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Abstract 

Possibly the world's first research on breathing problems among snow crab processing 

workers took place in Newfoundland in the 1970's. Preventing/mitigating these prob

lems is of paramount importance as the snow crab industry is a major contributor 

to the regional economy in rural Newfoundland and Labrador communities. Crab 

asthma is caused by overexposure to the dusts, mists, fumes or aerosols that are 

generated during various processes. During these processes, proteins in the crab may 

become airborne and can enter the lungs and breathing tubes. A recent study sug

gests that very low levels of allergen will need to be achieved in crab processing plants 

to prevent respiratory symptoms from occurring among sensitized workers. Prior to 

the study described in this report, there had been no air sampling of allergen levels in 

snow crab processing plants in Newfoundland and Labrador. Air sampling has been 

carried out in four crab processing plants in Newfoundland and Labrador to identify 

the problematic areas. Allergen contamination concentrations have been identified 

and related to specific areas of the processing plants and to the individual processes 

themselves. 

A variety of ventilation methods have been examined with local exhausting of the 

workplace comprising the majority of the investigated techniques. Centerline velocity 

profiles for overhead, slotted, and canopy local exhaust hoods proposed in previous 

research have been examined. Numerical modeling of the cleaning, sawing, and batch 

cooling processes was carried out in both an idealistic and realistic plant domain 

to determine the airflow patterns in and around these individual processes, as well 

as determining possible capture velocities from imposed velocity profiles. Velocity 

profiles have been obtained for the space in the vicinity of the hood face rather than 

just along the centerline. Velocity and pressure contours were also determined to 

ascertain the degree of contaminant capture. All numerical results for idealistic and 

realistic plant environments have been investigated, discussed, and presented. 
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Chapter 1 

Introduction 

The need for a clean, comfortable and safe environment for people to work and live 

in is a common necessity worldwide. Providing a comfortable and healthy indoor 

environment for building occupants is the primary concern of Heating, Ventilation 

and Air Conditioning (HVAC) engineers. Virtually every residential, commercial, 

industrial, and institutional building in every industrial country of the world has 

some sort of HVAC system in place to control the working environment year round. 

As a result the heating, ventilation, and air conditioning industry continues to grow 

each year as new factories, laboratories, and offices are constructed. 

The quality of indoor air is increasingly being recognized as an essential factor for 

overall health and comfort because up to 90% of a typical person's time is spent 

indoors and a large fraction of that time is spent in a residential or commercial en

vironment (Chen 1992). Health concerns, coupled with ever increasing energy costs 

demand that companies closely control their working environment without wasting 

unnecessary money and manpower. To accomplish this a better understanding of 

the design parameters that govern comfort and indoor air quality (IAQ) are essen

tial to good HVAC system design. For example, supply of acceptable air, removal 

of unacceptable air, proper operation and maintenance of building systems, probable 

1 



CHAPTER 1. - Introduction 2 

airflow patterns inside and outside the enclosure, and control of internal and external 

pollutants are just a few important design considerations that need to be examined. 

While building structures become increasingly complex, the basics of good HVAC 

system design have not changed, only the methods and tools available to accomplish 

the design (McQuiston et al. 1988). Traditionally, HVAC system designs have been 

examined and evaluated via expensive and time-consuming physical methods such 

as wind tunnel testing. The study of full scale systems using controlled experiments 

is often difficult or impossible due to economic constraints and drastically increased 

analysis times associated with physical testing. These problems have been partially 

addressed by implementing a Computational Fluid Dynamic, or CFD approach. Sim

ply put, CFD is mainly the analysis of systems involving heat transfer and fluid flow 

by means of a computer-based simulation. Fluid dynamic modeling can be used to 

identify ventilation problems in existing installed systems and aid in the design and 

implementation of new systems. 

Over the past decade there has been a global increase in the use of computational fluid 

dynamics in a wide range of industrial settings evoking numerous applications. Recent 

advances in CFD technology combined with the surging growth of computer resources 

have resulted in CFD becoming an attractive analysis method and design tool for 

many industries worldwide. CFD techniques are now being used to either augment 

or totally replace complicated physical experimentation due to the high ol;>tainable 

degree of accuracy at a fraction of the cost. According to (Horstman 1988) a method 

has been developed that predicts the velocity distribution, airflow circulation pattern, 

and airborne contamination distribution within a ventilated volume. Although the 

ventilated volume described in this case applies to an aircraft passenger cabin, the 

work presented in this thesis will use similar techniques and apply them to typical 

industrial plant processes encountered in the snow crab industry in Newfoundland 

and Labrador. 
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The main focus of the research presented here makes use of experimental and theoret

ical data, as well as numerical simulations produced using current CFD techniques to 

determine air flow patterns, velocity distributions, pressure distributions, and species 

transport characteristics. The ultimate goal is to use this information to try and iden

tify velocity distributions in and around local exhaust hoods and processing equip

ment to help develop control methodologies that can be implemented in the snow 

crab industry. After a review of the applicable numerical and empirical literature it 

was decided that a finite volume method for CFD analysis to determine the airflow 

characteristics would be applied. Commercial CFD packages such as Fluent make use 

of the finite volume method which can approximate the complex governing equations 

of fluid and heat flow with relative ease using numerical methods techniques. While 

the mathematical techniques involved are not new, the governing equations are still 

too complex to be solved without utilizing a CFD package such as Fluent. 

A well known commercial CFD code was ultimately chosen to carry out this portion 

of the study due to its availability to the public, up to date revisions, and wide range 

of users in a vast array of disciplines thus providing an excellent database of help and 

guidance. The chosen code was Fluent (v6.0) due to its ability to perform approx

imations with the discretized Reynolds Averaged Navier-Stokes (RANS) equations 

and its treatment of viscous effects and turbulence. In addition, this program has the 

ability to trace particles embedded in air streams and can determine the nature of 

their movement in response to varying air flow patterns, pressure variations, temper

ature gradients, and variations in relative humidity. This is particularly important in 

the snow crab industry in which aerosolized proteins from the meat and shell of the 

crab and other biological and chemical toxins are thought to have a strong correlation 

to cases of snow crab occupational asthma. 
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1.1 Problem Discussion 

Snow crab occupational asthma (OA) is mediated through an allergic mechanism in

volving the production of specific antibodies to an allergen. The allergen thought to 

cause snow crab OA is found in the meat, shell, cooking water, steam and most likely 

the water vapor produced during the processing of snow crab (Ortega and Berardinelli 

1998). The mechanism of sensitization is either via inhalation of the aerosolized al

lergens or tactile contact with the skin and eyes when butchering, cooking, steaming, 

crushing and cleaning the crab in processing plants. Published studies to date have 

not included a full analysis of plant enclosures with respect to airflow patterns, con

taminant concentrations and associated ventilation systems or lack thereof. The work 

presented in this thesis looks mainly at the airflow patterns within a typical crab pro

cessing plant, how they are affected by turbulent structures and how they facilitate 

contaminant transport. This research was carried out as a part of a 3-year interdis

ciplinary study on snow crab OA in Newfoundland and Labrador, Canada. The crab 

asthma project has several major components; 

• self-administered questionnaires on beliefs and concerns about the health effects 

of working with crab among management, workers and health professionals 

• training sessions with health professionals related to the diagnosis and treatment 

of asthma and occupational asthma 

• air sampling to confirm allergen levels in different areas of participating plants 

and between plants with different layouts, and processing and ventilation sys

tems 

• research comparing allergen levels associated with processing crab raw versus 

processing crab cooked 
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• numerical modeling of air flows in typical plant environments and incorporating 

different process technologies designs to help identify ways to reduce allergen 

exposures 

• chemical research on the composition of aerosolized proteins associated with 

crab processing 

• immunological research comparing reactivity to proteins in raw and cooked crab 

in the sera of sensitized participants 

• research comparing the prevalence of allergy to and occupational asthma to 

snow crab in the four participating plants and risk factors for the development 

of these conditions 

• research on reported factors affecting compliance with the peak expiratory flow 

protocol used in the study 

• and research on the quality of life and social and economic impacts of allergy 

and occupational asthma to snow crab in the study communities 

An interdisciplinary approach helps to ensure a robust research approach. 

This thesis reports on an investigation into the velocity distribution, airflow circu

lation pattens, and airborne contamination generation and distribution within an 

enclosed volume (snow crab plant). In the past it has been difficult to accurately 

predict the effectiveness of designed ventilation systems, mainly due to the complex 

interaction of the system components with objects in the ventilated space (Horstman 

1988). In instances when a formal mechanical ventilation system is not present as is 

the case in some of the crab plants the difficulties are similar to the ones proposed by 

Horstman. It is the goal of this research to identify velocity distributions and airflow 

circulation patterns present in a 'typical plant', determine their effect on airborne 
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contaminants and explore local and general contaminant control methodologies. To 

achieve this goal a computer numerical simulation approach has been undertaken in 

conjunction with an analysis of the building envelope as it pertains to HVAC design 

considerations. 

A commercial CFD package was used to meet the requirements for this component 

rather than attempting to develop a specific CFD code. Since development of a spe

cialized code was not the intent of this research a commercial package was indeed ca

pable of examining the problem at hand. The CFD software chosen was Fluent (v6.0) 

and associated geometry generation program Gambit(v1.3). This software is used in 

a variety of industries such as biomedical, oil and gas, automotive, aerospace and 

HVAC. Fluent utilizes the finite volume method to integrate the governing equations 

and discretize whereby approximations are substituted for terms in the integrated 

equation representing flow processes, converts the integral equations into a system 

of algebraic equations, and then solves the algebraic equations using an iterative ap

proach. Application of these methods is necessary to attain the required airflow data 

needed to describe flow characteristics in a typical plant. 

In summary, the primary objectives of the air sampling and ventilation components 

of the crab asthma study that will be examined are; 

1. identify concentrations of allergens in different areas of participating crab plants 

consisting of different layouts, ventilation systems, process technologies and end 

products in order to improve the existing knowledge regarding processes that 

contribute to aerosolization and influence allergen concentrations; 

2. assess levels of exposure to known chemical respiratory irritants (sulfites) asso

ciated with snow crab processing; 

3. map exposures to allergens onto the processing layout of these plants and link 
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them to the prevalence of OA to snow crab within the plant labour forces; 

4. compare allergen concentrations with overall production concentrations and dif

ferent end products during the time of air sampling; 

5. document temperature and humidity concentrations in the plants during the 

air sampling period and correlate with allergen sampling results; 

6. identify any ventilation systems present and assess air flows in different areas 

of the plants; 

7. identify potential sources of allergens and potential movement of allergens within 

the plants; 

8. numerically model airflows around local hood configurations to determine their 

contaminant capturing ability; 

9. develop recommendations on plant design, production process design and on a 

ventilation system that should reduce concentrations of air borne allergens in 

the plant; 

10. where employers carry out recommended changes in their plants, reassess aller

gen concentrations in the wake of these changes; 

11. to conduct an experiment comparing yields and allergen levels associated with 

the cleaning and sawing of raw versus cooked crab sections. 
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1. 2 Previous Research 

Possibly the world's first research on breathing problems among snow crab processing 

workers took place in Newfoundland in the 1970's but there was little follow-up in 

Newfoundland to that original work. In 1984, Dr. Andre Cartier, a respirologist from 

Hopital Sacre Coeur in Montreal headed up a study of snow crab processing workers 

on the Magdalene Islands. In plants that had been operating for about three years 

with little ventilation and where cookers were not enclosed and separately ventilated 

this study found approximately 15% of processing workers had occupational asthma 

to snow crab. 

The Quebec researchers identified the health problem experienced by workers as a 

form of occupational asthma caused by sensitization to an allergen aerosolized during 

the cooking and possibly other manipulation of the snow crab during processing. 

They recommended cooling of the cooked crab prior to processing and enclosing and 

separately venting the cooking processes. In response to that research, Quebec put in 

place plant inspections and requirements for enclosing cooking areas, cooling cooked 

crab prior to processing, and a system for the detection, diagnosis and compensation 

of occupational asthma to snow crab among processing workers (Neis 1995). 

A recent study suggests that very low levels of allergen will need to be achieved in crab 

processing plants to prevent respiratory symptoms from occurring among sensitized 

workers. This study, done in an open-air fish market, found detectable concentrations 

of fish allergen linked to respiratory symptoms among people with fish allergies. These 

allergens were aerosolized through passive evaporation from fish that were on display 

(i.e. they were not being cooked or processed) (Taylor et al. 2000). 

Ortega and Berardinelli describe a study undertaken in a crab processing facility in 

Dutch Harbor, Alaska in 1999. Management was concerned about respiratory illness 
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among workers in the form of bronchitis and asthma. The study objectives were to 

understand the nature of the illness, identify contamination sources, identify relation

ships between processing exposures and health outcomes, and to develop strategies 

to prevent further illness. Although the study was somewhat limited due to the rel

atively small size of the sample population, collected data provided some interesting 

results. Development of new respiratory problems and asthma among various crab 

processing workers over 6 weeks of crab processing was evident and seemed to be 

occupationally linked. Investigation into the concentration of antigens measured in a 

crab processing factory by Griffin et al (1994) showed that 23% of workers had work

related respiratory symptoms and 37% of the workers had IgE antibodies specific for 

crab meat extract. Using high volume air samplers cutting, grinding and mincing 

operations produced antigens as high as 115 ngjm3 in comparison to a maximum of 

4 ngjm3 in areas where no operations were present. 

A system for air sampling allergens in snow crab processing plants was developed 

by Mark Swanson at the Mayo clinic in Rochester, Minnesota, USA. Since the de

velopment of this technique Mr. Swanson has analyzed air samples taken in a wide 

variety of different snow crab processing environments and contexts including Alaska, 

Quebec and elsewhere. These studies have included snow crab processing plants and 

snow crab processing on board factory freezer trawlers. Published results from one 

study conducted in Quebec in the late 1990s show peak allergen concentrations at 

approximately 5,000 ngfm3 from personal air filters in the butchering (crab cracking) 

area of the plant. The next highest concentrations were near the outlet of the cooling 

basin (604 ngjm3 ), followed by the sorting and cleaning areas (approximately 200 

ngjm3 (Weytjens et al. 1999)). In that study, the sample for the butchering area was 

taken in the area adjacent to the cooker. The cooker was separated from the butcher

ing area by a plastic curtain (Malo et al 1997). This and other published studies 

of allergen levels associated with snow crab processing have not included sufficient 
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information on enclosures, airflows and the ventilation systems in the plants involved 

making it difficult to isolate the origins of allergens identified in air samples. Aller

gen levels associated with different production processes have also not been studied 

systematically. 

HVAC system literature that is based on the premise that the systems themselves act 

as contaminant emission sources that affect Indoor Air Quality (IAQ) has been eval

uated by Batterman et al (1995). Several HVAC components are cited frequently as 

emission sources that include biological growth and bioaerosol generation in the pres

ence of moisture generated as a result of a number of factors such as poorly designed 

humidifying systems or just poor control of the humidity. Other problems have been 

identified such as migration of contaminants, entrainment, and infiltration of both 

outdoor and indoor pollutants. With this in mind, the importance of understanding 

the mechanics of room airflows is of paramount importance. Chen (1992) developed 

appropriate models for the prediction of room air motion using both computational 

results and experimental data. It proved difficult to determine whether or not a room 

airflow was a local artificially induced turbulent airflow, transitional airflow, or fully 

developed airflow. However, very few room airflows are actually laminar thus more 

work needed to be done with particular attention paid to turbulent structures and 

their interaction with room airflows. 

The use of Computational Fluid Dynamic modeling in specific shellfish allergen types 

of ventilation situations can be compared to its previous use in a variety of other 

similar published air contamination scenarios. A method developed by Horstman 

(1988) predicts the velocity distribution, airflow circulation pattern, and airborne 

contamination distribution in a ventilated aircraft passenger cabin and can also be 

applied to other volumes such as buildings or enclosures. Although Horstman used a 

finite differencing technique to solve the Navier-Stokes equations instead of the finite 
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volume technique used in the upcoming analysis completed in this thesis, the end 

results are comparable. The velocity distribution prediction examined by Horstman 

was validated using a numerical simulation package. 

Early conceived empirically-derived velocity contours are still the standard for the 

design of ventilation systems. Work by Dalla Valle (1952), Fletcher (1977, 1978, 

1982), Conroy and Ellenbecker (1989), and Flynn and Ellenbecker (1985) on centerline 

air velocity profiles normal to a local hood face provided quantitative techniques in 

the design of local exhaust hoods. In particular, work by Dalla Valle (1932) reported 

that the results of an empirical study under negative pressure could be characterized 

by constant velocity contours radiating outward from the hood opening depicting 

velocity decaying radially outward from the hood opening. The problem is that the 

centerline velocity equations describe the velocity along the centerline at a point 

outside of the hood but do not define the velocity distribution across the hood face 

thus making them very limited. 

Difficulties in predicting the effectiveness of ventilation systems has been evident in 

the past, primarily because of the complex interaction of the system components with 

the ventilated space (Horstman 1988). This concern was addressed by Varley et al. 

(1997) where the effects of turbulent structures on hood design was studied. The 

practice of sizing exhaust hoods based solely on velocity distribution neglects any 

occurrence that may in fact influence the effectiveness of the exhaust hood. Varley 

states that turbulent structures created by the presence of cross drafts, room air 

turbulence, and flow separation around objects within the vicinity of the hood are all 

but ignored when one solely relies on the velocity-contour technique. He ultimately 

concludes that CFD is the most valuable tool for modeling flow for ventilation systems 

and the surrounding environment. 

Chapter two reviews literature on occupational asthma and industrial hygiene. It then 
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provides a general introduction into environmental health issues, HVAC systems and 

the basic fundamentals of Computational Fluid Dynamics and how they have been 

applied to the proposed airflow problems. Chapter three will present all the collected 

data and results from the study as well as a discussion on the findings. Chapter four 

will focus on a ventilation methods and design, centerline velocity profiles, potential 

flow theory, supply air, and fan design. Chapter five will deal with contaminant 

motion, velocity profiles, and numerical simulations of cleaning/sorting, sawing, and 

batch cooking processes. Chapter six will present conclusions and recommendations 

based on the work presented in this thesis. 



Chapter 2 

Environmental Health and 
Occupational Asthma (OA) 

The one area in the field of environmental health that seems to be the most defined 

and studied is occupational health and its relationship to workplace contaminants. 

Specifically, occupational health issues in the snow crab industry in Newfoundland 

and Labrador have prompted the need to conduct research into this area. Occupa

tional asthma to snow crab is a specific type of work related asthma associated with 

processing snow crab. Crab asthma, as with asthma in general, is a chronic inflamma

tory disorder of the airways whereby the inflammation makes the airways chronically . 

sensitive, or hypersensitive. When this occurs, airflow is limited and exacerbations 

cause intermittent respiratory symptoms, including shortness of breath, wheezing, 

chest tightness, and cough. Diagnosis of asthma is difficult and requires an under

standing of the the underlying disorder that leads to asthma as well as being able to 

recognize the available pertinent information. In occupational asthma cases, worker 

exposure to dusts, fumes, gases, and organic particulate compounds the asthmatic 

responses (Ortega and Berardinelli, 1998). 

Snow crab in particular has been implicated in cases of occupational asthma among 

processing workers (Cartier et al, 1986) where the allergic mechanism is most likely 

13 
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mediated by an IgE allergic response. Initial reports from a study done in a crab 

processing facility in Alaska seem to suggest that asthma in crab processing work

ers is an immunologically mediated process with a latency period resulting in both 

immediate and late occurring symptoms (Ortega and Berardinelli, 1998). Research 

on other occupational allergens (Cullinan et al, 1994; Houba at al, 1996) suggests 

that the level of exposure to crab allergens may be a factor in the development of the 

disease stating the higher the exposure the greater the risk of sensitization. This has 

not, however, been confirmed. Although snow crab has been processed in Newfound

land and Labrador since the 1960s there has been little research on the health risks 

of potentially dangerous snow crab OA. 

The IgE response to high molecular weight antigens from snow crab occurs during 

cooking, steaming, washing, sawing, crushing, scrubbing or scraping crab in the pro

cessing plants. Once these antigens become airborne they can enter the lungs and 

breathing tubes causing a variety of abnormal responses. These responses, or sensiti

zation can develop after weeks or even years of exposure. When sensitization occurs, 

the body's immune system produces special proteins, called antibodies, to neutralize 

foreign materials like these proteins. These antibodies stay in the blood stream for 

long periods of time to defend the body against future exposures to the proteins. In 

the case of crab asthma, when the sensitized worker is re-exposed the antibodies de

veloped by their body's defense system react to the crab proteins by releasing natural 

substances. These natural substances are responsible for the symptoms of asthma 

and allergy associated with crab asthma. Once sensitization occurs, the worker can 

immediately be removed from the workplace for an extended period of time and still 

suffer from the symptoms should they be placed back in the workplace. In addition, 

workers who continue to be exposed to the allergen after the development of occupa

tional asthma run the risk of developing chronic asthma triggered by exercise, cold 

air, smoke, as well as the allergen. 
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Primary prevention involves minimizing the extent to which snow crab allergens be

come airborne. When processing techniques that inevitably aerosolize the allergen 

cannot be avoided then the allergen needs to be contained and efficiently removed 

from the working environment. The structure and effectiveness of a ventilation system 

design are key in the minimization of worker exposure and health related problems. 

The role of HVAC engineers in delivering clean, appropriately conditioned air and 

removing airborne contaminants is vital, both in industrial and nonindustrial envi

ronments (ASHRAE Handbook (Fundamentals), 2001). Activities such as cleaning, 

production processes, maintenance, materials use, and other specific work related 

events may indeed be unavoidable and somewhat unpredictable factors in system de

sign. Some of the factors that influence worker comfort are humidity, temperature, air 

movement and air quality (with regard to detectable odors), dusts, as well as chemical 

and biological particulate. A well designed air-handling system can simultaneously 

control these factors and maintain a reasonably comfortable work environment and 

thus promote better overall health. In order to effectively design a ventilation system 

that will remove as many hazardous contaminants as possible, the nature of the con

taminants, their effect on exposed personnel, and the methods by which they will be 

measured and analyzed need to be determined. 
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2.1 Indus trial Hygiene and Air Contaminants 

Industrial hygiene is a branch of science that deals with predicting, recognizing, eval

uating, and controlling all conditions that may be present in the workplace such that 

workers do not become ill or suffer any health related injuries. It is based on the 

fact that most airborne contaminants become toxic only if their concentration levels 

exceed a maximum allowable limit for a specified period. Although the Immediately 

Dangerous to Life and Health (IDLH) toxicity limit is rarely a factor in HVAC de

sign it should be considered when analyzing any work environment. It is important 

to note that ventilation airflow within a workplace enclosure should never reach a 

level where the concentration of any airborne contaminant could rise to or above the 

specified IDLH level. Rask (1988) suggests that when 20% of workers suffer from 

irritations the structure is suffering from sick building syndrome (SBS). Obtaining 

a zero concentration of all toxic airborne contaminants present in any workplace is 

generally not feasible. Workers can normally assimilate a small amount of various 

toxic materials without injury. 

Important Aspects 

Important aspects inherent in the above stated general areas of industrial hygiene are 

(ASHRAE Handbook (Fundamentals), 2001); 

• identification of toxic contaminants 

• evaluate particulate size as it pertains to lung absorption 

• evaluate importance of skin absorption and ingestion 

• determination of air collection methods 

• identify analytic methods 
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• development of control measures 

Identification of all types of toxic airborne contaminants/irritants is essential in order 

to develop and implement an effective capture and removal method. It should be 

noted here that an irritant is an agent which causes various physical discomforts but 

does not evoke an immunologic response such as crab allergenic proteins which are 

classified as sensitizers. Particulate normally found in the workplace is generated as 

a result of various work related activities whereby each individual workplace evokes a 

different and unique set of circumstances. However, all particulates normally fall into 

one of two general classes, chemical and biological. Snow crab processing involves 

a number of individual processes, all of which could be potential antigen generation 

sources. One of the major protein groups speculated to be involved in allergic re

sponses to crab and other crustacea are the tropomyosins. This particular group 

consists of heat-stable highly homologous proteins, some of which have allergenic 

properties (Ortega and Berardinelli, 1998). 

Raw crab is also processed from time to time which involves the crab being lowered 

into a vat containing a sulfite solution, mainly for preservation purposes. The sulfates 

used in raw crab production fall into the chemical type of hazard, specifically a bio

aerosol category. Sulfite fumes that result from a chemical reaction disperse into the 

atmosphere and can be potentially dangerous if inhaled in appreciable amounts. Var

ious types of cleaners can also act as contaminant sources and are used in crab plants 

to clean and sanitize the floor, equipment, and the workers themselves. Knoeppel and 

Schauenburg (1989), Black and Bayer (1986), and Tichenor (1989) report data on the 

release of volatile organic compounds contained in various cleaning detergents. Field 

studies have shown that in other contexts such products contribute significantly to 

indoor pollution. Each cleaner has associated with it a Material Safety Data Sheet 

(MSDS) which outlines the toxicological properties, preventative measures, first aid, 
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preparation information, and other miscellaneous information. 

Ammonia (NH3 ) is used as a refrigerant in the brine and chill tanks in crab plants to 

maintain the required water temperature. Although there was no ammonia sampling 

done in any of the four plants and no history of ammonia leaks was sought or available 

to our knowledge, it should be considered for future reference to ensure that there 

is not a contamination issue present that has been overlooked. Carbon monoxide 

(CO) can also be present in instances where machinery is used, in particular when 

the crab is offioaded from the boat and placed in the holding rooms using gas powered 

forklifts. Again, no specific carbon monoxide sampling was completed in this study 

but if carbon monoxide contamination is suspected the necessary precautions should 

be taken to validate any suspicions or concerns. 

Although it is overlooked, more often than not the production of metabolic carbon 

dioxide can result in high concentrations of the gas. In general, a sedentary person 

takes about 15-40 breaths a minute and at each breath 1 litre of air is replaced 

(Etheridge et al, 1996). Exhaled air from the lungs contains about 4% carbon dioxide 

(Meyer, 1983). The production rate of carbon dioxide depends on the activity and as 

a result Norback et al (1992) have compiled data for the production rates of carbon 

dioxide: 

• Active pre-school children (12 litres per hour) 

• Sedentary office work (18 litres per hour) 

• Light industrial or domestic work (36 litres per hour) 

Based on these values it may be reasonable to assume that crab processing would 

fall into a moderate-heavy industrial work category if such a category existed. It 

would then be reasonable to assume that carbon dioxide would be produced at a rate 
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greater than 36 litres per hour and could reach levels of 72 litres per hour or higher 

depending on the person and specific process. Carbon dioxide concentration is used 

as an indicator of whether or not the air is fresh or stale (Etheridge et al, 1996), 

however it was not assessed in this study. 

In addition, endotoxins could also be a contributing factor to airborne contamination. 

Research into endotoxins in crab plants is planned but has not yet been carried out. 

Endotoxins are a gram-negative bacteria found in the outer membrane of the cell wall 

and may be important in crab plants. Previous studies have shown large quantities of 

gram-negative bacteria in bulk samples of plant processing tanks while personal levels 

of endotoxin were generally very low (Ortega and Berardinelli, 1998). More research 

into endotoxins and their potential effects on workers needs to be carried out. 

Airborne particles usually enter the atmosphere as a result of either a primary or 

a secondary process. Primary processes involve actions which physically force the 

particles into the air such as brushing and butchering. Secondary or passive types 

of processes differ from primary processes in that the particles are released into the 

air via a chemical reaction or as a result of a condensible vapor, as in the passive 

evaporation of allergens in an open air fish market (Taylor et al, 2000). The size 

of particulate matter is directly proportional to the effect it has on the respiratory 

system of exposed workers. Particulate matter can be made up of either solids, liquids, 

or a combination of the two. Solid particles consist of dusts, fumes, smokes, and bio

aerosols as opposed to liquid particles which consist of mists, fogs, and smokes. In crab 

processing the main aerosolized particulates are the protein antigens. A particulate 

must be ingested in order to be considered a health risk. 

Respirable particles vary in size from less than 1 f.Lm to about 10 f.Lm (Alpaugh and 

Hogan, 1988) depending on the source of the particulate. If particle size is an im

portant practical consideration then the particle size spectra should be measured. 
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Particle sizes range from sub-micron to 20 microns or greater. The particulates asso

ciated with allergens include the entire range of sizes where some will be liquid aerosol 

and some will be in a solid dispersion. Allergen piggybacking will occur to a certain 

extent with otherwise inert particles. According to (Morrow, 1964) particles smaller 

than about 2 p,m will be retained in the lungs and particles ranging from 8 p,m to 10 

p,m will be retained in the upper respiratory tract. As a side note, particles in the 1 to 

10 p,m range will settle in still air at a constant velocity but will remain suspended for 

extended periods of time just by interaction with normal room air currents. Figure 

2.1 shows the relative deposition efficiencies of various sizes of airborne particles in 

the human respiratory system (Task Group on Lung Dynamics, 1966). 
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Fig. 2 Relative Deposition Efficiencies of Different Sized 
Particles in the Three Main Regions of the Human 

Respiratory System, Calculated for Moderate Activity Level 
(Task Group on Lung Dynamics 1966) 

Figure 2.1: Relative deposition efficiencies of different sized particles in the three 
major regions of the human respiratory system 

The x-ax:is is plotted as an aerodynamic diameter and is defined as the diameter of 

a unit-density sphere having the same gravitational settling velocity as the particle 

in question (Willeke and Baron, 1993). It can be seen that particles seem to become 

lodged in the nasal region with a considerably higher degree of efficiency than the 



CHAPTER 2. -Environmental Health and Occupational Asthma (OA) 21 

other two regions. However, since the allergen and sulfite particles fall somewhere 

between 0 and 1 f.-LID it is reasonable to assume that all three regions of the respiratory 

system will be affected with particular problems occurring with particles of 0.1 f.-LID 

in size. Figure 2.2 shows a plot of typical particle size fraction values versus their 

diameter and differentiates between fine and coarse particles. 
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Fig. 1 Typical Urban Aerosol Composition by 
Particle Size Fraction 

(EPA 1982, Willeke and Baron 1993) 

Figure 2.2: Typical urban aerosol composition by particle size fraction 

It is easy to see that the sulfites and biological particles present in crab plants could 

fall in both the fine or coarse particle designation. Allergic reactions not only occur 

in the respiratory tract but also in the eyes and on the skin causing itching, irritation, 

dryness and rashes. Although particle size is related to the severity of the allergic 

reactions in the skin and eyes it is not of the same order of magnitude as it is with 

the respiratory system. 
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2.2 HVAC Systems 

All residential and industrial enclosures need some sort of air handling unit installed 

that is capable of controlling the environment. In particular, industrial environment 

ventilation systems need to be designed to handle various individual conditions and 

simultaneous exposures to heat, cold, humidity fluctuations, pressure imbalances, 

airflow variations, and stagnant or mobile toxic airborne substances. Ventilation can 

be effectively provided by mechanical systems such as local supply/ exhaust or general 

supply/exhaust, by natural draft methods, or a combination of the two. 

Mechanical systems are used in a majority of cases as they usually are able to provide 

the best environmental control in the workplace. A mechanical system generally 

consists of the following elements; 

• inlet section 

• filter 

• heating or cooling coils 

• return and supply air fans 

• ductwork 

• diffusers 

Figure 2.3 depicts a general system with the above major system elements. This figure 

is only a basic schematic of a typical HVAC type of system and says nothing about 

the specific location of air intakes/exhausts, layout of ductwork, nature of supply air 

and exhaust, fan power and location, or building schematics. 



CHAPTER 2. -Environmental Health and Occupational Asthma {OA) 

MIXED SUPPLY COOLING 
AIR AIR FAN COIL 

(MA) (SAF) (CC) 

OUTSIDEAIR-_ ) 
(OA) ......,.... , .,. 1 CJI ~ j .,.suprs~ AIR 

FILTER HEATING COIL 
(F) (HC) 

RECIRCULATED AIR 
(CA) 

DAMPERS I '!' 
(D) -----===:!'""--

EXHAUST AIR~ ; ~ ~ETURN AIR 
(EA) .._ ' v .._ (RA) 

RETURN AIR FAN 
(RAF) 

Figure 2.3: Typical air-handling unit (Fundamentals 2001) 
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This type of general system can be used to locally supply and exhaust air from a 

specific location of interest or applied generally to the whole enclosure. Both local air 

supply I exhaust as well as general air supply I exhaust will be considered in attempting 

to ascertain their effects on produced airflow patterns and possible movement of 

airborne particles that could be contained within these airflows. 

