

1.1 National library
of Canada

Acquisitions and
Bibliographic Services

~~~:e~~~~~SJ~I
Canada

Bibliotheque nationale
duCanada

Acquisisitonset
services bibliographiques

395. rue Wellington
Ottawa ON K1A ON4
Canada

Your file VoirereffJrence
ISBN:D-612-8964~5

Our tile NoIrer6(elfmce
ISBN:Q-612-8964~5

The author has granted a non­
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this dissertation.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
dissertation.

Canada

L'auteur a accorde une licence non
exclusive permettant a la
Bibliolheque nationale du Canada de
reproduire, pr~ter, distribuer ou
vendre des copies de cette these sous
la forme de microfichelfilm, de
reproduction sur papier au sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege celte these.
Ni la these ni des extraits subslantiels
de celle-ci ne doivent ~tre imprimes
ou aturement reproduits sans son
autorisation.

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de ce manuscrit.

Bien que ces formula ires
aient indus dans la pagination,
iI n'y aura aucun contenu manquant.



Architectural Aspects and a Prototype System

for Handling Disputes in Electronic Commerce Transactions

by

©YlmingLci

A thesis submitted to the

School of Graduate Studies

ill partial fulfillment of the requirements

for the degree of

MastcrofSclence

Department of Computer Science

Memorial University of Newfoundland

August 2002

81. John's Newfoundland



Abstract

In this the~is, we study some issues relating 10 the architecture for dispute-handling in

electronic commerce (EC). We first propose a model for the dispute-handling architecture

in EC transactions and describe how various components work together in a cooperative

manner. We Ihcn focus our attention on a critical component, rule processing, that

underlies the effective functioning of lbe entire system. We discuss how the notion of

rules can be applied to assist players in proving propositions. Since all rules are not

equally reliable, we introduce the concept of rule weight that reflects the reliability of a

rule, and the algorithm for rule weight calculation. We show thai the application of weak

rules, i.e., rules that do not have full weights, makes it more probable to prove

propositions. We indicate the problems resulting from the application of weak rules, and

propose methods 10 cope with them. Finally, to study the practical feasibility of our

architecture, we present an implementation strategy and apply it to a prototype system.

The implementation follows the 3-tier client-server structure of our architectural model,

and applies Java-related techniques.



Acknowledgments

I would like to thank Dr. Jian Tang, my supervisor, for his patience and support over the

past three years and for continuing as my supervisor during his sabbatical leave. Without

his guidance, thiS thesis would not have taken this final fonn.

Of course, I am grateful to my parents for their unconditional love. Their understanding

and encouragement helped me pass through the toughest period during this thesis research.

Finally, I would like 10 express my gratitude to many other members in the Department of

Computer Science for their kind assistance. For instance, computer system administrators

provided an excellent computing environment for this research. Also, Mrs. Jane Foltz

helped proofread an earlier draft of this thesis and corrected some typographical and

grammatical errors.

iii



Contents

Abstract

Acknowledgments

I Introduction

1.1 Electronic Commerce Concepts .

1.2 EC Disputes .

1.3 Contributions of the Thesis .

2 Background

2.1 EC Transactions .

2.2 Atomicity and Transaction States .

2.3 EC Transaction Protocols .

2.4 EC Protocol Trees .

2.5 Supports for Dispute Handling .

2.5.1 Dispute Initialion .

iii

10

II

13

16

16



2.5.2 Investigation.

2.5.3 Decision Making.

2.6 Using Rules to Prove Propositions .

2.7 Related Work.

3 An Architecture for EC Disputes

3. I Client Applications .

3.2 Software Arbiter and Human Arbiter .

3.3 Protocol Tree SelVer .

3.3.1 A Model for EC Protocols.

3.3.2 A Protocol Tree Building Algorithm.

3.4 Rule BaseSelVer .

3.5 Dispute Handling in the Architecture .

4 Rule Processing: A Framework and Methodologies

4.1 Weak rules .

4.2 Searching Heuristically for Rules .

4.3 Rule Validity Weight and Its Calculation .

4.4 Delennining Edge Probability.

4.5 DClcnnining the Acceptance Criterion .

4.6 An Example Applicalion of Weak Rules.

4.7 Inconsistency of Rules.

17

21

23

24

27

27

28

29

30

31

39

40

4.
44

47

52

62

66

67

72



4.7.1 ConsislencyTheorem . 74

4.7.2 An Example of Inconsistency Problem . 79

4.8 Handling Inconsistency Problem in the Rule Base . 82

4.8.1 The Algorithm for Handling Inconsistency Problem. . 82

4.8.2 Some Examples of Applying the Wounding Algorithm . 91

5 A Prototype Implementation 108

5.1 The3-TierClient-setverModel . 108

5.2 The Prototype Implementation . 109

5.3 Some Implementation Details . III

6 Conclusion and Future Work 115

Bibliography 120

A Implementation Code Examples 125

vi



List of Tables

1.1 Revenues for US eCommerce Goods, t 999 ~ 2003 .

2.1 Players' Benefit Sets of OBI Protocol .

4.1 Players' Benefit Sets o[OBI Protocol.

4.2 Structure of Players' Record Sets .

4.3 Recording Playerl's Sequence-Scenario 1 .

4.4 Recording Player)'s Sequence-Scenario I .

4.5 Removing Entries of p3 - Scenario I .

4.6 Final Record Sets of Scenario I .

4.7 Recording Player I 's Sequence - Scenario 2 ..

4.8 Recording Playcr2's Scquencc- Scenario 2 .

4.9 Recording Player! 's Sequence - Scenario 3 .

4.10 Recording PlayerZ's Sequence-Scenario 3 .

vii

19

69

92

93

93

94

95

96

96

98

99



4.11 Recording Played's Sequence-Scenario 3 .

4.12 Removing Entriesofp2 and p3-Scenario 3 .

4. t3 Final Record Sets of Scenario 3 .

4.14 Recording Selling Organization's Sequences.

4.1 S Recording Buying Organization's Sequences .

4.16 Removing Entries ofS4 and SS .

viii

100

101

101

104

105

106



List of Figures

2.1 Players and Message Exchanges in OBI Protocol .

2.2 OBI Protocol Tree (Simplified Version) .

3.1 The Architecture of an EC Dispute Arbiter .

4.1 An Example of Weak Rules .

4.2 Rule Search Examples .

4.3 An Example of Rule Weight Calculation .

4.4 OBI Protocol Tree (Simplified Version) .

4.5 An Examplcoflnconsislcm Rules.

5.1 A Snap Shot from the Implementation.

5,2 An Example ofCHent Applets .

ix

12

14

"
46

51

56

68

80

III

113



Chapter 1

Introduction

1.1 Electronic Commerce Concepts

The word Electronic Commerce (EC) refers to business activities involving consumers,

manufacturers, service providers, and intermediaries, accomplished through the use of

computer networks (2,12). There arc other definitions in the literature. In general,

however, the leon EC implies thai the business processes are conducted electronically via

networks. It is generally accepted that there are two major categories of EC applications:

Business-To-Consumer (B2C) and Business-To-Business (828) [17]. B2e is a term that

stresses the direction of delivery: 82e commerce is supposedly something done by

businesses to consumers. This domain is founded on intense customer focus. Example

areas include web-based retail, Internet auctions, etc. On the other hand, B2B involves

exchanging products and services between business organizations. Typical fonns of B2B



arc procurement and inventory exchange, both of which encourage intercompany trading

across entire industries.

Ee's goal is to improve efficiency and effectiveness of the trading process by

applying advanced information technologies, such as distributed computing, process

automation, etc. lnformation technologies have developed very rapidly in recent years. As

a result, EC has experienced an explosion. For instance, the increasing popularity of the

Internet, a ubiquitous digital infrastructure, provides an extremely attractive new medium

for EC. In the past, businesses could conduct activities with each other over closed

proprietary networks, a process usually referred to as Electronic Data Interchange (EOI).

EOI never gained much popularity because of its high communication costs, and

requirements for specialized networks [I]. Yel the exponential growth of Ihe Jntemci has

changed this paradigm. Business activities can now be conducted efficienlly among

various participants on a global scale at low costs. The resulting explosive growth and

continuing expansion of EC may be illustrated by the figures in table 1.1 from (7).

Table 1.\: Revenues for US eCommerce Goods, 1999 - 2003

Calegory 1999 2003 (expected)

B2B USD 43 bn usn Urn

B2C USD Sbn U$D 108 bn



The significance of EC is manifold. First, EC increases the speed and efficiency of

business transactions and processes, thus improving customer services. Because EC is

achieved with the help of computers, numerous tasks can be accomplished by software

programs automatically and efficiently. Next, EC enhances competition and thus reduces

prices for goods and services. For example, there arc many travel agencies on the Internet

and hence a consumer is able to compare their flight prices very easily. In such an

environmem, unnecessary high prices arc almost impossible. Also, EC creates new

services and businesses, which can lead to job creation and economic growth. Moreover,

EC enables enterprises to conduct business with distant partners in the same way as they

do with neighboring partners. This is bccause computer networks can provide highly

efficient communications that make distance "disappear".

1.2 Ee Disputes

Electronic commerce has a very promising future as an efficient business type. However,

it docs pose some problems that were rarely considered to be important before. For

example, when a consumer is trying to purchase a book from the Internet, how docs she

know if the online book store is a true retailing business? Who can guarantee that the

book will be delivered after the consumer has paid? Even if the book is delivered

successfully to the consumer, it may he that the book is not what the consumer has

ordered. These kinds of anomalies are almost non-existent in traditional face-to-face



business activities. Yet for EC, questions like above become serious because differcnt

parties may know and contact each other only through electronic messages. In traditional

fonns of business, people tend to make deals only with those trusted parties. While in EC,

it is hard to guarantee the trustworthiness of various participants. For instance, it is vcry

hard for a consumer to know in advance whcther a business which is behind a fancy

WWW shopping site is credible or not. Also, hand written signatures have been widely

used and acknowledged as legal guarantees for business agreements in traditional

commerce. However, in EC field, it is not possible so far to apply a legally binding

facility in electronic fonns that is as convenient, popular, and cheap as a hand written

signature.

The steps that participants follow, to conduct commercial activities in an EC

process are governed by a collection of rules. Ideally, these rules are designed in such a

way that participants can mutually benefit and their interests can be protected. From

above, however, these predefined rules may not always be followed faithfully by all EC

participants. In such cases, disputes may arise because participants may disagree with the

trading results and some participants may feel that the trading is unfair. A dispute is an

argument raised by some participant, which is usually composed of a claim and a request.

The claim statement states why the dispute initiator thinks the trading is unfair or

unsatisfactory, e.g., the explanation on what has gone wrong in the process. And the

request statement states something that the dispute initiator thinks should be done to

reinstall hislher satisfaction. Look al the following example. Suppose a consumer ordered



a desktop computer from an online store, and after the consumer had paid, the merchant,

i.e., the store, delivered the computer system. This is a typical scenario of B2e commerce.

After receiving the computer, however, the consumer found that the system did not work

well, e.g., the system crashed easily. The consumer, a participant of the above EC process,

hence decided to initiate a dispute. The consumer may claim 'The merchant delivered a

bad computer to me' and request 'the merchant take back the bad computer and deliver

another good one to me'.

Therefore, proper handling of disputes is an important topic for EC research. The

American Arbitration Association [3) has pointed out: "If the upside of eCommerce is the

ability to do business faster than ever before, the downside is for eCommerce-related

disputes 10 arise even faster." Nowadays, EC is playing a more and more important role

in the overall economy, and EC is also an indispensable drive for technology innovations.

Consequently, studies for handling .EC disputes have significant meaning for both

economy and technology developments.

However, to our best knowledge, not mueh work has been done in this field. Most

research efforts to date focus on the generation and collection of evidence that can be

used in case some participant misbehaves. Yct they usually pay little attention to

procedures of dispute handling, such as how to generate a resolution, how to assist

participants when they arc unable to provide corresponding evidence, and what to do to

improve handling efficiency.



The work in [4] proposes a framework for dispute handling, it however does not

present a unified correctness criterion for decision generation. Neither does it discuss in

detail how to deal with cases where some evidence is lost or withheld. Another work on

EC disputes is introduced in [19J, where a protocol with automated dispute resolution is

proposed. Nevertheless, the protocol is only useful for exchanging digital items and thus

has limited applications. A B2B EC Dispute Managcment Protocol has been proposed by

the American Arbitration Association [3]. Yet the protocol provides only guidelines on

fair dispute resolutions. The protocol indeed depends on human arbitration, although it

incorporates some computer technologies, e.g., an online system which can facilitate

communications between EC participants and can help locate human mediators and

arbiters. In-depth investigations on EC dispute handling are presented in [23,24]. The

authors model the aspects of EC transactions in such a way that some support to dispute

handling can be provided. However, some important issues arc missing in thcir work. For

example, they do not present a method in which the various parts are integrated into a

functional system that can work in concert. Their work has realized the significance of

using rules for proposition proving. However, there is no discussion on how to evaluate

rules in tcnns of reliabilities. Neither do they discuss on how to deal with conflicts

resulting from rules with diverse reliabilities. We believe these issues are important since

they arc dircctly related 10 the applicability of the system in practical applications.

1.3 Contributions oftbe Thesis



Because EC activities usually involve participants from different geographical areas, it is

very hard, if not impossible, to construct a unified legal framework for EC disputes.

Online Dispute Resolution [18J argued that "in cyberspace, courts don't work very well

- they're tied to geography, and cross-boundary jurisdiction can be very complicated to

untangle." Hence, off-court resolution is a promising direction for handling EC disputes.

EC activities are conducted via electronic means and are based on the application

of computer networks, so it is our belief that EC disputes should be handled with the help

of computer systems. Such an approach can make it convenient to communicate witb all

involved participants. Also, tbe utilization of software processes can automate many

procedures in the dispute handling. As a result, high efficiency can be achieved at a

relatively low cost.

From above, therefore, in this thesis we study some special issues relating to EC­

dispute handling. We first propose an EC dispute handling architecture. The architecture

uses a client-server model and can be viewed as an off-court alternative resolution for

dispute handling. In our model, servers are subdivided into tiers according to their

functionalities. The first tier server is the arbitration server, which includes a software

arbiter and a human arbiter r24]. During a dispute handling process, the arbitration server

interacts with the second tier servers, such as rule base server and protocol tree server to

retrieve necessary infonnation. These servers are connected to the third tier servers, such

as database servers, which manage and implement information by means of various data

models.



The second contribution of the thesis is a framework for rule processing. When a

dispute arises, the parties involved need to prove their claims. Rules are used for that

purpose. We discuss in depth how the necessary rules are obtained, and what if they are

not available from the protocol. We substantiate the notion of weak rules proposed in (24],

and show how it is created, evaluated, and used. The main idea is to use weights for the

reliabilities of weak rules. We propose algorithms for weight assignment. We also

indicate the problems and pitfalls as a result of using weak rules, and propose solutions to

cope with them.

The third contribution of this thesis is a strategy for the implementation. Since our

architecture contains multi-tier servers, which require complex interactions between them,

adoption of proper implementation scheme is vital both in dfectiveness and efficiency of

the system. We use Java as the implementation language for its flexibility in tenns of

platfonn independence, and RMI as the means for remote communications. We have also

actually implemented partially a prototype system. (Refer to Section 5 for more detail.)

The rest of this thesis is organized as follows: Section 2 introduces basic concepts

related to EC dispute handling and our arbiter architecture. This section also summarizes

related works. Section 3 describes the overall arbiter architecture. Section 4 details a vital

component of the architecturc - rule base server and the corresponding strategies.

Section 5 discusses implementation issues about the architecture. A prototype system

currently under development is described as well in this section. Section 6 concludes the

topic and suggests some directions for future work.



Chapter 2

Background

In this chapter, we review some concepts that will be used in the later chapters. Unless

Olherwi~ mentioned, these are proposed inJ23,24]

2.1 EC Transactions

An EC transaction is a process for people/companies to conduct commercial activities

via EC infrastructure. The participants of the transaction are called players. Players

execute transactions by exchanging messages. In other words, an EC transaction is

modeled as a sequence of message transmissions. Messages can be either electronic or

tangible entities.



2.2 Atomicity and Transaction States

Atomicity is the propcny that guarantees the following: for multiple operations, either all

of them are executed or none of them are. An excellent general introduction on

transaction atomicity is given in [16}. The author in [9) introduces implementation details

for atomic transaction processing systems.

The notion of atomicity is extended to the EC context recently by some

researchers: money atomicity and goods atomicity are introduced in [26], and the

purchase atomicity is proposed in [24].

Definition 2.1 A fimd transfer operation preserves money atomicity tronce the customer

makes a paymenl the merchant will receivl! it and vice versu,

Definition 2.2 A goods delivery operation preser.·es goods atomicity ifonce the merchant

dispatches the goods the customer will receive it and vice versa.

Definition 2.3 An EC transaction preserves purchase atomicity if (I) funds transfer

preserves money atomicity, (2) goods delivery preserves goods atomicity, and (3) either

the arder has been placed. the cllstomer has paid according to the order and the cllstomer

gets the goods specified on the order with the exact vallie (quality and qllantity), or none

ofthese three things has effectively occurred.

10



We adopt purchase atomicity (or simply, atomicity) as the criterion for judging

whether or not the players involved in an EC transaction have traded in a fair way.

It is convenient to describe atomicity in tenus of transaction state. To this end,

we consider three abstract state variables, order, money and goods. A transaction state is

simply an assignment of values to these state variables. The variable order takes value of

one if an order has been placed, and zero otherwise, money is assigned the amount

transferred if fund transfer is completed, and zero otherwise, and goods is stored with the

delivered quantity of goods, and zero otherwise.

Therefore, exchanging messages among players can cause state transitions since

order, money and goods are all exchanged as messages. Let s be a sequence of messaging,

and Q and R be two states. We use, Q .....s R to denote that s causes a slate transition from

QtoR.

Definition 2.4 State R preserves atomicity if Q -.+s R where Q is the initial state and the

occurrences ofmessaging in sequence s preserve atomicity.

2.3 EC Transaction Protocols

II



An EC transaction protocol is a collection of rules that stipulate how EC transactions

should be executed. In the following, we present Open Buying on the Internet (OBI) [20]

protocol as an ex.ample l
,

Figure 2.1: Players and Message Exchanges in OBI Protocol

OBI is an open stayJdard protocol for B2B EC solutions. It is targeted at high.

