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Abstract

Peter Penney

The Preconditioned Conjugate Gradient method (PCG) is an iterative method used to
solve linear systems of equations Ax=b, were A is often a large and sparse matrix. In the
PCG method, diagonal scaling (Jacobi scaling) may be used to precondition the Matrix A
so that the method converges in fewer iteration steps than the conventional conjugate
gradient method. Diagonal scaling is carried out by using the diagonal of A as a pre­
conditioner at each conjugate gradient iteration step. This project proposes a novel
approach using an evolutionary algorithm to evolve different diagonal matrices to
precondition the Matrix A at each iteration step. The evolutionary algorithm proceeds by
applying computational crossover and mutation operators to generate a small population
of matrices. The diagonal matrix resulting in the lowest relative residual in the population
(higher fitness) is selected to pre-condition the Matrix A for the next iteration.
Subsequently, a new generation of diagonal matrices will compete to become the
preconditioner for the following iteration. This process continues for the number of
iteration steps defined by the PCG Method. Results from conventional diagonal scaled
PCG method will be compared with the evolutionary algorithm based diagonal scaled
PCG method.
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Introduction

Peter Penney

This project outlines an Evolutionary Algorithm (EA) for diagonal scaled preconditioned

conjugate gradient method (DSPCG). The DSPCG Method is an iterative method for

solving a set oflinear equations of the form Ax=b, where A is an n by n Matrix (usually

sparse) and x and b are both n vectors, the vector x is the unknown and b is referred to as

the right hand side vector.

First we discuss a related paper by lun He et. aI., then we proceed with a discussion of

the Conjugate Gradient, the PCG and DSPCG Methods. Next, we give an overview of an

EA for DSPCG. Finally, we will compare and discuss the results from the conventional

DSPCG tests with the EA DSPCG.

Systems of equations obtained from the University of Florida's Matrix Market(IO) were

solved using both DSPCG and EA DSPCG. Timing results for both the conventional and

EA DSPCG algorithms were compared and contrasted for the various matrices obtained

from the Matrix Market. The table below lists the properties of the six matrices used

during testing.

Table 1: Test Matrices Properties

Number 0/0 Condition
Name Size Non-Zero Non- Number Notes

Elements Zero x 109

(Est.)
BCSSTKI4 1,806 63,454 1.945 1.3 Roof of the Omni Coliseum,

Atlanta
BCSSTKI5 3,948 117,816 0.756 6.5 Module of an offshore

platform
BCSSTKI6 4,884 290,378 1.217 4.9 U.S. Army Corps of

Engineers dam
BCSSTKI7 10,974 428,650 0.356 13.0 Elevated pressure vessel
BCSSTKI8 11,948 149,090 0.104 43.0 R.E. Ginna Nuclear Power

Station
S3DKQ4M2 90,449 2,455,670 0.030 190.0 Finite element analysis of

cylindrical shells
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Related Work

Peter Penney

To the best of the author's knowledge, the paper by lun He et. al.(5) is the closest

reference available which relates to the topic of this project. Their work is only similar in

that it used an EA to solve a system of linear equations. lun He et. al. used an EA to

arrive at an optimal over-relaxation factor for which they used the Successive Over

Relaxation Method (SOR) to solve the system of linear equations. In this project we

investigate the idea of an EA in relation to the PCG method.

The Diagonal Scaled Preconditioned Conjugate Gradient (DSPCG) and the Successive

Over Relaxation Method are iterative methods used to solve linear systems of equations.

The DSPCG method that this project deals with is mathematically very different from the

SOR Method. An exhaustive literary search by this project's author failed to find any

application of EAs together with the PCG method.

The Preconditioned Conjugate Gradient Method

Systems of linear equations arise very often in practice, for example, when Finite

Element Methods (FEM) or Finite Difference Methods (FDM) are employed to solve

physical problems (e.g. determining the forces in a structural member such as an aircraft

wing). The matrices arising from the solution of the partial differential equation

associated with FEM and FDM are very large (10,000 x 10,000 and larger) and very

sparse (less than 1% of the elements are non-zero).

