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Abstract Brillouin light scattering spectroscopy was used to investigate 

the vibrations in two carbon nanotube arrays (one with 200 nm - 300 nm of the 

nanotubes protruding above the alumina substrate surface and one with the top 

of nanotubes flush with the alumina surface) and two alumina templates with holes 

(non-annealed and annealed). The carbon nanotube array with nanotubes protruding 

above the surface was exposed to vacuum and various gases (H2 , CH4 , Ar, Kr, CF4 , 

SF6 , C2F6 and air). For this sample at least three Brillouin peaks were observed for 

free spectral range up to 50 GH z. The Brillouin modes were at the frequency shifts of 

rov 1.3 GH z, rov 5 GH z and rov 7 GH z. None of the modes exhibited surface character. 

One additional peak of Gaussian profile and zero frequency shift, originating from 

the gas surrounding the sample was also noticed. The line shapes and intensities of 

the peaks depended on the gaseous environment to which the sample was exposed. 

The most significant changes in intensity and frequency shifts were observed when 

H2 was used as an environment. Brillouin scattering experiments performed on the 

sample of carbon nanotube array with zero exposed length and on non-annealed and 

annealed alumina templates that represent intermediate steps in the fabrication of 

carbon nanotube arrays aided in the determination of the character and origin of 

the peaks observed in the carbon nanotube array spectra. The values of phonon 

velocities were determined using a coarse approximation. It is possible that these 

peaks originate due to the bulk modes propagating in the array. In this case the 
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phonon velocities were estimated to be a few hundreds meters per second for the peak 

at"' 1.3 GHz and between 1000-2000 m/s for peaks at 5 and 7 GHz, depending on 

the gas surrounding the sample. It is also conceivable that the peaks are transverse, 

longitudinal and/or twist (torsional) modes that propagate in individual tubes. 
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Chapter 1 

Introduction 

1.1 Carbon Nanotubes 

A carbon nanotube can be imagined as a graphite sheet seamlessly rolled up into 

a tube or cylinder [1] with a diameter of the order of ten nanometers. The first carbon 

nanotubes, prepared in 1991 by Iijima [2], were grown on the negative end of a carbon 

electrode used in the direct current arc-discharge evaporation of carbon in a vessel 

filled with argon under a pressure of 13.33 kPa. The tubes produced were no longer 

than 1 p,m, with diameters ranging from a few to a few tens of nanometers. Carbon 

nanotubes can be single-walled (consisting of one tube) or multi-walled (consisting of 

between 2 and 50 coaxial tubes). 

The structural parameters of a nanotube are specified by the pair of integers 

( m, n) that are components of the chiral vector Ch along the primitive lattice vectors 

a 1 and a 2 , as presented in Figure 1.1. The value of the angle() varies between 0° and 

30°. 
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Figure 1.1: Schematic representation of construction of a nanotube. a 1 , a 2 - unit 
lattice vectors of carbon nanotube, Ch - chiral vector, T - tube axis. 

Depending on the configuration of the carbon bonds around the circumference 

of the tube, the carbon nanotube is either of the armchair ( e = 30°, ( n, n)), zigzag 

(0 = 0°, (n,O)) or chiral type, as shown in Figure 1.2. Nanotubes can be either 

semiconducting or metallic [3] depending on the chiral vector components. All (n, n) 

nanotubes are metallic, while others are semiconductors with a band gap depending 

on the inverse of the nanotube diameter [4]. In the example presented in Figure 1.1 

the value of m is 5 and the value n is 2 the nanotube is of the chiral type. 

As their physical, elastic and electronic attributes, such as nanosize, high 

Young's modulus [6], high conductivity that depends on microstructure, ability to 

support large current density without dissipation, thermal conductivity higher than 

that of diamond [7], [8] and sensitivity to gases [9] are both unique and interesting, 

carbon nanotubes became the object of detailed studies and careful examination. 
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000 
Figure 1. 2: Schematic illustration of the structures of airmchair (left), zigzag (center) 
and chiral (right) single-walled nanotubes [5]. 

This was followed by propositions of various applications. Due to their electronic 

properties, carbon nanotubes have been used in electronic devices such as field-effect 

transistors [10], [11], single-electron transistors [12], electron field emitters [13], or 

logic circuits [14]. Carbon nanotubes have also been shown to be capable of "in-

gesting" bipolar molecules of a fluid surrounding the tubes [15]. The transport and 

electronic properties of carbon nanotubes might be impacted by the surrounding fluid 

via physisorption (adsorption), chemisorption or formation of thin sheets of molecules 

trapped within nanoscopic space [16]. This feature of nanotubes could result in their 

application as chemical sensors [17]. So far various authors present different concepts 

and arguments concerning this subject, both in discussion of the mechanism and types 

of gases. Some reports clai~ that nanotubes are extremely sensitive to 0 2 [18], [19] 
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and it is adsorbed by them [20], [21] what causes changes in electronic properties of 

nanotubes [22]. Exposure to N2 and He change the resistance of the nanotubes, how­

ever these gases influence electronic properties less significantly than 0 2 [22]. Other 

authors [9] state that 0 2 , N2 , water or C02 do not influence the material properties. 

Due to high and reversible hydrogen adsorption, carbon nanotubes were considered as 

hydrogen storage media [23], [24]. This concept, however is still the subject of active 

debate and research [5]. The electrochemical activity for intercalation of lithium ions 

[25] suggests an application in lithium-ion batteries [26]. 

1.2 Carbon Nanotube Arrays 

The precision in determining the direction of the growth is the main challenge 

in the production of carbon nanotubes as elements of the devices because most of the 

applications will require nanotubes with uniform, well-controllable physical proper­

ties. Some electronic and photonic devices (field emission displays and data storage 

elements [27]) and devices used for I R imaging (focal plane arrays [28]) need well­

ordered, high-density carbon nanotube arrays. Vertical nanotubes that were grown 

within the pores of alumina templates (carbon nanotube arrays) were found to con­

duct electric current and proved their usefulness as three-dimensional contacts [29]. 

A schematic picture of an ordered carbon nanotube array is presented in Fig­

ure 1.3. Such arrays are fabricated using three main techniques: ( i) chemical vapor 

deposition of hydrocarbon gas on various substrates [30], ( ii) plasma-enhanced chem-
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Figure 1.3: Schematic image of hexagonally ordered array of carbon nanotubes. y 
is the outer diameter of the multiwall nanotube, x stands for the typical distance 
between tubes. 

ical vapor deposition on Ni dot arrays [31] and (iii) pyrolysis of acetylene on cobalt 

within a hexagonal close-packed nanochannel alumina template [32], [33]. 

The first method can be used for fabricating carbon nanotube arrays on bulk sil-

ica and film-like silica substrates. In the case of growth on bulk silica substrates the 

resulting nanotubes are aligned and approximately perpendicular to the substrate. 

They are multi-walled and typically consist of"' 40 tubes. The nanotubes grow at 

a rate of about 20 J.Lm/h and achieve a length of 100 J.Lm. The value of diameter y 

(see Figure 1.3) is"' 30 nm and can be controlled by the catalyst used. The spacing 

between tubes xis 100 nm. When film-like silica is used as a substrate the nanotubes 
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reach about 2 mm length. The value of y varies from 20 to 40 nm and is uniform 

within the array. The value of the spacing x is "" 100 p,m. 

Using the second method, plasma-enhanced chemical vapor deposition on Ni dots, 

closed-end, vertically aligned free standing nanotubes organized in a pattern the same 

as the one created by Ni dots (e.g., line, array) are obtained. The diameter y at the 

end of the closed-end tube is about 10 - 20 nm. The distance between tubes is de­

termined by the organization of the N i dots. 

Using the third method of fabrication, pyrolysis of acetylene on cobalt within a 

hexagonal close-packed nanochannel alumina template, nanotube arrays grown per­

pendicularly to the substrate are obtained. The advantages of this method are the 

fact that synthesis can be scaled up with the size of the template and its low cost. 

Carbon nanotubes produced this way are characterized by excellent uniformity in size 

and have no defects over relatively long length scales [28]. The tubes are exposed by 

etching the alumina matrix with a mixture of chromic and phosphoric acid. The nan­

otubes in the array are parallel to one another, simultaneously forming a close-packed 

hexagonal array. All of them are open-ended, multi-walled and of comparable length 

and diameter. The mean outer diameter of an individual tube is y "" 50 nm. The 

distance, x, between tubes is comparable to their outer diameter. The etching of the 

alumina at the end of the production process allows a few percent of the total length 

of the nanotubes to protrude above the alumina surface. 
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1.3 Previous Studies 

The number of experiments performed using Brillouin spectroscopy to investi­

gate carbon nanotubes is few. Brillouin light scattering was used to examine elastic 

properties of free standing films of single-walled carbon nanotubes [34], [35] grouped 

in bundles, both aligned around a magnetic field direction and randomly oriented. In 

the first case, a broad peak was observed at about 45 GHz, where the peak shape 

and position were independent of the scattering angle. The presence of this peak de­

pended on the orientation of the sample. For the randomly oriented nanotubes, one 

peak at about 40 GHz was observed, whereas for the aligned nanotubes the existence 

of the peak and its frequency shift depended on the orientation of the sample. When 

the scattering plane was parallel to the nanotubes one broad peak, of which shape and 

position were independent of the angle of incidence was observed at around 45 GHz. 

When the sample was rotated by 90°, this peak disappeared. From the dispersion 

relation of the acoustic modes the two-dimensional Young modulus of single curved 

graphitic plane was estimated. The obtained value, E2n = 110 N jm, is of the same 

order of magnitude as the C - C atomic force constant in a graphitic plane [36]. 

Young [37] used Brillouin light scattering to observe acoustic phonons in ordered 

carbon nanotube arrays in various gaseous environments. The main focus of his work 

were very low frequency modes of carbon nanotubes surrounded by a number of gases 

of different polarizability and mass. In the low frequency range two peaks were ob­

served, one at"' 0.7 GH z and one at"' 1.3 GH z. The intensity ratio of these peaks, 
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the object of main interest, showed linear dependence on the density (molecular mass) 

of the gas used in the experiment. 

Brillouin light scattering experiments from materials related to carbon nanotube 

arrays - C70 and C60 thin films [38] - show modes due to Rayleigh surface wave at 4.8 

and 4.3 G Hz, respectively, as well as modes due to longitudinal bulk waves at 25 and 

30 GH z, respectively. The velocities of the surface and bulk modes were determined 

together with bulk, shear and Young moduli and Poisson's ratios of both films. The 

values of bulk, shear and Young moduli of C70 are found to be 11.3, 3.2 and 8.7 CPa, 

respectively. The corresponding values for C60 are 14.9, 4.7 and 12.7 CPa. Poisson's 

ratios for both types of this films are comparable, the values are 0.37 for C70 and 0.36 

for c60· 

1.4 Overview 

In this thesis the Brillouin light scattering technique was used to examine four 

samples representing four stages in the production of ordered carbon nanotube arrays. 

The first of these was an ordered carbon nanotube array with "' 5% of the total length 

of the nanotubes protruding above the surface of the alumina template (CNT- 2). 

Brillouin spectra at a free spectral range ( F S R) from 50 to 8 G Hz were collected 

in vacuum and various gaseous environments to investigate the effect of gas on the 

Brillouin spectra of carbon nanotube arrays and therefore on the elastic properties 

of the array. No studies were done about the influence of the gas surrounding nan-
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otubes on their elastic properties. The presence of the gas may alter the frequencies 

of the vibrational modes of the nanotubes, what can be seen in the Brillouin spectra. 

Brillouin spectra in air and vacuum were also collected from a non-annealed alumina 

template with holes arranged in a hexagonal, close-packed array (T- 519), an an­

nealed alumina template with holes (T- 519a) and highly-ordered carbon nanotube 

array with the top of the nanotubes flush with the surface of the alumina template 

(CNT- 0). The latter three samples were studied to aid in the determination of the 

origin of the modes observed in the spectra collected from C NT - 2. 
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Chapter 2 

Theory 

2.1 Theory of Brillouin Light Scattering 

The samples studied in this work are either opaque or semi-opaque and, in some 

cases, were surrounded by a gas. These media scatter light by different mechanisms 

and therefore this chapter is divided into sectionst that trat each type of material 

separately. 

