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ABSTRACT

In this research, the wind speed model and the wind farm power model is developed
and the results are estimated and simulated in the MATLAB from the designed
algorithm using the historic input wind data. For the wind speed forecasting, the
historic input wind speed data is used to estimate and forecast the wind speed in
advance from the wind speed models. For the wind farm power model the input to the
power model is the historic wind speed, pressure, temperature, wind direction, and air
density. The wind farm power is determined from the designed algorithm simulated in
the MATLAB.

The wake effect is considered in the wind farm power model and it depends on the
wind direction and the wind farm layout. Transmission loss due to the power
transmission in the cables is determined for the wind farm. Using this approach the
wind farm power of the Fermeuse wind farm and the Cedar Creek Colorado wind farm

is determined. This thesis presents the details and results of research.
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Chapter 1

Literature Review of the Wind Speed Model and the Wind Power Model

1.1 Introduction

In this research, the wind speed model and the wind power model is developed and
implemented in the MATLAB software. The focus of the work is to develop a short
term wind speed prediction model. The wind speed model is implemented using the
Auto Regressive Moving Average (ARMA) model and the Kalman filter and the
Unscented Kalman filter. The Kalman filter is used for the linear model and the input
to the Unscented Kalman filter is the non linear model. The difficulties were involved
in developing and implementing the non linear model. To develop the wind farm
power model, the physical factors that affect the wind turbine rotor disc are studied
that takes into account the wake effect and the transmission loss due to the power
transmission in the cables. The developed model is implemented for the Fermeuse
wind farm located in the Newfoundland and the Cedar Creek Colorado wind farm
located in the United States. The input wind data is in time series order to the wind
speed model and the wind power model. The output is the processed and forecasted
wind speed data in the time series order from the wind speed model. For the wind
power model. the input is the wind data such as the wind speed. the pressure. the
temperature, the air density, the wind direction in the time series order and the output
is the wind power in the time series order. Detailed overview of the methods and the
techniques has been proposed in this chapter for the wind speed model and the wind

power model. From the proposed wind speed model and the wind power model. the




algorithm is designed and implemented in the MATLAB. The results are simulated in

the MATLAB and are presented in the thesis in the next section.

1.2 Summary of the Research Papers

Below is a brief review on some of the research papers studied relevant to the
wind speed and the wind power forecasting.

Wind Shear, Vertical Wind Shear and Horizontal Wind Shear:

Wind shear refers [10] to the variation of the wind speed either horizontal or vertical
distance. Small changes in the wind speed will change the power significantly. The
wind speed shear is given by the power law equation of shear at two different heights
with the shear exponent ‘a’. Increase in the wind velocity will increases the power
generated significantly. Vertical wind shear is the rate of change of the wind with
respect to altitude. Horizontal wind shear is the rate of change of the wind on a
horizontal plane. Both the factors affect the power output, and results in a scatter larger
than expected in the power curve if no additional information to the wind speeds at the
hub height is taken into account. Therefore wind shear is a very important factor in
predicting the wind power of a wind turbine.

Direction Shear: The direction shear is the component of the wind shear [4] which is
due to the change in the wind direction with the height. In the speed shear and the
directional shear, both the angle and the length of the wind vectors are changing with
the height. A small clockwise direction shear increases the performance of the wind
turbine resulting in a higher local taqgential force, whereas an anticlockwise direction

shear decreases the performance. The main difference with the speed shear effect is



that the direction shear implies a variation of the horizontal component of the wind
orthogonal to the wind turbine axis. The direction shear has a smaller effect on the
wind turbine power output than the speed shear. There is a greater effect when both the
phenomena are combined.

Turbulence: An average power curve [4] of various turbulence intensities are shown
in Figure 1.1. The effect of turbulence is more complex than that for shear and is
therefore more difficult to account for in the power curve. Increasing the turbulence
intensities will increase the power in the concave region and will decrease the wind
power in the convex region of the power curve. Reduction in the energy production
starts beyond 15% increase in the turbulence intensity. Thus turbulence is considered

as a very important factor in predicting the wind power of a wind turbine.

power [KW]

Uyaar [f5]

Figure 1.1: Average power curves for various turbulence intensities (5% (red), 10%(blue), 15%(green),

20%(yellow)) [4].

Icing [6] has a major effect on the power production and the wind turbine can stop
operating under severe icing condition. Lift reduces and drag increases along the wind
turbine blade following the power law. During icing events, ice accumulates on the
wind turbine rotor blades, thus reducing the aerodynamic efficiency and tbrque,

resulting in the power loss. Torque drops to zero under severe icing event and the wind



turbine stops operating and there is a complete loss in the power production. Therefore

icing is considered as an important factor in predicting the wind power of a wind
turbine.

Wake Effect:

The wake effect has a major effect on the power production in the wind farm when
many wind turbines are operating at the same time [5]. The wind direction and the
distance between the neighboring wi~nd turbines has a significant influence on the
wake effect. Due to the compact arrangement of the wind turbines in a wind farm, a
wind turbine is operating in the wake of another wind turbine. The wind turbines
extract energy from the wind and downstream there is a wake from the upstream or
neighboring wind turbine, and the wind speed is reduced. The wake effect has the
aggregated influence on the energy production in the wind farm, which results from
the changes in the wind speed caused by the impact of the wind turbines. The wake
effect is considered as an important factor in the power production of a wind farm.
Air Density:

An air density ‘p’ is an important factor affecting the output power of a wind turbine
[3]. The power curve of the variable speed wind turbines with different air density is
shown in Figure 1.2. From the figure, we see that the wind turbines output power will
increase with increase in air density.. An air density is closely related with the
humidity, the temperature, and the pressure. Therefore, the pressure factor is
considered in the wind power prediction. The density of air decreases with increase in
temperature and altitude. The denser the air, the higher is the wind power density and

vice versa. The wind power is directly proportional to the air density and any change




in the air density will change the output wind power of a wind turbine proportionately.
The major factor affecting the power generation of the wind turbine is the wind speed

and the atmospheric pressure. An air density plays an important factor in predicting the

wind power.
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Figure 1.2: Wind turbine power curve with different air density [3]

Temperature:

The temperature [6] is a very important factor in predicting the wind power.

If the temperature is too low and if ice accumulates on the wind turbine rotor disc, the
wind turbine stops working. Therefore the temperature is considered as an important
factor in predicting the wind power of a wind turbine.

Dust: The wind turbine blade [7] surface roughness has a significant influence on the
aerodynamic load and the wind power production. Therefore, increasing the wind
turbine operation period without cleaning the dust from the blade surface results in
increase of the blade surface roughness, and consequently, there is increases in the loss
in the wind turbine output power. The blade surface roughness reduces the
effectiveness of the airfoil to extract the useful power from the wind and also results in

reduced output power of the wind turbine. The accumulation of dust after years of



operation will affect the wind power production. Therefore dust accumulation has a
smaller effect in predicting the wind power of a wind turbine.

Complex Terrain:

The wind farms [12] are generally situated in a more complex terrain. If there are
severe up flow conditions induced by the terrain, there can be significant reduction in
the performance of the wind turbine. The wind turbine experiencing a constant up flow
angle of 10 degree at the hub height would have energy production

approximately by 5% lower than that of an equivalent site with the horizontal flow.

Therefore topography is an important role in the wind farm power production.

1.3 The Wind Speed Forecasting Models

Below is the list of some of the forécasting models used in predicting the wind
speed and the corresponding wind power:

Persistence Model

Auto Regressive Model (AR Model)

Auto Regressive and Moving Average (ARMA Model)

Autoregressive Integral and Moving Average (ARIMA)

Artificial Neural Network

Neural Network

Numerical Weather Prediction Model

Hybrid Model

Numeric Weather Prediction (NWP) Model: Numeric Weather Prediction model

[8] corresponds to the weather variables, mainly hourly mean wind speed, wind



direction, pressure, and temperature. In statistical approach, the forecasted value is
based on the last known data for the ‘power production. NWP obtain good result for the
forecast horizon of about 72 hours up till 7 days in advance.

Auto-regressive Moving-average (ARMA): Auto Regressive Moving Average
models are the mathematical models of the persistence, or the autocorrelation [11] in a
time series. The ARMA models can effectively be used to predict the behavior of a
time series from the past values alone. The ARMA models have an advantage that they
can provide very accurate results for short term wind power prediction if data have
fairly smooth trend and stationary. If the data are not stationary and there are quite
high variations and change trend suddenly they may result in very inaccurate results.
The autoregressive model includes lagged terms on the time series itself, and the
moving average model includes lagged terms on the noise or the residuals. Combining
the lagged terms gives the auto regressive moving average (ARMA), models.
Therefore ARMA models can be used for short term wind power prediction and should
not be used for long term wind power prediction.

Artificial Neural Networks (ANNs): Artificial Neural Network depends on the
training data [11] and takes less amount of time in learning. The best network is
chosen by trial and error method. It does not require very large amount of historical
data but may require use of manual input in the training data.

Hybrid Model: Hybrid model is a combination of two or more forecasting model [9].
The forecasting models are classified as physical or statistical or a combination of both
the models. Artificial Neural Networks have been developed to predict the wind power

of a wind farm located in a complex terrain. The neural network has been used as a




statistic model based on the time series of the wind power. It has been integrated with

numerical weather predictions and has a greater performance, with the longer time

horizons. The pressure and the temperature have a significant influence in improving
the forecasting models. The optimal model is a combination of both the models,
physical considerations is used to capture the airflow in the region of the wind turbines
and advanced statistical model is used to supplement the information given by the
physical models. The errors are reduced with the combination of a hybrid model. Thus

hybrid model gives accurate result to predict the wind power of a wind turbine.

1.4 Design Overview of the Wind Power Physical Model

The wind power is the conversion of the wind energy to produce electricity using the
wind turbines. It is considered as an alternate source of the renewable energy. Various
factors are considered in predicting the wind power of a wind turbine. These factors
determine the actual production of the wind power using the wind turbine. The
physical factors determine the wind power produced in real time and the wind turbine
manufacturer power curve assumes i'deal condition. The wind farm consists of many
wind turbines and various physical factors are taken into account to predict the wind
power of a wind turbine. Forecasting the wind power is essential for utility operators.
The forecasting time horizon ranges from 10min, hour ahead, and 5 hours ahead up till
seven days in advance. The physical factors considered predict the actual wind power

in advance.



1.5 Research Goals

The research involves finding a simulation model of a wind farm that could be used for
the development of the wind power prediction software. The wind power model
includes a simple individual wind turbine dynamic model, variation in the wind speed
with height, variation in the wind speed over the site area and the wake interaction
between the wind turbines. Detailed Computational Fluid Dynamics (CFD) based flow
models of a wind farm including dynamic model of a wind turbine are too complex
and are not suitable for the real time power prediction and it requires supercomputer
for calculation. The main challenge for this work is to find a simple model that will
take a topographical map, a wind farm layout and the long term site wind and the
atmospheric data and uses this information to calculate the wind speed at all the wind
turbines. A wind turbine corrected power curve that takes into account wind turbulence
can be used as a simple model of a wind turbine. Using the wind turbine simple model
the output power of each individual wind turbine in a wind farm can be established and
the wake effects can be calculated. The work should focus on a method to determine or
predict the output power of a wind farm. The resulting simple model of a wind farm
will be used to develop a computer program that is fast and can be used in real time.
The code will effectively employ real time wind and weather data to predict the

expected short term and the long term output power of a wind farm.



1.6 Typical Method or Technique Applied in Predicting the Wind Power of a
Wind Turbine

The wind turbine manufacturer supplied power curve [1] is digitized by plotting power
vs. wind speed characteristics and fitting a polynomial in MATLAB for an accurate
estimation. Weather Research and Forecasting (WRF) has a wind data i.e. average
wind speed, wind direction, pressure, temperature as input to the wind power physical
model. WRF has pressure levels known as eta levels which intersect the wind turbine
rotor disc. The height of these model levels which intersect the wind turbine rotor disc
needs to be determined for the wind power physical model. The wind data is given in
every ten minutes time series order. From the given wind data, the turbulence intensity,
the turbulence adjusted wind speed, the equivalent disc wind speed can be calculated at
the given model levels. The turbulence intensity is determined from the ratio of the
average wind speed and the standard deviation value of the wind speed data. The
turbulence adjusted wind speed is détermined at the given model levels or heights of
the wind turbine rotor disc. The wind shear exponent ‘@’ is calculated from the power
law equation of shear using the turbulence adjusted wind speed at the given model
levels. The wind speed data is evaluated for the entire wind turbine rotor disc by
numerically integrating the wind speed data from the lower wind turbine rotor tip to the
upper wind turbine rotor tip and evaluating the wind data values using the designed
algorithm. This value is assumed to be at the hub height of a wind turbine. From the
evaluated disc speed, the uncorrected power can be determined which is subsequently
adjusted for air density. The wind power physical model is implemented in the

MATLAB software to evaluate the disc speed and the corresponding wind power.
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Using this approach, the wind power is predicted for one wind turbine. For predicting
the wind power of the wind farm, the wind power is determined for each of the wind
turbines and influence of the wind direction and the wake effect is considered. The
implemented wind power model in MATLAB software is tested for accuracy with

different wind data sets in every 10 minutes time series order of the wind data.

1.7 Thesis Outline

This thesis has five chapters. Concise information about the chapters is given below:

The first chapter gives the outline of the research work. It discusses the proposed
models and research methods or techniques applicable to the research work.

The second chapter discusses the short term wind speed prediction model. It discusses
the wind speed estimation and accuracy for the selected range of the wind speed. It
discusses the work related to the ARMA modeling of the wind speed, the Kalman filter
and the Unscented Kalman filter.

The third chapter discusses the wind farm power model, and the wake power model
and the power loss due to the power transmission in the Fermeuse wind farm.

The fourth chapter discusses the wind farm power model, and the wake power model
and the power loss due to the power transmission in the Cedar Creek Colorado wind
farm,

The fifth chapter presents the conclusion of the research work. It also presents the

research outcome and the future work.



Chapter 2

Short Term Wind Speed Prediction

2.1 Background Information on the Wind Speed Prediction

The wind is the mass movement of air due to the difference in pressure between the
two sections on the earth. It is charagterized by its speed, direction, time of occurrence.
The wind energy is infinite and inexhaustible and its use in energy production does not
lead to any pollution and is a better way to produce energy without being against the
environment. Better techniques need to be adopted for efficient usage of the wind
energy. The most important factor which influences the wind energy production is the
local wind speed [13] and there is a great need of development of the improved
forecasting methods which will directly improve the resource allocation and will
determine the reliability of the energy producing company and the operation of the
energy production systems and the energy distribution [14]. Various models have been
investigated for accurate prediction. .The forecast of hourly average wind speed of few
hours in advance is required for the power plant operators. Predicting the output power
of the wind farm is essential for the operation of the conventional electric power plants
that are connected to the same power grid as those conversion systems. The wind
speed in near future depends on the values of other meteorological variables, such as
atmospheric pressure, moisture content, humidity, rainfall etc.

This chapter includes the following sub topics on the wind speed prediction:

Design of Five Hours In-advance Wind Speed Predictor and, An Hour Ahead Wind

Speed Prediction Using the Kalman Filter and the Unscented Kalman Filter
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The details are provided below.

2.2 Design of Five Hours In-advance the Wind Speed Predictor

2.2.1 Introduction

In this section wind speed prediction five hours in advance using Auto Regressive and
Moving Average (ARMA) model is described. Various models have been investigated
and ARMA model is chosen for predicting the wind speed. The ARMA has
autoregressive and the moving average parameter and the computation is performed
based on the past data. The aim of this work is to evaluate the applicability of the
ARMA model to the time series of the hourly average wind speed, and assess the
predictive behavior of the obtained model. The input to the wind speed model is the
per hour time series wind speed data and the processing is done by the ARMA model.
The parameters are estimated and prediction is computed for the specified duration and
further testing is done on the predicted data to test accuracy and the error between
expected and the predicted output shlould be zero. The application of ARMA models
requires the time series to be stationary, i.e. the method assumes that the process

remains in equilibrium about a constant mean level [13].

2.3 Detail Overview of the Wind Speed Prediction Models

Various models have been investigated for predicting the wind speed

in advance and some details are given below.
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Numeric Weather Prediction Model: Numeric Weather Prediction is accurate for
long term forecast. Time horizon for this model ranges from a day ahead up to 7 days
in advance. It gives inaccurate results for the short term prediction and requires
supercomputer for wind speed estimation [24].

Persistence Model: Persistence model [11] gives accurate result for very short term
wind speed prediction and ranges from few minutes till 2 hrs in advance, the
estimation is inaccurate for more than 2 hours and is not considered.

ARIMA Model: The popularity of the ARIMA model is due to its statistical
properties as well as to the well-known Box-Jenkins methodology in the model
building process [15]. ARIMA models assume that future values of a time series have
a linear relationship with

current and past values as well as with the white noise. Real time physical systems are
often nonlinear so approximations by ARIMA models may not be adequate for
complex nonlinear problems and they require a large amount of historical data in order
to produce accurate results and are not considered for predicting the wind speed in
advance.

Neural Network: The major advantage of neural networks is their flexible nonlinear
modeling capability and high accuracy [16]. ANNs are data-driven, self-adaptive
methods in that there are few a priori assumptions made about the models for problems
under study. ANNs, models have data limitation. The amount of data for network

training
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depends on the network structure, the training method, the complexity of the particular
problem or the amount of noise in the data; it requires supercomputer for computation
and thus is not considered.

Fuzzy forecasting: These methods are suitable under incomplete data conditions and
require fewer observations than othe.r forecasting models. Although fuzzy forecasting
methods can be applied to situations with scant available data and have no data
limitation, their performance is not always satisfactory [24].

Hybrid forecasting: These models have been proposed using ARIMA, Atrtificial

forecasting with good prediction performance. They require super computers for
forecast prediction [24]. These methods are usually quite complex in nature and are
difficult to implement, furthermore these methods cannot guarantee the optimal
solution for all real time forecasting problems.

ARMA Model: The Autoregressive and Moving Average Model [13] gives very
accurate result for the short term wind speed prediction for few hours in advance, it
does not require very large amount of historical data for accurate prediction as
compared to ARIMA and does not require super computers for computation, it can be
implemented on a simple desktop provided data have stationary values. It gives
inaccurate result for the non linear data.

Kalman Filter: The Kalman filter is an algorithm that provides an efficient
computational or recursive mean to estimate the state of a process and minimizes the
mean of the square error [23]. It supports estimations of the past, present, and future

states without knowing the precise nature of the modeled system. It is a too! for
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filtering, smoothing, and prediction applied to the continuous models and the discrete

models.

Thus theoretical part of the Kalman filtering is studied in this course and the model

will be developed to predict the wind speed from the actual wind speed data.
Auto Regressive Model: The Auto Regressive is an appropriate method to simulate

the hidden correlation between the data. A second order autoregressive model

considers the effect of the relationship between the consecutive values in a series as
well as the correlation between values two periods apart. The estimation of the model's
parameters based on the historical data of the wind speed is an important role in
modeling, and they determine the precision, reliability and efficiency of the model.
Therefore, the best approximation is.by least squares error method [25].

Unscented Kalman Filter: Unscented Kalman Filter (UKF) is an extension of
Unscented Transform to the recursive estimation. The Unscented transformation (UT)
is a method for calculating the statistics of a random variable which undergoes a non
linear transformation. It is used for the non linear system [28].

Non Linear ARX: The Non linear ARX model is nonlinear auto regressive model
with external input. The nonlinear arx model is implemented by one of the following
nonlinearity estimators such as sigmoid net, wavelet, tree partition, custom net, neural
net, linear [29]. It is used for the non linear system. From the literature search of the
investigated models, the work is focused on the AR model, the nonlinear ARX model,

the Kalman Filter and the Unscented Kalman for an hour ahead wind speed estimation.
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2.3.1 Detailed Overview of the ARMA Model

The Auto Regressive Moving Average (ARMA) models are the mathematical models
of the persistence, or the autocorrelation in a time series. There are several possible
reasons for fitting the ARMA models to the data. The wind speed modeling
contributes to the understanding of the physical system by revealing about the physical
process that builds persistence into the series. ARMA models can also be used to

predict the behavior of a time series from the past values.

2.4 The Mathematical Model of the ARMA Model

The ARMA models can be described by a series of equations [19] and is given in the
equation (2.1).

y®) =Y®) -V  where t=1,2..N 2.1)
Where y (t) is the original time series, ¥ is its sample mean, and Y (t) is the mean
adjusted series. One subset of the ARMA models is the autoregressive or the AR
models. An AR model expresses a time series as a linear function of its past values.
The order of the AR model determines the number of the lagged past values. The
simplest AR model is the first order autoregressive model, given by the equation (2.2).
y(t) + alxy(t—1) = e(t) 2.2)
where y(t) is the mean-adjusted series in time t, y(t-1) is the series in the previous
time, al is the lag-1 autoregressive coefficient, and e(t) is the noise. The noise or the
residuals e (t) is assumed to be random in time i.e. not auto correlated and normally

distributed.
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The equation for the AR (1) model is given in the equation (2.3).

y(t) = —alxy(t—1) +e(t) (2.3)
The AR (1) model has the form of a regression model in which y (t) is regressed on its
previous value. In this form, al is anélogous to the regression coefficient and e (t) to
the regression residuals. The autoregressive refers to the regression on self. Higher
order autoregressive models include more lagged y (1) terms as predictors. The moving
average (MA) model is a form of ARMA model in which the time series is regarded as
a moving average or unevenly weighted random series e (t). The first order moving
average or MA (1) model is given by the equation (2.4)

y(t) = e(t) + cle(t—1) (2.4)
where e (t), e (t-1) are the residuals at times t and t-1, and ¢1 is the first order moving
average coefficient. Higher order MA models include higher order lagged terms. The
autoregressive model includes lagged terms on the time series itself and that the
moving average model include lagged terms on the noise or the residuals. Both the AR
and MA models together are called the autoregressive moving average or the ARMA
models. The order of the ARMA model is included in parentheses as ARMA (p, q),
where p is the autoregressive order and q is the moving average order and is given in
the equation (2.5).

y(t) + aly(t—1) = e(t) + cle(t—1) (2.5)
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2.5 The Wind Speed Modeling Using ARMA Model

The first step is to identify the modei [19, 11]. Identification consists of specifying the
appropriate structure (AR, MA or ARMA) and order of the model. Identification is
sometimes done from the plots of the autocorrelation (acf) and partial autocorrelation
function (pacf) or by an automated iterative procedure. The second step is to estimate
the coefficients of the model. Estimation of the parameters of MA and ARMA models
usually requires a more complicated iteration procedure. It is accomplished
automatically by a computer program with little or no user interaction. The third step is
to check the model and is called diagnostic checking or verification. Checking is
required to ensure that the residuals of the model are random, and to ensure that the
estimated parameters are statistically significant. The classical method of the model
identification as described by the Box and Jenkins [19] is to determine the appropriate
model structure and order from the appearance of the plotted acf and pacf.

The partial autocorrelation function (pacf) at lag k is the autocorrelation at lag k after
first removing the autocorrelation with an AR (k -1) model. The identification of
ARMA models from the acf and pacf plots is difficult.

The acfand pacf for an AR (1) model is:

Acf: Declines in geometric progressjon from its highest value at lag 1

Pacf: Cuts off abruptly after lag 1

The opposite types of patterns apply to an MA (1) process:

Acf: Cuts off abruptly after lag 1

Pacf: Declines in geometric progression from its highest value at lag 1
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Prediction differs from simulation in that the objective of the prediction

is to estimate the future value of the time series as accurately as possible from the
current and past values. Prediction utilize past values of the observed time series. A
prediction form of the AR (1) model‘is given in the equation (2.6).

y() = —aly(t—1) (2.6)
Where the ~ indicates an estimate

The equation can be applied one step ahead to get estimate §(t) from observed § (t-1),
for k step ahead AR (1). Prediction can be made by recursive application of equation
(2.6). In recursive application, the ol;served y at time 1 is used to generate the
estimated ¥ at time 2. That estimate is then substituted as §(t — 1) to get the estimated
§ at time 3; the k-step-ahead predictions eventually converge to zero as the prediction

horizon k increases.

2.6 MATLAB Implementation of the ARMA Model

The designed algorithm is implemented in MATLAB for predicting the wind speed
five hours in advance and is compared with actual wind data [11]. Hourly wind speed
data from the Environmental Canada website, St John’s is downloaded. The acf and
pacf lag is determined and prediction’is computed. For the ARMA model, the order
chosen is armax (1 1) and if the data is in time series order, it is written as [1 1]. Using
this order we get the Autoregressive and Moving Average parameters and are given
below [20]. A copy of the MATLAé code is given in Appendix A.

Discrete-time IDPOLY model of armax (1, 1) is given by the equation (2.7):
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A@y®=C(qe() (2.7)
A(q)=1-0.9864 q"-1
C(q)=1-0.2986 q*-1

Estimated using ARMAX from the data set z

2.7 The MATLAB Simulation Results

Input for the ARMA model is hourly controlled wind data, output data after processing
with the ARMA model should be predicted wind speed five hours in advance, and
further testing has to be done to determine the accuracy by comparing the actual and
the predicted wind data and the error should be zero. A copy of the partial
autocorrelation of the MATLAB code for the hourly wind speed data is attached in the
Appendix B and the autocorrelation of the MATLAB code for the hourly wind speed
data is attached in Appendix C. Figure (2.1) and Figure (2.2) is the autocorrelation and

partial autocorrelation plots of the hourly wind data showing lag of 20 hours.
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Figure 2.1: Autocorrelation of the input wind speed data.
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Sample Partial Autocorrelation Function

Sample Patial Autoconeitions

Figure 2.2: Partial autocorrelation of the input wind speed data.

Figure (2.3) is the plot of per hour 1600 time series wind speed data set. Figure (2.4)
is the plot of predicted wind speed data five hour in advance using armax(1,1).
Figure (2.5) is the plot of predicted wind speed data five hour in advance using

armax(1,1) for a time span of 500 hours.
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Figure 2.3: Input hourly wind speed data.
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Figure 2.4: Predicted hourly five hours in advance wind speed data.
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Figure 2.5: Predicted wind speed using armax (1, 1) for a time span of 500 hours.

Figure 2.6 is the comparison of the actual and the predicted wind speed data
and there is a very less variation between the actual and the predicted wind data

and the error is close to zero.
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Figure 2.6: Comparision of the actual and the predicted wind speed data in km/hr and time in

hours.

Table 2.1: Data Analysis of the Actual and the Predicted Wind Speed

Statistics Actual wind Predicted wind

speed data speed data
Mean 5.12 m/s 5.52 m/s
Median 5.01 m/s 5.26 m/s
Standard 2.48 m/s 2.78 m/s
Deviation
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The above table 2.1 gives the data analysis results in detail and we can see that there is
very less difference of mean, median and standard deviation between the actual and the
predicted wind data and the prediction accuracy increases with large data and the error

will be zero.

2.8 An Hour Ahead Wind Speed Prediction Using the Kalman Filter and the
Unscented Kalman Filter

2.8.1 Introduction
This section reports an AR (Auto Regressive) model and a non linear Auto Regressive

Exogenous model for a short term wind speed prediction to predict an hourly average
wind speed up to 1 hour in advance. The Kalman filter and the Unscented Kalman
Filter are used for filtering associated noise in the input wind speed for accurate
estimation. The input to the wind speed model is an unprocessed wind speed. The
input time series wind speed data is downloaded from the Environmental Canada
website. The historic input wind speed data is in per hour time series order.
Autoregressive model is studied in detail, the raw wind speed data is processed using
Autoregressive model of order 2. Further the Kalman filter is used for filtering
unwanted noise parameter and for accurate estimation of the wind speed. The
Unscented Kalman Filter is used for the nonlinear system. The non linear ARX model
state space equation is determined in MATLAB and Unscented Kalman Filter is used
for further correcting and estimating the wind speed. System identification toolbox in
MATLAB is used to process the time series wind speed data. The input wind speed

data is 1000 per hour time series data. The input per hour time series wind speed data
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is stored in excel file and is imported into system identification toolbox GUI. The wind

speed data is divided into the training data and the validation data. From the input
wind speed data, 2/3" of the input wind speed data is used for training the data and
1/3" of the input wind speed data is used for the validation purpose. The linear and the
non linear parametric model in the system identification toolbox GUI is used for wind
speed estimation. The model structure used for the estimation is an AR model and a
non linear ARX model of various model orders. The best fit data is tested by
comparing actual wind speed data with the estimated data from the system
identification toolbox GUI. From the best fitted data, the particular model structure of
the best fit wind speed data is chosen for further wind speed processing. The Kalman
Filter and the Unscented Kalman Filter are used for further wind speed processing.
The state space equation of the particular model structure is determined from the
model order. The parameters determined from the state space equation are used as
input to the filter. The best fit model is estimated in the MATLAB System
identification toolbox by comparing various model orders and estimating the best fitted
model order. The code is written in MATLAB from the chosen best fit model order.
The model parameters and the state space equation are determined for the chosen
order. Further wind speed processing is done using the Kalman Filter and the
Unscented Kalman Filter. The model output is estimated and the corrected wind speed
data from the Kalman filter and the Unscented Kalman Filter is compared to test

accuracy.
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2.9 Part I: System Identification Toolbox GUI

2.9.1 Best fit estimation for the Auto Regressive Model
Figure 2.7 is the plot of the input wind speed data with respect to time. It is imported

into system identification toolbox GUI [30] using “ident” command in MATLAB. The

wind speed data is in 1000 per hour time series data.
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Figure 2.7: Input wind speed is plotted with respect to time.