volume, 10w-d01lar transactions that account for most of organizations' purchasing

activities. Figure 2.1 illustrates the players and message exchanges in the OBI protocol

The OBI protocol works in the following way: requisitioner is a member within

buying organization and is allowed to shop selling organi7A1tion's merchant server

through a web browser. Requisitioner can browse an on-line catalog of goods and

services and make a selection. Based on the conlent of requisitioner "shopping basket",

selling organization forms an OBI order request and sends the request to buying

organization. Ifbuying organization approves the order request, it then creates a complete

OBI order from the ordt;r request. Buying organization returns the formatted OBI order to

I We choose OBI here, instead of the simpler but artificial one in [24], to show the consistency of
the modeling concepts with the practical applications

12



selling organization. With the help of payment authority, selling organization obtains

credit authorization and ships the ordered merchandise. Payment authority issues an

invoice and receives payment. In some cases, e.g., for frequently ordered items, an

alternative procedure may be in place. That is, buying organization sends "unsolicited"

OBI order to selling organization without rcquisitioner's firs! "shopping" selling

organization's catalog.

2.4 EC Protocol Trees

An EC protocol can be represented by listing all the transaction executions that follow the

protocol definition. It is convenient to represent a protocol by a tree structure. A tree

representing an EC protocol is called an EC protocol tree. Because o,)ur intention is to

have a structure containing sufficient information to assist in dispute handling which

usually involves abnonnal transaction executions, we further require that those executions

which do not follow the protocol definition should also be represented in the protocol tree

as long as they are predictable.

Corresponding to the description of OBI protocol. Figure 2.2 is the OBI protocol

tree. Please note: for simplicity, we do not consider the cases where buying organization

sends "unsolicited" OBI order to selling organization without requisitioner's first

"shopping" selling organization's catalog.

13



lAge.nd

R:requisitioncr
B: buyingorganizalion

S: se.llingorpnization
P: paymmlauthonry

(PI~>P2:COllIeoI): PI $eIlICOl\Ie.nlloP2

o a good node......, .....
---ltornicity-smSItiveaction

--noo~lOmicity-sensitiveaction

Oan~k~alOmiciry

C.:: aneDlMukll(llprnerving.lOmkity

Figure 2.2: OBI Prolocol Tree (Simplified Version)

14



A protocol tree is a pictorial representation of a protocoL For an EC protocol tree,

there are following properties:

Each path starting from the root is relattd to transaction executions of the

protocol. It is a class of protocol executions that follow the same pattern. A

path from the root to a leaf is a complete path, or a complete execution.

Although all predictable executions should be represented as paths, not all

"predictable" message sequence combinations are meaningful. For example,

generally speaking, a message of goods should never precede a message of

order because goods should not have been sent without a previous order.

Hence, a path with goods preceding order should generally nOI be included in

the protocol tree.

The nodes of the tree arc stages of prolocol executions. Each node has a

content representing Ihe tra:nsaetion state at that stage. Each node has a unique

TO number followed hy a letter denoting the corresponding conlent of the node.

Two nodes have the same content ifand only if they have the same letter inside.

The arcs and paths are various kinds of state transitions. Each are is labeled

with the message that produces the state transition. A message can have an

either good or bad property. A good message has the attributes consistent with

protocol requirements. For instance, in Figure 2.2, "a good delivery" refers 10 a

message of goods that is delivered in sufficient quality and quantity as required

by the corresponding purchase order. A message is atomicity-sensitive if the

15



beginning and ending nodes of its corresponding arc have different contents.

Atomicity-sensitive messages are usually those messages related to order,

money and goods. Only atomicity-sensitive messages affect transaction

atomIcity.

For each complete path that terminates at a state preserving atomicity, every

node witbin the path is called a good node. Nodes other than good nodes are

called bad nodes. A good node may lead to a state preserving atomicity, while

a bad node cannot lead to any stale preserving atomicity.

2.5 Supports for Dispute Handling

A dispute handling process consists I,)f three typical steps: dispute initiation, investigation

and decision making.

2.5.1 Dispute Initiation

A player in the EC system may initiate a dispute when the player is not satisfied with the

execution result of some transaction. This player is termed Initiator of the dispute. The

dispute initiator contacts the arbiter and submits to it a complaint describing how he has

been treated unfairly by other players, and a request that he thinks will recover his loss.

The request is usually a set of statements each of which contains an action that the

initiator wishes to be taken. In addition to the complaint and the request, the initiator

16



should submit as well the identification number of the transaction for which the dispute is

raised so thaI the arbiter is able to make further investigations.

2.5.2 Investigation

During the investigation step the arbiter tries to construct the current transaction state. Let

Q -»s R be a state transition where Q is the initial state and R the tenninating state of s.

Suppose a dispute arises when the transaction is in state R. The arbiter can construct state

R ifhe knows sequence s by interacting with players and acquiring necessary infonnation

about s. According to the protocol structure, s is composed of various messages

exchanged belWeen players, among which only atomicity-sensitive messages affect the

state of R. Therefore, if the arbiter 'is ahle to leam exactly what atomicity-sensitive'

messages have been exchanged so far, current state R can be constructed bascd on the

protocol tree. Then, it will be clear whether or not the dispute initiator's complaint is true

and whether or not the request is honorable.

However, constructing a complete current state is not always possible because

some players may not be trustworthy. When the arbiter collects information about

exchanged messages from players, it is possible that some players may not be willing to

tell the truth. To deal with this dilemma, the notion of benefit set is proposed in [24]. A

benefit set for a player is a set of propositions (or statements). Each proposition stales

either occurrence or non-occurrence of some atomicity-sensitive message. Presumably, a

17



player would not refuse to prove propositions in hislher benefit set because such proofs

do not compromise hislher best interests. That is, for an atomiciry.sensitive message M, if

M is a good message (pointing to a good node in the protocol tree), its sender's benefit set

should contain a proposition stating occurrence of M and other players' benefit sets

should contain propositions stating non-occurrence of M. Otherwise, if M is a bad

message (pointing to a bad node from a good node), its sender's benefit set should state

non-occurrence of M and other players' benefit sets should state occurrence of M.

Algorithm 2.1 uscd for consnucting benefit sets is proposed in [24].

Algorithm 2.1: Constructing Benefit Sets

Let Benefit(X) be the benefit set for player X and Scndcr(M) be the sender of

message M. Based on tbe protocol tree, execute the following:

For each atomicity·sensitive message M whose corrcsponding arc stops al a

good nodc, include into Bencfit(Sender(M)) a proposition claiming Sender(M)

sent M, and into Bcncfit(J) a proposition claiming Sender(M) did not send M,

where J is a different player from Sender(M).

For each remaining atomicity-sensitive message M, include into

Benefil(Sender(M)) a proposition claiming Sender(M) did not send M, and

into Benefit(J) a proposition claiming Sender(M) sent M, whcre J is a different

player from Sender(M).

18



Table 2.1: Players' Benefit Sets of OBI Protocol

buying_organization:

B1: buying_organization sent OBl_order to selling_organization

B2: payment_authority did not send credit_confirmation to sellin&....organization

B3: selling_organization did not send order_cancellation to buying_organization

B4: sellinK_organization did not send good delivery to buyin8-0rganization

B5: selling_organization sent bad delivery to buying_organization

selling_organization:

S I: buyin&....organization did not send OBI_order to sel1ing_organization

S2: payment_authority did not send credit_confinnation to selling_.organization

S3: selling_organization sent order3ancellation to buying_organi7.ation

54: selling_organization sent good delivery to buying_organization

55: sclling_.organizahon did not send bad delivery to buyin&-organization

payment_authority:

PI: buyin&-organization did not send OBI_order to sellin&-organization

P2: payment_authority sent credit_confinnation to selling~organization

P3: selling~organization did not send order_cancellation to buying_organization

P4: selling_organization did not send good delivery to buying_organization

P5: selling_organization sent bad delivery to buyinlLorganization

19



Table 2.1 lists players' benefit sets of OBI protocol. It is easy to verify that it can

he constructed by applying algorithm 2.1 based on OBI protocol tree in Figure 2.2.

The significance of benefit sets lies in theorem 2.1, which is proposed by the

authors in [24J.

Theorem 2.1: Let R-N-S be a complete path in a protocol tree. Then an atomicity­

sensitive message is in segment R-N if and only if its occurrence is claimed by a

proposition in some benefit set that is tme at node N. An atomicity.sensitive message is in

segment N-S ifand only if its non-occurrence is claimed by a proposition in some benefit

set that is tme at node N and its occurrence is claimed by another proposition in some

benefit set that is (me at node S.

This theorem guarante.:s that the ·transaction state at any node of the protocol

execution can be completely described by benefit set propositions that are true at that

node. Hence, should a dispute arise at some node, we are able to try to construct the

transaction state for that node by inspecting truth values of all benefit set propositions.

This can facilitate our dispute handling because the complete transaction state is the first

thing we need to know when applying atomicity as correctness criterion.

For instance, in Figure 2.2, the transaction state at node 150 is described by true

benefit set propositions B1, 83, 84, 85, P2, P3, P4, and P5. That is, buying organization

has sent OBI order to selling organization, payment authority has sent credit confinnation

20



10 selling organization, selling organization did not send order cancellation to buying

organization, and selling organization has sent bad delivery to buying organization.

2.5.3 Decision Making

It is in this phase that the decision is made on whether tbe dispute initiator's request

should be honored or not. Making tbe decision is based on the current transaction state

Ihal can be possibly constructed, and purchase atomicity is applied as Ihe correctness

criterion.

'If complete knowledge on the current transaction state can be attained after players

have presented their infonnation, a decision can be generated by applying some algorithm

which is intended to install atomicity. Otherwise, human involvement is necessary.

Human experts analyze the dispute case by considering whatever other factors which

mighl be helpful with regard to a resolution. Those factors may include, for instance, any

additional documents players can provide, etc.

From above, it is appropriate to implement the arbiter as a two tier structure which

includes both software arbiter and human arbilcr. Software arbiter is a piece of computer

software that generates algorithmic solutions, while human arbiter is composed of domain

experts and provides human judgments whenever necessary.

Following is the algorithm introduced in [24] that should be executed by software

arbiter in order to generate a decision.

21



Algorithm 2.2: Decision Generation

I if truth values of all benefit set propositions that take value of tlUe can be obtained

construct the complete transaction state;

if the state presetves atomicity

if the dispute initiator can prove the complain!

ask human arbiter to consider the reasonableness of the request;

else II the initiator cannot prove the complaint

no action is taken;

end if

-:=Ise II the state does 'lot preserve atomicity

10 if the initiator's request reinstalls atomicity

II accept the request; I

12 else lithe request does not reinstall atomicity

13 if the initiator can prove the complaint

14 ask human arbiter to consider the reasonableness ofthe request;

15 else II the initiator cannot prove the complaint

16 no action is taken;

17 end if

18 end if

22



19 end if

20 else II only partial state can be constrncled

21 ask buman arbiter for judgment;

22 end if

I. Because atomicity is our ultimate correctness criterion, any request tbat preserves

or reinstalls atomicity sbould be justifiable. Therefore, there is no need to care

about wbether the initiator can prove the complaint or not.

2.6 Using Rules to Prove Propositions

From th~ decision generation algorithm 2.2, proving benefil set propnsitions is a critical'

step since it is the basis of transaction state construction. However, due to some possible

reasons, sucb as lost evidence and inherent deficiency of a protocol, it is uot always

feasible for players to prove benefit set propositions directly by sbowing corresponding

evidence. Players may need to do tbe inference. Tbis is done by means of rules [24]. A

rule is an implication p---+q wbere botb p and q are propositions claiming either

occurrence or non-occurrence of some messages. The rule p---+q is used 10 prove q in case

q is true by proving p. That is, p---+q empowers us to sbow tbat q is true by showing that p

is true. This is desirable if proving p is easier than proving q. By applying rules, players

are more likely to be able to prove benefit set propositions.

2J



2.7 Related Work

EC transactions have been studied extensively recently. A comprehensive review of

research issues and challenges in EC field is given in [13]. Many EC protocols are

proposed with varying levels of security guarantee. The NetBiIl protocol [6] ensures fair

exchange for the sale of low-priced digital goods by adopting a trusted third party. Secure

Electronic Transactions (SEn is a commercially developed standard aimed al EC

transactions conducted by three players: customer, merchant, and credit card company

[15]. The iKP family of secure electronic payment protocols is proposed in [5]. The iKP

protocols implement credit card based transactions between the cU!'>Iomer and the

merchant while using existing financial 'network for clearing and amhorization. The

protocols can also be extended to apply.to other payment models, such as debit cards and

electronic checks. In (22), a set of EC protocols lor mieropayments is designed with the

main goal to reduce the charging cost by choosing a suitable security model, a charging

model, and ctyptographic algorithms.

Atomicity is a property that has been thoroughly investigated in database

transactions during the last two decades [9,16]. Studying atomicity in EC transactions is

introduced in [26,27]. The author discusses the role of atomicity in EC and proposes three

types ofEe atomicity, namely, money atomicity, goods atomicity, and certified delivery.

As an extension, another type of atomicity, distributed purchase atomicity, is proposed in

24



[21], where the authors address the lack of support for full atomicity in EC payment and

apply transactional process management to realize an EC Payment Coordinator. In [28],

the author analyzes in details the need of a transaction model, the corresponding

transactional mechanism, and its usefulness for EC.

Yet the topic of handling EC disputes is outside the scope of the above works,

although they usually do specify what evidence should be stored for a fair resolution for

possible disputes. The work in [4] proposes a framework for dispute handling, which has

been applied in the European SEMPER project [14]. The authors design a claim language

for disputes independent of any specific payment system. They also describe a framework

for dispute handling where II dispute protocol is developed. However, the work does not

address the correctness criterion for resolutions in a unified manner. Consequently, it

remains unclear how to adapt different payment systems to the framework. Also, althougl1

the work provides mechanisms for proving statements based on evidence, il presents few

strategies to deal with cases where evidence is either lost or withheld.

Another work which addresses dispute handling issues is presented in [19]. An

optimistic fair exchange protocol with automated dispute resolution is proposed. The

protocol ensures true fair exchange and does not require manual dispute resolution in case

of unfair behavior by any party. Nonetheless, the protocol is useful only for the exchange

of digital items because the basis of the protocol is a mathematical theory for cross

validation of messages. As a result, the protocol has only limited applications.

25



American Arbitration Association proposes a B2B EC Dispute Management

Protocol [3). The protocol provides pre-defined rules and procedures for handling

disputes of different categories. It also employs an online web system to facilitate the

dispute handling procedure. Through the web system, EC players are able to

communicate with the arbitration system efficiently, e.g., filing a dispute ease online.

However, the dispute resolution indeed relies on human mediation and/or arbitration. The

dispute management protocol docs nOI involve automated dispute handling, e.g., decision

generation by computer systems.

26



Chapter 3

An Architecture for Ee Disputes

As ffit:ntioned in Chapter I, our architecture uses a client-server model. figure 3.1 shows

a l)iclOrial view of thi~ archilectur~.

3.1 Client Applications

There are two kinds of client applications in our architecture. One kind is used for the

imeraction between EC players and the arbiter server. Running such a client application,

each player is able to communicate with the arbiter server, e.g., to initiate a dispute.

The other kind of client applications serves as an interface through which the

arbiter server components can be properly managed. For instance, initialization of

protocol tree server can be done by field experts through corresponding client tools for

protocol tree specification.

27



Figure 3.1: The Architecture of an EC Dispute Arbiter

3.2 Software Arbiter and Human Arbiter

Software arbiter and human arbiter are key components of the architecture. Software

arbiter is the overall coordinator within the architecture. It interacts with various players,

retrieves infonnation from other components, etc. Also, software arbiter is responsible for

execution of arbitration algorithms.

28



Due to the inherent complexity related to dispute handling (e.g., consider the

comparable process conducted in a real court room by human judges), it is not always

possible to solve disputes by software arbiter alone. Hence, necessary human assistance

for arbitration is appropriate, especially in those cases where no clear-cut information is

available. Thus, when software arbiter fails to reach a resolution by itself, it turns the case

to human arbiter. Human arbiter actually provides knowledge and judgments from

domain experts.

3.3 Protocol Tree Server

Protocol tree server deals with services and storage related to the protocol tree structure.

The information provided by the prolOcol tree is essential in our architecture. For example,

EC messages, transaction sta~es, and benefit set propositions are all based on the protocol

tree. Protocol trec scrver is equipped with a back-end database that stores necessary

persistcnt data, such as tree structure, players' benefit sets, ctc.

An important function of protocol tree server is protocol trec generation. Human

experts may accomplish this through clicm applications for protocol tree specification. To

facilitatc thc understanding of how a protocol tree can be generated, we first introduce a

general model for EC protocols, and then present a protocol tree building algorithm.

29



3.3.1 A Model for EC Protocols

Because an EC protocol is a collection of rules that stipulate how EC transactions are

executed, the protocol can be represented by listing all transaction executions that follow

the protocol definition. As mentioned before, in our model, we further require that when

represcming a protocol those executions which do not follow the protocol definition

should also be listed as long as they are predictable. (Because disputes are usually related

to those "bad" executions, we need such infonnation to handle disputes.) Therefore, in

our protocol model, an EC protocol is a list of all predictable transaction executions.

On the other hand, as introduced previously, an EC transaction can be regarded as

a sequence of message exchanging. Since a protocol prescribes several options for the

ways a transaction under the prot,)Col ean proceed, an Be protocol can be viewed as a

eollocclion of lists of message exchanging sequences, each of which represents a unique:

transaction execution.

In order to represent seque:nces of message exchanging, we need to define the

general fonn of a message. A message here refers to any kind of information/item that is

passed from one player 10 another. Hence, a messagc can be either a pure lext flow or

some goods with a physical shape. Following is the message definition adoptcd in OUf

model:

(message_lD, sending player, receiving player, content, propcrty)

'0



Message_ID is a unique number identifying a particular message. Sending player

refers to the sender of the message and receiving player refers to the receiver of the

message. Content denotes what the message is, e.g., order or goods, etc. Property is a

description used to represent some attribute values of the message. For instance, when the

message content is some goods sent by a merchant to a customer, the goods may have an

either "good" or "bad" property, which indicates whether or not both quality and quantity

of the goods are consistent with what is stated in the order/contract.

Based on the above message definition, we are ablc to list all messages exchanged

in the EC system. Then, it is feasible to design an algorithm that builds thc protocol tree

automatically.