2.1.1 Classical Theory 

In the classical theory of thermal scattering at a temperature T 2:: OK, a 

medium is treated as if elastic waves of all frequencies were passing through it in all 

directions and its internal structure is disregarded. Each of these waves will form 

planes of compression (C) and rarefaction (R) that alternate as shown in Figure 2.1 

and are a distance Ae apart. The presence of these planes makes the medium optically 

inhomogeneous. 
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I I 
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Rz Rl 

Figure 2.1: Wave picture of light scattering. C- planes of compression, R- planes of 
rarefaction, N - normal, 0 - angle of scattering. After [39]. 

When a ray of incident light, characterized by wavelength ).i and frequency 

vi, is directed so it makes an angle Oi with the plane of compression of the sound 

wave propagating in the medium along an arbitrary direction, it will be reflected 

or scattered at the layer where the change in density and therefore in the refractive 

index occurs. The scattered ray makes an angle 08 with the plane of compression. 

The reflections will take place on each successive plane if the Bragg relation 

(2.1) 

where 0 is the angle between the incident and scattered light, is satisfied. The planes 

Ci are moving with velocity v and therefore the reflected light is Doppler-shifted by 

an amount 

±
2vivn . 0 

v= --sm-
c 2' 

(2.2) 
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where c is the speed of light in the vacuum and n is a refractive index of the medium. 

2.1.2 Quantum Theory 

The energy of the acoustic waves that propagates in the medium can be quan-

tized [40] and elastic waves in the medium can be considered as consisting of phonons. 

Quantum mechanically, Brillouin light scattering may be therefore described as scat-

tering of a photon of incident light, characterized by frequency vi and wave vector ki. 

by a phonon of frequency v and wave vector q. The first order of this process can 

be described as creation and annihilation of phonons. This is shown schematically in 

the Figure 2.2. 

/II 
I 

I 

/' II 

V

. k. I v, q v. k. I v, q 

I ' I I' I 

~~:;---------- ~---<_y---------

~~k:----~j_ ~-.k.----._L 
Figure 2.2: Schematic of the process of creation (Stokes region, on the left) and 
annihilation (anti-Stokes region, on the right) of a phonon in the process of light 
scattering. vi, ki- frequency and wave vector of incident light, V8 , ks- frequency and 
wave vector of scattered light, v, q- frequency and wave vector of the phonon. 
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The conservation of energy and momentum during the scattering process leads 

to 

hvs = hvi ± hv, (2.3) 

and 

hks = hk; ± hq, (2.4) 

where the indices i and s refer to the incident and scattered light, respectively. The 

scattered light therefore displays a frequency shift of 

1/i - 1/s = 1/ (2.5) 

Breaking the condition (2.4) into components along the axes parallel and perpen-

dicular to the direction of the phonon propagation as shown in the Figure 2.2, one 

obtains: 

(2.6) 

(2.7) 

Using the fact that q1. = 0 and qll = q, as can be seen in Figure 2.2, and the approx-

imation ki ~ k8 , justified by the fact that a Brillouin frequency shift is significantly 

smaller than the frequency of the incident and scattered light, one can convert Equa-

tion (2.6) into 

(2.8) 

Therefore the expression for the magnitude of the phonon vector takes the form: 

(2.9) 



Using relations 

vq 
1/=-

27f 

and 

the formula (2.9) can be transformed into 

The Brillouin shift is therefore: 

v 2vin . () 
-=--sm-. 
v c 2 

2vinv . () 
v= --sm-

c 2' 
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(2.10) 

(2.11) 

(2.12) 

(2.13) 

which is equivalent to Equation (2.2) derived using the classical theory of scattering. 

2.2 Brillouin Light Scattering in Fluids 

In the case of fluids, the atoms and particles are able to move over large dis-

tances because there is no long range order. According to [41 J, if the condition 

- ).. 
l « ~. 

n 
(2.14) 

is satisfied the medium can be considered continuous and is characterized by the 

optical dielectric constant e:. In the Equation 2.14, l is the mean free path of the 

molecules, >.i is the wavelength of the incident light and n is the refractive index of 
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the medium. The motions of molecules in the medium leads to the appearance of 

fluctuations of the density and orientation of the molecules. 

At low densities the molecules of the fluids can be treated as independent scattering 

sources. When monochromatic light is incident on the volume, a Doppler-broadened 

single line with Gaussian distribution of intensity [42] is present. The full width at 

half maximum (FW H M), !:1v of this line is given by: 

(2.15) 

where m is the molecular mass of the fluid particle, kn is the Boltzmann constant 

and T is the absolute temperature of the gas. 

2.3 Brillouin Light Scattering in Solids 

In crystalline materials along any direction there are three kinds of elastic 

waves, one quasi-longitudinal and two quasi-transverse, each of different velocity v. 

In amorphous solids there are only two distinct values of v, as both transverse waves 

are degenerate. 

Acoustic waves can scatter light by two mechanisms [43]: ( i) the surface ripple 

mechanism and ( ii) the bulk elasto-optic mechanism. The surface ripple mechanism 

by which incident light is reflected from the dynamic acoustic deformation of the 

sample surface and only the component of the wave vector that is parallel to the 
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surface is conserved. The bulk elasto-optic mechanism in which the coupling of inci-

dent and scattered light occurs by acoustic modulation of the dielectric constant and 

in the case of transparent solids with real wave vectors all components of the wave 

vector are conserved. In the first approximation surface acoustic waves scatter light 

by the way of the first mechanism and bulk acoustic waves scatter light through the 

bulk elasto-optic mechanism. Bulk waves can, however, cause surface deformation 

and hence contribute to surface ripple scattering. In the same way, surface acoustic 

waves cause distortions that can penetrate into the bulk of the material by a distance 

comparable to the length of the acoustic wave which results in a bulk elasto-optic 

contribution to the surface light scattering. The main determinant of the importance 

of the scattering mechanisms is the opacity of the solid. 

2.3.1 Brillouin Light Scattering in Transparent Materials 

For transparent materials the incident light illuminates a relatively large volume 

of the examined material. The energy (2.3)) and momentum conservation (2.4) laws 

combine according to the bulk elasto-optic mechanism. The result is a spectrum with 

a set of sharp peaks. The elastic waves in transparent solids give rise to Brillouin 

scattering. The elasto-optic constants of the material determine the intensity of the 

scattered light. The angle of incidence ()i and angle of scattering ()s change according 

to Snell's law (44] and become 

·e ·e' s1n i = ns1n i (2.16) 
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sin e s = n sine: (2.17) 

where e~ is an angle of incidence in the medium, e: is an angle of scattering in the 

medium. Angles 8~, e~ and e are related by identity 

e = rr + e~- e:. (2.18) 

Equations (2.6) and (2.7) can be written in the form 

(2.19) 

(2.20) 

Using a first order approximation when ki = ks leads to the following scattering 

condition: 

(2.21) 

(2.22) 

The magnitude of phonon wave vector q is therefore: 

q = kiny'(sinOi + sin0~) 2 + (cosOi + cos8~) 2 (2.23) 

Simlpifying Equation (2.23) using trigonometric formulas leads to 

(2.24) 

Using Equations (2.18) and the half-angle formula Equation (2.24) transforms into 

q = k·ncos (~- ~) = k·nsin ~. 1 2 2 1 2 
(2.25) 



Using Equations (2.10) and (2.11) transforms Equation (2.25) into 

2
vnvi . () 

v = --sm-. 
c 2 

which is equivalent to Equation 2.13. 

2.3.2 Brillouin Light Scattering in Opaque Materials 

18 

(2.26) 

Scattering from an opaque material is confined to a region near the surface 

[45], which makes the depth of scattering volume at most comparable to an acoustic 

wavelength [46], therefore the signal is weak in comparison to the signals obtained in 

Brillouin light scattering in transparent media. The presence of optical absorption has 

an influence on the momentum conservation rule [47]. As the opacity of the medium 

increases so does the imaginary part of the wave vector of the phonon [43] obtained 

in the Equation (2.4). It allows the creation or annihilation phonons not of one fixed 

wave vector q = K', but within a spread of wave vectors !:::..q "' K" and therefore 

of frequencies [48]. Condition (2.7) breaks down due to the uncertainty principle, 

the wave vector component perpendicular to the surface q1. is not conserved in the 

interaction between light and acoustic wave [49] and leads to a range of allowed q 

vectors. The peak position does not change and remains as given by Equation (2.13), 

however the peak becomes broadened with a FW H M !:::..v of 

(2.27) 
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where ,.., is the imaginary part of the complex refractive index n of the opaque medium 

[50]. 

For an isotropic opaque solid the Brillouin spectrum usually consists of an intense 

peak from inelastically scattered light that results from the Rayleigh surface acoustic 

wave. Additionally a much less intense "Lamb shoulder" is present that extends 

from threshold to higher frequencies. The "Lamb shoulder" is a result from coupling 

to the continuum of bulk modes through the deformation caused by them at the 

surface. While dealing with more complicated materials (anisotropic solids, thin 

supported films) a variety of excitations, depending on the experimental conditions 

and the nature of the sample might be found such as quasi-Rayleigh waves, Sezawa 

and pseudo-Sezawa modes, Lamb waves, various pseudo-surface acoustic waves and 

interface excitations [51]. 

2.3.3 Surface Brillouin Light Scattering 

The geometry of the surface Brillouin light scattering is presented in Figure 

2.3. For scattering from surface phonons, condition (2.7) breaks down due to the fact 

that the perpendicular component of phonon amplitude QJ. decreases to zero [47] at 

the depth of a few surface acoustic wavelengths. 

The surface wavevector q = qll is defined through Equation (2.6) and leads to 

a peak in the scattered light at a frequency shift given by Equation (2.10), with v 

standing for the surface phonon velocity. The frequencies of surface waves are smaller 
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Figure 2.3: Schematic of the surface scattering geometry showing incident and scat­
tered light wave vectors ki and ks and the surface phonon vector q. After [43]. 

than that frequencies of the bulk acoustic phonons of the same wavevector. The 

frequency shift for the surface mode is a function of the angle of incidence and is 

equal to [52]: 

2v . () 
v = ;:sm i· 

• 
(2.28) 
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Chapter 3 

Methods and Materials 

3.1 Experimental Setup 

Figure 3.1 schematically shows the experimental setup. The source of light is a 

Coherent Verdi- V2 diode pumped Nd: YV04 laser operating on second harmonic 

and producing a vertically polarized beam of light at a wavelength of >. = 532 nm. 

The output power of the laser is 2 W and the current is in the range of 16 - 17 A. 

The power of the light is reduced by a variable neutral density filter V N DF1 and its 

plane of polarization is rotated by 90° by the half wave plate HW P. The horizontally 

polarized beam is incident on a beam splitter BS, where a small fraction of its power 

is reflected, the rest is transmitted. The light reflected from the beam splitter acts 

as a reference beam and is directed to the tandem Fabry-Perot interferometer by the 

mirror M 2 . The intensity of the reference beam is controlled by the variable neutral 

density filter V N DF3 . The reference beam is used to maintain mirror alignment 

for both Fabry-Perot interferometers. A second function of the reference beam is to 
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prevent saturation of the detector when scanning over the region of intense, elastically 

scattered light. 

The light transmitted through the BS is incident on mirror M1 which changes the 

direction of the beam by goo. The light passes through a set of filters F that decrease 

the beam power to the desired value, and an aperture A. The beam then undergoes 

total internal reflection in the prism P and is focused on the sample S by a lens f 

with a focal length of 5 em and an f / # of 2.8. The scattered light is collected by the 

same lens and is focused on the adjustable input pinhole of the tandem Fabry-Perot 

interferometer by a lens L of focal length 40 em. Before reaching the interferometer 

the light passes through a bandpass filter BF that allows transmission of the light 

that has a wavelength within the range of 532 ± 5 nm. After the scattered light enters 

the spectrometer it is reflected towards a collimating lens and directed by a set of 

mirrors and prisms so it passes three times through each F PI. 

To achieve resolution high enough for a measurement of Brillouin scattering a 

plane parallel Fabry-Perot interferometer (F PI) is used as a scanning spectrometer. 