The input wind speed data is divided into training data and the validation data. From

the input wind speed data, 2/3™ of the input wind speed data is used for training the

data and 1/3™ of the input wind speed data is used for validation purpose. The input

wind speed data is divided into training data and the validation data and is shown in

Figure 2.8.

Figure 2.8:

(red).

Wind Speed (m/s)

Input and output signals

40

bl

o L "
o 200

800 1000 1200

Time (hour)

Input wind speed has 2/3rd data as training data (green) and 1/3rd data as validation data
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In Figure 2.9 we see the input wind speed processing and estimation of linear
parametric model using AR (Auto Regressive) model and ARMA (Auto Regressive
and Moving Average) model in the system identification toolbox.
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Figure 2.9: Wind speed data processing in the system identification.

In Figure 2.9, we see that the input wind speed is divided into training data and the
validation data. The linear parametric model is used for the estimation purpose. For
training the input wind speed data, 2/3™ of the wind speed data is used for training the
data and 1/3"™ of the wind speed data is used for validating the data in the System
Identification toolbox. From the given model structure, Auto Regressive model of
various order and Auto Regressive Moving Average model of various model order is
tested with the actual validation data. In Figure 2.10 and Figure 2.11, we see that the
best fitted data is compared with various model structures and model order. The
measured and one step predicted output is shown in Figure 2.10 below. From Figure
2.10 we can conclude that the Auto Regressive model of order 2 is the best fitted
model structure. The percentage of the best fitted data is 58.87%, as the model order is

increased; the best fitted data has no significant improvement and remains the same.
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As compared with the ARMA model, the best fitted data is nearly the same percentage
as the AR model. This is the maximum best fitted data for one step predicted output
from the available inbuilt model structure in the System Identification toolbox GUI
[30]. As the model order is increased, the percentage of the best fitted data is almost
the same and has no significant improvement with increase in the model order. For this
reason the Auto Regressive model of order 2 is chosen as the best fitted model for the
one step predicted output. With AR model order as 2, less number of parameters is

estimated and the system is less complex.
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Figure 2.10: Best fitted one step ahead wind speed data tested with AR model and the ARMA model of

different model order in the system identification toolbox.

In Figure 2.11, we see the best fitted Auto Regressive second order model for one step
predicted output. Figure 2.12 is the plot of the autocorrelation of the residuals

estimated from the AR 2™ order model.
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Figure 2.11: One step ahead estimated AR 2nd order model and percentage of the best fit estimate.

Figure 2.12: Autocorrelation of the residual estimated using AR, 2nd order model

2.10 The Kalman Filter Wind Speed Estimation Using Auto Regressive Model
2.10.1 Detail Overview of the Kalman Filter

The Kalman filter [26] is a tool for filtering, smoothing and prediction. This method
can be applied to both continuous and discrete models. The Kalman filter is an
algorithm that provides an efficient computational (recursive) mean to estimate the
state of a process minimizing the mean of the square error. The filter supports

estimations of the past, present, and future states, even when the precise nature of the
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modeled system is not known, The Kalman filter provides a method for the recursive
estimation of the unknown state based on all observation values up to time‘t’. As such,
the equations for the Kalman filter fall into two groups [26] ‘time update’ equations

and ‘measurement update’

equations. The former are responsible for projecting forward in time the current state

and error covariance estimates to obtain a priori estimates for the next time step, while
the latter are responsible for the feedback, i.e. for incorporating a new measurement
into the a priori estimate to obtain an improved a posterior estimate. The main goal is
the simulation of the evolution in time of an unknown process or state vector, whose
value at time‘t’ is denoted by ‘xt’. The Kalman filter provides a method for the

recursive estimation of the unknown state based on all observation values up to time t.

2.10.2 The Kalman Filter State Estimation

The input wind speed is assumed to have associated noise when estimated using Auto

Regressive model. The Kalman filter is used to reduce the noise parameter associated
with the input wind speed, estimated using Auto Regressive model of order 2 [26].

‘x’ °T'a discrete-time controlled process that is

The Kalman filter estimates the state
governed by the linear stochastic difference equation and is given in the equation (2.8).
Here A and B are the matrix, u is the input, w is the process noise and, k and k-1

represents current step and previous step respectively.

Xk = Axk_l + Buk_1 + Wk-1 (28)
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The measurement ‘z,,’ is given as shown in the equation (2.9). Here v is the

measurement noise, and H is the matrix that relates the state to the measurement.
Zy = v+ Hxy 2.9)
The random variables w (k) and v(k) represent the process noise and the measurement
noise respectively. They are assumed to be independent of each other and with normal
probability distributions as given in c.:quation (2.10). Here Q is the process noise and R

is the measurement noise.

Q

p(w) = N(0,Q), (2.10)

p(v)

Q

N(0,R)

The process noise covariance and the measurement noise covariance

matrices might change with each tirr'le step or the measurement. The matrix in the
difference equation relates the state at the previous time step to the state at the current
step, in the absence of either a driving

function or process noise.

The a priori estimate error covariance is given in equation (2.11). Here E is the
expected value, e’y e‘kT is the priori error covariance, and Py is the priori estimate.
Pv=E[eckey'] 2.11)
The posterior estimate error covariance is given in equation (2.12). Here ey ¢

is the posterior estimate error covariance, and Py is the posterior estimate.

P.=E [ec e (2.12)
Time Update Equation: Time update equations project the state (x,,~) and

covariance (Pg) estimates forward from time step k-1 to step k. Equation (2.13)
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and equation (2.14) gives the time update equation. Here A, B are the matrix and

AT is the matrix transpose.
x}z' = A*Xp_q + B*up_4 (2.13)

Py =ATA*Pc_; +Q 2.14)
Measurement Update Equation: The first task during the measurement update is to
compute the Kalman gain, Ky The next step is to actually measure the process and then
to generate an aposterior state estimate by incorporating the measurement. The final
step is to obtain an aposterior error covariance estimate. The steps are given in
equation (2.15). The recursive nature is one of the important features of the Kalman
filter Here Ky is the Kalman gain. H is the matrix, H' is the matrix transpose. | is the
identity matrix.

Ky =P H'(HP H" +R)™ (2.15)
X=X v+ Ke (Z - Hx" )

Py =(I-KiH) Py’

2.10.3 Filter Parameters and Tuning

In the actual implementation of the filter, the measurement noise covariance is usually
measured prior to the operation of the filter [26]. Measuring the measurement error
covariance is possible because we need to be able to measure the process while
operating the filter, we should be able to take some off-line sample measurements in

order to determine the variance of the measurement noise. The determination of the
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process noise covariance is generally more difficult as we typically do not have the

ability to directly observe the process we are estimating. In this case the process
measurements are reliable. The filter performance can be obtained by tuning the filter

parameters.

2.10.4 MATLAB Implementation of the Designed Algorithm of the Kalman
Filter

The equation is written in the state space form as shown below. The parameters are
estimated using 2™ order AR model determined in MATLAB and one step predicted
output using hourly wind speed time series data given in the equation (2.16) and
equation (2.17).

()= 6" ) (a6) 216
Here al = 0.8963; a2 = 0.09091;

y(0) = (10)(59) 2.17)

2.10.5 Observability and Controllability Test
The observability and controllability test is performed on the estimated 2" order, Auto

Regressive model.
Observability: In order to see what is going on inside the system under observation,
the system must be observable.

Observability Test
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A=1[0.8963 0.09091; 0 0];

B= [0; 0];
C=[10];
D= [0]; |
Ts=1; ‘
observel=[C; C*A];
rl = rank (observel)
D1 = det (observel)
Test Result
observel = 1.0000 0

0.8963 0.0909
rl =rank (observel) =2;
D1 =det (observel) = 0.0909;
The rank of the matrix is 2 and the determinant of the matrix # 0.
Therefore the system is observable.
Controllability: In order to be able to do whatever we want with the given dynamic
system under control input, the system must be controllable.
Controllability Test

A=[0.8963 0.09091; 0 0];

C=[10];
D=[0];

|
|
|
|
|
|
|
B= [0; 0;
Ts=1;
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Co = [B A*B];

r2 = rank (co);
D2 =det (co)
Test Result
Co=0 4
0 0
r2 = rank (co) =0
D2 = det (co) =0;
The rank of the matrix is 0 and the determinant of the matrix is 0. Therefore the system

is not controllable.

2.11 MATLAB Simulated and Corrected Wind Speed Estimation Using Kalman
Filter

Figure 2.13 shows the Kalman filter state estimation with properly tuned parameters.
The filter parameters are properly tuned with the process noise and the measurement
noise. Figures 2.13, Figure 2.14, Figure 2.15 show the Kalman filter state estimation
for state x1. The state x| is the observed state; the actual and the measurement follow
closely at properly tuned filter parameters. For the Kalman filter, the linear time series
models were developed using historical data. It is estimated an hour ahead and the best
fit is around 60% due to the non linear nature of the wind speed. Using the state space
equation of the linear AR model as initial conditions to the Kalman filter, the Kalman

filter is used to filter and correct the bias in prediction. The prediction is validated
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using the real data. For the Kalman filter, the process noise and the measurement noise
is tuned properly using the filter parameters. The testing is done by proper tuning of
the filter, it is assumed that the actual and measurement follow each other by properly
tuning the Kalman filter parameters. This is shown in Figure 2.13. It shows that the

Kalman filter has good performance in noise rejection and the actual and measurement

follows each other.
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Figure 2.13: Properly tuned Kalman filter wind speed estimation.

Figure 2.14 shows the Kalman filter state estimation with the introduction of
measurement noise. The state x| is the observed state, the actual and the measurement
are not following closely and there is a deviation. It means that we need to trust

process more and measurement less.
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Figure 2.14: Kalman filter ¢stimation with increase in measurement noise.

36



Kalman Filter VWind Speed Estimation of “x1°
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Figure 2.15: Kalman Filter estimation with increase in process noise (Qf) and the

measurement noise (Rf) is remaining constant.
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Figure 2.16: Section of Kalman filter with increase in process noise (Qf).

From the above figures we conclude that the Kalman filter performance is good.
Appendix D gives the Auto Regressive code for determining the ‘idpoly’ model of
the time series data for one step predicted output The code for the Kalman filter is
written in Appendix E. The code is implemented in MATLAB from the designed
algorithm. The state space equation is determined and the model parameters are used
in the Kalman Filter. State x1 is the observed state, Kalman filter performance is
observed with the introduction of the noise parameters. We can conclude that the

Kalman filter has good performance over noise rejection and its performance is
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effect on system performance is observed.

2.12 Wind Speed Estimation Using Unscented Kalman Filter:

2.12.1 Algorithm of the Unscented Kalman Filter

Unscented Kalman Filter is an extension of Unscented Transform to the recursive
estimation. The Unscented transforrﬁation (UT) is a method for calculating the
statistics of a random variable which undergoes a non linear transformation [28] and is
given in equation (2.18).

y =f(x) (2.18)
The variable ‘x’ is a random variable with mean T and covariance Py.. The variable y
is related to the variable x through the non linear function (f(x)). As seen in Figure
2.17, the nonlinear function is applied to each point to yield a cloud of

transformed points. The mean y and covariance P are statistics of transformed points.

We have to calculate the mean ¥ and covariance Py,

Figure 2.17: Principle of Unscented Transform [28].

38

|
observed by minimizing the error. Tuning the filter parameters is understood and its



A set of points or sigma points are chosen so that their mean and covariance are T
and Pxx respectively. The nonlinear function is applied to each point, the samples

are not random points and follow an algorithm. The n-dimensional random

variable x with mean T and covariance Pxx is approximated by 2n+1 weighted points

by the following [31]. Here n =2 and k =1.

X0= 7 (2.19)
WO =k/(ntk) (W is weight) (2.20)

Xi=T +(J(n + k)Pxxi) Wi= 1/2(n+k) 2.21)
Xitn=T-(/(n + k)Pxxi)  Wi+tn=1/2(n+k) (2.22)

Here k is the tuning parameter to fine tune higher order moments of approximation.
Here x(k) is assumed Gaussian, select n+tk = 3. Instantiate each point through the
function to yield set of transformed sigma points.

The transformed sigma points are:

Yi=f [Xi] (2.23)
Mean is given by: ¥ =X WiYi (2.24)
The associate covariance ( B, 5 ) is given by:

Py =S WiYi —yHYi—7} (2.25)
The transformation process which occurs in the Kalman Filter consists of following
steps [28].

Predict new state of the system or mean value.

Predict its associated covariance. It must take into account process noise.

39



Predict the expected observation and the innovation covariance.
The reduction should include effect of observation noise.

Predict the cross correlation matrix:

2.13 MATLAB Results of the Unscented Kalman Filter Using Autoregressive
Model

In Figure 2.18, we see the properly tuned Unscented Kalman Filter response. The code
is written in MATLAB from the steps of the Unscented Kalman Filter. The process
noise and the measurement noise parameters are properly tuned. The state x1 is the
observed state, the wind speed estimation of the actual and the measurement follow

each other. Unscented Kalman Filter has good performance in state estimation.
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Figure 2.18: Unscented Kalman Filter response at properly tuned.

The UKF response is shown in Figure 2.19 and the measurement noise is introduced in
the system. The measurement is trusted less and the process is trusted more. There is a

deviation in the wind speed estimation of the actual and the measurement data.
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Unscented Kalman Filter Wind Speed Estimation from State x1°
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Figure 2.19: Unscented Kalman Filter response with the introduction of measurement noise.

The UKF response is shown in Figure 2.20 we see that the process noise is introduced
in the system. The measurement is trusted more and the process is trusted less. There
is a deviation in the wind speed estimation of the actual and the measurement data. The

UKF has good performance by minimizing the noise effect.
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Figure 2.20: Unscented Kalman Filter response with the introduction of process noise.

From Figure 2.20, we conclude that the Unscented Kalman filter has good

performance. The code for the filter is written in Appendix F. The code is implemented
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in MATLAB from the designed algorithm of the UKF. State space equation

|
determined from the model parameters is used in the Unscented Kalman Filter. State
x1 is the observed state, the Unscented Kalman filter performance is observed with the

introduction of noise parameters. Therefore, the Unscented Kalman filter has good |

performance over noise rejection and its performance is observed by minimizing the

crror.

2.14 PART II: System Identification Toolbox GUI

2.14.1 Best fit estimation for the non linear Auto Regressive Exogenous Model

The nonlinear ARX model is used in the system identification toolbox. The wind
speed in the time series order is taken from the Environmental Canada website. The
best fit estimation of the wind speed'is performed in the System Identification toolbox.

The wind speed is divided as training data and validation data and is shown in Figure

2.21. The wind speed data is 1000 per hour time series. The wind speed is divided as

the training data for the wind speed range 1:650 and the validation data for the wind

speed range 651:1000. The best fitted wind speed data is estimated by comparing non

linear arx model with different model order. The comparison of the best fitted data is

shown in Figure 2.22. From the comparison of the best fitted data, we conclude that

the 2™ order ‘arx’ model is the best fitted data. As the model order is increased there is

no further increase in the best fit estimation. With increase in model order, there is no
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significant increase in the best fitted estimation of the wind speed and it remains the

same which is about 58.08 %.
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Figure 2.21: Non linear ARX model compared with various model orders
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Figure 2.22: Training and Validation data for the wind speed in System Identification toolbox

Figure 2.23 and Figure 2.24 shows the best fit estimation of the non linear ‘arx’ model
for various model orders. From the best fit estimation we see that the, ‘nlarx2’ is
chosen as the best fitted data. The model chosen is nlarx2 with lower model orders for
further estimation as less parameter are estimated and there is less complexity. With

higher order model, more complexity arises as more parameters are estimated.
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Figure 2.25 shows the autocorrelation of the residual for nlarx 2™ order model.
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Figure 2.23: Comparision of the best fit nlarx model of various orders.
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Figure 2.24: The nonlinear ARX best fitted Ist and 2nd order model.
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Figure 2.25: Autocorrelation of residuals for the nlarx model.

2.15 MATLAB Code analysis of the 2nd order non linear ARX Model

The state space model for the non linear 2™ order arx model is used in the Unscented
Kalman Filter. The code is implemented in the MATLAB for second order nonlinear
ARX model to estimate the best fitted data. A copy of the MATLAB code is attached

in Appendix G. Figure 2.26 shows the best fitted data for 2" order nlarx model.

v1. (1-step pred)

z. measured
— gl it 6V 71%

Wind Speed (m/s)

Time (hour)

Figure 2.26: Nonlinear best fit estimation of the non linear arx 2nd order model.
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MATLAB Code for 2™ order non linear ARX Model from the nonlinear parameters is

estimated from the model. The wind speed is estimated using second order non linear
arx mode! using sigmoid function. The following results are estimated from the
implemented MATLAB code.

m1.nonlinearity.Parameters

Result = RegressorMean: [13.4477'13.448]

Nonlinear Subspace: [2x2] double

Lincar Subspace: [2x2 double]

Dilation: [2x10 double]

Translation: [30.7162 -29.2601 6.0578 -9.3062 -1.4186 -0.4608 2.9542

2.7222 -8.6089 8.5297] |

OutputCoef: [10x1 double]

Output Offset: 22,9998

m1.nonlinearity.Parameters.NonLinearSubspace

ans= 0.0825 -0.4050

0.0825 0.4050

m1.nonlinearity.Parameters.LinearSubspace

ans= 0.0825 -0.4050

0.0825 0.4050

The difficulty is in designing the state space model for the non linear ARX model. The
state space of the nonlinear ARX model is determined using the non linear subspace
parameters. The parameter for the non linear ARX model in state space form is

assumed to be of the form given in equation 2.26:
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A@y®=B(@u(®+e() (2.26)

From this equation, we get:

al =0.0825 a2 =-0.4050
bl =0.0825 b2 =0.4050
or it is rewritten as given below
A =10.0825 -0.4050; 0 0];

B =1[0.0825 -0.4050; 0 0];
C=[10]

Assuming that the nonlinear structuré of the arx model is as given in equation (2.27)
al a2 x1¢e+)\  _ (bl b2 u1(t+1)
( 0 0 ) i (xZ(t+1)) = ( 0 0 ) * (uZ(t+1)) (2.27)

y® =10+ (50

2.16 MATLAB simulated results of the Unscented Kalman filter using Non
Linear Autoregressive Exogenous model

The state space determined in equation (2.27) is used in the Unscented Kalman Filter
from the non linear parameters estimated from the non linear ARX model. The
exogenous input is used in the Unscented Transform and the wind speed is estimated.
The code is written in MATLAB from the designed algorithm of the UKF and a copy
of code is attached in Appendix H. In Figure 2.27, we see that the state x1 is the
observed state. Both the process noise and the measurement noise is properly tuned,
the actual and the measurement estimation of the wind speed follow closely. The UKF

performance is observed at properly tuned filter parameters.
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Figure 2.27: Process noise and measurement noise is reduced with UKF properly tuned.

Figure 2.28 and Figure 2.29 shows variation in the actual and the measurement data.
In Figure 2.28, we see process noise is increased and measurement noise is tuned at a
very low value by the tuning parameters. We need to trust process less and
measurement more. In Figure 2.29, we see process noise is low and measurement
noise is increased by the tuning parameters. We need to trust process more and
measurement less. We can conclude that the UKF performance is great with the

associated noise, as it is minimizing the noise effect.
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Figure 2.28: UKF performance with increase in process noise.
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Figure 2.29: UKF performance with increase in measurement.

2.17 Conclusion

In this chapter, the short term wind speed predictor model is developed. From the

analysis of the wind speed predictor model, it is concluded that an accurate estimation

of the wind speed distribution is critical to the assessment of the wind energy potential.
An hourly time series wind speed data gives accurate result for the short term wind
speed prediction and the ARMA models have an advantage that they can provide very
accurate results for the short term wind speed prediction. If the data are not stationary
and there is a high variations and change trend suddenly it gives inaccurate results. The
ARMA model gives accurate prediction for the range of the wind speed 4 m/s to
11m/s. The wind speed data ranges from 1m/s to 20 m/s for this predictor design. The
MATLAB code works on different wind data file and is tested for accuracy. The wind
speed is estimated an hour ahead using the Kalman filter and the Unscented Kalman
Filter. From the models investigated for the short term wind speed prediction, AR
model and Nonlinear ARX model is chosen for step or hour ahead prediction of the
wind speed. System identification toolbox in MATLARB is used for estimating the best

fitted data from the available model in the toolbox. From the literature review and the
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available statistical model structure in system identification toolbox, Auto Regressive

model and Auto Regressive Moving Average model is chosen for testing and
estimating the best fitted data. The input wind speed is divided as training data set and
validation data set. The AR model of various model orders and non linear ARX model
of various model orders is tested by comparing the actual data with the estimated data
from the selected model order. The best fitted data is of Auto Regressive, 2™ order
model and for non linear system Autoregressive Exogenous, 2" order model. For more
accuracy the Kalman Filter and the Unscented Kalman Filter is used for further
correction and estimating the states of the wind speed from the Auto Regressive model
and nonlinear ARX model. Both the filter performance are observed and compared.
The filter performance is observed when process noise and measurement noise is
introduced in the system. From the results of Kalman filter for the AR model and UKF
for AR model and non linear arx model, we see that for the case of Kalman filter the
input is linear, as the wind speed is estimated from the linear AR model. The
constraints in case of Kalman filter are both the functions h and y in MATLAB code
are assumed to be linear with noise terms ‘w’ and ‘v’, uncorrelated and Gaussian.
estimation using the Kalman filter is easier as it incorporates almost all linear
calculation except a matrix inversion. In case of the Unscented Kalman Filter, we
assume that some non linearity is present in the input because all real time physical
system are non linear in nature. Comparing the UKF with the AR model and the non
linear ARX model, we can see that more accurate estimation is with UKF for non
linear ARX. Instead of linearising a nonlinear function it uses 2N+1 sigma points for N

states and then propagates these points through the actual non-linear function,
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eliminating linearization. It approximates the probability distribution. With this

approach the computational complexities is reduced and at the same time there is
improvement estimation accuracy. By comparing the results, it is concluded that
almost similar results are estimated from the Kalman filter and the Unscented Kalman
Filter. This shows that the developed and estimated results can be applied for short
term wind speed prediction. The change in performance can be observed for long term
wind speed prediction and very large historic data is taken as input to the system, and
this introduces more non linearity in the system. At the same time it gives more
accurate wind speed estimation for real time system. As Unscented Kalman Filter is
used for non linearity and gives good performance for long term wind speed
estimation. Thus the Kalman filter cannot be used under such condition. As the focus

of the chapter is on short term or hour ahead wind speed estimation, both the Kalman

ﬂ

filter and Unscented Kalman Filter has good performance.



Chapter 3

Power Prediction of the Fermeuse, Newfoundland Wind Farm

3.1 Introduction

The wind power is the conversion of the wind energy to produce electricity using wind
turbines and is an alternate source of renewable energy. The wind power forecasting is
essential for utility operators to plan shutdown of the thermal units in the system.
Physical factors such as vertical shear, turbulence intensity, turbulence adjusted wind
speed, air density, pressure, and temperature are considered to predict the wind power
of a wind turbine. The wind farm consists of many wind turbines. The physical factors
determine the wind power estimation in real time. In this chapter, an algorithm is
designed considering all physical factors affecting the wind power of the wind turbines
in the wind farm. The code is written in MATLAB to estimate the wind power in real
time. The wind turbine manufacturer supplied power curve assumes ideal conditions
and in reality there is a variation in physical factors. The physical factors considered
estimate of the wind power of the wind turbines in the wind farm. The Fermeuse wind
farm is located in the community of the Fermeuse on the Southern Shore, Avalon
Peninsula in Newfoundland [45]. The wind farm has nine wind turbines in an
operating condition. The wind turbine used at the Fermeuse wind farm is the Vestas
V90 3MW and the total capacity of the windfarm is 27MW. The main challenge for
this work is to find a simple model that will take a topographical map, a wind farm
layout, the long term site wind and atmospheric data. It utilizes this information to

calculate the wind speed at all the wind turbines. The designed algorithm estimates the
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wind speed adjusted for shear and turbulence for the wind turbine rotor disc from the
lower hub height to the upper hub height. Air density is adjusted to predict the wind
power of a wind turbine. For estimating power for the wind farm, speed and height for
each wind turbine varies and depends on the distance between wind turbines, contour
height, and layout information. The wake model is incorporated when wind turbines
are placed at a closer distance and power of the wind farm is estimated from the input
wake speed. The resulting simple model of a wind farm is used to develop a computer

program that is fast and can be used on a windows computer.

3.2 Wind Turbine Power Estimapion

The detail of the Vestas V90 3MW wind turbine is required in the initial design stage.
The supplied wind turbine power vs. wind speed characteristics is studied in detail. It
is digitized from the power curve data. Thus the power curve of the Vestas V90 3 MW
wind turbine is produced in the initiql design stage. Figure 3.1 shows the Vestas V 90

3IMW wind turbine at the Fermeuse.
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Figure 3.1: Vestas V90 3MW wind turbine [46].

The Vestas V90 3MW wind turbine is designed to be light weight, making it easier to
transport with lower installation and foundation cost. The tower is lighter and uses
magnets instead of welding to attach the tower internals to the tower wall. Some

technical specifications of the Vestas V90 3 MW wind turbine are given below.
Technical Specifications of the Vestas V90 3MW wind turbine
Operational data:

Rated power: 3,000 kW
Cut-in wind speed: 3.5 m/s
Rated wind speed: 15 m/s

Cut-out wind speed: 25 m/s
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Re-cut in wind speed: 20 m/s

Wind class: IEC IA and [EC IIA

Operating temperature range: standard range -20°C to 40°C, low temperature option -
30°C to 40°C

Rotor diameter: 90 m

Swept area: 6,362 m2

Nominal revolutions: 16.1 rpm

Operational interval: 8.6 - 18.4 rpm
Air brake: full blade feathering with three pitch cylinders

Frequency: 50 Hz/60 Hz
Generator type: 4-pole doubly fed generator

Gearbox: Two planetary stages and one helical stage

Power regulation: Pitch regulated with variable speed [43]

The power curve supplied by the manufacturer assumes ideal conditions and in reality
there is variation in physical parameters and variation in the output power. The wind
turbine manufacturer supplied power curve can be digitized by extracting data from the
power vs. speed characteristics. The Fermeuse wind farm has nine wind turbines. The
actual height of a wind turbine rotor disc is determined by the hub height and wind
turbine base elevation. The sensor height at the metrological (MET) tower is assumed
to be at the height of 80m. The site measured and predicted wind speed of wind data

are given at the sensor height. To determine a wind turbine output power, the wind
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speed data should be known at the lower rotor tip of the wind turbine to the upper rotor
tip of the wind turbine. The input wind data at unknown heights is determined using
the power law equation of shear using 1/7 shear exponent value. The input wind speed
data provided is typically sampled every second, averaged and stored every 10 minutes
for 10000 time series. From a sensor measured input wind speed, pressure,
temperature, and wind direction for évery ten minutes, the wind turbine power is
estimated. The turbulence adjusted wind speed is determined from the input wind
speed and the turbulence intensity at the known model levels or height which intersects
the wind turbine rotor disc. The wind shear exponent is calculated using the power law
equation of shear from the turbulence adjusted wind speed data at known heights. The
estimated disc wind speed, which is adjusted for turbulence and vertical shear, is
evaluated for the entire rotor disc by numerically integrating the wind speed values
from the lower rotor tip to the upper rotor tip of the wind turbine by solving the
equation of the disc speed. The estimated disc speed value is assumed to be at the hub
height. The uncorrected power curve function is determined from the digitized power
curve supplied by the manufacturer. The disc speed is substituted in the uncorrected
power curve function and is subsequently adjusted for the air density to estimate the
power of a wind turbine. Thus the wind power is estimated for one wind turbine from

the disc speed which is adjusted for turbulence and vertical shear.

3.3 The Fermeuse Wind Farm Power Estimation
The Fermeuse wind farm has nine wind turbines in the wind farm. After a site

visit to the Fermeuse wind farm and the information collected through extensive
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research it was concluded that the wind farm has nine wind turbines all in operating
condition. The contour height of the wind turbine is determined from the wind turbine
base elevation and the assumed horizontal distance between wind turbines. The power
of each wind turbine is estimated from the input time series wind data; therefore wind
power for all the nine wind turbines is estimated. Implementation of the wind power
model of the wind turbines in the Fermeuse wind farm is done in MATLAB. The wake
model is implemented when the wind turbines operate in the wake of upstream and
neighboring wind turbines. For a particular wind direction, a wind turbine may operate
in the partial shadow or the complete shadow of upstream and neighboring wind
turbines. This results in considerable reduction in the wind power. [t is determined
from the input predicted disc speed, radius of the shadow cone, nearest distance
between wind turbines, radius of the.rotor disc, area of the wind turbine rotor disc, and
area of shadow region of the wind turbine. The output of the wake model is reduced
wind speed due to the wake effect. The uncorrected power curve function has input
wake speed and is subsequently adjusted for air density to determine corrected power
of the wind turbine. The estimated power is the wake power of the wind turbine. The
wake power of each wind turbine in the wind farm is added to determine the power of
the wind farm. With the wake effect, there is a considerable reduction in the wind
power of downstream wind turbines. For all other wind directions there is no reduction

in the wind speed and the wind turbines operate at a maximum power.
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3.3.1 Layout of the Fermeuse Wind Farm

After a site visit to the Fermeuse wind farm and after extensive research regarding the
layout information, the wind farm layout is estimated [36] as shown in Figure 3.2.
Assumptions are made to the wind turbines placed in the wind farm, as the actual

information is commercially sensitive.

