AND A PROTOTYPE

SYSTEM FOR HAN

ELECTRONIC COMMEF

CENTRE FOR NEWFOUNDLAND STUDIES

TOTAL OF 10 PAG
MAY BE X

(Without Author

YiM

F rchy it
i ‘;’H |I-r- v.f[' i} R :
4 rL It Ay _F':[r el
. I-|II III . i
x Q; 2 p"
R N e

f..,um !

2
Gl

- e
: m l,n (; J

“'m ATl

e

nd ‘3~ i r %t *1‘%;‘ o

i+l

National Library

of Canada du Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4
Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

395, rue Wellins
Ottawa ON K1

Bibliothéque nationale

Acquisisitons et
services bibliographiques

ton
SoNa

Yourfile Votre référence
ISBN: 0-612-89645-5
Ourfile Notre référence
ISBN: 0-612-89645-5

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the
dissertation.

4

Canada

Conformément & la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de ce manuscrit.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Architectural Aspects and a Prototype System

for Handling Disputes in Electronic Commerce Transactions

by
© Yiming Lei
A thesis submitted to the
School of Graduate Studies
in partial fulfillment of the requirements

for the degree of

Master of Science
Department of Computer Science
Memorial University of Newfoundland
August 2002

St. John's Newfoundland

Abstract

In this thesis, we study some issues relating to the architecture for dispute-handling in
electronic commerce (EC). We first propose a model for the dispute-handling architecture
in EC transactions and describe how various components work together in a cooperative
manner. We then focus our attention on a critical component, rule processing, that
underlies the effective functioning of the entire system. We discuss how the notion of
rules can be applied to assist players in proving propositions. Since all rules are not
equally reliable, we introduce the concept of rule weight that reflects the reliability of a
rule, and the algorithm for rule weight calculation. We show that the application of weak
rules, ie., rules that do not have full weights, makes it more probable to prove
propositions. We indicate the problems resulting from the application of weak rules, and
propose methods to cope with them. Finally, to study the practical feasibility of our
architecture, we present an implementation strategy and apply it to a prototype system.
The implementation follows the 3-tier client-server structure of our architectural model,

and applies Java-related techniques.

Acknowledgments

I would like to thank Dr. Jian Tang, my supervisor, for his patience and support over the
past three years and for continuing as my supervisor during his sabbatical leave. Without

his guidance, this thesis would not have taken this final form.

Of course, T am grateful to my parents for their ditional love. Their di

and encouragement helped me pass through the toughest period during this thesis research.

Finally, I would like to express my gratitude to many other members in the Department of
Computer Science for their kind assistance. For instance, computer system administrators
provided an excellent computing environment for this research. Also, Mrs. Jane Foltz
helped proofread an earlier draft of this thesis and corrected some typographical and

grammatical errors.

iii

Contents

Abstract

Acknowledgments

1 Introduction
1.1 Electronic Commerce;COneepts <y i i assiiissmivalassisisnnies
T2 B DISPUIES svvvssiunivimssssiassmimns s s o m s s Sussewa s s anii
1.3 Contributions of the Thesis

2 Background
2 EC TransabHons wwsyss v G s R s G SR s
2.2 Atomicity and Transaction States .
2.3 EC Transaction PrOtoCOISoueirmiemiiiiiiiieiiiiiinie e
2.4 BC Protocol Trees ««usxsesssmsssmis s sdsns s s il saianiivsi sy

2.5 Supports for Dispute Handling .

2.5.1 Dispute INItiationccooviiiiiiiiiiiiiiiiiiis s

TRV 17

2.53 DeciSIonMEKING . wvusvscsnumminsivisssissnssovesasriinmssamasssais 21

2.6 Using Rules to Prove Propositions 23
S0 Related WoTk e i R S S 24

3 An Architecture for EC Disputes 27
3.1 Client APPHCAHONSov.veereeseesereressesssneseesssesseeeneeeeenns 27
3.2 Software Arbiter and Human Arbiterc.cccoeeviieniieaiinaniinenns 28
33 Protocol Tree S erVer nussssuss i s e T R R S i s 29
3.3.1 A Model for EC Protocols 30

3.3.2 A Protocol Tree Building Algorithmccccceeviiiiiinnnnn. 31

3.4 RuleBase SeIVEr :jwvssosmmmvibivsssioiaiiimaiisrmemiiassd 39
3.5 Dispute Handling in the Architectureccoocoooiiiiiiiiiinns 40

4 Rule Processing: A Framework and Methodologies 44
4.1 " Wealeanles <oy siunim s mbe vty s e Ay o aa e b 05 44
4.2 Searching Heuristically for RUIesc.ccoovoiiiiiiiiniiiniiinieins 47
4.3 Rule Validity Weight and Its Calculationcccccovviverieeenieiinnns 52
4.4 Determining Edge Probabilityoooo 62
4.5 Determining the Acceptance Criterionc...ooeviiiiiiiiiieiianinns 66
4.6 An Example Application of Weak Rulesccccooiiiiiiiiiiiiinnnns 67
4.7 Tnconsistency 0f RUIES: . vouvevivis s simasisasivsssuss iauns o ssnins doasnais 72

4.7.1 Consistency Theorem ..

4.7.2 An Example of Inconsistency Problemccvercernns

4.8 Handling Inconsistency Problem in the Rule Baseccooeeiinnn

4.8.1 The Algorithm for Handling Inconsistency Problem

482 Some Examples of Applying the Wounding Algorithm

5 A Prototype Implementation

5.1 The 3-Tier Client-server Model ..

5.2 The Prototype Implementation

5.3 Some Implementation Details
6 Conclusion and Future Work
Bibliography

A Tmplementation Code Examples

vi

108

109

111

115

120

125

List of Tables

1.1 Revenues for US eCommerce Goods, 1999 —2003cccovvirieiniins 2

2.1 Players’ Benefit Sets of OBI Protocolcccoeiiuimiiiiiieiinnniiinnins 19
4.1 Players’ Benefit Sets of OBI Protocolcccoeeeeiiiiiiiiiiiiinnenininnne 69
4.2 Structure of Players’ Record Sets . 92
43 Player1’s Seq Scenario] susvannamrasRRsTa 93
4.4 Recording Player3’s Sequence — Scenario 1ccccoeeviiieiiiieiniiiinnns 93
4.5 Removing Entries of p3 — Scenario 1 94
4.6 Final Record Sets:of Scenario 1 -.ovuininimiiinmminmiam e 95
4.7 Recording Player]’s Sequence — SCenario 2ovvrrrernsonnns 9%
4.8 Recording Player2’s Sequence — Scenario 2 96
4.9 Recording Player]’s Sequence — Scenario 3ccccoeeeiiiiiiiinieiienns 98
4.10 Recording Player2’s Sequence — Scenario 3ccoovveumeereeeeinnnns 99

4.11 Recording Player3’s Sequence — SCenario 3ocevrerronren 100

4.12 Removing Entries of p2 and p3 — Scenario 3coccoomveeiniienenennns 101
4.13 Final Record Sets of Scenario 3cccoeviiiiiieniiieaniiien s 101
4.14 ding Selling O iZation’s SEQUENCEScoccvrreeirerarsasrosiauene 104
4.15 ding Buying O; iZAtion’s Sequences: . cuusi s sindassimig 105
4.16 Removing Entries of S4and S5cooiiiiis 106

viii

List of Figures

21

22

4.1

42

43

44

4.5

5.1

52

Players and Message Exchanges in OBI Protocolc.oererrrinene 12

OBI Protocol Tree (Simplified Version)

The Architecture of an EC Dispute Arbitercoooiiiiiiiiiiiininnns 28
ATBXatple OE WAk RIMEE v vercomemuamonsusssepansmumsmmsnamsimsnsnnesmsnn 5o 46
Rule Search EXAMPIESocovoiovsisesssionsssbossssesssossosonsarssss 51
An Example of Rule Weight Calculationcccccoooiiiiiiiiiiaenis 56
OBI Protocol Tree (Simplified VErSion)coooevrrerrrerinns 68
An Example of Inconsistent Rulesooooviiiieiiiiiiiiiinieeneis 80
A Snap Shot from the H0f scavsnnmiamnrnssnmmaR TG 111
AfEXAHPIE Of CHEREAPPIBE wocxourowssmunsssimmmssropismmnssses conpmminsassns 13

Chapter 1

Introduction

1.1 Electronic Commerce Concepts

The word Electronic Commerce (EC) refers to business activities involving consumers,
manufacturers, service providers, and intermediaries, accomplished through the use of
computer networks [2,12]. There are other definitions in the literature. In general,

however, the term EC implies that the business are i via

networks. It is generally accepted that there are two major categories of EC applications:
Business-To-Consumer (B2C) and Business-To-Business (B2B) [17]. B2C is a term that
stresses the direction of delivery: B2C commerce is supposedly something done by
businesses to consumers. This domain is founded on intense customer focus. Example
areas include web-based retail, Internet auctions, etc. On the other hand, B2B involves

exchanging products and services between business organizations. Typical forms of B2B

are procurement and inventory exchange, both of which encourage intercompany trading
across entire industries.
EC’s goal is to improve efficiency and effectiveness of the trading process by

applying advanced i i ies, such as distril process

etc. i ies have ped very rapidly in recent years. As

a result, EC has experienced an explosion. For instance, the increasing popularity of the

Internet, a ubiquif digital i provides an attractive new medium
for EC. In the past, businesses could conduct activities with each other over closed
proprietary networks, a process usually referred to as Electronic Data Interchange (EDI).
EDI never gained much popularity because of its high communication costs, and
requirements for specialized networks [1]. Yet the exponential growth of the Internet has
changed this paradigm. Business activities can now be conducted efficiently among

various participants on a global scale at low costs. The resulting explosive growth and

of EC may be by the figures in table 1.1 from [7].

Table 1.1: Revenues for US eCommerce Goods, 1999 — 2003

Category 1999 2003 (expected)
B2B USD 43 bn USD13m
B2C USD 8 bn USD 108 bn

The significance of EC is manifold. First, EC increases the speed and efficiency of

business ions and thus improving customer services. Because EC is

achieved with the help of tasks can be i by software

programs automatically and efficiently. Next, EC enhances competition and thus reduces
prices for goods and services. For example, there are many travel agencies on the Internet
and hence a consumer is able to compare their flight prices very easily. In such an
environment, unnecessary high prices are almost impossible. Also, EC creates new
services and businesses, which can lead to job creation and economic growth. Moreover,
EC enables enterprises to conduct business with distant partners in the same way as they
do with neighboring partners. This is because computer networks can provide highly

efficient communications that make distance “disappear”.

1.2 EC Disputes

has a very ising future as an efficient business type. However,

it does pose some problems that were rarely considered to be important before. For
example, when a consumer is trying to purchase a book from the Internet, how does she
know if the online book store is a true retailing business? Who can guarantee that the
book will be delivered after the consumer has paid? Even if the book is delivered
successfully to the consumer, it may be that the book is not what the consumer has

ordered. These kinds of lies are almost istent in it face-to-fz

business activities. Yet for EC, questions like above become serious because different
parties may know and contact each other only through electronic messages. In traditional

forms of business, people tend to make deals only with those trusted parties. While in EC,

it is hard to g the iness of various partici For instance, it is very
hard for a consumer to know in advance whether a business which is behind a fancy
WWW shopping site is credible or not. Also, hand written signatures have been widely

used and

as legal for business in
commerce. However, in EC field, it is not possible so far to apply a legally binding
facility in electronic forms that is as convenient, popular, and cheap as a hand written
signature.

The steps that participants follow: to conduct commercial activities in an EC
process are governed by a collection of rules. Ideally, these rules are designed in such a
way that participants can mutually benefit and their interests can be protected. From
above, however, these predefined rules may not always be followed faithfully by all EC
participants. In such cases, disputes may arise because participants may disagree with the
trading results and some participants may feel that the trading is unfair. A dispute is an
argument raised by some participant, which is usually composed of a claim and a request.
The claim statement states why the dispute initiator thinks the trading is unfair or
unsatisfactory, e.g., the explanation on what has gone wrong in the process. And the
request statement states something that the dispute initiator thinks should be done to

reinstall his/her satisfaction. Look at the following example. Suppose a consumer ordered

a desktop computer from an online store, and after the consumer had paid, the merchant,
iie., the store, delivered the computer system. This is a typical scenario of B2C commerce.
After receiving the computer, however, the consumer found that the system did not work
well, e.g., the system crashed easily. The consumer, a participant of the above EC process,
hence decided to initiate a dispute. The consumer may claim ‘The merchant delivered a
bad computer to me’ and request ‘the merchant take back the bad computer and deliver
another good one to me’.

Therefore, proper handling of disputes is an important topic for EC research. The
American Arbitration Association [3] has pointed out: “If the upside of eCommerce is the
ability to do business faster than ever before, the downside is for eCommerce-related
disputes 1o arise even faster.” Nowadays, EC is playing a more and more important role

in the overall economy, and EC is also an indi; drive for technol

Consequently, studies for handling .EC disputes have significant meaning for both
economy and technology developments.

However, to our best knowledge, not much work has been done in this field. Most
research efforts to date focus on the generation and collection of evidence that can be
used in case some participant misbehaves. Yet they usually pay little attention to
procedures of dispute handling, such as how to generate a resolution, how to assist
participants when they are unable to provide corresponding evidence, and what to do to

improve handling efficiency.

The work in [4] proposes a framework for dispute handling, it however does not
present a unified correctness criterion for decision generation. Neither does it discuss in
detail how to deal with cases where some evidence is lost or withheld. Another work on
EC disputes is introduced in [19], where a protocol with automated dispute resolution is
proposed. Nevertheless, the protocol is only useful for exchanging digital items and thus
has limited applications. A B2B EC Dispute Management Protocol has been proposed by
the American Arbitration Association [3]. Yet the protocol provides only guidelines on
fair dispute resolutions. The protocol indeed depends on human arbitration, although it
incorporates some computer technologies, e.g., an online system which can facilitate
communications between EC participants and can help locate human mediators and
arbiters. Jn-depth investigations on EC dispute handling are presented in [23,24]. The
authors model the aspects of EC transactions in such a way that some support to dispute
handling can be provided. However, some important issues are missing in their work. For
example, they do not present a method in which the various parts are integrated into a
functional system that can work in concert. Their work has realized the significance of
using rules for proposition proving. However, there is no discussion on how to evaluate
rules in terms of reliabilities. Neither do they discuss on how to deal with conflicts
resulting from rules with diverse reliabilities. We believe these issues are important since

they are directly related to the applicability of the system in practical applications.

1.3 Contributions of the Thesis

Because EC activities usually involve ici from different ical areas, it is
very hard, if not impossible, to construct a unified legal framework for EC disputes.
Online Dispute Resolution [18] argued that “in cyberspace, courts don’t work very well
— they’re tied to geography, and cross-boundary jurisdiction can be very complicated to
untangle.” Hence, off-court resolution is a promising direction for handling EC disputes.

EC activities are conducted via electronic means and are based on the application
of computer networks, so it is our belief that EC disputes should be handled with the help
of computer systems. Such an approach can make it convenient to communicate with all
involved participants. Also, the utilization of software processes can automate many
procedures in the dispute handling. As a result, high efficiency can be achieved at a
relatively low cost.

From above, therefore, in this thesis we study some special issues relating to EC-
dispute handling. We first propose an EC dispute handling architecture. The architecture
uses a client-server model and can be viewed as an off-court alternative resolution for
dispute handling. In our model, servers are subdivided into tiers according to their
functionalities. The first tier server is the arbitration server, which includes a software
arbiter and a human arbiter [24]. During a dispute handling process, the arbitration server
interacts with the second tier servers, such as rule base server and protocol tree server to
retrieve necessary information. These servers are connected to the third tier servers, such
as database servers, which manage and implement information by means of various data

models.

The second contribution of the thesis is a framework for rule processing. When a
dispute arises, the parties involved need to prove their claims. Rules are used for that
purpose. We discuss in depth how the necessary rules are obtained, and what if they are
not available from the protocol. We substantiate the notion of weak rules proposed in [24],
and show how it is created, evaluated, and used. The main idea is to use weights for the
reliabilities of weak rules. We propose algorithms for weight assignment. We also
indicate the problems and pitfalls as a result of using weak rules, and propose solutions to
cope with them.

The third contribution of this thesis is a strategy for the implementation. Since our
architecture contains multi-tier servers, which require complex interactions between them,
adoption of proper implementation scheme is vital hoth in effectiveness and efficiency of
the system. We use Java as the implementation language for its flexibility in terms of
platform independence, and RMI as the means for remote communications. We have also
actually implemented partially a prototype system. (Refer to Section 5 for more detail.)

The rest of this thesis is organized as follows: Section 2 introduces basic concepts
related to EC dispute handling and our arbiter architecture. This section also summarizes
related works. Section 3 describes the overall arbiter architecture. Section 4 details a vital
component of the architecture — rule base server and the corresponding strategies.
Section 5 discusses implementation issues about the architecture. A prototype system
currently under development is described as well in this section. Section 6 concludes the

topic and suggests some directions for future work.

Chapter 2

Background

Tn this chapter, we review some concepts that will be used in the later chapters. Unless

otherwise mentioned, these are proposed in [23,24].

