

Empirical Analysis and Observations of Routing Protocols for Wireless
Sensor Networks

by

Brett M. Parsons

A thesis submitted to the

School of Graduate Studies

in partial fulfillment of the

requirements for the degree of

Master of Science

Department of Computer Science

Memorial University of Newfoundland

November 2006

St. John's Newfoundland

1+1 Library and
Archives Canada

Bibliotheque et
Archives Canada

Published Heritage
Branch

Direction du
Patrimoine de !'edition

395 Wellington Street
Ottawa ON K1A ON4
Canada

395, rue Wellington
Ottawa ON K1A ON4
Canada

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

• ••
Canada

AVIS:

Your file Votre reference
ISBN: 978-0-494-31274-2
Our file Notre reference
ISBN: 978-0-494-31274-2

L'auteur a accorde une licence non exclusive
permettant a Ia Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par !'Internet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

L'auteur conserve Ia propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni Ia these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

Conformement a Ia loi canadienne
sur Ia protection de Ia vie privee,
quelques formulaires secondaires
ant ete enleves de cette these.

Bien que ces formulaires
aient inclus dans Ia pagination,
il n'y aura aucun contenu manquant.

-11-

Abstract

Routing in Wireless Sensor Networks poses unique challenges due to the low-energy

requirement and the resource-constrained nature of nodes in the network. This brings

about a need for efficient routing protocols for Wireless Sensor Networks. We selected

three routing protocols for Wireless Sensor Networks (Directed Diffusion, Dynamic

Source Routing, and Minimum Transmission Routing) and implemented them in a novel

software framework. A simulation study was carried out to evaluate these routing

protocols in regards to typical Wireless Sensor Network deployment scenarios, with a

focus on the application of habitat monitoring. Additionally, well-defined metrics were

used to measure the performance of each routing protocol in the experimentations. Based

on the results of our experimentations, we recommend Dynamic Source Routing as the

preferred routing protocol in most Wireless Sensor Network deployments for habitat

monitoring purposes.

- 111-

Acimowledgements

Foremost, I would like to thank my supervisor, Dr. Rodrigue Byrne, for the guidance and

knowledge imparted during the course of this thesis. The patience and dedication you

displayed are unmatched and greatly appreciated. Additionally, I would like to thank my

family and friends who supported me during the entire process. Without your

encouragement, this thesis would not have been possible. Finally, I would like to thank

all the members of the TinyOS mailing list. Your willingness to lend a hand when

needed greatly contributed to the completion of this thesis.

- 4-

Table of Contents

Abstract ii

Acknowledgements 111

Table of Contents .. 4
I.,ist of Tables .. 7
I.,ist ofFigures ... 8
Chapter 1 - Introduction .. 10

1.1 Overview ... 10
1.2 What are Sensor Networks? ... 11
1.3 How do Sensor Networks Differ From Other Wireless Networks 12
1.4 Applications of Sensor Networks ... 13
1.5 Overview of routing in sensor networks ... 17

1.5.1 The Need for Routing in Sensor Networks ... 17
1.5.2 Challenges ofRouting in SensorNetworks ... 17

1. 6 Research Approach .. 20
1. 7 Assumptions/ Assertions ... 21
1.8 Outline ... 24

Chapter 2 -Literature Survey .. 26
2.1 Overview ... 26
2.2 Directed Diffusion ... 26

2.2.1 Interest Dissemination .. 26
2.2.2 Data Delivery ... 29
2.2.3 Path Reinforcement .. 31
2.2.4 Advantages and Disadvantages .. 34

2.3 Dynamic Source Routing ... 35
2.3.1 Route Discovery ... 36
2.3.2 Route Maintenance .. 38
2.3.3 Advantages and Disadvantages40

2.4 Minimum Transmission Routing .. 41
2.4.1 Routing Table Management ... 42
2.4.2 I, ink Estimation .. 43
2.4.3 Tree-Building Algorithm .. 44
2.4.4 Routing Architecture .. 46
2.4.5 Advantages and Disadvantages47

2.5 Tiny Microthreading Operating System (TinyOS)49
2.6 TOSSIM .. 51
2. 7 PowerTOSSIM .. 54
2.8 Tython ... 56

Chapter 3 - Experimentation Plan ... 58
3.1 Motivation ... 58
3.2 Metrics .. 58
3.3 Measuring Metrics ... 62

- 5-

3.4 Scenarios ... 68
3.4.1 Perfect Scenarios .. 69
3.4.2 Error Scenarios .. 74

Chapter 4 -Testing Framework Software Architecture ... 80
4.1 Overview ... 80
4.2 Architecture Description .. 80

4.2.1 Application Component ... 82
4.2.2 Interest Manager Component ... 83
4.2.3 DataRouter Component .. 84
4.2.4 InterestManager Interface ... 84
4.2.5 Receiveinterest Interface .. 86
4.2.6 Send Interface .. 87
4.2. 7 SendMsg Interface ... 88
4.2.8 ReceiveMsg Interface ... 89

4.3 Media Access Control. ... 90
4.4 Experimentation Setup ... 92
4.5 Summary ... 95

Chapter 5 - Experimentation Results ... 97
5.1 Overview ... 97
5.2 Static Metrics ... 97
5.3 Minimum Transmission Routing (Stabilization Phase) 100

5.3.1 Total Energy Consumption ... 100
5.3.2 Total Number of Messages Transmitted ... 101
5.3.3 Energy Consumption Variation .. 103

5.4 Perfect Scenario Grid Topology Results ... 104
5.4.1 Average Dissipated Energy .. 104
5.4.2 Average Delay ... 106
5.4.3 Energy Consumption Variation .. 108
5.4.4 Total Number of Messages Transmitted ... 109

5.5 Perfect Scenario Random Topology Results ... 110
5.5 .1 Average Dissipated Energy .. 110
5.5.2 Average Delay ... 112
5.5.3 Energy Consumption Variation .. 113
5.5.4 Total Number of Messages Transmitted ... 114

5.6 Error Scenario Grid Topology Results ... 115
5.6.1 Recovery Total Energy Consumption ... 115
5.6.2 Total Number of Messages Transmitted ... 118
5.6.3 Number of Data Messages [ost.. .. 119
5.6.4 Stabilization Time .. 120

5.7 Error Scenario Random Topology Results ... 122
5.7.1 Recovery Total Energy Consumption ... 122
5.7.2 Total Number ofMessages Transmitted ... 124
5.7.3 Number of Data Messages [ost.. .. 125
5.7.4 Stabilization Time .. 126

Chapter 6- Conclusions and Future Work .. 128
6.1 Overview ... 128

- 6-

6.2 Recommendations .. 129
6.3 Choice of Metrics .. 133
6.4 Future Directions ... 135

References .. 138
Appendix A: Experimentation Setup .. 141
Appendix B: TOSSIM Grid Topology File ... 142
Appendix C: TOSSIM Log File Example ... 144
Appendix D: Java Program to Calculate Average Delay ... 145
Appendix E: Java Program for Energy Consumption Metrics 150

- 7 -

List of Tables
Table 1 - Sample data reading ... 21
Table 2 - Sample Interest Message .. 27
Table 3 - Summary of Chosen Metrics .. 59
Table 4- Number of Data Messages Lost (Error Scenario, Grid Topology) 119
Table 5- Number of Data Messages Lost (Error Scenario, Random Topology) 125
Table 6- Routing Protocol Advantages/Disadvantages ... 128

- 8-

List of Figures

Figure 1- A sensor network with a base station ... 12
Figure 2 - Dispersing sensors from a plane .. 15
Figure 3- A sample sensor network .. 17
Figure 4 - Another sample topology .. 18
Figure 5 - Eocalized Interactions ... 28
Figure 6 - Gradients .. 30
Figure 7 - Interest Reinforcement .. 32
Figure 8 - Route Discovery ... 38
Figure 9 - Route Maintenance ... 39
Figure 10 - Tree-based Topology .. 45
Figure 11 - Minimum Transmission Routing Protocol Architecture [25]. 46
Figure 12- Operation ofPowerTOSSIM ... 55
Figure 13 - Sample PowerTOSSIM Output ... 63
Figure 14 - Sample delay log statements .. 65
Figure 15 - Code Size Analysis ... 68
Figure 16- Scenario Hierarchy .. 69
Figure 17 - 6 x 6 Grid Topology .. 71
Figure 18 - Perfect Scenario Random Topology .. 72
Figure 19 - Error Scenario Random Topology ... 76
Figure 20- Proposed Software Architecture for Interest-Based Routing 82
Figure 21- TOS_Msg Format ... 87
Figure 22- Hidden Terminal Problem ... 91
Figure 23 - Experimentation Setup .. 93
Figure 24 - Sample TOSSIM Topology File .. 95
Figure 25 - Code Size Results .. 98
Figure 26- Code Size (in lines of code) ... 99
Figure 27- Total Energy Consumption (Stabilization Phase) 101
Figure 28- Total Number of Messages Transmitted (Stabilization Phase) 102
Figure 29- Energy Consumption Variation (Stabilization Phase) 103
Figure 30- Average Dissipated Energy (Perfect Scenario, Grid Topology) 105
Figure 31- Average Delay (Perfect Scenario, Grid Topology) 107
Figure 32- Energy Consumption Variation (Perfect Scenario, Grid Topology) 108
Figure 33- Total Number ofMessages Transmitted (Perfect Scenario, Grid Topology)
.. 109
Figure 34- Average Dissipated Energy (Perfect Scenario, Random Topology) 111
Figure 35- Average Delay (Perfect Scenario, Random Topology) 112
Figure 36- Energy Consumption Variation (Perfect Scenario, Random Topology) 113
Figure 37- Total Number of Messages Transmitted (Perfect Scenario, Random
Topology) ... 114
Figure 38- Recovery Total Energy Consumption (Error Scenario, Grid Topology) 116
Figure 39- Total Number of Messages Transmitted (Error Scenario, Grid Topology). 118
Figure 40- Stabilization Time (Error Scenario, Grid Topology) 121
Figure 41- Recovery Total Energy Consumption (Error Scenario, Random Topology)123

- 9-

Figure 42- Total Number of Messages Transmitted (Error Scenario, Random Topology)
.. 124
Figure 43- Stabilization Time (Error Scenario, Random Topology) 126

- 10-

Chapter 1 - Introduction

1.1 Overview
Habitat monitoring is a prominent application for sensor networks and serves a very

positive purpose. This application involves using a sensor network to monitor various

phenomena such as temperature, light, or humidity in an effort to better understand a

particular habitat (e.g., a nesting ground for birds). Additionally, routing protocols play

an important role in such applications due to the short communications radius of nodes in

the network. As a result, this thesis focuses on the problem of determining the most

efficient routing protocol for sensor networks that are deployed in habitat monitoring

scenarios.

There is currently a fair amount of research on new routing protocols for sensor

networks. Many interesting protocols have been proposed and are currently being used in

production sensor networks. This means that researchers interested in deploying a sensor

network have many options in regards to what routing protocol to use. Unfortunately,

there is no substantial research on which routing protocols are most efficient in particular

sensor network applications (e.g., habitat monitoring). As more researchers begin to

utilize sensor networks to assist in their experiments, it is important to supply these

people with enough relevant information so they can select the routing protocol best

suited to their needs.

This thesis evaluates three routing protocols for sensor networks: Directed

Diffusion, Dynamic Source Routing, and Minimum Transmission Routing. The

evaluation is done by implementing the protocols in a common framework and

performing simulation studies to determine how the protocols perform in relation to well-

- 11 -

defined metrics. TinyOS is used as the operating system for the sensor nodes while the

TOSSIM simulator is utilized to facilitate the experimentations.

The metrics used to evaluate the routing protocols are chosen for their relevance

to habitat monitoring applications. To evaluate the energy efficiency of the routing

protocols, a custom metric called Average Dissipated Energy is used. This metric

measures the average amount of energy required for a single data message to be routed

from a source node to the base station. Other energy-related metrics include Energy

Consumption Variation (the variance of energy dissipation amongst all nodes in the

network) and Total Number of Messages Transmitted (the number of messages required

for correct operation of the routing protocol). In addition, an Average Delay metric is

used to measure the average time taken to route messages to the base station and a Code

Size metric is utilized to determine the amount of resources (i.e., memory) required for

the correct operation of each routing protocol.

Additionally, several other metrics are used to evaluate how well routing

protocols recover from the occurrence of a network error. For example, Recovery Total

Energy Consumption measures how much energy is required to stabilize the network

after an error occurs. Also, the Stabilization Time metric is used to determine how long it

takes the network to recover from an error. Finally, the Number of Data Messages Lost

metric indicates how many data messages are lost in the event of a network error.

1.2 What are Sensor Networks?
Sensor networks have become a hot topic in networking research in recent years and

many people are excited about the advancements being made in the field. This emerging

- 12-

wireless technology could greatly impact the world that we live in, and has almost

limitless applications.

Sensor networks consist of many tiny devices, called sensor nodes (or motes),

which are capable of detecting physical stimuli such as light, temperature, and sound.

Besides sensory components, sensors contain a microcontroller, memory, and a wireless

transmitter/receiver [1]. A group of sensor nodes in a given area can form a network

amongst themselves (with the help of routing and self-formation algorithms). Sensor

nodes can either perform computations on data locally or transmit their sensor readings

back to a base station. The base station is often a computationally rich device such as a

laptop and is responsible for collecting and performing computations on sensor data.

Base Station

Figure 1 - A sensor network with a base station

Figure 1 shows a typical sensor network communicating with a base station. Here, the

dotted lines represent wireless links between sensor nodes (represented by the dots).

1.3 How do Sensor Networks Differ From Other Wireless
Networks

Although sensor networks may appear to be similar to many other forms of ad hoc

networks (such as 802.11), there are some subtle differences.

- 13-

First of all, sensor networks don't require any fixed infrastructure (except perhaps

for a base station) [2]. They are purely ad hoc in nature meaning that nodes may join

(i.e., activate) or leave (i.e., fail) constantly.

Secondly, individual sensor nodes are designed to be inexpensive as they may be

purchased in large quantities for many purposes [1]. As well, sensor nodes may be

disposable because they can be deployed in locations where they are not easily

retrievable (e.g., a remote island). The low cost requirement means that sensor nodes are

severely resource constrained. For instance, the typical sensor node contains only a 4

MHz microprocessor [3]. Also, the transmission range of the nodes is very small,

measuring only several meters depending on the deployment environment [4]. Memory

resources are also scarce as most sensor nodes have only 128 K of program memory and

512 bytes of data memory.

Finally, since sensors run on battery power, energy consumption is a huge

concern [2]. In many cases, there is no way to replace a sensor's battery, resulting in a

node failure once the battery is depleted. This brings about a need for energy efficient

algorithms for sensor networks.

f .4 Applications of Sensor Networks
Although there are countless applications of sensor networks, only a few of them are

examined in this section.

Currently, one of the main applications of sensor networks is for habitat

monitoring; this is also the application focused on in this thesis. Sensor networks allow

us to collect data in complex ecosystems, such as collecting temperature readings or

- 14-

monitoring different substances found in the soil and the air [5]. This data can then be

used to better understand the ecosystem and perhaps develop a solution to conserve it.

Sensor networks offer many advantages over the traditional methods of collecting

environmental data. Instead of sending teams into the field to manually observe and

record results, researchers can set up a sensor network to measure the desired phenomena

and access the results remotely [3]. Also, some sites might be difficult for humans to

access on a continual basis (e.g., isolated islands) and are ideal for monitoring via a

sensor network. Additionally, it may be difficult for a researcher to get close enough to

the specimen being studied without being intrusive. For example, some animals may

alter their behavior in the presence of humans. Sensor nodes, however, are unobtrusive

and allow the animals to be monitored without any interference.

One example of the use of sensor networks for habitat monitoring comes from the

PODS project at the University of Hawaii. This project is using sensor networks in an

effort to remotely monitor rare and endangered plant species on the island of Hawaii [6].

By measuring rainfall, wind, temperature, humidity, and solar radiation, the researchers

have access to information that allows them to make the best decisions possible to protect

these endangered plant species.

Another example of sensor networks being utilized for habitat monitoring is the

Great Duck Island project by the Center for Information Technology Research in the

Interest of Society (CITRIS) [3]. In this case, a group of CITRUS researchers from the

University of California at Berkeley have teamed up with conservation biologists from

the College of the Atlantic to monitor the breeding habits of seabirds off the coast of

Maine. Researchers started off by placing sensor nodes in burrows inhabited by the

- 15-

seabirds. Biologists can then remotely monitor when a burrow is occupied by a bird

using an infrared heat sensor built into the sensors nodes. Before the sensor network was

setup on the island, the only way for biologists to observe the behavior of the seabirds

was through carefully planned trips using a portable video system and human

observations. However, since Great Duck Island is remote and difficult to access, the

sensor network significantly improves the way in which biologists can gather the

information they need.

The original Great Duck Island sensor network deployment in 2002 contained 32

UC Berkeley motes using TinyOS as their operating system [3]. These motes contain an

Atmel microcontroller with a clock speed of4 MHz and 512K ofnon-volatile storage.

The on-board radio in these motes has a bidirectional data rate of 40 kbps. As well, each

mote was powered by two AA batteries with an expected lifespan of approximately 6

months. Routing in the sensor network was handled using a simple, hierarchical

approach; a formation algorithm was run on the network to create a routing tree with

nodes on different levels depending on their distance from the base station.

The uses of sensor networks are not limited to habitat monitoring, however. On

the other side of the spectrum, sensor networks can have a military purpose .

• • • •• • •• • • • • • •
Figure 2 -Dispersing sensors from a plane

- 16-

As seen in [7], sensor networks can be used to monitor hostile battlefields without

endangering the lives of soldiers. In these experiments, unmanned aerial vehicles

(UAV's) were used to fly over a mock battlefield and drop sensor nodes (as seen in

Figure 2). Upon landing, the sensor nodes formed a network and began collecting

readings. These readings can aid in determining enemy troop movements without any

assistance from human personnel. In order to receive the sensor readings, however, the

UA V has to fly over the battlefield within transmission range of the sensor network. It

may also be necessary to add security measures to the nodes to prevent adversaries from

eavesdropping or even tampering with the data being transmitted [8].

Another use for sensor networks involves object tracking. As an object travels

through a sensor network, different nodes sense it and relay this data back to the base

station. An example of an object-tracking application is presented in [9], where the

authors deploy a sensor network for the purposes of tracking and intercepting vehicles

moving through a sensor network. Additionally, in [4], the authors present the Frisbee

model as a means for minimizing energy consumption among nodes while tracking

objects in the sensor network.

The final example of a sensor network application is measuring the structural

integrity ofbuildings [10]. Sensor nodes are placed on key pillars or other supports to

monitor their integrity (i.e., -how much force is being exerted). If there are any signs of

danger, the base station can be immediately alerted so that the proper security measures

are taken.

As is evident in the above examples, the practical uses of sensor networks are

quite varied and are constantly expanding.

- 17-

1.5 Overview of routing in sensor networks

1.5.1 The Need for Routing in Sensor Networks

A typical sensor network may be comprised of many nodes. In fact, depending on the

phenomena being sensed, it is possible for the network to consist of hundreds or

thousands of nodes. Due to the limited transmission range of the radio contained in a

sensor node, a node is only able to communicate directly with a small subset of the other

nodes in the network. Take, for example, the sample sensor network shown in Figure 3.

Figure 3 -A sample sensor network

Here, the circles represent sensor nodes in the network, the lines determine which nodes

are in transmission range of each other, and the computer represents the base station. For

instance, node 2 can hear radio transmissions from node 3, but node 0 cannot. This

simple example displays the need for routing algorithms in sensor networks. In order for

node 3 to send a message to the base station, the message needs to be routed through

nodes 2 and 0. Vice versa, if the base station wanted to send a message to node 3 (e.g.,

requesting the node to start recording data), the transmission path would be reversed.

1.5.2 Challenges of Routing in Sensor Networks

Sensor networks have some unique properties that can complicate the process of routing

messages from a source to a destination.

- 18-

The first such property is the lack of a fixed network infrastructure [2]. Sensor

networks tend to be very dynamic with nodes continually failing/rejoining the network.

This means the network topology can change very rapidly; a property that most

conventional routing protocols are not designed around. Also, unlike traditional

networks, there are no specialized devices such as routers to help forward messages to

their destination. In fact, every node in a sensor network must act as a router in order for

messages to be received correctly. Without this assumption, the network would not

function properly.

Another unique property that poses a challenge for routing in sensor networks is

that nodes are powered by a battery [2]. As such, when the battery in a node fails, the

node itself will fail. Ifthe same route is used continuously to send messages from a

source to a destination, the nodes on this route will be sending more messages per capita

than other nodes in the network. Since radio transmission is the main source ofbattery

usage in sensor nodes, the nodes on the chosen route will deplete their batteries at a faster

rate, thus failing more quickly than the other nodes. To see an example of this, refer to

Figure 4.

Figure 4 -Another sample topology

In this simple network topology, node 4 is acting as a bridge between two sets of nodes.

Thus, whenever a message needs to be sent from a node on the left side to a node of the

- 19-

right side, it must pass through node 4. As a result, node 4 consumes energy at a faster

rate than other nodes in the network, leading to a shorter lifespan. To combat this

problem, routing protocols must be mindful of continually choosing the same path from

source to destination in an effort to evenly distribute the energy consumption.

Perhaps the most important sensor network property that creates obstacles in

routing is the constrained resources available to the nodes in the network. As mentioned

above, each sensor node contains only a modest processor (e.g., 4 MHz) and a small

amount of memory (e.g., 512 bytes of data memory) [3]. This implies that only a small

amount of data can be stored at any time. In terms of routing, it follows that

computationally expensive protocols are not suitable for sensor networks. As well,

protocols that require a large routing table in order to properly send messages are not

appropriate.

As illustrated above, the majority of research completed on routing protocols for

ad-hoc networks is not directly applicable to sensor networks. Most ad-hoc routing

protocols are designed with devices such as laptops, cell phones, and PDAs as likely

members of the network; however, even these devices are computationally rich compared

to sensor nodes. Therefore, popular ad-hoc routing protocols such as Ad-hoc On-demand

Distance Vector (AODV) [11] and Destination-Sequenced Distance Vector (DSDV) [12]

are not suitable for sensor networks [13], due to their requirements of storing potentially

large routing tables and a necessity for periodic routing update messages. This also

brings about a need for routing protocols designed specifically for sensor networks [14].