In the basic form a F PI consists of two very flat, precisely parallel, highly reflecting 

surfaces separated by some distanced [44]. The optical spacing L = nd between the 

mirrors of which F PI consists can be changed. The transmission is close to unity 

over a spectral interval.6.>. around a special value of a wavelength An and decreases to 

a very low value outside this interval. The light of wavelength An will be transmitted 
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Figure 3.1: Experimental Setup. N d : YV04 - laser, HW P - half wave plate, BS 
- beam splitter, M - mirror, F - filter, V N D F - variable neutral density filter, A -
aperture, BF- bandpass filter, L- lens, P- prism, f- focusing/collecting lens 



if the following condition is fulfilled: 

L= n>.n 
2 ' 
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(3.1) 

where n is an integer. The simultaneous transmission of two incident light beams of 

wavelengths An and An + b.>. will occur if the minimum separation of the wavelengths 

1S 

PAn = (p- 1)(An +b.>.). (3.2) 

Using Equation (3.1) the value by which the adjacent wavelengths are separated is 

found to be [46]: 

1 1 1 (n n- 1) 1 
An- An-1 = L 2--2- = 2£" (3.3) 

From Equation (3.3) the adjacent frequencies are separated by a frequency difference 

called free spectral range (FSR) which is given by [53] 

c 
FSR = 

2
£. (3.4) 

As L = nd, the FSR can be changed either by varying the distance between the 

mirrors (piezoelectric scanning) or the refractive index of the medium between them 

(pressure scanning). The former method is used in the spectrometer that was part of 

this experimental setup. 

The resolution of the F PI is determined by the width of the transmission peak. 

The ratio of FSR to width is the finesse F. The finesse contributes to the contrast, 

which is the ratio of maximum to minimum transmission. The upper limit of the 
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contrast (,....., 1000 for a single-pass F PI) is insufficient for backscattering measure-

ments on opaque materials. To increase the upper limit two or more interferometers 

are placed in series or the light passes through the same interferometer more than 

once [47]. The optical system in the interferometer used in the present experiments 

is shown in Figure 3.2. It can be used in a triple-pass tandem mode for a total of six 

passes and a contrast of the order 109 [46]. 

TRANSLATION 
STAGE 

J DIRECTION OF MOVEMENT 

L1 

Figure 3.2: The principle of the tandem scan. F Pl and F P2 - Fabry-Perot interfer­
ometers, L1, L 2 - optical spacing between mirrors, a:- angle between two Fabry-Perot 
interferometers. [54] after. 

To scan the transmitted wavelength it is necessary to increase the optical spac-

ings L1 and L2 (see Figure 3.2) by values 6L1 and 6L2 respectively such that 

(3.5) 
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The condition stated by Equation (3.5) has to be fulfilled as wavelength is scanned. 

The design used in the interferometer is based on the concept of a scanning stage, as 

shown in the Figure 3.2. The spacings of the mirrors are set so that a movement of the 

stage would bring both sets from simultaneous contact when £ 1 = 0 to the spacings 

of £ 1 and £ 1 cos e. The first Fabry-Perot interferometer F P I1 is set perpendicularly 

to the direction of stage movement. One mirror is located on the stage, the other is 

fixed on a separate platform. The second F P 12 is mounted with its optical axis at 

an angle a to the direction of the scan. One of the mirrors is on the scanning stage, 

the other is on an device which allows small translation of the mirror for adjustment. 

This design, apart from having large scan range, results in a tilt-free and highly linear 

scan [47]. In addition, it satisfies the criteria of static and dynamic synchronization. 

Static synchronization means that spacings of the two interferometers F P I1 and 

F P 12 do not vary form their correct relative value by more than 2 nm. Dynamic 

synchronization requires that the correct relative spacings are maintained over a scan 

of several micrometers [55]. 

3.2 Gas Handling System 

The gas handling system, shown in Figure 3.3, was built to investigate the 

Brillouin light scattering from the sample in various gaseous environments. Gas 

was admitted to the system through the valve Vl. The pressure inside the system is 

monitored by the pressure gauge. The most important part of the system, the sample 
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holder is shown in the Figure 3.4. It is made primarily of brass and allows the sample 

to be surrounded by any gas up to pressures of ,...., 1 atm. The sample is mounted on 

a rotating stage that allows one to freely set the incidence angle between 0° and 90°. 

The only limitation to the choice of the angle of incidence arises from the length of 

the window on the holder. Therefore practically the incidence angle was able to be 

set between 20° and 70°. A rotary vacuum pump was used to evacuate the system to 

a pressure of a few J.Lm H g. 

PRESSURE GAUGE 

VACUUM PUMP 

SAMPLE HOLDER 

GASN ACUUM INLET 

Figure 3.3: Gas handling system. 

3.3 Sample Preparation 

The carbon nanotube arrays used in this work were produced by J.M. Xu and 

coworkers at Brown University [28]. They were fabricated by pyrolysis (thermal de-
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alumina self-organize into a hexagonal array. The pores are oriented vertically and 

parallel to one another. The array is highly ordered and defect-free over large areas. 

The pore diameters, density and length in the hexagonal array can be controlled by 

the variation of the anodization conditions. This array acts as a template for carbon 

nanotube formation. The next stage in the process is the electrochemical deposition 

of cobalt in the bottom of the pores. Cobalt serves as a catalyst. To allow the array 

of nanotubes to grow the catalyst is reduced by heating the template with cobalt 

in a tube furnace at a temperature of 600° C under the CO flow for 4 - 5 h. The 

flow rate is 100 cm3 /min. After this, the CO is replaced by a mixture of 10% C2H2 

(acetylene) in nitrogen at the same flow rate. Typically, the C2H2 flow is kept for 2 h 

at a temperature of 650° C. The samples are then annealed in nitrogen at the same 

temperature for 15 h. 

3.4 Samples 

Schematic pictures of all the samples studied are presented in Figure 3.5. Two 

carbon nanotube arrays and two samples representing intermediate stages in fabrica­

tion process were investigated. The latter two were used to help distinguish between 

Brlillouin peaks originating from nanotube array and those from alumina template. 

The samples representing initial stages of the production process, alumina tem­

plates, were investigated in order to complete the study of carbon nanotube arrays. 
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The first one, labeled T - 519, is the result of the first stage of production. It is 

an anodized alumina template with holes arranged in close-packed hexagonal array. 

The second sample that was examined, T- 519a, was an annealed alumina template 

with holes. The sample referred to as C NT - 0 is a carbon nanotube array formed 

on an anodized alumina template with the top of the nanotubes flush with the top 

of the alumina template. The sample called CNT- 2 is also a carbon nanotubes 

array formed on an anodized alumina template but with the length of the nanotubes 

exposed by etching the alumina matrix with a mixture of chromic and phosphoric 

acid. The total length of the nanotubes occupying the pores in the alumina is 6 J.Lm, 

200 - 300 nm of which protrudes above the surface of the template. This sample was 

also annealed with an Ar+ laser at a power of 4 W for 5 minutes to reduce brittleness. 

A scanning electron microscope image of an array of multi-walled carbon nan­

otubes (sample referred to as CNT-2) is presented in Figure 3.6. It can be seen that 

all of the nanotubes in the array are parallel to one another and are oriented perpen­

dicularly to the template, forming A close-packed hexagonal array. All of them are 

open-ended and of the comparable length and diameter. The mean outer diameter of 

an individual tube, read from the SEM image is""' 50 nm. 
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Chapter 4 

Results and Discussion 

All Brillouin scattering experiments were made for a finite range of 08 centered 

around ei (in other words in 180° backscattering geometry [47]). Unless specified 

otherwise, the experimental conditions were as follows: room temperature("' 293K), 

"'9 h collection time (50000) scans, incident beam power of 40 mW and the incident 

light polarized in the plane of incidence. 

As was mentioned earlier, the samples were surrounded by various gases to study 

the influence of the environment on the Brillouin spectrum of carbon nanotube arrays 

(i.e., the presence of the gas might alter the frequencies of the vibrational modes of 

the nanotubes). The molecular masses and polarizabilities (proportionality factor 

between the dipole moment induced in an atom, molecule, or a particle and the 

inducing electric or magnetic field [57]) of these gases are summarized in Table 4.1. 

The first of the investigated samples was an ordered carbon nanotube array 

with "' 5% of the total length of the nanotubes protruding above the surface of the 
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Table 4.1: Masses and polarizabilities of the gases used as environments [58]. 

Gas Mass Polarizability 
[lo-3kg/mol] [10-23cm3] 

Vacuum 0 -

H2 2.0158 0.804 
CH4 16.04 2.593 
Air 28.89019 1.74 
Ar 39.948 1.641 
Kr 83.8 2.484 

CF4 87.98612 3.838 
C2Fa 137.98418 6.54 
SF a 146.05 6.82 

alumina template (CNT- 2). Brillouin spectra at an FSR from 50 to 8 GHz were 

collected in vacuum and various gaseous environments to investigate the effect of gas 

on the Brillouin spectra of carbon nanotube arrays and therefore on the elastic prop-

erties of the array. Additionally Brillouin spectra in air and vacuum were collected 

from a control samples: (i) non-annealed alumina template with holes arranged in 

a hexagonal, close-packed array (T- 519), (ii} an annealed alumina template with 

holes (T- 519a) and (iii} highly-ordered carbon nanotube array with the top of the 

nanotubes flush with the surface of the alumina template (CNT- 0). The latter 

three samples were studied to aid in the determination of the origin of the modes 

observed in the spectra collected from C NT - 2. 
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4.1 Spectra collected at an FSR of 50 GHz 

4.1.1 Carbon nanotube array with 200 - 300 nm of the nan­

otubes protruding above the alumina surface 

A typical Brillouin spectrum of C NT - 2 collected at an F S R of 50 G Hz is 

presented in Figure 4.1. It was collected in air with a 60° angle of incidence. Analysis 

of this spectrum showed two peaks, one at around 6 GHz (assigned the label B6 ) 

and one at 32 G Hz ( B 32). The latter peak was found to originate from the cover slip 

serving as a window on the sample holder (the sample and window were located very 

close to one another) and therefore will not be discussed further. 

The investigation of the data was focused on the region where the peak labeled 

as B6 was located. In Figure 4.2 the Brillouin spectra collected from C NT - 2 in 

various gases with ei = 30° and ei = 60° are compared. When the incident angle ei 

was set to 60° the peak observed at B6 "' 6 G Hz was found to be very broad and 

of low intensity. Fitting a single Lorentzian to peak B6 in the spectrum collected in 

air resulted in a low value of the correlation coefficient and therefore the fit was not 

acceptable. Based on this result the presence of two different peaks was suspected. 

This prediction could not be confirmed without doubt as the peak resolution is not 

sufficient. The same phenomenon was observed when spectra of C NT - 2 in other 

gases (apart from spectra collected in H 2 environment) and in vacuum were analyzed. 

With the change of the incident angle ei the changes in intensities and frequency shifts 
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Figure 4.1: Brillouin spectrum of CNT- 2 at an FSR of 50 GHz in air with a 60° 
angle of incidence. C - elastically scattered light, G - ghosts, B6 , B 32 - Brillouin 
peaks. 

allow one to distinguish two separate peaks at frequency shifts of f'oJ 5 G Hz and f'oJ 7 

GHz, labeled B5 and B 7 , respectively. 

As can be seen in Fig 4.2, the spectra from CNT- 2 in most of the gases 

and vacuum do not differ from one another, especially with (}i = 30°. The only 

exception, as already mentioned, is the spectrum collected from CNT-2 in H2 , where 

the peak B 5 is more intense. The maximum intensity of the peaks decreases with 

increasing value of (}i which makes resolution of two peaks impossible when (}i = 60° 

and caused the ambiguity in determination of the number of peaks observed. What is 

more, the frequency shift of the peak B7 varies depending on the gas surrounding the 
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Figure 4.2: Brillouin spectra of C NT- 2 at an F S R of 50 G Hz in various gases with 
a 30° angle of incidence (top) and 60° angle of incidence (bottom). 
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sample. The difference in the shape and intensity of B5 and B7 in the spectrum from 

C NT- 2 while surrounded by H 2 is especially well seen when ei is 60°. The detailed 

analysis of spectra from C NT - 2 in various gases is presented below. The integrated 

intensities, frequency shifts, FW H M and maximum intensities of the peaks B5 and 

B7 in C NT- 2 with different angles of incidence and in various gaseous environments 

are summarized in Table 4.2. The values were obtained by averaging the Stokes and 

anti-Stokes data. The uncertainty in these values is simply the standard deviation. 

