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Abstract 

Accurate reservoir simulation is key in attaining au effective and efficient rcservmr 

completion. Typical reservoir simulators employ grid sizes that arc several orders 

of magnitude larger than the wellborc diameter and therefore, can not capture t he 

ncar-well flow attributes. To improve the depiction of near-well flow phenomenon , a. 

cylindrical grid system with a logarithmic radial-spacing is u tilized ; oriented such that 

small radia l steps are taken in nearer regions allowing us to portra~r a more accurate 

flow description nearer to the wellbore. Streamline simulation techniques arc t he 

primary focus for this work as they promise computational efficiency and enhance 

flow visualization. 

Herein, a. robust streamline-based , cylindrical flow simulation method for the ncar­

well region is presented. This will allow for a. more accurate visualization of the 

near-well flow characteristics and improve overall reservoir flow simulation . 

In this work, the streamline model is au adaptation of the scmi-a.na.lytica.l md hod 

of [Pollock, 1988]; clcrivecl for a. two-dimensional, cylindrical, single-phase, incompress­

ible, homogeneous medium, for both isotropic and anisotropic pcnnca.bili ty fields . A 

discretization scheme is also presented ut ilizing a novellogari tlunica.lly spa.cccl grid for 

the numerical model, and tested for an isotropic and anisotropic case for illustra tion. 

T he rcsul ts show that this methodology has potential to be useful in determining the 

flow characteristics in the ncar-well region and provide stable results. 
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Chapter 1 

Introduction 

1Ioderu reservoir simula tion is the culmination of decades employing numerical analy­

sis tedmiques to solve a complex sy. tem of equations, attempting to captm e a glimpse 

of the reali ty of flow in the subsurface. The theory of fluid flow in porous media 

e.g. the ear th's subsurface exten Is, in li terature, to the roots of thermodynam­

ics; much of t he mathematical construct of fluicl-flovv in porous media is equivalently 

n1athemat icaJly described by the condition of heat cone! uction, electrical cone! net ion, 

mass diffusion, etc. Generally speaking, described by the equations of potential flow 

[Va.nfai et al, 2005] . 

Efficient and effective hydrocarbon reservoir completion is contingent on accurate 

simulation of the flow characteristics. Current reservoir simulators approximate flow 

of the entire reservoirs which, in some cases. have dimensions extending kilometers 

with very complex geological structure. Despite advances in computat ional power 

availa ble. cer tain approximations arc required to allow current t.eclmologies to process 

such a system as it remains impos ·ible to captme all of the flow characteristics - and 

"ill remain so for quite some t ime to come. 

The methodology of reservoir simula t. ion typicall.v involves coustn wt ing a highly 

1 
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complex grid structure based ou knowledge· of the geological snhsm fcwc, snch t hH t 

a fini te difference approximation can be implcmeuted to approximHte the fluid flux 

through the grid cells. T hese grid s.vstems ofteu employ networks in c•xcess of a million 

grid-cells with block sizes that arc several orders of maguituclc larger than that of the 

physical wcllhore, from which fluids are expected to be extracted . A critical portion 

of the reservoir simulation takes place in the simulation of ncar-well region of t he 

well bore. 

1.1 M edia properties 

Firstly. "' c must define some of the common terminology with which t· his document. 

will refer. Although. at many points, this document refers to pomus m edia, we arc 

in fact referring to the subsurface of the ear th 's crust, mostly per taining to how 

fluid is tran ·por ted through the medium: specifically. application to hydrocarbon 

reservoir flow is the intent ion. but this work may apply equally to other fields, such 

as contaminant flow. 

We understand that the medium through which most fluids iu the subsurface 

flow a rc generally composed of layers of sediment that have collected over millions 

of years - a few centimeters every hundred years or so - where the temperature and 

pressure have created this substrate. Over that period , tectonic and volcanic acti ity 

have transformed these relatively smooth layers of sediment into complex structur<' 

of various rock types with varying phy. ical propert ies. It is among these layer · that 

organic material is trapped and nuder par t icular pressures and temperatures is turned 

to hydrocarbons where gravity then scp;uates the fluid into compoucuts of varyiug 

densities. The lighter hydrocarbous such as methane generally escape the subsm facc 

qniddy, while the more dcuse tend to flow nnKh mon:' slowly. ow, among these 
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layers of sediment , cer tain rocks types create bent layers where fluid can no longer 

move and instead become trapped. These arc the oil reservoirs that we have come to 

u t ilizc. 

It is also important to rccogmzc that we arc speaking of layers of solid rock, 

of which there are small interconnected pores that reservoir fluids arc a.ble to flow 

through . There are certain parameters of these rocks types that dictate the flow 

regime of the fluid in the medium. 

1.1.1 Porosity 

T he rock por-osity, denoted here as ¢, is the volume fraction of the void space within 

the matrix structure of the medium. In other words, this value is a measure of the 

percentage of fluid volume that a given rock type can withhold; theoretically ranging 

from 0 ~ ¢ ~ 1. but in general is a value between 0 - 0.4. 

In most texts, the porosity is defined also in terms of the compressibility of the 

medium, which is dependent on the pressure. The comp·ressibility is defined as 

1. d¢ 
c= "¢ dP 

where P is the reservoir pore pressure. lu most simplified reservoir models, the com-

prcssibility is neglected and instead the porosity ¢ is taken to be clcpcnclent only on 

the spatial coordinates. 

lu this text, when we speak of porosity, we will most often be referring to the 

r'ffrctivr pomsity of the medium, which differs from the intrinsic porosity in that the 

effective porosity is an estimate of the interconnected pores that will allow transport 

of the constituent fluid within the medium. This is an important clesigw-ltion as, for 

our pmposcs, we arc only c:oncemed with the pore space within the nwdium when' 
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t ra.uspor t. is supported . 

1.1.2 P ermeability 

T he pe·1mPability, clcnotccl by K , is a measm c of the a bili ty for a nw cliu111 to t ra11sport 

a fluid through its structure ma t.rix. T he pcrmca bili ty docs not genera.lly have any 

correlation with the porosity of a medium as it depends entirely on the coHnectc<iness 

of the pore structm e. For instance, a medium may have a high porosity value, bu t 

unless these pores arc interconnected, it may have li ttle to no permeability and. hence, 

no fluid will flow. 

In certain rocks types, such as sandstone, fa irly uniform particles arc compressed 

to produce the rock matrix and tend to have a very high permeabili ty due to the 

relatively large interconnected pores. Other rocks, such as shales, which arc ('Olnposed 

of mud, clay minerals, and t iny silt-sized particles, arc generally considered to be non­

permeable. however. may have au int riusic porosity value up to 0.1. 

T he S. I. unit of permeabili ty is meters squared (m2
), however it is also commonly 

represented iu DaTcy (D ) or in milli-Darcy (mD). The Darcy unit is defined as 

l D ~ 0.987 .1Q- 12m 2 where a value of lD would be considered to be a relatively high 

permcabili ty value . 

The permeabili ty. K , is generally a tPnsor· where the value is different for d ifi'crcnt 

directions and the value is dependent on other directions. It is usua.ll ~r possible or 

sufficient to reduce the K tensor's components to its values into orthogonal spatial 

directions by cliagonalizing the tensor as 

I\· ~~ J \ ' 12 J \ ' 1:1 J \ '.1' 0 0 

K = J\ '2 1 J \ '22 J\'n 0 J\'y 0 

J \ ':! 1 J\':12 J \ ':1:1 0 0 J\·~ 
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for a Car t('siau (.r. y. ::) space. The m Hiu JWnncHbili t.v directions (.r , y. ::) arc tvpi('a ll~· 

chosen to a lign to the geological structure, so as to cR.pt m e the domina nt 11Ht m Hl How. 

Here. we 'vc expressed the tensor in matrix form for clari ty. 

The munber of terms required inK varies depending on the mathemHticRlmodd 

required to capt urc the flow characteristics. In some cases, it is sufficient to reduce 

the tensor to a single vRlue where K = l\:; this scenario is regarded as an -isotmpic 

porous medium, as the flow is generally s imilar in a ll d irections. Although, in mHuy 

cases this would be Rll irresponsible approximation. v\ hen more terms a rc nccess<uy, 

is regarded as an anisotropic medium. A generally anisotmp1:r medium will conta in 

all nine components. In this study, we will consider an anisotropic medium Hs an.\ 

pcrmcR.bili ty that requi res more than one component . 

1.2 Pathlines, streamlines, and streaklines 

Vve will now introduce the notion of a streamline in fluid flow and W<' must be distinct 

in how we define the streamline. I t is importan t to understand tha t t here a rc scvcrnl 

simila r concepts to t racing the fluid flow, but each is defined in a unique wRy. 

A pat/Lline of a fluid par t icle is R tracing of t he posit ions in space thn t it will follow 

as t ime passes. It is . specifically, t he LRgrangian tra jectory of Rll itnaginary particle 

where Wt' arc a ble to map its spatia l locations during its path as it flows wit h t he 

fluid . I t is dcsnihed by three pR.ramctric equations 

d.r ely d:: I - ---- = (t, 
n::. (.r. y , ::. t ) 

( 1.1) 
lf.,.(.r. y . z, t ) Uy( :r. .IJ. Z. t) 

where u .,.. ll y , all(l U:; arc the components of t he \ clocity vector u . T he vdocit.\' vectors 
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Figure 1.1: The plot shows fluid flow under the velocity field u (x , y , t) = (1, yt) 
where time advances in each plot, from a) to d ), clockwi e. The red dot represents a 
particle released from the origin at time t = 0, tracing out its pathline in red. As it 
moves, it leaves behind a trail of blue ink (starting from the origin), which represent · 
its str·eakline. The velocity is represented twice, with flow vector , and a family of 
streamlines which are ent irely redefined with each t ime step due to the changing flow 
[Fi1Kaiv8, 2010]. 
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here a rc defined by the rela tion 

qi 
'U. j = -

¢ 

7 

where i = .T, y, ::; . 

The tenus q and ¢ are t he volumetric flow rate and the effective porosity, n'spec-

tivcly. The volumetric flow rate is the rate of volume flow or , the volume of fluid 

passing through a given area with time. Recall that the effective porosity differs from 

the int rinsic porosi ty : the intrinsic porosity it the total volume pore space within a 

medium, as the effective porosity is the estimate of the interconnected pore space in 

which fluid can travel. 

Dy comparison, a stTeamline is a cmvc which is at every point tangent to the 

direction of the velocity vector of the fluid flow , at any instant in ti'me. Mathematically 

speaking, a streamline is defined as a family of curves given by 

u(x . y, z , t 0 ) x dS(x, y , z ) = 0 

where the velocity is defined at a specific instant in time, t0 , and dS is then a n 

clement of a curve a long a streamline where :£, y , and z arc in the principal directions 

of the permea bility. Streamlines may also be equivalently described by postulating 

an equipotential surface which will be presented in Section 2.2. Generally speaking, 

a streamline can be produced from any vector field . 

Secondly, there is the concept of a pat/dine. A pathline is a line tha t connects the 

physical spatial path a par t icle would take as it t raverses the medium , through the 

fluid . In steady flow, where the flow rates a rc established and inva.riant with time, 

pathlines and streamlines coincide and never intersect. However , with any change in 

the flow , they begin to separate: the streamlines a rc ent irely altered with ch;-mgiug 

flow , as the~' arc defined by the tangents of the velocity field at all points a t Rll instant , 
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aS the pat.hlines will simply alter route thereon. with the pathline being a physical 

representation t h~tt a particle would travel in space. 

Thirdly, there is the concept of a st1·eakline. A st.reaklinc represents the locations 

of a particle as it passes through a par ticular fluid sp~ttial point within the medium 

with t ime. This is most easily pictured as a dye stream in a flowing fluid or e~s smoke 

released in the wind. The streakline would represent the physical location with respect. 

to the moving fluid as the pathlinc represents the physical locatiou in the stat.ion~try 

space. The streakline is a common term in the fluid dynamics and aerocl.vnamics. 

Again, in steady flow. streaklines coincide with streamlines and pat.hlincs, but. with 

variance in flow, they all deviate and all three become distinct 1• Figure 1.1 illustrates 

streamlines, streaklines, and pathlines for an unsteady flow. 

1.3 Streamline simulation in near-well 

Strc~tmlinc simulation for the purposes of reservoir cngmcermg is of interest. for a 

11nmber of good reasons. Of utmost interest, being able to detenuine st.re;-uulines 

provide a vistmlization of the flow of fluid through the reservoir. In the case where 

_vou may have several, interconnected wells tapping into the same reservoir, t his level 

of visualization, would easily identify the volume flow rates between injector RIH I 

producer wells and, overall, obtain a better understanding of well conummicat.ion. 

Another key attribute of streamline simula tion is its compu tational efficiency. In 

typical reservoir simulators, the flow equations require full three-dimensional finite 

difference solut ions which tend to be computationally taxing. The fluid t ransport 

in streamline simulations reduce the problem to a one-dimensional s~rst.em of cqna-

tions along the streamlines. which arc more casilv solvable by Immcrical methods 

1Th0 intNestecl reader is pointed to [Bear, 1972]. Sectio n 6.!'l. l for a rigorous description ofstrea lll­
liues, st reakliues, a nd pa thliucs. 
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[Kiug & De1tta-Gupta , 1998] . 

Tradi t ione1lly, streamlines arc regarded as bciug well-sui ted for convective ftow 

problems as opposed to diffusive ftow where ftuids don· t have a wdl-dcfiucd ftow di­

rectiou. Streamlines reference the vcloci t.v field .. so in cases were this vcloci ty field isn· t 

well-defined, streamlines arc not particularly useful. Also. if the ftuid ftow contains 

strong transverse effects from the main direction of flow- for example gravity effects. 

which arc dictated by density gradicuts - more elaborate mathcma t ital methods need 

to be employed. However , standard finite difference methods arc able to capture thcst' 

effects quite well. 

lu the uear-well rcgwn we arc generally concerned with a very smHll rcgwu as 

compared to the reservoir. We arc mostly concerned with fluid production or injection 

a.ll(l visualization of the local well-completion and geological barriers. For this case, 

streamline simulation should be a primE' tool with many possi bili tics. 

1.4 Scope of this thesis 

To improve the depiction of flow in the ncar-well region , a cylindrical grid system with 

a logari tlunic radial-spacing of grid cells is u t ilizcd, oriented such tlm t smaller radial 

steps arc taken iu nearer regions. Employing a cylindrical sy:tcm tH kcs advautHge 

of tlw ··uatmal" flow of t he physical system, where the flu id flow converges at the 

wellborc as fluid is extracted. 

Conunouly, the wcllborc information of the reservoir is encompassed within a 

siugle grid-block in the simulation modd. lu many cases, the well-block attempts to 

account for the iufl ucncc of a well 10 n'nt itueters in diameter, with a grid-block of 

square-lHteral dimensions on the order of tens of meters. even in excess of 50 meters 

in some cases. At temptiug to capture ftow on the order of centimeters with a grid 
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dimension twice the order of magnitude will smear anv not ion of the cotu ph'x flow 

geomctrirs that exist in this region of the reservoir. 

The ncar-well region of a drilled wdl requires p;uticular a tt.cnt ion as it q uickl\· 

becomes critically complex. As cxautplcs. consider: 

• while drilling takes place, drilling mucl forces drbris into thC' reservoir formation 

which impedes flmv; the debris produces a 'damagC'cl zone· , where great eHorts 

arc employed in an attempt to account for the 'skin factor value that clisrnpt.s 

flow into t.hc well. 

• upon insertion and cementing of the steel well-casing, a liner typicall~r used to 

uphold the structure of a wcllborc, perforations arc 'Omctimes blown through 

the casing and cement to allow fluids to flow. To produce such a. perforation. 

controlled explosive propellants <He us('(l, and as sud1. the detonation sends a 

high-velocity shock through the liner and pushes metal, cement . and rock frag­

ments into the surrounding formation. This creates a low-permeability ··crushed 

zoue·' within the rock structure around the perforations by reducing the por(' 

throats in this region and hindering flow. 

• complex well completions- with the introduction of packers aud wire-screens to 

withhold t he production of sane! , debris. etc. - aiel in fl uid procluctiou, hovwver, 

make' reservoir simulatiou in this region difficult and hard to predict. As the 

fluid flows towa.rcl the wellborc. frictionaJ loses arc associctt,ed with having to 

navigate a system of bounda ries placed to regulate the flow. T his region of the 

re.'crvoir is typically void of cletHikd flow information. but ntay be a critical 

region as all produced flow must tnwerse this region, which is not necessR rily 

the case for the remainder of the reservoir. 

• the geological formation itself can be quite complex aud there may lw local flow 
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barriers in the near-well region t hat restrict flow from certain trajectories from 

the reservoir making for complex flow paths t hat are uncapturable during simu-

lation employing typical computer models. This may be on top of perforations, 

infusion of drilling muds, etc. 

None of these scenarios are capturable in typical re ervoir simulators and would gen-

erally be estimated for their effects as a 'skin factor coeffici ent to account for some 

of these details, and then only _with history matching post-production would they be 

updated. 

Figure 1.2: Areal view of the cylindrical grid structure to be overlaid co-axially wi th 
a. wellbore model designed to simulate the flow trajectories of the near-well region. 
Streamline techniques will be defined to illustrate the flow of the constituent flu id as 
it navigates a simulated structure. 

To model t.he near-well region, a radial - more precisely, polar cylindrical - grid 

model is aligned co-axially with the well t raj ectory where the radial dimensions of sue-
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ccssivc grid-blocks will increase according to geometrical spreading, such that smaller 

radial steps arc taken in the ncar-well and la rger radial steps as we mow outwmd. At 

this point, onl~r constant angular steps arc used to maintain computational simplici ty 

during the simulations. 

Herein , stTeamline :;imulation teclmiqucs arc employed in a co-axial cvlinclrical 

grid as demonstrated in Figure 1.2. St reamline techniques arc gaining interest Ill 

many industries due to its inherent efficiencies over purely numerical approaches. It 

has been extended into complex flow systems - e.g. compressible flow, inclusion of 

gravitational and capillary effects, miscible fluids for multi-phase flows, etc. - and 

shown to be able to compute flow on large grids even on many 'home c:ompn tcrs '2 . 

The efficiency of streamline simulation is a result of its relatively low memory and 

computational requirements. Typical reservoir simulators require solving the ent ire 

grid-flux of all grid-blocks a t once. In streamline simulators, only a single st reamline 

based on the clecouplcd, single-dimensional transport equation is held in mcn1ory. 

The most widely accepted method of streamline computation is based on a semi-

analytical approach developed by Pollock [Pollock, 1988]; the details of its usage will 

be discussed in detail in Section 2.3.2. Herein, an adaptation of the methodology 

devised by Pollock will be developed and applied to the geometry di:;cus::;ccl above. 

This work will expand the usage of streamline simulation, such tha t it is to be 

employed utilizing a cylindrical grid , with logarithmic radial cell spacings, and to be 

implemented for the ncar-well region within a reservoir. Prior to this study, these 

ex tensions arc not discussed in li tera ture. 

2T ltP extension of streamline simulations to include t hese complexities will be ac!dn•sst'd in Sect ion 
2.-l o n page :12. 



Chapter 2 

Mathematical Model 

For our purposes, as this model is intended to be computationally efficient , it is ouly 

necessary to int roduce an incompressible, single-phase reservoir model. T his model 

provides all the necessary equations to define pressure distribution in the rcservoii: 

a.nd is commonly implemented for many early-stage flow studies. Single-phe1sc models 

are generally used to identify flow directions; identify connections between producers 

and injectors; in flow-based upscaling; in history matching; and in prelimiuary model 

studies. lVlethods of extending the single-phase model to include other relevant theory 

will be cliscussecl in the Section 2.4. 

2.1 Incompressible single-phase flow 

Herein. we will coustruct. the basic equations necessary to describe om medi um. Iu 

light of kcepiug things simple, we will usc the example of au incompressible reservoir 

both mcclimu and constituent fluid and only single-phase homogeneous How to 

keep computational lag to a minimum and describe t he pressure distributiou to dc­

tenninc the flow. To describe om medium, we need only begin with two equations, 

the continuity rquation and Da:rcy ·s equation of flow. 

13 
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T he c-ontinuity is a mass halam·c relation connecting basic nwdiulll pc-m·mlctcrs 

cmcl is given HS 

() 
iJt (¢p) + \7. (pu ) = q, (2. 1) 

where ¢ and p arc the effective porosity allCl fluid cknsity, respect ively, u is the 

volumetric flux [length per time] and q volume flow ra tc which moclds the in/ out 

flow [volume per time]. For our purposes. the system is incompressible ami. in turn , 

the porosity and density terms are time independent . Hence, we may reduce equation 

(2 .1 ) to 

q 
\7 . u = -, 

p 

where we have rearranged the equation so as to isolate the divergence term. 

(2.2) 

In porous media flow, Darcy's equation relates au average volumetric flux- often 

referred to as the Darcy velocity or interstit ial velocity- of a constituent fluid through 

the porous medium, and two of the prominent driving forces 1• Da rcy's equatioll is 

given by 

K 
u = - - (\7P+pg\7z ). 

Jl 
(2 .3) 

In Darcy's equation. there are two driving forces the gradient of pressure, \7 P, and a 

hydrostHtic gravity term, pg\7z . T he gravi ty term, consisting of the accclcrHtion due 

to gravity and t he gradient of tlw vertical clisplacemcut, may be reduced to - pg6. :: in 

a convent ional coord ina te system to account for the hydrostatic pressure. Equa t iou 

(2 .3) illustrates that fluid travels from a region of high pressure to a region of lower 

pressure signified by the negative gradient , and scaled by the K / Jl term . where 11 is 

the clyuamic: fluid viscosity and K the intrinsic pcrmeabili ty. T he permeability, K. 

is a very important clement in porous media which will be discussed in the following 

1 \ '\ e note here. t hat t here may also be othN force's at work 0 11 a constit uent fl uid iu porous med ia. 
-say, fo r example, capilla ry action - hu t, we will ignore such act ion heretofore. T he interested reader 
is refe rred to [Bear. 1972], [Saatdjia u, 2000]. [Zheng &. Dennett . 2002]. 
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scdion. 

