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Abstract

This thesis is focused on the synthesis and characterization of poly(3,4-

4 (PEDOT/PSS)-supp: catalysts for the anodic
oxidation of methanol as well as for cathodic oxygen reduction in low-temperature polymer
electrolyte membrane fuel cells (PEFMCs).

Chapter 2 focuses on the hemical and i ies of PEDOT/PSS

supported Pt catalysts for cathodic oxygen reduction. P for oxygen reduction obtained

in gas diffusion electrodes that are similar to those used in current PEMFC technology were inferior
to those for commercial carbon supported Pt catalysts. Thus, the catalysts were immobilized on
glassy carbon electrodes and were studied by cyclic voltammetry and rotating disc voltammetry. The
results show that PEDOT/PSS supported Pt catalysts exhibit similar oxygen reduction activities to
commercial carbon supported catalysts when results are normalized for active Pt area. Exchange
current densities and mechanisms appear to be the same. The inferior performance seen for the
PEDOT/PSS supported Pt catalysts in gas diffusion electrodes, and reproduced at rotating disc
electrodes have been shown to be due to low Pt utilization, and to slightly higher Pt particle sizes.
The poor utilization appears to be due to electronic isolation of some Pt particles, and to blocking
or poisoning of the Pt surface.

Chapters 3 and 4 focus on the ion and ization of PEDOT/PSS binary

Pt-Ru, temnary Pt-Ru-OS and quaternary Pt-Ru-Os-Ir catalysts for anodic methanol oxidation. The



compositions of the metal alloys can be controlled through the molar ratio of metal salts in the
reaction mixture and by the reaction time. Energy-dispersive X-ray analysis and X-ray diffraction
were applied to determine the metal compositions and particle sizes. The electrocatalytic properties

of these catalysts were investigated by several

iq i ing cyclic
voltammetry (including reduced CO, oxidation), transient and steady state polarization experiments
and chronoamperometry. Although PEDOT/PSS supported binary catalysts have exhibited good
electrocatalytic activities for methanol oxidation, their performances are inferior to commercial
binary catalysts. PEDOT/PSS supported ternary and quaternary catalysts exhibited, as expected,
superior performances to PEDOT/PSS supported binary catalysts, but are still inferior to those for

commercial binary catalysts.
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Chapter 1

General R

iew of Polymer Electrolyte Membrane Fuel Cells
(PEMECs)

1.1 General history of fuel cells

Since the first oil crisis of 1973, the world energy perspective has changed. The
outbreak of the Gulf War in 1991 as well as the recent steep increase in the price of oil
has attracted many nations to reduce their dependency on oil by exploiting other primary
energy sources. On the other hand, over the last few years, discussions on the green house
effect have led to general acceptance of the theory that carbon dioxide emissions cause

global warming. This i i i has led to strict emission

legislation in, for example, Japan and California. Studies have also concluded that the
earth’s fossil fuel resources should be better maintained in order to secure a sustainable
future. These concerns have led to the enactment of major laws (eg. The clean Air Act

Amendment of 1990 in USA) to impose strict regulation on pollution sources and

generate an i ing interest in the p of fuel cells (eg. The Energy Policy
Act of 1992).
A fuel cell is defined as an el hemical device that can conti convert the

chemical energy of a fuel and oxidant to electrical energy without chemical combustion
[1]. In principle, a fuel cell operates like a battery, but unlike a battery a fuel cell does not
run down or require recharging. A hydrogen fuel cell running on hydrogen derived from

a renewable source will produce clean non-polluting energy in the form of electricity, and



produce only heat and water as byproducts. The hydrogen fuel cell is bound to be one of
the alternative power sources of the future. The commercialization of fuel cells for use in
homes, offices, hospitals [2,3], shopping complexes, automobiles [4] and space missions
has shown a promising vision of the beginning of the hydrogen economy.

It was William Grove who first demonstrated the hydrogen-air fuel cell in 1839 [5]

and the late Francis T. Bacon produced a successful device in the first major fuel cell

development project in 1932 (6]. Bacon’s work i in the use of
cells in the Apollo Space program in 1960 [7] and resulted in a diversification into five
main classifications of fuel cells.

Generally, according to their electrolyte materials, the five types of fuel cell are the
Alkaline Fuel Cell (AFC) working below 100 °C with 30 wt % KOH as the electrolyte;
the Phosphoric Acid Fuel Cell (PAFC) working at approximately 200 °C with

d (~100 wt %) ic acid as the the Molten Carbon Fuel

Cell (MCFC) which most frequently uses a eutectic melt containing 38/62 mole %

and lithium and less 48/52 mole % lithium and sodium

carbonate; the Solid Oxide Fuel Cell (SOFC) which uses oxide conducting yttria
stabilized zirconia (YSZ) as the electrolyte and the Polymer Electrolyte Membrane Fuel
Cell (PEMFC) with a water-swollen perfluorinated sulfonic acid ionomer as the
electrolyte, which is also called a solid polymer electrolyte (SPE). These fuel cells are all
designed to work on hydrogen-rich reformates as the fuel and oxygen or air as the
oxidant. AFCs have long been used by NASA on space missions operating as an
auxiliary power supply [8,9]. The PAFC was developed in the mid-1970s and is the most

commercially developed. It is already being used in diverse applications and shows very



promising results [10,11]. The development of MCFCs in the 1980s and SOFCs in the
1990s was due to their better overall efficiency together with the useful heat generated by
their high temperature plants. MCFCs and SOFCs operate at higher temperature (>650

°C) and are aimed primarily at big, high-power applications including industrial and

larg le central ici ing stations [12]. The PEMFC has attracted growing

interest recently i for road portation with use of as the fuel

being a key goal [13,14] as will be discussed in section 1.3. Of all the fuel cell systems,
only the AFC and PEMFC can achieve high power densities (> 1 W cm™) [15]. However,
poor performance has been a key problem ever since Grove described the fuel cell [16]
and it is still the major issue requiring improvement in present-day fuel cells.

As pollution-free energy sources, fuel cells are showing undoubted prospects for
future power and transportation applications [17,18]. A more detailed review of the

background of the development of fuel cells can be found in references [18-21].

1.2. General review of polymer electrolyte membrane fuel cells

(PEMFCs)

The PEMFC is perhaps the most elegant of all fuel cell systems in design and mode
of operation. Its electrolyte is an acid type polymer ion-exchange membrane and is,
generally, a perfluorosulfonic acid membrane, of which Nafion made by DuPont is the

best-known. The structure of Nafion is shown in Fig. 1.1.



—HCF,-CFn-CFo- ?F =
[OCFCF(CF2)]m-OCFCF-SO:H
0=6-10

m21
Fig. 1.1 The structure of Nafion [12].

These are i stable at up to about 150°C but

above this temperature (Nafion has a glass transition temperature of 130 °C), they will
change to a gel state. Therefore, PEMFCs are operated under mild conditions (the
temperature range is 50 °C — 90 °C, and the pressure is 1-6 atm). Nafion membranes have
high oxygen solubility, high proton conductivity, high chemical stability, low density and
high mechanical strength and are one of the most important parts of the PEMFC. A
typical PEMFC consists of a composite of two porous electrocatalytically active

electrodes on either side of a PEM (typically 50-175 pm thick), as shown schematically

in Fig. 1.2. This core structure of the i cell is called 2
electrode assembly (MEA).
For a ygen fuel cell, hyd is i oxidized at the

anode and broken down into positive ions (protons) and negatively charged electrons as

shown in Eq. 1.1. At the cathode, oxygen i ines with the

ions and electrons to produce water according to Eq. 1.2. Protons are attracted to the
negatively charged sulfonic acid groups of the Nafion membrane and transported to the



cathode; electrons are transported through the extemnal load from the anode to the

cathode.

HO SPE €O,

membrane
Carbon Carbon
Cathode Anode
W [
/ H; or MeOH
and water

Fig. 1.2 Schematic diagram of a PEMFC.

Hy — 2H +2¢ [¢B))

0y +4e+4H" — 2H,0 (1.2)

The following advantages of PEMFCs have been summarized [22]:
. high power density and efficiency

. fast startup and shutdown

. absence of liquid electrolyte minimizes corrosion

. insensitive to differential pressures

. low sensitivity to CO;



. no carbonate formation
. long life and potable liquid water product
. versatility of application
The early development and the current status of PEMFC technology can be found in
references [12, 23-32). Briefly, the development of reliable solid electrolyte membranes,

the imp! of catalyst and the pi of MEAs are the three

most active research areas on PEMFCs.

1.3 General review of direct methanol fuel cells (DEMFCs)

The current of the hydre /air cell is that idation at the

anode is very fast and its and i are better than for any

other fuel. However, for reasons such as safety, ease of storage, transportation and
refueling etc., a liquid fuel would be preferred. Thus, methanol has been widely studied
as a fuel [33] and in many respects, the methanol-air fuel cell (DMFC) is a promising
power source for electric vehicles.

Using methanol as the anodic reactant in an acid medium, the anodic reaction can be

written as follows:

CH;0H + H;0 — CO, + 6H" +6¢” 13

An acidic environment is useful to reject CO; produced during the electro-oxidation

of methanol. Sulfuric-acid solution has been most commonly used.



The history of the DMFC is shorter than that of hydrogen-air fuel cell. The
pioneering work was started during the 1960s by Shell Research in England and in the
1970s by Exxon-Alsthom in France [13]. Shell's work on fuel cells began in the late
1950s; the initial goal was to discover whether the fuel cell could be a viable choice for
road transportation. At that time, all existing fuel-cell gas diffusion electrodes suffered
poor performance when operating on air and Shell realized that this was due to physical
rather than chemical factors. To solve these problems, Shell made a very thin electrode
that could be manufactured on a large-scale. The electrode consisted of a very uniform,
microporous polyvinyl chloride substrate, on which was evaporated silver or gold. A
layer of catalyst was then attached to this metallic layer [34]. A number of stacks were
built to test whether a fuel cell could be operated at ambient pressure and temperature.
The fuel, Hy, was generated from methanol-water and the whole system was tested under
various conditions [35].

Shell’s design was too complex and the electrode with Pt as the electrocatalyst was

very easily poisoned by reaction products. For methanol, six electrons must be exchanged

for compl idation and the oxidation kinetics are inherently slow. A
wide range of Pt alloys were examined by researchers at Shell who found that Pt-Ru was
the most effective binary catalyst for CO tolerance in DMFCs. There has now been active
research on Pt-Ru binary catalysts for more than 30 years and it still continues [36-40].

Shell’s efforts were devoted to improving catalysts and i igating the

of the methanol oxidation reaction. During the period of 1973-1981, Shell’s research
groups in the UK and Netherlands made considerable progress in the development of

DMFCs. However, Shell disbanded its research teams in 1981 as a result of the lower



growth in oil consumption and unfounded fears of oil shortage [41]. The Exxon-Alsthom
group in France mainly worked with alkaline and buffer electrolyte technology and
ceased in the late 1970s.

In the mid-to-late 1980s, research on fuel cells was aroused again in the USA,
Canada, Europe, and Japan when environmental protection became a serious global issue.
The development of fuel cells for road vehicles without or with low emissions is pursued
by many companies and car manufacturers. Ballard Power Systems and Daimler-Benz
are the pioneers with their solid polymer electrolyte technology. In Europe, a program
has been set up to study the DMFCs and at the same time the possibilities of utilizing
indirect hydrogen-based fuel cells or gaseous methanol cells are also receiving much
attention.

Recent DMFC work has strongly focused on cells with PEMs and the most likely
type of DMFC to be commercialized in the near future seems to be polymer electrolyte
membrane direct methanol fuel cell (PEMDMFC). To date, the DMFC is a strong
competitor with hydrogen energy systems and it has become a real opportunity for

commercialization in the near future.

