60°/o of births were to 

parents originating from the same small community (Bear eta/., 

1988). 

1.2 The Value of Founder Populations for Studying Disease 

Subsequent to its founding, the population of Newfoundland 

grew rapidly, due to large family size. These families were typically 

isolated from people in other communities, thus consanguineous 

marriages were not uncommon. This further contributed to the 

potential for genetic homogeneity and population isolation. Present­

day genetic homogeneity can largely be attributed to three main 

factors: founder effect, genetic drift, and inbreeding. "Founder effect" 

refers to the situation whereby a population is started or "founded" by 

a small subset of individuals from a larger population (in the case of 

the Newfoundland population, this occurred when a small number of 

individuals from specific areas of Europe settled in the province). 

Therefore, there would have been limited initial genetic variation and 

non-random sampling in the new population, and this may have 
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introduced rare disease alleles at a higher frequency than observed in 

the larger European population. In turn, this may have provided an 

opportunity for rare diseases to become prevalent (Woods eta/., 

1999). The second factor affecting genetic homogeneity is genetic 

drift. In populations that maintain small sizes over long periods, allele 

frequencies fluctuate more strongly (they "drift") which tends to 

reduce genetic variation, and may increase the frequency of rare 

alleles by chance. The final factor influencing genetic homogeneity is 

inbreeding. Inbreeding is defined as the mating of individuals that 

share at least one common ancestor (Griffiths eta/., 2000; Hartl & 

Jones, 2005). Inbreeding increases the probability that disease alleles 

that are identical by descent will come together in homozygous 

combinations, so as to increase the incidence of genetic disease to a 

higher than expected frequency. For example, in offspring of first­

cousin matings an additional sixteenth of the variation in DNA is 

homozygous when compared to offspring of outbred marriages 

(Sheffield eta!., 1998). Consequently, many genetic diseases show 

high prevalence in the province of Newfoundland, including Bardet­

Beidel (Woods eta/., 1999), non-polyposis colo rectal cancer (Woods et 

a/., 2005), and late infantile neuronal ceroid lipofuscinosis (Andermann 

eta/., 1988). 
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Genetically isolated populations, such as that of Newfoundland, 

are useful for studying disease genes because inbreeding and founder 

effects reduce the genetic complexity of the disorder, so that it can be 

more readily investigated (Sheffield eta/., 1998). Linkage 

disequilibrium (LD), the non-random association between individual 

marker alleles and disease alleles, is used to identify marker alleles 

that are identical by descent (Sheffield eta/., 1998, Service eta/., 

1999). Inbreeding and founder effects can increase LD relative to the 

source population. Founder populations, therefore, may potentially 

show a higher incidence of single nucleotide polymorphisms (SNPs) 

associated with genetic conditions, making disease SNPs more easily 

identifiable. LD can be most effectively utilized for disease mapping in 

genetically isolated populations, especially those in which 

consanguineous unions are common (Sheffield eta/., 1998). Genetic 

isolation and inbreeding may serve to reduce the complexity of non­

allelic heterogeneity, which can complicate the genetic mapping of 

some disorders. Furthermore, the average size of a nuclear family is 

on average larger in Newfoundland (Prowse, 1972; Rowe, 1980), 

which increases the possibility that multiple affected individuals will be 

found in a single family and, in turn, facilitates linkage mapping 

(Sheffield eta/., 1998). 
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1.3 Mitochondrial DNA and Phylogenetic Reconstruction 

Prior to using a population to investigate the genes associated 

with simple or complex genetic condition, an independent 

determination of the genetic structure of the population must first be 

performed. This is to ensure that the observed LD is due to close 

proximity of genes and not another population demographic factor. 

Mitochondrial DNA (mtDNA) is an extremely useful tool for 

understanding evolution due to characteristics such as a high copy 

number, apparent lack of recombination, high substitution rate, and 

freedom from the effects of positive selection (Ingman eta/., 2000; 

Barbujani & Bertorelle, 2001). Mitochondrial DNA is inherited 

maternally in vertebrates; thus analysis of mtDNA sequences reflects 

the history of females. Due to the stochastically constant and "clock 

like" mutation rate combined with the absence of recombination, SNPs 

accumulate sequentially over time (Maca-Meyer eta/., 2001). Thus, 

the degree of relatedness between two individuals can be determined 

through the analysis of shared SNPs. The lack of recombination allows 

for the construction of a highly accurate phylogenetic tree, because 
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ancestral DNA sequences are not altered (Kaessmann & P~Hibo, 2002). 

Mitochondrial DNA exhibits rapid evolution, which makes it suitable for 

comparison of closely related groups such as human populations. 

Finally, mtDNA exhibits a higher observed substitution rate, because 

selection pressure, which eliminated mutations in nuclear genes, is 

reduced (Avise eta/., 1994; Russell, 1998; Richards eta/., 2000). 

Another reason for the higher mutation rate is the fact that mtDNA has 

a less efficient repair system that allows for an increased number of 

SNPs to be available for selection. 

Mitochondrial DNA has been extensively investigated over the 

past several decades because of its utility as a population and 

evolutionary genetic marker. Most of these studies have examined 

only one or a few mitochondrial genes (Allard eta/., 2006; Alfonso­

Sanchez eta/., 2006; Lee eta/., 2002; Sigurgardottir et al., 2000). In 

the present study, the entire mitochondrial genome was examined. 

Analysis of the whole mitochondrial genome facilitates interpretations 

based on highly-resolved intraspecific gene trees or pedigrees among 

individuals. This has been demonstrated in a study of the global 

diversity in the human population (Ingman eta/., 2000). A whole 

mitochondrial genome study also provides the opportunity to compare 

rates and patterns of mtDNA evolution within a population of humans. 
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1.4 Sequencing Protocols 

Analysis of human mtDNA sequence variation typically involves 

identification of restriction fragment length polymorphisms (RFLPs) 

(Cann and Wilson, 1983; Wallace, 1994) or direct DNA sequencing 

(Ingman eta/., 2000). Most recently, oligonucleotide microarray 

methods have become available (Chee eta/., 1996; Maitra eta/., 

2004; Carr eta/., 2007). As this study involved both dideoxy and 

microarray sequencing, a review of these techniques is merited. 

1.4.1 Dideoxy Sequencing 

The dideoxy method was first introduced in 1977 by Sanger and 

colleagues (Sanger eta/., 1977). Starting with a DNA template to be 

sequenced, the idea was to generate a population of oligonucleotides 

that correspond in length to each of the nucleotides in the template 

sequence. The method involves a controlled synthesis of DNA from the 

starting template using a radiolabeled primer, a polymerase, and a 

supply of each of the four dNTPs. The generated fragments were 
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designed to correspond to each nucleotide position in the template by 

the incorporation of dideoxynucleotides, which terminate DNA 

synthesis at the position of incorporation because the 3' hydroxyl 

group is modified to a non-extensible 3'-0H. A population of such 

fragments needs to be made for each of the four nucleotides, with the 

four dideoxynucleotides. In traditional manual sequencing, the 

population of fragments made with each deoxynucleotide was 

electrophoresed in four adjacent lanes on a polyacrylamide gel capable 

of resolving fragments that differ by only one base in length. The 

result was a stepladder or ladder gel from which the sequence can be 

read base by base from top to bottom on an autoradiograph. 

Automated DNA sequencing relies on the use of fluorescent dyes 

instead of radiolabeling. Automation involves the excitation of dye 

molecules by a laser beam, the amplification and detection of 

fluorescence by a photomultiplier tube or a CCD camera, and computer 

software to identify each ddNTP-terminated fragment on the basis of 

fluorescence emission wavelength as it passes the detector and 

converts it into a sequence (Tamarin, 2002). There are four dyes, one 

for each nucleotide, each fluorescing at a different wavelength. Dyes 

can be attached to the primer or the terminator, but dye-terminator 

labeling has been shown to be more practicable. All four nucleotide 
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fragment populations are electrophoresed in one lane. Since the 

fluorescent signal can be continuously detected and processed, gels 

can be run more efficiently and more data collected per run than for 

manual gels. 

1.4.2 Mitochondrial GeneChip Microarray 

The routine sequencing of the complete mitochondrial DNA is 

labour intensive and error prone. Microarrays are inherently parallel 

devices that offer both a high-throughput method as well as a minimal 

input of effort (Hacia, 1999). Chee eta/. (1996) developed the first 

mitochondrial-sequencing microarray. This chip comprised tiled 

oligonucleotide sequencing probes synthesized by standard 

photolithography and solid phase DNA synthesis. This microarray 

platform had several limitations. The protocol required generating RNA 

by in vitro transcription of genomic DNA for chip hybridization, only a 

single strand of the target mitochondrial sequence was tiled onto the 

chip, and robust genotype assignment software was absent (Maitra et 

a!., 2004). 

Maitra and colleagues developed the GeneChip CustomSeq 

Resequencing microarry as an array-based sequencing platform for 
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rapid and high-throughput analysis of mtDNA coding region mutations. 

The MitoChip can sequence 29 366 bp of double-stranded DNA, which 

includes 980 bp of plasmid DNA sequence as a control for chip 

hybridization, in a single assay. Both the forward and reverse strands 

of the entire mitochondrial coding region (15 452 bp) are tiled once 

onto the array. Both strands of an additional 12 935 bp of the coding 

region excluding the 125 and 165 RNA sequences are tiled in duplicate 

(Maitra eta/., 2004). The mitochondrial control region was not 

included on the chip for two reasons. The first is that the control 

region is particularly GC rich, which often leads to suboptimal 

hybridization. The second reason is that the most common mutation 

observed in the control region are indels of a poly C tract known as 

D310. This type of mutation is poorly detected by current microarray 

hybridization technology (Maitra eta/., 2004). Affymetrix fabricates 

the MitoChip by photolithography and solid phase DNA synthesis. Each 

chip contains approximately 300 000 "features", where each feature 

consists of 106 copies of a 25 bp oligonucleotide probe (Maitra eta/., 

2004). For each 25 bp probe, three variant probes are included that 

vary the central or 13th base, one for each of the three alternative 

nucleotides. Mismatch at this position most strongly influences 

binding, so that a genomic DNA fragment will bind preferentially to 
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only one of the four oligonucleotide probes at any tiled position. In the 

process of scanning the MitoChip, the scanner measures the 

fluorescence intensity for each feature and determines which base at 

that position has the highest relative intensity (Maitra eta!., 2004). 

The raw data are recorded at each site for both the forward and 

reverse strands and are presented in a table format. The revised 

Cambridge reference sequence (Andrews eta/., 1999) was used as the 

reference sequence. 