Localized supply and exhaust systems are normally the most cost effective method of 

controlling air pollutants and are most effective in situations in which the degree of 

toxicity of the air due to the presence of airborne contaminants is the primary concern. 

Local air supply and exhausts are installed near the source of the contamination both 

to prevent mixing with the rest of the building air and optimize ventilation airflow. 

Local ventilation systems may or may not recirculate any of the air depending on the 

degree of pollutant. If the levels are too high and exceed the predetermined threshold 

limit value (TLV) for the particular contaminant and zone then the air will be totally 

exhausted to the outside. It should be noted here that there is currently no TLV 

value for crab. The capturing efficiency of local ventilation systems depends on the 

hood design, positioning near the source of contamination, and exhaust airflow. In 

addition the selection and layout of the hood has a significant influence on the initial 
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and operating costs of both local and general ventilation systems (Applications 1999). 

Local systems do very little for the overall comfort of the workplace due to the fact 

that they concentrate on individual locations and not the building as a whole. 

When the installation of a local system is impossible or undesirable for whatever 

reason, a general ventilation system can be used to provide comfortable working 

conditions and dilute airborne contaminants to an acceptable level. In these, supply 

air is mixed with a certain percentage of the recirculated air and sent through filters 

and heating/ cooling coils before it is released into the workspace. The percentage 

of recirculated air, type of filters, heating/ cooling of the air and fan power will be 

determined by factors such as the level of aerosolized pollutant, physical size of the 

building, basic layout of the system, and associated ductwork. Room air movement 

affects the distribution of both ventilation air and suspended airborne particulate 

within the workplace enclosure. It is worth noting here that if insufficient replacement 

air is provided in situations where significant amounts of air is being exhausted, then 

the pressure of the building will become negative with respect to the atmospheric 

pressure outside the building envelope. This could cause infiltration of outdoor air 

and possibly bring back in the contaminant that was previously exhausted. In crab 

processing food quality issues can become important when bringing in outside air and 

recirculating existing plant air. A clean supply of air needs to be maintained at all 

times to avoid any contamination of plant air from outside contaminants and also to 

avoid any cross contamination within the plant itself. 

Nat ural ventilation is also used as a means of ventilating buildings by allowing the 

flow of air through open windows, doors, grilles, or any other type of opening in the 

building envelope. Natural ventilation systems make use of natural and/or artificially 

produced pressure differentials between the outside of the building and the inside to 

drive the air. Infiltration and exfiltration are natural ventilation methods whereby 
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the flow of outdoor air into and out of a building is allowed through cracks and other 

unintentional openings in the building envelope. These methods are also driven by 

natural and/or artificially produced pressure differentials. Air within a building that 

moves from one space to another is denoted as transfer air, which can either occur 

naturally or intentionally. Figure 2.4 depicts the ventilation methods described above. 

FORCED 
VENTILATION 

AIR-HANDLING UNIT 

Figure 2.4: Ventilation methods (ASHRAE Handbook (Fundamentals), 2001) 
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2.3 CFD Theory and Implementation 

The purpose of this section is to give a brief overview of the main areas of computa

tional fluid dynamics that are inherent in the simulations presented in this thesis. It 

should be noted that the information discussed here is general in nature as the intent 

is not to analyze a commercial CFD package but merely to apply the principles in an 

efficient and logical manner. 

2.3.1 Governing Equations 

Commercial CFD packages available today have codes structured around a number of 

numerical algorithms which are capable of approximating various fluid flow problems. 

Commercially available codes such as Fluent are based on finite volume formulation 

techniques, however finite difference, finite element, and spectral methods are also 

viable solution techniques. Each of these have been used in the past to solve the 

governing Navier-Stokes equations due to the lack of exact analytical solutions. Only 

a few simplified and somewhat impractical situations such as laminar flow over an in

finitely long plate have exact analytical solutions. Since these equations are normally 

unsolvable analytically, they are approximated using one of the numerical methods 

described above and explained in the following section. The equations governing 

fluid flow are continuity (conservation of mass), the Navier-Stokes (conservation of 

momentum), and the energy equations. These equations are classified as a set of 

coupled, nonlinear, mixed, elliptic-parabolic system of partial differential equations 

(PDE's)(Keller, 1978). 

Examining the conservation of mass equation: 

(2.1) 
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After application of the conservation law and numerous expansions and substitutions 

we have: 

Finally, we may write the equation more compactly in the following form: 

Dp -- = -p\1. v 
Dt 

(2.2) 

(2.3) 

Next, we examine the momentum equations. The momentum equations may be 

easily derived if we consider the following conservation law for a control volume dV = 

dx dy dz, in each of the three flow directions: 

Mstored =Min- Mout + 'EFexternal (2.4) 

Again, using the conservation law and various substitutions yields the momentum 

equations in the x,y, and z directions: 

( au au au au) ap (aTxx aryx aTzx) p - + u- + v- + w- = P9x - - - -- + -- + --at ax ay az ax ax ay az 
(2.5) 

( av av av av) ap (aTxy aryy aTzy) p -+u-+v-+w- =pg --- --+--+--at ax ay az y ay ax ay az 
(2.6) 

( aw aw aw aw) ap (aTxz aTyz aTzz) p -+u-+v-+w- =pgz--- --+--+--
at ax ay az az ax ay az 

(2.7) 
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In vector notation, the momentum equations may be written as: 

DV ~ n n 
p Dt = pg - v p - v Tij 

where Tij is the stress tensor denoted: 

( 
Txx Txy Txz ) 

Tij = Tyx Tyy Tyz 

Tzx Tzy Tzz 
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(2.8) 

(2.9) 

The above equations are valid for any type of fluid provided the appropriate con

stitutive relationships are used for the stresses. This research deals with fluids of 

the incompressible type which now transforms the above momentum equation in the 

three principal directions into the following: 

(2.10) 

(2.11) 

(2.12) 

Finally, we may generalize the above equations and present them in vector form using 

the following compact notation: 

DV 
p Dt = -!t - ~ +~ 
..___..., bodyforce pressure friction 
inertia 

(2.13) 
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Due to the presence of the non-linear terms in these PDE's, analytical methods can 

yield very few solutions. If these PDE's can be made linear then closed form analytical 

solutions are possible. These PDE's become linear when the non-linear terms drop 

out (i.e. fully developed flow in ducts, inviscid and irrotational flows) or when the 

non-linear terms are very small compared to the other terms (i.e creeping flows). 

Since most engineering flows cannot be made linear, numerical methods are needed 

to obtain accurate solutions. 
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2.3.2 Geometry Definition and Grid Generation 

Computational fluid dynamic packages such as Fluent have the ability to solve com

plex fluid flow problems with relative ease without performing any physical testing. 

The process begins with the geometry, which has to be either created internally within 

the CFD package (Gambit) or imported from an external CAD/CAE package such 

as AutoCAD. Figure 2.5 shows the basic program structure followed. 

prePDF 

·calculation of PDF 
look-up babies 

PDF files 

GAMBIT 
· geometry setup 
· :mr.m mesh g&neration 

20!,30 Mesh 

, 
FLUENT 
• mesh import ard 

adaption 
·physical models 
·boundary conditions 
·material properties 
• calculai:bn 
·postprocessing 

Mesh 

Geometry 
.... or Mesh Other CADICAE 

Packages 

Boundary 
Mesh 

B:mndary a.nd/or 
Volume Mesh 

TGrid 

· 2D triangular mesh 
· JD tetrahedra.! mesh Mesh 

· 2D or 3D hybrid mesh 

Figure 2.5: Basic program structure (Fluent Website) 

In order to be able to develop solutions to various flow problems by applying the 

governing equations of fluid flow, the region of interest on the geometry, or computa

tional domain must first be constructed and discretized, or meshed into geometrically 

similar cells. The term 'discretized' implies that the computational domain is di

vided, or meshed into a non-overlapping series of cells (or control volumes) whereby 
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their size, shape, and number is directly proportional to the accuracy of the solution. 

The discretization process can also be described as the art of replacing the differential 

equations with a set of algebraic equations to obtain an approximate solution. A mesh 

is basically a set of small blocks which fill the volume through which the fluid flows, 

the finer the mesh the more accurate the solution will become. A mesh normally 

consists of element types ranging from triangles or quadrilaterals in two dimensions 

and tetrahedra, hexahedra, prisms, or pyramids in three dimensions. They should be 

generated such that the surfaces of the geometry are as smooth as possible and any 

abrupt changes in the volume of the mesh cells are avoided (Blazek 2001). Figures 

2.6 and 2.7 show the basic element types used to define meshes. 

2D Cell Types 

Triangle Quadrilateral 

Figure 2.6: 2-D cell types (Fluent Website) 

At each node in the mesh there are a variety of variables associated with it such 

as velocities, temperatures, pressures, etc. The governing equations at each of these 

mesh nodes must be satisfied in order to produce an accurate solution. Knowledge 

of fluid flow properties and characteristics are key factors in determining where to 

design and refine the mesh and nodes to obtain the best solution. In general, optimal 

meshes are often non-uniform: finer in areas where large property variations occur 
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Tetr.abedror11 Hexa.hed .. rw::tn 

Pyramid 

Figure 2.7: 3-D cell types (Fluent Website) 

from point to point and coarser in regions with relatively little property change. 

Fluent 6.0 has been chosen for the analysis and uses a Finite Volume Method solver. 

FVM, or finite volume methods are based on a numerical algorithm consisting of the 

following steps (Versteeg et al, 1995); 

• Formal integration of the governing equations of fluid flow over all the (finite) 

control volumes of the solution domain 

• Discretization involving the substitution of a variety of finite-difference-type 

approximations for the terms in the integrated equation representing flow pro

cesses such as convection, diffusion and sources. This converts the integral 

equations into a system of algebraic equations. 

• Solving the algebraic equations using an iterative method 

The control volume integration is a key feature of the FVM which results in the 
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conservation of all relevant properties in each finite size cell generated in the mesh. 

In simpler terms, there is a clear relationship between the numerical algorithm and the 

physical principles of fluid flow. The main mathematical concept that determines the 

success of this algorithm is convergence. Convergence is the property of a numerical 

method to produce a solution which approaches the exact solution as the grid spacing, 

control volume size or element size is reduced to zero. The number of iterations 

required to achieve convergence depends on the complexity and nature of the grid. 

There are many different forms that meshes can assume but they generally fall into 

two main categories, namely; 

• structured 

• unstructured 

Structured grids are the more difficult of the two mesh forms to generate due to the 

systematic manner in which the computational domain is segmented into similar cell 

types. When the geometry that needs to be meshed is complex it becomes difficult 

to discretize each computational domain into similar topological regions and then 

map them with separate structured grids. It can become very tedious to keep the 

grids orthogonal to the surfaces when 3-D geometries are meshed with structured 

grids. However due to the increased efficiency in the generation of a solution, struc

tured grids are sometimes chosen over unstructured ones. The element types chosen 

are used throughout the entire domain whereby only their size and general shape 

varies. Normally these solutions are slightly more accurate than those obtained using 

unstructured meshes. An example of structured 2-D and 3-D meshes are shown in 

Figures 2.8 and 2.9. 

Figure 2.8 depicts a 2-D structured quadrilateral grid around an airfoil and Figure 2.9 
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Figure 2.8: 2-D structured grid mesh (Fluent Website) 

Figure 2.9: 3-D multi-structured grid mesh (Fluent Website) 

depicts a 3-D multi-structured quadrilateral grid of a fiat head screwdriver. The main 

disadvantage of structured grids is the fact that they require a longer time to define 
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the block topology, once this is determined the generation of the grid is usually very 

straightforward. Another main disadvantage occurs in areas where the flow variables 

are drastically changing and thus a finer and/ or custom designed mesh would be 

required to produce more accurate results. However, when the geometry is fairly 

simplistic the difference between results obtained from structured or unstructured 

grids is negligible. 

On the other hand unstructured grids require much less effort by the user as they 

can be generated about complex 2-D and 3-D geometries with relative ease. The cells 

are no longer arranged or ordered in any particular way but do, however, define the 

domain boundaries completely as any gaps in the computational domain will result in 

errors. These types of meshes are used when the domain is divided into many regions 

and are reduced to a minuscule size whereby there is no need for any local meshing 

within the block. Unstructured grids are flexible in that they can have combinations 

of elements from both structured and unstructured meshes and are termed 'hybrid' 

meshes. An example of unstructured 2-D and 3-D meshes are shown in Figures 2.10 

and 2.11. 

Figure 2.10 depicts a 2-D unstructured quadrilateral grid around an airfoil and figure 

2.11 depicts a 3-D unstructured tetrahedral quadrilateral grid of a petroleum pressure 

vessel. A main advantage of unstructured meshing is the ease with which the meshing 

techniques can be customized to meet the designer's needs. Certain areas of the 

meshed domain may require a finer or coarser grid depending on the degree of accuracy 

required or variations in physical parameters. The structure of the mesh will not be 

compromised as the mesh has no real order to begin with. This type of adaptation 

will only result in local refinements to the connectivity of the mesh and not affect the 

mesh globally. 

In the following chapters, local exhaust hoods will be modeled to determine the 
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Figure 2.10: 2-D unstructured quadrilateral grid mesh (Fluent Website) 

Figure 2.11: 3-D unstructured tetrahedral grid mesh (Fluent Website) 

velocity profiles in the vicinity of the hood face and to ascertain the effects of nearby 

turbulent structures such as people and processing equipment. An example of the 
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typical meshing that will be used is sboa:n in Figure 2.12 whic-h dt•pkt.., a Nnmlfttion 

of empirical JUKI tlu.•ou·tkal relationships. 

Figure 2 12: 2-D Tri·gridded m..JJ llfOUud a k><l~ <·x!UIW.\ hood 

The bu.o;ic boundary conditions applied ha\'e set the hooct fn<'<- flH n \'f'locity inlet using 

a 1wgntivc.' v<'locity vn.luc to essentially create a vdocity uui.IC't. ond tho wnlls of the 

domaiu RH pr<":-.."Urt' inlt't .. "i to allow air to be drawn into the hood from ~II <.lir{!('tions. 

The only ort·t~ thnt. l'i."<IUirOO a 6ncr grid was the face ru1cl tlidt.•ri of tlu.• hood 9.8 velocity 

and pr(&!.ure varird in thQ;e urea:, and required n mon• robmo~t grid to t"nsure solution 

oomt>rgrnce. 

\\ ht"llC\'\"r any CFD simulatioo ~ undertakeu, &ft"l'l c-Are nmst be., tah-n .,.hen formu~ 

htting Nl o,,.,fOi>rinte meJling strategy. lf a structured &rt(l 18 USt-...1, th(1l l.ht" 'S'Olutton 

proc;x'SS is t.ofti(·kut hut the grid., them.··;el\'eS are normally difht·uh to impkm,·nt, es

pecially in ~D. If tlw UDbtructured approach Lc; tak(.>n1 lln·n lh(' l!k.lluhon proct!b:t is a 

littlr IN<~ t·fficit·nt but has the advantage of (>;;l.';icr grid huplt·mrnU\tion In many sit

ualiowo~ th" t 1fhdC'rlC'Y or the solution procet~S i!:i sat·rifitlxl rul' n 11101<"1 f\C'Curntc solution 
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due to the relatively small difference in computational time. For the purpose of the 

work presented here an unstructured hybrid type of grid will be chosen simply due 

to the ease in which the meshing could be completed and due to the fact that there 

are areas where the mesh will need to be refined. 



Chapter 3 

Field Research & Raw Data 
Collection 

Originally it was proposed that five Newfoundland and Labrador plants with differ

ing histories of involvement in snow crab processing would be studied. The intent 

was to try to approximate a representative sample of the industry and of the general 

crab processing la,bour force as a basis for the development of a provincial preva

lence estimate of the incidence of allergy and OA to snow crab. At the start of the 

study, with help from the Department of Labour and the Department of Fisheries and 

Aquaculture, all of the existing Newfoundland plants were grouped into five different 

categories based on age, size (amount of crab processed), production process, venti

lation and enclosure of the cooking area, and products produced. The 32 plants that 

actively processed crab in 2000 were broken into three categories based on amount 

produced. 

• less than 1 million pounds (13 plants) 

• 1-4 million pounds (12 plants) 

• grater than 4 million pounds (7 plants) 

39 
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Within these categories a distinction was made between plants that processed meat 

products and those that did not and between those with ventilation systems and 

those without. Plants were approached in each of 5 categories and eventually signed 

a memoranda of understanding with representative plants from four of the five cate

gories. Unfortunately it was not possible to obtain a representative large, old plant 

(10-30 years of crab processing) that produced more than 10 million pounds per year, 

and with poor ventilation willing to participate in the study. 

Over the course of the 3-year crab asthma project a variety of different types of 

data have been collected during numerous visits to crab processing facilities. These 

data include plant layouts, processing procedures, plant histories, PBZ and Area air 

samples, temperature and humidity measurements, processing quotas, prevalence, 

beliefs and concerns, and socioeconomic and quality of life issues (Neis at al, 2003). 

Air collection methods consisted of sampling with personal breathing zone (PBZ) 

samplers and area samplers. Sampling was carried out in each of the four participating 

crab plants. Details of the sampling methods, analytical treatment and raw data 

results are described in this chapter. The collected data has been used to aid the 

research team to pursue a variety of research avenues in an attempt to collectively 

reach individual research goals. 
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3.1 Plant Overviews and Collected Data 

Processing methods vary from plant to plant due to changes in the physical layout of 

the plant and the particular species being produced at any given time. The physical 

layout of each individual plant influences the location of the processing equipment. 

Sometimes plants are used for a variety of other fish related processes such as shrimp, 

caplin, redfish, mussels, as well as lumpfish, and therefore contain all the specific 

equipment needed for production of each of these different species. As a result there 

is sometimes limited room with which to work leaving little choice in the placement 

of equipment. More often than not processes are located in close proximity to one 

another and confined in spaces that are ideally too small. Processing crab in the 

raw state and then cooking it or cooking first and then processing can also affect 

processing methods and flow of production. Since layout and processing procedures 

can vary from plant to plant it is both necessary and beneficial to provide an overview 

of these in each of the four. participating plants. Plant histories will also be included 

to give a sense of the changes that each plant may or may not have experienced. 

Temperature and humidity will also be included as the data can provide an indication 

of the effectiveness of existing ventilation systems and, because allergens can be found 

in steam from cooking areas and possibly in moisture evaporation, they may provide 

an indirect indication of allergen levels. In all four plants, temperature and humidity 

was measured using portable data loggers placed in different areas of the plants and 

data recorded. Ventilation data taken at the time of air sampling in each of the 

participating plants will also be presented here. Over the 3-year span of the project 

some plants made ventilation changes of some sort from one year to the next, some 

did not. Where appropriate, the ventilation at both instances is described below. 

Finally, PBZ and area sample results will be presented here as well as the results 

obtained from the raw crab experiment. 
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3.1.1 Plant 1 

Plant History 

Plant 1 began processing crab in 1997 and is the largest plant in the study with the 

highest production levels. A former groundfish plant, the plant was renovated to its 

current layout and ventilation standards in the year 2000. The main crab processing 

area has a volume of 4983 m 3 which includes the butchering and cooking areas. The 

holding room is an additional492 m3 . Plant D has processed an average of 6 million 

pounds of raw crab per year since it began processing. In most years, virtually 100% 

of production has gone to sections. However, during two processing years, about 2% 

of production involved whole cooked crab for the Japanese market. 

Processing Overview 

Consider the schematic of plant 1 shown in Figure 3.1 

Blast Freezer 

Grader 
I,........,.So""'rti,...ng""IP,.-ac.,.,.kin--g ....,1 c:::::::J 

~Sorting/Packing -----

Holding Room 

Figure 3.1: Plant 1 process flow 

[] 
L~. 

Jets 

1 

From Wharf 

Production begins at plant 1 with the offioading of the live crab with a forklift from 
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boats docked at the nearby wharf and placing it in the holding room. The live crab 

is piled in the holding room in bins and iced until it is ready to be transported to the 

blanching area. This is the only plant of the four participating plants that treated 

the crab before it was butchered. When the crab leaves the holding room, it is first 

placed in a bath of water at 30 degrees C. There is an enclosing hood situated above 

the water bath that is exhausted to the outside. The bath stuns the crab before it 

gets fed via, a plastic conveyor belt, through a hooded and ducted area containing 

high pressure water jets. These jets clean the crab before it gets transported to the 

butchering table. The butchering station is fed with the same conveyor belt that 

moves the crab through the blancher and high pressure water jet area. After the crab 

is butchered , it is transferred to the packing and grading lines where it is graded 

according to size and packed into plastic cooking containers. Uncooked crab clusters 

with barnacles attached to them are taken from the packing and grading lines and 

sent to a table where barnacles are chipped off with a rectangular piece of metal. 

Once all the crab is clean it is sent to the continuous cooker and loaded into metal 

cooking cages and lowered into the cooking water, which is kept at 100 degrees C. 

It then automatically proceeds through the cooker and into the cooling tank before 

getting removed and weighed. After it is weighed, the crab is brine frozen and then 

glazed. After glazing, the crab is packed in cardboard boxes and taken to the cold 

storage. 

Ventilation 

Plant 1 was the only plant in this study with a professionally installed mechanical 

ventilation system. In this plant, the crab processing production line is connected 

to other processing areas by means of windows and doorways. During air sampling, 

some crab processing (batch cooking) was taking place on a separate production line 

set up away from the hooded and ventilated regular line in one of the other adjacent 
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rooms. An attempt had been made to ventilate this production line and cooker but 

the system was less satisfactory than the one associated with the main production 

line. The entire plant is connected via two air handling units, a 8000 cfm unit and 

a 9000 cfm unit. The 9000 cfm unit was connected to the processing plant while 

the 8000 cfm unit was connected to an old upstairs plant. The unit is thought to 

be configured to mix 25% of the used plant air with 75% new outside intake air and 

distribute this mix to the plant during processing. However due to a problem with the 

automated controls the actual percentages of new and used air were unknown at the 

time of air sampling. Supply and return dampers are located in the ceiling throughout 

the entire plant. Some noticeable problems were that the supply dampers were not 

oriented so as to ensure that air was supplied correctly and some supply dampers 

were supplying a considerable amount of air while others were not supplying air at 

all. In plant 1, the cooking area is 132 m3 and is basically enclosed except for the 

opening where the worker loads the cooker with crab crates. The cooker is separately 

ventilated and the room also has a wall mounted exhaust fan. 

Temperature and Humidity 

In plant 1, the butcher area had an average temperature reading of 15 degrees C 

and an average of 65% humidity. Humidity was slightly higher (5%) in the sorting 

table area. In the cooking area, the temperature was 25 degrees C and there was a 

humidity reading of 45%. 
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3.1.2 Plant 2 

Plant History 

Plant 2 is a medium-sized plant that began processing crab in 1991. In this plant, the 

holding room/butcher areas are adjacent to each other with the volume of space in 

the butchering area equaling 201 m3 , the small cooking room has a volume of 71.6 m3 

and the main processing area is approximately 1600 m3 . It processes approximately 

2 million pounds of raw crab per year. 

Processing Overview 

Consider the schematic of plant 2 shown below in Figure 3.2 

Blast Freezer 

Holding Room 

+--/ 
From Wharf 

Figure 3.2: Plant 2 process flow 

The process in plant 2 begins with the offioading of live crab from the commercial 

crab boats at the adjacent wharf using forklifts and moving it to the chilled holding 

room. The crab is iced and held in crates inside the holding room until it is moved to 

the butchering line. The butchers hold the crab by its legs, one set in one hand and 

one set in the other. The abdomen of the crab is then pushed against a vertical steel 

plate causing the body to split, thus separating the body from the legs. The body 

and other debris are discarded via a water filled trough under the butchering table 

and washed outside to a open barge next to the wharf. The separated leg clusters are 

thrown onto a moving conveyor belt in front of the butchers and transported through 
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a small window into as small room where they fall into an opening in the top of the 

hooded cooker. 

Depending on the number of butchers working at any given time, the clusters some

times pile up in the cooker before the mechanized conveyor in the cooker has a chance 

to move the clusters through and complete the cooking process. Due to this common 

occurrence there is sometimes a worker stationed inside the enclosed cooking room 

who has the sole responsibility of making sure that the crab stays submerged in the 

cooking water. The clusters are carried though the cooker and up through a window 

into the main processing area. A conveyor belt drops the crab into a cooling tank 

from the cooking room through this hooded window. 

Large amounts of steam escape into the cooking room as the crab emerges from the 

100 degree temperature water. The steam escaping at both the entrance and exit of 

the cooker causes the cooking room to fill with steam. Ice is added to the cooling 

tank to keep the temperature of the water at 3-4 degrees C. The crab is removed from 

the cooling tank, put into crates, and stacked near the sorting/ cleaning table where 

it will be cleaned of any excess dirt, barnacles, or bits of shell and packed into crates 

according to size. Any undersized crab are graded at a separate table and packed 

into similar crates. Approximately 20% of the crab is trimmed and packed in smaller, 

grade A packages. The remainder is sent to the cleaning table which is located along 

the north wall of the plant and has workers along each side. These workers hold the 

crab leg clusters against brushes to clean them and then pack them in crates. The 

crates of crab clusters are then weighed and sent to the brine freeze tank where they 

receive a glaze and are pre-frozen. The clusters are then boxed in cardboard boxes 

and moved to the blast freezer where they are frozen and await shipping to various 

markets worldwide. 

In addition to the processes described above there are additional processing technolo-
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gies present in the plant that were not in use at the time of the air sampling. There 

are sawing stations that make use of table saws with an open spinning blade to score 

crab clusters before packaging. This is done to facilitate removal of the crab meat 

from its shell by the consumer. During some periods, meat products are produced 

where legs are sawed into sections, leg meat is removed using rollers, knuckles go 

through a crusher and eventually pass through a revolving drum. The drum is perfo

rated and contains water jets. As it revolves, the meat is washed out of the knuckles, 

falls through the drum and is separated from the water in a ripple board. This drum 

was not in use in either phase of air sampling at this plant so any comments on the 

degree to which this drum would contribute to allergen levels cannot be made at this 

time. 

Ventilation 

In plant 2 there is a fresh air intake in the butchering area and doors are often open 

as crab is brought into the adjacent holding room from the nearby wharf. There are 

no exhaust fans in this area. There is a fan on the roof that is linked via square 

ducting to the butcher room and to an area located over the brushing/packing table. 

This system was operational during air sampling in 2001 but the duct intake located 

in the butcher room was closed off during air sampling in 2002. Management made 

this change to prevent steam from the brushing/packing table area being circulated 

back into the butcher room through this opening. When the intake in the butchering 

room was open, instead of the roof fan actually drawing steam up through the ducting 

from both the butchering room and brushing/packing table and exhausting it to the 

outside, the steam was being drawn in through the ducting from the brushing/packing 

table. Knowledge of basic physics indicates that there was a greater negative pressure 

at the butchering room intake opening than was created by the roof fan thus causing 

the steam to bypass the fan and be drawn back down into the butchering room. There 
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is also a 12 inch diameter, 1/4 hp, 1725 rpm wall fan located between the production 

office and the blast freezer 

The cooking room area in plant 2 is largely enclosed with only two small open windows 

linking it to the butchering area and to the main processing room. A hood located 

over the opening between the cooking room and main processing room was reported 

to have reduced the leakage of steam from the cooking area into the main processing 

room. The cooker itself is also partially hooded, with openings for the entry and exit 

of the crab. During the time of the research there was a lot of steam in the cooking 

room. However, no steam was visibly leaking from the cooking room into other areas. 

The cooking room area of plant 2 has four exhaust fans (one was not in operation 

during either sampling period) to remove steam during the cooking process. One fan 

is attached to the cooker hood and vented directly from the cooker and the other two 

are ceiling exhaust fans. The fan attached to the cooker is a 12 in diameter, 1500 rpm 

fan. One of the ceiling fans is a 16 inch diameter, 1/4 hp, 1625 rpm fan, the other a 

24 inch diameter, 1/2 hp, 1075 rpm fan. There are no active fresh air intakes into the 

cooking room to replace the exhausted air. This probably causes the exhaust hoods 

to draw air from other areas of the crab facility such as the butchering room or main 

processing area to maintain a balance. 

In plant 2 the main processing area is walled off from the cooking room and butcher 

area and consists of a single large room where cooling, cleaning, sawing, meat re

moval, brine freezing and packing are carried out. The volume of this processing area 

is approximately 1600 m3 . In general, ventilation in the processing area is poor, par

ticularly in the brushing/packing area. There are two fresh air intakes in this section 

of the plant, one behind the sorting table and one behind the saws table. There are 

exhaust fans located over the brushing/packing area, sawing area, and in the box 

assembly area. Except for the fan above the brushing/packing area, these fans were 
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not in operation during air sampling. There were also large quantities of cooked crab 

stacked around the brushing/packing area that could be sources of allergen contami

nation. Since the allergen concentrations are high in this area it would be reasonable 

to assume that either the stacked crab, the cleaning process, airflow problems, or a 

combination of all three are causing the elevated allergen concentrations. The drum 

and crusher used for separating the crab meat from the shell could be another source 

of allergens when in operation, however this cannot be confirmed as they were not in 

use. 

The existing ventilation system in plant 2 would tend to move the air throughout 

the processing area exposing plant workers to any air borne contaminants along the 

way rather than venting allergens directly out of the plant from their sources. The 

temperature and relative humidity data indicate that the cooking process causes the 

relative humidity in the cooking room to be at saturation concentrations, indicated 

by the presence of steam. This also supports the premise that the ventilation system 

is not working properly. When humidity is high in the cooking room, it is high in the 

butchering area as well as in the main processing area. This may be caused by the 

damp outside air, the butchering process or may indicate that steam from the cooker 

is migrating to the butchering area. The same could be true for the cooker/ cooler 

situation. It is reasonable to assume that relative humidity levels would probably be 

higher when the drum is in operation. 

Temperature and Humidity 

Plant 2 generally had higher humidity levels than the other plants. Temperatures of 

approximately 14 degrees C and humidity values of 85% were obtained in the butcher

ing area. Temperatures in the cooking room were variable during the sampling period, 

averaging about 34 degrees C, with relative humidity values of 90-100% most of the 

time. Relative humidity values indicate humidity concentrations in this room are 
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close to saturation concentrations while the cooker is in operation. Temperatures in 

the main processing area during air sampling were relatively low, approximately 16 

degrees C with 90% relative humidity in the area around the end of the cooling tank. 

Towards the other end of the processing room, adjacent to the brine freezer, tem

peratures averaged 18 degress C and relative humidity was somewhat lower, between 

60-70%. In the processing area of the plant, adjacent to the section cleaning and 

packing area, are the crusher and the revolving drum used to remove meat from crab 

knuckles. The drum was not in operation during the air-sampling period. Adjacent 

to the drum are the size graders where temperatures hovered in the 14 degress C 

range with humidity values of 85%. Temperatures and humidity readings in this area 

were 17 degrees C and 70% respectively. 
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3.1.3 Plant 3 

Plant History 

Plant 3 is a small plant with the volume of space in the butchering area being 228 

m 3 and the volume of the main processing area being approximately 1100 m3 . This 

plant has been processing crab since 1997 but relatively little crab was processed in 

the first season. Between 1998 and 2002 the plant processed an average of 1.2 million 

pounds of raw crab per year, almost exclusively sectioned products. Snow crab in 

this area generally requires little cleaning thus removing the need for brushing and 

scraping. 

Processing Overview 

Consider the schematic of plant 3 shown below in Figure 3.3 

JRaw Sorterl Cooker Cooler 

Automatic Grader ! VVeights 

D 
Brine Freezer II Pre Cooler I / 

Figure 3.3: Plant 3 process flow 

The process at plant 3 begins in a similar manner as in plant 2 with the offioading 

of the live crab from the commercial crab boats at the adjacent wharf using forklifts 

and moving it to a holding room. The holding room here is in a different building 

than the main processing plant. The crab is then carried to the butchering room 

to be butchered. Once butchered, it is sent through some high pressure water jets 
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and placed into bins to be sent to the automatic cooker. The bins proceed through 

the continuous hooded cooker and into a cooler filled with ice at a temperature of 

approximately 4 degrees C. From there it is put through an automatic grader where 

each cluster is sorted according to weight. Once the grader has successfully sized the 

clusters, they are stacked next to the brine tank to await weighing. The automatic 

grader was not installed in year 1 of the study but was in operation during year 2. 