-20-

1.6 Research Approach
In order to accomplish the tasks outlined above, several of the most widely used sensor

network routing protocols for the application of habitat monitoring are selected: Directed

Diffusion, Dynamic Source Routing, and Minimum Transmission Routing. Each of these

protocols provides a unique approach to routing in sensor networks.

After selecting the routing protocols to examine, a set of metrics is chosen that are

used to compare the performance of each routing protocol. Among the metrics selected

are energy efficiency and code size.

The next step in the process is selecting the tools needed to carry out our analysis.

TinyOS is chosen as the operating system for the sensor nodes. TinyOS is an open-

source operating system specifically designed for sensor networks and is widely used in

the sensor network community [15].

As well, since the analysis requires a large number of sensor nodes, a simulator is

used to carry out the experimentations (as opposed to using actual hardware). For this

purpose, TOSSIM, a discrete-event simulator for TinyOS networks [16], is selected.

Another simulation package, the A VR Simulation and Analysis Framework (A VRORA)

[17], was also evaluated. However, due to factors including poor support for custom

radio models as well as a lack of community involvement, this package was ultimately

abandoned in favor ofTOSSIM.

At this stage, an experimentation plan is compiled to determine what experiments

are necessary to accurately compare the routing protocols against the selected metrics.

The experiments are then run and the results documented. The experimentation plan is

detailed in Chapter 3.

- 21 -

To perform the experiments, each routing protocol is implemented for execution

on the TinyOS operating system. This also involves devising custom software

architecture for routing in sensor networks due to a lack of current approaches. This

architecture is presented in Chapter 4.

With the data collected from the experiments, conclusions are drawn as to what

routing protocols perform best with respect to each metric. The experimentation results

are found in Chapter 5 while the conclusions are offered in Chapter 6.

1.7 Assumptions/Assertions
In choosing which routing protocols to examine, it is important to outline the assumptions

made in regards to the operation of the sensor network.

The first assumption is that the sensor network is interest-based, or data-centric; a

concept introduced in the Directed Diffusion paradigm [18]. An interest-based network

entails that the base station broadcasts interest messages when it needs to request data

(described in more detail in Chapter 2). These interest messages specify the type of data

to be collected, the frequency and duration it should be collected for, and the criteria that

the data should match. For example, an interest message can specify that nodes send

back temperature readings greater than 30 degrees Celsius.

Node ID: 12

Reading Type: Temperature

Reading: 46 degrees Celsius

Timestamp: 12:25:45

Interest ID: 53

Table 1 - Sample data reading

-22-

Table 1 shows an example of a data message that might be sent by a node in response to

this interest message. This data message explains that a node with ID 12 recorded a

temperature reading of 46 degrees Celsius at time 12:25:45. Additionally, the Interest ID

field states that this data is associated with interest 53.

The use of criteria to specify which nodes should send back data is quite different

from traditional address-centric routing. In address-centric routing, messages are routed

from a source to a particular destination (e.g., The base station requests data from node

X). The interest-based routing demonstrated above, however, is a form of data-centric

routing [18]. In data-centric routing, the base station sends interests for named data as

opposed to sending a request to a particular node. This allows users to make more

generalized queries to the network such as "What nodes are registering temperature

readings above X degrees Celsius?" or "Which burrows are currently inhabited by a

bird?".

It is important to note, however, that interest-based routing does allow requesting

data from one particular node. There may be many instances where a researcher is only

concerned with sensor readings at a particular point in the network. In this case, the

interest criteria would be that only specific nodes send data back to the base station (e.g.,

Give me all sensor readings being recorded by sensor node X). The use of criteria allows

the routing protocol to scale depending on the use of the sensor network. In practice,

every sensor network may have a different set of criteria for determining how interests

are matched to sensor data.

The second assumption made is that nodes are not able to determine their

geographic position. There are several routing protocols for sensor networks, such as

-23-

[19], that assume the sensor nodes are equipped with a Global Positioning System (GPS).

The approach these protocols take is to route messages in the general direction of the

base station. They argue that most sensor networks will be GPS-equipped because it is

important to know the locations of nodes that are sending back data to the base station.

Although this statement is logical, including GPS technology in the sensor nodes can

significantly increase the costs of deploying the network. By keeping deployment costs

lower, more researchers are able to utilize sensor network technology in their

experiments.

There are methods that allow all nodes in a sensor network to determine their

geographic position while only having the base station or possibly a small subset of

sensor nodes equipped with a GPS. In [20], researchers use the base station to emit

several beams of laser light on different axes. These beams can be detected by each node

in the sensor network and used to calculate their position in three dimensions relative to

the base station. However, this is not suitable for all habitat monitoring purposes because

it assumes that every node is in line of sight with the base station. For example, if sensor

nodes were placed in underground bird burrows, this method would not be feasible.

Additionally, in [21], researchers use a small number ofbeacon nodes (i.e., nodes that are

aware of their geographic position) to continually broadcast their position. Nodes that

receive this broadcast then use the received signal strength to make estimations of their

own position. This approach may not be suitable for habitat monitoring applications,

however, because received signal strength can fluctuate heavily depending on the

environment that the sensor nodes are deployed in. As well, obstacles in the sensor

-24-

network can interfere with received signal strength (e.g., a deer walking between two

sensor nodes).

The final assumption made regarding the operation of the sensor network is that

the interest messages are propagated throughout the network via flooding. Each node

that receives an interest will re-broadcast it to all neighbours. Although this is inefficient,

it is the only viable approach when nodes have no knowledge about the overall network

topology [18].

1.8 Outline
In Chapter 2, a detailed analysis of the Directed Diffusion, Dynamic Source Routing, and

Minimum Transmission Routing protocols is provided. The algorithms used by all three

protocols are explained and, in addition, the advantages and disadvantages of each

protocol are presented.

Chapter 3 details the experimentation plan as well as the motivation for

performing the experiments. As well, the metrics used in the experimentations are

explained. Additionally, the primary tools used to carry out the experiments are

described with the reasons for selecting each of them.

In Chapter 4, a novel software architecture for implementing routing protocols in

interest-based sensor networks is presented. Also, the experimentation setup is detailed

to explain how the chosen software packages collaborate to carry out the experiments.

Chapter 5 presents the results of the experimentation plan. The outcomes for all

three routing protocols are presented on a metric-by-metric basis. Additionally, an

analysis is performed to justify the results of each experiment.

-25-

Finally, Chapter 6 includes recommendations as to which routing protocol is

better suited for habitat monitoring applications. As well, a direction for future work is

proposed to expand on the research conducted in this thesis.

-26-

Chapter 2 - Literature Survey

2.1 Overview
In this chapter, the three routing protocols selected for the analysis are discussed:

Directed Diffusion, Dynamic Source Routing, and Minimum Transmission routing. The

advantages and disadvantages of each protocol are detailed as well. Also discussed are

the tools used in carrying out the experimentations, which include TinyOS, TOSSIM,

PowerTOSSIM, and Tython.

2.2 Directed Diffusion
Directed Diffusion is an important contribution to sensor network routing because it

introduces the concept of data-centric routing to sensor networks [18].

Using the Directed Diffusion paradigm, data generated by sensor nodes are

assigned an attribute-value pair [18]. For example, an attribute might be temperature and

the value could be 15 degrees Celsius. In data-centric routing, requests are then made for

named data; in other words, all data matching a set of attribute-value criteria (e.g., all

temperature readings greater than 15 degrees Celsius). This differs from the traditional

address-centric routing approach where a request is made for data from a particular node

(i.e., send this message to the node with address X).

2.2.1 Interest Dissemination

In Directed Diffusion, when the base station wishes to obtain data from the network, an

interest message (sometimes referred to as a sensing task) is created. The interest

-27-

message contains a list of the aforementioned attribute-value pairs in order to specify

what data should be collected. An example of an interest message can be seen in Table 2.

Id 53

Type Temperature

Criteria > 40 Celsius

Interval 30ms

Duration 60s

Table 2 - Sample Interest Message

Let's assume the base station broadcasts the above interest message into the sensor

network. The interest message requests that sensor nodes send temperature readings

matching a certain criteria. Here, the criterion is that temperature sensor readings are

above 40 degrees Celsius. Therefore, nodes will only send back data if this condition is

met (i.e., temperature readings that are less than 40 degrees Celsius are not transmitted).

Finally, the interest message specifies that, if the above criterion is met, readings should

be sent at an interval of 30 milliseconds for a duration of 60 seconds.

Each node in the network that receives an interest message stores it in a cache and

rebroadcasts the message. In this way, the interest message can reach all nodes in the

network through flooding. However, if the node has already seen this interest message

(i.e., the interest is in the cache of recently seen interest messages), the message is quietly

discarded. This allows the interest message to be damped and prevents nodes from

continuously broadcasting identical interest messages.

The initial interest message sent by the base station has a low interval defined and

is considered an exploratory interest. This results in nodes sending data back to the base

-28-

station at a low rate. The reasoning for this approach is that the base station can get a

good idea ofwhat neighbours are capable of providing the most appropriate data

matching the interest (this is application-specific). Once the base station has this initial

information, it can ask a preferred neighbour to send data at a higher interval.

Consider, for example, a radiation sensing network that measures the level of

radioactivity to determine if it would be hazardous to the health of humans. Such an

application is detailed in [22]. In this type of network, an interest can be sent asking for

readings higher than a specific safety level. Although several neighbours may send data

indicating higher than normal radiation readings, the user may be more interested in the

neighbour reporting the highest readings. The selected neighbour can then be instructed

to provide readings more frequently to help determine the rate at which the radiation is

increasing. This technique is called interest reinforcement and is explained in section

2.2.3.

Another important aspect of interest propagation is that it makes use of localized

interactions. This means that when a node receives an interest message, it considers the

origin of that message to be the neighbour who sent it.

Figure 5- Localized Interactions

In Figure 5, for example, assume that the base station (represented by the computer)

broadcasts an interest message into the network. Now assume that this message arrives at

node 3 after being rebroadcast by nodes 1 and 2. As far as node 3 is concerned, the

-29-

origin of the interest message is node 2. Therefore, when data that matches this interest is

generated, the destination for the data will be node 2 and not the base station. This makes

it possible for data aggregation to take place. For instance, if node 2 receives identical

data from nodes 3, 4, and 5, it can consolidate these three messages into a single message

and send the consolidated message back to the base station. This reduces data

redundancy and improves energy efficiency since only one message needs to be sent as

opposed to three.

It is also important to note that, due to dynamic network connectivity, interest

messages may go unfulfilled. For instance, in Figure 5, if the base station sends an

interest message to node 1 during a temporary loss of connectivity between the two

nodes, the interest will never be received. To combat this, the base station can

rebroadcast the interest message if it does not receive matching data after a specified

period of time.

2.2.2 Data Delivery

Once a sensor node has cached an interest message, any data collected will be compared

against the interest to determine a match. If the data matches any interests stored in the

cache, the node must send the data to the neighbours who submitted a matching interest.

Each interest stored in the cache has a specified gradient [18]. A gradient is

simply a direction in which to send the data (i.e., what neighbour sent me the interest?)

and a data rate (i.e., at what rate should data be sent to the neighbouring node?).

-30-

Figure 6 - Gradients

In Figure 6, the arrows between nodes represent gradients while the numbers on the

arrows specify a data rate in events/sec. For example, the arrow between nodes 7 and 4

dictates that node 7 should send data messages to node 4 at a rate of 5 messages per

second. Now assume that node 7 has collected data that matches interests sent from

nodes 4, 5, and 6. Since each gradient has specified a different data rate, node 7 will

select the highest rate among all gradients. Therefore, node 7 will send out data events at

a rate of 5 per second.

Notice, however, that nodes 5 and 6 are now receiving data at a faster rate than

specified by the gradients. In the Directed Diffusion paradigm, it is the responsibility of

the receiving node to compensate for a faster than expected data rate. Thus, nodes 5 and

6 will have to normalize the data rate by perhaps dropping some of the received messages

or by queuing the incoming messages. This may not be feasible, however, due to a

limited amount of available memory.

When a node receives an incoming data message, it searches the interest cache to

find any entries that match it. If no matching entries can be found, the received data

message is dropped and will not be rebroadcast. If matching entries do exist, the data is

transmitted to each applicable neighbour via the method described in the above

paragraph.

- 31 -

Each node also maintains a data cache that contains recently seen data messages.

When a data message arrives, it is compared to the data cache to ensure this message has

not already been recently received. If the message does exist in the data cache, it is

silently dropped and will not be processed. Both of these techniques provide protection

against data redundancy and routing loops.

The above steps describe how data collected by the nodes is matched to interests

and then transmitted through the network. By unicasting data along gradients, messages

are pulled towards the base station along different paths, thereby satisfying the original

interest message sent.

2.2.3 Path Reinforcement

Once the base station begins receiving data from its neighbours, it must choose a

preferred neighbour for receiving data. For instance, the preferred neighbour could be

the one providing the highest data rate, or perhaps the highest quality of data. In practice,

the criteria used to select the preferred neighbour depend on the sensor network

application. The act of selecting a preferred neighbour from which to receive data is

called reinforcement. In the experiments, hop count is used as the criteria to select a

preferred neighbour. That is, a node will reinforce the neighbour that minimizes the

amount of hops data must travel to reach the base station.

To reinforce a particular neighbour, the base station creates an interest

reinforcement message. This reinforcement message is identical to a regular interest

message except that it specifies a higher frequency and duration. This instructs the

receiving node to increase the interval at which it sends data to the base station as well as

-32-

the length of time data is collected. As well, unlike regular interest messages, the

reinforcement messages are not flooded; instead, they are unicasted on a node-by-node

basis until they reach the data sender.

Once a node receives an interest reinforcement message, it checks the cache to

ensure the interest to reinforce actually exists. If it does not, the reinforcement message

is silently dropped. If a matching interest is found, the receiving node updates its

gradient with the new interval and duration values. Also, any node receiving an interest

reinforcement message (with the exception of the base station) must also choose one of

its neighbours to reinforce. The criteria for selecting this neighbour would presumably be

the same as those used by the base station. By recursively selecting preferred neighbours,

a reinforced path is created in the network through which data flows back to the base

station.

An example of interest reinforcement can be seen in Figure 7. Here, assume that

the base station has chosen node 3 as its preferred neighbour. The base station sends an

interest reinforcement message to node 3 instructing it to send data messages at an

interval of 5 ms for 120 s.

Figure 7 -Interest Reinforcement

Interval: 5 ms
Duration 120 s

- 33-

Upon receiving the reinforcement message, node 3 must also select a preferred neighbour

to reinforce. In this example, node 3 selects node 5 as the preferred neighbour and sends

an interest reinforcement message to this node. Similarly, node 5 receives the message

and chooses to send a reinforcement message to node 7 (which is actually the only

choice). After this process, a reinforced path, denoted by the dashed arrows, exists from

the base station to the source node (node 7).

Although Directed Diffusion ultimately uses a single reinforced path to route data

back to the base station, there has also been research conducted to expand on this notion.

For example, [23] presents a reinforcement technique that uses multiple braided paths for

data routing to improve resilience against node failures.

Directed Diffusion also presents a concept called negative reinforcement [18].

Negative reinforcement involves tearing down unused data paths in the network. In

Figure 7, for example, after the interest reinforcement has taken place, there are still paths

that will continue to transmit data even though they were not reinforced (e.g., the path

that includes nodes 7, 4, 1, and the base station). To negatively reinforce a path, there are

several options available. One method is for the base station to send an explicit negative

reinforcement message to all applicable neighbours. This message acts inversely to the

reinforcement message but gets propagated through the network in a similar fashion.

Perhaps the simplest method, however, is to let the original interests time out. For

instance, if the original interest specified a duration of 60 seconds and was never

reinforced, the interest would be dropped after this amount of time. Therefore, if a node

receives a data message that matches the dropped interest, the data will be discarded.

-34-

2.2.4 Advantages and Disadvantages

The major advantage of Directed Diffusion is its energy efficiency when compared to

flooding. Most of the energy savings are achieved by reinforcing only a small subset of

nodes in the network to draw data back to the base station. Using this approach, the

amount of messages transmitted is substantially better than a flooding approach, since

messages are unicast back towards the base station.

Another advantage of the Directed Diffusion paradigm is the low overhead and

complexity required to perform the algorithm. Since all message exchanges are

localized, there are no expensive path computations required at the nodes. As well, no

routing tables are required to be stored. In a network of thousands of nodes, storing

routing tables requires significant amounts of memory. In Directed Diffusion, however,

the only artifacts stored in memory are an interest cache and a list of recently seen data

messages. This allows the protocol to scale well in large sensor networks since

information is not required to be stored for each node in the network.

The adaptability of Directed Diffusion to dynamic network topologies is also a

tremendous benefit. Sensor networks can have an extremely volatile topology with nodes

failing and links degrading. The use of Directed Diffusion's reinforcement mechanism

allows the protocol to recover quickly and efficiently in the case of most network

failures. Once the base station detects that an error has occurred (i.e., it is no longer

receiving data messages), it can reinforce another neighbour to continue receiving data.

Although Directed Diffusion has many advantageous properties, it also has some

drawbacks. For instance, interest messages must be propagated through the network via

flooding. This results in many messages being sent, increasing the energy consumption

- 35-

of potentially all nodes in the network. This is not a huge concern if interest messages

are only sent periodically. However, if interest messages are being consistently flooded,

it will result in a faster depletion of energy at each node in the network.

Another issue with Directed Diffusion is that constantly using a single path for

data delivery will lead to faster energy depletion for the nodes on this path. This situation

might be avoided, however, by considering node energy levels when making

reinforcement decisions on a local level. For instance, the base station would select the

path containing nodes with higher energy levels to use when delivering data.

Additionally, the performance of Directed Diffusion can be negatively impacted

in an error-prone network. If an error occurs after the network has stabilized (i.e., the

base station is receiving data from a single neighbour), the base station may be forced to

rebroadcast another interest message to rediscover new routes. If this occurs frequently,

nodes will consume energy at a much faster rate, leading to a lower network lifetime.

2.3 Dynamic Source Routing
Dynamic Source Routing (DSR) is a well-known routing protocol used in multi-hop ad-

hoc networks (MANETs). It is a lightweight, efficient protocol that was designed with

resource-constrained devices in mind (e.g., cell phones, PDAs) [24].

The DSR protocol is comprised of two main parts; route discovery and route

maintenance. Each node maintains a source route to any other node it wishes to

communicate with. A source route is simply the sequence of hops necessary from the

source node to reach the destination node. Each packet sent in the DSR protocol

contains the required source route so that intermediate nodes can properly forward the

- 36-

packet. If a node wishes to send to a destination for which it has no stored route, it must

perform the route discovery process to find the route needed to transmit to the intended

destination. This makes DSR a reactive routing protocol as routes are only acquired on

an ad-hoc basis. Additionally, there are no periodic routing update messages of any kind.

Since it represents a class of existing multi-hop ad-hoc routing protocols, DSR

provides a good benchmark with which to compare Directed Diffusion and Minimum

Transmission Routing, which were developed specifically for sensor networks.

2.3.1 Route Discovery

When a node, Y, wishes to send a message to another node in the network, it checks a

local route cache to determine if there is a stored route to the destination. If there is no

route stored, the node must perform Route Discovery [24]. This process provides the

source node with the sequence of hops necessary to reach the destination node. To

initiate Route Discovery, the source node generates a Route Request (RRQ) message.

This message contains the source node, destination node, a Route Request ID, and a route

record. Combined with the node's unique address, the ID is a globally unique identifier

for this RRQ and helps to prevent Route Request loops. The route record is populated as

the RRQ propagates throughout the network because each node receiving the RRQ adds

its identifier to the route record. The source node, Y, then broadcasts the RRQ message

to its neighbours.

When a node, X, receives a RRQ, it checks to see if it is the destination of this

RRQ. If node X is not the intended destination, it must ensure that this RRQ has not been

seen before. To facilitate this, each node maintains a cache of recently seen RRQ IDs. If

- 37-

node X determines it has already seen this RRQ, the message is silently dropped and not

re-broadcast. Otherwise, node X will add its identifier to the route record and re

broadcast the packet to all neighboring nodes.

If node X is the intended destination, however, it must return a Route Reply

(RRP) message to the source node [24]. The RRP message contains the accumulated

record of hops in the route from source to destination. However, when sending the RRP

back to the source node Y, it is important to note that node X cannot simply use the path

accumulated in the route record ofthe RRQ since not all links in the network may be bi

directional. This can be caused, for example, if some nodes have a lower energy level,

resulting in a shorter transmission radius. Due to this, if node X does not already have a

cached route to the source of the RRQ (Node Y), it will have to perform Route Discovery

of its own. In order to prevent an infinite Route Discovery loop, however, node X

piggybacks the RRP on top of the RRQ.

Once the source node, Y, receives the RRP, it is stored in the route cache so that

discovery does not need to be completed the next time data is to be sent. However, if the

source node does not receive an RRP after a specified timeout value, it assumes the

original RRQ was lost and generates a new one to broadcast to its neighbours. To avoid

flooding the network with RRQs, an exponential back-off algorithm is used to determine

when to send the next RRQ.

For an example of Route Discovery in DSR, refer to Figure 8. Here, assume that

Node 4 in the sensor network wishes to send a data message back to the base station but

does not have the required route in its route cache. To initiate Route Discovery, Node 4

- 38-

creates a RRQ and broadcasts it. Eventually, the RRQ is received by the base station via

the path 4-3-2-1.

Route Record: 4

Route Record 4,3,2 Route Record: 4,3,2, 1

Base Station

Figure 8 - Route Discovery

Once the base station receives the RRQ, it must generate an RRP. Assume that the base

station has no stored route to Node 4. Since we are not assuming bi-directional links in

the network, the base station will generate an RRQ of its own to find a route to Node 4

and piggyback the RRP on the RRQ.