1.5 Objectives of this study 

The purpose of this study is to measure the extent of genetic 

differentiation and degree of relatedness within and among 

haplogroups present in the Newfoundland population, based on whole 

mitochondrial DNA sequences. The extent to which the structure of the 

population is reflected genetically has several important implications 

for understanding disease in this province. As previously discussed, 

homogeneous population isolates may influence the local appearance 

of recessive diseases and other inherited diseases, as shown from the 

studies on Bardet-Biedl Syndrome (Woods eta!., 1999; Young eta!., 
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1999; Moore eta!., 2005). They may be valuable in the study of 

complex diseases, such as diabetes, that have been shown to be 

multifactorial - that is, involving both several genes as well as 

environmental factors. A homogeneous population should have fewer 

of the alleles associated with the genetic disease under consideration, 

and the environmental conditions may be more uniform among the 

individuals investigated. 

The study of genetic variation in relation to geographic location 

is known as the "phylogeographic approach" (A vise eta/., 1987; 

Richards eta/., 2000). This method has been shown to resolve 

maternal lineages using mtDNA in the investigation of the European 

population (Richards eta!., 1998; Ingman eta!., 2000; Richards eta!., 

2000; Barbujani and Bertorelle, 2001; Silva eta/., 2002, Mishmar et 

a!., 2003). These studies along with others have shown that European 

mtDNAs fall into several distinct clades or haplogroups. Current 

literature supports the idea that there is one African "Mitochondrial 

Eve" from which all living humans are descendants. Subsequently, all 

non-African individuals have a common ancestor of tv 30 000 yrs ago 

(Cann eta!., 1987). It has been suggested that there are "Seven 

Daughters of Eve" which encompass the seven haplogroups of 

Europeans: U, X, H, V, T, K, and J (Torroni eta!., 1996; Sykes, 2001). 
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It is uncertain whether haplogroups will survive inspection when 

sequencing the complete mitochondrial genome, as compared to many 

previous works that rely on sequence data from hypervariable 

sequences I and II alone. As the Newfoundland individuals 

investigated in this study were all expected to be of European descent, 

the analysis of their complete mitochondrial genomes will determine to 

what extent European genetic patterns have been preserved in 

Newfoundland, and what effects founder effect, drift, and inbreeding 

may have had. 
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Figure 1 Routes of English migration as Postulated by Mannion 

(1977; Figure 1-4). 
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Figure 2 Map of the island of Newfoundland with locations described 

in the text. 
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Island of Newfoundland 
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2.0 Materials and Methods 

2.1 Choice of Individuals and Collection of DNA Samples 

Individuals were selected for this study based on a questionnaire 

regarding maternal ancestry from a database of individuals whose DNA 

had already been obtained and stored at Memorial University of 

Newfoundland (the portion of this questionnaire relevant to the 

mitochondrial sampling is provided in Appendix A). The Human 

Investigation Committee (H.I.C) approval had been obtained and DNA 

extraction were previously performed at the Faculty of Medicine at 

Memorial University of Newfoundland. Of the 29 DNA samples chosen, 

28 samples (16 English, eight Irish, and four French) contained 

sufficient DNA for mitochondrial analysis. 

Since the investigated Newfoundland individuals are of putative 

European descent, it is useful to compare these individuals with other 

individuals of known or putative European ancestry. This will help to 

determine if Europeans continue to be grouped together in their own 

clades as shown in previous investigations (Ingman eta/., 2000; Silva 

eta/., 2002; Mishmar eta/., 2003). Therefore, in addition to the 27 

individuals sequenced in this study, sequences of 42 supplementary 
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individuals were included. There are seven European individuals from 

the Ingman eta/. (2000) study (Individuals designated Italian, 

German, Georgian, English, Tatar, Dutch and French: GenBank 

accession numbers AF346988, AF346983, AF346982, AF346978, 

AF346974, AF346975, AF346981), the revised Cambridge reference 

sequence (Andrews eta/., 1999: GenBank accession number 

J01415.1), a Swedish sequence (Arnason et at., 1996: GenBank 

accession number X93334), and three Newfoundlanders of unspecified 

ethnicity (NF1, NF2, and NF3: H.D. Marshall, personal communication, 

2003). A total of 18 African, Asian, Native American and Indian 

sequences were included (Ingman eta/., 2000) which were the 

individuals designated Evenki, China1 & China2, Chukchi, Asian Indian, 

two South American Indians (Warao 1 & 2), Buriat, Khirgiz, Guarani, 

Japanese1 & Japanese2, Inuit, Uzbek, Piman (North American Indian), 

Samoan, Korean, and Saami: Genbank accession numbers AF346979, 

AF346971-2,AF346971,AF346966, AF347012-3,AF346970, 

AF346991,AF346984,AF346989-90,AF347010,AF347011, 

AF347001, AF347007, AF346993, and AF347006 respectively. An 

additional five individuals belonging to haplogroups known to be 

outside the European clades were included; these individuals were 

from Morocco, Jordan, Spain, and two different islands of the Spanish 
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Canary Islands - Tenerife and Hierro (Maca-Meyer eta/., 2001: 

Genbank accession numbers AF381986, AF381999, AF382003, 

AF382009, and AF382010 respectively). Finally, five sequences from 

Native American individuals were incorporated (Mishmar et al., 2003: 

Genbank accession numbers AY195748, AY195749, AY195759, 

AY195786, and AY195787). 

2.2 Protocol for Individuals Processed by Dideoxy Sequencing 

2.2.1 Polymerase Chain Reaction (PCR) and DNA Sequencing 

The entire mitochondrial genome (16 570 bp) of each of the 20 

individuals processed via conventional methods was amplified by 

polymerase chain reaction (PCR) in twenty-four overlapping segments. 

The whole mitochondrial genome sequence of six of these individuals 

was previously obtained (Pope, 2003). The PCR primer sequences 

used, amplification product length and length of overlap for these 

amplifications are presented in Appendix B (Rieder eta/., 1998). 

PCR amplification was performed with a cocktail of 0.25 1-JL 

Hotstar Taq DNA polymerase (5 U/1-JL; Qiagen, Inc.: Mississauga, ON), 
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2.5 IJL lOx PCR buffer (Qiagen, Inc.: Piscataway, NJ), 0.5 IJL 10 mM 

dNTPs (Amersham Pharmaceuticals), 2 IJL of 10!-IM forward primer and 

2 IJL of 10 IJM reverse primer (custom primers synthesized by Qiagen 

Inc.: Mississauga, ON), 19 IJL distilled, deionized water (H20), and 1 

IJL of 25 ng/IJL of DNA. Following an initial denaturation at 95°C for 15 

minutes, the amplification profile consisted of the following steps 

repeated for 40 cycles: denaturation at 95°C for 30 seconds, anneal at 

55°C for 30 seconds, and elongation at 72°C for one minute. A final 

elongation step following the completion of the 40 cycles was 

accomplished by maintaining the mixture at 72°C for 10 minutes. PCR 

reactions were performed in a GeneAmp PCR 9600 thermal cycler 

(Perkin Elmer). 

Confirmation of successful amplification was achieved by the 

electrophoresis of 2.5 IJL of the PCR product through a 2°/o Low 

Electroendosmosis agarose gel (SeaKem) in Tris-Borate-EDTA (TBE) 

buffer (Sigma-Aldrich) containing 1 ng/ml ethidium bromide (Sigma­

Aldrich). DNA was visualized on an ultraviolet light transilluminator at 

312 nm (Spectroline, model TC-312A). Comparison to a known 

molecular weight marker, (J)X174 digested with Haeiii (Amersham, 

Inc.), determined if the correct PCR product had been amplified. 

Amplification products were then purified with the Qiagen QIAquick 
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PCR purification kit (Qiagen, Inc.) to ensure the removal of non­

specific amplification products and primer concatenation products. 

Sequencing reactions were performed using Big Dye Terminator 

version 3.0 chemistry (Applied Biosystems) with both the forward and 

reverse primers. Primers used for sequencing reactions were the same 

as those used for PCR and are listed in Appendix B. Sequencing 

reactions were carried out by first evaporating 5 !JL of the purified DNA 

sample to dryness in a SpeedVac Concentrator SVC100H vacuum 

centrifuge in order to increase DNA template concentration. Next, a 

cocktail of 2.2 !JL of deionized nanopure water, 2 !JL of Big Dye 

Terminator (v. 3.0; Applied Biosystems Inc.) and 1.6 !JL of 2 !JM 

primer (either forward or reverse) were added to each sample. 

Sequencing reactions were carried out in a Perkin-Elmer Cetus TC-

1/PE 480 thermal cycler as follows: an initial denaturation at 96°C for 

2 minutes, followed by 35 cycles consisting of 96°C for 30 seconds, 

annealing of primers at 50°C for 15 seconds, and extension of 

products at 60°C for 4 minutes. 

Excess reactants were removed from the sequencing reactions 

by isopropanol precipitation. This purification step was carried out by 

the addition of 40 !JL of 75°/o isopropanol followed by incubation at 

room temperature for 30 minutes. This was followed with a 20 minute 
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centrifugation at 15°C at a speed of 13 000 rpm ( 17 949 ref) in a 

refrigerated Eppendorf 5804R centrifuge. The supernatant was 

removed via aspiration, taking care not to disturb the pellet. The pellet 

was then washed with 250 !JL of 75°/o isopropanol and the sample 

allowed to incubate for 10 minutes at room temperature preceding a 

10 minute centrifugation. The supernatant was again removed via 

aspiration, and the DNA pellet was vacuum-centrifuged for 8 minutes 

or allowed to air dry for approximately one hour to ensure complete 

removal of the isopropanol. DNA pellets were resuspended in 5 !JL 5:1 

formamide/25 mM EDTA containing bromophenol blue dye (Sigma­

Aldrich). Samples were then "snap-cooled" in a TC-1/PE 480 thermal 

cycler by heating to 95°C for 2 minutes followed by rapid cooling to 

5°C, in order to ensure that the DNA was single-stranded with no 

secondary structure. 

The samples were then loaded onto porous membrane combs 

{The Gel Company: San Francisco, CA) and placed in an ABI377 

automated DNA Sequencer {Applied Biosystems) for electrophoresis. 

During the 9-hour electrophoresis run, ABI Prism 377-96 Data 

Collection Software (v. 2.6) was used to control the electrophoresis 

and laser detection. The software Sequencing Analysis v. 3.2. was 

used to extract sequence chromatograms and make a preliminary 
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determination of each of the 24 PCR products for the twenty 

individuals. 

2.3 Protocol for Individuals Sequenced Using GeneChip 

Technology 

2.3.1 PCR Amplification, Quantitation, and Pooling of PCR 

Products 

The entire mitochondrial genome of ten Newfoundland 

individuals (the remaining eight individuals [1208, 10354, 10670, 

10796, 11269, 11528, 12127, and 13016], and two individuals "re­

sequenced" for comparison to the dideoxy methodology [12204 and 

13392]) was amplified by PCR in 14 overlapping regions. "Re­

sequencing" is an unfortunate term, as it implies that a sequence 

obtained by microchip sequencing has been obtained previously. A 

more appropriate term for this process is "iterative sequencing", as 

this indicates the repetitive production of a series of new homologous 

sequences from different individuals (Carr eta!., 2007). The PCR 

primer sequences, amplification length, and length of overlap are 
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indicated in Appendix C. These primers are a subset of those described 

in Section 2.2. PCR amplification and amplicon purification were 

performed as previously described. 