1.4. Objectives of this thesis - the catalysts and methodology issues

The heart of a PEMFC (Fig.1.2) has the following structure when viewed from
either the anode or the cathode side:
/ porous wet-proofed carbon backing / catalyst layer // Nafion membrane (PEM) //

catalyst layer / porous wet-proofed carbon backing /



Studies on PEMFCs are focused on the PEM, the catalyst layer and fuels. For
PEMDMEFCs, methanol crossover from the anode to the cathode and catalytic
inefficiency are the two main challenges in the current technology. This thesis is focused
on the catalyst layers on either side of the Nafion membrane. Generally, the work is on
catalyst performances for oxygen reduction at the cathode and methanol oxidation at the
anode.

To date, the biggest i i to the ialization of PEM fuel cells is the

poor performance of the state-of -the-art cell, which causes costs to be much higher than
for internal-combustion engines and therefore unacceptable. Almost certainly, DMFCs
will require Pt-based catalysts for both the anode and the cathode. Given the high cost of
Pt, the amount of the metal must be minimized in order to match the cost of the metal of
an equivalent heat engine.

One way to reduce cost is to decrease the amount of precious metal catalyst required.
Thus, the application of carbon as a catalyst support has played a vital role and is

considered to be the most i for catalyst cost reduction in fuel ceil

p [42]. Carb Pt or Pt+Ru have greatly impi
performance per gram of precious metal both for oxygen reduction and for methanol
oxidation [43]. On the other hand, catalyst pre (or post-) treatment and the choice of a
suitable support other than carbon could also play a vital role in cost reduction and
performance enhancement [44].

In this thesis, a conducting polymer instead of carbon has been used as a catalyst

support in oxygen ion and methanol oxidation studies. The ing polymer is

used to enhance the proton conductivity of the catalyst layer. A detailed discussion of the



benefits and use of polymer-supported catalysts for oxygen reduction are included in
Chapter 2.
In Chapter 3, the performance of polymer-supported binary (Pt-Ru) catalysts for

was il

igated. Recently, a temnary catalyst (Pt-Ru-Os) (45] and a
quaternary catalyst (Pt-Ru-Os-Ir) [46] have been found to show superior electro-catalytic
activity to binary catalysts for methanol oxidation. Thus in Chapter 4, preliminary

results for poly ternary and qu y catalysts are

Results for commercial PUC and Pt-Ru (1:1)/C catalysts are presented throughout the
thesis, for comparisons with results for the new catalysts, and to illustrate method

development.
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Chapter 2

Polymer-Supported Catalyst for Oxygen Reduction

2.1 Introduction

2.1.1 Catalysts for the oxygen reduction reaction (ORR) in PEMFCs.

Platinum supported on carbon is a commonly used electrocatalyst for the anodic
oxidation of hydrogen as well as for cathodic oxygen reduction in low-temperature

PEMFCs [1-3]. The kinetics and hanisms of oxygen reduction have been

studied on dispersed Pt supported on different carbon materials [4-9]. The role of the
carbon support is to provide electrical connection between the widely dispersed Pt
catalyst (nano) particles and the porous current collector (carbon cloth or paper).

Although carbon is a good i rby catalysts still suffer

from high ials for oxygen in I fuel cells in acidic
electrolytes. Enhancement of the kinetics of oxygen reduction has become the main
impetus for the extensive studies to improve the performance of electrochemical systems.

Damj; ic has given a ized rate ion for oxygen ion with the

rate-determining step as the first electron transfer and the equation is given by [10]

=k [Por]* [H']" exp(-aFE/RT) 21
14



Where n and m are the reaction orders with respect to O; and H', a is the symmetry
factor, k is a constant, and the other terms have their usual electrochemical significance.
Damjanovic reported that n and a are both equal to 1, and that m is close to 1.5 for oxide-
free platinum in acid electrolytes. From the equation above, it is very clear that the ORR

on the Pt surface would be enh: d when the ion of H” or O is i

especially for H™ concentration because of 1.5 power index. Some experiments have
shown that at a given potential, the reduction current varies nearly linearly with oxygen
pressure [11] and that a much better performance is obtained when a proton conducting
ionomer (Nafion) is added to the catalyst layer [12].

Although the addition of ionomer solution to the catalyst layer improves the
performance of a fuel cell, it also increases the electronic resistance of the catalyst layer
and restricts oxygen diffusion. Therefore, there has been much effort to find a way to
improve the ionic conductivity of the catalyst layer without compromising its electronic
conductivity. One method adopted is to modify the surface of the carbon support or
carbon-supported catalyst by chemical oxidation with strong oxidizing agents, such as
H;S04 and HNO; [13]. These agents can add oxygen functional groups such as phenol,
carbonyl, carboxyl, quinone and lactone that enhance the sensitivity and activity of
carbon-supported catalysts to the carbon surface. Some results for carbon supported
catalysts modified in this way will be presented in this chapter.

The other method applied is to

poly ion (CP/PA) ites that are different from conventional carbon in

that they conduct electrons as well as protons. Two kinds of composites, polypyrole /
15



polystyrenesulfonate  (PPY/PSS) [14] and poly(3,d-ethylenedioxythiophene) /
poly(styrene-4-sulfonate) (PEDOT/PSS) (eq. 2.2) [15], have been developed and shown

to efficiently conduct both protons and electrons (eq. 2.3) [16,17]. Platinum is then

ited on these ites by the ion of HaPtCleH;O or Pt{NH;)(Cl with

formaldehyde or hydrazine [eq. 2.4).

PY(or EDOT) + NaPSS+Fe(NO;); > PPY(or PEDOT)PSS particles 2.2

(-PPY(or PEDOT)-), PSS’ + H" (solution) + &’ > (-PPY(or PEDOT)-).HPSS 2.3

PPY(or PEDOT)/PSS + HzPtCls(aq) + H;CO — PvPPY(or PEDOT)/PSS 24

VAR

s

Besides not being a proton conductor, carbon is also impermeable to gases (oxygen,
hydrogen and water vapor), which limits achievable performance. The polymer

composites, however, remove these iencies. The next ion of

polymer-supported catalysts is shown in Fig. 2.1. In view of these important
characteristics, polymer supported catalysts have definitely opened a new vision of

catalysis issues in PEMFC technology.



The state of the art The next generation

Fig. 2.1 Conducting polymer supported catalysts

2.1.2 Objectives of the chapter

Although using conducting polymers as catalyst supports has been attracting
research interest for more than 10 years, the reported work is mainly restricted to
electrochemically synthesized polymer films and electrochemically deposited Pt particles
(18-21]. The disadvantages of these methods are that the resulting catalyst layers have
unsatisfactory porosity, and the Pt particles are usually deposited near the surface of the
polymer layer. These deficiencies limit the performance for ORR. The only reports on the
chemical deposition of metal particles on conducting polymer particles come fom our

group [14-17].



Pickup et al has reported chemically prepared polymer composites such as PPY/PSS
that have a good Pt distribution, polymer porosity and superior ionic conductivity than
electrochemically prepared films growing on an electrode surface [20,21). However, a
major problem with chemically prepared catalysts is that the electronic conductivity of the
polymer is often lost during the deposition of Pt particles. In previous work, the electronic
conductivity of the polymer (PPY or Polyaniline (PANT)) was seriously degraded by the
deposition of the catalyst particles under both reducing (formaldehyde, hydrogen, or
citrate) and oxidizing (H;0;) conditions [14]. As a result, the performances of these

catalysts for oxygen reduction were poor to the of

carbon supported catalysts. PEDOT was found to be more stable than PPY under
oxidizing condition [22] and at elevated temperatures [23], and PEDOT/PSS supported

catalysts have been found to be the best poly d catalyst devel to date.

P!

Thus a series of studies have been on the ical and

properties of these PEDOT/PSS composites and catalysts in gas diffusion electrodes
(GDE) similar to those used in current PEMFC technology [16,17]. This has demonstrated

the potential of the new catalysts in real applications, but has also revealed surprising

P for oxygen ion in particular were lower than would be

expected based on the measured Pt loadings and conductivities.
The aims of the work in this chapter were first to test the electrocatalytic properties
of polymer supported catalysts developed by our group [16,17] with GDESs in half and full
cells, and secondly, to investigate the activities of these catalysts under more carefully

controlled conditions. Thus, the catalysts have been immobilized on glassy carbon



ing a ped by Gojkovic et al [24], and studied by cyclic
voltammetry and rotating disc voltammetry.

Two similar methods have recently been reported for immobilizing carbon
supported fuel cell catalysts on rotating disk electrodes. Schmidt e al [25] coated the
electrode with an aqueous suspension of the catalyst, and then coated the dried catalyst
layer with a thin Nafion film, while Gojkovic et a/ [24] used a one step procedure in
which the catalyst was applied to the electrode as a suspension in a Nafion solution. Both
groups characterized their electrodes by cyclic voltammetry and reported similar charge
to Pt mass relationships for the hydrogen adsorption/desorption region. Schmidt et a/ [25]
estimated that virtually all of the Pt in the coating was electrochemically active in these
experiments. Both types of electrode proved to be durable in rotating disc voltammetry
and provided high quality results in studies of hydrogen oxidation [25] and oxygen
reduction [24). This type of methodology was applied in this thesis to investigate Pt

utilization and oxygen reduction kinetics for PEDOT/PSS supported Pt catalysts. For

purposes, a ial 20% Pt on carbon black catalyst and chemically

deposited Pt on carbon black catalyst were also used.

2.2 Experimental

2.2.1 Synthesis of PEDOT/PSS

The chemical synthesis of the PEDOT/PSS composite (designated as Q1 [14]) used

in this work was carried out at room temperature in deionized water. The EDOT monomer
19



(Bayer), NaPSS [Aldrich, avg. MW = 70,000] and Fe (NOs):-9H;0 (BDH) were used as
received. The EDOT (30 mmol) and NaPSS (6 mmol of repeat units) were added in
deionized water (1.6 L) and the mixture was stirred at 60-80 °C for 30 min to obtain the
homogenous solution. An excess of solid Fe(NO3):*9H;0 oxidant (75 mmol) was then
added and the reaction mixture was stirred for about 2 hours at room temperature, and
filtered. The collected polymer was washed first with 0.1 M nitric acid to remove Fe**,
and then with a large amount of water. The resulting composite was stored in 5% aqueous

CH;0H to prevent oxidative degradation by air [17] and used without drying.
2.2.2 Electrocatalyst preparation

QI-supported catalysts were made as follows. A suspension of Q1 in 20 ml of
aqueous H,PtCls (Aldrich; concentration based on desired Pt loading) was prepared in a
round bottom flask by ultrasonication for 30 min, and then this suspension was stirred at
ca. 80-100 °C for 30 min to allow equilibration. A ca. 30 molar excess of aqueous
formaldehyde (36.5%) was added followed by heating at reflux for ca. 40 min. The
catalyzed polymer was collected by filtration, washed thoroughly with water and then
stored in 5% aqueous CH;OH. A portion of each batch of catalyzed polymer was collected
and dried under vacuum to calculate its mass percen!l‘ge in the wet samples. Total catalyst
loadings were estimated by a gravimetric analysis in which the dried catalyst was burned
at 900°C in a muffle furnace. Elemental Pt was assumed to be the only remaining product.

Carbon supported catalysts were made similarly, but without ultrasonication. Two

methods for adding the formaldehyde have been tried. One method (Method 1) was as
20



described above, while the other method (Method 2) involved mixing H,PtCls, carbon
powder and 50 mL of 18 % formaldehyde at one time followed by heating at reflux for 40

min.

2.2.3 Experiments in gas diffusion electrodes (GDEs)

Dry catalyzed Q1, weighed to the desired metal loading, was mixed with 20% PTFE
(polytetrafluoroethylene solution, DuPont) as a binder, blended in an ultrasonic bath for 5
min, then spread uniformly onto a 4 cm’ area of carbon fiber paper (CFP; Toray
TGPH090). A Nafion 117 membrane was then hot-bonded to the electrode under an
applied load of 180 kg cm? for 90 s at ca. 125 °C. 1 cm’ disks were cut from these

membrane electrode assemblies (MEA) and tested in a homemade plexiglass holder.