2.1 EC Transactions

An EC transaction is a process for peopl ies to conduct ial activities
via EC i The ici of the ion are called players. Players
execute i by i In other words, an EC transaction is
modeled as a sequence of message issi M can be either ic or

tangible entities.

2.2 Atomicity and Transaction States

Atomicity is the property that the following: for multiple ions, cither all

of them are executed or none of them are. An excellent general introduction on
transaction atomicity is given in [16]. The author in [9] introduces implementation details
for atomic transaction processing systems.

The notion of atomicity is extended to the EC context recently by some
researchers: money atomicity and goods atomicity are introduced in [26], and the

purchase atomicity is proposed in [24].

Definition 2.1 4 fiund transfer operation preserves money atomicity if once the customer
makes a payment the merchant will receive it and vice versa.

Definition 2.2 4 goods delivery operation preserves goods atomicity if once the merchant
dispatches the goods the customer will receive it and vice versa.

Definition 2.3 An EC transaction preserves purchase atomicity if (1) funds transfer
preserves money atomicity, (2) goods delivery preserves goods atomicity, and (3) either
the order has been placed, the customer has paid according to the order and the customer
gets the goods specified on the order with the exact value (quality and quantity), or none

of these three things has effectively occurred.

‘We adopt purchase atomicity (or simply, atomicity) as the criterion for judging
whether or not the players involved in an EC transaction have traded in a fair way.

It is convenient to describe atomicity in terms of transaction state. To this end,
we consider three abstract state variables, order, money and goods. A transaction state is
simply an assignment of values to these state variables. The variable order takes value of
one if an order has been placed, and zero otherwise, money is assigned the amount
transferred if fund transfer is completed, and zero otherwise, and goods is stored with the
delivered quantity of goods, and zero otherwise.

Therefore, exchanging messages among players can cause state transitions since
order, money and goods are all exchanged as messages. Let s be a sequence of messaging,
and Q and R be two states. We use Q —s R to denote that s causes a state transition from

QtoR.

Definition 2.4 State R preserves atomicity if Q —s R where Q is the initial state and the

occurrences of messaging in sequence s preserve atomicity.

2.3 EC Transaction Protocols

An EC transaction protocol is a collection of rules that stipulate how EC transactions
should be executed. In the following, we present Open Buying on the Internet (OBI) [20]

protocol as an example'.

Requisitioner

Selling
Organization

»
Buying Payme
Organization > Authority

Figure 2.1: Players and Message Exchanges in OBI Protocol

OBI is an open standard protocol for B2B EC solutions. It is targeted at high-
volume, low-dollar transactions that account for most of organizations’ purchasing
activities. Figure 2.1 illustrates the players and message exchanges in the OBI protocol.

The OBI protocol works in the following way: requisitioner is a member within
buying organization and is allowed to shop selling organization’s merchant server
through a web browser. Requisitioner can browse an on-line catalog of goods and
services and make a selection. Based on the content of requisitioner “shopping basket”,
selling organization forms an OBI order request and sends the request to buying
organization. If buying organization approves the order request, it then creates a complete
OBI order from the order request. Buying organization returns the formatted OBI order to

! We choose OBI here, instead of the simpler but artificial one in [24], to show the consistency of
the modeling concepts with the practical applications.

selling organization. With the help of payment authority, selling organization obtains
credit authorization and ships the ordered merchandise. Payment authority issues an
invoice and receives payment. In some cases, e.g., for frequently ordered items, an
alternative procedure may be in place. That is, buying organization sends “unsolicited”
OBI order to selling organization without requisitioner’s first “shopping” selling

organization’s catalog.

2.4 EC Protocol Trees

An EC protocol can be d by listing all the i ions that follow the
protocol definition. It is convenient to represent a protocol by a tree structure. A tree
representing an EC protocol is called an EC protocol tree. Because our intention is to
have a structure containing sufficient information to assist in dispute handling which
usually involves abnormal transaction executions, we further require that those executions
which do not follow the protocol definition should also be represented in the protocol tree
as long as they are predictable.

Corresponding to the description of OBI protocol, Figure 2.2 is the OBI protocol
tree. Please note: for simplicity, we do not consider the cases where buying organization
sends “unsolicited” OBI order to selling organization without requisitioner’s first

“shopping” selling organization’s catalog.

S>R:
catalog

S—>8:
order

(P1->P2: content): P1 sent content to P2
(O agoodnode

@ 2 badnoce

= atomicity-sensitive action
O an ed-state preservng atomicity

an end-state not preserving atomicity

Figure 2.2: OBI Protocol Tree (Simplified Version)

A protocol tree is a pictorial representation of a protocol. For an EC protocol tree,

there are following properties:

Each path starting from the root is related to transaction executions of the
protocol. It is a class of protocol executions that follow the same pattern. A
path from the root to a leaf is a complete path, or a complete execution.

Although all i i should be as paths, not all

“predictable” message sequence combinations are meaningful. For example,
generally speaking, a message of goods should never precede a message of
order because goods should not have been sent without a previous order.
Hence, a path with goods preceding order should generally not be included in
the protocol tree.

The nodes of the tree are stages of protocol executions. Each node has a
content representing the transaction state at that stage. Each node has a unique
ID number followed by a letter denoting the corresponding content of the node.
‘Two nodes have the same content if and only if they have the same letter inside.
The arcs and paths are various kinds of state transitions. Each arc is labeled
with the message that produces the state transition. A message can have an
either good or bad property. A good message has the attributes consistent with
protocol requirements. For instance, in Figure 2.2, “a good delivery” refers to a
message of goods that is delivered in sufficient quality and quantity as required

by the corresponding purchase order. A message is atomicity-sensitive if the

beginning and ending nodes of its corresponding arc have different contents.
Atomicity-sensitive messages are usually those messages related to order,
money and goods. Only atomicity-sensitive messages affect transaction

atomicity.

For each complete path that terminates at a state preserving atomicity, every
node within the path is called a good node. Nodes other than good nodes are
called bad nodes. A good node may lead to a state preserving atomicity, while

a bad node cannot lead to any state preserving atomicity.

2.5 Supports for Dispute Handling

A dispute handling process consists of three typical steps: dispute initiation, investigation

and decision making.

2.5.1 Dispute Initiation

A player in the EC system may initiate a dispute when the player is not satisfied with the
execution result of some transaction. This player is termed initiator of the dispute. The
dispute initiator contacts the arbiter and submits to it a complaint describing how he has
been treated unfairly by other players, and a request that he thinks will recover his loss.
The request is usually a set of statements each of which contains an action that the

initiator wishes to be taken. In addition to the complaint and the request, the initiator

should submit as well the identification number of the transaction for which the dispute is

raised so that the arbiter is able to make further investigations.

2.5.2 Investigation

During the investigation step the arbiter tries to construct the current transaction state. Let
Q -»s R be a state transition where Q is the initial state and R the terminating state of s.
Suppose a dispute arises when the transaction is in state R. The arbiter can construct state
R if he knows sequence s by interacting with players and acquiring necessary information
about s. According to the protocol structure, s is composed of various messages
exchanged between players, among which only atomicity-sensitive messages affect the
state of R. Therefore, if the arbiter is able to learn exactly what atomicity-sensitive
messages have been exchanged so far, current state R can be constructed based on the
protocol tree. Then, it will be clear whether or not the dispute initiator’s complaint is true
and whether or not the request is honorable.

However, constructing a complete current state is not always possible because
some players may not be trustworthy. When the arbiter collects information about
exchanged messages from players, it is possible that some players may not be willing to

tell the truth. To deal with this dilemma, the notion of benefit set is proposed in [24]. A

benefit set for a player is a set of itions (or Each ition states

either or of some atomicity itive message. P a

player would not refuse to prove propositions in his/her benefit set because such proofs
do not compromise his/her best interests. That is, for an atomicity-sensitive message M, if
M is a good message (pointing to a good node in the protocol tree), its sender’s benefit set
should contain a proposition stating occurrence of M and other players’ benefit sets
should contain propositions stating non-occurrence of M. Otherwise, if M is a bad
message (pointing to a bad node from a good node), its sender’s benefit set should state
non-occurrence of M and other players’ benefit sets should state occurrence of M.

Algorithm 2.1 used for constructing benefit sets is proposed in [24].

Algorithm 2.1: Constructing Benefit Sets
Let Benefit(X; be the benefit set for player X and Sender(M) be the serder of
message M. Based on the protocol tree, execute the following:
e For each atomicity-sensitive message M whose corresponding arc stops at a
good node, include into Benefit(Sender(M)) a proposition claiming Sender(M)
sent M, and into Benefit(J) a proposition claiming Sender(M) did not send M,
where J is a different player from Sender(M).
e For each remaining atomicity-sensitive message M, include into
Benefit(Sender(M)) a proposition claiming Sender(M) did not send M, and
into Benefit(J) a proposition claiming Sender(M) sent M, where J is a different

player from Sender(M).

Table 2.1: Players’ Benefit Sets of OBI Protocol

buying_organization:
BI1: buying_organization sent OBI_order to selling_organization
B2: payment_authority did not send credit_confirmation to selling_organization
B3: selling_organization did not send order_cancellation to buying_organization
B4: selling_organization did not send good delivery to buying_organization

BS: selling_organization sent bad delivery to buying_organization

selling_organization:
S1: buying_organization did not send OBI_order to selling_organization

S2: payment_authority did not send credit_confirmation to selling_organization

$3: selling_organization sent order t ion to buying_
$4: selling_organization sent good delivery to buying_organization

S5: selling_organization did not send bad delivery to buying_organization

payment_authority:
P1: buying_organization did not send OBI_order to selling_organization
P2: payment_authority sent credit_confirmation to selling_organization
P3: selling_organization did not send order_cancellation to buying_organization
P4: selling_organization did not send good delivery to buying_organization

PS: selling_organization sent bad delivery to buying_organization

Table 2.1 lists players’ benefit sets of OBI protocol. It is easy to verify that it can
be constructed by applying algorithm 2.1 based on OBI protocol tree in Figure 2.2.
The significance of benefit sets lies in theorem 2.1, which is proposed by the

authors in [24].

Theorem 2.1: Let R~N~S be a complete path in a protocol tree. Then an atomicity-
sensitive message is in segment R~N if and only if its occurrence is claimed by a

proposition in some benefit set that is true at node N. An atomicity-sensitive message is in

segment N~S if and only if its is claimed by a proposition in some benefit
set that is true at node N and its occurrence is claimed by another proposition in some

benefit set that is true at node S.

This theorem guarantees that the ‘transaction state at any node of the protocol

can be p ly described by benefit set propositions that are true at that

node. Hence, should a dispute arise at some node, we are able to try to construct the

transaction state for that node by inspecting truth values of all benefit set propositions.

This can facilitate our dispute handling because the complete transaction state is the first
thing we need to know when applying atomicity as correctness criterion.

For instance, in Figure 2.2, the transaction state at node 15D is described by true

benefit set propositions B1, B3, B4, BS, P2, P3, P4, and P5. That is, buying organization

has sent OBI order to selling organization, payment authority has sent credit confirmation

20

to selling organization, selling organization did not send order cancellation to buying

organization, and selling organization has sent bad delivery to buying organization.

2.5.3 Decision Making

It is in this phase that the decision is made on whether the dispute initiator’s request
should be honored or not. Making the decision is based on the current transaction state
that can be possibly constructed, and purchase atomicity is applied as the correctness
criterion.

If complete knowledge on the current transaction state can be attained after players
have presented their information, a decision can be generated by applying some algorithm
which is intended to install atomicity. Otherwise, human involvement is necessary.
Human experts analyze the dispute case by considering whatever other factors which
might be helpful with regard to a resolution. Those factors may include, for instance, any
additional documents players can provide, etc.

From above, it is appropriate to implement the arbiter as a two tier structure which
includes both software arbiter and human arbiter. Software arbiter is a piece of computer
software that generates algorithmic solutions, while human arbiter is composed of domain
experts and provides human judgments whenever necessary.

Following is the algorithm introduced in [24] that should be executed by software

arbiter in order to generate a decision.

21

Algorithm 2.2: Decision Generation
1 if truth values of all benefit set propositions that take value of true can be obtained
2 construct the complete transaction state;

3 if the state preserves atomicity

4 if the dispute initiator can prove the complaint

5 ask human arbiter to consider the reasonableness of the request;
6 else // the initiator cannot prove the complaint

7 no action is taken;

8 end if

9 zlse // the state does not preserve atomicity

10 if the initiator’s request reinstalls atomicity

11 accept the request;'

12 else // the request does not reinstall atomicity

13 if the initiator can prove the complaint

14 ask human arbiter to consider the reasonableness of the request;
15 else // the initiator cannot prove the complaint

16 no action is taken;

17 end if

18 end if

22

19 end if

20 else // only partial state can be constructed

21 ask human arbiter for judgment;
22 end if
1. Because atomicity is our ultimate correctness criterion, any request that preserves

or reinstalls atomicity should be justifiable. Therefore, there is no need to care

about whether the initiator can prove the complaint or not.

2.6 Using Rules to Prove Propositions

From the decision generation algorithm 2.2, proving benefit set propositions is a critical
step since it is the basis of transaction state construction. However, due to some possible
reasons, such as lost evidence and inherent deficiency of a protocol, it is not always
feasible for players to prove benefit set propositions directly by showing corresponding
evidence. Players may need to do the inference. This is done by means of rules [24]. A

rule is an implication p—>q where both p and q are propositions claiming either

or tence of some messages. The rule p—>q is used to prove q in case
q is true by proving p. That is, p—>q empowers us to show that q is true by showing that p
is true. This is desirable if proving p is easier than proving q. By applying rules, players

are more likely to be able to prove benefit set propositions.

23

2.7 Related Work

EC transactions have been studied i recently. A ive review of

research issues and challenges in EC field is given in [13]. Many EC protocols are
proposed with varying levels of security guarantee. The NetBill protocol [6] ensures fair

exchange for the sale of low-priced digital goods by adopting a trusted third party. Secure

T (SET) is a ped standard aimed at EC
transactions conducted by three players: customer, merchant, and credit card company
[15]. The iKP family of secure electronic payment protocols is proposed in [5]. The iKP
protocols implement credit card based transactions between the customer and the
merchant while using existing financial network for clearing and authorization. The
protocols can also be extended to apply to other payment models, such as debit cards and
electronic checks. In [22], a set of EC protocols for micropayments is designed with the
main goal to reduce the charging cost by choosing a suitable security model, a charging
model, and cryptographic algorithms.

Atomicity is a property that has been thoroughly investigated in database
transactions during the last two decades [9,16]. Studying atomicity in EC transactions is
introduced in [26,27]. The author discusses the role of atomicity in EC and proposes three

types of EC atomicity, namely, money atomicity, goods atomicity, and certified delivery.

As an extension, another type of atomicity, distributed purchase atomicity, is proposed in

24

[21], where the authors address the lack of support for full atomicity in EC payment and
apply transactional process management to realize an EC Payment Coordinator. In [28],

the author analyzes in details the need of a ion model, the

and its 1 for EC.

Yet the topic of handling EC disputes is outside the scope of the above works,
although they usually do specify what evidence should be stored for a fair resolution for
possible disputes. The work in [4] proposes a framework for dispute handling, which has
been applied in the European SEMPER project [14]. The authors design a claim language
for disputes independent of any specific payment system. They also describe a framework
for dispute handling where a dispute protocol is developed. However, the work does not
address the correctness criterion for resolutions in a unified manner. Consequently, it
remains unclear how to adapt different payment systems to the framework. Also, although
the work provides mechanisms for proving statements based on evidence, it presents few
strategies to deal with cases where evidence is either lost or withheld.

Another work which addresses dispute handling issues is presented in [19]. An
optimistic fair exchange protocol with automated dispute resolution is proposed. The
protocol ensures true fair exchange and does not require manual dispute resolution in case
of unfair behavior by any party. Nonetheless, the protocol is useful only for the exchange
of digital items because the basis of the protocol is a mathematical theory for cross

validation of messages. As a result, the protocol has only limited applications.

25

American Arbitration Association proposes a B2B EC Dispute Management
Protocol [3]. The protocol provides pre-defined rules and procedures for handling
disputes of different categories. It also employs an online web system to facilitate the

dispute handling procedure. Through the web system, EC players are able to

with the arbitration system e.g., filing a dispute case online.
However, the dispute resolution indeed relies on human mediation and/or arbitration. The
dispute management protocol does not involve automated dispute handling, e.g., decision

generation by computer systems.

26

Chapter 3

An Architecture for EC Disputes

As mentioned in Chapter 1, our architecture uses a client-server model. Figure 3.1 shows

apictorial view of this architecture.

3.1 Client Applications

There are two kinds of client applications in our architecture. One kind is used for the
interaction between EC players and the arbiter server. Running such a client application,
each player is able to communicate with the arbiter server, e.g,, to initiate a dispute.

The other kind of client applications serves as an interface through which the
arbiter server components can be properly managed. For instance, initialization of
protocol tree server can be done by field experts through corresponding client tools for

protocol tree specification.

27

Normsl EC Messages

i Vg

Rule Search .

Rule Base
Server

Human
Experts
Client Tools meQ
Rule & Protocol
Tres Specificetion |

Genertion

Huaanaided
Protocol Tree | | | Dispte Handling
er

Prvocol Tree Sety |

Geonion __—1:_ |

;i Human
Protocol Tree / &

| &Benefit Sets Qﬁ‘:’

Figure 3.1: The Architecture of an EC Dispute Arbiter

3.2 Software Arbiter and Human Arbiter

Software arbiter and human arbiter are key components of the architecture. Software
arbiter is the overall coordinator within the architecture. It interacts with various players,
retrieves information from other components, etc. Also, software arbiter is responsible for

execution of arbitration algorithms.