The crab crates are then loaded into the brine tanks where they are glazed and frozen. 

They are then removed, boxed, and taken to cold storage in an adjacent building. 

Ventilation 

In plant 3, butchering takes place adjacent to the grading, cleaning and sorting area 

and is partially walled off from the main production area with the continuous cooker 

being located in the main processing area. The only fresh air intake in the butchering 

area comes from the open double doors which were open approximately 80% of the 

time during sampling. Other than these open doors there is no other feasible means 

present by which air can be forced toward the raw grading/sorting area and then 

toward the cooker. This airflow direction may change in response to changes in the 

wind direction and magnitude which would cause a higher negative pressure boundary 

at the double doors to occur and effectively introduce a suction effect that could 

possibly draw allergens from the main processing area of the plant to the butchering 

room. 

There are now three exhaust fans attached to the continuous cooker. A second fan 

was added in the summer of 2000 and a third fan was added in the summer of 2001 

prior to air sampling. All three fans are connected directly to the enclosing cooker 

hood and ducted out of the plant. These are in fact the only exhaust fans in use in 

the main processing area, with the exception of a small wall fan located above the 

weights, which was not in use during the actual time of air sampling. Other than the 



CHAPTER 3. -Field Research & Raw Data Collection 53 

butchering and packing area doors there does not appear to be any fresh air supply for 

the plant other than possible infiltration and cracks under doors. Apparently there 

was a wall fan near the entrance to the cooker but this was removed in the spring of 

2001 when an extension was added to the plant. An additional hood was added to 

the cooker and there appears to be little steam escaping from the cooker. Preventing 

the escape of steam from the cooker would be particularly important in this plant 

since the cooker is in the main production area and not separated from the rest of 

the plant. In the main production area the air is most likely stagnant, particularly 

when doors are closed, with air quality undoubtedly diminishing as the day goes on. 

Temperature and Humidity 

In plant 3, temperatures in the butchering area were about 14 degrees C during 

the period of sampling with relative humidity averaging 90%. Temperatures in the 

cooking area ranged between 16 degrees C and 23 degrees C during the sampling 

period. Relative humidity varied between 65% and 90%. Temperature and relative 

humidity concentrations were similar in the area of the cooler and in the brine tank 

areas due to the fact that the processes are extremely close to one another. 
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3.1.4 Plant 4 

Plant History 

Plant 4 is the smallest operation studied, both in terms of volume of raw crab pro

cessed each year and the size of the main processing area. The total area of the 

holding room is 826 m3 and the butchering area 106 m3 . The area of the cooking 

room is 79 m3 and the main processing room where the crab is sorted, cleaned, scored 

and frozen is only 532 m3 . This plant is licensed to produce snap and eat products. 

These products are cooked sections that are cleaned and scored once across the legs 

using table saws. The plant has a maximum quota of one million pounds a year 

and has been processing snow crab since 1999. Between 2000 and 2003 this plant 

processed an average of approximately 400,000 pounds of raw crab per year. 

Processing Overview 

Consider the schematic of plant 4 shown below in Figure 3.4. 

t From Wharf 

Figure 3.4: Plant 4 process flow 
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Production begins at plant 4 with the offioading of the live crab with a forklift from 

boats docked at the nearby wharf and placing it in the holding room. The live crab 

is piled in the holding room in bins and iced until it is ready to be transported to 

the butchering room. Once the crab is butchered it is loaded onto a metal pallet that 

carries a number of crates of raw, butchered crab and pushed through an opening 

in the wall connecting the butchering room to the cooking room. Inside the cooking 

room the pallet is lifted and lowered into a hooded batch cooker and then into an 

adjacent batch cooler by a hydraulic lifting assembly. The crab is then removed from 

the cooler and stacked next to the wall in the far end of the cooking room where it 

awaits a short trip through another access hole in the cooking room wall linking it to 

the main processing area. The crab is then processed at the sorting and cleaning table 

where it is cleaned of any dirt and barnacles using mechanical brushes and manual 

scraping techniques, and then sorted according to size. Troughs built into the table 

distribute the sized crab clusters into separate crates located on the floor underneath 

the troughs. After the crab is removed from this area it is taken to the sawing tables 

where the clusters are scored using table saws. Scoring enables the consumer to easily 

break the legs and remove the crab meat contained inside. The crab is then repacked 

into crates, weighed, and sent to wait to be loaded into the brine freezer to be frozen. 

Once removed from the brine freezer it is packaged, boxed, and transported to a blast 

freezer for cold storage until shipment. 

Ventilation 

In plant 4 the butchering area is adjacent and open to the holding room, which is 

open to the wharf. The cooking area is a small enclosed room except for a small 

hatch in the wall to allow transfer pallets of butchered crab. This plant was the only 

one of the four to use only a batch cooker to cook all crab. The cooking room was 

temporarily full of visible steam when the crab was transferred from the batch cooker 
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and placed in the cooking tank. The exhaust fan in the cooking room seemed to 

remove some of the steam but without a fresh air intake the fan could not possibly 

maintain a negative pressure with respect to the adjoining areas. A hole had been 

cut at some point in the venting pipe from the batch cooker to relieve some of the 

pressure inside the cooker so that the lid would not be sucked shut and difficult to 

remove. This hole inadvertently served two purposes as it relieved the pressure on the 

cooker cover and exhausted some of the steam that escaped into the cooking room. 

The main processing area where the sorters, saws, brine freezer, packers, and box 

washers are located had no ventilation during air sampling in year 1. 

During year one of air sampling there were no fresh air intakes and no exhaust fans 

in this area. At the time of the year 1 air sampling it was noted that the only way 

that air could possibly circulate was through the movement of the workers, sporadic 

opening and closing of doors, possible infiltration, or temperature changes within the 

room, causing a convection effect, which is highly unlikely. It was noted that the air 

had a heavy feel as the working day progressed and a slight haze could be seen in the 

air in the corner where the saws and weights were located. Year two air sampling was 

carried out after changes had been made to the main processing area in the form of 

ten overhead exhaust hoods, one over each of the ten table saws. However, no fresh 

air intakes was introduced to replace any exhausted air. The hoods measured 2.5 ft 

long by 1.5 ft wide and were connected to a header in the attic via 3 inch diameter 

plastic hoses. A 3 hp exhaust fan located in the attic was connected to the header 

and served to exhaust the air through a rooftop vent. 

Temperature and Humidity 

In plant 4, humidity readings in the range of 50-75% were obtained at an average 

temperature of 18 degrees C in the sawing area. Readings obtained in the same area 

when the plant was not in operation yielded humidity readings in the range of 60-
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65% at an average temperature of 14 degrees C. Humidity readings of 80-90% were 

obtained in the cooking room with a temperature of about 15 degrees C in this area. 

Again, readings taken when the plant was not in operation yielded humidity readings 

of 60-70% with a temperature of about 12 degrees C, thus showing a clear drop in 

values when the cooker was not operating. 
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3.2 Air Sampling Results and Analysis 

The following detailed air sampling results were compiled from sections contained in 

the final draft report (Neis et al, 2003) generated specifically for the crab asthma 

project. 

In all four plants, confidential draft reports summarizing the results of air sampling 

in the plants were distributed to management and worker representatives, reviewed 

with them during teleconferences and then amended and finalized. These confidential 

reports contained general recommendations related to possible ventilation specifics. 

In three of the four 'study plants, management indicated that they had made some 

changes to their ventilation in response to the recommendations so the plant was re

sampled the following season. In two of the three cases, the actual changes were very 

minor or nonexistent and, not surprisingly, air sampling results were similar in the 

second season to those in the first season. In the third case, a ventilation system was 

developed by an outside contractor and implemented for the main processing area 

that had no formal mechanical ventilation during the first season of air sampling. 

Despite considerable investment, allergen levels did not change significantly. 

Allergen levels in different plants and in particular areas in the plants can be affected 

by overall production levels, production processes, job tasks of the worker wearing 

the samplers, as well as by air flows, dilution and natural and mechanical ventilation. 

Approximate average production levels per shift at the time of the air sampling in 

each of the study plants were as follows: 

• Plant 1: 61,500 pounds 

• Plant 2: 32,500 pounds 

• Plant 3: 18,000 pounds 
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• Plant 4: 17,350 pounds 

Production levels in plant 1 were approximately 3.5 times larger than those in plants 

3 and 4. Production levels in plant 2 were approximately half the level of those in 

plant 1 but almost twice as high as those in plants 2 and 3 during the air sampling 

periods. Production levels did not vary substantially from year to year in plants that 

were re-sampled a second time. Due to the fact that some production processes are 

more automated and less labour intensive than others, the ratio of pounds of crab 

processed to the number of workers on a shift varied between plants with workers 

in plant 1 processing more crab per worker than in the other plants. However, as 

indicated by the PBZ sample results, this did not mean higher exposures for these 

workers. Differences in the raw material, the actual process, and end product would 

also have affected the nature and extent of their interaction with each pound of crab 

they handled and ultimately their allergen exposures. In addition, because of com

plex airflows and production processes like cooking, cleaning, etc., individual allergen 

exposures would be affected not only by the amount of crab being manipulated by in

dividual workers and the nature of their manipulation but also by indirect exposures 

related to their proximity to other workers, to processes responsible for aerosolizing 

the allergen, and to local and general airflow patterns. 

In plant 2, products consisted of approximately 80% industrial cluster and 20% 

trimmed grade A products. In plant 3, production consisted of sections where limited 

cleaning using water jets took place prior to cooking. The cooker was in the main 

production area but hooded and vented. Sections were automatically graded in the 

second year and the product was brine frozen with no post-cooked crab cleaning. 

Meat products are not processed in this plant. In plant 4, production was 100% snap 

and eat crab sections that were cooked, cleaned with .rotating brushes, graded, scored 

using table saws and brine frozen. In all participating plants the crab is butchered 
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raw. However, in plant 1, butchering takes place in the main production area and 

occurs after blanching and cleaning whereas in three of the plants, butchering takes 

place in a room partially or almost completely separated from the main process

ing area. Products consisted primarily of sections with some whole crab production. 

Butchering, cleaning, sorting and grading occurred after blanching and cleaning using 

water jets but prior to cooking. All cleaning was done manually on the raw product 

only and did not involve the use of mechanical rotating brushes. Mechanical venti

lation was in place along with some enclosed and nonenclosed hooding for particular 

processes like blanching, water jet cleaning and cooking. 

In order to determine the amount of aerosolized crab protein that may be present it 

was necessary to sample the air using both area samplers and personal breathing zone 

(PBZ) samplers. PBZ samplers were voluntarily worn by workers at each process of 

the processing line in each of the four plants. In addition to the normal processes 

that were common to all plants, PBZ's were also worn by workers at plant specific 

locations comprising a variety of specialized tasks. The area samplers were placed in 

strategic locations throughout the plant so as to not disturb the natural production 

flow and at the same time obtain the most representative samples possible. In all 

cases, area samples were based on samples of two hours duration. There was some 

variability, however, in the duration of PBZ air samples with most, except those in 

plants 4 and 1 lasting the length of a full normal shift (approximately 8 hours). In 

plants 4 and 1, pumps were worn for an entire shift if possible, however the average 

sampling duration for the PBZ's was about 250-300 minutes (4-5 hours). Sampling 

took place whenever the workers were processing crab. In all four plants, the pumps 

ran at a constant flow rate of 3.0 1/min. 

Filters in both type of air samplers were polytetrafluoroethylene (PTFE) and were 

99.9 % efficient for 0.3 micron size particulates. For the analysis of the allergen 
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samples themselves, a pool of reactive sera from snow-crab sensitized individuals was 

assembled. Snow crab cooking water proteins were immobilized on the surface of 

Immulon IV (Dynex Corp., Chantilly VA, USA) plastic [Ll wells. The cooking water 

protein was diluted to a concentration of 10 J.Ll/ml in 200 mM carbonate buffer, pH 9.2, 

and 100 [Ll was added to each well and the mixture incubated at room temperature 

overnight. After washing the wells, 50 [Ll of the filter extract or dilutions of the snow 

crab cooking water protein reference standard containing defined mass units, along 

with 50 [Ll of the serum pool. This reaction mixture was incubated overnight at room 

temperature. Rabbit !-labeled anti IgE was added to each well (100 ftl) and again 

incubated and washed the mixture as before, prior to gamma-scintillation counting. 

A total of 237 air samples were obtained for allergen sampling, 108 were PBZ samples 

and 129 were area samples. Fourteen PBZ and 37 area samples were collected in plant 

1 (the only plant for which we have air samples for only one season), 43 PBZ and 38 

area samples were collected in plant 2, 35 PBZ and 37 area samples were collected in 

plant 3, and 16 PBZ and 17 area samples were collected in plant 4. These figures do 

not include the 10 air samples done for the raw crab experiment. 

In general plants 2 and 4 had substantially higher levels than the other two plants 

indicating that there was no close relationship between allergen levels and the overall 

volume of crab processed. This suggests that production processes and ventilation 

play a key role in dictating allergen levels. 

As indicated in Figures 3.5 and 3.6, a comparison of allergen levels in samples from 

the four study plants by job task indicate that high allergen levels are associated 

with particular job tasks including in particular sawing and sorting and brushing. 

The pattern is generally similar for PBZ and area samples. 

Figures 3. 7 and 3.8 compare allergen levels associated with areas where workers are 

handling raw versus cooked crab. Cooking areas refer to the areas adjacent to the 
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the plant may not have been entirely typical during the air sampling visits. Several 

workers noted that there were virtually no boil-overs during air sampling. It was 

also reported that the plant was producing mainly raw crab during that time. It is 

likely that allergen levels in this plant are higher than those reported when crab is 

being cooked and the cooker is boiling over. The research team was hoping to re

sample the air in this plant during the 2003 processing season but the plant owners 

could not be contacted to arrange a time. Interviews with plant workers indicated 

that plant 2 processes some meat products from any damaged crab that is obtained, 

however no meat production was taking place when air sampling was done during the 

2002 season. Given that the air sampling results indicate that cleaning, washing and 

sawing cooked crab is associated with high allergen levels in the absence of effective 

ventilation, it is likely that allergen levels in this plant are higher than those reported 

when meat is being produced. 

All PBZ and area air sampling results have been tabulated for each plant in each of 

the years that air sampling was carried out. They have been included in appendices 

A, B, C, and D. 
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3.3 Allergen Levels 

The crab asthma study is, in general, essentially comparing allergen levels and venti

lation systems in four plants that have different production processes in addition to 

processing differing volumes of crab. Production volumes in these four study plants 

range from less than 500,000 pounds per year of raw crab up to 6 million pounds 

per year. Concentrations of airborne snow crab allergen in the 4 participating New

foundland and Labrador plants ranged from less than 10 ng/m3 to greater than 1000 

ngjm3 . Two of the four plants demonstrated maximum measured airborne concen

trations in the 100's of nanograms while the other two had maximum concentrations 

in the 1,000's. In instances where bio-aerosol concentrations of asthmagenic agents 

were observed to vary by orders of magnitude of this kind, a significant risk exists for 

sensitization to occur. High concentrations have been observed more often in certain 

areas of the processing plants and have also been associated with discrete tasks. Re

cent Quebec research has identified plants with allergen levels in all areas below 100 

ngjm3 , similar to two of the four plants in this study which have been identified to 

also have levels close to this limit. 

It has been recommended that permissible maximum exposure limits not exceed 100 

ngjm3 from PBZ samplers with this threshold being lower for area samples. Plants 

have been identified in Quebec and in Newfoundland as having concentrations con

siderably below 100 ngjm3 suggesting that this is an achievable goal. While it is 

true that some workers who are already sensitized may react to lower concentrations 

(i.e. less than 100 ng/m3 ) it seems most prudent to recommend target concentra

tions which are achievable and most likely to prevent or minimize sensitization. If 

the maximum is set at 100, there will be many areas in the plants with substantially 

lower levels where sensitized workers could be relocated, although this will have to 

be done with close monitoring and understanding that levels may still be too high for 
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highly sensitized individuals. 

This maximum upper limit of 100 seems appropriate for the short term, however it 

can be reviewed and adjusted on the basis of future research. Based on the fluidity 

of crab processing and related changes in final products that occur within individual 

plants, a design that will completely rid the plant of allergens will be difficult to 

achieve but by no means impossible. Fluidity of the workers and the equipment are 

just two of the many design parameters that have to be taken into account in the 

design process. If it becomes possible to accurately determine the locations of the 

allergen concentrations within the plant then safely removing them is indeed feasible. 
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3.4 Allergen Identification 

The most abundant, airborne protein sampled in the crab plants has been identified 

as tropomyosin. This protein was found on an air sample collected during the study. 

It was also found in steam produced while cooking snow crab. Although only one 

of the airborne proteins in crab plant atmospheres to which workers are reacting, 

tropomyosin is an excellent quantitative marker for allergen levels. If tropomyosin 

levels go up, so do the levels of the other proteins. Prior to the crab asthma study, 

no information was available about the proteins that are allergenic in snow crab, 

particularly in occupational settings. 

The pool of IgE-positive snow crab worker sera reacted to several proteins present in 

a filter from an air sample taken during this study. The molecular weight of these 

proteins were found to be 50.1 kD, 43.2 kD, 34 kD, 18.5 kD, and 14.4 kD where 

the 34 kD protein elicited the greatest intensity of IgE-reactivity in the sera sample. 

These findings are consistent with a previous report by (Leung et al, 1998) that 

describes the molecular characteristics of the major IgE-reactive molecule in crab 

as having a molecular weight of 34 kD. This investigation was based on the sera 

reactivity (IgE) of individuals who have an allergic reaction to crab after it has been 

ingested into the system. The molecular mass of the protein tropomyosin has been 

determined to be around 50 kD. However, in general, high molecular weight sensitizers 

(proteins or glycoproteins) are in the 5-70 kilo daltons range and can provoke a specific 

IgE response in workers exposed to these agents (Houba et al, 1996). For example, 

sensitization to a high molecular weight antigen liberated during the crushing of shells, 

the boiling of whole crab, and the separation of legs and claws has been demonstrated 

(Cartier et al, 1986). 

The presence of IgE-reactivity in the snow crab worker sera to the proteins in the 

filter extract provides evidence of a direct link between occupational exposure and the 
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risk of sensitization, as opposed to other routes of exposure such as ingestion of the 

proteins. The presence of snow crab proteins in the air filters indicates that numerous 

snow crab proteins are aerosolized during processing indicating a potential source of 

worker sensitization that may be especially important in occupational asthma and 

rhinitis. Evidence from mass spectrometry suggests that one of the important proteins 

to which workers are becoming sensitized is in fact tropomyosin. Known to be an 

important crustacean allergen, tropomyosin was found in both the analysis of the 

contents of an air sample filters and in condensate made from the steam produced 

during cooking of snow crab. This work also indicated reactivity to some other 

proteins and indicated that cooking may in fact alter these proteins. 
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3.5 Cleaning Chemicals 

Interviews with workers and management in all four plants has led to monitoring 

more closely the potential role played by cleaning chemicals and cleaning processes 

in contributing to breathing problems among plant workers. It was discovered that 

in plants 2, 3, and 4 some of the regular crab processing workers also do clean-up. 

It is therefore possible that some workers may be experiencing breathing problems 

as a result of a reaction to some or all of the cleaners rather than a reaction to the 

crab. This is important because some of the breathing problems identified in worker 

histories could be caused by exposure to cleaning chemicals. Unfortunately all of 

the MSDS's (Material Safety Data Sheets) for the cleaning chemicals used in some 

of the plants were not obtained. According to the MSDS's received, however, the 

chemicals being used can indeed cause serious respiratory problems. The obtained 

MSDS's for cleaning chemicals used in crab plants generally do not indicate that 

workers need to wear masks. However, they assume the presence of an adequate and 

appropriate ventilation system. Minimizing exposures to cleaning chemicals as well 

as crab allergens might also reduce the risk of breathing problems. 
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3.6 Raw Crab Experiment 

Research to date has led to an hypothesis that processing the crab prior to cooking 

results in lower levels of aerosolized allergens. An experimental study has been de

signed and carried out to test this hypothesis. The main question that needed to be 

answered was would processing the crab before cooking it reduce allergen levels by 

a minimal or significant amount. Research to date has also suggested that process

ing (cleaning, brushing, etc.) crab prior to cooking results in less aerosolization of 

allergens than when the same processes are executed after the crab is cooked. The 

relatively low allergen level results obtained in this study associated with work areas 

where raw crab is being handled would tend to support this hypothesis. Looking 

more closely at this question in the last year of the study we designed an experiment 

to test this hypothesis in one of our cooperating plants. 

The experiment was carried out in plant 4 on August 18th, 2003. The experiment 

was conducted by sampling the air using personal breathing zone samplers (PBZ's) 

at the beginning of the shift until a quota of 500 pounds of raw crab was processed. 

The cassettes containing the samples were then removed from the PBZ's and replaced 

with new ones and then same process was repeated with cooked crab instead of raw 

crab. The raw crab part of the experiment required a reorganization of the normal 

production process at this plant for the period of time needed to process the crab 

prior to cooking. This meant that the crab was butchered as per normal and then 

proceeded to the main processing area instead of heading to the cooking room to be 

cooked. Once in the main processing area the normal processes were carried out in 

the same manner as if the crab were cooked. Finally the crab was sent to the cooking 

room and then to the brine freezer, packed, and stored in the blast freezer. The work 

area was then cleaned in preparation for the cooked crab part of the experiment. 

This part of the experiment was carried out with the plant processing crab as per 
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usual, with samples being taken until the 500 pound quota had again been reached. 

It should be noted here that since there were only 5 PBZ's in operation during this 

experiment and due to the fact that there are only about 7-8 workers involved in the 

experiment, workers had to move from process to process throughout the duration of 

the experiment to maintain the flow of crab. Results from this experiment are shown 

in Table 3.1. 

Table 3.1: Raw/Cooked crab experiment results 

Plant 4, Raw Crab Experiment Allergen Personal Samplers July 2111 , 2003. Sampler. Brad Pelley 

Calibrated by: Brad Pel~y On: Ju~ 21', 2003 

Sample I Pump I Sample Time On Time Oil Elapsed Flow Rate Area nglm Operations Monitored Rtmarks1C<>nd111ons TiPI nmi(mln ppm) Resuns 

1 1 
Allergen 7:30am 8:20am 50 3.110 Packing and <50 ~rading and cleaning aab and Processing raw crab. PBZ Cleaning tpackingintocrates 

2 2 Allergen 7:30am 8:20am 50 3.110 SawsJPaddng <50 Grading and cleaning sectbns as Processing raw crab. PBZ ~nasscoringclusters 

3 3 Allergen 7:30am 8:15am 45 3.110 Saws <50 Scores (Saws) the sections Processing raw crab PBZ 

4 4 Allergen 7:30am 8:10am 40 3.110 Saws/Packing <50 Grading and cleaning crab sections Processing raw crab. PBZ and Weights sweRasscoringcluslers 

5 5 Allergen 7:30am 8:05am 35 3.110 Saws 514 Scores (Saws) 1he sections Processing raw crab. PBZ 

6 1 Allergen 8:30am 9:15am 45 3.00 Packing 1052 Gradingandcleaningsections Processing cooked crab. PBZ 

7 2 Allergen 8:30am 9:10am 40 3.110 Saws 550 !scores (Saws) lhe sectkms Processing cooked crab. PBZ 

8 3 Allergen 8:30am 111 NIA 3.110 Saws NIA Scores (Saws)lhe sections Processing cooked crab. Pump was off when 
PBZ returned. 

9 4 Allergen 8:30am 9:10am 40 3.110 Saws 508 Scores {Saws) the sections Processing cooked crab. PBZ 

10 5 Allergen 8:30am 9:05am 35 3.110 Saws 619 !Scores(Saws)lhesectk>ns Processing cooked crab. PBZ 

From this experiment it can be seen that the allergen concentration levels when crab 

was being processed in the raw state were consistently lower than the levels observed 

during cooked crab production. There was however one curious reading occurring 

from the raw crab portion of this experiment, namely the 514 ng/m3 sample. An 

explanation for the probable cause for this reading is not known at this time. 

This simple experiment seems to validate the hypothesis that processing the crab raw 

seems to be somehow linked to a consistently lower release of crab proteins that have 

been linked to instance~ of crab asthma. The hypothesis also holds true in plant 1 
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where they do all their processing raw prior to cooking which seems to account (along 

with the ventilation system) for the relatively low levels of measured aerosolized al

lergens. These preliminary results may be perceived as an indication to all plants 

that currently process in the cooked state that they may want to re-evaluate their 

production methods to reflect the findings of this experiment and this research in 

general. However, because it is now known that allergens differ somewhat between 

raw and cooked crab there is a need to re-analyze the raw crab air samples using sera 

from workers reactive to raw crab to ensure that the results have not underestimated 

allergen levels associated with raw processing. In addition, the differences in allergen 

concentrations between raw and cooked crab processing are not large, something that 

is not surprising given the relatively small amount of crab (500 pounds cooked and 

500 pounds raw) and the level of sensitivity of the PBZ air sample results (less than 

50 minimum levels). It is important to verify these results further before making a 

recommendation to industry that they consider switching from cooked to raw crab 

processing. In addition, it is promising that the experiment found that raw pro

cessing resulted in higher yields, thus verifying anecdotal information received from 

researchers working in other provinces. 
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3.7 Result Summary and Discussion 

The primary goal of the research presented in this thesis is to examine interactions 

of possible aerosolized contaminants with simulated airflow patterns and velocity 

distributions within the crab plants involved in the study. Various ventilation methods 

will be examined to determine which ones prove to be the most effective in containing 

and eliminating aerosolized contaminants. In summary, the basic exposure control 

strategies that will be addressed are: 

• reduction/ elimination of contaminant sources 

• local hooding with exhaust 

• general ventilation 

• other exposure control techniques 

Reduction or elimination of the contaminants at the source is probably the most ef

fective control method. Variations in processing techniques are currently being inves

tigated and may prove to significantly lower the amount of antigen being aerosolized. 

Isolating various processes such that the aerosolized particulate can be denied access 

to the rest of the workplace will undoubtedly lower overall contamination levels. 

Local source control is more effective than control by general ventilation methods due 

to the fact that the particulate, namely proteins, are generated in large volumes and 

in some instances with high velocities (brushing, sawing processes). Air movement 

through local hoods is vented at high velocities and exhausted directly to the exterior 

of the enclosure. The downfall in using this type of control strategy is that for all 

the air that is exhausted there needs to be at least equal amounts of makeup air 

brought back inside. This may be undesirable as new air may need to be filtered 
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and conditioned again before it enters the workplace which wastes valuable heating 

and cooling energy. Using general ventilation whereby the contaminant concentration 

levels are diluted to acceptable levels is normally not the primary exposure control 

strategy implemented. The ideal situation would be to avoid having contaminants 

mix throughout the workplace if at all possible. Due to the fact that the quantities of 

contaminants released are unknown, exhaust air may need to be cleaned before being 

released into the community environment (McDermott, 1977). Another possibility 

is the recirculation of indoor air through various filters without having to exhaust 

any indoor air or bring in any new outdoor air. The lack of even a small percentage 

of fresh air may cause problems if the filters become plugged or fail to capture the 

airborne particles. 

Other exposure control methods can be implemented other than introducing venti

lation systems. Contamination that originates from crab protein antigens, cleaning 

agent fumes, or other miscellaneous sources can be controlled by a variety of other 

methods. In the case of the cleaning agents, substitution of less hazardous substances 

may drastically reduce harmful substances in the workplace. Changing the produc

tion processes to reduce the amount of contaminant released into the workplace is also 

a viable exposure control method .. Air cleaning strategies have not been considered 

as a practical exposure control technique, mainly due to the fact that in general the 

air is cleaned after the contaminants are fully dispersed and are therefore at their 

lowest concentration. Regardless of the particular control strategy chosen the means 

by which the toxic contaminants are generated and eventually distributed throughout 

the workplace needs to be determined. 

At this point in the study, the assessment of any existing ventilation systems that were 

present has provided a better sense of how the air may or may not be moving inside the 

plant. Lack of ventilation in many areas of the plants will most likely contribute to the 
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buildup of allergens over the course of the day as there are no means by which allergens 

can be exhausted. Areas of high allergen concentrations that may coincide with areas 

with little or no means of ventilation is an important correlation. Identification of 

high exposure areas will aid in the improvement of ventilation methods in those 

areas. However, due to the fluidity of the crab industry and the constant movement 

of workers and equipment to meet the needs of the industry, ventilation design is a 

formidable task. Therefore a need exists to develop numerical simulations in order 

to obtain a better understanding of the airflow characteristics in a typical processing 

environment with the intent on providing feasible and viable solutions that can be 

examined and possibly implemented. 

From the plant histories we have learned that most plants differ from one another 

and no two are exactly the same. Work histories are important in the attempt to 

correlate instances of OA to specific workers. The location in which they worked, 

how long they worked there, what the ventilation systems were like during that time, 

what type of crab they were processing, and how much of it they were processing are 

all examples of important issues provided by individual plant histories. In addition, 

background information on previous processing techniques and ventilation methods 

are helpful in identifying areas that have been altered over time as well as areas that 

could be improved. 

Along with the plant histories, processing overviews are essential in attempting to link 

high allergen concentrations to specific crab processes. The proximity of processes to 

each other is common in crab plants, which makes it difficult to determine which pro

cess is responsible for the allergen concentrations measured in the air. Each process 

is unique in that they each can provide distinctive methods of allergen production. 

It was important to understand the ways in which the workers complete their tasks 

as it provides insight into the probable locations of allergen generation, magnitude 



CHAPTER 3. - Field Research & Raw Data Collection 76 

and direction of allergen projection, and a basis for preliminary exhaust hood design. 

Since crab processing environments differ from other industrial environments, ven

tilation methods have to be designed with this in mind to ensure both an effective 

contaminant capturing and ergonomically feasible design. Knowledge of each process 

and how they function together is also important in identifying areas that may be 

changed or improved. Changing and reorganizing processing methods may have an 

appreciable effect on resulting allergen levels. Preliminary experiments have shown 

that by processing crab in the raw state instead of cooked without actually changing 

the actual processing methods has produced lower allergen levels. 

Temperature and relative humidity values were collected during the air sampling 

periods to attempt to develop a correlation between high allergen readings and high 

temperature and/or humidity readings. Identifying areas where temperature and 

humidity values are high is important for a couple of reasons. Areas where the 

temperature and humidity are high in addition to having high allergen levels can 

cause a very unhealthy working environment. The air tends to have a 'heavy' feeling 

and breathing may become difficult, as is normally the case in any area experiencing 

high temperature and humidity values. Also, areas of high humidity, especially in the 

cooking areas can indicate the presence of steam that suggests that the cooker may 

be leaking steam into the working environment and thus the venting of the cooker 

may need to be examined. Steam leakage can also cause the walls and ceilings of 

the workplace to become damp and moldy, thus introducing another contamination 

source. Raw data shown in appendices E, F, G, and H was collected using data loggers 

which were activated and deactivated via computer software. The data loggers were 

placed in selected areas and run for a variety of times from a couple of hours up to 

twenty four hours. 
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Air sampling results obtained from the PBZ and area samplers have identified areas in 

the crab plants producing a variety of allergen concentration levels. The concentration 

levels range from less that 10 nanograms per cubic meter to levels in the thousands of 

nanograms per cubic meter. From this, we have learned that different processes seem 

to be responsible for the different allergen levels. When allergen levels at certain 

processes are compared across plants, the results are similar suggesting that some 

processes are indeed more likely to produce allergens than others. 



Chapter 4 

Local Ventilation Conceptual 
Design 

Ventilation is undoubtedly one of the key methods for reducing worker exposure to 

airborne contaminants resulting from crab production processes such as butchering, 

cooking, cleaning, sawing, sorting, grading, weighing, brine freezing, and packing. 

Due to the fact that air is virtually invisible it is often difficult to visualize its move

ment through an enclosure such as a room, into a ventilation system, through the 

connecting ductwork, and exhausted to the outside. Since the laws of fluid dynamics 

must always be adhered to, a system must be designed in accordance with these laws 

to ensure that the system works properly. In most cases, ventilation systems that do 

not work properly are deficient because one or more airflow principles are violated 

in their design or operation (McDermott, 1977). The ideal situation is to be able 

to design a system that will capture or contain all airborne contaminants emanating 

from a particular process or operation. A local hood design needs to be designed 

such that it minimizes airflow requirements, protects worker breathing zones, follows 

design recommendations, and makes it usable by workers to avoid all common hood 

selection fallacies. 