El hemical experi (cyclic vols y and ization) carried out in half-
cells and full cells are shown schematically in Fig. 2.2.

In the half-cell used, a platinum wire and a saturated sodium chioride calomel (SSCE)
electrode are used as counter and reference electrodes, respectively (Fig. 2.2(a)), and the
cell can be described as:

N3 (02) | C paper, PvQ1 (or PUC)| Nafion | 1M H;S04 (aq), SSCE | Pt wire (Counter)

21
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Fig. 2.2 Schematic of the half-cell (2) and the full cell (b).
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In the full cell, the MEA is fixed in a holder without aqueous electrolyte and the Pt
counter electrode is replaced by an gas diffusion anode exposed to H; (Fig. 2.2(b)). The

MEA structure is just like that in Fig. 1.2 and can be described as:

N2 (02) | C paper, P/Q1 (or Pt/C) | Nafion | anode | Hy

In the full cell, no electrolyte solution and electrodes with 4 mg Pt black/ cm? (supplied

by Ballard Power Systems) were used as anodes.

2.2.4 Pt particle size

Powder X-ray diffraction was applied to determine particle size, which was carried
out on a Rigaku Ru 200 diffractometer using CuKa (0.15406 nm) radiation. Average Pt
particle sizes were estimated from the spectral line broading with commercial software
(Jade 1994, Materials Inc.) which uses the Scherrer equation and includes an instrument

calibration parameter [17].

2.2.5 Immobilization of catalysts on carbon disc electrodes

The wet Ql-supported catalyst was weighed into a small vial to the desired metal
loading, and 0.5 mL of 5 mass % Nafion solution in a mixture of lower aliphatic alcohols
(Solution Technology Inc.) was added. The mixture was ulitra-sonicated in a bath for one

hour to make a suspension. A 0.5 — 2.5 uL amount of this suspension was placed on a
23



0071 em® glassy carbon disc electrode using a micro-syringe and left to dry at room
temperature. After each experiment. the electrode was polished with alumina powder and

a new catalyst coating was applied

2.2.6 Electrochemistry of modified carbon disc electrodes

A three-compartment glass cell was used with a glassy carbon disc (RDE) working
electrode. a Pt wire counter electrode, and a saturated sodium chloride calomel (SSCE)
reference electrode (See Fig. 2.3). All potentials are quoted with respect to the SSCE
reference electrode (0.236 V vs. NHE). Measurements were made at room temperature

(22%2°C) using a E&G PARC P

‘gal . The was 05 M

H:S0.

Working Electrode
Speed control

Nz and 02

RDE
P

SSCE @

RDE surface, 0.071 cm®

Fig. 2.3 Schematic of the RDE cell.
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2.2.7 Reproducibility

Because of the large number of catalysts studied, it was impractical to repeat many
experiments. Reproducibility was checked for yields and conductivity measurements
(Table 2.1), particle sizes (Table 2.3) and some electrochemical experiments. Relative
standard deviations (RSD) were ca. 10 % for yields, 100% for conductivities and 10% for
particle sizes. Some figures in the thesis (see Fig. 2.15 and Fig. 2.30 for example) provide

an indication of the ducibility of the el hemical

The high RSD for conductivities is due to such factors as variations in the catalyst

preparati it drying and length, and storage method. However,

conductivities for all catalysts are high enough (the lowest value is 0.03 S cm™) to not

y i the reported el hemical

25



2.3 Results and discussion

2.3.1 Electronic conductivity of dried Q1 and Q1-supported catalysts

A series of Ql-supported catalysts with different Pt loadings were made for this
work. Before measuring the conductivity of dried Q1 and QI-supported catalysts, the wet
catalysts were dried in a vacuum oven overnight at room temperature. Yields and dry
conductivities of the catalysts are listed in Table 2.1.

The electronic conductivities of the catalysts were measured with a four-point probe
assembly described elsewhere [16]. From Table 2.1, it can be seen that the yield of
reduced Pt was generally very high and that the conductivities of the QI-supported
catalysts are high enough to support the currents involved in the electrochemical studies in
this thesis.

D ion of the i ivities of i l in air has

generally been ascribed to overoxidation by O; [27]. In order to test the stability of our
polymers, Q1 and Polyaniline (PANI, prepared by the same method as for Q1) were
heated at 100-120°C under nitrogen for two hours. At the same time, carbon black was
heated in an oven in air at 125°C for two days. Initial and final electronic conductivities
(at room temperature) are presented in Table 2. 2

It can be seen that although QI retained only 6.7% of its conductivity, its
conductivity is still high enough for electrochemical studies. PANI, however, retained
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Caralyst (%PvQl) Yield' (w1.%) | Dry conductivity (S/cm)
15% 66 & 014
21% 88 008
2% 101 0.26
30% 83 018
36% 9% 0.19
40% 86 003
43% 90 088
45% 86 020

29%(PvC) 93 29
Carbon black - 26
Ql : 20

* Assuming no loss of carbon and Q1
Yield = (metal loading obtained/Target metal loading)x 100%
- not measured

Table 2.1 Yields and conductivities of dry catalysts.

only 0.05 % conductivity. Carbon remains clearly the best substrate in terms of thermal

stability. Initially, we prepared PANI and PANI/PSS supported catalysts, but their poor

per and loss of ivities were not ising support materials. Therefore,

QI and Ql-supported catalysts became the focus of the work in this thesis.
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Initial conductivity
Sample Final conductivity (S/cm™)
(Sem™)
PEDOT/PSS (Q1) 093 0.071
PANI 033 0.00018
C black 26 12

Table 2.2 Effect of thermal aging (2 hr at 100 ~ 120 °C) on conductivity of support

materials.

2.3.2 Performance of Pt/Q1 in gas diffusion electrodes (GDE)

2.3.2.1 Polarization curves for oxygen reduction

Polarizati i were by stepping to each potential for 2 s. The
potential was returned to the initial open circuit potential for 10 s between points. This
procedure, although not strictly steady state, avoids complications due to flooding of the
catalyst layer by water generated by the reduction of oxygen. Fig. 2.4 shows polarization
curves for a PUQ1 and a commercial PYC catalyst at GDEs in a half-cell. The PvQ1
electrode achieved a comparable performance to that with the commercial carbon
supported catalyst, but a higher Pt loading was required. Polarization curves for catalysts
obtained in a full cell are shown in Fig. 2.5. Although the Pt loading on QI is much
higher than that of the ial catalyst, the is still inferior. At low
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Fig. 2.4 Polar for reduction in gas diffusion
electrodes in a half-cell. Pt loadings were 0.7S mg cm for 30% PvQ1
and 031 mg em? for 20% PYC[15].
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Fig. 2.5 Polarization curves for oxygen reduction in gas diffusion
electrodes in a full-cell. Pt loadings were 0.8 mg cm™ for
20% PY/C, 0.75 mg cm” for 30% Pt/Q1 and 1.1 mg cm” for
45% PUQ1



current densities, overpotentials for oxygen reduction are similar for 45% PY/Q1 and the
20%Pt/C commercial catalyst, but at higher currents, the potentials for the Q1-supported
catalyst are much lower than for the commercial catalyst. Explanations for these

differences were sought from voltammetric and RDE studies.

2.3.2.2 Cyclic voltammetry (CV) in half and full cells

Fig. 2.6 and Fig. 2.7 show cyclic of GDEs ining the

45%PY/Q1 catalyst in half and full cells respectively. Waves for hydrogen

adsorption/desorption, which were absent for PVPPY/PSS catalysts [16], are seen clearly

in the -250 mV - +100 mV vs SSCE region. These peaks demonstrate that P/Q1 catalysts

have superior electronic conductivity to PYPPY/PSS catalysts. There are sharp peaks

between 0.6 and 0.8 V that are due to the redox of iron ions that can not be fully removed
when washing Q1 [28].

CVs in full cells for PYQI catalysts with different Pt mass percentages (22%, 45%)

and the 20%PYC commercial catalyst are compared in Fig. 2.8. Compared with the

ial catalyst, the Q1 catalysts exhibit much higher charging currents.

On the other hand, in the case of 22% PvQI, the Pt loading is the same as that of the

commercial catalyst, but the peaks due to the hydrogen adsorption/desorption are much
smaller than that of the commercial catalyst, which indicates a low utilization of Pt. The
reason is not likely due to the electronic conductivity of PUQI catalyst that was quite high

(0.26 S/cm).
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Fig, 2.6 Cydic voltammograms(s) at different scan rates for 45% Pv/Q1
catalyst with 1.1 mg Pt cm’in a half-cell



——3,100mV/s

Current Density (mA cm’)

-30 = =b,0mVis
= = c,20mVs
-50
0 200 400 600 800 1000
Potential i NHE (mV)

Fig. 2.7 Cyclic voltammogram(s) at different scan rates for 45% PY/Q1 with 1.1
mg Ptcm” in a full-cell.
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The CV technique has commonly been used to ascertain the electrochemically active
areas of Pt electrodes [9, 29-30]. By integrating the current in the hydrogen adsorption or
desorption region of the CV and subtracting the double-layer charging current, the
coulombic charge is obtained. Then, the Pt active area can be calculated by assuming a
coulombic charge of 210 uC cm? [31].

It was a concern that this method may not be accurate for MEAs in the half and full

cell experiments, because the thickness of the catalyst layer (5-50pm) could lead to

P i and/or i wetting of the electrode
structure. To avoid these concerns and find the reasons for the low utilization of Pt/QI, as
well as its inferior performance in half and full cells, CV and RDE voltammetry was

applied as described in the following section.

2.3.3 Characterization of Pt/Q1 catalysts on carbon disc electrodes.

2.3.3.1 Cyclic voltammetry (CV)

Before testing P/Q! catalysts, a commercial 20% PY/C catalyst was tested to find
optimal conditions for running CV experiments (all CVs were run until reproducible
curves were observed if not specified otherwise). Fig. 2.9 shows representative CVs in
deaerated 0.5 M H;SO4 for a commercial PY/C catalyst dispersed in Nafion. A key
difference between CVs obtained in haif-cells and in this case is that two peaks are
resolved in the hydrogen adsorption/desorption region as is seen in CVs of pure Pt

electrodes. From the figure, it can also be seen that the currents in the hydrogen
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Fig. 2.9 CVs at different scan rates for a commercial
20% PUC coated electrode with 60 g Pt cm™
in N, saturated 0.5 M H,SO,.
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adsorption/desorption region increase with scan rate. The currents at selected potentials in
the adsorption region as a function of scan rate are shown in Fig. 2.10. These plots
indicate that currents have linear relationship with scan rate.

In order to test the influence of Nafion in which the catalyst was immobilized on
CVs, two volumes of Nafion solution (0.5 mL and 1 mL) were used to suspend the same
mass of the commercial P/C catalyst. Then aliquots with the same Pt loading (1 pL of the
first suspension and 2 pL of the second suspension) were applied to the electrode and CVs

shown in Fig. 2.11 were obtained. It can been seen, from the decreased areas for hydrogen

d: i ion and Pt oxide i ion peaks at higher potentials, that
doubling the amount of Nafion decreases the electroactivity of the catalyst. The reason for
this is probably that too much Nafion decreases the electronic contact between catalyst
particles. Schmidt has concluded that a Nafion film thickness of less than 0.5 ym at a RDE

will minimize diffusion effects and avoid i ing to

calculate Pt utilization [25]. In our i the thi of the Nafion plus catalyst

layers can be estimated to be ca. 0.4 pm and 0.8 um, respectively for Nafion loading of
1.1 mg cm? and 2.2 mg cm™. Thus, Nafion loadings of 1.1 mg cm™ were routinely used in
our further work.