28

Due to the inherent complexity related to dispute handling (e.g., consider the
comparable process conducted in a real court room by human judges), it is not always
possible to solve disputes by software arbiter alone. Hence, necessary human assistance
for arbitration is appropriate, especially in those cases where no clear-cut information is
available. Thus, when software arbiter fails to reach a resolution by itself, it turns the case
to human arbiter. Human arbiter actually provides knowledge and judgments from

domain experts.

3.3 Protocol Tree Server

Protocol tree server deals with services and storage related to the protocol tree structure.
The information provided by the protocol tree is essential in our architecture. For example,
EC messages, transaction states, and benefit set propositions are all based on the protocol
tree. Protocol tree server is equipped with a back-end database that stores necessary
persistent data, such as tree structure, players’ benefit sets, etc.

An important function of protocol tree server is protocol tree generation. Human
experts may accomplish this through client applications for protocol tree specification. To
facilitate the understanding of how a protocol tree can be generated, we first introduce a

general model for EC protocols, and then present a protocol tree building algorithm.

29

3.3.1 A Model for EC Protocols

Because an EC protocol is a collection of rules that stipulate how EC transactions are
executed, the protocol can be represented by listing all transaction executions that follow
the protocol definition. As mentioned before, in our model, we further require that when
representing a protocol those executions which do not follow the protocol definition
should also be listed as long as they are predictable. (Because disputes are usually related
to those “bad” executions, we need such information to handle disputes.) Therefore, in

our protocol model, an EC protocol is a list of all predictable transaction executions.

On the other hand, as i previ , an EC ion can be regarded as
a sequence of message exchanging. Since a protocol prescribes several options for the
ways a transaction under the protocol can proceed, an EC protocol can be viewed as a

colloection of lists of message i each of which a unique

transaction execution.

In order to represent sequences of message exchanging, we need to define the
general form of a message. A message here refers to any kind of information/item that is
passed from one player to another. Hence, a message can be either a pure text flow or
some goods with a physical shape. Following is the message definition adopted in our
model:

(message_ID, sending player, receiving player, content, property)

30

Message_ID is a unique number identifying a particular message. Sending player
refers to the sender of the message and receiving player refers to the receiver of the
message. Content denotes what the message is, e.g., order or goods, etc. Property is a
description used to represent some attribute values of the message. For instance, when the
message content is some goods sent by a merchant to a customer, the goods may have an
either “good” or “bad” property, which indicates whether or not both quality and quantity
of the goods are consistent with what is stated in the order/contract.

Based on the above message definition, we are able to list all messages exchanged
in the EC system. Then, it is feasible to design an algorithm that builds the protocol tree

automatically.

3.3.2 A Protocol Tree Building Algorithm

In this section, we design an algorithm for building protocol trees. The algorithm
constructs the protocol tree from a list of complete message sequences. Thus, before the
algorithm can possibly work, some preparations need to be done to represent an EC
protocol as a list of message sequences.

Three Preparation Steps

. Step 1: Defining Basic Sets
Before composing all predictable messages, first we need to find out what

possible values are for each value field of any message. According to our

31

message definition, there should be following basic sets, each of which
corresponds to some particular value fields of a message.

Player set: all possible players within the EC system. For any message,
both the sending player field and the receiving player field take some
values from the player set. For instance, in B2C model, a typical player set

may be: merchant, customer, and bank.

Content set: all i i i that are between
different players. All values for the content field of a message come from
this content set.

Property set: all attribute values used to describe various message

contents. Typical vajues of the property set are “good” and “b:

Step 2: Composing Messages Exchanged in the Protocol

Because all the basic sets have been defined in step 1, all possible values
for any field of a message are known. Thus, composing all messages is a
simple task of filling blank fields for messages.

Step 3: Constructing the collection of all the possible message sequences

Because each message sequence p to a category of
executions, essentially, this step lists all predictable complete executions

of the EC protocol, which imply the structure of the protocol tree.

32

It is clear that the above three steps demand thorough knowledge of the related EC

protocol. Together, they serve to express an EC protocol as a list of complete message

Therefore, all ion steps should be i by protocol experts.
The Algorithm

Algorithm 3.1 is the tree building algorithm that takes a list of complete message

sequences as input and produces a protocol tree structure as output.

Algorithm 3.1: Protocol Tree Building
Seq_Left := set of all complete message sequences;
// Seq_Left is the list of remaining unprocessed sequences

create Root_Node; // This is the root node of the protocol tree

// Generate the first complete path in the protocol tree
Parent_Node := Root_Node; // Parent_Node is a variable of tree nodes
Seq := a sequence from Seq_Left with N messages;

// Seq is a variable of message sequences

create a new Child_Node as a child of the Parent_Node;
// Child_Node is another variable of tree nodes
label Arc(Parent_Node, Child_Node) with message_i of Seq;

// Arc is avariable of tree arcs

33

// Arc(A,B) represents the arc from node A to node B
Parent_Node := Child_Node;
end for

remove Seq from Seq_Left;

// Generate other complete paths in the proiocol tree
while Seq_Left is not empty
Parent_Node := Root_Node;

Seq := a sequence from Seq_Left with N messages;

for(i:=0; i<N; i:=it1)

Found := FALSE; // Found is used to denote whether or not message_i
// corresponds to an outgoing arc of Parent_Node
for each Child_Node tha is a child of Parent_ Node
if Arc(Parent_Node, Child_Node) is labeled with message._i
Parent_Node := Child_Node;
Found := TRUE;
Break; // It has been found that message_i corresponds to one outgoing
// arc of Parent_Node, so there is no need to search the
// remaining outgoing arcs of Parent_Node
end if

end for

34

if(Found==FALSE)
break; // Here, message_i does not correspond to any outgoing arc of
// Parent_Node, hence there is no need to search matching arcs for

// message._i, message_(i+1), ..., message_N

end if

end for

for(; i<N; i:=i+1)
create a new Child_Node as a child of the Parent_Node;
label Arc(Parent_Node, Child_Node) with message_i;
Parent_Node := Child Node;

end for

remove Seq from Seq_Left;

end while

// The remaining codes finish the algorithm
for each node in the tree
assign a unique ID and a content label to the node;
end for
for each message in the tree
if the two end-nodes of the message have different contents

label the message as atomicity-sensitive;

35

end if
end for
for each leaf node in the tree
if the node preserves atomicity
label it as an end-state preserving atomicity;
else
label it as an end-state not preserving atomicity;
end if
end for
for each complete path in the tree
if the path terminates at an end-state preserving atomicity
for each node in the path
label it as a good node;
end for
end if
end for
for each node in the tree
if the node is not a good node
label it as a bad node;
end if

end for

36

An Example — Building OBI Protocol Tree

In this subsection, we build the OBI protocol tree as an example to show how the tree
building algorithm works.

To apply the tree building algorithm, we first need to finish preparation steps.
According to the descriptions of simplified OBI protocol introduced in section 2.3, there
should be the following basic sets. Player set: requisitioner, buying organization, selling
organization, payment authority. Content set: catalog request, catalog rejection, catalog,
catalog shopping basket, order request, order request rejection, OBI order, credit request,
credit rejection, credit confirmation, order cancellation, invoice, delivery of goods, receipt.
Property set: good, bad. (For simplicity, we do not consider the digital signature and
certificate scheme in OBL.)

Based on the defined basic sets, we can compose all the messages exchanged in
the protocol. Please note that attention should be paid to those messages with particular
properties, e.g,, good and bad. Here are the composed messages: (requisitioner is referred
to as R, buying organization as B, selling organization as S, payment authority as P, and
empty value as Null.)

(1, R, S, catalog request, Null)
(2. S, R, catalog rejection, Null)

(3,8, R, catalog, Null)

37

(4, R, S, catalog shopping basket, Null)
(5, S, B, order request, Null)

(6, B, S, order request rejection, Null)
(7, B, S, OBI order, Null)

(8, S, P, credit request, Null)

(9, P, S, credit rejection, Null)

(10, S, B, order cancellation, Null)
(11, P, S, credit confirmation, Null)
(12, P, B, invoice, Null)

(13, S, B, delivery, bad)

(14, S, B, delivery, good)

(15, B, S, reczipt, Null)

The last preparation step is to list all predictable complete message sequences,
which requires a careful analysis of the protocol. It should be well understood that not all
sequence combinations of messages are meaningful because in a message exchanging
protocol there are usually some temporal orders imposed on messages. That is, in a
specific protocol, some messages should always precede others. For example, in OBI,
message 14 should always precede message 15 because the receipt from buying
organization to selling organization can only be sent after selling organization has
delivered products to buying organization. Therefore, even though the message sequences

where message 15 precedes message 14 are predictable sequences, they are actually

38

invalid options and hence should not be listed. In general, to check whether a message
sequence is invalid or not, we need to check the order of every pair of messages within
the message sequence. As long as there is a pair of messages whose order is not allowed
(or is impossible) in the given protocol, the message sequence is viewed as invalid.
Here are complete message sequences we have recognized for the OBI protocol:
1.2
(1,3,4,5,6)
(1,3,4,5,7,8,9, 10)
(1,3,4,5,7,8, 11, 12, 13, 15)
(1,3,4,5,7,8,11, 12, 14,15)
(1,3,4,5,7,8,11,13,12, 15)
(1534, 577, 8,11, 13,15, 12)
(1,3,4,5,7,8,11, 14, 12, 15)
(1,3,4,5,7,8,11, 14, 15, 12)
Finally, taking the above collection of complete message sequences as input, the

tree building algorithm 3.1 produces the protocol tree illustrated in Figure 2.2 as output.

3.4 Rule Base Server

We have introduced previously that players may use rules to prove benefit sct

propositions. By applying rules, players are more likely to be able to prove propositions.

39

Rule base server is the architecture component dealing with issues related to the
management of rules. Due to its vital importance in ensuring the correct functioning of
the dispute handling architecture, we include the discussions on its strategies and

functionalities in the next Chapter.

3.5 Dispute Handling in the Architecture

Our architecture handles EC disputes in the following way: the dispute initiator raises a
dispute by contacting software arbiter. The initiator needs to submit the corresponding

1D, his/her int and request via i client ication. Software

arbiter then retrieves benefit sets from protocol tree server and sends each benefit set to
its corresponding player. Also, software arbiter sends the transaction ID to players for
their reference. Each player is askt;d to prove all propositions that he/she believes to be
true in his/her benefit set, with regard to the transaction identified by the received ID.
Players may prove propositions either directly or by applying some rules. If a player
chooses to use rules, he/she has to search rule base server to find proper rules. After
proofs are done, players send their proving results back to software arbiter. Software
arbiter then executes the decision generation algorithm, either resolves the dispute itself,
or turns the case over to the human arbiter. During this process, software arbiter may need
assistance from human arbiter. Finally, software arbiter generates a dispute resolution and

sends it to all players. Please note, before the architecture can work appropriately, some

40

initializations have to be completed, such as building protocol tree, constructing benefit
sets, and generating rules. These can be accomplished by human experts through
corresponding client tools.

In the following, we present two scenarios based on OBI protocol to illustrate how
disputes are handled in our architccture. The corresponding protocol tree is in Figure 2.2

(see page 14) and players’ benefit sets are in Table 2.1 (see page 19).

Scenario 1:
Consider a case in which buying organization has placed an OBI order and paid to selling

organization. However, the goods buying organization has received from selling

are l. When the ion reaches node 15D, buying
organization initiates a dispute. ;l'he complaint is ‘selling organization made a bad
delivery to us’ and the request is ‘selling organization provide an exchange for gcod
goods’. After software arbiter receives these, it retrieves the benefit sets for all players,
namely, buying organization, selling organization, and payment authority. Then, software
arbiter sends benefit sets to their corresponding players and asks for proofs.

There are eight true propositions at node 15D: B1, B3, B4, B5, P2, P3, P4, P5. For
buying organization, it proves B1 by showing a copy of the electronically signed OBI
order. Also, it proves B5, and therefore B4, by presenting that the goods received from
selling organization are indeed bad (not in accordance with the original OBI order). B3 is

hard to prove directly since it is a proposition claiming non-occurrence of messages.

41

Hence, buying organization tries to apply rules. It contacts rule base server and finds the
rule B5—>B3. This is a reasonable rule because if BS is true then B3 must be true
according to OBI protocol tree (we discuss more on rules in next chapter). Hence, buying
organization selects the rule BS—>B3 and uses BS to prove B3. Since BS has been proved,
buying organization proves B3 as well. For selling organization, none of its benefit set
propositions is true. Hence, it cannot prove anything. For payment authority, P3, P4, P5
are the same as B3, B4, BS, respectively. Because B3, B4, and B5 are proved by buying
organization, payment authority needs only to prove P2. P2 is not easy to prove directly,
so payment authority selects the rule BS—»P2 from rule base server. This is a good rule
because BS cannot be true unless P2 is true, based on the protocol tree. Because BS is
proved to be true by buying organization, payment authority hence proves P2 through
B5—P2.

After collecting all proof results from players, software arbiter executes algorithm
2.2 to make a decision. Software arbiter finds no problem to construct the complete
transaction state at node 15D because all true benefit set propositions have been proved.
The state does not preserve atomicity, nevertheless buying organization’s request
reinstalls it. According to the algorithm, line 11 is reached. Hence, software arbiter

honors buying organization’s request.

Scenario 2:

42

In this example, suppose after buying organization has sent an OBI order and paid for the
order the dishonest selling organization does not deliver any goods. That is, the
transaction proceeds to node 10C and selling organization does not deliver any goods.
Consequently, buying organization initiates a dispute. The complaint is ‘we made
payment but did not receive goods’ and the request is ‘selling organization make a good
delivery’. In this case, true propositions in players’ benefit sets are B1, B3, B4, S5, P2, P3.
P4. Yet buying organization cannot prove B4, Neither can selling organization prove S5.
Hence, after software arbiter collects proof results from players, it is unable to construct
the complete current transaction state since not all true propositions have been actually
proved. Therefore, according to line 21 of algorithm 2.2, software arbiter has to hand over

the case to human arbiter for judgment.

43

Chapter 4

Rule Processing:

A Framework and Methodologies

As discussed in section 2.6, players may need to use rules to prove propositions because it
is not always feasible for them to prove benefit set propositions directiy by showing
corresponding evidence. In this chapter, we take an in-depth look at the issues involved in
the rule processing, such as the notion of weak rules, how to search for rules, how to
measure their reliabilities, and how to cope with the possible inconsistencies among the

weak rules.

4.1 Weak Rules

Traditionally, a rule is associated with a value to be respected by followers. In our context,

this value is the truth. As briefly mentioned in Section 2.6, we can use the rule p-q to

44

prove q by proving p. But a precondition is that p being true ahways implies q being true.
A rule of this kind is called a strong rule. However, as realized by the authors in [23], in
many cases strong rules are not obtainable. Thus they introduced the concept of weak
rules. A weak rule does not have to be always true, and therefore, its convincing power is
limited. (We will use the terms ‘reliability’ and ‘convincing power’ interchangeably in
the subsequent discussions.) In cases where strong rules are not available, weak rules are
the only feasible alternatives. What we would like to have are weak rules with high
enough reliabilities so that when they are used for proof purposes the results generated are
still acceptable to all the players (mostly importantly, though, the arbiter).

Look at the following example in OBI. Suppose selling organization wants to
prove the proposition q ‘selling organization sent good delivery to buying organization”
by applying the rule p—>q where p reads ‘paymem authority sent credit confirmation to
selling organization’. This rule is a weak rule, meaning that it is not fully reliable: This is
because the fact that p is true does not necessarily imply that q is true, according to the

protocol tree in Figure 4.1.

, the rule is i i 1 because
sometimes selling organization may not be able to prove good delivery by showing the
receipt acquired from buying organization since a bad buying organization may withhold

the receipt deliberately. Also good delivery of products is usually the hot spot for disputes.

45

Legend

R->S:
catalog request

R: requisitioner

B: buying organization

S: selling organization

P: payment authority

(P1->P2: content): P1 sent content to P2

R->S:
catalog shopping basket o a good node

@ abadnode

—————— non-atomicity-sensitive action

y i

B->S: order
request rejection

O n end-state preserving atomicity

¢} an end-state not preserving atomicity

P->8: credit
reeion—
e
P->B: St
invoice
§->B: order
cancellation
: B>s:
S8 : P>
bad delivery " oo receipt

Figure 4.1: An Example of Weak Rules

46

On the other hand, it may be highly probable that selling organization can get
credit confirmation from payment authority without much difficulty in that the latter is a
third party independent from buying organization. Moreover, because the credit
confirmation is the piece of evidence that selling organization would receive from
payment authority, selling organization should normally keep it in records. That is, selling
organization should have no difficulty in presenting the credit confirmation whenever it is
needed, e.g., in the case when applying the rule stated above to prove that good delivery
has been sent.

Therefore, the rule ‘payment authority sent credit confirmation to selling

® — ‘selling ization sent good delivery to buying organization® is of
practical importance to players because it can facilitate players 1o prove propositions,

although it is only a weak rule.