The electronic properties of the nanotubes were reported to be affected by cer­

tain gases surrounding the sample. 0 2 is found to be adsorbed by nanotubes changing 

their resistance [18], [22] and transforming small-gap semiconducting nanotubes into 

metallic ones [19], [20]. N2 and He change the resistance of the nanotubes, however 

the exposure to these gases influences the electronic properties less significantly than 

in case of 0 2 [22]. H2 is also easily adsorbed [23], [24] and can be stored inside the 

tubes. To examine whether the Brillouin spectrum, and hence the elastic properties, 

exhibit any sort of sensitivity to the gas to which they are exposed the set of gases of 

various masses and polarizabilities were chosen. The reference spectra were collected 

from the sample placed in vacuum. These spectra were collected with the incident an­

gle ranging from 30° to 70°. This set of experiments allows one to determine whether 

the observed modes are of surface or bulk character as well as permits estimation of 

phonon velocities. The surface mode velocity is expected to exhibit the linear depen-

dance on the sin ei according to Equation (2.28) whereas the velocities of bulk modes 
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Table 4.2: Integrated intensities, frequency shifts, FW H M and maximum intensities 
of the peaks B5 and B7 in C NT - 2 in various gaseous environments. 

Integrated Frequency Maximum 
Gas Bi ej Intensity Shift FWHM Intensity 

[OJ [arb.units x GHz [GHz] [GHz] [arb. units 
x103

] x102 ] 

Bs 30 0.60 ± 0.31 5.55 ± 0.30 3.50 ± 0.09 1.08 ± 0.03 
40 0.20 ± 0.05 5.02 ± 0.28 2.21 ± 0.53 0.57 ± 0.02 

Vac. B1 30 0.91 ± 0.02 7.55 ± 0.33 1.68 ± 0.04 3.45 ± 0.01 
40 0.99 ± 0.01 7.28 ± 0.36 2.57 ± 0.04 2.44 ± 0.04 
50 1.04 ± 0.01 6.74 ± 0.34 2.79 ± 0.08 2.38 ± 0.03 
60 0.61 ± 0.02 6.69 ± 0.31 3.51 ± 0.19 1.11 ± 0.01 

Bs 30 4.57 ± 0.03 5.40 ± 0.31 3.07 ± 0.41 0.96 ± 0.07 
40 0.61 ± 0.18 5.49 ± 0.24 4.20 ± 0.16 0.93 ± 0.27 

Air B1 30 0.94 ± 0.02 7.73 ± 0.34 1.85 ± 0.04 3.22 ± 0.03 
40 0.79 ± 0.09 7.27 ± 0.26 2.15 ± 0.13 2.29 ± 0.18 
50 1.06 ± 0.03 6.79 ± 0.37 3.08 ± 0.04 2.50 ± 0.27 
60 0.10 ± 0.01 6.22 ± 0.30 2.46 ± 0.04 0.30 ± 0.04 

Bs 30 0.46 ± 0.01 5.16 ± 0.26 2.75 ± 0.01 1.06 ± 0.03 
40 0.49 ± 0.13 5.08 ± 0.23 4.22 ± 0.80 0.73 ± 0.06 

Ar B1 30 0.85 ± 0.01 7.56 ± 0.30 1.85 ± 0.02 2.94 ± 0.02 
40 0.79 ± 0.6 7.38 ± 0.30 2.80 ± 0.08 1.79 ± 0.08 
50 0.99 ± 0.02 6.72 ± 0.33 3.12 ± 0.04 2.01 ± 0.01 
60 0.66 ± 0.02 6.48 ± 0.33 3.29 ± 0.06 1.24 ± 0.07 

Bs 30 0.58 ± 0.02 5.48 ± 0.27 3.47 ± 0.23 107±3 
40 8.86 ± 0.01 6.31 ± 0.45 3.72 ± 0.11 152 ± 6 

Kr B1 30 7.49 ± 0.04 7.95 ± 0.36 1.57 ± 0.03 3.04 ± 0.09 
40 0.38 ± 0.01 7.78 ± 0.36 1.79 ± 0.03 1.36 ± 0.06 
50 0.84 ± 0.07 6.73 ± 0.33 3.07 ± 0.35 1.75 ± 0.06 
60 0.74 ± 0.01 6.58 ± 0.37 3.24 ± 0.08 1.45 ± 0.02 

Bs 30 0.49 ± 0.07 5.46 ± 0.28 3.04 ± 0.43 1.02 ± 0.01 
40 0.87 ± 0.08 6.48 ± 0.46 3.48 ± 0.06 1.60 ± 0.12 
50 0.83 ± 0.08 6.48 ± 0.32 3.50 ± 0.12 1.58 ± 0.10 

CF4 
B1 30 0.91 ± 0.03 7.86 ± 0.38 1.67 ± 0.01 3.45 ± 0.10 

40 0.27 ± 0.03 7.82 ± 0.37 1.36 ± 0.06 1.25 ± 0.09 
50 0.29 ± 0.03 7.82 ± 0.24 1.40 ± 0.06 1.29 ± 0.09 

Bs 30 0.56 ± 0.01 5.38 ± 0.29 3.13 ± 0.05 114±4 
50 0.80 ± 0.02 6.09 ± 0.28 2.88 ± 0.08 1.76 ± 0.01 
60 0.52 ± 0.01 6.09 ± 0.42 2.89 ± 0.01 1.14 ± 0.01 

SF6 
B1 30 0.85 ± 0.02 7.64 ± 0.38 1.85 ± 0.01 2.92 ± 0.09 

50 0.25 ± 0.03 7.33 ± 0.35 1.09 ± 0.11 1.43 ± 0.04 
60 0.04 ± 0.02 7.45 ± 0.33 0.66 ± 0.28 0.41 ± 0.05 
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are independent of the angle of incidence. 
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Figure 4.3: Brillouin spectra of CNT- 2 at an FSR of 50 GHz in vacuum with 
different angles of incidence (as indicated). 

As can be seen in Figure 4.3, the maximum intensity of the peak B7 decreases 

with increasing angle of incidence so that no peaks can be distinguished when the 

angle of incidence is 70°. An increase of the peak's FW H M is observed when ei is 

increased. This is probably an effect of the overlapping of the two peaks which in 

spectra collected with higher angle of incidence prevents the resolution of B5 • Because 

of that, the integrated intensity cannot really serve as a useful piece of information. 

The peak B5 could only be resolved for the two lowest angles of incidence and the 

integrated intensity is associated with a high uncertainty for the spectrum collected 

with a 40° angle of incidence. 
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Figure 4.4 shows the dependence of the frequency shift of peaks B5 and B7 on 

the sin ei. The frequency shift for the peak B7 exhibits the same trend of decreasing 

frequency shift with increasing ei. Having only two values (see Table 4.2) for the 

frequency shift of the peak B5 means that no trend can be specified. 

a~~~~~~~~~~~ 
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Figure 4.4: Plot of frequency shifts of peaks B5 and B7 (as indicated) versus the sin ei 
in vacuum. 

In Figure 4.5 spectra collected in air at an F S R of 50 G Hz with the five differ-

ent angles of incidence varying from 30° to 70° are compared. With the lower angles 

of incidence (Oi = 30° and ei = 40°) the presence of two peaks of different intensities 

is evident. Peak B 7 is of higher maximum intensity, and its intensity decreases with 

increasing angle of incidence but there is no obvious trend. In the spectra collected 
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with ei = 50° and ei = 60° the resolving of the two peaks is impossible due to the 

overlapping and decrease in intensity. 
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Figure 4.5: Brillouin spectra of carbon nanotube array at an FSR of 50 GHz in air 
with different angles of incidence (as indicated). 

The trend in angular dependence of the frequency shifts of peaks B7 and B5 is 

similar to that observed in vacuum (Figure 4.4). The frequency shift of B7 decreases 

with increasing angle of incidence. The value of frequency shift for B7 for ei = 30° is 

20% larger than that obtained for ei = 60°. This means that this peak is not due to a 

surface mode since the frequency shift of such a mode increases with increasing angle 

of incidence (see Equation 2.28). It could, however, be due to a bulk acoustic mode. 

The other peak (B5 ) can be observed only in two spectra, corresponding to the lowest 

angles of incidence and its frequency shift and maximum intensity are independent 
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of ()i· The fact that the frequency shift of peak B- 5 is independent on the angle of 

incidence suggests that this peak could result from a bulk mode. 

The spectra of C NT - 2 surrounded by the rare gases Ar and K r and collected 

for various angles of incidence are presented in Figure 4.6. The plot of frequency shifts 

versus the sinBi is presented in Figure 4.7. The behavior of the peak B7 is exactly the 

same in both gases - the frequency shift decreases with increasing angle of incidence 

leading eventually to the overlap of both peaks and resulting in the difficulties of 

resolving the peak labeled as B5 . This trend is the same as described for the other 

spectra and in this cases is even more evident. The broadening of the peak B7 with 

increasing angle of incidence is observed both in the spectra collected from the carbon 

nanotube array in Kr environment and in Ar. When the sample is surrounded by 

Kr, the frequency shift for the peak labeled B5 with ()i = 40° is significantly higher. 

The problem with resolving both peaks with increasing angle of incidence results in 

no confirmation whether the integrated intensity is a significant feature. 
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Figure 4.6: Comparison of spectra of carbon nanotube array at an FSR of 50 GHz 
in Ar (top) and in Kr (bottom) with different angles of incidence (as indicated). 
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Figure 4. 7: Plot of frequency shifts of peaks B5 and B7 (as indicated) versus the sin Oi 
in Ar and Kr. 

Brillouin spectra were also collected from C NT - 2 surrounded by CF4 and 

SF6 , as presented in Figures 4.8 and 4.9. The integrated intensities, frequency shifts, 

FW H M and maximum intensities are summarized in Table 4.2. 

Tetrafluoromethane (CF4 ) is a gas of molecular mass comparable to that of K r 

but of higher polarizability (see Table 4.1). Unlike in the case of spectra of CNT- 2 

in air, rare gases and vacuum, the frequency shift of peak B7 is independent of Oi. The 

frequency shift of peak B5 varies with Oi, but the character of the angular dependence 

is unclear. Both peaks are clearly seen up to an angle of incidence of 50°, and no 

increase of the FW H Min any of the peaks is observed with increasing Oi. 
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Figure 4.8: Brillouin spectra of carbon nanotube array at an FSR of 50 GHz in CF4 

with different angles of incidence (as indicated) . 
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Figure 4.9: Brillouin spectra of carbon nanotube array at an FSR of 50 GHz in SF6 

with different angles of incidence (as indicated). 
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Sulfur hexafluoride (SF6 ) is a gas of mass and polarizability significantly higher 

than any other gas discussed so far (see Table 4.1). The plot of angular dependence 

of frequency shifts is shown in Figure 4.10. As for CF4 , the peak B7 seems to remain 

at a fixed frequency shift whereas the position of the inner peak varies (see Table 4.2). 

This behavior of B5 resembles that observed in Kr (Figure 4.7) and in CF4 , which 

could suggest that it is characteristic for heavier gases. When the carbon nanotube 

array is in SF6 both peaks are visible up to 60° angle of incidence. The FW H M 

of B 7 decreases significantly with increasing ei - the value of FW H M for spectrum 

collected with 60° angle of incidence is equal to "' 30% of the value obtained with 

8 

0 

• 

Sin ei 

Figure 4.10: Plot of frequency shifts of peaks B5 and B7 (as indicated) versus the 
sinOi in SF6. 
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An interesting and unexpected feature for the spectra collected when C NT- 2 

is in S F6 is the intensity of the peaks B5 and B7 when the angle of incidence is 40° 

(see Figure 4.9). The data for this spectrum is not obtained as the profile of the 

peak neither resembles a Lorentzian function in the region of interest nor can it be 

distinguished as multiple peaks. This feature does not seem to be of a significance 

- probably results from the choice of spot on the sample or imperfections in the 

alignment of the interferometer. 

0 

Frequency Shift [GHz] 

Figure 4.11: Brillouin spectra of carbon nanotube array at an FSR of 50 GHz in 
hydrogen with different angles of incidence (as indicated). 

Figure 4.11 shows spectra collected from CNT- 2 when surrounded by H2 • 

The values of integrated intensity, frequency shift, FW H M and maximum intensity 

are summarized in Table 4.3. Spectra collected from the carbon nanotube array in the 

H 2 environment are qualitatively different from other spectra presented here. Two 
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overlapping peaks are present, one of which (B5) is very close to the central elastic 

peak. The shoulder of elastic peak causes the inner peak to be cut off and the fitting 

procedure results in high uncertainties associated with the evaluated parameters. As 

in other gases, the higher the angle of incidence the less distinguishable are the peaks. 