78 
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Designing local or general ventilation systems for existing plant structures that were 

not designed to incorporate any required ventilation is difficult and sometimes proves 

to be virtually impossible. In each of the four participating crab processing plants 

in this study, all but one had little or no formal ventilation system installed able to 

effectively remove harmful airborne contaminants from the occupied spaces. As a· 

result, the design options are limited and the best case design may not be feasible 

mainly due to lack of space for installation. :Processes are sometimes laid out in such 

a way that inhibits installation of a system. 
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4.1 Local Exhaust Ventilation Systems 

A simple exhaust system can be said to exist of a fan, ducting, and an array of 

air inlets and exhaust outlets based on individual design specifications. The fan is 

the energy source that causes the air to move by transferring air molecules from the 

downstream duct to the upstream duct. The act of physically removing air particles 

from the downstream duct causes a partial vacuum to be created inside the duct. 

Air molecules move from outside the duct to fill this partial vacuum, and it is this 

motion that constitutes the airflow into the hood (Burgess et al, 1989). In general, 

air is therefore being moved from an area of high pressure to an area of lower pressure 

by a fan. The fan has to produce enough negative pressure to draw in the required 

amount of air into the exhaust hoods such that airborne contaminants are exhausted 

from the workplace. 

Local exhaust ventilation (LEV) systems are designed to collect and remove airborne 

contaminants consisting of particulates (dust, fumes, smokes, fibers), vapors, and 

gases that can create an unsafe, unhealthy, or undesirable atmosphere (ASHRAE 

Handbook (Applications), 1999). LEV systems are normally used in situations where 

the control of air pollutants, is desired and the capture and exhausting of these 

pollutants is of the utmost importance. Local exhaust systems can be classified by 

contaminant source type, by hood type, and by system mobility (ASHRAE Handbook 

(Applications), 1999). These three classifications have been used to differentiate 

between the exhaust system types investigated here. 

A process or operation needs to be fully understood before an effective exhaust hood 

design can be conceived and implemented. The size and type of hood must match 

the type and geometry of the contaminant source or sources such that the contami

nant can be effectively removed. Posokhin (1984) classified sources as either buoyant 

(heat), non-buoyant (diffusive), or dynamic. The main source of appreciable heat 
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generation present in crab plants capable of forcing allergen into the air would prob

ably come from cooked crab, cookers and cooling tanks. Buoyant sources have not 

been examined in this thesis as they could not be modeled at this time. The focus is 

therefore directed toward non-buoyant and dynamic sources. As a result, it will be 

assumed that any surrounding air patterns will ultimately determine dispersion rates 

and facilitate particle transportation to adjacent areas instead of any temperature in

duced movement. Non-buoyant sources are present in crab plants at locations where 

crates of cooked (and possibly raw) crab are stockpiled to be brushed, sawed, cleaned, 

packed, etc. Dynamic sources are present in areas where the allergen is forced into the 

air by a high velocity particle flow, as is the case with the rotary cleaning brushes at 

the cleaning/sorting table or the table saws at the scoring tables. Both of these tables 

include a mixture of these two source types as crab is also piled near and on top of 

these tables. An alternative source of allergen production could originate from crab 

waste collected in plastic crates underneath the sorting/ cleaning table. The waste 

generally consists of bits of shell, dirt, and broken legs. This crab waste is normally 

removed from the table via a conveyor belt with the majority of it being collected by 

the crates but some is wasted over the side and onto the plant floor. 

Exhaust systems can be further classified by hood types, which basically consist of 

either the enclosing type or the non-enclosing type. Enclosing hoods are capable of 

better contaminant control and removal due to the fact that any air movements within 

the workplace do not affect the removal process making the subsequent exhaust rate 

of the hood minimal. The main problem with using totally enclosing hoods is the 

ensuing lack of access to the process, thus resulting in their use being restricted to 

the most hazardous of exposures. In the snow crab industry the workers must have 

access to most processes in the processing line, especially the cleaning/sorting and 

sawing tables in addition to any batch cooking or cooling. The main exception to 

this are the continuous cookers and coolers that only need a worker to load the crab 
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at one end and a worker to remove the crab from the other end. 

Non-enclosing hoods are normally used if the process being exhausted needs to be 

accessible to the workers, as is the case with many of the processes in the snow crab 

industry. With these hoods, contaminants released outside the hood must be cap

tured by the hood rather than allowed to escape to the general workspace. Since 

totally enclosing a sorting or scoring table was not a feasible option, non-enclosing 

types of exhaust hoods were examined for methods to effectively control and exhaust 

pollutants. Unfortunately, from the time the contaminant is released to the time 

it is captured by the exhaust system it can undergo numerous adverse effects from 

external sources such as extraneous air movements due to nearby structures and mov-

ing machinery. It. is therefore important to note that airflow patterns that surround 

processes must be paid close attention to in order to allow a non-enclosing hood to 

function at its maximum capacity. Figure 4.1 depicts the two general hood types. 

ENCLOSING HOOD NONENCI.OSING HOOO 

Figure 4.1: Enclosing and nonenclosing hoods (ASHRAE Handbook (Fundamentals), 
2001) 

Non-enclosing hoods are further classified as updraft coaxial, side draft (or slotted), 

and downdraft types, depending on the mechanism by which they remove the plume 

generated by the contamination source, as can be seen in Figure 4.2. All three 

hood types are examined in this thesis, but due to various limitations that become 
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evident later, only updraft coaxial and slotted draft hoods have been presented and 

numerically modeled. 

A. UPDRAFT COAXIAL 

B. SIOEDRAFT 

C. DOWNDRAFT 

SOURCE 

CONVECTIVE 
PLUME 

Figure 4.2: Fundamental exhausting methodologies (ASHRAE Handbook (Funda
mentals), 2001) 

As a final note, in addition to classifying systems by contaminant source type and 

by hood type we can also classify by system mobility. Local exhaust systems with 

non-enclosing hoods, such as the ones analyzed here, can be either stationary, mov

able, portable, or built-in. Since cleaning/sorting tables, sawing/scoring tables and 

cooking/ cooling tanks remain at a fixed location during production, only stationary 

types of hoods have been applied. 
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4.2 Non-buoyant and Dynamic Contaminant Sources 

There are a number of non-buoyant allergen sources in a typical crab processing plant 

capable of releasing harmful allergens into the workplace. Some of the obvious sources 

occur from stockpiled crab awaiting further production (weighing, sorting, etc.), crab 

waste located throughout the plant, dirty equipment, as well as worker clothing and 

apparel. Crab at plant 3 was witnessed to be piled neat the brine tank waiting to 

be weighed before heading to the brine tank, thus constituting a non-buoyant source. 

This crab sitting in the main processing area could come in contact with an airflow 

and result in allergens being transported to different areas of the plant, depending on 

the strength and direction of the air flow patterns. 

In this particular case, the crab is iced, which will probably reduce the possibility of 

allergen being released into the workplace. However, in many cases the cooked crab is 

not iced thus increasing the risk of air contamination. Another possible contamination 

source is located at the sorting/ cleaning tables in the form of crab waste collection 

crates. When the workers clean the crab the waste usually gets removed from the 

table via a water filled trough or conveyor belt located underneath the brushes. In 

plant 2, crab waste was partially collected in a crate placed in an area underneath 

the cleaning table ensuring that the majority of the waste was contained. 

A fair portion of the crab waste actually ends up on the plant floor which is most 

likely transported around the plant via worker movement. Better control of the crab 

waste troughs could possibly be achieved simply by using bigger crates or better 

placement of the existing crates. At any rate, this collection of cooked crab waste 

would seem to be an ideal location for allergen generation. This forced impact caused 

both by machinery coming in contact with the crab and the crab falling from the 

table to the floor can be a catalyst for the aerosolization of allergens. Since the 

cleaning/sorting tables, scoring tables, and batch cooling tanks are being considered 
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in this thesis as the main contaminant sources, correctly designed overhead hood or 

slotted hoods may be the ideal solution. Normally workers are partially leaning in 

over the cleaning/sorting tables when they use the rotary brushes to clean the crab. 

A similar situation occurs at the sawing/scoring table with the workers partially 

leaning over the table saws. Caution should be exercised when designing hoods for 

these areas, in particular overhead hoods, as they may draw in air from outside the 

hood area and further contaminate the breathing zone of the workers, as can be seen 

in Figure 4.3. 

Figure 4.3: Influence of hood location on contamination of air in the operator's breath
ing zone (ASHRAE Handbook (Fundamentals), 2001) 

Since the contamination sources are generally located at the different processing lo

cations the probability of drawing in contaminants from other processing areas could 

be reduced if the exhaust rates and hoods configurations are specified correctly. The 

close proximity of the processes in most of the plants could cause an incorrectly 

designed hood to draw in contaminants from nearby locations. 

Rotary brushes and table saws pose a different problem due to the dynamic nature 

with which the particulate is being released into the air. The brushes are 8 inches in 

diameter and 4 inches wide and are made of a hard, abrasive plastic material. They 

rotate away from the worker and are used to remove any dirt, barnacles, leech eggs, 



CHAPTER 4. - Local Ventilation Conceptual Design 86 

or any other material that needs to be removed before weighing, grading, freezing, 

etc .. The brushes are partially housed within the table in a small metal trough located 

underneath which attempts to collect the released particulate from the brushes. Only 

the bottom three quarters of the brushes are actually housed by the metal trough with 

the top portion exposed. The particulate being released into the air as a result of the 

crab being held against the brushes departs within a certain angular velocity range 

with respect to the table surface. Figure 4.4 below shows a possible approximate 

angular range of particulate release into the breathing zone of the worker. These 

detailed particle trajectories around typical grinding operations were observed by 

Bastress et al (1974). 

Figure 4.4: Possible direction of rotation and particulate release angle from rotary 
brushes (Bastress et al, 1974) 

Larger particles do not remain airborne, but intermediate size particles remain air-

borne after they are released into the air from the brushes. From Figure 4.4, it can 

be seen that fine particles will usually follow the brush and are dispersed when they 

meet the next portion of crab being cleaned, thus making their path hard to predict. 
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The particulates associated with allergen will be represented by the entire range of 

sizes ranging from sub-micron to 20 microns or greater. Some will be liquid aerosol 

and some will be in a solid dispersion. If it is imagined that Figure 4.4 is the top 

quarter of the brush closest to the worker then it can be seen that particles in the 

range of 10-30 microns will be projected back into the worker breathing zone while 

particles in the 0-6 micron range will tend to travel around the periphery of the brush 

and be released away from the worker. 

Similarly, the table saws at the scoring table also release particulate into the worker 

breathing zone. However, the fine particulate from these most likely in the range of 

0-1 J-lm. In both cases, a hood correctly designed and installed should reduce the 

accumulation of particulates in the worker breathing zone. 

4.3 Airflow Patterns 

Understanding the nature of airflow patterns in general is essential in order to realize 

that a non-enclosing hood must reach out and capture the contaminated air beyond 

the boundaries of the hood. A poorly designed hood will invariably ensure that con

taminants will escape in significant quantities into the workplace and cause increased 

worker exposure. Elements of critical importance in designing non-enclosing hoods 

for contaminant capture are; 

• capture velocity required at the point of contaminant release and the surround

ing environment 

• airflow through the hood required to obtain the desired capture velocity outside 

the hood 

• hood geometry 
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The proper determination of the capture velocity is critical in the design of a non

enclosing hood. Capture velocity (Yc) is defined as the minimum hood-induced air 

velocity necessary at the point of contaminant generation to capture and direct the 

contaminant into the hood (Industrial Ventilation, 1988). Capture velocity depends 

on distance from the hood, with increased distances evoking turbulence effects from 

various structures. The capture velocity must therefore be able to overcome any 

additional velocity disturbances present at the point of contaminant release. Once 

the necessary capture velocity is specified it is then used to determine a volumetric 

flow rate ( Q f) for the exhaust hood, keeping in mind that the selection of a capture 

velocity is by no means a straightforward task. To illustrate the importance of air 

patterns in the vicinity of a hood, consider the following situation depicted by a 

simple overhead hood in Figure 4.5. 

Figure 4.5: Overhead hood with contaminant source at location x 

If it is assumed that all contaminant release processes occur in still air, then the value 

for the capture velocity Vc at point x could take on an easily determined numerical 

value. This still air situation would cause the determination of the magnitude of 

Vc to be trivial since all of the air passing point x will eventually enter the hood. 

However this assumption of a still air situation is unrealistic in a typical workplace 

environment and in particular the fast paced crab industry. 
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Air velocities created by a non-enclosing hood are imposed on a complex airflow pat

tern which is always present due to other sources of air movement, such as perimeter 

infiltration and process-induced airflows (Burgess et al, 1989). When a hood is intro

duced to real world conditions, competing airflows will distort the generated velocity 

contours. Distortions can arise from upward/ downward convective flows, moving peo

ple, drafts from doors and windows, variations in hood design such as adding flanges 

and vanes, flow separation around a person or object in front or near the hood, and 

drafts created by equipment operation. Due to the difficulty in quantifying these var

ious airflow patterns, for demonstration purposes, a constant and uniform cross-draft 

parallel to the hood face has been assumed as is shown in Figure 4.6. 

-=-+~--------: 
I 

Figure 4.6: Uniform cross draft 

If the general cross draft has a velocity of Vd at point x then the total velocity at 

point x is the vector sum of the two 

Vrotat = Vc + Vd ( 4.1) 

Whether or not the contaminant is drawn into the hood will depend on the relative 

magnitudes of 11;, and Vd, as well as the distance between the release point of the 

contaminant and the hood face opening. This illustrates the importance of cross-
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drafts and how they can affect the performance of non-enclosing hoods, especially 

when the nature of the surrounding environment can produce complex flow patterns. 

In theory, were there no cross-drafts present then all of the contaminants in the 

hood capturing vicinity would be captured by the hood and exhausted from the 

workplace, however this is not likely to be the case. Each process/operation must be 

treated individually in that a specific capture velocity may be required whilst taking 

into account specific airflow patterns in the hood vicinity due to the nature of the 

workplace and its daily operation. 

The inability to quantify both the existing airflow patterns and the effect of exhaust 

systems on those patterns limits the estimation of hood performance to an approx

imation. Given this, current design procedures result in capture velocities specified 

in a manner that acknowledges, either implicitly or explicitly the uncertainties in the 

design process (Burgess et al, 1989). Table 4.1 shows the typical ranges of capture 

velocities for different contaminant dispersion characteristics (Alden and Kane, 1982). 

Table 4.1: Range of capture velocities 

Condition of 
Contaminant Dispersion 

Released with essentially no velocity 
into still air 

Released at slow velocity into 
modemtely still air 

Active generation into zone of rapid 
air motion 

Released at high velocity into zone of 
very rapid air motion 

Examples 

Evaporation from tanks, 
degreasing, plating 

Container filling, low-speed 
conveyor transfers, welding 

Barrel filling, chute loading 
of conveyors, crushing, cool 
shakeout 

Grinding, abrasive blasting, 
tumbling, hot shakeout 

Capture Velocity 
(m/s) 

0.25 to 0.5 

0.5 to 1.0 

1.0 to 2.5 

2.5 to 10 

The mam problem with this table is the range of capture velocities presented is 

large and the selection criteria are very qualitative at best. Some of the reasons for 

selecting velocities that fall within the high or low end of the velocity ranges are based 
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on whether or not the hood is large or small and whether or not the contaminants 

are released into quiet air, moderately still air, or rapid air. All of these terms are 

undefined and unquantified, which makes it very difficult to choose a representative 

velocity. The lower end of the given ranges should be used in instances where room 

air currents are minimal or favorable to capture, contaminants are of low toxicity, 

production volume is low or intermittent, and if there are large hoods moving large 

masses of air. Likewise, the upper end should be used if there are disturbing room 

air currents, high toxicity contaminants, high production volumes, or if there are 

small hoods controlling local areas (Industrial Ventilation, 1988). In light of this, to 

overcome any error in choosing suitable capture velocities, a series of velocity values 

encompassing the whole range of velocities presented in the table has been used in 

the analysis. A range of velocity values is needed to account for the dynamic release 

mechanism caused by the rotary brushes and saws due to the fact that particulate, 

and therefore allergen, is released into the air at much greater speeds (ACGIH, 1988). 

As a result, a relationship for the velocity field needs to be either obtained from 

experimental data or from existing theoretical relationships. 

Hood geometry is crucial in determining the amount of airflow needed for a specific 

application. The volume of airflow required to generate the necessary capture veloc

ities will depend on the distance from the hood face and will vary greatly with hood 

geometry and adjacent turbulent structures such as equipment and people. Center

line velocities decrease rapidly with distance from the hood face in that the velocity 

reaches 10% of the hood face velocity within the distance equal to the square root of 

the hood face area, or one duct diameter. This assumes that there is no interference 

from the previously mentioned turbulent structures which would result in a different 

percentage. The addition of a properly sized flange has been shown to reduce the 

required velocity. Empirically, based on centerline air velocities only, the capture 

velocity at any distance x is increased by a factor of 1.33 (Dalla Valle, 1952) after 
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flange addition. Typically, velocity distribution in the vicinity of the hood face area 

is not uniform but may assume a parabolic or even inverse parabolic profile. Wakes 

formed close to the hood sides, or vena contracta, reduce the effective suction area 

of the hood. The size of the wakes and how uniform the velocity will be, will depend 

on hood design. The formation of wakes and their magnitude will become evident in 

upcoming numerical simulations. 

Determination of the velocity contours and pressure distribution near the hood face 

and surrounding environment has been accomplished by numerical modeling where a 

variety of centerline velocity relationships and velocity profiles for overhead exhaust 

and slotted hoods have been examined. Specific models have been chosen to bridge 

the gap between the theoretical relationships presented and the real-world situations 

encountered in the crab processing plants. Unfortunately, the problem with using 

these velocity centerline models is that they ignore the effects of turbulent structures 

on contaminant capture and transport (Varely et al, 1997) and do not describe any 

sort of velocity profile at the hood face or in the immediate vicinity, both of which 

will be discussed more in a later section and numerically modeled in chapter 5. In 

addition, due to their inadequacy in describing velocity profiles, a variety of experi

mental profiles should be imposed on the hood face boundary to determine which one 

will produce the desired capture velocities. Uniform, parabolic, and inverse parabolic 

velocity profiles are therefore applied. 

4.4 Point and Line Sources 

The installation of either an overhead or slotted hood will undoubtedly reduce the 

amount of aerosolized allergens entering the breathing zone of the workers. An in

duced vertical or horizontal airflow will most likely exhaust the contaminants and 

not force them into the worker breathing zones. Aerosolized allergens will naturally 
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become weaker in concentration as they move away from their source. Theoretically, 

if the goal was to capture contaminants produced from a point source along the cen

terline of the hood then as long as the specified capture velocities along the centerline 

at that point were attained then it could be surmised that most if not all contami

nants would be exhausted. Unfortunately this is not the case due to the fact that the 

contaminants are not released from point sources but rather from sources having an 

appreciable and definite area. 

A point source can approximate airflow near a round or square/rectangular hood, 

and the linear source approximates the airflow near a slot hood (ASHRAE Handbook 

(Applications), 1999). A point source will draw air equally from all directions. If the 

exhaust flow rate is known, the velocity at any location x can be calculated by; 

(4.2) 

This shows that the point source is taken as a small sphere with a surface area of 

47rx2 . Thus, in theory the velocity is shown to be inversely proportional to the square 

root of the distance from the hood. A slot hood can be modeled by a line source 

of suction whereby the velocity diminishes with distance as a function of the surface 

area of a cylinder instead of a sphere. Ignoring the cylinder ends gives; 

Vx = [27rix] (4.3) 

Here the velocity is shown to be inversely proportional to distance (L) instead of the 

square root of the distance, which is an improvement. These relationships are valid 

only for hypothetical point and linear sources of suction. In reality, the suction is 

applied over a finite hood face area, and the hood and ducting take up a portion of 
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the physical space surrounding the point of suction. Thus the assumption of these 

sources of suction for overhead hoods and slotted hoods is not exactly applicable in 

real life and thus must be modified to satisfy realistic situations. To determine how 

the contaminants behave as they move away from their specific source is of interest 

because if their path can be determined, then the airflow patterns present will dictate 

their motion and how they will be affected by the exhaust air stream. It may also 

lend an insight into alternative methods by which the pollutants can be removed. 
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4.5 Overhead and Slotted Exhaust Hoods 

It is desirable to create an appropriate capture velocity at predetermined locations in 

front of the hood opening depending on the nature of the contamination. Unfortu

nately in overhead exhaust operations, air drawn into the hood opening is taken from 

all directions and even from behind the hood face itself, thus rapidly reducing the 

capture velocity with increased distance from the hood face. The addition of a simple 

flange will reduce the amount of air being drawn into the hood from locations behind 

the hood face and thus increase the capturing efficiency. Overhead and slotted hoods 

have been considered as mechanisms by which the airborne allergens will be removed. 

These hoods have been analyzed and compared with each other in order to determine 

the best hood design for the individual processes being modeled. Relationships pro

posed by Dalla Valle, Fletcher, and Conroy provide values for capture velocities at 

specified distances from the hood face along its centerline. An attempt will be made 

to mimic the values and trends produced by these relationships by imposing linear, 

parabolic, and inverse parabolic profiles on the hood face boundary. It is necessary 

to determine the velocity profile that will best represent the actual exhaust hood 

scenarios encountered in a typical crab processing facility. The relationships will be 

applied to both unflanged and flanged hoods in the following sections to provide cen

terline velocity information to further guide the velocity profiles mentioned here and 

included in chapter 5. 

4.5.1 Unflanged Overhead Hoods 

Since the hoods being considered are for typical cleaning/sorting, saw tables, and open 

cooking/ cooling tanks which are typically rectangular in nature, one such expression 

for the centerline velocity for an unflanged rectangular hood has been proposed as 

follows by (Dalla Valle, 1952). 
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(4.4) 

where Vx and V1 are the velocities at a location x along the centerline of the hood and 

at the hood face respectively. The hood area is denoted as A 1 and the x term is the 

distance from the hood area to the location of the contaminant source. It should be 

stressed here that this is an empirical formula rather than one developed from theory. 

The applicable ranges on the variables used in the above equations are as follows, 

where w and L represent the width and length of the hood face. 

X 
0<-<oo 

w 
(4.5) 

Since this is a centerline velocity function, the co-ordinate convention has been as

sumed to be x in the vertical downward direction and y in the horizontal left-right 

direction. Based on this relationship between the velocity, airflow, and distance from 

the source we can prescribe capture velocities at the point of contamination that will 

result in the required velocity at the hood face. It should be noted here that the 

capture velocity is analogous to the Vx term in all of the centerline velocity models 

presented. This makes sense because this is the velocity needed at a point x in order 

to ensure that the contaminant is captured by the hood air flow. Q f at the hood face 

is calculated simply by multiplying the hood face velocity by the hood face area in 

the following manner; 

(4.6) 

Another centerline velocity model has been proposed by Fletcher (1977, 1978, 1982; 

Fletcher and Johnson, 1982) and is given by; 
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(4.7) 

where Vx, V1, A1 and x are as before. Again, this is an empirical formula that accounts 

for hood shape rather than a formula developed from theory. The applicable ranges 

on the variables used in the above equations are as follows, where w and L represent 

the width and length of the hood face respectively. 

(4.8) 

[ ]

1/3 

(3 = 0.2 X 1/2 
(wL) 

(4.9) 

These models will predict the required flow rate Q f at the hood face using predeter

mined capture velocity values or vice versa. The hood area A1 for the cleaning/sorting 

table has been chosen to be 23ft x 8ft and 3ft x 1.5ft for the individual saw hoods. 

Rationale for choosing the areas was based on the typical sizes of the individual pro

cesses observed in plant 4. However, since the numerical modeling was completed 

in 2-D the length of the hood was taken to be 1 (i.e. unity) and all calculations for 

all hood cases (slotted and overhead) were completed using a length of unity. Flow 

rates required to produce the specified capture velocities at varying vertical distances 

x from the hood face while keeping the hood face area A1 constant have been plotted 

below in Figures 4.7, 4.8, 4.9, and 4.10. An overhead hood, unflanged or flanged, is 

classified as such if the aspect ratio (width/length) is greater than 0.2. 

These plots just basically provide a visual representation of the relationships so that 

the flow rates and distances can be more readily determined and understood. It can 

be seen that the flow rates required are much greater as the required capture velocity 
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F~r<· ·1.7. Dalla Valle predicted 001\· rates a1oo« the tmh·rline of the nnftanged 
clee.umg hood 

A oooling ttwk hood hw, taken on an arbitrru·y art·n of fifl<'1'U ft"t·t long by eight feet 

wide to lw ttst'<l with the ca.nopy hood relationship for nn O\'t'l'ht'nd hood for a batch 

cooking or <'Ooling tnnk gh~n below by (ACGIH, 1088). 

v = [ v1A 1 J 
' JAPD 

{4.10) 

\\'here p .. the pmmeter or the tank/prot't.,.. ond 0 .. the !lt'lght o( the canopy hood 

ai>0\1' the tank/pn>ce>>. As a rule tb.i:; type of canop)' hood is 1101 m'Omnlt'nded if 

,...,........,. 1nu.t bt·nd 0\'t'f the oourre (ACCIH 19~) .. \<a I'I'Sult thia typ<- of hooding 

•ill ouly he applioo to an open batdl cooker or ''l"'" coohng tAnk The hood is 

requin'll to f'XU·nd om ovt·r the limits of the process Uy 0.40 in order to ellb-ure 

ca.pltlre. Sin<'ll.' this typt" of hooding may not be J>()r;.•ublc in crab )>rot"t'"·"'bing due to 

rcquirt'CI workrr intcrtt.Ction with most prooes::;es it htt.'i only 1)("1.'11 hril'fly ~xAmincd here 
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Figure 4.8: Fletcher predicted flow rates along the centerline of the unflanged cleaning 
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These flow rates can be used to both provide the basis for a exhaust system design 

and to provide a visual representation of the flow rates, velocities, and distances to 

be used in the upcoming numerical analysis. 

As was previously mentioned, the obvious problem with the relationships proposed 

above by Dalla Valle, Fletcher, and Conroy is that they refer only to the air velocity 

along a line extending out from the center of the hood and do not define the velocity 

distribution across the hood face (McDermott, 1977). The airflow rates given above 

apply only to capture velocities specified along the centerline of the hood face assum

ing that there are no significant cross drafts present or any other type of interferences. 

In reality this is not normally the case and as a result these models provide a sound 

base from which to work. Based on this, it is necessary to be able to predict how the 

airflow patterns are distributed in the entire exhaust area such that a feasible and 

realistic hood flow rate can be chosen to exhaust the contaminants at a specific point 

of capture. This will be accomplished in the numerical simulations of the previously 

mentioned velocity profiles presented in the next chapter. 

4.5.2 Flanged Overhead Hoods 

In general an unflanged hood is sometimes inefficient due to the fact that air is also 

drawn in from behind the hood outside the contamination zone and from other sources 

in the plant, which unnecessarily increases the exhaust flow rates and energy costs. 

The addition of a simple flange has been shown to reduce the air that is being drawn 

from behind the hood and decrease the airflow needed to develop the same capture 

velocity, as can be observed by the slightly altered equation shown below (Dalla Valle, 

1952). 
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( 4.11) 

where Vx and v1 are the velocities as before. The applicable range is as follows 

X 
0<-<oo 

w 
(4.12) 

Conroy et al. (1988) also predicted the flow rate using the following relationship; 

v;- v, 
x- 2?T [0.25 + (x/w) 2]1/ 2 [0.25 + (x/£)2] 1/ 2 

(4.13) 

where Vx and V1 are again the velocities as before. Similarly the applicable range is 

as follows 

. X 
0<-<oo 

w 
( 4.14) 

These two models will again predict the required flow rate Q f at the hood face using 

predetermined capture velocity values or vice versa. The hood areas A1 are the same 

as was specified for the unflanged cases. A flange of width equal to the square root 

of the hood face area has been used. Flow rates required to produce the specified 

capture velocities at varying vertical distances x from the hood face while keeping the 

hood face area A1 constant have been plotted in Figures 4.12, 4.13, 4.14, and 4.15. 

Again, these plots provide a visual representation of the empirical data presented by 

Dalla Valle and Conroy as it pertains to flanged overhead exhaust hoods. 

Capture velocities increase as flow rates increase, as can be seen above. The overhead 

hood should be positioned such that the contaminant is not allowed to deviate from 
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contam•nan~<~ m 11.- room (~ldkm10u. 19n). \\ itb 1hl1 in mmd '' ohould be a),., 

pomctd out that eXl'l'till\l!' exbaum. airflow nue C'8Jl be Jus& M illf'tiectiw 8b a deficit 
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4.6 Side Draft and Slot Hoods 

Side draft hoods are essentially overhead hoods that have been placed in a horizon

tal orientation rather than a vertical one. They are typically placed as close to the 

source of contamination as possible such that the contaminant is drawn away from 

the breathing zone of the worker. When this distance has been determined and the 

face area (A f) of the hood is selected based on source size, the airflow is calculated 

to provide the required capture velocity at the farthest point of contaminant gen

eration. Side draft hoods change classification to slot hoods when the aspect ratio 

(width/length) drops to 0.2 or less and were studied extensively by Silverman (1941, 

1942a, 1942b, 1943) as a follow up to Dalla Valle's work. Silverman (1943) measured 

centerline velocities in front of a number of different configurations of slot hoods and 

developed empirical formulas relating capture velocity to airflow and distance. 

Slot hoods are normally used to ventilate narrow opening surface tanks but may have 

applications for the snow crab processing industry. The slot provides resistance to 

distribute air along the length of the tank and may allow the hood to reach out farther 

with a lower airflow than a hood without a slot. However, as a rule of thumb, two 

feet is the maximum reach of a slot hood (McDermott, 1977). In lieu of this, the 

maximum distance that has been examined is up to one meter from the hood face. 

Since the numerical modeling is completed in 2-D the length of the slotted hoods 

presented here were taken to be 1 (i.e. unity) for all calculations. 

When designing a slot hood it is desirable to use a slot that is narrow enough to allow 

the entering airflow to distribute itself evenly over the slot length. If the slot is too 

wide the air will only enter the hood through the center of the slot. If the slot is too 

narrow then there will be an excessive pressure drop which will also cause the air to 

enter the hood poorly. In the following sections slotted hoods will be examined to 
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produce centerline velocities to guide numerical simulations in the next chapter. The 

relationships proposed by Fletcher and Conroy for unflanged and flanged overhead 

hoods as well as unflanged and flanged slotted hoods are identical. The only difference 

is the aspect ratios associated with each case. 

4.6.1 Unflanged Slotted Hoods 

For unflanged hoods Silverman (1942b) found that the data was best represented by; 

(4.15) 

where Q is the flow rate into the hood, L is the hood length, and x is the distance 

to the contaminant source from the hood face. This equation is similar to the one 

predicted by potential flow theory differing only by the value of the constant(3.7 vs. 

271-). 

Fletcher's relationship mentioned in the overhead hood section is also used here for 

slotted hoods as long as the aspect ratio is 0.2 or less. These two models will also 

predict a required flow rate Q f at the slotted hood face using predetermined capture 

velocity values or vice versa. The hood area A1 for the cleaning/sorting table and 

saw table is now drastically different due to the reduction in aspect ratio and the 

horizontal rather than vertical orientation of the hoods. According to Industrial 

Ventilation (1988), practical experience has shown that a slot velocity of 1000 to 

2000 fpm (approximately 5 to 10 m/s) will provide good airflow distribution while 

avoiding excessive pressure drop. Data for an aspect ratio of 0.13 has been plotted 

and shown below in Figures 4.16, 4.17, 4.18, and 4.19. Only one aspect ratio has been 

used for demonstration purposes as the trends are the same for any aspect ratio with 

only their magnitudes subject to change. 
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The tnmds prOc:lu(·,,l by Sih'\!'rma.n 's relation.:illip art' Jin(".lf rnth~·r tban the quadratic 

trends produced by Dalla Valle, FlctC'hrr, aucl C(•nruy. Cuplltre "'·ludtiet:t rMging 

from 0.5 to 10 mja ha\'e been used to provide thf' n~-..,~n)' llow raltti f('(tllired at the 

hood ftu:'l.' to produt'l' thc:;e velocitie; at the point o£ tJ\pturu. Abo, the noticeable 

incr<'M(' in Q nt the start of every trend L>t due to l.h(l fnN tlutt tho rnlrulotions are 

dou(' pt•r unil h·ngth. This will Wso be evident for thf.l! rtangt•d hood1:1 as well. 
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figufl' 4.17 Fk-tch•r predictOO o.,..- """"olo<~A th(' C<·uterliu·· ol th<- un8ADged slotted 
clearu111 hood 
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Figu•·~ ·1.19: Flc-tchtr predjct('C:I fluw rates aiOIIJ.!: the centerlim• or the unfhu1g<-d :dotted 
cleaning loood 

4.6.2 Flanged Slotted Hoods 

For flMKOO bOO<b Silwrman (1912b) also found that th• d•ta was be;t rqm,;entod 

by 

~~ = f2~zJ (4 16) 

when• Q is the flow mtc into tht• hood, L il:i thfl hood Jength, nntl x is t.hc distunce to 

tbt' ttmtaminant souro from th•· hood face. Th111 equatiOil L.., nJ(ain similar to the one 

prooi<"t<'<l by potentll\1 801>· thoory ohlfering only b)· the'"""' oltbe oon<~ant(2.S , ... 

