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Abstract

This thesis is focused on the synthesis and characterization of poly(3,4-

4 (PEDOT/PSS)-supp: catalysts for the anodic
oxidation of methanol as well as for cathodic oxygen reduction in low-temperature polymer
electrolyte membrane fuel cells (PEFMCs).

Chapter 2 focuses on the hemical and i ies of PEDOT/PSS

supported Pt catalysts for cathodic oxygen reduction. P for oxygen reduction obtained

in gas diffusion electrodes that are similar to those used in current PEMFC technology were inferior
to those for commercial carbon supported Pt catalysts. Thus, the catalysts were immobilized on
glassy carbon electrodes and were studied by cyclic voltammetry and rotating disc voltammetry. The
results show that PEDOT/PSS supported Pt catalysts exhibit similar oxygen reduction activities to
commercial carbon supported catalysts when results are normalized for active Pt area. Exchange
current densities and mechanisms appear to be the same. The inferior performance seen for the
PEDOT/PSS supported Pt catalysts in gas diffusion electrodes, and reproduced at rotating disc
electrodes have been shown to be due to low Pt utilization, and to slightly higher Pt particle sizes.
The poor utilization appears to be due to electronic isolation of some Pt particles, and to blocking
or poisoning of the Pt surface.

Chapters 3 and 4 focus on the ion and ization of PEDOT/PSS binary

Pt-Ru, temnary Pt-Ru-OS and quaternary Pt-Ru-Os-Ir catalysts for anodic methanol oxidation. The



compositions of the metal alloys can be controlled through the molar ratio of metal salts in the
reaction mixture and by the reaction time. Energy-dispersive X-ray analysis and X-ray diffraction
were applied to determine the metal compositions and particle sizes. The electrocatalytic properties

of these catalysts were investigated by several

iq i ing cyclic
voltammetry (including reduced CO, oxidation), transient and steady state polarization experiments
and chronoamperometry. Although PEDOT/PSS supported binary catalysts have exhibited good
electrocatalytic activities for methanol oxidation, their performances are inferior to commercial
binary catalysts. PEDOT/PSS supported ternary and quaternary catalysts exhibited, as expected,
superior performances to PEDOT/PSS supported binary catalysts, but are still inferior to those for

commercial binary catalysts.
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Chapter 1

General R

iew of Polymer Electrolyte Membrane Fuel Cells
(PEMECs)

1.1 General history of fuel cells

Since the first oil crisis of 1973, the world energy perspective has changed. The
outbreak of the Gulf War in 1991 as well as the recent steep increase in the price of oil
has attracted many nations to reduce their dependency on oil by exploiting other primary
energy sources. On the other hand, over the last few years, discussions on the green house
effect have led to general acceptance of the theory that carbon dioxide emissions cause

global warming. This i i i has led to strict emission

legislation in, for example, Japan and California. Studies have also concluded that the
earth’s fossil fuel resources should be better maintained in order to secure a sustainable
future. These concerns have led to the enactment of major laws (eg. The clean Air Act

Amendment of 1990 in USA) to impose strict regulation on pollution sources and

generate an i ing interest in the p of fuel cells (eg. The Energy Policy
Act of 1992).
A fuel cell is defined as an el hemical device that can conti convert the

chemical energy of a fuel and oxidant to electrical energy without chemical combustion
[1]. In principle, a fuel cell operates like a battery, but unlike a battery a fuel cell does not
run down or require recharging. A hydrogen fuel cell running on hydrogen derived from

a renewable source will produce clean non-polluting energy in the form of electricity, and



produce only heat and water as byproducts. The hydrogen fuel cell is bound to be one of
the alternative power sources of the future. The commercialization of fuel cells for use in
homes, offices, hospitals [2,3], shopping complexes, automobiles [4] and space missions
has shown a promising vision of the beginning of the hydrogen economy.

It was William Grove who first demonstrated the hydrogen-air fuel cell in 1839 [5]

and the late Francis T. Bacon produced a successful device in the first major fuel cell

development project in 1932 (6]. Bacon’s work i in the use of
cells in the Apollo Space program in 1960 [7] and resulted in a diversification into five
main classifications of fuel cells.

Generally, according to their electrolyte materials, the five types of fuel cell are the
Alkaline Fuel Cell (AFC) working below 100 °C with 30 wt % KOH as the electrolyte;
the Phosphoric Acid Fuel Cell (PAFC) working at approximately 200 °C with

d (~100 wt %) ic acid as the the Molten Carbon Fuel

Cell (MCFC) which most frequently uses a eutectic melt containing 38/62 mole %

and lithium and less 48/52 mole % lithium and sodium

carbonate; the Solid Oxide Fuel Cell (SOFC) which uses oxide conducting yttria
stabilized zirconia (YSZ) as the electrolyte and the Polymer Electrolyte Membrane Fuel
Cell (PEMFC) with a water-swollen perfluorinated sulfonic acid ionomer as the
electrolyte, which is also called a solid polymer electrolyte (SPE). These fuel cells are all
designed to work on hydrogen-rich reformates as the fuel and oxygen or air as the
oxidant. AFCs have long been used by NASA on space missions operating as an
auxiliary power supply [8,9]. The PAFC was developed in the mid-1970s and is the most

commercially developed. It is already being used in diverse applications and shows very



promising results [10,11]. The development of MCFCs in the 1980s and SOFCs in the
1990s was due to their better overall efficiency together with the useful heat generated by
their high temperature plants. MCFCs and SOFCs operate at higher temperature (>650

°C) and are aimed primarily at big, high-power applications including industrial and

larg le central ici ing stations [12]. The PEMFC has attracted growing

interest recently i for road portation with use of as the fuel

being a key goal [13,14] as will be discussed in section 1.3. Of all the fuel cell systems,
only the AFC and PEMFC can achieve high power densities (> 1 W cm™) [15]. However,
poor performance has been a key problem ever since Grove described the fuel cell [16]
and it is still the major issue requiring improvement in present-day fuel cells.