Quantitation of each amplicon was performed with the 

Absorption Spectrophotometry Method outlined in the GeneChip 

CustomSeq Resequencing Array Protocol v. 2.0 (Affymetrix, Inc.). The 

concentration (in units of ng/1-JL) was measured in an Eppendorf 

BioPhotometer and entered into the PCR pooling Excel Spreadsheet 

downloaded from the Affymetrix website (www.affymetrix.com). Given 

the concentration and size (bp) of each amplicon, the spreadsheet 

determined the volume (IJL) per PCR amplicon required to add to the 

pool to ensure equimolar amounts of each fragment. 

2.3.2 DNA Fragmentation, Labeling, and Chip Hybridization 

DNA fragmentation was performed with the procedure outlined 

in the Affymetrix GeneChip CustomSeq Resequencing Array Protocol 

v.2.0. For each experiment, a 100 1-JL master mix was prepared that 

contained 10.8 1-JL lOX Fragmentation Buffer (Affymetrix, Inc.), 88.05 

1-JL of ddH20, and 1.05 1-JL of 3 U/1-JL Affymetrix Fragmentation Reagent. 
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Next, 3. 7 1-JL of the Fragmentation cocktail was added to each DNA 

pool and placed in an Eppendorf Mastercycler thermocycler pre-heated 

to 37°C. The following thermal profile was then performed: 37°C for 

15 minutes, 95°C for 15 minutes, hold at 4°C. 

Fragmented DNA was labeled by the addition of 12 1-JL of 5X TdT 

buffer (Affymetrix, Inc.), 2 1-JL of 5 mM GeneChip DNA Labeling 

Reagent, and 3.4 1-JL of 30 U/1-JL Terminal Deoxynucleotidyl Transferase 

(TdT) (Affymetrix, Inc.) and the following thermal profile was 

performed: 37°C for 2 hours, 95°C for 15 minutes, hold at 4°C. 

Prehybridization, hybridization, washing and scanning of the 

MitoChips were performed as described in the Affymetrix CustomSeq 

Resequencing array protocol v.2.0. Prehybridization was accomplished 

by applying a prehybridization buffer to the array and placing the array 

in the Affymetrix GeneChip hybridization Oven 640 at 45°C rotating at 

60 RPM for 15 minutes. Next, the prehybridization buffer was removed 

and replaced with 200 1-JL of the fragmented and labeled DNA pool. The 

array was returned to the Hybridization Oven and incubated for 16 

hours at 45°C at a rotation speed of 60 RPM. 

Following hybridization the chips were washed on the Affymetrix 

GeneChip Fluidics Station with the preprogrammed DNA ARRAY-WS2 

protocol (Affymetrix Microarray Suite v.3.0.2). Scanning of the chips 
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was performed in a 400 Hewlett Packard GeneArray Scanner. Analysis 

was done with the GeneChip DNA Analysis Software (GDAS) v.3.0.2. 

2.4 Dideoxy Sequence Analysis 

The complete mitochondrial genome contig was assembled and 

edited for each individual using Sequencher 4.1.2 software. Alignment 

with the revised Cambridge Reference Sequence (Andrews eta/., 

1999) assisted in preliminary detection of SNPs. Consensus sequences 

for each individual were then exported as ASCII files into Eyeball 

Sequence Editor Program (ESEE v. 3.2, Cabot and Beckenbach, 1989) 

for further comparison and SNP analysis. The number of polymorphic 

sites, their codon position, and their status as transitions or 

transversions, or synonymous versus replacement sites, were recorded 

(Tables 1 and 2). 
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2.5 Microarray Sequence Analysis 

Analysis of the complete mtDNA genome for each individual 

sequenced with the microarray method was performed using GDAS 

software (Affymetrix, Inc.). GDAS uses cell intensity data to make calls 

for every base position represented on the resequencing probe array. 

The algorithim uses the intensity data across multiple data files to 

improve its calling accuracy, and then computes a quality score for 

each call (Maitra eta/., 2004 ). The quality score is a representation of 

the call's statistical accuracy. Identification of SNPs is simplified as the 

results are presented along with the revised Cambridge Reference 

Sequence (Andrews eta/., 1999). 

Although this software program is accurate enough to make the 

majority of calls, minimal manual revising was still required; many of 

the bases that were originally identified as "N" could in fact be called. 

This was accomplished by analysis of the probe intensity data. The 

probe intensity data displays cell intensity data for all the four possible 

calls at any one position on the chip. An algorithm was developed to 

determine which base at each position registered the highest intensity. 

The algorithm determined the extent of the intensity of each base 

when compared to the other three possible bases. This was 
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accomplished with the summation of sense and anti-sense probe 

intensities to give four base-specific intensity scores for each position. 

The highest and second-highest scores for each position were 

identified, along with the sum of intensities across all four bases. The 

difference between the two highest intensities was divided by the sum, 

which yielded a value defined as the differential signal-to-noise ratios 

(dS/N). This value expresses the confidence placed on each call. The 

approach is similar to that of Hacia eta/. (1998), with standardization 

for total probe intensity. A cutoff value was determined for each 

individual, and calls that did not meet this criterion were left uncalled 

(N's). 

2.6 Phylogenetic Analysis 

Once complete sequences were obtained from all samples 

investigated from both techniques, the sequence information was 

imported into Phylogenetic Analysis Using Parsimony and other 

methods (PAUP*) v. 4.0 (Swofford, 2002). The Neighbor-Joining 

technique is a distance method that uses the absolute number of 

differences to identify the tree with the smallest sum of branch 

lengths. This technique was used for all comparisons performed in this 
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study. When an outgroup was required, the Evenki Sequence 

(Genbank accession number: AF346979) was used as it is known to 

fall outside of the European Clade (Ingman eta/., 2000). Bootstrap 

analysis was performed to determine statistical significance of the 

branch lengths. This technique randomized the data 10 000 times and 

scored how many times individuals were grouped together. 

32 



3.0 Results 

3.1 DNA Sequences 

A total of 16 570 bp of mtDNA sequence was obtained from each 

of 28 individuals from the three ethnic groups investigated. Analysis of 

the complete mtDNA genome identified 220 variable nucleotide sites 

(SNPs) {Table 1). Each SNP was verified by the sequencing of both 

strands. Of these, 71 sites were phylogenetically informative (Nei, 

1987), that is, the SNP identifies a subset of at least two individuals, 

such that individuals in that subset are potentially more closely related 

to each other than to any others. Each of the remaining 149 SNPs is 

unique to a single individual. The position of these SNPs occurring in 

the coding region is presented in Table 2. 

The number of nucleotide differences between each pair of 

individuals investigated is presented in Table 3. The mean pairwise 

difference among all pairs of individuals is 26.12. The smallest 

observed difference was a single nucleotide change, between two 

English individuals (10656 and 13016), and the largest was 56 

changes, between an Irish and a French individual (12127 and 13392). 

Upon examination of these 28 individuals, two samples (12516 

and 802) were shown to have identical mtDNA sequences. As these 
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individuals were designated as different ethnicities (French and 

English, respectively), it was reasonable to assume that they were 

neither the same individual, nor maternally related individuals. Since 

these samples were provided, it is unknown if there was an error in 

the DNA banking records. These two samples were sequenced on 

different runs on different days, minimizing the likelihood of 

mislabeling. However, to address this possibility, new dilutions from 

the stock tubes were made and analysis of a "'1 500 bp region shown 

to be highly variable for these samples (containing 6 of the 15 SNPs or 

40°/o) was performed. Again, these sequences were shown to be 

identical. An investigation is ongoing to determine if these two 

samples are indeed from the same individual. For the purposes of this 

study, the DNA samples were still included but as a single sequence 

named 12516/802 and with the information regarding ethnicity 

removed. 

3.2 Patterns of Molecular Evolution 

Similar numbers of variable sites (115 versus 105) were 

identified in the 13 protein-coding genes combined, as compared with 
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the non protein-coding regions (the Control Region, 125 RNA and 165 

RNA genes. Nine tRNA genes had variable sites (tRNAGLN, tRNATRP, 

tRNAALA tRNAASP tRNAGLY tRNAARG tRNALEU tRNAGLU and tRNATHR) 
' ' ' ' ' 

(Table 1). The greatest number of variable sites occurred in the control 

region (60), followed by cytochrome b (18), NADH dehydrogenase 

subunit 5 (16) and NADH dehydrogenase subunit 2 (14). 

An index for the variability of each gene region is the number of 

variable sites divided by the total length in nucleotides of that gene 

(Table 1). The Control Region was the most variable (5.36 

substitutions per 100 base pairs, or 5.36°/o), followed by the NADH3 

(1.74°/o). COXIII was the least variable (0.64°/o). Variation at the 

remaining genes ranged between 0.65°/o and 1.59°/o. Transitions 

accounted for 189 of the 206 variable positions (91. 7°/o ), and 

transversions at the remaining 17 (8.3°/o)(Table 1). 

Among the 115 identified coding region 5NPs, 36 (30.8°/o), 7 

(6.0°/o), and 72 (61.5°/o), occurred at the first, second, and third 

position, respectively (Table 2); among the first position changes, 4 of 

36 (11.1°/o) occurred in leucine-coding codons. Of the 115 5NPs 

documented in the 27 individuals sequenced, 71 (61.7°/o) were 

synonymous changes, while the remaining 44 (38.3°/o) of these were 

nonsynonymous (Table 2). The largest number of nonsynonymous 
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changes was located in the COXI gene, where 7 of 10 substitutions are 

missense mutations. Two genes, ATP8 and ND4L, exhibited only 

synonymous changes. A discussion of the patterns of molecular 

evolution can be found in Appendix D. 

3.3 Haplogroup Designation 

Haplogroup assignment for the 27 Newfoundland individuals was 

determined by the presence or absence of specific restriction sites, as 

well as the particular signature of SNPs present (Torroni et al., 1994, 

1996; Richards eta/., 1998; Macaulay eta/., 1999; Richards eta/., 

2000; Maca-Meyer et al., 2001). These results are presented in Table 

4, and are depicted in Fig. 3. Individuals assigned to haplogroups H 

and U were able to be further subdivided; Table 5 shows the 

haplogroup specific SNP sites for the sub-classification of haplogroup H 

(BrandsUitter eta/., 2006), and the work by Maca-Meyer and 

colleagues in 2001 permitted individual 12204 to be further subdivided 

into haplogroup U6, and individuals 11983 and 11727 into USb. Once 

haplogroup assignment was complete, the frequency at which each 

haplogroup occurred in the Newfoundland population could be 
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calculated. Comparisons of expected and observed frequencies in the 

Newfoundland population are presented in Table 6. Similar frequencies 

were shown to occur in the Newfoundland population when compared 

to the European population (Richards eta/., 2000; Sykes, 2001; 

Torroni eta/., 2006). To determine the statistical significance of these 

numbers, a Monte Carlo simulation (Roff and Bentzen, 1989) was 

carried out. Variations in haplogroup frequency were shown to be 

highly non-significant and these results are presented in Table 7. 