3.3.2 .A Protocol Tree Building Algorithm

In this section, we design an algorithm for building protocol trees. The algorithm

COIl.itrucls the protocol tree from a list of complcte message sequences. Thus, before the

algorithm can possibly work, some preparations need to be done to represent an Ee

protocol as a list of message sequences.

Three Preparation Steps

Step 1: Defining Basic Sets

Bcfore composing all predictable messages, first we need to find out what

possible values are for each value field of any message. According to our

31



message definition, there should be following basic sets, each of which

corresponds to some particular value fields of a message.

Player set: all possible players within the EC system. For any message,

both the sending player field and the receiving player field take some

values from the player set. For instance, in B2C model, a typical player set

may be: merchant, customer, and bank.

Content set: all infonnation flows/items that are exchanged between

different players. All values for the content field of a message come from

this content set.

Property set: all attribute values used to describe various message

cOlJtenlS. Typical values of the property set "lrc "good" :Uld "b,td". etc.

Step 2: Composing Messages Exchanged in the Protocol

Because all the basic sets have been defined in step I, all possible values

for any field of a message are known. Thus, composing :HI messages is a

simple task of filling blank fields for messages.

Step 3: Constructing the collection of all the possible message sequences

Because each message sequence corresponds to a catcgory of transaction

executions, essentially, this step lists all predictable complete executions

of the EC protocol, which imply the structure ofthe protocol tree.

32



It is clear that the above three steps demand thorough knowledge ofthe related EC

protocol. Together, they seIVe to express an EC protocol as a list of complete message

sequences. Therefore, all preparation steps should be accomplished by protocol experts.

The Algorithm

Algorithm 3.1 is the tree building algorithm that takes a list of complete message

sequences as input and produces a protoco!tree structure as output.

Algorithm 3.1: Protocol Tree Building

Se'l..-Left :'" set of all complete message sequences;

II Seq_Left i.~ the list oj remaining unprocessed st:qllences

create Root_Node; It' This is the TOot node ofthe protocol tree

II Generate the first complete path in the protocol tree

Parent_Node:= Root_Node; II Parent_Node i.~ a variable af/reenodes

Seq := a sequence from Se'l..-Left with N messages;

II Seq is a variable ojmessage sequences

for{i:=O; i<N; i:=I+1)

create a new Child_Node as a child of the Parent_Node;

II Child_Node is another variable ojtree nodes

label Arc(Parent_Node. Child_Node) with message_i of Seq;

II Arc is a variable oJtree arcs

JJ



II Arc(A,B) represents the are from node A to node B

Parent_Node:'" Child_Node;

end for

remove Seq from Se~Left;

IIGenerate other complete palhs in the protocol Iree

while Se~Left is not empty

Seq := a sequence from Se<t..-Left with N messages;

for(i:=O; i<N; i:=i+l)

Found := FALSE; II Found is used t~ denote whether or Iwt me.,'sage_i

II corresponds 10 an outgoing are ofParenr_Nude

for each Child_Node thal: is a child of Parent_Node

if Are(Parent_Node, Child_Node) is labeled with messagc_i

Parent_Node:= Child_Node;

Found := TRUE;

Break; II II has been found that message_i corresponds to one outgoing

II arc ofParent_Node, so there is no need 10 search the

II remaining outgoing arcs ofParent_Node

end if

end for

34



if{Found=FALSE)

break; II Here, message_i does not correspond to any outgoing arc of

II Parent_Node, hence there is no need (0 search matching arcs for

Ilmessage_i, messageJi+l), ... , message_N

end if

end for

for(; i<N; i:o=i+l)

create a new Child_Node as a child of the Parent_Node;

label Arc(Parent_Node. Child_Node) with message_i;

Parent_Nodc := Child_Node;

cnd for

remove Seq from Se'LLeft;

end while

II The remaining codes finish the algorithm

for each node in the tree

assign a unique ID and a content label to the node;

end for

for each message in the tree

if the two end-nodes of the message have different contents

label the message as atomicity-sensitive;

35



end if

end for

for each leaf node in the tree

if the node preserves atomicity

lahel it as an end-Slate preserving atomicity;

else

label it as an end-state not preserving atomicity;

end if

end for

for each complete path in the tree

if the path terminates at an end-state preserving atomicity

for each node in the path

label it as a good mlde;

end for

end if

end for

for each node in the tree

if the node is nOl a good node

label it as a bad node;

end if

end for

36



An Example~ Building OBI Protocol Tree

In this subsection, we build the OBI protocol tree as an example to show how the tree

building algorithm works.

To apply the tree building algorithm, we first need to finish preparation steps.

According to the descriptions of simplified OBI protocol introduced in section 2.3, there

should be the following basic sets. Player set: requisitioner, buying organization, selling

organization, payment authority. Content set: catalog request, catalog rejection, catalog,

catalog shopping basket, order request, order request rejection, OBI order, credit request,

credit rejection, credit confmnation, order cancellation, invoice, delivery of goods, receipt.

Property set: good, bad. lFor simplicity', we do not consider the digital signature and

certificate scheme in OBI.)

Based on the defined basic sets, we can compose all the messages exchanged in

the protocol. Please note that anention should be paid to those messages with particular

properties, e.g., good and bad. Here are the composed messages: (requisitioner is referred

to as R, buying organization as B, selling organization as S, payment authority as P, and

empty value as Null.)

(I, R, S, catalog request, Null)

(2, S, R, catalog rejection, Null)

(3, S, R, catalog, Null)

37



(4, R, S, catalog shopping basket, Null)

(5,5, B, order request, Null)

(6, B, S, ordcr requcst rejcction, Null)

(7, B, S, OBI order, Null)

(8, S, P, credit request, Null)

(9, P, S, credit rejection, Null)

(10, S, B, ordcr canccllation, Null)

(I I, P, S, credit continnation, Null)

(12, P, B, invoice, Null)

(13, S, B, delivery, bad)

(14, S, B, delivery, good)

(15, Il, S, receipt, Null)

The last preparation step is to list all predictable complete message sequences,

which require~ a careful analysis of the protocol. II should be well understood that not all

sequence combinations of messages are meaningful because in a message exchanging

protocol there are usually some temporal orders imposed on messages. That is, in a

specific protocol, some messages should always precede others. For example, in OBI,

mcssage 14 should always precede message 15 because the receipt from buying

organization to selling organization can only be sent after selling organization has

delivered products to buying organization. Therefore, even though the message sequences

where message 15 precedes message 14 are predictable sequences, they are actually

38



invalid options and hence should not be listed. In general, to check whether a message

sequence is invalid or not, we need to check the order of evety pair of messages within

the message sequence. As long as there is a pair of messages whose order is not allowed

(or is impossible) in the given protocol, the message sequence is viewed as invalid.

Here are complete message sequences we have recognized for the OBI protocol:

(1,2)

(1,3,4,5,6)

(1,3,4,5,7,8,9,10)

(1,3,4,5,7,8,11,12,13,15)

(1,3,4,5,7,8, II, 12, 14, 15)

(1,3,4,5,7,8, 1I, 13, 12, 15)

(1,3,4,5,'7,8, II, 13, 15.12)

(1,3,4,5,7,8, II, 14, 12, 15)

(1,3,4,5,7,8, II, 14, 15, 12)

Finally, taking the above collection of complete message sequences as input, the

tree building algorithm 3.1 produces the protocol tree illustrated in Figure 2.2 as output.

3.4 Rule Base Server

We have introduced previously that players may use rules to prove benefit set

propositions. By applying rules, players are more likely to be able to prove propositions.

39



Rule base server is the architecture component dealing with issues related to the

management of rules. Due to its vital importance in ensuring the correct functioning of

the dispute handling architecture, we include the discussions on its strategies and

functionalities in the next Chapter.

3.5 Dispute Handling in the Architecture

Our architecture handles EC disputes in the following way: the dispute initiator raises a

dispute by contacting software arbiter. The initiator needs to submit the corresponding

transaction TO, hislher complaint and request via architecture client application. Software

arbiter then retrieves benefit sets from protocol tree server and sends each benefit set to

it~ correspOilding player. Also, software arbiter sends the transaction ID to players for

their reference. Each player is asked to prove all propositions that he/she believes to be

true in hislher benefit set, with regard to the transaction identified by the received ill.

Players may prove propositions either directly or by applying some rules. If a player

chooses to use rules, he/she has to search rule base server to find proper rules. Aftcr

proofs arc done, players send their proving results back to software arbiter. Software

arbiter then executes the decision generation algorithm, either resolves the dispute itself,

or turns the case over to the human arbiter. During this process, software amiter may need

assistance from human arbiter. Finally, software arbiter generdtcs a dispute resolution and

sends it to all players. Please note, before thc architecture can work appropriately, some

40



initializations have to be completed, such as building protocol tree, constructing benefit

sets, and generating rules. These can be accomplished by human experts through

corresponding elient tools.

In the following, we present two scenarios based on OBI protocol to illustrate how

disputes are handled in our architecturc. The corresponding protocol tree is in Figure 2.2

(see page 14) and players' benefit sets are in Table 2.1 (see page 19).

Scenario 1:

Consider a case in which buying organization has placcd an OBI order and paid to selling

organization. However, the goods buying organization has received from selling

organization 'ire non·functlOnal. When the transaction reaches node 150, buying

organization initiates a dispute. The complaint is 'selling OIganizOltion made a bad

delivery to us' and the request is 'selling organization provide an exchange for good

goods'. After software arbiter receives these, it retrieves the benefit selS for all players,

namely, buying organization, selling organization, and payment authority. Then, software

arbiter sends benefit sets to their corresponding players and asks for proofs.

There are eight true propositions at node 150: B1, 83, 84, 85, P2, P3, P4, P5. For

buying organization, it proves 8 I by showing a copy of the electronically signed OBI

order. Also, it proves B5, and therefore 84, by presenting that the goods received from

selling organization are indeed bad (not in accordance with the original OBI order). B3 is

hard to prove directly since it is a proposition claiming non-occurrence of messages.

41



Hence, buying organization tries to apply rules. It contacts rule base server and finds th~

rule 85-+83. This is a reasonable rule because if 85 is true then B3 must be tru~

according to OBI protocol tree (we discuss more on rules 10 n~xt chapter). Hence, buying

organization selects th~ rule B5-+B3 and uses 85 to prov~ B3. Since 85 has bttn proved,

buying organization proves B3 as well. For selling organization, none of its benefit set

propositions is lrU~. Hence, it cannot prove anything. For payment authority, P3, P4, P5

are the same as B3, B4, B5, respectively. Because 83, B4, and B5 arc proved by buying

organization, payment authority needs only to prove P2. P2 is not easy to prove direcfly,

so payment authority selects the rule B5-+P2 from rule base server. This is a good rule

because B5 cannot be mle unless P2 is ~rue, based on the protocol tree. Because 85 is

proved to be nut by buying organization, payment ituthority hrllce proves 1'2 through

85-JoP2.

After collecting all proof results from players, software arbiter executes algorithm

12 to make a decision. Software: arbiter finds no problem to construct the complete

transaction state at node 150 because all true benefit set propositions have been proved.

The state does not preserve atomicity, nevertheless buying organization's request

reinstalls it. According to the algorithm, line II is reached. Hence, software arbiter

honors buying organization's request.

Scenario 2:

42



In this example, suppose aftcr buying organization has sent an OBI order and paid for the

order the dishonest selling organization does not deliver any goods. That is, the

transaction proceeds to node JOe and selling organization does not deliver any goods.

Consequently, buying organization initiates a dispute. The complaint. is 'we made

payment but did not receive goods' and the request is 'selling organization make a good

delivery'. In this case, true propositions in players' benefit sets are Bl, B3, B4, S5, P2, P3,

P4. Yct buying organization cannot prove 84. Neither can selling organization prove S5.

Hence, after software arbiter collects proof results from players, it is unable to construct

the complete current transaction state since not all true propositions have been actually

proved. Therefore, according to line 21 of algorithm 2.2, software arbiter bas to hand over

the ca<;e to buman arbiter for.judgment.

43



Chapter 4

Rule Processing:

A Framework and Methodologies

As discussed in section 2.fi, players may need to use rules to prove propositions because it

is nol always feasihle for them to prove benefit set proposition!> directiy by showing

corresponding evidence. In this chapter, we take an in-depth look at the issues involved in

the rule processing, such as the notion of weak rules, how to search for rules, how to

measure their re1iabilitics, and how to cope with the possible inconsistencies among the

weak rules.

4.1 WeakRules

Traditionally, a rule is associated with a value to be respected by followers. In our context,

this value is the truth. As briefly mentioned in Section 2.6, we can use the rule p-+q to

44



prove q by proving p. But a precondition is that p being true always implies q being true.

A rule of this kind is called a strong rule. However, as realized by the authors in [23], in

many cases strong rules are not obtainable. Thus they introduced the concept of weak

roles. A weak rule does not have to be always true, and therefore, its convincing power is

limited. (We will use the tenns 'reliability' and 'convincing power' interchangeably in

the subsequent discussions.) In cases where strong rules are not available; weak rules are

the only feasible alternatives. What we would like to have are weak rules with high

enough reliabilities so that when they arc uscd for proof purposes the results generated are

still acceptable to all the players (mostly importantly, though, the arbiter).

Look at the following example in OBI. Suppose selling organization wants to

prove the proposition q 'selling organization sent good delivery to buying organiUltion'

by applying the rule p-joq where p reads 'payment authority sem credit confirmation to

selling organization'. This rule is a weak rule, meaning that it is not fully reliable: This is

because the fact that p is true docs not necessarily imply that q ;s true, according to the

protocol tree in Figure 4.1. Nevertheless, the rule is practically meaningful because

sometimes selling organization may not be able to prove good delivery by showing the

receipt acquired from buying organization since a bad buying organization may withhold

the receipt deliberately. Also good delivery of products is usually the hot spot for disputes.

45



~_:~~cancellation

"

Legend

R: l'l'1:Illisitioner
B: buying organization

S:scllingorganizatlOn

P: paymemaulhority

(P\->P2:content): PI sent content to P2

0"""""00'
eabadnode

--alomicit)'4;Cnsiliveaction

---non-atomicity-sensitiveaction

o anend-sllltcpreserving alomicity

L~-) an end-~l3te nOi~=~ng atomicity

Figure 4.1: An Example of Weak Rules

46



On the other hand, it may be highly probable that selling organization can get

credit confirmation from payment authority without much difficulty in that the latter is a

third party independent from buying organization. Moreover, because the credit

confirmation is the piece of evidence that selling organization would receive from

payment authority, selling organization should normally keep it in records. That is, selling

organization should have no difficulty in presenting the credit confirmation whenevcr it is

needed, e.g., in the case when applying the rule stated above to prove that good delivery

has been scnt.

Therefore, thc rule 'payment authority sent credit confinnation to selling

organization' --+ 'selling organization sent good delivery to buying organization' is of

practical importallce to players because it can facilitate players \0 prove propositions.

although it is only a weak rule.

4.2 Searching Heuristically for Rules

Because rules involve using one proposition to prove another and propositions are related

to messages, the generation of rules requires finding relationships and relative positioning

between messages. This suggests the need to search for rules on the EC protocol tree

since this trcc provides the required information on messages. The heuristic method

presenlcd below cxlends Ihe one it1troduccd in [13]. II generates both strong and weak

rules. In addition, the rules generated can contain either positive or negative propositions.

47



(we call a proposilion posith'e if il claims occurrence of a message, and a proposition

negath'e if il claims non-occurrence of a message,)

In lhe following we will usc p to denole a posilive proposition and .., p to denote a

negative proposition that claims the negation of p.

Algorithm 4.1: Searching for Rules

lnpUI: a protocol tree T;

Output: a sel ofcandidale rules, RO;

for each positive proposition p lhat claims occurrence of a message m

1. Rl +- R2 'f- R3 +- 0, and mark every complete path that includes m;

2. for each message n such that n appears in every marked complete path and n is

ahead ofm

RI+-( RI U {p ~ q} ) where q is lhe proposition claiming occurrence of n;

end for

3. for each message k such thai all paths that contain k should also contain m and m

is ahead of k in alleasl one of those paths

R2 +- ( R2 U {p~ q} ) where q is the proposition claiming occurrence ofk;

end for

4. for each message j in S which is the set of messages that are not in any marked

path

48



R3 <l- { R3 U {p -+ ..., q} ) where ..., q is the proposition claiming non·

occurrence ofj;

end for

S. for each rule p -+ q within RI

Rl <l-(Rlu (..,q-+...,p});

end for

6. for each rule p -+ q within R2

R2 <l- (R2 u {..., q -+..., p});

end for

7. for each rule p -+ ..., q within RJ

R3 <l-l R..1u {q.-+ ...,p'

end for

8. RO<l-{RluR2uR3);

end for

In the algorithm. steps 2, 3, and 4 find rules based on the relative positioning

between messages in the protocol tree. Then, steps 5, 6, and 7 add contrapositives of

existing rules into the candidate scts.

The motivation for step 2 ;s as follows. If message n appears in every path

containing message m and n is ahead of m ;n the path then the occurrence of m must

49



imply thc occurrcnce of n because the transaction execution carmot reach m without first

passing n. The rules in this set R I are hcnce fully reliable. Look at the two messages n

and m in Figure 4.2 where n is "B·>5: OBI order" and m is "P->5: credit confinnation".

In this case, n appears in every path that contains m and n is always ahead of m, thus, the

occurrence of m should imply the occurrence of n. That is, the rule p ~ q should be

generated where p claims occurrence of m and q claims occurrence of n.

On the other hand, although step 3 adopts a principle similar to that of step 2, nOI

all rules generated in this case are fully reliable. This is because in slep 3 the occurrence

of message m is used to imply the occurrence of message k even ifm is ahead ofk, which

is not guaranteed tf' be true. In Figure 4.2, for instance, let message m be "B->5: OBI

order" and mt:ssage k "s->~: good delivery". Then, every path containing k also contains

m and m is ahead of k in at least one path. So, the rule p ~ q where p claims occurrence

ofm and q claims occum:nce ofk is generated in step 3. It is easy to observe that this rule

is nol fully reliable because the occurrence of "OBI order" does not guarantee the

occurrence of following up message "good delivery". Nevertheless, we still need this set

R2 of rules generated in step 3 because we try to give players more choices of possible

rules. Clearly, rules that are not fully reliable need special treatment so that errors resulted

from applications of these rules can be avoided as much as possible. We discuss more on

this issue in the following sections.

50



I'-:>S;craii,--
~.:..