21f) . 

Conroy'" n-latiolbhip. al"'I mentiun('ll(l in the 0\Whcod hood JK'(·uoo is al-.o USl"d here 

ror slottt'tl hoods n.~ lung as the AHpt,·t ratio is Hhll 0.2 or le--i. Similarly, clnta for an 

aspect rntio of 0.13 hn.-. hccn plotl l'<IHnd shown b(•low in Figun'ti 4.20~ 4.21, •1.22, Md 
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rates required at the hood face to produce these velocities at the point of capture. 

Also it can be seen that the flow rate required to obtain the same capture velocity is 

reduced up on the addition of a flange. 
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4. 7 Potential Flow 

The hood capturing vicinity, or zone of influence of a hood can be defined by a distinct 

pattern of streamlines. Any contaminants that are produced and fall into the zone 

of influence will be removed by the exhaust airflow described by the streamlines. 

With all things being equal, any contaminants that fall outside this zone will most 

likely not be exhausted by the hood. A streamline by definition is a line in the 

flow field that is everywhere tangent to the velocity vector at any point and is in 

the same direction as the flow at that point at any given instant in time. Since 

streamlines are convenient to calculate mathematically and likewise convenient to 

produce using computational fluid dynamic software, both have been done to ensure 

that the streamlines are represented correctly and to provide additional insight into 

the underlying fluid flow principles. 

The primary obstacle to overcome in hood design is to identify the influences on the 

velocity fields created by the hood. These influences normally consist of competing 

airflows and turbulent structures. Studies in recent years have focused on the ap

plication of potential flow theory to the empirical information gathered by previous 

research. As a result these efforts have provided a sound mathematical model to be 

used by system designers to quantify the contaminant capabilities of hoods before 

having them constructed and installed. 

It is known that airflow near a hood can be described using the incompressible, 

irrotational (i.e. potential flow) model (Applications 1999). Potential flows are special 

types of flows that are assumed to be incompressible (p = constant), inviscid (1-L = 

0), and irrotational (w = V7 x V = 0). Inviscid flows produce the following continuity 

and x, y, and z momentum equations in vector notation 
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or 

UV _ n 
p- =pg- vp 

Dt 

( au au au au) ap p - +u- +v- +w- = P9x--at ax ay az ax 

( av av av av) ap 
p - + u- + v- + w- = pg - -at ax ay az y ay 

( aw aw aw aw) ap 
p - + u- + v- + w- = P9z - -m ax ~ fu fu 
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( 4.17) 

( 4.18) 

( 4.19) 

( 4.20) 

(4.21) 

These are commonly referred to as Euler's equations. The vector momentum equation 

may also be written as: 

( 4.22) 

where g = - \7\lf, is the gradient of the gravitational potential and w = \7 x V is the 

vorticity. The vorticity vector may be written as: 

( 4.23) 

or in terms of [u, v, w] 
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w = (ow- ov) i + (au- ow) j + (ov - ou) k oy {)z {)z ox ox oy (4.24) 

If the flow is assumed to be both inviscid and irrotational then neglecting the right 

hand side of equation (1.6) yields 

av (P 1 ~ - ) -+\7 -+-V·V+w =0 at P 2 
(4.25) 

which is Bernoulli's equation for unsteady flow. If steady flow is assumed then the 

term in brackets is equal to a constant, i.e. 

p 1- -p + 2 V · V + W = Constant (4.26) 

If a particular flow is irrotational then a velocity potential </>can be defined as 

(4.27) 

which upon substitution into the equation of continuity yields Laplace's equation 

(4.28) 

or 

( 4.29) 

Since 3-D problems are much more difficult to solve than 2-D ones the attention here 

has been focused on plane 2-D flows whereby the velocity components u and v will 

depend only on x and y. Laplace's equation now becomes 
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Assuming steady incompressible flow the 2-D continuity equation is 

au av 
-+-=0 ax ay 
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(4.30) 

( 4.31) 

Since the continuity equation has now been reduced into two terms the stream func

tion 7/J can be introduced as 

87/J 
U=-oy ( 4.32) 

and 
87/J 

V=--
OX 

( 4.33) 

or in cylindrical coordinates we have 

( 4.34) 

and 
87/J 

ve=--or ( 4.35) 

Therefore both the stream function 7/J and the potential function ¢satisfy Laplace's 

equation for 2-D plane flow. In addition, some additional relationships between ¢ 

and 7/J are required in order to effectively determine the streamlines, namely 

8¢ 87/J 
u=-=-

ox By 
(4.36) 
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and 

8¢ 8'1/; 
V=-=--

8y ax 
(4.37) 

These relationships between the derivatives of the harmonic functions ¢ and '1/J are 

the famous Cauchy-Riemann equations from the theory of complex variables (Potter 

et al, 1997). These relationships are fundamental in obtaining the stream function '1/J. 

4.7.1 Potential Flow Predictions and Approximations 

Potential flow theory has been used by many authors who have applied it to airflow 

in front of hoods for a variety of specific configurations. Using this approach is 

warranted due to the elliptical nature of the velocity contours being coincident with 

equipotential surfaces as can be seen in Figure 4.24. 

Figure 4.24: Equipotential lines ¢and streamlines '1/J 

Flynn and Ellenbecker (1985) examined the air flow into a flanged circular hood using 
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potential flow theory using two velocity models. In addition, Flynn and Ellenbecker 

(1987) applied a uniform cross draft perpendicular to the hood centerline by simple 

vector addition to generate a third model, with the results comparing favorably to 

Dalla Valle's emperical data (Varely et al, 1997). Validation of all three models 

produced good correlation, in particular the model with cross draft. 

Conroy et al (1989) also evaluated capture efficiency of hoods except his research 

leaned toward flanged slot hoods. A potential model initially developed for an ellip

tical opening had been used to represent a rectangular slotted opening which could 

also be used with cross drafts. Streamlines were generated again by using the as

sumption that they were perpendicular to lines of potential. Conroy also showed that 

contaminant transport in the presence of a cross draft could be modeled if it was 

assumed that the contaminant was released with no velocity into this cross draft. It 

was then assumed, as was stated earlier, that one hundred percent efficiency would 

be achieved for streamlines entering the hood and zero efficiency otherwise. Vali

dations showed that experimental data suggested that an inscribed ellipse potential 

flow model provided good correlation, and that contaminant transport can also use 

potential flow theory (Varley et al, 1997). This revelation has provided the basis for 

the contaminant transport theory and properties used in this study. 

To better visualize the streamlines generated in the overall vicinity of the hood they 

have been approximated and plotted using relationships that describe basic potential 

flows governed by Laplace's equation. Due to the fact that Laplace's equation is a 

linear partial differential equation it permits various basic velocity stream functions 

to be combined to form new stream functions (Munson et al, 1998). The potential 

flow model used for the unflanged hood simply a superposition of two basic flows 

given in Currie (1995) and White (1999). 

• Flow in a Corner of Arbitrary Angle 
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• Uniform Rectilinear Flow 

described by the following stream functions 

'1/Junflanged '1/JcornerFlow + '1/JuniformFlow 

URnsin [(n)B] + Uy ( 4.38) 

in cartesian coordinates we have 

'1/Junjlanged '1/JcornerFlow + '1/JuniformFlow 

U /(x2 + y2t sin [(n)arctan(y/x)] + Uy (4.39) 

Corner flow is an example of a pattern that cannot be conveniently produced by 

superimposing sources, sinks, and vortices (White 1999). The streamlines produced 

by corner flow can be plotted however for different values of the constant n which 

defines the angle. At a value of n = 2 the corner produced is at an angle of 1r /2 and 

the associated streamlines are plotted in Figure 4.25. 

Here the streamlines 'ljJ = 0 - 15 have been plotted for two 90 degree corners, sym

metrically placed back to back such that the symmetric flow could be visualized and 

used to represent the flow that would occur in the vicinity of the hood intake. The 

centerline of the plot shown by the x-axis represents the centerline of the hood face 

with the scale on both axes in feet. 

A uniform flow normal to the centerline of the hood face has also been included as 

well to simulate any cross flows that may be present. A conservative value of 1.0 m/s 

has been used for the velocity and has been assumed to be constant. The streamlines 

produced by a uniform flow are plotted in Figure 4.26. The uniform flow produced 

streamlines are obviously horizontal in nature at constant values of x with a constant 

velocity U of 1.0 m/s. 
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Figure 4.25: Streamlines for flow into two 90 degree corners (Unfianged) 
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Figure 4.26: Streamlines for a uniform flow (Unflanged) 

All of the streamlines shown above are plotted in 2-D and are assumed to be constant 

over the length of the hood. They do not account for the end effects of the hood and 
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as a result are not quite correct, although a very good approximation. 

The fact that the relationship for the flanged case is again valid only along the cen

terline poses an identical problem in determining the flow field in the vicinity of the 

hood face at varying distances from the centerline. Since a flange has now been incor

porated the streamlines produced will change and will be modeled by superimposing 

the following potential flow models (Currie, 1995). 

• Flow in a Corner of Arbitrary Angle 

• Flow around a sharp edge 

• Uniform Rectilinear Flow 

described by the following stream functions 

'l/JFlanged 'l/JcornerFlow + 'l/JsharpEdge + 'l/JuniformFlow 

in cartesian coordinates we have 

'l/JFlanged 'l/JcornerFlow + 'l/JsharpEdge + 'l/JuniformFlow 

U J(x2 + y2 ( sin [(n)arctan(y/x)] + 

U J(x2 + y2 )n sin [(n)arctan(y/x)] + Uy 

(4.40) 

(4.41) 

Again the streamlines 'ljJ = 0 - 15 have been plotted in Figure 4.27 for two 90 degree 

corners using a value of n = 2 which again defines the angle as having the value of 

1f /2. 

An identical uniform flow normal to the centerline of the hood face has also been 

included and plotted in Figure 4.28. 
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-4 -2 2 4 

Figure 4.27: Streamlines for flow into two 90 degree corners (Flanged) 
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Figure 4.28: Streamlines for a uniform flow (Flanged) 

In addition to these two flows there is an additional potential flow considered that is 

identical to the potential flow model described by flow in a corner of arbitrary angle. 
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The only difference is that now the angle is equal to 2n instead of 1r /2. This results 

from having n = 1/2 and thus produces the streamlines produced around a sharp 

edge which have been plotted and shown in Figure 4.29. 

2 

X 

5 6 

-2 

Figure 4.29: Streamlines around a sharp corner (Flanged) 

This plot shows how the flow would wrap around a flange represented by the horizontal 

y-axis if it were attached to the hood face. Again, this flow is assumed to be free 

from any other possible airflow patterns. To superimpose these three flows in the 

hope of accurately representing the flow field at the face of the hood would be an 

approximation at best due to many assumed idealizations. Since all of the streamlines 

have been plotted in 2-D, the assumed idealizations alluded to above prevent accurate 

results when combining potential flows in this manner due to the fact that in reality 

the exhaust hood represents a 3-D situation. 

Research in the area of potential theory has assumed ideal conditions but nonetheless 

it provided an important relationship between classic fluids theory and the empirical 

research and work completed by Dalla Valle. The application of a cross draft to 
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the model adds a real world consideration as it represents the problem of impinging 

airflows created by the surrounding environment. While the potential flow approach 

allows designers to model hoods in situations where the surrounding environment 

has an appreciable impact, it ignores any turbulence of viscous effects and most 

times contaminant dispersive forces are considered unimportant. In reality these 

situations are often present and cannot be ignored, which indicates that a potential 

flow approach must be applied with due caution. 
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4. 7.2 1\trbulent Structures 

Thr! )>I I('"' it.e or 71ng exhaust hoods baoed on \t"lonty OOILtouOI oegl('(·t.s tbe existence 
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strurturt'8 <·n·Jitt~t by the presence of CI"'.:!.'; drllftK1 rou111 nir turbuh.·nce, and How 

b1CJ>nrntion nround objects within the vicinity of tht• hood Hl't' uJI but ignored when 

relyiug HOif'ly on tllC' v('!Ocity contour technique. DmftM gf'll<'ml.rd hy thermal gr&.di

ents suggt"l''ting h<'nt gt'llC'ra.tion have been negk'Ctt~ due to th<' nssumption of a. welJ 

mixttd room in nddition to th~ assumption that thl'rmul buoyu.ncy i:l nt'gligiblc when 

compan<l w1th fluitl mO\'t'm<nt generated by P'""'urc gn~hrnt.o (Vnrl•y et al, 1997). 
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C8Uo:;lll& 8 boundAry h\)'ff (indicati\'\!' Q( a prt~-ure' IUCI'1!3SC: and \'elOCit)' decrt"a.Se) lO 

apptw on the UJ:.&Uerun ~dt of the objf.'ll't. ·ni .. pbenorneDH catL'Ir8 the streamlines 

to b<com• d<tached from the surface of tb~ obj<~1, '"' can b< ""'"' in Figure 4.30 

d..-pictmg a C'ylu1dM" in a lamir\ar flow 6eki 

Fill""' I 30· Stmun function contout:> in the "ake of a C)'imdtr plaad m a laminar 
&..·!Wid 

Tht• dfort 1hat thb phenomenon has on the How 5\H'IWnhutw around a eylind~ are 

obvJOUK. \\'hilo tllio is a simple example. similar cffoctJj wUI 1 ~ull wh£>n a.irRow 

attt•mpts to 111ovt• ftround various turbulent structurtlll in th(' vicmity of the hood face 
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in crab processing plants. In particular, a vertical cylinder will be inserted in the 

domain to simulate a worker such that the effect on the surrounding airflow patterns 

can be observed. 
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4.8 Makeup Air 

A ventilation system will not work properly if there is not enough or too much air in 

the room to exhaust. If the static pressure of the room becomes negative then the 

fan may not work properly due to this additional resistance. For example, a negative 

pressure of 0.05 to 0.1 inches of water (12.5 to 25 Pa) will make doors difficult to 

open. A negative pressure situation was witnessed in plant 4 during air sampling 

when the cooking room door was difficult to open indicating a lack of supply air. In 

severe negative pressure cases, condensation is apparent on ceilings and walls in cold 

areas and is sometimes indicative of rain being drawn in through cracks that will 

run down inside walls. As a result make-up air needs to be supplied in a controlled 

and methodical manner rather than relying on random infiltration from various open 

windows, doors, cracks, etc .. 

Air supply to any industrial space can be facilitated by mechanical or natural means. 

The supply rate should exceed the exhaust rate by about 10% and will also serve 

to induce a slightly positive pressure and help keep out drafts and other harmful 

contaminants (McDermott, 1977). Natural ventilation is generally inefficient in large 

buildings as it may cause drafts and cannot solve air pollution problems (ASHRAE 

Handbook (Applications), 1999). The air supply methods considered here have been 

modified for the simulations but are basically derived from the following; 

• Displacement Flows 

• Entrainment Flows 

Displacement flow is the movement of air within a space in such a way that the flow 

emulates a piston or plug-type flow, as can been seen in Figure 4.31 
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Figure 4.31: Displacement flow within a space (ASHRAE Handbook (Fundamentals), 
2001) 

Entrainment flow is attained by introducing and removing air at the ceiling level, as 

can be seen in Figure 4.32 
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Figure 4.32: Entrainment flow within a space (ASHRAE Handbook (Fundamentals), 
2001) 

Ideally, there will be no mixing of the room air which is desirable for removing gener

ated pollutants within a enclosed space. However, due to the fast paced atmosphere 

of the snow crab industry it is reasonable to assume that an ideal case does not exist 

therefore resulting in various degrees of mixing. Generally, air is typically supplied at 

low velocities via air outlets in an occupied workplace at the floor or ceiling level and 
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exhausted at similar locations. As a rule, air supplied into rooms through the various 

types of outlets (e.g. grilles, ceiling diffusers, perforated panels) is distributed by 

turbulent air jets which are the primary factor affecting room air motion (ASHRAE 

Handbook (Fundamentals), 2001). If a jet is not obstructed by obstructions such as 

walls or the ceiling, then it is considered a free j.et. Determining the velocity and other 

flow characteristics of linear free jets is not a priority here as they have only been 

mentioned as a means to supply air to a general room configuration such that the 

flow characteristics surrounding the exhaust hoods can be examined. Supply outlets 

have been classified in the following manner by Straub et al (1956) and Straub and 

Chen (1957); 

• Group A- Outlets mounted in or near the ceiling that discharge air horizontally. 

• Group B- Outlets mounted in or near the floor that discharge air vertically in 

a non-spreading jet. 

• Group C - Outlets mounted in or near the floor that discharge air vertically in 

a spreading jet. 

• Group D- Outlets mounted in or near the floor that discharge air horizontally. 

• Group E - Outlets mounted in or near the ceiling that project primary air 

vertically. 

Variations of the outlets described by groups A, B, C, and D have been used in 

the realistic numerical simulations to produce local hood airflow patterns. Specific 

sizes of air inlets will not be important for the upcoming 2-D simulations as only the 

trends of the airflow patterns are of interest here. The location and strength of air 

supply outlets would become important were a full analysis of a ventilation system 

undertaken, which has not been done here. Therefore, the entire side, bottom, or top 
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of a domain will be specified as a pressure inlet, which means simply that Fluent will 

assume that it can use these locations to obtain the makeup air needed to produce 

the airflow patterns around the exhaust hood. In essence, Fluent will think the walls 

are not there at all. 

4. 9 Fan Selection and Duct Design 

All exhaust systems make use of hoods, ducting segments, and an exhaust fan of some 

sort. In general, the main design steps that should be followed for system design are; 

• Select and design each exhaust hood to suit the particular operation 

• Determine minimum duct velocity based on required transport velocity (hood 

face and capture velocities) 

• Determine duct size by dividing design flow rate by the minimum duct velocity 

Design Methods 

According to the American Conference of Governmental Industrial Hygienists, the 

design methods are listed as follows in Industrial Ventilation (1988); 

• Calculate the pressure losses for the exhaust system using either the velocity 

pressure or equivalent pressure method 

• Check for correct balance at entries and adjust volumetric flow rate, duct size, 

or hood design to obtain the correct flow 

• Select fan based upon final volumetric flow rate and calculated system resistance 
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The velocity pressure method is normally used as the basis for system design. The 

method is based on the fact that all frictional and dynamic losses in ducts and hoods 

are functions of the velocity pressure and can be calculated by a factor multiplied by 

the velocity pressure. The following steps will establish the overall pressure loss of a 

duct segment that starts at a hood (Industrial Ventilation, 1988); 

1. Determine the actual velocity by dividing the flow rate by the area of the com

mercial duct size chosen. Then determine the corresponding velocity pressure 

VP. 

2. Determine the hood suction 

3. Multiply the design duct length by the loss factor 

4. Determine the number and type of fittings in the duct segment. For each fitting 

type determine the loss factor and multiply by the number of fittings. 

5. Add the results of steps 3 and 4 above and multiply by the duct VP. This is 

the actual loss in inches of water or Pa for the duct segment. 

6. Add the result of step 5 to the hood suction, along with any additional losses. 

This establishes the cumulative energy required, expressed as static pressure, 

to move the design flow rate through the duct segment. 

As the fan draws air in and discharges it at a higher velocity and static pressure it 

provides the energy needed to overcome the pressure losses as air flows through the 

system. 

The total pressure and available energy at any cross-section in a duct is defined 

as the sum of the static and velocity pressures. In any ducting system the total 

pressure will always decrease in the direction of the airflow. Static pressure (SP) is 
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the suction pulling inward on the ducts of a ventilation system before the fan and 

pushing outwards on the ducts after the fan and is used as the basis for system 

design. SP can be positive or negative with respect to the local atmospheric pressure. 

It produces an initial velocity in the system that is needed iQ. order to be able to 

overcome friction and turbulence and can be thought of as potential energy. Velocity 

pressure (VP) is created by air accelerating from zero velocity to some velocity (V) 

greater than zero and can be thought of as kinetic energy. VP is always exerted in the 

same direction as the flow and is also always positive. The size of the fan needed to 

make any system work correctly is obtained from the pressures losses throughout the 

system and the amount of airflow required. Typical pressure losses are summarized 

in Table 4.2 produced by McDermott (1977). 

Table 4.2: Summary of typical ventilation system pressure losses 

TypeofLoss Magnitude, Inches of Reason 
Water 

Acceleration Loss 0.25-1.5 Energy need to accelerate 
air to duct velocity 

Hood Entry Loss 0.1-2.0 Turbulence as air enters 
hood and ducts 

Duct Friction Loss l.0-5.0 per 100ft of duct Friction as air moves 
through duct 

Turbulence Losses Turbulence as air changes 
Elbow 0.1-0.3 per 90deg elbow direction of velocity 
Branch Entry 0.1-0.3 per 45deg entry 
Enlargements and 0.1-0.3 per enlargement or 
Contractions contraction 

Air Cleaners 0.5-1.0 Friction and Turbulence 

Fan and duct design involve the calculation of the pressure losses through the different 

components of the system. Fan total pressure (FTP) is defined as the increase in total 

pressure through or across the fan (ACGIH, 1988). However, the fan size has to be 

specified by a flow rate and fan static pressure (FSP). FSP is the amount of static 

pressure that the fan must achieve in order to move the required amount of air through 

the system. It basically equals the static pressure on the inlet and outlet sides of the 
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fan plus the velocity pressure entering the fan. This relationship has been expanded 

and shown below. 

FSP = FTP- VPoutlet 

FSP = [TPoutlet +TPrnlet]- VPoutlet 

FSP = [SPoutlet + V Poutlet]- [SPrnlet + V Prnlet]- V Poutlet 

FSP = SPoutlet- SPrnlet- VPrnlet 

(4.42) 

( 4.43) 

(4.44) 

(4.45) 

It should be noted here that V Prnlet is always positive, SPrnlet is usually negative, 

and SPoutlet is usually positive. The velocity pressure method mentioned above can 

be easily applied with the help of a typical calculation sheet shown in Table 4.3. 

This calculation sheet provides the cumulative static pressures generated by the inlet 

ducting, outlet ducting, fan section, and the hood. The values for the V Prnlet, SPrnlet. 

and SPoutlet are obtained from this sheet to obtain the fan static pressure (FSP). This 

pressure is then used to select the· appropriate fan from manufacturer fan data and 

curves. 

However, the design of ducting and all other components of a ventilation system have 

not been actually executed here due to the fact that the interest lies in the flow fields 

surrounding the hood exhaust and supply inlets and not the flow inside the ducting. 

Various pressures and velocities have been imposed at the face of the hoods having a 

magnitude capable of producing the required hood face velocity and capture velocity 

at a distance from the hood face. The pressures and supply inlet velocities have been 

varied until the required hood face and capture velocities were obtained. The only 

variables that change in the simulations are the distances from the contamination 

sources, the capture velocity values, and the corresponding hood face velocities and 
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Table 4.3: Typical calculation sheet outlining the velocity pressure method 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

Required Information 

Duct Segnentation ID 
Volumetric Flowrate 
Minimum Transport Velocity 
Duct Diameter 
Duct Area 
Actual Duct Velocity 
Duct Velocity Pressure 
Slot Area 
Slot Velocity 
Slot Velocity Pressure 
Slot Loss Factor 
Acceleration Factor 
Plenum loss per VP 
Plenum SP 
Duct Entry Loss Factor 
Acceleration Factor 
Duct Entry Loss per VP 
Duct Entry Loss 
Other Loss 
Hood Static Pressure 
Straight Duct Length 
Friction Factor (Hf) 
Friction Loss per VP 
No. of 90 Degree Elbows 
Elbow Losses per VP 
No. Entries 
Entrv Loss per VP 
Special Fittings Loss Factors 
Duct Loss per VP 
Duct Loss 
Duct SP Loss 
Cumulative Static Pressure 
Governing Static Pressure 
Corrected Volumetric Flowrate 
Resultant Velocity Pressure 

Hood Inlet Ducting Fan Outlet Ducting 
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flow rates. The design procedure has been outlined above to show how the system 

would be designed if needed. 

4.10 Exhaust Re-entry 

Reentry is basically defined as the inadvertent return of previously exhausted air from 

an enclosure back into a supply air intake thus re-contaminating the inside air, as is 
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shown in Figure 4.33. 

Figure 4.33: Basic schematic of exhaust reentry via roof and wall air supply intakes 
(ASHRAE Handbook (Applications) 1999) 

Some common design flaws include insufficient exhaust stack height, proximity of the 

stack to HVAC intakes, and the lack of a rain cap on the exhaust stack (Burgess et 

al, 1989). Design of intakes and exhausts to avoid these problems is further compli

cated due to under/over compensating for changing wind directions and magnitudes. 

Airflow around relatively simple, cube-shaped buildings can be quite complex when 

placed in the path of varying wind directions and speeds. Neglecting these charac

teristics can not only cause reentry problems but may cause downwind air pollution 

in the nearby community. In addition, buildings that are located in uneven terrain, 

as is often the case in Newfoundland and Labrador, can experience airflow patterns 

that are very complex and difficult to determine. As a result, empirical experiments 

using scale models or numerical modeling may be required to produce accurate flow 

patterns. This has been left for future work and not included in the upcoming simu-

lations. 
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4.11 Other Exposure Control Techniques 

Up to this point in the thesis all efforts to control exposures have been focused on 

the implementation of some type of ventilation system. In actuality, ventilating the 

contaminated space is only one method used to reduce worker exposure to harmful 

substances. As was shown, the exposure to an airborne substance of any kind is 

directly proportional to the amount of contaminant present in the workplace at any 

given time. Any factors that could alter exposure by either limiting the exposure 

time of the worker in the contaminated area or reducing the amount of contaminant 

in the worker breathing zone will aid in reducing overall exposure. Ongoing research 

is being carried out to determine if variations in the actual processing methods would 

in fact reduce contaminant release or exposures. To date, an experiment described in 

chapter 5 has attempted to determine if crab processing using raw crab rather than 

cooked crab would reduce the amount of airborne allergens. 



Chapter 5 

Results and Numerical Simulations 

Numerical simulations of typical cleaning/sorting, sawing, and cooling processes in 

crab plants with associated local ventilation systems has been completed to deter

mine the airflow patterns produced in the vicinity of the hoods. The patterns will 

provide valuable information on airflow characteristics to aid in the ultimate goal of 

contaminant capture and removal. 

138 
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5.1 Contaminant Motion and Diffusion 

Theories of hood performance with non-buoyant pollution sources are commonly 

based on the turbulent diffusion equation which allows the determination of con

taminant concentration decay in the uniform airflow upstream from the contaminant 

source (Zhivov et al, 1997); 

(5.1) 

where Cx is the concentration at some distance x from the contaminant source of 

concentration C0 • Air velocity into the hood V depends on the exhaust flow rate, 

whereas the coefficient of turbulent diffusion Dis based on the air change rate in the 

area of the hood as well as the method by which the air is being supplied/ exhausted. 

This equation predicts the contaminant concentration decay along the centerline nor-. 
mal to the hood face. Knowledge of how far the concentrations extend away from 

their source is of interest when determining if an applied exhaust flow rate at the 

hood face will be effective in capturing the contaminants. 

The air velocity across a hood face has been assumed to have a value of 0.5 m/s 

but is increased by a factor of 2 resulting in a value of 1.0 m/s due to normal air 

disturbances caused by the presence of workers (Zhivov et al, 1997). With V = 1.0 

m/s the value for D becomes 0.3 m2 / s as opposed to 0.15 m 2 / s at V = 0.5 m/s. The 

air velocity across the hood face mentioned here is analogous to the cross draft velocity 

Vd. It is important to understand that if the cross draft velocities become extreme it 

may become necessary to install side curtains around the process or possibly examine 

a booth configuration. In an upcoming section, the workers themselves have been 

examined as a sort of human air curtain. To illustrate the effects on concentration 

levels when increasing the distance from the source, consider the following in Figure 
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Figure S.l Coua:olratioo decay as d.ist.a.ocf. from IOU!t"e' con<:1 ntrauou '-"' ~ 

(t 1s importA.rlt to kt'tp m mind tht\t thi.s plot onl)' 1-hO'Yo!. ron<<t•utratiou decay di

r«'tly aloug nntrrlin<' but says nothing about hO'i\' it bt·ha\'t'tt ll\lera.lly. Theu lateral 

movement will be tngnific.antly controlled by the alrflow path•rn~ in thl• imrnt'(li&.te 

on.•n, whic·h nr~ t.1xtrcmt.•ly difllcult to detennim• witllfmt <'itlwr ohtnining <'mpirical 

datn through !iCalc model testing or the use o£ numrrical Kimulution!:f. At a di1:1tance 

o£ only Lw<·nty fh't\ ('('ntimct.ers from the sourte, thr t•ont·t·nt r"tion or t hf' pollulrult is 

rNfuc('d to only 2((;{ of its original vaJue. This signifknnt dt<cH.'1116e in concentration 

ind1cata thtu tb~ pollutant:> ha\1! dispersed into th('; t nvironmNit ami may now be 

difficult to CRJ)lUre" HJ~t l"~t.. t~ placing gretitt'r ('UIJ)hl\Sll ( Jofl d~ hoods to 

eJ~..,ure ca1)tun- and exhaust a.t the source. 
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5.2 Numerical Modeling 

It was desired to be able to show if capture velocities using existing centerline velocity 

correlations can be obtained by using uniform, parabolic, and inverse parabolic ve

locity profiles imposed on a hood face boundary both in an ideal case and in a more 

realistic case when turbulent structures are present. This was done by numerical 

modeling in Fluent(v6.0) where exhaust flow rates and air supply inlets were speci

fied in an attempt to achieve an acceptable contamination capturing situation. From 

this modeling the attainable flow rates and associated capture velocities were realized 

as well as determining if they are capable of ventilating the contaminated area. The 

environment that surrounds a local exhaust hood constitutes turbulent structures 

that impact the velocity profile of the hood and the diffusion characteristics of the 

contaminants. It is important to realize that the initial proposed centerline velocity 

models do not take into account the different structure configurations present in an 

industrial crab processing plant and therefore ignore the effects of turbulence, thus 

spurning the need to investigate a variety of different velocity profiles. It is highly un

likely that these initial centerline velocities predicted by Dalla Valle, Fletcher, Conroy, 

and Silverman will be attainable in a realistic situation due to their above mentioned 

limitations. Turbulent structures and their effects can be summarized as follows; 

• turbulent structures created in the wake of objects near the hood 

• structures caused by hood geometry 

• impinging airflows on velocity fields generated by the hood 

• free-stream turbulent structures 

The turbulent structures created by the above listed effects must be considered when 

designing a ventilation system even in light of the fact that empirically derived cen-
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terline velocity relationships continue to be the basis of standard design approaches. 

With this in mind the centerline model predictions have been used as a guide in an 

attempt to obtain the required capture velocities as well as provide sound guidance 

toward a feasible solution. 

5.2.1 Velocity Profile Determination in an Ideal Domain 

Examination of the proposed centerline models is essential in order to begin to un

derstand the airflow patterns predicted by the various models using a CFD package 

such as Fluent. Due to the increased complexity of simulating 3-D geometries and 

obtaining converged solutions the simulations have been executed in 2-D. This is a 

reasonable approach as it is essentially modeling a 2-D plane through the center of 

each of the hoods. The end effects caused on the flow patterns by a 3-D hood have 

not been taken into account, nor have the interaction of the hoods with each other. 