3.4 Phylogenetic Analysis 

Tree topologies that represent the relationships among the 

complete mtDNA sequences of the 27 Newfoundlanders investigated in 

this study are presented in Figure 4. A Neighbor-Joining tree was used, 

as this algorithm has been shown to reconstruct correct phylogenetic 

trees with a high probability when analyzing closely related samples 

(Saitou & Nei, 1987). Neighbor-Joining is a clustering method that 

attempts to find the tree with the minimal value for S (sum of branch 

lengths) (Jobling eta/., 2004 ). The Neighbor-Joining tree shown in 

Figure 4 is rooted with an Evenki sequence known to be outside the 
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European clades and has an S = 267. Bootstrap analysis was 

performed with PAUP* 4.0 (Swofford, 2002) to determine statistical 

support for the branching order. This test resampled 10 000 replicates. 

The bootstrap confidence levels are also presented in Figure 4. 

Several important features are apparent from this analysis. 

First, there are several phylogenetically distinct clusters of individuals 

that are grouped together with strong support. Individuals 11785 and 

11469 are grouped together with 100°/o bootstrap support and 

individuals 12127, 1017, and 11528 are also grouped together with 

100°/o support. Individuals 12204, 13136, 11983, and 11727 are 

grouped together with reasonably strong support (65), while the 

remaining 17 individuals are all grouped together with 70°/o bootstrap 

support. This phylogram demonstrates the relationships between and 

among individuals belonging to the same phylogenetic cluster or 

haplogroup. Individuals 11785 and 11469 (haplogroup J) are grouped 

together with individuals 12127, 1017, and 11528 (haplogroup T) with 

strong support (72°/o). Individuals 12204, 11983, and 11727 

(haplogroup U) and individual 13136 (haplogroup K) being grouped 

together with reasonably strong support (65°/o) also illustrates a 

relationship among haplogroups. 
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In order to compare the efficacy of complete sequences versus 

the use of the control region only, a Neighbor-joining tree using 

control region data only is presented in Figure 5. Bootstrap values 

determined from 10 000 replicates are also included. While some 

phylogenetic structure is preserved, key limitations are apparent. First 

of note is that individuals belonging to the same haplogroup are not 

always grouped together as seen in haplogroups U and H16. Also 

noteworthy, is the lack of information regarding relationships among 

haplogroups; we do not see the structure showing that T and J are 

closely related nor that haplogroup K is actually a subgroup of 

haplogroup U (Macaulay eta!., 1999; Maca-Meyer eta!., 2001). 

Trees were then constructed with the complete sequences of the 

above 27 individuals and the addition of the revised Cambridge 

Reference sequence (Andrews eta/., 1999), three additional 

Newfoundland individuals of unknown ethnic origin (NF1-NF3: H.D. 

Marshall, personal communication, 2003), a Swedish individual 

(Arnason eta/., 1996), five Native American sequences (Mishmar et 

a/., 2003), five sequences of individuals known to be outside the 

European haplogroups (Maca-Meyer eta/., 2001), and 26 European 

and non-European individuals described by Ingman eta/. (2000) 

(Figure 6). This expanded data set lends support to the 
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phylogeographic structure illustrated in Figure 4. The additional 

sequence information allows us to garner further information regarding 

relationships within and among phylogenetic clusters that were not 

evident in the data presented relying solely on the control region. 

3.5 Comparison Between Microarray and Dideoxy Sequencing 

Methods 

Sequence data with both microarray and automated dideoxy 

sequencing methods was available for two individuals (13392 and 

12204). In comparison with the sequence data from the two sources, 

the chip confirmed all 25 known coding region SNPs for individual 

13392 and all 24 known coding region SNPs for individual 12204. The 

microarray method also detected a previously unidentified SNP in each 

individual (Table 8). 

Additionally, the microarray method detected several 

discrepancies upon comparison with the existing dideoxy sequence. 

For individual 13392, two differences were found. In one case, the 

dideoxy sequence indicated a SNP where the microarray showed none; 

in a second, it identified an editing error (Table 8). For individual 
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12204, the microarray sequence detected two discrepancies - in both 

instances the dideoxy sequence called a SNP where the microarray 

showed none. Moreover, the microarray sequence was able to detect a 

single editing error that was made in the manual sequence. An 

example of the microarray output is presented in Figure 7. 

3.6 Analysis of Microarray platform 

A total of 10 Newfoundland individuals were investigated with 

GeneChip microarrays: 1208, 10354, 10670, 10796, 11269, 11528, 

12127, 13016, 12204, and 13392. Since there were two individuals 

where sequence information was available using both methods of 

analysis, a comparison was made between the two and the 

corresponding results were used to determine the efficiency and 

accuracy of the microarray platform (Tables 9 and 10). This platform 

was shown to be an extremely efficient method as evidenced by the 

99. 99°/o and 99. 97°/o accuracy rate for individuals 13392 and 12204 

respectively. There were, however, a number of base positions that 

demonstrated consistently poor hybridization characteristics (shared 

N's). These base positions are presented in Table 11. A total of 135 

positions of 16 570 bp (0.81 °/o) generated weak signals (N) across all 
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ten individuals. Of these, the 122 of 135 (90.4°/o) were C bases, often 

in regions containing two or more consecutive C bases. The remaining 

uncalled positions comprised of seven A residues and six T residues. 
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Table 1: The numbers of transitions and transversions, and the percent variation in mitochondrial 
h . d . bl "t 27 N f dl d . d" "d I genes t at contame van a e s1 es among ew oun an In lVI ua s. 

Gene Length in Base Variable Sites Percent Transitions Transversions 
Pairs Variation 

CR 1120 60 5.36 58 2 
125 953 8 0.84 7 1 
165 1558 13 0.83 11 2 
ND1 956 8 0.84 8 

tRNA-Gin 71 1 1.41 1 
ND2 1041 14 1.34 12 2 

tRNA-Trp 67 1 1.49 1 
tRNA-Aia 68 1 1.47 1 

COXI 1541 10 0.65 8 2 
COX II 683 7 1.02 7 
ATP8 206 2 0.97 2 
ATP6 680 8 1.18 7 1 

COXIII 780 5 0.64 4 1 
tRNA-Giy 67 1 1.49 1 

ND3 345 6 1.74 6 
tRNA-Arg 64 2 3.13 1 1 
ND4L 296 2 0.68 2 
ND4 1377 12 0.87 11 1 

tRNA-Leu 70 1 1.43 1 
NDS 1811 16 0.88 15 1 
ND6 524 7 1.34 6 1 

tRNA-Giu 68 1 1.47 1 
Cytb 1134 18 1.59 16 2 

tRNA-Thr 65 2 3.07 2 
Total 206 189 17 

( + 14 indels) 



Table 2. Pattern of amino acid substitution in the complete 
. h d . I f 27 N f dl d h m1toc on na genome o ew oun an umans. 

Gene Nucleotide Change in Amino Acid 
Position Codon Substitution 

ND1 3315 GCC to ACC Ala to Thr 
3347 CTA to CTG N/A 
3479 AAA to AAG N/A 
3506 ACC to ACT N/A 
3743 CTA to CTG N/A 
3756 CTA to TTA N/A 
4215 TAT to CAT Tyr to His 
4247 ATT to ATC N/A 

ND2 4528 ACA to ACT N/A 
4687 GCT to GCC N/A 
4768 ATA to ATG N/A 
4819 GAG to GAA N/A 
4823 ACC to GCC Thr to Ala 
4916 AAC to GAC Asn to Asp 
5093 ATT to TTT lie to Phe 
5119 CTA to CTG N/A 
5146 ACG to ACA N/A 
5197 TTA to TTG N/A 
5276 TTC to CTC Phe to Leu 
5299 ATC to ATT N/A 
5436 ACC to ATC Thr to lie 
5470 ACG to ACA N/A 

COX I 5944 GAC to GAT N/A 
5996 GCT to ACT Ala to Thr 
6059 ATC to GTC lie to Val 
6075 GTC to GGC Val to Gly 
6479 GTC to ATC Val to lie 
6488 CTC to ATC Leu to lie 
6775 CAT to CAC N/A 
7027 GCC to GCT N/A 
7244 ACC to GCC Thr to Ala 
7268 GTA to ATA Val to Met 

CO XII 7767 ATA to ATG N/A 
7804 GTC to ATC Val to lie 
7896 TGG to TGA N/A 
7911 GAG to GAA N/A 
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Table 2 Cont'd 
7940 AAC to AGC Asn to Ser 
8026 GCC to ACC Ala to Thr 
8250 GGG to GGA N/A 

ATP8 8472 CCT to CCC N/A 
8571 TAG to TAA N/A 

ATP6 8571 GGC to AGC Gly to Ser 
8587 GTA to GAA Val to Glu 
8696 ATG to ATA N/A 
8793 CAC to TAC His to Tyr 
8859 ACA to GCA Thr to Ala 
8980 CAA to CGA Gin to Arg 
9054 GCC to ACC Ala to Thr 
9149 TTA to TTG N/A 

CO XIII 9340 CTA to CTT N/A 
9390 ACA to ATA Thr to Met 
9476 GTT to ATT Val to lie 
9911 GAA to AAA Glu to Lys 
9950 TGA to CGA Trp to Arg 

ND3 10083 ATC to ACC lie to Thr 
10191 TCC to TTC Ser to Phe 
10237 ATT to ATC N/A 
10252 TTT to TTC N/A 
10393 GAC to GAT N/A 
10397 ACC to GCC Thr to Ala 

ND4L 10549 ATA to ATG N/A 
10597 ATA to ATG N/A 

ND4 10971 TGA to TGG N/A 
11250 CTA to CTG N/A 
11298 ACT to ACC N/A 
11466 TTA to TTG N/A 
11589 CTA to CTG N/A 
11718 GGG to GGA N/A 
11787 ATC to ATT N/A 
11811 CTA to CTG N/A 
11928 AAT to AAC N/A 
12006 TGG to TGA N/A 
12091 CTC to ATC Leu to lie 
12135 TCT to TCC N/A 