Figure 3.2: Fermeuse wind farm layout [36].

The contour height of the wind turbine is determined from the wind turbine base
elevation. The horizontal distance between the wind turbines is obtained from the
layout information. The wake effect is considered for the wind turbine for a particular
wind direction in the wind farm and depending on the wind turbine placement
available in the layout information. The wind speed for a wind turbine operating in the
wake effect is reduced and therefore there is a considerable reduction of wind power.

For a particular wind direction, the wind turbines operating in partial shadow or
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complete shadow of upstream and neighboring wind turbines will result in a
considerable low power. The estimated wind power of each wind turbine in the wind
farm is added and the total power of the wind farm is determined. For all other wind
direction there is no reduction of the wind speed and the wind turbines operate at a
maximum power. Figure 3.3 below shows a flow chart of wind power physical model.

Figure 3.4 below shows a flow chart of wake power model in the wind farm.
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Figure 3.3: Flowchart of the wind power model.

60



Estimated disc speed of
N wind turbines in the
wind farm (same steps as

Wind direction at the wind
farm site from the input time
series data

win

Wind farm (N wind turbines):
Wind speed and height of each

d turbine varies

A 4

|
in previous flow chart)
|

Wake effect determination from topography. Layout of windfarm,
latitude and longitude information, contour height of wind turbines
in the wind farm

A4

With wind turbines
placed at a larger
distance, there is no

wake effect in wind farm l

With wind turbines placed at a smaller distance,
there is wake effect in wind farm

A

Input: Thrust coefficient

Wake speed determined for the

F §

of wind turbine, disc
wind turbine operating with speed. radius of rotor,
v reduced speed in the wind farm and shadow cone. Area
. of shadow region and the
éggg{e;gglec;;z? v A rotor area of wind
225°+ 5°) 45°+= 5%or
225°+5° =
Wake effect: Wake speed of wind turbine is input to the
uncorrected power curve function
vy Vv A 4
No wake effect: Disc ‘L

¥ Uncorrected wind power with input wake speed using uncorrected
power curve function and is determined using the MATLAB polyfit
command by digitizing the power curve

speed of wind turbine is
input to the uncorrected
power curve function

A 4

¥ Corrected wind power with more of wake
\ 4 speed and less of disc speed or only wake

¥ Uncorrected wind power with input disc speed and is adjusted with air density

speed using uncorrected power curve function
and is determined using the MATLAB polyfit
command by digitizing the power curve

y

Average of the wind power estimated
is the output power of wind farm
A 4 |

¥ Corrected power of wind A
turbines with input disc speed
adjusted with density

Average value of the estimated wind power is the output
power of wind farm

\ 4

Figure 3.4: Flow chart of the wind farm wake model.
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3.4 Methods/ Techniques Applied in Estimating Wind Turbine Power

The wind turbine manufacturer supplied power curve is digitized and the 8" order
polynomial is fitted in the MATLAB for an accurate prediction. The curve fitted
equation [32] of 8" degree is uncorrected power curve. The curve fitting equation is
valid for the wind speed range below the rated wind speed till the rated wind speed of
the wind turbine. Weather Research and Forecasting (WRF) forecasts metrological
data i.e. wind speed, pressure, temperature, and wind direction which is used as input
to the Wind Power Physical Model (WPPM). WRF has pressure levels, known as eta
levels which intersect the wind turbine rotor disc. The height of these model levels that
intersect the rotor disc of the wind turbine is determined. The Fermeuse wind farm has
nine wind turbines; the height of each wind turbines is determined by considering its
base elevation. The input wind speea is given at the sensor height. The input wind
speed data should be determined at the lower rotor tip of the wind turbine to the upper
rotor tip of the wind turbine. The wind speed at unknown height is determined from the
power law equation of shear. The input wind data is sampled every 10 minutes and has
10000 data points. From the given input wind data, the physical factors considered
such as turbulence intensity, turbulence adjusted speed and wind shear exponent can
be calculated at the given input model levels. Turbulence intensity is determined from
the average wind speed and standard deviation value of wind data. Turbulence adjusted
wind speed is determined from the input wind speed and turbulence intensity at the
known model levels or height which intersect with the wind turbine rotor disc. Wind
shear exponent ‘o’ is calculated using the power law equation of shear from the

“turbulence adjusted wind speed data at the given model levels. Final disc wind speed
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which is adjusted for turbulence and vertical shear is evaluated for the entire rotor disc
by numerically integrating in the ran.ge H-R (hub height — rotor radius) to H+R (hub
height + rotor radius) or the lower rotor tip of the wind turbine to the upper rotor tip of
the wind turbine by solving the equation of the disc speed. The estimated value of the
disc speed is assumed to be at the hub height. The uncorrected power function is
determined from the fitted equation. The disc wind speed substituted in the uncorrected
power curve function is subsequently adjusted for air density to estimate the power of

the wind turbine.

3.5 Designed Algorithm of the Wind Power Model
3.5.1 Wind power of a wind turbine with no-wake effect
The manufacturer supplied power curve of the Vestas VOO0 3MW wind turbine is
power vs, wind speed characteristics [43]. The uncorrected power curve function is
determined using the MATLAB pol)l/ﬁt command from the curve fitting toolbox [32].
In the curve fitted equation the variable x, for the Vestas V90, 3 MW wind turbine is
replaced by the wind turbine rotor disc speed ( Up;sx) estimated from the algorithm
adjusted for turbulence and shear.
The uncorrected power P1(uncorr) is determined from the disc wind speed,
substituted in the polyfit equation as given in the equation (3.1).

P1 (uncorr) = q(9) + q(8) * x + q(7) *x? + q(6) x> + q(5) *x* +

q(4) *x*> +q(3) *x®+ q(2) +x7 + q(1) = x*

Here x = Up; = Estimated disc speed value of Vestas V90, 3 MW

63



wind turbine (3.1

Wind speed is calculated at the hub height (Hhub) of the wind turbine using a power
law equation of shear from the input sensor speed (U1) at the sensor height (HI) and is

given in equation (3.2).

Hhub

Uhub = U1 * (=

)70.143 3.2)
Turbulence Intensity (Iu) at known heights is calculated using equation (3.3) from the
input wind speed (U) and standard deviation data (o) at the hub height of the Vestas
V90 3 MW wind turbine.

u= 2 (3.3)
Turbulence adjusted wind speed U’(TI) is calculated from the input wind speed and
turbulence intensity (Iu) at the hub height of the Vestas V90, 3 MW wind turbine as
given in equation (3.4).

U'(TD) = /U3 « (1 + 312). (3.4)
Wind shear exponent (a) is calculated [37] from the above turbulence adjusted wind
speed U2 (TI) and U’1 (TI) at various model levels or heights H, and H, of the wind

turbine rotor disc. It is given by the power law equation of shear as in equation (3.5).

U'z(Th
o = =) (3.5)

log ()
Wind velocity across the wind turbine rotor disc [1] which is adjusted for turbulence
and vertical shear, is calculated using equation (3.6) from the lower rotor tip (H-R) to

the upper rotor tip (H+R) of a wind turbine.

Upisk = = i Uz VRZ= HZ ¥ 2HZ — Z2d (3.6)
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Here H is the wind turbine hub height, R is the radius of the wind turbine rotor disc
and A is the area of wind turbine rotor disc.
Air density (p) [32] correction is applied to the disc power using the input pressure (P)

and the temperature (T) as given below using equation (3.7).
p =3.4837 + - (3.7)
Corrected power P1(corr) of a wind turbine [32] is determined from the actual air

density at Standard Temperature Pressure (STP) and the uncorrected power

P1(uncorr) from the curve fitting equation, using the equation (3.8).

P1(corr) = P1(uncorr) patpSTP (3.8)

Below is the general equation to determine the wind power of the wind turbines with
no-wake effect. For the Fermeuse wind farm, details of the wind farm layout, number
of wind turbines, contour height of wind turbine, and distance between nearest wind
turbines are studied. These values are considered to estimate the power of the wind
turbines in the wind farm. For a particular wind direction, the wake effect is
considerable when the wind turbines are placed at a distance less than four times the
rotor diameter. For all the other wind directions, the wind turbines operate in free wind
speed. The wind turbines operate at a maximum power and power of the wind farm is
determined by adding power of each wind turbine with no-wake effect. The Fermeuse

wind farm has nine wind turbines and the total power of the wind farm is the sum of
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the power of each wind turbine in the wind farm and it is calculated using equation
(3.9), where the number of wind turbines is denoted by n.

Y a1 P1(corr) = Total Windfarm No_wake Power (3.9)

3.5.3 Wind power of a wind turbine with the wake effect

Figure 3.5: Wake effect in a wind farm [44].

Figure 3.5 shows [44] the wake effect in a wind farm. Below is the general equation to
determine the wind power of the wind turbines with the wake effect. With the wake
effect, the wind speed for downstream wind turbine reduces depending on the shadow
area of the rotor disc, the radius of the shadow cone, the thrust coefficient of the wind
turbine and this result in a reduction of the wind power. The wake speed of the wind
turbine is determined from the free disc speed at the rotor disc and correspondingly the

wake power is determined. Depending on the distance between the wind turbines (X),
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the radius of the shadow cone (Rx) [33] of upstream turbine is calculated using

equation (3.10) from the radius of rotor (R) and tana. The value of tana is 0.04 under
free stream and 0.08 under wake stream.

Rx = R+ X * tana (3.10)

The thrust coefficient (Ct) of the wind turbine [34] is calculated from the disc speed
adjusted for vertical shear and turbulence using equation (3.11) and is given below.

The disc speed is assumed to be at the hub height of the wind turbine.

(2 UDisc‘ 3.5)

Ct=3.5~ (Upisc)

(3.11)

The wake speed (U,axe) of @ wind turbine [38] is calculated from the disc speed, the
thrust coefficient, the radius of rotor disc, the radius of the shadow cone (Rx) of the
rotor disc, the area of shadow region (AS) of rotor disc and the area of the wind turbine

rotor (A) using equation (3.12).

Uwake = Upse * [1 = /(1 = CO) * (Ri)z x (—AAf) ] 3.12)
The supplied power curve is used to determine the uncorrected power curve function.
The variable in the polyfit equation i's replaced by the wake speed. The uncorrected
wake power P2(uncorr_wake) of the wind turbine is calculated using equation (3.13)
for the Vestas V 90, 3MW wind turbine.
P2(uncorryake) = q(9) + q(8) * Uwake + q(7) * U2wake + q(6) * U3wake +
q(5) * U*wake + q(4) * USwake +'q(3) x Ubwake + q(2) * U”wake + q(1) *
UBwake. (3.13)
The actual air density is determined from the input pressure (P) and the temperature

(T) using equation (3.7). Air density correction is applied and the corrected wake
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power, P2(corr_wake) of the wind turbine [32] with the wake effect is determined

from the actual density, the density at STP and the uncorrected wake power from the

curve fitting equation of MATLAB using equation (3.14).

P2(corr_wake) = P2(uncorr_wake) * (3.14)

p
patSTP

3.5.4 Wind power of a wind farm with the wake effect

The Fermeuse wind farm has nine wind turbines and the corrected power
(P2(corr_wake)) of each wind turbine with the wake effect is summed using equation
(3.15) and the total power of the wiﬁd farm with the wake effect is determined. Table
3.1 gives the details of the wind turbines of the Fermeuse wind farm operating in the
wake effect and the area of shadow region of the rotor disc for a particular wind
direction,

2= P2(corr_wake) = Total Windfarm Wake Power (3.15)

3.5.5 Wake coefficient of the wind turbines in the wind farm

The wake coefficient (WC) [33] of the wind turbines in the wind farm is calculated
using equation (3.16) by the ratio of the summation of the total output power of the
wind farm with the wake effect to the summation of the total output power of the wind

farm neglecting the wake effect.
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1P2(corr_wake)
YRzl P1(corr)

we = 22

(3.16)

3.6 Detail Overview of the Fermeuse Wind farm

The Fermeuse wind farm has nine Vestas V90, 3MW wind turbines. The wind turbine
specifications are given in detail in Table 3.1 [43]. The sensors at the MET tower are

assumed to be located at a height of 80m to record the wind speed.

Table 3.1: Specification of the Vestas V90 3 MW Wind Turbine.

Specifications of the | Vestas V90 3MW
Wind Turbine Wind Turbine

Cut in wind speed 3.5m/s

Rated wind speed 15 m/s

Rotor Diameter 90 m
Rated Power 3.0 MW
Hub Height 80m

The details of the wind turbines of the Fermeuse wind farm are given in Table 3.2. The
wind turbine hub height is determined from the turbine base elevation. The lower rotor
tip and the upper rotor tip height of the wind turbine are determined from the radius of
the wind turbine and its hub height. The nearest distance between the neighboring

wind turbines is determined from the wind farm layout and is given in Table 3.3.

|
|
|
Cut out wind speed | 25 m/s
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Table 3.2: Wind Turbines Details in the Fermeuse Wind farm.

Number of | Contour Lower Upper Hub Height
Wind Height of Rotor Tip | Rotor (m)
Turbine Wind (H-R) (m) | Tip (m)

Turbine +

Hub Height

(m)
WTI 95 50 140 80
WT2 95 50 140 80
WT3 95 50 140 80
WT4 127 82 172 112
WTS5 153 108 198 138
WT6 140 95 185 125
WT7 128 83 173 113
WT8 148 103 193 133
WT9 120 75 165 105

Table 3.3: Nearest Distance between the Neighboring Wind Turbines.

Wind Turbines Nearest Distance Between Wind
Turbines (m)

WT1_WT2 250

WT2 WT3 250

WT3 WT4 1000

WT4 WT9 250

WTS WT9 250

WTS WTé6 250

WT6_WTS 250

WT8 WT7 250
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Table 3.4: Wind direction and shadow region of the wind turbines (WT_Ash) in the

Fermeuse wind farm.

Shadow Region 45°+ 5% or All Other Wind
of Wind Turbine 225%5° Direction
WTI 3181 m” 0.0m’
WT2 3181 m” 0.0 m*
WT3 0.0 m” 0.0 m”
WT4 3181 m’ 0.0m"
WT5 4772 m" 0.0 m’
WT6 3181 m’ 0.0m"
WT7 0.0m 0.0 m’
WT8 4772 m" 0.0 m*
WT9 3181 m’ 0.0 m*

Table 3.4 gives the details of the shadow region of the wind turbines operating at the
influence of the wake effect. From the layout information of the Fermeuse wind farm,
the area of the shadow region of the wind turbines at the Fermeuse wind farm is
assumed. It depends on the wind direction at the Fermeuse wind farm site and the
nearest distance between the wind turbines. MATLAB simulated and estimated results
of'the wind turbine-2 tested with different input wind speed data files is given in
Table 3.5, Table 3.6, Table 3.7, and Table 3.8. For all the individual physical factors
considered, its contribution to the wind speed estimation is determined from the
designed algorithm using average value of the wind speed for the Vestas V90 3MW

wind turbine -2 from the input 10,000 time series wind data set.
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Table 3.5: Wind speed estimation of the physical factors affecting wind turbine-2 in

the Fermeuse wind farm determined from the input wind speed data filel.

Physical Factors of the Wind
Power Model

Vestas V90. SMW Wind Turbine
-2 (Mean Value at the Hub

Height)
Sensor Height Wind Speed 9.21 m/s
(Mean Wind Speed)
Vertical Wind Speed Shear 9.45 m/s
Turbulence Adjusted Wind 11.32 m/s
Speed
Disc Speed of Wind Turbine 10.57 m/s
Wake Speed of Wind Turbine 9.86 m/s

turbine-2 in the Fermeuse wind farm from

Table 3.6: Wind speed estimation of the physical factors affecting wind

the input wind speed data file2.

Physical Factors of Wind Power | Vestas V90 3MW Wind

Model Turbine -2 (Mean Value at the
Hub Height)

Scnsor Height Wind Speed 9.96 m/s

(Mcan Wind Speed)

Vertical Wind Speed Shear 10.21 m/s

Turbulence Adjusted Wind 12.13 m/s

Speed

Disc Speed of Wind Turbine 11.31 m/s

Wake Speed of Wind Turbine 10.55 m/s
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Table 3.7: Wind speed estimation of the physical factors affecting wind

turbine 2 in the Fermeuse wind farm from the input wind speed data file3.

Physical Factors of Wind Power | Vestas V90 3MW Wind
Model Turbine-2
(Mean Value at Hub Height)
Sensor Height Wind Speed 8.72 m/s
(Mean of Wind Speed)
Vertical Wind Speed Shear 8.94 m/s
Turbulence Adjusted Wind 11.05 m/s
Speed
Disc Speed of Wind Turbine 10.30 m/s
Wake Speed of Wind Turbine 9.64 m/s

Table 3.8: Wind speed estimation of the physical factors affecting wind

turbine-2 in the Fermeuse wind farm from the input wind spced data filc4.

Physical Factors of Wind Vestas VOO 3MW Wind Turbine-
Power Model 2

(Mean Value at Hub Height)
Sensor Height Wind Speed 7.00 m/s

(Mean of Wind Speed)
Vertical Wind Speed Shear 7.18 m/s

Turbulence Adjusted Wind 8.81 m/s
Speed
Disc Speed of Wind Turbine | 8.23 m/s

Wake Speed of Wind Turbine | 7.74 m/s




The wind power of the wind turbine -2 placed in the Fermeuse windfarm is
determined from the designed algorithm. For the physical factor considered,
the average value of the wind speed is substituted in the equation of the
uncorrected power curve function and the corresponding wind power is
determined. The estimated result of the wind turbine-2 in MATLAB is tested
with different input wind speed data files and is given in Table 3.9, Table
3.10, Table 3.11 and Table 3.12. The effect of individual physical factor
considered and its contribution in estimating the wind power of a wind

turbine-2 is determined.
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physical factors considered from the input wind speed data filel.

Physical Factors of Wind Power
Model Considered from the
Designed Algorithm

Vestas V90 3MW Wind Turbine

Average value of the estimated
speed of the vertical shear at
hub height

1.43 MW
(Estimated power using average
value of speed of vertical shear)

Average value of the estimated

turbulence adjusted speed at
hub height

2.15 MW
(Estimated power using average
value of turbulence adjusted speed)

Average value of the estimated
disc speed at hub height

1.86 MW
(Estimated power using average
value of disc speed)

Average value of the estimated
air density adjusted disc speed

1.91 MW

(Estimated power using average
value of air density adjusted disc
speed)

physical factors considered from the input wind speed data file2.

Physical Factors of Wind Power
Model considered from the
Designed Algorithm

Vestas V90 3MW Wind Turbine

Average value of the estimated
speed of vertical shear at hub
height

1.73 MW
(Estimated power using average
value of speed of vertical shear)

Average value of the estimated
turbulence adjusted speed at hub
height

241 MW
(Estimated power using average
value of turbulence adjusted speed)

Average value of the estimated
disc speed at hub height

2.14 MW
(Estimated power using average
value of disc speed)

Average value of the estimated
air density adjusted disc speed

2.19 MW

(Estimated power using average
value of air density adjusted disc
speed)

Table 3.9: The wind power of the wind turbine -2 showing the effect of the individual

Table 3.10: The wind power of the wind turbine -2 showing the effect of the individual
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Table 3.11: The wind power of the wind turbine -2 showing the effect of the individual

physical factors considered from the input wind speed data file3.

Physical Factors of Wind Power
Model considered from the
Designed Algorithm

Vestas V90 3 MW Wind Turbine

Average value of the estimated
speed of vertical shear at hub
height

1.24 MW
(Estimated power using average value
of speed of vertical shear)

Average value of the estimated
turbulence adjusted speed at hub
height

2.05S MW
(Estimated power using average value
of turbulence adjusted speed)

Average value of the estimated disc
speed at hub height

1.77 MW
(Estimated power using average value
of disc speed)

Average value of the estimated air
density adjusted disc speed

1.81 MW
(Estimated power using average value
of air density adjusted disc speed)

Table 3.12: The wind power of the wind turbine -2 showing the effect of the individual

physical factors considered from the input wind speed data file4.

Physical Factors of Wind Power
Model considered from the
Designed Algorithm

Vestas 3.0 MW Wind Turbine

Average value of the estimated
speed of vertical shear at hub
height

626.69 KW
(Estimated power using average value
of speed of vertical shear)

Average value of the estimated
turbulence adjusted speed at hub
height

1.1§ MW
(Estimated power using average value
of turbulence adjusted speed)

Average value of the estimated
disc speed at hub height

960.98 KW
(Estimated power using average value
of disc speed)

Average value of the estimated air
density adjusted disc speed

983,10 KW
(Estimated power using average value
of air density adjusted disc speed)
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Table 3.13: The Wake coefficient data determined from the wind direction and the

shadow effect of the wind turbines in the wind farm.

Time Series Wind Wake Coefficient for a Wake Coefficient for all

Speed Data of Equal | Wind Direction other Wind Direction

Length (10 min) (45°£5°% 225°+ 5% (except 45°+ 5% and
225% 5%

Wake Coefficient 0.84 1.00

of Wind Data |

Wake_ Coefficient
of Wind Data 2 0.85 1.00

Wake_ Coefficient :
of Wind Data 3 0.83 1.00

Wake Coefficient
of Wind Data 4 0.80 1.00

Estimated wake coefficient results of the wind farm power model are given in

Table 3.13. Layout information of the wind farm and the wind direction at the wind
farm site is a major contributing factor when estimating wind farm power. The wake
effect takes place for a particular wind direction when wind turbines are placed at a
closer distance due to the shadow effect of a neighboring wind turbine. It results in the
reduction of the wind speed, and correspondingly, the wind power. The wake
coefficient is determined using equation 16 and a value of | indicates that the wind
turbines operate at a maximum power and a value less than | indicates that the wind
turbines operate at a reduced power due to the wake effect or the shadow effect of the
neighboring wind turbines. The resuits are estimated and tested for different input

wind data files.
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Table 3.14 Estimated average value of the wind power of the wind turbine-2

operating at the disc speed in the Fermeuse wind farm.

Time Serics Wind Speed
Data of Equal Length (10
min)

Wind Turbine-2 Power of
Vestas V 90 - 3 MW Wind
Turbine

(No Wake Effect)

Wind Data 1 1.75 MW
Wind Data 2 1.92 MW
Wind Data 3 1.63 MW
Wind Data 4 1.06 MW

The estimated power of the Vestas V90 3 MW wind turbine -2 is given in Table 3.14.

It gives the average value of power of the 10,000 time series of the Vestas V90 3 MW

wind turbine -2, operating at the disc speed and is tested with different input wind data

set.

Table. 3.15 Estimated average value of the wind power of the wind turbine-2

operating at the wake speed in the Fermcuse wind farm.

Time Series Wind Speed
Data of Lqual Length (10
min)

Wind Turbine-2 Power of
Vestas V 90 3 MW Wind
Turbine (Wake Effect)

Wind Data | 1.41 MW
Wind Data 2 1.58 MW
Wind Data 3 1.31 MW
Wind Data 4 805.82 KW
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The estimated power of the Vestas V90 3 MW wind turbine -2 is given in Table 3.15.
It gives the average value of power of 10,000 time series of the Vestas V90 3 MW
wind turbine -2, operating at the wake speed.. MATLAB code is tested with different

input wind speed data files.

Table 3.16: Estimated average value of the wind farm power of the Fermeuse wind

farm, with the wind turbines operating at the disc speed.

Time Series Wind | Wind farm Power
Speed Data of Vestas V90 3SMW
Equal Length (10 | Wind Turbines
min) GBMW-9 WT)
Wind Data | 17.34 MW
Wind Data 2 18.76 MW
Wind Data 3 16.26 MW
Wind Data 4 11.16 MW

The Fermeuse wind farm has nine Vestas V90 3MW, wind turbines. Table 3.16 gives
the estimated average value of the wind farm power of the input 10,000 time scries

wind data set. The average value of the wind farm power is determined with the wind
turbines in the wind farm operating at the disc speed. The estimated results are tested

with different input wind data set.
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3.7 Transmission Loss in the Wind Farm

The transmission loss occurs due to the flow of current in a cable and it results in a
reduction of power. When the current flows through the wires, a voltage drop occurs
and a corresponding power loss occurs in the cable. These losses are the copper loss
and the induction loss [42], as follows:

i) Copper loss occurs due to heating of the material.

ii) Induction loss occurs when the metallic object absorbs the power due to

the electromagnetic field generated by the current carrying conductors.

After extensive research on power loss, it is concluded that power loss within a wind
farm is about 1% due to the transmission of current through cables [40, 41]. Actual
transmission details and parameters of the Fermeuse wind farm were not available.
Therefore, the wind farm power loss of the Fermeuse wind farm is assumed to have a
transmission loss of 1%. The power loss factor of 0.99 is multiplied to estimate the

wind farm power in real time.
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Table 3.17: The Fermeuse wind farm power estimated before and after a constant

transmission loss (TL) of 1% in the wind farm with and without wake effect.

Time TL Average Average Average Average Wind
Series Wind farm | Wind farm | Wind farm | farm Power
Wind Power Power Power after TL
Speed before TL | after TL before TL {(Wake effect)
Data of (No-wake | (No-wake | (Wake

Equal effect) effect) effect)

Length

(10 min)

Wind 1.0% | 1734 MW | 17.16 MW | 16.37 MW | 16.20 MW
Data |

Wind 1.0% | 18.76 MW | 18.57 MW | 17.84 MW | 17.66 MW
Data 2

Wind 1.0% [ 16.26 MW | 16.10 MW | 1532 MW | I5.16 MW
Data 3

Wind 1.0% | 11.16 MW | 11.04 MW | 10.29 MW | 10.18 MW
Data 4 '

Above, Table 3.17 gives the average value of the wind farm power before and after

transmission loss. The average value of the wind farm power is estimated considering

that the wind turbines are operating with the wake effect and with no wake effect with

a constant transmission loss factor of 1%, The results are estimated and tested with

different input wind speed data files.
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Table 3.18: The estimated average value of the loss in power, given a constant

transmission loss of 1%, with the wake effect and without wake effect.

Time Series TL Loss in Power Loss in Power
Input Wind (No wake effect) | (Wake effect)
Speed Data of

Equal Length

(10 min)

Wind Data | 1.0% 0.17 MW 0.16 MW
Wind Data 2 1.0% 0.19 MW 0.18 MW
Wind Data 3 1.0% 0.16 MW 0.15 MW
Wind Data 4 1.0% 0.12 MW 0.10 MW

Above, table 3.18 gives the estimated average value of the loss in power due to the
transmission of power. The loss in power is determined from the difference in power
when the wind turbines operate at the disc wind speed with no transmission loss and
when the wind turbines operate at the disc wind speed with the transmission loss.
Similarly loss in power is determined from the difference in power when the wind
turbines operate at the wake speed with no transmission loss and when the wind
turbines operate at the wake speed with the transmission loss. The estimated results are

tested with different input wind speed data files.

3.8 Wind Farm Power Calculation Results

3.8.1 Simulated MATLAB results using the designed algorithm to estimate the
wind farm power

Using the Fermeuse wind farm layout information [39], the designed algorithm is
implemented in the MATLAB. A copy of the MATLARB code is found in the

Appendix I and Appendix J. Figure 3.6 is the manufacturer supplied power curve of
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the Vestas V90 3MW wind turbine [52]. The supplied power curves are used to
estimate the actual power curves. MATLAB software has curve fitting toolbox and

after exploring various curve fitting techniques, it is concluded that the best fit

polynomial curve is of order 9 for the Vestas V90 3MW wind turbine and is shown in

Figure 3.7.
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Figure 3.6: Power vs. Wind Speed characteristics of the Vestas V90 3 MW wind turbine (supplied

power curve).

Curve Fitted Westas 3 MWV - Wind Turbine
3500

3000 |- - SO
>
2500 |- i B
Y
2000 & ]
= o5
3 1500 / ]
= o0 'a
1000 | / o
=1
P
so00 | a o
-
e
op-o—oa- T o
o ; i . i
200 5 10 15 20 25

Speed (Mys)

Figure 3.7: Power vs. Wind Speed characteristics of the Vestas V90 3 MW wind turbine (digitized and

curve fitted).
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The input wind speed data file 2 is recorded from the anemometer at a MET tower. It

is assumed that the Fermeuse wind farm has a MET tower with the sensor located at a
height of 80 m. The recorded wind speed is shown in Figure 3.8 for the Vestas V90
3MW wind turbine for a time range of 10,000 minutes. The average value of the wind

speed data shown in Figure 3.8 is 9.96 m/s.
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Figure 3.8: Recorded sensor height wind speed data for the Vestas V90 3MW wind turbine-2. (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The Fermeuse wind farm has 9 wind turbines. The hub height wind speed of the wind
turbine is calculated from the input wind speed at the sensor height using the power
law equation of shear with the shear exponent of 1/7 for each wind turbine hub height
using equation (3.2). The hub height of each wind turbine is determined from the wind
turbine base elevation. Figure 3.9 shows the estimated hub height wind speed for the
Vestas V90 3MW wind turbine-2. The average value of the wind speed in Figure 3.9

1s 10.21 m/s.