Combining equat ions (2 .2) and (2 .3) y idds the relation 

[ K l Q \7. - - (\7 p - p.r;\7 ::; ) = -. 
II p 

(2.-±) 

In the current framework, only horizontal fluid flow is considered as this is the genNal 

direction of flow within a reservoir , hence, equation (2 .4) can be reduced further. 

Ignoring gravity and rearranging equation (2.4) yields 

\J. K\JP =-Qp,_ 
p 

(2.5) 

Up to this point, t he intrinsic permeabili ty and the fluid viscosity are taken to be 

constants and, therefore, arc free to move them outside the differentia tion. In having 

an incompressible medium - which includes the constituent fluid and rock mH.trix -

we note that the viscosity and densities arc constants. 

In general, the permeabili ty, K , is a diagonally anisotropic tensor; meaning, thc 

permeability in each direction may be dependent on the permeabili ty in other dircc-

tions. It is commonly accepted to reduce the int rinsic permeability into it::> principal 

components. Consequent ly, for reservoir simulation , the permeability ten::>or is cliago-

naliz:ecl such that only the value of the permeabili ty in the principal directions remain, 

this may be done without any loss of generali ty in the fluid ftow2
. In pra.dice, local 

variat ions of the permeabili ty arc implemented by int roducing hetcrogeuci ties in the 

permca bili ty matrix upon cliscrctization . 

It is sometimes useful to express the fluid propert ies in terms of the hyrlmni'ir· con-

2Intcrested readers in the reduction of symmetric tensors to diagona l fonn arc n 'fcrr('cl to 
[Arfkcn. l!J85], Sec J.-! a nd -Ui (Diagonalization of i\ Ia trices). 
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rluctivity. t-L : a convenient expression used to combine media proper ties [B<'<H, 1972]. 

T he hydraulic cone! ucti vi ty is a term that cncompasses informa tion regrucl ing t hr 

rock matrix st ructure as well as the Huicl information. It is defined . for Hll isotropic 

homogeneous ft uicl. as 
K 

p pg 
(2.6) 

where. p, and f t - the density. and viscosity terms. respectively - arc tak<'n to be 

constants for an incompressible homogeneous ftuicla. vVe should rrcognize that the 

permeabili ty is a tensor of rank two which ult imately defines the hydm nlic conduc-

tivity as a tensor of rank two, which may be expressed iu matrix notation as 

f{ I I f-lt2 ,.,. , ;j 

"' - h"(2 t-Ln t-Ln 

h"(:l 
' ' 2:3 

t-l:l:l 

Inspection of the variables in the defini tion of t-L in equation (2.6). we sec t lwt 

the uni ts of the conductivity arc length per time - usually given in tnms of uwters 

per year (w / y1·). Common values of hydraulic conductivity for water-How raugr from 

1 x 107 rn / y'r for unconsolidated gravel to 1 x l0- 7n1.jy1· for certain shales aucl nnfrac-

turcd metamorphic rocks [Freeze & Cherry. 1979] . Substituting the conduct ivity into 

Darcy 's equation (2.3) Hucl rearranging we find 

1-l 
u -- [\7 p + pg\7:::] 

py 

- t{ \7 [!__ + :::] . 
pq 

:1T he reader sho uld note t hat the hyd ra ulic cond uctivity defi ni t ion in li tNature is oft<'ll tnissing 
the gravity tenn g. Herein , t he gravity is included for r igor, but t hroughout the doct llllent , gravity 
is ignored to concC'nt ratc om focus on t lw iuAul'llCl' of p rl'ssure as t lw driving forcl'. \VC' a rC' mainly 
conccrnl'd in horizonta l Auid displan'ments, wherl'by Bernoulli 's principle, Auid pressur<'s a rc equal 
at l'qual <il'pth. InterC'sted rC'aciC'rs a re refctwd to [Zheng & I3euuett, 2002, pp. 1-1-19]. 
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Iuvcst.igat.ing this resul t, the t.erm P/ pg represents the pressure per nui t weight of 

fluid . This is equivalent t.o the net work doue by a unit weight of incompressible fl uid 

against. the pressure difference along its How. The ::: term is the heigh t above a cl<'lt.n!l t 

level. T he sum of these two terms define the piezometric head of the medium. 

p 
¢ =-+ ::: . 

P9 

T his is a common term used in pcrmcabili ty aucl hydraulic colldmt i vil'y t.csting·1• 

Combilling the expressions of Darcy's law and piezometric h<c'ad yields 

u = - ,..,. '\1 cjJ 0 (2 .7) 

which is H standard expression for potential flow. 

The hydraulic conductivity tensor is, as well , a synuuet.ric teusor , meaning tha.t. 

it has only si:r independent components; e.g. ~-,; 12 = ,.,·2 1• ,.,. 1:5 = ,.,.:11, and foL23 = ,.,.:12 

[Bear , 1972] . 

Furthermore, the hydraulic conductivity is commonly reduced to its principa l com-

ponents - aligned in the principal directions. Using the method of eigenvalue clecom-

position allows the reduction of any symmetric tensor to a diagonal one: cases where 

the tensor to be cliagonalized is non- ') mmetric:, singular value decomposition may be 

employed to do so [Zijl. 1996]. 

It may be shown, without any loss of genera li ty, .that the conductivity tensor, ,..,. , 

may be dia.gonalized to principal components, usually aligned along the coorcliua te 

Hxes . Givcu that the hydraulic conduct ivity tensor is symmetric, it is mathcma.tica.l 

f<H't tha t it may be diagonalized for any orthogonal coordinH t(' system [~ Iorsc & 

1T he piezomet ric head <p, is used when piezometer data is employed . A piezometer is a t ube 
(Wrforat.ed a t t.he e nd which is inserted into the medium to measure the Hnid rise aga inst gravity, 
and measure st a tic pore-pressure. 
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Feshbach. 1953. pp. 21-31]. In literature. the permeabili ty and coucluctivit~r arc 

generally given in terms of the principal components [Aziz & Scttari . 1979. pp. 12] . 

In tht~ case of an isotropic medium, the conductivity, K , being simply c1 sca lc1 r 

constant is not affected by differentia tion . So, in view of equation (2.5) . the t'xpressiou 

may be reduced to the following: 

2 cP r cY. P a2 P q 
V' ? - - +-+ - ---

- (h2 dy2 az2 - K · (2.8) 

For the case of anisotropic conductivity in that t he cond uctivity is reduced to 

(2.9) 

2.2 Streamfunctions and streamline tracing 

In previous chapters, the notion of flow through a porous medium is purd_,. thought 

of as flow forced by imposed pressm e5 with Darcy's equation wholly descri biug tht• 

direction of flow; uoting that Darcy 's la,w relates the average volumetric flu x in a, 

porous medium to the gradient of pressure . T he concept of fluid flow in porous 111eclia , 

defined by Darcy 's law. is an Eulerian approach of describing flow of a fluid through 

porous media. T he notion of streamhmc:tions, streamlines, ami particle tracking, Hn' 

Lagrangian concepts based on the trc1jec-torv of the locus of partic-les within the fluid 

as it t ravels through the medium. 

5V\TC' note t hat prc•ssUH' is t he most prominent fluid d riving force, however, gru.v i t~· and capilla ry 
act ion abo play a key role in a n actua l physical S) stem. Herein, for brevity a nd s implicity. these 
have bec•n neg lectC'd . 
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2.2.1 Classical streamfunctions 

The streamfnnction is a concept that is, in certain resp.ects, the reverse of other 

methods that have been descrihed t hns far. Essentially, fluid flow in porous media is 

based on the existence of a pressure gradient that causes flow; motion of the fi uicl is 

described by Darcy"s equation which relates a fiuid flux to the gradient of pressure. 

Conversely, we may also employ the streamlines to determine the fluid flux through 

the meclium6 . 

In many classical formulations , the streamfunction is defined via complex analysis; 

here we will introduce the streamfunction in a more concise method. To clo so, an 

introduction to the streamfunction is done rigorously in a two-dimensional system, 

with only a brief extension to illustrate the equivalency in three-dimensions. This will 

allow us to better relate it to the physical system and understand its ramifications to 

the flow regime. 

2.2.1.1 Isotropic streamfunction in two dimensions 

The most intui tive way of de:Tribing the streamfunc:tion is to firs t consider a very 

simple system. two-dimensional, steady state flow of an incompressible fluid within H 

homogeneous and isotropic medium. Under Darcy flow of a homogeneous flnicl . the 

system is satisfied by Laplace's equation, given by 

'\72 p = 82 
P(.T, y) 8

2 
P (x, y) = O 

!-) •) + !-) •) , u:t:- uy~ 
(2.10) 

6It is in1portant to recognize here t hat t he fluid flux in a porous merlium expressed by Dare.v's 
law is to be viewed as au average concept., as Darc·y's law is defiued by an empirical law; although, 
Darcy's law has been verified by homogeuiziug t he aviC'r-Stokes equation and as:mminl,!; stationa ri ty, 
neep, and incompressible flow [Bmr. 1972, pp. 17:1]. 
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where we have set the source term to zero for simplicity. Given the liucc-u it,· of 

differential operators, equation (2.10) ma.v also be equivalent ly expressed as 

.!l_ ( oP(:r , y)) .!l_ ( DP(:r. y)) = O. ') ,) + ,_) ,;) u.T u :r: uy uy 
(2.11 ) 

I3y inspection of the form of equation (2.11) , we arc able to sat isfy this expression 

by introducing the following function: 

aP(:r , y) 
d:r 

aP(:r , y) 
ay 

8'¢{ r , y) 
ay 
8·~1 ( :r, y) 

a:r 

(2.12) 

(2.13) 

where '¢;(.1:, y) denotes the streamfunrtion. \Ve may note that equa t ions (2.12) and 

(2.13) sati:-;fy equation (2.11) by the equali ty of mixed part ials assuming sufficient 

smootlmcss. 

Considering the Darcy velocities in the :r- and y-dircct.ions, as previously clisc tt::;sccl, 

we have the following expressions for the average flnid velocit ies: 

(
- /\·_,.) 8P~:c , y) 

JL 0.?; 

(- l\-u) DP~:c, y) 
, ,, dy 

To define a streamline, we can say tha t we wish to define a line which is ta ngent 

to the fluid direction at all spatial points: hence. the slope of the streamline must be 

equivalent to the ratio of the orthogoual fluid velocit ies. We may employ the Darcy 

veloci t ies to describe the local slope. 

ely = ny = oP~:r , y) / oP~:r. y) = _ d4J ~ :r; . y) /N'~.r. y) . 
cLr u.,. au o:r D:r oy (2.1--1) 
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Equivalently. <'quation (2.14) may be rewritten as 

(
(}4;(:r, y) ) ( (J4;(T,!J)) 

. d.1: + 
8 

ely = o. 
ch y 

(2.15) 

From equation (2.15) we can immediately recognize that this is the form of th<' 

chain rule for the total differential of ·~; = 4J(x, y), explicitly, 

d·' ( . ) ( i:J-1/; (:c,y) ) d ( 8· (:.r,y) ) 1 ·'I; :r, y = . x + . c y . ax oy 

Hencefor th, we can conclude that from these conditions that 

c!4;(:J:. y) = 0, (2.16) 

and accordingly. the strcamfunction, · (x, y). must be constaut aloug a strca.mliuc, 

e.g. 

~;(.r,y) =constant . 

A qu<'stion now arises: If 4;(x, y) is constant, how arc 41 (1·, y) and P (.r, y) related? 

F\·om vector analysis, given any function, say f (:c , y) = 0, taking the gradient of f(:r, y) 

produces a function orthogonal to th<' level set curve: which, in a two-climensiona.l 

system, "V f(x, y) is orthogonal to f(:c . y) and woulcl point in the direction of greatest 

assent. If we take the gradients of the strcamfunction, 4;(:c, y), and pressun-, P (.r, y), 

we may test their orthogonality by taking their clot product. F\·om vector analysis, 

th<' clot product of two orthogonal vectors should vanish to zero. By taking the dot 

product the gradients, 

;( . , ) . (··· , ) _ [84{r, y) (J4;(:r, y) ] . [8P(.r, y) JP (.l'. y) ] 
"V ~ .L , .lJ "VP .I..IJ - iJ , iJ iJ , i) . 

:r y .r .lJ 
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<:I ll([ substituting equations (2.12) and (2 .13) we find that 

[
(h/!(x . y) D4!(..~;, y) ] . [ eN{~; , y) _ i.N{r , y)] = o. 

Eh ' oy oy ' D.r 

This is a critical result illustrating the relation between ·t/;(.r, y) and P (.r. y) for 

an isotropic medium, this indicates that the two gradients arc mutually orthogonal. 

l\!Icaning, the streamfunction, · ; (:z;, y), and the pressure, P (:r, y). arc mu t ually or-

thogonal in a homogeneous and isotropic medium under steady state condi tions. To 

emphasize the impor tance of the streamfunction a li ttle fur ther, docs { r , y) satisfy 

some differential equa tion of flow itself? In ta king the derivative of equa tion (2.12) 

wi th respect to x and equation (2 .13) wi th respect toy, we have 

_?_ ( oP(.r,y) = 8'1/J (x,y) ) ==> 82 P(:c,y) = D2 't/{r,.IJ) 
()y o:r ()y axoy ay2 , 

By equality of mixed part ials, we can therefore conclude 

02'1/J (:r, y ) ()2 '1/{r, y) - "'2"'!(. ) -a 2 + a') - v 'I .l,y - o 
X y -

namely, t/{ 1;, y) satisfies Laplace's equation. Hence. the streamfunction may be used 

equivocally with pressure to describe the same system of fluid flow. 

A fundamental property of the streamfunction is tha t {L y) remains ccmsta nt 

along the streamline. The streamfunction itself is an analytical function. meaning it 

mRy be exploited to produce analytical streamline paths. However. to do so requires 

the fluid-How be divergence-free. In reservoir sinmla tion . because the source term (q) 

is zero everywhere excep t at injection and production points, this is an acceptable 
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con eli t ion, as we can break the region of simula tion into homogc11cous pieces awl 

a1wl.vticall.v trace only those sections not contai11iug the injection/ production sites. 

2.2.1.2 Anisotropic streamfunction in two dimensions 

As em extension of the previous section, the description of steady state flow for 

isotropic permeability, we will introduce au anisotropic permeability. 

As stated in Section (1.1.2) the steady state flow for an anisotropic flow i11 two-

dimensions is described by the equation 

or equivalently 

!}_ ( . 3P(x, y)) _!!_ ( . CJP(.r ,y) ) _ 
J\ T + l\ y - 0. 

():r; .. [):r; 3y 3y (2 .17) 

Applying the same methodology as for the isotropic case, we note that we may 

satisfy equation (2. 17) by introducing the st reamfunction as 

l
.· DP(;~; , y) 8· ( :.~;, y) 
\ ----

.1: ax - 3y ' 

I
. ()P(:r,y) __ fJ· (:~: .y ) 

\1' - . ·' oy Dx 

l11troducing the Eulerian Darcy velocities as in the previous section, 

u..,. = _ (!\ .. ~: ) fJP.( .~;, y) = _ (~) i) { z:, y) 
!'· 0:1: !' [)y 

and 

__ (1\·y ) CJP(:r;, u) = (~) fhJ{~; , :u) n,, - , 
·• 1, ay !'· a:r; 
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we define the local slope as 

ely lly 

ch v . .~ . 

<J-~) (.c . Y) I ch: 
cN{r, y) J8y 

Rewriting equation (2 .18) , we may express it as 

(
84; (:r, y)) . ( d4{r, y)) _ 

~) d.I + ;.:! ely - 0. 
u ;.r: uy 

24 

(2 .18) 

As before. using the total different ial of '11 = 4{ r, y) leads to the impli('ation that 

d ~{r , y) = 0, 

the streamfunrtion is constant along a streamline for the anisotropic permeability CHse 

as well as the isotropic previous discussed . 

There is a very not iceable difference in defining and anal) zing the isotropic a llCl 

anisot.ropic strea.mfunction. Testing for orthogonality, demonstra tes the difference 

quite clearly. Then, as before, by taking the clot product of the gn1clicnts of the 

pressure and streamfunction for the anisotropic case. we ran detenninc if the two arc 

orthogonal, explicitly, 

"\l ~{t,y) · "\!P(T,y) [
87/{ r, y). a4J(:c, y)] 

d:c dy [
8P ( .. c, y) dP(.c,y) ] 

iJ:c ' ay 

[ 
04! (X, Y) . 041 (X , Y) l 

(};r· iJy [ 
: 8 ~) ~ :c , !J ) ' - ~ d ) ~ .l'. !J) l 

l\ .1' 8y l\y d:r 

8
2
:1/J ( .. r, y) [J\·Y_- ~\-.c ] . 
iJ:rdy l\ .J\ !I 

(2.19) 

Since, in equa t ion (2. 19). the clot product does not vanish to ;;ero, '(.r, y) aucl P (.r, y) 

Hre uot orthogonal. \Ne instead find t hH t there is a rcmainiug mixed-partiRl term . It 

is worth noting that the mixed pcutial exists purdy due to the anisotropy, whereby 
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2.2.2 Streamfunctions in three-dimensions 

It is important to consider the streamfunction in three dimensions and illustrate that 

streamline theory, in two-dimensions, projects easily into the three-din1cusioual world. 

To describe a flow in three-dimensions in terms of the streamfunction requires 

defining two functions , 

4;(.c, y , z ) =canst. and \ (.1: , y, z ) =canst . 

On their respective contours, the bi-stream functions, ·tjJ and \ , form two-dimcusioual 

str-eam-smfaces in which the streamlines ident ically exist along the lines of intersec­

t ion of the stream-surfaces. As previously noted , the streamlines arc instantaneously 

tangent to the fluid velocity at each point. 

It can be shown that the the bi-stream functions arc related the to average Darc·y 

velocity as 

(2.20) 

The stream-surfaces tjJ (x, y , .: ) and \ ( ~c, y, z) arc actua lly the characteristic curves 

of the equa tion 

u x clr = 0 

where dr is an clement of the arc along a streamline. 

As illustrated in Figure 2.1, the stream-surfaces bound R regwn of flow wi thin 

the medium whereby fluid t ravels taugentiRlly along the streamlines and never cross 

the surfaces. As previously discussed , the two-dimensional case with flow in the .ry­

pla.m'. the plRne z = constant pla.yecl the role of the second stream snrfc-H"t'. It can 
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Figure 2.1: The stream-surfaces 'q; (x, y, z) and x(x, y. z) intersect at the streamlinr ·. 
which are t angent to the averaged fluid-velocity vector. Thr cross-sectional arra 
bounded b. the stream-surfaces- shaded above - are mass-conserva tive [Bear, 1972]. 

be shown that the extension to three-dimen ion is governed by the sa.mr rules rlS 

that of the two-dimensional case [Bear , 1972, Datta-Gupta & King, 2007]. From this 

construct , the stTeamtube that is created by the bounding stream functions, allows 

for an analytical determination of the volume flux, due to the fact that t his system is 

mass conservative. Thi. method requires a multitude of boundary conditions and i 

only determinable analytically in highly simplified flow regimes. In turn, numerical 

methods must be employed to solve this system. 
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2.3 Streamline tracing and particle tracking tech-

. n1ques 

In much of streamline literature, especially related to reservoir simulation , the t ime-

of-flight method (TOF) is the most predominant method of streamline generation. 

This method is based on finding the travel-time required, denoted herein as T . for a 

par ticle to travel a distance, s, along a streamline. 

At a fundamental level, the TOF derivation is based on the t. ra.nsfonuatiou of the 

physical coordinate system into one which follows the flu id flow direction ; expl icitly, 

the flow direction is defined by the bi-stream functions 4; and :\ and the fli ght. coordi-

nate T [Bear, 1972, King & Datta-Gupta, 1998]. Due to this result and knowing that 

u is mutually or thogonal to V'· and V'y, we come to the result 

(2.21 ) 

where u · V' 1/,, v is the clirec:tiona.l derivative of the velocity [Hreglancl, 2009] . Equation 

(2.21) may be expressed along the length of the streamline 

()T u 

as = ¢ llull 2 . 

The streamline path is based on the velocity field of the fluid within the medium. 

Explicitly. the streamline method is based on the following integral: 

(2.22) 

where T is the required time, ¢ the porosity, 1l the scalar velocity, a.ucl 8 t.lH' path 
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length along the streamline. Or, in different ial form 

u · \h(.r, .If, z) = </) (2.23) 

Knowing u = \7 • + v\ and substituting this into equation (2.23) we find 

which is an expression for the Jacobian for a three dimensional change of vcuiabk s 

[Arfken, 1985]. 

In equation (2.22) , r(.1;, y z) is the time in which a particle initially at zero would 

travel a distance s along the streamline. Physically, we have defined a HC\\ coon li­

nate system , ( J , \ . r ), whereby the streamlines arc now straight lines 11H'asun·d in 

units of T. where the pore volume is conserved and reduces the computa tion of the 

three-dimensiona l ftow equa tions into a sum of single-dimensional transport equations 

[King & Datta-G upta., 1998, Datta-G upta & King, 2007]. 

2.3.1 Streamline tracing 

The critical point in the simula tion, will he the details and development. of the cy lin­

clrica.l streamline tracing technique . An adaptation of a method prcsC'utcd b.v Pollock 

is nsed to implement the actual traciug of the streamline [Pollock. 198 ]. 

It should be uoted that Pollock's method is not, strictly speaking. a streamline' 

trace. hu t rather a part ide tracking mC'thocl along a pathlinc. To distinguish between 

the st reamline ami pathlinc formulat ions, recall their defini t ions from Chapter l. A 

strec-mlline is ddined as the line connC'd.ing the tangents of a vdo('ity VC'tt.or field at 

au instant in timC', where' in unstC'acly ftow. would require to be updated as tlH' How 
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Uyll 

Uxl Ux2 

Figure 2.2: Illustration demonstrating the Pollock methodology for a single Cm·tesian 
block. Here the face velocities for each side is show by u~. 1 • u.,.2 • ny 1, al1Ciuy'2· As vwll. 
the pat hlinc and ent ry/exit points through the block are shown. 

changes. vVherca.::;, a pathline follows the physical path of a pa.rtidc within the flow 

where its direction vector identifies the velocity vector at that point at some previous 

lllO!llCnt in ti111e. 