",,,",,,,1M>

"

U&fnd

R:requisitioDer

B; bIlyingorganization

S: selling orpnUalion
P: paymentautbotity

(P1-:>P2:coolent): PI.ntCODletllIOP2

o .good""'"

..... ""'"
- .omicior-i<',,"''' I
--- oon-atomicity-se05itivf lIClion

Qaneod-atatepreservinaalOmicity

c...: ancnd=~~prescrving~omkity )

Figure 4.2: Rule Search Examples

51



Step 4 deals with propositIOns claiming non-occurrences of messages. If two

messages are not in the same path, occurrence of one must imply non-occurrence of the

other because the transaction execution ean follow only one path at a time. For example,

in Figure 4.2, the message m "S->B: order cancellation" and the message j "P->S: credit

confirmation" are not in the same path. Therefore, m and j cannot occur simultaneously.

The rule p -)0 .., q should be generated during step 4 where p claims occurrencc of ill and

.., q claims non-occurrence of j. Rules 'in R3 generated in step 4 are all fully reliable.

4.3 Rule Validity Weight aud Its Calculation

According to algorithm 4.1, normally there should be more than one rule in the candidate

set and these rules may have different reliability degrees. Not all rules are equally reliable.

Some rules are fully reliable, meaning that for a rule p-~q in case p is true q must be true

as well. Then, it has no problem when applying these rules. A fully reliable rule is tenned

a valid rule. On the other hand, some rules are not fully reliable. That is, the rule p-)oq

does not guarantee that q is always true when p is true. A rule that is not fully reliable is

termed a weak rule. Weak rules have different reliability degrees. To evaluate and

compare reliability degrees of rules, we introduce the validity weight of a rule.

The validity weight of a rule ~q reflects the reliability degree of proving q by

proving p. That is. the weight tells the probability for q to be true in case p has already

been proved true. We therefore use the conditional probability P(qlp) for the weight of

52



rule p-+q. For example, ifp-+q is a valid rule, it has a full weight of value one because

P(qlp) equals to I in this casco

Because P(qjp) = P(pq) / pep), we are able 10 calculate P(qlp) by first calculating

P(pq) and P(p). As is known, each complete path in the protocol tree represents a possible

route for the transaction execution. And for a specific transaction, it must follow only one

path. Hence, different paths in the protocol tree are mutually exclusive for a particular

transaction execution. This enablcs us to calculate both P(pq) and P(p) by applying

Bayes' fomlUla. That is, we determine P(pq) and pep) by conditioning upon whether or

not the transaction has follo~ed a specific path.

To calculate P(pq), we use the following formula (suppose there are N complete

paths ill the protocol tree):

P(pq) - P( pq Ipath I ) II' P( pathl) of. P( pq Ipath 2) II' P( pathl) + ..

of. P( pq i pathN ) '" P( pathN )

PC pq IpathPT) is the probability for the events of p and q under the condition that

the transaction has followed Ihe path PT. To calculate P( pq 1 pathPT), we-need to find

out TrucNode( pq, pathPT ) and AIINode( pathPT ). TrueNode( pq, pathPT ) is the

number of nodes on path PT where both p and q are true. AlINode( pathPT ) is the

number of all nodes on path PT. Then, we have the following:

P( pq IpathPT) = TrueNode( pq, pathPT) I AIlNode( pathPT)

P( pathPT) is the probability for the execution to follow path PT. At this point, we

suppose for each edge in the protocol tree there is a corresponding probability, tenned

53



edge probability, which states bow probable the transaction should follow this edge. Then

the path probability P(pathPT) is the product of probabilities of all edges in path PT. In

the next subsection, we present more details on edge probability and how it is determined.

Similar to the calculation of P(pq), we have the following formula to calculate P(p):

P(p) = P( p Ipath I)'" P( path I ) + P( p Ipath 2)'" P( path2) + ..

+P(p Ipath N)'" P( pathN)

where P( p IpathPT) = TrueNode( p, pathPT) I AlINodc( pathPT)

Based on the above, we design algorithm 4.2 that is used for calculating validity

weights.

Algorithm 4.2: Calculating Rule Weights

Input: a rule p -~ q;

Output: the validity weight P( p-~q);

P(pq)~O;

P(p)~O;

for each path N in the protocol tree, execute the following steps:

calculate the path probability by multiplying all probabilities of edges in path N, i.e.,

P( pathN) = P( edgel ) • P( edge2)'" ...... P( edgeM)

AIlNode( path N) = count all nodes in path N;

TrueNode( p, path N) = count all nodes in path N that are within the sub-path ofp;

54



liOn a complete palh containing p. the sub-path ofp is the portion from the node

II immediately after p 10 the leafnode ofthe complete palh

if p is ahead of q in path N

TrueNode( pq, path N ) = count all nodes in path N that are within the sub-path of q;

else II q is aheadofp in path N

TrueNode( pq, path N ) = count all nodes in path N that are within the sub-path of p;

end if

P( p) '" P( p) + P( pathN)· (TrueNode(p, path N)/AIINode(path N»;

P( pq) '" P( pq) + P( pathN)· (TrueNode(pq, path N)/AIlNode(path N»;

end for

P( qlp); P( pq)/ PC p);

P( p~q); PC qlp);

In Section 4.1 above, we have given an example for weak rules. We now apply

algorithm 4.2 to calculate the validity weight for that rule.

According to algorithm 4.2, first we need to consider path probabilities. From the

OBI protocol tree (sec Figure 4.3), it can be found that there are 9 paths in total:

Path!: OOA ..OIA..02A

Path2: OOA..03A..06A

Path3: OOA...08B.. IIA

55



I'·>s:m>dot-

R:Kquisiliooer

B: buyingorganiution

S: $elling orpniution
P:paymeDtautbority

(pI->P2:C): PlsentCIoP2

0·..... ""'"......""'"
---alomicity-KDSitiveaetiorl

-- _tomicitr-itiveaetiorl

o an eD6-statepreserving alOmitity

C_·.~&Dmd-stl.lell(ll~alOnlieity

Figure 4.3: An Example of Rule Weight Calculation

56



Path4: OOA. .088 .IOC. .12C. .210

PathS: OOA. .088 .IOC .l2C .22£

Path6: OOA. .088. .IOC.. 13D .230

Path7: OOA .08B. .IOC. .\30. .240

Path8: 00A...08B.. JOe. .14E. .25E

Path9: OOA ...088.. 1Oe. .14E..26£

In Figure 4.3, each edge is associated with a probability. That is the probability

under which the transaction would follow the corresponding edge. With the probabilities

provided in the figure, we are able to calculate path probabilities according to the

following fonnula: (Refer to Section 4.4 for detail on how to calculate the related edge

probabilities.)

P( pathN) == P( edgel ) * P( ooge2) * ...• P( edgcM )

P( path1 ) == \ *0.05 '" 0.05

P( path2) == \·0.95*\*\·0.\ = 0.095

P( path3 ) = 1*0.95*1 *1 *0.9*1 *0.15*1 = 0.12825

P( path4 ) = 1·0.95·1·\·0.9*1 *0.85·0.2·0.25·1 = 0.0363375

P( pathS) = 1·0.95·1 * '·0.9·\ *0.85·0.2·0.75·1 = 0.1090125

P( path6 ) = 1·0.95*1 *1 *0.9*\*0.85·0.2*0.5·\ == 0.072675

P( path7) = 1*0.95·1 *1 *0.9*1·0.85*0.2·0.5*1 = 0.072675

P( path8) == \ *0.95*1 *1 *0.9* '·0.85*0.6*0.5*1 == 0.218025

P( path9) = \*0.95·1·\ *0.9*1 *0.85*0.6·0.5*\ == 0.218025

57



Next, find out for each pathN the values of TrueNode{pq, pathN) and

AIINode(pathN):

TrueNode(pq, pathl)=O AlINode(pathl) '" 3

P( pq Ipath I ) = TrueNode(pq, path I) / AlINode{palh I) = 0

TrueNode(pq, path2) = 0 AIlNode(path2) = 6

P( pq \ path2 ) '" TrueNode(pq, path2) / AIlNode(path2) = 0

TrueNode(pq, path3) = 0 AlINode(path3) = 9

P( pq IpatbJ ) = TrueNode(pq, path3) / AllNode(path3) = 0

TrueNode{pq, path4) = 0 AIlNode(path4) = II

P( pq I path4 ) '" TrueNode(pq, path4) / AIlNode(path4) = 0

TmeNode(pq, path5) = 2 AlINode{path5) = II

P( pq ipath5 ) ='TrueNode{pq, pathS) / AlINode(palh5)": 2/11

TrueNode(pq, path6) = 0 AIINode(path6) = II

P( pq Ipath6 ) = TrueNode(pq, path6) / AllNode(path6) '" 0

TrueNode(pq, path7) = 0 AIlNode{path7) = II

P( pq Ipath7) = TrueNode(pq, path7) / AlINode(path7) = 0

TrueNode(pq, path8) = 3 AlINode(path8) = II

P( pq Ipath8) = TrueNode(pq, path8) I AllNode(path8) = 3/11

TrueNode{pq, path9) '" 3 AIlNode(palh9) = II

P( pq Ipath9 ) = TrueNode(pq, path9) / AIlNode(path9) = 3111

Then, we can get the value of P(pq):

58



P(pq) = P( pq Ipath [ ) '" P( path I ) + P( pq Ipath 2) '" P( path2)+ ..

+ P(pq IpathN) '" P( pathN)

= 0"'0.05 + 0"'0.095 + 0"'0.12825 + 0"'0.0363375

+ (2111)"'0.1090125 + 0"'0.072675 + 0"'0.072675 + (3/11)"'0.218025

+(3/11)"'0.218025

=0.138743

Similarly, find for each pathN the values of TrueNode(p, pathN) and

AlINode(pathN):

TrueNode(p,pathl)=O AIINode(pathl) = 3

P( p I pathl ) = TrueNode(p, pathl) I AIiNode(pathl) = 0

f'UeNnde(p, path2) = 0 AlINode(parh2);; 6

P( P Ipalh2 ) = TrueNode(p, palh2) I AlINode(path2) '" 0

TrueNode(p, path3) '" 0 AIlNode(path3) =~)

P( P Ipath3 );; TrueNodc(p, path3) I AIlNode(path3) = 0

TrueNode(p, path4) = 4 AllNode(palh4) = II

P( P Ipath4 ) = TrueNode(p, path4) i AIINode(palh4);; 4/11

TrueNode(p, pathS) = 4 AlINode(pathS) = II

P( P Ipath5 ) = TrueNode(p, path5) / AlINode(path5) = 4/11

TrueNode(p, path6) ;; 4 AlINode(path6);; II

P( P Ipalh6);; TrueNode(p, path6) / AlINode(path6);; 4111

TrueNodc(p, path7);; 4 AIlNode(path7) = II

59



P( P I path7 )=TrucNode(p, path7)/ AliNode(path7) = 4/11

TrucNode(p, pathS) = 4 AIlNode(pathS) = II

P( P Ipath8) = TrueNode(p, pathS) / AllNode(path8) = 4/11

TrueNode(p, path9) = 4 AlINode(path9) = 11

P( P Ipath9 ) = TrueNode(p, path9); AIlNode(palh9) = 4/11

And, we can get the value ofP(P):

pcp) = P( p Ipath I ) * P( path I )+ P( P Ipath 2) * P( path2)+ ..

+ P( p 1pathN) * P( pathN)

= 0*0.05 + 0*0,095 + 0*0.12825

+ (4/11)*0.03633·/5 + (4/11)*0.1090125 + (4/11 )*0.0726'/5

+ (4'11)*0,072675 :~'(4!J 1)*0.211(025 + (4/11)*0.218025

=0.264273

Finally, we are able to calculate the validity weight for the rule p~q:

P( p-+q ) "" P( qlp) = P(pq) / PCp) = 0.iJ8743 /0.264273 = 0.525

If the validity weight of a rule equals one, this rule is a full-weight rule. There are

some general principles that can be used 10 identify full-weight rules easily. One principle

is concerned with the temporal sequence order betwecn various messages claimed in rules.

Because a transaction execution is actually a series of ordered message exchanges, thc

occurrence/non-occurrcnce of a particular message could possibly be implied by the

occurrence/non-occurrence of some other messages.



Message I precedes message 2 in protocol P, if with regard to the whole protocol

tree of P, message 2 ean only be reached via paths including message I where message I

is ahead of message 2.

Message Sequence Maxim: if message 1 precedes message 2 in protocol P, then

occurrence of message 2 implies ot?Currence of message 1 and non-occurrence of

message 1 implies non-occurrence ofmessage 2.

In the heuristic search algorithm, RI is the set that contains all rule candidates

generated according to message sequence maxim. Hence, rule candidates in RI should be

of full validity weightlx-cause they are totally reliable. However. .-;andidates in R2 du not·

comply with the message sequence maxim and thus they do not have full weights.

The message sequence maxim complies with algorithm 4.2 in the sense that for

any rule p-+q, if the message mentioned in p implies the message mentioned in q, then

tbe algorithm will tell that P(pq) equals to PCp), which means that P(qlp) equals one (the

full weight).

Another principle ahout full-weight rules deals with contradicting messages. If

two messages, message I and message 2, are never on the same path, they are called

contradicting messages. Contradicting messages cannot both be true in the same

transaction execution because they are not on the same path, and any practical protocol

execution can follow only one path at a time. If a rule has the fonn of p-+q where p

61



claims occurrence of message I and q claims non-occurrence of message 2, i.e.,

occurrence of message I -+ non-occurrence of message 2, then the rule should have full

weight. The rule candidate set R3 in heuristic search algorithm is composed of rules

generated according to the principle of contradicting messages. Hence, rule candidates in

R3 should be of full validity weight.

The principle of contradicling messages also complies with algorilhm 4.2. For the

rule p-+q, where p states occurrence of message I, q states non-occurrence of message 2,

and message I contradicts with message 2, P(pq) must be equal to P(p) because in the

protocol tree wherever p is true q must be true as well. Hence, P(q]p) should equal one

(the full weight)

4.4 Determining Edge Probability

In me algorithm for calculating validity rule weight, there are two kinds of probabilities:

path probability and edge probability. A path probability refers to the probability under

which the transaction follows this panicular path. Because each path is actually composed

of many edges, to calculate path probability, we need 10 know the probability under

which the trnnsaction would follow each edge on the path. The probability associated

with each edge is called edge probability that represents Ihe probability for the transaction

to follow the corresponding cdgc.

62



For cdge probability, we have the following observation. The sum of edge

probabilities of all outgoing edges for any node in the protocol tree equals one. This is

because all outgoing edges of a node represem all the possibilities that the transaction

may chose to execute immediately aftcr this node. Since aU outgoing edges represent all

execution possibilities which is the whole space, the sum of probabilities of all outgoing

edges equals one which is the probability for the whole space.

Then, a question arises: how to determine the edge probability associated with

each edge in the protocol tree? Is there any well-fonnatled fonnula that can decide how

probable it is for the transaction to choose a particular edge out of all outgoing edges of-a

node?

BeJore we try to answer the !Ibove questions, first lOOK at the following instance

based on Figu!e 4.1 Node OSA contains one incoming edge and !wI,) outgoing edge!>. The

incerning edge is '5->8: oreier requ~st' that means selling arganization sent order request

to buying organization. So, node OSA corresponds to the state the transaction reached

after selling organization sem the OBI order request to buying organization. After this

state, there are two possibilities the transaction may choose: the order request would be

either rejected or accepted. Should the order request be rejected, the message 'buying

organization sent order request rejection to selling organization' would take place. This

corresponds to one of the two outgoing edges for node OSA. On the other hand, should the

order request be accepted, buying organization would send the OBI ordcr which is based

on the order request to selling organization. That is, the message 'buying organization

63



sent OBI order to selling organization' would take place in this case and it corresponds to

the other outgoing edge of node 05A. Therefore, to determine the probabilities for the two

outgoing edges, we need to know the probabilities for rejection and acceptance of the

OBlorderrequC5t.

However. it is nOl suaightforward to detennine in advance the probability of either

rejection or acceptance. Take the rejection for example. The OBI order request could be

rejected by buying organization due to many reasons. The requisitioner might have

ordered something that he/she was not authorized to order. Buying organization might not

have enough funding to make the purchase. A manager might decide that some itcms

were nOI nece!>5ary. For a particular execution, it is hard, if not impossible, fO determine

in advance whether~ rejecting reasons would occur or not. and what combination of

rejecting reasons if would be.

Therefore, we choo:o>c to detennine edge probability by experience. That is, we

detcrmine edge probability by analyzing historical data. (It is gencrally agreed that past

experiences are good indications of future. For instance, when admitting new students,

university officials usually try to predict prospective students' future perfonnances based

on their past academic records.)

The method that we use 10 analyze experience data is described in the following.

Suppose we consider edge E that is an outgoing edge for node N in the protocol tree. Let

No be the number of outgoing messages associatcd with E that have occulTed in the past

and Ni the number of incoming messages associated with N thai have occurred in the past.

64



Suppose past messages can be reasonably recorded and stored into a message inventory,

i.e., numbers of past messages are traceable. Consequently, both No and Ni are available.

Then we have:

edge probability ofE = No I Ni

That is, we calculate edge prohability of E by investigating the proportion that No

takes away from Ni.

Let us return to the previous example. For node 05A in Figure 4.1, the incoming

message is '$->8: order request' that repres-ents the order request sent from selling

organization to buying organization. If buying organization keeps a record of the number

of all order requests that it has received during the past, then the value ofNi for node 05A

is available. We assume it is 300. Tbe outgoing me:-sage 'B·:>-$: crder request rejection' .

represents the order request rejection sent from buying organization to selling

organization. If selling organi7.ation keeps a record of the number of all order request

rejections that it has received in the past, then the value of No for edge 05A---06A is

available as well. We assume it is 36. Finally, we would be able to determine edge

probability for edge 05A---06A:

edge probability of edge 05A----06A = No I Ni = 36/300 = 0.12

That is, according to records, the order request rejection rate is 12 OUI of 100. This

is a good iodication of how probable a future order request might be rejected. Hence, we

can set the probability of edge 05A---06A to 0.12.

65



4.5 Determining the Acceptance Criterion

With the validity weight, we are able to evaluate how reliable a rule is. According to the

algorithm of rule weight assignment, different rules may have different weights. Clearly,

we should not allow players to apply those rules whose weights are very low because the

low weight of a rule indicates that the rule is not so reliable. Then, a practical issue arises:

how to detennine the acceptance c.-iterion for rule weights. The acceptance criterion is a

threshold value such that all rules whose weights are equal or above the criterion are

viewed as acceptable and all rules whose weights are below the criterion are viewed as

unacceptable. Players are allowed to apply only acceptable rules when trying to prove

propositions via applications of rules.