There are two basic methods for solving systems of equations: direct and iterative. Direct

methods, which include Gaussian Elimination and Cholesky Decomposition, solve the

system in a predetermined number of steps by transforming the original matrix A to a

triangular matrix. During this process however, many of the zero elements of the matrix

A are changed to non-zero values (fill-in). This could be very inefficient since only the

non-zero elements of a sparse matrix are stored. Furthermore, the special data structure

of sparse matrices are generally more difficult to update (add or delete elements).

2
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Therefore, when working with sparse matrices every attempt should be made to maintain

their sparsity and avoid transformation of the matrix. Iterative methods in general work

with the original matrix throughout the solution process. Since there is no fill-in of the

zero elements in the matrix, iterative methods are well suited for use with large sparse

matrices.

Matrices arising from both the FEM and FDM are often Symmetric Positive Definite

(SPD). A matrix A is Symmetric Positive Definite if:

1) A=AT (i.e., A is symmetric) and

2) A E ~n x n is positive definite if xTAx> 0 for all nonzero x E ~11 (for

example, Golub and Van Loan(4) p. 140)

SPD matrices have several desirable properties. For example, since they are symmetric,

only the upper (or lower) triangle of the matrix needs to be stored. Pivoting, which

ensures that algorithms have desirable numerical properties but could be computationally

expensive, is not needed when matrices are positive definite. Positive definite matrices

appear very often in practice. For example, the global stiffness matrix resulting from the

FEM solution to a partial differential equation is SPD.

So, Gaussian elimination can be applied to SPD matrices without pivoting. The

symmetric property of A means that the overall storage requirement of any algorithm can

be reduced by half. A matrix being SPD also means that the decomposition step proceeds

quickly since memory movement of matrix rows and/or columns is reduced (i.e., no

pivoting is required in the decomposition).

Both the PCG and the Cholesky Decomposition methods may be applied to SPD

matrices. Furthermore, for SPD matrices, the PCG method will converge for any initial

guess of the solution x (i.e., xo) (Golub and Van Loan(4) p. 522).
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Method Solution Type Operation Count Matrix Type

Cholesky Direct nJ /3 SPD

LV (Gaussian Direct 2nJ /3 General
Elimination)
peG Iterative varies up to nJ SPD

There are many iterative methods available for solving a system of equations, but by far,

the most commonly used is the PCG Method. Memory requirements for PCG are

generally much lower than the Cholesky or Gaussian Elimination direct methods. Other

iterative methods such as SOR (Successive Over-Relaxation) may be used for full or nOI1­

SPD matrices but these methods are generally much slower.

Iterative methods in general, including the PCG method, proceed as follows:

1. Start with an initial guess Xo for the solution of Ax = b

2. Calculate a sequence of approximate solutions Xl, X2, ... , xm• Each Xi is calculated as a

linear function of A, b, Xi-l for i=1,2, ... ,m-1. Under specific criteria, possibly different

for each method, the sequence converges to the correct solution Xm within a specified

tolerance bounded by the computer precision.

4
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Method of Steepest Descent

Peter Penney

The Conjugate Gradient Method is derived from the Method of Steepest Descent. The

Method of Steepest Descent is an iterative method that computes the value of the next

approximate solution Xi by selecting the direction of the largest gradient of the Quadratic

Form(8) ofAx=b. The Quadratic Form of Ax=b is defined as:

1f(x) = - X T Ax - bT X
2

Its gradient is defined as:

a
f(x)ax)

a
f(x) 1 T 1

((x) = aX2 = -A x+-Ax-b
2 2

a
f(x)

axn

For symmetric matrices where A=AT we have [(x) = Ax-b. Therefore, solving Ax=b is

equivalent to minimizing the above Quadratic Form.

As an example consider the following set of equations:

3x] + 2X2= 2

2x} + 6X2 =-8

The exact solution to this system of equations is:

XI = 2; X2 =-2

5
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-4

-4

2:1:) + 6:7:2 = -8

Peter Penney

-6

Figure I) Sample System of Equations with solution at 12,-21 (Shewchuk, J.8
)

with Quadratic Form looking as:

-2

150

100
f(:r:)

Figure 2) Quadratic form of Sample System of Equations (Shewchuk, J.8
)

6

An Evolutionary Algorithm for Diagonal Scaled Preconditioned Conjugate Gradient



M.Sc. Project

The gradient and the solution by steepest decent will look as:
:r2

Figure 3) Gradient f(x) ofthe Quadratic Form (Shewchuk, J.B
).

