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Abstract 

The main objective of this research is to study the performance of distributed 

solvers for large sparse systems of linear equations. The relationship between the 

speedup and the number of processors is the main characteristic of distributed 

computing for this study. 

Systems of linear equations can be solved using either direct or iterative meth

ods. For large and sparse systems of equations, iterative methods are often more 

attractive than direct methods. In distributed implementations of iterative solvers, 

the number of operations are equally divided among the available processors with 

the intention that all the sections are processed concurrently (i.e., by different pro

cessors). 

The iterative approach repeats the following sequence of steps until the re

quired convergence condition is satisfied: 

1. distribute the current approximation to all the processors, 

2. determine a new approximation to the solution, 

3. collect parts of the new approximation and check the convergence condi

tions. 

The implementation is based on the message passing paradigm, which is used 

widely on certain classes of multiprocessor machines, especially systems with dis

tributed memory. 

It is expected that this study will determine the optimal number of processors 

for distributed linear solvers. 
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Chapter 1 

Introduction 

It is believed that the performance of processors, that has been doubling every 

eighteen months (the so called Moore's law [21]), will be improving more slowly 

in the coming years as the shrinking dimensions of basic electronic elements are 

approaching their physical limits [21]. Therefore, further significant improvements 

of computational performance are expected by using parallel and distributed com

puting [21] rather than more powerful uniprocessors. Also current computer tech

nology favors multiprocessor systems because they are more economical [14]. On 

one hand, research concentrates on multiprocessor systems implemented on a sin

gle chip [10], on the other -an increasing number of large scale applications is 

migrating to distributed systems, with SETI@home [3] and Climate Prediction [2] 

projects as just two more popular examples. 

Distributed systems can have many different forms which include clusters of 

workstations (COW) and networks of workstations (NOW) [1]. Such systems are 

often considered as less expensive and more easily available alternatives to paral-



lel systems [30]. A recent survey of most powerful supercomputing systems shows 

that seven out of ten most powerful systems are clusters, which indicates that the 

cluster architecture has a top place among most powerful computers [24]. For the 

purpose of this project, any collection of processors (i.e., PCs or workstations) con

nected by a communication medium (e.g., LAN, Internet or a high-performance 

interconnecting network) is considered a distributed system. The increasing pop

ularity of such systems is due to two factors: 

1. Easily available, inexpensive but quite powerful PCs and workstations as 

well as high-bandwidth communication networks, and 

2. Communication libraries (such as MPI [25],[20] and PVM [15]) which provide 

high-level operations needed for communication among the processors. 

In distributed applications, the total workload is divided among the processors of 

the system. One of the main performance characteristics of any distributed appli

cation is its speedup [35], which is usually defined as the ratio of the application's 

execution time on a single processor, T(l), to the execution time of the same work-

load on a system composed of N processors, T(N): 

S(N) = T(l) 
T(N). 

The speedup depends upon a number of factors which include the number of 

processors and their performances, the communications between the processors, 

the algorithm used for the distribution of the workload, etc. Some of these factors 

may be difficult to take into account when estimating the speedup of a distributed 

application. Therefore, in many cases, a simplified analysis is used to characterize 
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the steady-state behavior of an application. This simplified analysis is based on 

a number of assumptions, such as uniform distribution of workload among the 

processors, constant communication times, and so on. 

Although there are some spectacular examples of distributed applications (e.g., 

SETI@home project), the number of practical applications of distributed comput

ing is still somewhat limited [11]. It appears that in some cases, the migration to 

a distributed platform is quite straightforward, and the speedup is almost a linear 

function of the number of processors used, while in other cases, the straightfor

ward distribution of the workload among the processors of the system results in 

a poor speedup, and an increased number of processors can even slow down the 

execution of an application. 

The goal of this project is to study the performance of distributed solvers for 

large and sparse systems of linear equations. The relationship between the speedup 

and the number of processors is the main characteristic of distributed computing 

for this study. 

Large sparse systems of linear equations arise in many areas. Below is a list of 

areas which are represented in the Harwell-Boeing sparse matrix collection [10]: 

Acoustic scattering (4), 

Chemical engineering (6), 

Laser optics (16), 

Chemical kinetics (14), 

Petroleum engineering (19), 
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Economics (11), 

Structural engineering (95), 

Electric power (18), 

Electrical engineering (50), 

Survey data (11), 

Structural engineering (95). 

Also, most of the large matrices arising in the solution of ordinary and partial 

differential equations are sparse [22]. 

In many applications, the solution of linear systems of equations is the most 

computationally intensive step. Time, speed, efficient use of available storage and 

the accuracy of the results are major factors to be considered when solving such 

large systems. 

Two main classes of methods for solving systems of linear equations are known 

as direct methods and iterative methods. Gaussian elimination is the most popular 

direct method. Two types of iterative methods include stationary iterative methods 

and non-stationary iterative methods. 

Iterative methods are often superior to direct methods if the matrix is large 

and sparse [4],[19],[18]. Iterative methods preserve the sparsity of the system of 

equations during computations, so memory requirements are low compared to 

direct methods. 

Iterative methods begin with an initial approximation of the solution and cal

culate the next approximation based on the current one. This process is continued 
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until convergence criteria are satisfied. Sometimes special techniques are needed 

to reduce the number of iterations needed to reach the solution. 

The remaining chapters of this thesis are organized as follows. Chapter 2 pro

vides a brief overview of sparse matrices and their storage methods, methods 

of solving systems of linear equations and convergence criteria. Chapter 3 de

scribes the implementation including algorithms used in both the serial and the 

distributed versions of the program. Chapter 4 presents some experimental re

sults. Finally, Chapter 5 contains the discussion and conclusions. 
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Chapter 2 

Systems of linear equations and their 

solution methods 

A system of simultaneous linear algebraic equations is usually expressed in a gen

eral form as Ax= b, where A is a coefficient matrix of size N x N with elements ai..i, 

i = 1, 2, ... , N; j = 1, 2, ... , N; b is a vector of size N with elements hi, i = 1, 2, ... , N; 

and xis a vector of unknowns of size N with elements Xi, i = 1, 2, ... , N. 