Firstly, the relationships will be examined by imposing the three velocity profiles 

on a hood face in an idealized domain such that there are no effects from turbulent 

structures or any other flow disturbance sources. Three hood face velocities will be 

implemented and the corresponding capture velocities at certain distances x returned 

by the numerical simulations will be compared to the values predicted by the empirical 

relationships. This has been done by using the overhead cleaning/sorting hood case 

with the corresponding unflanged rectangular centerline velocity models proposed 

by Dalla Valle and Fletcher. Secondly, in the following sections, a more realistic 

environment in which the hoods will have to operate will be used to again determine 

the capture velocities and velocity profiles. 

These relationships, like many other similar ones refer only to the centerline air ve

locity along a line extending out from the center of the hood but do not define the 

velocity distribution across the hood face in any way. In addition, the sharply bending 
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air streams flowing into the hood from behind the hood face interfere with smooth 

velocity contours in front of the hood where contaminants are generated (McDer

mott, 1977). The proposed relationships indeed provide a starting point to aid the 

simulations but due to the fact that they are strictly centerline velocity correlations 

and the exact circumstances by which they were formulated are unknown, velocity 

profiles need to be introduced as they provide a more realistic scenario. For all ideal 

simulations a constant hood face width of 2.44 meters has been used. It should also 

be noted here that only overhead hoods have been used to determine appropriate 

velocity profiles. In addition, one or all of the profiles determined will be used in the 

real simulations for overhead, canopy, and slotted hood configurations. The profile 

may not be the ideal for all three cases but to demonstrate the flow patterns and 

possible capture zones it is easily sufficient. 

Uniform Profile 

To begin, a hood of width 2.44 m has been shown in 2-D with its width fully displayed 

in the view. The 2-D plane has been constructed to simulate a slice along the width 

of the cleaning/ sorting hood directly through the centerline of the hood face. Figure 

5.2 depicts this tri-grid meshed, 2-D view of the hood. It can be seen that the mesh 

has been refined at the hood face inlet boundary to promote a more accurate solution. 

The cleaning table and simulated workers have not been constructed in the ideal do

main so as to avoid any turbulent interference with the velocity distribution. The 

domain consists of the hood, with its face specified as a velocity inlet and the bound

aries of the domain specified as pressure inlets, which has been done to allow the 

hood to draw air in from all directions. The gage pressure has been set to zero at the 

pressure inlet boundaries and the velocity profiles at the hood face boundary have 

taken on uniform V1 values of 2, 4, and 6 mjs. Figure 5.3 shows a theoretical uniform 

velocity imposed on the hood boundary. 
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as the solution converges in domains 1, 2, and 3, evident by the fact that the lines 

fall on top of one another (domain 1 is sufficiently large, domain 2 is twice as large as 

domain 1 and domain 3 is twice as large as domain 2). However, the relationships by 

Dalla Valle and Fletcher, also plotted on the graphs, show a considerable difference 

in capture velocity values at varying distances from the hood when the profile trends 

obtained using the three face velocities are compared to these predicted values. The 

results here seem to indicate that a uniform velocity distribution at the hood face 

produces a trend very similar to the Dalla Valle's and Fletcher's relationships but 

may not be realistic and other profiles need to be examined. 

Upcoming profiles have used only domain 2 as the test domain. In addition, only a 

velocity of 2 m/s has been used to produce corresponding velocity profiles. 

Parabolic Profile 

A parabolic velocity profile has been described by the following equation and shown 

in Figure 5.7. 

[
X- 20] 2 

Vy = VMax- VMax R (5.2) 

The variable R is equal to half the width of the hood face, xis taken from the centerline 

of the hood face (at x = 20) to the maximum value of R, and Vmax is equal to 1.5V1, 

where V1 is the value of the previously specified uniform velocity. As mentioned 

previously, instead of applying each of the three specified hood face velocities in each 

of the four domains as was done in the uniform profile case, a maximum velocity 

obtained from the uniform velocity profile of 2 m/s has been used in the profile for 

simulations in domain 2. A maximum velocity of 3 mjs is found to be equivalent 

to the uniform velocity of 2 m/s from the application of flow continuity. Selecting 
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Figure 5. 7: Parabolic velocity profile 

one domain has been done as the trends are essentially identical for all three hood 

face velocities used in the uniform case. The parabolic case will also produce three 

essentially identical trends thus only one has been shown here added to the uniform 

profile in Figure 5.8. 

Here it can be seen that the parabolic profile provides very similar trends but moves 

no closer to the trends predicted by Dalla Valle and Fletcher and is actually less 

predictive than the uniform profile. The main difference in the parabolic profile is 

that the maximum velocity is higher and drops off to almost the identical values that 

were produced using the uniform profile. When imposing a parabolic (and subsequent 

inverse parabolic) profiles on the hood face boundary an inherent variation has to be 

recognized. The hood has to produce a parabolic profile inside the hood rather than 

on the outside. This means that the flow at the hood face is assumed to have a fully 

developed parabolic velocity profile, which is impossible due to the entrance effects 

(become obvious later) caused by hood geometry. In theory, a parabolic profile should 
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Figure 5.9: Inverse parabolic velocity profile 

value 0.6366 is obtained from flow continuity in a similar manner as was done in 

the parabolic case. The inverse parabolic case will also produce three essentially 

identical trends, thus only one has been shown here in Figure 5.10, in addition to the 

uniform and parabolic profiles. 

Here we can see that the inverse parabolic profile line is still not in total agreement 

with the empirical data however it again produces a very similar trend. Manipulation 

of the inverse parabolic profile as well as imposing an exponential (shown in Figure 

5.10) profile for interest has been attempted to produce and alternative fit, keeping 

flow continuity in mind. 

Custom Velocity Profiles 

Recall that in the three profiles presented above an initial uniform velocity of 2 m/s 

was assumed whereby the total flow was determined and conserved to produce the 

other two profiles. Consider the following formula used for the inverse parabolic case. 
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Variation of thr constants C. K, R. N, and M t'.llUst.'tl t lu1 npl'X of th(' pru·nbola to vary 

in ltl'ight. tw-~ wl'll1u; llltl•ring it~ ~hapc. After numrrous c:ombinations t he only realistic 
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(5.5) 
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Velocity Profiles for Vf = 2.0 m/s 
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Figure 5.12: Centerline velocity trends at Vf = 2.0 m/s for large x-values 

predicted, which could be thought of as a reasonable factor of safety inherent in 

the application of the particular profiles, thus avoiding the actual specification of a 

separate factor of safety. Either profile can possibly be used in realistic simulations 

depending on factors such as duct size, fan location, and degree of flow development. 

A parabolic or inverse parabolic profile may be the most realistic situation but since 

similar trends have been reproduced it can be justified that using any of the profiles 

in the upcoming realistic simulations is a valid course of action. 

5.2.2 Flow Patterns in a Realistic Processing Environment 

The cleaning/ sorting and sawing processes have been examined using an unflanged 

overhead hood while only a slotted hood has been examined at the sawing table. The 

cooling tank has been modeled only with a canopy hood. The canopy simulation has 

included a flange of width equal to the square root of the hood face area( which is the 

width as all simulations are in two dimensions). Simulations have been completed 
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such that the airflow pattern trends around the hoods could be visualized. From the 

previous section it seemed that any of the uniform, parabolic, or inverse parabolic 

profiles could be used depending on the situation. Each profile produced similar 

trends that could be scaled to fit the empirical data if necessary. 

The effects of turbulent structures in the form of processing equipment will now come 

into play in the form of a cylinder that will be placed in the flow field representing a 

worker. This will allow fluent to determine its effects on the surrounding flow fields. 

In addition, two dynamic types of sources (brushes and saws) will be modeled such 

that the effect that the hood induced flows has dynamic sources can be determined (all 

previous simulations have assumed a non-buoyant type of contaminant source). This 

is a very important consideration as the brushes and table saws constitute dynamic 

sources capable of distributing particulate into the workers breathing zone. 

Simulation Domains 

The three processes that will be simulated with hoods are; 

• Cleaning/Sorting 

• Sawing 

• Cooling 

The constructed domains for the overhead, canopy and slotted simulations have been 

shown for illustrative purposes here in Figures 5.13, 5.14, 5.15, and 5.16. 

Subsequent simulations will be restricted to the following parameters; 

1. one uniform hood face profile that induces solution convergence 

2. one x-value of 0.75 m above the process (overhead unflanged and flanged) 
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Figur• 5.14: S•wmg domain (overhead) 

Figun~ 5.15: Cooking/Cooling domain 
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Figure 5.16: Sawlllg domain (•loUl'l) 
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Tht'IJ>rulilt• produced hC'J'C' followK the same trend and indittltt'H '' t~.'U4•r fit to Dalla 
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Vall• aJ>d F'lt~cht'f'l profilC>. The fact that the r<>tJi,lk MmulAt>on produc..d a better 

tr~..·nd al!K> indlt·att"S that the structures in the virmity piny an unportfl.nt. role in 

the rCtiultiug turflow pAit.(>m~. HO\\-ever, due to the mtt·rac-tion o( che airflow with 
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turbulent structures in the room, the flow patterns are virtually impossible to predict. 



CHAPTER 5 • Ruult.• ond Numencol S•mu/ahon.• 161 

5.2.4 Overhead Simulation 2 

T' ... .t .!>JI..Im.: prt..IC1 in ~~ carried out •rith the ~.,·irt3 dom&&II.B usmg 4 uniform face 

\'t:loclty o( 0.45 m/B, X•\'slUf:" Of Q. 75 tn from the hood facf\ to t}l(' ('liUtA.min&tion 

KOUI'C't\ 1md tht• air being supplied from all lxmudarire iu tlu.• domain. The velocity 

and pre ... ,urt• vt'('to"" tuut vrlocity contours are shown 111 Figurt-s 5.21, 5.22, a.nd 5.23. 

••..o• 
I \11t-01 

I ... ..,. 
........ l SS..(II 

·-·-ltM 01 .. , ... 
.,,... ..... 

Figun• 5.21 : Velocity vectors colored by v<•I<X'Ity magnitud(' 

Ht.•n· 1 h<\ v~·lodty \'t'Ctors ngain follow a very di!ootiuC'l p.utWrn a nd 1\J'(' r l('arly aif<'Cted 

by the tabl" Ktnat•turt•, huwevt·r t hey are very dlff('rt:nt dum thUM• g<'neratcd in the 

clce.nin« ~oimulfttions. The va:ton; di.<.;played have al8o ~t n rolun•d hy tht" magni4 

tude o( tho prt9ture nt e.dl vector location. A .,nlltJI m-go.tiw pressure b e-.'idt'nt 

UJ>C!<,meath tho hood r.,., ronfinning an 8l<8 oC suction. 
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f111ure r..23 Velocity '-ecurn. colored by ""'"c '"""'""' 

5.2.5 Slotted Simulation 

162 

The prOCC;-- 10 ll(JW ('lltried out l'.ith 8 slottt><l hood o( Width 0. lh JU (upect ratio or 
Q l8), 1\ mufonu f.t\Ce velotity o£ 2 mjs, X·vaiUe of 0.30 111 from the hood face to the 
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center of the contnmlnation ftOUr('(l, Wld air belng !:iupplied from all houndarit~ in tht• 

domain. Only tbt> _.wing process hu bef>n fitted w1th a simulated ~o~lotted hood as 

thr dcaningfwrting and cookmgjcooling prote~ would rt'tiUJie ttiJuge slot in order 

10 C>llDpe7 "'lefor tb•• ext"""'" length (in'"'"""' oC 20ft). Tht· \'e)odly and pr<>;SUre 

ve<:tors and velocity ('l()nt.OU1'5 t'()rretJ>onding to thi.~ tLmu1Atiun ar~ ~>hown in fi.gUrC~o 

s 2·1 . 5.25, and 5.2u . 

• •a.-01 

, ..... , 
• 12111.0' 

....... 

f-tgure 5.2-t: Velocity \'f'dc:)rs co&on"'CI by \vlocity magrutude 

Tht• 1:10lutiou convt•rgcd mu('h mo~ quickly with tha. ... oonfisuration than w1th any 

otht r pre:.._·ntc..d. Tht" £act t!11H th<' hood is now in a borizonW configuration allows 

it to draw Ill nir mudt. e8Sl('f than ill the vt•rtlcal 0\'1 rhead ('~mfigumt&on. n, 0\"t!f· 

b 'k'l "iirnuLt.tions us they hav-- bf<'u <'OJt--LnJ<·ted allov.'tod only P.JUall fiU·e velocitaes of 

approximatl•ly 0.5 1n/s in orclt•r to oht.Un solution COJtvcrgent''• whert•tJS it 5e( ms thst 

any nutnbn' of velocd ~can bt> u...._-d for tht· bvod f~· \-"eloc1ty in tht tdolted roufigu~ 

ration. In t\ddition, i>UUing 1n air horizontally is easlt'r than vertically as thr 1ur doet 

no& h.a\-e to rnake &n)' tum thus amtributi113 to imllrm'ed ai~· c-haracuomtks. 
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Figur<' 5.2!j: Coutours o£ velocity magnitud(1 

Figure 5.26; Vtloc·1ty \-.,c:Lurs colored by l':ltatic prt.'tiHHrc 

5.2.6 Canopy Simulation 

I &I 

Thr prOC<.'tltl is now carried out with a t.anopy hood of ~pproximnl4' Lota1 width of 4 

m (2.44 m width hood with 0.7~1 m WO<hh overhang on ••tht'f >tdo•), o unifvnn face 
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''doc-ity of 2 m/a. x-\'alue of 0.75 Ill from the hood fal't" to the oontamin.atiOil source, 

and au t..in& 111ppli..t from all boundan<~ m tb• doma~n. Only th• cooling pr<>COSb 

bas l,(>cn tiltl'lll v.ith a simulated canopy hood as the dnwing/eoning and sawing 

prtx'ftlht" noquirt' the- W'Otkers to lean in O\'Ct tht• J)ro<'t'S.'i tu p<rf<,nn the necessary 

t.N:~kK. This LA eometimes avoided ill ca.~ wlwrto t 1tt• t'Uokf"r and cooling tanks arc 

l\ut.omt\Led nnd only r('(Juirc workers LO lotld Knd unkN."I tlw cmb at the respective 

cndij. Th~ wlodly tuul prcs:sure ve<.:tors and velocity oontouf'ti conrsponding to t his 

simulation IU'tl ~hown in Figures 5.27, 5.28, and 5.~.}. 

,_., 
....... 
4 ,,.,. 

·..... ., 

..... ~. 

Fi~ur(• 5.27: Velocity \o-e<:ton; colored by velocity magnitude 

Agrun tbt• solution converged quickly \\ith this ctmfiguraliCifl m a xirniltU msnner to 

tbe .. otU,'tl 18\\mg a.imulation. The fad that the hood lw a ~light mwba.o.g bas 

chaUKI"CI the Row pattern:, that •"ere obsenl.'d m tbe 0\'Cfbcad limulat~n&. 
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Figure 5.28: Contours of velocity magnitude 

Figure 5.29: \'e-b:J.ty ''-'Ctors oolon!d by stattc prt'BSUrt'l 

5.2.7 Flanged Simulation 

166 

'The.• canopy simulation has h<'<'n run ugu.in here only now ~ flnnA\' (''(IUal to v' Area 

hBH hC"'''U used. Addition or fl. flangt~ jJIJ n<•rmnJly done to de<'f('Mf' t h<1 tur8ow required 
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to prodm.'(' tlw tame ve)ocit.y tu~ WI unflanged hood. H0\\'6\'er, the uuiform velocity 

oC 2 m/s ,.;u atill be used inituul)· with the romificatooos being punrorod in tbe 

..,imula.tioct.: In ,.lc-lition to drcmuing the ai.r6ow l't'qUimi the "-eloclty dmribution 

is !:iignificnntly unprov-ed in tht' hood \1Cinity. Tht' wlo<:aly and pressur!' \"t'(;~ors a.nd 

velocity <'ontoun~ corresponding to this simulatiou me Hhown in F'igUI'('tl 5.30, 5.3 L, 

and 5.32. 

·-• . .. 
"sa..oo 

~ ~~.oo 

·-· ·- = • ::;;--> , ... 
I IO..UO z+= n 'I G T 

1 r I 1:)1.00 

, .. , ..... 
... ~ ... 
f'tgure 5.30: V('locitv verton. colored by vrludty magnitudt' 

111(> Range allov.11 Kir t.o be dra9r"n 111 from in front <>f t ht• hood. rather thnn lx-hlnd, at 

a gre&r.Pr f'fficient')' tlu.b prmnotnl& tnc:~ contamJnanl capture. Th._.. flange also 

al.lov.""S thf' air to enter ...,;th an in• rWded d~iribution ntw the edges of tht hw.cl r\-en 

though the kl\lne uniform ve(O('IlY hns been spe<.·ifit'tl in both c&':iCS. ln both ctLSe:S, 

the a.ir hM ~o turn to enter t.hr hood. However, ws1.houl the ftangr th<' air is very 

turbulPnt aud chMtic near dtt" t.~l"' of the!' hood th1J'f. dt:...-rcasing tht' t'fft"t l\'e hood 

face~ for e.xhi"Wo.S1ing Q.)nt.unnuwto; 

To examin(• tltl' effects of ind\lCiiug a flange, variou~ proflll'tJ pArallel to tht- ltuod face 
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Fi&Ure 5.31: Contours of wlocoty IDA&JlltU<I• 

Figure 5.32 \'•locitr \'OCWlS ooloml by !ItAliC """""'"' 
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A.l prrdt·lt'fnliut<d dbtances from the hood feoe hbW lM't 0 t'Xlfi'L( Ud (rom the abO\'e 

simulation!'!. Figure 5.33 ~;boy.:s profiles at stiC'C'tod dl.titauc~:s for tht> unftanged ca.:;e. 
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Sunilnrly for !I.e ft~~n&<d case, figure 5.3-1 .Ju>a-. profiln1 \lSI"' th• oanat• <JL,tan<:e> as 

in lho unllan&<d case 

1 
f 

0 I 

Voloelty Profiloo (Unftongod Hood) 

6 

2 

I 
I _..,.1 
I 
I 

• 

,._ x-0.018 
• x-0.078 

1(010,201 
..-.-0.323 
- --0445 
- Mooc!F~e~t 

5 6 

Figure S.33· Horizontal wlocity pro6Jes from tlw unfi.t.JJKt-d canopy hood sinllllAtion 

The dJift'rt'O(i' in the profiles produced with t h~ addition or 11. HAng<• tlff I)Otlceable. 

"l'h(• Hnnp.t• incrrMes the rnaxilnum Attainable How ntlt.l a long Uw centerline as well 

Db m the tU'('I\ out.-.ide Lhc edge of the hood (A("f', thus improving <'Hplurf! cnpability 

in tlw hol'i:wntft.l chroction. A direct comparison o£ thrt'l' of the profiles is shown in 

Figure 5.35 whlfrt it cnn be seen tbat profill'ti procht<'l'(l in thf't flnngt'<l -.imulntion are 

cocurisltntly high<r than that produced in the unliang<'<i Mlnualotion 

The ,,_.tOn of allangt• did no< ignorelho facltbat th• au >1111 had to ph)'>i<Rlly tum, 

but :it hu cion~· iiO •·lth an impr'O\-emeot in airflmrr d.iitnbuuon The 'tlocily spiked 

.. it roundoo th• hood ooge in the unftangt'd """"and """"'<! th< "" to undoubtedly 

btwm1• diOJ>I,Y in tha.t are&. The flange CJWS('Ci this t:plkr• to (X'(11r J\.S the &ir rounded 

the fta.nge and hy the t ime it got to the hood fl\4'(' it only hod to tum 00 degrees 
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Fi,;urt" 5.34: Horizontal velocity prulilt·o~ from the Ranged canopy hcMX.Itumulation 

iasteed oE ISO degrees. a. ,.,. the CMC lh the unllanged <"""' Tlus cauaao the air 10 

d~:~tnbute more e-.-.:!'nly and rt'duCt'8 turbu.leoce. Although tM l•~ill..i m.a.y • t>m to be 

wlutJ\"ely 'l.m&ll they are nonrtlll'lt• gwr~S that v.'\·re obtained hy the aunplc tllidition 

of" flnnge, rather t hno incren.'img ftu l power or hood size. 
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Figun- 5 J!i: Horizootal ,,."'It)' profile oompsn..on be<,....,.. dang<'<~ aud unftan&ed 
SimulaLlOila 

5-2-8 Worker Interaction Simulation 

Th~ CkM101;50rting donwn hal) been rn• u6ed to inc: luc;(' a cylinder on f"tthf'r side 

o£ tht• tMlc measuring I ft. wide by 5 fL lul(lt to simulal<· lhl' presence of~~ worker. 

The A. ... ..ucinted velodty 1uuJ pressure ,,.>oC·tortt and ve(O(.'ity ('OHlours oorffi"pontlin.g to 

tbi:; modifwd simula.tiou are lh<M'D in f1gurtW S.36, 5.37 ... J 5.JS. 

kJ & w~ult. o£ the inclUI'iiCIU o£ the t'9.'0 cytiu<ltrs simulatm& ndjocent li,IOfkt'nl the air· 

How pML('I'ml hnve dra.-;1 i<•tt.lly changed shRJ)t1• The workrrK hi\V(' effectively lll'ovidcd a 

doubles d.-od 'human air nar1ain · t.o prot«·t tl~t• exhaust hood 1md allOl\• it t.o JJo~•rfonn 

more effici.,•udy. If it •"ffl" &N-un..ed that •wkrrs were shoukl•-r to shoulder aJong &.he 

£ulllcngth u£ the table chrn thir; assumption could be rtalbitiC' l fowever, the workt'-rs 

arc s})ftO(.'d nL varying intrrvul" in normal pi'Ot'l'~;.Sing with little or no consisttn(·y. The 

gaps tb1u tlwn1ore exis1 h· t~'l"t·n v.'Orka.·J"- lundl>r the efft."(1.i\'lm~ of the 'humw1 &it 
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cun. n , whit:h YtVUld b e"-idt-nt if the ••ulatil~ '"-'l'e m &bree d1m· ~~ ra&.b.er 

thAI\ tWO. 1'hit 'c.-urtain' nlso !;<'I"VCS to C'liminate IICJJilC of th" CI'OSi drafts thilt nl8y 
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be pn.'l!lll'DI m t11e prore-..~ln& area tbus le&di"& w uaon clf•rti'v C!xb.austin& of con

&Juuinauu. fiRtJn.• 5.39 lx>Jow slxm--s lh<' centerlllw l1mtour profif• n.•mhing from the 

workc.·r "imulution 
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f'1gurc ~.39 C<mlpari.son of centerline velocity profilt~t with Himul&t.OO "'"'rkers 
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It should be noted here that the solution did not converge to the degree of accuracy 

of all previous simulations. The profile has still been shown here as is illustrates the 

drastic effect that turbulent structures have on airflow patterns. Flow separation is 

undoubtedly a key factor in the somewhat inaccurate solution produced. 
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5.2.9 Dynamic Source Simulation 1 

Tl:• o\, rt.• ad h()()(t clMnin.gjsortin.g domain h . ...-. bo't"n 1uodificd to now include a 

Slruu1ated bruMh on f'i.ther ~<!<' or ihe t.able meesurm& ij, mdws in diAJnctcr The 

hnlhh boundrui<'l haw been modeled on th<' b&is of a tit> Vt1IOCH)' o£ 2.66 aud the 

hood [.,,. modt•h.! with a small velocity of 0.1 m/• (It Mhould IX' noted here that the 

minimal vuJuC' of 0.1 hti.S b(l('n chosen for the hood £t'tt\ v(•lodty HHCh thnt the system 

i~ only t~lightly influenced by the hood). l'he brushca Dre known to lipin ot 250 rpm, 

making t.lw C(>nVt'r"ion into 2.66 m/s trivial. HOY•'''"'l'l', tip vt>locitiC1!i nre tangential to 

the ~opmnln& gur£o.cf' and oould not be modeled in thllt mu.nm·r nt thilltime. Instead. 

V\lludht'll Uhrmnl to the brush bound&ri~ hK\1" a.umed tbt." tip vt•loc1ty "'31u~ This 

t; reMOnfthk._, fur lhQlUh~tion purposes due to the £8Ct that thl• hood face \'E'locltle, ba'lo"e 

also L&kt-n on MStunf'd valut'b tO £acilitate the smula.uons. Titf' &SiillCiJttt'd \'ekxity 

a.nd p~re \'('('t.or:t and \"elocity contoun; ~pooding to thw mochfiOO !!imulattoo 

are ohov.11 in f'ogun,. 5.10, 5.41. and S.-12. 
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Figurt 5.·10: Vrlocity Y0Cto~ colored by , ... Joc:uy nlll&uitude-
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Hut• it can lX" &t-"("D that the rot.ary brushes can lnd('('i(f foroo routaminanb in the 

dift'( uoo or 1 h" \\-orker It 18 important LO realize that tlH' plot• J.how the range or all 



CHAPTER 5. - Ruult. and Numencal S•mulalwn.a 177 

pe.rtr.cks ~'in& the bru .. h ,,,,.re the pan des leevwa at a CI.M'U'tant ,-a~,u~ of2_66 m/s 

110nnalto the !hlrfao:. From pre'\--iow:t di.'iCtL.,..;Xms on partkle aaze and their a.-......ociated 

trl\)«tori('ll, th{~ ht.fK,t"r particles will tend to be re)t".tVI('(I frun1 1 he hru . ..b at the point of 

cont8Ct w1th ~maiiM' particulate6 being released at. a location f11rthe·r alc.mg the brush 

.sur(A('!P. 

ObviOllbly, n. hood f~'<' v('locity of only 0.1 m/a provt'tl iH <• fl'("<~tiw in producing a 

oontwnuuu1t capturing situation. Th(' hood wos unnblt• to nlt<'r tht• path of the 

aJJergl'n:t o.~ t lwy W('r<' wiCI'A:.;cd from the brushe.s ut th.- HJM'<·ili('(l top('«( of 2.66 m/s. 

lncrt.•agmK thf!J hood face velocity to 0.35 tofs hll.'t alt('rcd tlw flow cl)11tt.mics, a.~ can 

be ocen m F1gul'llll 5.43. SA~. and 5.45. 

,_., 

·-·-· ·-· ,., ... 
I ,,,,OC 
I (;Oe,QO • 

7151101 

~ ilf-01 

I at., 
,., ..... 

Tbeoolullon ahC11\'11 a marketable cliff.....,.,. in lho Dow I*Hetn& By inc,........ing the 

hood fare wlocuy 110me of the contaminants may now bt· c-xhaWJt«< by thE- exhAust 

airflow Ewn though tht> solution does not com·crgt• t•x...:·lly (2.62 mfs at the brw;h 

boundary vs 2.66 m/s), this ~imulation shows tbnl the hood hn.s nu effect on the 
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brush induet'd 80\\· patlt'Tillt. FUrther incre&.·• of the hood fao."" vdocnr •"ill c1u.L~ the 

hood to draw in mort:" of the air stream produt'tod at the bnu.h kx-.auon•... Since an 
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optimal hood face velocity will depend on a variety of factors, values for the hood 

face velocity are chosen to illustrate the behavior of the flow patterns. Exact values 

for velocities are unknown at this time. 
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5.2.10 Dynamic Source Simulation 2 

R.emo"ing the htxxlin~t ah.ogether and lndudinK ...imula.ted workers, tw v.ould be the 

Cl..'ie in e. rea.Ji.. .. ut· tiiLU.ahoo, produced tbf' .OmulatiCillS shown in Figunw 5.46. 5.47. 

ODd 5.48. 
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Figuh' 5 46c \'olo<ity 'utors eotor.d by wlocity magnitude 

This situation 'Ntmlcl be the best rep~ntnliun o£ the range that pnrtic:ulnte oould 

be relea.-;00 fl'om Lht'l brusht'tl ond enLcr the workjng cn\'iromncnt without hooding lo 

plACe. The lack of a hood pJU\u. to be critical all thl" <.'Onlaminants could br (•itltcr 

fomd i.uto the pemonal brl"athing UJDl" ol tht• -..-orb r or disper;.Ed mto the &meral 

p~ areas. Df'lther of which b a desirable l!ll'ellario. 
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l.iHmg a minhnnl hood fA.('(It \'('locity ofO.J m/s and including tht• hood, together with 

the simulatt'd workers, has produced the simulatiollS t;hown in Fif(urCtt 5.·19, 5.50, and 
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Figure 5.·19: Vrlol.'ity \'tctors colored by velocity magnitudt 

Figure 5.50 Vrlodty \'\'(.Lorg colored by \'\'IOCily nlftKnitudt 

Kt'(·ping all variables the snme <'xcept for the hood £1\00 velocity, which has boor~ 

dumgtXI Lo 0.3& mjs produc"' Fl~uruo 5.52, 5.53, and S.f>.l. 
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Here it can be 8l'<'ll thut once the hood Catt• J>rcxluce; l:iOme appfl"Cil\ble C'xhaust '~ 

locity. the airftov.· p&tt•m' producro by tbe bru.hu. oreal"'"'<!. Til<! aarf\001 patterns 
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thAt •vuld moM lik•·l)· ht> ~rrying eonw:uinanta are rt'cbnx-ttd upward:; \.0\\wd the 

bood face in"t~ftd of hitting the worker dil'('('tly. hacl't"UUIlg th(l hood face ve1ocity 
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while varying hood face size and height above the contaminant will produce a variety 

of different results. 
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5.2.12 Dynamic Source Simulation 4 

for wten:oet, J't'mO\in~t th·· hooding and ,'tdenJ a.l~· tht"r produced the toimu.Ja.tion 

ohowo tn Fiiurt ~ ~5. Only th• oontOur plot has bren .!10wn hfor" 
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Fasun• 5.55: Velocity vectors oolored by ,,.)oclt)' ma«J•itudt 

The rot~u1t.Jt tl l'<" t~uml11r tA:> t he> ones produced when only t ht• t·xlum~L l1ood was present. 
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5.2.13 Dynamic Source Simulation 5 

11w -doued bood ••·ing domain ha.... bn.-n rnOOifitod to uc..-· indude a mmul&ted saw 

mt"Mllrifll 10 mche; (0.254 m) in diAr:m•U>r. Ttw l<lW boun(luri('B hm'\"! been modeled 

btl..'lfd on n tip velocity o( 45.9 mjs ancl hood ftl.CI' uuxl1•1t .. l with a uunimal velocity 

of O.l m/rJ. Since table saw,:, normally spin at J..t50 rpm, tlu:; vn.hll' haH b(l(>n Q.oi).l:jumed 

and oonwrttld into the value of approximately 45.9 m/H. Thr tip velocity magnitudes 

IHWC' llflOin lx..'l•n applied normal to the saw boundnry to produce u probable range of 

J>artiruli\IA' n·lew;e. The associated velocity vectors. \'t'IOCJty contours, and pressure 

<·onl.Ours oorraspondmg to this modified simulation 1\ft' 8hown Ln Figure:, r..&G, 5.57. 

Md5.~. 

FislJrr 5.56: Velocity \'t'Ctors ooJortd by \'c·lonty IIJlf.&lUtude 

"""' II tall "" .. ,. that the table san also (.:;ro, OOUIAIIllnAUts ID the dim:tioo o( the 

..,....,., at n•ucb hi&b<r speEd& It is imporunt w reahze that tbe plots apin show the 

ransc o( all povttcl<'ti .......... , the saw blade ...... th• p&rtld ... ..,,vmg ••• constMt 

voluo o( 15.9 m/• along it<> whole surface. Obviou.<ly. • hood r,.,... wlocity of only 
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0.1 m/1 pi'O\'t'd txtn:-md)' ineffecth-e in produ<·iug a (()utalnii1At.nl t"&ptUni\& ~1tua.tioo. 

The hood ~-~ unabJt> to alter tbe path of the allergt"l-" as tlwy \WW rdc t.:..t"'<l from the 
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sa"'· blade as ~ mudt lft"ater tbau -.-.. re f'Xamined for 'h~ brushes. lnc:re.~.. .. ing 

the hood f~ \-clocity to~ m/~ has again .altf"red the ftow dy~atunics, as c.az1 be :.een 

i1\ Figuros {l.fi9, 5.60, a.ud 5.6 1. 