Note that at 12,-21 the gradient is perpendicular to the Xh Xl plane.

;{'.,

4

Peter Penney

-.J

-..J

-6

:1:

, ,6 :1:1

Figure 4) Solution by Steepest Descent from starting point 1-2,-21 (Shewchuk, J. B
).
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Conjugate Gradient

Selecting A-orthogonal search directions do, d\, ... dn will force the solution to converge

to a solution for each dimension Xi Two vectors u and v are said to be A-orthogonal, or

conjugate, if uTAv = 0
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(a) (b)

Figure 5) The method of Conjugate Directions converges in n steps
(a) The first step is taken along some direction do. The minimum point XI is chosen by the constraint
that e. must be A-orthogonal to do. (b) The initial error eo can be expressed as a sum of A-orthogonal
components (gray arrows). Each step of Conjugate Directions eliminates one of these components.
(Shewchuk, J.g)
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Golub and Van Loan(4) (p. 493) derives the Conjugate Gradient Method. Later in this

paper, we will examine Golub and Van Loan's algorithm for the PCG method.

Conjugate Gradient Algorithm

Algorithm 9.3.1 If A E mn x n is symmetric positive definite, bE ':R" , and Xo E ~H" is

an initial guess (Axo ~ b), then this algorithm computes the solution to Ax=b

(Golub and Van Loan(4) p. 493).

ro = b - Axo

fio =lh,112
qo =0

k=O

while fik 7= 0

qk+1 = rk / fik

k =k+ I
J

ak -qk Aqk

rk =(A-akl)qk -fiHqk-1

fik =Ih 112
if k=\

d l =al

C1 =ql

PI =fio /a l

XI = Plql

else

flk-I = fiH ! d k - I

d k =ak - fik-I flk-I

Ck =qk - flk-1Ck-1

Pk = -flk-ldk-IPk-1 / d k

Xk = Xk_1 + PkCk

end

end

Golub and Van Loan(4)(p. 490 ff) shows that Algorithm 9.3.1 converges quickly if the

condition number is small (i.e., of the same order as the condition number of the identity

9
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matrix). In most situations, the condition number is rather large and algorithm 9.3.1 will

not perform efficiently.

Preconditioned Conjugate Gradient Method

If we can solve a equivalent problem, Ax = b , with the same solution x, such that the

condition number of A is smaller than the condition number of A, then we can accelerate

the convergence rate of the conjugate gradient method.

A well know method oftransfonning A such that A has a smaller condition number is

by preconditioning the matrix A by another Matrix M-1 so that the condition number of

M-1A= A is smaller than the condition number of A.

Ifwe left multiply Ax = b by a Matrix M- 1 then: Ax = b => M- 1 (Ax) = M- 1 (b). For this

method to be efficient, M-1 (or M) must be chosen so that 1) the matrix multiplication

M-1A is also efficient, and 2) the condition number of M-1A (= A) is smaller than the

condition number of A. Additionally, Matrix M-1 must be chosen so that M-1A (= A) is

also SPD, a requirement of both the CG and PCG methods.

The following algorithm by Golub and Van Loan(4) (p. 532 ff) shows the method of

Preconditioned Conjugate Gradients. This is the algorithm used in this project to

obtain the results presented.

Algorithm 10.3.1 [Preconditioned Conjugate Gradients] Given a symmetric

positive definite Matrix A E ~n x n, b E ~n , a symmetric positive definite

preconditioner M, and an initial guess (Ax o ~ b), the following algorithm solves

the linear system Ax=b (Golub and Van Loan(4) p. 534).

10
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k=O

ro = b- Axo

while h oF 0)

Solve MZk = rk

k =k+1

ifk=]

else

r r
13k = rk_lzk_1 / rk-2 zk-2

Pk =Zk_1 + f3k Pk-1

end

r r
ak = rk_lzk_1 / Pk APk

xk = xk_1 +akPk

rk =rk_1 -akApk

end

Peter Penney

The peG Method converges with a maximum complexity ofO(n3
) (Golub and Van

Loan(4) p. 532) where n is the size of the matrix A. The convergence rate is also

dependent upon the convergence tolerance criteria. For this project, we used a tolerance

of 10- 12 for 5 of the Matrices and 10-6 for the large matrix S3DKQ4M2. This resulted in a

calculated complexity estimate of approximately O(n3/5) (based on total iteration count

divided by the matrix size n\

11
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PCG Iteration Count vs Matrix Size