In many applications, the coefficient matrix A contains many zero elements. In 

large Markov chains, each node is often connected to only a few other nodes; if 

such a chain is represented by a coefficient matrix, each row contains only a few 

non-zero elements. In electrical power systems, the ratio between the number of 

branches and the number of nodes is about 1.5 or less, which means only 0.1% ele

ments in the coefficient matrix are non-zero elements [12]. Matrices, which contain 

mostly zero elements, are called sparse matrices. In many practical applications, 

the number of non-zero elements per row in a sparse matrix is 5 to 10. For example, 



according to [4], the number of non-zero entries in the coefficient matrix of linear 

systems that arise in elliptic partial differential equation problems in two and three 

dimensions is proportional to N, such as 5N or 7 N, which means that each row of 

A contains only 5 or 7 non-zero elements. 

2.1 Sparse matrices 

There is no precise definition of sparse matrices. A matrix that consists of a high 

proportion of zero elements is considered a sparse matrix. A few definitions of 

sparse matrices are as follows. 

Definition [22] A sparse matrix is one in which most of the element are zero. 

Definition [12] A matrix is said to be sparse if it has sufficiently many zero ele-

ments for it to be worthwhile to use special techniques to avoid storing or 

operating with the zeros. 

Definition [4] A matrix is sparse, if we can save space and/or computer time, 

whichever is more important, by employing methods that utilize sparsity. 

The last definition is an example of a good operational definition. Sparsity of a 

matrix A is determined by the number of non-zero elements: 

where ZN(A) is the number of non-zero elements of matrix A. There is no bor-

derline to divide matrices into sparse and dense matrices. Sparse matrices should 

save space and computational time in practical applications. In sparse matrices the 
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number of non-zero entries is small compared to the total number of entries. The 

matrices associated with a large class of man-made systems are sparse [34]. 

2.2 Representation of sparse matrices 

Any efficient representation of sparse matrices stores only the non-zero elements, 

making a significant saving of required storage. A number of different schemes 

can be used to represent and process large sparse matrices more economically and 

effectively than in the dense case, by eliminating unnecessary arithmetic opera

tions on zero elements. Generally, sparse techniques are appropriate for matrices 

with more than 80% zeros [12]. 

There are a large variety of storage schemes which can be used to represent 

sparse matrices. Most of these schemes make use of two main storage components 

[23]: 

1. Storing either the non-zero elements or an area of the matrix which includes 

all of the non-zero elements. This is usually a one-dimensional array, which 

will be called a primary array. 

2. A means of recognizing which elements of the matrix are stored in the pri

mary array. This usually takes the form of one or more one-dimensional 

arrays of integer identifiers, known as the secondary array. 

Popular methods of sparse matrix representation include Coordinate Storage 

(CS) format, Compressed Sparse Row (CSR) format, Block Compressed Sparse 

Row (BCSR) format, Skyline Storage (SKS), Jagged Diagonal Storage (JDS) and 
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Compressed Diagonal Storage (CDS). The space requirement for a full matrix is 

0 ( N 2) where N is the matrix order. The space requirement for compact sparse 

matrices is O(ZN(A)) where ZN(A) is the number of non-zero elements. O(ZN(A)) 

becomes O(N2 ) in the worst case, i.e., the case of dense matrices. 

2.2.1 Coordinate Storage (CS) format 

This method uses one array to store the non-zero entries in any order (row order 

or column order) and two other arrays to store the row and column indices of the 

non-zero elements in the same order as the non-zero elements. 

2.2.2 Compressed Sparse Row format 

Non-zero elements of the matrix are stored in one array in row order. A second 

array is used to store the column indices of the non-zero elements and a third 

array is used to store pointers to the beginning of each row of non-zero elements. 

2.2.3 Compressed Sparse Column format 

This format is similar to the compressed sparse row format, but instead of column 

indices, it stores the row indices of the non-zero elements in the second array and 

a pointer to the beginning of each column of non-zero elements in the third array. 

2.2.4 Block Compressed Sparse Row format 

The non-zero blocks belonging to successive blocks of the matrix are stored in one 

rectangular array in row-wise fashion. Column indices of elements in all non-zero 
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blocks are stored in a second array and the pointers to the beginning of each block 

row in the first and the second array are stored in a third array. 

It should be observed that if the data structures used for sparse matrices are 

used for representation of dense matrices, more storage would be actually needed 

than in the dense case, so the density of the matrix needs to be checked carefully. 

2.3 Solving systems of linear equations 

Two main classes of methods used to solve systems of linear equations are known 

as direct methods and iterative methods. Direct methods include Gaussian elim

ination, Gauss-Jordan elimination, LU-decomposition, Cramer's rule, etc. Exam

ples of iterative techniques include the Jacobi method, Gauss-Siedel method, Re

laxation methods, Krylov subspace methods, and so on [28]. 

2.3.1 Direct methods 

Direct methods are general and robust because they do not assume special proper

ties (other than linear independence) of systems of equations. These methods are 

based on elimination methods and are characterized by a fixed number of opera

tions that yield the solution. Direct elimination methods are generally used when 

the number of equations is rather small (100 or less) and most of the coefficients in 

the equations are non-zero [22]. 

The Gaussian elimination method is the most commonly used direct method 

for obtaining the solution of a system of linear equations. The main objective is to 

convert the original system into an equivalent triangular form. Methods such as 
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the Gauss-Jordan method, LU decomposition method, matrix inverse method and 

Thomas algorithm are extensions of the Gauss elimination method. The number of 

required arithmetic operations is approximately N3 /3 + N 2 - N /3 [22]. Techniques 

such as using more significant figures during the computations, using partial or 

complete pivoting during the computations, using scaling during the calculations 

and using an error correction method after finding the solution can be used to 

improve the solution of the Gauss elimination method. 

In the Gauss-Jordan elimination method, the elimination is done in such a way 

that off diagonal elements in both upper and lower parts of the coefficient matrix 

are set to zero. The method transforms the matrix A into the identity matrix so that 

the transformed b vector is the solution vector. The number of arithmetic opera

tions in this method is N3 /2 + N 2
- N/2, which is about 50 percent higher than the 

Gaussian elimination method [22]. Theoretically, the Gauss elimination method 

and Gauss-Jordan method can be applied to even bigger systems of equations, but 

in practice accuracy of the solution suffers from round-off errors [17] when N > 50 

and hence the solution may not be accurate. 

The LU decomposition method decomposes the matrix A into a product of its 

lower triangular and upper triangular matrices, Land U respectively (A= LU). 

When the unity elements are on the main diagonal of L, the method is called the 

Doolittle method, and when the unity elements are on the major diagonal of U, the 

method is called the Crout method [22]. The solution is done in two steps, using 

the so-called forward and backward substitution Ly =band Ux = y. 