4.2 Searching Heuristically for Rules

Because rules involve using one proposition to prove another and propositions are related
to messages, the generation of rules requires finding relationships and relative positioning
between messages. This suggests the need to search for rules on the EC protocol tree
since this tree provides the required information on messages. The heuristic method
presented below extends the one introduced in [23]. It generates both strong and weak

rules. In addition, the rules generated can contain cither positive or negative propositions.

47

(we call a proposition pesitive if it claims occurrence of a message, and a proposition
negative if it claims non-occurrence of a message.)
In the following we will use p to denote a positive proposition and — p to denote a

negative proposition that claims the negation of p.

Algorithm 4.1: Searching for Rules
Input: a protocol tree T;

Output: a set of candidate rules, R();

for each positive proposition p that claims occurrence of a message m
1. RI1 «- R2 « R3 « @, and mark every complete path that includes m;
2. for each message n such that n appears in every marked complete path and n is
ahead of m
Rl « (R1U {p— q}) where q is the proposition claiming occurrence of n;
end for
3. for each message k such that all paths that contain k should also contain m and m
is ahead of k in at least one of those paths
R2 « (R2 U {p— q}) where q is the proposition claiming occurrence of k;

end for

I

. for each message j in S which is the set of messages that are not in any marked

path

R3 « (R3 U {p > — q}) where —~ q is the proposition claiming non-
occurrence of j;

end for

©u

. for each rule p — q within R1
Rl (RIU {-~q—>=p})

end for

o

. for each rule p — q within R2
R2«(R2U {-=q—>=p});

end for

~

. for each rule p — — q within R3
R3« (RIU{g->—p);

end for

%

. RO« (RIUR2UR3):

end for

In the algorithm, steps 2, 3, and 4 find rules based on the relative positioning
between messages in the protocol tree. Then, steps 5, 6, and 7 add contrapositives of
existing rules into the candidate sets.

The motivation for step 2 is as follows. If message n appears in every path

containing message m and n is ahead of m in the path then the occurrence of m must

49

imply the occurrence of n because the transaction execution cannot reach m without first
passing n. The rules in this set R1 are hence fully reliable. Look at the two messages n
and m in Figure 4.2 where n is “B->S: OBI order” and m is “P->S: credit confirmation”.
In this case, n appears in every path that contains m and n is always ahead of m, thus, the
occurrence of m should imply the occurrence of n. That is, the rule p — q should be
generated where p claims occurrence of m and q claims occurrence of n.

On the other hand, although step 3 adopts a principle similar to that of step 2, not
all rules generated in this case are fully reliable. This is because in step 3 the occurrence
of message m is used to imply the occurrence of message k even if m is ahead of k, which
is not guaranteed to be true. In Figure 4.2, for instance, let message m be “B->S: OBI
order” and message k “S->B: good delivery”. Then, every path containing k also.contains
m and m is ahead of k in at ‘leasl one path. So, the rule p — q where p claims occurrence
of m and q claims occurrence of k is generated in step 3. It is easy to observe that this rule
is not fully reliable because the occurrence of “OBI order” does not guarantee the
occurrence of following up message “good delivery”. Nevertheless, we still need this set
R2 of rules generated in step 3 because we try to give players more choices of possible
rules. Clearly, rules that are not fully reliable need special treatment so that errors resulted
from applications of these rules can be avoided as much as possible. We discuss more on

this issue in the following sections.

50

SR
catalog

R->S:
catalog shopping basket
5->B:
order request
B->S: onder
request rejection B->S:
OBl order
S->p:
creait request
P->S: credit
rjection_

S->B: order
cancellation

Legend
R: requisitioner
B: buying organization
S: selling organization
P: payment authority
(P1->P2: content): P1 sent content to P2

(O 2go0dnode

@ = badnode

v itive acti

y action
(O an end-state preserving stomicity
" an end-state not preserving atomicity

Figure 4.2: Rule Search Examples

51

Step 4 deals with i claiming of messages. If two
messages are not in the same path, occurrence of one must imply non-occurrence of the
other because the transaction execution can follow only one path at a time. For example,
in Figure 4.2, the message m “S->B: order cancellation” and the message j “P->S: credit
confirmation” are not in the same path. Therefore, m and j cannot occur simultaneously.
The rule p —> — q should be generated during step 4 where p claims occurrence of m and

— q claims non-occurrence of j. Rulesin R3 generated in step 4 are all fully reliable.

4.3 Rule Validity Weight and Its Calculation

According to algorithm 4.1, normally there should be more than one rule in the candidate
set and these rules may have different reliability degrees. Not all rules are equally reliable. .
Some rules are fully reliable, meaning that for a rule p->q in case p is true q must be true
as well. Then, it has no problem when applying these rules. A fully reliable rule is termed
a valid rule. On the other hand, some rules are not fully reliable. That is, the rule p—>q
does not guarantee that q is always true when p is true. A rule that is not fully reliable is
termed a weak rule. Weak rules have different reliability degrees. To evaluate and
compare reliability degrees of rules, we introduce the validity weight of a rule.

The validity weight of a rule p—q reflects the reliability degree of proving q by
proving p. That is, the weight tells the probability for g to be true in case p has already

been proved true. We therefore use the conditional probability P(qlp) for the weight of

rule p—>q. For example, if p—q is a valid rule, it has a full weight of value one because
P(qlp) equals to 1 in this case.

Because P(qip) = P(pq) / P(p), we are able to calculate P(q|p) by first calculating
P(pq) and P(p). As is known, each complete path in the protocol tree represents a possible
route for the transaction execution. And for a specific transaction, it must follow only one
path. Hence, different paths in the protocol tree are mutually exclusive for a particular
transaction execution. This enables us to calculate both P(pq) and P(p) by applying
Bayes’ formula. That is, we determine P(pq) and P(p) by conditioning upon whether or
not the transaction has followed a specific path.

To calculate P(pq), we use the following formula (suppose there are N complete
paths in the protecol tree):

P(pq) = P(pq|path 1) * P(pathl) + P(pq | path 2) * P(path2) + ...
+ P(pq | pathN) * P(pathN)

P(pq | pathPT) is the probability for the events of p and q under the condition that
the transaction has followed the path PT. To calculate P(pq | pathPT), we need to find
out TrueNode(pq, pathPT) and AliNode(pathPT). TrueNode(pq, pathPT) is the
number of nodes on path PT where both p and q are true. AllNode(pathPT) is the
number of all nodes on path PT. Then, we have the following:

P(pq | pathPT) = TrueNode(pq, pathPT) / AllNode(pathPT)
P(pathPT) is the probability for the execution to follow path PT. At this point, we

suppose for each edge in the protocol tree there is a corresponding probability, termed

edge probability, which states how probable the transaction should follow this edge. Then
the path probability P(pathPT) is the product of probabilities of all edges in path PT. In
the next subsection, we present more details on edge probability and how it is determined.
Similar to the calculation of P(pq), we have the following formula to calculate P(p):
P(p)=P(p | path 1) * P(pathl) +P(p |path2) * P(path2) + ...
+P(p|path N) * P(pathN)
where P(p | pathPT) = TrueNode(p, pathPT) / AliNode(pathPT)
Based on the above, we design algorithm 4.2 that is used for calculating validity

weights.

Algorithm 4.2: Calculating Rule Weights
Input: arule p -»> q;

Output: the validity weight P(p->q);

P(pq)=0;
P(p)=0;

for each path N in the protocol tree, execute the following steps:

calculate the path ility by iplying all ilities of edges in path N, i.e.,
P(pathN) =P(edgel) * P(edge2) * ... * P(edgeM)
AlINode(path N) = count all nodes in path N;

TrueNode(p, path N) = count all nodes in path N that are within the sub-path of p;

// On a complete path containing p, the sub-path of p is the portion from the node
// immediately afier p to the leaf node of the complete path
if p is ahead of q in path N
TrueNode(pq, path N) = count all nodes in path N that are within the sub-path of q;
else //q is ahead of p in path N
TrueNode(pq, path N) = count all nodes in path N that are within the sub-path of p;
end if
P(p)=P(p)+P(pathN) * (TrueNode(p, path N)/AllNode(path N));
P(pq)=P(pq)+P(pathN) * (TrueNode(pq, path N)/AliNode(path N));
end for
P(qp)=F(pa)/P(p);

P(p—>q)=P(qlp);

In Section 4.1 above, we have given an example for weak rules. We now apply
algorithm 4.2 to calculate the validity weight for that rule.
According to algorithm 4.2, first we need to consider path probabilities. From the
OBI protocol tree (see Figure 4.3), it can be found that there are 9 paths in total:
Pathl: 00A..01A..02A
Path2: 00A...03A...06A

Path3: 00A..08B...11A

B->S: onder 9
rejection

Legend
R: requisitioner
B: buying organization
P: payment authority
(P1->P2: C): PlsentCto P2
(O asgoodnode
@ 2bednose

e i i

O 2 cnd-stte preserving atomicity

Figure 4.3: An Example of Rule Weight Calculation

56

Path4: 00A...08B...10C...12C...21D
Path5: 00A...08B...10C...12C..22E
Path6: 00A...08B...10C...13D...23D
Path7: 00A...08B...10C...13D...24D
Path8: 00A...08B...10C...14E...25E

Path9: 00A...08B...10C...14E.. 26E

In Figure 4.3, each edge is i with a bility. That is the

under which the transaction would follow the ing edge. With the

provided in the figure, we are able to calculate path probabilities according to the
following formula: (Refer to Section 4.4 for detail on how to calculate the related edge
probabilities.)

P(pathN) = P(edgel) * P(edge2) * ... * P(edgeM)

P(pathl) = 1*0.05 = 0.05

P(path2) =1*0.95*1*1*0.1 = 0.095

P(path3) = 1*0.95*1*1*0.9*1*0.15*%1 = 0.12825

P(path4) = 1*0.95*1*%1*0.9*1*0.85%0.2*0.25*1 = 0.0363375

P(path5) = 1*¥0.95*1*1*0.9*1*0.85*0.2%0.75*1 = 0.1090125

P(path6) = 1*0.95*1*1*0.9*1*0.85*0.2*0.5*1 = 0.072675

P(path7) = 1*0.95%1*1*0.9*1*0.85*0.2*0.5*1 = 0.072675

P(path8) = 1*¥0.95*1*1*0.9*1*0.85*0.6*0.5*1 = 0.218025

P(path9) = 1*0.95*1*1*0.9*1*0.85*0.6*0.5*1 = 0.218025

Next, find out for each pathN the values of TrueNode(pq, pathN) and

AlINode(pathN):

TrueNode(pq, path1) =0 AliNode(pathl) =3

P(pq| pathl) = TrueNode(pq, path1) / AllNode(path1) = 0

TrueNode(pq, path2) = 0 AllNode(path2) = 6

P(pq | path2) = TrueNode(pq, path2) / AllNode(path2) = 0

TrueNode(pq, path3) = 0 AliNode(path3) = 9

P(pq | path3) = TrueNode(pq, path3) / AlilNode(path3) = 0

TrueNode(pq, path4) =0 AllNode(path4) = 11

P(pq| path4) = TrueNode(pq, path4) / AllNode(path4) = 0

TrieNode(pq, path5) =2 AliNode(path5) = 11

P(pq | path5) = TrueNode(pq, path5) / AllNode(path5) = 2/11

T pq. path6) = 0 AllNode(path6) = 11

P(pq | path6) = TrueNode(pq, path6) / AllNode(path6) = 0
TrueNode(pq, path7) =0 AliNode(path7) = 11

P(pq | path7) = TrueNode(pg, path7) / AllNode(path7) = 0
TrueNode(pq, path8) =3 AllNode(path8) = 11

P(pq | path8) = TrueNode(pq, path8) / AllNode(path8) = 3/11
TrueNode(pq, path9) =3 AllNode(path9) = 11

P(pq | path9) = TrueNode(pq, path9) / AllNode(path9) = 3/11

Then, we can get the value of P(pq):

58

P(pq) =P(pq|path |) * P(pathl)+ P(pq|path2)* P(path2) + ...
+P(pq | pathN) * P(pathN')
=0*0.05 +0*0.095 + 0*0.12825 + 0*0.0363375
+(2/11)*0.1090125 + 0*0.072675 + 0*0.072675 + (3/11)*0.218025
+(3/11)*0.218025
=0.138743
Similarly, find for each pathN the values of TrueNode(p, pathN) and
AlINode(pathN):
TrueNode(p, path1) =0 AllNode(pathl) =3
P(p | pathl) = TrueNode(p, path1) / AllNode(pathl) = 0
TrueNode(p, path2) =0 AllNode(path2) = 6
P(p | path2) = TrueNode(p, path2) / AliNode(path2) = 0
TrueNode(p, path3) = 0 AllNode(path3) =9
P(p | path3) = TrueNode(p, path3) / AllNode(path3) = 0
TrueNode(p, path4) =4 AllNode(path4) = 11
P(p | path4) = TrueNode(p, path4) / AliNode(path4) = 4/11
TrueNode(p, path5) =4 AllNode(path5) = 11
P(p | path5) = TrueNode(p, path5) / AllNode(path5) = 4/11
TrueNode(p, path6) =4 AliNode(path6) =11
P(p | path6) = TrueNode(p, path6) / AliNode(path6) = 4/11

TrueNode(p, path7) =4 AllNode(path7) = 11

P(p | path7) = TrueNode(p, path7) / AllNode(path7) = 4/11

T (p, path8) =4 AllNode(path8) =11

P(p | path8) = TrueNode(p, path8) / AliNode(path8) = 4/11
TrueNode(p, path9) =4 AliNode(path9) = 11
P(p| path9) = TrueNode(p, path9) / AllNode(path9) = 4/11
And, we can get the value of P(p):
P(p)=P(p | path 1) * P(pathl)+ P(p | path 2) * P(path2) + ...
+P(p|pathN) * P(pathN)
=0*0.05 + 0*0.095 + 0*%0.12825
+(4/11)*0.0363375 + (4/11)*0.1090125 + (4/11)*0.07267/5
+(4/11)*0.072675 -+ (4/1 1)*0.218025 + (4/11)*0.218025
=0.264273
Finally, we are able to calculate the validity weight for the rule p—q:
P(p—q)=P(qlp)=P(pq)/ P(p) =0.138743 / 0.264273 = 0.525
If the validity weight of a rule equals one, this rule is a full-weight rule. There are
some general principles that can be used to identify full-weight rules easily. One principle
is concerned with the temporal sequence order between various messages claimed in rules.
Because a transaction execution is actually a series of ordered message exchanges, the
occurrence/non-occurrence of a particular message could possibly be implied by the

occurrence/non-occurrence of some other messages.

60

Message 1 precedes message 2 in protocol P, if with regard to the whole protocol
tree of P, message 2 can only be reached via paths including message 1 where message 1

is ahead of message 2.

Message Sequence Maxim: if message | precedes message 2 in protocol P, then
occurrence of message 2 implies occurrence of message | and non-occurrence of

message 1 implies non-occurrence of message 2.

In the heuristic search algorithm, R1 is the set that contains all rule candidates
generated according to message sequence maxim. Hence, rule candidates in R1 should be
of full validity weight because they are totally reliable. However. candidates in R2 do not
comply with the message sequence maxim and thus they do not have full weights.

The message sequence maxim complies with algorithm 4.2 in the sense that for
any rule p—q, if the message mentioned in p implies the message mentioned in q, then
the algorithm will tell that P(pq) equals to P(p), which means that P(q|p) equals one (the
full weight).

Another principle about full-weight rules deals with contradicting messages. If

two messages, message | and message 2, are never on the same path, they are called

messages. Cq icting messages cannot both be true in the same
transaction execution because they are not on the same path, and any practical protocol

execution can follow only one path at a time. If a rule has the form of p—q where p

61

claims occurrence of message 1 and q claims non-occurrence of message 2, ie.,
occurrence of message 1 — non-occurrence of message 2, then the rule should have full
weight. The rule candidate set R3 in heuristic search algorithm is composed of rules
generated according to the principle of contradicting messages. Hence, rule candidates in
R3 should be of full validity weight.

The principle of contradicting messages also complies with algorithm 4.2. For the
rule p—>q, where p states occurrence of message 1, q states non-occurrence of message 2,
and message 1 contradicts with message 2, P(pq) must be equal to P(p) because in the
protocol tree wherever p is true q must be true as well. Hence, P(qjp) should equal one

(the full weight)

4.4 Determining Edge Probability

In the algorithm for calculating vahdity rule weight, there are two kinds of probabilities:

path p and edge . A path ility refers to the p ility under
which the transaction follows this particular path. Because each path is actually composed
of many edges, to calculate path probability, we need to know the probability under

which the transaction would follow each edge on the path. The probability associated

with each edge is called edge ility that the ility for the

to follow the corresponding edge.

62

For edge probability, we have the following observation. The sum of edge
probabilities of all outgoing edges for any node in the protocol tree equals one. This is
because all outgoing edges of a node represent all the possibilities that the transaction
may chose to execute immediately after this node. Since all outgoing edges represent all
execution possibilities which is the whole space, the sum of probabilities of all outgoing

edges equals one which is the probability for the whole space.

Then, a question arises: how to ine the edge i i with
each edge in the protocol tree? Is there any well-formatted formula that can decide how
probable it is for the transaction to choose a particular edge out of all outgoing edges of-a
node?