4,500 ,
i

4,000 I
3,500 i

3,000 I, ~2,500!, ,'"

~::! • '-:"Jl','1,000 I "(' ,
~LD...~_·' _

bcsstk14 bcsslk15 bcsstk16 bcsslk17 bcsslk18 s3dkq4m2
(64) (256) (1,024) (4,096) (16,384) (90,449)

Matrix Name (Matrix Size n)

Figure 6) P.C.C. Iteration Count Vs Matrix Size

Peter Penney

Preconditioning of the Conjugate Gradient method is a method whereby the convergence

of the solution is accelerated by pre (or post) multiplying the matrix by another matrix so

that the resulting systems of equations are computationally less expensive to solve.

There are many efficient (and sometimes complicated) methods to precondition a matrix

for PCG including pre-multiplying by a diagonal Matrix (inexpensive computationally);

incomplete LU (Gaussian Elimination) or Cholesky decomposition; and, multi-grid

methods. This project examines the diagonal matrix preconditioning method known as

diagonal scaling.

Diagonal Scaled Preconditioned Conjugate Gradient

Preconditioning the Matrix A by a diagonal Matrix prior to the conjugate gradient

method accelerates the convergence of the method to the final solution. For example,

Greenbaum(]) (pp 165-168) shows that the diagonal of the original Matrix A is close to

the optimal diagonal preconditioner with respect to the condition number of M,I A.

The original system of equations: Ax = b is transformed into the equivalent system:

M,IAx =M-Ib which has the same solution (x) as the original equation.

Selecting M = diag(A) leads to a nearly optimal diagonal preconditioner (Greenbaum(])

pp. 165-166).

12
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Returning to our original sample problem, we can see the contours of the gradient for the

unconditioned and preconditioned system of equations.
:r~

-+ 6 :r 1

•

'--/ '

-6

"

Figure 7) Unconditioned Contour (left) and Preconditioned (right).
Note the more "roundness" ofthe contours in the preconditioned gradients (Shewchuk, J.8

).

The factors that need to be evaluated when choosing a preconditioner for the PCG

method are:

1. Computationally efficient to compute M-1

2. Computationally efficient to solve systems involving the preconditioning

Matrix M-1

Both items above are important to maintain the efficiency of the overall algorithm.

For more detailed and extensive explanations of the Conjugate Gradient method and the

PCG method in particular, see Shewchuk, 1.(8) and Golub and Van Loan(4) Cpp 520-528).

13
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Condition Number of the Matrix

Obtaining an accurate solution to a system of equations with any method, either direct or

iterative, depends upon the Condition Number of a matrix with respect to Matrix

Inversion.

The condition number of the matrix, with respect to Inversion, is defined as:

where IIAII denotes a norm of A. Estimating the condition number can be very important

since it can tell us how accurate a solution to the system of equations we may compute.

For example, if K = 107 then we potentially lose 7 significant digits in the solution x.

Computers, which have finite precision, have approximately 15 decimal digits of

precision for double precision variables. Therefore, if the condition number, K = 107 then

the best we may expect in a solution is about one half of the 15 significant digits

available with double precision. Golub and Van Loan(4 l, describe an efficient algorithm to

estimate the condition number K ofa Matrix (pp 128-130).

Figure 8 shows that the condition number tends to increase with matrix size. Therefore,

we must be more careful when dealing with large matrices since the condition number

may become large as the matrix size increases.

14
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Condition Number vs Matrix Size
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Figure 8) Condition Number vs Matrix Size

Peter Penney

An example of a sparse matrix is shown below for the case of a 4 node by 4 node FEM

discretization. Note that most of the elements are zero with the non-zero elements

clustered about the diagonal. Also note the symmetry of the matrix and that the largest

element for each row and column is also on the diagonal.