ND5 12371 CTG to CTA N/A 
12500 ATG to ATA N/A 
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Table 2 Cont'd 
12611 GTA to GTG N/A 
12704 ATC to ATT N/A 
12713 ATT to ATC N/A 
12786 TCC to ACC Ser to Thr 
12939 GCC to ACC Ala to Thr 
13190 ACT to ACC N/A 
13367 GGG to GGA N/A 
13433 ATA to ATG N/A 
13515 CAC to TAC His to Tyr 
13616 ATT to ATC N/A 
13707 GCA to ACA Ala to Thr 
13779 ATC to GTC lie to Val 
13946 ATC to ATT N/A 
14128 ACC to ATC Thr to lie 

ND6 14166 CTC to CTT N/A 
14178 TAT to TAC N/A 
14181 GTA to GTG N/A 
14232 GAT to GAC N/A 
14271 TTG to TTC Leu to Phe 
14318 TTA to CTA N/A 
14586 GGT to GGC N/A 

CytB 14765 ACT to ATT Thr to lie 
14797 TTC to CTC Phe to Leu 
14904 ATG to ATA N/A 
14910 TAC to TAT N/A 
14977 ATC to GTC lie to Val 
15027 CTC to CTA N/A 
15042 GGG to GGA N/A 
15325 ACA to GCA Thr to Ala 
15451 CTT to ATT Leu to lie 
15529 TTA to CTA N/A 
15606 AAA to AAG N/A 
15630 TTA to TTG N/A 
15631 CTA to TTA N/A 
15654 ATA to ATG N/A 
15669 CAT to CAC N/A 
15720 TAT to TAC N/A 
15757 ATC to GTC lie to Val 
15849 ACT to ACC N/A 
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Table 3. Pairwise absolute distance matrix of nucleotide substitutions in the complete mitochondrial 
_g_enome among 27 N f dl d tDNA ew oun an m s. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
1 
2 14 
3 10 18 
4 34 42 38 
5 28 38 30 50 
6 6 14 10 36 30 
7 4 18 14 38 30 10 
8 9 17 11 39 33 7 13 
9 12 22 18 42 38 12 16 15 
10 28 34 30 48 38 28 32 31 36 
11 34 44 38 56 48 32 38 37 40 46 
12 9 17 13 37 31 9 13 12 17 31 39 
13 26 34 30 44 34 28 30 31 36 34 48 31 
14 24 34 30 46 38 28 28 31 34 40 40 31 38 
15 28 36 32 48 36 30 32 33 38 36 50 33 12 40 
16 2 16 12 36 30 8 6 11 14 30 36 11 28 26 30 
17 30 38 34 52 46 30 34 35 40 44 16 35 44 36 46 32 
18 27 34 30 44 38 28 28 31 34 40 40 31 38 6 40 26 36 
19 9 17 13 39 29 5 13 12 17 31 37 10 31 31 33 11 33 31 
20 6 14 8 36 30 6 10 9 14 30 36 9 28 28 30 8 32 28 9 
21 13 21 13 39 33 11 17 14 21 31 37 16 31 31 33 15 33 31 14 11 
22 12 14 16 38 36 12 16 15 20 34 42 15 32 32 34 14 36 30 15 12 19 
23 23 31 25 45 41 23 29 26 33 35 45 28 39 37 39 25 43 37 26 23 28 29 
24 5 13 9 35 29 1 9 6 11 29 33 8 27 27 29 7 31 27 6 5 12 11 24 
25 7 17 13 39 33 7 11 12 13 31 37 12 31 29 33 9 33 29 10 9 14 15 26 8 
26 27 35 31 49 43 29 31 32 37 43 19 32 41 33 43 29 3 33 32 29 32 33 42 28 32 
27 6 16 12 38 32 8 10 11 12 32 38 11 30 28 32 8 34 28 11 8 15 14 27 7 3 31 .. Note: Ind1v1dual assignments are as follows: 1=157, 2=1524JL, 3=1351, 4=13392, 5=13136, 6=13016, 7=12765, 8=12516/802, 
9=12218, 10=12204, 11=12127, 12=1208, 13=11983, 14=11785, 15=11727, 16=11645, 17=11528, 18=11469, 19=11269, 
20=10799, 21=10796,22=10744,23=10670, 24=10656, 25=10354,26=1017,27=01MG1402 



Table 4. Haplogroup-specific polymorphic sites in 27 Newfoundland mtDNAs as indicated by Torroni 
eta/. (1996). Nucleotide positions have been modified in order to correspond with the revised 
Cambridge reference sequence (Andrews eta/., 1999). Haplogroups indicated in brackets have been 

. d d S d II hi 'd asslgne accor ing to NP ata as we as PIIY ogenet1c ata. 

Nucleotide Position 
+ + + - - + + - - - - - + - + + -

1 1 1 1 1 1 1 1 1 1 
1 4 4 7 8 8 9 0 0 0 2 3 3 5 5 6 6 
7 5 5 0 2 9 0 0 3 3 3 3 7 6 9 0 3 

Individual 1 3 7 2 4 9 5 2 9 9 0 6 0 0 2 6 8 Haplogroup 
5 2 9 5 8 4 5 8 3 7 7 5 4 6 4 4 8 

157 (EN) + + + - - + + - - - - - + - + + - H 
1524JL (EN) + + + - - + + - - - - - + - + + - H 
1351 (IR) + + + - - + + - - - - - + - + + - H 
13016 (EN) + + + - - + + - - - - - + - + + - H 
12765 (EN) + + + - - + + - - - - - + - + + - H 

12516/802* + + + - - + + - - - - - + - + + - H 
12218 (FR) + + + - - + + - - - - - + - + + - H 
1208 (EN) + + + - - + + - - - - - + - + + - H 
11645 (EN) + + + - - + + - - - - - + - + + - H 
11269 (EN) + + + - - + + - - - - - + - + + - H 
10799 (IR) + + + - - + + - - - - - + - + + - H 
10744 (IR) + + + - - + + - - - - - + - + + - H 
10656 (EN) + + + - - + + - - - - - + - + + - H 
10354 (EN) + + + - - + + - - - - - + - + + - H 
01MG1402 (EN) + + + - - + + - - - - - + - + + - H 
10796 (IR) - - + - - + + - - - - - + - + + - ? (H) 
10670 (EN) + + + + - + + - + - - - + - + + + (I) 



Table 4 Cont'd 
13136 (IR) + + + + - + - - + - + - + - + + - K 

11983 (IR) + + + + - + + - - - + - + - + + - u 
12204 (FR) + + + + - + + - - - + - + - + + - u 
11727 (IR) + + + + - + + - - - + - + - + + - u 
12127 (IR) + + + + - + + - - - - + + + - + - T 
11528 (EN) + + + + - + + - - - - + + + - + - T 
1017 (EN) + + + + - + + - - - - + + + - + - T 
11469 (EN) + + + + - + + - + - - - - - + - - J 
11785 (EN) + + + + - + + - + - - - - - + - - J 
13392 (FR) + + + + - + + - - - - - + - + + - Other (A) 

* Ethnicity information removed. 



Figure 3 An adaptation of figure 6 from "The Seven Daughters of 

Eve" (Sykes, 2001) to illustrate which of the seven 

haplogroups of Europeans the Newfoundland individuals 

belong. Each of the circles represents a particular mtDNA 

sequence, and the area of the circle is proportional to the 

number of people who share this sequence. The lines 

joining the circles represent mutations in the mtDNA 

sequence, and the longer the line between two circles, 

the more mutations separate those sequences. The figure 

demonstrates not only the relationships among sequences 

in the same haplogroup, but also the relationships between 

haplogroups. 
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Table 5. Haplogroup-specific polymorphic sites in 16 Newfoundland mtDNAs used to further 
subdivide haplogroup H as indicated by Brandstatter eta/. (2006). Three individuals were not able 

b bl Td dh f d H to e su -c ass1 1e an t ere ore are represente as 
Nucleotide Position 

1 1 1 
2 3 4 6 7 0 6 6 

4 4 7 0 3 7 0 3 1 3 
7 5 7 0 1 3 7 2 9 6 0 

Individual 3 6 7 6 0 6 6 8 4 2 4 Haplogroup 
11645 (EN) G c T A A T T c c G T H1a 
12765 (EN) G c T A A T T c c G T H1a 
157 (EN) G c T A A T T c c G T H1a 
01MG1402(EN) A c c A A T T c c A T H1c 
10354 (EN) A c c A A T T c c A T H1c 
12218 (FR) A c c A A T T c c A T H1c 
10796 (IR) A c T A G T c c c A T H3 
12516/802* A c T A G T c c c A T H3 
1524 (EN) A T T A G T T c c A c H5 
10744 (IR) A T T A G c T c c A c H5a 
13016 (EN) A c T A G T T c T A T H16 
10656 (EN) A c T A G T T c T A T H16 
11269 (EN) A c T A G T T c T A T H16 
1208 (EN) A c T A G T T c c A T H 
1351 {IR) A c T A G T T c c A T H 
10799 (IR) A c T A G T T c c A T H 

* Ethnicity information removed 



Table 6. A comparison of haplogroup frequencies between 27 
Newfoundland individuals and modern Europeans as referenced by 
s k 2001 ,yl es, 

EN IR FR Ethnicity 0/o of NF 0/o of 
Unknown* individuals modern 

Europeans 
H 10 4 1 1 59 47 
T 1 2 0 0 11 9 
I 1 0 0 0 4 01 
J 0 2 0 0 7 17 
u 0 2 1 0 11 11 
K 0 1 0 0 4 6 
v 0 0 0 0 0 5 
X 0 0 0 0 0 6 
A 0 0 1 0 4 0 

* Individual 12516/802 also belongs to Haplogroup H but ethnicity 
information has been removed for reasons described in Chapter 2. 

1 Although Sykes, 2001 does not mention the frequency of Haplogroup 
I, previous work looking at three European populations, has 
determined the frequency to be approximately 2°/o (Torroni eta/., 
1996). 
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Table 7. A comparison of the Newfoundland haplogroup population 
structure to the European population using a Monte Carlo Simulation 
(Roff and Bentzen, 1989) to determine statistical significance. 

H T l u 

1 16 3 3 3 

2 12 2 4 3 

Calculated x2 value from original matrix: 

RESULTS OF SIMULATIONS 

Number of replicates in simulation 
Number of replicates which exceed original 
Probability of exceeding original x2 by chance 
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K 

1 

2 

:5000 
:3681 

v 

0 

1 

4.25 

:0.7362 +-0.0062 

X 

0 

2 



Figure 4 The phylogenetic relationships among the whole 

mitochondrial genomes of 27 Newfoundlanders. The 

neighbor-joining tree presented has been rooted with an 

Evenki sequence known to be outside of the European 

Clade. The branch lengths (5 = 267) and bootstrap values 

(10 000 replicates) are indicated. 
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Figure 5 The phylogenetic relationships among 27 Newfoundlanders 

using mitochondrial control region sequence data only. The 

neighbor-joining tree presented indicates branch lengths 

(S = 74) and bootstrap values garnered from 10 000 

replicates. 
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Figure 6 The phylogenetic relationships among 69 individuals of 

both European and non-European descent. The tree 

presented is a neighbor-joining phylogram with the Evenki, 

Buriat, and Khirgiz sequences defined as the outgroup. 