The widely used Thomas algorithm is a special algorithm designed for sys

tems which have the tri-diagonal structure arising naturally in many applications. 
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One such application is obtaining the numerical solution of differential equations 

by implicit methods. This is a widely used algorithm in a large number of ap

plications. Although Cramer's rule is not an elimination method, it belongs to 

direct methods. This method is not used for larger systems of equations since it 

requires evaluation of numerous determinants which is practically impossible and 

thus highly inefficient. 

For sparse matrices, direct methods lead to fill-ins during the computations. 

Since one fill-in entry can cause new fill-in entries, there is a tendency to increase 

matrix density during the solution process. Sometimes fill-ins can be eliminated 

by reordering the matrix. In certain cases, however, it is impossible to decrease the 

amount of fill-ins even using matrix re-ordering methods. Intelligent use of data 

structures and special pivoting techniques to minimize the number of fill-ins are 

two strategies to improve the direct methods applied to sparse linear systems. 

2.3.2 Iterative methods 

An iterative method uses a repetitive procedure to find subsequent approxima

tions to the solution x. Starting with an initial approximation, xC0 l, it determines a 

sequence of approximations xC1l, xC2 l, ... ,xCk) such that: 

lim x(k) = x. 
k-too 

For iterative methods, different initial approximations might result in different so-

lutions or no solution at all. Usually, if the initial approximation is close to the 

solution, the convergence occurs after a few iteration steps [26]. According to [4], 

Gauss stated "I recommend this modus operandi. You will hardly eliminate di-
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rectly anymore, at least not when you have more than two unknowns. The indirect 

method can be pursued while half asleep or while thinking about other things." 

Also the iterative approach does not suffer from the fill-in effects and often pro-

duces more accurate results. However, a drawback of iterative methods is that the 

rate of convergence can be low or the method can diverge [36],[10]. 

Two basic types of iterative methods are known as stationary iterative methods 

[33] and non-stationary iterative methods [27]. According to [27], stationary meth

ods are older, simpler to understand and implement, but usually not as effective 

as the non-stationary iterative methods. Iterative methods perform the same op-

erations on the current iteration vectors in each iteration step. Stationary iterative 

methods can be represented as: 

x{k) = j(A, b, x(k-l)). 

The four main stationary iterative methods are the Jacobi method, the Gauss

Seidel method, the Successive Over Relaxation (SOR) method and the Symmetric 

Successive Over Relaxation (SSOR) method [27]. 

The Jacobi method is also well known as the method of simultaneous displace-

ments. The order in which the equations are evaluated is irrelevant, so updates 

can be done concurrently: 

x~k+l) = 2_ (b·- ;..._ a··x~k)) 
1 1 L.J 1J J . 

aii i=l,#i 

In the Jacobi method, both the current and previous approximations to x need to 

be stored since the values x~k+l) depends on the previous approximation x~k). The 

sufficient condition for the convergence of the Jacobi method is laul > Ej=l,#i laijl, 

which corresponds to the case when equations are diagonally dominant. 
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The Gauss-Seidel method, also known as the method of successive iterations, 

is better than the Jacobi method in terms of storage requirements and the rate of 

convergence. It uses the available values of x(k+I) to find the other values to x(k+l): 

x~k+l) = - b· - ""a .. x~k+l) - "" a .. x~k) 1 ( i-1 N ) 
1 1 L...J1JJ LJ lJJ. 

aii i=1 i=i+1 

The method converges to a correct solution if the system is diagonally dominant 

and even in many cases when the system is weakly diagonally dominant [26]. Ac

cording to [27],larger diagonally dominant systems converge usually twice as fast 

asfortheJacobimethod. 

An improved version of the Gauss-Seidel method is known as the Relaxation 

method. The method allows selecting the finest equation for x<k) to achieve a faster 

convergence [26]. This is derived from the Gauss-Seidel method by introducing the 

extrapolation parameter w. This method converges faster than Gauss-Seidel by an 

order of magnitude [4]. 

The relaxation iterative process is described by the equation: 

(k+l) 1 ( tL·-1 (k+l) LN (k)) ( ) (k) X· = - b· - a .. x. - a .. x. + 1 - w x. · 
1 .. 1 lJ J lJ J 1 ' 

an i=1 i=i+1 

where i = 1,2, ... ,N ; k = 0,1,2, .... 

When w = 1, this method becomes the Gauss-Seidel method. When 0 < w < 1, 

the method is known as the Successive Under-Relaxation method which is widely 

used for the solution of nonlinear algebraic equations. When 1 < w < 2, it is 

called the Successive Over-Relaxation method. The optimum value of the over

relaxation factor depends on the size of the system of equations, the nature of the 

equations such as the strength of the diagonal dominance, and the structure of the 
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coefficient matrix. Iterative methods diverge if w = 2.0 [22]. The optimum value of 

the relaxation factor, w, which yields the fastest convergence, is not known and it 

is usually determined by a trial and error process [26]. 

Successive over-relaxation methods and their variants have been extremely 

popular in areas of nuclear reaction diffusion, oil reservoir modeling and weather 

prediction, and were the methods of choice in computer codes for large practical 

problems until the emergence of more powerful techniques such as Krylov meth

ods [4]. 

Although the analysis of non-stationary iterative methods is more complex 

than stationary methods, they are highly effective. These methods consist of it

eration dependent coefficients, which means that the computations involve infor

mation that changes at each iteration step [10]. 

Krylov subspace solution methods come under the non-stationary methods 

[10]. In these methods, the solution of Ax = b starts with an initial approxima

tion x(o) and, at each iterative step k, generates an approximate solution x(k) from 

the linear variety x(o) + span { r(o), Ar(o), ... , A k-lr(o)}, where r(o) = b - Ax(o) is the 

initial residual [16]. Based on this, the four projection-type approaches used to find 

the suitable approximation to solution x of Ax = b are the Ritz-Galerkin approach, 

Minimum Residual approach, Petrov-Galerkin approach and the Minimum Error 

approach [10]. 

The Ritz-Galerkin approach includes well-known popular techniques such 

as Conjugate Gradient method (CG), Lanczos method, Full Orthogonal Method 

(FOM) and Generalized Conjugate Gradient method (GENCG). Generalized Mini

mum Residual method (GMRES), and Minimize Residual (MINRES) method come 
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under Minimum Residual approach. The Petro-Galekin approach includes Hi

Conjugate Gradient method (Bi-CG) and Quasi-Minimal Residual (QMR) method. 