We dClcnnine the acceptance aiterion fot' rule weight~ bas~d mainly on practiCal

requirements and experiences. If the requirements are in favor of a large rule set

containing many acceptable rules available for players to use, the acceptance criterion can

be set to a smaller value so that more rules can pass the criterion. Note that the smaller the

criterion is, the lower reliability a passing rule may have. Otherwise, if a small rule set

containing highly reliable rules is expected, the acceptance criterion should be set to a

large value. An extreme case is that the acceptance criterion is set to the value of one,

which is equal to the full weight. In this case, only rules with full weights (fully reliable

rules) are allowed to be applied by players. On the other hand, practical experiences

should also be given considerations. When dctennining thc acceptance criterion, we pay

66



attention to the acceptable rules in a practical sense. After we set a criterion and acquire a

sel of acceptable rules, we may choose some rules out of the set and analyze how

acceptable the rules indeed arc in reality_ Ifwe find some rules that are acceptable based

on the criterion are actually unacceptable according to our practical experiences, e.g.,

contradicting to some common sense, then we have to increase the acceptance criterion in

order to fix the problem.

Finally, the value of acceptance criterion must not be less than 0.5. The argument

is as follows. As introduced in section 4.3, the weight of rule p-)oq is actually the

conditional probability P(qlp). In order for the rule p-+q to be valid, there must be

P(qlp»=P(-.-,qjp). Also, base on the probability theory, we have P(qlp)+P(-.-,qlp)=I. Then,

1,.- P(qlp}+P('~~Ip)<=P(q]p)+P(qlp)",,2Pt qlp}

Therefore, 1<=2P(qlp). That is, P(qlp»,,---o.5, which indicates that the weigh' of any

valid rule must not be less thaq. O.~. Con.•equently, the acceptance criterion for rules must

not be less than 0.5.

4.6 An Example Application of Weak Rules

The introduction of weak rules does not change the decision generation algorithm, but the

applicaTions of weak rules do affect players' abilities of proving propositions. Now, with

choices of weak rules, players arc more likely to be able to prove benefit sel propositions.

The following example shows bow weak rules can be applied in the dispute handling to

67



assist players. The example is based on OBI protocol. For convenient reference, we list

again tbe OBI protocol tree and benefit sets in Figure 4.4 and in Table 4.1, respectively.

S->R 0.0

c,~,oif

[

L'g'"

R: rcquisitioner
B: buyingorganizallon

IS:sellingOrganizalion
I P: paymenlauthcrity

I

(PI->P2:C): PI senlCto P2

Qagoodnode

~abadnode

1--- alomiei~sitive~on

1 "---Il<)n-atomIClty-seDS1I,veaetion

19 anend-starepresaving alOl1licitY II"
L~--'~ ar.C~-Sl'I'lnoIP.:.e~~atom~:~)

Figure 4.4: OBI Protocol Tree (Simplified Version)

68



Table 4.1: Players' Benefit 5ets of OBI Protocol

buyin&.....organization:

B I: buying_organization sent 081_order to selling_organization

82: payment_authority did not send credit_continnation to sellin&.....organization

B3: selling_organization did not send order_cancellation to buying_organization

84: selling_organization did not send good delivery to buying_organization

85: sellin&.....organization sent bad delivery to buyin&.....organization

sellin!Lorganization:

5 I: buying_organization did not send OBI_order to selling_organization

52: pllYlOenl_aulhority did not send ercJit_c:onfinnation 10 sellinlLorganization.

53: sellinS_organization sent order_cancellation to buyin~organization

54: selling_.organization senl. good delivery to buying_organization

55: sellin8-organization did nol send bad delivery to buying_organization

payment_authority:

PI: buying_organization did not send OBI_order to selling_organization

P2: payment_authurity sent credit_confinnatioll to selling_organization

P3: selling_organi7.ation did not send order_cancellation to buyinB-0rganization

P4: sellin&-organization did not send good delivery to buying_organization

P5: selling_organization senl bad delivery to buying_organization

69



Suppose the transaction execution reaches node l6E. when the good delivery of

products has been sent from selling organization to buying organization. At this point, the

execution is fine and the transaction state preserves atomicity. However, the dishonest

buying organization tries to gain some extra benefits from selling organization. Hence,

buying organization does not return the receipt back to selling organization and initiates a

dispute by contacting the arbiter system. The submitted complaint is 'selling orgal.lization

sent a bad delivery of products to us' and the request is 'selling organization provide us

some compensations'. After software arbiter receives these, it sends benefit sets to the

corresponding players and asks for proofs.

For selling organization, it cannot prove any proposition in its benefit set directly.

Thus, selling organization has to explore using ruJe~·. At the current state, the.message

credit confirmation has been scnt from payment authority to selling organization.

Consequently, selling urganization keeps credit confirmation and should have no problem

to show it. Therefore, selling organization contacts rule base server for some rules that

can make use of credit confirmation. Selling organization finds the rule 'payment

authority sent credit confirmation to selling organization' ~ 'selling organization sent

good delivery to bnying organization' particularly helpful. This rule, as discussed before,

is a weak rule and its validity weight is 0.525. Suppose the acceptance criterion for weak

rules used in the architecture is 0.51. Then, the rule is acceptable and allowed to be

applied by players. Since selling organization has no problem to prove the proposition

'payment authority sent credit confirmation to selling organization' by showing the

70



evidence, i.e., credit confirmation, selling organization is able to apply successfully the

rule to prove benefit set proposition 54. Once 54 is proved, selling organization can

further prove 55 by applying another rule $4 ~ 55, which is a full-weight rule.

For payment authority, its benefit set proposition P2, i.e., 'payment authority sent

credit confinnation to selling organization', has been proved by selling organization.

Then payment authority can use the rule P2 ~ P3 to prove P3 with no difficulty because

the rule has a full weight, meaning it is fully reliable.

For buying organization, it is unable to prove BI directly. But buying organization

contacts rule base server and finds the full-weight rule 'payment authority sent credit

confirmation to selling organization' ~ B (. Since the proposition 'payment authority sent

credit confirmation to selling organization' has been proved, buying organization can

apply the rule successfully. Hence, B I is proved. There is no need for buying

organization to prove 8f because 83 is the same as P3, which has been proved.

Nevcllheless, buying organization cannot prove B4 and 85 either directly or by applying

rules. For instance, the rule 'payment authority sent credit confirmation to selling

organization' -+ 85 has a panial weight of merely 0.175 based on the rule weight

calculation algorithm, which is below the acceptance criterion.

From above, the proved benefit set propositions are BI, 83, 54, S5, P2, and P3.

After the proof results arc sent back from players, software arbiter executes algorithm 2.2

for decision generation. Based on the proof results, software arbiter is able to construct

the complete transaction state which is represented by leiter E in the protocol tree. Since

71



this state preserves atomicity, software arbiter asks the dispute initiator, i.e., buying

organization, to prove the complaint, according to line 4 of algorithm 2.2. Because the

complaint claims a bad delivery and what buying organization has received is actually a

good delivery, buying organization must be unable to prove the complaint. Then,

according to line 7 of algorithm 2.2, no action is taken. That is, buying organization's

request is refused.

The above example illustrates the significance of weak rules. In the general case, if

weak rules are not used then this dispute is very hard to handle. This is because buying

organization does not return the receipt and selling organization therefore has trouble to

prove the benefiT .~et proposition 'selling organi:tation sent good delivery to buying

organization'. A critica! step ,during the dispute ~andling is the application of the weak

rule 'payment authority sent credit eonfinnation to selling organization' -+ 'selling

organization sent good delivery to buying org~nization', which helps selling organization

out of the dilemma.

4.7 Inconsistency of Rules

As discussed previously, players can use rules to prove propositions. Suppose a player

wants to apply the rule p -+ q to prove proposition q. lfhe can prove p directly, then he is

done, otherwise, be can try to apply another rule k -+ P 10 prove p. Suppose he can prove

k directly. Then p is proved. Consequently, players now can apply the rule p -+ q

72



successfully to prove q. In Ihis case, two successful applications of rules k ----)0 p and p -+ q

enable players to prove proposition q by proving proposition k directly. The applications

of k -+ P and p -+ q can be conveniently represented as k -+ P -+ q. If the player still

cannot prove k directly, we can repeat the above inference. (Note: a player can prove a

proposition directly implies that the proposition is true.) In the following we fonnalize the

idea in the general case.

Definition 4.1: Let T be a protocol tree and N be a node in 1: A sequence pi --J- p2 --J- p3

-) ... ---+p(n-J) ---+pn is called a proofsequence at node N if:

I. For all i. 1<= i <= n*l, mle pi ---+ p(i+I) exists, «nd Us validity weight is above the

acceplOnce crile~lOn:

L. pi is tn/e at node N.

Definition 4.2: A set ofrule:~ is inconsi,~tentiftJiere exi;·t two sequences ofrnles in the set,

S/ = pI --J-PL --J-p3 .. --J-pandS2 = rl --J-r2 ---+r3 ... ---+r, anda node N in the protocol

tree. such that

I. Both SI and S2 are proofsequences at node N;

2. pond rare conjlicti'lg, meaning they either are negation forms ofeach other, or claim

the occurrences ofcontradicting messages.

7J



If a set of rules is inconsistent, then conflicting propositions may bc produced.

That is, by applying rules in a rule set that is inconsistent, conflicting results, e.g., positive

and negative fonus oftbe same proposition, can be implied simultaneously.

Morc specifically, because different players may apply different proof sequences

of rules to prove their propositions, if tbe rulc base is inconsistent it is possible that two

players will end up with proving conflicting propositions, e.g., p and ...,p, by applying

different proof sequences. This may render it impossible for the arbiter to reach a decision

because p and...,p cannot be both true simultaneously in reality.

4.7.1 Consistency Th~orem

For a set of full-weight rules, we haw the following theorem.

Theorem 4.1: A ~'el ofrnli!s <?onlamir:g unfyjUll-weighl niles generated by the heuristic

search algorithm is consistent.

Proof:

According to the definition of inconsistent rule sets, if we can show that there do not exist

two sequences with conflicting endings, this sct of rules cannot be inconsistent. Let p1 -+

p2 _ p3 ... _ p and r1 _ r2 -~ r3 .. _ r be arbitrary two sequences. We prove the

following two cases:

74



Case I: it is impossible that p and r are negation fonns of each other,

Case 2: it is impossible that p claims occurrence of message ml, r claims occurrcnce of

message m2, yet ml and m2 are contradicting messages.

Proof for Case I'

Assume the contrary. Let p and r be negation fonns of each other. Thus we have r =: .....p.

So, we need to show pi --+ p2 --+ p3 ... --+ p and r1 --+ r2 --+ r3 ... --+ .....p cannot cxist

simultaneously.

From thc heuristic search method, a positive proposition can only be implied by

another positive proposition, while a negative proposition can be implied by another

proposition that is either positive or negative.

Therefore, we 'lced to. show that thc foHowing two sets of sequcnccs cannot eXist

for a given set of full-weight rules (for cOllvenience, we use a single character to represent

a positive proposition and u~ symbol ..., followed by a single character to represent a

negative proposition):

Sct 1: some negative proposition ...,kl is used to prove ...,p by applying a sequence of rules

where only negative propositions are involved.

pI --+p2 --+ p3 ... --+p

...,kl--+...,k2--+-.k3 ... --+..,p

Set 2: some positive proposition m I is used to prove -.p by applying a sequence of rules

where both positive and negative propositions are involved.

75



pl--4p2--4p3 ... --4p

ml--4m2--4m3 ... --4mk--4 .....nl--4 .....n2 .. --4 .....p

First of all, it is true that ifpl --4 p2 and p2 --4 p3then pi --4 p3. The full-weight

rule pi --4 p2 means thai each path containing pi should also contain p2 and p2 is ahead

of pI. A similarly result exists for p2 ~ p3. Then il can be derived that each path

containing pi should also contain p3 and p3 should be ahead of pi, i.e., pI ~ p3.

Next, we can show that pI -Jo p2 iff .....p2 -Jo .....pI. In fact, this is guaranteed by the

message sequence maxim.

Suppose sequences in set 1 were possible. Using the above two facts, we have:

pl-Jop2--4p3 ->p=>pl-7p

·.,kl -7 .....k.2 --+ k3 ... -7 -,p => p.-+ . k3·-+ k2 .... kl =:- p -7 kl

Next,

pl-7p-7kl

=>pl-7kl

=> .....kl-Jo .....pl

That is, each path containing p1 should also contain kI. Hence, pi and .....k I cannot

be lrue simultaneously. Therefore, the following sequences cannot exist simultaneously:

pl-7p2-7p3 -7p

.....kl -7 .....k.2 -7 k3 ... -7 .....p

76



This contradicts our supposition. The supposition is hence incorrect and thc

sequences in set I cannot exist simultaneously.

Similarly, we can show that the sequences in set 2 cannot exist simultaneously,

either. Again, assume the sequences existed:

ml-+m2-+m3 ... -+mk-+...,nl-+...,n2 .. -+...,p:::>...,nl-+...,n2 .. -+...,p

...,nl -+ ...,n2 .. -+...,p:::> p -+ ... n2 -+ nl:::> p -+ nl

And,

pl-+p2-+p3 .. -+p:::>pl-+p:::>pl-+p-+nl :::>pl-+nl :::>...,nl-+...,pl

So,

ml-+m2-+m3 ... -+mk-+...,nl-+...,n2 .. -+...,p

:::> ml -+ 011""""" m3 ... -+ mk.-+ ...,nl

=> ml -+ mk -+ ...,01

:::>ml -+mk-+""ill-+...,pl

The rule mk -+ ...,n I means mk and n I arc not coexistent. They are not on the same

path. The rule m I -+ mk guarantees that each path containing m I also contains mk, hence

ml and nl are not on the same path. (Otherwise, suppose ml and nl were on the same

path, then mk should also be on that path. This produces the conclusion that mk and n I

are on the same path, which is a contradiction to the rule mk -+ ...,nl.) There should be

m I -+...,01. Therefore,

ml -+ mk -+ .....,01 -+ -,pl

77



::::> ml -+ -,nl -+ -,pl

Obviously, it is true lhat mt -+ -,n1 ::::> nl -+ -,ml because ml and n1 arc

contradicting and occurrencc of onc implies non-occurrence of the other. Therefore,

mt -+ -,nl -+ -,pl

~pl-+nl-+-,ml

~pl-+-,ml

::::>mt -+ -,pl

That is, pI and mI are not coexistent, meaning that they are not on the samc path.

Hence, pi and ml cannot be true simultaneously for an execution. Therefore, the

following sequences cannot exist simultaneously.

pl-+p2--,p3 ... '-+p

ml---+ m2-+m3 ... -+mk-+-,nl-+ -,n2 .. -+-,p

This is, however, a e'ontradiction to our assumption. Thus, the assumption is

incorrect and the set 2 of sequences is impossible.

From above, we have shown that pi -+ p2 -+ p3 ... -+ p and r1 -+ r2 -+ r3 ... -+

-,p cannot exist simultaneously. Thus, case I is proved.

Prooffor Case 2:

Suppose the sequence pair pi -+ p2 -+ p3 ... -+ p and rl -+ r2 -+ r3 ... -+ r existed where

p and r claim contradicting messages. Because p and r claim contradicting messages,

lhere must be such a rule r -+ --.p. Then, from lhe sequences r1 ---+ r2 -+ r3 ... -+ rand r -+

78



...,p we get rl -+ r2 -+ r3 ... -+ r -+ ...,p. Thus, two sequences p1 -+ p2 -+ p3 ... -+ p and

rI -+ r2 -+ r3 ... -+ ...,p exist simultaneously. However, this result contradicts the

conclusion of case I. The contradiction arises because of the false supposition. Hence,

case 2 is proved.

We have proved both case I and case 2, therefore, the consistency theorem is

proved.

4.7.2 An Example of Inconsistency Problem

Unfortunately, theorem 4.1 guarantee.. consistency only for rule sets composed of full­

weight rules. If rules in a rule set ,are not all of full weight, the rule set may be

inconsistent. This is hecause the propenie:; and facts we bave applied when proving

theorem 4.1 are not available for rules thai do not have full weights. For example, in the

proof of theorem 4.1, arguments fur sequences in Set I of Case I are invalid for p3nial­

weight rules. That is, if the weight of pi -+ lei is not full, it is not safe to draw the

conclusion Ihat pI and ...,kl cannot be true simultaneously. The panial weight of p I -+ kI

means that it is probable for some path containing pl not to contain kl. Consequently, it

is probable that both pi and ...,kl are true simultaneously. Then, sequences in Set I may

exist simultaneously, which yield conflicting results, i.e., p and ...,p.

To make it clearer, we give an e",ample of inconsistency problem. Consider the

OBI protocol tree in Figure 4.5.

79



R->S·
catalogfC<lucst

0.05 I 0.9~

S->R:
catalog, ,

~
~:::~:;;'~, ....
o>rdcrfC<lucst,

0.'
B->S:ocdrr 0.9

fC<Inc", ",jection B->S
OBJord..,

115->p:

S->B:O<der
~llation

Legend

R: requisitioner
B:buyingorganization

S:sellingorganization

P: payment authority

(pf->P2:C): PI sentCtoP2

0·,000,,"""
@."",,,od.
--atomicity-scnsitiveaCliOll

--lIOIMltomicity-scD!litiveactiun

Qanend-stateprcservingatomicity

2end-statcQO{Prcscrvingatom;~

Figure 4.5: An Example of Inconsistent Rules

80



We are interested in three propositions here:

pI: payment authority sent credit confirmation to selling organization.

p2: selling organization sent good delivery to buying organization.

p3: selling organization sent bad delivery to buying organization.

And consider the rule sel containing two rules: { pi --+ p2 , p3 --+ --.p2 }. The rule

p3 -l' -,p2 is a full-weight rule be<:,ausc p3 and p2 claim conflicting messages, i.e., good

delivery and bad delivery. The rule pi --+ p2, nevertheless, has a partial weight only,

because it does not comply with the message sequence maxim. As shown before, we

calculate the weight of pI -+ p2 to be 0.525 by applying the algorithm of assigning rule

weights. Suppose in the arbiter system the acceptance criterion for rule weights is 0.51,

whil;;h means any rule baving a weight no less than 0.51 is allowed 10 be applied by

players. So, pI -l' p2 IS an acceptable rule.