84
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Figure 3.9: Hub height wind speed is estimated for the Vestas V90 3MW wind turbine-2 at the hub

height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The turbulence adjusted wind speed is estimated for the Vestas V90 3MW wind
turbine-2 at the hub height. It is calculated using equation (3.4) from the input wind
speed and the estimated turbulence intensity at the hub height. The resulting wind

speed is shown in Figure 3.10 for the Vestas V90 3MW wind turbine. The average

value of the wind speed in Figure 3.10 is 12.13 m/s.
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Figure. 3.10: Turbulence adjusted wind speed estimated for the Vestas V90 3MW wind turbine-2 at the

hub height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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The disc wind speed adjusted for vertical shear and turbulence adjusted speed, 1s
calculated using equation (3.6) from the lower rotor tip to the upper rotor tip of the
wind turbine. The resulting wind speed is assumed to be at the hub height and is
plotted in Figure 3.11 for the Vestas V90 3MW wind turbine-2. The average value of

the wind speed in Figure 3.11 1s 11.31m/s.
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Figure 3.11: Estimated disc speed adjusted for turbulence and shear for the Vestas V90 3 MW wind

turbine-2 at the hub height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The estimated wake wind speed is shown in Figure 3.12 for the Vestas V90 3MW
wind turbine-2. The wind speed is reduced due to the wake effect from the upstream
turbines. The wind direction is a major contributing factor in estimating the wake
effect. The wake effect is estimated from the thrust coefficient of the wind turbine and
is influenced by the nearest distance between the neighboring wind turbines. It is
calculated using equation (3.10), equation (3.11) and equation (3.12). The average

value of the wind speed in Figure 3.12 is 10.55 m/s.
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Figure 3.12: Wake speed estimated for Vestas 3 MW wind turbine-2 at hub height (Note: Time Scale:

X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

Using the polynomial curve fitted supplied power curve, the actual power curve of the
Vestas V90 3MW wind turbine is estimated from the uncorrected power curve
function adjusted with air density using equation (3.8). There is an increase in the
estimated power with air density adjustment as given in Table 3.6 for the wind turbine-
2. The power curves are estimated for nine wind turbines of the Fermeuse wind farm.

A simulated result of the power curve for one of the wind turbine is shown in

Figure3.13.
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Figure 3.13: Estimated power curve of the Vestas 3MW wind turbine adjusted with air density.
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The wake power model is developed in this chapter and the wake power is determined
from the estimated wake speed. There is a reduction in power with the wake effect
(black) as shown in Figure 3.14 for the Vestas V90 3MW wind turbine-2. The
estimated wind power of the wind turbine-2 is compared with the wake effect (black)
and without wake (red) effect and is plotted with respect to time as shown in

Figure 3.14. The wind power remains constant after rated wind speed of the wind
turbine is reached and the corresponding power is called rated power. With further
increase in wind speed beyond rated wind speed, there is no significant improvement

in the power and is shown in Figure 3.14 and Figure 3.15.
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Figure 3.14: Comparison of the wind power of the wind turbine -2 operating at the wake effect (black)

and no wake effect (red).

As shown in Figure 3.15, the wind farm power is determined from the wind turbines
operating at the free disc speed and is plotted with respect to time. The wind farm
power is estimated from the Vestas V90 3MW wind turbines. The total power of the
wind turbines in the wind farm is added and is the estimated wind farm power. The

average value of the wind farm power in Figure. 3.15 is 18.76 MW.
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Figure 3.15: Estimated wind farm no-wake power with respect to time (Note: Time Scale: X axis: 1

unit =10 minute; 1000 unit = 10000 minutes).

In Figure 3.16, the wind farm power is determined at the wake wind speed and 1s
plotted with respect to time. The wind farm power is estimated from the Vestas V90
3MW wind turbines. The total power of the wind turbines in the wind farm is the
estimated wind farm power. The average value of the wind farm power in Figure 3.16

1s 17.84 MW.
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Figure 3.16: Estimated wind farm wake power with respect to time. (Note: Time Scale: X axis: 1 unit

=10 minute; 1000 unit = 10000 minutes).

The wind farm power is estimated from the Vestas V90 3MW, wind turbines with the

wake effect (red) and without wake effect (black) as shown in Figure 3.17. The
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estimated wind farm power at the free disc speed is compared with the estimated wind

farm power at the wake speed and is plotted with respect to time.
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Figure 3.17: Comparison of estimated wind farm power with the wake effect (red) and without wake
effect (black) is plotted with respect to time. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit =

10000 minutes).

The wind farm power is determined from the wind direction and the shadow effect of
the neighbouring wind turbines. The wake coefficient data determines the wind farm
efficiency. Figure 3.18 is a plot of the wind direction at the wind farm site and Figure
3.19 is a plot of the wake coefficient. The wake coefficient of 1 indicates that the wind
turbines operate at a maximum power and a value less than 1 indicates that the wind
turbines operate at a reduced power or at the wake speed. In Figure 3.19, we see that at
a wind direction of 45° + 5° and 225° £5°, there is a wake effect and the wind speed is
reduced as the wind turbines are placed at a closer distance. For all other wind
direction, the wind turbines operate at a maximum power and this factor is determined

from the wind farm layout and the distance between neighboring wind turbines.
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Figure 3.18: Wind direction (degrees) at the wind farm site for a time span of 10,000 minutes. (Note:

Time Scale: X axis: | unit =10 minute; 1000 unit = 10000 minutes).
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Figure 3.19: Wake coefficient determined from the wind direction is plotted with respect to time. (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

Figure 3.20 is a plot of the wind direction at the windfarm site for a time span of 5000

minutes and Figure 3.21 is a plot of wake coefficient for a time span of 5000 minutes.

D "o Shne

=250 | .

Hod
N
3

—
°o 50 Joc0 150 z00 ET T3 350 400 460 600

260
Tirme (rmin)

Figure 3.20: Wind direction (degrees) at the wind farm site for a time span of 5000 minutes. (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 3.21: Wake coefficient determined from the wind direction is plotted with respect to time (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

With a transmission loss of 1%, there is a further reduction in the estimated wind farm
power. Figure 3.22 and Figure 3.23 shows loss in power in the wind farm due to the
transmission of power without the wake effect and with the wake effect respectively.
The wind farm power loss due to the transmission of power is plotted with respect to
time. With the wake effect there is a more reduction in power as compared to the
power loss without the wake effect. The average value of power in Figure 3.22 is

18.57 MW and the average value of power in Figure 3.23 is 17.66 MW.
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Figure 3.22: Wind farm output power with power loss (1%) in transmission with no wake effect is

plotted with respect to time. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 3.23: Wind farm output power with power loss in transmission (1%) and the wake effect is

plotted with respect to time. (Note: Time Scale: X axis: [ unit =10 minute; 1000 unit = 10000 minutes).

3.9 Conclusion

In this chapter, the working wind power model of the Fermeuse wind farm is
developed, using the historic data of atmospheric parameters as input to the wind
power model for the wind power estimation. The manufacturer supplied power curve

assumes ideal conditions and the variation in atmospheric parameters results in the

variation of the output power. In this chapter, details of the wind turbine characteristics

and its specifications, wind farm layout, and the number of wind turbines are studied.
The location of the MET tower and the sensor height is assumed from the layout
information of the Fermeuse wind farm. The actual turbine power curves are produced
when the power is plotted as a function of equivalent wind speed or disc speed instead
of the hub height wind speed. This suggests that both vertical shear and turbulence are
important factors in power production. Air density is an important factor in power
production and the corrected power curve of the wind turbine is estimated from the
equivalent wind speed adjusted with air density. The corrected power curves of the

wind turbines are produced from the atmospheric parameters affecting the wind
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turbine rotor disc and the wind farm output power is estimated. The wind direction and

the wind farm layout have a significant influence upon the power output mainly due to
the wake effect. The wake model is developed as the wind turbines are placed at a
closer distance. The impact of the wake is to disturb the wind flow to the wind turbines
and this result in power loss as compared to the wind turbines operating in undisturbed
wind flow. This effect can be minimized by increasing the distance between the wind
turbines. It is concluded that there is a reduction in the output power of the wind farm
than if the ideal wind turbines layout in a wind farm is assumed. Thus, the MATLAB
code is tested with different input time series wind speed data files. An accurate result
is estimated and tested with everyl0 minutes time series wind data file and is

presented in this chapter.




Chapter 4

Power Prediction of the Cedar Creek, Colorado Wind farm

4.1 Introduction

The Cedar Creek wind farm is located in the United States [5S0]. The wind farm has
274 wind turbines in operating condition. The wind turbines of the Cedar Creek -I
wind farm are the Mitsubishi IMW and the GE 1.5MW wind turbines and the total
capacity of the wind farm is 300MW. The wind turbine manufacturer supplied power
curve assumes ideal conditions and in reality there is a significant variation in physical
factors. Physical factors considered in this chapter are the vertical shear, the turbulence
intensity, the turbulence adjusted wind speed, air density, pressure, and temperature to
estimate the wind power of a wind turbine. The main challenge for this work is to find
a simple model that will take a topographical map, a wind farm layout and the long
term site wind and atmospheric data and uses this information to calculate the wind
speed at all the wind turbines. The designed algorithm estimates the wind speed
adjusted for shear and turbulence for. the wind turbine rotor disc from the lower rotor
tip to the upper rotor tip of the wind turbine. The value estimated is the effective wind
speed and is assumed to be at the hub height. Air density is adjusted to predict the
wind power of each wind turbine. The speed and height for each wind turbine varies
when estimating power for the wind farm. It depends on the distance between the wind
turbines, the contour height and the iayout information. The wake model is
incorporated when wind turbines are located less than four times the rotor diameter of

upstream turbines or at a very closer distance from the neighboring wind turbines. The
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wake power of the wind farm is estimated considering the wind direction, the wind

farm layout information, the thrust coefficient of the wind turbine, and the free disc
speed. The resulting simple model of a wind farm is simulated in the MATLAB
software. The simulation results for a number of wind speed data sets are presented in

this chapter.

4.2 Wind Turbine Power Estimation

The wind turbine details of the Mitsubishi IMW and the GE 1.5 MW are given below
and are required in the initial design. The wind turbine power vs. wind speed
characteristics is studied. It is digitiz'ed from the power curve data. Thus power curve
of the Mitsubishi 1 MW and the GE 1.5 MW wind turbine is produced in the initial
design stage. Figure 4.1 gives details and some specifications of the Mitsubishi IMW
wind turbine. The GE ‘s 1.5-77 wind turbine is a three blade, upwind, horizontal axis
wind turbine and has a rotor diametér of 77 meters. This series of wind turbines has
hub height of 65m and 80 m. The specifications of a wind turbine are given below.
The wind turbine operates at a variable speed. It uses asynchronous generator. The
power curve in the initial design stage is the supplied power curve of the GE 1.5 MW
wind turbine. Below is the list of some of its features.

GE 1.5 MW Wind Turbine Technical Specification

Designed to IEC 61400-1

TC Ib: 10 m/s average wind speed; B turbulence intensity

Standard and cold weather extreme options
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Rotational direction: Clockwise viewed from an upwind location

Speed regulation: Electric drive pitch control with battery backup

Aerodynamic brake: Full feathering of blade pitch

Cut in wind speed: 3.5 m/s

Cut out wind speed: 25 m/s

Rated power: 1.5 MW [48]

MITSUBISHI WIND TURBINE GENERATOR

MW 762/ ] 0 (MWT-1000A)

Technical Data

Operation Data

Cutdn 3.0m/s

Rated 12.5m/s

Cut-out 25.0 m/s

Wind Class IEC Class NA

Rotor

Diameter 61.4m

Swept Area 2,960 m2

Rotational Speed 19.8 rpm

Blade Length 29.5m

Aerodynamic Brake Blade Feathering
Generator

Type Induction Generator (4 Pole Type)
Rated Power 1,000 kW

Voltage 690 V/600 V (50 Hz/60 Hz)
Frequency 50 Hz/60 Hz

Tower

Hub Height 50 m/60 m/69 m

Figure 4.1: Mitsubishi Wind Turbine [48].
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As mentioned above the Cedar Creek —I wind farm has the Mitsubishi IMW and the
GE 1.5MW wind turbines. Some specifications [49] of these wind turbines are shown
in Figure 4.1 Recently, 123 more wind turbines has been added to the site in the
second phase of the project called Cedar Creek —I1 [50]. This chapter only covers the
first phase of the Cedar Creek wind farm. The wind turbine manufacturer supplied
power curve assumes ideal condition and in reality there is a variation in physical
parameters and a variation in the output power. The wind turbine manufacturer
supplied power curve can be digitized by extracting data from power vs. wind speed
characteristics. The Cedar Creek wind farm has 274 wind turbines. The actual height
of'the wind turbine rotor disc is determined by considering its contour height i.e. hub
height and the wind turbine base ele;/ation. The site measured wind speeds are given at
the sensor heights. To determine a wind turbine output power, the wind speed data
should be known at the lower rotor tip of the wind turbine to the upper rotor tip of the
wind turbine. The input wind data at unknown heights is determined using the power
law equation of shear using 1/7 sheaf exponent value. The input wind speed data
provided is typically every 10 minutes, 45000 time series. Using live measured wind
speed data AMEC can produce a predicted wind speed data. From a given predicted
input wind speed data measured from the sensor; the turbulence intensity, the
turbulence adjusted wind speed, the wind shear exponent, and the free disc speed of
the wind turbine is determined. The turbulence adjusted wind speed is determined
from the input wind speed and the turbulence intensity at the known model levels or
heights which intersect the wind turbine rotor disc. The wind shear exponent is

calculated using the power [aw equation of shear from the turbulence adjusted wind
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speed data at known heights. The diéc wind speed which is adjusted for turbulence and
vertical shear is evaluated for the entire rotor disc by numerically integrating the wind
speed values from the lower rotor tip to the upper rotor tip of the wind turbine by
solving the equation of disc speed. The estimated value of the disc speed is assumed to
be at the hub height. The uncorrected power is determined from the designed algorithm
of the physical factors considered and the digitized and curve fitted wind turbine
power curve supplied by the manufacturer. The disc speed is substituted in the
uncorrected power curve function and is subsequently adjusted for air density to
estimate the corrected power of a wind turbine. Thus wind power is estimated for one

wind turbine from the estimated disc speed, adjusted for turbulence and vertical shear.

4.3 The Cedar Creek Wind Farm Power Estimation

4.3.1 Layout of the Cedar Creek Colorado Wind farm

The wind farm layout [47] is plotted using Arc Geographic Information System (GIS)
software available at Queen Elizabeth I, Memorial University of Newfoundland as
shown in Figure 4.2 below using the latitude and longitude data of all the wind
turbines and metrological tower (MF;T) tower locations. Figure 4.3 shows a section of

the wind farm layout.
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Figure 4.2: Cedar Creek- I Wind farm Layout [47].
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Figure 4.3: A section of the Cedar Creek Wind farm Layout [47].

The contour height of the wind turbine is determined from its layout information

and the horizontal distance between the nearest wind turbines and is estimated

100




from the map. The wake effect is considered for the wind turbines for a particular
wind direction in the wind farm. The wake effect arises when the wind turbines are
located at a closer distance. The wind speed for the wind turbines operating in the
wake is reduced and therefore there is a considerable reduction of the wind power.

For a particular wind direction, the wind turbines operating in a partial shadow or a
complete shadow of the upstream or the neighboring wind turbines will produce a
considerable low power. The wake speed of all the wind turbines operating due the
wake effect is determined from the thrust coefficient of the wind turbine, the free disc
speed, and the wind farm layout information. The wind power is estimated for all the
wind turbines operating due to the wake effect. Finally, the output power of each wind
turbine in the wind farm is added to Aetermine the total power of the wind farm. Figure
4.2 indicates that the wind farm will have some reduced power when wind is from
north-east or from south west. For all other wind direction there will be negligible

reduction of the wind speed and the wind turbines will operate at a maximum power.
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Sensor height of MET tower, topography, Wind farm has "N’ wind turbines. Wind
contour height, rotor diameter and hub height speed and wind turbine height varies. (N =
of wind turbine number of wind turbines in wind farm)

A\ 4

Meteorological

S . ; Input: Pressure,
Digitize manufacturer supplied power Temperature, Wind

curve by plotting power vs. speed Speed, Wind 4—l
characteristics of a wind turbine

direction, Time

A4

Meteorological

input data stored
every 10 minutes
time series order

Y

Wind speed at wind turbine is estimated from the meteorological input wind
data: Calculation of turbulence intensity, vertical shear, turbulence adjusted
speed and disc wind speed

y

Disc wind speed is input to the uncorrected power curve function, which is
determined using the MATLAB polyfit command by digitizing the power curve

Air density adjusted to the estimated uncorrected power curve
equation to determine corrected power curve of wind turbine
at the hub height of wind turbine from the time series data.

h 4

Output is a corrected power curve of the wind turbine

'

Estimated average value of wind power is the output power of the wind turbine

\ 4

Figure 4.4: Flowchart of the wind power model.
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Estimated disc speed of Wind direction at the wind farm Wind farm (N wind turbines):
N wind turbines in the site from the input time series data Wind speed and height of each
wind farm (same steps as wind turbine varies

in previous flow chart)

\ 4

Wake effect determination from topography, Layout of windfarm,
latitude and longitude information, contour height of wind turbines
in the wind farm

A 4

With wind turbines
placed at a larger

distance, there is no ¢
wake effect in wind farm

With wind turbines placed at a smaller distance, there is wake effect

in wind farm
: Input: Thrust coefficient |
Wake speed determined for the | of wind turbine, disc
wind turbine operating with speed, radius of rotor,
v reduced speed in the wind farm and shadow cone. Area
L of shadow region and the
All other direction 7y gl
0. co v rotor area of wind
(except 45"+ 5%or
225° +5°) 45°+5%0r
225°+5° Y
Wake effect: Wake speed of wind turbine is input to the |
uncorrected power curve function ‘
\ 4 JV \ 4 |
No wake effect: Disc A 4
speed of wind turbine is Z Uncorrected wind power with input wake speed using uncorrected
input to the uncorrected power curve function and is determined using the MATLAB polyfit
power curve function command by digitizing the power curve
y
¥ Corrected wind power with more of wake
A 4 speed and less of disc speed or only wake speed
¥ Uncorrected wind power with input disc speed and is adjusted with air density
using uncorrected power curve function and is
determined using the MATLARB polyfit il |
command by digitizing the power curve
v e ghep Average of the wind power estimated is the

output power of wind farm

\ 4

Z Corrected power of wind
turbines with input disc speed
adjusted with density

\ 4

Average value of the estimated wind power is the
output power of wind farm

v

Figure 4.5: Flow chart of the wind farm wake model.
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4.4 Wind power of a wind turbine with no-wake effect

The manufacturer supplied power curve of the GE 1.5MW wind turbine and the
Mitsubishi IMW wind turbine is digitized by plotting power vs. wind speed
characteristics. The uncorrected power curve function is determined using the polyfit
command by the curve fitting toolbox [32] in the MATLAB software. In the curve
fitted equation the variable ‘s’ for thé GE 1.5MW wind turbine and the variable ‘r’ for
the Mitsubishi IMW wind turbine is replaced by the wind turbine rotor disc speed
( Upisk) estimated from the algorithm adjusted for turbulence and shear for the GE
1.5MW and the Mitsubishi IMW wind turbine. The uncorrected power is determined
from the disc wind speed substituted in the polyfit equation and is given in equation
(4.1) and equation (4.2).
For the GE 1.5MW wind turbine
GPuncor = q1(18) + q1(17).* (s)* + q1(16).* (s)? + q1(15).* (s)3 + q1(14).

* (s)*+ q1(13).x (s)° + q1(12).* () + q1(11). (s)” + q1(10).

* ()% + qL(9).x (5)7 + q1(8) * (s)*° +q1(7). ()™ +q1(6).* ()™

+ q1(5)* ()™ + q1(4).* ()™ + q1(3).* (5)*° + q1(2).* (s)*®

+ q1(1).x (s)?

Here s = Estimated disc speed value of the GE 1.5 MW wind turbine 4.1)
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For the Mitsubishi IMW wind turbine
MPuncor = q2(19) + q2(18).x (r)* + q2(17).x (1) + q2(16).% (r)3 + q2(15).»
(M* + q2(14).+ (1)° + q2(13)* (N® +q2(12).* (r)7 + q2(11). (r)® + q2(10).+
(r)° + q2(9) .+ (D' +q2(8)x (N +q2(7).* (r)*? + q2(6).* (1)** + q2(5).»
(M +q2(4) .+ (N'° + q2(3)* (1€ + q2(2).* (N + q2(1).* (1)*®

Here r = Estimated disc speed value of the Mitsubishi 1MW wind turbine (4.2)

The wind speed at the hub height of the wind turbine is calculated using the power law
equation of shear from the input sensor wind speed at known height and wind speed,

and is given in equation (4.3).

Hhub
H1

Uhub = U1 * (—=2)70.143 (4.3)

The turbulence intensity (Iu) at a known heights is calculated using equation (4.4)
from an input wind speed (U) at a MET tower height of 69m and 80m for Mitsubishi
IMW and GE 1.5MW wind turbine respectively and using standard deviation data (o)
of the input wind speed.

lu = (4.4)

g
u
The turbulence adjusted wind speed (U" (TI)) is calculated using equation (4.5) from

the input wind speed and the turbulence intensity (Iu) for the Mitsubishi IMW and the

GE 1.5MW wind turbine.

U'(TD = {/U3 « (1 + 313) ' (4.5)

The wind shear exponent (o) is calculated [37] from the above turbulence adjusted

wind speed U2 (TI) and U’l (TI) at various model level or heights H, and H, of a
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wind turbine rotor disc. It is given by the power law equation of shear as in equation

(4.6).

u'2(TD
log ( )
_ u’1(TI) (4.6)

g (%)
The wind velocity across the wind turbine rotor disc [ 1] which is adjusted for
turbulence and vertical shear, is calcplated using equation (4.7) from the lower rotor
tip (H-R) to the upper rotor tip (H+R) of the wind turbine. Here H is the wind turbine
hub height and R is the radius of the wind turbine rotor disc and A is the area of wind

turbine rotor disc.

Upisk = %f:f;Uz VRZ — H2 + ZHZ— Z2dZ 4.7

Actual air density is determined from the input pressure and the temperature as given
in equation (4.8).

p =34837« 2 (4.8)

Air density (p) [32] correction is applied to the estimated disc speed and the corrected
power P1(corr) of a wind turbine [32] is determined from the actual air density, the
air density at the Standard Temperature Pressure (STP), and the estimated uncorrected
power P1(uncorr) from the curve fitting equation and is given in equation (4.9) for
the GE 1.5MW wind turbine and thq Mitsubishi IMW wind turbine.

P1(corr) = Pl(uncorr) =

p
p at STP (4.9)

Where P1(uncorr) = GP(uncorr) for the GE wind turbine and MP(uncorr)
for the Mitsubishi wind turbine. P1(corr) = GP(corr) for the GE wind turbine

and MP(corr) for the Mitsubishi wind turbine
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4.5 Wind power of a wind farm with no-wake effect
Below is the general equation to determine the wind power of a wind farm with no-

wake effect. For the Colorado wind farm, detail study of the wind farm layout, the
number of wind turbines, the contour height of the wind turbine and the distance
between the wind turbines are studied. These values are considered to estimate the
power of wind turbines in the wind farm. For a particular wind direction, the wake
effect is considerable when the wind turbines are placed at a closer distance. For all

other wind direction, the wind turbines operate in free wind speed. With no-wake

effect, the wind turbines operate at a maximum power if the wind speed is above the

rated value and the wind farm power is

determined by adding power of each wind turbine. The Colorado wind farm has 274
wind turbines and the total power of the wind farm is sum of the power of each wind
turbine in the wind farm and is calculated using equation (4.10), where number of
wind turbines is denoted by n=274. |

Yzl P1(corr) = Total Windfarm No_wake Power (4.10)

4.6.1 Wind power of a wind turbine with the wake effect

Figure 4.6 shows [51] the wake effect in a wind farm. Below is the general equation to
determine the wind power of a wind turbine with the wake effect. The wind speed for
the downstream wind turbine reduces due to the wake effect depending on the shadow
area of the rotor disc, the radius of the shadow cone, the thrust coefficient of the wind

turbine resulting in a reduction in the wind power. The wake speed of the wind turbine
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is determined from the free disc speed at the rotor disc and correspondingly the wake

power is determined.

Figure 4.6: Wake Effect in a Wind farm [51].

Depending on the distance between the wind turbines (X), the radius of the shadow
cone Rx [33] of the upstream turbine is calculated using equation (4.11) from the
radius of rotor (R) and tana. The value of tana is 0.04 under the free stream and 0.08
under the wake stream.

Rx = R+ X * tana ' “4.11)
The thrust coefficient (Ct) of the wind turbine [34] is calculated from the disc speed
adjusted for vertical shear and turbulence using equation (4.12) and is given below.

The disc speed is assumed to be at the hub height of the wind turbine.

(2* Upisk— 3.5)

= 50 (Upisk)"2

(4.12)

The wake speed (Uwake) of a wind turbine [38] is calculated from the disc speed, the

thrust coefficient, the radius of the rotor disc, the radius of the shadow cone (Rx) of
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rotor disc, the area of shadow region (AS) of rotor disc and the area of the wind turbine

rotor (A) using equation (4.13).

Uwake = Upjsc * [1 — /(1 — CO) * (%)2 (3 (4.13)

The supplied power curve is digitized by plotting power vs. wind speed characteristics
and the uncorrected power is determﬁned. The variable from the polyfit equation is
replaced by the wake speed. The uncorrected wake power of the wind turbine is
calculated using equation (4.14) and equation (4.15) for the GE 1.5MW and the
Mitsubishi 1 MW wind turbine respectively
For the GE 1.5MW Wind Turbine
GP(uncorr_wake)
= q1(18) + q1(17).x (Uwakel)? + q1(16).x (Uwake1)? + q1(15).
* (Uwake1)® + q1(14).x (Uwake1)* + q1(13).x (Uwakel)®
+ q1(12).* (Uwake1)® + q1(11).* (Uwake1)” + q1(10).
* (Uwakel)® + ql(é).* (Uwake1)® + q1(8).x (Uwake1)*?
+ q1(7).+ (Uwake1)!! + q1(6).x (Uwake1)?? + q1(5).* (Uwake1)*3
+ q1(4).+ (Uwake1)** + q1(3).* (Uwake1)?5 + q1(2).* (Uwake1)*®
+ q1(1).* (Uwake1)?’

Here Uwakel = The wake speed determined using equation (4.13).  (4.14)
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For the Mitsubishi IMW Wind Turbine

MP(uncorry,ke) = q2(19) + q2(18).* (Uwake2)! + q2(17).x (Uwake2)? +
q2(16).* (Uwake2)3 + q2(15).» (Uwake2)* + q2(14).x (Uwake2)® + q2(13).*
(Uwake2)® + q2(12).+ (Uwake2)” + q2(11).x (Uwake2)® + q2(10).x
(Uwake2)? + q2(9).» (Uwake2)'® + q2(8).x (Uwake2)'! + q2(7).x
Uwake212+q26.xUwake213+q25.

* (Uwake2)* + q2(4).x (Uwake2)® + q2(3).* (Uwake2)® + q2(2).*
Uwake217+ q21.*Uwake218 Here Uwake2=The wake speed determined using
equation (4.13) 4.15)
Actual air density is determined from the input pressure (P) and the temperature (T),
using equation (8). Air density correction is applied and the corrected wake power,
Pl(corr-wake) of the wind turbine [32] with the wake effect is determined from the
actual density, the density at STP and the uncorrected wake power from the curve

fitting equation of MATLAB using equation(4.16)

P1(corr_wake) = P1(uncorr_wake) * (4.16)

P
p atSTP

Here P1(uncorr_wake) = GP(uncorr_wake) for the GE wind turbine and

MP(uncorr_wake) for the Mitsubishi wind turbine determined using equation (4.16).

P1(corr_wake) = GP(corr_wake) for the GE wind turbine and MP (corr_wake)

for the Mitsubishi wind turbine using equation (4.16).
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4.6.2 Wind power of a wind farm with the wake effect

The Cedar Creek wind farm has 274 wind turbines and the corrected wake power of
each wind turbine with the wake effect is added using equation (4.17) and the total
power of the wind farm with the wake effect is determined. Table 4-2 gives the details
of the wind turbines of the Cedar Creek wind farm. From the layout data and the
details of the wind turbine in Table 4-2, shadow effect of the wind turbines in the wind
farm is estimated for a particular wir;d direction. Equation (4.17) determines the total
wind farm wake power.

Y= P1(corr_wake) = Total Windfarm Wake Power “4.17

4.6.3 Wake coefficient of a wind turbines in the wind farm

The wake coefficient (WC) [33] of a wind turbine in the wind farm is calculated using
equation (4.18) by the ratio of total output power of the wind farm with the wake effect

to the total output power of the wind farm neglecting the wake effect.

_ YRzl Pi(corr_wake)
YAzt P1(corr)

wC

(4.18)

4.7 The Cedar Creek Wind Farm Data

The Cedar Creek —I wind farm [50] has 53, G.E 1.5MW wind turbines and 221,
Mitsubishi IMW wind turbines. The wind turbine specifications are given in detail for

the two wind turbines. There are two MET towers and the sensors are located at a
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height of 80m and 69m for the GE 1.5 MW and the Mitsubishi | MW wind turbines to

record the wind speed.

Table 4.1: Specifications of the Wind Turbines.