2.3.2 Pollock's method in 2D Cartesian 

Pollock's method for the tracking ground water flow is one of the most widely accepted 

methodologies for streamline generation in porous media [Pollock. 19 8] . T he method 

is robust. and presented a::; a semi-analytical approach to the tracing of a pat hliuc 

through porous a medium. As in the classical approach to ' tream function tra.cking, 

Pollock '::; method hinges on assuming a. vcloci ty profile, calculating the vohtnJetric H ux 

across the face of au unit-square grid block. using these to clctcrmiue the tra.vd -t.imc 

through the block, and estimate an in1aginary particle'::; exit point. 

For the case' of steady-state flow, the flow characteristics arc ilm·uiaut. with t.inlc', 

and both the streamlines and pat hlim's coincide; for t hesc circtunst a Bees st l'C'<mt!inc' 

tracing is equivalent to particle tracking in flows. For om purposes here. we will 
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consider a two-dimensional system, as the extension to t ln ce-d imcnsions is trivial. 

Consider e1 uni t square a.s in F igure 2.2. Given that the flow is stecH I_v, the f<wc 

velocities u .. r,, n,r2 , Uy 1 , find uy~ arc a lso invariant with time. The particle enters the 

uni t squa re at point (.rp , .l)p) at t ime f p on an a rbitrary edge- this is the init i<'ll posit ion 

of the par ticle within the cell. If we assnme that the average velocity cha.nge through 

the square is linear in each direction, it is sufficient to assume tha t the velocity profile 

through the block can be expressed as 

u( .r) 

v.(y) 

(2.24) 

(2.25) 

for the :t: - and y-components of the velocity. vVriting the differential expression of 

eqnation (2.2-!) and app ly ing the chain rule we have 

dv. ( :~:) cht(.r) d.1: 
cit (h clt 

Noting that clx / d t is the defini t ion of velocity in the x-direct ion and d ifferentiating 

equation (2.24) directly with respect to :c, we come to the expression 

( d~l~r) ) P = A_,.n,,.p . 

T his means that the average velocity of the par ticle p at any time can be defined by 

the constant A_,. and the velocity in the :~;-component u .,p· Rearranging and integrating 

yields the result 

j•'ll r ·> ( 1 ) 
- du (.r) 

IL.rl U.rp 

A.,.6t,,. 
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Solving this equation for tlt yields Fi ll expression for the travel- t ime of H part ide t.o 

traverse the block in the x-direction. Simila rly. the same expression CHll be found for 

the y-clicction. yielding 

( 1 I A.r) ln ['ll.1·2 I 'U .. r J] ' 

(1 1Ay) 1n[uy2luud . 

(2.26) 

(2.27) 

Rearranging equation (2.27) and substit ut ing equations (2.24) to solve for .r (t) 

and y(t) , we have 

X p + (1IA.r) (u.rpexp[A1,lltx]- 'U:I'I ) , 

Ye Yp + (1 1Au) ('uypexp[Ayllty] - uy 1) • 

(2.28) 

(2.29) 

These expressions now give us an analytical methodology of finding an exit location 

(:1:, y) for where the imaginary part icle will exit the block given an entrance location, 

as well as the time it will take to t raverse the block in each direction. 

vVhen calculating the travel-time for equations (2 .27) , two value::; a rc yielded . 

Similarly to Fermat's principle in optics, the path of least t ime indicates the exit face; 

if c, < fy , then t he particle would exit in the . .r-direction. Once the travel-times a.rc 

calculated from the face velocities, the least. t ime value is then used to calculate the 

displacement the par ticle will travel in each corresponding direction . 

This methodology is quite powerful in its construction as it is qui te robust. As 

each cxi t point for a block is calculated, this point can then be carried forw;-ml as 

the entrance point for the adjacent block which shares t hat interface, wit It each exit 

point being carried forward as the new entry point. until a production poin t. i:::; r<:'achcd 

wi t hin the grid. \ t\lith the collection of points. a part icle pathline can he visualized. 
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However, it is not without issues. There is one oversight that can be quit(' trou­

blesome: the particle cannot exit a block on the same face as it entered. Th<' ntost. 

obvious solution to the problem would be to refine our grid to smaller cells such that 

the streamline is forced to encounter more grid interfaces to track its trajectory. This 

increases the computational time which can, but not necessarily, nullify one of the 

primary advantages of this method. As with all reservoir simulation techniques, care 

must. be taken to balance the amount of information that can be achieved with the 

computational capabili ty required to return the information in a timely manner. 

2.4 Literature review 

The current framework of petroleum streamline simulation roots in fi nid-mocleling by 

authors such as Muskat and \iVyckoH [iviuskat & ·wyckoff, 1934]. They proposed a 

tracing technique for a "line-drive" path of fluid based on a mathematical model for 

a steady pressure distribution for a water-flooded reservoir. Ultimately, hoping t.o 

determine the connection between injection and production wells. 

13y the 1960s, analytical streamfunctions derived for homogeneous. steady-state 

How in porous media were well described. vVith this, the fluid-flux components 

through a medium could then be expressed in tenus of the streamfunction [Zaslavsky, 

1962] . A rigorous derivatiou of the classical streamhmction in porous media for a ho­

mogenous fluid was readily available [Bear, 1972] and the notion of using streamline . 

methods in reservoir simulation was quite promising and sought-after. 

From those early beginnings, much work has been clone to briug streamline mocl­

cliug to its current state. Of particular importance was the work of Pollock. This 

approach to pathline determination is based on a mass-balance rclatiou that is detcr­

minc'd from fiui te difference methods to c-Rkulate fluid- flux through a given area 0 11 
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a Cartesian grid. Conserva tive fluxes arc obtained at. the grid hH"cs from a discret e 

prcssm e calculation . Having t he fluxes of a closed cell and then etnplo)'ing a lim'ar 

vcloci ty interpolation scheme. a continuous vcloci ty profile is developed through t hr 

block. ~ i t.h that, an analytical integration technique is i ntrod uc-rcl such that . given 

any entmnce point to the cell. a travrl-t ime. referred to as the time of flight. to each 

potential exit face within a cell can be determined . Imposing the condition th<lt the 

least time calculation will determiuc t he exi t face. the displacement of the ·'pa rt icle'' 

in each direction given b)' the travel- t ime [Pollock, 1988]. 

Pollock's method is based on a sintplifiecl method for single-phase. st('acl_v-sta te 

flow of an incompressible fluid through a porous medium. It is designed for a square 

Cartesian grid. ignoring gravity and diffusion effects. It. methodology is extremely 

robust and effective and is the inspiration of most reservoir streamline models today: 

though Pollock ·s met hod has been nu1ch expanded by various a uthors to hcl p overcome 

some of its short-failings. 

During the 1990 , the use of streamline simulation techniques became of partic­

nl<u interest to the petroleum reservoir industry as a means of gaining more insight 

into the fluid-flow in the subsurface . With geological/ geophysical data adva11cing 

so rapidly, typical reservoir simulation grids were becoming quite large allCI cumber­

some. and a more computationally efficient methodology was sought. As such, a, 

multitude of li terature on the advancements of stremnliue modeling exists and con­

tain many mi'ljor expansions of this method. T he interested reader is directcd to 

[Datta-Gupta & King, 2007], as it includes a detailed description of many of th<' ad­

vanc-ements made in in strcamliue silllu Ia t ion . 

f\lulti-phase How is one of the most useful extensions of the theory as strcamliiH' 

methods ;uc often employed for water- or pol)rmer-Hooding of reservoirs for h~rclro­

carbon displac-ement. In multi-phase How, we have simultaneous How of Juon' tlwn 
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one fluid through the medium. To iuduclc the presence of more than one fluid , new 

equations need to be inducled in the nmthematical model. On top of the continuity 

a,nd Dare.\ 's equations, we must introduce the concept of saturation content of each 

fluid. With this, we assume that the medium is always saturated by some mixt ure of 

reservoir fluids (either miscible or immiscible) . The saturation term S is, 

where f represents ea.ch phase of fluid within the medium. vVit h this, there are 

several levels of detail that need to be introduced. The cont inuity equa t ions arc then 

expanded to include each fluid and the fraction of the fluid located at ca.ch point. e.g. 

the fractional flow. The continuity equation then becomes 

us 
_f + UJ . \7 f.r = 0 . at . (2.30) 

where u = .L u1 is the total fluid velocity, and fJ is the fractional How of each 

phase of fluid. Essentially, it is assumed that each fluid exists at all locations within 

the medium and the presence of each fluid is described by an equation of the uwss 

fraction at a, point ; the sum of the mass fractions of a ll fluids within the medium a rc 1 

[Aamcs et al, 2007, Bratved t et al. 1993, Bradvedt et al, 1996, Da tyc:ky ft oL 1996] . 

It is important to not ice that introducing multi-phase flow into the flow gcncrntiou , 

increases the number of equa.tious - as there must be a specific rnass-balance for each 

fiuid - bu t the overall solution to the problem docs not increase computationally. As 

illustrated in Section 2.2 .. the equation (2.JO) can be changed into the ti rne-of-flight 

coordinates whereby 

a 
U · \7 = G" ­

f/ UT 
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where T is the t ime of flight. C01ubiuiug this with equa tiou (2.30) all([ we find t hat 

t.he sctt.m a tion eqna tion is reduced to 

as1 u.f1 _ 
0 ut + uT -

which has reduced the three-dimeusional fluid flow into a series of siugk -dimeusioua.l 

equations in T for the saturation sf a.long a streamline. T his resul t is the bHsis of 

multi-phase How regimes for strea.mliue simulation clue to its gcucrHl aualyt.ical form 

and computational stabili ty. 

A few contri butiug authors have made tremendous leaps into bri11ging streamline 

simulation into the limelight in the petroleum industry. Of note is the work of Bra tved t 

et al. which extended work into a. full 3D streamline simula.tio11 for a two- phase 

How which included a gravity correction [Brad vecl t et al. 1996]. T his method we1s 

grouudbreaking in that it was the first field-scale full simulation of its kind to include 

gravity. T he basis of the model presented was to solve for the streamliuc based on t he 

saturation expression a nd apply a "gravity correction'' step based on the convective 

transpor t of the fluids for the the time-step knowing the phase densit ies within a 

medium. T he reasoning for this method is that when gravity is included in the theory. 

the system becomes 2D - one direction is defined along the streamlines aucl the other 

along the gravity. An operator splitting technique is em ployed to numerically separate 

the t\.vo climensio11s by solving for the satm a.tion excluding gravity, and to usc t his 

solution for a given t ime step to cletermine the effect. of the gravity during that time. 

T his method WHS also employed Hlld iudcpeuclent ly verified by Batycky et al. for 

a. full fidel-scale simulation to be used for a commercia lly available reservoir sui te 

[Ba t~rcky rt al. 1 !)96]. 

T he' t'xt.ensioll t.o compressible' flow is typically a complicated procC'ss iu rcs<'rvoir 
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sinmla.tiou, as solving the flow cqua.tions in three dimensions for a time dependent 

porosi t.y and density increase com pn tatioual times considera bly. However. C heng et al. 

present. a rigorous treatmen t. of the streamline for multi-phase flow [Chcug ('f al. 2005] . 

In compressible streamline flow. it. rema ins true tha t the streamlines arc tangent. to 

the vcloci ty vectors at all points and defined by the expression 

(2.J l ) 

where PeJJ is referred to as an effective density as it may vary with changing physical 

conditions. This is now a total mass-flux conservative expression whereby, for incmu-

pressiblc flow Pe.r.r = 1 and the system reduces to the standard model. In view of the 

vector identity 

\7 ° (\7 ~) + \7 \ ) = 0 0 

we can then substitute (2.31) and from the product. mle find 

which now allows the definition of the Pe.r .r along a streamline given any ini t ial value 

at a reference location [Cheng et al, 2005] . \1\fith this expression, the s treamline may 

then be integrated along each cell since there is no requirement that. \7 · u = 0, aud in-

stead equal to the sum of the total volume flnx. Given a veloci ty interpolation scheme, 

this method can remain as a semi-analytical method of introducing compressibility to 

any streamline simulation. 

A very significant port ion of streamline simulation and particle tracking methods 

n11merical by defini t ion . As all of these expressions need to be ported a.nd discrctizcd 

into programming languages, all cqnM.ions must be written as difference equations 
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for discrete data. In doing so, the selection of the grid in which these equations are 

disc:retized. introduces an alternate side to this problem. 

Here , we have chosen a cylindric~d grid with logaritlunicall.\ spaced radial bound­

aries such tha t the grid blocks remain as uniform as possible with geometric spreading. 

Hov. ever. streamliue simulation hru:; also been exteuclccl into irregular grid strncturcs. 

[Hi:{' gland ft al, 2006] developed a methodology in which Pollock 's met hod is extended 

to curvilinear coordinates by using a mapping algorithm - an isoparametric trilinc;u 

trausformation - to map each grid cell iu physical space into a uni t cube in the 

reference space. The theory is then tested and compared to several discret izat ion 

techniques and the results compared to reduce the numerical clispcrsiou introduced 

in highly irregula r grid geometries. 

Streamline techniques have also been adapted to be effective in tmsteacly flow 

conditions. In this case, the streamlines are no longer constants, as the pressure dis­

tribution alters, so to does the t rajectory of the streamline · t hentselves. In which case, 

each streamline will then require periodic updating to compensate for the changing 

pressure field. This work is well described by Batycky [Batycky et al, 1996]. 

In this work a simplified physical model is chosen and focus is instead on the 

ncar wellborc region of the reservoir. Careful attention is put on deriving the physical 

equations for an anisotropic permeability field st ructured on a co-axial. radial grid 

overlaid on the wellbore. As this region has not previously been ·tuclied using these 

techniques, this system is intentionally kept simplified to study the result of the 

concept , with the intention of adding more structural information in future research. 



Chapter 3 

Streamline Tracing in Cylindrical 

Coordinates 

In the forthcoming chap ter , we introduce an adaptation of Pollock 's particle traciug 

teclmiquc specifically desigued for sinmlatiug the flow for the ncar-well region utili:ting 

a cylindrical coordinate system. The desigu of the method ha,s been chosen in such a 

way as to ta,ke advantage of the natural geometry of a wellbore: to depict the wellbore. 

we chose a radial-cylindrical model such that the axis of the simulation grid is overlaid 

co-axially with the well, allowing the native geomet ry of the cylindrical coorcliuate 

system to encompass the flow regime in this region . 

Drawing from current methods of ·t reamline simulation a new cylindrical stream­

line model is presented that is specifically formulated for the uear-well region of a well­

bore. The results described in the following chapter , was recent ly published. with ap­

plications to some more detailed well-completion models [Skiuner & J ohauseu, 2011]. 

38 
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3.1 Cylindrical t ransform 

To begin the t ransformation to the cylindrical coordinate system, we nutst. first t rans-

form the flux equation from the standard Cartesian to cylindrical coordina.tcs. 

We begin with the Darcy's equation , namely, 

K 
u = --\lP 

fl 

where u is the Darcy velocity, K is the int rinsic permeability of the medium, and Jl 

the dynamic fluid viscosity, as nsnal. Explicitly. the Darcy equation may be wri t.tcn 

in matrix form as 

'U,l' J\ .. r 0 0 oP 
OJ' 

I 
0 X y 0 f) p (3.1 ) 'Uy / I oy 

'U ::: 0 0 ! \ .:; oP 
f);; 

vVe now must transform the Cartesian expression of Darcy's law to the cy limlrical 

coordina te system. The cylindrical coordinate system is described by the tnmsfon w-t-

t ion 

.1' = T COS 0 

!J = .,. sill e ('If) e = arc:tau ~ 

To apply this t ransformation to equation ( 3.1 ) into cy linclrical. we must first determine 

t.lw C'Xpressiou of the gradient iu cylindrical coordiua tes. Knowing that t hC' gradi<'nt 

is defined Hs 

V' = ---(
8 d d) 
(h . iJu' d ::: . 
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Using the chain mle, the partiR Is for .r Rncl u may be rcwri ttcn as 

iJ D D·r D ue D sin e D 
- = --- + --- = cosB- - ----
(h: ch- ch: de d:r ch· .,. ae ' 

a D D·r d dB a cos e a 
- = ---+--- =sin{}-+---ay or oy ae oy a·r .,. ae ' 

and the z term remains invariant. Hence. the gradient in cylindrical coorclina tcs 

becomes 

( 
a sin () f) f) cos () f) a ) 

'\l,.o:; = cos{}-
0 

- -- ,_1() , sine~+-- ')() '~ . 
T r u u1· r u u z 

(J.2) 

We sec here tha t the components of the gradient here include both radial and Rngular 

components. 'vVe would like to isola te these to only the r and () directions. exclusively. 

To do so, we will require the unit vectors, namely, f = r/ll r ll and {) = 0/IIOII- From vector 

caJculus .. these arc given as 

r [cose,sine, o]. 

{) [-sine, cose,o] . 

z [0, 0, 1] . 

Using the unit vectors and the clot product , we find that the gradient in the f and 

() directions arc 

() 

a·r 
a 

De 

As i is simply [0, 0.1], given that there is 110 change in this clircctiou. 

Now to determine the direction of the veloci ty in the r direction. WC' similarly 11Sl' 
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t.hc clot product by 

substituting expression (3.2). a.llC! doing some algebra, we fillC! that 

1 [ ( . 2 . . •) ) 8 p ( . . ) . 1 8 p l 
V,. = - ft l\ :r cos () + l\ u sm- () ()

1
· + l\ y - l\ .r sm () cos()-:; 

88 
(3.3) 

Similarly, the velocity in t.he () direction can be determined by 

which yields the result 

(3.4) 

From equations (3.3) and (3.4) and seeing that n ::. = z · u = l\·::. aP/ a::. . we n1 11 now 

express Darcy 's equation in matrix form as follows 

u.,. F 2 (1 F . 2() \ x COS + \y 8 111 ( l\'y - l\ .. r) sine cos e 
1 

(1\'.r sin2 e + l\'y cos2 e) 'llo (J\'y- l\'x) sin() cos e 
I' 

'U.;; 0 0 

For brevity of equation (3.5) , we will set 

f . 2a f. ·2e 
\ .r COS !7 + \ U Sill . 

f . . 2 (} f ' 2 LJ 
\ .r Sill + \ y COS !7 , 

0 

0 

l\';; 

aP 
()1-

1/U P 
' ao 
i} J> 
iJ::. 

(3.5) 

(3.6) 

(3.7) 

(3.8) 
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where J\.r can uow be referred to as the radial permeability, l\"0 the angular pcmH'abil-

ity, and I\1 the tangential permeability as it is a tangential component to the velocity 

direction . 

Equation (3.5) yields a connection between the permeability tensors from the 

Cartesian to the cylindrical coordinate system; as in Cartesian coordina.tcs, the per-

meability has only principal components, the transformation to cylindrical has off-

diagonal values. On closer investigation of the off-diagonal values of the pemlcH bility, 

take for example for the radial flux, namely, 

(I . 2 e I. . 2 e) aP [(I. I. ) . e el l aP u,. = \ .c COS + \ y Slll ()T + \ y - \ x Sill COS I' Je 

the bracketed terms illustrate the contributiou of the permeability. which wHs defined 

in :c- and y-dircctious, but herein t ranslated to t he radial coordinate system. Taking 

0 :::; e :::; 7f 12: the coefficient J\·.1' cos2 e + J\"y sin2 e has a greater contribution in !\·,. for 

o :::; e :::; 1r ;.1, anct conversely, from 1r 14 :::; e :::; 1r 12, the coutribut ion of 1\·u is grca tcr. 

However , upon transformation of the radial flux equation from Cartesia.n, we notice 

that. u,. now has an angular component noted by the coefficient of DP l ao is now nou-

zero given by I\1 = (l' .. ."y - I\."x) sine cos e. Due to the trigonometri c: clepenclency, J\.1 

will ha.ve a maximum contribution of 1I2(I\u- J\.".c) at an angle of 1rl -! and its itcrants 

in each quadrant, namely, 37f I 4, 57f I 4. aucl 77f I 4. 

If, for example, we have an isotropic system - e.g. /\".,. = J\.y = J\.:: - we uotc that 

the permeabili ty matrix in equation (3.5) is reduced to a very :simple expression. T lw 

off-diagonal terms of the permeability become zeros and the diagonal terms simplify. 
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Explicitly. 

Ur l \" 0 0 uP 
-;;-;: 

1 
Jj-uP no () l \ ' 0 

~I. 
1 ao 

'U. z () 0 l \" uP 
az 

as l \" = !\·.,. = l \"y = l \"z and taking advantage of the t rigonometric identity sin2 e + 

eo:·/ e = 1. Hence, for an isotropic system. the cylindrical transformed equa tion docs 

not increase in complexity compared to that of t he Cartesian one. 

3.2 Cylindrical velocity interpolation schem e 

Given the expression for Darcy's equation in cylindrical coordinates, equation (3.5). 

we have a velocity value for the volumetric flux for this geometry. We now wish to 

investigate the flow of fluid through the medium for the cylindrical eoorcliuat.c system. 

It will be useful to understand the connection between the velocity aud pressure. To 

employ a strt'amline tracing technique for this geometry. we will ueed to choose au 

appropriate vcloci ty interpolation scheme. 

3.2.1 Radial velocity interpolat ion 

Considering steady-state flow in only the radial direction, Darcy's equation may be 

expressed as 
q l \.r fJP 

V.r= - = ---
A I'· i:Jr 

(3.9) 

In one-dimensional flow of an isotropic systE'm, the volumetric flow rate q is distributed 

along the circumference of a circle where the expression then becomes 

l \.r clP 
q = - 2nr-- . 

Jl. c[.,. 
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Integrating, we find that the pressure as a function of radius nwy he expressed HS 

( 
qp, ) P(1·) = - --. ln(T) +canst . 