Because p2 is a proposition in selling organization's benefit set and -,p2 is a

proposition in buying organization's benel'it set, it is possible that selling organization

uses pi -l' p2 to prove p2 and buying organization uses p3 -l' -,p2 to prove -,p2. If the

transaction is currently at node 150, then the message of credit confirmation should be

held by selling organization and the bad delivery of products should be held by buying

organization. Then, selling organization is able to apply succcssfully the rule pi --+ p2 to

provc p2 and buying organization is able to apply successfully the rule p3 --+ --.p2 10

prove -,p2 as well. Consequently, a conflict arises because p2 and -,p2 cannot be true

81



simultaneously in reality. This renders it impossible for the arbiter to make a decision

because the arbiter is confused about whether p2 is true or not.

Therefore, it is clear that the rule set { pi -+ p2 , p3 -+ ....p2 } is inconsistent and

conflicts may be produced. The inconsistency comes from the fact that pi -+ p2 is not a

full-weight rule, As a result, there is a probability for some player, e,g., selling

organization in the example, to use the rule successfully to prove p2 even when p2 is

actually false which is proved by the full-weight rule p3 -+ -,p2 in the above.

4.8 Handling Inconsistency Problem in the Rule Base

We have shown a rule set containing partial-weight rules may be inconsistent. Because

rules stored on rule base server are generared according 10 the heuristic st:.lIch algorithm,

there are many partial-weight rules in the rule base. Therefore, the rule base is not

gllaranteed to be a consistent rule sel. As a result, different rules applied by various

players may produce conflicts. This problem is serious because conflicts, such as proving

p and ....p at the same time, make it impossible for the arbiter to reach a decision. Thus, a

solution needs to be found to solve the inconsistency problem in the rule base.

4.8.1 The Algorithm for Handling Inconsistency Problem

In order to strengthen players' abilities to prove propositions, we have to include some

partial-weight rules in the rule base. So, we are not able to avoid the inconsistency

82



problem in advance by eliminating all inconsistent partial rules. Hence, conflicts may be

produced. Conflicts, however, can be detected and removed. That is, if the arbiter is able

to remove conflicts in a proper way once they are identified, no hann would be done to

the arbiter system. Therefore, what we need is to design a strategy of identifying and

removing conflicts.

Conflicts are results of applying panial-weight rules. Consider the previous

example again. Two rules pI -+ p2 and p3 -+ ...,p2 produce a conflict because pi -+ p2 is

a partial-weight rule. The event that p2 is false while pi is true may happen due to the

partial-weight of pi -+ p2 that does not guarantee p2 to be true when pi is true. When

that event happens, pI --+0 p2 should not be applied. In fact, p3 -+ -,p2 confirms the

happening of thaI event since p3 --+o..,p2 is a full-weight rule and it glliiT3ntees that p2 is

false. Thus, the application of p3 -+ ...,p2 should prevent the simultaneous application of

pi -+ p2. That is, p3 -+ -,p2 should remove pi ~ p2. As a result, the conflict, i.e., p2 and

-,p2 are true simultaneously, can be eliminated.

A point worth noting here is concerned with "current true propositions". When

applying rules, we estimate the true or false value of a proposition by the true value of

another single proposition. For instance, when pi -+ p2 is applied, we estimate the true or

false value of p2 based on the true value of pl. However, it is clear that when the two

rules pi ---Jo p2 and p3 ---Jo .....p2 are applied, true propositions in the current situation are pi

and p3, instead ofthc single proposition pl. Hence, it is more accurate to estimate either

8J



p2 or ....,p2 based on both propositions of pi and p3. However, we observe that

considering all true propositions will incur a high runtime overhead. Because complete

current true propositions can only be known at runtime, the proposition estimation has to

be done dynamically. That is, rule weight assignments have to be done when players are

proving propositions because only at this time can complete current true propositions be

learned. Also, rule weights have \0 be recalculated repeatedly and frequently because the

SCi of current true propositions changes whenever a new proposition is proved. Thus we

consider the antecedent only of a rule for the calculation of its conditional probability.

This makes it possible for us to obtain the rule weights based only on the protocol tree

during the initialization phase of rule base server.

Our approach to han"le the inconsistency problem is tcooed Wound & Remove.

The basic idea is that a rule with a higher weight should wound and remove another rule

with a lower weight when l.he applications of two rules result in conflicts. This is because

we believe a rule with a higher weight is more reliable.

We must generalize the Wound & Remove approach to deal with rule proof

sequences because players may apply more than a single rule to prove propositions. As

introduced in section 4.7, a proof sequence is a series of rules where the beginning

proposition is used to prove the ending proposition through many applications ofdifferent

rules, e.g., pi ----)0 p2 ----)0 ••• ----)0 pk. Particularly, a single rule pI ----)0 p2 is the simplest form

of a proof sequence. The weight of a proof sequence is the multiplication result of rule

weights of all rules contained in the sequence. For instance, the weight of pi ----)0 p2 ----)0 p3

84



equals to the multiplication result of pl--+p2's rule weight and p2--+p3's rule weight. Thc

sequence weight reflects the probability of implication from the beginning proposition to

the ending proposition. Then, the Wound & Remove approach can be generalized 10 deal

with proof sequences: a proof sequence with a higher sequence weight should wound and

remove another proof sequence with a [ower sequence weight when the two proof

sequences generate conflicting ending propositions.

Then, we are ready 10 present the algorithm of handling inconsistency problem in

the rule base by adopting the Wound & Remove approach. Basically, we maintain for

each player a record set where the following information is stored: all propositions the

player has proven, the proof sequences applied to prove those propositions, and the

corresponding proof sequence weights. If a proposition is proved directly then the applied

proof sequence is deemed as empty and the corresponding proof sequence weight is set to

value of I, i.e., the full weight.

10 order to handle inconsistencies, we think the Wound & Remove algorithm

should perfonn the following functions:

I. When a player tries to submit a proof sequence in order to prove some proposition,

the algorithm should check each proposition in the sequence against all propositions

that have been proved and logged in the record sets associated with players. To check

a proposition p, the algorithm should try to find whether or not there are some

propositions conflicting to p in the record sets. If yes, the algorithm should detennine

the proposition with the highest sequence weight and remove all its conflicting

85



propositions. Note that all propositions in the submitted proof sequence should be

checked because by submitting a proof sequence the player is attempting to prove all

propositions in the sequence. For example, if the submitted sequence is p I ~ p2 ~

p3 ~ p4 ~ p5, all propositions of pi, p2, p3, p4, and p5 should be checked although

the player intends to prove the ending proposition p5.

2. If accepting all propositions in the proof sequence does nol produce any conflict, the

algorithm should accept the proof sequence and all its propositions by recording

proper information in the player's record sel. For the beginning proposition, the

related proof sequence is recorded as empty and the sequence weight is value I. For

other propositions. record information in the following way. Find the ~ub-sequence

for each IJropositinll, and then record the proposition, the sub-sequence, and the' sub­

seI.J.uence weight. Tbe sub-sequC11ce for a proposition p. which is not the'beginning

proposition of Ihe original sequence, is the portion from the beginning proposition to

proposition p in the original sequence. For instance, if the original sequence is pi ~

p2 ~ p3 --t. p4 ~ p5, then the sub-sequence for p3 is the portion pi ~ p2 ~ p3.

3. If some propositions in the submitted proof seqnence cause conflicts, do not perform

any wounding until all propositions in the sequence have been checked. If the check

results show that all propositions in the sequence have survived the wound and

remove comparisons, accept the submitted sequence. Record all propositions, their

corresponding sub-sequences, and the sub-sequence weights in the record set of the

player who has submitted the sequence. Cancel all conflicting propositions by

86



removing the conflicting propositions, the corresponding proof sequences, and the

sequence weights from the record scts. Cancel all affected proposition entries as well

(those proposition entries whose corresponding proof sequences contain canceled

propositions), by removing the affected proposition entries from the record sets. Note

that it is proposition entries, instead of propositions, that should be removed in this

casc. This is because it is possiblc that one proposition may have multiple record set

entries, each of which is associated with a unique proof sequence. Those entries,

whose corresponding proof sequences do not contain any canceled proposition, are

not affected by the proposition cancellations and hence should be presclVed.

4. If some propositions or proposition entries are canceled, notify players whosc record

sets contain those proPQs.itions or entries, ann request thero to J'eprove those canceled

items if necessary.

5. If the check results s~ow t~at at least one proposition in the submitted proof sequence

should be wounded and removed due to conflicts, the current submitted sequence

should be canceled. Notify the player who has submitted the proof sequence that the

sequence is not acceptable because of conflicts.

The following is the algorithm for handling inconsistencies. For each player we maintain

a record set, where each record has three attributes: proposition name, the related proof

sequence uscd co prove the proposition, and the proofscqucnce weight. ConflicrFlag(p) is

a flag denoting if there is some proposition conflicting to p. CompareFlag(p) is another

87



flag denoting if proposition p has a higher sequence weight than its conflicting

proposition.

Algorithm 4.3: The Wound and Remove Algoritlun

1 receive the proof sequence p L --+ p2 --+ ..... --+ pk submitted by player A;

2 II Check conflicts/or every proposition in the sequence

3 for each proposition p in the proof sequence

find all propositions in players' record sets that conflict to p;

chose proposition q that has the highest sequence weight

of all found propositions;

if there is such a proposition q

compare sequence weight of p with that of q;

if sequence weight of p > :sequenc:: weight of q

CompareFlag(p) = WIN;

10 else

11 CompareFlag(p) = LOSE;

12 end if

13 ConflictFlag(p) = TRUE;

14 else

15 ConflictFlag(p) = FALSE;

88



16 end if

17 end for

18 1/ Based on the check resul1s, perform either accepting or wounding

19 ifConflictFlag(p) is FALSE for every proposition p in the proof sequence

20 accept the proof sequence;

21 for each proposition p in the proof sequence

22 ifp is the beginning proposition of the proofsequence

23 record the following infonnation in the record set of player A:

24 (p,", 1);

25 else

26 re~()rd the following infonnation in the record ~t of player A:

27 (p, the sub-sequcl)ce ror p, the sub-sequence weight);

28 end if

29 end for

30 else

31 find all propositions in the proof sequence whose ConfliclFlags are TRUE;

32 irCompareFlag(p) is WIN for every proposition p that has been found

33 accept the proof sequence;

34 for each proposilion pp in the proof sequence

35 if pp is the beginning proposition of the proof sequence

89



36 record the following information in the record set of player A:

37 (pp,", 1);

38 else

39 record the following information in the record set of player A:

40 (pp, the sub-sequence for pp, the sub·sequence weight);

41 end if

42 end for

43 for each proposition pw in the submiued proof sequence

whose ConflictFlag is TRUE

44 for each proposition pc in thc record sets that conflicts to pw

45 for eilch proposition entry of pc in the recotd sctt:

46 can..:e1 the proposition entry;

47 notify the playcr whose record set contains the canceled entry;

48 remove the following information from the record set:

49 (pc, the proof sequence, the sequence weight);

50 end for

51 for each proposition cntry whose proof sequence contains pc

52 cancel the proposition cntry;

53 notify the player whosc record set contains thc cancelcd entry;

54 remove the following information from the record set:

90



55 (the canceled proposition, the proof sequence,

the sequence weight);

56 end for

57 end for

58 end far

59 else

60 cancel the submitted proof sequence;

61 notify player A that the submiucd proof sequence is unacceptable;

62 end if

63 end if

4.8.2 Some Examples of Applying the Wounding Algorithm

Here we present some scenanos to show how the wounding algorithm works to handle

inconsistency problem in the rule base. Suppose there arc three players in the system:

playerl, player2, and playerJ. And below is an inconsistent rule set:

{pl-.O.7p2; p2-+ l p3; p3-+1p4; pS-+o.9p3; pS-+Ip4;

p6-+1_,p2; p6-+1--,p3; p6-+1-.p7; -,p7-+0.8--,p3;}

According to the rule sel, there is no conflict among pi, p2, p3, p4, p5 and p7.

Proposition p6, nevertheless, conflicts to any of p2, p3 and p7. Table 4.2 can be used to

siore necessary infonnation of the record sets required by the algorithm:

91



Player!

Player2

PlayerJ

Scenario I:

Table 4.2: Structure of Players' Record Sets

Proposition Name Proof Sequence Sequence Weight

Player! submits the following proof sequence: pl-jo°.7p2-+ l pJ-+1p4. Because the current

record sets are all empty, there is no conflict acctlrding to hne3-17 of the algorithm. That

is. the ConflictFlag(p) for each proposition of pi, p2, p3 and p4 is FALSE. 'men,

line I9--30 of the algorithm' are executo:d and the information is updated to Table 4.3.

Next, playerJ tries to submit the propfsequenc:e .....p7....OJ-.pJ. When the algorithm

is executed to evaluate this sequence. one negation form of -.p3. i.e.• p3. is found in

played's record set. So ConflictFlag(-.p3) is TRUE. Also, that p3 is the proposition with

the highest sequence weight of 0.7 in all record sets. Hence, the weight is compared with

the currently submi"ed ~p3's sequence weight, i.e., 0.8, according to line7. The:

comparison result is that the CompareFlag(-.p3) is assigned WIN, meaning proposition

-,p3 should wound lind remove proposition p3 in the record sets.

92



Table 4.3: Recording Playerl 's Sequence-Scenario I

Proposition Name Proof Sequence Sequence Weight

Playerl pi

p2 pl-+p2 0.7

p3 pl-+p2-..p3 0.7

p4 Pl-+p2-+p3-+p4 0.7

Player2

Played

Table 4.4: Recording Player3 's Sequence - Scenario I

Sequence Weight

pi

IProposition Name I P~oof Seq~ence

---+.------1~-

p2 pl-+p2 0.7

p3 pl-+p2--+p3 0.7

p4 PI--+p2--+p3-+p4 0.7

Player2

Player3 ~p7

~p3 .....p7-+...p3 0.8

93



Then. Iines2o-29 are ignored since ConfliclFlag(-.p3) is TRUE. Instead.

Iines3I-62 are executed. Because -.p3 is !he only proposition whose ConflictAag is

TRUE (.....p7 does not cause any conflict) and COmparcFlag(.....p3) is WIN. the submined

sequence by playerJ is accepted and lines33-42 art executed to record information. The

updated record sets are listed in Table 4.4.

It is clear that there is a conflict in the table because both p3 and -.p3 are there.

However. this conflict can be removed by the execution of lines43-58. First of all,

remove those proposition entries that are conflicting 10 the winner proposition -.p3, based

on lines45-50. Hence, all entries of p3 are removed from the record selS as shown in

Table 4.5:

Table 4.5: Removing Entries of 03 - Scenano I

Player!

Proposition Name Proof Sequence

pi

Sequence Weight

Player2

p2

p4

pl-+p2

PI-+p2-+p3-+p4

0.7

0.7

Played .....p7

~p3

94

0.8



Secondly, remove those entries that are affected by the cancellation ofp3. That is,

all the entries whose corresponding proof sequences contain p3 are also canceled based

on lines51-56. In Table 4.5, entry of p4 is removed because its corresponding proof

sequence contains p3, which has already been canceled during the last step. Therefore,

Table 4.6 lists the final record sets:

Table 4.6: Final Record Sets ofScenario 1

Proposition Name Proof Sequence

Player! pi

Sequence Weight

p2 pl-+p1 0.7

Player2

~----+-_P-:7:--·--t;-;------- ",-----1

_p3 -.p7 ..........p3 0.8

Because all conflicting propositions and affected proposition entries have been

wounded and removed, the remaining propositions are all ac~table.

Scenario 2:

Player} submits the proof sequence: pl-+O.7p2-+1 p3-+1p4. As in scenario I, the results

are shown in Table 4.7:

95



Table 4.7: Recording Playerl's Sequence-Scenario 2

Proposition Name Proof Sequence Sequence Weight

Player! pI

p2 pl-+p2 0.7

p3 pl-+p2-+p3 0.7

p4 pl-+p2-+p3-+p4 0.7

Player2

Player3
L- ---.JL- ~:-- .__-'- --'

Table 4.8: Recording Player2's Sequence - Scenario 2

Proposition Name Proof Sequence Sequen~

Player!

Player2

pI

p2 pl-+p2 0.7

p3 pl-+p2-+p3 0.7

p4 pl-+p2-+p3-+p4 0.7

p5

p3 pS-+p3 0.9

PlayerJ

96



Different from sccnario I, however, playcr2 submits the sequence p5-+0.9p3

immediatcly after playerl's submission and before playcrJ tries to submit the proof

sequence .....p7-+0.1.....p3. Bttause neither of p5 and p3 conflicts to any proposition in the

current record sets, ptayer2's sequence does not cause any conflict. Hence, the sequence

is accepted and propositions are added into player2's record set. Table 4.8 is the updated

information.

Then, playerJ's sequence -,p7-+0.8.....p3 is submitted. Because the current record

sets contain p3 already, ConflictFlag(...,p3) is TRUE, [n fact, there are two entries of

proposition p3 in the record sets and the onc with the highcst sequence wcight is in

player2's record set. Therefore, the sequence weight (0.9) of the entry of p3 in player2's

record set is compared with that (0.8) of the. currently submitted proposition ...,p3. The

result is 0.9 > 0.8 ::md hence propositipn .....p3 is wounded and removed. That is.

CompanF!ag(.....p3) is LOSE at linel!. According to line59-62 of tIJt, algorithm, the

currently submitted proof sequence by playerJ is unacceptable and therefore canceled.

Consequenlly, the arbiter sends a message to playcd notifying that the proof sequence is

not acceptable.

Notice that the final result of this scenario is quite different from that of scenario I.

The difference results from the p3 entry in player2's record set, which has a higher

sequence weight than the proposition .....pJ submiued by playerJ.

97



Scenario 3:

First, playerl submits pl--+O.7p2--+1p3--+1p4. Since this is the fin:1 sequence, it is accepted.

And Table 4.9 lists the resulting recon:t sets:

Table 4.9: Recording Playerl's Sequence-Scenario 3

Proposition Name ProofSequenc:e Sequence Weight

Playerl PI

p2 pl-+p2 0.7

0.7p3 pl--+p2--+p3

f-------+p4""7-~- ---- ~~-P-2'-....·-P3O-....-p4..,--+c0"'.7,----I

Player2

PlayerJ

Next, player2 submits two sequences: pS--+o"p3 and pS--+Ip4. Because

propositions in the submitted sequences, i.e., p3, p4, and pS, do DOl conflict to any

proposition io the record sets, both sequences are accepted. As a result, the corresponding

information is recorded in Table 4.10:

98



Table 4.10: Recording Player2's Sequence-Scenario 3

Player!

