
CENTHE FOR NEWFOUNDLAND STI'I>IfS

TOTAL Ot' 10 PAGES ONLY
MAY BE XEROXED

(Wilhoul Avdw>r't PenmJ.Jj,on)

The speedup of distributed iterative solution of
systems of linear equations

St. John's

by

© T.Dilani P.Perera

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

April2006

Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-19387-7
Our file Notre reference
ISBN: 978-0-494-19387-7

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

Abstract

The main objective of this research is to study the performance of distributed

solvers for large sparse systems of linear equations. The relationship between the

speedup and the number of processors is the main characteristic of distributed

computing for this study.

Systems of linear equations can be solved using either direct or iterative meth

ods. For large and sparse systems of equations, iterative methods are often more

attractive than direct methods. In distributed implementations of iterative solvers,

the number of operations are equally divided among the available processors with

the intention that all the sections are processed concurrently (i.e., by different pro

cessors).

The iterative approach repeats the following sequence of steps until the re

quired convergence condition is satisfied:

1. distribute the current approximation to all the processors,

2. determine a new approximation to the solution,

3. collect parts of the new approximation and check the convergence condi

tions.

The implementation is based on the message passing paradigm, which is used

widely on certain classes of multiprocessor machines, especially systems with dis

tributed memory.

It is expected that this study will determine the optimal number of processors

for distributed linear solvers.

ii

Acknowledgements

I am grateful to acknowledge the valuable assistance of several persons who

generously contributed their time to make my study at Memorial University an

enormous success.

First of all I would like to thank to my supervisor, Dr. Wlodek Zubrek, for his

kind support, guidance and encouragement throughout my program. He always

made valuable suggestions regarding my research work and the presentation of

the material of this thesis.

I thank my family for their moral support during my studies, especially my sis

ter and brother-in-law, Aruni and Pujitha, for helping me to find this opportunity

to study at Memorial University of Newfoundland.

Many thanks to Dr. Banzhaf Wolfgang, Dr. George Miminis, Ms. Malgosia

Zuberek, Nolan White, Donald Craig and Ulf Schunemann for their great support

in various ways. I would also like to thank all the academic and non-academic

staff members in the department of Computer Science for their kind support.

It is a pleasure to express my gratitude to the Natural Sciences and Engineering

Research Council of Canada and School of Graduate Studies at Memorial univer

sity of Newfoundland for financial support.

Finally, thanks to all my friends at Memorial for making my stay in St. John's

enjoyable and unforgettable.

iii

Contents

Abstract

Acknowledgements

1 Introduction

2 Systems of linear equations and their solution methods

2.1 Sparse matrices

2.2 Representation of sparse matrices .

2.2.1 Coordinate Storage (CS) format .

2.2.2 Compressed Sparse Row format

2.2.3 Compressed Sparse Column format

2.2.4 Block Compressed Sparse Row format .

2.3 Solving systems of linear equations .

2.3.1 Direct methods ..

2.3.2 Iterative methods .

2.4 Convergence criteria ...

2.5 Distributed iterative solvers

iv

ii

iii

1

6

7

8

9

9

9

9

10

10

12

16

18

2.6 Performance of distributed solvers . 19

3 Implementation

4

5

3.1 Representation of sparse matrices .

3.2 Solution of the systems of linear equations

3.2.1 Workload distribution

3.2.2 Distributed Iterations

3.3 Algorithms

3.3.1 Serial algorithm .

3.3.2 Distributed algorithm

3.4 Program Implementation

Experimental results

4.1 Data

4.2 Results and Discussion .

4.2.1 Speedup of distributed solvers

4.2.2 Speedup and the density of data

4.2.3 Speedup and the size of the systems of equations

4.3 Number of Iterations

Conclusions

v

24

...... 24

25

26

27

29

29

30

32

34

. 34

36

37

38

43

45

49

List of Figures

3.1 A 5x5 sparse matrix A. 25

3.2 Representation of the matrix form in Figure 3.1 using the sparse

format 25

4.1 Sparsity patterns

4.2 Speedup plots for System (1)

4.3 Speedup plots for System (2)

4.4 Speedup plots for System (3)

4.5 Speedup plots for System (4)

4.6 Speedup plots for System (5)

4.7 Speedup plots for System (6)

4.8 The ratio of speedup for System (2) and System (1), as a function of

36

37

38

39

39

40

40

the number of processors. 41

4.9 The ratio of speedup for System (4) and System (3), as a function of

the number of processors. 42

4.10 The ratio of speedup for System (6) and System (5), as a function of

the number of processors. 42

4.11 Percentage increase of speedup values for System (2) 43

vi

4.12 Percentage increase of speedup values for System (6) 44

4.13 Speedup plot for System (2), when the number of processors is 4, 8,

20 and 32 44

4.14 Number of iterations as a function of number of processors for Sys-

tem (1) . 46

4.15 Number of iterations as a function of number of processors for Sys-

tem (3) 46

4.16 The number of iterations of distributed iterative solvers of 100 equa-

tions for System (5) . 48

vii

Chapter 1

Introduction

It is believed that the performance of processors, that has been doubling every

eighteen months (the so called Moore's law [21]), will be improving more slowly

in the coming years as the shrinking dimensions of basic electronic elements are

approaching their physical limits [21]. Therefore, further significant improvements

of computational performance are expected by using parallel and distributed com

puting [21] rather than more powerful uniprocessors. Also current computer tech

nology favors multiprocessor systems because they are more economical [14]. On

one hand, research concentrates on multiprocessor systems implemented on a sin

gle chip [10], on the other -an increasing number of large scale applications is

migrating to distributed systems, with SETI@home [3] and Climate Prediction [2]

projects as just two more popular examples.

Distributed systems can have many different forms which include clusters of

workstations (COW) and networks of workstations (NOW) [1]. Such systems are

often considered as less expensive and more easily available alternatives to paral-

lel systems [30]. A recent survey of most powerful supercomputing systems shows

that seven out of ten most powerful systems are clusters, which indicates that the

cluster architecture has a top place among most powerful computers [24]. For the

purpose of this project, any collection of processors (i.e., PCs or workstations) con

nected by a communication medium (e.g., LAN, Internet or a high-performance

interconnecting network) is considered a distributed system. The increasing pop

ularity of such systems is due to two factors:

1. Easily available, inexpensive but quite powerful PCs and workstations as

well as high-bandwidth communication networks, and

2. Communication libraries (such as MPI [25],[20] and PVM [15]) which provide

high-level operations needed for communication among the processors.

In distributed applications, the total workload is divided among the processors of

the system. One of the main performance characteristics of any distributed appli

cation is its speedup [35], which is usually defined as the ratio of the application's

execution time on a single processor, T(l), to the execution time of the same work-

load on a system composed of N processors, T(N):

S(N) = T(l)
T(N).

The speedup depends upon a number of factors which include the number of

processors and their performances, the communications between the processors,

the algorithm used for the distribution of the workload, etc. Some of these factors

may be difficult to take into account when estimating the speedup of a distributed

application. Therefore, in many cases, a simplified analysis is used to characterize

2

the steady-state behavior of an application. This simplified analysis is based on

a number of assumptions, such as uniform distribution of workload among the

processors, constant communication times, and so on.

Although there are some spectacular examples of distributed applications (e.g.,

SETI@home project), the number of practical applications of distributed comput

ing is still somewhat limited [11]. It appears that in some cases, the migration to

a distributed platform is quite straightforward, and the speedup is almost a linear

function of the number of processors used, while in other cases, the straightfor

ward distribution of the workload among the processors of the system results in

a poor speedup, and an increased number of processors can even slow down the

execution of an application.

The goal of this project is to study the performance of distributed solvers for

large and sparse systems of linear equations. The relationship between the speedup

and the number of processors is the main characteristic of distributed computing

for this study.