27f J\ ,. 
(3.10) 

Here we sec that the pressure is proport ional to the natural log of the radius. explicitly 

P(r) ex A ln(1·) + BT . 

Knowing that v,,. ex oPj/3-r, we can then say that the volumetric flux profile would be 

adequately described by 

A 
u(·r) ex - + n . . ,. 

In light of this, the interpolation we will usc for the radial velocity component is 

where' 

A,. 
u(1·) = - + f3 . ,. 

and 
A,. 

f3 =- + u,.1 . 
7'1 

(3.11) 

The subscripts for the radius and velocity values indicate the boundary values of their 

respective parameter ; e.g. a radial bouudary at a radius T 1• will have au associH ted 

velocity denoted u.,. 1 , a.ncl so 011. 

Equat ion (3.11) will be used to determine the flow velocity at any radius within 

each grid block, and the Darcy velocity, equation (3.9), will define the velocity value 

at grid boundaries. In doing so, we will have a velocity field tha.t is quasi-continuous 

throughout the simulation area. which allows us to semi-analytically iuterpolate the 

How through each block. 



CHAPTER J. STREAJ\ILINE TRACING Ii\ CYLI DRICAL COORDIJ\ ATES -!5 

3.2.2 Angular ve locity interpolation 

For the angular component. the pressure docs not directly depend on the <-mglc for 

such H system as in equation (3.10). and hence. would be constant at c-dl <-mglcs for 

a given radius for an isotropic system. So, for a velocit.' interpolation scheme in the 

<-m gular direction. we could assume that the pressure variation would be H'HSOHa bly 

smooth and therefore choose a linear average for this model. Following the work 

of [Pollock, 1988], we can employ a simple linear interpolation scheme to produce a 

continuous velocity distribution in the angular direction given by 

(3.12) 

where 

A 
_ ·uo2 - uoJ 

o - ~::,.e . 

Equations (3 .11 ) and (3.12) will be the velocity interpolation profilc for the stream-

line fiowing through a grid-block in the radial and angular directions, respectively. 

Using the interpolation expressions (3 .11 ) and (3 .12), for the radial awl angula.r 

interpolations, respectively, our goal now is to usc these expressions to calcnlatc H 

"t imc-of-fiight" of a neu tral part icle through the medium. The goal is to determine 

the exit point given the velocities and time. Given an expression for the vcloc-it~r 

through some medium, integrating yields an expression for its posi t iou in time. Hence, 

we wust integrate the respective velocity interpolations in order to solve for positiou. 
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3.2.3 TOF and radial displacen1ent 

From equation (3.11), we have a velocity interpolation scheme for the radial fimv given 

boundary velocities and radii , mund y. 

A,. 
a( r ) = - - + j3 . 

'/ ' 
(J.lJ) 

T his expression indicates that the vcloc:i ty interpolation profile of the flow in the radial 

direction will be assumed to follow a logarithmic change in pressure. As fluid moves 

radially, say from outer to inner boundaries, due to geometric: convergence, veloci t.y 

is addi tive; the increase of velocity is inversely proportiona l to the radius from the 

well bore. 

Recognizing that the velocity u('r) is the rate of change of the radi us with t ime, 

(' o· 
" b' 

ciT( t) 
u('r ) = -

1
- , 

ct 

vvc may solve for the t ime based 0 11 the radial displacement aucl velocity. So, h.v 

integrating expression (3.13) in t ime, 

1•12 1 r(t2) 1 1r( t ~) ( 1 ) 
cit = -ch· (t) = ci·r(t ) , 

• / 1 r(t 1 ) u(r) r(t 1) A,/r (t ) + /3 

Carrying through the integration then yields 

(3.1-1) 
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where, as before. 

and 

Equation (3.14) is an expression for the ''time-of-flight" through H rRCiiHl section. 

bounded by T 1 and1·2 , such that we may approximate a neutra l particle 's path based 

on the fiuid velocity values at the boundaries, namely Hr 1 and ur2 . 

1Lr 1 I 

Figmc 3.1: Radial annular region. Here we have a illustration of an annular region of 
the cylindrical grid-block. We note the radial and angular velocity values and arrows 
associa.ted with an arbi trary flow direction; if flow is found to not be in the direction 
chosen, the associated values will be negative. An imaginary par ticle. in the case 
shown here, enters at the block at the point ('rP. eP , tp) signifying a radius ·rp , au angle 
eP , at a time value tP . As the particle passes through the block, determined based on 
the face velocities, 1lr! , 'l.l,.2 , 'U.Q ! , and 'U.(J2 1 exits the block at (rl' , el' ) at time f e · 

Considering Pollock's method, the exit location was cleten uincd from the time-

of-flight by simple algebra. In view of equation (3.14), we sec that in Httcmpting to 

solve for ·r(t2 ), no immediate solu t ion is applicable '. In light of this, however, we will 

1 A sol11 t ion of the t ime of flight L':!.t ,. is possible• 11siug the Lambert- IF funct iou , otherwise kuowu 
as the Omega f11nc t io11. I t is a u inverse fuuction of f ( w) = we"' where e is t he exponential f11 nctiou 
and w is a complex uumber. It however, ca nnot I)(' cxpressPcl 11siug Plementary fllllctious a nd hence, 
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instead apply a. more "pltysical"" approc1ch. 

vVe arc well aware of the equat ions of kinematics to describe uwtiou in constant. 

accelerat ion, namely, 

l l 1'' ·r(t ) = r0 + vdt' = r0 + (u0 + at' )clt' . 
. 0 0 

If we assume that the acceleration in the radial direction is roughly constant through 

the radial grid-block, then we could employ this equation. Knowing the iuitiRl posit ion 

a.nd the initial velocity on that face of the block we can set 

and that the par t icle would travel a. time flt ,. our equation becomes 

{!::.! , 
r(t) = 'l'p + u(·rp)flt,. + Jo a,.t'dt' . 

Now, using the definition of accclerRtion and the chain rule, we ma.v approximate 

the acceleration as 
du(1·) (J-u (·r) dT (J-u(T ) 

a,. = -- = ---= --n('r) . 
clt OT elf OT 

Since our velocity interpola tion in the radial component is u(·r ) = A,I r + f), cli ffercn-

tiating this with respect to r , we CRil then say 

A,. 
o . = - - u(1·) 

' r2 

is of lit.tlc usc in the following section where a discretization scheme will be developed. 
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Hence. the exit radius,.~ will then become 

(3.15) 

where the value for the radius 7· and the velocity ·u('r) will be taken to be au average 

value taken from the radial center of the block. More on this in Chapter -!.-!. 

3.2.4 TOF and the angular displacement 

For the a ngular vcloci ty interpolat.iou . it is sufficient. to have a li 11e8 r avcr11.gc as in 

Pollock's methodology [Pollock, 1988] by which the angular velocity expression 

·u(B) = Ao(B(t )- e,) + U o l (3 .16) 

where 

A - uo2- uo, 
0 - f:j.8 

'vVe recognize that in a ftow scenario. a particle's angular posi tiou will he a. fuuct ion 

of it t ime-of-flight, e.g. e = B(t). 

The change in u0 with time for a neutral part icle may be C'xprC'sscd as 

(du0 (t) ) = (duo) (clB(t) ) 
dt dB clt 

p p 

(3.17) 

where the subscript p indicates the specific par ticle. Iu a linC'ar iuterpolat.ion , the 

chaugC' of the velocity u0 with angular posi tion, may be represented by the angular 

cliffcrcm:c between the beginning and end points: in such a case, we may write 

c~;~) = no2 ;(/'·Ol = Ao . 
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From expression (3. 17) we note that we have the derivRtiw of the angular posi t ion f} 

with respect to time for a par t icle at that posit ion. G iven that we haw a11 imc1ginHry 

pa r t icle t raveling through an annular region , we may note t hat by definition 

where the uop denotes t he angular componen t of t he vdoci ty for the p<utidc a t t he 

angula r location (}( t). Hence, we may re-write expression ( 3.17) as 

(
cl u.o (t) ) _ A , 

1 
- ouop. 

ct P 
(3.18) 

Rearranging equation (3. 18) and integrating from t 1 ~ t ~ t2 we find 

11·> 1 ;·h 
-dvo(t) = Aodt . 

I 1 7lOp I 1 

Since. A0 is independent oft, it may be taken outside the integrHtion, a1Hl as such 

the result becomes 

(3.19) 

Herein, f).t0 is representative of the amount of time required for an imagina ry par ticle 

to trcwerse an angle (} for a grid block. given t he interfacial velocity values and the 

linear interpolation scheme in equation (3 .16). So. we now have an expression for 

the t ime-of-flight through an annular region of the c.v linclrical system given b_v t he 

expression (3 .19): solving. we have 

(3.20) 
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taking the exponent ial. a.llCl solving for ()P ( t 2 ) yields the rcsnl t 

·u.o ( t, ) 
()P = -- [exp(Ao~to)- 1] +()I 

Ao 
(3.21) 

The velocity values vop(t 1) and ·u.op(t2 ) arc the cell face velocities at the boundaries 

() 1 and ()2 which a rc known based on the flux calculations taken from the pressure 

clistri bu t ion of the field . 

3.3 Steady-state flow and the TOF 

Vvc should recall that we hctve ctssmned a steady-state flow regime. ~deaning, t he flow 

of fluid through the medium is invctriant wi th t ime, which , in turn, means tha t an 

est a hlishcd flow will remain unchanged and all associated vcloci t ics remain as they 

arc. Since t he velocities arc constant, then the streamlines are esta blished based 0 11 

the velocity field and do not require any fur ther updating. 

Under the assumption of steady-state flow, the integrated time-of-flight (TOF) 

ca.lc:ulations yield a t ravel- t ime for a ncu t ra.l particle to traverse a simula ted regiou . 

Recollcctiug what equations (3.14) and (3.20) physically represent help in understand-

ing which of the time values arc most meaningful and help determine some other 

infon naJ.ion regarding the pa rt icle 's path. For the interpolation. we assumed that the 

velocity profile for the radial and angular directions would follow an inverse propor-

t ionality in T and a linear average in t he angular region e. respectively: explici tly, 

u.,. ex 1/r in the radial direction and no ex () in the angular. Having continuous velocity 

profiles in the radial and angular d irections. we can logically a rrive to the coud usiou 

that t he minimal t ime should indicate that the par ticle is traveling more quickly in 

that respective direction: sa,y. if ~t,. < ~to. then an imaginary part icle fJ ini t ia lly a t 

radius ·r 1, will exi t the face of the annular region through face r2 • T he times t, all(! 
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to, c-ue solved based on the physical dimensions and fac:C' veloci tiC's of e1 dosed cell. 

Hav ing the TOF tells us the travel-time for the particle through t he cell, and 

this time value is then carried into equations (3.15) and (3.21) to determine the exit 

location of the particle in ('r, B) through the block. This position is then cHrricd 

forward to the adjacent block where it becomes the new entrance point and new face 

velocities are calculated, and so forth, until a discharge point is met. 



Chapter 4 

Discretization For Implementation 

13asccl on t hcory int roduced in Chapter 3, a discretization scheme is presented to trace 

streamlines through rudimentary flow regimes. 

As illustrated in Figure 4. 1, we will only consider a single quadrant. of the full 

areal pressure field. This reduces the actual computation::; necessary t.o a quarter of 

its original amount without any loss of generali ty of the simulation as the pres::;urc 

clistri bu t ion is symmetric about the principal axes. The pres::; m e eq 11a tlon is solved 

on a large Cartesian grid and the appropriate pressme corresponding to the node 

locat ions arc extracted from the full pressm e field. 

In Figure 4.1, a contour map of the pressm e field for a full Car tesian grid is shown 

for an anisotropic permeability field with the pressure nodes of t he cyliudri('al grid 

overlaid. We note that for a given angle. there are nodes for seven-ll radii ;:mel a::; 

the radius decreases toward the well, the node density increases significantly. These 

nodes correspond to the cell centers of the logari thmic radial grid. How these nodes 

arc cktcnuincd is discussed in Scctiou -! .3. 

Figmc 4.1 b) is a contom map geucrated hom the cylindrical grid poiuts. V·/c note 

here that the contours in both the Cartesian and the radial geometries of prcssm cs 

SJ 
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Figure 4.1: Pres ure contours for simulated region. Red colour indicates relative high 
pressure, blue relative low. Plot a) shows t he pressure contours for the first quadrant 
of a imulated anisotropic porous medium wit h a flow sink at block (1, 1) with the 
node locations plotted. Plot b) are the pressure contours constructed using only the 
cylindrical node pressure values from t he square Cartesian system. Plot c) is the node 
dat a plot ted as a Carte ian array. The detailed code used to produce these plots is 
provided in Appendix A and B. 

are quite similar and illustrate that the same pressure trends exist . 

The final plot , on the right in Figure 4.1 c), is a Cartesian contour plot based 

on the radial pressure node dat a from the previous plot . When plotted in Cartesian 

co-ordinates, we see that the contours become curved due to the anisotropy. This plot. 

wa mainly was used to illustrat e that. the geometry of t he radial pressure da.t.a was 

complete. 

In the for thcoming sections, a discretization of the theory is presented for a two-

dimensional horizontal system tha t. may be implemented in a simple routine on an 

"off-the-shelf" computer ; par t icular attent ion will be paid to how such theory could 

be put into practice using Matlab 's programming language1
. 

1T here are a multit ude of programming languages that may be used to implement a routine such 
as this. The Matlab environment was chosen as much of t he mathematical construct t hat is requirerl 
may be called upon as built-in functions; t he language of Matlab also tends to be readable to most 
persons wit h experience in computational sciences with minimal effort . 
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4.1 Discretization for pressure simulation 

A silllple discretization of equation (2.5) is preseuted for the pnrposcs of silllulat. ing 

pressure in an isotropic a llCl anisotropic medium as outlined by [Aa.rncs et nl. 2007] . 

For simplicity and computational cfficienc~r, a two-point flux <:l,pproximHt.ion (TPFA) 

is used to determine the prcssme distribu tion. 

T he TPFA method usts two points the cell averages to approxima.tc the Hux 

t hrough the cell volumes2 . Herein. we will usc a regular , square grid ck sign al igned 

along the coordina te axes in the .ry-planc. In doing so, we maintain a highly cHicicut 

implementation of the T PFA method . 

Our system of equations arc of the fo rm 

q 
V' ·u= - V' · AV'P = ­

p' 
(--1.1) 

where ).. = K ht (where we ignore gravity effects) is the fluid mobili ty and the term q 

accounts for an sources or sinks within the system . Om discretir,ation will be designed 

to solve for P . 

So, let 's start by denoting the interface between two cells by l'iJ and pick the 

positive .r-direction on which to begin , namely the normal n iJ = (1, Of. \t\fith this. 

equation ( 4.1) becomes 

t l iJ = -l (V' · )..V' P) · n iJ clV. 
II) 

(.±.2) 

2 Although hNc wc a rc strictly conccrncd about t he two-d imeusiomd flow. fo r t he purposes of 
calculati ng t hc flow-flux, an arbit ra ry cell t hickucss is choscu. So, a lthough thE' pn•ssur<' calculat ion 
is a 2D simulation, t he cdb do in fact havc a volume. 
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Vic may approximM.e the deriva tive of P on ! 'i j in the direction niJ = (1. of by 

(-!.J) 

\i\ c note here that 6.1: references the cell dimension in the .r-direct ion and this cakn-

lation will have to be repeated in the y-cli red.ion. 

For the discretization of the TPFA method, the permeabili ty matrix, K. with in /\, 

is not well defined a t the interfaces. Hence, to approximate, we will usc a distance-

weighted average of the directional cell pennea.bilities; where A; at interface / iJ · is 

denoted by A;,;J . vVe have 

and (4.-1) 

vVith expressions (4.4), we may define the permeability in the direction of n ;J of /\;J 

on the interface iJ . For example, in the :~ ·-direction , the expression becomes 

(-1.5) 

Combining equations ( 4.3) and ( 4.4) with the velocity equation ( 4.2) we hrwc 

I I _ n I I ( 6 :.r; 6 x J ) -
1 

( p n ) u ·· = - ry . . /\ ·· Ar., .. = -? rv.. - + -- · - r,· 
IJ I I) I) U 't) ~ I I) \ , , , \ , , , J I · 

/\ I ,L,) / \ ,) ,'LJ 

( -1.6) 

Using expression (4.6), and repeating it in the y-direc:t iou. we are now able to employ 

MHt.lab for our simulation. For the deta iled Ma.tlab code sec Appendix A. 
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4 .2 Discret ization Code in Matlab 

57 

Employing the TPFA method , we a.rc a ble to determine the press me values througho11 t 

a section of media in both isotropic and anisotropic permeability fields. The test set­

up is as follovvs: a square grid system a ligned with the coordinate axes was chosen: a 

single c:ell in the ncar-center region of the grid system will conta in the sink (-() simulate 

the well; no-How boundary condi t ious at outer boundaries. 

Given that the TPFA method is one of the simplest finite volume methods there 

are, it has some nota ble drawbacks when compared to other more complex systems. 

In li terature, numerical dispersion tends to be a large factor in the computatioual 

error introduced by this approximation and for the same reason it is so efficient., is its 

drawback its simplicity. However, for pressure determination in stea.dy-statc ftovv , 

the TPFA is generally considered sufficient [Aarnes et al, 2007]. 

4 .2. 1 Isotropic medium 

The isotropic i\ latlab code is shown in Figure 4.2. This code is used to set up the 

grid dimcusions, indicated by G1id. NT and Gr-id. Ny at the top of the code, aud also 

assembles the correct dimensions for the permeability matrix using these values. Also, 

we usc this code to clefiue our source/sink in the grid. Here we uotice that. q is dcfinccl 

as being zero everywhere except at a cell ncar the center of the system, where q has 

been clcfinccl to be arbitrarily set to - 1. This illustrates a '"sink'' placed in the ceutt~r 

where a flow is occurring. 

The illustratiou in Figure 4.3 show two plots yielded by ?vlatlab using the code 

given in Figure 4.2 for the isotropic case. For an isotropic medium, we expec t there 

to lw an excellent symmetry in the pressure clistribut ion. in all directions within the 

plane. outward from the sink. The symmetry is a result of the pcnucahility n1<1 trix 
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% To set the Grid size in each direction. 
Gricl. Nx = 501: Gricl.hx = 1/ Grid. Nx: 
Gricl. Ny = 501 ; Grid.hy = 1/ Grid. Ny : 
Grid .Nz: = 1; Gricl.hz = 1/ Grid.Nz; 

%To set the permeabili ty grid size. 
Grid.K = ones(3,Grid. Nx, Gricl. Ny); 

% our actual grid dimensions. 
I = Gricl.Nx* Grid. Ny* Gricl. Nz: 

% The ftow is described by: 
q = zeros ( I, 1) ; 
q ([(.5*N + round(.5*Grid. Nx))]) = [-1] : 

% T he pressure is then invoked by the command 
P = TPFA (Grid , Grid.K,q) : 

58 

F igure 4.2: This is the Matlab code employed to set up the grid dimensions allCl ftow 
coudi tious for the isotropic case. Vve note that the last line in the rode calls upou the 
TPFA 2 function that we defined in the previous section . 

beiug equal in all cells, and therefore, the ftux over all interfaces should be equal. As 

Figure 4.3 shows, the pressure distribution is smooth and concentric about the sink 

at the center of the plot. 

4.2.2 Anisotropic medium 

In the anisotropic code, F igure 4.4, the grid is defined and the anisotropic pcmlcHbili ty 

is introduced as !\·.,. being 60% that of l\.u and is assembled into a matrix. As in fhc 

isotropic cock , the gird size and the permeabili ty field is fed into the T P FA function 

and pressure is calculated based on the direction and the total ftow q. \Nc also note 

that the ftow, q. is arbit rarily assigned a value of - 1. signifying the sink. 

As to be expected , the pressure contours in Figure 4.5 Hrc circular in th<' vidui ty 

of the sink and elliptical as they H pproach the on tcr bouncla.ry. T his is pure!.\' t IH' 
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a) b) 

Figure 4.3: Re ult of having isotropic permeability on the pressure for TPFA sim­
ulation in !Jatlab with a sink placed near the center of the grid system. Plot a) 
illustrates the grid layout as the top layer and the projected pressure contours on the 
lower. Plot b) shows the isolated contour plot of the pre ure di t ribution around tlw 
fluid sink mimicking the pressure drop due to a production well. 

result of the ani otropy of the permeability field. 

4.3 Radial grid discretization 

At the center of this concept is the construction of a grid system for the approximation 

of the radial flow problem such tha t , a high level of detail i · obta ined close to the 

wellbore so as to capture minute changes in the flow as well as be able to carefnlly 

map geological properties in this region. 

There are a multitude of errors that an be associated with grid size and orientation 

when the grid is being designed however , of equal importance i grid regularity and 

size distribution of adjacent blocks. It is important to ensure that adjacent block size 

transitions are smooth and that care is taken to keep the grid blocks a.s regular as 

possible. Placing a large grid block a.djacf'nt. t.o a relatively small grid block can create 

relatively large numerical errors [Logan, 2002] . 