2.3.2 Route Maintenance

As previously stated, DSR is designed around dynamic networks where the topology can

frequently change. Therefore, stored routes that were previously valid may no longer be

usable due to broken links or failed nodes. To recover from these types of failures, DSR

incorporates route maintenance.

DSR operates on the principal that each node receiving a message is responsible

for ensuring that the message successfully reaches the next hop on its way to the

destination. The message is retransmitted to the next hop until confirmation is received

(through an ACK mechanism) or the maximum number of retransmissions is reached.

-39-

Also, due to unidirectional links, the ACK message may have to travel across multiple

hops to reach the sending node.

If a node is unable to send a message to the next hop, it must generate a Route

Error (RERR) message to be propagated back to the node that originally sent the

message. The Route Error message states that a problem has occurred in transmitting the

message and specifies which link is broken. Once the source node receives the Route

Error message, it removes the broken route from its cache. If the source has no other

cached route to the destination, it must reinitiate the Route Discovery process to find a

new, valid route.

Base Station

Figure 9 -Route Maintenance

An example of route maintenance can be found in Figure 9. Here, assume that Node 4 is

sending data to the base station via the stored route 4-3-2-1 (found during the Route

Discovery process illustrated in the previous example). Now assume that the link

between Nodes 1 and 2 fails, rendering the stored route invalid (denoted by the dashed

link in Figure 9). The next time Node 2 receives a message sent by Node 4, it will check

the route record stored in the message to discover the next hop (Node 1). After sending

the message to Node 1 and never receiving an acknowledgement, Node 2 will generate an

-40-

RERR message stating that the message could not be forwarded due to a failed link. The

RERR is then unicasted back to Node 4 through Node 3.

2.3.3 Advantages and Disadvantages

DSR has many advantageous properties that make it well suited to networks with a highly

dynamic topology. Perhaps the greatest benefit ofDSR routing is that only the routes a

node will actually use are stored. In other ad-hoc routing protocols, such as DSDV [12],

each node is required to store route information for all reachable nodes in the network,

resulting in potentially large routing tables. Since all routes in DSR are discovered and

stored on-demand, we minimize the amount of memory required for a node to store

routing information. This is a huge benefit in sensor networks where nodes have a scarce

amount of memory to allocate for such functions.

Another advantage of DSR is that there exists no requirement for periodic routing

update messages. Broadcasting such messages increases the energy strain on all nodes in

the network, resulting in a reduced network lifetime. Since DSR is on-demand, there is

no need to broadcast routing update messages unless absolutely necessary (i.e.,- sending

anRRQ).

A third benefit of DSR routing is that it supports unidirectional links. Such an

approach is beneficial in sensor networks since not all links may be bidirectional.

Support for unidirectional links is made possible because the destination of an RRQ can

also initiate a separate route discovery to the source, resulting in a (possibly) different

return path. As a result, the base station can potentially increase its transmission range so

that messages can reach all nodes in the network in one hop; however, any data being

sent back to the base station may have to be routed through many intermediate nodes.

- 41-

An additional benefit of DSR relates to the fact that several paths can be stored to

route data back to the base station. This allows a data generating node to periodically

switch the current path being used in order to minimize variation in energy consumption.

After all, if the same routing path were used continuously, the nodes on that path would

consume energy more quickly than other nodes in the network. This would result in an

earlier failure of nodes on the routing path due to battery depletion, thereby negatively

impacting the performance of the network.

A disadvantage of DSR is that each packet sent in the network must contain the

sequence of hops required to reach the destination. This significantly increases the per

packet overhead.

Also, if the network topology is extremely dynamic, source routes will have to be

re-discovery frequently. This means that RRQ messages will be constantly flooding

throughout the network, thereby increasing the strain on the energy supply of all nodes.

As well, a dynamic topology increases the delay in transmitting packets to their

destination since the sending node must wait to obtain a valid source route.

2.4 Minimum Transmission Routing
Minimum Transmission Routing is the last routing protocol examined in the thesis. This

protocol takes a distance vector approach to routing and selects paths based on the

estimated number of transmissions necessary to reach the source (i.e., the base station)

[25]. As well, Minimum Transmission routing utilizes a tree-based routing topology that

is updated based on periodic routing messages. This implies that any data that needs to

be routed will always be sent through a node's current parent. Neighbour discovery is

-42-

accomplished both through passive monitoring (overhearing messages sent to another

node) and through beacon messages that are transmitted periodically to aid in topology

formation. Minimum Transmission routing also uses a fixed-sized routing table to store

neighbour routing information where entry into the table is governed by insertion,

eviction, and reinforcement policies.

2.4.1 Routing Table Management

Since the Minimum Transmission routing protocol uses a fixed-size routing table, there

may only be space for a subset of a node's neighbours in the table. Each table entry

contains routing data (e.g., number of hops to the base station for this neighbour), link

estimation data, and a frequency count (used in the reinforcement and eviction policies).

When a message is received from a neighbour whose information is not currently

stored in the routing table, the insertion policy will add this neighbour's information to

the table with a certain probability. In order to maintain stable routing information, the

rate of insertion into the table must be lower than the rate of reinforcement [25]. This

helps to ensure that neighbours whose information is already in the routing table have a

chance to be reinforced before their entries are evicted to make room for new insertions.

The authors of the Minimum Transmission routing protocol choose an insertion

probability of

P=T/N

Where Tis the number of entries in the node's routing table and N is the number of

distinct neighbours (an estimated value). Therefore, when a message arrives from a

neighbour whose information is not stored in the table, that neighbour will be added to

-43-

the routing table with a probability ofP. If a message arrives from a neighbour that is

already stored in the routing table, the protocol will reinforce this neighbour using the

method described below.

The reinforcement and eviction policies use the FREQUENCY algorithm defined

in [26]. This algorithm maintains a frequency count for each neighbour in the routing

table. When a message is received from an existing neighbour, its entry is reinforced by

incrementing the frequency count in the routing table entry by one.

If the protocol decides to add a non-existing neighbour to the table (using the

probability, P, defined above), and the routing table is full, the eviction policy must be

run in order to free up table space [25]. To do this, the routing table is examined to find

any entries that have a frequency count of zero. If such an entry is found, it is removed

from the table and a new table entry is created for the non-existing neighbour. If no

entries with a frequency count of zero can be found, however, each entry in the table has

its frequency count decremented by one and the non-existing neighbour will not be added

to the table. This policy helps to ensure that neighbours who are frequently heard from

stay in the routing table, as their frequency counts are continuously updated.

2.4.2 Link Estimation

Once neighbours are stored in the routing table, the Minimum Transmission routing

protocol begins to record link reliability estimations for each neighbour. In selecting a

link estimation technique, the authors of this protocol investigated several possibilities

and settled on using the Window Mean With Exponentially Weighted Moving Average

(WMEWMA) technique. WMEWMA estimates link reliability using the formula:

-44-

LR =(Packets received in t) I MAX(Packets expected in t, Packets received in t)

Where tis an interval in time and LR is the link reliability. As the formula indicates, link

reliability is based on the number of received/expected packets over some interval of

time. Since the Minimum Transmission routing protocol assumes that each packet sent in

the sensor network contains a source ID and link sequence number, the expected number

of packets can be determined by comparing the current link sequence number against the

stored link sequence number. For instance, if a packet is received from a node, X, with a

link sequence number of 10, and the last recorded sequence number from neighbour X is

4, there were presumably 6 transmissions from node X that were not heard. Therefore,

over this time interval, the expected number of packets is 6 while the number of packets

received is 0.

2.4.3 Tree-Building Algorithm

As mentioned above, the Minimum Transmission routing protocol uses a tree-based

topology as the framework to route messages from a source to the sink (base station).

Each node in the network periodically broadcasts a routing update message to all its

neighbours that contains the node's address and its routing cost to the sink (the base

station always has a routing cost of 0). When a node receives a routing update message,

it extracts this information and places it in the routing table entry associated with the

sending node. After the routing table is updated, the node runs a parent selection

algorithm to select the best parent for this node. In essence, the node in the routing table

with the lowest routing cost is selected to be the parent. Once a parent has been selected,

the node will update its own routing cost using the formula:

-45-

Where CN is the node's routing cost, Cp is the routing cost of the node's parent, and CL is

the cost of the link between the node and its parent. The link cost (CL) is defined by the

following formula [25]:

Where LR(forward) is the link reliability of the outgoing link (i.e., toward the node's parent)

and LR(backward) is reliability of the incoming link (i.e., toward the node's child). The next

time the node is scheduled to send a routing update message, it includes the new routing

cost in this message and broadcasts it to all neighbours.

Figure 10 shows an example of a tree-based routing topology. The numbers on

the links represent the link cost (CL) and the numbers in the circles depict the node's id.

Base Station

Figure 10- Tree-based Topology

To calculate the routing cost of node 4, the formula above is used. Here, Cp is the routing

cost of the parent, which is node 1. To compute node 1 's routing cost, simply add the

link costs from the base station down to node 1. This gives a routing cost of 11 for node

1, so Cp is 11. CL is the cost of the link between node 1 and node 4, which is 5.

Therefore:

-46-

So, in this tree topology, node 4 would have a routing cost of 16.

2.4.4 Routing Architecture

Now that the various building blocks of the Minimum Transmission routing protocol are

explained, a description of the overall architecture is presented to highlight the

interactions between the various components.

Shown in Figure 11 is the system architecture of this routing protocol. When a

message is received by a node, it is processed by both the Table Management component

(detailed in section 2.4.1) as well as the link estimator component (described in section

B). A Cycle Detection component also processes the message in an effort to detect and

eliminate routing cycles. If a cycle is detected, the Parent Selection component

(discussed in section 2.4.2) is called to choose a new parent. The Timer component is

responsible for triggering the periodic parent selection process.

Application

Figure 11 - Minimum Transmission Routing Protocol Architecture [25]

When an incoming data message is received, the Filter component determines whether or

not this message needs to be forward towards the base station. Routing messages are not

-47-

forwarded and are simply discarded when processed. If the data message needs to be

forwarded, it is placed in a Forward Queue (FIFO) to be sent. It is important to note that,

since Minimum Transmission routing assumes a tree-based topology, all data messages

are forwarded to the node's parent.

When the application generates data to be sent back to the base station, a similar

process is followed. The message is placed in an Originating Queue (separate from the

Forward Queue) to be sent.

2.4.5 Advantages and Disadvantages

One ofthe major advantages of Minimum Transmission routing is that it uses the

minimum number of expected transmissions as a cost metric. Due to the vast energy

constraints facing sensor nodes, coupled with the fact that sending messages is the major

source of energy usage, this routing cost metric is ideal for sensor networks. By

minimizing the number of transmissions needed to route a message to the base station,

this protocol promotes energy conservation among the nodes in the network. As a result,

the network lifetime is prolonged.

Another advantage of using Minimum Transmission routing is that it requires a

fixed-size amount of memory to store routing information. By storing only a fixed

number of neighbour entries in the routing table, the protocol maximizes the amount of

memory available for use by the data collecting application.

Using a tree-based routing topology is also advantageous because it is designed

for a many-to-one routing scenario. In the majority of habitat monitoring applications,

-48-

this scenario is quite relevant as all sensor nodes in the network will be transmitting data

back to only one destination - the base station.

An obvious disadvantage of Minimum Transmission routing is that it requires

periodic broadcasting of routing messages by all nodes. In contrast to a protocol such as

DSR (which requires no periodic routing messages), broadcasting these messages puts

strain on the energy supply available to nodes in the network. As well, even if a node is

not actively sending data back to the base station, it must still generate, transmit, and

process routing update messages.

Another disadvantage of Minimum Transmission routing is that it requires passive

participation for all nodes in the network. This implies that nodes must continually

monitor network traffic to snoop on packets that are not destined for them. Since a node

must process each packet it hears, the node has a smaller chance of entering a sleep state

to reduce battery consumption. Having all nodes in the sensor network active for the

majority of the time can substantially decrease the network lifespan.

A further disadvantage of Minimum Transmission is the potential loss of data

messages when a network error occurs. By design, every node in the Minimum

Transmission protocol updates the routing cost for each of its neighbours at a regular

interval. Thus, if a node fails, its neighbours should notice this during the next scheduled

routing update and switch to a new parent accordingly. However, if the routing update

interval is not sufficiently small, it is possible that data messages will be lost. For

example, if the routing update interval in 10 seconds but the data generation interval is 5

seconds, 2 data messages may be lost before a new parent is selected. In some sensor

network deployments (e.g., object tracking), any loss of data can have disastrous effects.

-49-

2.5 Tiny Microthreading Operating System (TinyOS)
TinyOS is a lightweight, event-based operating system for wireless sensor networks and

other embedded devices [15]. It was designed for the ATMEI: A VR family of

microcontrollers but has since been ported to other architectures. TinyOS is completely

open source, quite stable, has a large user base, and an active support community. Due to

these reasons, TinyOS is the operating system chosen for use in the experimentations.

TinyOS was developed to adhere to certain principals applicable to tiny

embedded devices such as sensor nodes. Perhaps the main motivation behind TinyOS is

making an operating system that is both energy and memory efficient. To achieve

energy-awareness, TinyOS adopts an event-driven design to maximize the amount of

time that a sensor node remains in an idle, or sleep state. TinyOS was also designed to

use as little memory as possible. On an ATMEI: ATMEGA103I: processor, a complete

sensor network application occupies only 3K of instruction memory and 226 bytes for the

operating system's data store in SRAM.

Another design goal ofTinyOS is to support concurrency-intensive operations

[15]. In sensor nodes, it is likely that operations may be taking place simultaneously.

For instance, a temperature sensor may be collecting readings at the same time as the

radio is receiving an incoming routing message. The event-driven nature of TinyOS

allows concurrency to be achieved in a small amount of space.

TinyOS is written is a fairly new language called nesC, which has a C-like syntax

but is more suited towards embedded systems [30]. In nesC, the main software concepts

are interfaces and components. Interfaces dictate a set of functionality that must be

provided by any software components choosing to implement this interface (much like

the interface functionality in Java). A component is a basic software module that

-50-

provides and uses interfaces. For example, a sensor interface may require that

components implementing the interface provide functionality for turning the sensor on

and off.

Commands, events, and tasks are the building blocks from which components are

constructed. Commands are non-blocking methods that can be called by the interface

user and are implemented by the interface provider. Events occur in response to

hardware interrupts and must be handled by the interface user. This is done by having

the calling component define event handlers that are triggered in response to specific

events.

Tasks are the most basic building block for creating components and are

responsible for performing most of the work. Essentially, tasks are methods whose

execution can be deferred. When a task is called, it is placed in an internal FIFO task

queue that determines processing order. Once a task begins execution, it must run to

completion before the next task can be executed. Although this means that tasks cannot

be pre-empted by other tasks, they can still be pre-empted by event handlers.

Applications written for use with TinyOS are most often written in the nesC

language. TinyOS applications are comprised of two main components: modules and

configurations. Modules are where the application code resides, including the

implementations for any interfaces used by the program. The configuration file dictates

how the modules in the application are connected, or wired. It provides a matching

between interfaces used by components and interfaces provided by components. This

allows a user to change which implementation of an interface a component uses without

-51-

changing any application code. All that is needed is to change the association in the

configuration file to point to a different implementation.

For an example of this, consider the case where a user decides they want to gather

soil moisture readings as opposed to temperature readings. The line in the configuration

file that wires the interface to the temperature sensor implementation may look like:

MyAppM.ADC -> TemperatureSensor.ADC;

This line maps the Analog to Digital Converter (ADC) interface used by the MyAppM

component (a sample application) to the implementation provided by the

TemperatureSensor component. To change the implementation to use a soil moisture

sensor instead, the above line can be changed to:

MyAppM.ADC -> MoistureSensor.ADC;

As is evident, the user can simply edit the configuration file to specify which sensor

implementation their module should use. This is a good example of the modular design

of TinyOS. By re-wiring components in the configuration file, it is possible to

dramatically alter the operation of an application without touching any application code.

2.6 TOSS1M
TOSSIM is a simulator for TinyOS-based sensor networks that can accurately and

efficiently simulate networks containing thousands of nodes [16]. As such, it is a vital

tool in the development of TinyOS-based sensor networks because it allows for testing

and analysis of applications before deployment occurs. As well, since it is infeasible in

most cases to obtain a large number of actual sensor nodes, TOSSIM provides

researchers an opportunity to see how their work scales to hundreds or even thousands of

-52-

nodes without requiring the physical hardware. Due to the experimentations in this thesis

requiring a fairly large number of nodes (approximately 40), TOSSIM is well suited to

our needs for the above reasons. As such, TOSSIM is used as the platform on which our

experiments are run.

TOSSIM was designed with four specific requirements in mind [16]. The first

requirement is that the simulator must be scalable such that it can handle a network

containing thousands of nodes. The second requirement is completeness, meaning that

the simulator must model the actual system behavior and interactions as closely as

possible so that simulation of an application is a good approximation of how those

applications will behavior on actual hardware. The next design requirement is fidelity,

which states that the simulator must properly encapsulate the network behavior at a very

low level. Network communications are perhaps the most important aspect of sensor

network applications so accurately capturing the behavior of the network is essential.

The final requirement is bridging, which refers to the validation of algorithm

implementations. It is crucial that developers can use the simulator to determine whether

or not their implementations will run correctly on real hardware. It is also important to

note that the TOSSIM researchers performed various experiments to ensure that each of

the design requirements of TOSSIM was being validated. These results can also be

viewed in [16].

TOSSIM executes the same code as the actual sensor hardware [16]. To

accomplish this, several of the underlying TinyOS hardware abstraction components are

re-written to support the simulator framework. Examples of such hardware include the

Analog-to-Digital Converter (ADC) and the EEPROM. The designers ofTOSSIM also

-53-

made changes to the nesC compiler included with the TinyOS distribution such that

application code can be compiled directly into the TOSSIM framework. The result of the

compilation is a single executable that contains both the application code as well as the

TOSSIM framework code.

Additionally, TOSSIM implements an internal event queue. When one of the

hardware abstraction components generates an interrupt, it is placed in the event queue.

When an interrupt in the event queue is being served, the queue triggers the appropriate

event-handler in the application code to handle the event.

Another important property of TOSSIM is that it simulates the TinyOS

networking stack at the bit level [16]. As well, TOSSIM provides both a simple and a

lossy radio model. In the simple radio model, all nodes are within communication range

of each other and each transmitted bit is always received at the destination. Collisions are

still possible, however, and may result in corrupted packets. The lossy model allows the

user to define a directed network graph where two nodes can communicate with each

other only if there is an edge between them. Also, each edge in the graph has a bit error

probability attached to it that determines whether or not a bit is corrupted during

transmission (bit errors are independent). These directed graphs are defined in a topology

file where each line is of the format:

<node id>:<node id>:bit error rate.

For example, if node 1 can hear transmissions from node 0 with a bit error probability of

5%, this is represented by the line 0:1:0.05.

TOSSIM also provides an interface to external applications via a Transmission

Control Protocol (TCP) socket so that simulations can be monitored or altered on demand

-54-

[16]. For instance, this mechanism can be used to inject packets into a running

simulation (e.g., interest messages). These features are used extensively in our

experimentation and will be discussed more thoroughly in Chapter 4.

2. 7 PowerTOSSlM
As mentioned above, energy consumption is one of the most important aspects to

consider when deploying a sensor network. As such, many of the metrics selected for the

experimentation deal with the energy expended during operation of the routing protocols

(detailed in Chapter 3). Since TOSSIM does not contain functionality for measuring the

energy consumption of simulated applications, it is necessary to use other means to

record such measurements. PowerTOSSIM is a popular TOSSIM plug-in that can

accurately record energy consumption of individual components (e.g., CPU, radio, etc.)

on a node-by-node basis [27].

The main functionality behind PowerTOSSIM is based on power state transition

messages [27]. These messages are logged whenever there is a change in the power state

of a component (e.g., ADC, radio, etc.), effectively providing the length of time that each

component is active over a given simulation. To facilitate the collection of these

messages, each TOSSIM hardware representation is connected to a PowerState

component that is invoked whenever a power state transition occurs.

-55-

Energy Model

l
State Transition Messages Energy Consumption Readings

... Post -Processor

Figure 12 - Operation of PowerTOSSIM

A high-level representation of how PowerTOSSIM operates can be seen in Figure 12.

The state transition messages are combined with an energy model in a post-processing

module. The output of this model provides the energy consumption readings for each

node participating in the simulation

The energy models calculated for use with PowerTOSSIM were obtained through

extension power profiling with real sensor hardware (with the assistance of tools such as

oscilloscopes). The result is an accurate simulation of power consumption that provides

measurements within 0.5-13% of the readings from running the application on actual

sensor hardware. Additionally, PowerTOSSIM scales well even to simulations involving

upwards of 1 000 nodes.

Since PowerTOSSIM does not simulate the CPU of each sensor node at the

instruction level, the authors use an approximation technique to determine the power

consumed by the CPU. To start, the TOSSIM binary is modified to associate a counter

with every basic block of code. This counter is incremented each time the basic block is

executed. A basic block is defined as a non-branching set of continuous instructions.

Each basic block is then associated with its equivalent set of A VR assembly instructions.

Next, the number of CPU cycles required for each basic block is computed using simple

instruction analysis. Finally, the counter values for each basic block are combined with

-56-

the CPU cycle analysis to estimate the CPU cycle count for each node in the simulation.

Since the above processing is fairly involved, the CPU cycle analysis takes place after the

simulation has finished. Although the process is not perfect, the readings gathered are

fairly accurate for most applications, falling within a 3% error margin. However, during

their evaluation, the authors found that a small number of applications had a margin of

error ofup to 33% (e.g., the quicksort sorting algorithm). The authors attribute this

discrepancy to inaccurate cycle mappings for a small number of basic blocks.

2.8 Tython
During the course of the experimentations, it is necessary to introduce specific node

failures into a running TOSSIM simulation. This is done to help evaluate how well a

routing protocol adapts to a network error and is explained further in Chapter 3. To

interact with the running simulation, a TOSSIM extension called Tython is used. Tython

is a scripting interface based on the Python language that allows users to manipulate the

current state of a running simulation [28]. Using Tython, a user can employ simple

scripting commands to perform such actions as stopping, starting, or pausing the

simulation, dynamically changing the physical location of nodes in the network, or

turning nodes on or off at any point during the simulation. Tython is able to

communicate with TOSSIM by use of the TCP socket mentioned in section 2.6.