Symmetric Matrix LQ method (SYMMLQ) and Generalized Minimal Error method 

(GMERR) belong to the Minimum Error approach. The most recent developments 

include hybrids of these methods such as Conjugate Gradient Square method 

(CGS), Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) and so on [10],[8]. 

The rate of convergence of the Krylov subspace methods depends on the spec

tral properties of the given matrix, commonly unknown to the user [10]. Precon

ditioners chosen in various ways improve the convergence of the iteration method 

by transforming the matrix A. The main idea is to create a preconditioning matrix 

K which is a good approximation to A in some sense. The cost of the construc

tion of K is not prohibitive and the system Kx = b is much easier to solve than 

the original system of equations [10]. Using a trial and error method is the best 

way to choose the best preconditioner [10]. Solving the preconditioned system 

using a Krylov subspace method will create subspaces different from the origi

nal system. The aim of the preconditioning is that the chosen iterative methods 

will converge much faster [10],[13]. Left-preconditioning, right-preconditioning 

and two-sided preconditioning are three different implementations of the precon

ditioning method [10],[6]. 

2.4 Convergence criteria 

A convergence criterion (accuracy criterion) is used to terminate the iterations in 

the iterative process of solving linear equations. When the method produces in-
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significant changes in the solution vector, it is assumed that the desired accuracy 

is reached and the iteration ends. The criterion should be robust and consistent, 

otherwise the convergence criteria can either lead to poor results or to excessive 

computational times. 

Different criteria can be used for the convergence. Since the accuracy can be 

measured in terms of the error, the absolute error or the relative error can be used 

as a criterion of convergence. Absolute error is the difference between the approx

imate value and the exact value, while the relative error is the ratio of the absolute 

error and the exact value. And since the exact value is normally not known, that 

ablute error is approximated in practice by the difference of the results obtained in 

two consecutive iterations. Choosing the relative error as the criterion is usually 

preferable. 

There are no universal guidelines as to how to choose the best convergence cri

terion, and the trial and error method is often the best way to get good results. 

The dominance of the diagonal coefficients, the method of iteration, the initial so

lution vector and the criteria for convergence are factors that affect the number 

of required iterations [22]. The convergence criteria depend on the problem to be 

solved. 

Traditionally used convergence criteria, which continue the computations un

til some norm of the residual vector or the scaled residual vector becomes smaller 

than a quantity prescribed in advance, are not sufficient to ensure robust and reli

able control of the error arising when solving systems of linear algebraic equations 

[9]. Other stopping criteria which are based on principles such as an attempt to 

evaluate the rate of convergence and use it in the stopping criteria or a check of the 
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variability of some important parameters, which are calculated and used at each 

iteration of the iterative process, can be used instead [9]. It can be shown that the 

convergence of the iterative process is discouraged when these parameters vary 

too much from one iteration to another; the parameters increase or decrease too 

quickly [9]. 

2.5 Distributed iterative solvers 

In distributed computing [14],[30], the main objective is to improve the perfor

mance of the solvers by minimizing its total execution time. The overall perfor

mance of the system is not limited to computation time, it is composed of com

putation time, waiting times and communication times. Therefore, to improve the 

performance, one must consider minimizing all the above mentioned times. In the 

ideal case, the use of N processors reduces the execution time N times, but such an 

ideal case is rarely encountered in practice. Some important factors to be consid

ered when developing distributed programs are minimizing the communication 

cost, load balancing and the overlapping of communication and computations. 

During the execution of a distributed program, each processor should be as

signed the same workload to reduce the idle times. In the distributed implementa

tion of iterative linear solvers, workload is divided among the processors by divid

ing the number of operations into a number of equal groups, each group assigned 

to one of processors. Processing of the groups is done concurrently by the proces

sors. During each iteration, the following sequence of steps is executed until the 

given convergence criterion is satisfied [36]: 
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1. Distribute the current approximation of the solution to all the processors. 

2. Determine parts of the next approximation of the solution by all processors. 

3. Collect parts of the new approximation and check the convergence. 

One of processors, called the root processor, controls the distributed iterative 

process. It initially sends the data values of matrix A and the vector b, as well as 

the initial approximation to the solution xC0 ) to all other processors. Once the data 

is received, each of the processors starts the computation of its part of the vector x. 

Once the computation is finished, each processor sends the results back to the root 

processor. The root processor waits until all the computed segments of the vector x 

arrive from all the other processors, and then performs the necessary computations 

and continues the iteration until the convergence criterion is satisfied. 

2.6 Performance of distributed solvers 

Multiprocessor performance of any system can be measured in terms of the 

elapsed time, speedup and efficiency. There are many relationships relating these 

performance measures. 

The speedup is one of the most intuitive and important metrics in performance 

analysis. The speedup of anN-processor system is usually defined as [35]: 

T(l) 
S(N) = T(N)' 

where T(l) is the execution time using one processor (or uni-processor) system, and 

T(N) is the execution time of the same workload on anN-processor system. 
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For distributed iterative solvers, the execution time T(N) for one iteration step can 

be expressed in terms of simpler operations, i.e.: 

Tb: time to broadcast the current approximation to the solution to all processors, 

Tc: time for computation using only one processor, 

Tr: time to send results from one processor back to the root processor. 

It is assumed that n does not depend on the number of processors. Tr is the 

time required to transfer the results from a single processor to the root processor 

which performs the convergence check. This resending operation is performed in 

a sequential manner, so the execution time for this total transfer is equal to ( N -

l)Tr. Although Tr depends upon N, the dependence is not very strong [31], and is 

ignored here. 

Consequently, T(N) = n + ~ + (N- l)Tr, and then the speedup is: 

S(N) = Tc 
Tb + ~ + (N- l)Tr. 

Assuming that n = Tr, the speedup becomes: 

Let the computation-to-communication ratio rcompfcomm be the ratio of TCI the 

computation time of a single iteration on a single processor, to Tr, then: 

S(N) = r compfcomm . 
N + Tcomp/comm 

N 

If N unicast operations are used in the first step instead of one broadcast operation 

(i.e., sending the data from the root processor to all the other processors is done 

using a sequence of N unicast send operations), it is expected that the speedup 
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is not changed significantly. This is due to the staggered execution of different 

operations. All the operations, namely unicast, computation and resending the 

results back to the root processor are staggered one after another during execution 

phase. 