Herein , a system was developed such that a starting radius is chosen nearest the 
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% To set t he Grid size in each direction. 
Grid.Nx = 200; Grid .hx = 1/ Gric\.Nx: 
Grid.Ny = 200; Grid.hy = 1/ Grid.Ny: 
Grid.Nz = 1; Grirl.hz = 1/ Grid.Nz; 
kx = 0.6: 
ky = 1: 

% To set the anisotropic permeability grid size. 
K1 = ky .*one. (1 ,Gricl. lx); 
K2 = kx .* oues(l,Grid.Ny) ; 
Kt = ([K1: K2; oues(1 ,Grid.Nx)]): 
Grid.K = Kt(: ,:,ones(1,1,Grid.Nx)); 

% our actual grid dimensions. 
= Grid .Nx* Grid.Ny* Grid.Nz; 

% The flow is described by: 
q = zeros(N, 1): 
q([(.5*N + rouuc1(.5*Grid.Nx))]) = [-1]: 

% The pressure is t hen invoked by the conummcl. 
P = TPFA2 (Grid, Grid.K,q) ; 

GO 

Figure 4..!: This is the Matlab code for the ani::;otropic case. Here, we note the 
assembling of the permeability matrix denoted Grid. J( to define the anisotropy in the 
si un Jla,tiou. 
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Figure 4.6: Plot a) is radius versus uumber of points illustrating t he radius values 
produced b) t he algori thm T 11+ 1 = r-71 + T 11 ~e properly space the radial st<.'ps He-con ling 
to the chosen ini tial radius and angular width of the blocks. Plot. b) shows that H 
linear plot. is produced by plotting of the natural log of radius vs the uumbcr of poiut.s. 
illustrating that the radii values an' logarithmic. 

would like. Given that the radial prcssm e varies logari thmically, this should produce 

relatively regular steps in the pressures as we approach the wdlbore. 

Since. in this ·ystem. a two-point flux Hpproximation (TP FA) is chosen. we will 

need to precisely determine the block nodcs Rt the appropriatc ccnters. To do so, we 

follm\ the work of [Aziz & Set.tari . 1979] and employ a logarithmic utc<ut to define t he 

radial node locations. T he logari thmic mean mdius for the node posit ions is 

(4.8) 

To now build a suitable grid structure, we only require a starting radius- genera lly 

to coincide with the wcllbore radius ·rw- and the angle to be subtendcd per grid block, 

~e. From thcsc two va.lues, a grid strndme can be devised to extend as fa r out n-lcl ia lly 

as the simulation requires. 

It is itn port a nt to note t.ha t there willuow be two overlaid grids w hic·h we will haw 

to keep track of: A node grid aud far·e grid . T h<.' uocle grid is a. datc-1 set t hat stores 
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. 1/ J - 2 

(i- l , j) • 

(i, .i ) 
• 

(jJ 

Figure 4.7: Areal view of a. section of the cylindrical grid st.ructtu·c illust rat ing the 
munbering of grid blocks. Nodes are designated (i,j ) where i is thc radial locat ion 
and j is the angular location . The interface locations arc markcd hcrc with t.hcir 
respective 1j2 increments. 

the locations of Hll the nodes, or logari th mi(' centers, in ·r and e of the grid blocks. 

As the face grid stores the radii and anglc of the grid block bounda ries . Ea('h grid 

block now has an associated center node and boundaries, where the node repn 'S('!Its 

the locat ion of the block and i t.s ph,vsical propert ies - e .g. pressure. pcrmca hili t.\·. de 

- and the faces will be the interface where the fluid velocitics arc detcnnincd. T h<' 

nodes, herein, arc denoted in i and j and the faces being denoted by hcd f-i unC'llll'Uts 

ahead or behind these, for example i ± 1/2 or j ± 1j2. as in F igure <-1.7 . 

4.4 Cylindrical velocity discretization 

In a cylindrical coordinate system, we ~nust carefully organize the disnct.iz<'d ft IIX 

equations for a cylindrical annular grid cell ensuring that each ('ell is rdc r<'nccd appro-

priatdy. Recalling from Section J.l the Darc,v equations for the cylindrical ('Oordiuate 
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system RIT 

H,. X ,. J\·, 0 u,.P 
1 

uo ]\·, l\.o 0 1/ rfJoP 
f L 

(4.!J) 

'Lf,: 0 0 l\": fJ~P 

where 

These equations must be discretizecl in order to calculate the volumetric ftnx across 

each face of the grid blocks. The ftux is determined based on the pressm c and per-

meability values as calculated in the aforementioned TPFA. 

4.4.1 Numerical gradients 

Our pressure field from the TPFA calculation is arranged such that it is <l lllH t rix of 

values matching the dimensions of our node grid, where starting fron t a node Pi.J· 

a step to Pi+ 1 ,J would indicate the step toward the well bore in radius. Conversely, 

from P i.J to P i- l ,.i would step outward to a greater radius. Similarly, for the a.ngnlar 

direction, from P i . .i to P i,J+ 1 will move clockwise in angle and to P i.J- I , counter-

clockwise, as illustrated in Figure 4. 7. 

To approximate the derivatives of pressure we will usc a rudimentary approxiuta-

tion where by 

uP P + l - P _ ,....._, I .J I.) 

i)r - 1· ·+ 1 · - r · · 
I .J !.) 

aucl 

This approximation of the partial derivatives will be adopted from her<' 011. The 
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above examples arc discrctizations for the face at '/' i+ 1/ 2.) and e i.j+ 1/ 2 . as these f~wes lie 

bctvvccn the radii and angles in the clcnomina tors of these expressions. 

In the above expressions, we should note tha t we hmre off-diagonal entries in the 

pcrmeabili ty matrix denoted l\-1 in equation ( 4.9). These entries exist for Hnisotropic 

flow, hut. vanish to zero in isotropic flow Rs l\-v - Kr = 0. However. we IlliJst include 

these port ions into om discretization scheme. These off-diagonal tenus now Hcconnt 

for a portion of the angnlar flow in the nr direction and a port ion of radiHI flow in no 

which is result of the anisotropy. For each boundary face of each block, we require 

R determination of the fluid velocity normal to that surface. Ta.ke for example, the 

face at a radius 7'i+ l/ 2· In order to approximate the velocity 11.,.+ 1/ 2. we require a 

determination of the angnla.r term - 1/wl\/H'jeo. vVe note that this face ex tends Hlong 

an arc from (}J- 1/ 2 to (}J+I/2. To do so. a straight linear average of the approximated 

derivatives is taken. So, for the face at r-i+ l/ '2· in block r i , the off-diHgonal gradient at 

fan' (}J- 1/ 2 ancl ()J+ 1; 2 becomes 

( 
0 p) 1 [ p. .+ I - p. . p . - p . - I ] _ = _ I . .J 1.) + l ,.J 1.) 

(){) 2 (} · ·+ I - () · () . . - () . - I 
[ I . .J 1.) 1,) 1.) 

T his represents the pressure gradient associated with the l\-1 term in the discret.i;~,ation 

4.4.2 Upscaling procedures 

Now we must also consider the fluid mobili ties /\ between two adjacent grid- blocks. 

As we take two node pressures of adjacent blocks to determine the pressure gradient, 

we m1tst also con ·icler that each grid-block may have different fluid mobilit_v values 

- recall , mobility refers to l\"j 1 t. W hen referring to Hn average of t.lH' fluid ntobili-

t ic~s . the term 'ttpsmling is generally H pplicd. In this process. the rill icl mobili t ics HH' 
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approximated using various methods t.ha.t arc designed to reduc(' uumcrical clispcr-

sion statistically. Herein. we will adopt standard upscaling methods for a cyliuclrical 

geometry as outlined by [Aziz & Scttari, 1979]. 

\ i\fhcu two blocks arc n-1dially adjacent. where blocks '~"i+ l awl r i arc nmsiclcrccl . 

then the mobility associated to radius ~"i+l/2 must be upscaled . For an interface that 

is vert icrtll~r aligned as it is here, the logari thmic mean 

(-1.10) 

is employed. 

In the angular direction, where the interface a t ()J+ I/2 is concem ed , we iusten.d ut-~c 

the common arithmetic mean , 

(-1. 11) 

Expressions (4. 10) and (4.11) for the upscaling in ·r aud ()will be used in the upcoming 

discretized equations quite ex tensively. 

Similarly, following from the pressure gradient numerics, we ueed to account for 

the off-diagonal terms in the permeability matrix of equation ( 4.9) associated wi th 

the J\"1 /I'· in u,. and uo. Again, we will employ a linear a.vNagc value lwt.wccn t h(' 

rtdjaccut blocks where 

is the average for the tangential mobility term for a step in the r -clircction. <Hid 
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is thC' average of the tangential mobili ty for a step in the e-dirC'ct ion. 

4.4.3 Discretized flow velocity expressions 

Figure 4.8: The identities of the sides of each grid block in the cylindrical blade 
T he radius 1·1 is the ou termost boundary and 'r2 the innermost. The angle a 1 > a2 

measured in the usual counter-clockwise direction. The velocities u arC' notC'd with 
the subscript identifying their respective face. 

Em playing, all of the approximations 111 Section 4.-l thus f1-1.r. the following ex-

pressions arc implemented to determine the velocity expressions needed . Taking into 

account. the pressure and mobility discrctizations as above, the full equations t.o bC' 

implcmentC'cl bC'come 
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for the two radial faces of the block illustrated in Figure 4.8, and 

[
p. I - p . p. . - p. I · ] 1- .j 1,.) + 1.) 1+ . .J 

'/" i - 1 - 1' i 'l"i - ~"i+ I 

ancl finally 

[ 
p. I . - p . p . - p.+ I . ] L- ,) I.,J + 1,) I • .J 

'l"i - 1 - 'l"i l"i - ~"i+ I 

for the two angular faces of the block. T hese expressions now rcpre~ent the numerical 

discretization for the Darcy velocity of an anisotropic medium, where the permeabili ty 

field i~ reduced to its principal directions, /\· ... and l\·y· 

For an isotropic flow, the Darcy velocity equations a rc reduced to a more ~imple 

form. where the tangent ial permeability is x, = (I\ y - !\,,.) ~ill e cos H. \1\"e quickly ~t'C 

tha t iu the case of l\-y = !\·.,. . l\-, = 0. \!Vith that, the expressions for a.u isotropic 

pem wahilitv field reduce to 
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, P i - l ,.i- P; . .i 
ll ,. j = ll r (i - 1/"!.. j) = -/\ r(i - l / 2.j) 

. . ~' i- 1 - I'; 

when' n,.(i. j - l ; 2) is the average vclod ty corresponding to tll(' difference lwtwceu n'ntl'r-

node of t he respective grid-block a.t a radius of '/';_ 1; 2 • .i and ,.i . .i· Silllili:lrly to t lw 

description for ·n,. 1, 

P · -P+I · \ I.J I .) 

U.,.2 = 'Ur(i+ l/ 2. j) = - /\ r(i+ L/ 2.j) 
. . I';- ~' i+ l 

In the c-m gular direction , designa ted by the subscript a, the flux equat ions for H 

grid cd l arc 

p - p. I 
\ 1.) l, j -

IL(i.j - 1/ 2) = - /\n (i.j - 1/ 2) ?';6 () 

\ P i.j + I - P ;,j 
ll (i. j + l / '2) = - /\a(i. j + l/ '2) " () 

'l'; u 
'lla2 

Although these cxpressious for the isotropic arc much simplified. the' actual coding 

u sc~s only t he discrct.izcd expressions given by 4. 12-4.15. We shottld sc't' thHt t. lw 

isotropic expressions arc in fact special cases of the anisotropic expn~ssions. Hs the 

values of the off-diagonal terms vanish to zero. 

4.5 Discretized TOF expressions 

T he t iHH' of flight (TOF) equa tions given in Sections 3.2.3 and 3.2...1 now nu tst I)(' 

disn<'t izcd wi th the appropria te data . To begin , the coeffic-ic'nts of the vt'locity iu-

tc'rpolM.ions nmst be defined . T hese varia blcs are then im plcn!C'Htcd iu the T O F 

cqnHt ions as previously givc'n so t hat a t illl<' value can be determined . 
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4.5.1 Radial TOF 

The coefficients of the velocity interpolation in the radial dircctiou arc ddiucd as 

A = u,.2- 'll.rl 
,. I I 

The coefficients A,. and B ,. are determined from the radial velocity interpolflt.iou ex-

pression, u(·r) = A,f r(t)+B,., by simple algebra with the condi t ions that the velocities 

at radia.l interfaces arc known and equa.l to 'II.,. I = A,. I r I + Br and 'U r2 = A,. I 1"2 + n,.. 
The TOF for the travel-time to either radial interface (at 1· 1 or r2 ) in the radial 

direct ion then becomes 

1 [ Ar [A,. + Br'l"_y ]] t,. = -B ( r x - .,.,;;) - B ln A B .. ~ 
r r r + ,.1 E 

( 4.H:i) 

where t,. is the radial TOF , Tx the potential exit radius, and 1 · 1~ the known ent rance 

radius. With equation (4.16), for a known entrance radius 1"r; and face velocities 11 ,. 1 

at. T 1 a.nd u,.2 at r 2 , the t ime it would take neu t ral particle to reach a potentia l exit 

radius at rx can be c:alcnlatecl. 

4.5.2 Angular TOF 

Give11 the velocity interpolation as laid out by Pollock, vve make a subtle a lteration 

to the linca.r angular velocity interpolation , which is pmely algcbraic3 , t.o become 

u.( B) = A00( t) + B0 . From this interpolatiou, we can determine the constants 

Eo = u.al - AoB1 . 

:lAs t he Pollock interpolation was given as n(B) = Ao(B(t) - 8 1 ) + no 1 previously, hu t. 0 11 iuspl'ction 
we can see tha.t this is identical to that. laid o ut hen'; n(8) = AoB(t) + uo1 - Ao8 1 = AoH(t ) + flo. It 
is altPrcd in form here for a programming situplificatiou . 
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Solving the TOF for the angular direction, yidcls 

1 (l [AoOs + flo]) t0 = -·- n 
Ao AoOe + Bo 

where. similarly, to is the angular TOF. Ox the potential exit angle, fh,· thr known 

' 
entrance angle. As before, given the entrance angle 0 1.; and the vdoci t ics u.01 at. (1 1 

and u02 at 02 , the time to traverse the block angularly to Ox can be clctcnnined. 

4.6 Exit point determination 

Once the TOF values arc calculated , there arc multiple values of travel-times through 

a grid block: time values arc determined, based on the velocity profiles, from the entry 

face to the adjacen t. and opposite faces within the block. The tinws values can be 

negative, zero. or positive. 

A negative TOF value indicates that the solution for a neutral part icle to t rawl 

from point entrance to exit would have to be against the velocity direction, as only 

a solution backwards iu time exists. In the formulation at hand. a. zero is a lways 

returned if the entrance aud the exit radius/angle coincide a.· both the expressions for 

the TOF will result in an expression with ln[l]. which is ident ically zero. Also, fort,., 

if the ent rance and exit point arc at equal radii. ·ry - r E = 0. Finally. the third option 

is a positive t ime value. This indicates that the tested exit face is a possibility as 

the travel-time is solution is forward in t ime for the velocity field. The least positive 

value indicates that, given the velocities for each face and the interpolation sdtenH' 

outlined, a neutral particle would traverse to that side before hitting either of the 

otlwrs. 

\tVith the exit face determined from the least positive TOF, we nm then go a bout 

determining the appropriate exit location within the cdl. G i vcu t ha.t we know t he 
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velocities at radt cell face. <lncl tha t W<' have a veloci ty interpolation sdwmc whercb.v 

we ha.ve a piecewise continuous vdocity iu each direction, as well as the time takeu 

to n:ach the exit face, we can therefon' determine the clistaHcc' the particle would in 

the perpendicular direct ion in that. an1ouut of time. From hen'. some simple Ia\\ s of 

physics come into play. \Ve will refer to the least positive TOF from the calculations 

as t x in the following expressions. 

4.6.1 Radial exit point 

In the case "'here the least positive TOF. denoted tx. indicates that the particle, 

entering at location (Tr;;, fJc). WOUld exit at either angular face of el Or e2 , then WC' 

must calculate the displacement in the radia l direct ion to detenniue the exit radius 

rx. Knowing the time that a particle would spend traversing the grid-block, a dis-

placement is cakulHted. 

In view of expression (4.16), the TOFt,.. we see that therl' is uo a lgebr<lic solut ion 

for rx usiug staudard mathematical func tion A and consequently, a n approximat ion 

must be made in order to keep this code munerically efficient. As previously deriW'd 

in Section 3.2.3. we employ kinematics to approximate the radial displacement for the 

determined time step. From the initial derivation for the kinemat ic:-; expressiou for 

the exit radius 1·x, we would have 

where ne i · the initial velocity at the t'ntran cc face. \Ve notl', that the acceleration 

'1T IH' rC' C'xists a n analytical solutio n to t h C' radial t ime of flight C'qua.t io n ( ..J..W) for t lw radial Px it 
point rs b.v us ing t hC' LambC'rt H' functio n , somC't imC's rC'ferrcd to as thC' OmC'ga fun<'tion or t he 

pro duct logarithm. It is a n invC'rSC' function of f(w) = wew w hC're C' is thC' exponent ia l functio n a nd 
u is a co1n piC'x IIIIIHI)('r . It howC'vC'r , cannot lw C'XJ.H'C'Ssed us ing C'lem C'Ht a r.\' fund ions a nd hC'nn>, is 
of littiC' usc• in a disnC'tization scheme. 
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term 

Ar 
o(t ) = - . u('r ) .,.2 

umst he approximated as both ·r and u(r-) iU C changing through the block. \rVc will 

assume tha t the acceleration through the block is roughly constant and set the ac-

eel era t ion to be the that of the node radius, and hence the radial cxi t displcH'l'lllCllt 

becomes 

1 (Ar ) 2 1·x = ·r e + 'n r;tx - - -.-> v.N f y , 
') 1'' ~ . 
~ N 

(-1 .17) 

where r N is the radius of the node for the block in which we a rc simulatiug and 

4.6.2 Angular exit point 

If instead we find that the least posit ive TOF t x is a.t one of the radia l faces r 1 or r 2 , 

then we must calculate the displacemcut in the angular clirectiou ax. 

From Section 3.2.4, we found that the angular expression can be soiW'd e-dge-

braically and given as 

'U L·' 
ex= A~ [exp(Aotx)- 1] + er: . ( 4. 18) 

Here, u1.; is the velocity a t eutnmce face er;. 

4. 7 General code structure 

T he process of determining strcamliuc's through a grid block and. in tum. througl1 

the medium, requires a logical loop structure to navigate and assemble the disnct izcd 

equations properly. To sec the actual code used herein, the rcculer is directed to 

Appendix C. T he a.ctua.l logic is displayed in a flow chart illustrated iu Figure -U.l. 
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Determine position 
c------+1 

in grid 

Compute face velocities 
of block 

NO 

Compute TOF to 
potential exit faces 

Compute exit Write coordinates 
1-------+l 

coordinates to file 

Figure 4.9: F low cha rt showing the logic structure for strc~mtline generation. 



Chapter 5 

Results and Conclusions 

Implementation of the code was chosen to be wri tten for a quar-te·r-.ft:ve spot pattem. 

T his well structure is com1110nly chosen for testing theory in reservoir simulation. 

As a ·'normal'· well distribution with a permeability field reduced to its principal 

components, the pressure distribut ion will be symmetric in the four areal quadrants. 

T herefore, this effectively reduces the computational requirements to a quarter of 

what is otherwise Hcccssary. 

Here, it was chosen to have an injection site ( somce) of arbitrary volumetric flow 

in the top right comer, and a production site (sink) at the bottom left corner. The 

sink/ source terms, for each grid block, arc otherwise set to zero for no-flow boundaries. 

Hence, all flow entering via the source must exit the sink . T his produce's clearly 

defined pressure c:ontoms that are easily understood , and make it easy to predict the 

clirectio11 of flow, which in turn, predict the likely path of each streamline . In general, 

the streamlines should flow from high pressure to low pressm e and remain, given 

nonual permea bility parameters, roughy perpendicular to the prcssmc contoms. 

As the disne ti;~,ation scheme in the previous chapter is designed. a JHTssmc valne 

is required directly perpc11dicnlar to either side of a grid face: a face sit t ing Ht. point 

75 
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1 0.1000 
2 0.1175 
3 0.1380 
4 0.1620 
5 0.1903 
6 0.2235 
7 0.2625 
8 0.3084 
9 0.3622 
10 0.4254 
11 0...1996 
12 0.5868 
13 0.6893 
14 0.8096 
15 0.9509 
16 1.1168 
17 1.3117 
18 1.5407 
19 1.8096 
20 2.1254 
21 2.4963 
22 2.9320 
23 3.4438 
24 4.0448 
25 4.7508 
26 5.5799 
27 6.5538 
28 7.6977 
29 9.0412 
30 10.6192 

I r;[m] 
1 0.108.!9 
2 0.127.!3 
3 0.14967 
..! 0.17579 
5 0.206'-l7 
6 0.24251 
7 0.28483 
8 0.33455 
9 0.3929.! 
10 0.46152 
11 0.54207 
12 0.63668 
13 0.7478 
14 0.87831 
15 1.0316 
16 1.2117 
17 1.4231 
18 1.6715 
19 1.9632 
20 2.3059 
21 2.7083 
22 3.181 
23 3.7362 
24 4.3883 
25 5.1543 
26 6.0538 
27 7.110.! 
28 8.3514 
29 9.809 

Tabk 5.1 : Table' of radial grid boundaries '1"11 0 11 the left and uodc locat ious r ; on t he 
right HS calculated from starting rHclius of r = 0.1 m and determined us ing <'<t IIH t ious 
(..!. 7) Hlld (.!.8). 



CHA PTER 5. RESULTS AND CONCL USIO NS 77 

(i- Jj2, j ), requires a pressure value to exist at both point.. (i - 1,j) and (i . j ) for a 

proper velocity determina tion . A consequence of having this discret ization scheme. is 

that we must have at least one pressure value on all sides of the grid-block we wish 

to simulate. Hence. a point within the radial grid must be chosen as the originHt ing 

posit ion of the streamline. 

For the following simulations. an ini-

t ial wellbore radius of ·r = 0.1m was cho­

sen as the star t ing point. Based on this 

and in view of equation (4.7), we are able 

to calculate the first 30 radial steps as 

given in Table (5.1). 

With the radii of the radial grid 

boundaries, we are also free to calculate 

the node location radii which arc given 

by the logarithmic mean of successive 

grid boundaries given in equation ( 4.8) . 