In the experimentations, Tython serves only a minor purpose. At some point

during an error simulation, when it is decided that a particular node should fail, Tython is

used to pause the running simulation. Another Tython scripting command is then used to

tum off the desired node. Finally, a Tython command is invoked to resume the

-57-

simulation after the node has been turned off. The effects of introducing the network

failure are then measured based on the metrics defmed in Chapter 3.

-58-

Chapter 3 - Experimentation Plan

3.1 Motivation
In order to effectively compare the selected routing protocols, it is necessary to test them

under a common set of conditions. By measuring the performance of each protocol in

relation to well-defined metrics, a proper evaluation can be achieved. Once the

experimentation plan has been carried out, the results can be analyzed to decide which

routing protocol performs most desirably for each metric and to determine in which

circumstances the protocol performs the best.

3.2 Metrics
To facilitate the experimentations, a set ofmetrics has been developed against which the

routing protocols will be compared. These metrics are chosen due to their relevance in

habitat monitoring applications. A summary of the chosen metrics can be seen in Table 3

including which scenarios they are relevant to. The Perfect scenarios entail that no errors

occur in the network during the experiment. The Error scenarios introduce specific errors

into the network to determine how well each routing protocol can adapt. These scenarios

will be discussed in more detail later in the chapter.

-59-

Metric Scenarios Summary
Average Dissipated Energy Perfect Ratio of energy consumed by all nodes to

the number of unique data messages
received by the base station.

Average Delay Perfect Time required for a data message to travel
from a source node to the base station.

Energy Consumption Perfect Variation of energy consumption among all
Variation nodes in the network after a specified

period of time.
Code and Data Size Perfect, Amount of instruction and data memory

Error required by the routing protocol.

Total Number of Messages Perfect, Number of messages sent during the
Transmitted Error simulation.
Recovery Total Energy Error Total amount of energy consumed by all
Consumption nodes during the time required for the

network to stabilize after an error.
Number of Data Messages Error The number of data messages lost during a
Lost network error.
Stabilization Time Error Time required for the routing protocol to

stabilize after an error has occurred.

Table 3 - Summary of Chosen Metrics

The first metric devised for use in the experiments is Average Dissipated Energy. This

metric is defined as:

Average Dissipated Energy = E IN

Where E is the sum of the energy consumed by all nodes and N is the number of unique

data events collected by the base station. In essence, this metric allows us to determine

roughly how much total energy is required for one data event to be generated and

received by the base station. Obviously, lower values are preferred for Average

Dissipated Energy. A low value means that the base station will receive a higher number

of data events before network failure occurs (due to node battery exhaustion).

-60-

Another metric used in the experimentation plan is Average Delay, or the average

time it takes for a recently generated data event to reach the base station. Delay is defined

as:

Delay= T1- To

Where T 1 is the time at which the data event reaches the base station and T 0 is the time at

which the data event is sent by the source node. The Average Delay is then calculated by

taking the average of the delays associated with all data events. In some habitat

monitoring applications (e.g., object tracking), it is important to receive data events as

quickly as possible so that proper actions can be taken. By achieving a low Average

Delay, a sensor network routing protocol is well tailored to this type of usage.

Additionally, we consider variation in energy consumption to be an important

metric. This metric measures the distribution of energy consumption amongst all the

nodes in the network after a specified period of time. This is an important metric because

an uneven distribution will cause some nodes to fail more quickly than others. If a small

subset of nodes fails early in the lifecycle of the network, it could have disastrous

consequences. Thus, variation in energy consumption can be linked directly to sensor

network lifetime. A smaller value for this metric is preferred because it implies that the

energy consumption is more evenly distributed amongst all nodes in the network,

resulting in a potentially higher network lifespan.

Another pertinent metric is the total number of messages required to be

transmitted for correct operation of the routing protocols (over a given period of time).

As mentioned above, radio activity is the major source of energy depletion in the sensor

nodes. Therefore, routing protocols that have a low message transmission overhead

- 61-

provide an obvious benefit in terms of energy consumption. Although this metric is

similar to Average Dissipated Energy, it focuses solely on energy consumed through

radio activity.

Recovery Total Energy Consumption is the first metric that is relevant only in the

error scenarios. This metric measures the total energy required among all nodes to

recover from a network error. Obviously, a lower value for this metric is preferable,

especially if errors occur very frequently in the network.

An additional metric that is unique to the error scenarios is Stabilization Time, or

the time taken for the routing protocol to stabilize after a network error has occurred.

Routing protocols that have a higher Stabilization Time run the risk of losing data

messages sent in the network. Therefore, a lower Stabilization Time is obviously a

preferred characteristic.

Another metric that is relevant only in the error scenarios is the Number of Data

Messages Lost when an error occurs in the network. This metric is closely related to the

stabilization time and is equally important. A routing protocol should be able to stabilize

while minimizing the amount of data messages lost in the process. Data messages can be

lost when there is no explicit end-to-end reliability protocol in place (e.g., the

Transmission Control Protocol used on the internet). This is the case in sensor network

routing protocols such as Directed Diffusion. If a message is lost en route to the base

station, there is no mechanism in the protocol to detect the error and retransmit the

message. Also, even if a protocol does have end-to-end reliability, it is still possible to

lose data messages. In Dynamic Source Routing for example, outgoing messages can be

buffered while waiting for an RRP to arrive with a new path to the base station. If data is

-62-

being generated too quickly, however, this buffer may overflow before the RRP is

received, resulting in lost data messages. Buffer sizes also have to be kept modest due to

the memory constraints in the sensor nodes.

The last metric considered in our experimentations is Code Size. This metric is

divided into two components and involves the amount of memory required in the sensor

nodes to facilitate the routing protocols.

The frrst component of this metric is Program Code Size. Program Code Size is

the amount of memory (in KB) occupied by the program instructions. Since sensor nodes

typically have only a small amount of memory available to applications, keeping the size

of the compiled routing protocol to a minimum is essential.

The second component of the Code Size metric is Data Size. Aside from the

memory required to store the compiled code, it is also important to determine an upper

bound on how much memory the routing protocols require during runtime (e.g., memory

for routing tables). Only by investigating both aspects of Code Size can a conclusion be

reached on the memory-efficiency of each protocol.

3.3 Measuring Metrics
Now that the metrics used to evaluate the performance of each routing protocol are

specified, it is important to discuss how each of these metrics is measured. To measure

the first metric, Average Dissipated Energy, a simulation is run for a specified period of

time using the PowerTOSSIM plug-in mentioned in Chapter 2. As well, each time a data

message is received by the base station, a log message is generated to indicate that fact.

At the end of the simulation, the output ofthe PowerTOSSIM plug-in is analyzed to

obtain the total amount of energy expended by all nodes. This value is divided by the

-63-

total number of unique data messages received by the base station during the simulation

(also determined by examining the application log file). The Average Dissipated Energy

is the resultant value of the above operation.

A custom-developed Java program, PowerLogTool, is used to examine the output

of the PowerTOSSIM plug-in and compute the Average Dissipated Energy. An example

of the output from the PowerTOSSIM plug-in can be seen in Figure 13. For each sensor

mote (i.e., node), the total power (in mJ) used by both the radio and CPU is listed. The

PowerLogTool program iterates over the output, adding up the power consumption totals

for all nodes. This value is then divided by the number of data messages received to

produce the Average Dissipated Energy.

Mote 0, radio total: 2.480016
Mote 0, cpu_cycle total: 1.159321

Mote 1, radio total: 1.666896
Mote 1, cpu_cycle total: 1.096799

Mote 35, radio total: 19.438650
Mote 35, cpu_ cycle total: 1.721442

Figure 13 - Sample PowerTOSSIM Output

When using the PowerTOSSIM plug-in to compute energy consumed by the

radio, only the energy required to send messages is considered; the energy required to

receive messages is disregarded by setting a parameter in the PowerTOSSIM

configuration file. This provision exists because the radio implementation used by

TOSSIM assumes that the radio is always in receive mode, sampling the radio channel

for incoming messages. Since, in this model, sending and receiving messages consumes

-64-

roughly the same amount of energy, the energy required to send messages is swamped by

the energy used in receiving them. For example, in a 3 minute simulation, the radio

expends approximately 3000 mJ receiving messages while sending messages requires

less than 500 mJ (depending on the routing protocol and scenario being used). This is

explained by the fact that the radio is only be in the sending mode for a few seconds but

is in the receiving mode for the entire simulation. Since the energy used for receiving

messages is a constant among all protocols, it can safely be ignored. By focusing only on

the energy required to send messages, a better understanding can be gained as to which

routing protocols are more energy efficient.

To obtain measurements for the Average Delay metric, each routing protocol

implementation is instrumented to generate a time-stamped log entry whenever a data

message is sent by a data-generating node. Similarly, each data message received by the

base station is associated with a timestamp value to indicate arrival time. The delay for a

single message is determined by computing the difference between these two timestamps.

This computation is done for each data message transmitted throughout the simulation

lifetime and the Average Delay is the resulting average value among all these

computations.

Similarly to the Average Dissipated Energy, the Average Delay is calculated

using a custom Java program called DelayLogTool. DelayLogTool scans through the

simulation log file to find log statements indicating that the data generator has sent a data

message. This entry is then matched to another log entry indicating that the base station

has received the transmitted data. Since timestamps are associated with both log entries,

a delay is calculated using a simple subtraction. The Average Delay is determined by

-65-

taking the average of all calculated delays. An example of the log statements used in this

analysis can be seen in Figure 14. For example, the first statement in this log snippet

states that node 35 is sending data with a unique id of 665 at a time of 36.08 s. The

second statement indicates that node 0 (i.e., the base station) receives this data message at

a time of 36.35 s.

35: APP: Data ready to be sent (665) (0:0:36.07885275)
0: Base Station received new data (665) from node 35 at(0:0:36.34833725)
35: APP: Data ready to be sent: (491) (0:0:40.96135275)
0: Base Station received new data (491) from node 35 at(0:0:4 t23074675)

Figure 14 - Sample delay log statements

In Chapter 4, as part of the proposed software architecture, it is revealed that a

media access control (MAC) layer is used to prevent collisions amongst broadcast

messages. The solution entails adding a short, random delay before broadcast messages

are sent. This obviously influences the Average Delay value, so to counteract the

problem, the MAC waiting times are not included in the Average Delay metric. This is a

reasonable assumption because media access control is not meant to be an important

component of our experimentation analysis - the MAC layer is implemented only to

solve the collisions problem.

The PowerTOSSIM plug-in is also used to measure the variation in energy

consumption. At the end of the simulation, the PowerTOSSIM output is analyzed to

determine the total energy consumed by each node in the network. These values are used

to compute the standard deviation of energy consumption amongst all nodes in the

network using the formula:

- 66-

Standard Deviation= sqrt(I (X- u)2
/ N)

Where u is the mean of the energy consumption values and N and is number of nodes in

the network.

The total number of messages required for correct operation of the routing

protocol is simply calculated by counting the total number of messages sent by all nodes

in the network over the course of the simulation. The application log file is again used to

obtain how many messages are actually sent.

In the error scenarios, the Recovery Total Energy Consumption is measured in

much the same way that Average Dissipated Energy is in the perfect scenarios. The

PowerTOSSIM plug-in is used to analyze the error log file and generate power

consumption statistics for each node. The power consumed by each node is then

combined to create the value for the Recovery Total Energy Consumption metric. As

noted above, the energy required by the radio to receive messages is not included in these

calculations.

Another error scenario-specific metric, Stabilization Time, is measured by

analyzing the log file and determining the times at which the network error was detected

and when the frrst post-failure data message is received by the base station. The

stabilization time is determined by subtracting these two values. It is important to note

that the point at which the network error is detected varies depending on the routing

protocol being used. This fact is explored in more detail in the proceeding section.

Similarly, in the error scenarios, the number of data messages lost during a

network error is determined by inspecting the log files and looking for data messages sent

by the data source that were not received by the base station.

- 67-

To measure Program Code Size, the compiled executable for each routing

protocol is examined to determine how much memory it occupies. This is done using the

nee compiler included with the standard TinyOS distribution. The command used to

compile each of the implemented routing protocols is:

nee -o main.exe -target=miea2 SimpleSense.ne

Where mica2 is the target hardware platform and SimpleSense.nc is the name of the

application configuration file. Since only a single routing protocol can be specified in the

configuration file at a time, this command must be executed three times in order to

measure the Program Code Size for each routing protocol.

To measure Data Code Size, each routing protocol implementation is manually

analyzed to determine the largest amount of stack space and global data possibly required

at any point in time. This is done by evaluating the stack space necessary for each event

that can occur during program execution (e.g., receiving a message, sending data, or

performing routing updates) and choosing the largest value. Although this value does not

include the amount of space required for saved program counters or spilled registers,

these items are a constant overhead and can be safely ignored.

For a simple example of the Data Code Size evaluation, refer to Figure 15. Here,

assume that receipt of an incoming message triggers the messageReceived method.

Notice that this method declares only a single 8-bit integer meaning that it requires 1 byte

of data memory. I..,ater in the execution of this method, a call to func2 is made, requiring

the variables declared in messageReceived to be pushed onto the stack (1 byte). Notice

thatfunc2 also declares an 8-bit integer, thereby requiring an additional 1 byte of data

-68-

memory. Also notice thatfunc2 eventually calls method fond, forcing the variables

declared infunc2 to be pushed onto the stack as well (2 bytes are now on the stack).

void messageReceived{){
uint8_t varl;

func20;

fundO;

return;
}

void func20{
uint8_t \'all;

return;
}

voidfund0{
uintl6 _t var3 ;

return;
}

Figure 15- Code Size Analysis

The final method in the calling chain,func3, declares a single 16-bit integer (2 bytes).

Combining these 2 bytes with the amount of stack space used adds up to a total of 4

bytes. Thus, the maximum amount of data memory required when the messageReceived

method is invoked is 4 bytes. By performing this manual analysis for every event that

can be invoked in each routing protocol implementation (e.g., message received, message

being sent, etc.), the maximum required Data Code Size is determined.

3.4 Scenarios
In order to properly simulate and measure the performance of each routing protocol, it is

necessary to construct scenarios that accurately represent real-world usage. As such, the

experiments are carried out against a hierarchy of scenarios that include different network

- 69-

topologies and error conditions. The experiment scenario hierarchy can be seen in Figure

16.

Perfect Scenarios

[_ 6 x 6 Grid Topology

L__ 36 node Random Topology

Error Scenarios

1------ 6 x 6 Grid Topology

Nearest Failure

Intermediate Failure

Farthest Failure

L------- 36 node Random Topology

Nearest Failure

Intermediate Failure

Farthest Failure

Figure 16- Scenario Hierarchy

Note that all experiments are included under one of two possible simulation scenarios:

the perfect scenarios or the error scenarios.

3.4.1 Perfect Scenarios

In the perfect scenarios, the network is impervious to any node failures. This implies that

the topology of the network remains static for the duration of the simulation. Message

collisions can still occur in these scenarios; however, no prolonged link failures occur.

This is a reasonable assumption because, in a typical habitat monitoring deployment, the

network will be placed in a location far away from common sources of radio interference

such as other electronic components and metallic structures (e.g., a network located on a

- 70-

forest floor or a remote island). Additionally, it allows the best possible case to be

determined for each routing protocol.

In choosing the structure of the networks used in the perfect scenarios, there are

two important factors to consider: the physical network topology and the number of

nodes contained in the network. In choosing physical network topologies, it is important

to consider the most likely sensor node positioning in habitat monitoring applications.

For this reason, there are two primary topologies used in our experiments: grid topologies

and random topologies. As well, each topology used in the simulations is comprised of

36 nodes. This number is chosen to represent a typical habitat monitoring network

deployment such as the one described in [3]. This number is also conducive to

constructing a grid.

In a grid topology, all nodes are spaced evenly to create anN x N grid. This type

of network is useful in situations where the phenomena we want to measure is spread out

over a uniform area (e.g., Measuring soil temperature over a particular area of interest).

Thus, many habitat monitoring applications utilize a grid topology for data collection.

An illustration of the 6 x 6 grid topology used in the perfect scenarios can be seen in

Figure 17.

- 71-

Figure 17 - 6 x 6 Grid Topology

In this perfect scenario, a single data source, node S, is responsible for generating data

events and sending them back to node BS (the base station).

As the name implies, the random topology used in the perfect scenarios is a

topology that is randomly generated. The motivation for using a random topology is to

account for habitat monitoring deployments where the placement of the sensor nodes is

dependant solely on the phenomena being studied. For example, if a researcher is

interested in studying the nesting habits ofbirds [3], the sensor nodes must be placed

wherever a burrow is found. The resulting topology obviously may not be uniform (e.g.,

not a grid), justifying the decision to include randomly generated topologies in the

experimentations.

To facilitate the construction of random topologies, a custom Java program named

TopologyGenerator is used. TopologyGenerator accepts parameters to define the number

of nodes in the network, the communications radius of each node in the network (in

-72-

meters), and the physical size of the area containing the network (width and height in

meters). The output of the program is a connected graph that contains the specified

number of nodes arranged in a random topology. The node that is the farthest distance

from the base station is considered the data-generating node. For the random topologies,

a value of 36 is used for the number of nodes to stay consistent with the numbers

contained in the grid topology. As well, the node's communication radius is set to 2m,

which is representative of real-world values when a node is placed at ground level.

Stemming from this, a network area of 12m x 12m is used to accommodate the relatively

short transmission radius.

. ------ -·

Figure 18- Perfect Scenario Random Topology

-73-

The random network topology generated for use in the perfect scenario experiments is

shown in Figure 18. As with the grid topology, node S is the data generator and node BS

represents the base station.

Each of the routing protocols are simulated under both the grid and random

topologies, resulting in 6 experimentation scenarios. Each scenario begins with the base

station sending an interest message requesting data from the data generating node (S).

This interest message requests that data be sent at an interval of every 5 seconds for a

duration of 180 seconds (3 minutes). Messages then begin to flow through the network

and, when the interest duration has passed, the simulation ends. After the simulation, the

resulting logs are analyzed to evaluate the metrics as described above.

When running the experiments for the perfect scenarios, there are a couple of

special cases that need to be handled to ensure that all three protocols have an equal

chance to perform well in the metric evaluations. In the Directed Diffusion protocol, the

initial interest sent by the base station is an exploratory interest that results in the base

station receiving duplicate data from multiple neighbours. To ensure fairness, the initial

interest sent in the Directed Diffusion simulations has duration of only 30 seconds.

Otherwise, multiple copies of each data message would be sent by the data generator and

propagate throughout the network for the entire simulation, resulting in unneeded energy

consumption. Before the initial interest expires, the base station performs interest

reinforcement (as described in Chapter 2), resulting in the base station receiving data

events from only a single neighbour for the remainder of the simulation.

Another special case that is considered relates to the Minimum Transmission

routing protocol. By design, this protocol requires an initial stabilization period before

-74-

messages can be properly routed in the network. If an attempt were made to send data

messages immediately, they would be lost until the stabilization period ended, resulting

in an unfair situation for the Minimum Transmission protocol. To accommodate this, the

evaluation of the Minimum Transmission routing protocol is divided into two parts: the

Stabilization Phase and the Interest Phase. The Stabilization Phase encompasses the time

from which the simulation starts to the point at which the routing topology has stabilized

and is able to properly route messages. The Interest Phase occurs immediately following

the Stabilization Phase and begins with the base station sending the interest message as

described above.

For the analysis of the Stabilization Phase, only two of the chosen Perfect

Scenario metrics are considered: Energy Consumption Variation and Total Number of

Messages Transmitted. An additional metric, Total Energy Consumption, is used in the

analysis of the Stabilization Phase to determine the total amount of energy required

amongst all nodes during stabilization. Both Average Dissipated Energy and Average

Delay cannot be used in the Stabilization Phase analysis because no data messages are

actually sent during this period.

After the simulation has ended, the results from both the Stabilization and Interest

phases are analyzed separately to determine how well the Minimum Transmission

protocol performs with respect to the given metrics.

3.4.2 Error Scenarios

The second set of experiments fall under the error scenarios category. Although the

perfect scenarios provide a good idea ofhow each routing protocol performs under

- 75-

normal operation, it is important to understand how a protocol copes with errors that

occur in the network. One of the most serious and commonly occurring errors in a sensor

network is the complete failure of a sensor node. If a node's battery becomes depleted or

the node otherwise malfunctions, it can have a detrimental effect on the routing topology.

As such, the error scenarios are devised to gauge how efficiently a protocol is able to

handle these types of errors. In other words, it is important to measure the cost of a

network failure in terms of each of the routing protocols.

The network topologies used in the error scenarios are chosen similarly to the

perfect scenarios. Therefore, both a grid topology and a random topology are used to

evaluate how well each routing protocol deals with network errors. The grid topology is

a 6 x 6 grid and is identical to the one described above. The random topology, however,

is re-generated to accommodate the error scenarios.

When creating a random topology for use in the error experimentations, it is

important that there be at least two node-disjoint paths between the base station and the

data generating node. That is, two paths must exist that do not contain any of the same

sensor nodes. This is important because, if there is only one path from source to

destination, and a node fails on that path, there is no way to route data to the destination.

As well, even if there are two paths from source to destination, but the failing node is

contained in both paths, data still cannot be routed properly. By requiring at least two

node-disjoint paths in our random topology, it ensures that no matter which intermediate

node in the network fails, it is still possible to route messages from a data generating

node to the base station. To accommodate this requirement, the TopologyGenerator Java

- 76-

is augmented to generate an appropriate network topology. The topology generated by

this program for use in the error scenarios can be seen in Figure 19.

Figure 19 - Error Scenario Random Topology

Again, node S is the data generator and node BS represents the base station.

As mentioned above, the primary purpose of the error scenarios is to determine

how well a routing protocol adapts to node failures in the network. When determining

how to introduce node failures, it is important to remember that the position of the failing

node can determine how well a routing protocol adapts to the failure. In DSR, for

example, if the node failure is close to the data generator, the RERR message will arrive

more quickly than if the failure was farther away. In Directed Diffusion, however, the

placement of the node failure has no real impact on performance since the protocol has

no implicit error detection.