Bootstrap analysis (50°/o majority-rule) using the 

neighbor-joining method and 10 000 replicates are 

indicated. 
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Table 8. A comparison of identified single nucleotide polymorphisms 
using two different sequencing methodologies (manual (dd) vs. 
microarra:t (chi~)) in two Newfoundland individuals. 

12204 13392 
nt ~osition I Ref seg I dd seg I chi~ seg I nt ~osition I Ref seg I dd seg I chi~ seg 

750 A G G 750 A G G 
794 T A A 1438 A G G 

1193 T c c 1736 A G G 
1438 A G G 1809 A c c 
1692 A T T 2638 A c c 
2706 A G G 2706 T G G 
3347 A G G 3315 T A A 
4768 A G G 4247 A c c 
5119 A G G 4768 G G G 
5470 G A A 4823 T G G 
7027 c T T 7027 A T T 
7804 G A A 7896 G G A 
8472 T T c 8026 G A A 
8587 T A T 8636 c T c 
8636 c T c 8790 c T T 
8859 A G G 8859 A G G 
11466 A G G 11718 G A A 
11718 G A A 12006 G A A 
11928 T c c 12091 c A A 
12307 A G G 12704 c T T 
12371 G A A 12713 T T c 
14178 A G G 12939 G A A 
14271 c c G 14765 c T T 
14765 c T T 14910 c T T 
15042 G A A 15325 A G G 
15325 A G G 15669 T c c 
15529 T c c 15849 T c c 
15631 c T T 
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Figure 7 An example the mtDNA re-sequencing microarray for 

individual 13392 (Carr eta!., 2007). The region shown tiles 

a reference sequence of 15 452 bases (it excludes the 

Control Region) in a 160 row x 488 column array. Both the 

sense and anti-sense strands are tiled onto the array for a 

total of >31 Kb. Each nucleotide position is represented in 

a vertical block of 4 cells in 5 rows (A, C, G, T and a 

blank). In each block, the cell with the highest intensity of 

DNA binding identifies the base present at that position. In 

the magnified view, the sequence of bases is easily read as 

the left-to-right order of successive brightest pseudo­

colour squares. 
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Table 9. Efficiency, accuracy, and error of the microarray data for NF 
individual 13392 (dS/N = 0.20) 

Correct Incorrect 

Microarray: 24 + 3 = 27 0+0=0 
SNP 

0.16 + 0.02 = 0.18°/o 0°/o 

Microarray: 14237 + 1186 = 15423 0+2=2 
no SNP 

92.14 + 7.67 = 99.81 °/o 0 + 0.01 = 0.01 °/o 

14261 + 1189 0(0°/o) 
= 15450 (99.99°/o) + 2(0.01 °/o)N 
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Table 10. Efficiency, accuracy, and error of the microarray data for NF 
individual 12204 (dS/N = 0.20) 

Correct Incorrect 

Microarray: 25 + 0 = 25 0+0=0 
SNP 

0.16 + 0.00 = 0.16°/o oolo 

Microarray: 15079 + 344 = 15422 0+4=4 
no SNP 

97.59 + 2.23 = 99.82°/o 0 + 0.03 = 0.03°/o 

15104 + 344 0(0°/o) 
= 15448(99.97°/o) + 4(0.03°/o)N 
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Table 11. A list of sites that demonstrated poor hybridization across 
all ten samples that were sequenced via the GeneChip method (1208, 
10354,10670,10796,11269,11528,12127,13016, 12204,and 
13392). 

Nucleotide Position 
231 
232 
233 
385 
386 
387 
388 
390 
391 
1111 
2535 
2598 
2914 
2956 
2957 
2997 
2998 
3000 
3001 
3002 
3003 
3004 
3005 
3006 
3015 
3323 
3566 
3567 
3568 
3678 
3679 
4191 
4192 
4195 
4199 
4225 
4308 
4309 
4310 
4641 
4661 
4662 
4663 
4732 

Reference Sequence 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
T 
c 
c 
c 
c 
A 
T 
c 
c 
c 
c 
c 
c 
c 
c 
A 
A 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

66 

Nucleotide Position 
4867 
4870 
4932 
5325 
5600 
5742 
6275 
6827 
6828 
6829 
6830 
6831 
6896 
7248 
7458 
7702 
7711 
7988 
8369 
8370 
8685 
8956 
8957 
8984 
8985 
8986 
9622 
9623 
9624 
9708 

10365 
10366 
10367 
10941 
10942 
10943 
11102 
11103 
11297 
11298 
11299 
11513 
11514 
11515 

Reference Sequence 
c 
T 
A 
c 
c 
c 
c 
c 
c 
c 
c 
A 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 



Table 11 Cont'd 
Nucleotide Position 

4733 
4866 
12397 
12398 
12482 
12483 
12484 
12486 
12487 
12488 
12557 
12558 
13076 
13077 
13107 
13111 
13112 
13113 
13114 
13184 
13185 
13585 

Reference Sequence 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
T 
A 
c 
c 
c 
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Nucleotide Position 
11666 
11667 
13675 
13768 
13769 
13847 
13919 
13926 
13960 
14200 
14205 
14206 
14237 
14238 
14239 
14240 
14242 
14243 
14755 
14971 
14972 

Reference Sequence 
c 
c 
c 
c 
c 
c 
c 
T 
c 
c 
A 
T 
c 
c 
c 
c 
c 
c 
c 
c 
c 



4.0 Discussion 

4.1 Comparison of Sequencing Methods 

Sequence data were available from both the dideoxy method and 

the microarray technology for two individuals: a comparison of the 

results indicates the accuracy of each method. 

For individual 12204, the dideoxy method identified 26 SNPs. 

The microarray data confirmed 24 of these, and identified a previously 

undetected SNP. The dideoxy sequence and the microarray sequence 

were discordant at four positions out of 15452. Two of these (nt 8587 

and 8636) were found to be inaccuracies in the dideoxy sequencing 

methodology. At nt 8587, the dideoxy sequence shows an A peak, and 

the chip sequence shows a T, as in the reference sequence. The chip 

sequence was deemed to be correct, as the absolute intensity for the T 

residue is 43.0°/o better than that for the A residue, and has a quality 

score of 148.7. At nt 8636, both the chip and the reference sequence 

show C for this position, but the dideoxy sequence shows a T. Again, 

the chip sequence is taken to be correct, with the C residue 58.8°/o 

more intense than that for the T, and a quality score of 222.5. At 

these positions the dideoxy sequence is not of high quality. With these 
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changes, positions 8587 and 8636 are no longer variable sites. 

Comparison of the two sequencing methods identified an editing error 

at nt 8472, where the reference sequence shows aT and the 

microarray sequence shows a C. Re-examination of the dideoxy 

sequence data shows a strong C peak. The microarray sequence also 

identified a previously undetected SNP at nt position 14271. Both the 

reference sequence and the dideoxy sequence show C for this position 

but the chip sequence determines a G at this position. While the G 

residue does have a relatively low quality score ( 49.1), it is taken to 

be the correct base for this position as it is 31.5°/o more intense than 

that of the C residue. As before, the dideoxy sequence is not of high 

quality for this position. 

For individual 13392, the dideoxy method identified 25 SNPs. 

The microarray sequence data confirms 24 of these, as well as 

identifying a previously undetected SNP, and a single editing error. 

The microarray data identifies a single dideoxy sequencing inaccuracy 

at nt position 8636, at which the dideoxy method shows a T, but the 

chip and reference sequences are both C. C was determined to be the 

correct base at this position as the chip sequence showed the absolute 

intensity of C to be 46.8°/o more intense than T with a quality score of 

190.2. The manual editing error occurred at nt 7896, which the 
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microarray identified as an A. Re-examination of the data showed an 

unambiguous A, which had been edited to a G. The microarray 

sequence identified a previously undetected SNP at nt 12713, where 

both the reference sequence and the dideoxy sequence are Tat this 

position but the chip shows a clear C. Again the microarray sequence 

was taken to be correct as the absolute intensity for the C residue was 

38.4°/o more intense than that of the T residue, with a quality score of 

120.8. 

Thus, employment of the microarray technology not only allowed 

the identification of previously unidentified SNPs, but was also able to 

clarify previous ambiguities. The efficiency and accuracy of re­

sequencing can be compared with that previously obtained for the 

same two individuals by conventional dideoxy nucleotide sequencing 

(Flynn and Carr, personal communication). For individual 13392, use 

of the dS/N quality-control algorithm with a 20°/o threshold rule called 

15212 of 15452 bases correctly (98.45°/o efficiency), including all 25 

known SNPs (100.00°/o accuracy). Of the remaining 240 positions with 

dS/N < 0.20 and therefore initially called as "N", in 232 cases the 

quartet cell with the highest absolute signal strength corresponded to 

the correct base as identified by dideoxy sequencing. In the remaining 

eight cases, the quartet cell with the highest absolute signal was one 
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other than that identified by dideoxy sequencing and therefore remain 

as N's. In order to determine the overall efficiency, high-confidence 

calls (dsiN > 20°/o) are combined with the low-confidence calls (dsiN 

< 20°/o); excluding the low confidence N's gives (14261 + 1189) 1 

15452 = 99.99°/o overall efficiency (Table 9). For individual 12204, use 

of the dSIN quality-control algorithm with a 20°/o threshold rule called 

15258 of 15452 bases correctly (98. 74°/o efficiency), including all 24 

known SNPs (100.00°/o accuracy). Of the remaining 194 positions with 

dSIN < 0.20 and therefore initially called as "N", in 170 cases the 

quartet cell with the highest absolute signal strength corresponded to 

the correct base as identified by dideoxy sequencing. In the remaining 

24 cases, the quartet cell with the highest absolute signal was one 

other than that identified by dideoxy sequencing. Combining the high­

confidence calls with the low-confidence calls and excluding the low 

confidence N's gives (15104 + 344) I 15452 = 99.97°/o overall 

efficiency (Table 10). 
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4.2 SNP Diversity Among Individuals Within Newfoundland 

Ethnic Groups 

In the current investigation, the ratio of transitions to 

transversions was found to be approximately 11: 1. A high transition to 

transversion rate is indicative of a population of recent origin, such as 

the European population of humans. This pattern is consistent with 

findings in previous mitochondrial DNA studies (e.g. Carr eta/., 1995; 

Marshall and Baker, 1998). 