Fig. 2.12 shows representative CVs, in deaerated 0.5 M HSO4, for 45% PUQI. The
CV at 100 mV/s is compared with that for the commercial 20%PvC catalyst in Fig. 2.13.
For both catalysts, current waves for adsorption/desorption of hydrogen atoms on the Pt
within the catalyst layer can clearly be seen in the region below +0.1 V, and Pt oxide
formation/reduction waves can be seen at higher potentials. Despite the lower Pt loading
used, the areas in the hydrog i ion region for the ial catalyst
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Fig. 2.11 CVs at 100 mV/s in N, saturated 0.5 M H,SO, for 20% Pv/C
coated electrodes with 60 ug Pt em™ and Nafion loadings of s, 1.1 mg
em?; b, 22 mgem™.
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Fig. 2.12 CVs at different scan rates for 2 45% Pt/Q1 coated electrode with
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Fig. 2.13 CVs at 100 mV/s in N; saturated 0.5 M H;SO for 45% PtQ1

with 0.14 mg Ptcm™® and 20% PYC with 60 ug Ptcm™
coated electrodes.
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are still larger than those for the 45% PvQI catalyst. The electrochemistry of the polymer
support is masked by the dominance of the Pt surface electrochemistry.
The areas under the hydrogen adsorption/desorption regions were found to be related

to both the amount of catalyst applied to the electrode (Figs. 2.14 - 2.16) and the catalyst

loading on the support (Fig. 2.17). H-ad ion charges were by i

over the 0.01 V to - 0.231 V potential range and subtracting the double-layer charge (see
inset of Fig. 2.14). A linear relationship was found between the H-adsorption charge and
the volume of catalyst suspension applied to the electrode, up to ca. 2uL (Fig. 2.15). At
higher loadings the catalyst tended to spread onto the insulating mantle and the catalyst
layer also became too thick, resulting in lower charges than expected. This can be seen
more clearly in Fig. 2.16 where the CV curve for 2.0 uL of suspension shows smaller
hydrogen desorption/adsorption areas than that for 1.5 L.

The dependence on the catalyst loading on the support is more difficult to qualify.
‘When Pt loadings below ca. 30% by mass are used, the cyclic voltammogram becomes
dominated by the polymer support’s electrochemistry and features due to the Pt are barely
discernable (Fig. 2.17). However, for a fixed mass of Pt applied to the electrode (e.g. 60
pg/cm?), the charge for H adsorption does not appear to be significantly dependent on its

loading on the support (Table 2. 3).

2.3.3.2 Platinum utilization

Platinum utilization values were calculated as the ratio of the area of electroactive

Pt, estimated from the charge under the H-ad ion waves in cyclic voll to the
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Fig. 2.14 CVs at 100 mV/s for 43% Pt/Q1 coated electrodes. Volumes of catalyst
suspension used were 0.5 uL, 1.0 uL, 1.25 pL, 1.5 uL, 1.75 uL, 2.0 uL, 2.25
uL and 2.5 pL. Catalyst loading of suspension is 0.14 mg Pt uLt,
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Fig. 2.16 CVs at 100 mV/s in N, saturated 0.5 M H,SO, for 45% PtQ1
coated with i 9 of ly
suspension (0.14 mg Pt uL") being applied.
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Fig. 2.17 CVs at 100 mV/s in N, saturated 0.5 M H,SO, for 15% PtQ1
and 30% Pt/Q1 coated electrodes with Pt loadings of 60 ug
cm? in a Nafion matrix.



total area of Pt estimated from the mean particle size (radius = r) on the assumption that
the particles are spheres with surface area 4nr’. The results (Table 2.3) show that the

ial carbon catalyst shows ially complete ivity of the Pt,

15%Pt | 30%Pt | 36%Pt 43%Pt 45%Pt 20%Pt
Catalyst
onQl onQl onQl onQl onQl onC

Average Pt particle

70 63 14 76 6.3 4.0
diameter (nm)
H Adsorption® (mC) | 0.22 0.2 0.19 0.12 0.17 0.78
Active Pt ared”
1.05 0.97 29 0.56 0.82 3N

(cm’)

Pt utilization® 62% 51% 56% 36% 43% 125%

a. Cathodic charge between +0.104 and —0.231 with the current at +0.104 V subtracted
as background.
b. Assuming 0.21 mC per cm® of Pt.

c. Based on the assumption that the Pt particles are spherical and of uniform radius.

Table 2.3. Hydrogen adsorption charges and i for Q1-supp
catalysts and a commercial carbon catalyst. All Pt loading were 60 pg/cm’.

47



while for polymer supported catalysts approximately 50% of the Pt is inactive. The fact
that the estimated utilization is greater than 100% for the Pt/C catalyst can be attributed to
contributions from background currents (including that for H; evolution) to the measured
H-adsorption charge.

Schmidt et al [25] have used a more sophisticated method for estimating total area,
based on the particle size distribution from ission electron mi Their

sample of 20% Pt on XC-72 from Etek had an average Pt diameter of 3.7 nm and a

di ion (surface atoms) of 26%. This study method, based on the

mean diameter only, gives a dispersion of 29% for 3.7 nm particles.
The Pt utilizations for the Q1-supported catalysts show no significant dependence on
Pt loading on the support (Table 2.3), nor on loading on the electrode (inferred from the
data in Fig. 2.15). The variations seen in Table 2.3 are within experimental uncertainty,
which is large because of difficulties in controlling the synthesis conditions, aging of the
catalyst sample, and el d ion. The i and potential dependence of

background currents was quite variable (see Fig. 2.17 for example), leading to
in the H-ad: ion charge.
The low utilizations for the poly d catalysts appear to arise from two

main causes: poor electronic contact of Pt particles with the polymer support and blocking
of the Pt surface by the polymer. The former effect is implicated by the fact that adding
carbon black (Vulcan XC-72) to the catalyst suspension used to prepare a Pt/QI electrode
increases the magnitude of the H-adsorption waves (Fig. 2.18 and Fig. 2.19), although it

does not lead to full utilization of the Pt. Fig. 2.18 illustrates an experiment in which two 2



Current (gA)
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Fig. 218 CVs at 100 mV/s in N, saturated 0.5 M H,SO, for 43% PtQ1
coated electrodes without C and with C, 80 ,1g C cm* (first)
and 0.16 mg C cm* (second). Loadings of Qf and Pt
(60 g cm™) are the same in all cases.
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Fig. 2.19 CVs at 100 mV/s in N; saturated 0.5 M H2SO,4 for 21% PYQ1
coated electrodes without C and with C (80 uglcm’) in

supports. Q1 and Ptioadings (60 ,;glcm’) are same for
both electrodes.
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mg portions of carbon black were added to the 0.5 mL suspension of 43% PvQI catalyst
before application onto the carbon disc electrode and tested. The first addition of carbon
increased the utilization of Pt from 36% to 74%. However, the hydrogen
adsorption/desorption areas change little with addition of the second portion of carbon
black, indicating that a limit was reached. In Fig. 2.19, the same amount of carbon black
was also added to 21% PY/QI, producing better defined hydrogen adsorption peaks. These
changes are not thought to be a result of poor electronic conductivity of the Q1 support,
since conductivities of pressed pellets (dry) of the catalysts (0.03 to 0.9 S cm”, Table 2.1)
are much higher than are needed to support the currents observed in cyclic voltammetry.
Thus, we conclude that some Pt particles must be electronically isolated from the polymer
support either by physical separation or by poorly conducting segments of the support.

The blocking or poisoning of Pt sites by the Q1 support was demonstrated by two

In the first i QI was added to the suspension used to

prepare a PUC electrode, and resulted in ion of the H. i ion waves

by ca. 50% (Fig. 2.20). The second experiment involved coating of a Pt disc with the
supernatant of a Q1 suspension in Nafion solution, which did not result in suppression of
its H-adsorption/desorption waves (Fig. 2.21). This indicates that the blocking appears to
be by the polymer itself, rather than a soluble impurity.

Another two factors investigated in this work for Pt/Q| catalysts were the amount of
Nafion used and whether drying the catalyst before its addition to the Nafion solution

infl d H- i d ion. As for the ial catalyst, i ing the amount

of Nafion in a polymer-supported catalyst layer for a fixed mass of catalyst suppressed the
H-adsorption/desorption waves (Fig. 2.22). When PVQI catalysts were stored in the dry
51
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Fig. 2.20 CVs at 100 mVis in N, saturated 0.5 M H,SO, for 20% PYC
(80 pug Pticm®) coated electrodes without Q1 and with Q1
(0.42mg Q1 cm™).
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Fig. 2.22 CVs at 100 mV/s in N saturated 0.5 M H.SO, for electrodes
coated with 45% PYQ1 (100 g Ptcm™) in different Nafion
loadings. Light curves, 2.2 mg Nafion cm?; bold curves,
1.2mg Nafion em?
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state before use, the utilization of Pt was also reduced (Fig. 2.23). Thus, it can be
concluded that poor electronic contact of Pt particles with the polymer support is in part

responsible for the low Pt utilization and low performance in GDEs.

2.3.3.3 Oxygen polarization curves.

Polarization curves for O; reduction were recorded by linear-sweep voltammetry at
a sweep rate of 10 mV/s over a range of rotation rates (250-1500 rpm). Voltammograms
were recorded in both N; and O saturated 0.5 M H;SOj solutions. The curves obtained
under N; were subtracted from those obtained in the O; saturated solution as a background
correction [24]. Voltammograms in N; saturated and O; saturated solution for 20% PvVC
and 45% PYQ1, both recorded in the cathodic sweep direction, are presented in Fig. 2.24
and Fig. 2.25. When the curve in N; saturated solution is subtracted from the curve in O;
saturated solution, the actual polarization curve for O reduction is obtained (heavy lines
in Figures). Typical corrected polarization curves for the above two catalysts at different
rotation rates recorded in both cathodic and anodic sweep directions are shown in Fig.
2.26 and Fig. 2.27. The hysteresis of the polarization curves for cathodic and anodic
directions shows that the oxygen reduction reaction is faster on reduced than on oxidized
electrode surface, which is characteristic of Pt [32]. Typical corrected polarization curves
for the commercial carbon supported catalyst and several Ql-supported catalysts are
shown in Fig. 2.28.
Levich plots of limiting currents [ vs. ©? (@ = angular rotation rate) were slightly
curved, presumably due to a slight mass transport limitation in the Nafion matrix, but
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Fig. 2.23 CVs at 100 mV/s for electrodes coated with dry and wet
30% PU/Q1 catalyst (100 ug Pt cm™® ) for both in Ny
saturated 0.5 M H,SO,.
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1000 rpm) of a 20% PUC coated electrode with 40 g Pt
cm™? in Ny- and O;- saturated 0.5 M H:SO, and corrected
P curve for O
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inverse Levich plots of I' vs. w™? were linear and parallel for potentials from ca. 0.6 V to
the limiting current region (eg. Fig. 2.29). The paralle! lines in Fig. 2.29 indicate that the
number of electrons transferred does not change significantly with potential over the range
studied and that the limiting currents in Fig. 2.27 and Fig. 2.28 should obey the Levich

equation

Iim = 0.620nFADP 0! C?, 26

Where n is the number of electrons transferred per O; molecule, F is Faraday’s constant, A
the electrode surface area, C*, is the concentration of dissolved O; in the solution, Dy is
the diffusion coefficient of dissolved O; in the solution, and v is the kinematic viscosity of
the solution. According to Eq. 1.2, the value of n should be close to 4. According to the
literature, C* is ca. 1.2 mol m™ [33], Do is 1.9 10° m® s [33] and v is close to 0.01 cm?
sec™! 34). Then from the slopes of our inverse Levich plots, n is ca. 3.7 for 45% PvQ! and
ca. 3.4 for 20%PY/C, demonstrating the validity of the RDE methods applied in study.

In theory, Tafel plots should be constructed from the kinetic currents given by the
intercepts of inverse Levich plots. However, errors in the data from inexact background

aging of the el de, and variations in iti can be i in this

way, resulting in inaccuracy. Therefore a procedure was followed [24] in which the
polarization curves in Fig. 2.26 and Fig. 2. 27 are corrected for mass transport effects by

using eq. 2.7, and then plotted in Tafel form.