Specifications of | GE 1.5 MW Wind Mitsubishi 1 MW
Wind Turbine Turbine Wind Turbine
Cut in wind speed | 3.5 m/s 3.5m/s

Rated wind speed 12.5 m/s 12 m/s

Rotor Diameter 77 m 61.4m

Rated Power 1.5 MW 1.0 MW

Hub Height 80 m 69 m

Cut out wind 25 m/s 25 m/s

speed

Table 4.2: Layout data of wind turbines of Colorado wind farm [9]. Here FID is

nearest feature identity.

Wind Name of Wind | Near Contour H+R H-R
Turbine Turbine FID Height+ | (m) (m)

Hub

Height(m)
A0l GE 1.5 0 146.02 184.52 | 107.52
A02 GE 1.5 1 152.52 191.02 114.02
A03 GE 1.5 2 152.19 190.69 | 113.69
A04 GE 1.5 3 158.62 197.12 | 120.12
A0S GE 1.5 4 154,34 192.84 | 115.84
A06 GE 1.5 5 156.12 194.62 | 117.62
A07 GE 1.5 6 169.4 207.9 130.9
A08 GE 1.5 7 167.54 206.04 | 129.04
A09 GE 1.5 8 170.62 209.12 | 132.12
AlO GE 1.5 9 167.1 205.6 128.6
B0l GE 1.5 10 152.83 191.33 114.33
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B02 GE 1.5 11 154.89 193.39 | 116.39
B03 GE1.5 12 153.98 19248 | 1154

B04 GE 1.5 13 158.88 197.38 | 120.38
BO5 GE 1.5 14 163.49 201.99 |124.99
B06 GE 1.5 15 163.2 201.7 124.7

B07 GE 1.5 16 168.37 206.87 | 129.87
B08 GE 1.5 17 168.34 206.84 | 129.84
B09 GE 1.5 18 167.74 206.24 | 129.24
B10 GE 1.5 19 170.66 209.16 | 132.16
Bll GE 1.5 20 171.48 20998 | 132.98
B12 GE 1.5 21 165.2 203.7 126.7

B13 GE 1.5 22 158.99 197.49 |120.49
B14 GE 1.5 23 164.03 202.53 | 125.53
B15 GE 1.5 24 170.06 208.56 | 131.56
Bl6 GE 1.5 25 168.6 207.11 | 130.11
B17 GE 1.5 26 170.8 209.3 132.3

B18 GE 1.5 27 181.33 219.83 | 142.83
B19 GE 1.5 28 178.04 216.54 | 139.54
B20 GE 1.5 29 184.59 223.09 | 146.09
B21 GE 1.5 30 177.1 215.6 138.6

B22 GE 1.5 31 179.77 218.27 | 141.27
B23 GE 1.5 32 176.34 214.84 | 137.84
B24 GE 1.5 33 180.58 219.08 | 142.08
B25 GE 1.5 34 183.08 221.58 | 144.58
B26 GE 1.5 35 180.35 21885 | 141.85
B27 GE 1.5 36 179 2175 140.5

C0l1 GE 1.5 37 165.3 203.85 [126.85
€02 GE 1.5 38 170.89 209.39 | 132.39
C03 GE 1.5 39 170.8 20933 [ 132.33
C04 GE 1.5 40 173.85 21235 | 135.35
CO05 GE 1.5 41 179.35 217.85 | 140.85
C06 GE 1.5 42 178.49 216.99 | 139.99
C07 GE 1.5 43 176.8 21536 | 138.36
C08 GE 1.5 44 164.32 202.82 | 125.82
C09 GE 1.5 45 167.44 205.94 | 128.94
C10 GE 1.5 46 170.73 209.23 | 132.23
Cll GE 1.5 47 167.69 206.19 | 129.19
CI2 GE 1.5 48 167.09 205.59 | 128.59
Cl13 GE 1.5 49 164.38 202.88 | 125.88
Cl4 GE 1.5 50 164.1 202.6 125.6

LS GE 1.5 51 163.76 202.26 | 125.26
Clé GE 1.5 52 164.1 202.6 125.6

D00 Mitsubishi 1.0 | 53 137.84 168.84 | 106.84
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D01 Mitsubishi 1.0 | 54 141 172 110
D02 Mitsubishi 1.0 | 55 143.6 174.65 | 112.65
D03 Mitsubishi 1.0 | 56 150.86 181.86 | 119.86
D04 Mitsubishi 1.0 | 57 150.35 181.35 | 119.35
D05 Mitsubishi 1.0 | 58 150.6 181.6 119.6
D06 Mitsubishi 1.0 | 59 150.14 181.14 | 119.14
D07 Mitsubishi 1.0 | 60 151.23 182.23 | 120.23
D08 Mitsubishi 1.0 | 61 156.42 187.42 | 12542
D09 Mitsubishi 1.0 | 62 160.16 191.16 | 129.16
D10 Mitsubishi 1.0 | 63 146.8 177.83 | 115.83
D11 Mitsubishi 1.0 | 64 144.73 175.73 | 113.73
D12 Mitsubishi 1.0 | 65 145.06 176 114
D13 Mitsubishi 1.0 | 66 141.49 172.4 110.49
D14 Mitsubishi 1.0 | 67 143.32 17432 | 112.32
D15 Mitsubishi 1.0 | 68 145.6 176.6 114.6
D16 Mitsubishi 1.0 | 69 147.99 178.9 116.9
D17 Mitsubishi 1.0 | 70 148.71 179.7 117.71
D18 Mitsubishi 1.0 | 71 150.4 1814 119.4
DI9 Mitsubishi 1.0 | 72 148.8 179.8 117.8
D20 Mitsubishi 1.0 | 73 153.5 184.56 | 122.56
D21 Mitsubishi 1.0 | 74 154.91 18591 | 123.91
D22 Mitsubishi 1.0 | 75 155.86 186.86 | 124.86
D23 Mitsubishi 1.0 | 76 155.38 186.38 | 124.38
D24 Mitsubishi 1.0 | 77 157.91 188.92 | 126.91
D25 Mitsubishi 1.0 | 78 159.23 190.23 | 128.23
D26 Mitsubishi 1.Q | 79 156.62 187.62 | 125.62
EO0] Mitsubishi 1.0 | 80 140.74 171.74 1109.74
E02 Mitsubishi 1.0 | 81 140.2 171.2 109.2
E03 Mitsubishi 1.0 | 82 144.44 175.44 [ 113.44
E04 Mitsubishi 1.0 | 83 140.42 171.42 1109.42
E05 Mitsubishi 1.0 | 84 140.74 171.74 |109.74
E06 Mitsubishi 1.0 | 85 143.6 174.6 112.6
EQ7 Mitsubishi 1.0 | 86 149.33 180.33 | 118.3
E08 Mitsubishi 1.0 | 87 151.84 182.84 | 120.84
E09 Mitsubishi 1.0 | 88 153.06 184 122.06
E10 Mitsubishi 1.0 | 89 155.6 186.67 | 124.67
Ell Mitsubishi 1.0 | 90 15541 186.41 |124.4
Ei2 Mitsubishi 1.0 | 91 156.42 187.42 | 125.42
E13 Mitsubishi 1.0 | 92 158.91 189.91 | 12791
El14 Mitsubishi 1.0 | 93 160.15 191.15 | 129.15
E15 Mitsubishi 1.0 | 94 160.71 191.71 | 129.71
El6 Mitsubishi 1.0 | 95 160.95 191.95 | 129.9
E17 Mitsubishi 1.0 { 96 161.2 192.2 130.2
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E18 Mitsubishi 1.0 | 97 161.73 192,73 | 130.73
FOI Mitsubishi 1.0 | 98 165.21 196.21 | 134.21
F02 Mitsubishi 1.0 | 99 163.59 194.59 | 132.59
F03 Mitsubishi 1.0 | 100 165.57 196.57 | 134.57
F04 Mitsubishi 1.0 | 101 164.93 195.93 | 133.93
F05 Mitsubishi 1.0 | 102 163.66 194.66 | 132.66
FO6 Mitsubishi 1.0 | 103 165.4 196.4 134.4

FO7 Mitsubishi 1.0 | 104 164.49 195.49 | 133.49
FO8 Mitsubishi 1.0 | 105 164.63 195.63 | 133.63
F0O9 Mitsubishi 1.0 | 106 166.08 197.08 | 135.08
F10 Mitsubishi 1.0 | 107 168.71 199.71 | 137.71
Fl1l Mitsubishi 1.0 | 108 165.93 196.93 | 134.93
GO1 Mitsubishi 1.0 | 109 126.07 157.07 | 95.07

G02 Mitsubishi 1.0 | 110 132.03 163.03 | 101.03
GO03 Mitsubishi 1.0 | 111 130.84 161.84 | 99.84

G04 Mitsubishi 1.0 | 112 132.09 163.09 | 101.09
GO5 Mitsubishi 1.0 | 113 129.79 160.79 | 98.79

G06 Mitsubishi 1.0 | 114 134.27 165.27 | 103.27
Go07 Mitsubishi 1.0 | 115 135.26 166.26 | 104.26
GO08 Mitsubishi 1.0 | 116 141.19 172.19 | 110.19
G09 Mitsubishi 1.0 | 117 139.79 170.79 | 108.79
G10 Mitsubishi 1.0 | 118 139.38 170.38 | 108.38
Gll Mitsubishi 1.0 | 119 141.12 172.12 | 110.12
GI2 Mitsubishi 1.0 | 120 142.89 173.89 | 111.89
G13 Mitsubishi 1.0 | 121 144.94 175.94 | 113.94
Gl14 Mitsubishi 1.0 | 122 147.24 178.24 | 116.24
G135 Mitsubishi 1.0 | 123 153.88 184.88 | 122.88
Glé6 Mitsubishi 1.0 | 124 154.56 185.56 | 123.56
G17 Mitsubishi 1.0 | 125 153.17 184.17 | 122.17
Gl18 Mitsubishi 1.0 | 126 156.4 187.4 1254

G19 Mitsubishi 1.0 | 127 155.92 186.92 | 124.92
G20 Mitsubishi 1.0 | 128 156.56 187.56 | 125.56
G21 Mitsubishi 1.0 | 129 147.21 17821 | 116.2

G22 Mitsubishi 1.0 | 130 149.2 180.2 118.2

G23 Mitsubishi 1.0 | 131 150.18 181.18 [ 119.18
G24 Mitsubishi 1.0 | 132 151.16 182.16 | 120.16
G25 Mitsubishi 1.0 | 133 150.89 181.89 | 119.89
G26 Mitsubishi 1.0 | 134 153.01 184.01 | 122.01
G27 Mitsubishi 1.0 | 135 153.19 184.19 | 122.19
G28 Mitsubishi 1.0 | 136 155.02 186.02 | 124.02
G29 Mitsubishi 1.0 | 137 159.2 190.2 128.2

G30 Mitsubishi 1.0 | 138 159.65 190.65 | 128.65
G31 Mitsubishi 1.0 | 139 162.33 19333 | 131.33




G32 Mitsubishi 1.0 | 140 162.51 193.51 | 131.51
G33 Mitsubishi 1.0 | 141 164.47 195.47 | 133.47
G34 Mitsubishi 1.0 | 142 163.47 194.47 | 132.47
G35 Mitsubishi 1.0 | 143 162.09 193.09 | 131.09
G36 Mitsubishi 1.0 | 144 159.69 190.69 | 128.69
G37 Mitsubishi 1.0 | 145 162.67 193.67 | 131.67
HO1 Mitsubishi 1.0 | 146 113.65 144.65 | 82.65
HO02 Mitsubishi 1.0 | 147 116 147 85
HO3 Mitsubishi 1.0 | 148 118.59 149.59 | 87.59
HO04 Mitsubishi 1.0 | 149 125.6 156.6 94.6
HOS Mitsubishi 1.0 | 150 120.56 151.56 | 89.56
HO06 Mitsubishi 1.0 | 151 118.94 149.94 | 87.94
HO7 Mitsubishi 1.0 | 152 122.8 153.89 | 91.89
HO8 Mitsubishi 1.0 | 153 123.53 154.53 | 92.53
HO09 Mitsubishi 1.0 | 154 138.23 169.23 | 107.23
H10 Mitsubishi 1.0 | 155 139.44 170.44 | 108.44
HI1 Mitsubishi 1.0 | 156 135.39 166.39 | 104.39
H12 Mitsubishi 1.0 | 157 134.78 165.78 | 103.78
H13 Mitsubishi 1.0 | 158 133.14 164.14 | 102.14
H14 Mitsubishi 1.0 | 159 128.83 159.83 [ 97.83
H15 Mitsubishi 1.0 | 160 133 164 102
H16 Mitsubishi 1.0 | 161 141.82 172.82 | 110.82
H17 Mitsubishi 1.0 | 162 128.11 159.11 | 97.11
HI18 Mitsubishi 1.0 | 163 127.12 158.12 | 96.12
H19 Mitsubishi 1.0 | 164 125.7 156.7 94.7
H20 Mitsubishi 1.0 | 165 127.84 158.84 | 96.8
H21 Mitsubishi 1.0 | 166 132.25 163.25 | 101.25
H22 Mitsubishi 1.0 | 167 128.8 159.8 97.8
H23 Mitsubishi 1.0 | 168 126.82 157.82 | 95.82
H24 Mitsubishi 1.0 | 169 125.61 156.61 | 94.61
H25 Mitsubishi 1.0 | 170 129.1 160.1 98.1
H26 Mitsubishi 1.0 | 171 122.99 153.99 | 91.99
H27 Mitsubishi 1.0 | 172 123.88 154.88 | 92.88
H28 Mitsubishi 1.0 | 173 126 157 95
H29 Mitsubishi 1.0 | 174 135.02 166.02 | 104.02
H30 Mitsubishi 1.0 | 175 135.38 166.38 | 104.38
H31 Mitsubishi 1.0 | 176 135.2 166.25 | 104.25
H32 Mitsubishi 1.0 | 177 135.43 16643 | 104.43
H34 Mitsubishi 1.0 | 178 129 .81 160.81 | 98.8
H35 Mitsubishi 1.0 | 179 132.59 163.59 | 101.5
H36 Mitsubishi 1.0 | 180 135.85 166.85 | 104.85
H37 Mitsubishi 1.0 | 181 135.78 166.78 | 104.78
H38 Mitsubishi 1.0 | 182 135.7 166.7 104.7
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H39 Mitsubishi 1.0 | 183 137.06 168.06 | 106.06
H40 Mitsubishi 1.0 | 184 13221 168.91 |106.91
H41 Mitsubishi 1.0 | 185 144.8 175.8 113.8
H42 Mitsubishi 1.0 | 186 140.82 171.82 | 109.82
H43 Mitsubishi 1.0 | 187 143.93 174.93 | 112.93
H44 Mitsubishi 1.0 | 188 145.17 176.17 | 114.17
H45 Mitsubishi 1.0 | 189 144.79 17579 | 113.79
H46 Mitsubishi 1.0 | 190 147.35 178.35 | 116.35
H47 Mitsubishi 1.0 | 191 145.9 176.9 114.9
H48 Mitsubishi 1.0 | 192 139.95 170.95 | 108.95
H49 Mitsubishi 1.0 | 193 140.1 171.1 109.1
H50 Mitsubishi 1.0 | 194 153.46 184.46 | 1224
HS1 Mitsubishi 1.0 | 195 153.71 184.71 | 122.71
H352 Mitsubishi 1.0 | 196 156.68 187.68 | 125.68
H33 Mitsubishi 1.0 | 197 152.1 183.1 121.1
H54 Mitsubishi 1.0 | 198 153.32 184.32 | 122.32
HS5 Mitsubishi 1.0 | 199 155.22 186.22 | 124.22
H56 Mitsubishi 1.0 | 200 159.2 190.2 128.2
H57 Mitsubishi 1.0 | 201 159.35 190.35 | 128.35
H58 Mitsubishi 1.0 | 202 159.3 190.3 128.3
H59 Mitsubishi 1.0 | 203 162.75 193.75 | 131.75
H60 Mitsubishi 1.0 | 204 164.28 195.28 | 133.28
H61 Mitsubishi 1.0 | 205 162.88 193.88 | 131.88
He62 Mitsubishi 1.0 | 206 156.9 187.9 125.9
H63 Mitsubishi 1.0 | 207 159.8 190.8 128.8
Ho4 Mitsubishi 1.0 | 208 152.7 i83.7 121.7
JO1 Mitsubishi 1.0 | 209 123.74 154.74 | 92.74
JO2 Mitsubishi 1.0 | 210 126.16 157.16 | 95.16
JO3 Mitsubishi 1.0 | 211 129.33 160.33 | 98.33
J04 Mitsubishi 1.0 | 212 130.07 161.07 |99.07
JOS Mitsubishi 1.0 | 213 132.23 163.23 [ 101.23
JO6 Mitsubishi 1.0 | 214 134.89 165.89 | 103.89
JO7 Mitsubishi 1.0 | 215 129.27 160.27 | 98.27
JO8 Mitsubishi 1.0 | 216 132.27 163.27 | 101.27
JO9 Mitsubishi 1.0 | 217 132.66 163.66 | 101.66
K01 Mitsubishi 1.0 | 218 116.58 147.58 | 85.58
K02 Mitsubishi 1.0 | 219 109.4 140.4 78.4
K03 Mitsubishi 1.0 | 220 106.98 137.98 |75.98
K04 Mitsubishi 1.0 | 221 112.58 143.58 | 81.58
K05 Mitsubishi 1.0 | 222 123.4 154.4 92.4
K06 Mitsubishi 1.0 | 223 122.37 15337 | 91.3
K07 Mitsubishi 1.0 | 224 123.28 15428 | 92.28
K08 Mitsubishi 1.0 | 225 122.75 153.75 | 91.75




K09 Mitsubishi 1.0 | 226 12%.1 158.1 96
K10 Mitsubishi 1.0 | 227 119.87 150.87 | 88.87
K11 Mitsubishi 1.0 | 228 BEcL) 144.79 | 82.79
LO1 Mitsubishi 1.0 | 229 92.4 123.44 | 61.44
L02 Mitsubishi 1.0 | 230 93.48 124.48 | 62.48
LO03 Mitsubishi 1.0 | 231 95.8 126.89 | 64.89
L04 Mitsubishi 1.0 | 232 98.6 129.62 | 67.62
LO05 Mitsubishi 1.0 | 233 98.6 129.64 | 67.64
L06 Mitsubishi 1.0 | 234 89.8 120.8 58.8
LO7 Mitsubishi 1.0 | 235 2108 122.03 | 60.03
L08 Mitsubishi 1.0 | 236 p1.59 122.59 |60.59
L09 Mitsubishi 1.0 | 237 101.34 132.34 | 70.34
L10 Mitsubishi 1.0 | 238 106.2 = . ¥
L11 Mitsubishi 1.0 | 239 110.64 141.64 | 79.64
L12 Mitsubishi 1.0 | 240 95.7 126.7 64.7
L13 Mitsubishi 1.0 | 241 97.38 128.38 | 66.38
L14 Mitsubishi 1.0 | 242 98.78 129.78 | 67.78
M0O1 Mitsubishi 1.0 | 243 87.84 118.84 | 56.84
M02 Mitsubishi 1.0 | 244 89.91 12091 | 58.9
MO03 Mitsubishi 1.0 | 245 89.83 120.83 | 58.83
Mo04 Mitsubishi 1.0 | 246 89.87 120.87 | 58.87
MO05 Mitsubishi 1.0 | 247 9253 123.33 161.33
MO06 Mitsubishi 1.0 | 248 9538 126.59 | 64.59
MO7 Mitsubishi 1.0 | 249 98.85 129.85 | 67.85
MO8 Mitsubishi 1,0 | 250 93.83 124.83 | 62.83
M09 Mitsubishi 1.0 | 251 98.64 129.64 | 67
M10 Mitsubishi 1.0 | 252 97.26 128.26 | 64.24
M1l Mitsubishi 1.0 | 253 95.24 126.2 61.97
MI2 Mitsubishi 1.0 | 254 92.97 125.97 16211
M13 Mitsubishi 1.0 | 255 93.11 124.11 | 64.02
M14 Mitsubishi 1.0 | 256 8302 126.02 | 65.4
M15 Mitsubishi 1.0 | 257 96.4 127.4 67.79
M16 Mitsubishi 1.0 | 258 98.79 129.79 | 74.04
POl Mitsubishi 1.0 | 259 105.04 136.04 | 66.43
P02 Mitsubishi 1.0 | 260 97.43 128.43 | 74.16
P03 Mitsubishi 1.0 | 261 105.16 136.16 | 64.81
P04 Mitsubishi 1.0 | 262 95.81 126.81 |61.2
P05 Mitsubishi 1.0 | 263 92.24 123.24 | 54.96
P06 Mitsubishi 1.0 | 264 85.96 11686 | 55.7]
P07 Mitsubishi 1.0 | 265 86.71 1771 | 67.07
P08 Mitsubishi 1.0 | 266 98.07 129.07 | 63.45
P09 Mitsubishi 1.0 | 267 94.45 125.45 |39.9
P10 Mitsubishi 1.0 | 268 70.9 101.99 | 38.12
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P11 Mitsubishi 1.0 | 269 69.12 100.12 | 44.39
P12 Mitsubishi 1.0 | 270 75.39 106.39 | 40.9
P13 Mitsubishi 1.0 | 271 71.9 102.9 42.02
P14 Mitsubishi 1.0 | 272 73.02 104.02 | 55.47
P15 Mitsubishi 1.0 | 273 86.47 117.47 | 126.58

The layout information is supplied from the AMEC, St John’s. From the latitude and

longitude information of the wind turbines, the nearest distance between the wind

turbines is estimated. The Arc GIS software is used to estimate the nearest feature

identity for a particular wind turbine in the wind farm.

Table 4.3: Wind Direction and Area of Shadow of the Wind Turbines in the Wind

farm.

Wind Turbines in the Area of Shadow of Wind | For all Other
Wind farm Turbine in (m?) at Wind Direction
45%+5%/225°+5° (m?)

GEWTI 2500.0 0
GEWT2 2500.0 0
GEWT3 2500.0 0
GEWT4 2500.0 0
GEWTS3 1900.0 0
GEWT6 2100.0 0
GEWT7 2500.0 0
GEWTS 2500.0 0
GEWT9 2400.0 0
GEWTI0 1500.0 0
GEWTI1 2500.0 0
GEWTI2 2100.0 0
GEWTI3 2100.0 0
GEWTI14 2100.0 0
GEWTI5 2500.0 0
GEWTI16 2500.0 0
GEWTI17 2500.0 0
GEWTI8 2100.0 0
GEWTI9 2100.0 0
GEWT20 2400.0 0
GEWT2I 2400.0 0
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GEWT22 2100.0 0
GEWT23 0:0000 0
GEWT24 0.0000 0
GEWT25 2500.0 0
GEWT26 2500.0 0
GEWT27 2500.0 0
GEWT?28 2000.0 0
GEWT29 2000.0 0
GEWT30 0.0000 0
GEWT31 0.0000 0
GEWT32 2000.0 0
GEWT33 2000.0 0
GEWT34 2000.0 0
GEWT35 2500.0 0
GEWT36 2500.0 0
GEWT37 2200.0 0
GEWT38 0.0000 0
GEWT39 2200.0 0
GEWT40 0.000 0
GEWT41 0.000 0
GEWT42 2200.0 0
GEWT43 2200.0 0
GEWT44 0.000 0
GEWT45 0.000 0
GEWT46 2000.0 0
GEWT47 1000.0 0
GEWT48 2400.0 0
GEWT49 2400.0 0
GEWTS50 0.0000 0
GEWTS1 2000.0 0
GEWTS2 2000.0 0
GEWTS33 2000.0 0
MITWT] 0.0000 0
MITWT2 1952.85 0
MITWT3 650.95 0
MITWT4 741.52 0
MITWTS 1741.52 0
MITWT6 1741.52 0
MITWT?7 1801.9 0
MITWT8 1952.85 0
MITWT9 1952.85 0
MITWTI0 1952.85 0
MITWTI11 0 0
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186228

MITWTI2 0
MITWTI3 1801.9 0
MITWTI14 0 0
MITWT15 1043.42 0
MITWTI16 1043.42 0
MITWTI17 0 0
MITWT18 1741.52 0
MITWT19 1650.95 0
MITWT20 1741.52 0
MITWT21 741.52 0
MITWT22 1741.52 0
MITWT23 741.52 0
MITWT24 741.52 0
MITWT25 681.14 0
MITWT26 0 0
MITWT27 0 0
MITWT28 0 0
MITWT29 1801.9 0
MITWT30 2801.9 0
MITWT3I 2801.9 0
MITWT32 1862.28 0
MITWT33 1862.28 0
MITWT34 1254.75 0
MITWT35 1254.75 0
MITWT36 1801.9 0
MITWT37 1862.28 0
MITWT38 1862.28 0
MITWT39 0 0
MITWT40 1650.95 0
MITWT41 1862.28 0
MITWT42 1862.28 0
MITWT43 1801.9 0
MITWT44 1801.9 0
MITWT45 1801.9 0
MITWT46 0 0
MITWT47 1590.57 0
MITWTA48 1590.57 0
MITWT49 1590.57 0
MITWTS0 1801.9 0
MITWTS51 801.9 0
MITWTS52 801.9 0
MITWTS53 801.9 0
MITWT54 801.9 0
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MITWTS55 1650.95 0
MITWTS56 2560.38 0
MITWTS57 0 0
MITWTS58 2650.95 0
MITWTS59 681.14 0
MITWT60 681.14 0
MITWTé61 0 0
MITWT62 0 0
MITWT63 862.28 0
MITWT64 0 0
MITWT65 952.85 0
MITWTé66 801.9 0
MITWTé67 0 0
MITWT68 1043.42 0
MITWT69 1043.42 0
MITWT?70 952.85 0
MITWT71 801.9 0
MITWT72 650.95 0
MITWT73 952.85 0
MITWT74 952.85 0
MITWT75 801.9 0
MITWT76 590.57 0
MITWT77 0 0
MITWT78 0 0
MITWT79 650.95 0
MITWT80 650.95 0
MITWTSgI 0 0
MITWTS2 801.9 0
MITWT83 801.9 0
MITWT84 1801.9 0
MITWT85 0 0
MITWT86 952.85 0
MITWT87 952.85 0
MITWTS8S 801.9 0
MITWT89 801.9 0
MITWT90 801.9 0
MITWTII 560.38 0
MITWT92 590.57 0
MITWT93 590.57 0
MITWT94 0- 0
MITWTO9S 862.28 0
MITWT96 650.95 0
MITWT97 801.9 0
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MITWT98 801.9 0
MITWT99 650.95 0
MITWTI100 650.95 0
MITWTIO01 650.95 0
MITWTI102 801.9 0
MITWT103 801.9 0
MITWT104 0. 0
MITWT105 862.28 0
MITWT106 862.28 0
MITWT107 0 0
MITWT108 1405.7 0
MITWT109 1405.7 0
MITWTII10 0 0
MITWTI11 862.28 0
MITWTI112 1862.28 0
MITWTI113 0 0
MITWTI! 14 0 0
MITWTI15 0 0
MITWTI116 0 0
MITWTI117 741.52 0
MITWTI118 650.95 0
MITWTI119 0 0
MITWT120 1254.75 0
MITWT121 1254.75 0
MITWTI122 0 0
MITWTI23 1741.52 0
MITWTI124 1741.52 0
MITWTI125 1741.52 0
MITWTI126 1103.80 0
MITWTI127 1103.80 0
MITWTI128 1405.70 0
MITWTI129 1405.70 0
MITWT130 1405.70 0
MITWTI131 1405.70 0
MITWTI132 1405.70 0
MITWTI133 1405.70 0
MITWT134 1405.70 0
MITWTI135 741.52 0
MITWTI136 862.28 0
MITWT137 862.28 0
MITWT138 560.38 0
MITWTI139 1560.38 0
MITWT140 741.52 0
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MITWTI141 741.52 0
MITWT142 0 0
MITWT143 650.95 0
MITWT 144 650.95 0
MITWTI145 650.95 0
MITWTI146 0 0
MITWTI147 0 0
MITWTI148 0 0
MITWTI149 741.52 0
MITWTI50 741.52 0
MITWTI5]1 801.9 0
MITWTI52 801.9 0
MITWTI53 3801.9 0
MITWTI54 801.9 0
MITWTI55 801.9 0
MITWT156 0 0
MITWTI157 0 0
MITWTI58 862.28 0
MITWTI59 741.52 0
MITWTI160 741.52 0
MITWTI61 1556.65 0
MITWTI162 1556.65 0
MITWTI163 741.52 0
MITWTI164 862.28 0
MITWT165 862.28 0
MITWTI166 0 0
MITWTI167 862.28 0
MITWT168 1862.28 0
MITWTI169 2952.85 0
MITWT170 1164.18 0
MITWTI171 1164.18 0
MITWT172 0 0
MITWTI173 0 0
MITWTI174 134532 0
MITWTI175 1345.32 0
MITWTI176 0 0
MITWT177 0 0
MITWTI178 0 0
MITWT179 0 0
MITWT180 741.52 0
MITWTI181 741.52 0
MITWT182 0 0
MITWT183 0 0
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MITWT184 0 0
MITWTI85 0 0
MITWTI186 0 0
MITWTI187 0 0
MITWTI188 0 0
MITWT189 0 0
MITWT190 0 0
MITWTI191 650.95 0
MITWT192 952.85 0
MITWT193 952.85 0
MITWT194 862.28 0
MITWTI195 862.28 0
MITWTI96 862.28 0
MITWT197 0 0
MITWT198 0 0
MITWT199 0 0
MITWT200 801.90 0
MITWT201 801.90 0
MITWT202 650.95 0
MITWT203 650.95 0
MITWT204 0 0
MITWT205 1862.28 0
MITWT206 1801.90 0
MITWT207 0 0
MITWT208 1650.95 0
MITWT209 801.90 0
MITWT210 1801.90 0
MITWT211 0 0
MITWT212 0 0
MITWT213 0 0
MITWT214 0 0
MITWT215 0 0
MITWT216 862.28 0
MITWT217 1862.28 0
MITWT218 1650.95 0
MITWT219 0 0
MITWT220 0 0
MITWT221 0. 0

MATLAB estimated results of the wind turbine-2. The average value of the wind

speed data of the GE 1.5 MW wind turbine-2 and the Mitsubishi 1.0 MW wind turbine
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is determined from the designed algorithm and the estimated results are tested with

different input time series wind data files implemented in MATLAB software.