-77-

To accommodate this fact, each protocol is exposed to three types of node failures

during the error experimentations: closest, intermediate, and farthest failures. The closest

failure is one that occurs two hops from the data generating node on the data delivery

path, or the path being used to deliver data to the base station. The intermediate failure

occurs in the middle of the data delivery path is calculated by using the formula:

X= ceiling(N /2)

where N is the number of hops in the data delivery path. The resultant value, X denotes

the failure node as the Xth node on the data delivery path (from data generator to base

station). The farthest failure is one that occurs in the node adjacent to the base station in

the data delivery path.

Since the data delivery path can be different depending on the topology and

routing protocol used, it is necessary to have a way to determine this path dynamically.

This is accomplished by examining the log file of a running simulation and manually

determining which path is being used to route data back to the base station. Once the

failure node has been selected, Tython is used to connect to the running TOSSIM

simulation and turn off the selected failure node (a more detailed explanation ofTython

can be found in Chapter 2). The following simple Tython script is used for this purpose:

sim.pause();
motes[x]. turnOff();
sim.resume();

In this script, x refers to the ID of the selected failure node.

To run the error scenarios, each routing protocol is simulated under both the grid

and random topologies. In addition, for each topology, there are 3 separate experiments

-78-

to capture the different types of node failures mentioned in the above paragraph. This

results in 6 error experiments for each routing protocol.

In each error experiment, the routing protocol is allowed to stabilize without any

network failures occurring. Once the protocol has stabilized (i.e., a single route is being

used to route data back to the base station), a node failure is introduced into the network

using Tython as described in the above paragraph (closest, intermediate or farthest,

depending on the simulation). The simulation then continues to run until network

stabilization occurs. Network stabilization is defined as the point in time when the first

post-error data message arrives at the base station. The simulation logs are then analyzed

between the error detection point and the network stabilization point to compute values

for the error metrics.

The error detection point, or the point at which the network error is detected,

differs depending on the routing protocol being used. In Directed Diffusion, there is no

inherent error detection present for nodes in the network. If a node in the data delivery

path fails, the only entity capable of detecting the error is the base station. If the base

station does not receive the next data message as expected, it will re-broadcast another

interest message to discover a new data delivery path. For example, if data is arriving at

an interval of 5 seconds but the base station has not received a new message in 6 seconds,

it can deduce that there is a network error. Therefore, in Directed Diffusion, the error

detection point is defined to be the point in time at which the base station detects that a

network error has occurred.

In contrast, Dynamic Source Routing supports error detection at the node level.

This is achieved through use of the Route Error messages (RERR) that are used to notify

-79-

the data generator that a problem has occurred. Any node in the network is capable of

detecting a malfunction, making error detection almost instantaneous. Based on this fact,

in Dynamic Source Routing, the error detection point is defined to be the time at which a

node on the data delivery path determines that a node failure has occurred.

In Minimwn Transmission routing, there is no error recovery mechanism; error

detection is implicit to the protocol itself. This functionality is provided by the periodic

routing update messages broadcasted by each node in the network. If a node were to fail,

its routing cost in relation to its neighbours would increase. This forces each

neighbouring node to minimize routing costs by selecting another parent node to route

data through. As such, there is no actual cost associated with a network error in the

Minimum Transmission routing protocol- the routing update messages are sent

regardless of whether or not errors exist. In order words, the cost of network errors is

built-in to the normal operation of the routing protocol. For this reason, Minimum

Transmission routing is not considered in the error scenarios but will be considered in the

analysis of the perfect scenario results.

- 80-

Chapter 4- Testing Framework Software
Architecture

4.1 Overview
Testing ofthe different routing protocols is aided by a common framework. This

simplifies the implementation for each routing protocol and ensures consistent treatment

during the experimentations. In this chapter, the software architecture is presented that

provides a common framework for interest-based routing. As well, the importance of

media access control is discussed. Finally, the experimentation setup is discussed to

explain how data is collected in relation to each of the chosen metrics presented in

Chapter 3.

4.2 Architecture Description
In developing a software architecture for interest-based routing, one ofthe most

important considerations is ensuring that any protocols implemented in this architecture

are sufficiently abstract such that they can be easily integrated into any target application.

It should not be necessary for the application to have any knowledge of the inner

workings of the routing protocols in order to use them.

Another major consideration when developing a software architecture for interest-

based routing is how to actually handle interest propagation. Since an interest-based

sensor network is one of the key assumptions in the experimentations, it is important that

the routing component take care of managing interests. This includes broadcasting/re-

broadcasting interest/reinforcement messages, maintaining an interest cache, and

notifying the application when a new interest is received. The interest handling should

also be abstract to the core routing algorithm implementation; however, since some

- 81 -

routing protocols require access to the interest cache to make routing decisions (e.g.,

Directed Diffusion), an interface to the interest-handling component is provided to allow

access to such information.

Given the above considerations, a high-level representation of the proposed

software architecture is pictured in Figure 20. The Application, DataRouter,

InterestManager, and GlobalMAC entities present in Figure 20 are components. On the

other hand, Receivelnterest, InterestManager, Send, SendMsg, and ReceiveMsg are

interfaces. Components contain the application logic (i.e., the code) while interfaces

define how the different components are able to interact with each other. Each

component and interface in the architecture is now discussed in detail.

- 82-

Application

Recei'.lelnterest

:_ ____________ :·'

GlobaiMAC

TinyOS COMM Layer

t/)

::E
Q)

.<!:
Q)
0
Q)

l:t::

Figure 20 - Proposed Software Architecture for Interest-Based Routing

4.2.1 Application Component

The Application component represents the target application wishing to utilize any of the

routing protocols. Although not directly part of the routing component architecture, there

are several assumptions on the operation of the application. It is assumed that the

application is interest-based. This is, interests received from the base station govern data

collection by the application. As such, the necessary logic to determine whether or not an

interest can be fulfilled is determined by the application and not the routing protocol.

Any new interests received by the routing protocol are passed up to the application for

- 83-

processing. The application will look at the criteria specified in the interest message to

determine whether or not it can service it.

To utilize the software architecture, the application must implement two

interfaces. The first interface, ReceiveMsg, is used by the routing protocol to pass

application-specific messages up to the target application (e.g., Data messages). The

second interface, Receivelnterest, is required by the routing protocol to forward interest

messages on to the application layer. When the application wishes to send a message

using the desired routing protocol, it simply uses the Send interface, which comes

standard with TinyOS. By utilizing this approach, the application can send messages of

any type using the implemented routing protocol.

4.2.2 Interest Manager Component

The InterestManager component is responsible for the interest maintenance discussed in

the above considerations. It uses the generic TinyOS RecieveMsg interface to receive

both interest messages and interest reinforcement messages. If relevant, these messages

are also passed to the application via the Receivelnterest interface. The interest cache is

also housed within this component as well as the logic to determine whether or not an

interest message needs to be re-broadcasted. Also, when an interest reinforcement

message is received, the InterestManager component is responsible for determining

which neighbour should be reinforced. When an interest or reinforcement message needs

to be sent, the InterestManager component uses the TinyOS SendMsg to send the

message to a media access control component (GlobalMAC), which is discussed later in

this chapter.

- 84-

4.2.3 DataRouter Component

The actual routing protocol implementation is encapsulated within the DataRouter

component. When the application has a message to send, the DataRouter component

determines the next required hop required to reach the destination. The TinyOS

SendMsg interface is then invoked in order to send the message over the radio.

Similarly, the DataRouter component receives application messages via the TinyOS

ReceiveMsg interface and can then pass the message up to the application layer or

forward the message onto its next hop. Additionally, the DataRouter component is also

responsible for sending and receiving protocol-specific routing messages (e.g., Route

Request messages in the DSR protocol) via additional instances of the TinyOS SendMsg

and ReceiveMsg interfaces.

4.2.4 InterestManager Interface

The InterestManager interface is a custom interface that is necessary to facilitate interest-

based routing. As such, this interface provides the routing protocol implementation with

utility methods related to the interest cache. This is useful when a particular routing

protocol requires interest-related information to make routing decisions. The content of

the InterestManager interface is as follows:

interface InterestManager {
command uint8_t matchExists(SensorDataMsg *m);
command uint8_t getNeighboursRequestingData(SensorDataMsg *m, uint16_t arr[]);
command uintl6_t getHighestDatalnterval(SensorDataMsg *m);

Before describing the methods contained in the interface, it is useful to explain some

concepts presented in this example. First of all, an interface defines how a particular

- 85-

component can be accessed [15]. A command is simply a non-blocking method that the

interface provider must implement. Finally, SensorDataMsg is the name for the custom

data structure representing data to be sent to the base station.

The first method in the interface, matchExist, takes a data message as an argument

and returns 1 (true) or 0 (false) depending on whether or not an interest exists in the

cache that matches the given data.

The second method, getNeighboursRequestingData, is used to retrieve a list of all

neighbours who have an interest matching the given data (specified in the first method

parameter). The second input parameter to this method is an integer array that is used to

store the addresses of each neighbour requesting the data. Finally, the return value for

this method is an integer that specifies the number of neighbours who matched the given

data.

The final method in the InterestManager interface is getHighestDatalnterval.

Given a data message as a parameter, this method returns the highest rate at which a

neighbour is requesting data of the specified type. For example, assume neighbours A

and B have an interest in the cache that matches the specified data. Now assume that

neighbour A is requesting this data at an interval of every 5 seconds and neighbour B

wants to receive data every 1 0 seconds. In this case, the method would return a value of

5. This method is useful if a routing protocol needs to determine if it should downgrade

the rate at which data is being received. For instance, if a node is receiving data every 5

seconds, but the result of getHighestDatalnterval is 10 seconds, it may want to discard

every second data message received to match the requested data rate.

- 86-

Not all implemented routing protocols need to use the InterestManager interface.

Both Dynamic Source Routing and Minimum Transmission Routing, for example, do not

use interest information when making routing decisions. Therefore, interest management

is actually invisible to these protocols as received interests are sent from the

InterestManager component directly to the application. Directed Diffusion, however,

depends on this interface to help make routing decisions. For example, in Directed

Diffusion, destinations for a message are discovered by using the

getNeighboursRequestingData method. Also, to determine the rate at which data should

be sent, Directed Diffusion uses the getHighestDatalnterval method. Finally, to

determine whether or not a data matches any cached interests, Directed Diffusion utilizes

the matchExists method.

4.2.5 Receivelnterest Interface

The second custom interface used to enable interest-based routing is the Receivelnterest

interface. This interface must be implemented by the Application component and its

structure is as follows:

interface Receivelnterest {
event void receivelnterest(lnterest interest);

}

The Receivelnterest interface has only one method, Receivelnterest, which contains the

application logic necessary to deal with an incoming interest. This method is actually an

event handler (denoted by the event keyword) that is invoked when a particular event

occurs (i.e., an interest message is received) [15]. As such, event handlers must be

implemented by the interface user. The only input parameter to the receivelnterest

- 87-

method is the interest message being received. This parameter is an instance of a custom

data structure used to represent an interest sent by the base station. By requiring the

Application component to implement this interface, the architecture allows the

application to have access to any new interest messages received by the routing layer. As

mentioned above, this places the responsibility for determining whether or not an

incoming interest is serviceable in the hands of the application layer.

4.2.6 Send Interface

The Send interface is a standard TinyOS interface and is used in the proposed routing

architecture to allow the Application module to send messages via the implemented

routing protocol. The structure of interface is as follows:

interface Send {

}

command void* getBuffer(TOS _ MsgPtr msg, uint16 _t* length);
command result_t send(TOS_MsgPtr msg, uint16_t length);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

When the application wishes to send a message, it first declares an instance of a

TOS _ Msg (TinyOS Message), which represents a message to be sent over the radio. The

format of a TinyOS message can be seen in Figure 21.

8 Bytes 29Bytes

Header Payload

Figure 21- TOS_Msg Format

Since both the application's data as well as the routing information must be stored in the

packet payload, the application first calls the getBuffer method to get a pointer to the

location in the payload where the data should be placed. The first parameter to this

- 88-

method is the message to be sent while the second parameter is used by the method to

notify the application of the maximum amount of space available for data.

Once the application has placed its data in the TOS_Msg, it calls the send method

to transmit the message. The first parameter to this method is the message to be sent and

the second parameter indicates the space used to store the data (in bytes).

Finally, after the message is sent, the Send interface triggers the sendDone event

(implemented by the application) to indicate whether or not the transmission was

successful.

Note that the Send interface does not allow the application to specify a destination

address for the outgoing message. This is because it is assumed that all messages are

being sent to a single destination: the base station.

4.2. 7 SendMsg Interface

The SendMsg interface is used by the routing layer to transmit messages over the radio

and is also a standard TinyOS interface. The structure of this interface is detailed below:

interface SendMsg
{

}

command result_t send(uint16_t address, uint8_t length, TOS_MsgPtr msg);
event result_t sendDone(TOS_MsgPtr msg, result_t success);

Similarly to the Send interface, messages are sent using the send method. The first

parameter to this method is the destination node's address. The second parameter is used

to indicate how much space is occupied by the data being sent (in bytes). Finally, the last

parameter is a pointer to the actual message to be transmitted.

- 89-

The main difference between this interface and the Send interface is that, when

sending a message, a destination address can be specified. This makes the SendMsg

interface well suited for use in the routing layer where defining the next hop for a

message is a necessity.

All three implemented protocols make use of the SendMsg interface to send

various types of messages. In Dynamic Source Routing, in addition to data messages, the

SendMsg interface is used to send the Route Request, Route Reply, and Route Error

messages. Similarly, Minimum Transmission Routing uses this interface to send both

data messages and the periodic routing update messages. Directed Diffusion, however,

requires no protocol-specific messages to be sent and uses the SendMsg interface only to

send data messages. Also important is that the InterestManager component uses this

interface to send interest and interest reinforcement messages.

4.2.8 ReceiveMsg Interface

The last interface used in the proposed software architecture is ReceiveMsg. This

interface is also standard to TinyOS and is used by the Application, DataRouter, and

InterestManager components to receive incoming messages. Below is the structure of

this interface:

interface ReceiveMsg
{

event TOS_MsgPtr receive(TOS_MsgPtr m);
}

The only member of this interface is the receive event, which takes a single TOS_Msg as

a parameter (the incoming message). This event is triggered on reception of a message

- 90-

and contains the logic necessary to deal with incoming messages of a specific type (i.e.,

for each type of message received by a module, there is a corresponding receive method).

In addition to receiving data messages, Dynamic Source Routing uses the

ReceiveMsg to receive all protocol-specific messages such as Route Request, Route

Reply, and Route Error messages. I.,ikewise, in Minimum Transmission Routing, both

data messages and routing update messages are received using the ReceiveMsg interface.

Additionally, Directed Diffusion also uses this interface to access incoming data

messages. Also of note is that the InterestManager component uses the ReceiveMsg

interface to receive both interest and interest reinforcement messages.

4.3 Media Access Control
Also visible in Figure 20 is the GlobalMAC component, which provides a very simple

implementation of a media access control protocol. All outgoing broadcast messages

required in the software architecture are sent through the GlobalMAC component.

Although this component is not a part of the core architecture, it is nonetheless an

important module. This is because GlobalMAC is developed to solve a very common

and classic computer networking predicament: the hidden terminal problem.

The hidden terminal problem occurs when two (or more) nodes not in

transmission range of each other simultaneous attempt to transmit a message to a

common neighbour, resulting in a corrupted message at the receiving node. This

behavior is demonstrated in Figure 22.

- 91 -

Figure 22 - Hidden Terminal Problem

In this scenario, assume that node 0 broadcasts an interest message that is received by

nodes 1 and 2. Each of these nodes will attempt to re-broadcast the message at

approximately the same time, resulting in a corrupted message being received by node 3.

A positive acknowledgement (ACK) by the receiver (node 3) is usually a good defense

against this problem, as the sender will receive confirmation that the message has been

correctly received. In situations where messages are broadcasted, however, this approach

is not sufficient (e.g., propagating interest messages).

The radio stack implementation provided with TinyOS provides media access

control in the form of a Carrier Sense Multiple Access/Collision Avoidance (CSMA/CA)

implementation. In CSMA/CA, the sending node listens to the communication medium

to ensure that no one else is transmitting. If no radio activity is detected, the sending

node will transmit its message. Although this approach works well for nodes within

communication range, it does not solve the hidden terminal problem because the sending

nodes cannot detect each other's radio activity.

In order to combat the hidden terminal problem and allow the experiments to be

carried out, it is necessary to implement a network-wide media access control protocol.

This implementation is contained in the GlobalMAC component. GlobalMAC solves the

-92-

problem described above by implementing a simple time division multiple access

(TDMA) scheme for sending messages. Each node in the network is assigned a time slot

in which it can send messages. If a node wishes to send a message, it must wait until it's

next scheduled time slot in order to transmit. Although simplistic, this scheme

guarantees that no two nodes in the network are broadcasting at the same time, thus

eliminating the hidden terminal problem. Therefore, all messages broadcasted in the

routing architecture are first sent to the GlobalMAC component after which they are sent

over the radio.

It is important to note that, although this approach works well in the TOSSIM

environment, it is not directly applicable to an actual sensor network deployment. This is

because TOSSIM allows all nodes to have access to a global clock value that can be used

to devise the TDMA scheme. In the real world, however, the clocks in each of the nodes

are not synchronized, causing this time-sharing approach to fail. Additional measures

would have to be taken to ensure time synchronization among all the nodes. An example

of a clock synchronization algorithm for wireless sensor networks can be found in [29].

4.4 Experimentation Setup
In order to carry out the experiments, it is necessary to facilitate the collection of data

from a simulated sensor network. To accomplish this, a Java program called BaseStation

was developed that acts as a base station to inject interest messages into the network as

well as process the data received from sensor nodes. A high level view of how the

BaseStation program interacts with the simulated sensor network can be seen in Figure

23.

-93-

TOSSIM Simulation

SeriaiForwarder

--------- "--------' -------->

Figure 23 - Experimentation Setup

Base Station
Java Program

010101010101
0101010101010
010101010101

...._ _____ _,

In order to communicate with the sensor network, the BaseStation program makes use of

SerialForwarder. SerialForwarder, which is included in the standard TinyOS distribution,

connects to node 0 in a running TOSSIM simulation over a virtual serial port [16].

During the simulation, any messages that node 0 sends over its serial port will be

received by the SerialForwarder program (and vice versa). To allow external

applications to communicate with the sensor network and receive data from the nodes,

SerialForwarder also provides a TCP interface. This allows the BaseStation program to

send and receive messages from the simulated sensor network.

As mentioned above, most TinyOS applications are written in nesC (a C-like

language). Therefore, TinyOS packets received by the SerialForwarder program are

stored inC data structures. In order to make it easy for Java client applications to

interpret data received from the sensor network, a tool called the Message Interface

Generator (MIG) is used to generate Java objects that correspond to TinyOS packet types

[16]. When a TinyOS packet is received from SerialForwarder, the MIG tools will

convert the data into a Java object that is then handed to the client application (e.g., the

- 94-

BaseStation program). The Java object that is returned has all the appropriate getter and

setter methods to allow the client application easy access to the sensor data.

To actually start the TOSSIM simulation with the desired parameters, the

following command is executed:

./a.out -p -cpuprof -rf=cube6.nss -t=180 -b=l 36 > output.txt

Here, a. out represents the compiled TinyOS application (including a routing protocol

implementation). The p argument indicates that the PowerTOSSIM plug-in should be

used to calculate energy consumption statistics. Similarly, the cpuprofargument is used

by the PowerTOSSIM plug-in to specify that CPU energy consumption should be

included in these statistics. Additionally, the rf=cube6.nss argument indicates that a

topology file with the name cube6.nss will be used to define the network topology used in

the simulation. The t= 180 parameter instructs TOSSIM to run the simulation for 180

seconds (3 minutes) while the b= 1 parameter dictates that all nodes in the network must

boot within the frrst second of the simulation. The 36 parameter indicates that 36 nodes

are involved in the simulation. The final parameter, output. txt, simply defines the log file

that the simulation output is placed in.

A small portion of the TOSSIM topology file used in the above command (i.e.,

cube6.nss) can be viewed in Figure 24. The format of each line in the topology file is as

follows: the first token represents a source node, the second token represents a

destination node, and the third token is a link error probability (between 0 and 1).

- 95-

0:1:0.00
0:6:0.00
1:2:0.00
1:0:0.00
1:7:0.00
2:3:0.00
2:1:0.00
2:8:0.00
..............

Figure 24 - Sample TOSSIM Topology File

For example, the first line in the above topology file dictates that node 0 has a

communications link with node 1 and the error probability on that link is 0 (i.e., no bit

errors can occur). Notice that the links denoted in the topology file are not bi-directional.

If there exists a bi-directionallink between two nodes, this must be representing using

two entries in the topology file. A complete version of the above topology file can be

found in Appendix B: TOSSIM Grid Topology File.

4.5 Summary
In this chapter, a software architecture to implement routing protocols for sensor

networks is proposed. The individual components of this architecture are described as

well as the interfaces that provide communication between these components. Each of

the three selected routing protocols is implemented in this architecture to allow for the

experimentations to be run. Additionally, the need for media access control is explained

along with a description of the GlobalMAC program module. Finally, the

experimentation setup is discussed, showing how various software packages are used to

-96-

carry out the necessary experiments. In the next chapter, the results of these experiments

are presented.

-97-

Chapter 5- Experimentation Results

5. f Overview
In this chapter, the results of performing the experimentations detailed previously are

provided. For each scenario, the results are first presented and then analyzed in order to

explain the outcomes. The results for static metrics are detailed first, followed by the

results and analysis of the Stabilization Phase in Minimum Transmission Routing. The

Perfect Scenario results are described next, followed by the Error Scenario outcomes.

For both the Perfect and Error Scenarios, results for all metrics are listed first for the grid

topology and then for the random topology.

5.2 Static Metrics
This section details the results for static metrics, or metrics for which the results are the

same among all scenarios and networking topologies. Code Size is the only example of

such a metric in the experimentations.