The frequency shifts of both B5 and B7 peaks decrease with the increasing angle of 

incidence as can be seen in Figure 4.12. 

Table 4.3: Integrated intensities, frequency shifts, FW H M and maximum intensities 
of the peaks of CNT- 2 in H 2 • 

Gas Bi (}i Intensity Shift FWHM Intensity 
[0] [arb.units x GHz [GHz] [GHz] [arb. units 

x103
] x102 ] 

30 2.73 ± 0.4 4.58 ± 0.34 5.11 ± 0.04 3.40 ± 0.02 
40 B5 1.77 ± 0.84 4.27 ± 0.46 3.64 ± 1.30 2.95 ± 0.42 
50 1.19 ± 0.28 3.59 ± 0.14 3.08 ± 0.62 2.44 ± 0.08 

H2 

30 0.74 ± 0.01 7.95 ± 0.32 1.65 ± 0.01 2.85 ± 0.01 
40 B1 1.51 ± 0.43 7.14 ± 0.17 3.54 ± 0.52 2.65 ± 0.39 
50 1.83 ± 0.01 6.43 ± 0.35 3.81 ± 0.18 3.07 ± 0.17 
60 1.22 ± 0.23 6.33 ± 0.54 3.43 ± 0.26 2.25 ± 0.25 

This trend in only observed when the sample is surrounded by H 2 • What is more 

the label B5 attached to the inner peak is more symbolic as the largest frequency shift 

at (}i = 30° is less that 5 GHz, as presented in Table 4.3. The maximum intensities 

of the peaks are at least twice as big as those evaluated for CNT- 2 in vacuum. 

Apart from the difference noticed between 30° and 40° in the width of B5 and B7 , the 

FW H M seems to be independent of (}i· This difference is probably due to the fact 

that when the angle of incidence is 30° the peaks overlap and the process of resolving 

is difficult. The ratio of the integrated intensities of the B7 and B5 seems to increase 
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with increasing angle of incidence. Unfortunately, the values of integrated intensity 

obtained for ei = 40° are associated with large uncertainty value. Also, only three 

data points are available because peak B5 could not be resolved and analyzed in case 
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Figure 4.12: Plot of frequency shifts of peaks B5 and B7 (as indicated) versus the 
sinBi in H2. 

The choice of investigating the behavior of Brillouin spectra when carbon nan-

otube arrays are exposed to different gases was justified by contradictory reports 

about the gas sensitivity of carbon nanotubes. As previously discussed in the "Intra-

duction" there is no consensus among the authors [4], [19] - [22] about the influence 

of the certain gases on the properties of carbon nanotubes. The presence of a fluid 

around the microtubules, the counterparts of the nanotubes, can lead to the qual-
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itative change in the dispersion relation [59]. The coupling between shell and the 

fluid changes the frequencies of vibrations of the tubes and the frequency dependence 

of the phonon vector. Although the model proposed in the cited work is presented 

for microtubules, both materials can be modeled as cylindrical shells [60]. The sim­

ilarities are significant and the prediction that the presence of the fluid around the 

nanotubes can affect not only their electrical but also elastic properties seems worth 

further investigations. 

The spectrum that is under absolutely no influence of any gas is the one collected 

in vacuum. The characteristic features of this spectrum are: no angular dependence 

of the frequency shift of peak B5 and decreasing the frequency shift of peak B7 with 

the increasing angle of incidence. Such behavior could suggest that these peaks repre­

sent bulk modes in the carbon nanotube array. The same angular dependence of the 

frequency shift of peaks B5 and B7 as described for CNT- 2 in vacuum is observed 

in the rare gases and in air. The value of the frequency shift of B5 remains the same 

while carbon nanotubes are exposed to these gases. This behavior could suggest that 

neither air nor rare gases influence the elastic properties of carbon nanotubes. The 

only exception that is noticed while evaluating the frequency shifts is the change of 

the frequency shift of the inner peak in a K r environment. As the only difference 

between two rare gases, Ar and K r, that may be meaningful in this study, is their 

molecular mass (see Table 4.1), the noticed variation in angular dependence of fre­

quency shift may result from this. One data point is, however, not enough to draw a 
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conclusion. 

The same shape of the spectra (i.e. two peaks at frequency shift of 5 and 7 G Hz 

of intensities that decrease with increasing angle of incidence), but slightly different 

behavior of the peaks were noticed during investigation of the modes in heavier gases 

of higher polarizability: the shift of the peak B5 does not change while the B7 one 

exhibits an increase of frequency shift with increasing angle of incidence. The increase 

is not big enough to state that the peak B7 can be classified as a surface mode. The 

behavior of the frequency shift of peaks B5 and B7 when C NT - 2 is surrounded by 

CF4 and S F6 could confirm the prediction that the mass of the gas creating the envi­

ronment around the carbon nanotube array may influence the angular dependence of 

the frequency shifts. As can be seen in Figure 4.10 the frequency shift is independent 

of sin ei and hence B5 and B7 could be bulk modes. 

The spectrum collected from the carbon nanotube array in H2 is qualitatively 

different (i.e., significantly different values of the frequency shift of peak B 5 , its an­

gular dependency and higher intensity). No linear dependence on sinOi suggests that 

both B5 and B7 are bulk modes although the presence of the H2 increases the inten­

sity of the peaks and decreases the values of frequency shifts. These features could 

suggest that H2 does not leave the elastic properties of nanotubes unaffected. This 

observation may lead to agreement with theories that suggest the adsorption and 

chemisorption of hydrogen to the nanotubes [61] and its effect on the properties of 

the tubes. We may observe the storage of hydrogen inside the tubes [23] or adsorption 



53 

of hydrogen molecules on the surface of the tubes. As all experiments were performed 

in room temperature it is unlikely that chemisorption occurred. None of the gases 

permanently affected the C NT - 2 sample as the spectrum collected in vacuum after 

C NT - 2 was exposed to various gases is the same as one collected before. The 

subject of the gas sensitivity of nanotubes is still an area of active research. 

4.1.2 Carbon nanotube array with nanotubes flush with alu-

mina surface 

The spectra of carbon nanotube arrays with the top of the nanotubes flush 

with the top surface of the alumina template were collected at an FSR of 50 GHz for 

twice as long as those of carbon nanotubes with 200-300 nm exposed (100000 scans), 

as the response signal was very low and after 50000 scans the peaks were of too low 

intensity to be positively identified. Even in the 100000-scan spectra, the peaks are 

still very weak but their presence is noted on both sides of the central elastic peak 

in some of them. This confirms that they are Brillouin doublets. As these data were 

collected as a supplementary to the research of C NT - 2 only two environments (air 

and vacuum) were investigated. 

The sample (CNT-0) was exposed to vacuum (Figure 4.13 top) and air (Figure 

4.13 bottom). The obtained Brillouin spectra were not significantly different from 

each other, apart from the lower and less scattered background observed in spectra 

collected when C NT - 0 was surrounded by vacuum. Only two peaks are observed 
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Figure 4.13: The spectra of C NT- 0 in vacuum (top) and in air (bottom) at an FRS 
of 50 GHz and with various angles of incidence (as indicated). 
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throughout all range of incident angles: one at a frequency shift of "' 11 G Hz on the 

spectra with higher incidence angle and one around 40 G Hz in the spectrum collected 

at with (}i = 30°. The peaks are labeled B 11 and B40 respectively. Table 4.4 collects 

the values of frequency shifts for the modes seen in CNT- 0 sample. 

Table 4.4: Frequency shifts for C NT - 0 in vacuum. 

(}i Bn ± 8Bn B4o ± 8B4o 
[0] [GHz] [GHz] 
30 - 41.27 ± 0.29 
40 8.46 ± 0.11 -

50 10.15 ± 0.27 -

60 11.66 ± 0.24 -

The surface mode observed in C NT - 0 was identified as originating from the 

alumina template with nanotubes in holes as was not observed in any of the spectra 

collected form C NT - 2. The mode at constant frequency shift of "' 40 G Hz that 

is observed only with the incidence angle of 30° was more confusing. The work by 

C.E. Bottani [34] reports the existence of a mode of frequency shift comparable to 

this one. The experimental conditions described in cited paper are very different from 

used in the current work. In the present experiment in CNT- 0 the multi-wall tubes 

are flush with the surface of the template and no length of the tubes are protruding, 

whereas in the cited work the outer sides of single wall nanotubes were scattering the 

light. The only thing that is the same for both experiments is an angle between tube 

axis and incident light. What is more, there is no evidence of a mode at "' 40 G Hz 

in the spectra collected for C NT - 2. 
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4.1.3 Alumina templates with holes 

Two alumina templates were investigated in order to complete the study of 

carbon nanotube arrays. The first one (T- 519) is an alumina template with holes 

arranged in close packed hexagonal array. The second sample that was studied, 

T- 519a, was an annealed alumina template with holes. All spectra were collected 

at an FSR of 50 GHz. 

A sample Brillouin spectrum collected with a 60° angle of incidence is presented in 

Figure 4.14. Three peaks can be distinguished: one well defined around 12 GHz, one 

around 23 GHz and one broad and hard to identify at rv 41 GHz. The exact values 

of frequency shifts obtained from this spectrum are summarized in the Table 4.5. 

108 ~-r--~-r--~~--~~--~~--~ 
I .. 

107 I 
•• .. . 
r "1 .. . 

-40 20 40 

Frequency Shift [GHz] 

Figure 4.14: Brillouin spectra ofT- 519 and T- 519a at an FSR of 50 GHz and 
with a 60° angle of incidence. 
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Table 4.5: Frequency shifts for alumina template with holes (T-519). 

(); Ah±8Ah Ab±8Ab Al3 ± 8Al3 Al4 ± 8Al4 
[0] [GHz] [GHz] [GHz] [GHz] 
20 5.27 ± 0.53 - - 42.80 ± 0.26 
30 6.77 ± 0.27 11.46± 0.11 23.35 ± 0.40 42.07 ± 0.28 
40 8.91 ± 0.24 15.27 ± 0.25 23.42 ± 0.23 43.42 ± 0.09 
50 10.66 ± 0.23 - 23.40 ± 0.24 42.77 ± 0.20 
60 11.99 ± 0.22 - 23.34 ± 0.24 41.41 ± 0.41 

In the case of the annealed alumina template the spectra were expected to be 

similar to those collected from T- 519. No Brillouin peaks were observed in this case, 

however, due to an intense background (see Figure 4.14). This is the reason that none 

of the peaks can be identified with certainty. The origin of such a high background 

might be the reflectivity of the sample or it might be the result of undesirable changes 

in the properties of the material caused by the annealing process (e.g. creation of 

grains on the surface of the sample). 

To investigate the observed peaks the spectra with different incident angles were 

collected and are presented in the Figure 4.15. When the value of the incident angle 

was changed to 30° and 40° in addition to those peaks mentioned above, one more 

peak was observed. Its presence can be noticed with the incident angle of 50° but its 

intensity is not high enough to obtain a credible fit. When the angle of incidence is 

set to be 20° the peak is too close to the laser line and cannot be distinguished. With 

the incidence angle of 30° the frequency shift of the peak is determined to be 11.46 

G Hz. As the only parameters of interest are frequency shifts of the modes and their 

angular dependence, these data are collected and presented in Table 4.5. 
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Figure 4.15: Brillouin spectra of the alumina template (T-519) at an FSR of 50 GHz 
and with various angles of incidence (as indicated). 

The mode of the lowest frequency shift ( Ah) behaves like a surface mode. The 

plot of frequency shift versus sinOi is shown in Figure 4.16. It is a straight line of the 

slope equal to 13.91 GHz. Using the Equation (2.28) the velocity of the surface mode 

was found to be 3700 ~- The mode observed only in two spectra (Al2 ) exhibits the 

characteristics of a surface mode as well. The slope of the trend line was determined 

to be 23.4 G Hz with an R2 value of 0.98. This value of the slope would, according to 

Equation (2.28), give a surface velocity of"" 6200 m/ s. This value of surface phonon 

velocity is much higher that those of most materials (comparable to surface phonon 

velocity of hard supported layers [62]). If one assumes that this peak is not due to 

a surface mode and the frequency shift for ei = 0 is not 0 G Hz, the line of best fit 
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crosses the frequency shift axis at -1.9 GHz. This value of the intercept is much 

larger than the estimated uncertainty in frequency shift. This behavior suggests the 

surface character of the phonon. To figure out the origin of this excitation more data 

points would be desired. The frequency shift of Al3 and Al4 are independent of sin ()i· 

This suggests they may be due to bulk modes. 
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Figure 4.16: The angular dependence of the frequency shifts ofT- 519. 