Tia= Toinl /(L tim= ) 27
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Fig. 2.29 Inverse Levich plots for O, reduction at 45% Pt/Ql coated electrodes in
anodic scan.
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where I v is the kinetic current. Fig. 2.30 shows Tafel plots (log(-Iua) vs. V)) [24] for
oxygen reduction at a 44.5% PtQI coated electrode, obtained at various rotation rates,
and for potential scans in both cathodic and anodic directions. At low currents, the Tafel
plots obtained at different rotation rate overlap very well and are reasonably linear, but
there is a clear dependence on the scan direction. At high currents, the plots do not exactly
overlap but are reasonably linear and do not show any systematic differences. The scatter
in this region can be attributed to errors arising from the mass transport correction (eq.
2.7) which will become larger as the current approaches the limiting current.

Slopes from the Tafel plots shown in Fig. 2.30, similar plots obtained with 20%
PY/C and other P/QI catalysts (see Fig. 2.31), and literature results for the P/C catalyst

are shown in Table 2.4.
Tafel slope (mV decade™)
Catalyst low current low current
High current

cathodic scan anodic scan
45% Pton Q1 -90 -110 -200
30% Pton Q1 -66 -108 -159
15% Pton Q1 -56 -130 -177
20% PtonC -80 -100 =200
20% Pton C [24] -60 -80 -180

Table 2.4. Tafel slopes for oxygen reduction at polymer and carbon supported
catalysts.




Potential vs SSCE (mV)

Fig. 2.30 Tafel plots for O; and anodic scans) at
45% PYQ coated electrodes in 0.5 MH.SQy at different rotation rates
(250 - 1500 rpm).

65



A15%PVQ1

Poteatial vs SSCE mV)

X 30%PYQ1

Q2%PIC

Fig. 2.31 Tafel plots (cathodic sweeps at 750 rpm) for glassy carban
electrodes coated with 15% , 30%, 45% PUQ1 and 20% PUC catalysts s in
Fig 228.



Tafel slopes for both the carbon and Q1 supported catalysts parallel those reported by
Gojkovic et al in the Nafion matrix [24], although some are slightly higher. The high
slopes at high currents for the 45% PYQI and P/C electrodes may be due to slightly lower
mass transport rates in the Nafion matrix [24], while at low currents they are more likely
due to errors arising from the background correction. Reliable data was not obtainable at
such low overpotentials as Gojkovic et al, and so less data was available to define low
current slopes. However, it can reasonably be concluded from the data in Table 2.4 that
the polymer-supported catalysts follow the same kinetics as the PY/C catalysts. The
similarity of the results is stressed by comparing Tafel plots obtained under the same
condition as in Fig. 2.31. Within experimental error, the curves shown in Fig. 2.31 can be
regarded are approximately parallel. Their relative positions on the current axis can be

attributed mainly to differences in active Pt areas, as shown by the data in Table 2.5 for

these and other electrodes.
Catalyst (and Pt Active Pt liin, s0o/active
Pt utilization ~lkin, 600

loading( pg cm?)) | area(cm?) area (mA cm?)
45% Pt on Q1 (140) 15 35% 134 87

30% Pton Q1 (73) 08 34% 13.1 30

15% Pton QI (30) 03 3% 97 7

20% Pt on C (40) 27 135% 82 31

Table 2.5. Active Pt areas, oxygen polarization currents at 600 mV (-Iuue), and Pt
utilizations for selected electrodes.
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The current at 600 mV has been arbitrarily taken as a measure of the kinetic
activity, in place of the exchange current that should strictly be used, since extrapolation
to the equilibrium potential in which net current is zero would result in unacceptable
uncertainty. Choice of a different reference potential within the range studied would not
materially affect our conclusions.

The key parameter in Table 2.5 is the ratio of the kinetic current (-l s00) to the
active Pt area. The value for the carbon supported catalyst falls within the range of those
for the polymer supported catalysts, indicating that the real current density (and exchange
current density) is similar at both types of catalyst. However, a much higher Pt loading is
needed for polymer supported catalysts to match the current delivered by a Pt/C electrode.
This arises mainly from the poor Pt utilization of the polymer-supported catalysts (Table
2.3), and in part from their larger Pt particle sizes (lower Pt dispersion; see Table 2.3).

23.4 PUC cataly by 1 depositi

Some carbon-supported catalysts have been also prepared as outlined in Section
2.2. Cyclic voltammograms of these PUC catalysts had very small hydrogen
adsorption/desorption peaks (Fig. 2.32 and Fig. 2.33), indicating poor Pt utilization.
However, heating catalysts prepared by Method 2 at reflux in concentrated nitric acid for
ca. 40 min as described by Jia [13] produced more active materials (Fig. 2.32).
Surprisingly, this treatment did not significantly increase the hydrogen

adsorption/desorption charge for catalysts prepared by Method 1 (Fig. 2.33).
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Fig. 2.35 Tafel plots for O, ) at

16% PYC (60 g Pt cm®) and post-treated 24% PYC (60 g Pt
cm®) and a commercial 20% PY/C (40 ug Pt cm®) coated electrodes in 0.5 M
H;SQ, at 1000 rpm.
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Fig. 2.34 shows oxygen polarization curves (cathodic sweep) for one of our carbon-
supported catalysts, a nitric acid treated sample of the same catalyst and a commercial
catalyst. Fig. 2.35 shows the Tafel plots for these three data sets. Our nitric acid treated

catalyst gives a similar to that of the ial catalyst Its imp

performance over the original sample is believed to be due to a higher ionic conductivity
in the catalyst layer since carboxylic acid groups or other acidic groups are produced on

the surface of the carbon by the nitric acid treatment.

2.4 Conclusions

With gas diffusion electrodes in half-cells and full cells, and with rotating disk

I Y i poly (3,4-ethyl i iophy 4
(QU) supported Pt catalysts have been found to exhibit similar oxygen reduction activities

to a commercial carbon supported catalyst when results are normalized for active Pt area.
Exchange current densities per active area catalyst and and mechanisms appear to be the

same.

The inferior d with ial catalyst seen for the polymer-
supported catalysts in the work with gas diffusion electrodes were found when testing in
halfand full cells, and reproduced at rotating disc electrodes. The results have been shown
to be due to the low Pt utilization (50-70% lower than for carbon supported Pt), and to
slightly higher Pt particle sizes (ca. 7 nm vs. 4 nm, see Table 2.3). The poor utilization
appears to be due to electronic isolation of some Pt particles, and to blocking or poisoning

of the Pt surface. If these deficiencies can be removed, the superior performances
Re]



promised by the proton conductivity and water permeability of the polymer supported
catalysts should be realized
The performance of self-made PUC catalyst can be improved greatly by post-

treatment with concentrated nitric acid.
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Chapter 3

PEDOT/PSS Supported Binary (Pt-Ru) Catalysts for Methanol

Oxidation

3.1 Introduction

3.1.1 Background of platinum based binary catalysts for methanol electro-

oxidation

Pt-Based electrocatalysts have been widely studied for methanol oxidation since
the Direct Methanol Fuel Cell (DMFC) was first proposed [1]. In fuel cells, platinum
alone is not a sufficiently active methanol electrocatalyst since it is easily poisoned by
intermediates, such as CO and HCHO, produced during methanol oxidation. The
incorporation of a second metal into the catalyst has therefore been extensively studied to
improve catalytic activity. Studies on Pt based bimetallic electrocatalysts, such as Pt-Sn
(2-5], Pt-Rh [6], Pt-Ru [7-11], Pt-Re and Pt-Mo [12-14] have shown enhanced
electrochemical activity compared with Pt alone, by lowering the overpotential for
methanol oxidation and producing increased current density without increased Pt
loadings. Among these binary catalysts, Pt-Ru has been found to be the most active and
has become the most widely studied for improving the performance of the anodic

reaction in DMFCs in the last ten years [11,15-27].



The mechanism of methanol oxidation on Pt is not thoroughly understood yet. and
there are numerous possible routes from methanol to CO; The intermediates formed
during methanol oxidation can vary with reaction conditions [28.29] and adsorption of’
intermediates usually occurs. The most generally accepted mechanism for methanol

oxidation is written as [30]

CH;O0H + 3Pt —» Pt;-COH + 3H™ + 3¢ 31
3Pt+3H;0 - 3Pt-OH +3H™ + 3¢’ 32
Pt;-COH + Pt-OH — Pt;-CO + H;0 + 2Pt 33
Pt;-CO + Pt-OH — Pt-COOH + 2Pt 34
Pt-COOH + Pt-OH — CO: + H.0 + 2Pt 35

After the alloying modification of Pt with Ru, a negative shift in the methanol
oxidation response of about 200 mV has been observed by most workers. The mechanism

on the Pt-Ru binary catalyst is modified as presented by Freelink et al. [21] as

Ru+H:0— Ru-(H:0)us 3.6
Ru-(H:0)ss = Ru-(OH)u ¥ H™ + & 37

Pt-(CO)ass + Ru-(OH)uts — Pt+Ru+CO.+H +¢ 3.8

From the equations above, the function of Ru is to adsorb oxygen-containing species

(eg. H,0, OH), which will help to oxidize the carbonaceous intermediates produced from



methanol oxidation. The beneficial roles of Ru and other metals as promoters in Pt-based

catalysts for methanol oxidation are summarized as follows [16].

1) Promoting the adsorption of water and/or oxygen, thus enabling the oxidation of the
methanol residues that poison Pt.
2) Changing the electronic properties of the Pt surface.

3) Preventing adsorption of residues by blocking the Pt sites on the surface.

Although there are many different explanations under different experimental
configurations, these binary systems are not completely understood even today [29]. It is
generally accepted that Pt-Ru pair sites adsorb small molecules of oxygen-containing
species, then carbonaceous species such as HCHO, HCOOH and CO are preferentially
oxidized at Pt sites by surface diffusion from Ru [29].

The optimum surface composition of Ru will maximize the el dytic activity.

Saffarian et al. recently reported that 44/56 of PURu is the best composition based on a
fractal technique [26]. Overall, a surface composition of 50 atom % Ru or close to it has
been demonstrated to give the best performance for methanol oxidation [18-20].

3.1.2 Preparation of catalysts

The performance of a binary catalyst is not only dependent on the characteristics of

the metals (Pt-Ru), but also on the catalyst preparation method, the choice of supporting
material and pre- or post-treatment of the catalyst. Unsupported Pt-Ru alloy catalysts are



generally prepared by arc-melting or electro-codeposition methods. In the arc-melting
method, the pure metals are mixed in the desired proportions and arc-melted under an
argon atmosphere. After enough melt cycles, the alloys are fabricated into discs and
machined to fit into the electrochemical cell. Their bulk composition can be assessed by
X-ray fluorescence spectroscopy [17-20]. The electro-codeposition method is realized by
direct electro-reduction of Pt and Ru saits solutions [21]. Carbon-supported Pt-Ru
catalysts are generally prepared by chemical deposition methods in which most

commonly H;PtCleH;0 and RuCheXH;O are reduced by various reductants under

and reaction iti [15,16,31]. Recently, colloid systems
were proposed as a promising method for catalyst preparation 23] in which ultra-fine
metal particles of 1.7+0.5 nm could be obtained. Polymer-supported Pt-Ru catalysts
prepared by an electro-deposition method [32] have been reported. The Pt and Ru
particles were co-deposited into the polymer film during its electro-synthesis. As with
depositing Pt alone, this method also met the problem such as unsatisfactory porosity of

catalyst layer that has been discussed in Chapter 2 (Section 2.1.2).

Previously, chemi deposited poly catalysts have suffered from
instability of the polymer at high temperatures (discussed in Section 2.3.1). A more stable
conducting polymer (PEDOT/PSS (Q1)) has been developed by Pickup ef al. Following
the chemical deposition method, Ql-supported Pt-Ru catalysts were prepared and
preliminary measurements of these catalysts tested in GDEs have been reported [33,34].

The work on polymer-supported binary catalysts in this chapter is based on this method.