As mentioned in Chapter 3, knowing how much program and data memory is

occupied by each routing protocol implementation is very important. If the routing

protocol occupies a large amount of memory, there are fewer resources available to the

actual application collecting the sensor data. The results for the Code Size metric can be

seen in Figure 25. The routing protocols are listed along the horizontal axis and the Code

Size (in bytes) is displayed along the vertical axis. Also notice that the value for the

Code Size is divided into both the Program Code Size and Data Size components.

20000

i 15000
.0 -IS en
.g 10000
8

5000

0
Directed Diffusion

- 98-

[)ynanic Source Routing

Figure 25 - Code Size Results

Mnimum Transnission
Routing

•Data

1111 A"ogram

As is evident in the above figure, Directed Diffusion achieves the smallest Code Size

with a value of 15929 bytes. Dynamic Source Routing attains a slightly higher value of

17368 bytes. Finally, Minimum Transmission Routing scores a value of 19159 bytes.

Additionally, provided below in Figure 26 is a chart depicting the approximate

number of lines of source code (non-commented) for each routing protocol

implementation. Dynamic Source Routing and Minimum Transmission Routing contain

more lines of code, weighing in at 1000 and 1100 lines (respectively). Notice that

Directed Diffusion achieves a significantly smaller number at 450 lines of code. Also of

note is that the InterestManager component (not shown in Figure 26) contains

approximately 650 lines of code and is included in the routing layer no matter which

protocol is used.

-99-

800

Gl
"'CI
0
0 600 0
Ill
Gl c:
:J

400

Directed Diffusion Dynan ic Sauce Rrutirg Mirimum Trmsmission Routirg

Figure 26 - Code Size (in lines of code)

The fact that Directed Diffusion has the smallest Code Size stems from its use of the

interest cache as the basis for making routing decisions. As noted in the description of

the software architecture, the InterestManager component (which contains the interest

cache) is common to all three protocols. Therefore, the Directed Diffusion protocol does

not require additional storage tables such as the route cache in Dynamic Source Routing

or the neighbour tables in Minimum Transmission Routing, allowing it to achieve the

smallest Code Size. Also, since the logic to deal with interests in encapsulated within the

InterestManager component, this minimizes the amount of program memory needed for

the Directed Diffusion protocol to function properly.

- 100-

5.3 Minimum Transmission Routing (Stabilization Phase)
For the reasons discussed in Chapter 3, the Stabilization Phase in Minimum Transmission

Routing is analyzed separately. There are only three metrics that are relevant to the

Stabilization Phase: Total Energy Consumption, Total Number of Messages Transmitted,

and Energy Consumption Variation. The results for each of these metrics are presented

below for both the grid and random topologies under the Perfect Scenario. The Error

Scenarios are not considered because, as previously stated, Minimum Transmission

Routing is not relevant in these scenarios.

5.3.1 Total Energy Consumption

The first metric considered for the Stabilization Phase is the Total Energy Consumption.

The results for this metric can be viewed in Figure 27. The topologies are listed along the

horizontal axis while the Total Energy Consumption is shown along the vertical axis (in

mJ).

In the grid topology, the Minimum Transmission Routing Stabilization Phase

results in Total Energy Consumption of 161.18 mJ. Similarly, in the random topology,

the value for the Total Energy Consumption is 117.02 mJ.

180

160

140

:::;-
.5.
t:: 13:1
0
~ c.
E

100 :I
Ul
t::
0
(.)

>o 80

~
Gl
t::
w eo s
0
1-

40

3:1

0

- 101 -

Grid T apology Random T apology

Figure 27- Total Energy Consumption (Stabilization Phase)

~
~

Note that the energy consumed by the radio accounts for the vast majority of the Total

Energy Consumption in both topologies. As well, the Stabilization Phase appears to

require a lower amount of energy in the Random Topology as opposed to the Grid

Topology.

5.3.2 Total Number of Messages Transmitted

The second metric considered for the Stabilization Phase of Minimum Transmission

Routing is the Total Number of Messages Transmitted. The outcomes for this metric are

presented in Figure 28. Again, the specific network topologies are shown along the

horizontal axis while the messages transmitted are displayed along the vertical axis.

- 102-

300

250
'C
GJ ::: ·e
Ill
c
1.'!!200
1-
Ill
GJ
Cl
I'll
Ill
Ill

150 GJ
::::& -0 ...
GJ
.a
E 100
:I
z
ii -0
1-

50

0

Grid Topology Random Topology

Figure 28- Total Number of Messages Transmitted (Stabilization Phase)

In the grid topology, a Total Number ofMessages Transmitted value of282 is achieved.

The value obtained in the random topology is a little less at 213 messages. Notice these

values correspond to the ones presented for the Average Dissipated Energy metric. For

instance, the random topology requires fewer messages be sent and therefore achieves a

lower value for the Average Dissipated Energy.

- 103-

5.3.3 Energy Consumption Variation

The third, and final metric analyzed for the Stabilization Phase is the Energy

Consumption Variation. The results for this metric are seen in Figure 29 with the

computed Energy Consumption Variation shown along the vertical axis (in mJ).

:::;
.§.
c

0.6

0.5

.2 0.4 -Ill
~
c
~ 0.3
c.
E
:s
Ill c
0

(.) 0.2
>.
~
Gl
c w

0.1

0

GridTqldogy Random Topology

Figure 29- Energy Consumption Variation (Stabilization Phase)

For the grid topology, an Energy Consumption Variation value of0.52 mJ is achieved. In

the random topology, a lower value of0.39 mJ is measured. These values are reasonably

small, suggesting that all nodes in the network consume a similar amount of energy

during the Stabilization Phase. This result is not surprising since, during the Stabilization

Phase, only route update messages are being sent throughout the network. Since each

node in the network periodically sends these messages, it is expected that the value for

- 104-

the Energy Consumption Variation will be small. Also, the random topology achieves a

slightly better value compared to the grid topology due to the larger number of potential

(and therefore unutilized) routes available in the grid topology.

5.4 Perfect Scenario Grid Topology Results
In this section, the experimentation results for each metric under the perfect scenarios,

using the grid topology, are presented.

5.4.1 Average Dissipated Energy

The first metric for which results are presented is Average Dissipated Energy. As

mentioned previously, this is perhaps the most important metric because energy

consumption is directly linked to the lifetime of the sensor network. A graphical

representation of the results for this metric can be seen in Figure 30. In this chart, the

horizontal axis denotes specific routing protocols and the vertical axis is the Average

Dissipated Energy (in mJ per message). Also note that the value for each routing

protocol is divided into the Average Dissipated Energy for both the CPU and radio.

Dynamic Souce Routing Directed Diffusion

- 105-

Mirimcm Tlli1Smission Routing

• Average Dissipated
Energy CPU

m Average Dissipated
Energy Racio

Figure 30- Average Dissipated Energy (Perfect Scenario, Grid Topology)

As is visible in the above figure, Dynamic Source Routing achieves the lowest Average

Dissipated Energy at a value of 8.4 mJ. Directed Diffusion has a moderately higher value

of 13 mJ followed by Minimum Transmission Routing with a value of20.8 mJ. Also

notice that the energy consumed by the CPU for each of the routing protocols is relatively

the same. This shows that the Average Dissipated Energy is primarily determined by the

energy utilized for the radio to send messages.

The fact that Dynamic Source Routing achieves the best value for Average

Dissipated Energy is not surprising in the perfect scenarios. Since no errors occur, route

discovery is only performed once and a single route is used throughout the entire

experiment to transmit data back to the base station. In Directed Diffusion, however, the

- 106-

multiple routes being used to transmit data during the initial interest period result in a

higher volume of messages transmitted and therefore a higher Average Dissipated Energy

value. In Minimum Transmission Routing, route update messages are sent periodically

for the entire experiment, resulting in the highest value for Average Dissipated Energy. It

is important to note, however, that only one route is constructed in the Dynamic Source

Routing protocol while all routes are inherently constructed in Minimum Transmission

Routing. That is, in Minimum Transmission Routing, all nodes are able to send data back

to the base station.

5.4.2 Average Delay

The next metric considered is Average Delay, or the average time required for data to

travel from the data generating node to the base station. The results for this metric can be

viewed in Figure 31.

O.ZT

0.265

0.26

Ui'
'C

~ 0.255
()
Cll
.!.
>o
I'll 0.25
'ii
0
Cll
Dl
f! 0.245
Cll

~
0.24

0.235

- 107-

Dynamic 5otJce Routing Directed Diffusion Minimt.m Transmission Routing

Figure 31 -Average Delay (Perfect Scenario, Grid Topology)

Again, the routing protocols are listed along the horizontal axis with their corresponding

Average Delay value (in seconds) on the vertical axis. All three protocols achieve very

similar results for Average Delay with Minimum Transmission Routing having a slightly

superior value of 0.245 s. Dynamic Source Routing and Directed Diffusion follow close

behind with values of0.261 sand 0.268 s respectively.

These results indicate that the number of hops required for data to travel from the

data generator to the base station is very comparable for all three routing protocols,

resulting in nearly identical message transmission times.

- 108-

5.4.3 Energy Consumption Variation

Results for Energy Consumption Variation, determined by calculating the standard

deviation over the energy consumption for all sensor nodes, are presented next.

::::;
.§.

10

9

8

c 7
0
;
ftl

~ 6

c
0
; 5
a.
E
:I
:!! 4
0
0

~ 3 ...
Gl
c w

2

0
Directed Diffusion Dynamic Sauce Rooting Minimum Transmission Rooting

Figure 32- Energy Consumption Variation (Perfect Scenario, Grid Topology)

The results for this metric are displayed in Figure 32. Here, the performance of each

routing protocol varies. Directed Diffusion fares best with a value of7.29 mJ. Minimum

Transmission Routing and Dynamic Source Routing achieve higher values of8.62 mJ

and 8.92 mJ, respectively.

The slightly higher values for Dynamic Source Routing and Minimum

Transmission Routing are caused by the fact that both of these protocols use a single path

to transmit data for the entirety of the experiment. The result is greater energy

- 109-

consumption in nodes along this path, thereby increasing the energy consumption

variation amongst all nodes in the network.

5.4.4 Total Number of Messages Transmitted

The last metric considered under this set of experiments is the Total Number of Messages

Transmitted. The results are shown in Figure 33 with the Total Number of Messages

Transmitted indicated on the vertical axis.

1400

1200

"C
CD ::: ·e
Ill 1000 c
ftl ...

1-
Ill
CD
Cl 800
ftl
Ill
Ill
CD

:::&
0 600 ...
CD .a
E
:I z 400

iii -0
1-

200

0

Dynamic Souce Routing DiJeC!ed Diffusion Minimum Transmission Routing

Figure 33- Total Number of Messages Transmitted (Perfect Scenario, Grid Topology)

Dynamic Source Routing obtains the lowest number of messages transmitted with a value

of 429. Directed Diffusion fares worse, obtaining a value of 856 messages, followed by

Minimum Transmission Routing which sends 1198 messages.

- 110-

Notice that these results correspond very closely to those for the Average

Dissipated Energy metric. This behavior is expected because, as mentioned above, the

radio is the dominant source of energy consumption in these experiments. Therefore, it

follows that the protocol that has the lowest Average Dissipated Energy will also have the

lowest value for the Total Number of Messages Transmitted. As a result, Dynamic

Source Routing performs best in this metric, followed by Directed Diffusion and

Minimum Transmission Routing.

5.5 Perfect Scenario Random Topology Results
In this section, the experimentation results for each metric under the perfect scenarios

using the random topology will be presented.

5.5.1 Average Dissipated Energy

The results for the Average Dissipated Energy metric under the random topology are

displayed in Figure 34.

25

-..,
.§.. 15
>-
~
CD
c::
w
-a -! 10
0.

·= c
CD
Cl 5
I"!!

~
0

- 111 -

Djnarric Source Routing Directed Diffusion Mnirrum Transrrission
Routing

Figure 34 - Average Dissipated Energy (Perfect Scenario, Random Topology)

11 Radio

Dynamic Source Routing again achieves the lowest Average Dissipated Energy value of

8.99 mJ. Directed Diffusion obtains a slightly higher Average Dissipated Energy with a

value of 12.48 mJ. Finally, Minimum Transmission Routing scores the worst value for

Average Dissipated Energy at 21.47 mJ.

These results are nearly identical to those presented for the grid topology.

Dynamic Source Routing has a slightly worse Average Dissipated Energy than in the grid

topology, and both Directed Diffusion and Minimum Transmission Routing perform

marginally better. These variations are not significant, however, indicating that changing

the network topology has little effect on the performance of the routing protocols.

- 112-

5.5.2 Average Delay

Next, the results for the Average Delay metric are presented in Figure 35.

0.45

0.4

0.35

Vi'
'tl 0.3
t::
0
()
Cll
.!!. 0.25

>-
ftl
Gi
c 0.2
Cll
Cl
!!!
~ 0.15
c(

0.1

0.05

0
Dynamic Source Routing Directed Diffusion Minimum T~a~Smission Routing

Figure 35- Average Delay (Perfect Scenario, Random Topology)

Again, the results are very similar to those under the grid topology. Directed Diffusion

performs best this time, achieving an Average Delay of 0.269 s. Minimum Transmission

Routing scores slightly higher with an Average Delay of 0.303 s and Dynamic Source

Routing attains a slightly worse Average Delay value of 0.418 s.

As mentioned above, the fact that the values for Average Delay are comparable

indicates that the data path used by each protocol contains roughly the same number of

hops. The other factor that causes a small amount of variation is the number of message

retransmissions at the data link layer due to no acknowledgement message being received

by the sending node.

- 113-

5.5.3 Energy Consumption Variation

The results for the Energy Consumption Variation metric are displayed in Figure 36.

10.5

10 -...,
E ._.
c
0 9.5

:;::l

"' ·;:

~
c
0 9

:;::l
c.
E
::s
Ill c
0 8.5 0
>.
~
CD c

UJ
8

7.5
Directed Diffusion Dynarric Source Routing Mnirrum Transrrission Routing

Figure 36- Energy Consumption Variation (Perfect Scenario, Random Topology)

As with the grid topology results, Directed Diffusion again has the lowest Energy

Consumption Variation with a value of 8.62 mJ. Dynamic Source Routing obtains a

measurement of9.16 mJ, followed by Minimum Transmission Routing with a value of

9.94 mJ.

Directed Diffusion achieves the best performance in this experiment for the same

reasons indicated in the grid topology results: the other protocols use a single data path

for the entire simulation, resulting in a higher Energy Consumption Variation.

- 114-

5.5.4 Total Number of Messages Transmitted

The outcome for the Total Number of Messages Transmitted metric is revealed in Figure

37.

1200

"C
CD = ·e
Ill 1000
1:
ftl ...

1-
Ill
CD
Cl
ftl

800

Ill
Ill
CD

::E ...
0 800 ...
Gl
.a
E
:I
z 400

ii -0
1-

200

Dy~ic Sout:e Routirg Directed Diffusion Minimum Transmission Routirg

Figure 37- Total Number of Messages Transmitted (Perfect Scenario, Random Topology)

Once again, Dynamic Source Routing has the lowest number of messages transmitted

with a value of 467. Directed Diffusion fares worse off with 801 messages transmitted

while Minimum Transmission Routing requires a substantially higher number of

messages with a value of 1214.

Again, these results directly correlate to those for the Average Dissipated Energy

metric based on the logic explained previously. As well, adding to a noticeable trend, the

results are also very close to those for the grid topology, indicating that each protocol

sends roughly the same amount of messages regardless ofwhich topology is used.

- 115-

5.6 Error Scenario Grid Topology Results
In this section, the experimentation results for each metric under the error scenarios using

the grid topology are presented.

5.6.1 Recovery Total Energy Consumption

First of all, the results for the Recovery Total Energy Consumption metric, or the total

amount of energy required to recover from a network error, are presented. These results

are displayed in Figure 38. Along the horizontal axis, the results for both Dynamic

Source Routing and Directed Diffusion are shown for each of the three error scenarios

(closest, intermediate, and farthest). The Total Energy Consumed (in mJ) is shown along

the vertical axis. Notice that each value is divided into both the energy consumed by the

radio and the energy consumed by the CPU.

Dynamic
Source
Routing

Direc1ed
Diffusion

Closest

- 116-

Dynamic
Source
Routing

Direc1ed
Diffusion

lnlermediale

Dynamic
Source
Routing

Direc1ed
Diffusion

Farthest

Figure 38 - Recovery Total Energy Consumption (Error Scenario, Grid Topology)

fiCPUl
~

In the closest error scenario, Dynamic Source Routing achieves a Recovery Total Energy

Consumption value of 46.48 mJ while Directed Diffusion fares slightly worse off with a

value of 55.37 mJ. These results are similar because, in this experiment, both protocols

required a message to be flooded throughout the network for stabilization to occur. In the

case of Directed Diffusion, a new interest message must always be broadcasted through

the network when an error is detected. Dynamic Source Routing, on the other hand, only

requires flooding route request messages when an error is detected and no other cached

route to the base station exists. In this case, the data generating node did not have

another cached route, resulting in the flooding of a new route request message.

- 117-

Dynamic Source Routing also performed better in the intermediate error scenario,

obtaining a far superior Recovery Total Energy Consumption value of 15.42 mJ

compared to the Directed Diffusion value of 44.67 mJ. As mentioned above, Directed

Diffusion must broadcast a new interest message when an error is detected. In this

experiment, however, the data generating node in the Dynamic Source Routing protocol

did have another cached route to the base station when the network error was detected.

This avoided having to broadcast another Route Request message and leads to a much

more efficient Recovery Total Energy Consumption value for Dynamic Source Routing.

Finally, in the farthest error scenario, Dynamic Source Routing once again has the

advantage with a Recovery Total Energy Consumption value of25.53 mJ as opposed to

the Directed Diffusion value of 54.26 mJ. Once again, the data generating node in the

Dynamic Source Routing protocol was able to utilize another stored route to the base

station, resulting in a huge performance gain. Notice, however, that Dynamic Source

Routing does consume more energy in this error scenario than it does in the intermediate

scenario. This is because the network failure occurs farther away from the data

generating node, resulting in the route error message having to travel a greater number of

hops. The increased number of transmissions for the route error message thus accounts

for the higher Recovery Total Energy Consumption value in the farthest error scenario.

Notice that the energy consumed by the radio and CPU is much more comparable

than in the perfect scenarios. This is due to the fact that, during the error scenarios, each

node is sending only a small number of messages. Thus, the radio accounts for a much

smaller portion of the energy consumed than previously seen.

- 118-

5.6.2 Total Number of Messages Transmitted

The results for the Total Number of Messages Transmitted metric are presented next and

can be viewed in Figure 39.

80

70

"C

~ 'e eo
Ill
c::
I!
Ill 50
Gl
Cl
Ill
Ill

= 40 ::E
'0 ...
1!30
E
:I z
- 20

~

10

0

Closest lntennediate Farthest

Ill Dynamic Souce Routing

• Directed Diffusion

Figure 39- Total Number of Messages Transmitted (Error Scenario, Grid Topology)

In the closest error scenario, both protocols achieve similar values with Dynamic Source

Routing at 63 messages and Directed Diffusion at 7 4 messages. As described above, this

similarity is due to both protocols having to rebroadcast a message to achieve network

stabilization. Directed Diffusion does transmit a slightly greater number of messages,

however, because of the initial exploratory interest sent after the error is detected. This

interest message results in data flowing back to the base station along multiple paths,

- 119-

accounting for the higher metric value. In contrast, Dynamic Source Routing routes data

to the base station using only a single path.

For the intermediate scenario, Dynamic Source Routing obtains a superior result,

requiring only 14 messages to be transmitted in order for the network to stabilize.

Directed Diffusion, on the other hand, requires 50 messages to achieve the same result.

In this experiment, the large difference is due to the fact that, when the network error

occurs, Dynamic Source Routing has another cached route to the base station. This

eliminates the need to broadcast another route request message and minimizes the

number of messages transmitted.

Finally, in the farthest scenario, Dynamic Source Routing again achieves an

efficient result of 14 messages, compared to 70 messages for Directed Diffusion.

Similarly to the intermediate error scenario, Dynamic Source Routing is able to use

another cached route to the base station to avoid flooding messages throughout the

network.

5.6.3 Number of Data Messages Lost

Next, the experiment outcomes for the Number of Data Messages I..,ost metric are

discussed. As previously mentioned, it is essential for a routing protocol to minimize lost

data messages during a network failure. With this in mind, the results for each routing

protocol under all three error scenarios are presented in Table 4.

Dynamic Source Routing
Directed Diffusion

Closest
0

Intermediate
0
1

Farthest
0
1

Table 4 -Number of Data Messages Lost (Error Scenario, Grid Topology)

- 120-

Perhaps the most noticeable aspect of these results is that they are consistent over the

closest, intermediate, and farthest error scenarios. In other words, the placement of the

network error does not affect the behavior of the routing protocol. As mentioned in

Chapter 2, Dynamic Source Routing is able to explicitly detect network errors and the

data generating node can cache outgoing data messages until a new route to the base

station is discovered. This ability to cache messages (albeit a limited number) allows

Dynamic Source Routing to avoid losing any data messages during each of the error

scenarios.

Directed Diffusion, on the other hand, has no such ability to instantly detect

network errors and does not cache data messages. Thus, the network failure is not

detected until the base station realizes that it has not received the next data message as

expected. This results in the loss of a single data message across all error scenarios. On

a positive note, Directed Diffusion is able to stabilize quickly enough to prevent the loss

of further data messages.

5.6.4 Stabilization Time

The final metric considered is Stabilization Time. Figure 40 contains the results for this

metric.