Before we try to auswer the above questions, first look at the following instance
based on Figure 4.1 Node 05A contains one incoming edge and two outgoing edges. The
incoming edge is ‘S->B: order request’ that means selling organization sent order request
to buying organization. So, n'ode 05A corresponds to the state the transaction reached
after selling organization sent the OBI order request to buying organization. After this
state, there are two possibilities the transaction may choose: the order request would be
either rejected or accepted. Should the order request be rejected, the message ‘buying
organization sent order request rejection to selling organization’ would take place. This
corresponds to one of the two outgoing edges for node 05A. On the other hand, should the
order request be accepted, buying organization would send the OBI order which is based

on the order request to selling organization. That is, the message ‘buying organization

63

sent OBI order to selling organization’ would take place in this case and it corresponds to
the other outgoing edge of node 05A. Therefore, to determine the probabilities for the two
outgoing edges, we need to know the probabilities for rejection and acceptance of the
OBI order request.

However, it is not straightforward to determine in advance the probability of either
rejection or acceptance. Take the rejection for example. The OBI order request could be
rejected by buying organization due to many reasons. The requisitioner might have
ordered something that he/she was not authorized to order. Buying organization might not
have enough funding to make the purchase. A manager might decide that some items

were not necessary. For a particular ion, it is hard, if not i ible, to d

in advance whether some rejecting reasons would occur or not, and what combination of
rejecting reasons it would be.

Therefore, we choose to d ine edge ility by i That is, we

determine edge probability by analyzing historical data. (It is generally agreed that past
experiences are good indications of future. For instance, when admitting new students,
university officials usually try to predict prospective students’ future performances based
on their past academic records.)

The method that we use to analyze experience data is described in the following.
Suppose we consider edge E that is an outgoing edge for node N in the protocol tree. Let
No be the number of outgoing messages associated with E that have occurred in the past

and Ni the number of incoming messages associated with N that have occurred in the past.

Suppose past messages can be reasonably recorded and stored into a message inventory,
i.c., numbers of past messages are traceable. Consequently, both No and Ni arc available.
Then we have:

edge probability of E=No / Ni

That is, we calculate edge ility of E by igating the ion that No

takes away from Ni.
Let us return to the previous example. For node 05A in Figure 4.1, the incoming

message is ‘S->B: order request’ that represents the order request sent from selling

to buying ization. If buying ization keeps a record of the number
of all order requests that it has received during the past, then the value of Ni for node 05A
is available. We assume it is 300. The outgoing message ‘B->S: crder request rejection’
represents the order request rejection sent from buying organization to selling
organization. If selling organization keeps a record of the number of all order request
rejections that it has received in the past, then the value of No for edge 05SA—06A is
available as well. We assume it is 36. Finally, we would be able to determine edge
probability for edge 05SA—06A:
edge probability of edge 05A—06A =No / Ni =36 /300 =0.12

That is, according to records, the order request rejection rate is 12 out of 100. This

is a good indication of how probable a future order request might be rejected. Hence, we

can set the probability of edge 0SA—06A to 0.12.

65

4.5 Determining the Acceptance Criterion

With the validity weight, we are able to evaluate how reliable a rule is. According to the
algorithm of rule weight assignment, different rules may have different weights. Clearly,
we should not allow players to apply those rules whose weights are very low because the
low weight of a rule indicates that the rule is not so reliable. Then, a practical issue arises:
how to determine the acceptance criterion for rule weights. The acceptance criterion is a
threshold value such that all rules whose weights are equal or above the criterion are
viewed as acceptable and all rules whose weights are below the criterion are viewed as
unacceptable. Players are allowed to apply only acceptable rules when trying to prove
propositions via applications of rules.

We determine the acceptance eriterion for rule weights based mainly on practical

and i If the i are in favor of a large rule set
containing many acceptable rules available for players to use, the acceptance criterion can
be set to a smaller value so that more rules can pass the criterion. Note that the smaller the
criterion is, the lower reliability a passing rule may have. Otherwise, if a small rule set
containing highly reliable rules is expected, the acceptance criterion should be set to a
large value. An extreme case is that the acceptance criterion is set to the value of one,
which is equal to the full weight. In this case, only rules with full weights (fully reliable

rules) are allowed to be applied by players. On the other hand, practical experiences

should also be given considerations. When ining the criterion, we pay

66

attention to the acceptable rules in a practical sense. After we set a criterion and acquire a
set of acceptable rules, we may choose some rules out of the set and analyze how
acceptable the rules indeed are in reality. If we find some rules that are acceptable based
on the criterion are actually unacceptable according to our practical experiences, e.g.,
contradicting to some common sense, then we have to increase the acceptance criterion in
order to fix the problem.

Finally, the value of acceptance criterion must not be less than 0.5. The argument
is as follows. As introduced in section 4.3, the weight of rule p—q is actually the
conditional probability P(qlp). Tn order for the rule p—>q to be valid, there must be
P(qlp)>=P(—qjp). Also, base on the probability theory, we have P(q|p)+P(~qlp)=1. Then,

1=P(qlp+P(-qlp)<=P(qlp)*P(qlp)=2P(qp}

Therefore, 1<=2P(qlp). That is, P(q[p)>=0.5, which indicates that the weight of any
valid rule must not be less than 0.5. Consequently, the acceptance criterion for rules must

not be less than 0.5.

4.6 An Example Application of Weak Rules

The introduction of weak rules does not change the decision generation algorithm, but the
applications of weak rules do affect players’ abilities of proving propositions. Now, with
choices of weak rules, players are more likely to be able to prove benefit set propositions.

The following example shows how weak rules can be applied in the dispute handling to

67

assist players. The example is based on OBI protocol. For convenient reference, we list

again the OBI protocol tree and benefit sets in Figure 4.4 and in Table 4.1, respectively.

Legend
R: requisitioner

B: buying organization

S: selling organization

P: payment authority
(P1=>P2: C): P1sent Cto P2
() agoodnode

@ avadnode

— 3tomicCity—sensitive action

B->S; order : ~———~— non-atomicity-sensitive action
reques: jection Boss: ;)
@9/ OBl order O an end-state preserving atomicity
)

; ¢} arendestat not preserving atomicity

P->8: credit

rejection
—

S->B: order
cancellation

Figure 4.4: OBI Protocol Tree (Simplified Version)

68

Table 4.1: Players’ Benefit Sets of OBI Protocol

buying_organization:
B1: buying_organization sent OBI_order to selling_organization
B2: payment_authority did not send credit_confirmation to selling_organization
B3: selling_organization did not send order_cancellation to buying_organization
B4: selling_organization did not send good delivery to buying_organization

BS: selling_organization sent bad delivery to buying_organization

selling_organization:
S1: buying_organization did not send OBL order to selling_organization
$2: payment_authority did not send credit_confirmation to selling_organization,

S3: selling_¢ ization sent order ion to buying_¢

$4: selling_organization sent good delivery to buying_organization

S5: selling_organization did not send bad delivery to buying_organization

payment_authority:
P1: buying_organization did not send OBI_order to selling_organization
P2: payment_authority sent credit_confirmation to selling_organization
P3: selling_organization did not send order_cancellation to buying_organization
P4: selling_organization did not send good delivery to buying_organization

P5: selling_organization sent bad delivery to buying_organization

69

Suppose the transaction execution reaches node 16E, when the good delivery of
products has been sent from selling organization to buying organization. At this point, the
execution is fine and the transaction state preserves atomicity. However, the dishonest
buying organization tries to gain some extra benefits from selling organization. Hence,
buying organization does not return the receipt back to selling organization and initiates a

dispute by contacting the arbiter system. The is “selling

sent a bad delivery of products to us’ and the request is ‘selling organization provide us
some compensations’. After software arbiter receives these, it sends benefit sets to the
corresponding players and asks for proofs.

For selling organization, it cannot prove any proposition in its benefit set directly.
Thus, selling organization has to explore using rules. At the current state, the-message

credit confirmation has been sent from payment authority to selling organization.

C ly, selling ization keeps credit ion and should have no problem
to show it. Therefore, selling organization contacts rule base server for some rules that
can make use of credit confirmation. Selling organization finds the rule ‘payment

authority sent credit ion to selling ization’ — ‘selling ization sent

good delivery to buying organization’ particularly helpful. This rule, as discussed before,
is a weak rule and its validity weight is 0.525. Suppose the acceptance criterion for weak
rules used in the architecture is 0.51. Then, the rule is acceptable and allowed to be
applied by players. Since selling organization has no problem to prove the proposition

‘payment authority sent credit confirmation to selling organization® by showing the

evidence, i.e., credit confirmation, selling organization is able to apply successfully the
rule to prove benefit set proposition S4. Once S4 is proved, selling organization can
further prove S5 by applying another rule S4 — S5, which is a full-weight rule.

For payment authority, its benefit sct proposition P2, i.c., ‘payment authority sent

credit ion to selling ization’, has been proved by selling organization.

Then payment authority can use the rule P2 — P3 to prove P3 with no difficulty because
the rule has a full weight, meaning it is fully reliable.

For buying organization, it is unable to prove B1 dircctly. But buying organization
contacts rule base server and finds the full-weight rule ‘payment authority sent credit
confirmation to selling organization’ — B1. Since the proposition ‘payment authority sent
credit confirmation to selling organization’ has been proved, biying organization can
apply the rule successfully. Hence, B1 is proved. There is no need for buying
organization to prove B3’ because B3 is the same as P3, which has been proved.
Nevertheless, buying organization cannot prove B4 and BS either directly or by applying
rules. For instance, the rule ‘payment authority sent credit confirmation to selling
organization’ —> B5 has a partial weight of merely 0.175 based on the rule weight
calculation algorithm, which is below the acceptance criterion.

From above, the proved benefit set propositions are B1, B3, S4, S5, P2, and P3.
After the proof results are sent back from players, software arbiter executes algorithm 2.2
for decision generation. Based on the proof results, software arbiter is able to construct

the complete transaction state which is represented by letter E in the protocol tree. Since

71

this state preserves atomicity, software arbiter asks the dispute initiator, i.c., buying

to prove the i ing to line 4 of algorithm 2.2. Because the
complaint claims a bad delivery and what buying organization has received is actually a
good delivery, buying organization must be unable to prove the complaint. Then,
according to line 7 of algorithm 2.2, no action is taken. That is, buying organization’s
request is refused.

The above example illustrates the significance of weak rules. In the general case, if
weak rules are not used then this dispute is very hard to handle. This is because buying
organization does not return the receipt and selling organization therefore has trouble to
prove the benefit set proposition ‘selling organization sent good delivery to buying
organization’. A critica! step during the dispute handling is the application of the weak

wle ‘payment authority sent credit ion to selling ization’ — ‘selling

organization sent good delivery to buying organization’. which helps selling organization

out of the dilemma.

4.7 Inconsistency of Rules

As discussed previously, players can use rules to prove propositions. Suppose a player
wants to apply the rule p — q to prove proposition g. If he can prove p directly, then he is
done, otherwise, he can try to apply another rule k — p to prove p. Suppose he can prove

k directly. Then p is proved. Consequently, players now can apply the rule p — q

successfully to prove q. In this case, two successful applications of rulesk — pandp = q

enable players to prove ition q by proving ition k directly. The appli

of k — p and p — q can be conveniently represented as k — p — q. If the player still
cannot prove k directly, we can repeat the above inference. (Note: a player can prove a
proposition directly implies that the proposition s true.) Tn the following we formalize the

idea in the general case.

Definition 4.1: Let T be a protocol tree and N be a node in T. A sequence pl —p2 — p3
= ... = p(n-1) = pn is called a proof sequence at node N if :

1. For all i, 1 <=i <= n-1, rule pi — p(i+1) exists, and its validity weight is above the
accepiance criteion:

2. pl is true at node N.

Definition 4.2: 4 set of rules is inconsistent if there exist two sequences of rules in the set,
81 =pl »p2—>p3.. >pandS2 =rl -»r2 >r3... >r, and anode N in the protocol
tree, such that

1. Both S1 and S2 are proof sequences at node N;

2. p and r are conflicting, meaning they either are negation forms of each other, or claim

the of « icting message

73

If a set of rules is i i then icti itions may be produced.
That is, by applying rules in a rule set that is inconsistent, conflicting results, e.g., positive
and negative forms of the same proposition, can be implied simultaneously.

More specifically, because different players may apply different proof sequences
of rules to prove their propositions, if the rule base is inconsistent it is possible that two
players will end up with proving conflicting propositions, e.g., p and —p, by applying
different proof sequences. This may render it impossible for the arbiter to reach a decision

because p and —p cannot be both true simultancously in reality.

4.7.1 Consistency Theorem

For a set of full-weight ruies, we have the following theorem.

Theorem 4.1: 4 set of rules irg only full-weight rules by the heuristic

search algorithm is consistent.

Proof:

According to the definition of i i rule sets, if we can show that there do not exist

two sequences with conflicting endings, this set of rules cannot be inconsistent. Let pl -
p2 > p3 .. > pandrl = 2 > 13 .. — r be arbitrary two sequences. We prove the

following two cases:

Case 1: it is impossible that p and r are negation forms of each other.

Case 2: it is impossible that p claims occurrence of message ml, r claims occurrence of
message m2, yet ml and m2 are contradicting messages.

Proof for Case 1:

Assume the contrary. Let p and r be negation forms of each other. Thus we have r = —p.

So, we need to show pl — p2 — p3 ... &> pand rl - 12 - 13 ... - —p cannot exist

simultancously.

From the heuristic search method, a positive proposition can only be implied by
another positive proposition, while a negative proposition can be implied by another
proposition that is either positive or negative.

Therefore, we need o show Lha.t the following two sets of sequences cannot exist
for a given set of full-weight rules (for convenience, we use a single character to represent
a positive proposition and use symbol — foliowed by a single character to represent a
negative proposition):

Set 1: some negative proposition —k1 is used to prove —p by applying a sequence of rules
where only negative propositions are involved.

pl>p2->p3..—=p

—kl = —k2 - —k3 .. > —p
Set 2: some positive proposition ml is used to prove —p by applying a sequence of rules

where both positive and negative propositions are involved.

75

pl—op2—>p3..>p
ml > m2—>m3 ... > mk—-nl = -n2..->-p
First of all, it is true that if pl — p2 and p2 — p3 then pl — p3. The full-weight
rule pl — p2 means that each path containing p1 should also contain p2 and p2 is ahead
of pl. A similarly result exists for p2 — p3. Then it can be derived that each path
containing p1 should also contain p3 and p3 should be ahead of p1, i.e., pl — p3.
Next, we can show that pl — p2 iff =p2 — —pl. In fact, this is guaranteed by the
message sequence maxim.
Suppose sequences in set 1 were possible. Using the above two facts, we have:
pl>p2->p3..op=>pl->p
-kl > —k2->-k3 .. >-p=>p—>..k3->k2->kl =>p—>kl
Next,
pl>p—>kl
=pl >kl
= =kl = —pl
That is, each path containing p1 should also contain k1. Hence, p1 and —k1 cannot

be true simultaneously. Therefore, the following cannot exist si

plop2—>pl..—>p

—kl —>—k2 > —k3 ... > —p

76

This icts our ition. The ition is hence incorrect and the

sequences in set 1 cannot exist simultanecusly.
Similarly, we can show that the sequences in set 2 cannot exist simultaneously,
cither. Again, assume the sequences existed:
ml ->m2—>m3..>mk—>-nl >-n2..—--p=-nl>-n2..--p
—nl=>-n2..»>—-p=>p-..n2->nl=>p-nl
And,
pl=>p2—->p3..op=>plo>p=pl>p—->nl=pl>nl=-nl >-pl
So,
ml - m2—>m3 .. > mk—>-nl->=n2.. > -p
=ml > m2->m3 .. >mk—-nl
=ml - mk - —nl
= ml - mk > -al - —pl
The rule mk — —n1 means mk and nl are not coexistent. They are not on the same
path. The rule m1 — mk guarantees that each path containing m1 also contains mk, hence
ml and nl are not on the same path. (Otherwise, suppose m1 and nl were on the same
path, then mk should also be on that path. This produces the conclusion that mk and nl
are on the same path, which is a contradiction to the rule mk — —nl.) There should be
ml — —nl. Therefore,

ml — mk — =nl - —pl

77

= ml - —-nl - —pl
Obviously, it is true that ml — —nl = nl — —ml because ml and nl are
contradicting and occurrence of one implies non-occurrence of the other. Therefore,
ml — —nl - —=pl
=pl—>nl > -ml
= pl - -ml
=ml - —pl
That is, pl and ml are not coexistent, meaning that they are not on the same path.
Hence, pl and ml cannot be true simultaneously for an execution. Therefore, the

following cannot exist y.

pl>p2—D03..5>p
ml ->m2—->m3..—>mk—-nl >-n2..--p

This is, however, a to our ion. Thus, the ion' is

incorrect and the set 2 of sequences is impossible.

From above, we have shown that pl - p2 —p3 .. > pandrl »>12 > 13 .. >
—p cannot exist simultaneously. Thus, case 1 is proved.
P r Case 2:
Suppose the sequence pair pl —> p2 — p3 ... &> pand rl — r2 — r3 ... - r existed where
p and r claim contradicting messages. Because p and r claim contradicting messages,

there must be such a rule r = —p. Then, from the sequences rl —> 12 =13 ... > rand r -

78

—p we getrl =12 =13 ... - 1 — —p. Thus, two sequences pl — p2 — p3 ... - p and

rl - 12 = 13 .. > —p exist simultaneously. However, this result contradicts the

of case 1. The iction arises because of the false supposition. Hence,
case 2 is proved.
‘We have proved both case 1 and case 2, therefore, the consistency theorem is

proved.