T he calculated means between bouud­

e~ rics for the nodes arc explicitly wri tten 

in Table (5.1) and vve note that the mmt-

T/7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Bm [·rod] 

0 
1 0.0873 

0.1745 
2 0.2618 

0.3491 
3 0. -1363 

0.5236 
4 0.6109 

0.6981 
5 0. 785-l 

0.8727 
6 0.9599 

1.0472 
7 1.1345 

1.2217 
8 1.3090 

1.3963 
9 1.-1835 

1.5708 

Table 5.2: 

ber of i-values is therefore one less than the number of n-valucs. In sunuuary, 29 

radial grid blocks consist of 30 boundary radii to create the closed grid system. 

For the angular steps, it was chosen to span ten degrees (10° ~ 0.17-15 radians) 

for each block. This makes each grid block ·s angular boundary easily detennitH'd as 

there will be 9 grid blocks, and 10 grid boundaries, in the angular direction e~nd si nee 

the vrloci ty interpolation scheme is a st anclard av~ragc, the gcomet ric middle Hng;lc 

of each block is necessary. These arc given in Table (5.2) . 
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5.1 Pressure calculation for quarter five-spot con­

figuration 

By iHlplemcHting the discretizatiou as la id out in Section 4.1 we usc a st c-mdarcl h t o­

point .flu~c appm~;imation (TPFA) to solve for the pressnre distribu t ion on H stHuda rcl 

Cartesian grid. With the Cartesian grid set a t 501 by 501 , we set t he flux disch;ug<' 

on each grid cell as being ;-;ero everywhere excep t at t he top right a llCl bot tom left of 

t he grid with a value of (ji11 = 1 x 10-:lw :s;.~ a.ud Gout = -1 x 10- :1111:
1
/ • . respectively. 

T hese flnx values now represent a n injed.or-proclucer pa ir of wells within the med ium. 

In the one case. the injector , introduces an influx (source) of fluid and in t he other, 

t he producer , provides an out let (sink). With equivalent magnitudes of flux, aud uo 

flow a t any outermost boundaries. the resulting flow will be mass-conserviug. 

The pressure data. for streamline simulation is extracted from the C;utesic-1n pres­

sure distribu t iou by locating the pressure valne nearest the node pm;it ion iu t he owr­

laid radia l grid. In doing so, the a.ct11a.l pressure data used to c:alcula tc t lH' strc;-uu lincs 

is reduced from a 501 by 501 Car tesiau grid , to a matrix of 29 by 9. Pressm e valm•s 

tha t resul t a.re on the order of 10.11 / Pn = 107 Po and a rc oriented such th c-1t pressure 

value located at (1, 1) corresponds to t he top , left-hand node located at r = 9.8090111 

and () = 1.4835 radian s and pressure (29. 9) is neares t the producing well very ueHr 

the horizouta.l axis in the lower left a.t r = 0.10848111 a Hcl () = 0.0 73 radians. 

In short , the structure of t he pressure data is such tha t the radius is constHnt along 

rows of the matrix. awl the a ngle is constant a long the columns. T his organizat ion 

makes the streamline simula t.iou calculations highly intuitive. 

For d a ri ty. in the for t hcoming sections, t he radia l grid em played for t he st reamliue 

simula tion will be overla id onto a pressure contour plot to 111a kc the geomct r.v I liOn' 

diges t iblc to t.he reader. T he pressun' node loca t ions a re illust rHtecl l)\· the whi t.c 
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Figure 5.1: Isotropic pressure contours with radial grid overlay. ote the inject ion 
site at the top right , noted by a high pressure in red , and the product ion site in the 
bottom left corner where the colour t urns blue denoting a low pressure. The radial 
grid system i overlaid illustrating the block dimensions. 

points roughly in the center of each radial grid block. 

5.1.1 Isotropic pressure calculation 

The TPFA calculation is used to calculate the pressure values on a 501 by 501 Carte­

sian grid wit h a arbitrary fluid mobili ty value of). = K [rn 2
]/ J.L[Pa · s] = 0.5 x 109111 3/ J.-9 .s 

which is roughly equivalent to the mobility of water in an aquifer. W e note here that 

this an isotropic sy tern, so there is no variability introduced for the fluid mobility in 

terms of direction; the mobility in the T and y directions are equivalent . 

The shape of t h pressure contours in Figure 5.1 are, a.· to be expected , circular 

near both wells. This is best observed near the producing well in the lower left where 

the pressure contours are more easily compared with the overlaid radial grid. W e see 

that the pressure at equal radii are roughly equivalent near each well , however, we 



P (.\I Pa) j =1 j = 2 j =3 j =4 j =5 j =6 j =7 j =8 j =9 
i =1 7.9925 8.093 8.26-13 8.4465 8 .53-19 8.-i-165 8.2643 8.093 7.9925 
i =2 7.9003 7.9579 8.0-197 8.1-134 8.1805 8.143-1 8.0-197 7.9579 7.9003 
i =3 7.7578 7.7876 7.836 7.88-11 7.9058 7.88-11 7.836 7.7876 7.7578 
i =-1 7.585 7.6012 7.6265 7.6-196 7.6658 7.6496 7.6265 7.6012 7.585 
i =5 7.3989 7.-1056 7.4229 7.43-14 7.4424 7.-13-1-1 7.-1229 7.-1056 7.3989 
i =6 7.2037 7.2095 7.2133 7.2229 7.2241 7.2229 7.2133 7.2095 7.2037 
i =7 7.0013 7.0078 7.0067 7.0141 7.0116 7.0141 7.0067 7.0078 7.0013 
i =8 6.7999 6.8068 6.807 6.8108 6.8101 6.8108 6.807 6.8068 6.7909 
i =9 6.5986 6.5988 6.6063 6.5988 6.6014 6.5988 6.6063 6.5988 6.5986 

i = 10 6.3935 6.3982 6.39-16 6.3979 6.4032 6.3979 6.3946 6.3982 6.3935 
i =11 6.1913 6.1902 6.1971 6.1984 6.1886 6.198-1 6.1971 6.1902 6.1913 
i =12 5.983 5.9886 5.9849 5.9846 6.0002 5.98-16 5.98-19 5.9886 5.983 

i = 13 5.7909 5.7907 5.7905 5.7862 5.7792 5.7862 5.7905 5.7907 5.7909 
i =1-1 5.5867 5.5837 5.5906 5.5949 5.5761 5.5949 5.5906 5.5837 5.5867 
i =15 5.3697 5.3872 5.3883 5.3909 5.372 5.3909 5.3883 5.3872 5.3697 
i =16 5.1732 5.1841 5.1622 5.1906 5.1726 5.1906 5.1622 5.1841 5.1732 
i = 17 -1 .9731 4.9771 4.9851 4.9822 4.9871 4.9822 4.9851 4.9771 4.9731 
i =18 4. 7819 4.782 4.7794 4.7915 4.7699 4.7915 4.7794 -1.782 4.7819 
i =19 -1.5517 -1.5985 4.5785 4.5951 4.5786 4.5951 -1.5785 4.5985 4.5517 
i =20 4.394 -1.38-11 4.3917 -1 .3767 4.353-1 4.3767 -1.3917 4.3841 -1.39-1 
i =21 4.148-1 -1.191 -1 .2013 -1 .1913 -1.1775 4.1913 -1.2013 -1.191 4.1-18-1 
i =22 3.9964 3.9632 3.978 3.9924 3.9735 3.992-1 3.978 3.9632 3.996-1 
i =23 3.7433 3.7771 3.7905 3.8097 3.7304 3.8097 3.7905 3.7771 3.7-133 
i =24 3.5-119 3.5879 3.5706 3.5976 3.5889 3.5976 3.5706 3.5879 3.5-119 
i = 25 3.-1281 3.369-1 3.-1176 3.4-109 3.4298 3.-1409 3.-1176 3.3694 3.4281 
i =26 3.165-1 3.1992 3.2-167 3.262.5 3.2479 3.2625 3.2-167 3.1992 3.165-1 
i =27 3.0113 3.05-12 2.9682 3.0559 3.0356 3.0559 2.9682 3.0542 3.0113 
i =28 2.837 2.893 2.8107 2.8107 2.7809 2.8107 2.8107 2.893 2.837 
i = 29 2.5947 2.6369 2.7127 2.6-11 2.7809 2.6-11. 2.7127 2.6369 2.59-17 
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uote that the pre::;sm c contours ue;:u the center of the plot begin to '·fta ttctl .. as the 

curves of the contours alter their curvature from one well to the other. Again this is 

mostly easily observed in compa,rison to the overlaid radial grid. It is evident from 

this plot that the presence of each vvdl affects the pressure dis trilm tiou t hroughout 

the medium, which may be obvious, but i::; an important resul t. Given that t he 

pressure distribution is a ltered by the presence of more wells, this theu indicate::; tlwt 

the direction of fluid motion is altered as we know that the direction of How which is 

tangent to the velocity vector for an isotropic medium is dictated b~r the direction of 

the negat ive gradient of pressure, e.g. Darcy 's Law. 

'vVc should expect. based on the pre::;sure contours, that the pressure in the isot ropic 

medium to be symmetric about a diagonal connecting the two wells. If we look 

carefully at Table 5.3 in relation to Figure 5.1 , we should sec that tlH' pres::;m e at 

the nodes are symmetric about column j = 5: P.i=·l = PJ=6 : PJ=:l = PJ=7 and so 0 11. 

VVc also sec that as we approach the producing well in the lower left corner , a.t. for 

example row i = 7, there is very little variance in the pressure along thi::; radius; at 

maximum the pressure only varies by ±0.15o/c along radius 'i = 7. 'vVe would also note 

that at i = 1, the largest radius from the producing well. the pressure values are the 

highest, and a t 'i = 29. closest to the producing wellbore, the pressures arc the lowest. 

Meaning, the flow of fluid , being from high pressure to low, is in the clirectiou of the 

producing well. 

These results are in line with what we would expect from om pressure cakulHtion 

ancl this data will be usee! as the basis of our streamline simulat ion for the iso t ropic 

case. 



P (!II Pa) j =1 j =2 j =3 j = 4 j =5 j =6 j =7 j = 8 j = 9 
i =1 10.684 10.802 10.997 11.185 11.224 11.031 10.739 10.481 10.331 

i =2 10.551 10.611 10.699 10.771 10.756 10.643 10.468 10.313 10.219 
-· .+:>. - .. - i =3 10.347 10.37 10.402 10.419 10.393 10.309 10.199 10.102 10.045 

i = 4 10.103 10.109 10.113 10.103 10.076 10.006 9.9332 9.8689 9.8309 
i =5 9.8443 9.8388 9.8351 9.8141 9.7816 9.7273 9.674 9.6223 9.5976 
i =6 9.5762 9.5714 9.5518 9.5305 9.4938 9.4532 9.4044 9.3724 9.3505 
i = 7 9.3013 9.2977 9.274 9.2528 9.214 9.1807 9.1377 9.1144 9.092 

i = 8 9.0298 9.0278 9.0074 8.9833 8.9487 8.915 8~786 8.8551 8.8331 
i =9 8.7603 8.7498 8.74 8.7023 8.674 8.638 8.6179 8.5854 8.5727 
i = 10 8.4872 8.4831 8.4587 8.4375 8.4134 8.3744 8.3422 8 ."3245 8 .3064 
i =11 8.2186 8.207 8.1979 8.1742 8.1312 8.1131 8.0836 8.0536 8.0431 
i =12 7.9428 7.9409 7.9176 7.8919 7.8836 7.8334 7.806 7.7897 7. 7713 
i =13 7.6891 7.6797 7.6619 7.6318 7.5931 7.5718 7.5509 7.5308 7.5203 
i =14 7.4198 7.406 7.3982 7.3789 7.3263 7.322 7.2893 7.2608 7.2529 

i =15 7.1339 7.1467 7.1302 7. 1109 7.0581 7.0542 7.0257 7.0036 6.9684 
i = 16 6.8748 6.8795 6.8345 6.8469 6.7962 6.7919 6.7273 6.7372 6.7114 
i = 17 6.6118 6.6079 6.6005 6.5745 6.5525 6.5166 6.4959 6.4649 6.4485 
i =18 6.36 6.3504 6.3287 6.3248 6.2671 6.2653 6.2274 6.2099 6.1983 
i =19 6.0578 6.1087 6.0648 6.0631 6.0158 6.011 5.9635 5.9696 5.8954 

i =20 5.8502 5.8263 5.822 5.7808 5.72 5.7194 5.7154 5.6889 5.6889 
i =21 5.5266 5.5729 5.5696 5.5306 5.489 5.483 5.4679 5.4348 5.3675 
i =22 5.3282 5.2741 5.273 5.273 5.221 5.2176 5.1782 5.1351 5.166 
i = 23 4.9951 5.0318 5.0264 5.0295 4.9017 4.9815 4.9323 c1~881 4.8344 
i =24 4.7298 4.78 4.7371 4.746 4.7158 4.7081 4.6439 4.6436 4.5708 
i =25 4.5798 4.4876 4.541 4.5424 4.5068 4.4997 4.4375 4.3629 -1.4219 
i =26 4.2332 4.27 4.3223 4.3112 4.2678 4.2623 4.2063 4.1323 4.0788 
i = 27 4.0294 4.0763 3.944 4.0437 3.989 3.9867 3.8547 3.9456 3.878 
i =28 3.7985 3.86 3.727 3.727 3.6544 3.6587 3.6587 3.7392 3.6514 
i = 29 3.4869 3.5326 3.6164 3.-1901 3.6544 3.4508 3.51 3.3922 3.3252 
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5.1.2 Anisotropic pressure calculation 

83 

For the anisotropic pressure calculation, the setup is similar to that of the isotropic 

rase in the previous section, with only a few important distinctions. As previous, a 

501 by 501 Cartesian grid was used as the basis of the pressure calculation. However , 

the mobility value is altered to be different for the x and y directions. Here, we've 

chosen the Ax = 0.69.-\ = 0.345 X 10- 9171 3/kgs and Ay = 0.84.-\ = 0.42 x 10- 9111 3/kgs. 

This, in turn, means that fluid can more easily flow in the vertical y-dircct.ion then in 

the horizontal x-direction. 

Figure 5.2: Anisotropic pressure contours with radial grid overlay. 

As a result. we see in Figure 5.2 t hat the pressure contours are closer together in 

the vertical axes then t he horizontal, which indicates that the gradient is of a greater 

magnitude in the vertical direction and this will therefore be the preferred direction 

of flow. 

As before we note that the center of curvature of the pressure contours encircle 

each well , however, we note t hat the shape is now, quite plainly, elliptical as opposed 
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to circular. This is congruent with the anisotropic contours as discussed cHrlin. \ Vc 

sec from Figure 5.2 that the pressure at equal radii arc now no longer synunctric 

about the diagonal com1ccting the wells, as in the isotropic case. We now sec that the 

pressure values near j = 1 remain higher then those at j = 9 for a given nHii us. i. Iu 

view of Tablc 5.4 we sec that this is indeed the case. Take, for examplc. the pressure 

at noclc (3, 1) = 10.347JUPa is roughly equivalent to that at (1,9) = 10.33l.A!Po. 

Given the prC'ssmc distribution, as c:alculRted in Table 5.4, we would expect. tha t 

the vertical component of the velocity to be of higher magnitude theu that of thc 

horizontal, as again, we must recall that the average velocity vector is proport. ioual 

to the negative gradient of pressure. Although, in cont rast to the isotropic case. the 

velocity vector in the anisotropic medium i s generally not orthogonal to the prcssurc 

gradient as the coefficients of the fluid mobility. namely, A = K / p. , arc no longer 

equal for each term of the gradient. 

5.2 Streamline results 

For the streamline calculation, velocity values must be calculated for each grid bound­

ary - referred to a.s a grid face - so that a velocity profile can be introduced and a 

time-of-flight (TOF) determined . Recall from Section 4.4.3, velocity va.lues arc clc­

tcnuincd for each face of the grid based on the pressure node values i mmedia tcly 

opposed on either side of the face. Each boundary is shared by exactly two grid 

blocks, and each grid block has an associated pressure value for the block - where 

the pressnre at the node is assumed to be homogeneous throughout each block - and 

so, the pressure gradients arc determined at each face based on the prcssmcs of t he 

adjacent grid blocks. 'vVe should also rec<'lll that the permeability values for the ad­

ja.ccut blocks arc upscalcd in the stanclRrd method for this geometry as laid out by 



CHAPTER 5. RESULTS A D CO CLUSIO S 85 

Figure 5.3: Plot of radial grid with start location and velocity vectors. Plot a) is 
of the entire grid with start location circled. This point is used for the beginning 
location of th test of the disrretized code in the isotropic and ani ·otropir rase. Plot 
b) is a close-up of the starting location and the first grid block. The velocities ·u.7' 1, 

u,.2 , U 0 1, and Ua2 are illustrated. 

[Aziz & Settari, 1979] whereby the radial gradients have logari thmic means employed 

for the permeabilit.ies and the angular gradients have arithmetic mean ·. 

For the streamline calculation itself, a specific routine i followed. The streamli11e 

is originated within the radial grid at some point (i, j) so as to ensure that there arc 

always pressure node values at (i - 1, j), (i + 1, j ) , (i , j - 1) . and (i, j + 1). With 

adjacent pressure values for the grid block where the process i started, face velocities 

are calculated . The e face velocit ie are u eel to calculate the TOF- as deri\ ed from 

the velocity interpolation - for a neutral particle to travel from the e11t.rance point 

to each pos. ible exit face. \Vith the cakulated times, the least, po itive t ime value 

indicates the face that the particle will exit. on. Using this time value, the di placement 

in 1· and () can then be determined and this is our block exit point. This exit is now 

carried forward to be the entrance loca tion for the adjacent block and the routine 

begin. again with determinat ion of the face velocities from the surrounding pressure 
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Figure 5.4: For an isotropic system. Plot. a) shows the streamline originating from 
outer radius and traveling towards the wellbore. Plot b) is a close-up of the stream­
line's trajectory moving roughly orthogonal to the radius contours. 

value.· . This process is repeated until the routine encounters an edge of the pressure 

data. Given the flow regime as it is, it should be near the mallest radial value of 

1· = 0.1175m dose to the producing well radius. 

5. 2.1 Isotropic Streamline 

To begin, a start location of (1·0 , 80 ) = (9.0412, 1.1345) was chosen. This point is 

on the outermost face of the second radial ring of grid blocks. This starting point 

therefore sati fies having a pressure value available on all side so that t.he velocity 

profile can be established. The velocities for all faces may now be calculated for this 

block. 

The face velocities for the first block in the isotropic ca. r arr 

pI - P 
\ 

1
- .] 

1
'1 4 633 ·u,., = 1Lr·(i- l / 2,j) = - /\,. (i - l / 2,j ) = - · 

'ri - 1 - Ti 
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p -P ~ · 
u,.2 = U'l" (i+ I/ L.J ) = - A r(i+ l/ 2.) ) '·J 

1
+ ,J = -6.8619 X 10- "ul / 8. 

'l" i - ~" i+ I 

\ P;.J- Pi . .i - 1 u 
'll.al = U(i.j- 1/ 2) = -Aa(i .j - 1/ 2) ,. .

6
e = 1.6320 X 10- m j s, 

I 

p . ~ -P 
\ '··J+ l.J 2 368? l c)- (j 1 

LLa2 = LL(i . .i+ l / 2) = - Aa (i ,.i+ l / 2) r·; 6 e = . ~ x 171 s , 

where >. = K / { L and the subscript r indicates a radial logarithmic mean and the a 

indicates and angular arithmetic mean between mobilities. \Ne note that the veloci ties 

for U 0 1 and v.02 in the angnlar direction arc an order of magnitnde smaller than those 

in the radial clircction, namely, u,. 1 and ur2 . 'vVe should therefore expect the streamline 

to t ravel through this block and exit side r 2 towards the production well. \Ne would 

also expect that the ratio of radial to angular displacement to be in the vicinity of 

25 : 1 based on these veloci t ics. A negative velocity value for u,. 1 and 11 ,.2 indica tc 

that their directions arc towar·ds the producing well and the positive velocity values 

for 110 1 rmd ua2 indicate that they are counter-clockwise with increasing auglc. 

As we see in Table 5.5, the firs t row of data indicates the starting position within 

the grid. Ti eftectivc of this, the t ime of flight (TOF) ancl the cl!mula.tive TOF begin 

at zero. In the second row, we see the very first exit location determined. We see that 

the time to traverse from a radius of 9.0412rn to the exit radius at 7.6977111 takes a 

total of 16930s ~ 4.7h1·s. Given that the velocities arc 011 the order of 10- 57n / s, this 

value seems appropriate . VIe also note that the radial distauce covered is ~ l.J-!111 

and in that amount of radial distance an angle of 4.4 x w-3rad is traversed. At an 

approximate radius of 8 .3nl , this gives a physical arc of 0.037m which would be iu 

the correct range recognizing that the arc is different for each radius. 'vVc nut pla.iuly 

see that the flow is dominated by radial flow, which was to be cxpcctccl. 

This process is now carried forward , the new ('1· , B) value becomes the entre-Inc<' 

point within the adjacent block and new velocities arc calculated. the TOF's deter-
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I Radius ('m) I () ('rad) I TOF (sec) I CTOF (sec) I 
9.0412 1.1345 0 0 
7.6977 1.1389 16930 16930 
6.5538 1.1432 14761 31691 
5.5799 1.1448 9220.7 40911 
-!.7508 1.1471 7052.4 47964 
4.0448 1.1479 4809.4 52773 
3.4438 1.1469 3603.9 56377 
2.932 1.1474 2628 59005 
2.4963 1.1496 1865.4 60870 
2.1254 1.1501 1350 62220 
1.8096 1.1532 977.88 63198 
1.5407 1.153 714.09 63912 
1.3117 1.153 520.49 64433 
1.1168 1.1546 379.51 64812 

0.95085 1.1483 277.01 6G089 
0.80956 1.1598 199.24 65289 
0.68926 1.1661 144.51 65433 
0.58684 1.1722 103.62 65537 
0.49963 1.111 77.09 65614 
0.42539 1.0934 58.732 65673 
0.36218 1.0571 38.31 65711 
0.30836 1.073 28.332 65739 
0.26254 1.0429 22.481 65762 
0.22352 1.0633 16.634 65778 
0.19031 1.0874 13.716 65792 
0.16203 1.0761 10.192 65802 

Table 5.5: Isotropic streamline data. Radius aud () column indicate the locat.ious 
a neutral pmtic:lc would cuconuter at the grid boundaries as it passes through the 
n1eclium in meters and radians, respectively. TOF is the time of flight of each step 
allCl the CTOF is t.hr cumulative t ime of flight for the entire streamline measured in 
secrnuls. 
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Ininecl , and these value's nsccl to determine the exit p oint. In view of the full streamlitw 

for the isotropic case, F igure 5.-!, we sec the ful l t ra jectory of t he st.n'mnline simt t-

la t ion th rough the medium. \11/e sec t hat. t he st reamline gcnC'rally Hows d irect h· in t·o 

t he producing well ' ' it h very li ttle deviation iii t he angular clin'ct ion . From Ta b lc 5.5. 

we sec that t llC' overall variation in the(/ column is very sligh t. by c-omparison to t he 

Radial column, with only a total variance of 0.022rad over the entire tn-lV<'rS<' from 

·r0 = 9.0412m to ,. = 0. 16203m .. 