0.9

0.8

i 0.7
1:
0

lil .!!. 0.6

Gl
E
j:: 0.5

1:
.2
i 0.4
~
:a
ftl u; 0.3

02

0.1

0

- 121-

~~~~ Directecl Diffusion 
• Dynamic Sout:e RoUing 

Closest lntermel'iate Farthest 

Figure 40 - Stabilization Time (Error Scenario, Grid Topology) 

In the closest error scenario, Directed Diffusion attains the lowest Stabilization Time with 

a value of0.56s while Dynamic Source Routing scores slightly higher at 0.7 s. In the 

intermediate scenario, however, Dynamic Source Routing achieves the better result with 

a Stabilization Time of0.373 s followed by Directed Diffusion with a value of0.508. 

Likewise, in the farthest error scenario, Dynamic Source Routing obtains network 

stabilization in 0.48 s as opposed to the 0.933 s required by Directed Diffusion. 

In the closest error scenario, as mentioned during the discussion for the Recovery 

Total Energy Consumption metric, both routing protocols must perform flooding to 

achieve stabilization. Here, Directed Diffusion scores slightly better than Dynamic 

Source Routing due to the sequence of events that take place in both protocols after a 

network error is detected. Both protocols must broadcast a message (either an interest or 

a route request) throughout the network before data can be routed to the base station. In 



- 122-

Dynamic Source Routing, however, the route error message must propagate back to the 

data generating node before the route request can be broadcasted. This introduces an 

additional delay to Dynamic Source Routing that is not seen with Directed Diffusion. 

In the intermediate and farthest error scenarios, however, Dynamic Source 

Routing has another cached route to the base station when the network error is detected. 

This eliminates the need to flood a route request and allows data to be properly routed 

without any interruption. Directed Diffusion, on the other hand, must flood an interest 

message in these scenarios. This accounts for the improved performance of Dynamic 

Source Routing in the intermediate and farthest error scenarios. 

5. 7 Error Scenario Random Topology Results 
In this section, the experimentation results for each metric under the error scenarios using 

the random topology are be presented. 

5.7.1 Recovery Total Energy Consumption 

As previously done, the experiment outcomes for the Recovery Total Energy 

Consumption metric are considered first. These results are shown below in Figure 41. 

The routing protocols are listed along the horizontal axis while the values for Recovery 

Total Energy Consumption are shown along the vertical axis. 



60 

50 

, 
.5o 
"i 
E 
io c 
0 
0 

2b 
CD c 

LIJ 

10 

0 

- 123-

Diffusion Diffusion 

Oosest Intermediate Farthest 

Directed 

Diffusion 

Figure 41- Recovery Total Energy Consumption (Error Scenario, Random 
Topology) 

In the closest error scenario, Dynamic Source Routing obtains a lower Recovery Total 

Energy Consumption of 43.98 mJ. The value for Directed Diffusion is moderately higher 

at 49.65 mJ. Notice that, although Dynamic Source Routing expends more radio energy 

than Directed Diffusion, it uses much less CPU energy, resulting in a better value for this 

metric. 

Similar outcomes are evident in the intermediate error scenario. Again, Dynamic 

Source Routing achieves the lowest Recovery Total Energy Consumption with 51.12 mJ. 

Directed Diffusion follows very closely behind with a value of 52.17 mJ. Also of interest 

is the increase in CPU energy for Dynamic Source Routing compared with the closest 

error scenariO. 



- 124-

The results for the farthest error scenario are somewhat different, however. In 

this case, Directed Diffusion obtains the best Recovery Total Energy Consumption with a 

value of 46.04 mJ. Dynamic Source Routing achieves a slightly higher value of 48.06 

mJ. The better showing for Directed Diffusion is caused by a decrease in radio energy 

consumed as compared to the previous error scenarios. 

Again notice that the CPU and radio energy consumption values are comparable 

due to the reasons outlined in section 5.6.1. 

5. 7.2 Total Number of Messages Transmitted 

Next, the results for the Total Number of Messages Transmitted metric are discussed. 

These results can be viewed in Figure 42. 

"C 

! ·e 
II) 
c: 
f 
1-
II) 
CD 
Cl 
Ill 
II) 
II) 
CD 

:::IE .... 
0 ... 
CD .c 
E 
:I 
z 
iii -0 
1-

62 

60 

58 

56 

54 

52 

50 

48 

46 
aosest lnterrrediate Farthest 

l!l! Dynanic Source Routing 

• Directed Diffusion 

Figure 42- Total Number of Messages Transmitted (Error Scenario, Random Topology) 



- 125-

In the closest error scenario, Dynamic Source Routing requires that 52 messages be sent 

to stabilize the network as opposed to the 58 required by Directed Diffusion. Similarly, 

in the intermediate error scenario, Dynamic Source Routing achieves stabilization using 

55 messages while Directed Diffusion utilizes 60. Finally, in the farthest error scenario, 

network stabilization in the Dynamic Source Routing needs 51 messages while Directed 

Diffusion requires 53. 

The results for all three error scenarios are consistent, with Dynamic Source 

Routing always edging out Directed Diffusion by requiring a slightly smaller number of 

messages. As mentioned before, this is due to the multiple data paths being used in 

Directed Diffusion in response to the initial exploratory interest. 

5.7.3 Number of Data Messages Lost 

The results for the Number of Data Messages :Cost are revealed in Table 5. 

Dynamic Source Routing 
Directed Diffusion 

Closest 

0 
1 

lntermed iate 

0 
Farthest 

0 
1 

Table 5- Number of Data Messages Lost (Error Scenario, Random Topology) 

As per the grid topology, Dynamic Source Routing is able to stabilize the network 

without losing a single data message. Directed Diffusion, on the other hand, does suffer 

the loss of a single data message before stabilization occurs. This outcome is expected 

for the same reasons explained above in the grid topology section. 



- 126-

5.7.4 Stabilization Time 

The results for the last metric presented in this section, Stabilization Time, are displayed 

in Figure 43. In the closest error scenario, Directed Diffusion achieves the best 

Stabilization Time at a value of0.47 s. Dynamic Source Routing obtains a higher value 

of 0.86 s. Comparably, in the intermediate error scenario, Directed Diffusion scores a 

Stabilization Time of0.52 s while Dynamic Source Routing has a Stabilization Time of 

0.63 s. Finally, for the farthest error scenario, Directed Diffusion requires 0.42 s for 

network stabilization while Dynamic Source Routing needs 0.66 s. 

0.9 

0.8 

Ul 0.7 "CJ 
1: 
0 
u 
Gl 0.6 .!!. 
Gl 
E 0.5 
j:: 

111 Directed Diffusion 

• Dynamic Source Routi 
1: 
0 0.4 :;::; 
I'G 

~ 
:a 0.3 
I'G -, 

0.2 

0.1 

0 
Closest Intermediate Farthest 

Figure 43 - Stabilization Time (Error Scenario, Random Topology) 

As is evident in the above results, Directed Diffusion achieves the best Stabilization Time 

value for all experiments. This is due to the fact that Dynamic Source Routing has no 

additional cached routes to the base station in either of the three error scenarios. As 



- 127-

mentioned previously, this forces both protocols to flood the network in order to achieve 

stabilization, resulting in similar performances. Directed Diffusion has mildly better 

Stabilization Times due to the reasons detailed in the Stabilization Time results for the 

grid topology. 



- 128-

Chapter 6- Conclusions and Future Work 

6.1 Overview 
In this chapter, conclusions are drawn as to which routing protocol should be selected for 

use in particular habitat monitoring situations. These conclusions are based on the results 

of the experimentations presented in the previous chapter. As well, an overview of the 

advantages of using the chosen metrics is presented. Finally, a summary of future work 

is given towards the end of the chapter that lays the groundwork for further research. 

Before recommendations are made, a summary of the advantages/disadvantages of each 

routing protocol is made available for reference in Table 6. 

Protocol Advanta2es Disadvanta2es 
Directed Diffusion • Localized • Interest flooding to 

Interactions correct errors 
• Small memory • Duplicate data 

footprint transmission 

Dynamic Source Routing • Routes discovered • Each packet must 
on demand contain route record 

• No periodic routing • Volatile networks 
updates require constant 

• Supports RRQ flooding 
unidirectional links 

• Several paths can be 
cached to a 
destination 

Minimum Transmission • Minimizes the • Requires periodic 
Routing expected number of routing update 

retransmissions messages 
• No implicit error • Possible to lose data 

recovery cost messages if the 
update interval is 
not small enough 

Table 6- Routing Protocol Advantages/Disadvantages 



- 129-

6.2 Recommendations 
As stated earlier, the primary goal of this work is to assist researchers in selecting the 

routing protocol best suited to the needs of their habitat monitoring application. It is 

important to note, however, that different sensor network applications may be more 

concerned with particular metrics. For example, a sensor network deployed for the 

purpose of object tracking may be more concerned with the Average Delay metric, 

ensuring that data events are received by the base station as quickly as possible. For 

another network deployed on a remote island, maximizing the network lifetime is critical, 

meaning that Average Dissipated Energy is a more pertinent metric. Before considering 

individual metrics, the routing protocol that performed best overall is discussed. 

The protocol recommended for the majority of sensor network applications is 

Dynamic Source Routing. This is based on the performance of the protocol in the 

experiments detailed in Chapter 5. 

In applications where network lifetime is critical, Dynamic Source Routing is the 

obvious choice. This is because it obtained the best values for the Average Dissipated 

Energy and Total Number ofMessages Transmitted metrics by a wide margin in all of 

the Perfect Scenarios. As well, although it did not achieve the best score in the Average 

Delay experiments, it did attain values very close to those of the other routing protocols. 

In most habitat monitoring scenarios, an extra delay of 0.1 seconds is not considered 

significant, meaning that Dynamic Source Routing's performance is adequate. Similarly, 

although Dynamic Source Routing did not have the best value for Energy Consumption 

Variation, the differences between the three routing protocols for this metric are slim in 

all scenarios. As such, using Dynamic Source Routing does not significantly increase the 

risk of having certain sensor nodes fail more quickly due to excess energy consumption. 



- 130-

The choice of Dynamic Source Routing is further supported after examining the 

results of the Error Scenario experiments. Here, Dynamic Source Routing achieves the 

best Recovery Total Energy Consumption in both topologies amongst all types of 

failures, with the only exception being the farthest failure in the random topology. Even 

in this case, the results for both routing protocols are very close. :Likewise, Dynamic 

Source Routing attains the lowest value for Total Number of Messages in all error 

scenartos. 

Another important achievement of Dynamic Source Routing is that it did not lose 

a single data message during all network errors. This outcome is extremely relevant to 

error-prone sensor networks where losing even a single message is detrimental to the 

application (e.g., object tracking). It is possible, however, for Dynamic Source Routing 

to lose data messages during a network failure if it does not receive a Route Reply before 

its outgoing message buffer overflows. 

Stabilization Time is the only error metric in which Dynamic Source Routing 

does not perform best under most error scenarios. Even though Directed Diffusion fares 

slightly better in this metric, the values attained by Dynamic Source Routing are still 

acceptable for the majority of habitat monitoring applications. 

Another fact in support of Dynamic Source Routing is that its ability to cache 

multiple routes to the base station dramatically increases performance during network 

failures. In all error experiments where the data generating node is able to utilize another 

stored data path, Dynamic Source Routing outperforms Directed Diffusion in all metrics 

by a sizable margin. 



- 131 -

Although Dynamic Source Routing performed admirably in the chosen scenarios, 

it is noteworthy to consider scenarios not included in the experimentation plan. In all of 

the experimentation scenarios, only a single node is generating data destined for the base 

station. This is a reasonable assumption for habitat monitoring applications because, 

most often, the user is only querying a small subset of nodes to receive data. Consider, 

however, the case where all nodes in the network (e.g., 36 nodes in a grid topology) are 

generating data to be routed to the base station; presumably because each of them is able 

to fulfill the specified interest. In this scenario, Dynamic Source Routing could perform 

more poorly because each node receiving the interest will need to generate a Route 

Request and flood it throughout the network in order to start routing data. Additionally, 

if a network error affects multiple nodes, each of these nodes will again need to re

broadcast a Route Request. 

Directed Diffusion, however, should fare slightly better in this scenario. Initially, 

each node will send data back to the base station along (possibly) multiple data paths, 

resulting in a high volume of messages sent. Once the base station performs interest 

reinforcement, however, the number of data paths is reduced substantially. As well, if a 

network error occurs in this scenario, the base station re-broadcasts only a single interest 

message as usual. Further simulation studies would help in the analysis of this scenario. 

Minimum Transmission Routing theoretically achieves the best performance 

when a large number of nodes are generating data. In contrast to Dynamic Source 

Routing, which must send more Route Request messages as the number of data 

generating nodes increases, Minimum Transmission Routing incurs no such overhead due 

to the use of a constantly updated tree-based topology. As well, if a network error 



- 132-

occurs, no additional messages need to be sent due to the periodic routing update 

messages. Therefore, Minimum Transmission Routing may be better equipped to handle 

habitat monitoring applications where a large number of nodes will be generating data for 

prolonged periods of time. 

Additionally, even though Minimum Transmission Routing performed 

considerably worse in terms of energy consumption in all of the Perfect Scenario 

experiments, several cases can be made to advocate the use of this protocol in a habitat 

monitoring deployment. If Average Delay is the crucial metric in a sensor network 

application, Minimum Transmission Routing may be the proper choice of routing 

protocols. In the grid topology, for example, this protocol achieved the best Average 

Delay and placed a close second in the random topology experiment. This characteristic 

is useful in applications such as object tracking where receiving data events as soon as 

possible is paramount. 

Another argument for using Minimum Transmission Routing is the error recovery 

mechanism built in to the protocol. Since there is no implicit cost associated with 

recovering from a network error in Minimum Transmission Routing, this protocol is well 

suited to sensor networks that are highly error-prone. This is important when sensor 

networks are deployed in an area where there are many potential sources of external 

interference (e.g., other electronic components). As mentioned earlier, however, it is still 

possible for Minimum Transmission Routing to lose data messages during a network 

failure if the routing update interval is larger than the data generation interval. 

Based on the experimentation results, the only case where the use of Directed 

Diffusion can be advocated is in sensor network deployments where the amount of 



- 133-

memory available for the routing protocol is extremely limited. Directed Diffusion 

occupies approximately 1.5 KB less memory than Dynamic Source Routing and 

approximately 3 KB less than Minimum Transmission Routing. If the memory allocated 

to the routing protocol is a critical deployment issue, then the slight memory advantage of 

Directed Diffusion makes it the correct choice. 

6.3 Choice of Metrics 
In evaluating routing protocols for sensor networks, selecting pertinent metrics is one of 

the most significant decisions to make. Thus, the various metrics selected to compare the 

performance of the routing protocols is an important contribution of this thesis. Perhaps 

the most important metric for habitat monitoring is the Average Dissipated Energy - a 

custom metric that measures the amount of energy required to route a single data message 

back to the base station. Since energy dissipation is a prime concern in sensor networks, 

this metric is a good indicator when identifying which protocols can deliver data 

messages using the least amount of energy. 

On a related note, the Total Number of Messages Transmitted metric is useful for 

determining which routing protocols minimize use of the radio. Since radio usage is the 

dominant source of energy dissipation, it is important to keep the number of messages 

sent to a minimum. 

Energy Consumption Variation is also an important metric because it can be 

directly linked to network lifetime. If a subset of the nodes consumes energy more 

quickly than all other nodes in the network, this subset will fail sooner. Depending on the 



- 134-

location of the failed nodes, it is quite possible that some remaining nodes will no longer 

have a viable route to the base station. 

Another important metric is Average Delay. Since some sensor network 

applications are time sensitive (e.g., object tracking), it is imperative that the base station 

receives data events as soon as possible. By measuring the Average Delay of each 

routing protocol, an indication of their performance in time sensitive applications is 

obtained. 

The resource-constrained nature of sensor nodes also makes Code Size (both 

Program and Data) an important consideration. Even if a routing protocol 

implementation is found to perform well in all other metrics, the protocol cannot be used 

unless it fits reasonably into the memory available in the sensor nodes. 

Evaluating how well routing protocols adapt to network failures is a necessity. 

As such, Recovery Total Energy Consumption is a relevant metric to determine how 

much energy is required to recover from a single network failure. If a sensor network is 

deployed under volatile conditions (i.e., the topology is very dynamic), minimizing the 

value for this metric is imperative to extending network lifetime. 

Calculating the Number of Data Messages Lost is also a metric that deserves 

consideration. Losing data messages during a network failure is obviously an undesirable 

outcome. Consequently, a dynamic topology means that data may be frequently lost, 

negatively affecting sensor network applications. 

Finally, Stabilization Time is a relevant metric when evaluating how well routing 

protocols adapt to network failures. During a network failure, it may be impossible for 



- 135-

data to be routed to the base station. Therefore, minimizing the amount of time required 

for the network to stabilize is essential for correct operation. 

6.4 Future Directions 
In concluding this thesis, it is useful to look at future directions that can be taken to 

expand on the research presented. The items listed in this section are items conceived 

during the course of the thesis that we did not have the opportunity to explore. This is 

either due to the fact that the item did not lie directly in the scope of the research or due 

to time constraints. 

The first point of future research discussed is the addition of more scenarios to the 

experimentation plan. Currently, the experimentation plan includes scenarios that are 

relevant to the majority of habitat monitoring scenarios. As mentioned previously, this 

plan could be expanded to include scenarios where multiple sensor nodes, or perhaps all 

nodes, are sending data at the same time. Additionally, the error scenarios could be 

extended to encompass more choices. At present, these scenarios are concerned only 

with measuring the cost of a single network failure. Perhaps the impact of multiple 

concurrent failures could be measured to determine if this affects the resiliency of each 

routing protocol. It is worth noting that the novel framework for interest-based routing 

protocols presented in Chapter 4 already allows for multiple data senders in the sensor 

network due to the fact that all nodes receive the initial interest message. The sensing 

application code simply needs to be adjusted so that all nodes are able to generate data to 

fulfill the specified interest. Both the software framework and the routing protocol 

implementations are available from the author. 



- 136-

Another direction for future research is making modifications to the existing 

routing protocols in the hopes of improving performance. Currently, for example, 

Directed Diffusion has no implicit error detection mechanism, meaning that messages 

must be flooded each time an error occurs. Perhaps the concept of a Route Error message 

(similar to Dynamic Source Routing) can be applied to Directed Diffusion to minimize 

the cost of network errors. 

Also, in the Dynamic Source Routing protocol, although a node can have multiple 

cached routes to the base station, there is no emphasis on ensuring that these routes are 

node or edge disjoint. Therefore, when a node or a link failure occurs, it may affect all 

cached routes, forcing the re-broadcasting of a Route Request message. By improving 

the Route Request algorithm to incorporate checks for node/edge disjoint paths, the 

protocol can minimize the chances of having to flood a Route Request when an error 

occurs. As shown in the experimentation results, Dynamic Source Routing performs 

extremely well when another cached route is utilized. 