In each iteration step, all the processors have to wait until they receive the data 

from the root processor. Once they receive the current approximation to the so

lution, they start the computation. Finally, the results are sent back to the root 

processor for further processing. These steps are the same for all the processors 

and thus the operations are staggered one after another. 

If the time of sending the approximation of the solution is represented by Ta, 

the execution time of one distributed iteration is given by: 

T(N) = (N- 1) * max(Ta, Tr) + ~ + min(Ta, Tr)· 

When Ta::::::; Tr, then: 

T( N) = N * Tr + ~. 

This is similar to the execution time of one distributed iteration when the broad

cast operation is used to send the initial approximation from the root processor to 

all the other processors instead of using N unicast operations. So, the equation for 

the speedup is similar even if N unicast operations are used instead of the broad

cast operation. 

Figure 2.1 shows the values of speedup for N = 2, 4, ... , 32 and for rcompfcomm= 

10, ... ,120. According to Figure 2.1, better speedups can be obtained when the 

computation-to-communication ratio is higher. The best speedup is achieved 

when the number of processors is between 10 to 20. With an increase in the num-
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Ratio No.Of procenora 

Figure 2.1: Speedup of distributed iterative solvers 

her of processors, the execution time increases gradually due to the dominating 

communication time. This reduces the expected speedup. 

Organizing the collection of results in a hierarchical manner can be used to im-

prove the speedup values and is an efficient way to get better results. One such 

example is collecting the results in a 2-level hierarchical way, so that first, there-

suits of computations are collected in groups of K processors, and then the results 

of these groups are combined together. It can be shown that minimal total com

munication time is obtained when K is equal to .JR. Then the speedup becomes: 

S(N) = Tcompfcomm 
Tcornp/cornrn + 2 * .JN + 1 • 

N 

Figure 2.2 shows the speedup values for N = 2, 4, ... , 32 and for rcompfcomm= 

10, ... ,120 for this hierarchical approach. According to this Figure, better speedup 

values can be achieved than in the previous case, and the best speedup can be 

achieved for a higher number of processors than before. 
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Figure 2.2: Speedup of modified distributed iterative solvers 

For large numbers of processors, this approach can be further improved by 

using additional levels of the hierarchical collection of results. 
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Chapter3 

Implementation 

This chapter provides an overview of the implementation of a distributed iterative 

linear solver. Section 3.1 describes the format used to represent the sparse matrices 

for distributed iterative solvers. Section 3.2 outlines the method used to solve the 

systems of linear equations and the stopping criteria for the iterative method. It 

also describes how the workload is distributed and how the distributed iterations 

work. Section 3.3 contains the pseudo-code of algorithms for both uni-processor 

and distributed cases. The last section discusses the program implementation of 

the distributed solver. 

3.1 Representation of sparse matrices 

The storage structure used to represent the sparse matrix A of the linear system 

Ax = b is similar to the method described in Section 2.2.2, but instead of storing 

the pointers, the third array is used to store the number of non-zero elements in 



2 0 0 1 0 

-1 3 0 0 0 

0 2 0 1 0 

1 0 0 -2 0 

0 0 0 0 1 

Figure 3.1: A 5x5 sparse matrix A. 

A-· t,} 2 1 -1 3 2 1 1 -2 1 

j 1 4 1 2 2 4 1 4 5 

count 2 2 2 2 1 

Figure 3.2: Representation of the matrix form in Figure 3.1 using the sparse format. 

each row, in row major order. An example of sparse matrix representation is shown 

in Figure 3.1 and Figure 3.2. 

3.2 Solution of the systems of linear equations 

Section 2.3.2 provided an overview of iterative methods for solving linear algebraic 

equations. Out of these methods, the Relaxation method is used in the distributed 

implementation. Factors such as higher rate of convergence than for the Jacobi 

and Gauss-Seidel methods, and simplicity of implementation make the Relaxation 

method more attractive than the recently introduced preconditioned methods. 

The optimum value of the relaxation factor is determined by a trial and error 
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approach based on how fast the iterative process converges. It is observed that the 

best relaxation factor depends on the size of the system as well as on the structure 

of the coefficient matrix. The initial approximation to the solution was obtained by 

multiplying the solution vector by a suitable ratio. 

3.2.1 Workload distribution 

In a distributed system, the workload should be distributed among the proces

sors as uniformly as possible. Workload distribution can be done in many ways, 

depending upon the characteristics of the problem being solved. One way is by 

dividing the total number of equations approximately equally among the proces

sors. When the system is diagonal or uniform or when most of the rows contain 

approximately the same number of non-zero elements this approach is satisfactory. 

But when the system is non-uniform, irregular or when some of the rows contain 

a large number of non-zeros, such an approach can cause a significant load imbal

ance because some processors may get more computing intensive segments than 

others. This can negatively impact the expected performance. 

Load imbalance can be eased by allocating approximately the same numbers 

of non-zero elements (i.e., the same number of operations) among the available 

processors. The number of operations performed by each processor is calculated 

by dividing the total number of non-zero elements by the number of processors 

(and rounding the result to deal with complete equations if possible). 

Assigning the number of operations to each processor and allocating the start

ing element of the sparse matrix of coefficients is shown below: 
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Begin Workload distribution 
Nz :=the total number of non-zeros; 
P := the number of processors; 
Next:= 1; 
For i:=l ToP Do 

K := round(Nz/P); 
Noper[i] := K; 
Nz:=Nz-K; 
Start[i] := Next; 
Next := Next + K 

End For 
End Division of tasks by the root processor. 

For each processor, the vector "Start" indicates the first element of the sparse 

matrix of coefficients processed by this processor, and "Noper" the number of 

nonzero elements assigned to this processor. 

3.2.2 Distributed Iterations 

In the distributed implementation of the iterative algorithm, the root processor is 

the "master" processor which controls all other processors. The master processor 

distributes the workload to other processors as described in the previous section. 

Each processor starts its calculations when it receives the information from the 

master processor. Once each processor completes its calculation, it sends there-

suits back to the root processor. 

In each iteration, the root processor receives the results from all other proces-

sors. The order of getting these results back from other processors can change from 

one iteration to another. The root processor collects the results, finalizes the calcu-

lation of the xnew-vector and determines the relative error. If the convergence 
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criteria are not satisfied, the root processor sends the xnew-vector back to all other 

processors and the calculation is resumed. When the convergence criteria are sat-

isfied, the root processor sets a flag to True and sends it to all the other processors. 