4.7.2 An Example of Inconsistency Problem

¢ , theorem 4.1 i only for rule sets composed of full-

weight rules. If rules in a rule set are not all of full weight, the rule set may be
inconsistent. This is because the properties and facts we have applied when proving
theorem 4.1 are not available for rules that do not have full weights. For example, in the
proof of theorem 4.1, arguments for sequences in Set | of Case 1 are invalid for partial-
weight rules. That is, if the weight of pl — kI is not full, it is not safe to draw the
conclusion that p1 and —k1 cannot be true simultaneously. The partial weight of p1 — k1
means that it is probable for some path containing p1 not to contain k1. Consequently, it
is probable that both pl and —kl are true simultaneously. Then, sequences in Set 1 may

exist si , which yield

results, i.c., p and —p.
To make it clearer, we give an example of inconsistency problem. Consider the

OBI protocol tree in Figure 4.5.

S->R:
catalog rejectior

-
request rejection

P->S: cred
rejection

it

00522

Legend
R: requisitioner

B: buying organization

S: selling organization

P: payment authority
(P1=>P2: C): P1sentCto P2

(O asgoodnode
@ abadnode

atomicity-sensitive action

non-atomicity-sensitive action
O an end-state preserving atomicity

7} an end-state not prescrving atomicity

Figure 4.5: An Example of Inconsistent Rules

80

We are interested in three propositions here:
pl: payment authority sent credit confirmation to selling organization.
p2: selling organization sent good delivery to buying organization.
p3: selling organization sent bad delivery to buying organization.

And consider the rule set containing two rules: { pl — p2, p3 = —p2 }. The rule
3 — —p2 is a full-weight rule because p3 and p2 claim conflicting messages, i.¢., good
delivery and bad delivery. The rule pl — p2, nevertheless, has a partial weight only,
because it does not comply with the message sequence maxim. As shown before, we
calculate the weight of pl - p2 to be 0.525 by applying the algorithm of assigning rule
weights. Suppose in the arbiter system the acceptance criterion for rule weights is 0.51,
which means any rule baving a weight no less than 0.51 is allowed to be applied by
players. So, pl — p2 1s an acceptable rule.

Because p2 is a proposition in selling organization’s benefit set and —p2 is a
proposition in buying organization’s benefit set, it is possible that selling organization
uses pl — p2 to prove p2 and buying organization uses p3 — —p2 to prove —p2. If the
transaction is currently at node 15D, then the message of credit confirmation should be

held by selling organization and the bad delivery of products should be held by buying

Then, selling organization is able to apply successfully the rule pl — p2 to

prove p2 and buying ization is able to apply

the rule p3 —> —p2 to

prove —p2 as well. Consequently, a conflict arises because p2 and —p2 cannot be true

81

simultaneously in reality. This renders it impossible for the arbiter to make a decision
because the arbiter is confused about whether p2 is true or not.

Therefore, it is clear that the rule set { pl — p2 , p3 — —p2 } is inconsistent and
conflicts may be produced. The inconsistency comes from the fact that pl — p2 is not a
full-weight rule. As a result, there is a probability for some player, e.g., selling
organization in the example, to use the rule successfully to prove p2 even when p2 is

actually false which is proved by the full-weight rule p3 — —p2 in the above.

4.8 Handling Inconsistency Problem in the Rule Base

‘We have shown a rule set containing partial-weight rules may be inconsistent. Because
rules stored on rule base server are generated according to the heuristic search algorithm,
there are many partial-weight rules in the rule base. Therefore, the rule base is not
guaranteed to be a consistent rule set. As a result, different rules applied by various
players may produce conflicts. This problem is serious because conflicts, such as proving
p and —p at the same time, make it impossible for the arbiter to reach a decision. Thus, a

solution needs to be found to solve the inconsistency problem in the rule base.

4.8.1 The Algorithm for Handling Inconsistency Problem

In order to strengthen players abilities to prove propositions, we have to include some

partial-weight rules in the rule base. So, we are not able to avoid the inconsistency

82

problem in advance by eliminating all inconsistent partial rules. Hence, conflicts may be
produced. Conflicts, however, can be detected and removed. That is, if the arbiter is able
to remove conflicts in a proper way once they are identified, no harm would be done to
the arbiter system. Therefore, what we need is to design a strategy of identifying and
removing conflicts.

Conflicts are results of applying partial-weight rules. Consider the previous
example again. Two rules pl — p2 and p3 — —p2 produce a conflict because pl = p2 is
a partial-weight rule. The event that p2 is false while pl is true may happen due to the
partial-weight of pl — p2 that does not guarantee p2 to be true when pl is true. When
that event happens, pl -> p2 should not be applied. In fact, p3 — —p2 confirms the
happening of that eveat since p3 - --p2 is a full-weight ruie and it gnarantees that p2 is
false. Thus, the application of p3 — —p2 should prevent the simultaneous application of
pl — p2. That is, p3 - —p2 should remove pl — p2. As a result, the conflict, i.e., p2 and
—p2 are true simultancously, can be eliminated.

A point worth noting here is concerned with “current true propositions”. When
applying rules, we estimate the true or false value of a proposition by the true value of
another single proposition. For instance, when pl — p2 is applied, we estimate the true or
false value of p2 based on the true value of pl. However, it is clear that when the two
rules pl —> p2 and p3 > —p2 are applied, true propositions in the current situation are pl

and p3, instead of the single proposition p1. Hence, it is more accurate to estimate either

p2 or —p2 based on both propositions of pl and p3. However, we observe that
considering all true propositions will incur a high runtime overhead. Because complete
current true propositions can only be known at runtime, the proposition estimation has to
be done dynamically. That is, rule weight assignments have to be done when players are
proving propositions because only at this time can complete current true propositions be

learned. Also, rule weights have 1o be and because the

set of current true propositions changes whenever a new proposition is proved. Thus we

consider the antecedent only of a rule for the ion of its
This makes it possible for us to obtain the rule weights based only on the protocol tree
during the initialization phase of rule base server.

Our approach to handle the inconsistency problem is termed Wound & Remove.
The basic idea is that a rule with a higher weight should wound and remove another rule
with a lower weight when the applications of two rules result in conflicts. This is because
we believe a rule with a higher weight is more reliable.

We must generalize the Wound & Remove approach to deal with rule proof
sequences because players may apply more than a single rule to prove propositions. As
introduced in section 4.7, a proof sequence is a series of rules where the beginning

proposition is used to prove the ending ition through many applications of different

rules, e.g., pl = p2 — ... - pk. Particularly, a single rule pl — p2 is the simplest form
of a proof sequence. The weight of a proof sequence is the multiplication result of rule

weights of all rules contained in the sequence. For instance, the weight of pl — p2 —> p3

equals to the multiplication result of p1—p2’s rule weight and p2—>p3’s rule weight. The

sequence weight reflects the ility of implication from the beginning proposition to
the ending proposition. Then, the Wound & Remove approach can be generalized to deal
with proof sequences: a proof sequence with a higher sequence weight should wound and

remove another proof sequence with a lower sequence weight when the two proof

generate flicting ending
Then, we are ready to present the algorithm of handling inconsistency problem in
the rule base by adopting the Wound & Remove approach. Basically, we maintain for

each player a record set where the following i ion is stored: all iti the

player has proven, the proof sequences applied to prove those propositions, and the

corresponding proof sequence weights. If a proposition is proved directly then the applied

proof sequence is deemed as empty and the corresponding proof sequence weight is set to
value of 1, i.c., the full weight.

In order to handle inconsistencies, we think the Wound & Remove algorithm
should perform the following functions:

1. When a player tries to submit a proof sequence in order to prove some proposition,
the algorithm should check each proposition in the sequence against all propositions
that have been proved and logged in the record sets associated with players. To check
a proposition p, the algorithm should try to find whether or not there are some
propositions conflicting to p in the record sets. If yes, the algorithm should determine

the proposition with the highest sequence weight and remove all its conflicting

85

~

propositions. Note that all propositions in the submitted proof sequence should be
checked because by submitting a proof sequence the player is attempting to prove all
propositions in the sequence. For example, if the submitted sequence is pl — p2 —
p3 — p4 — p5, all propositions of pl, p2, p3, p4, and p5 should be checked although

the player intends to prove the ending proposition ps.

. If accepting all propositions in the proof sequence does not produce any conflict, the

algorithm should accept the proof sequence and all its propositions by recording
proper information in the player’s record set. For the beginning proposition, the
related proof sequence is recorded as empty and the sequence weight is value 1. For
other propositions, record information in the following way. Find the sub-sequence
for each proposition, and then recoid the proposition, the sub-sequence, and the sub-
sequence weight. The sub-sequence for a proposition p, which is not the beginning
proposition of the original sequence, is the portion from the beginning proposition to
proposition p in the original sequence. For instance, if the original sequence is pl —

p2—>p3->. . p4 — 5, then the sub-sequence for p3 is the portion pl = p2 = p3.

. If some propositions in the submitted proof sequence cause conflicts, do not perform

any wounding until all propositions in the sequence have been checked. If the check

results show that all propositions in the sequence have survived the wound and

remove comparisons, accept the i equence. Record all i their
b- and the sub-seqy weights in the record set of the
player who has itted the sequence. Cancel all icting propositions by

removing the confli itions, the cor ing proof and the

sequence weights from the record sets. Cancel all affected proposition entries as well

(those ition entries whose ponding proof contain canceled

propositions), by removing the affected proposition entries from the record sets. Note
that it is proposition entries, instead of propositions, that should be removed in this
case. This is because it is possible that one proposition may have multiple record set
entries, each of which is associated with a unique proof sequence. Those entries,
whose corresponding proof sequences do not contain any canceled proposition, are

not affected by the proposition cancellations and hence should be preserved.

£

If some propositions or proposition entries are canceled, notify players whose record
sets contain those propositions or entries, and request thera to reprove those canceled
items if necessary.

5. If the check results show tat at least one proposition in the submitted proof sequence
should be wounded and removed due to conflicts, the current submitted sequence
should be canceled. Notify the player who has submitted the proof sequence that the
sequence is not acceptable because of conflicts.

The following is the algorithm for handling inconsistencies. For each player we maintain

a record set, where each record has three attributes: proposition name, the related proof

sequence used to prove the proposition, and the proof sequence weight. ConflictFlag(p) is

a flag denoting if there is some it icting to p. C lag(p) is another

flag denoting if proposition p has a higher sequence weight than its conflicting

proposition.

Algorithm 4.3: The Wound and Remove Algorithm

1

receive the proof sequence pl —> p2 = —> pk submitted by player A;

2 // Check conflicts for every proposition in the sequence

3 for each proposition p in the proof sequence

4

5

find all propositions in players’ record sets that conflict to p;
chose proposition q that has the highest sequence weight
of all found propositions;
if there is such a proposition q
compare sequence weight of p with that of q;
if sequence weight of p > sequencs weight of ¢
CompareFlag(p) = WIN;
else
CompareFlag(p) = LOSE;
end if
ConflictFlag(p) = TRUE;
else

ConflictFlag(p) = FALSE;

16

17

8

9

22

23

24

32

33

34

end if
end for
// Based on the check results, perform either accepting or wounding
if ConflictFlag(p) is FALSE for every proposition p in the proof sequence
accept the proof sequence;
for each proposition p in the proof sequence
if p is the beginning proposition of the proof sequence
record the following information in the record set of player A:
@50
else
record the following information in the record set of player A:
(p, the sub-sequence for p, the sub-sequence weight);
end if
end for
else
find all propositions in the proof sequence whose ConflictFlags are TRUE;
if CompareFlag(p) is WIN for every proposition p that has been found
accept the proof sequence;
for each proposition pp in the proof sequence

if pp i the beginning proposition of the proof sequence

37
38
39
40
41
42

43

45
46
47
48
49
50
51
52
53
54

record the following information in the record set of player A:
(p, "5 1)
else

record the following information in the record set of player A:

(pp, the sub-seq for pp, the sub-seq weight);
end if
end for
for each proposition pw in the submitted proof sequence
whose ConflictFlag is TRUE
for each proposition pe in the record sets that conflicts to pw
for each proposition entry of pc in the recotd sets
cancel the proposition entry;
notify the player whose record set contains the canceled entry;
remove the following information from the record set:
(pc, the proof sequence, the sequence weight);
end for
for each proposition entry whose proof sequence contains pc
cancel the proposition entry;
notify the player whose record set contains the canceled entry;

remove the following information from the record set:

90

55 (the canceled proposition, the proof sequence,
the sequence weight);
56 end for
57 end for
58 end for
59 else
60 cancel the submitted proof sequence;
61 notify player A that the submitted proof sequence is unacceptable;
62 end if
63 endif

4.8.2 Some Examples of Applying the Wounding Algorithm

Here we present some scenarios to show how the wounding algorithm works to handle

inconsistency problem in the rule base. Suppose there are three players in the system:

playerl, player2, and player3. And below is an inconsistent rule set:

{p1-""p2; p2>'p3; p3—>'p4; p5""p3; p5—>'p4;

P6—>'-p2; p6—>'—p3; p6—>'—p7; =p7>"*—p3;}

According to the rule set, there is no conflict among pl, p2, p3, p4, p5 and p7.

Proposition p6, nevertheless, conflicts to any of p2, p3 and p7. Table 4.2 can be used to

store necessary information of the record sets required by the algorithm:

Table 4.2: Structure of Players’ Record Sets

Proposition Name | Proof Sequence Sequence Weight

Playerl

Player2

Player3

Scenario 1:
Player] submits the following proof sequence: p1—>*’p2—'p3—'p4. Because the current
record sets are all empty, there is no conflict according to line3~17 of the algorithm. That
is, the ConflictFlag(p) for each proposition of pl, p2, p3 and p4 is FALSE. Then,
1line19~30 of the algorithm'are executed and the information is updated to Table 4.3.
Next, player3 tries to submit the proof sequence —p7—"*—p3. When the algorithm
is executed to evaluate this sequence, one negation form of —p3, i.., p3, is found in
player1’s record set. So ConflictFlag(—p3) is TRUE. Also, that p3 is the proposition with
the highest sequence weight of 0.7 in all record sets. Hence, the weight is compared with
the currently submitted —p3’s sequence weight, i.e., 0.8, according to line7. The
comparison result is that the CompareFlag(—p3) is assigned WIN, meaning proposition

—p3 should wound and remove proposition p3 in the record sets.

92

Table 4.3: Recording Player]’s Sequence — Scenario 1

Proposition Name | Proof Sequence Sequence Weight
Playerl pl — 1

p2 plop2 0.7

p3 pl—-p2->p3 0.7

p4 pl-p2->p3->pd 0.7
Player2
Player3

Table 4.4: Recording Player3's Seq S 1

Proposition Name | Proof Sequence Sequence Weight
Playerl pl ‘ & T

2 pl—p2 07

p3 pl-p2-p3 0.7

p4 Plop2op3opd 0.7
Player2
Player3 —p7 1

—p3 —pT—>-p3 08

93

Then, lines20~29 are ignored since ConflictFlag(~p3) is TRUE. Instead,
lines31~62 are executed. Because —p3 is the only proposition whose ConflictFlag is
TRUE (—p7 does not cause any conflict) and CompareFlag(—p3) is WIN, the submitted
sequence by player3 is accepted and lines33~42 are executed to record information. The
updated record sets are listed in Table 4.4.

It is clear that there is a conflict in the table because both p3 and —p3 are there.
However, this conflict can be removed by the execution of lines43~58. First of all,
remove those proposition entries that are conflicting to the winner proposition —p3, based

on lines45~50. Hence, all entries of p3 are removed from the record sets as shown in

Table 4.5:
Table 4.5: Removing Entries of p3 — Scenario 1
Proposition Name | Proof Sequence Sequence Weight
Playerl pl € 1
P2 plop2 07
p4 Pl-p2-p3—-pd 0.7
Player2
Player3 —-p7 hE i
—p3 —p7->-p3 038

Secondly, remove those entries that are affected by the cancellation of p3. That is,

all the entries whose corresponding proof sequences contain p3 are also canceled based

on linesS1~56. In Table 4.5, entry of p4 is removed because its corresponding proof

sequence contains p3, which has already been canceled during the last step. Therefore,

Table 4.6 lists the final record sets:

Table 4.6: Final Record Sets of Scenario 1

Proposition Name | Proof Sequence Sequence Weight
Playerl pl R 1
P2 plop2 0.7
Player2
Player3 —p7 = 1
-p3 =p7->-p3 08
Because all and affected entries have been
wounded and removed, the are all
Scenario 2:

Player] submits the proof sequence: pl—*"p2—'p3—'pd. As in scenario 1, the results

are shown in Table 4.7:

95

Table 4.7: Recording Player1’s Sequence — Scenario 2

Proposition Name | Proof Sequence Sequence Weight
Playerl pl nE 1

p2 plop2 07

[pl>p2—>p3 0.7

p4 plop2-p3—pd 0.7
Player2
Player3

Table 4.8: Recording Player2’s Sequence — Scenario 2

Proposition Name | Proof Sequence Sequence Weight
Playerl pl O 1

P2 plop2 0.7

p3 pl-p2->p3 0.7

p4 pl—p2->p3—pd 0.7
Player2 pS = 1

p3 p5—p3 09
Player3

96

Different from scenario 1, however, player2 submits the sequence pS—"’p3
immediately after playerl’s submission and before player3 tries to submit the proof
sequence —p7—-"*p3. Because neither of p5 and p3 conflicts to any proposition in the
current record sets, player2’s sequence does not cause any conflict. Hence, the sequence
is accepted and propositions are added into player2’s record set. Table 4.8 is the updated
information.