17 -0.5 0 0 -0.5 0 0 0 0 0 0 0 0 0 0 0
-0.5 18 -0.5 0 0 -1 0 0 0 0 0 0 0 0 0 0

0 -0.5 18 -0.5 0 0 -1 0 0 0 0 0 0 0 0 0
0 0 -0.5 17 0 0 0 -0.5 0 0 0 0 0 0 0 0

-0.5 0 0 0 18 -1 0 0 -0.5 0 0 0 0 0 0 0
0 -1 0 0 -1 4 -1 0 0 -1 0 0 0 0 0 0
0 0 -1 0 0 -1 4 -1 0 0 -1 0 0 0 0 0
0 0 0 -0.5 0 0 -1 18 0 0 0 -0.5 0 0 0 0
0 0 0 0 -0.5 0 0 0 18 -1 0 0 -0.5 0 0 0
0 0 0 0 0 -1 0 0 -1 4 -1 0 0 -1 a a
a a 0 a a a -1 0 a -1 4 -1 a a -1 a
a a a 0 a a a -0.5 a a -1 18 a a a -0.5
a 0 0 0 a a a 0 -0.5 0 a 0 17 -0.5 0 a
a 0 0 0 a a a a 0 -1 a 0 -0.5 18 -0.5 a
a 0 a 0 a 0 a 0 a a -1 0 0 -0.5 18 -0.5
0 a 0 0 a 0 0 a a a 0 -0.5 a a -0.5 17

Figure 9) Sample Matrix for nx=ny=16

15
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Evolutionary Algorithm for Diagonally Scaled Preconditioned Conjugate Gradient

Integrating the EA into the DSPCG Algorithm is outlined in figure 10 below. The

reproduction, crossover and mutation operators are employed to generate a new

population. The new population will include individuals with fitness within the top 50%.

In the case of PCG, the fitness will be the relative error of the current individual, with

smaller values indicating better fitness. The relative error for iteration i is Ilb­

AXi112/IIAxilI2 where b is the right hand side vector (constant), A is the Matrix (constant)

and Xi is the current calculated solution (varies at each iteration). At convergence, the

relative error is less than the specified tolerance.

Selection

Initialize

Term

i

Population

ination

Evaluate

Fitness Evaluation
(pcg step)

Parents

Reproduction

Crossover

Mutation

y

Offspring

Figure 10) Evolutionary Algorithm
Start with initialization, compute one or more loops and then terminate under the specified
termination condition(s).

EAs mimic biological evolution to find computer solutions to physical problems

(generally optimization problems). Figure 10 shows the pertinent steps in an EA as

applied to the PCG Method.

16
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Individuals: A single item in a population. In biological evolution, this is the

specimen being studied (fruit fly, human, etc.). In this project, an individual is a

vector of real numbers representing the preconditioning diagonal Matrix M.

Initialize: Here we set up the Matrices and vectors, as well as the various

program parameters (stopping tolerance, population size, crossover and mutation

operators, etc.).

Population: Indicates the set of individuals for the next step of the EA.

Selection: Selects the top n individuals based on the fitness criteria (Evaluation)

from the population.

Parents: The top n individuals selected during the Selection process are the bases

for the Reproduction stage.

Reproduction: The individuals in the population reproduce n offspring using

crossover and mutation operators.

Crossover: An evolutionary operator that takes portions of the parents'

chromosomes to produce an offspring individual. For this PCG method, portions

of the solution vector x are selected from each of the two parents.

Mutation: An evolutionary operator whereby an individual is randomly changed.

For this project, components of the solution vector x are selected randomly and

changed by a random amount.

Offspring: Individuals that are added to the population as a result of

reproduction. The offspring individuals are created by crossover and (possibly)

mutation.

Evaluation: Individuals are "tested" or evaluated based on fitness criteria and

given a score. For this project, the score is the relative residual (lib - AxdI2/IIAxdl2)

with lower values indicating higher fitness.

Termination: Stopping criteria for the Evolution Algorithm. This is usually a

maximum number of cycles in the process. For this project, two criteria were

used: 1) a maximum number of iterations and 2) a tolerance value (10- 12 or 10-6
)

for the relative residual.

17
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Since the overall complexity of the algorithm is critical for Matrix equation solvers, the

number of computations in each step is critical. Furthermore, the complexity of each step

of the EA is therefore critical for linear systems of equation solvers. Ifwe assume that

the conventional PCG method converges in k steps, where k < size of the Matrix (Golub

and Van Loan(4) p. 522), and we also assume also that the Fitness Evaluation is of the

same complexity as one iteration step (exactly the same complexity in this instance),

then, in order to "break even", the EA must determine a solution in one half the number

of iterations. This would mean a huge time-saving with respect to Matrix equation

solvers. The fitness evaluation is the most critical step for this EA.