The intensities of the individual peaks are function of the incident angle. The 

position of the peaks and their intensities vary but under none of the experimental 

conditions do the spectra resemble those obtained from C NT - 2 nor are any of the 

frequency shifts similar. This allows us to make a statement that none of the modes 
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described in Section 4.1.1 is solely due to the alumina substrate. 

The values of the frequency shifts of the peaks observed in the spectra collected 

from CNT- 0 (see Table 4.4) are comparable to those presented in Table 4.5. The 

mode of smaller frequency shift behaves like the surface mode in alumina, the other 

one can be identified as the mode called Al4 in spectra collected from T- 519 (see 

Figure 4.16). The latter one is observed in the alumina template with holes with 

intensity decreasing with the increasing angle of incidence, which may explain why in 

spectra collected from C NT - 0 it can be observed only when ()i is of 30° and is not 

present with higher incidence angles. These arguments lead to the conclusion that in 

our case the peak of the frequency shift of 41.27 G Hz observed in spectra collected 

from C NT - 0 can be taken as the mode originating from alumina not from the 

carbon nanotubes. This allows us to draw the conclusion that both peaks observed 

in the spectra collected from CNT- 0 originate due to the alumina template. The 

Brillouin spectra collected for C NT- 0 in certain regions of frequency resembles those 

collected from the alumina template T- 519, although macroscopically the samples 

look very different and represent stages of carbon nanotube array production that do 

not follow each other. The broadening due to the opacity changes the profile of the 

spectrum and make some peaks invisible, still some characteristics are common. 

To finally confirm all of the above conclusions a Brillouin spectrum from an 

annealed alumina template (T- 519a) was collected. Unfortunately no peaks were 

observed because of a high background. 
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4.2 Spectra collected with smaller FSR. 

The motivation for collecting a spectrum over smaller frequency range was to 

have a closer look at peaks B5 and B7 . A Brillouin spectrum collected at an F S R 

of 12 GHz is presented in Figure 4.17. No new features concerning B5 and B7 were 

noticed. While analyzing this spectrum some additional excitations were observed at 

a frequency shift of around 1 G Hz. Their intensities were significantly larger than 

the intensities of the peak of initial interest (5-7 GHz). This is well illustrated in 

Figure 4.17. 
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Figure 4.17: A typical spectrum of the CNT- 2 at an FSR of 12 GH z in air with 
a 60° angle of incidence. 

In order to study the new peaks more thoroughly, the F S R was decreased to 8 
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GH z. These spectra were collected with a smaller input pinhole. The chosen size was 

200 J.Lm instead of the 450 J-tm used in the case of the spectra collected at a higher 

F SR. The advantage of such a choice is that the peak situated close to the elastic 

peak can be better resolved. A disadvantage is that less light enters the spectrometer 

and the intensity of the peaks decreases. Therefore peaks B5 and B7 are no longer 

seen in spectra collected at 8 G Hz. 

4.2.1 Carbon nanotube array with 200- 300 nm of the nan­

otubes protruding above the alumina surface 

Figure 4.18 shows a spectrum collected from C NT- 2 in vacuum. With the air 

evacuated from the sample holder the peak labeled BouT is present. The pressure in 

the sample holder, initially close to 0 mmHg was found to be"' 30 mmHg {0.05 atm) 

at the end of the data collection time (rv 9 hours). The frequency shift, integrated 

intensity, maximum intensity and width of the peak BouT are determined assuming 

the Lorentzian profile of the peak and summarized in Table 4.6. In the Figure 4.18 

peak BouT looks deformed and does not resemble a single Lorentzian curve. Analysis 

proved that there are two peaks that are present at this region - one at the frequency 

shift of 1.32 GHz and another around 1.50 GHz (see Figure 4.18, bottom). The 

latter one was identified as originating from the laser (other longitudinal modes are 

present in the laser output but at greatly reduced intensity). These peaks appear in 

most of collected spectra and are very characteristic and easy to recognize - they are 



~ ·c: 
::J 

.e 
~ 
~ 
"ii) 
c: 
Q) 

c 

s ·c: 

1000 

800 

600 

400 

200 

0 
-3 

800 

::J 600 
..ci .... 
~ 
~400 
"ii) 
c: 
~ ..s 200 

63 

" !\ ,. 
I , \ . . " •:,. _/ \j 
. 
~ -\. __ 

-2 -1 0 1 2 3 

Frequency Shift [GHz] 

-2 -1 0 2 3 

Frequency Shift [GHz] 

Figure 4.18: Brillouin spectrum of the CNT- 2 at an FSR of 8 GHz in vacuum 
with a 60° angle of incidence (top) and the same spectrum fitted (botttom). Solid 
lines: individual peaks (BouT), dotted line: total fit of Lorenzian peaks. 
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of narrow width, the spacing between them is exactly 0. 75 G Hz and their intensity 

decreases exponentially with increasing frequency shift. Although taken into account 

while analyzing the spectra due to their effect on the shape of the BouT, they are 

ignored in further discussion. The presence of the BouT in the Brillouin spectrum 

with no presence of the gas in the holder implies that it is due to the nanotube array. 

To examine these predictions more thoroughly a set of spectra for gases characterized 

by various masses and polarizabilities (see Table 4.1) forming the nanotube array 

environment were collected. The order of application of the gases was completely 

arbitrary and is not followed in the discussion. 

A Brillouin spectrum collected in air with this FSR is presented in Figure 4.19 

(top spectrum). One set of Brillouin peaks at "" 1.3 GH z is easily observed. In 

addition at shifts < 1 G Hz there is an increased intensity relative to the background 

level suggesting the existence of another peak. On the left side the peak labeled 

BouT is not distinguished well because of a slight asymmetry in the elastic peak. The 

frequency shift, integrated intensity, maximum intensity and width of the outer peak 

BouT are determined assuming the Lorentzian profile of the peak and summarized 

in Table 4.6. A peak fitting analysis based on the presence of two peaks resulted in 

the frequency shift of peak BouT of 1.19 G Hz. The inner peak (labeled by analogy 

BIN) is determined to be of Gaussian shape (see Figure 4.19, bottom) [42] and its 

frequency shift is 0 GHz (see Table 4.7). The presence of the inner peak in air (no 

evidence of it when vacuum surrounded the CNT- 2) suggests that it originates due 
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Figure 4.19: The Brillouin spectrum of the C NT- 2 at an F S R of 8 G Hz in air with 
a 60° angle of incidence not fitted (top) and with fitting lines - dash line: Gaussia 
(BIN), solid lines: individual peaks (BouT), dotted line: total fit of Lorenzian peaks 
(bottom). 
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to the gas surrounding the nanotubes. In the case of H2 environment the inner 

peak BIN is very broad and of low maximum intensity, as shown in Figure 4.20. The 

low intensity makes a fit impossible. Comparison of the shape of spectra discussed 

so far (CNT- 2 in air, vacuum and H2) makes it evident that in all of them peak 

BouT is well defined and of larger maximum intensity than peak BJN. The maximum 

intensity of the outer peak in hydrogen has significantly changed relative to air and 

vacuum but the frequency shift is comparable with frequency shifts calculated in these 

two environments. 
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Figure 4.20: Brillouin spectrum of the carbon nanotube array at an FSR of 8 GHz 
in H2 with a 60° angle of incidence. 

In the case of spectra collected for carbon nanotubes in Ar and C H4 (Figure 

4.21 top and bottom, respectively) the frequency shifts of the outer peaks are com-
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Figure 4.21: Brillouin spectra of the CNT- 2 at an FSR of 8 GHz in Ar (top) and 
C H4 (bottom) with a 60° angle of incidence. 
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parable with those calculated and discussed above. The reasons for discussing these 

two spectra together is that they caused similar problems in fitting analysis. The 

resolution of the peaks is difficult due to the lack of a well defined border between 

them, that we can observe for gases discussed earlier. Based on the fit of a single 

Gaussian peak; the resolution of the BouT was possible despite the overlapping of 

the peaks BIN and BouT and their comparable maximum intensities. The fit for the 

spectrum of CNT- 2 in Ar is presented in Figure 4.22. All the parameters (i.e., 

maximum and integrated intensity, FW H M and frequency shift) evaluated for both 

peaks are very similar (see Table 4.6) although physical properties of the gases (mass, 

polarizability, molecular shape [58]) are different. 

The frequency shifts of the inner peak BIN in the spectrum of CNT- 2 in 

Ar and CH4 seem to be different from the expected value of 0 GH z. These spectra 

are also the ones with the highest uncertainty in area of the outer peak. Both these 

features result from the difference between the Stokes and anti-Stokes region which is 

caused by the fact that the spectra are not perfectly centered at zero (i.e. the elastic 

peak has an apparent, small. non-zero frequency shift). This systematic imperfection 

appears in every spectrum and in the cases of Ar and C H4 it is a few times larger. 

When another rare gas, K r, is used to create the environment inside the sample 

holder, the BIN peak became more intense than when it was observed in the spectrum 

of the carbon nanotubes surrounded by Ar (Figure 4.23). Additionally, a significant 

decrease in its FW H M can be observed (Table 4. 7) in comparison with the values 
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Figure 4.22: Fitted Brillouin spectrum of the CNT- 2 in Ar at an FSR of 8 GHz 
and with a 60° angle of incidence. Dash line - Gaussian line (BIN), solid lines -
individual Lorentzian peaks (BouT). 

estimated for lighter gases. The frequency shift of the inner peak is very close to zero. 

In CF4 (Figure 4.24), a gas of methane structure with fluorine atoms substi-

tuting the hydrogens, the intensity of the inner peak BIN increases while the width 

decreases when compared to the spectrum obtained from CNT- 2 in CH4 . This ob-

servation, along with the differences noticed while comparing spectra collected rom 

C NT - 2 in Ar and K r, suggests that both intensity of peak BIN and its FW H M 

depend on the mass of the gas surrounding the C NT - 2. 

In both cases the outer peak is on the shoulder of the inner one which makes analy-

sis of the less intense one complicated. However the frequency shifts of the outer peak 
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Figure 4.23: Brillouin spectrum of the CNT- 2 at an FSR of 8 GHz in Kr with a 
60° angle of incidence. 

BouT are 1.29 GHz for the nanotube array in Ar and 1.16 GHz when the sample 

is in CF4 . The latter value is lower than that obtained for gases described before 

(see Table 4.6) but the uncertainty associated with it allows one to state that it is 

comparable with all values of the frequency shifts of peak BouT presented and dis-

cussed so far. Despite the similarities there are some unique characteristics observed 

in each of the two spectra. The maximum intensities and widths of the outer peak 

BouT are significantly different which leads to the integrated intensity of the outer 

peak being a few times larger for the carbon nanotubes in CF4 while comparing to 

the spectrum collected when Kr serves as the environment. This could suggest that 

K r has a damping effect on the phonon propagating in the investigated sample. 
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Figure 4.24: Brillouin spectrum of the CNT- 2 at an FSR of 8 GHz in CF4 with 
a 60° angle of incidence. 

The trend of increasing intensity of peak BIN continues for substances of more 

complicated structure and larger mass and polarizability [58] like C2F6 and SF6 (see 

Figure 4.25). The analysis of the spectra reveals that the FW H M continue to de-

crease and no changes in the inner peak positions are observed with the increasing 

molecular mass of the gas. 

The integrated intensities, frequency shifts, FW H M and maximum intensities of 

both BouT and B 1 N peaks in each spectrum are summarized and presented in Tables 

4.6 and 4. 7 respectively. The uncertainty of these values is calculated as the stan-

dard deviation for two values. In the case of the inner peak only one value could be 

read from the spectra. As the correlation coefficient, R2
, for the theoretical Gaussian 
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Figure 4.25: Brillouin spectra of the CNT- 2 at an FSR of 8 GHz in C2F6 (top) 
and SF6 (bottom) with a 60° angle of incidence. 
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curve and experimental data, given by software, exceed the value of 0.9, the maximum 

uncertainty for the data collected for the inner peak is assumed to be about 10%. 