Then, player3’s sequence ﬁp7ﬁ>°‘—vp3 is submitted. Because the current record
sets contain p3 already, ConflictFlag(—p3) is TRUE. In fact, there are two entries of
proposition p3 in the record sets and the one with the highest sequence weight is in
player2’s record set. Therefore, the sequence weight (0.9) of the entry of p3 in player2’s
record set is compared with that (0.8) of the currently submitted proposition —p3. The
result is 0.9 > 0.8 and hencé proposition —p3 is wounded and removed. That is,
CompareFlag(—p3) is LOSE at linell. According to lineS9~62 of the algorithm, the
currently submitted proof sequence by player3 is unacceptable and therefore canceled.
Consequently, the arbiter sends a message to player3 notifying that the proof sequence is
not acceptable.

Notice that the final result of this scenario is quite different from that of scenario 1.
The difference results from the p3 entry in player2’s record set, which has a higher

sequence weight than the proposition —p3 submitted by player3.

97

Scenario 3:
First, player] submits pl—"p2—>'p3—>'pd. Since this is the first sequence, it is accepted.

And Table 4.9 lists the resulting record sets:

Table 4.9: Recording Player!’s Sequence — Scenario 3

Proposition Name | Proof Sequence Sequence Weight
Playerl P1 o 1

2 plop2 0.7

p3 pl->p2-p3 0.7

pd pl—>p2->p3->pd 0.7
Player2
Player3

Next, player2 submits two sequences: pS—°’p3 and p5—'pd. Because

in the i ie., p3, p4, and p5, do not conflict to any

proposition in the record sets, both sequences are accepted. As a result, the corresponding

information is recorded in Table 4.10:

98

Table 4.10: Recording Player2’s Seq i03
P Name | Proof Seq Seq Weight
Playerl pl ZC 1
p2 pl-p2 0.7
p3 pl->p2-p3 0.7
p4 pl-p2->p3—pd 0.7
Player2 pS v, 1
P pS—p3 09
s g 1
P4 pS—p4 1
Player3

Finally, player3 tries to submit p6—'—p3. Proposition —p3 causes conflicts

because there are already two entries of p3 in the log. Based on line4~16,

CompareFlag(—p3) is WIN in that the sequence weight for —p3 is 1 which is higher than

any sequence weight of p3 in the log. In addition, p6 conflicts to both p2 and p3 in the

record sets. CompareFlag(p6) is WIN because p6 is proved directly and has the full

weight of 1. Therefore, the submitted sequence is accepted and added into Table 4.11:

Table 4.11: Recording Player3’s Sequence — Scenario 3

Proposition Name | Proof Sequence Sequence Weight
Playerl p! =t 1
2 pl-p2 0.7
P3 pl-p2-p3 0.7
p4 plop2->p3-pd 0.7
Player2 pS % 1
p3 p5—p3 0.9
s o 1
p4) pS—pd 1
Player3 p6 e 1
-p3 p6—>-p3 1

Then, all conflicting propositions and those affected proposition entries are
removed to maintain the integrity of the log table. According to line45~50 of the
algorithm, all conflicting proposition entries are removed. Particularly, the entry of p2 in
player]’s record set and the two entries of p3 in both record sets of player] and player2

are removed, as shown in Table 4.12:

Table 4.12: Removing Entries of p2 and p3 — Scenario 3

Proposition Name | Proof Sequence Sequence Weight
Playerl pl o 1

p4 pl->p2—->p3—pd 0.7
Player2 b5 o 1

pS ‘ 1

p4 pS—p4 1
Player3 pé ©e 1

—-p3 p6—>-p3 1

Table 4.13: Final Record Sets of Scenario 3

Proposition Name | Proof Sequence Sequence Weight
Playerl pl e 1
Player2 p5 = 1

ps ¥ 1

p4 pS—pd 1
Player3 p6 L 1

-p3 p6—>—p3 1

101

Also, all the entries whose corresponding proof sequences contain p2 and/or p3,
i.c., affected proposition entries, are removed based on line51~56. So, the entry of p4 in
player]’s record set is removed since its corresponding proof sequence contains p2 and
p3. The resulting Table 4.13 is therefore non-conflicting, i.e., there is no conflict left
among proved propositions.

An interesting point of this example is that there is still an entry of p4 in player2’s
record set finally. This entry is not removed because it does not incur any problem,
although another entry of p4 has been removed from player]’s record set as an affected
proposition entry, i.c., its proof sequence contains p2 and p3. Therefore, it is clear that
some entries of an affected. proposition may be left in the record sets. Entries of affected
propositions are different from entries of conflicting propositions because the latter

should be removed completely.

An OBI Scenario:

‘We have discussed in previous sections that the weak rule ‘payment authority sent credit

to selling ization’ — ‘selling ization sent good delivery to buying
organization’ is useful for players to prove propositions. However, since it is a weak rule,
some player may misuse it. That is, some player may try to use the rule to prove the
proposition ‘selling organization sent good delivery to buying organization’ even when
the proposition is false. In this case, the misuse of this weak rule may cause conflicts. In

this scenario, we give such an example and show how the wounding algorithm can

102

remove the conflict and help the arbiter reach a correct decision. The corresponding OBI
protocol tree is in Figure 4.4 and the benefit sets are in Table 4.1.

After the transaction reaches node 10C, selling organization makes a bad delivery

to buying ization. C buying ization initiates a dispute. The
complaint is ‘selling organization made a bad delivery to us’ and the request is ‘selling
organization provide an exchange for good goods’. Then, software arbiter requests
players to prove their benefit set propositions.

First, selling organization submits the rule ‘payment authority sent credit

to selling i "—"*%34. Selling organization chooses this rule

because it can prove ‘payment authority sent credit confirmation to selling organization’
by showing the credit confirmation it holds. This is a weak cule, but its weight 0.525 is
above the acceptance criterion, which is supposed to be 0.51 in the sysiem. So, the proof-
is accepted. Let p be ‘payment authority sent credit confirmation to selling organization’,
then the corresponding information is added into Table 4.14. After this, selling
organization submits another proof sequence p—>°**S4—'S5. The sequence has a weight
of 0.525, which is acceptable, too. Hence, the proof is also accepted and the resulting

record sets are listed in Table 4.14:

103

Table 4.14: ing Selling Organization’s

Proposition Name | Proof Sequence Sequence Weight
Selling Organization | p oz 1

sS4 PS4 0525

P L 1

S4 p—S4 0.525

S5 p—>84585 0.525
Buying Organization
Payment Authority

Next, buying organization proves B3 directly by showing the bad product received

from selling organization. Once BS is proved. buying organization further submits the

following three full-weight rules: B5—'B1, B5->'B3, and BS—'B4. Consequently, the

record sets are updated as shown in Table 4.15.

At this point, the arbiter finds there are some conflicts in the record sets. That is,

BS conflicts to both S4 and S5. The arbiter therefore executes the Wound & Remove

algorithm to eliminate conflicts. From Table 4.15, B5 has a sequence weight of 1, while

both S4 and S5 have the sequence weight of 0.525. Therefore, the sequence weight of BS

is higher than that of either S4 or S5. Hence, B5 wounds and removes both S4 and S5.

104

Table 4.15: ding Buying Organization’s

Proposition Name | Proof Sequence Sequence Weight
Selling Organization | p & I

S4 p—>S4 0.525

P o 1

sS4 p—o>S4 0.525

S5 P—>S4—S5 0525
Buying Organization | B5 b 1

Bl B5-BI1 1

B3 B5-B3 1

B4 B5->B4 1
Payment Authority i

In players’ record sets, all entries of S4 and S5 and all affected entries whose
corresponding proof sequences contain either S4 or S5, are removed. The arbiter sends a
notification to selling organization, asking it to re-prove its benefit set propositions.
Selling organization, however, is not able to do the re-proof. The updated information is

shown in Table 4.16:

105

Table 4.16: Removing Entries of S4 and S5

Proposition Name | Proof Sequence Sequence Weight
Selling Organization | p D 1

P e 1
Buying Organization | BS o 1

B1 B5-Bl1 1

B3 B5—-B3 1

B4 B5—B4 1
Payment Authority

Finally, for payment authority, its benefit set proposition P2 is just the proposition
p that has been proved by selling organization. So. there is no need for payment authority
to prove P2 again. Also, because P3 equals B3. P4 equals B4, and P5 equals BS, there is
no need to prove P3, P4, and P5, either.

Therefore, the accepted proof results are: B, B3, B4, BS, P2, P3, P4, and P5.
Based on these proved propositions, software arbiter executes the decision generation
algorithm. Software arbiter finds no problem to construct the complete transaction state
represented by letter D, which does not preserve atomicity. Therefore, software arbiter

honors buying organization’s request because the request reinstalls atomicity.

106

As illustrated by the OBI scenario above, the Wound & Remove algorithm plays a
significant role in handling disputes. Although selling organization misuses a weak rule
and causes conflicts, the algorithm helps software arbiter detect the problem and resolve

the i i among iti The ing algorithm is indispensable for our

arbiter architecture.

107

Chapter 5

A Prototype Implementation

In this section, we discuss some issues related to the implementation of a prototype
system that is currently under development. The prototype implementation shows how the

proposed architecture can be realized based on the client-server model

5.1 The 3-Tier Client-server Model

The reference model of 3-tier client-server systems is composed of a set of clients, an
application server and a data server [29]. Clients send service requests to the application
server, which consists of application programs providing core business logic. 1f some
requests demand accessing persistent data information, the application server then

communicates with a data server, where permanent data reside.

108

Clients are usually Graphical User Interfaces (GUI), through which inputs and
outputs can be conveniently presented. That is, system users submit their requests and
view execution results through the client layer of the model. The application server is a

repository of application programs, each of which deals with a particular category of

client requests by ing its inherent ication logic. If application programs are
modeled and developed according to the object-oriented paradigm, the application server
can be viewed as an object request broker. The requested services and functions are
implemented by various service objects. Each object encapsulates its own application
logic and has methods that can be invoked by other objects to provide various service
functions. The application server, however, does not contain permanent data that could
survive program execution boundaries. Hence, a data server is required to store long-term
data items. The most notable form of a data server is probably a database system, which

renders the access and maintenance of persistent data possible.

5.2 The Prototype Implementation

On the basis of the above reference model, our prototype system implements the

| into their

by mapping
tiers in the 3-tier client-server model. Clients of the arbiter architecture are grouped into

the client tier of the model. Software arbiter, rule base server and protocol tree server lie

109

in the tier of application server. The back-end database system storing persistent
information such as the protocol tree and benefit sets represents the tier of data server.
Clients of the arbiter prototype interact with the application server, e.g., software
arbiter and rule base server, requesting services related to dispute handling. All services
provided by the application server are encapsulated into service objects. That is, various
arbitration strategies and algorithms, such as the heuristic search method and the decision
generation algorithm, are realized as different kinds of application logic provided by
service objects. Each object has a set of methods that can be invoked by either clients or
other objects. Each method of the object corresponds to a particular service required by
the normal functioning of the prototype. For instance, the findRules(char proposition)

method of RuleBaseServer object provides the function of searching rules for the given

passed as the of the methed. Therefore, method invocations on
service objects enable the arbiter architecture to handle disputes by providing related
functions.

Whenever necessary, the service objects on the application server may in turn
interact with the data server, i.e., the database system that stores the protocol tree
structure and benefit sets, to retrieve requested information. As an example,
ProtocolTreeServer object may access the back-end database and retrieve the benefit set
of a particular player identified by playerID through its retrieveBenefitSet(int playerID)

method.

110

5.3 Some Implementation Details

In our implementation, clients of the arbiter system are coded as Java applets. The
interactions between clients and the application server are achieved through Java Remote
Method Invocation (RMI) [11]. That is, the application server is developed as an RMI
remote object server and client applets communicate with the server via mechanisms
provided by Java RMI. If necessary. the server objects on the application server may

access the data server, i.e., the database system, through JDBC [10].

me to Our Online Arbit
for E-Commerce Disput

®
s |

Prove Benef fia.
e 22 sk for
AGAProtoco L 14 emeprpansyons.

Generste Protosol Tree

Construct Benenfit Sets

Generateerotocolependenth

Figure 5.1: A Snap Shot from the Implementation

111

The client applets are downloaded through common web browsers only when
users need them. Figure 5.1 shows a Java applet interface, through which players are able
to initiate a dispute. Therefore, there is no need to install software packages at the client
side, thus simplifying system distribution and improving mobility of computing. In
addition, maintenance of server objects becomes easy since it can be achieved on the
server transparently with regard to clients. Java applets enable efficient information
transmission between clients and the server because recreating or reloading entire web
pages can be avoided.

Arbitration services are encapsulated as server objects whose methods can be
invoked through RMI. So, the server is a repository of objects. We have applied the

Factory Pattern introduced in [8] to organize these objects. That is, among all objects,

there ex

5 a main object, ie., er, in charge of the: creation of
and/or access to other objects, such as SoftwarcArbiter, RuleBaseServer, and
Protocol TreeServer, which provide corresponding functions of SoftwareArbiter, Rule
Base Server, and Protocol Tree Server, respectively (coding details in Appendix A).
‘When some arbitration functions are desired, the client applets first locate the main
object, i.c., the abstract factory, through the RMI naming service. Then, various other
objects can be reached via this abstract factory object. If some services require the access
to the back-end database system, they can do that through the interface provided by JDBC

data access APIs.

112

e —
prrSpE——— (@eed Tava Phs-In vernion 122 o later)

Frove penent-set|
S Defining Message Sequences:

1 foRoweng, pease defie ONE secuence ot a e

Define Basic Sets] E 2318

Define Protoco |

P — ErTTr—

Construct Beil

Figure 5.2: An Example of Client Applets

For example, look at the client applet in Figure 5.2, which is used to define
message sequences during the protocol tree building process. When the button “Add the
Sequence to Database™ is clicked (see codes in Appendix A), the applet first looks up the
RMI registry and finds the main server object — BrokerServer, whose reference is then
stored. Next, by calling the getProtocolTreeServer() method of BrokerServer, the applet

can also acquire the reference to ProtocolTreeServer object. Finally, by invoking the

String method of ProtocolTreeServer object, the

113

applet finishes inserting the message sequence into back-end database. That is, the

following java statement obj.getP ITreeServer().i
provides the service of inserting a message sequence into database.

Similarly, if the button “Generate Protocol Tree” is clicked, the related Java
statement obj.getProtocolTreeServer().generateTree() should be executed, which can
build the protocol tree on the server.

Because our prototype implementation is developed entirely based on Java-related

it is truly platfc The system is also web-enabled and thus can
provide dispute handling services conveniently to EC players in diverse geographical
areas. This is helpful since EC players are usually located in different areas and conduct
business activities only through electronic means. The object-oriented approach adopted
in the implementation also makes it easy to upgrade the system using other high-

performance alternatives, e.g., the Common Object Request Broker Architecture

(CORBA) [25].

114

Chapter 6

Conclusion and Future Work

We believe the topic of handling EC disputes is important and deserves yet more
investigation. Due to the nature of EC, we think it is a promising alternative to handling
EC disputes off-court and with the assistance of computer systems. Hence, in this thesis,
‘we propose an architecture for handling EC disputes. We also describe a prototype

to show the

We first introduce some preliminaries that are the basis of our architecture. This
includes EC transactions and their important property — atomicity, transaction protocols
and their tree representations, benefit sets, and the software and human arbiters. We then
propose a three-tier architecture, which consists of clients, application server and back-
end database server. We show how various components can function in an orchestrated

manner under such an architecture.

115

Because proving benefit set propositions i critical for the dispute handling process,
we show how the notion of rules can be applied to assist players in proving propositions.
Our focus is on rules being practically acceptable, rather than being theoretically sound,
which we believe are the more realistic choices in applications. Since all these rules are
not equally reliable, a measure for their reliability is essential. To this end, we introduce
the concept of rule weight that reflects the reliability degree of a rule. The algorithm for
rule weight calculation renders evaluating various rules possible. The application of weak
rules, i.¢., rules that do not have full weights, makes it possible to prove propositions that
would be impossible should only full-weight rules be used. A price to be paid for such a
flexibility is that some conflicts may arise. Therefore, we design the wound & remove
algorithm to cope with conflicts.

In order to illustrate the arbiter aichitecture, we develop a prototype

I ion for the i The i ion is based on 3-tier client-server
model and applies Java-related techniques. Functions of the arbiter architecture are
realized as web services that can be easily accessed by EC players. Though the
implementation is still under development, it has already shown that our architecture is
feasible.

Some work deserves further study. We indicate a few in the following.