Large sparse systems of linear equations arise in many areas. Below is a list of

areas which are represented in the Harwell-Boeing sparse matrix collection [10]:

Acoustic scattering (4),

Chemical engineering (6),

Laser optics (16),

Chemical kinetics (14),

Petroleum engineering (19),

3

Economics (11),

Structural engineering (95),

Electric power (18),

Electrical engineering (50),

Survey data (11),

Structural engineering (95).

Also, most of the large matrices arising in the solution of ordinary and partial

differential equations are sparse [22].

In many applications, the solution of linear systems of equations is the most

computationally intensive step. Time, speed, efficient use of available storage and

the accuracy of the results are major factors to be considered when solving such

large systems.

Two main classes of methods for solving systems of linear equations are known

as direct methods and iterative methods. Gaussian elimination is the most popular

direct method. Two types of iterative methods include stationary iterative methods

and non-stationary iterative methods.

Iterative methods are often superior to direct methods if the matrix is large

and sparse [4],[19],[18]. Iterative methods preserve the sparsity of the system of

equations during computations, so memory requirements are low compared to

direct methods.

Iterative methods begin with an initial approximation of the solution and cal

culate the next approximation based on the current one. This process is continued

4

until convergence criteria are satisfied. Sometimes special techniques are needed

to reduce the number of iterations needed to reach the solution.

The remaining chapters of this thesis are organized as follows. Chapter 2 pro

vides a brief overview of sparse matrices and their storage methods, methods

of solving systems of linear equations and convergence criteria. Chapter 3 de

scribes the implementation including algorithms used in both the serial and the

distributed versions of the program. Chapter 4 presents some experimental re

sults. Finally, Chapter 5 contains the discussion and conclusions.

5

Chapter 2

Systems of linear equations and their

solution methods

A system of simultaneous linear algebraic equations is usually expressed in a gen

eral form as Ax= b, where A is a coefficient matrix of size N x N with elements ai..i,

i = 1, 2, ... , N; j = 1, 2, ... , N; b is a vector of size N with elements hi, i = 1, 2, ... , N;

and xis a vector of unknowns of size N with elements Xi, i = 1, 2, ... , N.

In many applications, the coefficient matrix A contains many zero elements. In

large Markov chains, each node is often connected to only a few other nodes; if

such a chain is represented by a coefficient matrix, each row contains only a few

non-zero elements. In electrical power systems, the ratio between the number of

branches and the number of nodes is about 1.5 or less, which means only 0.1% ele

ments in the coefficient matrix are non-zero elements [12]. Matrices, which contain

mostly zero elements, are called sparse matrices. In many practical applications,

the number of non-zero elements per row in a sparse matrix is 5 to 10. For example,

according to [4], the number of non-zero entries in the coefficient matrix of linear

systems that arise in elliptic partial differential equation problems in two and three

dimensions is proportional to N, such as 5N or 7 N, which means that each row of

A contains only 5 or 7 non-zero elements.

2.1 Sparse matrices

There is no precise definition of sparse matrices. A matrix that consists of a high

proportion of zero elements is considered a sparse matrix. A few definitions of

sparse matrices are as follows.

Definition [22] A sparse matrix is one in which most of the element are zero.

Definition [12] A matrix is said to be sparse if it has sufficiently many zero ele-

ments for it to be worthwhile to use special techniques to avoid storing or

operating with the zeros.

Definition [4] A matrix is sparse, if we can save space and/or computer time,

whichever is more important, by employing methods that utilize sparsity.

The last definition is an example of a good operational definition. Sparsity of a

matrix A is determined by the number of non-zero elements:

where ZN(A) is the number of non-zero elements of matrix A. There is no bor-

derline to divide matrices into sparse and dense matrices. Sparse matrices should

save space and computational time in practical applications. In sparse matrices the

7

number of non-zero entries is small compared to the total number of entries. The

matrices associated with a large class of man-made systems are sparse [34].

2.2 Representation of sparse matrices

Any efficient representation of sparse matrices stores only the non-zero elements,

making a significant saving of required storage. A number of different schemes

can be used to represent and process large sparse matrices more economically and

effectively than in the dense case, by eliminating unnecessary arithmetic opera

tions on zero elements. Generally, sparse techniques are appropriate for matrices

with more than 80% zeros [12].

There are a large variety of storage schemes which can be used to represent

sparse matrices. Most of these schemes make use of two main storage components

[23]:

1. Storing either the non-zero elements or an area of the matrix which includes

all of the non-zero elements. This is usually a one-dimensional array, which

will be called a primary array.

2. A means of recognizing which elements of the matrix are stored in the pri

mary array. This usually takes the form of one or more one-dimensional

arrays of integer identifiers, known as the secondary array.

Popular methods of sparse matrix representation include Coordinate Storage

(CS) format, Compressed Sparse Row (CSR) format, Block Compressed Sparse

Row (BCSR) format, Skyline Storage (SKS), Jagged Diagonal Storage (JDS) and

8

Compressed Diagonal Storage (CDS). The space requirement for a full matrix is

0 (N 2) where N is the matrix order. The space requirement for compact sparse

matrices is O(ZN(A)) where ZN(A) is the number of non-zero elements. O(ZN(A))

becomes O(N2) in the worst case, i.e., the case of dense matrices.

2.2.1 Coordinate Storage (CS) format

This method uses one array to store the non-zero entries in any order (row order

or column order) and two other arrays to store the row and column indices of the

non-zero elements in the same order as the non-zero elements.

2.2.2 Compressed Sparse Row format

Non-zero elements of the matrix are stored in one array in row order. A second

array is used to store the column indices of the non-zero elements and a third

array is used to store pointers to the beginning of each row of non-zero elements.

2.2.3 Compressed Sparse Column format

This format is similar to the compressed sparse row format, but instead of column

indices, it stores the row indices of the non-zero elements in the second array and

a pointer to the beginning of each column of non-zero elements in the third array.

2.2.4 Block Compressed Sparse Row format

The non-zero blocks belonging to successive blocks of the matrix are stored in one

rectangular array in row-wise fashion. Column indices of elements in all non-zero

9

blocks are stored in a second array and the pointers to the beginning of each block

row in the first and the second array are stored in a third array.

It should be observed that if the data structures used for sparse matrices are

used for representation of dense matrices, more storage would be actually needed

than in the dense case, so the density of the matrix needs to be checked carefully.

2.3 Solving systems of linear equations

Two main classes of methods used to solve systems of linear equations are known

as direct methods and iterative methods. Direct methods include Gaussian elim

ination, Gauss-Jordan elimination, LU-decomposition, Cramer's rule, etc. Exam

ples of iterative techniques include the Jacobi method, Gauss-Siedel method, Re

laxation methods, Krylov subspace methods, and so on [28].

2.3.1 Direct methods

Direct methods are general and robust because they do not assume special proper

ties (other than linear independence) of systems of equations. These methods are

based on elimination methods and are characterized by a fixed number of opera

tions that yield the solution. Direct elimination methods are generally used when

the number of equations is rather small (100 or less) and most of the coefficients in

the equations are non-zero [22].

The Gaussian elimination method is the most commonly used direct method

for obtaining the solution of a system of linear equations. The main objective is to

convert the original system into an equivalent triangular form. Methods such as

10

the Gauss-Jordan method, LU decomposition method, matrix inverse method and

Thomas algorithm are extensions of the Gauss elimination method. The number of

required arithmetic operations is approximately N3 /3 + N 2 - N /3 [22]. Techniques

such as using more significant figures during the computations, using partial or

complete pivoting during the computations, using scaling during the calculations

and using an error correction method after finding the solution can be used to

improve the solution of the Gauss elimination method.

In the Gauss-Jordan elimination method, the elimination is done in such a way

that off diagonal elements in both upper and lower parts of the coefficient matrix

are set to zero. The method transforms the matrix A into the identity matrix so that

the transformed b vector is the solution vector. The number of arithmetic opera

tions in this method is N3 /2 + N 2
- N/2, which is about 50 percent higher than the

Gaussian elimination method [22]. Theoretically, the Gauss elimination method

and Gauss-Jordan method can be applied to even bigger systems of equations, but

in practice accuracy of the solution suffers from round-off errors [17] when N > 50

and hence the solution may not be accurate.