Playcr2

Finally, player3 tries to submil p6-+'-,p3. Proposition -.p3 causes conflICts

because there are already two entries of p3 in the log. Based on Iine4-16,

CompareFlag(-,p3) is WIN in that the sequence weight for -,p3 is I which is bigher than

any sequence weight of p3 in the log. In addition, p6 conflicts to both p2 and p3 in the

record sets. CompareFlag(p6) is WIN because p6 is proved directly and has tbe full

weight of I. Therefore, the submitted sequence is accepted and added into Table 4.11:

99



Table 4.11: Recording PlayerJ's Sequence - Scenario 3

Proposition Name ProofSequence Sequence Weigh1

Playerl pI

p2 pl-+p2 0.7

p3 pl-+p2-+p3 0.7

p4 p1-+p2-+p3-+p4 0.7

Player2 p5

1--
p3 p5-+p3 0.9

p5

p4 p5-+p4

PlayerJ p6

f--..
~p3 p6-+-.p3

Then, all conflicting propositions and those affec1ed proposition entries are

removed 10 mainrain the integrity of the log rable. According to li0e45-50 of the

algorithm, all conflic1ing proposition entries are removed. Panicularly, the entry ofp2 in

playerl's record set and the two entries of p3 in both record sets of player! and player2

are removed, as shown in Table4.12:

100



Table 4.12: Removing Entries of p2 and p3 - Scenario 3

Proposition Name Proof Sequence Sequence Weight

Playerl pi

p4 Pl-.p2-.p3-.p4 0.7

Player2 p5

p5

p4 pS-.p4

Player3 pO '1----

~pJ p6-.....,p3
____.._ L......-.__

Table 4.13: Final Record Sets of Scenario 3

Proposition Name

Playcrl pi

Player2 p5

p5

p4

Player3 pO

~pJ

pS-.+p4

101



Also, all the entries whose corresponding proof sequences contain p2 and/or p3.

i.e., affected proposition entries, are removed based on Iine5l-56. So. the entry ofp4 in

player! 's record set is removed since its corresponding proof sequence contains p2 and

p3. The resulting Table 4.13 is therefore non-conflicting, i.e., there is no conflict left

among proved propositions.

An interesting point afthis example is that there is still an entry ofp4 in player2's

record set finally. This entry is not removed because it does not incur any problem,

although another entry of p4 has been removed from player! 's record set as all affected

proposition entry, i.e., its proof sequence contains p2 and p3. Thereforc, it is clear that

some entries of an affected, proposition may be left in the record sets. Entries of affected

propositions are different from entries of conflicting proposition:; because the latter

should be removed completely.

An OBI Scenario:

We have discussed in previous sections that the weak rule 'payment authority sent credit

confinnation to selling organization' ---'" 'selling organization sent good delivery to buying

organi7..3tion' is useful for players to prove propositions. However, since it is a weak rule,

some player may misuse it. That is, some player may try 10 use the rule to prove the

proposition 'selling organization sent good delivery to buying organization' even when

the proposition is false. In this case, the misuse of this weak rule may cause conflicts. In

this scenario, we give such an example and show how the wounding algorithm can

102



remove the conflict and help the arbiter reach a correct decision. The corresponding OBI

protocol tree is in Figure 4.4 and the benefit selS are in Table 4.1.

After the lranSaetion reaches node IOC, selling organization makes a bad delivery

to buying organization. Consequently, buying organization initiates a dispute. The

complaint is 'selling organization made a bad delivery to us' and the request is 'selling

organization provide an .:xchange for good goods', Then, software arbiter requests

playeR to prove their benefit set: propositions.

First, selling organization submits the mle 'payment authority sent credit

confirmation to selling organizatlon·....,.o.525S4. Selling organization chooses this mle

because it can prove 'payment authority sent credit confinnation to selling organization'

hy showing the credit confirmation it holds. This is a weak rule, but its weight 0.525 is

above the acccptanc~ criterion, which is supposed to be 0.51 iT, the !>ySU:'ll. So, the proof.

is accepted. Let p be 'payment authority sent credit confirmation to selling organization',

then the corresponding information is added into Table 4.14. After this, selling

organization submits another proof sequence p-+0",~-+lS5. The sequence has a weight

of 0.525, which is acceptable, too. Hence, the proof is also accepted and the resulting

record sets are listed in Table 4.14:

103



Table 4.14: Recording Selling Organization's Sequences

Proposition Name Proof Sequence Sequence Weight

Selling Organization p

84 p----JoS4 0.525

r-----

84 p-J'S4 0.525

85 p----JoS4----JoS5 0.525

~ying Organization

Payment Authority

'-------'------------------'------'

Next, buying urganization prove~ 85 directly by showing the bad product received

from selling organization. Once 85 is proved, -buying organization further submits the

following three full-weight rules: 85-4 IBI, 85--;lolB3. and 85-;loIB4. Consequently, the

record sets are updated as shown in Table 4.15.

At this point, the arbiter finds there are some conflicts in the record sets. That is,

85 conflicts to both 54 and 85. The arbiter therefore executes thc Wound & Remove

algorithm to eliminate conflicts. From Table 4.15, 135 has a sequence weight of 1, while

both 54 and 55 have the sequence weight of 0.525. Therefore, the sequence weight of 85

is higher than that of either S4 or $5. Hence, 85 wounds and removes both S4 and 55.

104



Table 4.15: Recording Buying Organization's Sequences

Proposition Name ProofSequence Sequence Weight

Selling Organization p

54 p-+S4 0.525

54 p-+S4 0.525

55 p-+S4-+S5 0.525

Buying Organization B5

BI B5-+Bl J

---------'B",----- Bs::.iJ-'-----~----

~---~---..-B5~- ~~--

~y-m-'-"'-CA-UI,,-hO-,ic-ty--j-;-,----,---+-----I------

____--L__

In players' record sets, all entries of S4 and S5 and all affected entries whose

corresponding proof sequences contain either S4 or S5, arc removed. The arbiter sends a

notification to selling organization, asking it to re-prove its benefit set propositions.

Selling organization, however, is not able to do the re-proof. The updated infonnation is

shown in Table 4.16:

105



Table 4.16: Removing Entries of $4 and 85

Proposition Name Proof Sequence

Selling Organization p

Buying Organization 85

-- 81 B5-tBI

83 B5-tB3

84 BS-tB4

Payment Authority

Sequence Weight

'-- 1--._---- '--__--'

Finally, for payment authority, its benefit set proposition 112 is just the proposition

p that has been proved'by. selling orga'1ization. So. there is no need tor payment authority

to prove P2 again. Also, because P3 equals 83. N equals 84, and PS equals BS, there- is

no need to prove P3, N, and P5, either.

Therefore, the accepted proof results are: 81,83, 84, 85, P2, P3, P4, and P5.

Based on these proved propositions, software arbiter executes the decision generation

algorithm. Software arbiter finds no problem to construct the complete transaction state

represented by letter D, which does not preserve atomicity. Therefore, software arbiter

honors bUYlOg organization's request because the request reinstalls atomicity.

106



As illustrated by the OBI scenario above, the Wound & Remove algorithm plays a

significant role in handling disputes. Although selling organization misuses a weak rule

and causes conflicts, the algorithm helps software arbiter detect the problem and resolve

the inconsistcncy among propositions. The wounding algorithm is indispensable for our

arbiter architecture.

107



Chapter 5

A Prototype Implementation

In this section, we discu~s some is.<;ues related to the implementation of a prototype

system that is currently under development. The prototype iOlplemenMion shows how the

proposed architecture can be realized hased on the client-ser"er mood

5.1 The 3-Tier Client-server Model

The reference model of 3-lier client-server systems is composed of a set of clients, an

application server and a data server [29]. Clients send service requests to the application

server, which consists of application programs providing core business logic. If some

requests demand accessing persistent data information, the application server then

communicates with a data server, where permanent data reside.

109



Clients are usually Graphical User Interfaces (GU!), through which inputs and

outputs can be conveniently presented. That is, system users submit their requests and

view execution results through the client laycr of the model. The application server is a

repository of application programs, each of which deals with a particular category of

client requests by executing its inherent application logic. If application programs are

modeled and developed according to the object-oriented paradigm, the application server

can be viewed as an object request broker. The requested services and functions are

implemented by various service objects. Each object cncapsulates its own application

logic and has methods that can be invoked by other objects to provide various service

functions. The application server, however, does not contain pennanent data that could

survive program execution bounuaries. Hence, a data server is required to store long-tenn

data items. The mo"t notable fonn of ll. dat;;, server is probably a database system, which

renders the access and maintenance of persistent data possible.

5.2 The Prototype Implementation

On the basis of the above reference model, our prototype system implements the

architecture by mapping conceptual architecture components into their corresponding

tiers in the 3-tier client-server model. Clients of the arbiter architecture are grouped into

the client tier of the model. Software arbiter, rule base server and protocol tree server lie

109



in the tier of application server. The back-end database system storing persistent

information such as the protocol tree and benefit sets represents the tier of data server.

Clients of the arbiter prototype interact with the application server, e.g., software

arbiter and rule base server, requesting services related to dispute handling. All services

provided by the application server are encapsulated into service ohjects. That is, various

arbitration strategies and algorithms, such as the heuristic search method and the decision

generation algorithm, are realized as different kinds of application logic provided by

service objects. Each object has a set of methods that can be invoked by either clients or

other objects. Each method of the object corresponds to a particular service required hy

the nonnal functioning of the prototype. For instance, the findRules(char proposition)

method of RuleBaseServer object provides the func-tion of searching rules for the given

proposition passed as the _parameter' of the method. Therdore, method invocations 011

service objects enable the arbiter architecture to handle disputes by providing related

functions.

Whenever necessary, the service objects on the application server may in tum

interact with the data server, i.e., the database system that stores the protocol tree

structure and benefit sets, to retrieve requested information. As an example,

ProtocolTrccScrver object may access the back-end database and retrieve the benefit set

of a particular player identified by playcrID through its retricvcBcncfitSet(int playerID)

method.

110



5.3 Some Implementation Details

In our implementation, clients of tbe arbIter system are coded as Java applets. The

interactions between clients and the application server are achieved through Java Remote

Method Invocation (RMI) [II]. That is, the application server is developed as an RMI

remote object server and c1iem applels communicate with the server via mechanisms

provided by Java RMl. If necessary. the server objects on the application server may

access the data server, i.e., the database system, through JDBC [10).

~o Our Online Ar.bit
~or E-e~rce Di"pue.

Figure 5.1: A Snap Shot from the Implementation

III



The client applets are downloaded through common wcb browsers only when

users need them. Figure 5.1 shows a Java applet interface, through which players are able

to initiate a dispute. Therefore, there is no need to install software packages at the client

side, thus simplifying system distribution and improving mobility of computing. In

addition, maintenance of server objects becomes easy since it can be achieved on the

server transparently with regard to clients. lava applets enable efficient information

transmission between clients and the server because reereating or reloading entire web

pages can be avoided.

Arbitration services are encapsulated as server objects whose methods can be

illvoked through RMl. So, the server is a reposit("lry of objects. We have applied thp.

Factory Pattern introduced in [8] to organize thes.-: objects. That is, among all objeets,

thert: exist:.; a main object, i.e., BrukerServer, in charge of controlling the: creation of

and/or access to other objects, such as SoftwareArbiter, RuleBaseServer. and

ProtocolTreeServer, which provide corresponding functions of SoftwareArbiter, Rule

Base Server, and Protocol Tree Server, respectively (coding details in Appendix A).

When some arbitration functions are desired, the client applets first locate the main

object, i.e., the abstract factory, through the RMI naming service. Then, various other

objects can be reached via this abstract factory object. rf some services require the access

to the back-end database system, they can do that through the interface provided by JDSe

data access APls.

112



H.a., ....... ,... ......

~

Submit Rule (

'1r"I¥'I'ii3&

Figure 5.2: An Example ofClient Applets

For example, look at the client applet in Figure 5.2, which is used to define

mC'isage sequences during the prolocol tree building process. When the button "Add the

Sequence to Database" is clicked (see codes in Appendix A), the applet first looks up the

RMI registry and finds the main server object - BrokerServer, whose reference is then

stored. Next, by calling the getProtocolTreeServerQ method of BrokerServer, the applet

can also acquire the reference to ProtocolTreeServer object. Finally, by invoking the

insertMessageSequences(String sequence} method of ProtocolTreeServer object, the

113



applet finishes insening the message sequence into back-end database. ThaI is, the

following java statement obj.getProtocoITreeServer().insertMessageSequences(sequenee)

provides the service of insening a message sequence into database.

Similarly, if the button "Generate Protocol Tree" is clicked, the related Java

statement obj.geIProtocoITreeServer().generateTreeO should be executed, which can

build the protocol tree on the server.

Because our prototype implementation is developed entirely based on Java-related

techniques. it is truly platfonn-independent. The system is also web-enabled and thus can

provide dispute handling services conveniently to EC players in diverse geographical

areas. This is helpful since EC players are usually locared in different areas and conduct

business activities only through electronic means, The objecl-oriemt:d approach adopled

in the implementatiurJal.,o make's it easy to upgrade the system .Ising olher .high-

perfonnance alternatives, e.g., the Common Object Requesl Rroker Architecture

(CORBA) [25].

114



Chapter 6

Conclusion and Future Work

We believe the topic of handling EC ~isputes is important and deserves yet morc

investigation. Due to tbe nature of EC, we think it is a promising altemative 10 handling

EC dispntes ofl-court ami with ,the 1.ssislance of ~omputer systems. J-Ience, in this thesis.

we propose an architecture for handling EC disputes. We also describe a prototype

implementation to show the architecture applicable.

We first introduce some preliminaries that are the basis of OUf architecture. This

includes EC transactions and their important property - atomicity, transaction protocols

and their tree representations, benefit sets, and the software aod human arbiters. We then

propose a three-tier architecture, which consists of clients, application server and back­

end database setver. We show how various components can function in an orchestrated

manner under such an architecture.

115



Because proving benefit set propositions is critical for the dispute handling process,

we show how the nOlion ofmles can be applied to assist playeTh in proving propositions.

Our focus is on rules being practically acceptable, rather than being theoretically sound,

which we believe are the more realistic choices in applications. Since an these rules are

not equally reliable, a measure for their reliability is essential. To this end. we introduce

the concept of rule weight that reflects the reliability degree of a rule. The algorithm for

rule weight calculation renders evaluating various rules possible. The application of weak

rules, i.e., rules that do not have full weights. makes it possible to prove propositions that

would be impossible should only full-weight rules be used. A price to be paid for such a

.flexibility is that some conflicts may arise. Therefcre, we design the wound & remove

algorithm to cope with conflicts.

In order tc iJlusuate the arbiter atchitecture, we develop a prototype

implementation for the architecture. The implementation is based on 3-tier client-server

model and applies Java-related techniques. Functions of the arbiter architecture are

realized as web services that can be easily accessed by EC players. Though the

implementation is still under development, it has already shown that our architecture is

feasible.

Some work deserves further study. We indicate a few in the following.

116



Extending the EC Protocol Model

We choose to use a simple EC protocol model introduced in section 3.3.1 because it is

ca<;icr and clearer to present our basic ideas with such a model. However, practical

di3PUlCS can be very complicated. For instance, some disputes, e.g., "the merchant did not

send good goods to us before Jan. 15," may involve temporal aspects. Others may be

about '"%15 discount for club members", "free shipment within Canada", etc. These types

of disputes are interesting to explore. Even within the simple model used, some complex

properties, such as digital signatures and certificates usually seen in EC protocols, have

not been considered. Moreover, the "good" and "bad" properties as high-level

abstractions hidc many details of real world situa'iions. F'or instance, the bad delivery can

have many foons, such as insufficient quantity, milising palts, abnonnal product operation,

etc. In order to haudle real world disputes, these details should be considered. It is

interesting to extend the currently adopted protocol model to a more complex and

practical one. Consequently, new issues may arise and more work is needed.

Different Scheme of Rule Weight Calculation

In this thesis, rule search and rule weight calculation are accomplished during thc

initialization stage of rule base server. We adopt this strategy mainly in consideration of

system pcrfonnance. Applying the predefined rules and rule weights (static calculation)

can provide quick response time to players. However, this is not the most accurate since

117



proving propositions is a dynamic process where the set of proved propositions changes

frequently. So far as accuracy is concerned, calculating rule weights dynamically, i.e.,

detennining rule weights based on the "current" set of true propositions, is also an

alternative worth more research. More work is needed to tackle the problem of

perfonnance degrading. Also, it may be interesting to design a hybrid mechanism that can

take advantage of both static and dynamic calculations.

Practical Limitations ofthe Architecture

This thesis proposes an architecture that provides (semi.)automated dispute handling.

Although it has been shown that the: 'architecture is feasible with the presence of a

prototype implementation, there exist some pmctical lill'itations, which may impede the

immediate adoption of this system in reality.

First 01 all, legal issues are hard to deal with. h's clear that dispute lcsolutions

should be backed by a legal framework that serves as an authority in making decisions

such as whether the electronic evidence used is legally acceptable or not, whether the

dispute handling process is followed faithfully and correctly or not, etc. This legal

flamework should be valid, regardless of jurisdictions in which EC participants may

reside, However, at the current stage, it is not practical to find a unified, cross-border

legal framework which may be entitled to apply our dispute handling system with

118



appropriate legal effects. Therefore, currently, the proposed architecture may serve better

as an estimation system helping EC participants predict possible resolutions for disputes.

Next, human factors may impede the use of our system for dispute resolution. One

important principle of our dispute handling architecture is the notion of benefit set which

assumes that players would not refuse to prove propositions as long as the proving docs

not compromise hislher interests. Yet, in reality, players may not be cooperative in

proving benefit set propositions cven if the proving does not hann them. They may have

excuses such as 'We are too busy to do the proof. More research efforts are needed to

address those problems.

119



Bibliography

[1] Nabil R, Adam, Oktay Dogramaci. Aryya Gangopadhyay and Ye!ena Yesha.

"Electronic Commerce: Technical, Business, and Legal Issues". Prentice Hall,

Upper Saddle River, NJ, 1999.

(2} N. R. Adam and Y. Yesha, et 011. "Electronic Commerce and Digital Libraries:

towards '1 Digital Agora", ACM Computing Surveys, 28(4), De,,:clllber 199(j.

[3J American Arbitration Association. Available at URL: http://www.adr.org.

[4] N. Asokan, E. Hcrrwcghcn and M. Steiner. wfowards a Framework for Handling

Disputes in Payment Systems", Proceedings of 3rd USENIX Workshop on

Electronic Commerce, 1998.