Then all the other processors end their computations. 

It is assumed that the convergence is satisfied when the relative error is less 

than the required tolerance. The relative error indicates how close the approximate 

solution is to the optimal solution. 

Computation of the relative error, RelErr, is carried out as follows (N is the total 

number of equations): 

Begin Computation of the Relative Error(xold,xnew) 
RelErr := 0; 
Tot:= 0.0; 
Sum:= 0.0; 
For i:=l ToN Do 

V[i]:= xnew[i]- xold[i] ; 
Tot := Tot + V[i] * V[i] ; 
Sum:= Sum+ xnew[i] * xnew[i] 

End For; 
RelErr := Sqrt(Tot/Sum) 
End Computation of the Relative Error(xold,xnew). 

For very large sets of data, the straightforward computation of a 2-norm can 

result in an overflow which can be avoided by a simple modification of the com-

putations that involves scaling [32]. 
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3.3 Algorithms 

The performance of a uniprocessor system is based on the algorithm presented in 

Section 3.3.1. The distributed version of the algorithm is outlined in Section 3.3.2. 

The following notations are used in the algorithms shown in Sections 3.3.1, 3.3.2: 

a - the coefficient matrix, 

b - the right hand side vector, 

xold - the previous approximation to the solution vector, 

xnew- the new approximation to the solution vector, 

Iter - the number of iterations. 

3.3.1 Serial algorithm 

The following algorithm shows how the program works for a uniprocessor system. 

For each iteration the relative error is calculated and the iterations terminate when 

the convergence criteria is satisfied. 

Begin SerialAlgorithm 
N :=the total number of equations; 
Read data from a file; 
xnew := the initial approximation xC0 ); 

Tol := the required relative tolerance; 
w := the relaxation coefficient; 
Iter:= 0; 
Converged := False; 
While not Converged Do 

For i := 1 to N Do 
xold[i] := xnew[i] 

End For; 
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For Row := 1 toN Do 
Sum:= b[Row]; 
For Column := 1 to N Do 

If Row =/= Column Then 
Sum := Sum - A[Row,Column] * xnew[Column] 

End If 
End For; 
Sum := Sum/ A[Row,Row ]; 
xnew[i] =Sum+ (1- w) * xnew[i] 

End For; 
RelErr :=relative error(xold,xnew); 
If RelErr < Tol Then 

Converged := True 
End If; 
Iter:= Iter+ 1 

End While 
End SerialAlgorithm. 

3.3.2 Distributed algorithm 

The distributed algorithm uses MPI for communication between the master pro

cessor and all other processors. The algorithm shows how the data are passed back 

and forth between the master processor (root processor) and the other processors 

in a distributed system. The main task of the root processor is to calculate the rel

ative error and to check the convergence of the iterative process. All processors 

(including the master processor) participate in the calculation process. 

Begin DistributedAlgorithm 
P := the number of processors; 
N := the total number of equations; 
Converged := False; 
If the current processor = root processor Then 

Read the data from a file; 
Tol :=the required relative tolerance; 
Iter:= 0; 
xnew := the initial approximation x(o); 

Perform workload distribution; 
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Division of tasks by the root processor 
Send the initial data A,b to other processors; 

Else 
Receive the data A,b from the root processor 

End If; 
While not Converged Do 

If the current processor = root processor Then 
For i := 1 to N Do 

Else 

xold[i] := xnew[i] 
End For; 
For i := 2 to P Do 

Send xold to a processor 
End For; 
Calculate of a segment of the vector xnew; 
For i := 2 to P Do 

Receive a segment of xnew from one of processors 
End For; 
Iter := Iter + 1; 
Calculate the final value of xnew; 
RelErr := relative error(xold,xnew); 
If RelErr < Tol Then 

Converged := True; 
send "terminate" to other processors 

End If 

Receive xold from the root processor; 
If received("terminate") Then 

Converged := True 
Else 

Calculate a segment of xnew; 
Send the segment of xnew to the root processor 

End If 
End If 

End While 
End DistributedAlgorithm. 

In order to collect the measurements for different numbers of processors in a 

single run, the distributed program is implemented in such a way that the number 

of processors P can be changed during program execution. The average execution 

time for a single iteration is obtained by dividing the total execution time by the 
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number of iterations required to find the solution. 

3.4 Program Implementation 

The implementation of distributed solvers is based on the message-passing paradigm, 

which is used widely on distributed systems. MPI [25],[20] is a message passing 

system which is used to write portable distributed programs in FORTRAN, C or 

C++. MPI is the leading standard for message passing libraries for parallel com

puting. MPI implementations exist for heterogeneous networks of workstations 

and symmetric multiprocessor systems running UNIX or Windows NT operating 

systems. MPI can be used on Networks of Workstations (NOWs), Scalable Parallel 

Computers (SPCs) and combinations of the two. 

MPI is not a directive-based data parallel language like High-Performance 

FORTRAN (HPF) or OpenMP. It is a library of communication routines which is at

tached to the program thereby providing more flexibility than directive-based ap

proaches. Also, MPI can be implemented on both shared-memory and distributed

memory architectures. It is the programmer's task to explicitly divide the data and 

work among the processors and to manage the communication between them. 

The basic communication mechanism of MPI is point-to-point communication, 

where data is transmitted between a pair of processors. Blocking send and receive 

operations were used for the implementation. Programs were implemented using 

the unicast operation. 

The MPI program was executed on the LAM/MPI run time environment on 

the Linux platform. LAM/MPI is frequently used on Linux-based machines [7]. 
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Once launched, the LAM run time environment, or so-called LAM Universe MPI 

programs, can be successfully executed. LAM/MPI is a high performance, freely 

available, high-quality open source implementation of the MPI standard which has 

a rich set of features. It was developed and is maintained by Open Systems Lab at 

Indiana University. 

The convergence criterion used is the relative error approach; the iterative pro-

cess is stopped when the relative error satisfies the required tolerance (refer to 

Section 2.4). 

Because the order in which the messages are received is not pre-determined, 

the program was implemented so that the root processor can receive the sections 

of vector-x from the other processors in any order. 