The substantial genetic diversity within each Newfoundland 

ethnic group is documented in the pairwise data matrix (Table 3). The 

greatest pairwise nucleotide difference between two English individuals 

was 43 between 11528 & 10670, whereas individuals 10656 and 

13016 differed by only a single SNP. The greatest pairwise nucleotide 

difference between two Irish individuals was 50 (11727 & 12127), and 

the smallest number of differences was 8 (10799 & 1351). The largest 

number of pairwise nucleotide difference between two French 

individuals was 36 (12204 and 12218), however, if we still include 

individual 13392 as of French origin (see 4. 4) that number increases 

to 48 ( 13392 & 12204 ). The French individuals as a whole appear to 
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be part of a much more variable population when compared to the 

English and Irish, despite the fact that only four French individuals 

were available for analysis. 

4.3 Relationships Among Individuals Indicated by Phylogenetic 

Analysis 

The genome phylogeny of the 27 Newfoundlanders shows that, 

although the majority fall into one of the haplogroups defined 

previously by analysis of CR sequence data, other individuals are not 

readily assigned into these predetermined groups. Haplogroups are 

determined by the presence or absence of particular restriction sites; 

individuals who display the same signature of these restriction sites 

are grouped into the same Haplogroup (Torroni eta/., 1994, 1996; 

Richards eta/., 1998; Macaulay eta/., 1999; Richards eta/., 2000; 

Maca-Meyer eta/., 2001). The most numerous haplogroup wasH 

(Figures 3, 4 and 5), which has been further subdivided into more than 

a dozen subgroups in recent publications (Loogvali eta/., 2004; 

Brandstatter eta/., 2006; Roostalu eta/., 2007). A total of 16 

Newfoundlanders were assignable to haplogroup H. Of these, three 
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were assignable to a monophyletic lineage equivalent to subgroup 

H la, two to one equivalent to H5, both with high statistical support 

(94°/o and 95°/o respectively). Three were assignable to Hlc, but with 

less support (58°/o ). Those assignable to H3 and H 16 are problematic. 

A single SNP (T6776C) defines Haplogroup H3, yet Figures 4 and 5 

demonstrate that the two individuals designated H3 are not each 

others closest relative. This supports the idea that subhaplogroup H3 

represents a multifurcation node (Torroni eta!., 2006). Haplogroup 

H16 appears to be a monophyletic group; interestingly, it includes an 

individual that does not carry the defining C10394T SNP. This finding 

illustrates the greater accuracy obtained with complete mitochondrial 

DNA sequences to determine true phylogenetic relationships. 

Another nine Newfoundlanders were assignable to haplogroups J, 

K, T and U, each as parts of monophyletic lineages, with the U and K 

lineages grouped as predicted. Individuals belonging to haplogroup T 

and J are supported by a bootstrap of 100°/o, while the branch 

separating these two groups received strong support with a value of 

72. Individuals belonging to haplogroups U and K are grouped together 

with a bootstrap value of 65; within this cluster, individuals belonging 

to subhaplogroup U5b grouped together with 100°/o bootstrap support. 
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An expanded data set with all 27 Newfoundland individuals was 

analyzed in the context of 42 other individuals of both European and 

non-European descent. The Neighbor-Joining tree for the analysis of 

the 69 individuals is presented in Figure 6. There are two main groups 

shown that reach statistical significance with a bootstrap value of 99; 

these groups designate the separation of Europeans and closely 

related haplogroups, with haplogroups that have been associated with 

Native Americans. The addition of a further 42 individuals provided 

increased confidence in the previous identification of monophyletic 

lineages. Individuals belonging to haplogroups J and T reach 

significance with a bootstrap value of 100, while the branch separating 

these groups shows support with a value of 66. Individuals belonging 

to haplogroups U and K are grouped together with moderate support 

with a bootstrap value of 56, while the two individuals further 

subdivided into haplogroup USb are supported with a value of 95. 

Individuals belonging to Haplogroup H are not grouped together with 

strong bootstrap support. This finding supports that shown in figure 4 

where only a few haplogroup H subgroups were shown to be 

monophyletic. This is probably due to the similarity of the sequences, 

which causes problems with the algorithm and are therefore collapsed 

back towards the root. 
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Interestingly, an individual that previously was not placed into a 

haplogroup, 13392, was grouped with a Chukchi individual along with 

two Native American sequences with 100°/o bootstrap support. The 

Chukchi are the largest native nation on the Asian side of the North 

Pacific (Starikovskaya eta/., 1998). They populate areas of Siberia and 

northern North America in areas such as Alaska. 

4.4 Haplogroup Analysis 

The majority of Newfoundland individuals (16 of 27 or 59°/o) 

were found to belong to haplogroup H (Tables 4 and 5). This is the 

most prevalent haplogroup, constituting 47°/o of modern Europeans 

(Sykes, 2001). Six of these sixteen individuals (38°/o) belong to the H1 

subhaplogroup, which comprises approximately 30°/o of haplogroup H 

and 13°/o of the total European mtDNA pool (Loogvali eta/., 2004). 

Three Newfoundland individuals (11 °/o) were found to belong to 

haplogroup T, as compared with 9°/o of modern Europeans; this 

haplogroup is found predominately in western Britain and Ireland 

(Sykes, 2001). Two Newfoundland individuals (7°/o) belong to 

haplogroup J, which has two distinct branches, one residing in Spain 
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and Portugal, the other in western Britain, and constitutes 17°/o of 

modern Europeans. Three Newfoundland individuals ( 11 °/o) belong to 

haplogroup U. Haplogroup U is found all over Europe with the majority 

in western Britain and constitutes 11 °/o of modern Europeans (Sykes, 

2001). A single individual (4°/o) was found to belong to haplogroup K. 

Haplogroup K accounts for 6°/o of modern Europeans and is found 

mostly in the Mediterranean. 

Two Newfoundland individuals were unassignable to any of the 

pre-defined haplogroups, which illustrates a disadvantage of 

haplogroup analysis versus analysis of complete genomes. The 

reliance on the control region for signatures of restriction sites does 

not allow for the same resolution of relationships that whole genome 

sequencing provides. Furthermore, previous work has suggested that 

attempts to classify lineages based on mutations found in the 

hypervariable segments have been hindered by the frequent 

occurrence of mutational hot-spots or fast-evolving nucleotide sites 

(Richards eta/., 2000; Loogvali eta/., 2004). 

Individual 10670 does not fit any of the canonical CR haplogroup 

signatures. This individual has characteristics of both haplogroups I 

and J (Torroni eta/., 1996), and is a closer match to the former. 

Individual 10670 exhibits the addition of a Ddei site at position 10394; 
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this position is a shared SNP between haplogroups I and J. This 

individual also has a SNP at position 16389 resulting in a BamHI site, 

which is characteristic of haplogroup I. However, this individual does 

not exhibit any of the other defining SNPs that represent this 

haplogroup. Macaulay eta/. ( 1999) as well as Maca-Meyer eta/. 

(2001) lists nucleotide positions of SNPs that define each of the major 

haplogroups of Europeans. When referring to this list, individual 10670 

exhibits several of the defining mutations for haplogroup I, but lacks 

two characteristic SNPS (A4529T, or 10034C). The complete mtDNA 

sequence was entered into a BLAST search (NCBI) to determine if any 

other individuals had been typed that showed similar mutations. An 

individual of Finnish ancestry assigned to haplogroup I was found to be 

similar (Genbank accession number DQ489516; Finnila eta/., 2000) 

and when analyzed with the 27 Newfoundland individuals, was found 

to be most closely related to individual 10670 with bootstrap support 

of 81 °/o (results not shown). Therefore, for the purposes of this 

investigation, individual 10670 has been designated haplogroup I. 

Individual 13392 was not assigned to one of the haplogroups 

identified by Torroni eta/. (1996), but they did have an individual with 

a similar signature and they referred to this pattern of SNPs as 

"Other". Recall that this individual was shown to be most closely 
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related to a Chukchi individual (bootstrap support of 100°/o; Figure 6) 

who had been assigned to the A haplogroup (Torroni and Wallace, 

1995; Starikovskaya eta/., 1998; Starikovskaya eta/., 2005). The 

pattern of SNPs associated with the "Other" haplogroup differs from 

the A haplogroup pattern at only one site - the "Other" signature has a 

gain of the 1715 Ddel site. Haplotype analysis shows that individual 

13392 belongs to haplogroup A. The A haplogroup has been 

exclusively associated with northeastern Eurasian natives and North 

American First Nations peoples (Mishmar eta/., 2003; Reidla eta/., 

2003). A hypothesis is that individual 13392 is the maternal 

descendant of a First Nations inhabitant of Newfoundland, a daughter 

of a French father who was adopted into the French community (Carr 

eta/., 2007). In an attempt to substantiate this hypothesis, additional 

demographic information was obtained. Although this individual was 

recruited for participation in a Y chromosome study, the maternal 

ancestry was known for 3 generations - all have French surnames. 

However, this individual is from the west coast of the island, which is a 

geographical region with a strong history of Mi'kmaq propagating with 

French men (Story eta/., 1999). With this knowledge and the 

haplogroup analysis provided in this study, it is very likely that beyond 

the great-grandmother was a Mi'kmaq maternal ancestor. 
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Current literature supports the idea that there is one common 

mitochondrial "Eve" of whom we are all descendants (Cann eta/., 

1987). More recently, all non-African humans have a common ancestor 

of rv37 ,500 years ago. It has been suggested that there are seven 

"Daughters of Eve", each of whom corresponds to one of the seven 

haplogroups of Europeans: U, X, H, V, T, K, and J (Torroni eta/., 

1996; Sykes, 2001). Five of these seven haplogroups were found 

among the 27 Newfoundland individuals, and the relative proportions 

of Newfoundlanders assignable to these five haplogroups do not differ 

significantly from those expected for typical western European 

populations (Tables 6 and 7: Richards eta/., 2000; Sykes, 2001; 

Torroni eta/., 2006). No Newfoundland individual was found to belong 

to haplogroup X or V. However, only 6°/o of modern Europeans belong 

to haplogroup X and they are largely confined to eastern and central 

Europe, which is not a source region of the founding population of 

Newfoundland. Haplogroup V constitutes only 5°/o of modern 

Europeans; they are located in Scandinavia and Finland, which 

contributed little to the founding population of Newfoundland. 

Haplogroup I, although not included in the seven "Daughters of Eve", 

is principally a European haplogroup detected at low frequencies 

across western Eurasia with slightly greater representation in northern 

80 



and western Europe (Macaulay eta/., 1999). It has been shown to 

constitute approximately 2°/o of Finland (Torroni eta!., 1996), and 

individual 10670 was most closely related to a Finnish individual 

assigned to haplogroup I. This provides further evidence for the limited 

loss of haplogroup diversity in the Newfoundland population, as a 

haplogroup that is present in the Finnish population at a low frequency 

has been preserved despite the fact that it not a representative 

haplogroup of the majority of the founding population. 