The LU decomposition method decomposes the matrix A into a product of its

lower triangular and upper triangular matrices, Land U respectively (A= LU).

When the unity elements are on the main diagonal of L, the method is called the

Doolittle method, and when the unity elements are on the major diagonal of U, the

method is called the Crout method [22]. The solution is done in two steps, using

the so-called forward and backward substitution Ly =band Ux = y.

The widely used Thomas algorithm is a special algorithm designed for sys

tems which have the tri-diagonal structure arising naturally in many applications.

11

One such application is obtaining the numerical solution of differential equations

by implicit methods. This is a widely used algorithm in a large number of ap

plications. Although Cramer's rule is not an elimination method, it belongs to

direct methods. This method is not used for larger systems of equations since it

requires evaluation of numerous determinants which is practically impossible and

thus highly inefficient.

For sparse matrices, direct methods lead to fill-ins during the computations.

Since one fill-in entry can cause new fill-in entries, there is a tendency to increase

matrix density during the solution process. Sometimes fill-ins can be eliminated

by reordering the matrix. In certain cases, however, it is impossible to decrease the

amount of fill-ins even using matrix re-ordering methods. Intelligent use of data

structures and special pivoting techniques to minimize the number of fill-ins are

two strategies to improve the direct methods applied to sparse linear systems.

2.3.2 Iterative methods

An iterative method uses a repetitive procedure to find subsequent approxima

tions to the solution x. Starting with an initial approximation, xC0 l, it determines a

sequence of approximations xC1l, xC2 l, ... ,xCk) such that:

lim x(k) = x.
k-too

For iterative methods, different initial approximations might result in different so-

lutions or no solution at all. Usually, if the initial approximation is close to the

solution, the convergence occurs after a few iteration steps [26]. According to [4],

Gauss stated "I recommend this modus operandi. You will hardly eliminate di-

12

rectly anymore, at least not when you have more than two unknowns. The indirect

method can be pursued while half asleep or while thinking about other things."

Also the iterative approach does not suffer from the fill-in effects and often pro-

duces more accurate results. However, a drawback of iterative methods is that the

rate of convergence can be low or the method can diverge [36],[10].

Two basic types of iterative methods are known as stationary iterative methods

[33] and non-stationary iterative methods [27]. According to [27], stationary meth

ods are older, simpler to understand and implement, but usually not as effective

as the non-stationary iterative methods. Iterative methods perform the same op-

erations on the current iteration vectors in each iteration step. Stationary iterative

methods can be represented as:

x{k) = j(A, b, x(k-l)).

The four main stationary iterative methods are the Jacobi method, the Gauss

Seidel method, the Successive Over Relaxation (SOR) method and the Symmetric

Successive Over Relaxation (SSOR) method [27].

The Jacobi method is also well known as the method of simultaneous displace-

ments. The order in which the equations are evaluated is irrelevant, so updates

can be done concurrently:

x~k+l) = 2_ (b·- ;..._ a··x~k))
1 1 L.J 1J J .

aii i=l,#i

In the Jacobi method, both the current and previous approximations to x need to

be stored since the values x~k+l) depends on the previous approximation x~k). The

sufficient condition for the convergence of the Jacobi method is laul > Ej=l,#i laijl,

which corresponds to the case when equations are diagonally dominant.

13

The Gauss-Seidel method, also known as the method of successive iterations,

is better than the Jacobi method in terms of storage requirements and the rate of

convergence. It uses the available values of x(k+I) to find the other values to x(k+l):

x~k+l) = - b· - ""a .. x~k+l) - "" a .. x~k) 1 (i-1 N)
1 1 L...J1JJ LJ lJJ.

aii i=1 i=i+1

The method converges to a correct solution if the system is diagonally dominant

and even in many cases when the system is weakly diagonally dominant [26]. Ac

cording to [27],larger diagonally dominant systems converge usually twice as fast

asfortheJacobimethod.

An improved version of the Gauss-Seidel method is known as the Relaxation

method. The method allows selecting the finest equation for x<k) to achieve a faster

convergence [26]. This is derived from the Gauss-Seidel method by introducing the

extrapolation parameter w. This method converges faster than Gauss-Seidel by an

order of magnitude [4].

The relaxation iterative process is described by the equation:

(k+l) 1 (tL·-1 (k+l) LN (k)) () (k) X· = - b· - a .. x. - a .. x. + 1 - w x. ·
1 .. 1 lJ J lJ J 1 '

an i=1 i=i+1

where i = 1,2, ... ,N ; k = 0,1,2,

When w = 1, this method becomes the Gauss-Seidel method. When 0 < w < 1,

the method is known as the Successive Under-Relaxation method which is widely

used for the solution of nonlinear algebraic equations. When 1 < w < 2, it is

called the Successive Over-Relaxation method. The optimum value of the over

relaxation factor depends on the size of the system of equations, the nature of the

equations such as the strength of the diagonal dominance, and the structure of the

14

coefficient matrix. Iterative methods diverge if w = 2.0 [22]. The optimum value of

the relaxation factor, w, which yields the fastest convergence, is not known and it

is usually determined by a trial and error process [26].

Successive over-relaxation methods and their variants have been extremely

popular in areas of nuclear reaction diffusion, oil reservoir modeling and weather

prediction, and were the methods of choice in computer codes for large practical

problems until the emergence of more powerful techniques such as Krylov meth

ods [4].

Although the analysis of non-stationary iterative methods is more complex

than stationary methods, they are highly effective. These methods consist of it

eration dependent coefficients, which means that the computations involve infor

mation that changes at each iteration step [10].

Krylov subspace solution methods come under the non-stationary methods

[10]. In these methods, the solution of Ax = b starts with an initial approxima

tion x(o) and, at each iterative step k, generates an approximate solution x(k) from

the linear variety x(o) + span { r(o), Ar(o), ... , A k-lr(o)}, where r(o) = b - Ax(o) is the

initial residual [16]. Based on this, the four projection-type approaches used to find

the suitable approximation to solution x of Ax = b are the Ritz-Galerkin approach,

Minimum Residual approach, Petrov-Galerkin approach and the Minimum Error

approach [10].

The Ritz-Galerkin approach includes well-known popular techniques such

as Conjugate Gradient method (CG), Lanczos method, Full Orthogonal Method

(FOM) and Generalized Conjugate Gradient method (GENCG). Generalized Mini

mum Residual method (GMRES), and Minimize Residual (MINRES) method come

15

under Minimum Residual approach. The Petro-Galekin approach includes Hi

Conjugate Gradient method (Bi-CG) and Quasi-Minimal Residual (QMR) method.

Symmetric Matrix LQ method (SYMMLQ) and Generalized Minimal Error method

(GMERR) belong to the Minimum Error approach. The most recent developments

include hybrids of these methods such as Conjugate Gradient Square method

(CGS), Bi-Conjugate Gradient Stabilized method (Bi-CGSTAB) and so on [10],[8].

The rate of convergence of the Krylov subspace methods depends on the spec

tral properties of the given matrix, commonly unknown to the user [10]. Precon

ditioners chosen in various ways improve the convergence of the iteration method

by transforming the matrix A. The main idea is to create a preconditioning matrix

K which is a good approximation to A in some sense. The cost of the construc

tion of K is not prohibitive and the system Kx = b is much easier to solve than

the original system of equations [10]. Using a trial and error method is the best

way to choose the best preconditioner [10]. Solving the preconditioned system

using a Krylov subspace method will create subspaces different from the origi

nal system. The aim of the preconditioning is that the chosen iterative methods

will converge much faster [10],[13]. Left-preconditioning, right-preconditioning

and two-sided preconditioning are three different implementations of the precon

ditioning method [10],[6].

2.4 Convergence criteria

A convergence criterion (accuracy criterion) is used to terminate the iterations in

the iterative process of solving linear equations. When the method produces in-

16

significant changes in the solution vector, it is assumed that the desired accuracy

is reached and the iteration ends. The criterion should be robust and consistent,

otherwise the convergence criteria can either lead to poor results or to excessive

computational times.