As the cqua t ions for the isotropic case in two-dimensions would indicate , llHIHcly 

[ 
'U,- l 
uo 

1 [ I\.r cos2 e + l\-y sin
2 e 

I' (I\-u - I\J.) s in 0 cos B 

t he off-diagona.l values for the permeability vanish to zero wlwu [\-_,. = l \ -y. HS t he 

off-diagonal terms a rc propor tional to (I\-u - !\.!'). So, in the isotropic- case, when 

K = l \- = ronstant. the Darcy equation reduces to 

[ 
'll,- l 1 [ l \-

'Uo 1' 0 l [ ()/' l }o\_ 'Ia~~' 
I 80 

nml we sec that t he velocity components arc dependent only on the respective gn-1cl icnt, 

5 .2.2 A nisotropic streamline 

As before. the start location for the anisotropic strcc-unliue simulation is c-hosen HS 

(r0 . 80 ) = (9.0412. 1.1345). By choosing this point we c-an detail t he d iffcrcllc<'s be-

tween the two simulations a llCl compare. T he on ly disti11ction then ])('tween t hcs<' two 

simulations will be the int roduction of VHriabili ty in t he mobili ty t<'l'lll. which i11 tum . 
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a) b) 

Figure 5.5: For an anisotropic system. Plot a) shows the streamline originating from 
an outer radius and travels toward the wellbore, but with a distinct curvature. Plot 
b) is a close-up of th t reamline 's ini tial trajectory illustrating an influence due to a 
more prominent angular flow. 

affects the velocity equations qui te dra tica.lly, which we will now discuss. 

As before, the face velocit ies for each grid block are 

[
p "+ I - p . p . - p -1] L,J t,] + 1,) 1,) 

e +l - e. . e . - e .. 1 t , j t, j I.J 1.] -

and 
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-9.5759 X 10- !1 111 / S , 

for t he two radia l faces of t he block. and for t he angula.r facC's 

[
p.- 1 - p. ~- - p.+ l ·] I .J I • .J + I • .J I .J 

T;- 1 - T; 1';- 7';+ 1 

-4.6560 x w-G 1111 s . 

a.ncl finally 

[
p - 1 - p. p . - p + l ·] I ,) 1.) + I ,) I . .J 

T; - 1 - '/" ; '/"; - 1";+ 1 

-5.1927 X 10- G"III / 8. 

In view of t he velocity equations and the actual results from t he calculation for 

the first grid block we, quite evidently, have a more complex calculation at hand. Of 

cri t ical impor tance now. is the fact that the orthogonal tenus no longer vanish. \ Ve 

.-ee t hat, for example, u,. 1 is determined by the radia l and angular gradien ts. From 

cquat.iou ( 5.1 ), namely, 

r 1 
1 

r 
r 2 g r · ·) g ( l\-y - !\·.,.) sin() cos() 

1 r 
iJP 

1 
II.,. \ .1' COS + \ y Sill - ~ 

If () I' ( l \-u - /\-.,.) sin() cos() u\-.r sin2 
() + l\"u cos2 

() ) 1/ i) l ' 
I i )O 
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we can recall this clepeuclC'ncc. Essentially. the radial cotuponC'nt of the Dare\· velocity 

n, now contains a term whereby the orthogonal pressure gradient IJPjao is forcing H fluid 

component in the radial direct ion clue to the anisotropy: the higher the auisot rop.v. 

the grea.t.C'r the potential affect the orthogonal term can have. Intui tively. it woulduot 

be expected that the t~PjiJo would heW<' any affect. on the radial term as the direction 

is tangent to the radial face. and hell(·c would have no contribution to the flux term 

in .,. , as flux is How through a given area. to r this reason, we refer to t.llC' off-diagonal 

terms as the tangential permcabili ty [\·, = u\·y - J\·.,. ) sill e cos f) . 

'vVe do. hov. cvcr. SC'<c' the dependence of the 'Ur on DPjiJo in the anisotropic How. 

In our case, our principal directions a lign with the .r- a nd y-coorclinatcs and om 

tangential permeability term. l\·1• is the product of sine and cosine of the angle with 

respect. to this coordinate system. It now means that the off-diagonal tm-ms will 

still vanish if the flow is along the principal directions, but also that. t. hc l\.1 term is 

maximum at nn angle of "/1 = 45° with J\"1("/1) = lj 2( l\.u- ]\·.,.) . T his iudicates that 

the direct ion of t.he velocity is not necessarily orthogonal to the pressure contours ns 

would be the case in the isotropic regime. 
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I Radius (m) I e (rod) I T OF (.sec) I CTOF (sec) I 
9.0412 1.1345 0 () 

7.6977 1.1257 15199 15199 
6.5538 1.1205 12662 27861 
5.5799 1.1093 82-!6.3 36107 
-! .7508 1.1025 6177.7 -!2285 
4.0448 1.0906 4364.1 46649 
3.4-!38 1.080-! 3208.3 -!9857 
2.932 1.0678 2408.8 52266 

2.4963 1.0602 1683 53949 
2.1254 1.04 76 1246.2 55195 
1.8096 1.0402 888.34 56084 
1.7542 1.0472 142.73 56226 
1.5407 1.035-! 521.98 56748 
1.-!573 1.0472 194.03 569-!2 
1.3117 1.036 304.28 57247 
1.2274 1.0472 167.02 5741-! 
1.1168 1.0378 191.96 57606 
1.048 1.0472 111.92 57717 

0.95085 1.0381 133.32 57851 
0.80956 1.0187 188.05 58039 
0.68926 0.9937-! 141.24 58180 
0.58684 0.96092 103.3 58283 
0.49963 0.97495 73.658 58357 
0.42539 0.92935 51.762 58409 
0.36218 0.86547 35.923 58445 
0.34547 0.87266 8.8271 58454 
0.30836 0.81909 19.745 58473 
0.26254 0.8287 22.002 58495 
0.22352 0. 74573 15.886 5851 1 
0.19031 0.73424 12.864 58524 
0.16203 0.597-! 8.105-! 58532 
0.13795 0.43855 5.1471 58537 
0.11745 0.54033 6.9617 58544 

Tabk 5.6: Anbotropic stream data.. Radius and e column indicate the locat ions of 
the as it passes through the grid in meters and radians, respectively. TOF is the ti llll' 
of flight of each step and the CTO F is the cumulative t ime of fiight for the cut ire 
strcc-Hnlinc measured in Sf'conds. 

In vie'v\ of Tabk 5.6, we can now invest igate the flow clircctiou of the strcamlitH' 
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shown in Figure 5.5. From tllC' velocity values we can sec that nr1 11nd n,.1 are nega tive, 

again, indicating that their trajectory is toward t he producing well. However. 11111 and 

1102 a rc now also negative. indicat ing that their respective direction is clockwise (wit h 

decreasing B). Hence, we would expect that the angular influence to initially lw tow11rd 

a smaller () value and, given the larger magnitudes. more pronounced afFect on the 

angle. Doth of these points are plainly illustrated in Figure 5.5 and is also verified 

by the change of() in Table 5.6 from 1.1345Tad to 1.1257Tad. We do note thH.t the 

exit fa.cc remains the radial r 2 = 7.9677m for this model where the Hnisotropy is an 

arbi trarily chosen fract ion of l\-.c = (0.82)!\·u · 

F\·om the TOF, we see that the first grid calculation from start 1·0 = 9.0-1:12'111 to 

fi rst face at T 1 = 7.6977TII , a t ime of 15199s ~ 4.22hTs was cakulatC'd . As before. thC' 

radial velocity being on the order of 8 x 10- 5m/ s, we find that this time would be 

appropriate for the distance. \tVe also see that a larger angle is displHtcd given the 

increased angular velocity values caknlatecl for this block. F\·om Table 5.6, we sec 

thclt roughly twice the angle is traversed with !:!.() ~ 8.8 x 10- :lrad. This accounts for 

roughly 0.073m along the arc of radius 8.3111. \tVi th the anisotropy int roduced . this 

should he a logical result. From the Figure 5.5, the cnrvature of the streamline is 

evidC'nt. 

As the exit point is carried forward aml new velocities arc cakulatccl, we sec the 

streamline data in Table 5.6 has a more pronounced change in the angular flow as 

compared to the isotropic case anaJy:6ed previously. Although the total variance in 

the angle in this case is only moderately larger a t 0 .0307·rod, the range of a.ngle being 

from 0.4386 :::; () :::; 1.1345. 

And so, we sec that the streamline path follows the direction C'xpected from the­

ory, as the How from the outermost region flows smoothly toward the wdlbore and 

tcrmiuatiug at the point (0.11745'111 , 0.54033nu/). 
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5.3 Future Work 

The radial streamline tracing model outlined in this document offers a compnt.at ion-

c-1lly cffic:icut methodology to simulate the ncar-well flow about minu tc barriers near 

the wellborc. As fluid flows from the further extent of the rc::;crvoir towards the well, 

having a refining grid-::;tructurc as the flow nears the wcllbore offers a greater detail in 

the flow path allowing the ability to im·lucle flow impedances without inferring undue 

burden on the computing processor. 

Although this methodology is quite simple, elegant, and robust , t here arc omissions 

and limitations that would that would need to be addressed before such c-1 system could 

be put into practice. Darcian calculations for flow in the ncar-well rc'gion umst rciuain 

within error tolerances in instances where flow is sufficiently laminar: in general, a flow 

is con::;iclcred laminar in cases where the Reynolds number is low, e.g. 1 < Rf' < 10. 

T he Reynolds munbcr is given by 

R c = puD:lo 
fL 

when' pis the density of the fluid, u is the Darcy velocity, D:w is representative of the 

pore size within the medium - generally taken to he 30% of the grain si/\c- c-md p the 

dynamic viscosity. As such, ::;treamlinc modeling is not well suited to siumlating flow 

iu ga::; or he~w.\ -oil scenarios. 

The trausforma tion from Cartesian to radial, presented here, allows au easy and 

meaningful progression from a previously existing Cartesian model to a radicd model 

using nc-1 t nral adwmtages of the ncar-well geometry. Although it may he a highly 

simplified system, real insight into the flow regime of the region is possible with uiinu t.c 

detail of barrier structure::;, say for examplt'. in sub-surface geology or the specific well 

completion design. Certainly, this methodology would be an appropriate lamwh to 
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stud.' · the advantages and disaclvant ages of such a system for im plemcnta t ion in a 

large-scale, complex system to be modeled. 

The obvious omission in the method presented in this work is that it ouly simu­

lates a two-dimensional system. Although. the extension to the third dimension to 

include a ver tical dimension would be reasonably well defined as, for the cylindrical 

coordina tes, there is no t ransformation in the z-component and therefore, Pollock 's 

method of particle tracking could be implemented verbatim. I t would however , be a 

more complicated implementatiou to extend into a deviated well scenario, whereby 

a Hou-nuifonn grid thickness would have to he investigated if we arc t.o follow the 

well trajectory. Although, a methodology for a full three-dimcnsioua l system with 

the ability to simulate deviated well would be a powerful addition aucl would be a 

worthwhile invcstigatiou. 

The methodology as presented here, wheu implemented , could be a potentially 

effective simulator for real-time, near-well simulations. The efficiency of this model to 

u t ilizc the nat mal physical geometry of the flow system , and the dimensioualiza t iou 

of the narrowing grid in the near-well region, will allow a highly detailed siumlat.iou 

of the uear-well region, without the complication of nsiug such high detail as we move 

ontwarcl. Coupliug the radial grid simplification compared to tradi tional rectangular 

geometries with the inherent efficiency of streamline tracing techniques. 

A highly efficient simulation tool would be au especially useful tool d ming wcll­

tcstiug. ~I any well- tests iuvolvc altering the simulated flow rates and invcstiga tiug 

the C'ffects ou bottom-hole pressure. Given the simplicity of this model, it mHy be 

possible to adapt aml nm a streamline simulation in ncar real-time if the physical 

reservoir data grid is establi ·heel and cletenniuHblc. 

In disnctizing the ma thcmH tics presented here, it would be useful to com pHH' the 

two-point flux approximation (TPFA) with more intricate numc1-ic-Hl approxiuwtious. 
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The TPFA works wdl and efficient in systems of Cartesian coordinates where grids 

arc of regular and uniform dimensions. However, it has been shown that it C<Ul in­

t roduce numerical errors into the stn'amlinc calculat ions [A a m cs C't al, 2007] . It n1ay 

be more accurate to incorporate multi-point (~IPFA) or com er-point flux approxi­

mations (CPFA) as the) a re gcncrall.v regarded as being mon' accurate as there is 

more pressure data accounted for equivalent grid geometries. Sec [H<l'glancl . 2009] for 

a concise discussion 011 various geometries and discretization tcchniq ucs. 

5.4 Concluding remarks 

Streamline ·imulation techniques have the potentia l of being an ext remely useful and 

powerful means of flow visualization in tht' ncar-well region . Vli th the geometry as 

la id out. in this work, we have the potential to simulate how k11own well-compld.iou 

harriers and geological structure affect fluid flow. as well as a mult itude of other reser­

voir data. will affect the path of fluid from/ to a well. GcnerRll.v speaking. in reservoi r 

charRctcrization. most if not a ll of the ha rd da ta we have on geological structure 

within the reservoir is collected fi·om drilling operations, and t.o a large cxte11t., typ­

ical reservoir simulators cannot incorporate this data in full. I3y this technique, the 

potential t.o incorporate mult itudes of information and locRl heterogeneities into the 

simulation could be significantly improved. 

T his nwthodology has the potential to be a useful tool for the simulation of the 

ncar-well region of a reservoir. Currently, there exi ts no commcl-cia lly <:tva ilahlt' 

streamline simulator for this type of usage. It would be a useful llla.ttcr to exp<wd 

this mc'thoclology to three-dimensions ancl c1 comprehensi\ c compcnative Hnal.vsis of 

this method with st andarcl finite d ifference mat hem a tical models. 

This \\ork stands as a proof-of-couccpt for a strcamliw' model of the nc'a r-\V<'ll 
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rcgion wit I! thc potcut ial to be tn'llWndously viable as a completion tool. Howcwr, 

for this lllodd to be full-functioning, fmthcr research to ext cud the Iuodd will he 

rcquin'd . 



Appendix A 

TPF A for Pressure Calculation 

The code for the ftux approximatiou is contained herein . To make things casi<'r to 

code, the expression in equation ( 4.6) is broken into segments and assembled at t hC' 

end. As showu in the hox below, the TPFA calcnlatiou is separated into t hrer parts 

the permeabili ty matrix, the transmissibili ty matrix , and the TPFA cliscrrtizHt.iou 

and the information is combined at the end to sol vc the system and caknlHte the 

fluxes. All code is wri tten by the author. 

function [P,V] = TPFA(Gr id, K, q) 

% Set up grid and permeability matrix. 

\ \ 

Nx Grid.Nx; Ny = Grid .Ny; \ \ 

Nz Grid .Nz; N ~ Nx{*}Ny{*}Nz; \ \ 

hx Grid .hx; hy = Grid.hy; \ \ 

hz Grid.hz; L = K . (-1);\\ 

% Build transmissibility matrix 

\ \ 

tx 2{*}hy{*}hz/hx; \ \ 

99 



APPENDIX A. TPFA FOR PRESSURE CALCULATION 

TX =zeros( Nx+1, Ny, Nz); \\ 

ty = 2{*}hx{*}hz/hy; \\ 

TY =zeros( Nx, Ny+1, Nz); \\ 

tz 2{*}hx{*}hy/hz; \\ 

TZ zeros( Nx, Ny, Nz+1);\\ 

TX( 2:Nx,:, :) = tx./(L (1,1:Nx-1,:, :)+L(1,2 :Nx,:, :)) ; \\ 

TY( : ,2:Ny, :) = ty./(L (2,: ,1:Ny-1, :)+L(2,: ,2:Ny, : )); \\ 

TZ( :, : ,2:Nz) = tz./(L (3,:, : ,1:Nz-1)+L(3,:,: ,2:Nz)) ;\\ 

% Assemble TPFA matrix. 

\\ 

x1 reshape (TX(1:Nx,:, :),N,1); \\ 

x2 reshape (TX (2 :Nx+1,:, :),N,1); \\ 

y1 =reshape (TY(: ,1:Ny, :),N,1);\\ 

y2 =reshape (TY (: ,2:Ny+1, :),N,1); \\ 

z1 =reshape (TZ(:,: ,1:Nz),N,1); \\ 

z2 =reshape (TZ (:,: ,2 :Nz+1),N,1);\\ 

DiagVecs = {[}-z2,-y2,-x2,x1+x2+y1+y2+z1+z2,-x1, - y1, - z1{]}; \\ 

Diagindx = {[}-Nx{*}Ny,-Nx,-1,0,1,Nx,Nx{*}Ny{]};\\ 

A= spdiags( DiagVecs, Diagindx, N, N); \\ 

A(1,1) = A(1,1) + sum(Grid.K(: ,1,1,1)); \\ 

% Solve the linear system and extract interface fluxes. 

\\ 

u = A\q; \\ 

P =reshape (u,Nx,Ny,Nz);\\ 

V.x = zeros (Nx+1, Ny, Nz); \\ 

V.y = zeros (Nx, Ny+1, Nz); \\ 

100 
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V.z =zeros (Nx, Ny, Nz+1);\\ 

V.x(2:Nx,:,:) (P(i:Nx-1,:,:)- P(2 : Nx,:,:)) .{*}TX(2:Nx,:, :); \\ 

V.y(: ,2:Ny, :) (P(: ,1:Ny-1, : ) - P(: ,2:Ny, : )) .{*}TY( : ,2:Ny, : ); \\ 

V.z( :,: ,2:Nz) (P(:,:,1:Nz-1)- P(:,:,2 : Nz)) .{*}TZ(:,:,2:Nz); \\ 



Appendix B 

Radial Grid Setup Matlab Code 

This code employ!::i the TPFA code from Appendix A to solve for the prcs!::iure distri­

bution tha t will be required for the impending streamline simulation. This code sets 

up all the variables required by the TPFA code - the Cartesian grid dimensions, pcr­

meabili ty information , etc - and extnwts the pressure data as required for the radial 

geometry. vVhether the permeability fidel i!::i simulated as isotropic or a nisotropic in 

.ry-pl<-1lle can be set within thi!::i code prior to rnnning. All code wri t.teu by the a uthor. 

Contents 

• To set the Grid size in each direction. 

• To set the permeability grid. 

• no fiow block. 

• Anisotropy in xy-clirection. 

• no fim, in :t,-clired ion. 

• Grid size . 

102 
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• The flow is clcscribed b~r : 

• The pres m e is then invoked by t.hc conmHmcl 

• Plot of pressure contours 

• Angular and Radial grid-steps clcfinccl 

• Sc:r1ling grid to overlay on pressure contours 

• Define the node locations. 

• Extracting the pressure value at each node. 

• Plot uode locations and overlay pressure contour in subplot. 

• Resha.pc and organize radial pressure values 

• Plot t he radial pressure and arrange in radial form in subplot 

• Plot radial pressure values on square grid directly to view data 

To set the Grid s1ze 1n each direction. 

Grid . Nx = 501; Grid .hx = 1/Grid . Nx; Grid . Ny = 501; 

Grid.hy = 1/Grid.Ny; Grid . Nz = 1; Grid.hz = 1/Grid.Nz; 

To set the permeability grid. 

Grid.K = 0 .5.{*}ones(3,Grid.Nx, Grid.Ny){*}10(-9); 

%10-(-9) chosen to be 1 Darcy(--12 m-2)/ cp viscosity(- -3 Pa s) 

% Random perm values 

103 
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%Grid .K = exp(smooth3(smooth3(randn(3,Grid .Nx, Grid .Ny)))); 

no flow block. 

%Grid.K(1:2,100:300,200:300) = 0.002*10-(-9); 

Anisotropy in xy-direction. 

Grid.K(1,:, :) = Grid .K(1,:, :){*}.82; Grid.K(2,:, :) 

= Grid .K(2,:, : ); %Grid.K(1, 

no flow in z-direction. 

Grid.K(3,:, :) = 0; 

Grid size. 

N = Grid.Nx{*} Grid.Ny{*} Grid.Nz ; 

The flow is described by: 

q = zeros(N,1); q(1) = {[}- 1{*}10(- 3){]}; q(N) 

{[}1{*}10(-3){]} ; 

The pressure is then invoked by the command 

{[}P,V{]} = TPFA (Grid, Grid .K,q) ; 

Plot of pressure contours 

figure contourf(P, 28) axis square axis off % hold on 

10-1 
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% mesh(P) 

% figure 

\\ 

% quiver(V.x', V.y') 

105 

%The following two plots convert the polar data to cartesian so that we can 

\\ 

%plot out the info and verify that it is doing what its supposed to! 

\\ 
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Angular and Radial grid-steps defined 

lOG 

T he next section computes the circular radii given the start ·r(f and the angle between 

rays ('DeLtha ' ). 