Another possible future consideration relates only to the Dynamic Source Routing 

protocol. In this protocol, the base station receives a Route Request containing the hops 

required to reach the base station from the source node. Assuming that links in the 

network are bi-directional, this implies that the base station can store the series ofhops 

necessary to reach the source node and use them at a later time. This would allow the 

base station to directly communicate with data generating nodes without having to 

broadcast messages. For example, if the base station wishes to send an updated interest 

to a particular data generating node, it can use the stored hops to circumvent having to 

broadcast the interest message. 



- 137-

Finally, it is interesting to consider the possibility that the base station is within 

communications range of all nodes in the network (e.g., it can send data to any node in a 

single hop). This is not a common assumption in research involving routing protocols for 

sensor networks. As such, it is worthwhile to consider the impact that this assumption 

has on the routing protocols mentioned in this thesis. Also, it would be interesting to 

develop a novel routing protocol that uses this assumption to an operational advantage. 



- 138-

References 

[1] D. Culler, , D. Estrin, et. al., "Overview of Sensor Networks," in IEEE Computer 
Magazine, Vol. 37, No.8, 2004, pp. 41--49. 

[2] I. Akyildiz, , W. Su, et. al., "A Survey on Sensor Networks," in IEEE 
Communications Magazine, Vol. 40, No.8, 2002, pp. 102--114. 

[3] A. Mainwaring, J. Polastre, et.al., "Wireless Sensor Networks for Habitat 
Monitoring," Wireless Sensor Networks and Applications (WSNA '02), 2002. 

[ 4] A. Tanenbaum, et. al., "Taking Sensor Networks From the "Lab to the Jungle," in 
IEEE Computer, vol. 39, August 2006. 

[5] A. Cerpa, "Habitat Monitoring: Application Driver for Wireless Communications 
Technology," Proceedings of the ACM SIGCOMM Workshop on Data Communications, 
2001. 

[ 6] E. Biagioni, B. Chee, K. Bridges, University of Hawaii at Manoa, "A Remote 
Ecological Micro-Sensor Network," June 2000, 
http://www.botany.hawaii.edu/pods/overview.htm. 

[7] Robotics and Intelligent Machines "Laboratory, University of California at Berkeley, 
"Tracking vehicles with a UAV-delivered sensor network," 2001, 
http ://robotics.eecs. berkeley .edul~pister/29Palms0 1 03/. 

[8] C. Gamage et. al, "Security for the Mythical Air-Dropped Sensor Network," in 
Proceedings of the 1 th IEEE Symposium on Computers and Communications, 2006. 

[9] C. Sharp, S. Schaffert, et. al., "Design and implementation of a sensor network system 
for vehicle tracking and autonomous interception," Proceedings of the Second European 
Workshop on Wireless Sensor Networks, 2005. 

[10] N. Xu, S. Rangwala, et.al, "A Wireless Sensor Network for Structural Monitoring," 
Proceedings of the ACM Conference on Embedded Networked Sensor Systems, 2004. 

[11] C. Perkins, "Ad-hoc On-Demand Distance Vector Routing", MILCOM '97 Panel on 
Ad Hoc Networks, 1997. 

[12] C. Perkins, P. Bhagwat, "Highly dynamic destination-sequenced distance-vector 
routing (DSDV) for mobile computers," inACM SIGCOMM'94 Conference on 
Communications Architectures, Protocols and Applications, 1994, pages 234--244. 



- 139-

[13] C. Karlof, Y. Li, J. Polastre, "ARRIVE: Algorithm for Robust Routing in Volatile 
Environments," University of California at Berkeley, Berkeley, CA, United States, Tech. 
Rep. UCB/CSD-03-1233, 2003. 

[14] K. Akkaya, et. al, "A Survey on Routing Protocols for Wireless Sensor Networks," 
in Journal of Ad Hoc Networks, vol. 3, May 2005. 

[15] J. Hill, "System Architecture for Wireless Sensor Networks," Ph.D. dissertation, 
University of California, Berkeley, CA, United States, 2003. 

[16] P. Levis, N. Lee, et.al., "TOSSIM: Accurate and Scalable Simulation ofEntire 
TinyOS Applications," Proceedings of the First ACM Conference on Embedded 
Networked Sensor Systems (SenSys 2003), November 2003. 

[17] B. Titzer, "A VRORA: The AVR Simulation and Analysis Framework," M.S. thesis, 
University of California, Los Angeles, CA, United States, 2004. 

[18] C. Intanagonwiwat, "Directed Diffusion: An Application-Specific and Data-Centric 
Communication Paradigm for Wireless Sensor Networks," Ph.D. dissertation, University 
of Southern California, LOS Angeles, CA, United States, 2002. 

[19] Y. Yu, R. Govindan, D. Estrin," Geographical and Energy Aware Routing: 
a recursive data dissemination protocol for wireless sensor networks," UCLA Computer 
Science Department, LOS Angeles, CA, United States, Tech. Rep. UCLA/CSD-TR-01-
0023, 2001. 

[20] K. Romer, "The Lighthouse Location System for Smart Dust," in Proceedings of 
MobiSys, May 2003. 

[21] V. Ramaduria, M. Sichitiu, "Localization in Wireless Sensor Networks: A 
Probabilistic Approach," in Proceedings of the 2003 International Conference on 
Wireless Networks, June 2003. 

[22] S. Brennan, A. Maccabe, et. al, "Radiation Detection with Distributed Sensor 
Networks," IEEE Computer, vol. 37, August 2004. 

[23] D. Ganesan, R. Govindan, et. al., "Highly-Resilient, Energy-Efficient Multipath 
Routing in Wireless Sensor Networks," Mobile Computing and Communications Review, 
vol. 4, no. 5, October 2001. 

[24] D. Johnson, D. Maltz, J. Broch, "DSR: The Dynamic Source Routing Protocol for 
Multi-Hop Wireless Ad Hoc Networks," Ad Hoc Networking, C. Perkins, Ed. Addison 
Wesley, 2001, pp. 139--172. 

[25] A. Woo, "A Holistic Approach to Multihop Routing in Sensor Networks," Ph.D. 
dissertation, University of California, Berkeley, CA, United States, 2004. 



- 140-

[26] E. Demaine, A. Lopez-Ortiz, J. I. Munro, "Frequency estimation of internet packet 
streams with limited space," in Proceedings of the European Symposium on Algorithms, 
2002, pp. 348--360. 

[27] V. Shnayder, M. Hempstead, et. al., 11 Simulating the Power Consumption of Large
Scale Sensor Network Applications, 11 in SenSys '04: Proceedings of the 2nd international 
conference on Embedded networked sensor systems, 2004, pp. 188--200. 

[28] M. Demmer, P. Levis, et. al., "Tython: A Dynamic Simulation Environment For 
Sensor Networks," 2004 

[29] J. Elson, D. Estrin, "Time synchronization for wireless sensor networks," IPDPS 
Workshop on Parallel and Distributed Computing Issues in Wireless Networks and 
Mobile Computing, 2001. 

[30] D. Gay, P. Levis, et. al., "The nesC Language: A Holistic Approach to Networked 
Embedded Systems," in Proceedings of Programming Language Design and 
Implementation, 2003. 



- 141-

Appendix A: Experimentation Setup 



- 142-

Appendix B: TOSSIM Grid Topology File 

0:1:0.00 
0:6:0.00 
1:2:0.00 
1:0:0.00 
1:7:0.00 
2:3:0.00 
2:1:0.00 
2:8:0.00 
3:4:0.00 
3:2:0.00 
3:9:0.00 
4:5:0.00 
4:3:0.00 
4:10:0.00 
5:4:0.00 
5:11:0.00 
6:7:0.00 
6:12:0.00 
6:0:0.00 
7:8:0.00 
7:6:0.00 
7:13:0.00 
7:1:0.00 
8:9:0.00 
8:7:0.00 
8:14:0.00 
8:2:0.00 
9:10:0.00 
9:8:0.00 
9:15:0.00 
9:3:0.00 
10:11:0.00 
10:9:0.00 
10:16:0.00 
10:4:0.00 
11:10:0.00 
11:17:0.00 
11:5:0.00 
12:13:0.00 
12:18:0.00 
12:6:0.00 
13:14:0.00 
13:12:0.00 
13:19:0.00 
13:7:0.00 
14:15:0.00 
14:13:0.00 
14:20:0.00 
14:8:0.00 
15:16:0.00 
15:14:0.00 
15:21:0.00 
15:9:0.00 
16:17:0.00 
16:15:0.00 
16:22:0.00 
16:10:0.00 
17:16:0.00 
17:23:0.00 
17:11:0.00 
18:19:0.00 



18:24:0.00 
18:12:0.00 
19:20:0.00 
19:18:0.00 
19:25:0.00 
19:13:0.00 
20:21:0.00 
20:19:0.00 
20:26:0.00 
20:14:0.00 
21:22:0.00 
21:20:0.00 
21:27:0.00 
21:15:0.00 
22:23:0.00 
22:21:0.00 
22:28:0.00 
22:16:0.00 
23:22:0.00 
23:29:0.00 
23:17:0.00 
24:25:0.00 
24:30:0.00 
24:18:0.00 
25:26:0.00 
25:24:0.00 
25:31:0.00 
25:19:0.00 
26:27:0.00 
26:25:0.00 
26:32:0.00 
26:20:0.00 
27:28:0.00 
27:26:0.00 
27:33:0.00 
27:21:0.00 
28:29:0.00 
28:27:0.00 
28:34:0.00 
28:22:0.00 
29:28:0.00 
29:35:0.00 
29:23:0.00 
30:31:0.00 
30:24:0.00 
31:32:0.00 
31:30:0.00 
31:25:0.00 
32:33:0.00 
32:31:0.00 
32:26:0.00 
33:34:0.00 
33:32:0.00 
33:27:0.00 
34:35:0.00 
34:33:0.00 
34:28:0.00 
35:34:0.00 
35:29:0.00 

- 143-



- 144-

Appendix C: TOSSIM Log File Example 

35: APP: Data ready to be sent: (372) (0:0:10.33077750) 
35: Sending RRQ to request route to node 0 
35: Successfully cached RRQ message 
35: xxxSending rrq message to: 65535 
35: MAC: Setting Send Timer for 15 milliseconds 
35: Successfully queued RRQ message for transmission at time 0 seconds 
35: APP: Successfully sent sensor data message 
35: MAC: Sending RRQ message to node 65535 at time 0 milliseconds 
35: MAC: Successfully sent RRQ message 
35: POWER: Mote 35 RADIO STATE TX at 41414842 
34: POWER: Mote 34 RADIO STATE RX at 41423823 
29: POWER: Mote 29 RADIO STATE RX at 41423861 
29: POWER: Mote 29 RADIO STATE TX at 41492461 
34: POWER: Mote 34 RADIO STATE TX at 41492461 
35: POWER: Mote 35 RADIO STATE RX at 41493242 
29: POWER: Mote 29 RADIO STATE TX at 41493261 
34: POWER: Mote 34 RADIO STATE TX at 41493261 
29: POWER: Mote 29 RADIO STATE TX at 41494061 
34: POWER: Mote 34 RADIO STATE TX at 41494061 
35: POWER: Mote 35 RADIO STATE RX at 41494092 
29: POWER: Mote 29 RADIO STATE TX at 41494861 
34: POWER: Mote 34 RADIO STATE TX at 41494861 
35: POWER: Mote 35 RADIO STATE RX at 41494892 
29: POWER: Mote 29 RADIO STATE TX at 41495661 
34: POWER: Mote 34 RADIO STATE TX at 41495661 
35: POWER: Mote 35 RADIO STATE RX at 41495692 
29: POWER: Mote 29 RADIO STATE RX at 41496461 
29: Received new RRQ message at time: 0 
29: Processing RRQ message with Id 1 from node 35 
29: Successfully cached RRQ message 
29: xxxSending rrq message to: 65535 
29: MAC: Setting Send Timer for 105 milliseconds 
29: Successfully queued RRQ message for transmission at time 0 seconds 
34: POWER: Mote 34 RADIO STATE RX at 41496461 
34: Received new RRQ message at time: 0 
34: Processing RRQ message with id 1 from node 35 
34: Successfully cached RRQ message 
34: xxxSending rrq message to: 65535 
34: MAC: Setting Send Timer for 30 milliseconds 
34: Successfully queued RRQ message for transmission at time 0 seconds 
35: POWER: Mote 35 RADIO STATE RX at 41496412 
35: POWER: Mote 35 RADIO STATE RX at 41496492 
35: Successfully broadcasted RRQ message! 
22: POWER: Mote 0 CPU CYCLES 17343.5 at 41600597 
22: POWER: Mote 1 CPU CYCLES 17139.5 at 41600597 
22: POWER: Mote 2 CPU CYCLES 16466.0 at 41600597 
22: POWER: Mote 3 CPU CYCLES 16371.5 at 41600597 
22: POWER: Mote 4 CPU CYCLES 15559.0 at 41600597 
22: POWER: Mote 5 CPU CYCLES 12768.0 at 41600597 
22: POWER: Mote 6 CPU CYCLES 17139.5 at 41600597 
22: POWER: Mote 7 CPU CYCLES 19489.0 at 41600597 
22: POWER: Mote 8 CPU CYCLES 19533.5 at 41600597 
22: POWER: Mote 9 CPU CYCLES 19439.0 at 41600597 



- 145-

Appendix D: Java Program to Calculate Average Delay 

package net.tinyos.tools; 

import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.IOException; 
import java.io.lnputStreamReader; 
import java.util.ArrayList; 
import java.util.HashMap; 
import java.util.Iterator; 
import java.util.StringTokenizer; 
import java.util.regex.Matcher; 
import java.util.regex.Pattern; 

/** 
• Class that calculates values for delay-related metrics using 
• a TOSSIM log file 
• 
• @author Brett 
• 
*I 

public class DelayLogTool { 

private static Pattern dataSentPattern; 

private static Matcher dataSentMatcher; 

private static Pattern dataReceivedPattern; 

private static Matcher dataReceivedMatcher; 

private static String DATA_SENT_REGEX = "APP: Data"; 

private static String DATA_ RECEIVED_ REG EX= "Base Station received new data"; 

public static void main(String args[]) throws IOException { 

II Ask the user for the location of the TOSSIM log file 

String str =null; 

File logFile =null; 

Systern.out.print("Enter the location of the TOSSIM log file: "); 

str = getlnputQ; 

Systern.out.printlnQ; 

if (str =null) { 
Systern.out.println("Log file path was null!"); 
return; 

//Validate the existence of this file 
logFile =new File(str); 

if (!logFile.existsO) { 
System.out.println("Invalid log file path!"); 
return; 

I /C:/eclipse/workspace!Log Too ls/bin/mt_ delay .txt 



- 146-

calculateAverageDelay(logFile}; 

I** 
* Program works as follows: 
* 1) Find all occurances of the application sending a message. 
• 2) Parse out the data being sent and the time it is being sent at, and store it in a hashmap 
• 3) Parse out the data being received and place it in the hashmap 
• - First value in the hashmap is the time at which the message was sent. 
• 
• All other values are the times at which the message was received by the 
• base station. Hashmap looks like: 
• 
• Data I Times (ArrayList) ---------546 [SendingTime][Rx Time l][Rx Time 2][ ..... ] 
• 
* @param file 
* @throws FileNotFoundException 
* @throws IOException 
*I 

private static void calculate A verageDelay(File file) { 

FileReader fopen; 
try{ 

fopen =new FileReader(file); 
} catch (FileNotFoundException e) { 

System.out.println("Unable to open log file for reading:"+ e); 
return; 

int numMessagesSent = 0; 

I !Initialize the REG EX patterns 

dataSentPattern = Pattern.compile(DA TA_ SENT_ REG EX); 
dataReceivedPattern = Pattern.compile(DA TA _RECEIVED_ REGEX); 

String line = null; 

HashMap delayMap =new HashMapO; 

II Read in all lines and create a hashmap 
BufferedReader br =null; 
try{ 

br =new BufferedReader(fopen); 
while ((line= br.readLineO) !=null) { 

dataSentMatcher = dataSentPattern.matcher(line); 
dataReceivedMatcher = dataReceivedPattern.matcher(line ); 
if(dataSentMatcher.findO) { 

I I Parse the data being sent 
StringTokenizer tok =new StringTokenizer(line, "0"); 
tok.nextTokenO; 

String data= tok.nextTokenO; 

I I Parse the time it is being sent 
tok.nextTokenO; 
String time= tok.nextTokenO; 

I I Insert into the hash map 
if(delayMap.get(data) =null) { 

Array List list= new ArrayListO; 
list.add(time ); 
delayMap.put(data, list); 

} else { 
System.out.println("Data " + data 

+ "already existed in the hash map"); 
return; 



} 

- 147-

} else if(dataReceivedMatcher.findO) { 

} else { 

II Parse the data being received 
StringTokenizer tok =new StringTokenizer(line, "()"); 
tok.nextToken(); 

String data= tok.nextToken(); 

II Parse the time it is being sent 
tok.nextToken(); 

String time= tok.nextToken(); 

II Place the time in the hashmap 
if(delayMap.get(data) ==null) { 

System.out.println("Could not find data " + data 
+ " in the hash map"); 

} else { 

System. out 

return; 

return; 

Array List list= (Array List) delayMap.get(data); 
list.add(time); 
delayMap.put(data, list); 

.println("Line did not match any regular expressions: " 
+line); 

} catch (IOException e) { 

} 
finally{ 

System.out.println("Encountered IO error while reading log file: "+e); 
return; 

try{ 
br.close(); 
fopen.close(); 

} catch (IOException e) { 
System.out.println(''Unable to close input streams: "+e); 

II printDelayMap( delay Map); 

double totalAverageDelay = 0; 

II Calculate average delay 
Iterator itr = delayMap.keySetO.iteratorQ; 
while (itr.hasNextO) { 

double averageDelay = 0; 
String key= (String) itr.next(); 
Array List list= (Array List) delayMap.get(key); 
String sendTime = (String) list.get(O); 

for (int i = 1; i < Iist.size(); i++) { 

} 

II Calculate delay for this entry 
double delay= 0; 
String receive Time= (String) Iist.get(i); 
delay= calculateDelay(sendTime, receive Time); 

averageDelay += delay; 

if (list. size() > I) { 
averageDelay = averageDelay I (double) (list.size()- I); 

System.out.println(key + ": "+ averageDelay); 



I** 

- 148-

numMessagesSent++; 
} else { 

System.out.println("Data " + key 
+ " was not received by the base station"); 

totaiAverageDelay += averageDelay; 

totaiAverageDelay = totaiA verageDelay 
I (double) (delayMap.keySet().sizeO); 

System.out.println("Total Number of messages sent:"+ numMessagesSent); 
System.out.println("Total Average Delay:"+ totaiAverageDelay); 

• Debugging method that allows the data structure storing the delay 
• information to be represented visually 
• 
• @param delayMap 
*I 

private static void printDelayMap(HashMap delay Map) { 
II Print the hash map 

I** 

Iterator itr = delayMap.keySet().iterator(); 
while (itr.hasNextO) { 

String key= (String) itr.next(); 
Array List list= (Array List) delayMap.get(key); 
System.out.println(key + ": "+ list.toString()); 

• 0:0:25.88187050 
• 
• @param startTime 
• @param endTime 
• @return 
*I 

private static double calculateDelay(String startTime, String end Time) { 
double diff= 0; 

I** 

double startMinutes = 0; 
double startSeconds = 0; 
double endMinutes = 0; 
double endSeconds = 0; 

StringTokenizer tok =new StringTokenizer(startTime, ":"); 
tok.nextToken(); 

startMinutes = Double.parseDouble(tok.nextToken().trimO); 
startSeconds = Double.parseDouble(tok.nextToken().trimO); 

tok =new StringTokenizer(endTime, ":"); 
tok.nextToken(); 

endMinutes = Double.parseDouble(tok.nextToken().trim()); 
endSeconds = Double.parseDouble(tok.nextToken().trimO); 

diff= (endMinutes • 60 + endSeconds) 
- (startMinutes • 60 + startSeconds); 

return diff; 

• Get input from the command line 
• 
• @param str 
• @return 



- 149-

*I 
private static String getlnput() { 

String str =null; 

try{ 
BufferedReader in =new BufferedReader(new InputStreamReader( 

System.in)); 
str = in.readLineO; 

} catch (IOException e) { 

return str; 

System.out.println(''Unable to read input from the command line: " 
+e); 



- 150-

Appendix E: Java Program for Energy Consumption 
Metrics 

package net.tinyos.tools; 

import java.io.BufferedReader; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileReader; 
import java.io.IOException; 
import java.io.lnputStreamReader; 
import java.util. StringTokenizer; 
import de.pxlab.stat.Stats; 

/** 
* Compute various energy consumption-related metrics given a PowerTOSSIM log 
* file 
* 
* @author Brett 

* 
*I 

public class PowerLogTool { 

public static void main(String args[]) throws IOException { 

II Ask the user for the location of the PowerTOSSIM log file 

String str =null; 
int numberOfMessages = 0; 

File logFile = null; 

System.out.print("Enter the location of the PowerTOSSIM log file: "); 

str = getlnput(); 

System.out.println(); 

if (str =null) { 
System.out.println("Log file path was null!"); 
return; 

//Validate the existence of this file 
logFile =new File(str); 

if (!logFile.exists()) { 
System.out.println("Invalid log file path!"); 
return; 

I I Ask the user for the number of data messages received during the 
I I simulation 

Systern.out.print("Enter the number of unique data messages received: "); 

str = getlnput(); 

System.out.println(); 

if(str =null) { 
Systern.out.println{''Number of messages was null!"); 
return; 

I I Parse the string to an integer 



I** 

try{ 

- 151 -

numberOfMessages = Integer.parselnt(str); 

if(numberOfMessages <= 0) 
throw new ExceptionO; 

} catch (Exception e) { 
System.out 

return; 

.println("Could not parse number of messages from string: " 
+ str); 

I I Now compute the energy consumption values 

computeAverageDisspatedEnergy(logFile, numberOfMessages ); 

• Get input from the command line 
• 
• @param str 
• @return 
*I 

private static String getlnputO { 
String str = null; 

I** 

try{ 
BufferedReader in= new BufferedReader(new InputStreamReader( 

System.in)); 
str = in.readLineO; 

} catch (IOException e) { 

return str; 

System.out.println(''Unable to read input from the command line: " 
+e); 

• Compute the average dissipated energy given a PowerTOSSIM log file and 
• the number of data messages received during the simulation 

* 
• @param file 
• @throws FileNotFoundException 
* @throws IOException 
*I 

private static void computeA verageDisspatedEnergy(File file, 
int numberOfMessagesReceived) { 

int nurnNodes = 0; 
double totalCpuPower = 0; 
double tota!RadioPower = 0; 
double powerArr[] =new double[36]; 

FileReader fopen; 
try{ 

fopen =new FileReader(file); 
} catch (FileNotFoundException el) { 

System.out.println(''Unable to locate log file: " + e I); 
return; 

BufferedReader br = nuU; 
try{ 

br =new BufferedReader(fopen); 
String line = null; 
while ((line= br.readLineO) !=null) { 

I !Is this a cpu cycle line? 
if(line.indexOf("cpu_cycle total")>= 0) { 

I I Get the node ID 



- 152-

StringTokenizer nodeTok =new StringTokenizer(line, ", "); 
nodeTok.nextToken(); 
int nodeiD = Integer.parselnt(nodeTok.nextTokenO); 

II Get the total cpu power consumed for this node 
StringTokenizer powerTok =new StringTokenizer(line, ":"); 
powerTok.nextToken(); 
String powerTotal = powerTok.nextToken(); 

double power= Double.parseDouble(powerTotal.trimO); 

tota!CpuPower += power; 

II Add this power to the array position for this node 
powerArr[nodeiD] +=power; 

numNodes++; 
} else if (line.indexOf("radio total") >= 0) { II Is this a 

II radio 
II total line 
II Get the node ID 
StringTokenizer nodeTok =new StringTokenizer(line, ", "); 
nodeTok.nextToken(); 
int nodeiD = Integer.parselnt(nodeTok.nextTokenO); 

II Get the total radio power consumed for this node 
StringTokenizer powerTok =new StringTokenizer(line, ":"); 
powerTok.nextToken(); 
String powerTotal = powerTok.nextToken(); 

double power= Double.parseDouble(powerTotal.trimO); 

tota!RadioPower += power; 

II Add this power to the array position for this node 
powerArr[nodeiD] +=power; 

} catch (NumberFormatException e) { 
System. out 

return; 

.println(''Number Format Error parsing PowerTOSSIM log file: " 
+e); 

} catch (IOException e) { 
System.out 

} finally { 
return; 

try{ 

.println("IO Error while accessing PowerTOSSIM Jog file: " 
+e); 

br.close(); 
fopen.close(); 

} catch (IOException e) { 
System.out.println("Unable to close input streams: "+e); 

System.out.println("Total Number ofNodes: "+ numNodes); 
System.out.println("Total Number of Messages Received: " 

+ numberOfMessagesReceived); 
System.out.println("Total CPU Power Dissipated= " + tota!CpuPower); 
System.out.println("Average CPU Power Dissipated=" 

+ (tota!CpuPower I numberOfMessagesReceived)); 
System.out.println("Total Radio Power Dissipated= "+ tota!RadioPower); 
System.out.println("A verage Radio Power Dissipated = " 

+ (tota!RadioPower I numberOfMessagesReceived)); 



- 153-

System.out.println("Total Power Consumed Dissipated= " 
+ (totaiRadioPower + totaiCpuPower)); 

System.out 
.println("Average Total Power Dissipated=" 

+ ((totaiRadioPower + totaiCpuPower) I 
numberOfMessagesReceived)); 

double variance= Stats.variance(powerArr); 
double standardDeviation = Stats.standardDev(powerArr); 

System.out.println(''Variance: "+variance); 
System.out.println("Standard Deviation: "+ standardDeviation); 