3.1.3 Methodology.

The techniques, mainly the electrochemical, spectroscopic, X-ray and
thermogravimetric methods, used for characterizing catalysts in fuel cell-related
electrochemistry have been reviewed by Wasmus et al. [29]. Although many modern
instrumental tools of analytical chemistry have been applied, there is still no consensus
regarding the mechanism of the function of binary catalysts (and Pt alone) for methanol
oxidation. Two of the reasons are that there is not a common basis for the comparison of
different catalysts in fuel cell testing and there is less progress made in an on-line method

to study the effects linked to electrochemistry under fuel cell conditions. If these two

problems are resolved, a clear definition of the current f-th in anode catalysis
should be revealed.
The techniques applied in this study include scanning electron microscopy (SEM)

with an energy X-ray (EDX) analyser to observe the catalyst surface and obtain relative

Tt ission electron mi (TEM) to calculate the size
of the particles; X-ray diffraction (XRD) to characterize the Pt surface structure and
calculate the size of crystallites (generally Pt); Ac impedance to obtain kinetic and

transport Fourier infrared (FTIR) to observe

adsorbed species on modified catalysts. Although there are many methods in use, to test
the performance of the catalysts being prepared, current (or current density) at an applied
potential or current transients obtained during a potential step are still the most often

applied technique in this work. Thus, the analysis of the experimental data obtained from
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cyclic y (CV), (CA) and pulse polarographic methods
(Normal Pulse Polarography (NP)) are the main focus of this chapter.

3.1.4 Objective of this chapter

Our previous work on polymer (Q1)-supported catalysts for oxygen reduction has
shown comparable activities to those obtained for commercial carbon-supported
catalysts, while the preliminary work on testing polymer-supported binary catalysts for
hydrogen and methanol oxidation were significantly inferior [34]. In the work described
in this chapter, half-cell GDE and RDE configurations were applied to study the binary
catalysts in more detail.

The first objective was to optimize the synthetic conditions to obtain catalysts with
the required atomic compositions of Pt: Ru. Secondly, potentiostatic steady state and
reduced CO; oxidation techniques were used in the GDE configuration to compare the
activities of (Pt-Ru)/Q1 with those obtained for a commercial catalyst. Also, some work
was done on commercial binary catalysts and Pt black anodes (4 mg Pt cm?) to

characterize their performance in short and long potential steps under different

ditions. Finally, the poly binary catalysts were investigated under more

carefully controlled conditions using the RDE configuration. Methodologies such as CV/

(i ing O, polarizati transient ization, and CA were used. Before testing

catalysts, EDX was used to measure the relative amount of Pt and Ru, and XRD was used
to observe Pt particle sizes and the lattice change of Pt crystallites after being alloyed
with the second metal, Ru.



3.2 Experimental

Synthesis of PEDOT/PSS (QI) polymer composites, XRD and the experimental

fi ion for the RDE i were the same as those described in Section 2.2.
Q1-supported binary catalysts were prepared as follows.

A mixture of aqueous H;PtCle*H;0 and RuCl»xH;O (Aldrich; concentrations based
on desired Pt and Ru loadings) was heated to 40°C-60°C and then neutralized with
saturated Na;COs solution as indicated by pH paper. Then the mixture was boiled for 2
hr under a N, atmosphere. A suspension of QI in ca. 20 mL H;O (ultra-sonicated for one
hour) was then added and the new mixture was stirred at ca. 80-100°C for 30 minutes to
allow equilibration. Finally, a ca. 30 or more molar excess of aqueous formaldehyde
(36.5%) than Pt/Ru was added followed by heating at reflux for ca. 2hr. The catalyzed Q1
was collected by centrifugation, washed thoroughly with water and then stored in 5%
methanol solution.

A portion of each batch of catalyzed Q1 was collected and dried under vacuum to
calculate its mass percentage of Pt in the wet sample. Its electronic conductivity was then
measured in this dry state. Total catalyst loadings were estimated by a gravimetric
analysis in which the dried catalyst was ashed at 900°C in a muffle furnace. Elemental Pt
and Ru were assumed to be the only remaining products. The trace amount of Fe
remaining in the PEDOT/PSS following catalyst deposition was ignored because its level

was not accurately known, and it would not make a significant difference to the results.

electron mi (SEM) and i-quantitative analyses were

obtained with a HITACHI S-570 scanning electron microscope with an energy disp




X-ray (EDX) analyser (Tracor Northern 5500). Relative elemental concentrations were
calculated by fitting and correcting the EDX spectra with commercial software (SQ,
Tracor Northern). Analyses were carried out 3 or more times on different portions of the
sample. The Pt-Ru (1:1) ratio of a commercial catalyst was used as a standard in this
work. The measured Pt:Ru ratio of 1.9 for the 20% (Pt-Ru)/C commercial catalyst (E-
TEK) was found to be higher than the reported value of 1.0. The error is probably
produced by the systematic error of SEM machine. Thus, ratios measured for QI-
supported catalysts were all corrected arbitrarily by this factor.

Reduced CO; oxidati i were p using GDEs in a half-cell.

The potential was held at -0.236 V for required times (20 min or one hour) to adsorb
reduced CO; before starting the stripping scan. Cyclic voltammograms were recorded
under two conditions, with CO; or N flushing the gas chamber respectively.

idation was studied in a hat unusual ion with a GDE

in a half-cell by adding 1 M methanol to the 1 M H;SO; solution in the cell and passing
N; over the back of the GDE. The methanol therefore had to diffuse through the Nafion
membrane to reach the catalyst layer. These experiments were carried out in a
temperature —controlled water bath at 60+1°C. With the RDE configuration, methanol

oxidation was carried out at both 60+1°C and at room temperature (RT) (22£2°C).



3.3 Results and discussion

3.3.1 Catalyst preparation and composition analysis by EDX

Although QI has good electronic conductivity when first prepared, it loses

with time,

at high temp

(see Table 2.2). Thus, obtaining

catalyzed Q1 in a shorter time should provide better activity. However, in our

experiments, we found that Ru** (RuCly*xH;0) was more difficult to reduce than Pt*

(HPtClg*H;0), and that the yield of Ru was very low if the deposition time was only 40

min (Table 3.1). Therefore, before depositing binary metals (Pt-Ru), Pt and Ru were

deposited individually on carbon black to determine the optimal time for obtaining the

catalyzed polymer. Table 3.1 lists the results.

Table 3.1 Tests of deposition of Pt and Ru particles on carbon black.

— Metal loading
Catalysts Targeted metal Reaction time s &
loading (mass %) (min) obmu;:)( mass Yield *(%)
PYC 35 40 25 n
PY/C 34 120 30 88
RwC 21 40 33 16
Ruw/C 21 120 15 74

* Assuming no loss of carbon.

Yield = (metal loading obtained/Target metal loading) x 100%




Table 3.1 shows that Pt was easily deposited on carbon in high yield for both short
(40 min) and long (120 min) deposition times, but that a full deposition of Ru particles
would need longer times. Thus, under our experimental conditions, a long time (120 min)
is necessary to prepare binary catalysts.

When depositing the two metals together at long time (120 min), however, the
yield of Ru was not as high as when depositing it alone. Table 3.2 lists the deposition
results for selected carbon-supported and Q1-supported binary catalysts. Our aim was to
obtain 1:1 P/Ru catalysts and so initially a ratio of 1:1 Pt* and Ru’* was used. However,
EDAX analysis showed that the ratio of Ru was very low and sometime it could not be
detected. Thus, a greater proportion of Ru*" must be used to obtain a Pt to Ru ratio close
to 1. From Table 3.2, it can be seen that a molar ratio of HaPtCls*H;0 to RuClyexH;0 of
0.2-0.3 is required to obtain binary catalysts with an atomic ratio of 1:1. The data on
catalysts 1, 2 and 3 demonstrate the reproducibility of the chemical deposition method.
From the table, we can find that a long time is needed for the reaction. If the reaction time
is too short, the deposition of Pt still dominates (catalyst 5). Thus, by adjusting reaction
times, different Pt:Ru ratios can be obtained (catalyst 8 and 9). Fig. 3.1 and Fig. 3.2 show
EDX spectroscopic results for the commercial catalysts and one QI-supported Pt-Ru
catalyst (catalyst 10 in Table 3.2), respectively. The measured ratio for the Pt-Rw/QI was
1.7:1, and after being corrected by 1.9, the resulting ratio was 0.89.

The amount of HCHO used was between 30 — 50 molar excess relative to metal salts

(based on 1:1 of HCHO/(Pt* + Ru™)). No significant influence of the HCHO amount

was found between this range. The i ivities of the dry poly d

catalysts were quite good (around 0.14 - 0.60 S cm), showing the acceptability of the



1|2 3 4 5 6 7 8 9 10
Catalyst Pt Pt- Pt- Pt- PL- Pt Pt- Pt- Pt Pt-
RWC | RWC | RwC | RWC | RwC | RwQl | RwQl | RwQ! | RwQl | RwQl
PURusomic | (45 ; ’ ; . " . % " < "
rtio in reaction 04:1]041:1)021:1[025:1[033:1]023:1 | 025:1 | 025:1 | 028:1
‘mixture 1
¢ | 26:022:0(27:0 [ iz | 41 | 12:1 [ 089:1 | 251 13:1 | 0891
Target metal
loading (mass | 24 24 25 36 36 31 29 ] 57 4
L)
Metal loading
obtained (mass [ 11 10 14 16 2 15 17 27 36 29
2)
Yield"
(mase¥) 46 42 56 44 61 48 58 64 64 n
oSem™ | 23 - - - 26 | 027 | 060 | 014 022 | 025
Reactiontime | 2hr | 2hr [ 2hr | 2hr | 40min | 2hr 2hr Lhe | LShr | 2hr

1. “-“not measured
2. Measured atomic ratios were corrected by dividing by 1.9.
3. “#”Seetable 3.1

Table 3.2 C

yields and

(0) of some binary catalysts.




“1:6°1 / "3 :(33wa9A€) uonsodwiod pasnsvapy
IA18180 D/(1:1) WY-1d %0 I91929mumod v soj mnaydads Xqd |'€ ‘31

T38Y7 Uiba (3-9)03X3 "9
@¥YZ 0T #2007 = SJA 0000

.r.t(\.rr:: tssaseRsteR R ERARI DRI REEREREARRVIN] %T\

4 !

@ = A0 @ :40Ssun)
YE:@T  66-9MY-S0 NHL ANGTIANNOAMIN 40 “AINN THINOWII




1AL/ Y g ‘uonsodmod pasnseajy
sA1eIes 1O M-I %L1 € 10 mnaaads XqF '€ g

TI138Y71 B1WA (3-9203X3 or
vz ot 960 = SJA

LY T

I

@ = AO2D 0 :405.4n)
TEILZ  SE-NUL-ZE INMS ONGTANNOSMIN 30~ AINN THINOW3M




chemical ition method for ing Q1 binary catalysts.

3.3.2 X-ray diffraction (XRD) analysis.

Fig. 3.3 shows XRD patterns for commercial 20% PVC, 20% Pt-Ru (1:1) /C and
39% (Pt-Ru) (1:1) /C catalysts over a wide range of 26 scans. Pt diffraction (1,1,1) peaks
are seen for all three catalysts, with the peaks for binary catalysts slightly shifted to
higher 26 values with respect to the Pt/C catalyst. For PUC, there is a second peak (2,0,0)
at a 20 value of ca. 48°. From an analysis of the (1, 1,1) peaks, (Section 2.2.4), the particle
sizes for the three catalysts are 3.8 nm, 3.3 nm and 2.8 nm.

XRD spectra for Q1-supported catalysts with different Ru loading are shown in Fig.
3.4. In the case of 36% PY/Ql, the peaks are similar to those for the commercial 20%PvC
catalyst. With increasing Ru ratio, the heights and areas of the peaks due to the three Pt
indexes, especially those at higher 20 values, are decreased. For 34% (Pt-
Ru)(0.84:1)/Ql, the peaks at (2,0,0) and (2,2,0) have disappeared as for the commercial
binary catalysts, indicating that the Ru atoms have changed the structure of the Pt
crystallite lattice. This change may be one of the factors influencing the catalytic
properties of the alloy.