Evolutionary Algorithm Representation

The Matrix M=diag(A) is the variable in this algorithm that was evolved. The EA

representation that was used was a real number vector representing the diagonal of the

preconditioning matrix M (stored as a one dimensional array):

Crossover Operator

A single point crossover operator was used. Two parents combine to generate two

offspring during each generation.

Two parents d] and d2

dl : a l ,a2,a3' ... a n

d2 : ~1'~2'~3' "'~n

reproduce two offspring d3 and d4 through crossover operation
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d3 :al,a2'~3""~n

d4 :~1'~2,a3,···an

Mutation Operator

A Normally Distributed (Gaussian) operator was used as follows:

Peter Penney

d (k + M)
i + 1

= d ~k + C) + g ~k + M)
1 1 '

i = l...k

Where d and g are n vectors, and g is normally distributed with mean 0 and standard

deviation ranging from 0.01 % to 10%. The superscript M above represents the Mutation

operation while the C represents the Crossover operation.

Fitness Evaluation

The choice for fitness evaluation was the relative residual of the solution vector. The

relative residual r is a measure of how far the current individual is away from the actual

solution.

r = Ilb-Axll/IIAxll

Individuals with lower relative residuals have a higher fitness than those individuals with

higher relative residuals. The relative residual for each individual in the population is

determined during each generation.

Selection and Reproduction

Parents and offspring compete and the best m/2 individuals of d(k+m) reproduce. The

individuals are then ranked based on their relative residuals, with the top half surviving

through to the next generation.
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Testing Setup

Six Matrices from the Matrix Market( I 0) were tested ranging from a 1,806 x 1,806 matrix

BCSSTK14 up to the 90,449 x 90,449 matrix S3DKQ4M2. Table 1 (repeated below)

shows the basic properties of each of the matrix tested. PCG is very dependant upon the

condition number with higher condition numbers indicating slower convergence.

Table 2: Test Matrices Properties (repeated)

Number 0/0 Condition
Name Size Non-Zero Non- Number Notes

Elements Zero x 109

(Est.)
BCSSTK14 1,806 63,454 1.945 1.3 Roof of the Omni Coliseum,

Atlanta
BCSSTKI5 3,948 117,816 0.756 6.5 Module of an offshore

platform
BCSSTK16 4,884 290,378 1.217 4.9 U.S. Army Corps of

Engineers dam
BCSSTK17 10,974 428,650 0.356 13.0 Elevated pressure vessel
BCSSTKI8 11,948 149,090 0.104 43.0 R.E. Ginna Nuclear Power

Station
S3DKQ4M2 90,449 2,455,670 0.030 190.0 Finite element analysis of

cylindrical shells

In order to test the applicability ofEA for this problem and to eliminate the possibility of

random solutions occurring during the evolution, the fastest converging matrix from the

above list (BCSSTK16) was tested with random preconditioning matrices. The test

consisted of running the program 100,000 times with a different random preconditioning

matrix. To allow for quicker calculation, the standard PCG was first executed and the

iteration count recorded (243 for this instance). For the test with 100,000 random

vectors, if the iteration count exceeded the count for standard DSPCG (243), the test was

stopped for that individual. The test completed for 100,000 random vectors without any

individuals performing better than the conventional PCG. Therefore, we can conclude
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that this problem is in fact applicable to EA, and a random test does not perform better

than we can expect an EA to perform.

Program Parameters

To facilitate easy changes to the EA test program, a parameter file was used. Following

is a brief discussion of each of the program parameters.

Sample parameter file (Filename = eadspcg.parameters)

# filename max_iters tol xoverrate mutationrate maxgenerations matrixsamplesize

s3dkq4m2 filename

99999 max iters

10d-12 tol

95 xoverrate percentage

5 mutationrate percentage

100 mutationrate mean as a percentage of Xi (should be set to 100)

0.1 mutationrate standard deviation as a percentage of Xi

100 maxgenerations (set to 0 for regular DSPCG)

matrixsamplesize percentage

The first line is a header line and is not used within the program. Each of the lines

following consists of a value and a text description of the parameter for the user. The

portion of the line after the first value is discarded by the program. Additionally, the

order of the parameters is set and cannot be changed without changing the code.