Different criteria can be used for the convergence. Since the accuracy can be

measured in terms of the error, the absolute error or the relative error can be used

as a criterion of convergence. Absolute error is the difference between the approx

imate value and the exact value, while the relative error is the ratio of the absolute

error and the exact value. And since the exact value is normally not known, that

ablute error is approximated in practice by the difference of the results obtained in

two consecutive iterations. Choosing the relative error as the criterion is usually

preferable.

There are no universal guidelines as to how to choose the best convergence cri

terion, and the trial and error method is often the best way to get good results.

The dominance of the diagonal coefficients, the method of iteration, the initial so

lution vector and the criteria for convergence are factors that affect the number

of required iterations [22]. The convergence criteria depend on the problem to be

solved.

Traditionally used convergence criteria, which continue the computations un

til some norm of the residual vector or the scaled residual vector becomes smaller

than a quantity prescribed in advance, are not sufficient to ensure robust and reli

able control of the error arising when solving systems of linear algebraic equations

[9]. Other stopping criteria which are based on principles such as an attempt to

evaluate the rate of convergence and use it in the stopping criteria or a check of the

17

variability of some important parameters, which are calculated and used at each

iteration of the iterative process, can be used instead [9]. It can be shown that the

convergence of the iterative process is discouraged when these parameters vary

too much from one iteration to another; the parameters increase or decrease too

quickly [9].

2.5 Distributed iterative solvers

In distributed computing [14],[30], the main objective is to improve the perfor

mance of the solvers by minimizing its total execution time. The overall perfor

mance of the system is not limited to computation time, it is composed of com

putation time, waiting times and communication times. Therefore, to improve the

performance, one must consider minimizing all the above mentioned times. In the

ideal case, the use of N processors reduces the execution time N times, but such an

ideal case is rarely encountered in practice. Some important factors to be consid

ered when developing distributed programs are minimizing the communication

cost, load balancing and the overlapping of communication and computations.

During the execution of a distributed program, each processor should be as

signed the same workload to reduce the idle times. In the distributed implementa

tion of iterative linear solvers, workload is divided among the processors by divid

ing the number of operations into a number of equal groups, each group assigned

to one of processors. Processing of the groups is done concurrently by the proces

sors. During each iteration, the following sequence of steps is executed until the

given convergence criterion is satisfied [36]:

18

1. Distribute the current approximation of the solution to all the processors.

2. Determine parts of the next approximation of the solution by all processors.

3. Collect parts of the new approximation and check the convergence.

One of processors, called the root processor, controls the distributed iterative

process. It initially sends the data values of matrix A and the vector b, as well as

the initial approximation to the solution xC0) to all other processors. Once the data

is received, each of the processors starts the computation of its part of the vector x.

Once the computation is finished, each processor sends the results back to the root

processor. The root processor waits until all the computed segments of the vector x

arrive from all the other processors, and then performs the necessary computations

and continues the iteration until the convergence criterion is satisfied.

2.6 Performance of distributed solvers

Multiprocessor performance of any system can be measured in terms of the

elapsed time, speedup and efficiency. There are many relationships relating these

performance measures.

The speedup is one of the most intuitive and important metrics in performance

analysis. The speedup of anN-processor system is usually defined as [35]:

T(l)
S(N) = T(N)'

where T(l) is the execution time using one processor (or uni-processor) system, and

T(N) is the execution time of the same workload on anN-processor system.

19

For distributed iterative solvers, the execution time T(N) for one iteration step can

be expressed in terms of simpler operations, i.e.:

Tb: time to broadcast the current approximation to the solution to all processors,

Tc: time for computation using only one processor,

Tr: time to send results from one processor back to the root processor.

It is assumed that n does not depend on the number of processors. Tr is the

time required to transfer the results from a single processor to the root processor

which performs the convergence check. This resending operation is performed in

a sequential manner, so the execution time for this total transfer is equal to (N -

l)Tr. Although Tr depends upon N, the dependence is not very strong [31], and is

ignored here.

Consequently, T(N) = n + ~ + (N- l)Tr, and then the speedup is:

S(N) = Tc
Tb + ~ + (N- l)Tr.

Assuming that n = Tr, the speedup becomes:

Let the computation-to-communication ratio rcompfcomm be the ratio of TCI the

computation time of a single iteration on a single processor, to Tr, then:

S(N) = r compfcomm .
N + Tcomp/comm

N

If N unicast operations are used in the first step instead of one broadcast operation

(i.e., sending the data from the root processor to all the other processors is done

using a sequence of N unicast send operations), it is expected that the speedup

20

is not changed significantly. This is due to the staggered execution of different

operations. All the operations, namely unicast, computation and resending the

results back to the root processor are staggered one after another during execution

phase.

In each iteration step, all the processors have to wait until they receive the data

from the root processor. Once they receive the current approximation to the so

lution, they start the computation. Finally, the results are sent back to the root

processor for further processing. These steps are the same for all the processors

and thus the operations are staggered one after another.

If the time of sending the approximation of the solution is represented by Ta,

the execution time of one distributed iteration is given by:

T(N) = (N- 1) * max(Ta, Tr) + ~ + min(Ta, Tr)·

When Ta::::::; Tr, then:

T(N) = N * Tr + ~.

This is similar to the execution time of one distributed iteration when the broad

cast operation is used to send the initial approximation from the root processor to

all the other processors instead of using N unicast operations. So, the equation for

the speedup is similar even if N unicast operations are used instead of the broad

cast operation.

Figure 2.1 shows the values of speedup for N = 2, 4, ... , 32 and for rcompfcomm=

10, ... ,120. According to Figure 2.1, better speedups can be obtained when the

computation-to-communication ratio is higher. The best speedup is achieved

when the number of processors is between 10 to 20. With an increase in the num-

21

Ratio No.Of procenora

Figure 2.1: Speedup of distributed iterative solvers

her of processors, the execution time increases gradually due to the dominating

communication time. This reduces the expected speedup.

Organizing the collection of results in a hierarchical manner can be used to im-

prove the speedup values and is an efficient way to get better results. One such

example is collecting the results in a 2-level hierarchical way, so that first, there-

suits of computations are collected in groups of K processors, and then the results

of these groups are combined together. It can be shown that minimal total com

munication time is obtained when K is equal to .JR. Then the speedup becomes:

S(N) = Tcompfcomm
Tcornp/cornrn + 2 * .JN + 1 •

N

Figure 2.2 shows the speedup values for N = 2, 4, ... , 32 and for rcompfcomm=

10, ... ,120 for this hierarchical approach. According to this Figure, better speedup

values can be achieved than in the previous case, and the best speedup can be

achieved for a higher number of processors than before.

22

g-5

J·
3 .•

0
120

Ratio No.Of procesaora

Figure 2.2: Speedup of modified distributed iterative solvers

For large numbers of processors, this approach can be further improved by

using additional levels of the hierarchical collection of results.

23

Chapter3

Implementation

This chapter provides an overview of the implementation of a distributed iterative

linear solver. Section 3.1 describes the format used to represent the sparse matrices

for distributed iterative solvers. Section 3.2 outlines the method used to solve the

systems of linear equations and the stopping criteria for the iterative method. It

also describes how the workload is distributed and how the distributed iterations

work. Section 3.3 contains the pseudo-code of algorithms for both uni-processor

and distributed cases. The last section discusses the program implementation of

the distributed solver.

3.1 Representation of sparse matrices

The storage structure used to represent the sparse matrix A of the linear system

Ax = b is similar to the method described in Section 2.2.2, but instead of storing

the pointers, the third array is used to store the number of non-zero elements in

2 0 0 1 0

-1 3 0 0 0

0 2 0 1 0

1 0 0 -2 0

0 0 0 0 1

Figure 3.1: A 5x5 sparse matrix A.