The particle sizes for the four poly d catalysts from the

(1,1,1) peak were 9, 9.4, 9.2 and 7.3 nm. The measured particle sizes for all single and
binary catalyst were between 6 — 10 nm and without regular change with Pt loading,
which means that the depositions of Ru and Pt do not affect the particle sizes with each
other. Comparing with data for the commercial catalysts (3.8 nm for a single catalyst and

3.3 om for a binary catalyst), it was also noted that Ru deposition has no effect on the
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sizes of Pt particles.

3.33 Catalytic properties of Ql-supported Pt-Ru binary catalysts,

commercial binary catalysts and Pt black anodes in half-cells

3.3.3.1 Methanol oxi 1

P

For methanol oxidation polarization, normal pulse polarography (NP) was applied
following the procedure described in Section 2.2.3 and 2.3.2.1, except that N, was passed
through the chamber at the back of the GDE and different step times up to 40 s were
applied. Polarization curves for methanol oxidation at 60 + 1°C were recorded for some
QI-supported catalysts and a commercial carbon-supported catalyst, and results are
shown in Fig. 3.5. The commercial catalyst gave the best results with lower
overpotentials at most current deasities. Of the QI-supported catalysts, one with a Pt: Ru
ratio of 2.2 gave the best catalytic performance. A catalyst with an even higher Pt: Ru
ratio (20%Pt-Ru (16:1) /Q1) gave much larger currents than the others at high
overpotentials, but inferior results at lower overpotentials. This is more characteristic of a
pure Pt catalyst, with the high currents at high overpotential reflecting the high active Pt
area. If a catalyst has a high Ru ratio (15%Pt-Ru (0.5:1)/Q1), then the catalytic activity is
correspondingly lower.

Unlike the arc-melting method, the Pt: Ru ratio can not be controlled exactly with

our chemical deposition method, and our iti has inevi error,
so we can not conclude that a Pt: Ru ratio of 1:1 is the best catalyst for the Q1-support.

However, according to our experimental results, ratios of Pt: Ru between land 2 give the
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best performance, and so catalysts prepared in this ratio range were the focus on of our
later studies.

The step time of 2 s used for collecting the data shown in Fig. 3.5 does not provide a
steady state result. In order to find the time to reach a steady state in these experiments,
Pt black anodes with very high Pt loadings, a commercial catalyst (39% Pt-Ru (1:1) /C)
and one QI-supported binary catalyst running were tested with longer step times (Figs.
3.6 — 3.9). These experiments were done in order of increasing step time, but similar
results were obtained when the order was reversed. For all electrodes, 30 s is long enough
to approach steady state, although a true steady state for the electro-oxidation of methanol
may not be established even after many hours [35]. Further work involved adding PTFE
or Nafion solution to a high loading commercial 60% Pt-Ru (1:1)/C catalyst to improve
its ionic conductivity. At a step time of 40s, these changes improved the performance as
expected, but the current continued to decline when longer step times were used (see Fig.
3.10).

In Fig. 3.9, the superior performance of the Pt black anode is clearly shown. This
indicates that a higher loading of Pt is still necessary for methanol oxidation at high

current densities. Both Fig. 3.9 and Fig. 3.5 demonstrate that the Pt-Ru binary catalyst

d the P ial for methanol oxidation, although higher total loadings are

clearly needed for real applications.

3.3.3.2 Reduced CO; oxidation and CO strippi 4

Using a GDE in a half-cell jon, a ique using CO; el ds
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Fig. 3.6 Methanol oxidation polarization curves for 4 mg Pt black em?at
different step times at 60 °C.
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Fig. 3.8 Methanol oxidation polarization curves for a 20% Pt-Rw/Q1 (1.2:1)
catalyst with 0.5 mg Pt-Ru cm? at different step times at 70 °C.
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/reoxidation to measure the active surface area of carbon-supported catalysts has been
studied in our group [36]. Fig. 3.11 shows a CV of a 20% PVC commercial catalyst
following CO; reduction at -0.236 V vs. SSCE, for 20 minutes. The oxidation wave at ca.
+0.6 V is due to oxidation of adsorbed products from CO; reduction. The active area of
the catalyst can be estimated from the area of this peak (the second scan in CO, was used
as a background). The initial purpose of our work was to apply this technique to
characterize the active surface area of binary catalysts. However, the peaks of CVs for
commercial and QI-supported binary catalysts by this method were not as sharp (or
obvious) as expected (see Figs. 3. 12 - 3.14). The reduced CO; area is obviously not
suitable here for estimating active areas of binary catalysts. However, we noticed that the
onset potentials (Ecnser) for reduced CO; oxidation estimated as the intercepts of the first
and second scans as indicated in Figs. 3.12 - 3.14 were different for different Pt: Ru
ratios. For the commercial 20% Pt-Ru (1:1) /C catalyst, Ecue Was 145 mV (Fig. 3.12), for
a 25% Pt-Ru (3.3:1) /Ql catalyst, Eoua Was at 220 mV (Fig. 2.13) and for 19% Pt-Ru
(1:1) /Q1, Eonser Was at 180 mV (Fig. 3.14). The commercial 20% PY/C catalyst has Eouse
at 360 mV (Fig. 3.11). So, this technique may be applied to test relative catalytic activity
and poisoning tolerance of the binary catalysts. The smaller the value of Ecua, the higher
the catalytic activity of the catalyst. This work needs further demonstration.

CO stripping voltammetry was also tried for estimating active areas of binary
catalysts in this work. Fig. 3.15 shows a CV of a commercial 20% PVC catalyst following
CO adsorption at -0.236 V vs. SSCE for 30 minutes, and the second scan in N is used as
background. When this method was applied to binary catalysts, the same problem was
encountered as with CO;, stripping scan. No CO desorption peaks were obtained even
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for 20% Pt-Ru/C catalyst with 0.75 mg Pt-Ru
cm?in a half-cell.
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at adsorption times up to 180 minutes. The reason could be due to the low concentration
of CO in N; used in our experiments. The reported papers [23, 37-39] always used a high
CO concentration (31%) gas mixture to prepare adsorbed electrode. However, in these
experiments, CO in N; was only 55.9 ppm, which is not high enough to run CO stripping
voltammetry on our catalysts. Therefore, no further investigations of the use of CO

stripping techniques was done in this work.

3.3.4 Characterization of binary using RDE vol Yy

3.3.4.1 Cyclic voltammetry

Cyclic voltammograms (CVs) (3™ and 7% cycles) of a commercial 20% (Pt-Ru)/C
and a 35%(Pt-Ru)(1.3:1)/Q! catalyst obtained at room temperature (RT, 22 °C) and 60 °C
in deaerated 1M (H;SO4 + CH3OH) solution are shown in Fig. 3.16 and Fig. 3.17,
respectively. As comparisons, CVs of the two catalysts obtained in 0.5 M H;SO4 are also
shown in the figures. It can be seen that there is an approximately four-fold increase in
current between the CVs obtained at RT and 60 °C above 0.5 V for both catalysts. The
increased currents are related to the negative potential shift for the onset of the nucleation
of oxygen-containing species [19]. In addition, at elevated temperature, currents keep
increasing with repeated scanning, while at RT a current change is not obvious between
two sweep cycles. The reason is probably that the methanol oxidation at high scan speed

(100 mV/s used in our experiments) is controlled by kinetics at elevated temperature and
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Fig. 3. 17 CVs at 100 mVis for a 35% PtRwQ1 (1.3:1) coated
electrode in N, saturated 0.5 M H,SQy, and 1M H:SO + 1 M CHIOH (at
RT and 60°C) with 100 ug Pt-Rucm®,
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by diffusion at RT. At elevated temperature, the local temperature at the catalyst surface
may increase significantly due to the high current, while at RT, the local temperature
change may be insignificant. For commercial binary catalysts, the current also decreases
quickly past the maximum due to the reduction of the site accessibility for methanol
through lateral sulfate-water interactions [40]. This can be seen on QI-supported binary
and commercial PY/C catalysts over a wider applied potential range.

Fig. 3.18 and Fig. 3 .19 compare CVs (third sweep) of the above two catalysts and
a commercial 20% PYC catalyst obtained at RT and 60 °C respectively. Compared with

the commercial binary catalysts, the Q1 binary has no oxidation peak during

the oxidation scan (0.05 V - 0.7 V). Compared with the commercial single catalyst, the
reversed sweep curve from 0.7 V to 0.05 V of the Ql-supported binary does not overlap
with its oxidation curve. The results indicate that there are different accessibilities among
Pt-Ru alloys, supports and solutions for Q1-supported catalysts and carbon-supported
catalysts. In order to compare the catalytic properties of the three catalysts, just the
anodic scans (0.05 V - 0.5 V) of the CVs in Fig. 3.19 are presented in Fig. 3.20. The
negative potential shift for both the QI-supported binary and the commercial binary
catalyst with respect to the commercial single catalyst indicates a better catalytic activity
for the binary systems. However, the Ql-supported binary catalyst exhibits inferior
performance to the commercial binary catalyst by having a higher overpotential, and
lower currents at high potentials (above 0.5 V). The reason is probably due to electronic
isolation of the Pt-Ru particles as discussed in Chapter 2 (Section 2.3.3.2) for single
catalysts. This can be demonstrated by adding a small amount of carbon black to the Q1-

supported binary catalyst and running CV again. From Fig. 3.21, an enhanced current
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Fig. 3.20 CVs at 100 mV/s in N, saturated 1M H,SO,+1MCH,0OH at
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anodic scans for 38% (Pt-Ru) (1.3:1)Q1 catalyst coated electrodes with (80 g
Ccm®) and without added carbon black.
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after adding carbon can be observed, which can be attributed to improved electronic

conductivity between the Pt-Ru and support (Q1 and C) after adding carbon.

3.3.4.2 Methanol Oxidation Polarization

Fig. 3.22 shows methanol polarization curves for a pulse width (PW) of 10 s for a

35% (Pt-Ru) (1.3:1)/Ql) catalyst at 60°C in a RDE configuration recorded until a

reproducible curve was obtained. Fig 3.23 the methanol oxidati

curves for a Q1 binary and a i binuyuu.lysnkl‘and&')"C.

From the figure, the currents obtained at 60°C for both binary catalysts have increased
approximately ten-fold at ca. 0.5 V with respect to those obtained at RT. The onset
potential for the Ql-supported binary catalyst is higher than that of the commercial
binary catalyst and the currents are still significantly lower at ca. 0.5 V. The results are
similar to those obtained from CVs.

Fig. 3.24 shows some polarization curves for a PW of 10 s at RT for commercial
and some Ql-supported binary catalysts. Overall, performances of Q1-supported binary
catalysts are inferior to that of the commercial binary catalyst. In some cases, the results
are difficult to explain. For example, in the case of 21% (Pt-Ru) (1.2:1) /Q1 with carbon
added to improve the electronic conductivity, its Ecse is moved negatively to become

to that of the ial binary catalyst, but its currents at high potential are
still low. In another case, when the performances of 28% Pt-Ru (7:1¥Q1 and 35% Pt-Ru
(1.3:1)/Q1 were compared, the former catalyst would be expected to have a higher Ecase
because of the high Pt:Ru ratio, but this is not seen (Fig. 3.24).
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Fig. 3.22 Methanol oxidation polarization curves for a 35% Pt-Ru
(1.3:1)/Q1 catalyst coated electrode in 1 M H;SO, + 1 M CH,yOH at
60°C for a pulse width(PW) of 10 s.
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Thus, whether a PW of 10 s is long enough to compare the performances of these

catalysts on a common basis needs i ion. Thus, y (CA) in

which currents are recorded as the function of time at a fixed potential was used.