The second line is the filename for the input Matrix (s3dkq4m2 filename). This file must

be located in a subdirectory below the current directory named data.

The third parameter (99999 max_iters) is the maximum number ofPCG iterations before

the program stops. This should be at MOST the dimension of the Matrix.
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The fourth parameter (l Od-12 tol) is the PCG tolerance that will indicate that the PCG

iteration has converged.

The fifth parameter (95 xoverrate percentage) is the EA crossover rate expressed as a

percentage. A 95 would indicate that that 95 percent of the time, crossover will occur.

For this test, the two values used for this parameter were 95 and 50.

The sixth parameter (5 mutatiomate percentage) is the EA mutation rate expressed as a

percentage. A 5 would indicate that 5 percent of the time, mutation will occur. For this

test, the two values used for this parameter were 5 and 10.

The seventh parameter (100 mutation rate mean as a percentage of Xi) is the Gaussian

mean of the Diagonal Matrix elements that will be used within the mutation operator.

(e.g. ifM(9) = 123, and the mutatiomate mean is 100, then the Gaussian mean would be

123. The value should normally be set to 100.

The eighth parameter (0.1 mutatiomate standard deviation as a percentage of Xi) is the

Gaussian standard deviation of the Diagonal Matrix that will be used within the mutation

operator. (e.g. if M(9) = 40, and the mutatiomate mean is 0.1, then the mutated M(9)

element would be within the range [39.94 and 40.04] for one standard deviation. For this

test, the two values used for this parameter were 1 and 0.1.

The ninth parameter (l00 maxgenerations (set to 0 for regular DSPCG)) is the maximum

number of generations that the EA will execute. After that number is reached, the

algorithm continues using conventional DSPCG with no EA. Setting this value to 0 will

make the program perform conventional DSPCG.
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The tenth parameter (1 matrixsamplesize percentage) is not yet implemented. The

intention of this parameter is to indicate the percentage of the Matrix to use during each

generation. If the matrix has 1000 rows, and the matrixsamplesize is 1, then 10 rows

would be used to perform the fitness evaluation.

Finally, the population size for this test was set at 4 with the top 2 individuals surviving

each generation.

Results and Conclusions

Timings and results were conducted on a Dual Core AMD64 computer running at 2.0

GHz and with 3GB of RAM. The processors each have 512MB of L2 cache. The

tolerance used for these test was 10-12
, except for Matrix S3DKQ4M2 which used 10'6.

Table 3: Results

Matrix Matrix Toler- DSPCG EA DSPCG EA time
Name Size ance Iteration Iteration time (sec)

Count Counts (sec)
BCSSTKI4 1,806 lO- IL 456 473 - 540 0.243 0.45 - 0.52
BCSSTKI5 3,948 lO- IL 626 749 - 946 0.728 1.31-1.61
BCSSTK16 4,884 10'IL 243 309 - 342 0.586 1.55-1.70
BCSSTKI7 10,974 10- IL 3,044 3,419 - 3,807 7.85 9.61-11.0
BCSSTKI8 11,948 10- IL 1,522 1,602 - 1,642 2.80 3.44-4.41
S3DKQ4M2 90,449 lO-b 4,201 4,246 - 4,273 109 120-122

Overhead associated with the EA will account for some of differences for the EA

Iteration Time. However, the DSPCG method accounts for the differences in the EA

Iteration Counts and the DSPCG Iteration counts. For the large Matrix S3DKQ4M2, a

tolerance of 10-6 was used to keep the iteration count low so that the effects of the EA

would be more visible.
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The condition number of the original Matrix A is critical to the convergence of the PCG

method. In general, the higher the condition number, the longer PCG will take to

converge to a solution. Additionally, the condition number of a Matrix generally

increases with the size of the matrix. Both these points will explain the time taken for

S3DKQ4M2 as well as explaining the lower convergence rates and elapsed times for all

other Matrices.

Unfortunately, the DSPCG did not accelerate the convergence rate or convergence time

for time any of the matrices in questions. Table 3 shows that the iteration count increased

in each instance and sometimes by a noticeable amount. Additionally, the convergence

time increased with each of the matrices for the DSPCG.