A-· t,} 2 1 -1 3 2 1 1 -2 1

j 1 4 1 2 2 4 1 4 5

count 2 2 2 2 1

Figure 3.2: Representation of the matrix form in Figure 3.1 using the sparse format.

each row, in row major order. An example of sparse matrix representation is shown

in Figure 3.1 and Figure 3.2.

3.2 Solution of the systems of linear equations

Section 2.3.2 provided an overview of iterative methods for solving linear algebraic

equations. Out of these methods, the Relaxation method is used in the distributed

implementation. Factors such as higher rate of convergence than for the Jacobi

and Gauss-Seidel methods, and simplicity of implementation make the Relaxation

method more attractive than the recently introduced preconditioned methods.

The optimum value of the relaxation factor is determined by a trial and error

25

approach based on how fast the iterative process converges. It is observed that the

best relaxation factor depends on the size of the system as well as on the structure

of the coefficient matrix. The initial approximation to the solution was obtained by

multiplying the solution vector by a suitable ratio.

3.2.1 Workload distribution

In a distributed system, the workload should be distributed among the proces

sors as uniformly as possible. Workload distribution can be done in many ways,

depending upon the characteristics of the problem being solved. One way is by

dividing the total number of equations approximately equally among the proces

sors. When the system is diagonal or uniform or when most of the rows contain

approximately the same number of non-zero elements this approach is satisfactory.

But when the system is non-uniform, irregular or when some of the rows contain

a large number of non-zeros, such an approach can cause a significant load imbal

ance because some processors may get more computing intensive segments than

others. This can negatively impact the expected performance.

Load imbalance can be eased by allocating approximately the same numbers

of non-zero elements (i.e., the same number of operations) among the available

processors. The number of operations performed by each processor is calculated

by dividing the total number of non-zero elements by the number of processors

(and rounding the result to deal with complete equations if possible).

Assigning the number of operations to each processor and allocating the start

ing element of the sparse matrix of coefficients is shown below:

26

Begin Workload distribution
Nz :=the total number of non-zeros;
P := the number of processors;
Next:= 1;
For i:=l ToP Do

K := round(Nz/P);
Noper[i] := K;
Nz:=Nz-K;
Start[i] := Next;
Next := Next + K

End For
End Division of tasks by the root processor.

For each processor, the vector "Start" indicates the first element of the sparse

matrix of coefficients processed by this processor, and "Noper" the number of

nonzero elements assigned to this processor.

3.2.2 Distributed Iterations

In the distributed implementation of the iterative algorithm, the root processor is

the "master" processor which controls all other processors. The master processor

distributes the workload to other processors as described in the previous section.

Each processor starts its calculations when it receives the information from the

master processor. Once each processor completes its calculation, it sends there-

suits back to the root processor.

In each iteration, the root processor receives the results from all other proces-

sors. The order of getting these results back from other processors can change from

one iteration to another. The root processor collects the results, finalizes the calcu-

lation of the xnew-vector and determines the relative error. If the convergence

27

criteria are not satisfied, the root processor sends the xnew-vector back to all other

processors and the calculation is resumed. When the convergence criteria are sat-

isfied, the root processor sets a flag to True and sends it to all the other processors.

Then all the other processors end their computations.

It is assumed that the convergence is satisfied when the relative error is less

than the required tolerance. The relative error indicates how close the approximate

solution is to the optimal solution.

Computation of the relative error, RelErr, is carried out as follows (N is the total

number of equations):

Begin Computation of the Relative Error(xold,xnew)
RelErr := 0;
Tot:= 0.0;
Sum:= 0.0;
For i:=l ToN Do

V[i]:= xnew[i]- xold[i] ;
Tot := Tot + V[i] * V[i] ;
Sum:= Sum+ xnew[i] * xnew[i]

End For;
RelErr := Sqrt(Tot/Sum)
End Computation of the Relative Error(xold,xnew).

For very large sets of data, the straightforward computation of a 2-norm can

result in an overflow which can be avoided by a simple modification of the com-

putations that involves scaling [32].

28

3.3 Algorithms

The performance of a uniprocessor system is based on the algorithm presented in

Section 3.3.1. The distributed version of the algorithm is outlined in Section 3.3.2.

The following notations are used in the algorithms shown in Sections 3.3.1, 3.3.2:

a - the coefficient matrix,

b - the right hand side vector,

xold - the previous approximation to the solution vector,

xnew- the new approximation to the solution vector,

Iter - the number of iterations.

3.3.1 Serial algorithm

The following algorithm shows how the program works for a uniprocessor system.

For each iteration the relative error is calculated and the iterations terminate when

the convergence criteria is satisfied.

Begin SerialAlgorithm
N :=the total number of equations;
Read data from a file;
xnew := the initial approximation xC0);

Tol := the required relative tolerance;
w := the relaxation coefficient;
Iter:= 0;
Converged := False;
While not Converged Do

For i := 1 to N Do
xold[i] := xnew[i]

End For;

29

For Row := 1 toN Do
Sum:= b[Row];
For Column := 1 to N Do

If Row =/= Column Then
Sum := Sum - A[Row,Column] * xnew[Column]

End If
End For;
Sum := Sum/ A[Row,Row];
xnew[i] =Sum+ (1- w) * xnew[i]

End For;
RelErr :=relative error(xold,xnew);
If RelErr < Tol Then

Converged := True
End If;
Iter:= Iter+ 1

End While
End SerialAlgorithm.

3.3.2 Distributed algorithm

The distributed algorithm uses MPI for communication between the master pro

cessor and all other processors. The algorithm shows how the data are passed back

and forth between the master processor (root processor) and the other processors

in a distributed system. The main task of the root processor is to calculate the rel

ative error and to check the convergence of the iterative process. All processors

(including the master processor) participate in the calculation process.

Begin DistributedAlgorithm
P := the number of processors;
N := the total number of equations;
Converged := False;
If the current processor = root processor Then

Read the data from a file;
Tol :=the required relative tolerance;
Iter:= 0;
xnew := the initial approximation x(o);

Perform workload distribution;

30

Division of tasks by the root processor
Send the initial data A,b to other processors;

Else
Receive the data A,b from the root processor

End If;
While not Converged Do

If the current processor = root processor Then
For i := 1 to N Do

Else

xold[i] := xnew[i]
End For;
For i := 2 to P Do

Send xold to a processor
End For;
Calculate of a segment of the vector xnew;
For i := 2 to P Do

Receive a segment of xnew from one of processors
End For;
Iter := Iter + 1;
Calculate the final value of xnew;
RelErr := relative error(xold,xnew);
If RelErr < Tol Then

Converged := True;
send "terminate" to other processors

End If

Receive xold from the root processor;
If received("terminate") Then

Converged := True
Else

Calculate a segment of xnew;
Send the segment of xnew to the root processor

End If
End If

End While
End DistributedAlgorithm.

In order to collect the measurements for different numbers of processors in a

single run, the distributed program is implemented in such a way that the number

of processors P can be changed during program execution. The average execution

time for a single iteration is obtained by dividing the total execution time by the

31

number of iterations required to find the solution.

3.4 Program Implementation

The implementation of distributed solvers is based on the message-passing paradigm,

which is used widely on distributed systems. MPI [25],[20] is a message passing

system which is used to write portable distributed programs in FORTRAN, C or

C++. MPI is the leading standard for message passing libraries for parallel com

puting. MPI implementations exist for heterogeneous networks of workstations

and symmetric multiprocessor systems running UNIX or Windows NT operating

systems. MPI can be used on Networks of Workstations (NOWs), Scalable Parallel

Computers (SPCs) and combinations of the two.

MPI is not a directive-based data parallel language like High-Performance

FORTRAN (HPF) or OpenMP. It is a library of communication routines which is at

tached to the program thereby providing more flexibility than directive-based ap

proaches. Also, MPI can be implemented on both shared-memory and distributed

memory architectures. It is the programmer's task to explicitly divide the data and

work among the processors and to manage the communication between them.