As pollution-free energy sources, fuel cells are showing undoubted prospects for
future power and transportation applications [17,18]. A more detailed review of the

background of the development of fuel cells can be found in references [18-21].

1.2. General review of polymer electrolyte membrane fuel cells

(PEMFCs)

The PEMFC is perhaps the most elegant of all fuel cell systems in design and mode
of operation. Its electrolyte is an acid type polymer ion-exchange membrane and is,
generally, a perfluorosulfonic acid membrane, of which Nafion made by DuPont is the

best-known. The structure of Nafion is shown in Fig. 1.1.
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Fig. 1.1 The structure of Nafion [12].

These are i stable at up to about 150°C but

above this temperature (Nafion has a glass transition temperature of 130 °C), they will
change to a gel state. Therefore, PEMFCs are operated under mild conditions (the
temperature range is 50 °C — 90 °C, and the pressure is 1-6 atm). Nafion membranes have
high oxygen solubility, high proton conductivity, high chemical stability, low density and
high mechanical strength and are one of the most important parts of the PEMFC. A
typical PEMFC consists of a composite of two porous electrocatalytically active

electrodes on either side of a PEM (typically 50-175 pm thick), as shown schematically

in Fig. 1.2. This core structure of the i cell is called 2
electrode assembly (MEA).
For a ygen fuel cell, hyd is i oxidized at the

anode and broken down into positive ions (protons) and negatively charged electrons as

shown in Eq. 1.1. At the cathode, oxygen i ines with the

ions and electrons to produce water according to Eq. 1.2. Protons are attracted to the
negatively charged sulfonic acid groups of the Nafion membrane and transported to the



cathode; electrons are transported through the extemnal load from the anode to the

cathode.

HO SPE €O,

membrane
Carbon Carbon
Cathode Anode
W [
/ H; or MeOH
and water

Fig. 1.2 Schematic diagram of a PEMFC.

Hy — 2H +2¢ [¢B))

0y +4e+4H" — 2H,0 (1.2)

The following advantages of PEMFCs have been summarized [22]:
. high power density and efficiency

. fast startup and shutdown

. absence of liquid electrolyte minimizes corrosion

. insensitive to differential pressures

. low sensitivity to CO;



. no carbonate formation
. long life and potable liquid water product
. versatility of application
The early development and the current status of PEMFC technology can be found in
references [12, 23-32). Briefly, the development of reliable solid electrolyte membranes,

the imp! of catalyst and the pi of MEAs are the three

most active research areas on PEMFCs.

1.3 General review of direct methanol fuel cells (DEMFCs)

The current of the hydre /air cell is that idation at the

anode is very fast and its and i are better than for any

other fuel. However, for reasons such as safety, ease of storage, transportation and
refueling etc., a liquid fuel would be preferred. Thus, methanol has been widely studied
as a fuel [33] and in many respects, the methanol-air fuel cell (DMFC) is a promising
power source for electric vehicles.

Using methanol as the anodic reactant in an acid medium, the anodic reaction can be

written as follows:

CH;0H + H;0 — CO, + 6H" +6¢” 13

An acidic environment is useful to reject CO; produced during the electro-oxidation

of methanol. Sulfuric-acid solution has been most commonly used.



The history of the DMFC is shorter than that of hydrogen-air fuel cell. The
pioneering work was started during the 1960s by Shell Research in England and in the
1970s by Exxon-Alsthom in France [13]. Shell's work on fuel cells began in the late
1950s; the initial goal was to discover whether the fuel cell could be a viable choice for
road transportation. At that time, all existing fuel-cell gas diffusion electrodes suffered
poor performance when operating on air and Shell realized that this was due to physical
rather than chemical factors. To solve these problems, Shell made a very thin electrode
that could be manufactured on a large-scale. The electrode consisted of a very uniform,
microporous polyvinyl chloride substrate, on which was evaporated silver or gold. A
layer of catalyst was then attached to this metallic layer [34]. A number of stacks were
built to test whether a fuel cell could be operated at ambient pressure and temperature.
The fuel, Hy, was generated from methanol-water and the whole system was tested under
various conditions [35].

Shell’s design was too complex and the electrode with Pt as the electrocatalyst was

very easily poisoned by reaction products. For methanol, six electrons must be exchanged

for compl idation and the oxidation kinetics are inherently slow. A
wide range of Pt alloys were examined by researchers at Shell who found that Pt-Ru was
the most effective binary catalyst for CO tolerance in DMFCs. There has now been active
research on Pt-Ru binary catalysts for more than 30 years and it still continues [36-40].

Shell’s efforts were devoted to improving catalysts and i igating the

of the methanol oxidation reaction. During the period of 1973-1981, Shell’s research
groups in the UK and Netherlands made considerable progress in the development of

DMFCs. However, Shell disbanded its research teams in 1981 as a result of the lower



growth in oil consumption and unfounded fears of oil shortage [41]. The Exxon-Alsthom
group in France mainly worke