3.3.4.3 Chronoamperometry of binary catalysts

Fig. 3.25 and Fig. 3.26 show CAs of a commercial binary catalyst and a QlI-

supported binary catalyst run multiple times until reproducible curves were obtained. The

ground run for lyzed Q1 ds that polymer charging current does not
contribute greatly to the current seen for the Q1 supported catalyst. Background corrected
CA curves for a2 commercial catalyst and some Q1-supported binary catalysts are shown
in Fig. 3.27. The current declines with time because of sulfate-water interactions
discussed in Section 3.3.4.1 [40]. It can be seen that the currents for the commercial
binary catalyst are higher than for Q1-supported binary catalysts at long times (3 100 s).
At short time (< 100s), 35% Pt-Ru (1.3:1)/Q1 has comparable (or a little higher) currents
to the commercial binary catalyst. These results indicate that the current declines more
quickly for Q1-supported binary catalysts than that for the commercial binary catalyst
during the methanol oxidation. Comparisons made at short times may therefore produce
different conclusions than those obtained at long times. Therefore, when comparing the
performance of the catalysts, the PW time must be taken into consideration.

At different applied potential steps (0.05 - 0.3 V, 0.05 - 0.5 V and 0.05 - 0.7 V),
CAs of two kinds of catalysts are shown in Figs. 3.28 — 3.29 respectively and compared
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in Fig. 30. The commercial Pt-Rw/C catalyst gives higher currents at 0.5 V, and for the
35% Pt-RwQ1 catalyst is at 0.7 V. The current at 0.7 V for the commercial catalyst
declines below that at 0.3 V after ca. 70 s, while the current at 0.5 V for the 35% Pt-
Ru/Q1 catalyst is higher than that at 0.3 V. These current changes for the Q1-supported
and carbon-supported catalysts are similar to their current changes in CVs. (Figs 3.16 —
3.18). When all these CA curves are compared in Fig. 3.30, the performances of the two
kinds of catalysts can be compared by the current values at a specifc reaction time for

different potential steps.

3.4 Conclusions

The optimal reaction conditions for obtaining the required polymer-supported
binary catalysts have been found and these catalysts have been studied with gas diffusion

electrodes (GDE) in half-cells and on carbon disc electrodes in a rotating disc (RDE)

The istics and of these catalysts were tested by
applying various methods, such as EDX, XRD, CV, reduced CO; oxidation, methanol

polarization and ¥

It was found that in a chemically co-deposited alloy Ru breaks up the Pt lattice
structure. Better performances were obtained for polymer-supported binary catalysts
having Pt: Ru ratio around 1- 2, but their performances were usually inferior to those of
commercial binary catalysts from the results obtained in GDE and RDE configurations.
Reduced CO; oxidation was not suited here to calculate active areas of binary catalysts,



however, the method was suggested to be used to compare catalytic activity using the
onset potentials for CO; oxidation.

Chronoamperometry was found to be a good method to follow the current change
during methanol oxidation. The result shows that a long step time is needed to compare

the performances of catalysts for methanol oxidation.
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Chapter 4
Polymer-Supported Ternary and Quaternary catalysts for
Methanol Oxidation, and Transition Metal Sulfides for Oxygen

Reduction

4.1 Introduction and Objectives

4.1.1 Ternary and quaternary catalysts for methanol oxidation

To date, most work on catalyst development for methanol oxidation has been
concentrated on carbon-supported, platinum-based catalysts. Bimetallic Pt-Ru catalysts
were found to be the best catalysts for methanol electro-oxidation until recently [1,2]
when a new, promising, ternary Pt-Ru-Os catalyst was developed and found to be a more

active anode catalyst than Pt-Ru (1:1) [3,4]. Not very long afterwards, the application of

catalysis”, a ique used i in bio-organic systems, to the

of i catalysts showed that a quaternary
Pt(44)/Ru(41)/Os(10)/Ir(5) (atomic percent) catalyst exhibited higher activity than the

binary Pt-Ru alloy [5].
Thus, in this chapter, Preliminary results are reported on the development of

polymer-supported ternary and quaternary catalysts.
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4.1.2 Transition metal sulfides for oxygen reduction

In addition to the poor activity of methanol electro-oxidation catalysts, another
obstacle inhibiting the application of PEMDMFCs is the phenomenon of methanol
crossover through the polymer electrolyte membrane from the anode to the cathode [6,7].
This causes poisoning of the Pt cathode catalyst reducing its activity. To avoid this

problem, four possibilities have been considered: the use of cathode catalysts insensitive

to methanol, the of not to methanol, the modification

of current and optimization of op

ing itions. In order to find catalysts
insensitive to methanol, one approach has tried to find non-Pt based cathode catalysts that
are active for oxygen reduction. Mixed-metal catalysts based on transition metal sulfides
such as ReRuS and MoRuS were found to give acceptable performances for oxygen

reduction [8].

Based on these i ions and the of i Ql-
supported transition metal sulfides were prepared and tested for the oxygen reduction

reaction at GDESs in a half-cell. Preliminary results are reported.

4.2. Experimental

4.2.1 Preparation of ternary and quaternary catalysts
The preparation procedure was the same as that described in Section 3.2 for binary
catalysts except that additional metal salts (OsCl; and K,IrCls) were used. The resulting

catalysts were stored in 5% CH3OH and tested in GDEs in a half-cell and as thin films
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immobilized on carbon disc el ing the described in Section

2.2.

4.2.2 Preparation of transition metal sulfide catalysts

Carbon black or Q1 was refluxed in p-xylene (99.8%, bp 138 °C) with Re(CO)sCl,
Ru(CO):2 and sulfur for 20 hr under nitrogen. The products were then filtered, washed
with acetone and dried. The carbon-supported catalysts were heat-treated at 350 °C for 2h
under nitrogen while Q1 supported-catalysts were simply dried under vacuum at room

temperature overnight.

4.3 Results and discussion

4.3.1 Catalyst composition

Table 4.1 lists all of transition metal sulfides, and ternary and quaternary catalysts
that were prepared. For the transition metal sulfides, yields were satisfactory for both
types of support, but the electronic conductivity decreased; even for the carbon support,
the electronic conductivity fell below 1 S cm™.

For Ql-supported temary and quaternary catalysts, yields were not high. However,
the electronic conductivities of these catalysts were still reasonably good (>0.03 S cm™).

As with chemically deposited binary catalysts, the compositions of the ternary and

quaternary catalysts were more difficult to control than those of arc-melted Pt-Ru-Os [4]
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£€1

1 2 3 4 5 6 7 8 9
Catalyst ReRuS | ReRuS | PtRuOs | PtRuOs | PtRuOs | PtRuOs | PiRuOs | PtRuOslr | PtRuOslr
c Q1 Q1 Q1 Q1 Q1 Q1 Q1 Q1
PVRWOsIr or
Re/RwS
e e -y 0.23:1: | 031:1: | 0.17:1: | O.16:1: 0.16:1: 0.16:1:
somicratio | | 2:5:5 | 255 | g 17 | o | o3 38 | 085004
in reaction
mixture
Ratio 3.029: | 2:24: (3.8:029:|,,. e e | 10200
obtained 40 56 1 9.4:2.0:1 [ 2.3:0.8:1 | 4.6:3.8:1 | 7.6:1.3:1 3301
Yield
« %) 34 38 43 42 ” 66 59 59 60
Result 31 26 23 19 25 26 30 22 34
Yield” (%) 91 68 53 45 35 39 51 37 57
o 0.0055-
S cm) 0.61 0012 0.39 023 0.25 - = 0.028 -
1. - not measured.
2. “*” See Table 3.1.
Table 4.1 C of Q1. ternary catalyst: y catalysts and

transition metal sulfide catalysts.




and Pt-Ru-Os-Ir prepared by an “inkjet printer” method [5]. Therefore, it was difficult to

ly i igate the effects of ition. Thus the main objective of this
work was to test the performance of the catalysts obtained with varying experimental

conditions without considering too much of the compositions among these metals.

4.3.2 Ternary catalysts at GDEs in a haif<cell: Methanol oxidation

polarizations

Methanol oxidation polarization curves at 30 s step times for a commercial Pt-Ru
binary catalyst and a QI-supported temary catalyst are shown in Fig. 4.1. From the
figure, the Q1-supported ternary catalyst can be seen to exhibit a good electrocatalytic

activity, but is still inferior to the commercial catalyst.

4.3.3 Ternary and quaternary catalysts tested on carbon disc electrodes

4.3.3.1 Cyclic voltammetry

Fig. 4.2 shows CVs in 1 M CH;OH + 1 M H;SO,4 at room temperature at

electrodes coated with binary, temary and quaternary catalysts, while Fig. 4.3 shows only

the anodic scans of the CVs. The methanol oxidation peak position moves slightly

negative and becomes somewhat larger for ternary and quaternary catalysts, showing that

both are superior to the binary catalyst. The ternary and quaternary catalysts are also
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Fig. 4.1 Methanol oxidation polarization curves for a2 19% PtRuOs (0.75
mg cm™) ternary catalyst and a commercial 39% Pt-Rw/C catalyst
(0.89 mg cm™) at step times of 30 s in 1 M (CH;OH + H,SO) in 2
half-cell.
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Fig. 4.2 CVs at 100 mV/s for Q1-supported binary, temary and
quaternary catalyst coated electrodes with 100 mg metals cm” in N,
saturated IM CH;OH + 1M H,SO, atRT.
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Fig. 4.3 Anodic scans of CVs as in Fig. 4.2 at 100 mV/s for binary,
ternary and y catalyst coated atRTin
N saturated 1 M H,SO, + 1 M CH,0H with 100 mg metals cm™.
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superior at 60 °C (see Fig. 4.4). For the catalysts obtained, temary catalysts are superior

to quaternary catalysts in these experiments.

4.3.3.2 Methanol oxidation polarization

An example of a Ql-supported ternary catalyst tested for methanol oxidation
polarization with a step time of 10's at 60 °C is shown in Fig. 4.5. Polarization curves for
Ql-supported binary and temnary catalysts, and a commercial binary catalyst are
compared in Fig. 4.6. From this figure, the commercial binary catalyst still shows the best

performance.

4.3.4 Transition metal sulfides at GDEs in a half-cell: Oxygen reduction

Fig. 4.7 shows oxygen reduction curves for carbon and Ql-supported catalysts at
room temperature in sulfuric acid (1IM) and IM CH;OH + IM H;SO4. The performance
of the carbon-supported catalyst is good and comparable with reported results [8]. When
running in 1M CH;OH + IM H;SO,, the performance was degraded a little for both
catalysts. The performance of the Ql-supported catalyst is much poorer than for the
carbon-supported catalyst, which could be ascribed to the low electronic conductivity of

the sample.
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Fig. 4.4 Anodic scans of CVs at 100 mV/s for binary, ternary and
quaternary catalyst as in Fig, 4.2 coated electrodes at 60 °C
inN, saturated 1 M CH,OH + 1 M E;SO, with 100 g metals

m”.
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Fig. 4.5 Consecutive methanol polarization curves at 60 °C for 2 29%

ternary Pt-Ru-0s/Q1 coated electrode with PW of 10 s and 100 mg
metals cm>,
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Fig. 4.6 Methanol oxidation polarization curves for 35% Pt-Rw/Q1 binary,
30% PtRuOs/Q1 ternary and commercial 20% Pt-Ru/C binary
catalyst coated electrodes at 60 °C with PW of 10 s and 100 mg metals
em?
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Fig. 4.7 Oxygen reduction curves for transition metal sulfides on Q1 and
Cin 1M H;SO; (tight lines) and 1 M (H,SO, + CH,OH) (bold
lines) at GDES in a haif-celL. Catalyst loadings were 2.0 mg cmi’.
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4. 4 Conclusion

In summary, the performances of Ql-supported temnary and quaternary catalysts
are superior to those of Ql-supported binary catalysts but are still inferior to those of
commercial binary catalysts. Although further work is needed, promising applications for
these mixed polymer-supported catalysts are envisaged.

The results of polymer-based transition metal sulfides for oxygen reduction were

inferior to carbs catalyst, which suggests that the stability of the

polymer is one of the important issues for future research activities.
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