The basic communication mechanism of MPI is point-to-point communication,

where data is transmitted between a pair of processors. Blocking send and receive

operations were used for the implementation. Programs were implemented using

the unicast operation.

The MPI program was executed on the LAM/MPI run time environment on

the Linux platform. LAM/MPI is frequently used on Linux-based machines [7].

32

Once launched, the LAM run time environment, or so-called LAM Universe MPI

programs, can be successfully executed. LAM/MPI is a high performance, freely

available, high-quality open source implementation of the MPI standard which has

a rich set of features. It was developed and is maintained by Open Systems Lab at

Indiana University.

The convergence criterion used is the relative error approach; the iterative pro-

cess is stopped when the relative error satisfies the required tolerance (refer to

Section 2.4).

Because the order in which the messages are received is not pre-determined,

the program was implemented so that the root processor can receive the sections

of vector-x from the other processors in any order.

The measurement of individual computation and communication times is

rather difficult and requires some support at the operating system level. There

fore a more general approach has been adopted in which only the total execution

time Tex of Niter iterations has been measured (using the available system-level

procedures), and then the time of a single iteration was simply obtained as

Tex
Tit=-N .

iter

For a larger number of iterations (in the order of several thousands), the effects

of initialization and termination of the iterative process can be neglected.

33

Chapter4

Experimental results

This chapter presents experimental results for distributed iterative solvers of large

and sparse systems of linear equations. Performance of distributed solvers was

analyzed by measuring the total execution time and calculating the speedup of a

distributed solver. Speedup is presented for several structures of systems of equa

tions and also for systems of different sizes with the same structure, using from 2

to 32 processors. The purpose of this study is to analyze how the number of pro

cessors affects the performance of the system, to study the effect of system size on

the speedup, and to check the influence of the number of processors on the number

of iterations required for the iterative solution.

4.1 Data

Several different sparsity patterns in the coefficient matrix are possible. These in

clude a matrix with constant band width, band matrix with step, strip matrix, band

matrix with margin, block diagonal matrix with margin and general sparse matrix

[29]. The systems of equations chosen for the experiments include several of these

sparsity patterns as well as their combinations. Some typical sparsity patterns are

shown in Figure 4.1.

Sparse systems used for the experiments are as follows:

1. System (1): Band structure as in Figure 4.1(a); the band is symmetric and

contains three diagonals.

2. System (2): The structure is the one in Figure 4.2(b), with six diagonals.

3. System (3): Band matrix with a margin as shown in Figure 4.1(c); the band

is symmetric, contains five diagonals and the margin is at the bottom of the

matrix.

4. System (4): Variation of System (3), with the margin at the top of the matrix,

as shown in Figure 4.1(d).

5. System (5): A block diagonal structure similar to the one in Figure 4.1(e), the

size of each block is 10 by 10, and blocks are sparse.

6. System (6): The structure is similar to that in Figure 4.1(f); it is a block diago

nal with overlapping blocks; this system is denser than System (5).

Densities of these systems are approximately 5/ N for N = 500, 1000, 1500 and

2000, which means that the systems of equations are very sparse.

For each sparsity pattern, data was generated by specialized programs, so no

data inconsistencies were expected. In all cases, the exact solution was known

35

XX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XX

Structure (a)

xxxxxxxxxx
XXX

xxxx
XXX XX

XX XXX

XXX XX

XXX XX

xxxxx
XX XXX

xxxx

Structure (d)

X X X X

XXX XX

XXX XX

X XX X X

X XXX XX

X X X X X X

X XXX X

X XXX

X X XX

X XX

Structure (b)

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

XXX

Structure (e)

X

XXX

xxxx
xxxxx

XX XXX

XX XXX

XXX XX

XXX XX

xxxxx
xxxx

XXXX X XXXXX

Structure (c)

XXX

XXX

XX XXX

XXX

XX XXX

XXX

XXX XX

XXX

XXX

Structure (f)

X

Figure 4.1: Sparsity patterns

and the initial approximation to the solution was obtained by disturbing the exact

solution by a fixed ratio.

4.2 Results and Discussion

The purpose of using distributed iterative solvers is to reduce the total execution

time and this reduction is represented by the speedup. Speedup was calculated by

dividing the time required for the solution using only one processor by the solution

36

time using N processors.

4.2.1 Speedup of distributed solvers

Figures 4.2, 4.3, 4.4, 4.5, 4.6 and 4.7 show the speedup as a function of the number

of processors for the six sparsity patterns discussed in section 4.1, and for four

different sizes of the systems of equations.

For System (1), the speedup curves are shown in Figure 4.2. It can be observed

that the speedup improves with the size of system of equations. Also, the maxi-

mum speedup is obtained for a rather small number of processors, in the range of

6 to 13. For larger number of processors, the speedup decreases as predicted by the

simple analysis in Section 2.6. For all sparsity patterns, the speedup plots (Figures

4.2 to 4.7) have the characteristic shapes as shown in Figure 2.1.

20,-------,-----.---,-----,----,----,-----,

18

16

14

12

8

6

4

2
-·e·-·a·-·s

~~-~5--~,0--~,5---2~0---2~5--~30~

No of Processors

Figure 4.2: Speedup plots for System (1)

37

20.--------,------.------.----.---.-------,.-,

18

16

14

12

8

6

4
,o- -0-. -o-. -o

-o_
-o-. -<J-. -o

- -o-·-o- -E>·~ -·e-
2

oL--~--~--~--~--L--~~
0 5 10 15 20 25 30

No of Processors

Figure 4.3: Speedup plots for System (2)

4.2.2 Speedup and the density of data

The performance results can be used to asses the influence of the density of the

data on the speedup. For example, for Systems (1) and (2), for the same size of

the systems of equations, System (2) has density approximately twice as large as

System (1), which also means that the rcompfcomm for System (2) is more than two

times greater than that for System (1). Because of that, the speedup values for

System (2) are expected to be greater than those for System (1). The ratio of the

speedup values of System (2) to that of System (1) is shown in Figure 4.8 as a

function of the number of processors. As shown in Figure 4.8, the ratio of the two

speedups grows monotonously with the number of processors which also means

that for the maximum speedups corresponding to 10 to 15 processors, (Figures 4.2

38

20~------~------.-------.-------.-------.-------.--.

18

16

14

12

8

6

4

2

0o~------sL-----~1~o-------1~s-------2~o-------2~s~----~3o~~

No of Processors

Figure 4.4: Speedup plots for System (3)

20r-------.-------.-------.-------.-------.-------,--,

18

16

14

12

8

6

4

2

0o~------~------,~o-------,~5-------2~o-------2~5~----~ao~~
No of Processors

Figure 4.5: Speedup plots for System (4)

39

20r-------r-------.-------.-------.-------.-------.--.

18

16

14

12

8

6

4

2

0o~------5~------1~o-------1~5-------2~o-------2~5------~3o--~

No of Processors

Figure 4.6: Speedup plots for System (5)

20r-------.-------,-------.-------.-------.-------,--.

18

16

·"")(-·-)(,
14 ;><"

12

8

6

4

2

0oL-------L-------,~o-------,~5-------2~o-------2~5------~3o~~

No of Processors

Figure 4.7: Speedup plots for System (6)

40

and 4.3), this improvement is only about 50%.

2

1.9

1.8

1.7

1.6

0

~ 1.5
a:

1.4

1.3

1.2

1.1 I
0

1
0 5 10 15 20 25 30

No of Processors

Figure 4.8: The ratio of speedup for System (2) and System (1), as a function of the

number of processors.

Systems (3) and (4) have the same densities, and therefore, the same values

of rcompfcomm· Consequently, the speedup values are expected to be the same, as

shown in Figures 4.4 and 4.5. This is well illustrated in Figure 4.9.

It can be observed in Figures 4.6 and 4.7 that the speedup values for System (6)

are higher than the speedup values for System (5). This is due to the higher density

of System (6) and larger values of rcompfcomm·

Figure 4.10 shows the ratio of the speedup for System (6) to that for System (5)

as a function of the number of processors. In this case, the improvement of the

speedup is only about 50%.