Table 4.4: Estimated results of the wind turbine-2 from the input wind data
file 4.

Physical Factors of the Wind | GE 1.5MW Wind | Mitsubishi IMW

Power Model Turbine-2 (Mean | Wind Turbine-2
Value at Hub (Mean Value at
Height) Hub Height)

Sensor Height Wind Speed 7.37 m/s 7.22 m/s

(Mean Value of the Wind

Speed)

Vertical Wind Speed Shear 8.08 m/s 7.99 m/s

Turbulence Adjusted Wind 9.71 m/s 9.59 m/s

Speed

Disc Speed of Wind Turbine | 9.62 m/s 9.53 m/s

Wake Speed of Wind 8.25 m/s 7.80 m/s

Turbine

Table 4.5: Estimated results of the wind turbine-2 for an input wind data file 3.

Physical Factors of Wind GE 1.5 MW Wind | Mitsubishi 1.0

Power Model Turbine-2 (Mean MW Wind
Value at Hub Turbine -2
Height) (Mean Value at

Hub Height)

Sensor Height Wind Speed 7.37 m/s 7.22 m/s

(Mean of Wind Speed)

Vertical Wind Speed Shear 8.09 m/s 7.99 m/s

Turbulence Adjusted Wind 9.71 m/s 9.59 m/s

Speed

Disc Speed of Wind Turbine | 9.62 m/s 9.54 m/s

Wake Speed of Wind Turbine | 8.25 m/s 7.80 m/s
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Table 4.6: MATLARB estimated results of wind turbine-2 for an input wind data file 2.

Physical Factors of Wind GE 1.5 MW Mitsubishi 1.0

Power Model Wind Turbine-2 | MW Wind Turbine
(Mean Value at | -2 ( Mean Value at
Hub Height) Hub Height)

Sensor Height Wind Speed 7.35 m/s 7.19 m/s

(Mean of Wind Speed)

Vertical Wind Speed Shear 8.06 m/s 7.97 m/s

Turbulence Adjusted Wind 9.71 m/s 9.59 m/s

Speed

Disc Speed of Wind Turbine | 9.63 m/s 9.54 m/s

Wake Speed of Wind Turbine | 8.25 m/s 7.80 m/s

Table 4.7: MATLAB estimated results of wind turbine-2 for an input wind data file |

Physical Factors of Wind GE 1.5 MW Mitsubishi 1.0 MW

Power Model Wind Turbine-2 | Wind Turbine-2
(Mean Value at | (Mean Value at Hub
Hub Height) Height)

Sensor Height Wind Speed 7.33 m/s 7.18 m/s

(Mean of Wind Speed)

Vertical Wind Speed Shear 8.04 m/s 7.95 m/s

Turbulence Adjusted Wind 9.68 m/s 9.57 m/s

Speed

Disc Speed of Wind Turbine 9.59 m/s 9.50 m/s

Wake Speed of Wind Turbine | 8.22 m/s 7.78 m/s

The estimated power of individual physical factors considered and its contribution in
determining the wind power of a wind turbine is given in the table below. The change

in wind power is determined from the physical factors considered. The uncorrected
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power curve function determined from the curve fitting toolbox using the polyfit

command in MATLAB is used to estimate the corresponding power. The average

value of wind speed is substituted in the equation of uncorrected power curve function

and corresponding wind power is determined for the physical factor considered.

Table 4.8: The wind power of a wind turbine -2 in the wind farm with the input time

series data file 1.

Physical Factors of
Wind Power Model
Considered from the
Designed Algorithm

GE 1.5 MW Wind
Turbine

Mitsubishi IMW Wind
Turbine

Average value of the
estimated speed of the
vertical shear at hub
height

635.92 KW
(Estimated power
using average value of
speed of vertical shear)

275.89 KW
(Estimated power
using average value of
speed of vertical
shear)

Average value of the
estimated turbulence
adjusted speed at hub
height

1.15 MW

(Estimated power
using average value of
turbulence adjusted
speed)

632.66 KW
(Estimated power
using average value of
turbulence adjusted
speed)

Average value of the
estimated disc speed at
hub height

1.12 MW

(Estimated power
using average value of
disc speed)

617.44 KW
(Estimated power
using average value of
disc speed)

Average value of the
estimated air density
adjusted disc speed

1.14 MW

(Estimated power
using average value of
air density adjusted
disc speed)

631.65 KW
(Estimated power
using average value of
air density adjusted
disc speed)
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Table 4.9: Wind power of wind turbine -2 in the Colorado wind farm with the input

wind data file 2.

Physical Factors of Wind

GE 1.5 MW Wind

Mitsubishi 1| MW

estimated speed of
vertical shear at hub
height

(Estimated power
using average value
of speed of vertical
shear)

Power Model considered | Turbine Wind Turbine
from the Designed

Algorithm

Average value of the 636.45 KW 276.33 KW

(Estimated power
using average value
of speed of vertical
shear)

Average value of the
estimated turbulence
adjusted speed at hub
height

1.15 MW
(Estimated power
using average value
of turbulence
adjusted speed)

633 KW
(Estimated power
using average value
of turbulence
adjusted speed)

Average value of the
estimated disc speed at
hub height

1.12 MW
(Estimated power
using average value
of disc speed)

618 KW
(Estimated power
using average value
of disc speed)

Average value of the
estimated air density
adjusted disc speed

1.15 MW
(Estimated power
using average value
of air density
adjusted disc speed)

632.14 KW
(Estimated power
using average value
of air density
adjusted disc speed)
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data file 3.

Table 4.10: Wind power of a wind turbine -2 in the wind farm using the input wind

Physical Factors of

GE 1.5 MW Wind

Mitsubishi 1 MW

Wind Power Model Turbine Wind Turbine
considered from the

Designed Algorithm .

Average value of the 628.86 KW 272 KW

estimated speed of
vertical shear at hub
height

(Estimated power
using average value of
speed of vertical
shear)

(Estimated power
using average value of
speed of vertical
shear)

Average value of the
estimated turbulence
adjusted speed at hub
height

1.148 MW

(Estimated power
using average value of
turbulence adjusted
speed)

633.09 KW
(Estimated power
using average value of
turbulence adjusted
speed)

Average value of the
estimated disc speed at
hub height

1.124 MW

(Estimated power
using average value of
disc speed)

617.87 KW
(Estimated power
using average value of
disc speed)

Average value of the
estimated air density
adjusted disc speed

1.15 MW

(Estimated power
using average value of
air density adjusted
disc speed)

632.1 KW

(Estimated power
using average value of
air density adjusted
disc speed)

130



Table 4.11: Wind power of a wind turbine -2 in the Colorado wind farm with the input

wind data file 4.

Physical Factors of

GE 1.5 MW Wind

Mitsubishi 1 MW

estimated speed of
vertical shear at hub
height

(Estimated power
using average value
of speed of vertical
shear)

Wind Power Model Turbine Wind Turbine
considered from the

Designed Algorithm

Average value of the | 622 KW 268.18 KW

(Estimated power
using average value
of speed of vertical
shear)

Average value of the
estimated turbulence
adjusted speed at hub

1.139 MW
(Estimated power
using average value

625.34 KW
(Estimated power
using average value

estimated disc speed
at hub height

(Estimated power
using average value
of disc speed)

height of turbulence of turbulence
adjusted speed) adjusted speed)
Average value of the | 1.115 MW 610.14 KW

(Estimated power
using average value
of disc speed)

Average value of the
estimated air density
adjusted disc speed

1.1409 MW
(Estimated power
using average value
of air density
adjusted disc speed)

624.18 KW
(Estimated power
using average value
of air density
adjusted disc speed)

Results of Table 4-12 are estimated from the wind farm power model. The layout
information of the wind farm and the wind direction at the wind farm site is a major
contributing factor to estimate the wind farm power. The wake effect takes place for
a particular wind direction when wind turbines are placed at a closer distance due to
the shadow effect of neighboring wind turbines. It results in reduction in the wind
speed and correspondingly the wind power. The wake coefficient is determined using

equation (4.18). The wake coefficient of | indicates that the wind turbines operate at a

131



maximum power and a value less than 1 indicates that the wind turbines operate at
reduced power due to the wake effect or the shadow effect of neighboring wind

turbines. The results are estimated and tested with different input wind data files.

Table 4.12: Wake coefficient data determined from the wind direction and shadow

effect of the wind turbines in the wind farm.

Time Series Wind Wind Direction All other Wind

Speed Data of Equal | (45°+5°; 225°+5°) Direction

Length (10 min) (except 45%+ 5% and
225% 5%

Wake Coefficient of

Wind Data 1 0.8451 1.0

Wake Coefticient of '

Wind Data 2 0.8452 1.0

Wake Coefticient of

Wind Data 3 0.8440 1.0

Wake Coefficient of

Wind Data 4 0.8439 1.0

Table 4.13: Estimated power output of the Colorado wind farm.

Time Series G.E Wind Mitsubishi Average Wind
Wind Speed Turbines Wind farm

Data of Equal | (1.5 MW- 53 Turbines (GE +

Length (10 WT) (1IMW-221 Mitsubishi)
min) , WT)

Wind Data 1 49.10 MW 111.4 MW 160.5 MW
Wind Data 2 49.34 MW 112.1 MW 161.3 MW
Wind Data 3 49.55 MW 112.29 MW 161.7 MW
Wind Data 4 49.50 MW 112.19 MW 161.6 MW
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The Colorado wind farm has the Mitsubishi | MW, 221 wind turbines and the GE 1.5
MW, 53 wind turbines. Results ofTéble 4-13 are the estimated average value of power
of the GE wind turbines and the Mitsubishi wind turbines, when the wind turbines are
operating at the disc speed. The MATLAB code is tested with different input wind

speed data files.

4.8 Transmission Loss in the Wind farm

Transmission losses occur due to the current flow in the cables and there is reduction
in power. When current flows through wires, voltage drop occurs and thus
correspondingly power loss occurs in the cable. The losses include copper loss and
induction loss [42].

i) Copper loss is as a consequence of heating of the material with a potential
difference.

ii) Induction losses occur when metallic object absorbs power due to electromagnetic
field generated by current carrying conductors.

After an extensive research on power loss it is concluded that the power loss within a
wind farm is about 1% due to transmission of current through cables [40, 41]. Actual
transmission details and parameters of the Colorado wind farm were not available.
Therefore, wind farm power loss of the Colorado wind farm is assumed to have 1%
transmission loss. The power loss factor of 0.99 is multiplied to estimate the wind farm

power in real time.
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Table 4.14: Estimated Colorado wind farm power before and after transmission loss

(TL) in wind farm.

Input TL Average Average Average Average
Time Wind Farm | Wind Farm | Wind Farm | Wind Farm
Series Power Power after | Power Power after
Wind before TL. | TL before TL

Data of (No- wake | (No-wake |TL (Wake | (Wake
Equal effect) effect) effect) effect)
Length

(10 min)

Wind 1.0% 160.51 158.89 135.63 134.27
Datal MW MW MW MW

Wind 1.0% 161.31 159.68 136.33 134.97
Data2 MW MW MW MW

Wind 1.0% 161.71 ~ 160.08 136.49 135.12
Data3 MW MW MW MW

Wind 1.0% 161.64 160.03 136.41 135.05
Data4 MW MW MW MW

Results of Table 4-14 are the average value of the wind farm power due to

transmission loss of 1%. Actual power is the wind farm power after transmission loss.

The actual power data is estimated when the wind turbines are operating at the disc

speed with the transmission loss of 1% and when the wind turbines are operating at

the wake speed with the transmission loss of 1%.

134



Table 4.15: Estimated Loss in the power of the Colorado wind farm due to power

transmission.

Time Series Transmission Loss in Power | Loss in Power
Input Wind Loss (No wake (Wake effect)
Speed Data of effect)

Equal Length

(10 min)

Wind Data 1 1.0% 1.605 MW 1.356 MW
Wind Data 2 1.0% 1.613 MW 1.3633 MW
Wind Data 3 1.0% 1.6172 MW 1.3649 MW
Wind Data 4 1.0% 1.616 MW 1.364 MW

Results of Table 4-15 are the estimated net loss in power due to the power
transmission. The transmission loss factor is 1%. Estimated net loss in power is
determined from the difference in power when the wind turbines operate at the disc
speed (no transmission loss factor) and when the wind turbines operate at the disc

speed considering the transmission loss factor (1%). Similarly net loss in power is

determined from the difference in power when the wind turbines operate at the wake

speed (no transmission loss factor) and when the wind turbines operate at the wake

speed considering transmission loss factor. The loss in power is estimated and tested

with different input wind speed data files.
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4.9 Wind Farm Power Calculation Results

4.9.1 Simulated MATLAB Results using the designed algorithm to estimate
wind farm power

Using the Cedar Creek layout information [50], the designed algorithm was
implemented in MATLAB. The Simulated results in MATLAB are shown in the
figure below. A copy of MATLAB code is attached in Appendix K, Appendix L, and
Appendix M. Figure 4.7 and Figure 4.8 are the manufacturer supplied power curve of
the Mitsubishi IMW wind turbine [49] and the GE 1.5 MW wind turbine [48]
respectively. The supplied power curves are used to estimate the actual power curve.
The first step is to digitize the power curves i.e. the curve is fitted to the supplied
power curve of the Mitsubishi IMW wind turbine and the GE 1.5MW wind turbine as
shown in Figure 4.9 and Figure 4.10 respectively. The MATLAB has curve fitting
toolbox and after exploring various curve fitting techniques, it is concluded that the
best fit polynomial curve is of order 18 for the Mitsubishi IMW wind turbine and of

order 17 for the GE 1.5MW wind turbine.
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Figure 4.7: Power vs. Wind Speed characteristics of Mitsubishi | MW wind turbine (supplied power

curve).
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Figure 4.8: Power vs. Wind Speed characteristics of GE 1.5 MW wind turbine (supplied power curve).
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Figure 4.9: Power vs. Wind Speed characteristics of Mitsubishil MW wind turbine (curve fitted).
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Figure 4.10: Power vs. Wind Speed characteristics of GE 1.5 MW wind turbine (curve fitted).
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The input wind speed data filel is recorded from the anemometer at the MET tower.

The Colorado wind farm has two MET tower. The MET tower 1 records the wind

speed for the GE wind turbines at a height of 80m and the MET tower 2 records

the wind speed of the Mitsubishi wind turbines at a height of 69m. The recorded wind

speed is from the wind speed data filel and correspondingly results are simulated in

MATLAB. The recorded wind speed is shown in Figure 4.11 and Figure 4.12 for the

GE 1.5 MW wind turbine and the Mitsubishi 1 MW wind turbine respectively for a

time range of 45,000 minutes. The average value of the wind speed data in Figure 4.11

is 7.33 m/s and the average value of the wind speed data in Figure 4.12 is 7.18 m/s.
The average value of the wind speed data in Figure 4.11 is a bit higher than the

average value of the wind speed data in Figure 4.12.

Sensor Height of GE VWind Turbine
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Figure 4.11: Sensor height wind speed data for the GE 1.5 MW wind turbine-2 recorded from MET

towerl. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.12; Sensor height wind speed data for the Mitsubishi 1.0 MW wind turbine-2 recorded from

MET tower2. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The Colorado wind farm has 274 wind turbines. The wind speed at the hub height is
calc'ulated from the input wind speed at the sensor height using the power law equation
of shear with shear exponent of 1/7 for each wind turbine at the hub height using
equation (4.3). The hub height of each wind turbine is calculated considering the
turbine base elevation. Figure 4.13 and Figure 4.14 shows the estimated hub height
wind speed for the GE 1.5MW wind turbine-2 and the Mitsubishi 1MW wind turbine-
2 respectively. The average value of the wind speed data in Figure 4.13 is 8.04 m/s.
The average value of the wind speed data in Figure 4.14 is 7.95 m/s. The average value
of the wind speed data in Figure 4.13 is a bit higher than the average value of the wind

speed data in Figure 4.14.
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Figure 4.13: Hub height wind speed estimated for the GE 1.5 MW wind turbine-2. (Note: Time Scale: X

axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.14: Hub height wind speed estimated for the Mitsubishi IMW wind turbine- 2. (Note: Time

Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The turbulence adjusted wind speed is estimated for the GE 1.5MW wind turbine-2
and the Mitsubishi IMW wind turbine-2 at the hub height of the wind turbine. It is
calculated using equation (4.5) from the input wind speed and the turbulence intensity
at the hub height. The resulting wind speed is shown in Figure 4.15 and Figure 4.16 for
the GE1.5 MW wind turbine and the Mitsubishi IMW wind turbine respectively. The
average value of the wind speed data in Figure 4.15 is 9.68 m/s. The average value of

the wind speed data in Figure 4.16 is 9.57 m/s. The average value of the wind speed
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data in Figure 4.15 is a bit higher than the average value of the wind speed data in

Figure 4.16.
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Figure 4.15: Turbulence adjusted wind speed estimated for GE 1.5 MW wind turbine- 2 at hub height.

(Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.16: Turbulence adjusted wind speed estimated for Mitsubishi 1.0 MW wind turbine-2 at hub

height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

The disc speed adjusted for vertical shear and turbulence adjusted speed is calculated
using equation (4.7) from the lower rotor tip to the upper rotor tip of the wind turbine.
The resulting wind speed is assumed to be at the hub height of the wind turbine. The
wind speed is plotted in Figure 4.17 for the GE 1.5 MW wind turbine-2 and in Figure
4.18 for the Mitsubishi 1MW wind turbine-2. The average value of the wind speed

data in Figure 4.17 is 9.59 m/s. The average value of the wind speed data in Figure
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4.18 is 9.50 m/s. The average value of the wind speed data in Figure 4.17 is a bit

higher than the average value of the wind speed data in Figure 4.18.
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Figure 4.17: Estimated disc Speed (adjusted for turbulence and shear) for GE 1.5 MW wind turbine-2 at

hub height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.18: Estimated disc speed (adjusted for turbulence and shear) for Mitsubishi 1.0 MW wind

turbine-2 at hub height. (Note: Time Scale: X axis: I unit =10 minute; 1000 unit = 10000 minutes).
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The wake speed is shown in Figure 4.19 for the GE wind turbine-2 and in Figure. 4.20

for the Mitsubishi wind turbine-2. The wind speed is reduced due to the wake effect
from the upstream turbines. It is estimated from the thrust coefficient of the wind
turbine and the closest distance from neighboring turbines using equation (4.11),

equation (4.12) and equation (4.13). The average value of the wind speed data in
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Figure 4.19 is 8.22 m/s. The average value of the wind speed data in Figure 4.20 is
7.78 m/s. The average value of the wind speed data in Figure 4.19 is a bit higher than

the average value of the wind speed data in Figure 4.20.
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Figure 4.19: Wake speed estimated for GE 1.5 MW wind turbine-2 at hub height (Note: Time Scale: X

axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.20: Wake speed estimated for Mitsubishi 1.0 MW wind turbine-2 at hub height. (Note: Time

Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

Using the curve fitted supplied power curve, the actual power curves of the wind
turbine is estimated from the uncorrected power adjusted with air density using
equation (4.9). The power curves are estimated from the designed algorithm for 274
wind turbines of the Colorado wind farm. The estimated power curves are shown in

Figure 4.21 for the GE 1.5 MW wind turbine-1 and in Figure 4.22 for the GE 1.5 MW
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turbine-2. Figure 4.23 and Figure 4.24 are the estimated power curves for the

Mitsubishi IMW wind turbine-1 and the Mitsubishi 1MW wind turbine-2 respectively.
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Figure 4.21: Estimated power curve of GE 1.5 MW wind turbine-1 adjusted with air density.
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Figure 4.22: Estimated power curve of the GE 1.5MW wind turbine-2 adjusted with air density.
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Figure 4.23: Estimated power curve of the Mitsubishi IMW wind turbine-1 adjusted with air density.
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Figure 4.24: Estimated power curve of the Mitsubishi 1.0 MW wind turbine-2 adjusted with air density.

The wake model is developed in this chapter and the wake power is determined

from the estimated wake speed. There is reduction in power with the wake effect
(black) as shown in Figure 4.25 for the GE wind turbine-2 and in Figure 4.26 for the
Mitsubishi wind turbine-2. The estimated wind power of the wind turbine-2 is
compared with the wake effect and without wake effect. When there is no wake effect,
the power is not reduced (red). The wind power of the wind turbine-2 is plotted with

respect to time.
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Figure 4.25; Comparison of power estimated with wake (black) and without wake (red) effect for GE 1.5

MW wind turbine-2. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.26: Comparison of power estimated with wake (black) and without wake (red) effect for
Mitsubishi 1,0 MW wind turbine-2. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000

minutes).

As shown in Figure 4.27, the wind farm power is determined at the free disc speed and
is plotted with respect to time. The wind farm power is estimated from the GE 1.5 MW
and the Mitsubishi 1 MW wind turbines. The total power of the wind turbines in the

wind farm is added and is the estimated wind farm power.
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Figure 4.27: Estimated wind farm no-wake power with respect to time. (Note: Time Scale: X axis: 1

unit =10 minute; 1000 unit = 10000 minutes).

As shown in Figure 4.28, the wind farm power is estimated at the free disc speed and

is compared with the wake power of the wind farm. The wind farm power is plotted
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with respect to time. The wind farm power is estimated from the GE and the

Mitsubishi wind turbines with the wake effect (red) and without wake effect (black).
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Figure 4.28: Comparison of estimated wind farm power with wake effect (red) and no-wake effect

(black) with respect to time. (Note: Time Scale: X axis: | unit =10 minute; 1000 unit = 10000 minutes).

The wind farm output power is determined from the wind direction and shadow effect
of the neighboring wind turbines. Figure 4.29 is a plot of a wind direction at the wind
farm site. As shown in Figure 4.30, the wake coefficient of 1 indicates that the wind
turbines operate at a maximum power and a value less than 1 indicates that the wind
turbines operating at reduced power or at the wake speed. In Figure 4.30, we see that at
a wind direction of 45° + 5° and 225° +5°, there is a wake effect and the wind speed is
reduced as the wind turbines are placed at a closer distance. For all other wind
direction, the wind turbines operate at a maximum power and this factor is determined

from the wind farm layout and the distance between neighboring wind turbines.
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Figure 4.29: Wind direction (degrees) at the wind farm site for a time span of 10000 minutes. (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.30: Wake coefficient determined from wind direction is plotted with respect to time. (Note:

Time Scale: X axis: | unit = 10 minute; 1000 unit = 10000 minutes).

Figure 4.31 is a plot of the wind direction at the wind farm site for a time span of 5000
minutes and Figure 4.32 is a plot of the wake coefficient determined from the wind
direction for a time span of 5000 minutes.
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Figure 4.31; Wind direction (degrees) at the wind farm site for a time span of 5000 minutes. (Note:

Time Scale: X axis: | unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.32: Wake coefficient determined from wind direction is plotted with respect to time (Note:

Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

With the transmission loss of 1%, there is a further reduction in the estimated wind
farm power. Figure 4.33 and Figure 4.34 gives loss in power of the wind farm due to
the power transmission without the wake effect and with the wake effect respectively.
The wind farm power loss due to the transmission is plotted with respect to time. Due
to the wake effect there is more reduction in power as compared to power loss with no

wake effect.
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Figure 4.33: Wind farm output power with power loss (1%) in transmission with no wake effect is

plotted with respect to time. (Note: Time Scale: X axis: | unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.34: Wind farm output power with power loss (1%) in transmission and wake effect is plotted

with respect to time. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).

Figure 4.35 and Figure 4.36 gives actual wind farm power considering the

transmission loss due to the wake effect and no wake effect respectively. The actual

wind farm power is plotted with respect to time. Due to transmission loss there is a

reduction in power. There is more reduction in power due to the wake effect as

compared to power loss without wake effect. The actual power is plotted considering

the transmission loss. Net loss in power due to transmission of power is estimated with

transmission loss of 1%.
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Figure 4.35: Actual estimated wind farm power with transmission loss of 1% due to wake effect is

plotted with respect to time. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000 minutes).
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Figure 4.36: Actual estimated wind farm power with transmission loss of 1% with no wake effect is

plotted with respect to time (Note: Time Scale: X axis: 1 unit =10 minute; [000 unit = 10000 minutes).

4.10 Conclusion

In this chapter working power model of the Cedar Creek -1, Colorado wind farm is
developed with the historic data of atmospheric parameters as input to the wind power
model for power estimation. The manufacturer supplied power curve assumes ideal
condition and a variation of the atmospheric parameters results in a variation in the
output power. In this chapter detail of the wind turbine characteristics, its
specifications, wind farm layout and the number of wind turbines is studied. The
location of met tower and the sensor height is known. The actual turbine power curves
are produced when the power is plotted as a function of equivalent wind speed or disc
speed instead of the hub height wind speed. This suggests that both vertical shear and
the turbulence are important factors in power production. Air density has a major
effect in power production and the corrected power curve of the wind turbine is
estimated from the equivalent wind speed adjusted with air density. The corrected

power curves of the wind turbines are produced from the atmospheric parameters
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effecting wind turbine rotor disc and the wind farm output power is estimated and

presented in the chapter. This chapter shows that the wind direction and the wind farm

layout have a significant influence upon the power output mainly due to the wake
effect. The wake model is developed as wind turbines are placed at a closer distance.
The impact of wake is to disturb wind flow to the wind turbines and as a result it
results in power loss as compared to the wind turbines operating in undisturbed wind.
This effect can be minimized by increasing the distance between the wind turbines. It
is concluded that there is a reduction in the output power of the wind farm than if the ;
ideal wind turbines are assumed. The MATLAB code is tested with different input i
wind data files. An accurate result is estimated with every10 minutes wind data file ;

and is presented in this chapter.
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Chapter 5

Conclusion and Future Work

5.1 Research Overview

In this research the wind speed forecasting models and the physical factors of the
atmospheric parameters were studieq that affects the wind turbine power production
and a working wind speed models and a wind farm power model were implemented in
the MATLAB. Major contributing factors in the wind power production are analyzed
and their effect on the wind power estimation is understood. Some of the factors such
as wind speed, topography, pressure, temperature, wind direction, air density and their
contribution to the wind power gene‘ration are studied and the simulated results are
presented that shows the effect of the individual physical factor in estimating the wind
power of a wind turbine. The physical factors such as vertical shear, turbulence
intensity, air density has a major effect on the energy production. The wind farm
layout, the influence of the wind diréction, the thrust coefficient of the wind turbine,
and the wind turbine placements in the wind farm have a greater influence in
determining the wake coefficient data in the wind farm. The transmission loss in the
wind farm which results in the power loss is determined and the results are estimated
for the Farceuse wind farm located in the Newfoundland and the Cedar Creek
Colorado wind farm located in the United States. The physical model of the wind
power combined with the statistical forecasting model is required for the effective use
of the generated wind power for the utility operators. The designed algorithm takes

into account the physical factors affecting the wind turbine rotor disc is implemented
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in the MATLAB software, which is fast and accurate and can take any number of wind

turbines as input to the power model with huge data set of historic time series wind
data. It is tested for accuracy for every 10 minutes time series data set.

The wind speed forecasting models are studied in this research work
and some of the models are designed and implemented in the MATLAB software and
are tested for accuracy using the input time series wind speed data. The wind speed
models studied and implemented in Fhese projects are the Auto Regressive Moving
Average model, the Kaman Filter, the Unscented Kaman Filter, and the Non Linear
Auto Regressive Exogenous model. Accurate forecast of the wind speed is obtained
for the selected range of the wind speed. The designed model on the wind speed
estimation gives accurate result for the short term wind speed prediction for the time
series wind speed data. The Kaman .ﬁlter and the Unscented Kaman filter have a
greater impact in minimizing the noise effect associated with the input wind speed
data, and are crucial for accurate estimation for the wind speed forecasters. The noise
associated in the wind speed can result in errors in the actual wind speed estimation.
The working model of both the filters is implemented in the MATLAB and its

performance is tested for accurate estimation of the forecasted wind speed.