Figure 5.59: Vt'locity vectors rolon'<l by velocity mngnit.ud~ 

ma-na th•· hood looe wlootr 10 ~ m/s had little eff«t ou too flow patl<'fliO du• 10 

the sp<~d at v.·hich the aaw 111 releasing pare ic.·h'ti. F'or simulataon pur~, thr hood 

face \'CIO<·ity has now bei.'ll in<·reased to U:IO 111/s with the I'Nmlts gi\'CII in Figures 

~.62, 5.6.1, and ~-64 
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thc.o;.e ~uuuLuiou.!l ha\-c incorporated some ~WDJ>hOill'l mto the n'lfulu.. they can still 

be tJM.Ir(t 1111 R t)6h:bJ fur 1\ more detailed and robust study on rontAmmant. propagation 
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5.2.14 Dynamic Source Simulation 6 

loa nuuan~ . -ina1lar to th~ cleaning/sorti.ngalnmlat •Ill- the hood has bt-t.1l rt'm0\00 al

togt'tht"'' and simulatf'd worker,;; hAYt" ~:n mdurted to produn• till f.lmulallon .... shown 

in Flgurt'll 5.(;5, 5.66, and 5.67. 

J~OI 
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Figure [).65: Velocity vecton; ooloml hy \1·1ut ity m~nitude 

Thi~ •oLuntion would h•• 1 ht" bc..'iL representation of tht- rtUtKI' I hnL pMticulnte could be 

relemK'<l £rom the saws and ~nt('r the working t.'nvirunnwnt without. hooding m pface. 

Thl' bL<·k of ft hc~od provto;.-. to be crit.ical o.s the coutnmlruuatK could be either forced 

mto tht•t)f'OIOnaJ brt'tUhing zone of the v.urk{'r or UU.p.·rHt·d i11t0 the «t'nt>ral processing 

81"'fti,111l B 11nulnr ntannl'f to that of the clea.n1rt3 tahle brw·lu~ The eolution did D<M 

CCXl\, .. ~,-. nacth· but the airOow patterns sbov.· br::M· the: au Ill mu\'mg. 
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5.2.15 Dynamic Source Simulation 7 

)!).I 

Again u ng a m;nirnnl hood · .a. \""elo 1t~· ol 0.1 m1 ~and 'ndudi.ng: th• hood. l( ~..-t.ber 

witl\ tht' 1'11111\lln[t'd wvrk<'ts, h~ produc:c."C:l tho surmlotion.s ... hown in Fig\II'CS 5.61$, 5.691 
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Smnlorl)· n. :novmg tht' hooding and v.wkt-rM alwtt1 tht·r protluh.J tht- !!oi.mulation 

"hQYfn 111 Fi&-lre 5. 71 OnJy 1lte oouLour plot bu tx-c-u t-hown ht'rt The n•t;u1~ 

•lrt• ~o~imilnr to lluo om10 produced when on1y the exhaust hund wn.-. pn~rut. 



CHAPTER 5 • &6blb and .\"umenca/ S1111.U.Uw~> 

a;-, ... , 

I ,-...111 

'J)o o!ll 

161••01 

I :1 ... 01 

..... oo 

•••• 
fl~tl~ 5.41 . Velocity \"\X10fl!. colored by n•lon\)' msgnitu~ 

5.2.17 Dynamic Source Simulation 8 

197 

k.t,.1•lng all \1\nables the same except for tbt> hood flU:'(" '' locity, which has been 

chsn.~:wd to JM m/&, 0)1tamic Source Simuhttjon 7 produ<."CS fi~rf'd 5. 72. 5. 73, and 

5.74 Htn' it ('311 he:- M'<'n llHll once the hood foct• prmluc1 !t ··~~~~~appreciable exhsu:;:t 

wlocity, thr nirflow patterns produced by the S&\\'tl ur(• nlt.t'l't'cl. Pnn o( the airftow 

pntt(•fll lht\1 would most likely be <-'ttrryiug conluminrutll'l iK n•clirt•c'tl'<l into toward the 

hood (R(i' it~:.U'I\tl of being dispersed through011L the plunt A po1·tion of tlw iUrflow 

is still chrt"flt'<l tuwnrd the worker. which mtlY ht• n IUt"(ltod by bt·ltl'r f'nclatittn> of the 

saw or lhf' lnrorporntion o£ ~n(' sort of protect1w suanl Httwt Vt·r. this modification 

hu not bN·n t'x.&rrun00 in thi.-. tlwsis. 
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Sin<'<' the brushes and 5aWtl on• I-I(Unning tlway front the .... 'Orktr~ it mny not be totally 
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of the hood f1\CC V<'lociti1--s may seem unrc.asonnble. but it h11.i to hi' mult'I"SLood that 

they wert' chi"N'n in ordf'r to facilitAte the a.idlow simulatiun11. 'flwn•fcm•, they should 

not be thought of M the nctu~ vt•locitiu; that would ht· m•('(lt-.;l tu produce these 

uirfluw paUt•rf13ln real life. Only u.fter a COUJplde v.:utilatlou 1\nft.lytds. which has not 

hft-n undt·rt.Lkcu here. "9oi.ll the exoct '1!locitit.,. tulC.l u.irHow1 t.x,, dt'lermined 



Chapter 6 

Conclusions and Recommendations 

The main goals of this project were to both identify areas in the snow crab processing 

environment that displayed various degrees of aerosolized allergen contamination and 

to explore alternative hood and related ventilation designs that could be used to 

minimize aerosolization and improve contamination control for aerosolized allergen. 

6.1 Conclusions 

Allergen Levels 

The first phase of the work consisted of collecting air samples in each of the four 

participating crab processing plants. PBZ and area samples produced a variety of 

allergen concentrations ranging from values less than 10 ng/m3 to values in the 1000's 

of ng/m3 . As can be seen in Neis et al (2003), two plants demonstrated maximum 

measured airborne concentrations in the lOO's of nanograms while the other two had 

maximum concentrations in the l,OOOs. In instances when bio-aerosol concentrations 

of asthmagenic agents are observed to vary in orders of magnitude, such as is observed 

here, a significant risk exists for sensitization to occur. This is supported by the 

prevalence component of the study which has identified a relatively high percentage 

200 



CHAPTER 6. - Conclusions and Recommendations 201 

(18.1%) of almost certain or highly probable cases of OA to snow crab in the study 

population. In the case of occupational allergy to snow crab, defined as rhinitis 

(runny nose), conjunctivitis (red or runny eyes) or rash, an average of 18% overall 

were diagnosed as highly probable for occupational allergy (Neis et al 2003). 

High concentrations of allergens have been observed more often in certain areas of 

the processing plants and also associated with discrete tasks. Recent Quebec research 

has identified plants with allergen levels in all areas below 100 ng/m3 and two of the 

four plants in this study have levels that are close to this limit suggesting that this 

maximum level could be achieved in these plants with a combination of changes in 

ventilation and changes in processing layouts and procedures. 

Raw/ Cooked and Processing 

Comparisons between plants revealed that in general, manipulation (sawing, crush

ing, brushing, scraping, etc.) of the crab after it was cooked resulted in much higher 

allergen concentrations than when processing in the raw state. The raw crab experi

ment that was designed to incorporate variations in ventilation, while not conclusive, 

seemed to support this hypothesis. Findings reported in Neis et al (2003) show that 

the proteins to which workers are reacting are somewhat different in raw and cooked 

crab, meaning that in the short term at least, air samples need to be analyzed using 

sera from workers sensitized to both raw and cooked crab. This should guarantee 

that apparent low allergen levels associated with processing raw crab are real. The 

raw crab experiment also needs to be redone using a slightly different protocol (more 

crab, different sampling methods) because raw crab allergen levels were generally be

low detectable limits and cooked crab allergen levels were not much above detectable 

limits. 

Cleaning, sawing, cooling, and cooking processes were identified as areas that need 
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to be addressed by possibly redesigning processing procedures and/or examination 

of existing or required exhaust ventilation systems. Plant histories and processing 

overviews provided a sense of any modifications made to the plant, if any, as well as 

the typical processing methods used on a daily basis. This information is essential 

in attempting to correlate worker symptoms and medical histories to occurrences of 

asthma or snow crab occupational asthma. Knowledge of the ventilation history and 

crab processing methods is also needed in order to both design a suitable ventilation 

system and to identify processing techniques that may be modified to reduce allergen 

release, thus reducing worker exposure. 

Airflow 

In the airflow modeling part of this thesis the focus was placed on local exhaust 

hoods rather than a general type of exhaust system. Due to the fact that most of 

the problematic areas are centered around a processing table or tank of some kind, 

local non-enclosing hoods were the most appropriate choice for effective contaminant 

capture and removal at the source. Overhead, slotted, and canopy types of hoods 

were examined as probable means of exhausting these processes in the workplace. 

An enclosing type of hood may be more suited for cooking processes but these were 

not modified in this thesis. Potential flow theory was also implemented to produce 

theoretical streamlines that would most likely resemble those that would occur around 

geometric structures similar to those found in the designs of typical exhaust hoods. 

These streamlines provided a mathematical check to the velocity profiles produced 

by the numerical simulations. 

Approximating airflows from point and line sources of suction led to the examination 

of various centerline velocity profiles presented by authors such as Dalla Valle and 

Fletcher. These profiles provided a value for a capture velocity at a specified distance 

from the hood face given that the hood face velocity and area were known. Profiles 
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were plotted for a variety of possible capture velocities at a variety of distances from 

the hood face. This allows the required hood face airflow to be readily obtained and 

applied to a specific situation. Since the centerline profiles could not predict any 

behavior away from the centerline, the trends they provided were used as guides for 

the development of subsequent profiles. In addition, these centerline relationships did 

not take into account turbulent structures that are present in a realistic environment 

such as a crab plant. 

CFD 

The usage of Fluent for the simulations has proved to be very effective in illustrating 

the possible airflow patterns present in typical crab plants. The finite volume method 

inherent within Fluent allowed for efficient convergence of the governing equations of 

mass and momentum. The cleaning, sawing, and cooling processes were numerically 

modeled using a variety of overhead, slotted, and canopy types of hoods. Initially, 

ideal simulations were carried out whereby uniform, parabolic, exponential, and in

verse parabolic velocity profiles were imposed on a hood face boundary for a general 

type of overhead hood. The profile results were compared to the centerline profiles 

proposed by Dalla Valle and Fletcher and were found to produce similar trends. For 

the realistic simulations a uniform profile was used for all three processes and all three 

hood types. However, profiles imposed on the hood face boundary will yield different 

results. For the purpose of this study a uniform profile proved sufficient. Velocity 

and pressure vectors were obtained in the entire domain as well as the velocity con

tours. The results obtained from the various simulations proved that structures in 

the vicinity of the exhaust hood have a drastic effect on the resulting airflow patterns 

and velocity distribution. The height of the hood above or away from the process 

proved to be important as the velocity drops off considerably as the distance from 

the hood face to the contaminant source increases. 
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Slotted hoods provided a much smaller affected flow field than the overhead hoods, 

mainly due to the horizontal nature of the airflow and the reduced hood face area. 

With the configurations used, they seemed to produce a more concentrated capture 

zone located directly at the contamination source, as opposed to the overhead con

figurations that produced a much larger affected area thus limiting direct capture at 

the source. Slotted hoods need to be designed with great care for the sawing process 

as the table saws tend to force the particulate into the air which may make it difficult 

to capture without a correctly designed hood. The airflow patterns for this case show 

that a slotted hood generates a desirable flow field for source capture and exhaust 

at a fraction of the airflow needed by an overhead type hood. However, the flow 

profile produced from the overhead simulation closely mimicked the centerline trends 

produced by Dalla Valle and Fletcher. 

The canopy hood simulations produced a different flow field than the overhead case 

even though the height above the process and hood face velocities remained un

changed. The different configuration of the simulated table and the inclusion of an 

overhang in the canopy simulation undoubtedly caused the variation in the airflows. 

The addition of a flange improved the capturing capability of the hood by a con

siderable amount while maintaining the same hood face velocity as in the unflanged 

simulation. Profiles obtained by taking slices in they-direction from the flanged sim

ulation at varying distances from the hood face depicted increases in velocity when 

compared to identical slices taken from the unflanged simulation, suggesting improved 

air distribution characteristics. 

Modeling of a brush and a saw introduced the dynamic element to the simulations. 

A velocity was imposed normal to the surface producing a possible range that any 

particulate leaving the brushes or saws might follow. It should be noted that large 

particles will have different dynamics than small particles but was not controlled 
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for. However, the airflow ranges shown are useful in identifying the motion of these 

crab particles. Modeling with workers placed near the table has also shown interesting 

results. The insertion of two simulated workers caused the airflow to remain relatively 

contained in the area enclosed by the two workers, the processing table, and the hood 

itself. The capturing efficiency seems to be enhanced due to the virtual air curtain 

produced by the workers. 

In a similar fashion to Horstman (1988), the velocity distributions and flow patterns 

produced here can be used as a basis for establishing contamination propagation 

and distribution. The contaminants considered for propagation will most likely come 

from crab proteins but may come from sources that have not been confirmed as 

contaminant sources such as cleaning chemicals, sulfites, and endotoxins. Due to the 

rate of contaminant decay predicted by the turbulent diffusion equation, knowledge of 

the capturing range of a local exhaust hood when any number of turbulent structures 

are present is critical. 

This work has provided invaluable insight into the airflow patterns that are quite 

possibly present in typical crab plants and in the vicinity of local exhaust hoods. 

The effectiveness of contaminant capture with local hooding has been shown to be 

a distinct possibility in this type of environment. Differences in the airflow patterns 

produced by overhead, slotted, and canopy hoods based on specified velocity profiles 

are important and are evident in these simulations. The way in which particulate 

may be released from brushes and table saws as well as the effects of introducing 

simulated workers have also been shown to be important considerations. 
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6.2 Recommendations 

Neis et al (2003) are recommending that until permissible exposure limits shown not 

to sensitize workers are objectively established, permissible maximum exposure limits 

not exceed 100 ng/m3 from PBZ samplers, lower for area samples. Plants have been 

identified in Quebec and in Newfoundland that show maximum concentrations that 

are already largely below 100 ng/m3 suggesting that this is an achievable goal in 

at least some types of plants. While it is true that some workers who are already 

sensitized may react to lower concentrations (i.e. less than 100 ng/m3 ) it seems 

prudent to recommend target concentrations which appear to be achievable and are 

likely to reduce the risk of sensitization. If the maximum is set at 100, there will 

be many areas in the plants with substantially lower levels where sensitized workers 

could be relocated, although this will have to be done with close monitoring and 

understanding that levels may still be too high for highly sensitized individuals. This 

maximum permissible exposure limit should be reviewed and adjusted in response to 

any future research. 

The need for future work is evident due to the complex nature of the airflows in crab 

processing plants. A complete design should be undertaken that takes into account 

fan sizing and power, ducting, and supply/exhaust air methodologies. A number 

of additional simulations should also be completed whereby a variety of geometric 

configurations, hood face velocities, distances from the source, and turbulent struc

tures present are varied and tested. Research into different air supply methods from 

various locations (entrainment, displacement, etc.) in the plant domain should be 

investigated to determine if an optimal air supply method is linked to each specific 

hood design. The current usage of the cleaning brushes and scoring saws should be 

specifically re-examined with containment of crab allergens in mind. Either a better 

processing system or hood design that prevents the brushes and saws from actually 
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delivering allergenic particles into the environment should be investigated. Particles 

should be modeled using the particle tracing feature in Fluent to determine their ex

act propagation and distribution properties with the hopes of identifying an effective 

exhaust hood design that can be robustly implemented. Since no two crab plants are 

the same it is very difficult to develop a simulation domain that represents all plants. 

With this in mind, when designing a ventilation system, each design should be plant 

specific such that all the nuances have been taken into account. 
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Appendix A 

Plant 1 Sample Results 

Air sampling results for plant 1 have been tabulated and presented in the following 

tables. Unfortunately there was no air sampling done of any kind in year 2, thus 

making any comparisons between the two years impossible. 

Allergen 
PBZ 

Allergen 
PBZ 

"''"""'" PBZ 

Allergen 
PBZ 

Allergen 
PBZ 

12:00pm 

12:00pm 

12:00pm 

12:00pm 

12:00pm 

12:00pm 

Planl1, Allergen Peraonal Sampler• June 9th, 2002. Sampler: Brad Pelley 
Calibrated by: Brad Pelley On: .June 711'1, 2002 

Sorting/Packing 

Monitors crab as It leaves the 30 
dug. Bath and pr<::Kleads to the 
water'ets. 

Bulcheni the crab after II comes 
jt'rom the high pres...,,. wal..r jets. 

P11c;ks sections in c:n.tes f<ll' the 

F""'"'· 
Loads continuous cooker with 
loaded crab crates. 

Cooking In pn:.g,...s 

Cooking In progl'eSia 

Cooking in progreaa 

Cooking in progress 

Cooking in prog-

CooieriWelghb 
jRernoves Crab ~m cooker and it The worker who removes lhe crab era lea fram the 

pets weighed at the same location. cooker 8"!i!~~=ll~:: =~·doesn't 

Alterg•m 
PBZ 12:50pm Packing ~:-~~~~·=:=~ng,puttlng Cooking In prog...,. 

Dale: June 13., (Samples 15,16,17, & 21), 14., (Sampl.,s 18,19, & 20) 2002- Sampler: Brad Pelley 

Calibrated by: Brad Pelley On: June 8th, 2002 
Flow Rat. Ngll 

Operations Monitored 

Ai=en 11:15am 4:08pm 

Allergen 1:33pm 
PBZ 

Allargen 2:00pm PBZ 

All«gen 1:39pm PBZ 

Al~~n 2:28pm 

Allergen 2:00pm PBZ 

Al~~en 10:ooam 2:00pm 

Table 1: Planl1, Allergen Personal Samplers 

I Reeulta 

Coolar/Welghts 

Cooler/Welghla 

Pan 
Washer( static) 

Butchers the aab after it com" 
from the high preseura water jats. 

G..-ades crab ae it comes trom tha 
butcher table. 

Removes Crab from cooker and II 
ets -lghed at the sama location. 

Loads continuous cooker with 
loaded crab crates. 

Cooking in progress 

Cooking In progress 

The woricer who ramavee the crab cralaa from the 
cooker and pute them In the cooler doaan't 

act .... lly_....,.;~ lhe crab. 

Cooking in po-ograu 

Loads continuous cooker with 
oeded crab eratee. Cooking In P"'SfBIIB 

Removes Crab from cooker and 11 The worker who removes the cn~~b cralas from the 

goots -ighed at the aama location. cooker an:cru:::~~:::: :r:,~r doean't 

Table 1: Tabulated plant 1 air sampling results from year 1 

ButduntheaabMiefl 
17 AlleigenAt<a 10:15am 12:15rm 12il 150 - 19 oomeslromiiBiigb 

""""-"" 
CookilQo~ 

18 -At<a 10:15am 12:15jlln "" 150 Sa1ir9Po>mg 49 Clustersn!,ndedand 
~inJ:rogreSS pad<edillo"*'-

19 AlleigenAt<a 10:15am 12:151" 12il 150 ,_,.,., 
" 

TallleMellebamacles 
Cookilg•JIOQIISS areretOOWldfromtheaab 

2il ~orgeoAt<a 10:15am 1~15jlln 1:!1 150 We;Jtos 5!l 
CrabisweijledafterKis 

Cookinginpogress 
.......Jirom1he"'""' 

Figure 1: Tabulated plant 1 air sampling results from year 1 
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Sampa. 
Pump# SamplaTypa . 

Allergen Area 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

AllargenA.noa 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

Allergen Area 7:45pm 9:45pm 

AllergenAraa 7:45pm 9:45pm 

Allert~en Area 7:45pm 9:45pm 

Plant 1, Area Allergen S.mplas .Juna e"', 2002 Samplltl': 

S.~p .. Pump# s.mpa. Type Fk>w Rata (lprn) 

Allergen Area 

Sorting/Packing 

Welghta 

Sorting/Packing 

Weights 

Crab Ia b== In 30deg 

Butcharsthecrabafterlt 

=~~::: .. :; ~'g~ 
Clusters are greded and 

packed Into cm.tea. 

Crab Ia weighed after It Ia 
removed from the cookel'". 

Crab Ia b~~::: In 30deg 

Table where the blllmaclea 
are removed from lha crab 

Cooking In progre11a 

Cooklnglnprogre1111 

Cooking In prcgreall 

Cooklnglnprograaa 

• - ba1101d on eallm.atad 
collacllonvolumaa. 

• = baaed on eatlmaled 
collection volumes 

• "' baaed on aallmaled 
collection volumes 

~':,~!.:..:.-~~"':,;':,~!~ • ".!;.:C-;:tlo~n~~~~:!•d 
C..llbn~t.d by :Mark Swan ... n 

Op-.r,...ana Man~ 

Crab Ia b:::::.~ In 30dag Cooking In progress 

Butcharsthecrabaftarll 
Allergen Area car:'a~":.::":a~~~ ~:!~ 

~-4----+-----~----~----+----4------+--------4-------+~~~~~~·---------
Cooklnglnprogreaa 

Allergen Area Sortlng/Pacl<lng 

Allergen Area 

Ciuslars are gradad and 
packadlntacnotaa. Cooking In prograaa 

Allergen Area 

!~b~~:: ':;,::':t.":,"~:=~ Cooking In prograaa 

~--4-----+--------4------+-----~-----1--------t----w-.,,-,-.---+--------~~=~~~~~~~=~~~=~~==~~~~~ .. =,:+-c-.~--.,-,;pr-~-,-.. ~-

Allergen Area 12: 15pm Crab Ia b:,'!:= In 30dag Cooking In pragraaa 
L_~--~L_ ____ _L ____ ~ __ _L ____ L_ ____ ~------~------~--~~--_L·----~---

Table 2: Tabulated plant 1 air sampling results from year 1 

Plant1, Araa Allergan Samplas Juna 12"', 2002 Samplar: 

\-S-om.!!.,•_'"+•.::.•::.cmp:_O'--\--"::_:"ccm:_p'.:_" T_:Y:_P"-4-'-----f------+''"'~m.,'?CIJ';,!!!!"~,;nLj-•~_w_•_•::_:M_c(Op:CmC:)t---...:.C:.=-. __ -+---'RN"J••.,':no:'\" __ ~_cO:.:p_::••_::••:c:••::_••:_:M::_:•::.c•-:::::_:~c:c•'--\-Remarka/Condttlo"a 
Allergen Area 2:30pm 4:45pm 

Allargan Area 2:30pm 4:45pm 

AtlerganAraa 2:30pm 4:45pm So rUng/Packing Cluateraaragnoded and 
packadlntocratea. Cooklngnollnprogreaa 

2:30pm 4:45pm f----4-----+-'-"_"'_'"_"_•~_•-4c------+-----~-----1--------t----------+--------~-=';.~:.C""c.d:=o~~~':,':'t~n.::.~'c=':.';.:_" ":c';::C~.!'_:::•'--\-cooklng nolln progreaa 

';.,'!~!"e~~~~::."1~=~~~~!~ Cooking not In progr.,a• AtterganArea 4:45pm Waighta 

AllerganAraa 4:45pm 7:15pm 

Allergen Area 4:45pm 5:45pm 

Allergen Area 4:45pm 7:15pm Sorting/Packing 

Allergen Area 4:45pm 7:15pm 

Allergen Area 4:45pm 

Allergen Area 10pm 

Allerg.,nAr"a 10pm 

Crab IB b":::::! in 30dag Cooking in progreBa 

Butcharalhe crabaflerlt 
c~:.'!.~~~o:'a~~~ ~~~~ Cooking In progmB& 

Clu&tersaregrad"d and 
packadlntocralea. Cooking In progreaa 

Loada conllnuou& cookor • " Baaed on .. allmal"d 
wllhloadodcmbcrat.,a. collectionvolum"" 

Loads continuous cooker • • BaRed on "slimaleod 
withload.,dcrebcrataB. coll.,clionvolum.,B. 

Allerg"n Ame Waighta '(.,~~!"e~~r~::.a::.:':~:!~ c kl In ro 

Plant 1, Area Allargen Samplaa .June 13.,(Samplaa 44-88), Juna 14.,(Samplas 47 • 48), 2002 Semplar: Mark Swanaon CaHbratad by :Marti 8w8nao:
0 

ng P gm•~~ 
Sa';;pla Pump t1 sampla Type 

Allergen Area 5:00pm 6:00pm 

Allergen Area 5:00pm 6:00pm 

Allorg.,nArea SOOpm 6:00pm 

Nghn' 

T~:''::!, Flow Rata (lpm) 

Batch cooking whola creb 
lorthaJapanes.,mark"l 

Batch cooking whole crab 
forth" Japanese market 

Batch cooking who!" crab 
lor the Japanese markel 

-- --·-- -- ·---

Cooking In progr.,a• 

Cooking in prograaa 

Cooking in progreBa 

~--+----+--•"_""-"-"_,.•~_•f-:-f-:-:-ccc--+-'cc'-::'~,..•_m~--c-c:--~J---_,.,---- ~of cooker ---~----+.Z.:;;~:"':"'::"':;;;::ii:::;::::.•:;;c;:"'~o;;::": +- ~~~~"_II_~ pr~•-:s 
c_.:c__L _____ L_c:""cc"".:.":__"_A~_._•__Jc__ ____ _L_':__'_'oo..:.'_m__j_ __ .::__l ___ .::_~.c.--T_::•::..• •:__•.::••_::•'~"'c__L_ __ .::_ ___ _l_!•,."!L"'!!!!••!<'""'"""''"""'""''"!!!'""""·--'- Cooking in progr.,8 a 

Figure 2: Tabulated plant 1 air sampling results from year 1 
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Appendix B 

Plant 2 Sample Results 

Air sampling results for plant 2 have been tabulated and presented in the following 

tables. 

PUmJJ. s;mr:e Tlma On TlnMO Off ~?::!. 

Al~~~en 1:34 PM -g~ 

Al~"!z:80 1:50PM 5:48 PM 

Al~~en 2:18PM 6:08PM 

AI~:&"'" 2:38PM 8:06PM 

Al~~en 7:06AM 3:30PM 

AI~'\"'" 7:13AM 3:30 PM 

AI~:&"'" 7:20AM 3:44PM 

Al~an 7;27 AM 3:54PM 

AI~'\"'" 7:32AM 3:29 PM 

Al~~an 7:35AM 4:20 PM 

Al~~n 7:38AM 4:55 PM 

Al:;o~n 8:01 AM 4:45PM 

Callbrat.d by: Jason Callahan On: July 11, 2001(1ncludee pumpa # 1 to# 8) 

Quality Control 

Section Packer 
(Start of Line) 

Section Packer 
(End of Una) 

Weigher 

Taking sections o1 crab and packing 
hem log ather to be weighed. 

Taklngaectlonaofcrabandpacklng 
amtog.thartobewelghed. 

Waigh• the crab that come from the 
'llectlonpacklngtable. 

0-: July 12, 2001- Sempt.r: Jason Callahan 

Callbraled by: Jason CaHahan On: July 11, 2001 (Includes pumpet# 1 to#8) 

Breaking the crab and throwing It Ttwre was aome crab wa•te on the filter ca.11lng, again. Un.11ure 

Holding Room 

aualttyControl 

Section Packer 
(End of Line) 

SectlonP9Cker 
{StartafLine) 

Weigher 

on!Q the conveyor H any of It got Inside. 

The cooking process af the crab. 

• • vo:ume (m")ur:kn~''WI'. uael3 ·1m' 

Table 3: Tabulated plant 2 air sampling results from year 1 
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N"sogumolml 

S.mple'l# Pump• Sample Type Tlnw On n~orr 
Elapsed Flow Rata (lpm) Opllrllttona Monhorec::l RllmarksJCondltlona nma min 

----~---

Allergen Area 2:40PM 4:40PM omce In ~~!rocessin 

Allergen Area 4:46PM Weigher In the 
Processing Area 

Allergen Area btflca In ~~-=rocesslng 

Allergen Area 6:46PM Weigher In the 212 Processing Area 

Date: July 12, 2001 

anogramo/m3 
- --

llmeOff Elapsed 
Flow Rata (lpm) ioparadons Monltontd sample# Pump #I. Sample Type nme min Remarka#Condltlona 

Allergen Area 8:38AM 120 mea In ~~.=,recessing 

Allergen Area 8:40AM Welgherlnthe 
Processing Area 

-------
Stairs In the Butcher Allergen Area 8:49AM 120 A,_ 

Allergen Area 10:44AM 12:44PM ptnce In the Processing ,._ 
Allergen Are~~~ 10:45AM 12:45 PM Weigher In lhe 

Processing Area 

Allergen Area StalrslnlheButcher - ----------
Allergen Area 12:48PM pmce In ~rocessing 

-----
WelgherinUle Allergen Area 120 Pnx:esslng Area 

Allergen Area 2:54PM 120 StalrslnlheButcher 
A~ 

Allergen Area 2:52PM 4:52PM fflcelntheProcessl ,.,_ 
Allergen Area 120 Weigher in the 

Processing Area 

Table 4: Tabulated plant 2 air sampling results from year 1 

Plant 2, Allergen Pa,.anal Sample,. .July 18,2002. Sampler: Brad Pelley 

Calibrated by: Brad Pelley On: July 18, 2002 

Sample.. Pump 'II s;.:pla Time On Time Off T~-:n-;tn Fin::-· R"'!:':n. Operatlona Monitored 

Allergen 
PBZ 

2:00pm Packing Boxing crab, off-loedlng, putting creb 
lnColdSiorage. 

l--~1---+--l--+---+---+---+----+---t-----------f---------. --~-------
Al~~n 7:30am 11:35am 

I---~~--~A~I~-~-."1----+-,:~--p-mt------T----~~-C-oo-ke-,--I------Tc~ook-l•-g-P'-"~-,-,-------~~-------c-o-ok-l•--glnp_rog_~-.~s·-----
Meke boxes for pactclng COoking lrt progress 

-------
Allergen 6:51am 1:30pm 310 

PBZ 
Butcher Butchering Process Cooking In progress 

Allergen 7:30am 1:45pm 375 Weights 
PBZ 

Allergen 

:~~:: !~~~~~b :a!.come from the Cooking In progress 

f-----jf---f-:__:__::::_+-----+~---t-~-f--~---j~~-f--~~F::_:::::c==-~~f--~--~ --~-~-----

PBZ 
6:56am 1:35pm 3.00 Cooling 

Date: July 19"', 2002 ·Sampler: Brad Pelley 

Calibrated by: Brad Pelley On: July 19, 2002 

Sample II Pump.. s.;:!ta Time On Time Off T~::'n Flc;;_:am Area :.~u":ta Operations Monitored 

Cooking In progress 

RamarkaJCondttlona 

Allergen 8:00am 1:37pm 337 
PBZ 

Allergen 
f-------'f---+.~=-c-i---+---+---f----+W-•I_g"_,._<•_,._••_>f--_3_2_' -f'::O:~~::,:O'-:!::~~=~~:cl~a'!_,"::O,!'b::':!o_.oo_m_•_• __ ~_'_"•-+--~--C-oo_" __ ng ~". P_roo_~_s~-

PBZ 
8:05am 1:37pm 

Allergen 7:21am 1:05pm 
PBZ 

Allergen 
7:40am 1:42pm 329 

PBZ 
3.00 

Allergen 7:21am 1:05pm 
PBZ 

Grader (Static) 

End of Cooter 

Gradlng crab for weighing 

Cooking Process 

Area located at the and of the Pre 
Chill Cooler, workers load crates. 

utcherlngProceas 

Cooking In progress 

Cooking In progress 

Cooking In progress 

Cooking In progre.a 

f--+---+--+--+----t---t----t----t---+------~----1------- -~-----~-

Al~~n 7:43am 1:35pm 352 

39 Al~~n 7:40 am 2:00 pm 349 

Table 1: Plant 2, Allergen Personal Samplers 

Cold Storage Entrance to cold storage room 

aklng sections of erab and packing 
them i'ooether to be weklhed. 

Cooking In progress 

Cooking In progress 

Table 5: Tabulated plant 2 air sampling results from year 2 
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Plant 2, Allergen Personal Samplers .luly 21.,, 2002. Sampler: Brad Pelley 

Samplafl Pump #I Sample Type Time On Elap .. d Flo1':,:.ta A~o 
Nglm Operations MonM:ord Ramarka/CondMiona nma min Results 

Taking sections of crab and 
PBZ 2:00pm 5:25pm Sorting/Brushing (Static} paeklngt~~::.thertoba Cooking In progress 

1:00pm 5:00pm 2<0 3.0 Cooking process Cooking In progress 

It waa orr when It waa 
PBZ 1:00pm 5:00pm Butcher Butchering process retrl11ved,noldaa how 

IOJlJL,_ 

PBZ 1:30pm 5:30pm Freezer/Cold Storage 1"15 Entrance to cold atoraga room Worker moved between 
cold storage and weights. 