The measurement of individual computation and communication times is 

rather difficult and requires some support at the operating system level. There

fore a more general approach has been adopted in which only the total execution 

time Tex of Niter iterations has been measured (using the available system-level 

procedures), and then the time of a single iteration was simply obtained as 

Tex 
Tit=-N . 

iter 

For a larger number of iterations (in the order of several thousands), the effects 

of initialization and termination of the iterative process can be neglected. 
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Chapter4 

Experimental results 

This chapter presents experimental results for distributed iterative solvers of large 

and sparse systems of linear equations. Performance of distributed solvers was 

analyzed by measuring the total execution time and calculating the speedup of a 

distributed solver. Speedup is presented for several structures of systems of equa

tions and also for systems of different sizes with the same structure, using from 2 

to 32 processors. The purpose of this study is to analyze how the number of pro

cessors affects the performance of the system, to study the effect of system size on 

the speedup, and to check the influence of the number of processors on the number 

of iterations required for the iterative solution. 

4.1 Data 

Several different sparsity patterns in the coefficient matrix are possible. These in

clude a matrix with constant band width, band matrix with step, strip matrix, band 



matrix with margin, block diagonal matrix with margin and general sparse matrix 

[29]. The systems of equations chosen for the experiments include several of these 

sparsity patterns as well as their combinations. Some typical sparsity patterns are 

shown in Figure 4.1. 

Sparse systems used for the experiments are as follows: 

1. System (1): Band structure as in Figure 4.1(a); the band is symmetric and 

contains three diagonals. 

2. System (2): The structure is the one in Figure 4.2(b), with six diagonals. 

3. System (3): Band matrix with a margin as shown in Figure 4.1(c); the band 

is symmetric, contains five diagonals and the margin is at the bottom of the 

matrix. 

4. System (4): Variation of System (3), with the margin at the top of the matrix, 

as shown in Figure 4.1(d). 

5. System (5): A block diagonal structure similar to the one in Figure 4.1(e), the 

size of each block is 10 by 10, and blocks are sparse. 

6. System (6): The structure is similar to that in Figure 4.1(f); it is a block diago

nal with overlapping blocks; this system is denser than System (5). 

Densities of these systems are approximately 5/ N for N = 500, 1000, 1500 and 

2000, which means that the systems of equations are very sparse. 

For each sparsity pattern, data was generated by specialized programs, so no 

data inconsistencies were expected. In all cases, the exact solution was known 
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Figure 4.1: Sparsity patterns 

and the initial approximation to the solution was obtained by disturbing the exact 

solution by a fixed ratio. 

4.2 Results and Discussion 

The purpose of using distributed iterative solvers is to reduce the total execution 

time and this reduction is represented by the speedup. Speedup was calculated by 

dividing the time required for the solution using only one processor by the solution 
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time using N processors. 

4.2.1 Speedup of distributed solvers 

Figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 show the speedup as a function of the number 

of processors for the six sparsity patterns discussed in section 4.1, and for four 

different sizes of the systems of equations. 

For System (1), the speedup curves are shown in Figure 4.2. It can be observed 

that the speedup improves with the size of system of equations. Also, the maxi-

mum speedup is obtained for a rather small number of processors, in the range of 

6 to 13. For larger number of processors, the speedup decreases as predicted by the 

simple analysis in Section 2.6. For all sparsity patterns, the speedup plots (Figures 

4.2 to 4.7) have the characteristic shapes as shown in Figure 2.1. 
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Figure 4.2: Speedup plots for System (1) 
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Figure 4.3: Speedup plots for System (2) 

4.2.2 Speedup and the density of data 

The performance results can be used to asses the influence of the density of the 

data on the speedup. For example, for Systems (1) and (2), for the same size of 

the systems of equations, System (2) has density approximately twice as large as 

System (1), which also means that the rcompfcomm for System (2) is more than two 

times greater than that for System (1). Because of that, the speedup values for 

System (2) are expected to be greater than those for System (1). The ratio of the 

speedup values of System (2) to that of System (1) is shown in Figure 4.8 as a 

function of the number of processors. As shown in Figure 4.8, the ratio of the two 

speedups grows monotonously with the number of processors which also means 

that for the maximum speedups corresponding to 10 to 15 processors, (Figures 4.2 
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Figure 4.4: Speedup plots for System (3) 
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Figure 4.5: Speedup plots for System (4) 
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Figure 4.6: Speedup plots for System (5) 
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Figure 4.7: Speedup plots for System (6) 
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and 4.3), this improvement is only about 50%. 
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Figure 4.8: The ratio of speedup for System (2) and System (1), as a function of the 

number of processors. 

Systems (3) and (4) have the same densities, and therefore, the same values 

of rcompfcomm· Consequently, the speedup values are expected to be the same, as 

shown in Figures 4.4 and 4.5. This is well illustrated in Figure 4.9. 

It can be observed in Figures 4.6 and 4.7 that the speedup values for System (6) 

are higher than the speedup values for System (5). This is due to the higher density 

of System (6) and larger values of rcompfcomm· 

Figure 4.10 shows the ratio of the speedup for System (6) to that for System (5) 

as a function of the number of processors. In this case, the improvement of the 

speedup is only about 50%. 
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Figure 4.9: The ratio of speedup for System (4) and System (3), as a function of the 

number of processors. 
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Figure 4.10: The ratio of speedup for System (6) and System (5), as a function of 

the number of processors. 
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4.2.3 Speedup and the size of the systems of equations 

As the size of the system of equations increases, the workload of each processor 

increases and the values of rcompfcomm also increases. Therefore, the speedup for 

larger systems of equations is expected to be greater than for smaller systems. 

The increase of the speedup for System (2) and System (6), when the number 

of equations are 1000, 1500 and 2000, are shown in Figures 4.11 and 4.12 with re-

spect to the speedup for size 500. It is clear that when the number of processors is 

between 10 to 15, the increase is significant for all the sizes. 
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Figure 4.11: Percentage increase of speedup values for System (2) 

The speedup as a function of the size of the systems of equations for the same 

number of processors is shown in Figures 4.13 for System (2) and for a number of 

processors equal to 4, 8, 20 and 32. 
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The plots shown in Figure 4.13 can be approximated using the speedup for-

mula: 

S(N) = Nrcompfcomm 
N 2 + rcompfcomm 

If the number of processors, N, is large, ~ > rcompfcomm' and the speedup 

becomes: 

S(N) = rcomtomm. 

Since the value rcompfcomm is directly proportional to the size of the system of equa

tions, the plots in Figure 4.13 which correspond to large values of N are practically 

linear, and the values for N =32 are smaller than those for N =20. For small values 

of N, the plots in Figure 4.13 reflect the non-linear characteristics of S(N). 