Table 4.6: Integrated intensities, frequency shifts, FW H M and maximum intensities 
of the peaks of the BouT in C NT - 2 

Gas Integrated Frequency FWHM Maximum 
Intensity Shift Intensity 

[arb.units x GHz] [GHz] [GHz] [arb. units] 
x102] x102] 

Vacuum 1.47 ± 0.12 1.32 ± 0.04 0.36 ± 0.02 2.57 ± 0.04 
H2 0.66 ± 0.06 1.29 ± 0.05 0.37 ± 0.03 1.12 ± 0.02 

CH4 0.83 ± 0.21 1.28 ± 0.08 0.89 ± 0.13 0.59 ± 0.06 
Air 3.23 ± 0.11 1.19 ± 0.04 0.60 ± 0.01 3.41 ± 0.05 
Ar 0.83 ± 0.14 1.29 ± 0.04 0.76 ± 0.09 0.69 ± 0.04 
Kr 0.43 ± 0.05 1.29 ± 0.06 0.40 ± 0.04 0.68 ± 0.01 

CF4 1.89 ± 0.19 1.16 ± 0.11 0.82 ± 0.08 1.45 ± 0.14 
C2F6 1.07 ± 0.01 1.23 ± 0.04 0.66 ± 0.01 1.02 ± 0.01 
SF6 1.10 ± 0.09 1.26 ± 0.05 0.39 ± 0.04 1.80 ± 0.03 

Table 4.7: Integrated intensities, frequency shifts, FW H M and maximum intensities 
of the BIN in CNT- 2 

Gas Integrated Frequency FWHM Maximum 
Intensity Shift Intensity 

[arb.units x GHz] [GHz] [GHz] [arb. units] 
x102] x102] 

Vacuum -- -- -- --
H2 -- -- -- --

CH4 3.63 -0.05 3.91 0.87 
Air 8.76 -0.09 2.60 3.17 
Ar 2.16 -0.13 2.62 0.77 
Kr 4.34 -0.03 2.15 1.90 

CF4 8.78 -0.02 1.60 5.16 
C2F6 3.535 -0.02 0.93 35.63 
SF6 27.7 -0.04 0.96 27.02 

The changes of intensity are the most significant for the inner peak, BIN as 

the ratio of the value of maximum intensity !IN in the heaviest gases, C2F6 and SF6 , 
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and the value of liN calculated in hydrogen is of the order of"' 100. The dependence 

on the molecular mass of the gas is clear (see Figure 4.26, top), the character of the 

dependence resembles an exponential function. If the natural logarithm of integrated 

intensity, h N, is plotted versus the mass of the gas the trend is approximately linear 

(presented in Figure 4.26, bottom), with an R2 value of 0.87. This peak is the one 

recognized by Young [37] as having a frequency shift of "' 0. 7 G Hz. This analysis 

was based on the assumption that two sets of Brillouin peaks (one at ,...., 0. 7 G Hz and 

one at ,...., 1.3 G Hz) resulting from phonons propagating in the nanotube array are 

observed. The difference of peak classification arises from the shape of the spectra 

near the central elastic peak. Both analyses (Lorentzian centered at ±0. 7 G Hz and 

single Gaussian centered at 0 G Hz for B 1 N) are acceptable from a statistical point 

of view. However fitting to a Gaussian consistently gives good fits whereas this is 

not always the case when a Lorentzian is fitted to the assumed peak at ±0.7 GHz. 

What is more, because of the fact that all spectra are collected in the kinetic regime, 

the presence of a Gaussian-shaped peak (and not a set of Lorentzian-shaped Brillouin 

peaks) due to the gas surrounding the carbon nanotube array is expected [63], [64]. 

The value of integrated intensity obtained for the air does not fall into the 

trend. The positions of the points and the discrepancy that cannot be ignored sug­

gests more detailed studies of the dependence of the intensity of the light scattered 

by the gas on its mass, especially from the gases of similar properties (rare gases of 

higher masses, alkanes). This issue is, however, outside the subject of this thesis. 
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Figure 4.26: Plots of the integrated intensities (top) and of the logarithm of the 
integrated intensities (bottom) of the inner peak BIN versus the molecular mass of 
the gas. 
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The values of FW H M of the inner peak BIN change with the molecular mass of 

the gas serving as the environment of C NT- 2. Comparison of the data obtained ex-

perimentally with the theoretical values calculated using Equation (2.15) is presented 

in the Table 4.8 and can be seen in the Figure 4.27. The theoretical and experimental 

values are comparable within the uncertainty range specified. 

Table 4.8: Theoretical and experimental values of FW H M of B 1 N in various gases. 

Theoretical Experimental 
Gas values values 

[GHz] [GHz] 
Vacuum 0 --

H2 9.73 --

CH4 2.94 3.91 
Air 2.57 2.60 
Ar 2.19 2.63 
Kr 1.51 2.15 

CF4 1.47 1.60 
C2F6 1.18 0.93 
SF6 1.14 0.96 

The plot of integrated intensities of peak BouT versus molecular mass of the gas 

are presented in Figure 4.28, top. No trend in the behavior of outer peak's intensity 

with changing mass of the gas surrounding the C NT - 2 is observed. Inequality of 

the values of integrated intensity obtained for substances of comparable masses but 

different polarizability ( Ar and CF4 ) suggest the sensitivity to the gas polarizability of 

the outer peak BouT· No trend can be seen while comparing the integrated intensities 

of the outer peak BouT in these and other gases as can be seen in Figure 4.28, bottom. 

Although the set of data obtained from the analyses vary, the peak BouT does not 
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Figure 4.27: Comparison of the plots of the theoretical (open dots) and experimental 
(solid dots) values of FWHM of the inner peak BIN versus the molecular mass of 
the gas. 

seem to trend with mass or polarizability of the gas. 

The inner peak is believed to originate from the gas surrounding the carbon 

nanotube array. A light scattering experiment in a typical gas probes density ftuctu-

ations of a wavelength A comparable to mean free path between collisions, I [65]. The 

Gaussian shape of the spectrum in the region near the center line is characteristic for 

the gases in the kinetic region (I« .A) [63], [64]. The change of the peak's intensity 

and the FW H M are dependent on the gas surrounding the sample. The fact that 

peak BrN completely disappears in vacuum and the comparison of the spectra of 

carbon nanotubes in air and of air itself, presented in the Figure 4.29, are arguments 
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that support this idea. The spectra overlap in the low frequency region and the shape 

and frequency shift of the peak of interest are comparable. This proof is not sufficient 

as the intensity of the peaks at 0 G Hz is different for each of the spectrum. In order 

to understand the origin of the peak BouT and confirm the ideas about the origin of 

the peak BIN additional data was collected. The carbon nanotube array with 0 nm 

exposed length was examined under the same experimental conditions. The study 

of this sample, presented below, was neither as complex nor as detailed as the study 

discussed above. 
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Figure 4.29: Brillouin spectra of carbon nanotubes in air (solid dots) and of air (open 
dots) at an FSR of 8 GHZ. 
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4.2.2 Carbon nanotube array with nanotubes flush with alu­

mina surface 

In the region of low frequency the spectra of C NT - 0 in vacuum and in air 

were collected. A comparison of the Brillouin spectra collected from C NT - 2 and 

CNT-0 under the same experimental conditions from is presented in the Figure 4.30. 

No peaks are observed in this frequency range in spectra collected from CNT- 0 in 

vacuum. The comparison of Brillouin spectra of C NT - 0 and C NT - 2 in vacuum 

presented in Figure 4.30 also shows that the peak at rv 1.3 G Hz is observed only in 

the CNT- 2 spectra (i.e. in the nanotube array in which the nanotubes protrude 

above the top surface of the alumina template by 200 - 300 nm). 

When the spectrum of C NT - 0 in air was collected it turned out that the 

only peak observed in this spectrum is the Gaussian peak originating from the air 

surrounding the C NT - 0 sample. In this case the comparison of spectra collected 

from CNT- 0 and CNT- 2 (see Figure 4.30, bottom) shows that the only common 

part of both of them is the Gaussian peak originating due to light scattering from the 

gas surrounding the sample. The intensities and shapes of the lines are exactly the 

same for both spectra. Apart from this peak no additional modes from the unexposed 

nanotubes have been observed at low frequency range in presence of the gas. The 

absence of the peak at a frequency shift of rv 1.3 G Hz that was observed in C NT- 2 

confirms the prediction that it originates from the exposed length of the nanotubes 
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Figure 4.30: Brillouin spectra of the CNT- 2 (open dots) and CNT- 0 (solid dots) 
in the low-frequency range in vacuum (top) and in air(bottom). 
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comprising the array. As mentioned above, its presence and frequency shift does not 

depend on the gas surrounding the sample and the peak is present even in vacuum. 

This suggests that the phonon could either originate due to the array when coupling 

via the alumina substrate occurs or could be the transverse, longitudinal or twist 

(torsional) mode [66] that propagates in the individual nanotubes. 
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Figure 4.31: The Brillouin spectra of CNT- 0 at various pressure of the air sur­
rounding the sample. 

To finally confirm the origin of the peak BIN, spectra from C NT - 0 at an 

F S R of 8 G Hz were collected in air at various pressures from vacuum up to 1 atm 

(see Figure 4.31). The intensity of the Gaussian peak changes when the pressure of 

the air surrounding the sample is changed. This study provides confirmation that the 

peak at a frequency shift of 0 G Hz originates from the gas surrounding the sample 
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and is of Gaussian shape. The integrated intensities, frequency shifts, FW H M and 

maximum intensities of the peak in the air at different the values of the pressure are 

summarized in Table 4.9. The data confirm that value of the integrated intensity 

increases as the pressure of the gas increases. 

Table 4.9: Integrated intensities, frequency shifts, FW H M and maximum intensities 
of the peak originating due to the air surrounding the CNT- 0. 

Integrated Frequency Maximum 
Pressure Intensity Shift FWHM Intensity 
[mmHg] [arb.units * GHz] [GHz] [GHz] [arb. units] 

760 767 -0.07 2.18 281 
600 486 -0.06 2.20 176 
400 360 -0.06 2.22 129 
250 284 -0.08 1.88 121 

0 -- -- -- --

4.3 Determination of phonon velocities 

If one treats the structures of the nanotubes and graphite as similar enough 

to apply the same refractive index to both media and assumes that the carbon nan-

otube array can be treated as a porous material, the velocities of bulk modes observed 

in CNT- 2 may be calculated. It should be clearly stated that the obtained values 

are only estimates due to these assumptions. 

Using the refractive index of graphite to be 2.15 [67] and estimating from the 

Figure 3.6 that the upper limit of the percentage volume of the space occupied by 

protruding nanotubes in CNT- 2 is 15%, the refractive index n of the CNT- 2 in 

this region is determined using an effective medium approximation [68] to be 1.71. 
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From Equation (2.13) the velocity of the each mode was determined. The velocity of 

the mode at "' 1.3 G Hz frequency shift were of the order of a few hundreds of meters 

per second. This value is quite low - in fact this is comparable to the speed of sound 

in air. The velocities of modes B5 and B7 depended on the gaseous environment 

around the sample and varied from 1000 to 2000 ~, which is of the order of the speed 

of sound in solids. The obtained values were calculated with the assumption that 

observed phonons are propagating through the array - possibly via coupling of the 

tube vibration through the substrate or interactions between the protruding length 

of the tubes. However, observed modes may also be transverse, longitudinal or tor­

sional modes that propagate in individual tubes. At this point the origin of the peaks 

cannot be definitely determined. 

The determination of the elastic moduli of the array require an estimate of its 

density. This approximation, coupled with the already made estimate of the phonon 

velocities, would, however not result in meaningful values. 
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Chapter 5 

Conclusion 

Brillouin spectra were collected from four samples representing various stages 

of fabrication of carbon nanotube arrays. These are: (i) anodized alumina template 

with holes arranged in close-packed hexagonal array, (ii) annealed alumina template 

with holes, (iii) carbon nanotube array with nanotubes flush with the surface of alu­

mina substrate and (iv) carbon nanotube array with 200-300 nm of tubes protruding 

above the surface. Samples were exposed to various gases and vacuum in order to 

observe peaks and determine and/ or confirm their origin. 