41

2r------.------.------.------.------.------.-~

1.8

1.6

1.4

1.2

~ 1
a:

0.8

0.6

0.4

0.2

0oL-_____ 5L_ ____ ~1~0----~1~5----~2~0----~2=5------~=-~

No of Processors

Figure 4.9: The ratio of speedup for System (4) and System (3), as a function of the

number of processors.

2r------.------.------.------.------.------.-~

1.9

1.8

1.7

1.6

0

~ 1.5

1.4

1.3

1.2

1.1

1 0~-----5~----~1~0----~1~5----~2~0----~2=5----~~=-~
No of Processors

Figure 4.10: The ratio of speedup for System (6) and System (5), as a function of

the number of processors.

42

4.2.3 Speedup and the size of the systems of equations

As the size of the system of equations increases, the workload of each processor

increases and the values of rcompfcomm also increases. Therefore, the speedup for

larger systems of equations is expected to be greater than for smaller systems.

The increase of the speedup for System (2) and System (6), when the number

of equations are 1000, 1500 and 2000, are shown in Figures 4.11 and 4.12 with re-

spect to the speedup for size 500. It is clear that when the number of processors is

between 10 to 15, the increase is significant for all the sizes.

~~--~----~--~----~----~--~----~

300

250

~200

N
~ 150

100

50

5

I

~

I

I

.J.
I

10

I

X

~·

.)1; -· -M· -·•. -)(- --)(-· -«· -~~-·)f-. -x

/

15 20
No of Processors

25

0

30 35

Figure 4.11: Percentage increase of speedup values for System (2)

The speedup as a function of the size of the systems of equations for the same

number of processors is shown in Figures 4.13 for System (2) and for a number of

processors equal to 4, 8, 20 and 32.

43

~------.-----.-----.-----,-----,-----,----~

300

250

~200

~
~ 150

D..

100

I
i

;I.

I
I

"

•
I

I

I

x--..-.<·-·-M·-·M- -~<-·->'-2QP0_.,.. --x

I

~G-·-o--·~- e·-o-·-o--101!Jl_ e·-·o
.Ja·-·9

0oL_ ____ L_ ____ ~10----~15~--~20~--~2~5----~3LO----~~

No ot Processors

Figure 4.12: Percentage increase of speedup values for System (6)

15
/

/

/

>('

29-'

10

i
rn

5

0o~------~soo~----~1ooo~------~15~oo------~2~ooo~----~2500

Size

Figure 4.13: Speedup plot for System (2), when the number of processors is 4, 8, 20

and32

44

The plots shown in Figure 4.13 can be approximated using the speedup for-

mula:

S(N) = Nrcompfcomm
N 2 + rcompfcomm

If the number of processors, N, is large, ~ > rcompfcomm' and the speedup

becomes:

S(N) = rcomtomm.

Since the value rcompfcomm is directly proportional to the size of the system of equa

tions, the plots in Figure 4.13 which correspond to large values of N are practically

linear, and the values for N =32 are smaller than those for N =20. For small values

of N, the plots in Figure 4.13 reflect the non-linear characteristics of S(N).

4.3 Number of Iterations

The distributed version of the iterative process, presented in Section 3.2, may re

quire a different number of iterations than the corresponding sequential version

to provide the same accuracy of the iterated solutions. This difference is a conse-

quence of distributed environment in which, during each iteration, the processors

do not have access to results evaluated by other processors. In effect, for a given

system of equations, when the number of processors increases, the numbers of

operations assigned to each processor become smaller, and the effects of computa-

tions - more localized. This, in tum, may affect the convergence properties of the

iterative process.

Figures 4.14 and 4.15 show the (total) number of iterations required for dis

tributed iterative solutions of systems of 500, 1000, 1500 and 2000 equations as a

45

~-------.------.------.------.------.------.-~

... 500

700

x-. -x- -*-. -k· _ --te.· _ .1<- _ -~- _. -M· _ ·* ·- .,... _ .,... .- .,.... _ -~~~ .-x- ·-

500

1400
0-. --o-· -o-. -o -· e·- e·- e·- ·e. -·e ·- ·G- ·- o- · -o-· -o- · ~~. --o-

0
~

300

200

100

oL---__ _L ______ L_ ____ _L ______ L_ ____ -L------~~

0 10 15 20 25 30
No ot processors

Figure 4.14: Number of iterations as a function of number of processors for System

(1)

~-------.------.------.------.------.------~~

700

500

x- -x- -M- -tc--« _ -.c _ -H- M-- *'- * -~ -M- -1~-x- -x--

500

1.500
400

0- -o-·-o-·-o- -E>·- e·-·a·-·a·-·e·-~·-o-·-o-·-6Q.OO-o- --o-·~
300

200

100

OL---__ _L ______ L_ ____ _L ______ L_ ____ -L------~~

0 5 10 15 20 25 30
No of processors

Figure 4.15: Number of iterations as a function of number of processors for System

(3)

46

function of the number of processors used for two different systems of equations.

According to the results shown in Figures 4.14 and 4.15, for System (1) and Sys

tem (3) the number of processors does not affect the convergence in any significant

way if the system is sufficiently large.

Figures 4.14 and 4.15 are somewhat irregular but the number of iterations varies

over a small range, so this number does not practically depend upon the number of

processors. However, Figures 4.14 and 4.15 show that the number of iterations ac

tually decreases with the increased size of the system of equations; this can be due

to improved overall convergence properties of the iterative process when the num

ber of operations assigned to each processor increases. Figures 4.14 and 4.15 also

show that the rate of reduction of the number of required iterations depends upon

the sparsity structure of the data. When the number of equations increases four

times (from 500 to 2000 equations), the number of required iterations decreases by

about 35% for System (1) (Figure 4.14) and almost 50% for System (3) (Figure 4.15).

The dependence of the required number of iterations on the number of proces

sors is more pronounced for small systems of equations. Figure 4.16 shows the

number of iterations as a function of the number of processors for distributed iter

ative solvers of System (5) with 100 equations.

The number of required iterations steadily increases in Figure 4.16 as the num

ber of processors changes from 2 to 32. This increase of the number of iterations

is due to the same effects as before; as the number of processors increases, the

number of operations assigned to each processor decreases, and this affects the

convergence properties of the iterative process.

It is anticipated that the effects shown in Figure 4.16 can be more significant for

47

ooo.-----.------.-----.------.-----.------.-.

450

400

350

1!!300

~
~250
0

~200

150

100

50

. _ e-- -e ·- -e -- -e- ·- <r ·- o-· -o- · -o-· --o-- ·"""'
o- -o---o---Q---t>- -e

~~----~5------1~0----~15----~2~0-----2~5----~~~

No of processors

Figure 4.16: The number of iterations of distributed iterative solvers of 100 equa-

tions for System (5)

data with other sparsity structures.

48

Chapter 5

Conclusions

This thesis analyzes the performance of distributed iterative solvers for large and

sparse systems of linear equations. Performance of the system was analyzed using

the speedup - the most popular metric of the performance of distributed systems.

In this project, the distribution of equations among the processors is straight

forward but it introduces a limitation on the speedup. It is observed that the use

of a large number of processors may increase the solution time of the system and

thus compromise the speedup.

Since distributed systems operate in an unreliable communication environ

ments with a finite-bandwidth, it is obvious that the communication network has

a major affect on the systems' performance. In order to reach better performance

of the system, communication links should be reliable with small communication

delays. Also, other factors such as buffering the data and packing or unpacking the

data can reduce system performance. The topology of the interconnection network

also plays an important role in distributed systems. By improving the communi-

cation protocols or routing to avoid communication congestion, the performance

of distributed systems.

According to both simple analytical considerations and the experimental re

sults, the performance of the distributed solvers increases with the number of pro-

cessors, but after a certain point, the advantage of distributed computing becomes

less significant. Even though the idea of distributed systems is to divide the com-

putation time among the processors, the total execution time is dominated by com

munication time among the processors exchanging data and results. To achieve

better performance, the communication delays must be reduced. This can be done

by increasing the bandwidth of the communication medium, or by introducing

concurrency at the level of communication, (for example, in the form of parallel

channels) or by a combination of the two approaches.