116

Extending the EC Protocol Model

‘We choose to use a simple EC protocol model introduced in section 3.3.1 because it is
easier and clearer to present our basic ideas with such a model. However, practical
disputes can be very complicated. For instance, some disputes, e.g., “the merchant did not
send good goods to us before Jan. 15, may involve temporal aspects. Others may be

about “%15 discount for club members”, “free shipment within Canada”, etc. These types

of disputes are interesting to explore. Even within the simple model used, some complex

such as digital si and i usually seen in EC protocols, have
not been considered. Moreover, the “good” and “bad” properties as high-level
abstractions hide many details of real wor‘ld situations. For instance, the bad delivery can
have many forms, such as insufficient quantity, missing parts, abnormal product operation,
etc. In order to handle real world disputes, these details should be considered. It is
interesting to extend the currently adopted protocol model to a more complex and

practical one. Consequently, new issues may arise and more work is needed.

Different Scheme of Rule Weight Calculation

In this thesis, rule search and rule weight calculation are accomplished during the
initialization stage of rule base server. We adopt this strategy mainly in consideration of
system performance. Applying the predefined rules and rule weights (static calculation)

can provide quick response time to players. However, this is not the most accurate since

117

proving propositions is a dynamic process where the set of proved propositions changes

frequently. So far as accuracy is ing rule weights i iies,

determining rule weights based on the “current” set of true propositions, is also an
alternative worth more research. More work is needed to tackle the problem of
performance degrading. Also, it may be interesting to design a hybrid mechanism that can

take advantage of both static and dynamic calculations.

Practical Limitations of the Architecture

This thesis proposes an archi that provides i dispute handling.
Although it has been shown that the -architecture is feasible with the presence of a
prototype implementation, there exist some practical limitations, which may impede the
immediate adoption of this system in reality.

First of all, legal issues are hard to deal with. Ir’s clear that dispute resolutions
should be backed by a legal framework that serves as an authority in making decisions
such as whether the electronic evidence used is legally acceptable or not, whether the
dispute handling process is followed faithfully and correctly or not, etc. This legal
framework should be valid, regardless of jurisdictions in which EC participants may
reside. However, at the current stage, it is not practical to find a unified, cross-border

legal framework which may be entitled to apply our dispute handling system with

118

appropriate legal effects. Therefore, currently, the proposed architecture may serve better

as an estimation system helping EC partici| predict possible ions for disputes.

Next, human factors may impede the use of our system for dispute resolution. One
important principle of our dispute handling architecture is the notion of benefit set which
assumes that players would not refuse to prove propositions as long as the proving does
not compromise his/her interests. Yet, in reality, players may not be cooperative in
proving benefit set propositions even if the proving does not harm them. They may have
excuses such as ‘We are too busy to do the proof’. More research efforts are needed to

address those problems.

119

Bibliography

[

2]

3

4

[5

Nabil R. Adam, Oktay Dogramaci, Aryya Gangopadhyay and Yelena Yesha.
“Electronic Commerce: Technical, Business, and Legal Issues”. Prentice Hall,
Upper Saddle River, NJ, 1999.

N. R. Adam and Y. Yesha, et al. “Electronic Commerce and Digital Libraries:
towards a Digital Agora”. ACM Computing Surveys, 28(4), December 1996.
American Arbitration Association. Available at URL: http://www.adr.org.

N. Asokan, E. Herrweghen and M. Steiner. “Towards a Framework for Handling
Disputes in Payment Systems”. Proceedings of 3rd USENIX Workshop on
Electronic Commerce, 1998.

M. Bellare, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G.
Tsudik, E. Van Herreweghen, and M. Waidner. “Design, Implementation and
Deployment of iKP — A Secure Account-based Electronic Payment System”.
Technical Report 3137, IBM Zurich Laboratory, 1999. Available at URL:

http://www.zurich.ibm.com/publications.

120

(6] B. Cox, J. D. Tygar, and M. Sirbu. “NetBill Security and Transaction Protocol”.
Proceedings of the First USENIX Workshop in Electronic Commerce, pp 77-88,
July 1995.

7.

Forrester Research. Available at URL: http://www.forrester.com.
[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. “Design Patterns:
Elements of Reusable Object-Oriented Software”. Addison-Wesley, 1995.

[9

J. Gary and A. Reuter. “Tr i P i Techni and Concepts”.

Morgan Kaufmann, San Mateo, CA, 1994.

[10] JAVA JDBC 2.0 API Documentation. Sun Microsystems, Inc., available at URL:
‘http://java.sun.com/j2se/1.3/docs/guide/jdbe/index.html, 2000.

[11] Java Remote Method Invocation Specification, Version 1.3. Sun Microsystems, Inc.,
http://java. sml.con"ijSd'\ -3/docs/guide/rmi/spec/rmiTOC.html, 2000.

[12] R. Kalkota and A. B. Whinston. “Frontiers of Electronic Commerce”. Addison-
Wesley, 1996.

[13] S. Kimbrough and R. Lee. “Formal Aspects of Electronic Commerce: Research
Issues and Challenges™. International Journal of Electronic Commerce, Vol. 1, No. 4,
pp 11-30, 1997.

[14] Gerard Lacoste, Birgit Pfitzmann, Michael Steiner, and Michael Waidner (Eds.).

“SEMPER — Secure Electronic Marketplace for Europe”. Lecture Notes in

Computer Science (LNCS), Volume 1854, Springer-Verlag, Berlin Heidelberg, 2000.

121

[15] L. Loeb. “Secure ic Ti i ion and Technical .

Artech House Publishers, 1998.

[16] N. Lynch and M. Merritt and W. Weihl and A. Fekete. “Atomic Transactions™.
Morgan Kaufmann, San Mateo, CA, 1994.

[17] Paul May. “The Business of Ecommerce: from corporate strategy to technology”.
Cambridge University Press, New York, New York, 2000.

[18] Online Dispute Resolution. Available at URL: http://www.odrnews.com/whatis.htm.

[19] Indrakshi Ray and Indrajit Ray. “An Optimistic Fair Exchange E-commerce

Protocol with d Dispute ion”. P i of EC-Web 2000,

London, UK, Sep. 4-6, Lecture Notes in Computer Science 1875, Springer-Verlag,
2000.

[20] Release V2.1. Open Buying ou the Internet (OBI) Technical Specifications. The
Open Buying on the Internet (OBI) Consortium, http://www.openbuy.org, 1999.

[21] H. Schuldt, A. Popovici and H. J. Schek. “Execution Guarantees in Electronic

Commerce”. P i of the 8th ional p on i of
Models and Languages for Data and Objects: Transactions and Database Dynamics
(TDD’99), pp 193-202, Schloss Dagstuhl, Germany, September 1999. Lecture Notes
in Computer Science (LNCS), Volume 1773, Springer-Verlag.

[22] Lei Tang. “A Set of Protocols for Micropayments in Distributed Systems”.
Proceedings of the First USENIX Workshop on Electronic Commerce, New York,

New York, July 1995.

122

[23] Jian Tang and Jari jalai “A for E. T
Protocols that Support Atomicity Based Dispute Handling”. Proceedings of the 3rd

1C on T ications and ic Commerce, Nov.

2000.

[24] Jian Tang, Ada Waichee Fu. “Secure E-commerce Transactions, Modeling and
Some System Support Aspects”. Proceedings of the 9th IFIP 2.6 Working
Conference on Database Semantics, pp 61-75, Hong Kong, April 2001.

[25] The Common Object Request Broker: Architecture and Specification, Revision 2.4.2.

Object Management Group, http:/www.omg.org, 2001.

[26] J. D. Tygar. “Atomicity in El ic Commerce”, Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing, pages 8-26, Philadelphia,

PA, May 1996. ACM Press.

[27] J. D. Tygar. “Atomicity versus A ity: Distri T o0 El
Commerce”. Proceedings of the 24th VLDB Conference, 1998.

[28] J. Veijalai “Tn ions in Mobile ic Commerce”. Proceedings of the

8th ional Workshop on Foundations of Models and Languages for Data and
Objects: Transactions and Database Dynamics (TDD’99), pp 208-229. Schloss
Dagstuhl, Germany, September 1999. Lecture Notes in Computer Science (LNCS),
Volume 1773, Springer-Verlag.

[29] Gottfried Vossen, Gerhard Weikum, and Jim Gray (Editor). “Fundamentals of

Transactional Information Systems: Theory, Algorithms, and Practice of

123

Concurrency Control and Recovery”. San Francisco. CA, Morgan Kaufmann

Publishers, 2001.

124

Appendix A

Implementation Code Examples

The following code defines the remote interface of the main object, ic.,

BrokerServer, of our arbiter server.

package serobj;
import java.rmi.Remote;

import java.rmi. RemoteException;

public interface BrokerServer extends Remote {

Se Arbi; Arbiter() throws

// Get an instance of Software Arbiter Object

ver ver() throws

// Get an instance of Rule Base Server Object

ProtocolTreeServer getProtocolTreeServer() throws RemoteException;

125

// Get an instance of Protocol Tree Server Object

Through the remote methods of biter(), ver(), and
getProtocolTreeServer(), clients are able to get instances of server objects and then
invoke the desired functions provided by various methods of those objects.

Here is the remote object implementation that implements the main object, i.e.,

BrokerServer.

package serobj;

import java.rmi.Naming;

import java.rmi RemoteException;

import java.rmi.server. UnicastRemoteObject;

import java.rmi.RMISecurityManager;

public class BrokerServerImp extends UnicastRemoteObject

implements BrokerServer {

public verimp() throws ion {
super();

/

public So Arbi Arbiter() throws R ion {
S iterlmp s ArbiterObj = new iterTmp();

126

return softwareArbiterObj;

1
public ve I ver() throws ion {
I verlmp Obj = new RuleB verlmp();
return ruleBaseServerObj;
/

public ProtocolTreeServer getProtocolTreeServer() throws RemoteException {
ProtocolTreeServerlmp ProtocolTreeServerObj = new ProtocolTreeServerlmp();
return ProtocolTreeServerObj;

}

public static void main(String args[]) {
// Create and install a security manager

if (System.getSecurityManager() == null) {

System. ityMe (new RMI it) 0);

try {
Class. forName(* org.gjt.mm.mysql. Driver). newlInstance();
// Load the database driver since some server objects
// may need to access the backend database
System.out.printin(“Database driver loaded...”);

y {

127

BrokerServerImp serobj = new BrokerServerlmp();
// Bind this object instance to the “Service-Broker-Server”
// The RMI registry name of our main
// server object is: Service-Broker-Server
Naming.rebind(“Service-Broker-Server”, serobj);
/i After this RMI registry name binding, Service-Broker-Server
1/ can be located by clients later
System.out.printin(*'E-Commerce Arbitration Server in Service!”);

} catch (Exception e) {
System.out.printin(“BrokerServerlmp err: " + e.getMessage());
e.printStackTrace();

}

J catch (Exception E) {
System.err.println(“Unable to load database driver...");

e.printStackTrace();

128

In the following, we present some representative APIs defined in the remote
interfaces of core server objects, namely, SoftwareArbiter, RuleBaseServer, and

ProtocolTreeServer.

public interface SoftwareArbiter extends Remote {

T er() throws
// Get an instance of Rule Base Server Object
ProtocolTreeServer getProtocolTreeServer() throws RemoteException;
// Get an instance of Protocol Tree Server Object
String submitComplaint(String complaint, int transID) throws RemoteException;
// Submit the complaint statement and save it in database
String submitRequest(String request, int transID) throws RemoteException;
// Submit the request statement and save it in database
String submitDirect(String[] proofResults, int playerID) throws RemoteException;
// Submit the proof results for benefit set propositions of a player
// The proof results are done directly without applications of rules
String submitRule(String[] proofSequences, int playerID) throws RemoteException;
// Submit the proof results for benefit set propositions of a player

// The proof results are done via applications of rules

String wound] String[] throws

// The wound and remove algorithm used to handle conflicts

129

String insertRecordSetEntry(String[] entry, int playerID) throws RemoteException;
// Insert a record set entry into the log

String[] checkConflicts() throws RemoteException;

// Check whether or not there are some conflicts in the record sets

String removeRecordSetEntry(int entryID, int playerID) throws RemoteException;
// Remove the record set entry identified by entryID

String generateDecision(String[] throws

// The decision generation algorithm

String notifyH i i i ion) throws

// Notify human arbiter asking for assistance
String login(String user, String pwd) throws RemoteException;
// Check login information: for a user:

}

public interface RuleBaseServer extends Remote {

fty Arbit biter() throws
// Get an instance of Software Arbiter Object
Protocol TreeServer getProtocolTreeServer() throws RemoteException;
// Get an instance of Protocol Tree Server Object

String[] ition) throws

// Find applicable rules for a proposition

String isti h() throws

130

// Heuristic search algorithm which generates rules

double calculateEdgePro(String[] edge) throws RemoteException;
// Calculate the edge probability of an edge in the protocol tree
double calculatePathPro(String[] path) throws RemoteException;
// Calculate the path probability of a path in the protocol tree

double Veight(String[] rule) throws

// Rule weight calculation algorithm
String login(String user, String pwd) throws RemoteException;
// Check login information for a user

}

public interface ProtocolTreeServer extends Remote |

Softy it bi

() throws

// Get an instance of Software Arbiter Object

¢ ver() throws
// Get an instance of Rule Base Server Object

String String sql) throws

// Submit a SQL statement to the database for execution

// The SQL statement cannot be a select type

String insertPlayerSet(String player) throws RemoteException;
// Insert a player into the player set table

String insertCe i) throws

131

// Insert an item into the content set table

String insertP tring attril throws R

// Insert an attribute into the property set table
String insertMessages(String message) throws RemoteException;
// Insert a message into the message table

String i i throws

// Insert a sequence into the message sequence table
String[] selectPlayerSet() throws RemoteException;
// Retrieve the player set

String[] selectC) throws

// Retrieve the content set

String[] select?) throws

// Retrieve the property set
String generateTree() throws RemoteException;

// Genearte the protocol tree structure and save it in database

String 0 throws R

// Construct players’ benefit sets based on the protocol tree
String]] retrieveBenefitSet(int playerD) throws RemoteException;
// Retrieve a player’s benefit set

String login(String user, String pwd) throws RemoteException;

// Check login information for a user

132

The following codes are executed to store the sequence input by users into the

corresponding database table.

String sequence=jTextField_Sequence.getText();

y {

jTextArea_Status.append(“Contacting the server...");

ver obj = (BrokerServer)Naming.lookup(*//” + getCodeBase().getHost() +
“/Service-Broker-Server”);
// Look up the RMI registry and find the main server object: Service-Broker-Server

message = obj.getProtocolTreeServer().insertMessageSequences(sequence);

// Invoke the i i method of
// ProtocolTreeServer object which can be located through BrokerServer
jTextArea_Status.append(message);
// Display in the status bar the message of execution results returned from the server
} catch (Exception ex) {
jTextArea_Status.append(“\nService-Broker-Server access exception:
+ ex.getMessage());
ex.printStackTrace();

// Handle exceptions

133

As listed previ . the method i tring of

ProtocolTreeServer object inserts the message sequence that is passed as the parameter
into the corresponding database table, therefore, the Java statement in the above code

obj.getProtocol TreeServer().i can insert the message

sequence submitted by users into database.

Since the i tring method needs to access the

database, codes in the method apply JDBC APIs.

public String i ing {
String message;

message="";

my {

Connection Conn = DriverManager.getConnection(

Puser & d=eclll”);

// Create the database i ding to JDBC driver requi
// In our implementation, the database is MySql, version 3.21
System.out.println(*“Connection established!”);

ry{

Statement Stmt = Conn.createStatement();

134

String sqlStatement=“insert into Sequences values (' + sequence +)";
// Format the SQL statement, which does the insertion of sequence
Stmt.executeQuery(sqlStatement);
// Execute the SQL statement in the database
Stmt.close();
Conn.close();
return message+"Sequence insertion OK...”;
} catch (SQLException E) {
J/ Handle exceptions
System.out.printin(“SQLException: " + E.getMessage());
System.out printin(“SQLState: " + E.getSQLState());
System.out.printin(“VendorError: " + E.getErrorCode());
/
} catch (SQLException E) {
// Handle exceptions
System.out printin(“SQLException: ” + E.getMessage());
System.out printin(“SQLState: " + E.getSQLState());
System.out.println(“VendorError: " + E.getErrorCode());
}

return message+"“Sequence insertion failed!”;

135

« b 1.: P al

; H-q' F "d[‘Hl T

; \H#ﬁ!" '|('|l”'l— .
L o e i

	0001_Cover
	0002_Inside Cover
	0004_Blank Page
	0005_Blank Page
	0006_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents v
	0012_Table of Contents vi
	0013_List of Tables
	0014_List of Tables viii
	0015_List of Figures
	0016_Chapter 1 - Page 1
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Chapter 2 - Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Chapter 3 - Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Chapter 4 - Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Chapter 5 - Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Chapter 6 - Page 115
	0131_Page 116
	0132_Page 117
	0133_Page 118
	0134_Page 119
	0135_Bibliography
	0136_Page 121
	0137_Page 122
	0138_Page 123
	0139_Page 124
	0140_Appendix A
	0141_Page 126
	0142_Page 127
	0143_Page 128
	0144_Page 129
	0145_Page 130
	0146_Page 131
	0147_Page 132
	0148_Page 133
	0149_Page 134
	0150_Page 135
	0151_Blank Page
	0152_Blank Page
	0153_Inside Back Cover
	0154_Back Cover