The figures on the following pages (Figures 11 - 16) show the convergence of the EA for

the DSPCG. Each of the different traces on the figures indicates different values of the

EA Parameters. The legend on the figures indicates the values of the Crossover Rate, the

Mutation Rate as well as the Mutation standard Deviation. For example, 50-10-1

indicates a 50% crossover rate, a 10% mutation rate and a 1% mutation standard

deviation.

Eight tests were conducted for each of the six matrices listed in table 3. The following

table lists the values of the EA Parameters that were used in each test.
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Table 4:Evolutionary Algorithm Parameter Values used During Testing

Test Number Crossover Rate Mutation Rate Mutation Standard Deviation

1 95% 5% 0.1%

2 95% 5% 1%

3 95% 10% 0.1%

4 95% 10% 1%

5 50% 5% 0.1%

6 50% 5% 1%

7 50% 10% 0.1%

8 50% 10% 1%

The graphs in Figures 17 through 26 show the iteration convergence rate as well as the

time for convergence for each of the matrices. In each case, both the convergence rate

and convergence time was worse for the EA than for conventional DSPCG.
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• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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Figure 14) Matrix BCSSTKI7* Convergence Rate, Tolerance = lOe-12

• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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*The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.\ indicates a 95% crossover rate, a 5% mutation rate and a 0.\% mutation standard deviation.
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Figure 18) Matrix BCSSTKI4*, Convergence Time (sec.), Tolerance = lOe"12

• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.] indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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Figure 19) Matrix BCSSTKI5*, Iteration Count, Tolerance = lOe-12

Figure 20) Matrix BCSSTKI5*, Convergence Time (sec.), Tolerance = lOe-12

* The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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Figure 21) Matrix BCSSTKI6*, Iteration Count, Tolerance = lOe-12

Peter Penney

Figure 22) Matrix BCSSTKI6*, Convergence Time (sec.), Tolerance = lOe-12

• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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Figure 23) Matrix BCSSTK17*, Iteration Count, Tolerance = lOe-12

Figure 24) Matrix BCSSTK17*, Convergence Time (sec.), Tolerance = lOe-12

* The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1 % mutation standard deviation.
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Figure 26) Matrix BCSSTK18*, Convergence Time (sec.), Tolerance = lOe-12

• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover rate, a 5% mutation rate and a 0.1% mutation standard deviation.
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Figure 28) Matrix S3DKQ4M2*, Convergence Time (sec.), Tolerance = JOe-6

• The legend indicates the crossover rate, mutation rate and mutation rate standard deviation EA parameters. For
example, 95-05-0.1 indicates a 95% crossover mte, a 5% mutation rate and a 0.1 % mutation standard deviation.
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Future Work

Peter Penney

Our tests showed no significant improvement by EA over the standard DSPCG method.

However, different results may be obtained with other matrices, or with other EA

methods. The results obtained from this set of tests, along with other testing that was

conducted but not included in this project, leads the author to believe that an EA would

not increase the convergence rate ofDSPCG.

Greenbaum(3) indicated that the diagonal of the original Matrix is close to the optimal

diagonal matrix. The tests conducted agree with this statement and indicate that the EA

did not find another diagonal matrix that would outperform the diagonal of the original

Matrix.

However, there are other Preconditioning Matrices that can be applied for which the

optimal is not known. In the same paper, Greenbaum(31 (pp. 166-167) also stated that

there is no known optimal Tridiagonal Preconditioning Matrix. There is room here for an

EA to accelerate the PCG in finding an optimal Tridiagonal Matrix that would accelerate

either convergence iteration rates or convergence time, or both.

The idea of Matrix Sampling, which was not covered in this project, would assist with

any EA that deals with an iterative solution to a set of linear equations. Both Matrix

Multiplication and Matrix Equation Solving are areas where sampling the matrix at a

much lower frequency than that of a complete matrix multiplication (or solve) could

benefit greatly. Matrix sampling for an EA might entail selecting every 100 or 200 rows

and columns of the matrix and individual instead of using the full matrix and vector. This

would greatly reduce the cost of the EA portion of the algorithm. At each iteration step,

the sampled fitness (relative error) of each of the individuals could be used to rank each

individual. For EA, it is the relative fitness of the individual that is important and not the

absolute fitness. If the DSPCG method requires the actual fitness, then the whole matrix
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and complete individual may be used in the DSPCG step. This method could potentially

reduce most of the EA overhead in each generation.
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