A Gaussian peak (BIN) originating from the gas surrounding the nanotubes was 

observed. The increase in the intensity of the peak with increasing pressure, exponen­

tial dependence of the intensity of the peak on the mass of the gas, and the agreement 

of experimental values of FW H M with theoretical calculations confirms the origin 

of this peak. 

A peak at a frequency shift of rv 1.3 GHz (BouT) is present in spectra collected 
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from CNT- 2 even in the absence of gas (i.e., under vacuum). This suggests that 

the phonon propagates either in the individual nanotubes or coupling via the alumina 

substrate occurs. 

The intensities and frequency shifts of the peaks at 5 (B5 ) and 7 GH z (B7 ) are 

dependent on the gas surrounding the nanotubes. This suggests that the elastic prop-

erties of carbon nanotubes may be affected by the presence of a gas. What is more, 

the qualitative difference in the spectra of CNT- 2 in H2 shows that H2 interacts 

uniquely with carbon nanotubes. 

None of the peaks seen in the spectra of C NT - 2 are observed in the spectra 

collected from T- 519, T- 519a and CNT- 0. From this fact one can conclude that 

the peaks observed in the C NT - 2 spectra are due to the length of the nanotubes 

protruding above the alumina surface. All of the modes exhibit characteristics of bulk 

modes. It cannot be determined whether the observed phonons propagate through 

the array (possibly via coupling of tube vibration through the substrate) or if they 

are transverse, longitudinal or twist (torsional) modes [66] that propagate in the in-

dividual tubes. In the first case the values of phonon velocities were estimated using 

a coarse approximation. They were found to be a few hundreds meters per second 

for the peak at rv 1.3 GHz and between 1000-2000 !!! for peaks at 5 and 7 GHz, s 

depending on the gas surrounding the C NT - 2 sample. 

The aim of future work is to determine the character of the modes and to calculate 

the elastic moduli of the array. The first step to achieve this goal may be to investigate 
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the samples representing other stages of the fabrication of carbon nanotube arrays 

(i.e., other than those discussed in this thesis). This might include carbon nanotube 

array samples with shorter protruding lengths (e.g., 100 nm) as well as longer values. 

The latter one could be particularly interesting as after exceeding a length of ,...., 300 

nm the protruding nanotubes start to bend and create a "the haystack" structure. 

Future work may include extended research on the elastic properties of the nanotube 

arrays in the presence of various gaseous environments (e. g., rare gases, gases belong 

to alkane group, toxic gases). This could aid in the understanding of the interactions 

between gases and nanotubes as well as to determine possible applications, especially 

those regarding the use of carbon nanotube arrays in gas sensors. 



88 

Bibliography 

[1] F. Kreupl, A.P. Graham, G.S. Duesberg, W. Steinhogl, M. Liebau, E. Unger, 

and W. Honlein. Microelectron. Eng., 64:399-408, 2002. 

[2] S. Iijma. Nature, 354:56-58, November 1991. 

[3] N. Hamada, S. Sawada, and A. Oshiyama. Phys. Rev. Lett., 68(10):1579- 1581, 

1992. 

[4] M. Baxendale. J. Mater. Sci.-Mater. El., 14:657-659, 2003. 

[5] R.H. Baughman, A.A. Zakhidow, and W.A. de Heer. Science, 297:787-792, 

August 2002. 

[6] J.P. Lu. Phys. Rev. Lett., 79(7):1297-1300, August 1997. 

[7] J. Che, T. Qagin, and W.A. Goddard. Nanotechnology, 11:65-69, 2000. 

[8] V.N. Popov. Mater Sci. Eng., R 43:61-102, 2004. 

[9] A. Goldoni, R. Larciprete, L. Peteccia, and S. Lizzit. J. Am. Chem. Soc., 

125:11329-11333, August 2003. 



89 

[10] S.J. Tans, A.R.M. Verschueren, and C. Dekker. Nature, 393:49-52, May 1998. 

[11] R.Martel, T. Schmidt, H.R. Shea, T. Hertel, and Ph. Avouris. Appl. Phys. Lett., 

73(17):2447-2449, October 1998. 

[12] H.W. Ch. Postma, T. Teepen, Z. Yao, M. Grifoni, and C. Dekker. Science, 

293:76-79, July 2001. 

[13] A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tomanek, and 

P. Nordlander amd D.T. Colbert and. R.E. Smalley. Science, 269:1550-1553, 

September 1995. 

[14] A. Bachtold, P. Hadley, T. Nakanishi, and C. Dekker. Science, 294:1317-1318, 

November 2001. 

[15] M.R. Pederson and J.Q. Broughton. Phys. Rev. Lett., 69(18):2689-2692, 1992. 

[16] S. Niyogi and R.C. Haddon. PNAS, 101(17):6331-6332, 2004. 

[17] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, and H. Dai. 

Science, 287:622-625, 2000. 

[18] M. Ishigami A. Zettl P.G. Collins, K. Bradley. Science, 287:1801-1804, March 

2000. 

[19] S. Jhi, S. Louie, and M. Cohen. Phys. Rev. Lett., 85(8):1710-1713, 2000. 

[20] P. Giannozzi, R. Car, and G. Scoles. J. Chem. Phys, 118(3):1003-1006, 2003. 



90 

[21] H. Ulbricht, G. Moos, and T. Hertel. Phys. Rev. B, 66(075404), August 2002. 

[22] G.U. Sumanasekera, C.K.W. Adu, S. Fang, and P.C. Eklund. Phys. Rev. Lett., 

85(5):1096-1099, July 2000. 

[23] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiabg, D.S. Bethune, and M.J. 

Heben. Nature, 386:377-379, March 1997. 

[24] A. Chambers, C. Park, R. Terry, and K. Barker amd N. M. Rodriguez. J. Phys. 

Chem. B, 102(22):4253-4256, 1998. 

[25] G. Che, B.B. Lakshmi, E.R. Fisher, and C.R. Martin. Nature, 393:346-349, 1998. 

[26] K. Sato, M. Noguch, A. Demach, N. Oki, and M. Endo. Science, 264:556-561, 

1994. 

[27] R.J. Tonucci, B.L. Justus, A.J. Campillo, and C.E. Ford. Science, 258:783, 1992. 

[28] J.M. Xu. Infrared Phys. Techn., 42:485-491, 2001. 

[29] S.K. Biswas, R. Vajtai, B. Wei, G. Meng, L.J. Schwalter, and P.M. Ajayan. Appl. 

Phys. Lett., 84(15):2889-2891, 2004. 

[30] S.S. Xie, W.Z. Li, Z.W. Pan, B.H. Chang, and L.F. Sun. Eur. Phys. J. D, 

9:85-89, 1999. 

[31] D. Kim, D. Cho, H. Jang, C. Kim, and H. Lee. Nanotechnology, 14:1269-1271, 

2003. 



91 

[32] J. Li, C. Papadopoulus, and J.M. Xu. Appl. Phys. Lett., 75(3):367-369, May 

1999. 

[33] J.S. Suh and J.S. Lee. Appl. Phys. Lett., 75(14):2047-2049, 1999. 

[34] C.E. Bottani, A.Li Bassi, M.G. Beghi, A. Podesta, P. Milani, A. Zakhidov, 

R. Baughman, D.A. Walters, and R.E. Smalley. Phys. Rev. B, 67(155407), April 

2003. 

[35] A. Li Bassi, M.G. Beghi, C.S. Casari, C.E. Bottani, A. Podesta, P. Milani, 

A. Zakhidov, R. Baughman, D.A. Walters, and R.E. Smalley. Diam. Relat. 

Mater., 12:806-810, 2003. 

[36] A. Li Bassi, C.E. Bottani, C. Casari, and M. Beghi. Appl. Surf. Sci., 226:271-281, 

2004. 

[37] C.K. Young. Brillouin Scattering From Carbon Nanotube Arrays- Honours The­

sis. St. John's, June 2004. 

[38] P. Murugavel, C. Naraywana, A. Govindraj, A.K. Sood, and C.N.R. Rao. Chern 

Phys Lett, 331:149-153, 2000. 

[39] R.S. Krishnan. The Raman Effect, volume 1, chapter Brillouin Scattering, pages 

343-402. Marcel Dekker INC., New York, 1971. 

[40] Ch. Kittel. Wst~p do fizyki ciala stalego. Wydawnictwo Naukowe PWN, 

Warszawa, 1999. 



92 

[41] I.L. Fabelinskii. Molecular Scattering of Light. Plenum Press, New York, 1968. 

[42] A.D. May, E.G. Rawson, and H.L. Welsh. 

[43] R. Loudon and J.R. Sandercock. J.Phys. C: Solid St. Phys., 13:2609-2622, 1980. 

[44] E. Hecht. Optics. Addison Wesley, San Francisco, 4th edition, 2002. 

[45] P.R. Stoddart, J.C. Crowhurst, A.G. Every, and J.D. Comins. J. Opt. Soc. Am. 

B, 15(9):2481-2489, September 1998. 

[46] F. Nizzoli. Electromagnetic Surface Excitations, chapter Surface Brillouin and 

Raman Scattering, pages 138-161. Springer-Verlag, 1986. 

[47] J.R. Sandercock. Solid State Commun., 26:547-551, 1978. 

[48] A. Dervisch and R. Loudon. J. Phys. C: Solid State Phys., 9:L669-L673, 1976. 

[49] N.L. Rowell and G.I. Stegman. Phys. Rev. B, 18(6):2598-2615, 1978. 

[50] R. Loudon. J. Phys. C: Solid State Phys., 11:403-417, 1978. 

[51] J.D. Comins, A.G. Every, P.R. Stoddart, X. Zhang, J.C. Crowhurst, and G.R. 

Hearne. Ultrasonics, 38:450-458, 2000. 

[52] S. Mielcarek. Spektroskopia Brillouin fononow powierzchniowych w krysztalach 

ferroelastycznych. Wydawnictwo Naukowe UAM, 2001. 

[53] B.E.A. Saleh and M.C. Tech. Fundamentals of photonics. Wiley Interscience 

Publication, New York, 1991. 



93 

[54] J.R. Sandercock. Light Scattering in Solids, volume III, chapter Trends in Bril­

louin Scattering: Studies of Opaque Materials, Supported Films and Central 

Modes. Springer-Verlag, 1982. 

[55] J.R. Sandercock. Tandem Fabry-Perot Interferometer TFP-1. Fabrik am Weiher, 

CH-8909 Zwillikon, Switzerland. 

[56] R.H. Petrucci and W.S. Harwood. General Chemistry- Principles and Modern 

Application. Maxwell MacMillan Canada, Toronto, 6th edition, 1993. 

[57] N.W. Ashcroft and N.D. Mermin. Solid State Physics. Brooks/Cole Thomson 

Learning, Toronto, 1976. 

[58] R.C. Weast and M.J. Astle, editors. CRC Handbook of Chemistry and Physics. 

CRC Press, Inc., Boca Raton, 60th edition, 1979. 

[59] Y.M. Sirenko, M.A. Strocio, and K.W. Kim. Phys. Rev. E, 53(1):1003-1010, 

January 1996. 

[60] D. Kand, K.W. Kim, and M.A. Stroscio. J. Appl. Phys., 89(9), 2001. 

[61] J. Bernholc, D. Brenner, M. Buongiorno Nardeli, V. Meunier, and C. Roland. 

Annu. Rev. Mater. Res., 32:347-375, 2002. 

[62] M. Chirita, R. Sooryakumar, and H. Xia. Phys. Rev. B, 60(8):R5153-R5156, 

1999. 



[63] V. Ghaem-Maghami and A.D. May. Phys. Rev. A, 22(2):692-697, 1980. 

[64] R.D. Mountain. Rev. Mod. Phys., 38(1):205-214, 1966. 

[65] N.A. Clark. Phys. Rev. A, 12(1):232-244, 1975. 

94 

[66] Y. Xialo, X.H. Yan, J.X. Cao, and J.W. Ding. J. Phys. Condens. Matter, 

15:L341-L347, 2003. 

[67] B.T. Kelly. Physics of Graphite. Applied Science Publishers, London, 1981. 

[68] H.J. Fan, M.H. Kuok, S.C. Ng, R. Boukherroub, J.-M. Barribeau, J.W. Fraser, 

and D.J. Lockwood. Phys. Rev. B, 65:165330, 2002. 