4.5 Conclusions and Future Directions 

The genetics of small populations and the historical pattern of 

settlement and demography of Newfoundland have led to expectations 

of low genetic diversity. It has been stated that founder populations 

are ideal for studying disease genes as isolation, inbreeding, and 

founder effects, reduce the genetic complexity of the disorder so that 

it can be more easily identifiable (Sheffield eta/., 1998). However, in 

this study, this expected loss of haplogroup diversity was not 

observed; comparisons to the European population did not show a 

decrease in genetic variation or any statistically significant alteration in 
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the patterns of diversity. The main haplogroups that are found in 

Europe are found in Newfoundland at similar frequencies, which 

suggests that genetic variation may not be reduced as rare 

haplogroups are preserved. This may be because there appears to be 

pockets of founding populations across the island of Newfoundland, 

and individuals used in this study were collected from the St. John's 

region, not from localized areas. Support for this idea comes from a 

recent publication that demonstrated that a randomized collection of 

200 Newfoundland individuals was comparable to the outbred 

European population (Service eta!., 2006). 

In conclusion, analysis of the whole mitochondrial genome 

provides direct inference of mitochondrial population structure. It 

yields numerous sites for comparison and eliminates the effects of 

sampling when investigating select genes from the genome. A whole 

mitochondrial genome study also provides the opportunity to compare 

rates and patterns of mitochondrial DNA evolution. 

Furthermore, the use of complete mitochondrial DNA sequence 

data provides accurate information regarding phylogenetic 

relationships. This study illustrated a limitation in using haplogroup 

data based on CR sequences - not all haplogroups were found to be 

monophyletic. The major strength in the use of complete mtDNA data 
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is the ability to identify monophyletic lineages with increased 

confidence. 

Possible future directions include increased sampling in order to 

determine if the Newfoundland population contains homogeneous 

isolates. Once these isolates have been ascertained, further studies 

can be conducted in order to identify the SNPs associated with the 

particular genetic condition prevalent in that area. 
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Appendix A A portion of the questionnaire regarding maternal 

ancestry relevant to the mitochondrial sampling. 
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A Study to Determine The Ethnic Composition of The Newfoundland 

Population 

Thank you for taking part in our study on the origins of the Newfoundland people. 
Please complete as many the questions as you can. 
If you have any questions call 777-7286 (collect). 

Name: --------------------------------------

The next 5 questions are about your mother's mother. 

1. Her name before she was married: ------------------------------

2. Where did she live when she was a child? ------------------------

3. What is/was her religion?-----------------------------------

4. Is she of(tick one): 9 English, 9 Irish, 9 French or 9some other ancestry (ethnic 
background)? 

5. Where did her mother come from? 

6. Was any member of your mother's or grandmother's family adopted? 

7. Was any member of your mother's or grandmother's family raised by someone 
other than their own parents? 
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Thank you for your help. 

Please place this questionnaire along with the signed consent form in the enclosed 
envelope and send it back to us. The envelope has our address and a stamp on it. 

Ban Y ounghusband 
Discipline of Genetics 
Memorial University ofNewfoundland 
StJohn's NF AlB 3V6 
Telephone 709-777-7286 
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Appendix B Sequences of the 24 primer pairs used to amplify the 

whole mtDNA genome in overlapping regions, as 

described by Rieder et al., (1998). 
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Appendix B: Sequences of the 24 primer pairs used to amplify the whole human mtDNA genome in 
overlapping regions, as described by Rieder eta/. (1998). 

Primer region Primer sequence Length of PCR 
(5'-3') product (bp) 

h01 F:CTCCTCAAAGCAATACACTG 840 
R:TGCTAAATCCACCTTCGACC 

h02 F:CGATCAACCTCACCACCTCT 802 
R:TGGACAACCAGCTATCACCA 

h03 F:GACTAACCCCTATACCTTCTGC 860 
R:GGCAGGTCAATTTCACTGGT 

h04 F:AAATCTTACCCCGCCTGTTT 887 
R:AGGAATGCCATTGCGATTAG 

h05 F:TACTTCACAAAGCGCCTTCC 832 
R:ATGAAGAATAGGGCGAGGG 

h06 F:TGGCTCCTTTAACCTCTCCA 898 
R:AAGGATTATGGATGCGGTTG 

h07 F:ACTAATTAATCCCCTGGCCC 975 
R:CCTGGGGTGGGTTTTGTATG 

h08 F:CTAACCGGCTTTTTGCCC 814 
R:ACCTAGAAGGTTGCCTGGCT 

h09 F:GAGGCCTAACCCCTGTCTTT 827 
R:ATTCCGAAGCCTGGTAGGAT 

h10 F:CTCTTCGTCTGATCCGTCCT 886 
R:AGCGAAGGCTTCTCAAATCA 

h11 F:ACGCCAAAATCCATTTCACT 987 
R:CGGGAATTGCATCTGTTTTT 

h12 F:ACGAGTACACCGACTACGGC 900 
R:TGGGTGGTTGGTGTAAATGA 

Overlap with preceding 
region (bp) 

202 

204 

196 

208 

215 

203 

207 

201 

214 

211 

205 

196 



Appendix B (continued) 
h13 F:TTTCCCCCTCTATTGATCCC 816 214 

R:GTGGCCTTGGTATGTCCTTT 
h14 F:CCCACCAATCACATGCCTAT 940 205 

R:TGTAGCCGTTGAGTTGTGGT 
h15 F:TCTCCATCTATTGATGAGGGTCT 891 182 

R:AATTAGGCTGTGGGTGGTTG 
h16 F:GCCATACTAGTCTTTGCCGC 840 203 

R:TTGAGAATGAGTGTGAGGCG 
h17 F:TCACTCTCACTGCCCAAGAA 802 196 

R:GGAGAATGGGGGATAGGTGT 
h18 F:TATCACTCTCCTACTTACAG 866 166 

R:AGAAGGTTATAATTCCTACG 
h19 F:AAACAACCCAGCTCTCCCTAA 977 242 ...... 

0 R:TCGATGATGTGGTCTTTGGA .j:::.. 

h20 F:ACATCTGTACCCACGCCTTC 970 207 
R:AAGGGGTCAGGGTTCATTC 

h21 F:GCATAATTAAACTTTACTTC 938 206 
R:AGAATATTGAGGCGCCATTG 

h22 F:TGAAACTTCGGCTCACTCCT 1162 180 
R:AGCTTTGGGTGCTAATGGTG 

h23 F:TCATTGGACAAGTAGCATCC 765 205 
R:GAGTGGTTAATAGGGTGATAG 

h24 F:CACCATTCTCCGTGAAATCA 954 203 
R:AGGCTAAGCGTTTTGAGCTG 



Appendix C Sequences of the 14 primer pairs used to amplify the 

whole mtDNA genome in overlapping regions, as 

modified from Rieder eta/., (1998). 
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Appendix C: Sequences of the 14 primer pairs used to amplify the complete mitochondrial genome 
in overlapping regions, as modified from Rieder eta/., (1998). 

Primer region Primer sequence Length of PCR Overlap with preceding 
(5'-3') product (bp) region (bp) 

h01-h02 F:CTCCTCAAAGCAATACACTG 1642 202 
R:TGGACAACCAGCTATCACCA 

h03-h04 F:GACTAACCCCTATACCTTCTGC 1747 200 
R:AGGAATGCCATTGCGATTAG 

h05-h06 F:TACTTCACAAAGCGCCTTCC 1730 212 
R:AAGGATTATGGATGCGGTTG 

h07 F:ACTAATTAATCCCCTGGCCC 975 207 
R:CCTGGGGTGGGTTTTGTATG 

h08 F:CTAACCGGCTTTTTGCCC 814 201 

- R:ACCTAGAAGGTTGCCTGGCT 
0 
0\ h09-h10 F:GAGGCCTAACCCCTGTCTTT 1713 207 

R:AGCGAAGGCTTCTCAAATCA 
h11-h12 F:ACGCCAAAATCCATTTCACT 1887 208 

R:TGGGTGGTTGGTGTAAATGA 
h13-h14 F:TTTCCCCCTCTATTGATCCC 1756 205 

R:TGTAGCCGTTGAGTTGTGGT 
h15-h16 F:TCTCCATCTATTGATGAGGGTCT 1730 193 

R:TTGAGAATGAGTGTGAGGCG 
h17-h18 F:TCACTCTCACTGCCCAAGAA 1688 200 

R:AGAAGGTTATAATTCCTACG 
h19 F:AAACAACCCAGCTCTCCCTAA 977 242 

R:TCGATGATGTGGTCTTTGGA 
h20 F:ACATCTGTACCCACGCCTTC 970 207 

R:AAGGGGTCAGGGTTCATTC 



Appendix C (continued) 
h21-h22 F: GCATAATTAAACTTTACTTC 2100 206 

R:AGCTTTGGGTGCTAATGGTG 
h23-h24 F:TCATTGGACAAGTAGCATCC 1719 192 

R:AGGCTAAGCGTTTTGAGCTG 

-0 
-....l 



Appendix D A discussion of the patterns of molecular evolution 

evident in this study. 
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Appendix D 

The rate of nucleotide substitution was much higher at the third 

codon position as compared to the first and second positions. This is 

expected, as substitutions at the third position typically result in silent 

mutations. There are, however, some substitutions at the third 

position that result in amino acid changes, as well as, substitutions at 

the first position in Leucine codons that result in silent mutations. It is 

therefore necessary to determine the rate of synonymous and 

nonsynonymous substitutions separately. According to a strict neutral 

theory of molecular evolution, the rates of synonymous and 

nonsynonymous substitution should be equal, but this has not 

generally been observed. Rather, the rate of synonymous substitution 

has been shown to be equal to that of neutral nucleotide substitution 

and to be similar amongst genes (Nei & Kumar, 2000). By comparison, 

the rate of nonsynonymous substitution is generally much lower and 

varies substantially among genes (Nei & Kumar, 2000). Kimura (1983) 

demonstrated that the observed variation was due to selection (cited 

in Nei & Kumar, 2000). There are, however, genes that demonstrate 

higher rates of nonsynonymous substitutions (COXI, COXII, ATP6, and 

COXIII in the present study). In this case, previous investigators have 
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suggested that the mutations are advantageous and are therefore 

maintained in the population by natural selection. 

It is known that transitions occur more frequently than 

transversions. Transitions occur when alternative purines or alternative 

pyrimidines are substituted into the sequence. A transversion refers to 

the replacement of a purine by a pyrimidine or vice versa. Among 

closely related individuals or species, observed transitions routinely 

outnumber transversions by at least 2: 1; this is termed the transition 

to transversion ratio. In the current investigation, the ratio was found 

to be approximately 11: 1. A high transition to transversion rate 

indicates a population of recent origin, such as the Western European 

human population. This pattern is consistent with findings in previous 

mitochondrial DNA studies (e.g. Carr eta/., 1995; Marshall and Baker, 

1998). 
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