5.2 Research Contribution
The research contributions are:
Short term wind speed prediction using the Auto Regressive Moving Average model

for five hours in advance is developed and implemented in the MATLARB software.
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The designed algorithm using Auto Regressive Moving Average model implemented

in the MATLAB software is fast, accurate and is tested with different input wind speed

data sets. An hour ahead wind speed model using the Kalman filter is implemented in

the MATLAB software using linear parametric model or Auto Regressive model as
input to the Kalman filter. The developed hybrid model has the advantage of accurate

estimation of the wind speed and the error is minimised. An hour ahead wind speed

model using Unscented Kalman filter is developed in the MATLAB software using
non linear Auto Regressive Exogenous (ARX) model as input to the Unscented
Kalman filter. It gives accurate estimation of the wind speed and the performance is
compared with the linear Auto Regressive model as input to the Unscented Kalman
filter. It is proved from the wind speed prediction model that the Kalman filter gives
accurate estimation for the linear models and the Unscented Kalman filter gives
accurate estimation for the non linear model. The challenges and difficulties involved
in developing a non linear model are' studied and understood and one such model is
developed in this research in estimating the wind speed. One of the major components
of the research is predicting the wind power in real time considering the time varying
atmospheric physical factors that affect the wind turbine rotor disc. The algorithm is
designed considering the atmospheriAc parameters, and the results simulated in the
MATLAB software. The wake effect and its impact on the wind farm power
production is implemented in the wake power model. It research shows the influence
of the wind direction and the wind farm layout in the power estimation in the wind

farm. The power loss occurs due to the wind power transmission in the cables and this

155



research shows the amount of estimated loss for the Colorado wind farm and the

Fermeuse wind farm.

5.3 Future Work on the Wind Speed and the Wind Power Forecasting

In this research work, the wind power of a wind farm that takes into account the
estimation of the wind speed, and the wind farm power model is developed and
implemented in the MATLAB software. Below there are few suggestions for
further improvement of the developed wind speed model and the wind power model.
The future research work on the wind speed forecasting requires forecasting days
ahead or a week ahead wind speed forecasting from Numerical Weather Prediction
model. It is requires use of High Performance Computer Cluster. It has faster
computational speed. The forecast of days ahead wind speed is useful for power utility
operators and they can shut down the power unit and use the alternate source of power
generated from the wind turbine [8].

The use of hybrid models in the wind speed forecasting is essential for accurate
estimation, the use of such models has a benefit from each of the model and the errors
are reduced. The hybrid models will obtain a globally optimal forecasting
performance. In such a forecast the combination of the forecasting models are given
below.

e Combination of physical and statistical approaches.

e Combination of models for the short term and for the medium term or

the long term [14].
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The research on short term wind speed forecasting using Artificial Neural Network
(ANN) is required and has the advantage of learning the relationship between the
inputs and the outputs by a non statistical approach. They do not require any
mathematical models and can provide results with minimum errors [14]. In the wind
power forecasting, the future work should focus on the effect of atmospheric humidity,
and the effect of turbulent kinetic energy which has a major contribution in the wind
power estimation from the wind turbines. The effect of the horizontal shear has not
been considered in the implemented wind power model. More research is needed to
consider the effect of the horizontal 'shear. It contributes to the wind power estimation.
The dust accumulation on the wind turbine rotor disc and its effect on the wind power
generation should also be considered. Although its effect is smaller but its contribution
along with other physical factors will have a greater impact in wind power estimation
[7]. The atmospheric temperature has a major influence on the wind power forecasting.
The effect of icing conditions and the ice accumulation on the wind turbine rotor
blades has a greater influence in the wind power generation. Under severe icing
conditions, the wind turbines stop operating and there is a complete loss in the wind
power generation. The future work should focus on de-icing techniques under severe

icing conditions [6].
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Appendices

Appendix A

% MATLAB code for armax (1, 1) to predict wind speed in advance
p_hrl.txt contains hourly wind data
load

p_hrl.txt

plot(p_hrl)

figure(1)

z=importdata('p_hrl.txt")

data = armax(z,[1 1])

figure(2)

predict(data,p_hrl,5)

figure(3)

compare(p_hrl,data,5)
xlabel('time")

ylabel('wind speed’)
title("armax(1,1)")

Appendix B

% Partial autocorrelation of text file( p_hrl.txt)
load p_hrl.txt

x=importdata ('p_hrl.txt')

[pacf, lags, bounds] = parcorr(x)

figure (1)

parcorr(x)

Appendix C .

% Autocorrelation of text file( p_hrl.txt)
load p_hrl.txt

y=importdata ('p_hrl.txt") |
[acf, lags, bound]=autocorr(y)
figure(1)

autocorr(y)



Appendix D

% Auto Regressive Model MATLAB Code
array =dImread('Control speed.csv',",");

%speed = array(:,1);% every 10 min wind speed
speed = array(:,4);% per hour wind speed

time = array(:,2); % Time

z =speed(1:1000);

data = AR(z,2,'ls");

M = idpoly(data);

zhat = predict(z,data,1); % Every hour wind data
% zhat = predict (z,data,6); % Every 10 min wind data
figure(1)

plot(time,z,'r")

ylabel("Wind Speed (m/s)")

xlabel('Time(hr)")

title('Input Wind Speed')

axis([0 1000 0 50])

pause

figure(2)

plot(time,zhat{1,1},'k',time,speed,'r")
ylabel("Wind Speed (m/s)")

xlabel('Time(hr)")

title("AR Estimated Wind Speed")

axis([0 1000 0 40])

pause

Result:

Discrete-time IDPOLY model: A(q)y(t) = e(t)

A(q)=1-0.8963 g"-1 - 0.09091 g"-2

Estimated using AR ('Is'/'now") from data set z

Sampling interval: 1

Note: System Identification toolbox gives similar idpoly model of AR 2nd order
model. A
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Appendix E

% Kalman Filter MATLAB Code Using AR Model Parameter
A=[0.8963 0.09091,0 0];

B= [0 0;0 0];

C=[10];

D =[0];

N =1000; %Data Generation Steps
X_initial=[1;1]*0;

h(:,2)=[x_initial];

X(:,2)=[x_initial];

y(:,2)=C*x(:,2); :
Q=10.015%eye(2); % Covariance of process noise

R=10.02; % Covariance of measurement noise
% Tuning Parameters

Qf=0.05*Q;

Rf=0.05*R;

% Initialisation Block
Pu=[10;01]; % Error Covariance of initial states

P=Pu;

fori=1:N

L=chol(Q);

h(:,i+1)=A*x(:,i)+1+L*randn(2,1);

LL=chol(R); % Gaussian Noise

y(:,1)=C*h(:,i}*LL*randn(1,1); % Accurate Measurement
%-----Predict-----

X(5L,i+1D)=A*X(,i)+1; % Prediction of State
P_apri=A*P*A'+Qf; % Prediciton of Covariance

%-----Update------

K=P_apri*C"™*inv((C*P_apri*C")+Rf); % Obtaining Kalman Gain

innov = y(:, 1)-(C*x(:,i)); % Obtaining the Innovations (Apriori Residuals)
X( i D=x(D)HR*(y(LD)-(C*x(5,1))); - % Updating the State (Aposteriori)

resid = y(i,i) - (C*x(:,1)); % Obtaining the Residuals (Aposteriori Residuals)
P=P_apri-(P_apri*K*C); % Obtaining Aposteriori Covariance

end

figure(3)

%subplot(2,1,1),plot([ 1:N+1]", h(1,:),'r-",[ :N+17', x(1,:),'k-")
plot([1:N+17, h(1,:),'r-",[ IN+1], x(1,:),'k-")

title('X 1"

figure(4)

subplot(2,1,2),plot([1:N+1]', h(2,:),'’k-",[ [:N+17', x(2,:),'r=");
title(’X2")
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Appendix F

% Unscented Kalman Filter MATLAB Code Using AR model Parameters

A =10.8963 0.09091;0 0]; %System in State Space form
B =[00];

C=[10];

D=0;

H=C;

Ts =0.2; %Sampling Time

Ad=A;

Bd=B;

delta_t = 0.2; %Time steps

length = 300;

N =length/delta t;

Q =0.0001*eye(1); %Covariance Matrix
R =1;

%Tunning Parameters

Qf =0.001*Q; % Process Noise
Rf=0,001*R; % Measurement Noise
Po = 5*eye(2);

P_apost = Po;

h(:,1) =[2 2]'; % Initialize State

y(;,1) = H*h(:, 1);

LL = chol(Q); % Cholesky Factorization Data generation
fori=1:N

h(:,i+1) = Ad * h(:,i)+1+LL*randn(2,1);
L = chol(R);

y(:,i+1) = H*h(:,i+1)+8+L*randn(1,1);
end

x_initial = h(:,1)*3;

x(:,1) = x_initial’;

n=2;

%% Prediction and Update
% Prediction Step
fori=1:N

Pred = [chol(n*P_apost)]';
x1 =x(:,1) + Pred(:,1);

x2 =x(:,i) + Pred(:,2);
Tx1=Ad * xI;

Tx2 = Ad * x2;

Tx = (Tx1 + Tx2)/(2*n);

P_apri = (((Tx1 - Tx)*(Tx1 - Tx)' + (Tx2 - Tx)*(Tx2 - Tx)'/(2*n)) + Qf);
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UTran = [chol(n*P_apri)]’;

Ux1 =Tx1+ UTran(;,1);

Ux2 =Tx2 + UTran(:,2);

Y1 =H*UxI;

Y2 =H*Ux2;

Y =(Y1+Y2)/(2*n);
Py=(((Y1-Y)*(Y1-Y)+(Y2-Y)*(Y2-Y)/(2*n))+ Rf);
Pxy = (((Tx1-Tx)*(Y1 -Y) +(Tx2 - Tx)*(Y2 - Y)/(2*n)));
% Update Step

K =Pxy*(1/Py);

x(5,i+t1) = (Tx + K*(y(:,i) - Y));

P _apost =P apri - K¥Py*K;

end

%Plotting of Graphs

figure(1)

plot([1:N+1],h(1,:), -, [ 1:N+1],x(1,:),'r-")

title('Unscented Kalman Filter Wind Speed Estimation from State X1')
ylabel('Wind Speed (m/s)")

xlabel('Number of Time Steps")

figure(2)

plot([1:N+17,h(2,:), "--",[ I:!N+17],x(2,:),"r-")

title("Unscented Kalman Filter Wind Speed Estimation from State X2')
ylabel("Wind Speed (m/s)')

xlabel('Number of Time Steps')

Appendix G

Non linear ARX model estimated from input hourly wind speed
array =dImread('Control_speed.csv',,");

speed = array(:,4);

time = array(:,2);

z = iddata(speed(651:1000),] 1,0.1);

ml = nlarx(z(651:1001),2,'sigmoid")

figure(l)

compare(z,ml,1)

168



Appendix H

Unscented Kalman Filter wind speed estimation using input non linear ARX model
%% Unscented Kalman Filter For Non Linear System

A =[0.0825-0.4050;0 0]; %System in State Space form

0.0825-0.4050;0 07;

—

Il
0 S

length = 1500;

N =length/delta_t;

Q =0.01*eye(1); %Covariance Matrix
R =0.01;

%Tunning Parameters

Qf =0.1*Q; % Process Noise

Rf=0.1*R; % Measurement Noise

Po = 6*eye(2);

P_apost = Po;

u(2,:)=[1*ones(N,1);3.5*ones(N, 1};3*ones(N, );1*ones(N, 1)]*1 ; % External Input
h(:,1) =[2 2]"; % Initialize State

y(:, 1) = H*h(;,1);

LL =chol(Q); % Cholesky Factorization

h(:, D=[1 17T} ‘
y(;,1)=H*h(:,1);

%Data generation

fori=1:N

h(:,i+1)= A*h(:,i)+ B*u(:,i)+15.5+LL*randn(2,1);
L = chol(R);

y(, i+ 1)=H*h(:,i+1)+10+L*randn(1,1);

end

x_initial =[1 1]*1

X = X_initial';

n=2;

%% Prediction and Update
% Prediction Step
fori=1:N

Pred = [chol(n*P_apost)]';
x1 = x(:,i) + Pred(;,1);

x2 = x(:,0) + Pred(:,2);

DxI =A *xI;

Dx2 = A * x2;
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UTran = [chol(n*P_apri)]’;

Ux! =Dx1 + UTran(:,1);

Ux2 =Dx2 + UTran(:,2);

Y1 =H*UxI;

Y2 = H*Ux2;

Y=X1+Y2)/(2*n),
Py=(((Y1-Y)*(Y1-Y)+(Y2-Y)*(Y2-Y)/(2*n)) + Rf);
Pxy = (((Dx1 - DX)*(Y1 - Y)' + (Dx2 - Dx)*(Y2 - Y)'/(2*n)));

% Update Step

K = Pxy*(1/Py);

X(,i+1) = (Dx + K*(y(,i) - Y));
P_apost =P _apri - K*Py*K';
End

%Plotting of Graphs

figure(1)

plot([5:N+1]",h(1,5:end),'k--',[ 5:N+17]",x(1,5:end),'r-")

title('Unscented Kalman Filter Wind Speed Estimation from State X1')
ylabel('Wind Speed (m/s)")

xlabel('Number of Time Steps')

axis([5 1500025 5 1500 0 25])

figure(2)

plot([1:N+1],h(2,:), --,[ :N+17",x(2,:),'r-")

title('Unscented Kalman Filter Wind Speed Estimation from State X2')
ylabel("Wind Speed (m/s)")

Dx = (Dx1 + Dx2)/(2*n);
P_apri = (((Dx1 - Dx)*(Dx1 - Dx)' + (Dx2 - Dx)*(Dx2 - Dx)"/(2*n)) + Qf);
xlabel('Number of Time Steps')
|

170



Appendix I

%% FERMEUSE WINDFARM IMPLEMENTATION

%% Vestas 3 MW,-9 WIND TURBINES;

%% IMPLEMENTATION OF 9 WIND TURBINES USING FUNCTION %%
%array = dlmread('file.csv',",'); % Accessing Input 10 Minute Wind Data File
array = dlmread('file2.csv',,'); % Accessing Input 10 Minute Wind Data File
%array = dlmread('file3.csv',",'); % Accessing Input 10 Minute Wind Data File
%array = dlmread('filed.csv',,"); % Accessing Input 10 Minute Wind Data File
global WINY y H

hour = array(:,5); % Accessing 10 Minutes Data in Time Series Order
WS_80 =array(:,1);

% Accessing Input Wind Speed at 80m Sensor Height for

% Vestas 3 MW Wind turbine

N = numel(hour); % Accessing Total Number of Time Series Data

TK = array(:,2); % Accessing Temperature

act_density = array(:,4); % Accessing act_density 3.4837*Pressure/Temperature;
wd = array(:,6); % Accessing Wind Direction time series data

%% SOLVING FOUR EQUATIONS OF DESIGNED ALGORITHM %%

% Vestas 3 MW 9, Windturbines

% WS and WS1 = Verical Shear using shear exponent 0.143;

%% [Equation: U2/U1 = (H2/H1)"0.143]

% sd and sd1= standard deviation of wind speed data;

%% [Equation: sd = standard deviation of wind speed]

% Iu and lul = Turbulence Intensity;

%% [Equation: Iu = Standard deviation of WS/ Mean (WS)]

% u and ul = Turbulence Adjusted Speed;

%% [Equation: U(TI)=cuberoot[(U)*3*(1+31u”2 ))]

i2=1; )

for Y =[50,80,95,120,127,140,148,153,170,195] % Y = Height Range at the wind
% turbine rotor disc

WS(;,i2) = WS_80.*(Y/80).7(0.143); % Wind Speed for Vestas 3 MW Wind turbine
sd(:,i2)=std(WS(:,i2)); % Standard Deviation for Vestas 3 MW Wind turbine
Tu(:,i2) = std(WS(:,i2))./(WS(:,i2)); % Turbulence Intensity for Vestas 3 MW Wind
turbine

u(:,i2)=nthroot((power(WS(:,i2),3).*(1+power(lu(:,i2),2).*¥3)),3);

% Turbulence %Adjusted Speed for

12 =12+1;

% Vestas 3 MW Wind Turbine

end

%% END %
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%% Mean Data of Turbulence Intensity
Tl ge = mean(lu(:,2)); % Vestas 3 MW WT

%% Assigning Turbulence Adjusted Speed at the corresponding height level of rotor
disc %%

u_S0=u(,1); u_80=u(:,2); u_95=u(:,3); u_120=u(:,4); u_127=u(:,5); u_140 = u(:,6);
u_148=u(:,7); u_153 =u(:,8); u_170 = u(:,9);u_195=u(:,10); % Vestas 3 MW Wind
Turbine

%% Calculation of Shear Exponent of Vestas 3 MW Wind Turbine %%%
a50to80 = log(u_80.\u_50)./1og(80\50);

%alpha50to80 = (log(u_80.\u_50)./10g(80\50));
a80to100 = log(u_95.\u_80)./1og(95\80);
%alpha80to100 = (log(u_95.\u_80)./10g(95\80));
al00to120 = log(u_127.\u_95)./1og(127\95);
%alphal00to120 = (log(u_127.\u_95)./log(127\95));
al20to140 = log(u_140.\u_127)./10g(140\127);
%alphal20to140 = (log(u_140.\u_127)./(log(140\127));
al40to160 = log(u_170.\u_140)./log(170\140);
%alphal70to140 = log(u_170.\u_140)./10g(170\140);
al60to195 = log(u_195.\u_170)./10g(1935\170);
%alphal95t0160 = log(u_195.\u_170)./log(195\170);

%  Digitize Manufacturer Supplied Power Curve Vestas V90, 3MW Wind Turbine
%  Vestas 3MW Wind Turbine is Digitised by Plotting power vs speed
Characteristics

% START %% :
spd=[0123456789101112131415161718192021 2223 24];
pw=[0000 81 190 353 581 885 1258 1641 2004 2353 2671 2888 2976 3000 3000
3000 3000 3000 3000 3000 3000 3000];

figure(l)

plot(spd,pw,'b-','MarkerSize',3)

xlabel('Speed (m/s)"); ylabel('Power (kw)")

title('Supplied Vestas 3 MW-Wind Turbine')

axis([0 24 0 3500])

pause

q = polyfit(spd,pw,8);

xp= 0:2:25;

yp = polyval(q.xp);

figure(2)

plot(spd,pw,'0',xp,yp);

xlabel('Speed (m/s)'); ylabel('Power (kw)");

title('Curve Fitted Vestas-Wind Turbine');

pause '
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%% DISC SPEED ESTIMATION FOR Vestas 3MW, 9 WIND TURBINES %%
%% Equation; U_Disk=2/A* Int[UZ *sqrt(R"2- H"2+ 2HZ- Z"2 )dZ] (Integral
limits H-R to H+R)

%% Solving using function the disc speed equation adjusted for turbulence and shear
for wind turbines

% % Initialising Height Range for Vestas 3SMW, 9 Wind Turbines %%

Wt = zeros(2,2,9);

%Creating Array of 9 Wind turbines; Last Value =9, Vestas 3MW wind turbines
Wit(:,:,1) =[50 95.1;95 140]; Wt(:,:,6) =[95 140.1; 140 185];

% Assign height range for 9 wind turbines to solve integral equation
Wi(:,:,2) =[50 95.1;95 140]; Wi(:,:,7) =83 128.1; 128 173];
Wi(:,:,3) =[50 95.1;95 140]; Wt(:,;,8) =[103 148.1; 148 193];
Wi(:,:,4) = [82 127.1; 127 172]; Wt(:,:,9) =[75 120.1; 120 165];
Wt(:,:,5) =[108 153.1; 153 198];

%% Initializing Wind turbine Hub Height (varies due to contour height) H=9, Vestas
3MW wind turbines;

%% H = Vestas 3MW Wind Turbines

H =[95; 95; 95; 127; 153; 140, 128; 148; 120];

%% SOLVING NUMERIC INTEGRATION USING FUNCTION;[Y,y are variables
of Vestas 3SMW wind turbines] %% -

Y =[u_50,u 80,u_95,u 120, u_127,u_140,u_148, u_153,u 170, u_195, a50to80,
a80to100, al00to120, a120to140, al40to160, a160to195]; % Vestas 3IMW Wind
Turbine; Assign variables to solve equation
%%%%%%%%%0%6%%6%6%6%%%%:%%%%%0% %% %% %% %%6%%% %% % %%

%Vestas 3SMW Wind Turbine; Assign variables to solve equation

y=[1,11,3,13; 1,11,3,13; 1,11,3,13; 2,13,5,15; 3,15,8,16; 3,14,8,15; 2,13,5,15;
3,14,8,16; 2,13,5,15;]; % To access the variable that is assigned(Eg; 3 =u_95;4 =
u_120; 10 =u_195; 11 = a50t080)
26%0%6%%%%6%6%6%6%6%0%6%6%0%6%0%6%6%%6%%6%0%6%0%6%6%6%0%6%6%6%6%6% %6%%0%0

%% Calling Vestas 3MW Wind Turbine Using Function

v = zeros(N, 1,9); % last value =9 -Vestas 3IMW, Wind Turbines; Area of
%Vestas 3SMW Wind Turbine = 6362;

foril =1:9 % last value =9 -Vestas 3MW Wind Turbines

v2 = ft_v(il); % Calling using functions for 9 -Vestas 3MW Wind Turbines
%v2 ;v )

v(:,5il) =(2/6363).* v2(:,:); % Result of Disc Speed is stored in variable v; or
%Equation = (2/ A) *( Udisc)

end

xl =v(:,:,1); % 1=First WT disc speed

x2 =v(:,3,2); % 2 =second WT disc speed
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x3 =v(;:,3); % 1 =First WT disc speed

x4 =v(:,:,4); % 2 =second WT disc speed

x5 =v(;,.,5); % 1 =First WT disc speed

%% END OF DISC SPEED %%%%%%6%%%%%%

%% POWER PREDICTION FROM DISC SPEED FOR Vestas 3MW; 9 WIND
TURBINES %

for il =1:9 % Last value =9 WT; VPuncor = Uncorrected Power of Vestas 3 MW
Wind Turbine

Vpuncor(:,:,il) =

q(9)+(q(8)-*(v(,5, 1 1NH(G(7).* (v(:,:,11)).22)+(q(6). * (v (2,5, 11)).73)+(q(5)- *(v(:,1,11))."4)
+H(q(4).*(v(5,511)).75)Hq(3) *(v(:,:,11)).0)HG(2). * (VL5 1)) A7) Hq(1).*(v(,5,i1)).18);
Vpcor(:,:,i1)=Vpuncor(;,:,il).*(act_density./1.225);

end

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR Vestas
3IMW WIND TURBINE;%%

nn2 = length(v(:,.,il));

foril =1:9 :

AAT1 = find(Vpcor(:,:,i1)>=3000); % Rated power is equal to 3000 KW

nn3 = length(AA1);

for j2 = 1:nn3

Vpcor(nn2*(il-1)+ AA1(j2))=3000; % Power remains constant after rated wind
speed

end;

end

% WAKE MODEL FOR Vestas 3 MW WIND TURBINE

% WAKE SPEED ESTIMATION FOR Vestas 3 MW, 9 WIND TURBINES %

% Rrot = Radius of GE Wind Turbine; x = Distance between nearest wind turbine;
%Ashad = Area of shadow region of wind turbines

% Arot = Area of GE wind turbine rotor; Ct= Thrust coefficient of wind turbine; tana
%= 0.04(no-wake)/0.08(wake); Rx = Radius of shadow cone

% v(:,:,i1) = Disc Speed; Uwake(:,:,i1)= Wake Speed of Wind Turbine

x =[250;250;1000;250;250;250;0;250;250;];

Ashad =[2500;2500;0;3181;3772;2181,0;,3772;3181];

% Equation : Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for WT-
Wind Turbine

% Ct=3.5%2*Vhub - 3.5)/ (Vhub)"2;

% R(x) = Rrot + x.tana ; tana = 0.04 (free speed) or tana = 0.08 (wake)%

% Uwake = Vi[l- sqrt(l - Ct)*(Rrot/R(x))"2*(Ashad / Arot)]

foril=1:9 % 9, Vestas 3SMW Wind Turbines
Rrot =45; :

Ct(z,,i1) = 3.5 *%((2.%v(:,:,i1)) - 3.5) /(v(:,5,i1)).72;
tana =0.08;
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Rx(il) = Rrot + x(il)*tana;

Arot = 6362;

Uwake(:,:,il1) = v(;,5,i1).*(1-sqrt(1 - Ct(:,:,i1)).*(Rrot/Rx(i1))"2.*(Ashad(i1)/Arot});
end

%% POWER PREDICTION FROM DISC SPEED FOR Vestas 3IMW; 9 WIND
TURBINES %

for il =1:9 % Last value =9 WT; VPuncor = Uncorrected Power of Vestas 3MW
Wind Turbine

Vpuncorw(:,:,il) =

q(9)+(q(8).*(Uwake(:,:,i1)))+(q(7).*(Uwake(:,:,i1)). 2)+(q(6).*(Uwake(:,:,i1)). 3)+(
q(5).*(Uwake(:,:,i1)).”4)+(q(4).*(Uwake(:,:,i1)).*5)+(q(3).*(Uwake(:,:,i1))."6)+(q(2).
*(Uwake(:,:,i1)).~7) +(q(1).*(Uwake(:,:,i1)).”8);
Vpcorw(:,:,i1)=Vpuncorw(:,:;,il).*(act_density./1.225);

end

% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR Vestas
3MW WIND TURBINE

nn4 = length(Uwake(:,:,il));

foril =1:9

AA3 = find(Vpcorw(:,:,i1)>=3000); . % Rated power is equal to 3000 kw

nn5 = length(AA3);

for j2 = 1:nn5

Vpcorw(nn4*(il-1)+ AA3(j2))=3000; % Power remains constant after rated speed
end

end

%% %%% START OF WAKE COEFFICIENT At 45 and 225 degree
% Sum of No-wake power of windfarm = VE cpw

% Sum of wake power of windfarm = VE_wpw

% Wake Coefficient = Sum of No-wake power/Sum of Wake power

VE_cpw = Vpcor(:,:,1) + Vpcor(:,:,2)+ Vpcor(:,:,3)+ Vpcor(:,:,4)+ Vpcor(:,:,5) +
Vpcor(:,:,6)+ Vpcor(:,:,7)+ Vpcor(:,:,8)+ Vpcor(:,:,9);

VE_wpw = Vpcorw(:,:;, 1) + Vpcorw(:,:,2)+ Vpcorw(:,:;,3)+ Vpcorw(:,:,4)+
Vpcorw(:,:,5) + Vpcorw(:,:,6)+ Vpcorw(:,:,7)+ Vpcorw(:,:,8)+ Vpcorw(:,:,9);
Totall = sum(VE _cpw); % No-wake windfarm power

Total2 = sum(VE_wpw); % Wake windfarm power

wc = Total2/Totall; % Wake coefficient

%%%% Wind Direction and Wake Coefficient Evaluation

wd = array(:,6); % Accessing Wind Direction time series data

Wake Coeff=

we*(wd<=50) *(wd>=40)+wc*(wd<=230).*(wd>=220)Hwd>50).*(wd<220)+(wd<40
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w

)+(wd>230); % Equation determining the wake and Nowake data depending on the

wind direction
%% %%6%0%%%%%%%%% END %6%%%%% %%6%%%%%% %% %%

%%AVERAGE WINDFARM POWER - Vestas 3MW, 9 WIND TURBINES

Avg VE = mean(Vpcor(:,:,1))+ mean(Vpcor(:,:,2))+ mean(Vpcor(:,:,3))+
mean(Vpcor(:,:,4))+ mean(Vpcor(:,:,5))+ mean(Vpcor(:,:,6))+ mean(Vpcor(:,:,7))+
mean(Vpcor(:,:,8))+ mean(Vpcor(:,:,9));

Avg_VE wake = mean(Vpcorw(:,:,1))+ mean(Vpcorw(:,:,2))+ mean(Vpcorw(:,:,3))+
mean(Vpcorw(:,:,4))+ mean(Vpcorw(:,:,5))+ mean(Vpcorw(;,:,6))+
mean(Vpcorw(:,:,7))+ mean(Vpcorw(:,:,8))+ mean(Vpcorw(:,:,9));

% FERMEUSE WIND FARM AVERAGE POWER
Avg farm = Avg VE;

% AVERAGE WINDFARM POWER WITH TRANSMISSION LOSS OF | %%

VE loss = VE_cpw*0.99;

VE_wakeloss = VE_wpw*0.99;

Actual_power = VE_cpw - VE_loss;

Actual_power_wake = VE _wpw - VE_wakeloss;
%0%%6%6%%0%0%%6%0%0%0%% %% %%%%%6%6%6%6%%6%6%6% %6 %% %6%%6%%6%6%%%

% PLOTTING FIGURES FROM THE SIMULATED RESULT
%% SENSOR HEIGHT WIND SPEED Vestas 3SMW WIND TURBINE %
figure(3)

plot(hour,WS_80,'b-")

axis([0 1000 0 30])

xlabel("Time (min)’);

ylabel("Wind Speed (m/s)');

title('Sensor Height of Vestas Wind Turbine');

pause

% Mean value of wind speed data at §0m %

Sensor_80m = mean(WS_80);

std_sensor = std('Sensor_80m");

% DISC SPEED OF Vestas 3IMW WIND TURBINE-2 %
figure(4)

plot(hour,v(:,:,2),'g-"

axis({0 1000 0 30])

xlabel('Time (min)');

ylabel("Wind Speed (m/s)');

title('Disc Speed of Vestas Wind Turbine-2");

pause
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% Mean value of wind speed data at 80m %
disc_80m = mean(v(:,:,2));

%% VERTICAL SHEAR OF Vestas 3MW WIND TURBINE-2 %
% Vestas SMW WIND TURBINE %

figure(5)

plot(hour, WS(:,2),'r-"

axis([0 1000 0 30])

xlabel('Time (min)');

ylabel('Wind Speed (m/s)");

title("Vertical Shear of Vestas Wind Turbine-2');
pause

% Mean value of wind speed data at 80m %
vs_80m = mean(WS(:,3));