Deltha = pi/18; {[}r{]} = 0 . 1; rstep = {[}r{]} ; 

while rstep \textless{} 10 {[}rstep{]} = r(1,length(r)) {*} Deltha 

+ r(1, length(r)); {[}r{]} = {[}r, rstep{]} ; end 

clear rstep 

Scaling grid to overlay on pressure contours 

%Redefine the radial steps to be scaled to the number of grid-blocks 

% in the simulation . 

\\ 

scale= (length(P)-1) I max(r); \\ 

rscale = scale{*}r; 

theta = O:Deltha :pi/2; \\ 

hold on\\ 

{[}X, Y{]} pol2cart(meshgrid(theta, rscale), (meshgrid(rscale,theta)')); 

X X +ones(size(X)) ; \\ 

Y Y +ones(size(Y)) ; \\ 

line (X,Y, ' Color' ,'k') line(X' , Y' , 'Color', 'k') \\ 

axis square \\ 

axis off 
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Define the node locations. 

%First we define the angles . .. 

theta2 = pi/36:Deltha:pi/2; %Then we define the node radii . .. 

% Logarithmic mean for the radial node locations within the blocks . 

nodeR = {[}{]} ; \\ 

fori= 1: (length(r)-1) rn = (r(i+1) - r(i))/(log(r(i+1)/r(i ) )); \\ 

{[}nodeR{]} = {[}nodeR, rn{]} ; \\ 

end 

107 
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nodelocX {[}{]}; \\ 

nodelocY {[}{]}; \\ 

for i =1:length(theta2) \\ 

phi theta2(1,i){*} ones(max(size(nodeR),1));\\ 

{[}nodeX,nodeY{]} = pol2cart(phi,nodeR); \\ 

{[}nodelocX{]} {[}nodelocX;nodeX'{]}; \\ 

{[}nodelocY{]} {[}nodelocY;nodeY'{]}; \\ 

end 

%to move the nodes so as they plot out correctly .. . 

\\ 

addX ones(size(nodelocX)); \\ 

addY ones(size(nodelocY)); \\ 

nodelocXA scale.{*}nodelocX + addX; \\ 

nodelocYA scale.{*}nodelocY + addY; \\ 

plot(nodelocXA,nodelocYA,'w. ') 

10 ) 
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Extracting the pressure value at each node. 

point = round({[}nodelocXA, nodelocYA{]}); Pold 

= {[}{]}; Prad = {[}{]}; Krad = {[}{]};\\ 

%K_old [] ; 

\\ 

K.x = reshape(Grid.K(1,:, :), Grid.Nx, Grid . Ny); \\ 

K.y = reshape(Grid.K(2,:, :), Grid.Nx, Grid.Ny); 

for i = 1:length(point) Pold Prad; \\ 

%K_old = K_rad; 

\\ 

Prad = P(poi nt(i,1),point(i,2)) ; \\ 

109 



A PPENDIX B. RA DIAL GRID SET UP ~IATLAB CODE 110 

Krad(1,i) = K.x(point(i,1),point(i,2)); Krad(2,i) = K.y(point(i,1),point(i,2)); 

\\ 

Prad {[}Pold, Prad{]}; \\ 

%K_rad = [K_old,K_rad]; 

end clear Pold 

Plot node locations and overlay pressure contour in subplot 

%figure 

%subplot(1,3,1) 

%contourf(P,25) 

%axis square 

%hold on 

%plot(node_locXA, node_locYA, 'b.') 

Reshape and organize radial pressure values 

PradY = reshape(nodelocXA,29,9); \\ 

PradX = reshape(nodelocYA, 29,9); \\ 

Prad = reshape(Prad, 29,9);\\ 

% P_rad is now organized. 

% P(i,j) yields i steps in radial (from out to in), j in angular (theta 0->90). 

%To visually verify that this is correct, show the following meshplot. 

Krad = reshape(Krad,2,29,9); 
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Plot the radial pressure and arrange in radial form in subplot 

%hold on 

%subplot(1,3,2) 

%pcolor(P_rad) %See P_rad matrix arrangment 

%pcolor(P_radX,P_radY,P_rad)% display radial pressures 

%shading interp 

%axis off 

Plot radial pressure values on square grid directly to view data 

%axis square 

%subplot(1 ,3 ,3); 

%pcolor(P_rad) ; 

%shading interp 

%axis square 
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Streamline Simulation for Radial 

Grid Code 

To run this code, the RadialOrid code in Appendix I3 must be ru11 H-priori HS the 

variables created from that code are required as input for the strc;:unline simul<ltion 

herein. All code written by the a uthor. 

Contents 

• dc<H varia bles 

• Set up the grid dimensions 

• To plot the grid output, include these lines: 

• Organize the conductivity matrix appropria.tely. 

• Data for streamline start points 

• For Loop to count through sta rt posit io11s 

• Fi11d m<ltrix block to stcut a.t 

112 
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• Strcallllinc loop. 

• Dctcnniuc pt .new in grid 

• Bcgi n the stn'cunliue u llcula t ious 

• Face Dischcuges & U pscaling 

• Vd oci ty Cak 

• Area of grid-cell faces 

• Travel- t ime 

• least t ime determination 

• prepare pt .old for liuc 

• cxi t locatiou 

• End of while loop 

function [stream, tof, ctof] SLR(r,theta,node_R,K_rad,P_r ad) 

clear variables 

clear N P V q nodelocX nodelocXA nodelocY nodelocYA 

clear addX addY X Y i rn 

%Radia1Setup 
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Set up the grid dimensions 

rad = fliplr(r); \\ 

ang = fliplr(theta); \\ 

grid.r = meshgrid(rad, ang)' ;\\ 

grid.ang = meshgrid(ang, rad) ;\\ 

%P_rado = P_rad; 

Prad = flipud(Prad); \\ 

clear rad ang 

{[}idim, jdim{]} size(Prad); 

pause on 

To plot the grid output, include these lines: 

{[}X,Y{]} = pol2cart(grid.ang, grid . r); \\ 

figure hold on line(X, Y, 'Color' ,'k') line (X', Y', 'Color', 'k' ) axis 

square 

rad = fliplr(nodeR); \\ 

ang = fliplr(pi/36 : mean(diff(theta)) :\\ 

pi/2); node . r = meshgrid(rad, ang)' ; \\ 

node.ang = meshgrid(ang,rad); clear rad ang 

{[}X,Y{]} pol2cart(node.ang, node . r); hold on plot(X, Y, '.r') axis 

square 
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{[}stream{]} {[}{]}; 

12 

12 

Organize the conductivity matrix appropriately. 

Krad ox = reshape(Krad(1, : , :), 29, 9); \\ 

Kradoy = reshape(Krad(2,:, :), 29, 9); \\ 

Kradoa = (Krad ox o{*} (cos(node oang)) 2) +\\ 

(Kradoy 0{*} (sin(nodeoang)) 0 2); \\ 

Kradob = (Kradoy- Kradox) o{*}(sin(node oang) o{*}cos(node oang));\\ 

Kradoc = ((Krad ox o{*} (sin(node oang)) 0 2) 0 0 0 \\ 

+ (Kradoy 0{*} (cos(nodeoang))) 0 2)0{*} ((10/ (node or) o2)) \\ 

Kradoz = {[}{]}; \\ 

%clear K_rad 

\\ 
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Data for streamline start points 

data stmct give us om stmti11g points for tlH' strcHmiilH'S. 

The 011 tsidc edge of the grid a t the second cylindrica l rmv H t. cq ual Hll ,t!;lc to the nod('S 

is c-hosen. 

%data.r = grid.r(2) .* ones(1,9); 

%data.ang = node.ang(2, :); 

% to plot the data points: 

% [data.x, data .y] = pol2cart(data . ang, data.r); 

% plot(data.x, data.y, 'bx') 

% Start Locations 

% Chosen to start on the outside edge of the 

{[}start{]} 

%[mpt, npt] 

{[}grid.r(2, 1: (end- 1)) ; node.ang(1, : ){]}; %[start] 

size(start); 

pt.new {[}{]}; pt . old {[}{]}; 

For Loop to count through start positions 

%for n=2 :7 

[ 
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%count = 

Find matrix block to start at 

{[}pt.new{]} = {[}start(2,3) , start(1,3){]};\\ 

%[pt . new] = [start (2, 3) , start (2, 3)] ; 

\\ 

Streamline loop. 

stream.ang = {[}{]}; stream . r = {[}{]}; 

pt.old = pt.new; 

stream = {[}pt .old{]} ; 

{[}pt.newx, pt.newy{]} = pol2cart(pt.new (1), pt.new(2)) ; plot (pt.newx, 

pt.newy, 'b{*}', .. . 'MarkerSize ', 9) 

C={[}{]}; ctof {[}{]}; tof={[}{]}; 
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12 

12 

while stream(end,2) \textgreater{}= grid.r(end-1) 

Determine pt.new in grid 

->>>>>>> 

%-------H E R E------ ----%% 

{[}A{]}= find(stream(end,2) \textless{}= grid .r( : ,1)); \\ 

{[}B{]} = find(stream(end,1) \textless{}=grid.ang(1, :)); 

{[}A{]}= A(end); {[}B{]} = B(end); 
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B if C==O ... elseif C==B B=B-1 disp('Hit the a1 side; \char'\"{}8\char'\"{} 

reduced by 1') else ... end% Active node >>>>>>>>>> 

%[node.ang(1,B(end)), node.r (1,A(end))]; 

%Switching convention to more logically read into pol2cart tranformations. 

% plot start point 

C=B; 

% >>>>>>>>>>>>>>>>>>>>>>>>>>>>% 

Begin the streamline calculations 

>>>>>>>>>>>>>>>>>>>>>>>>>>>>o/c 

%stream . ang= [stream.ang; pt.new(1,1)]; 

%stream.r =[stream.r; pt.new(1,2)]; 

%while stream.r(end) >= min(r) I I O<=stream.ang(end)<=pi/2 

%pt.old pt .new 
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A1=A; B1=B; 

Face Discharges & Upscaling 

To ('Oll t rol t hr boundaries. we usc the following if ::;t atcnH'llts 

if A == 1, break; \\ 

else A1 = A; \\ 

end if A== idim, break; \\ 

else A1 = A; \\ 

end if B == 1, break; \\ 

else B1 = B; \\ 

end if B == jdirn, break;\\ 

else B1 = B; \\ 

end 

Velocity Calc 

fctce velocity of lst radial face 

\\ 

P. r1 ( Prad(A,B) - Prad(A1-1,B)) . / (node . r(A,B)- node .r(A1-1 , B)); 

\\ 

K. r1 = ( log(node.r(A1-1,B)/node.r(A,B)) ) ./ . . . \\ 

( Clog(node.r(A1- 1,B)/grid.r(A,B)) ./ (Krad .a(A1-1 ,B) )) + .. . \\ 

(log(grid.r(A,B) /node.r(A,B)) . / Krad . a(A, B)) ); \\ 

%P.ra1 = (Prad(A1-1, B- 1) - Prad(A1- 1 ,B+1)) . /(node.ang(A1- 1,B- 1) - node.ang(A1- 1,B+1 

\\ 
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P.ra1 = 0.5.{*}( (Prad(A,B+1)-Prad(A,B))./(node.ang(A,B+1)-node.ang (A,B)) 

+ ... \\ 

(Prad(A,B) - Prad(A,B-1)) ./(node . ang(A,B)-node.ang(A,B-1)));\\ 

% K.ra1 = (Krad.b(A1-1,B1-1) + Krad.b(A1-1, B1+1)) ./ 

\\ 

% (node.ang(A1-1, B1 - 1) - node . ang(A1-1, B1+1)); 

\\ 

%Harmonic mean of three blocks. 

\\ 

K.ra1 3 . /((1/Krad.b(A,B- 1))+(1/Krad.b(A,B))+(1/Krad.b(A,B+1)) ) ; 

\\ 

u.r1 = - (K.r1{*}P.r1 + K. ra1{*}P.ra1/grid.r(A,B));\\ 

% face velocity of 2nd radial face 

\\ 

P.r2 = ( Prad(A1+1,B) - Prad(A,B)) ./ (node.r(A1+1,B) - node . r(A,B)) ;\\ 

K. r2 = ( log(node.r(A,B)/node.r(A1+1,B)) ) ./ . . . \\ 

( (log(node.r(A,B)/grid.r(A1+1,B)) ./ (Krad.a(A,B))) + ... \\ 

Clog(grid.r(A1+1,B)/node.r(A1+1,B)) ./ Krad.a(A1+1,B) ) ) ;\\ 

%P.ra2 = (Prad(A,B1-1)-Prad(A,B1+1)) ./ ... 

\\ 

% (node . ang(A,B1-1) - node.ang(A,B1+1)); 

\\ 

P.ra2 = 0.5.{*}( (Prad(A,B+1) - Prad(A,B))./(node.ang(A,B+1) - node . ang(A,B)) 

+ \\ 

(Prad(A,B) - Prad(A,B- 1))./(node . ang(A,B) - node . ang(A,B- 1) ) ); \\ 

%K.ra2 = (Krad.b(A,B1- 1) + Krad.b(A, B1+1)) ./ ... 
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\\ 

% (node.ang(A, Bl-1) - node .ang(A, B1+1)); 

\\ 

%Harmonic mean of three blocks 

\\ 

K.ra2 3./((1/Krad.b(A,B-1))+(1/Krad.b(A,B))+(l/Krad.b(A,B+l))); 

\\ 

q.r1 = K.r1{*}P.r1 + K.ra1{*}P.ra1/grid.r(A,B);\\ 

u.r2 = -(K.r2{*}P . r2 + K.ra2{*}P.ra2./grid.r(A1+1,B));\\ 

%face velocity of 1st angular face 

\\ 

P.a1 = ( Prad(A,B) - Prad (A, Bl-1)) ./ (node.ang(A,B) - node.ang(A, 

Bl - 1)); \\ 

K.a1 = (Krad.c(A,B) + Krad.c(A, Bl-1)) ./ (2) ;\\ 

%P.ar1 = ( Prad(A1+1,B) - Prad(A1- 1,B)) ./ .. . 

\\ 

%Cnode.r(A1+1,B) - node . r(A1-1,B)); 

\\ 

P.ar1 0 .5.{*}( (Prad(A+l,B) - Prad(A,B)) ./(node . r(A+l,B)-node.r(A,B))+ ... 

\\ 

(Prad(A,B)-Prad(A-1,B)) . /(node . r(A,B)-node.r(A- 1,B)) ); \\ 

K.ar1 = ( log(node.r(Al - 1, B) ./ node.r(A1+1, B) ) ) ./ ( .. . \\ 

(log(node.r(A1- 1,B) ./grid.r(A,B)) ./Krad.b(A1- 1,B)) + ... \\ 

(log(grid.r(A,B) ./grid.r(A1+1,B)) ./Krad.b(A,B)) + .. . \\ 

(log(grid.r(A1+1,B) ./node.r(A1+1,B))./Krad .b(A1+1,B)) ) ; \\ 

u . a1 = - (K.ar1{*}P . ar1 + K.a1{*}P.a1/grid . ang(A,B));\\ 
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%face velocity of 2nd angular face 

\\ 

P.a2 ( Prad(A,B1+1) - Prad(A, B)) ./ (node.ang(A,B1+1) - node.ang(A, 

B)); \\ 

K. a2 = (Krad.c(A,B1+1) + Krad . c (A, B) ) ./ (2);\\ 

%P.ar2 = ( Prad(A1+1,B) - Prad (A1-1,B)) ./ . . . 

\\ 

%Cnode.r(A1+1,B) - node.r(A1-1,B)) ; 

\\ 

P. ar2 = 0.5.{*}( (Prad(A+1,B) - Prad(A,B)) ./(node.r(A+1,B)-node.r(A,B))+ . .. 

\\ 

(Prad(A,B)-Prad(A-1,B)) ./(node.r(A,B)-node.r(A-1 , B)) ); \\ 

K.ar2 = ( log(node . r(A1 - 1, B) . / node . r (A1+1, B) ) )./ ( .. . \\ 

(log(node .r (A1 - 1,B) ./grid .r(A,B)) ./Krad .b(A1-1,B ) ) + .. . \\ 

(log(grid.r(A,B)./grid.r(A1+1,B)) . /Krad .b(A,B) ) + ... \\ 

(log(grid.r(A1+1,B) ./node.r(A1+1,B))./Krad.b(A1+1,B)) ); \\ 

u . a2 = -(K.ar2{*}P.ar2 + K.a2{*}P.a2/grid.ang(A,B)); 

% change the theta partial of P to stay in line with the central node for 

\\ 

% the off-diagonal portions of the equations. Yields higher fluxs and 

\\ 

% velocities in the r direction. 

\\ 

%q 

\\ 
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Area of grid-cell faces 

We uot.c hcrc t hHt. the cakulcl t.ious })(']ow have Dclt a( :t,) = 1. aucl cue thncforc uot 

iududccl iu the cross-sectional arca mul t.iplicatiou 

%u.r1 = q.rl/(l*grid.r(A,B) .*(grid.ang(A,B1+1)-grid.ang(A,B))); 

%u.r1 = -q.rl/(l*grid.r(A,B) .* (Del_tha)) ; 

%u.r2 q.r2/(l*grid . r(A1+1,B) .*(grid.ang(A,Bl+l)-grid.ang(A,B))); 

%u.r2 -q.r2/(l*grid.r(A1+1,B) .*(Del_tha)); 

%u . a1 -q.al/(l*abs(grid.r(Al+l,B)-grid.r(A , B))); 

%u.a2 -q.a2/(l*abs(grid.r(A1+l,B)-grid.r(A,B)) ) ; 

u\\ 

rl=grid.r(A , B) \\ 

r2=grid.r(A+1,B) \\ 

al grid . ang(A,B) \\ 

a2 grid . ang(A,B+l) 

r.e=pt.new(2); \\ 
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ang. e=pt. new(1); 

Ar=r1.{*}r2.{*}((u.r2-u.r1) ./(r1-r2)); 

\\ 

b = u.r1 - Ar./r1; 

Aa = (u . a2-u.a1) ./(a2-a1); \\ 

ba = u.a1- (Aa{*}a1); 

'!ravel-time 

t . r2 = ((r2-r.e) ./(b))-(Ar./(b2)) .{*}log((Ar+b.{*}r2)./(Ar+b .{*}r.e)); 

t.r1 (r1-r.e)./(b)-(Ar./(b2)).{*}log((Ar+b .{*}r1) . /(Ar+b.{*}r.e)); 

t.a1 (1./Aa).{*}log((Aa .{*}ang.e+ba) . /(Aa.{*}a1+ba) ); 

t.a2 (1./Aa) .{*}log((Aa.{*}ang.e+ba)./(Aa.{*}a2+ba)) ; 

least time determination 

t.x = {[}t .r1,t.r2,t.a1,t.a2{]}; t.p find(t.x\textgreater{}O) ; 

t .x = min(t .x(t.p)) 

t 

prepare pt.old for line 

{[}pt . oldx,pt .oldy{]}=pol2cart(stream(end,1),stream(end,2) ); 
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exit location 

if t.x == t.r2 

r .x = r2; \\ 

%ang.x = ((1/Aa)*( (exp(t.x*Aa))*(Aa*pt.new(l)+ba))-ba/Aa); 

\\ 

ang .x = ang.e+((Aa{*}ang.e+ba)/r .e){*}t .x-0.5{*}((u.a1-u.a2) / r.e){*}t.x ;\\ 

disp('t .x = t.r2') 

{[}pt .newx, pt.newy{]} pol2cart(ang .x, r.x); plot(pt.newx, pt.newy, 

J b{ *} J ' • • • J \\ 

MarkerSize', 9) line({[}pt.oldx,pt .newx{]},{[}pt.oldy,pt.newy{]}) 

elseif t .x == t . rl r.x = rl; \\ 

%ang .x = (1/Aa)*(( (exp(t . x*Aa)) .*(Aa*pt.new(1)+ba)) - ba); 

\\ 

ang.x ang.e+((Aa{*}ang . e+ba)/r . e){*}t.x-0 . 5{*} ( (u .a1-u.a2) / r .e){*}t.x ; 

\\ 

disp('t.x t . r1') 

{[}pt.newx, pt.newy{]} = pol2cart(ang.x, r.x) ;\\ 

plot(pt.newx, pt.newy, 'b{*}', ... ' \\ 

MarkerSize', 9) line({[}pt.oldx,pt.newx{]},{[}pt . oldy,pt.newy{]}) 

elseif t.x t.a1 
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disp('t.x = t.a1') ang.x=a1; \\ 

r.n = node.r(A,B); u.e=Ar./(r.e)+b; \\ 

u.n=Ar./(r.n)+b; \\ 

%r.x = r.e+u.e.*t.x; 

\\ 

r.x = r.e+u .e.{*}t.x-0.5.{*}(Ar./(r .n2)){*}u.n{*}(t .x2); 

{[}pt.newx, pt.newy{]} = pol2cart(ang . x, r.x); \\ 

plot(pt.newx, pt.newy, 'b{*}', ... '\\ 

MarkerSize', 9) line({[}pt.oldx,pt.newx{]},{[}pt.oldy,pt.newy{]}) 

elseif t.x == t.a2 disp('t.x = t.a2') ang.x a2;\\ 

r .n = node.r(A,B); \\ 

u . e=Ar./(r.e)+b; \\ 

u.n=Ar./(r.n)+b; \\ 

%r.x = r.e+u.e.*t.x; 

\\ 

r.x r.e+u.e.{*}t.x-0.5.{*}(Ar./(r.n2)){*}u.n{*}(t.x2); 

{[}pt.newx, pt.newy{]} = pol2cart(ang.x, r.x); \\ 

plot(pt.newx, pt.newy, 'b{*}', ... 'MarkerSize', 9) 

line({[}pt.oldx,pt.newx{]},{[}pt.oldy,pt.newy{]}) \\ 
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else display('something went wrong- line 225-268 ... likely the time 

calc') \\ 

break 

end 

stream= {[}stream;ang.x, r.x{]} 

tof {[}tof; t.x{]}; 

ctof {[}ctof; sum(tof){]}; 

pt.new = {[}stream(end,1),stream(end,2){]}; 

End of while loop 

end 
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