[5] M. SellaTe, J. A. Garay, R. Hauser, A. Herzberg, H. Krawczyk, M. Steiner, G.

Tsudik, E. Van Hcrrcweghen. and M. Waidner. "Design, Implementation and

Deployment of iKP - A Secure ACcoWlt-based Electronic Payment System".

Technical Report 3137, IBM Zurich Laboratory, 1999. Available at URL:

http://www.zurich.ibm.comlpublications.

\20



[6] B. Cox, 1. D. Tygar, and M. Sirbu. "NetBill Security and Transaction Protocol".

Proceedings of tbe First USENIX Workshop in Electronic Commerce, pp 77-88,

July 1995.

[7] Forrester Research. Availab[e at URL: http;/Iwww.forrester.com.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. "Design Patterns:

Elements of Reusable Object-Oriented Software". Addison-Wesley, [995.

[9] J. Gary and A. Reuter. "Transactions Processing; Techniques and Concepts".

Morgan Kaufmann, San Mateo, CA, 1994.

[10] JAYA JOBC 2.0 API Documentation. Sun Microsystems, Inc., available at URL:

http://java.sun.eom/j2sell.3/docslguideljdbc/index.html,2000.

[11] Java Remote Method Invocation Specification, Yersion 1.3. Sun Microsystems, Inc.,

http://j.lVa.sull.conV-j2sell.3/docsiguideinuilspeclmliTOC.html, 2000.

[12] R. Ka[kola and A. B. Whinston. "Frontiers of Electronic Commerce". Addison-

Wesley, [996.

[13] S. Kimbrough and R. Lee. "Fonnal Aspects of Electronic Commerce; Research

Issues and Challenges". lntemational Journal of Electronic Commerce, Yol. I, No.4,

pp 11.30, 1997.

[14] Gerard Lacoste, Birgit Pfitzmann, Michael Steiner, and Michael Waidner (Eds.).

"SEMPER - Secure Electronic Marketplace for Europe". Lecture Notes in

Computer Science (LNCS), Volume 1854, Springer-Verlag, Berlin Heidelberg, 2000.

121



{IS] L. Loeb. "Secure Electronic Transactions: Introduction and Technical Reference".

Artech House Publishers, 1998.

[16] N. Lynch and M. Merritt and W. Weihl and A. Fekete. "Atomic Transactions".

Morgan Kaufmann, San Mateo, CA, 1994.

[17] Paul May. "The Business of Ecommerce: from corporate strategy to technology".

Cambridge University Press, New York, New York, 2000.

[18] Online Dispute Resolution. Available at URL: http://www.odmews.comlwhatis.htm.

[19] Indrakshi Ray and lndrajit Ray. "An Optimistic Fair Exchange E-commerce

Protocol with Automated Dispute Rcsolution". Procccdings of EC-Web 2000,

London, UK, Scp. 4-6, Lecture Notes in Computer Science 1875, Springer-Verlag,

2000.

[201 Release V2.1. Open Buying 01! the Int,:rnet (OBI) Technical Specifications. The

Open Buying on the Internet (OBI) Consortium, hnp:/lwww.opcnbuy.org, 1999.

[21] H. Schuldt, A. Popovici and H. 1. Schek. "Execurion Guarantees in Electronic

Commerce". Proceedings of the 8th International Workshop on Foundations of

Models and Languages for Data and Objects: Transactions and Database Dynamics

(TDD'99), pp 193~202, Schloss Dagstuhl, Gennany, September 1999. Lecture Notes

in Computer Science (LNCS), Volume 1773, Springer-Verlag.

[22] Lei Tang. "A Set of Protocols for Micropayments in Distributed Systems".

Proceedings of the First USENIX Workshop on Electronic Commerce, New York,

New York, July 1995.

122



[23] Jian Tang and Jari Vcijalaincn. "A Framework for E-commerce Transaction

Protocols that Suppon Atomicity Based Dispute Handling". Proceedings of the 3rd

International Conference on Telecommunications and Electronic Commerce, Nov.

2000.

[24] Jian Tang, Ada Waichee Fu. "Secure E-commerce Transactions, Modeling and

Some System Suppon Aspects". Proceedings of thc 9th IFIP 2.6 Working

Conference on Database Semantics, pp 61-75, Hong Kong, April 2001.

[25] The Common Object Request Broker: Architecture and Specification, Revision 2.4.2.

Object Managcment Group, http://www.omg.org,2001.

[26] J. D. Tygar. "Atomicity in Elecrronic (:ommen.:e". Proceedings of the 15th Annual

ACM Symposium on PrincilJles of Distributed Computing, pages 8-26, Philadelphia,

PA, May 1996. ACM Press.

[27] 1. D. Tygar. "Atomicity versus Anonymity· Distributed Transaction Electronic

Commerce". Proceedings of the 24th VLDB Conference, 1998.

[28] 1. Veijalainen. "Transactions in Mobile Electronic Commerce". Proceedings of the

8th International Workshop on Foundations of Models and Languages for Data and

Objects: Transactions and Database Dynamics (TDD'99), pp 208-229. Schloss

Dagstuhl, Gennany, September 1999. Lecture Notes in Computer Science (LNCS),

Volume 1773, Springer-Verlag.

{29] Gottfried Vossen, Gerhard Weikum, and Jim Gray (Editor). "fundamentals of

Transactional Infonnation Systems: Theory, Algorithms, and Practice of

123



ConCUJTmCy Control and Recovery"'. San Francisco. CA. Morgan Kaufmann

Publishers. 2001.

124



Appendix A

Implementation Code Examples

The followiDg code defines the remote interfac~ of the main object, i.e"

Bl'okerServcr, OfOUf arbiter servo:r.

package sembj;

importjava,rmLRemote;

importjava.rmi.RemoleExceprion;

public interface BrokerServer extends Remote {

SoftwareArbiter getSoftwareArbiterO throws RemoteException;

/1 Get an instance a/Software Arbiter Object

RlileBaseServer getRuleBaseServerO throws RemoteException;

/1 Get an instance ofRule Base Server Object

Proloco/TreeServer gelProtocolTreeServerO throws RemoteExceplion;

125



II Get an instance ofProtocol Tree Server Object

Through the remote methods of getSoftwareArbiter(), getRu!eBaseServerO, and

getProtocolTrecScrver(), clients are able to get instances of server objects and then

invoke the desired functions provided by various methods of those objects.

Here is the remote object implementation that implements the main object, i.e.,

BrokerServer.

package serobj:

impurtjava.rmi.Naming:

importjam.rmi RemoleException;

import java.nni.server. UI/icastRemoteObject;

importjavo.rmi.RMISecuriryManager;

public class BrokerServerlmp extel/ds UnicastRemoteObject

implements BrokerServer {

public BrokerServerlmpO throws RemoleExceptiol/ {

superO:

public SoftworeArbiter getSojrwareArbiterO throws RemoleException {

SoftwareArbilerlmp sojrworeArbilerObj = new SofrwareArbilerlmpO;

126



return softwareArbiterObj;

pllblic RuleBaseServer gelRuleBaseServerO throws RemoteExceplion {

RuleBa~eServerlmp ruleBaseSeverObj '" new RuleBaseServerlmpO;

return ruleBaseServerObj;

public PrOlocolTreeServer gelProlocolTreeServerO throws RemoteExceplion (

ProlocolTreeServer/mp ProtocolTreeServerObj = new ProtocoITreeServer/mpO;

relurn ProtocolTreeServerObj;

public sliltic void main(Slrillg argsf}) {

II Creale and in:;lall (I s.~eurilymanager

if(System.getSecurilyManagerO =-= null) (

System.setSecurityManager(new RMlSecurityManagerO);

try!

ClassjorName("org.gjl.mm.mysqI.Driver'').newlnstanceO;

/1 Load Ihe database driver since some server objects

1/ may need to access the backend database

System.ollt.println("Database driver loaded. .. ');

try!

127



BrokerServerlmp serob} = new BrokerServerlmpO;

II Bind this object instance to the "Service-Broker-Server"

II The RMf registry name ofour main

II server object is: &rvice-Broker-Server

Naming.rebind("Service-Broker-Server", serobj):

/iAfler this RMJ registry name binding, Service-Broker-Server

II can be located by clients later

System.out.println('E-Commerce Arbitration Server in Service!");

} catch (Exception e) (

Sy.wem.out.println("BrokerServerlmp err: "+ e.getMessageD);

eprintStackTraceO:

} catch (Exception £) {

System.err.println("Unable to load database driver... J;

e.printStackTraceO;

128



In the following, we present some representative APls defined in the remote

interfaces of core server objects, namely, SoftwareArbiter, RuleBaseServer, and

ProtocolTreeServer.

public interface SoftwareArbiter extends Remott: {

RuleBaseServer getRuleBaseServer() throws RemoteException;

II Get an instance ofRule Base Server Object

ProtocolTreeServcr getProtocoITreeServer() throws RemoteException;

II Get an instance ofProtocol Tree Server Object

String submitComplaint(String complaint, int transfD) throws RemoteException;

II Submit the complaint statement and save it in database

String submitRequest(String rel.luest, 1111 transID) throws RemoteExceprion;

IISubmit the request statement and save it in databa.~e

String submitDirect(String[J proofResults, int playerlD) throws RemOleException;

II Submit the proofresuft~Iorbenefit set propositions ofa player

II The proofresults are done directly without applications ofroles

String submiIRulc(String[] proofSequences, int playerlD) throws RemotcException;

II Submit the proofresults for benefit set propositions ofa player

II 71le proofresults are done via applications ofrules

String woundRemove(String[] proofSequences) throws RcmoteException;

II The H-'Ound and remove algorithm used to handle conflicts

129



String insertRecordSetEntry(StringlJ entry, int playerlD) throws RcmoteException;

II Insert a record set entry into the log

String[] checkConflictsO throws RemoteExccption;

II Check whether or not there are some conflicts in the record sets

String removeRecordSetEntry(int entryID, int playerID) throws RemolcException;

II Remove the record set entry identified by entrylD

String gencratcDecision(String[] proofResults) throws RcmotcExccption;

II The decision generation algorithm

String notitYHumanArbiter(String notification) tbrows RemoteException;

II NotifY human arbiter askingfor assistance

String login(Slring user, String pwd) throws RemoteException;

II Check login information/or a user:

public interface RuleBaseServer extends Remote {

SoftwareArbiter getSoftwareArbiter() throws RemoteException;

II Get an instance ofSoftware Arbiter Object

PrOiocolTreeServer getProtocoITreeServer() throws RemoteException;

II Get an instance ofProtocol Tree Server Object

String[] findRules(char proposition) throws RemoteException;

II Find applicable rules for a proposition

String beuristicScarchO throws RemoteException;

130



II Heuristic search algorithm which generates rules

double calculatcEdgcPro(String(] edge) throws RemoteException;

II Calculate the edge probability ofall edge in the protocol tree

double calculatePathPro(String[] path) throws RcmoteException;

II Calculate the palh probability ofa path ill the protocol tree

double caJculateRuleWeight(String[] rule) throws RemoteException;

II Rule weight calculation algorithm

SIring login(String user, String pwd) throws RemoteException;

II Check login information for a user

public interface ProtocolTreeServer extends Re.mote {

SoftwareArbiler getSoflwareArbiterQ throws RemotcExccplion;

II Get an inslance ofSoftware Arbiter Object

RuleBaseServer gelRuleBaseServer() throws RemoteExceplion;

II Get an instance ofRule Base Server Object

String executeSql(String sql) throws RemoteException;

II Submit 1I SQL statemenllO the database for execution

II The SQL statement cannot be a select type

String insertPlaycrSet(String player) throws RemoteException;

II Insert a player into Ihe player set lable

String insertConlcntSet(String contentltem) throws RemoteException;

131



II fnsert an item into the content set table

String insertPropertySet(String attributeltem) throws RemoteException;

II/nsert an attribute into the property set table

String inscrtMessages(String message) throws RemoteException;

II fn~ert a me.~sage into the message table

String insertMessageSequences(String sequence) throws RemoteException;

II fn~erl a sequence into the message sequence table

String[] selectPlayerSetO throws RemoteException;

II Retrieve the player set

String[] se!ectContentSetO throws RemoteException:

II Retrieve the content set

String[] se1ectPropertySetO throws RemoteException;

II Retrieve the pfoperty .~et

String gcnerateTreeO throws RemotcExccption;

II Genearte the protocol tree strncture and save it in database

String constructBenefitSetO throws RemoleException;

II Construct players' benefit sets based on the protocol tree

String[] retrieveBenefitSet(int playerID) throws RemoteExccplion;

II Retrieve a player's benefit set

String login(String user, String pwd) throws RemoteException;

II Check login information for a user

IJ2



The following codes are execUied to store the sequence input by users into the

corresponding database table.

String sequcnce=jTex/Field_Sequence.getTextO;

try!

)TextArea_Stalus.append("Contacting the server... j;

BrokerServcr obi = (BrokerServcr)Naming.1ookup("II' +getCodeBaseO.getHostO +

"IService-Broker·Server 'j;

II Look up the RMJ registry andfind the main server object: Service·Broker-Server

message = obj.getProtocoITreeServer().insertMessageSequences(sequence);

II Invoke the insertMessageSequences(String sequence) method of

II ProtocolTreeServer object which can be located through BrokerServer

)TextArea_Status.append(message);

II Display in the status bar the message 0/execution results returned/rom the server

} catch (Exception ex) (

)TextArca_Status.append("\nService-Broker-Server occess exception: "

+ ex.getMessage());

ex.printStackTraceO;

II Handle exceptions

133



As listed previously, the method insertMessageSequences(String sequence) of

Protoco!TreeSelVer object inserts the message sequence that is passed as the parameter

into the corresponding database table, therefore, the Java statement in the above code

obj.getProtocoITreeSelVerQ.insertMessageSequences(sequence) can insert the message

sequence submitted by users into database.

Since the insertMessageSequences(String sequence) method needs to access the

database, codes in the method apply JDBC APls.

public String insertMcssageSequences(String sequence) (

String message:

message"""·

uy{

Connection Conn = DriverManager,getCol/nection(

'jdbc:mysql:/lheronlecdota?user=ecmun&password=ec I I I ");

II Create the database cOl/nection according to JDBC driver requirements

II In our implementation, the database is MySql, version 3.21

System,olltprintln("Connection established!");

try!

Statement Stmt = Conn.createStatementO:

134



String sqlStatement= "insert into Sequences values ('" + sequence + "J~;

II Format the SQL statement, which does the insertion ofsequence

Stmt.executeQuery(sqIStatement);

II Execute the SQL statement in the database

Stmt.closeO;

Conn.closeO;

return message+ "Sequence insertion OK.

} catch (SQLException E) (

II Handle exceptions

System.out.println("SQLException: " +E.gctMessageO);

System.ofll.println("SQLStatc: " + E.getSQI,stateO);

System.oUf.println("VendorError: "+ E.getErrorCodeO);

Jcatch (SQLExcepfion E) (

II Handle exceptions

System,outprinrln("SQLException: "+ E.getMessageO);

Syslem.olllprinlln("SQLSlate· "+ E.geISQLStateO);

Syslem.ollt.pri"tl,,("VendorError: "+ E.getErrorCodeO);

return message+ "Sequence insertion failed! ";

135










	0001_Cover
	0002_Inside Cover
	0004_Blank Page
	0005_Blank Page
	0006_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents v
	0012_Table of Contents vi
	0013_List of Tables
	0014_List of Tables viii
	0015_List of Figures
	0016_Chapter 1 - Page 1
	0017_Page 2
	0018_Page 3
	0019_Page 4
	0020_Page 5
	0021_Page 6
	0022_Page 7
	0023_Page 8
	0024_Chapter 2 - Page 9
	0025_Page 10
	0026_Page 11
	0027_Page 12
	0028_Page 13
	0029_Page 14
	0030_Page 15
	0031_Page 16
	0032_Page 17
	0033_Page 18
	0034_Page 19
	0035_Page 20
	0036_Page 21
	0037_Page 22
	0038_Page 23
	0039_Page 24
	0040_Page 25
	0041_Page 26
	0042_Chapter 3 - Page 27
	0043_Page 28
	0044_Page 29
	0045_Page 30
	0046_Page 31
	0047_Page 32
	0048_Page 33
	0049_Page 34
	0050_Page 35
	0051_Page 36
	0052_Page 37
	0053_Page 38
	0054_Page 39
	0055_Page 40
	0056_Page 41
	0057_Page 42
	0058_Page 43
	0059_Chapter 4 - Page 44
	0060_Page 45
	0061_Page 46
	0062_Page 47
	0063_Page 48
	0064_Page 49
	0065_Page 50
	0066_Page 51
	0067_Page 52
	0068_Page 53
	0069_Page 54
	0070_Page 55
	0071_Page 56
	0072_Page 57
	0073_Page 58
	0074_Page 59
	0075_Page 60
	0076_Page 61
	0077_Page 62
	0078_Page 63
	0079_Page 64
	0080_Page 65
	0081_Page 66
	0082_Page 67
	0083_Page 68
	0084_Page 69
	0085_Page 70
	0086_Page 71
	0087_Page 72
	0088_Page 73
	0089_Page 74
	0090_Page 75
	0091_Page 76
	0092_Page 77
	0093_Page 78
	0094_Page 79
	0095_Page 80
	0096_Page 81
	0097_Page 82
	0098_Page 83
	0099_Page 84
	0100_Page 85
	0101_Page 86
	0102_Page 87
	0103_Page 88
	0104_Page 89
	0105_Page 90
	0106_Page 91
	0107_Page 92
	0108_Page 93
	0109_Page 94
	0110_Page 95
	0111_Page 96
	0112_Page 97
	0113_Page 98
	0114_Page 99
	0115_Page 100
	0116_Page 101
	0117_Page 102
	0118_Page 103
	0119_Page 104
	0120_Page 105
	0121_Page 106
	0122_Page 107
	0123_Chapter 5 - Page 108
	0124_Page 109
	0125_Page 110
	0126_Page 111
	0127_Page 112
	0128_Page 113
	0129_Page 114
	0130_Chapter 6 - Page 115
	0131_Page 116
	0132_Page 117
	0133_Page 118
	0134_Page 119
	0135_Bibliography
	0136_Page 121
	0137_Page 122
	0138_Page 123
	0139_Page 124
	0140_Appendix A
	0141_Page 126
	0142_Page 127
	0143_Page 128
	0144_Page 129
	0145_Page 130
	0146_Page 131
	0147_Page 132
	0148_Page 133
	0149_Page 134
	0150_Page 135
	0151_Blank Page
	0152_Blank Page
	0153_Inside Back Cover
	0154_Back Cover