When r compfcomm is high, the communication overhead does not significantly

reduce the performance of the system which implies that the higher the ratio of

computation to communication, rcompfcomm' the better speedup.

The discussion of the distribution of computations among the processors of a

distributed system (Section 3.2.1) assumes that all processors have similar charac-

teristics (i.e., the system is homogeneous). In this case, the distribution formula is

very simple, and the number of non-zero elements assigned to each processor is

where N z is the total number of non-zero elements in the linear system and P is

the number of processors. For heterogeneous systems, in which the performance

of each system can be different, the "load distribution" must take into account the

50

performance characteristics of processors in such a way that the computation times

of all processors are approximately the same, so the more powerful processors

should be assigned more workload than the less powerful ones. If Mi denotes the

performance (in Mflops per second, for example) of processor i, i = 1, 2, ... , P, a

simple work allocation formula for a heterogeneous distributed system can be as

follows:

where Mp = M1 + M2 + ... + Mp. All remaining aspects of distributed implemen-

tation are as described in this thesis.

The approach discussed in this thesis does not apply to shared-memory mul-

tiprocessor systems, because the "communication component" in such systems is

nonexistent. On the other hand, access to shared memory is typically much slower

than to local memory, and concurrent accesses are performed sequentially. Con

sequently, the performance of iterative solvers on shared-memory systems can be

described by the Amdahl's law [5] with the convergence checking section consti

tuting the serial part of code.

The major conclusions from this project are as follows:

1. The experimental results are consistent with analytical predictions.

2. The best speedups are obtained for a rather small number of processors,

ranging from 10 to 20 when the system size is average or higher.

3. The speedup improves with the size of the systems of linear equations.

51

4. Increased density of the system improves the speedup.

5. For a larger number of processors, the performance of the communication

network is essential for the overall performance of the solver.

6. When the computation to communication ratio is high, the effect of commu

nication delays is insignificant.

7. If the system is large enough, the number of iterations are practically inde

pendent from the number of processors.

Iterative solvers were implemented using the C language and the MPI libraries

[25], a message-passing interface. Experimental results were observed on up to

32 processors using the networks of PC's and workstations in the labs of the De

partment of Computer Science, Memorial University of Newfoundland. Processor

configurations were Pentium III with 800 MHZ clock, 256 KB cache memory, 128

MB RAM and 2 GB virtual memory. The operating system used was Linux. The

cluster was located at PA-1019 on MUN's campus. All client computers were con

nected to a 48 port Cisco 100 Megabit switch using CatSe Ethernet.

All computations were performed in single precision. It is expected that the

change of precision will not affect the results presented in this thesis in a significant

way.

The experiments were executed on a dedicated cluster of PCs (i.e., no other

users were allowed during experiments).

Some further details related to this study can be found in [37] and [36].

52

Bibliography

[1] Aspen systems home page: 11 WWW. aspsys. corn/ clusters/beowulf I II.

[2] Climate prediction home page: 11 WWW. clirna teprediction. net II.

[3] Seti@home home page: II setiathorne. ssl. berkeley. edu II.

[4] 0. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

[5] L. Baker and B. J. Smith. Parallel programming. McGraw-Hill, 1996.

[6] M. Benzi. Preconditioning techniques for large linear systems: a survey. Joumalof

Computational Physics, Volume 182, Issue 2, pp. 418-477, November 2002.

[7] S. Bhattacharya, P. De Mauro, S. Gundavaram, M. Mamone, K. Sharma, D.

Thomas, and S. Whiting. Beginning Red Hat Linux 9. Wiley Publishing Inc.,

Indianapolis, Indiana, 2003.

[8] R. H. Chan, T. F. Chan, and G. H. Golub. Iterative Methods in Scientific Comput

ing. Springer-Verlag Singapore Pte. Ltd., 1997.

[9] I. Dimov, I. Lirkov, S. Margenov, and Z. Zlatev (eds). Numerical Methods and

Applications, volume 2542. Springer-Verlag Berlin Heidelberg, 2003.

53

[10] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. Van der Vorst. Numer

ical Linear Algebra for High performance computers. Society for Industrial and

Applied Mathematics, 1998.

[11] L. Erlander. Distributed computing: an introduction. Extreme Tech, April 4,

2002.

[12] D. J. Evans (ed). Sparsity and its Applications. Cambridge University Press,

1985.

[13] A. Facius. Highly accurate verified error bounds for Krylov type linear system

solvers. Applied Numerical Mathematics, vol. 45, no. 1, pp. 41-58, 2003.

[14] V. K. Garg. Principles of distributed systems. Kluwer Academic Publ., 1998.

[15] A. I. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam,

editors. Parallel Virtual Machine. The MIT Press, Cambridge, Massachusetts,

London, England, 1997.

[16] G. Golub, A. Greenbaum, and M. Luskin. Recent Advances in Iterative Methods,

volume 60. Springer-Verlag, 1994.

[17] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins

Univ. Press, 1983.

[18] A. Greenbaum. Iterative solution of large sparse systems of equations (Applied

Mathematical Sciences 95). Springer-Verlag, 1995.

[19] A. Greenbaum. Iterative methods for solving linear systems (Frontiers in Applied

Mathematics 17). SIAM, 1997.

54

[20] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:portable parallel programming

with the message-passing interface. MIT Press, 1999.

[21] S. Hamilton. Taking Moore's law into the next century. IEEE Computer Maga

zine, vol. 32, no. 1 edition, 1999.

[22] J.D. Hoffman. Numerical solutions for engineers and scientists. pub-MH, second

edition edition, 1992.

[23] A. Jennings and J. J. McKeown. Matrix Computations. John Wiley and Sons,

second edition, 1992.

[24] R. Merritt. Intel, clusters on the rise in 'Top 500 Supercomputer' list. EE Times

Online, November 18, 2003.

[25] P. S. Pacheco (ed). Parrallel Programming with MPI. Morgan Kaufmann Pub

lishers, Inc., San Francisco, California, 1997.

[26] S. S. Rao. Applied Numerical methods for Engineers and Scientists. Prentice Hall,

2002.

[27] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,

R. Pozo, C. Romine, and H. Van der Verst. Templates for the Solution of Linear

Systems. SIAM, Philadelphia, PA, second edition, 1994.

[28] Y. Saad. Iterative methods for sparse linear systems. SIAM 2003, second edition.

[29] U. Schendel. Sparse Matrices numerical aspects with applications for scientists and

engineers. Ellis Horwood Limited, 1989.

55

[30] J. A. Stankovic. Distributed Computing in Distributed computing systems. IEEE

CS Press, 1994.

[31] M. R. Steed and M. J. Clement. Performance prediction of PVM programs. Proc.

10-th Int. Parallel processing symposium (IPP5-96), pp. 803-807, 1996.

[32] G. W. Stewart. Introduction to Matrix Computations. New York, Academic

Press, 1973.

[33] M. Mills Strout, L. Carter, J. Ferrante, and B. Kreaseck. Tiling for Stationary

Iterative methods. International Journal of High Performance Computing Ap

plications, Volume 18, Issue 1, pp. 95-113, 2004.

[34] R. P. Tewarson. Sparse Matrices. Academic Press Inc, New York, 1973.

[35] B. Wilkinson. Computer Architecture Design and Performance. Prentice Hall,

second edition, 1964.

[36] W. M. Zuberek and T. D.P. Perera. Speedup of Distributed Iterative Solvers of

Large Sparse Systems of Linear Equations. WSEAS Transactions on Mathematics,

vol. 4, no. 3, pp. 281-288, July 2005.

[37] W. M. Zuberek and T. D. P. Perera. On the Speedup of Distributed Linear Solvers.

5-th EUROSIM Congress on Modeling and Simulation, pp. 222-223, Septem

ber 2004.

56