4.3 Number of Iterations 

The distributed version of the iterative process, presented in Section 3.2, may re

quire a different number of iterations than the corresponding sequential version 

to provide the same accuracy of the iterated solutions. This difference is a conse-

quence of distributed environment in which, during each iteration, the processors 

do not have access to results evaluated by other processors. In effect, for a given 

system of equations, when the number of processors increases, the numbers of 

operations assigned to each processor become smaller, and the effects of computa-

tions - more localized. This, in tum, may affect the convergence properties of the 

iterative process. 

Figures 4.14 and 4.15 show the (total) number of iterations required for dis

tributed iterative solutions of systems of 500, 1000, 1500 and 2000 equations as a 
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function of the number of processors used for two different systems of equations. 

According to the results shown in Figures 4.14 and 4.15, for System (1) and Sys

tem (3) the number of processors does not affect the convergence in any significant 

way if the system is sufficiently large. 

Figures 4.14 and 4.15 are somewhat irregular but the number of iterations varies 

over a small range, so this number does not practically depend upon the number of 

processors. However, Figures 4.14 and 4.15 show that the number of iterations ac

tually decreases with the increased size of the system of equations; this can be due 

to improved overall convergence properties of the iterative process when the num

ber of operations assigned to each processor increases. Figures 4.14 and 4.15 also 

show that the rate of reduction of the number of required iterations depends upon 

the sparsity structure of the data. When the number of equations increases four 

times (from 500 to 2000 equations), the number of required iterations decreases by 

about 35% for System (1) (Figure 4.14) and almost 50% for System (3) (Figure 4.15). 

The dependence of the required number of iterations on the number of proces

sors is more pronounced for small systems of equations. Figure 4.16 shows the 

number of iterations as a function of the number of processors for distributed iter

ative solvers of System (5) with 100 equations. 

The number of required iterations steadily increases in Figure 4.16 as the num

ber of processors changes from 2 to 32. This increase of the number of iterations 

is due to the same effects as before; as the number of processors increases, the 

number of operations assigned to each processor decreases, and this affects the 

convergence properties of the iterative process. 

It is anticipated that the effects shown in Figure 4.16 can be more significant for 
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data with other sparsity structures. 
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Chapter 5 

Conclusions 

This thesis analyzes the performance of distributed iterative solvers for large and 

sparse systems of linear equations. Performance of the system was analyzed using 

the speedup - the most popular metric of the performance of distributed systems. 

In this project, the distribution of equations among the processors is straight 

forward but it introduces a limitation on the speedup. It is observed that the use 

of a large number of processors may increase the solution time of the system and 

thus compromise the speedup. 

Since distributed systems operate in an unreliable communication environ

ments with a finite-bandwidth, it is obvious that the communication network has 

a major affect on the systems' performance. In order to reach better performance 

of the system, communication links should be reliable with small communication 

delays. Also, other factors such as buffering the data and packing or unpacking the 

data can reduce system performance. The topology of the interconnection network 

also plays an important role in distributed systems. By improving the communi-



cation protocols or routing to avoid communication congestion, the performance 

of distributed systems. 

According to both simple analytical considerations and the experimental re

sults, the performance of the distributed solvers increases with the number of pro-

cessors, but after a certain point, the advantage of distributed computing becomes 

less significant. Even though the idea of distributed systems is to divide the com-

putation time among the processors, the total execution time is dominated by com

munication time among the processors exchanging data and results. To achieve 

better performance, the communication delays must be reduced. This can be done 

by increasing the bandwidth of the communication medium, or by introducing 

concurrency at the level of communication, (for example, in the form of parallel 

channels) or by a combination of the two approaches. 

When r compfcomm is high, the communication overhead does not significantly 

reduce the performance of the system which implies that the higher the ratio of 

computation to communication, rcompfcomm' the better speedup. 

The discussion of the distribution of computations among the processors of a 

distributed system (Section 3.2.1) assumes that all processors have similar charac-

teristics (i.e., the system is homogeneous). In this case, the distribution formula is 

very simple, and the number of non-zero elements assigned to each processor is 

where N z is the total number of non-zero elements in the linear system and P is 

the number of processors. For heterogeneous systems, in which the performance 

of each system can be different, the "load distribution" must take into account the 
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performance characteristics of processors in such a way that the computation times 

of all processors are approximately the same, so the more powerful processors 

should be assigned more workload than the less powerful ones. If Mi denotes the 

performance (in Mflops per second, for example) of processor i, i = 1, 2, ... , P, a 

simple work allocation formula for a heterogeneous distributed system can be as 

follows: 

where Mp = M1 + M2 + ... + Mp. All remaining aspects of distributed implemen-

tation are as described in this thesis. 

The approach discussed in this thesis does not apply to shared-memory mul-

tiprocessor systems, because the "communication component" in such systems is 

nonexistent. On the other hand, access to shared memory is typically much slower 

than to local memory, and concurrent accesses are performed sequentially. Con

sequently, the performance of iterative solvers on shared-memory systems can be 

described by the Amdahl's law [5] with the convergence checking section consti

tuting the serial part of code. 

The major conclusions from this project are as follows: 

1. The experimental results are consistent with analytical predictions. 

2. The best speedups are obtained for a rather small number of processors, 

ranging from 10 to 20 when the system size is average or higher. 

3. The speedup improves with the size of the systems of linear equations. 
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4. Increased density of the system improves the speedup. 

5. For a larger number of processors, the performance of the communication 

network is essential for the overall performance of the solver. 

6. When the computation to communication ratio is high, the effect of commu

nication delays is insignificant. 

7. If the system is large enough, the number of iterations are practically inde

pendent from the number of processors. 

Iterative solvers were implemented using the C language and the MPI libraries 

[25], a message-passing interface. Experimental results were observed on up to 

32 processors using the networks of PC's and workstations in the labs of the De

partment of Computer Science, Memorial University of Newfoundland. Processor 

configurations were Pentium III with 800 MHZ clock, 256 KB cache memory, 128 

MB RAM and 2 GB virtual memory. The operating system used was Linux. The 

cluster was located at PA-1019 on MUN's campus. All client computers were con

nected to a 48 port Cisco 100 Megabit switch using CatSe Ethernet. 

All computations were performed in single precision. It is expected that the 

change of precision will not affect the results presented in this thesis in a significant 

way. 

The experiments were executed on a dedicated cluster of PCs (i.e., no other 

users were allowed during experiments). 

Some further details related to this study can be found in [37] and [36]. 
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