2:05pm 5:20pm Cooling (Static) Cooling process Cookll1gln progreaa 

1:15pm 5:26pm 251 Grader Gradlngcrabforwelghlng Cooking In progreu 

Plant 2, Allergen Personal Samplers .tuly 22 ... , 2002. sampler: Brad Pelley 

Ng/1111 

Sample • Pump., Sample Type Time On Time Off Elapsed Flow Rate 
Area Reauna Operations Monitored Ramar11111Condltlona Time min lm 

PBZ 2:20pm Saws(Statlc) :J36 Sawing operations Cooklnglnprogre&S 

2:20pm Grader(Statlc) Gradlngcrabforwelghlng Cooklnglnprogreas 

2:35pm Old packlngl8rlne Freezer Between Brine Freezer and Old 
Cooking In progress (Static) Packing Line. 

2:15pm "' 3.0 Cooking process Cooklnglnprogress 

51 7:10am 2:02pm 387 Cooling Cooling process Cooking In progress 

2:35pm Butcher Butchering process Cooking in progress 

Taklngsec11onsofcraband 
53 2:02pm 382 3.0 Sorting and Brushing packlngthemtogethertobe Cooking in progress 

weighed. 

Table 2: Plant 2, Allergen Personal Samplers 

Table 6: Tabulated plant 2 air sampling results from year 2 

Sample 'II- Pumptf. &ample Type T~,:t" Flaw Rata (lpm) ""'m' 
Allergen Area Butchering process Cooking In progress 

Top or Cooker Cooking progress Allergen Area 

Allergen Area 

Cooking In progress 

j-~-j~~-f~~~~+~~-f~~~j-~~t-~~~+==·~=,.-c:Dbcc~:;::m'"C:"'"::-:•C:m:-f-~~~~+.:-.,c:c.,c::""C:'"C""• m~dru-m-.="_cc,cc,.+-Coo ·~.,-ng In progreas 
·~ coollngtank 

Allergen Area 

Allergen Area 

Allergen Area 

Allergen Area 

Allergen Area 

Top Old Packing Line 

12:!50pm 

12:50pm Topol' Cooker 

1:00pm 

1:00pm Tap Old Packing Line 

End of Brine Freezer and 
beginning of packing line 

Butd!aring prDOitiiS 

Cooking In progresa 

Cooking In progress 

Cooking procaas Flow .!"=x·~:0e1;::;'1~.--
Baglnnlng of drum. n81CI to Flow rehts at lhe end were 

cooling tank epprox 100 lfmln. 

End cf Brine F .. ezer and 
beginning of packing line Cooldng In progress 

Plant 2, Ar.a Allergen Samples .luly 19"'. 2002 Semplar: Brad Pafley Pumpa Calibnltad by Brad Pellay 

Sample• Pump• SampleTYJNo ~~~~~~-=~~~+~~~-=~=-~•ru~~~~~~~m"+'~~~R=~=·~"•=m~l~--~=-~-+~====~+f>.~·-=~=~=-~M=•="~==Nd=-~---_R_~_c_._"~~~ 
AUergenAnte Butd!eriog process Cooking In progress 

~--~---r------4-----~---r----+------r--------r-----~----------r 

Table 3. 

AllargenArae 

Allergen Area Top or ~:~:acklng 

Allergen Area 

Allergen Area 1:15pm 

Allergen Area 1:00pm 

Allergen Area 1:48pm 

Plant 2. Area Samplers 

Cooklngprucesa Cooking In progress 

--+~=::."'di~::C"::."'~'-'';,::_" ;'=;,"=•~::::~~!.:' ~::.:i~e::._' j-Cooklng In progress 

end of Orum behind grao;ler 
!able Cooking In progress 

Cooking In progress 

Cooking process 

Cooking In progress 

End of orur;;,:::,hlnd grader C(K>klngln progress 

Table 7: Tabulated plant 2 air sampling results from year 2 

218 



APPENDIX B 219 

Plan12, Allergen P<ea Samplers July 21", 2002. Sampler. Brad F'eley 

Sample# Pump# Sample Type Time On Time Oil Elapsed 
nme(mln) Flow Rate (lpm) Area ,::.:~ .. Operations Monitored Remarks/Conditions 

17 2 Allergen Area 1:50pm 3:52pm 122 150 Cooker 32 Cooking Process Cooking in pi'O!Jess 

18 3 Allergen Area 1:49pm 4:08pm 139 150 Cold Storage 25 Cold storage Entrance Cooking in progress 

Planl2, Allergen Personal Slmple15 July '0', 2002. Sampler. Brad Pelley 

Ngim' 

Sample# Pump# Sample Type Time On Time Off Elapsed 
nme(mln) Flow Rate (lpm) """' Rnults Operations Monitored Remarks/Condlli<lns 

19 3 Allergen Area 8:35am 10:40am 125 150 Holding Room 7 Holding room for crab. Cooking kl progress 

20 2 Allergen Area 8:30an 10:40am 130 150 Cooker 24 COOking Process Cooking in prog-ess 

21 AIC Allergen Area 8:48an 10:54am 126 150 Brine Freezer/Old 26 Between Brine Freezer Cl'ld Cooking in pngress Packing Une Packing Area 

22 3 Allergen Area 10:50am 12:50pm 120 150 End of Drum 263 
End of Drum behkld grader 

Cooking in JWgress !able 

23 2 Allergen Area 10:45am 12:45pm 120 150 Cooker (on floor) 218 COOking Process Cooking in ~ss 

24 AIC Allergen Area 10:55am 12:52pm 117 150 Brine Freezer/Cld 
28 

End of Brine Freezer and Cooking in progress Packing Une beginning of packing line 

Table 4: Plant 2, Allergen Personal Samplers 

Table 8: Tabulated plant 2 air sampling results from year 2 

Plant 2- PBZ Samples Year 1&2 
775 L_j Processing Office <5~1) <50(1) % 

<50(1) <5~1) Cold Storage ~15~ ........ 
~ - 45~1) 69 Sorter & Weights I Saws 838 1 

~~~ 
D 593*(1) 342 ~ v

1
21 Holding 

Old Packing Line 222(1) 568 End Drum Begin Drum 294 ~ 

D"'"' 612(1) ,, ., [~]'" , 

v 
·~ ~ 0 '" 895(1) Drum u 4l 

~ .!:1 202 () 

P< D 1218 s 
~ 

I Brine I 
Weights 1322 302 

11346 Sorters/Brushing/Packing I r; 64 260(1) 
133 2011(1) 748(1) 9801(1) 5981(1) 792 55 <50(1) 

* means averaged flow volumes were used. 

Figure 3: Plant 2 air sampling results from year 2 
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Plant 2- Area Samples Year 1&2 
Cold Storage Processing Office 

~+- 25 170(1) 160(1) 8~1) Sorter & Weights 'I -----::-Saws-----, 
157(1)167(1)163(1) D 
'l(ldPmgi 42 138 
50 

142 243(1)212(1) 217(1) D 
26 145(1)256(1) 218(1) 

[;:] Wcigbll 

End Drum Be~n Drum 

I Grader I ~~~ 
584~ 
193 

Sorters/Brushing/Packing 

Holding 

11(1) 3(1) 

<2(1) 

* means averaged flow volumes were used. 

Figure 4: Plant 2 air sampling results from year 2 
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Appendix C 

Plant 3 Sample Results 

Air sampling results for plant 3 have been tabulated and presented m the following 

tables. 

Al~~en 8:01AM 5:17PM 

Al~~en 7:58AM 4:55PM 

5 Al~~en 8:03AM 4:56 PM 

6 Al::~an 8:05AM 4:58PM 

4 Al~:&en 8:08 AM 4:58 PM 

2 Al~~en 8:10AM 4:57PM 

Al~~n 7:55AM 4:58PM 

5 Al~~n 7:57AM 4:49PM 

4 Al~:;n 7:59AM 4:58PM 

7 AI~~WI 8;00 AM 5:00PM 

Al~~en 8:02AM 4;59 PM 

3 Al~~en 8:03AM 4:57 PM 

2 Al~:&en 8:04 AM 4:56 PM 

Calibrated ~y; Jason CaMahan On: August 6 2001 lnclud"" umps # 1 to# 8 

umpwasoffwhenhoturneditlnrorlunch.tdon11hinkilwaaorl 

:~:·h::~.;:~:::~ r~~~ ~:·p~:~~~.~~.~~ cages E~~:n~~:~~:.:~:;:~ ~;~~:~~~!~:i.;::~~~:=r!:f::~: 
213min.elapsed). 

Butch&<" 
AM& 

Weigher 

End of 
Cooler 

Tho erab comes from the boat or holding I'<IOm and 
hecnockstl>acrab,bruahQslhem,andaandsthem 
ontobe>gtadedandsorted 

flertheCoolar,lhecrabsarawe;ghedtOSpacific 
mounl!lbyharandaanttobecagadandchilled. 

Rem<Wealhecrale&olcrabftomlheCoOieranll 
sands them down on a conveyor belt &o be weighed. 

nthaaflemoon.thalittercameorfandfollfn thewaterchuteonlho 
tchoringtine.Heplckaditupandpulilonagain.Whont 

~:~~e~L::~p~..:::.".~ of day the filler paper inside looked wet 

~i !.:.C:u~~: ~~~.::.:·~~~h~~~':: !~~~::~:::~"a" was 
inutaa.Therelore.totalwaa397minutea. 

:=~~·~:;:~!~sf~~~·,~r:,"~~hp~!'~h'iN~nkE~E;t,;:~:~fEg;:~~!h:";u~1s~h~~~~·~, ~~:k .... ~8~t.!::, the 

Sorting 
AM& 

l:r':'re ~~ .. c~:o~~~- pula the crab Into Ollr&rentalzlta 

Sampler: Jason Callahan ·Dale: Au uat 9 2001 

Ca11bralad b : Jason CaHahan On: Au ust6 2001 Includes um s • 1 to • 8 

End of Romo....,a tho cratoa or crab from the Cooter and 
Cooter aenda them down on a con....,yor bell to be weighed. 

Weigher 

~~:k~~ 

Start of 
Cooker s:g 

flerlheCoolor.thecrabaarewolgl>ediOspacilic 
omountsbyharandaenttobecagodandchatod. 

Takesthocra-arcraboutoltheCookerand 
placoalhemintothastartollhoCooler. 

flerbeingwotghad.haloadslhacralasintocages 
ndhoistathecagaslntothaPra-ChiiiTank. 

~=~:'.:'~~sct~:'~~a':.~ ... ~~!':~~:~~~n!,=.,";h':,':: 
ontobegradedandaafted. 

akesthocralesofcrabolfolthe Sorting Line and 
putsthamintotheCookor 

So1~~1':8cr~!,~~- pula the crab into Oilferent alzaa 

h~~= .. ~=~~~~ "c"cio~!rxa~llh C::.:'mp. Changed from Y to X due 

~':~:~ ~~':.~ ... ~9~2;~ :.'.~~~~~ ~~,::d ~.r::':k~;: ~:·:~me;.·· 
heclled pump at2:00 PM and it was off again. I .... tarted II. Off 
gain et 5:00PM. Eve.-yUme tho pump wee found off. II dldn1 ahow 
lapaedtirne(itahould).NotagoodNmptebecauseiOtallyunaure 
lima.Miano>tttoT.aonotabl9loaa 

oma men on the nner caaing. Not mucl\ 

Table 9: Tabulated plant 3 air sampling results from year 1 
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August 8, 2001. Sampler: Jason Callahan. Calibrated by Mark Swanson 

Sample# Pump# Sample Type Time On Time Off Elapsed Time Flow Rate ...... Nanograrns/m3 ~ Remarks/Condition a (min) (lpm) Results J;iQnitored 
Allergen Area 8:54AM 10:54AM 120 Behind Brine Tank 2:~ 

~-e pump got pretty wet. 

Allergen Area 8:58AM 10:58 AM 120 Next to Weigher Filter seemed alright. Not 
sure, though. Can this pose 
a problem??? 

Allergen Area 9:03AM 11:03AM 120 Behind Cooker 13 

Allergen Area 11:33AM 1:33PM 120 Behind Brine Tank 19 

I moved the pump a little. 
Allergen Area 11:39AM 1:39PM 120 Next to Weigher 10 Still got a bit wet, but not as 

much as last time. 

Allergen Area 11:41AM 1:41PM 120 Behind Cooker 14 

Allergen Area 1:35PM 3:35PM 120 Behind Brine Tank 42 

Allergen Area 1:40PM 3:40PM 120 Next to Weigher 41 

Allergen Area 1:44PM 3:44PM 120 Behind Cooker 60 

Date: August 9, 2001 

Sampler: Jason Callahan 

sample# Pump# ~a':t .. Thne On TlrrHI Off 
Elapsed Thne Flow Rate Ana Nanogramslm3 

Operations Monitored Remarks/Conditione min lm Results 
10 lergen Area 8:17AM 10:17AM 120 Behind Brine Tank 61 

11 !AttergenArea 8:20AM 10:20AM 120 Next to Weigher 122 
12 jAitergen Area 8:23AM 10:23AM 120 Behind Cooker 25 

13 !Attergen Area 10:19AM 12:19PM 120 Behind Brine Tank 47 

14 jAttergen Area 10:22AM 12:22 PM 120 Next to Weigher 61 
15 jAtlergen Area 10:25AM 12:25 PM 120 Behind Cooker 97 

16 jAtlergen Area 12:40PM 2:40PM 120 Behind Brine Tank 36 

17 jAtlergen Area 12:43 PM 2:43PM 120 Next to Wetgher 56 

18 jAtlergen Area 12:46PM 2:46PM 120 Behind Cooker 26 
19 jAtlergen Area 2:41PM 4:41PM 120 Behind Brine Tank 46 
20 jA.uergen Area 2:44PM 4:44PM 120 Next to Weigher 54 
21 llergen Area 2:47PM 4:47PM 120 Behind Cooker 36 -------

Table 10: Tabulated plant 3 air sampling results from year 1 

Al~~n 

Al~~n 

Allergen 
PBZ 

Al~~n 

Al~~n 

Al::~n 

3:00pm 

3:00pm 

3:00pm 

3:00pm 

3:00pm 

3:00pm 

Pe<*lng 

Brine 
Freezer 

: Brad Pelle On: uat 15'h , 2002 
Nwm 

Results 

ortsthGcrabbeJol'l!lltflnterathecoakerallertt 
amea from thfl butcher mom. 

ackacrabin can::tbOan::t ba•asandahlptoCQkl 
torage. 

f"-tanltoracrabaaltleavesthaQOOker. 

~~:n:~==~::;.r;:~:~:::£t~:!:"tt::<;~. 

he creb comas from lhfl boat or holding mom 

~~_,'!,e,::,::'!,ck .... n ~,."' ~"!· .. ~'!:''!':.~ t~!:.:..""d 

Cookinginprogra.a 

Cooking in progreea 

Cooking In progra .. 

Cooklnginprogret~a 

COOking in progreaa 

Cooking in progress 

~~~~~~~~~-+~~~-------------------------------------== Al~~n 3:26pm 

Al~~n 

Ai~~n 7:64am 3:07pm 

Al~~en 10:2oam 3:26pm 

Al~~n 3:30pm 

Al~~n 3:06pm 

At~~n 3:06pm 

Al:=~n 3:06pm 

Table 1: Plant 3, Allergen PBZ Samples 

Brine 
Freezer 

:Brad:;:;,- On: Au UOit 16 2002 -
OparaUana Manltarad 

Cooking in progl'l!lsa 

f"-tonltora crabaalttaavea the cooler Cooking in prGQNaa 

~otused 

jstaUc PBZ midway on automatic grader ~na Cookonglnprogresa 

f"-tanltora the crab as It moves through the QOOker. Cooking In progress 

Table 11: Tabulated plant 3 air sampling results from year 2 

-
-
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Plant 3 Allergen Samples, PBZ Samples August 18° • Sampler: Brad Pelley 

Calibrated by: Brad Pelley On: August 16", 2002 

Sample! 
Pump Sample 

Time On ime011 
Elapsed Flow Rate 

Area 
Nglm 

Operations Monitored Remarks/Conditions 
# TvDII 1melmin Opm} Results 

70 1 
Anergen 

1:02pm 5:12pm 250 3.00 Packer 60 acks crab in canlboanl boxes and sh~ to co~ Cooking process 
PBZ torage. 

71 2 
AUergen 

1:07pm 5:00pm 233 3.00 Raw Sorter 77 Sorts the crab before n entern the cooker after n 
Cooki'llprocess 

PBZ 1:0mesfromthebutcherroom. 

72 3 
Al~rgen 

1:06pm 5:00pm 232 3.00 Cooker 40 Monitornthecrabasnmovesthroughthecooker. Not sure what time this pump cut oot but n was off when 
PBZ I checked near the end of the shm. 

73 5 
Allergen 

1:10pm 5:02pm 232 3.00 Butcher 57 
[The crab comes from the boat or ho~ing room and 

Cooking process PBZ e cracks the crab, brushes them, and sends them 
n to be graded and sorted. 

74 6 Allergen 
1:20pm 5:02pm 222 3.00 

Grader 95 emoves the crates of crab from the Cooler and 
Cooi<ill! process PBZ (static) ends them down on a conveyor beft to be weighed 

75 7 
Allergen 

1:10pm 5:03pm 233 3.00 Cooler 209 ~onitors crab as n leaves the cooker. Cooking process PBZ 

Allergen Brine elps to lower the crates ot crab into the Pre-Chill 
76 6 1:30pm 5:30pm 240 3.00 12 ank and transports the crab from the Pre-Chill Tank Cooking process PBZ Freezer ~the Brine Tank (crane). 

Table 2: Plant 3, Area Allergen Samples 

Table 12: Tabulated plant 3 air sampling results from year 2 

Plant 3, Area Allergen Samples 
August 141h,1s'fl,161h 2002 Sampler: Brad Pelley Calibrated: Brad Pelley 

Sample #f. Pump# SampteType Time On Time Off Ela"f:"n~lme Flo: ...... Nglm 
Operations Monitored Remarks/Conditions Results 

1(14.) 2 Allergen Area 7:15pm 9:05pm 110 150 Top of Cooker 42 On top of cont. cooker Cooking in progress 
2(15.) AJC Allergen Area 9:20am 11:50am 140 150 Holding Room <3 Crab Holding Room Cooking In progress 
3(15") 2 Allergen Area 9:00am 10:30am 90 150 Butcher 17 Butchering Room Cooking in progress 

4(15') 3 Allergen Area 8:45am 10:15am 90 150 Top of Cooker 87 Cooking process Cooking in progress 

5(15.) AIC Allergen Area 12:10pm 2:10pm 120 150 Holding Room <3 Crab holding room Cooking in progress 

6(15.) 2 Allergen Area 10:30am 12:30pm 120 150 Butcher 15'" Butchering process 
•eased on estimated 

collection volumes 

7(15~) 3 Allergen Area 10:15am 12:15pm 120 150 Top of Cooker 83" Cooking process 
*Based on estimated 

collection volumes 
8(16") 2 Allergen Area 1:30pm 3:30pm 120 150 Grader,B'offfloor 46 8ft off floor, top grader Cooking in progress 

9(18.) 3 Allergen Area 1:30pm 3:30pm 120 150 Brine Freezer 72" Top of brine tank, '"Based on estimated 
Packing end collection volumes 

Date: August 1 ,18'" '2002 
Sampler: Brad Pelley 

Sample# Pump# Sample Type Time On Time Off Ela~~lme Fl'7':.ite ...... Nglm 
Operations Monitored Remarks/Conditions Results 

10(17.) AJC Allergen Area 11:00am 1:00pm 120 150 End of Brine Tank 4 Nil No work today 
11(17") 2 Allergen Area 11:1Dam 1:10pm 120 150 Top of Cooker a Nil No work today 

12(17") 3 Allergen Area 11:05am 1:05pm 120 150 Weights <l Nil No work today 
13(18.) 2 Allergen Area 1:30pm 3:30pm 120 150 Cooker :lO Nil No work today 

14(18111 ) 3 Allergen Area 1:30pm 3:30pm 120 150 Pre Cooler :l4 Nil No work today 
15(1Btn) 2 Allergen Area 3:30pm 5:30pm 120 150 Cooker 56 Nil No work today 

16(18.) 3 Allergen Area 3:30pm 5:30pm 120 150 Mid Brine Freezer 69 Nil No work today 
Table 3. Plant 3, Area Allergen Samples 

Table 13: Tabulated plant 3 air sampling results from year 2 
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Plant 3 - PBZ Samples Year 1 &2 
.-----~------------,-----------------~107 

178 Cooker Cooler 1147 
'-----------,-=-----------'------------------___J209 172(1) 

49(1) 74(1) 40 247 244(1) 139(1) 

<50(1) 68(1) 

...... 
CD 

-'= (.) -::I 
al 

66 
57 <50(1) 

<13 <50(1) 

[ Autom~~c Grader 

120 235 

183(1) D 
197(1) 

Weights 

Brine Freezer 
138 

I 
169(1) 

Pre Cooler <50(1) 

166 72 68(1) 

Figure 5: Plant 3 air sampling results from year 2 

Plant 3 -Area Samples Year 1 &2 
,----2---,5(1)13(1) 14(1) 60(1) 97(1) 26(1) 36(1) 

I Raw Sorter I I 4~6 Cooker ~~· 30 I l 
..... 
CD 

..r::: 

.B 
:::1 
al 

15* 

17 

Cooler 

46 

Automatic Grader 

69 
Brine Freezer 

9(1) 10(1) 41(1) 

122(1) 61(1) 56(1) 0 
54<1> Weights 

,--------------, 
34 

Pre Cooler 

*means averaged flow volumes were used. 

Figure 6: Plant 3 air sampling results from year 2 
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Appendix D 

Plant 4 Sample Results 

Air sampling results for plant 4 have been tabulated and presented m the following 

tables. 

Plant 4, Allergen Personal Samplers June 10., , 2002. Sampler: Brad Pelley 

Calibrated by: Brad Pelley On: June 9th, ·2002 

Samplat Pump# Sample nmaOn Time Off r~?f.:~, FIPo~ta AMa Nglm Operations Monitored 
Type Results 

Allergen 8:12am 1:15pm 276 3.00 Butcher 19 Butchers the aab when it Is brought 
PBZ in from the holding room. 

Allergen 
8:25am 12:55pm 300 3.00 Cooker 15ll Cooks the crab in a sectioned off 

PBZ room In batch cookers. 

10 Allergen 9:0oam 1:00pm 240 3.00 Ice Loader 
125 

Shovels Ice into crates for use in the 
PBZ (outside) Fking room to cool the crab down. 

11 
Allergen !0:18am 3:15pm 272 3.00 Packing 300 Boxing crab lor Cold Storage. PBZ 

12 Allergen 
8:32am 1:00pm 268 3.00 Saws 749 Removes crab from sorting line and 

PBZ brings it to the saws line. 

14 Allergen !0:15am 3:10pm 280 3.00 ..... !liB Soores{saws) the crab legs 
PBZ 

13 Allergen 10:28am 3:22pm 280 3.00 Brine Freezer 465 Puts crab in Brine cooler befure It 
PBZ gets packed and sent to storage. 

Date: June 18" Sampler: Brad Pelley 

C•llbrated by: Brad Pelley On: June 1711 , 2002 

Sample t Pump II 8;:'!.te Time On Time Off n-=::~n Ftc;:ate Area R~~::~ OperaUons Monitored 

22 Allergen 9:25am 2:04pm 279 
PBZ 

3.00 Saws 2!:169 Scores(saws) the crab legs 

23 Allergen 10:00am 1:45pm 225 
PBZ 

3.00 Everywhere ,., Moved throughout the plant 

24 Allergen 
7:04am 12:00pm 296 PBZ 

3.00 Butcher 53 Butchers the crab when It is brought 
In from the holdlna room. 

3.00 Cooker 19t\ Cooks the crab in a sectioned off 
room in batch cookers. 

25 Al~~en 7:05am 11:15pm 250 

Table 1. Plant 4, Allergen Personal Samplers 

RemarksiCondltlons 

Cooking in progress 

Cooking in progress 

Cooking in progress 

Cooking in progress 

Cooking In progress 

Cooking in progress 

Cooking In progress 

RemartuaiCondltlons 

Cooking in progress 

Brad Pelley wore the PBZ while moving 
throughout the plant. 

Cooking in progress 

Cooking In progress 

Table 14: Tabulated plant 4 air sampling results from year 1 
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Plant4, ,.,.. Allergen Samples .luna 10"', 2002 Sampler: Mark Swan80n Callbraled by :Mark Swan.on 

Sample* P .. mp • Saonpla Type T:;:.-.;-.;::!, Flow Rata (lpm) 
Cook., lhe crab In a 

Allergen Area 1:00pm sectioned~~~~ In balch Cooking In progre .. 

Allergen Area 1:00pm Soores(aewa) the crab l~a Cooking in progress 

Anergen Area 1:00pm Sorting/GredlngfSawa 

Bulchera the crab when it i 
Allergen AreA 1:00pm brought In ::,~~he holding Cooking in progroaa 

Allergen Area 2:20pm Waahea crab crates Cooking In progress 

Allergen Area 2:5opm 

Allergen Area 1:00pm 2:50pm Scorea(aawa) the aab tags Coot<tng In progroaa 

ANergenArea 1:00pm 1:30pm Sorting/Grading/Sews 

Allergen Area 2:l'>Opm Sorting/Grading 

Allergen Area 1:00pm 2:20pm Unloading crab from boat 

Plant 4, Area Allergen Samples .luna 18"' • 2002 s ..... plar: Mark Swanaon Callbratad by :MIQ'k s-;;;;;;;;. 

s~:"'~';~htn 
800otbs aab. _ 

Sample t1 Pump • S.mpla Type T~"::'':::. Flow Rate (lpm) 

AllergenAffla 12:00pm ou•:=~~~:nd, 

Allergen Area 

Ngfm' 

Op•notlona Monltorad R..,..ark.-/Condltlona 

Samplarw8~ 
Sampling outRide the plan! outside at the North 

Cooke lhe crab In a end of lha J!'lanl. ~-
aec::~~ ~=a~ In Cooking in progroaa 

Scarea(a-a) lhe crab 
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scoroa(aawa) the crab 
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Cooking in progreaa 

Table 15: Tabulated plant 4 air sampling results from year 1 

Plant 4- Area Samples 
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Figure 7: Tabulated plant 4 air sampling (Area) results from year 1 
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Plant~ Raw Crab Experiment Allergen Personal Samplers July 21•, 2003. Sampler. Brad P~ley 

Calibrated by: Brad P~ley On: July21", 2003 

Sample# Pump# Sample Time On Time Off Elapsed Flow Rate 
Area Nwm Operations Mon~ored Remarks/Conditions Type Tlme(mlnl (lpm) Results 

1 1 Allergen 7:00am 2:34pm 424 3.00 Saws 1589 Salres (saws) the aab legs COOling in progress 
PBZ 

2 2 Allergen 6:50am 2:26pm 426 3.00 Saws/Paclling 663 
Wofller Jlllved between packing and 

Coo~ng in progress 
PBZ sawing. 

3 3 
Allergen 

6:1oam 1:50pm 420 3.00 Cooker 648 Cooks the aab ~ the batch cooker. Cooking in progress PBZ 

4 4 
Allergen 

9:45am 2:30pm 255 3.00 Saws 3188 Scores (saws) the aablegs Cooking in progress PBZ 

5 5 
Allergen 

7:25am 2:23pm 388 3.00 Paclling 673 
Grading and cleaning aab and 

Cooking in progress PBZ pac~ng into aates 

6 6 
Allergen 

8:00am 3:50pm 443 3.00 Brine Freezer 365 Puts aab in Brine croer before it 
~ng in progress 

PBZ ets packed and sent to storage 

Table 1: Plant 4, Allergen Personal Samplers 

Table 16: Tabulated plant 4 air sampling (PBZ) results from year 2 

+ Plant 4- PBZ Samples Year 1&2 

?--· 
Holdng Room 

l.oii<lnv Door 

Figure 8: Plant 4 air sampling results from year 2 

Ice Loa tier (Oul:ii<l") 
125(!) 
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Appendix E 

Plant 1 Results 

Temperature and humidity results for plant 1 are shown in the following figures. 

Plant D • CookerJBamacle -June 12th 
75 .J\ :: 
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15:~00 16:00:00 16:20:00 16:40:00 17:00:00 17:20:118 

06!12.112 15".40:00 06•11:~1 17:20:00 

Figure 9: Year 1 Temperature and Humidity Measurements (Cooking Room and 
Barnacle Table Area) 
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Plant D -cooking room- June 14th 
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Figure 10: Year 1 Temperature and Humidity Measurements (Cooking Room) 
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Plant D ~ooking room- June 14th 
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Figure 11: Year 1 Temperature and Humidity Measurements (Cooking Room) 

u Plant D ·End of Sorting Line· June 13th 
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Figure 12: Year 1 Temperature and Humidity Measurements (Sorting and Packing 
Area) 
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Appendix F 

Plant 2 Results 

Temperature and humidity results for plant 2 are shown in the following figures. 

Figure 5 
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Figure 6 

Figure 7 
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Figure 13: Year 1 Temperature and Humidity Measurements (All Areas) 
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Plant A-Mer Drum-July19th 
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Figure 14: Year 2 Temperature and Humidity Measurements (Drum Area) 
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Plant A-Butcher Area-July 22nd 
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Figure 15: Year 2 Temperature and Humidity Measurements (Butcher Area) 
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Plant A -Cooking room-July 18th 
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Figure 16: Year 2 Temperature and Humidity Measurements (Cooking Room) 
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Figure 17: Year 2 Temperature and Humidity Measurements (Cooking Room) 
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Plant A -Cooking room-July 20th 
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Figure 18: Year 2 Temperature and Humidity Measurements (Cooking Room) 

Plant A-Corner after cooler.July1sth 
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Figure 19: Year 2 Temperature and Humidity Measurements (Cooling Area) 
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Plant A· Freezer Area· July20th 
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Figure 20: Year 2 Temperature and Humidity Measurements (Freezer Area) 
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Figure 21: Year 2 Temperature and Humidity Measurements (Sawing and Grading 
Area) 
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Appendix G 

Plant 3 Results 

Temperature and humidity results for plant 3 are shown in the following figures. 

Figure4 

Figure 5 

Figure 6 
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Figure 7 

Plant B- Cooker Area 

Figure 22: Year 1 Temperature and Humidity Measurements (All Areas) 
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Plant B.SrineiWeights-Aug 15th 
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Figure 23: Year 2 Temperature and Humidity Measurements (Brine Tank/Weights 
Area) 

Plant B.Sutcher Area-Aug 14th 
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Figure 24: Year 2 Temperature and Humidity Measurements (Butcher Area) 
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Plant B-Behind Cooker-Aug 14th 
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Figure 25: Year 2 Temperature and Humidity Measurements (Cooking Room) 
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Plant B·CookertBrlne-Aug 15th 
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Figure 26: Year 2 Temperature and Humidity Measurements (Cooker/Cooling Area) 

n Plant B·CookeriRaw· Area-Aug 18th 
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Figure 27: Year 2 Temperature and Humidity Measurements (Cooker/Raw Sorting 
Area) 
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Plant B·CookeriRaw· Area-Aug 16th 
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Figure 28: Year 2 Temperature and Humidity Measurements (Cooker/Raw Sorting 
Area) 
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Plant B..Cooking Exit-Aug 16th· 17th 
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Figure 29: Year 2 Temperature and Humidity Measurements (Cooling Tank Area) 

Plant B..Cooling Tank Exit-Aug 18th 
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Figure 30: Year 2 Temperature and Humidity Measurements (Cooling Tank Area) 
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Plant B-Packing Area-Aug 16th 
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Figure 31: Year 2 Temperature and Humidity Measurements (Packaging Area) 
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Appendix H 

Plant 4 Results 

Temperature and humidity results for plant 4 are shown in the following figures. 
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Plant C ·Cooker .June 10th 

100 

24 

l2 

20 

" l 
18 

16 

14 

12 
12:00:00 14~00 16:00:00 

06'10.~2 11:00:00 06'10;02 17:00:00 

Figure 32: Year 1 Temperature and Humidity Measurements (Cooking Room) 
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Plant C ·Cooker -June 11th 
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Figure 33: Year 1 Temperature and Humidity Measurements (Cooking Room) 
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Plant C-Saw Area.June 1oth 
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Figure 34: Year 1 Temperature and Humidity Measurements (Sawing Area) 
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Plant C-Saw Area.June 11th 
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Figure 35: Year 1 Temperature and Humidity Measurements (Sawing Area) 
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