%% TURBULENCE ADJUSTED SPEED OF Vestas 3MW WIND TURBINE-2%
% Vestas 3SMW WIND TURBINE %

figure(6)

plot(hour,u_95,'r-"

axis([0 1000 0 30])

xlabel('Time (min)');

ylabel('Wind Speed (m/s)");

title("Turbulence Adjusted Speed of Vestas Wind Turbine-2";
pause

% Mean value of wind speed data at 80m %

ts_80m = mean(u_95);

%% WAKE SPEED OF Vestas 3MW WIND TURBINE-2%
% Vestas 3SMW WIND TURBINE %
figure(7)

plot(hour,Uwake(:,:,2),'r-")

axis([0 1000 0 30])

xlabel('Time (min)');

ylabel("Wind Speed (m/s)");

title('Wake Speed of Vestas Wind Turbine-2");
pause

% Mean value of wind speed data at 80m %
wk_80m = mean(Uwake(:,:,2));

%% NO-WAKE AND WAKE POWER OF WIND TURBINE WITH RESPECT TO
TIME %

% Vestas 3SMW WIND TURBINE %

figure(8)

plot(hour,Vpcorw(:,:,2),'k-',hour,Vpcor(:,:,2),'r-"

axis([0 1000 ¢ 3200])

xlabel('Time (min)');
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ylabel('Wind Power (kw)');

title('No-wake(red)and Wake Power of Vestas Wind Turbine-2');
pause

% Mean value of windpower data at 80m %

wkpl 80m = mean(Vpcorw(:,:,2));

nowk 80m =mean(Vpcor(:,:,2));

uncorr_pogewt =mean(Vpuncor(:,:,2));

%% WINDFARM POWER WITH RESPECT TO TIME
% Vestas SMW WIND TURBINES
figure(9)

plot(thour,VE_cpw,'k-")

axis([0 1000 0 40000])

xlabel('Time (min)');

ylabel('"Windfarm Power (kw)');
title('Windfarm Power of Windturbines');
pause '

% Mean value of windfarm power data %
winowkpowl = mean(VE_cpw);

% COMPARISION OF WINDFARM POWER WITH AND WITHOUT WAKE

EFFECT %

% Vestas 3SMW WIND TURBINES
figure(10)

plot(thour,VE cpw,'k-",hour,VE wpw,'r-")
axis([0 1000 0 40000])

xlabel('Time (min)');

ylabel('Windfarm Power (kw)');
title('Comparision of Windfarm Power With and Without(black)Wake Effect");
pause

% Mean value of wakefarm power data %
wiwkpowerl = mean(VE_wpw);

%% WIND DIRECTION AND WAKE COEFFICIENT OF WINDFARM
% Wind direction @45 degree and @225 degree, the wake coefficient is 0.84
figure(11)

plotthour,Wake Coeff,'k-")

axis([0 500 0 1.5])

xlabel('Time (min)');

ylabel("Wake Coefficient');

title('Wind Direction and Windfarm Efficiency');

pause '
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%% WINDFARM POWER WITH TRANSMISSION LOSS OF 1%
% TRANSMISSION LOSS POWER OF Vestas 3MW WIND TURBINES WITH
NO-WAKE EFFECT

figure(12)

plot(hour,VE loss,'’k-")

axis([0 1000 0 40000])

xlabel('Time (min)");

ylabel('Windfarm Power (kw)');

title("Windfarm Powerloss in Transmission With No-Wake Effect);
pause

% Mean value of no-wake wind power transmission loss data %
tlnowkpwGE_MIT = mean(VE_loss);

% TRANSMISSION LOSS POWER OF Vestas 3MW WIND TURBINES WITH
WAKE EFFECT

figure(13)

plot(hour,VE_wakeloss,'r-")

axis([0 1000 0 40000])

xlabel('Time (min)");

ylabel('"Windfarm Power (kw)");

title("Windfarm Powerloss in Transmission With Wake Effect’);

pause

% Mean value of wake wind power transmission loss data %

tlwkpwGE MIT = mean(VE_wakeloss);

% ACTUAL POWER OF Vestas 3MW WIND TURBINES(NO-WAKE-EFFECT)%
figure(14)

plot(hour,VE_loss,'k-")

axis([0 1000 0 40000])

xlabel('Time (min)");

ylabel('"Windfarm Power (kw)');

title("Transmission Loss Power(No-Wake Effect)");

pause

% Mean value of wind power transmission loss data %

actpwGE_MIT = mean(Actual _power);

% ACTUAL POWER OF Vestas 3MW WIND TURBINES(WAKE EFFECT)%
figure(195)

plot(hour,VE_wakeloss,'g-")

axis([0 1000 0 40000])

xlabel('Time (min)');

ylabel("Windfarm Power (kw)');

title("Transmission Loss(Wake Effect)");

pause
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% Mean value of wake wind power transmission loss data %

actwkpwGE_MIT = mean(Actual_power_wake);

% WIND DIRECTION PLOT
figure(16)

plot(hour,wd,'r-")

axis([0 1000 0 400])

xlabel(‘Time (min)');

ylabel("Wind Direction)');

title("Wind Direction in Windfarm Site");
pause

figure(17)

plot(hour,wd,'r-")

axis([0 500 0 400])

xlabel('Time (min)");

ylabel('Wind Direction)');

title('Wind Direction in Windfarm Site");
pause

figure(18)

plot(hour,Wake Coeff,'k-"

axis([0 1000 0 1.5])

xlabel('Time (min)");

ylabel('"Wake Coefficient');
title('Wind Direction and Windfarm Efficiency');
figure(19) :
v8(:,:, 1)= sort(v(:,;,1));

Vplcor = sort(Vpcor(:,:,1));
plot(v8(:,:,1),Vplcor,'r-";
xlabel("Wind Speed (m/s)");
ylabel('Wind Power (kw)";
title("Vestas 3 MW Wind Turbine-1");
axis([0 25 0 3500]);

pause

figure(20)

v8(:,:,2)= sort(v(:,:,2));

Vp2cor = sort(Vpcor(:,:,2));
plot(v8(:,:,2),Vp2cor,'k-");
xlabel("Wind Speed (m/s)");
ylabel("Wind Power (kw)");
title('Vestas 3 MW Wind Turbine-2");
axis([0 25 0 3500]);

pause

figure(21)

v8(:,:,3)= sort(v(:,:,3));

Vp3cor = sort{Vpcor(:,:,3));

180



plot(v8(:,:,3),Vp3cor,'r-');
axis([0 1000 0 30])
xlabel('Time (min)');
ylabel('Wind Speed (m/s)");
title('Disc Speed of Vestas Wind Turbine-3");
pause

figure(22)

v8(:,.,4)=sort(v(:,:,4));

Vp4cor = sort(Vpcor(:,:,4));
plot(v8(:,:,4),Vpdcor,'r-');
xlabel("Wind Speed (m/s)");
ylabel('Wind Power (kw)");
title("Vestas 3 MW Wind Turbine-4');
axis([0 25 0 3500]);

pause

figure(23)

v8(:,:,5)= sort(v(:,:,5));

Vp5cor = sort(Vpcor(:,:,5));
plot(v8(:,:,5),Vp5cor,'k-");
xlabel('Wind Speed (m/s)");
ylabel('Wind Power (kw)");
title('"Vestas 3 MW Wind Turbine-5");
axis([0 25 0 3500]);

pause

figure(24)

v8(:,:,6)= sort(v(:,:,6));

Vp6cor = sort(Vpcor(:,:,6));
plot(v8(:,:,6),Vpbcor,'r-');
xlabel("Wind Speed (m/s)");
ylabel("Wind Power (kw)");
title("Vestas 3 MW Wind Turbine-6");
axis([0 25 0 35007);

pause

figure(25)

v8(:,:,7)= sort(v(:,:,7));

Vp7cor = sort(Vpcor(:,:,7));
plot(v8(:,:,7),Vp7cor,'k-);
xlabel("Wind Speed (m/s)");
ylabel('Wind Power (kw)");
title('Vestas 3 MW Wind Turbine-7');
axis([0 25 0 3500]);

pause

figure(26)

v8(:,:,8)= sort(v(,:,8));

Vp8cor = sort(Vpcor(:,:,8));
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plot(v8(:,:,8),Vp8cor,'r-');
xlabel('Wind Speed (m/s)");
ylabel('Wind Power (kw)');
title("Vestas 3 MW Wind Turbine-8');
axis([0 25 0 3500]);

pause

figure(27)

v8(:,:,9)=sort(v(:,:,9));

Vp9cor = sort(Vpcor(:,:,9));
plot(v8(:,:,9),Vp9cor,'k-");
xlabel('Wind Speed (m/s)");
ylabel("Wind Power (kw)");
title('Vestas 3 MW Wind Turbine-9');
axis([0 25 0 3500]);

182



Appendix J

% Vestas 3 MW WIND TURBINE FUNCTION %

%% Calling function from main program to solve disc speed equation %%

%% Sub program %%

%% START %%

function v = ft_v(il) % Function is called from main program and contains result of
disc speed

global Wt Y y N H

z7=Wt(1,1,i1); % Lower Half of Rotor Disc (Minimum Height Limit)

z7max = Wt(2,1,il); % Lower Half of Rotor Disc (Maximum Height Limit)

R =45; % Radius of Wind Turbine
H7 =H(il); % Hub height is varying for each wind turbine
dz=0.1; % dz is from disc equation and signifies height range in steps of 0.1

i=1;

v7 = zeros(N,1); % Creating Array for time series data

while z7<=z7max % Lower rotor disc (Height limits from minimum to maximum
value)

vig,l)y = V7, 1)+ abs(Y(y(il,1)). *power((z7/80),Y (:,y(i1,2))). *sqrt((R."2)-
(H7.72)+(2.*H7.*27)-(27.72)).*dz); % Udisc Equation

=i+l

27 =27+0.1;

end

z7=Wt(1,2,il); % Upper Half of Rotor Disc (Minimum Height Limit)
z7max = Wt(2,2,il); % Upper Half of Rotor Disc (Maximum Height Limit)
i=1;

while z7<=z7max % Upper rotor disc (Height limits from minimum to maximum
value)
v7(,1) = V7,1t abs(Y(:,y(i1,3)).*power((z7/150),Y(:,y(i1,4))).*sqrt((R."2)-

(H7.7°2)+(2.*H7.*27)-(z7.72)).*dz); % Udisc Equation % "It adds all the results from
H-R to H+R of rotor disc "

i=itl;

z7 =27+0.1;

end

v=vT,

end
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Appendix K

Main Program: MATLAB Code of Cedar Creek Colorado Wind farm

%% CEDAR CREEK COLORADO WINDFARM IMPLEMENTATION

%% GE 1.5 MW, 53 WIND TURBINES; MITSUBISHI 1| MW, 221 WIND
TURBINES '

%% IMPLEMENTATION OF 274 WIND TURBINES USING FUNCTION %%
%array = dimread('Inputdatal2.csv',"); % Accessing Input 10 Minute Wind Data
from the file

%array = dlmread('Inputdatal3.csv',."); % Accessing Input 10 Minute Wind Data
from the file

%array = dlmread('Inputdatal4.csv',",'"); % Accessing Input 10 Minute Wind Data from
the file :

array = dlmread('InputdatalS.csv',),"); % Accessing Input 10 Minute Wind Data from
the file

global WINY y HH2 Wit Y2 y2

hour = array(:,5); % Accessing Minutes/Seconds Data in Time Series Order

WS_80 =array(:,6); % Accessing Input Wind Speed at 80m Sensor Height for GE 1.5
MW Wind turbine

WS1_69 =array(:,1); % Accessing Input Wind Speed at 69m Sensor Height for
%Mitsubishi | MW Wind turbine

N = numel(hour); % Accessing Total Number of Time Series Data

TK = array(:,2); % Accessing Temperature

act_density = array(:,4); % Accessing act_density = 3.4837* Pressure/Temperature;
wd = array(:,7); % Accessing Wind Direction time series data

%% SOLVING FOUR EQUATIONS OF DESIGNED ALGORITHM %%
% There are two different wind turbines GE and Mitsubishi

% WS and WS1 = Verical Shear using shear exponent 0.143;

%% [Equation: U2/U1 = (H2/H1)"0.143]

% sd and sd1= standard deviation of wind speed data;

%% [Equation: sd = standard deviation of wind speed]

% lu and Iul = Turbulence Intensity;

%% [Equation: Iu = Standard deviation of WS/ Mean (WS)]

% u and ul = Turbulence Adjusted Speed;

%% [Equation: U(TI)=cuberoot[(U)"3*(1+31u”"2 ))]
i2=1; :

for' Y =[69,80,100,120,160,200,220,153,141]

% Y = Height Range at the wind turbine rotor disc
WS(:,i2) = WS_80.*(Y/80).7(0.143);

% 80m Height for GE 1.5 MW Wind turbine
WSI(:,i2) = WS1_69.*(Y/69).7(0.143);
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% 69m Height for Mitsubishi 1.0 MW Wind Turbine
sd(:,i2)=std(WS(:,i2));
% 80m Height for GE 1.5 MW Wind turbine
sd1(:,i2)=std(WS1(:,i2));
% 69m Height for Mitsubishi 1.0 MW Wind Turbine
[u(:,i2) = std(WS(:,i2)) /(WS(:,i2)); % 80m Height for GE 1.5 MW Wind turbine
lul(:i2) = std(WS1(:,i2)).(WS1(:,i2)); % 69m Height for Mitsubishi 1.0 MW Wind
Turbine
u(:,i2)=nthroot({(power(WS(:,i2),3).*(1+power(lu(:,i2),2).*3)),3);
% 80m Height for GE 1.5 MW Wind Turbine
ul(:,i2)=nthroot((power(WSI1¢(:,i2),3).*(1+power(lul(:,i2),2).*3)),3);
% 69m Height for Mitsubishi 1.0 MW Wind Turbine
i2 =12+1;
end
%% END

%% Assigning Turbulence Adjusted Speed at the corresponding height level of rotor
disc %%

% GE 1.5 MW Wind Turbine

u_69 = u(;,1); u_80=u(:,2); u_100=u(:,3); u_120=u(:,4); u_160=u(:,5); u 200 =
u(:,6); u_220=u(:,7); u_153 =u(:;,8); u_141 =u(:,9);

% Mitsubishi | MW Wind Turbine
ul_69 = ul(;,1); ul_80=ul(;,2); ul_100=ul(;,3); ul_120=ul(:,4); ul_160=ul(;5);
ul_200=ul(:,6); ul_220=ul(:,7); ul 153 =ul(;,8);ul 141 =ul(:,9);

%% Calculation of Shear Exponent of GE Wind Turbine %%
a69t080 = log(u_80.\u_69)./10g(80169);

% [Equation] %alpha69to80 = (log(u_80.\u_69)./10g(80\69));
a80to100 = log(u_100.\u_80)./1og(100\80);

%alpha80to100 = (log(u_100.\u_80)./log(100\80));

al00to120 = log(u_120.\u_100)./1og(120\100); %alphal00to120 =
(log(u_120.\u_100)./1og(120\100));

al20to160 = log(u_160.\u_120)./log(160\120); %alphal20to160 =
(log(u_160.\u_120)./(log(160\120));

al60t0200 = log(u_200.\u_160)./10g(200\160); %alphal60t0200 =
(log(u_200.\u_160)./(log(200\160));

a200t0220 = log(u_220.\u_200)./10g(220\200); %alpha200t0220 =
(log(u_220.\u_200)./(log(220\200));

% Calculation of Shear Exponent of Mitsubishi Wind Turbine %%
al69to80 =log(ul_80.\ul_69)./10g(80169);% Equation]
%oalphal69to80 = (log(ul_80.\ul_69)./10g(80\69));

al80to100 = log(ul _100.\ul_80)./1og(100\80);

%alphal80to100 = (log(ul_100.\ul_80)./1og(100\80));
al100to120=log(ul_120.\ul_100)./1og(120\100);
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%alphal100to120 = (log(ul _120.\ul_100)./1og(120\100));
all20to160 = log(ul_160.\ul_120)./1og(160\120);
%alphall120to160 = (log(ul_160.\ul_120)./(log(160\120));
al160t0200 = log(ul_200.\ul_160)./10g(200\160);

%alphal 160t0200 = (log(ul_200.\ul_160)./(log(200\160));
al1200t0220 = log(ul_220.\ul_200)./10g(220\200);
%alphal200t0220 = (log(ul _220.\ul_200)./(log(220\200));

%% DIGITIZE MITSUBISHI 1 MW WIND TURBINE POWER VS SPEED
CHARACTERISTICS

spdl =[01234.05.05.5606.570758090101051111.512131415161718
1920 21 22 23 24 25]; ,

pwl =[0000 1020305590 140200280480 730 830 900 950 980 1000 1000 1000
1000 1000 1000 1000 1000 1000 1000 1000 1000 1000];

figure(1)

plot(spd1,pwl,'r-','MarkerSize',3)

xlabel('Wind Speed (m/s)");

ylabel('Wind Power (kw)');

title('Mitsubishi | MW Wind-Turbine");

axis([0 25 0 1200])

ql = polyfit(spd1,pw1,18),

% Curve Fitted to 18th degree

xp=0:1:25;

yp = polyval(ql,xp);

figure(2)

plot(spd1l,pwl,'0',xp,yp);

xlabel('Wind Speed (m/s)");

ylabel("Wind Power (kw)");

title('Mitsubishi 1| MW Wind-Turbine');

axis([0 25 0 1200])

%DIGITIZE GE 1.5MW WIND TURBINE POWER VS SPEED
CHARACTERISTICS
spd2=[123354.04.55.0556.06.57.07.58.0859.09.51010.51111.51212.5
131415161718 1920 2122232425];

pw2=[000 1520355090 160250 340 470 600 750 950 1100 1220 1320 1400 1450
1480 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500];
figure(3)

plot(spd2,pw2,'b-','MarkerSize',3)

xlabel('Wind Speed (m/s)');

ylabel("Wind Power (kw)")

title('GE 1.5 MW Wind-Turbine")

axis([0 25 0 1800])
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pause
q2 = polyfit(spd2,pw2,17);
%Curve Fitted to 17th degree
xp=0:1:25;

yp = polyval(q2,xp);

f = polyval(spd2,q2);

figure(4)
plot(spd2,pw2,'0',xp,yp);
xlabel('Wind Speed (m/s)');
ylabel("Wind Power (kw)');
title('GE 1.5 MW Wind-Turbine');
axis([0 25 0 1600])

pause

%% DISC SPEED ESTIMATION FOR GE 1.5 MW, 53 WIND TURBINES %%

%% Equation; U_Disk= 2/A* Int[UZ *sqrt(R"2- H"2+ 2HZ- 22 )dZ)]

(Integral limits H-R to H+R) :

%% Solving using function the disc speed equation adjusted for turbulence and shear
for wind turbines

% Initialising Height Range for GE 1.5 MW, 53 Wind Turbines %%

Wt = zeros(2,2,53); %Creating Array of 53 Wind turbines; Last Value = 53 GE 1.5
%MW wind turbines

% Assign height range for 53 wind turbines to solve integral equation

Wi(;,;,1) = [108 150.1; 150 185]; Wt(:,:,2) =[114 150.1; 150 191]; Wi(:,:;,3) =[114
150.1; 150 191];Wt(:,:,4) =[120 160.1; 160 197]; Wt(:,.,5) =[116 160.1; 160 193];
Wt(:,.,6) = [118 150.1; 150 195]; Wi(:,;,7) = [131 160.1; 160 208]; Wt(:,:,8) = [129
160.1; 160 206]; Wit(:,:,9) = [132 160.1; 160 209]; Wt(:,;,10)= [129 160.1; 160
206]; Wi(:,;,11) = [114 150.1; 150 191]; Wt(;,;,12) = [116 150.1; 150
193], Wt(:,;,13) = [116 150.1; 150 193], Wt(:,;,14) = [120 160.1; 160 197];
Wi(:,:,15) =125 160.1; 160 202];

Wt(:,:,16) = [125 160.1; 160 202]; Wit(:,:,17) =[130 160.1; 160 207];

Wt(:,:,18) = [130 160.1; 160 207]; Wt(:,:,19) =129 160.1; 160 206];

Wit(:,:,20) = [132 160.1; 160 209]; Wt(:,:,21) =[133 160.1; 160 210];
Wi(:,:,22) = [127 160.1; 160 204];Wt(:,:,23) =[121 160.1; 160 198];

Wi(:,:,24) = [126 160.1; 160 203];Wt(:,:,25) =[132 160.1; 160 209];

Wt(:,:,26) = [130 160.1; 160 207];Wt(:,:,27) = [132 160.1; 160 209];

Wit(:,:,28) = [143 160.1; 160 200];Wt(:,:;,29) =[140 160.1; 160 217];

Wi(:,:,30) =[146 200.1; 200 223]);Wt(;,:,31) =[139 160.1; 160 216];
Wt(:,:,32) =[141 160.1; 160 218];Wt(:,,33) =[137 160.1; 160 215];
1
Wt(:,;,36) = [142 200.1;200 219]:Wt(;,;,37) =[141 200.1: 200 218];
Wt(:,;,38) = [127 160.1; 160 204];Wt(:,:,39) =[132 160.1; 160 209];

Wi(:,:,40) = [132 160.1; 160 209];Wt(:,;,41) = [135 160.1; 160 212];
Wi(;,:,42) = [141 160.1; 160 218];Wt(;,;,43) = [140 160.1; 160 217];
Wi(:,;,44) = [138 160.1; 160 215];Wt(:,;,45) = [126 160.1; 160 203];

[
[
|
Wi(:,:,34) = [142 160.1; 160 219];W1(;,;,35) = [145 200.1; 200 222];
[
[
[
[
[
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WI(;,:,46) = [129 160.1; 160 206];Wt(:,:,47) = [132 160.1; 160 209];
Wi(:,:,48) = [129 160.1; 160 206];Wt(:,:,49) =[129 160.1; 160 206];
Wt(:,:,50) = [126 160.1; 160 203];W1(:,:;,51) =[126 160.1; 160 203];
Wt(:,:,52) = [125 160.15 160 202];Wt(:,:,53) = [126 160.1; 160 203];

%% DISC SPEED ESTIMATION FOR MITSUBISHI 1 MW, 221 WIND
TURBINES %%

%% Solving using function the disc speed equation adjusted for turbulence and shear
using functions for wind turbines

% Initialising Height Range for MITSUBISHI | MW, 221 Wind Turbine

Wit = zeros(2,2,221); % Creating Array of 221 Wind turbines; Last Value = 221
MITSUBISHI Wind Turbines

% Assign height range for 221 wind turbines to solve integral equation

Wit(:,:,1) =[107 140.1; 140 169]; Wtt(:,;,2) =[110 140.1; 140 172];

witt(:,:,3) =[113 140.1; 140 175]; Wtt(:,:,4) = [120 160.1; 160 182];

wtt(:,;,5) =119 160.1; 160 181]; Wtt(:,:,6) =[120 160.1; 160 182];

Witt(:,;,7) = [119 160.1; 160 181]; Wtt(:,:,8) = [120 160.1; 160 182];

witt(:,:,9) = [125 160.1; 160 187]; Wtt(:,:;,10)=[129 160.1; 160 191];

Wit(:,:;,11)=[116 140.1; 140 178];Wtt(:,:,12) = [114 140.1; 140 176];
wit(:,:;,13) =[114 140.1; 140 176];Wtt(:,:,14) =[110 140.1; 140 173];
wtt(:,;,15) =[112 140.1; 140 174];Wtt(:,:,16) =[115 140.1; 140 177];
Wtt(:,:,17) =[117 140.1; 140 179]; Wtt(;,:,18) =[118 140.1; 140 180];
wit(:,:,19) =[119 160.1; 160 181];Wtt(:,:,20) = [118 140.1; 140 180];
witt(:,:,21) =[123 160.1; 160 185];Wtt(:,:,22) =[124 160.1; 160 186];
Wtt(:,:,23) = [125 160.1; 160 187];Wtt(:,:,24) = [124 160.1; 160 186];
wu(:,:,25) = [127 160.1; 160 189];Wtt(:,:,26) = [128 160.1; 160 190];
witt(:,:,27) =126 160.1; 160 188];Wtt(:,:,28) =[110 140.1; 140 172];
Witt(:,:,29) =109 140.1; 140 171];Wtt(:,:,30) = [113 140.1; 140 175];
wit(:,:,31) =[109 140.1; 140 171};Wtt(:,:,32) = [110 140.1; 140 172];
wtt(:,:,33) = [113 140.1; 140 175];Wtt(:,:;,34) =118 140.1; 140 180];
Witt(:,:,35) = [121 160.1; 160 183];Wtt(:,:,36) =[122 160.1; 160 184];
Wit(:,:,37) = [125 160.1; 160 187];Wtt(:,:,38) =[124 160.1; 160 186];
Wit(:,:,39) =[125 160.1; 160 187]; Wtt(:,:,40) = [128 160.1; 160 190];
wit(:,:,41) =[129 160.1; 160 191]; Wtt(:,:,42) = [130 160.1; 160 192];
wtt(:,:,43) = [130 160.1; 160 192]; Wtt(:,:,44) =[130 160.1; 160 192];
witt(:,:,45) = [131 160.1; 160 193]; Wtt(:,:,46) =[134 160.1; 160 196];
wit(:,:,47) = [133 160.1; 160 195];Wtt(:,:,48) =[135 160.1; 160 197];
witt(:,:,49) =134 160.1; 160 196]; Wtt(:,:,50) = [133 160.1; 160 195];
wtt(:,:,51) =[134 160.1; 160 196];Wtt(:,:,52) = [133 160.1; 160 195];
wtt(:,:,53) = [134 160.1; 160 196];Wtt(:,:,54) = [135 160.1; 160 197];
Wit(:,:,55) = [138 160.1; 160 200]; Wtt(:,:,56) = [135 160.1; 160 197;

wit(:,:,57) = [95 140.1; 140 157];Wtt(:,:,58) = [101 140.1; 140 163];
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2

101 140.1; 140 163
103 140.1; 140 165

Wit(:,:,59) =[100 140.1; 140 162];Wtt(:,:,60) =
Wit(:,:,61)=[99 140.1; 140 161]; Wit(:,:,62) =
Wit(:,:,63) =[104 140.1; 140 166];Wtt(:,:;,64) =[110 140.1; 140 172
Witt(:,:,65) =[109 140.1; 140 171];Wtt(:,:,66) =[108 140.1; 140 170
Witt(:,:,67) =[110 140.1; 140 172]; Wtt(:,:,68) =[112 140.1; 140 174];
Wtt(:,:;,69) =[114 140.1; 140 176]; Wtt(:,:,70) =[116 140.1; 140 178];
wit(:,:,71) =123 160.1; 160 185];Wtt(:,:,72) =[124 160.1; 160 186];
Wit(:,:,73) =[122 160.1; 160 184];Wit(:,:,74) =[125 160.1; 160 187];
Wit(:,:,75) =[125 160.1; 160 187];Wtt(:,:,76) =[126 160.1; 160 188];
wtt(:,:,77) = [116 140.1; 140 178]; Wtt(:,:,78) =[118 140.1; 140 180];
Wit(:,:,79) =[119 140.1; 140 181]; Wtt(:,:,80) =[120 160.1; 160 182];
wit(:,:,81) =[120 160.1; 160 182];Wtt(:,:,82) =[122 160.1; 160 184];
Wwtt(:,:,83) =[122 160.1; 160 184];Wtt(:,:,84)=[124 160.1; 160 186];

[

[

2

b

— ——
el e el e

B

Wit(;,,85) = [128 160.1; 160 190];Wtt(:,:,86) =[129 160.1; 160 191];
Wit(;,:,87) = [131 160.1; 160 193];Wit(:,:,88) =[132 160.1; 160 194];
Wwit(:,,89) = [133 160.1; 160 195]; Wit(:,:,90) = [132 160.1; 160 194];
Wit(;,;,91) = [131 160.1; 160 193]; Wit(:,;,92) = [129 160.1; 160 191];
Wit(:,,93) = [132 160.1; 160 194]; Wit(;,:,94) = [83 120.1; 120 145];
Wit(;,;,95) = [85 120.1; 120 147]; Wit(;,:,96) = [88 120.1; 120 150];
Wit(;,:,97) = [95 120.1; 120 157];Wtt(:,:,98) = [90 120.1; 120 152];
Wit(;,;,99) = [88 120.1; 120 150]; Wit(:,:,100) = [92 120.1; 120 154];
Wit(;,,101) = [93 140.1; 140 155];Wut(;,;,102) = [107 140.1; 140 169];

wtt(:,:,103)=[108
wit(:,:,105) = [104
witt(:,:,107) =[98
wit(:,:,109) =111
wit(;,:,111) =96
wtt(:,;,113) =97
wu(:,:, 115) =198
Wtt(:,:,117) =195
wret(:,:,119) = {92
wet(:,:, 121) = [95
witt(:,:,123) = [104
wt(:,:,125) =104
wiet(:,:,127) = [102
witt(:,:,129) = [105

Witt(:,.,131)=[106
wtt(:,;,133) =[114
wtt(;,:, 135) =113
wit(:,:,137)=[114
wit(:,:,139) =[115
we(:,:,141) =[109
Wit(:,:,143) =123
Wtt(:,:,145) =[121

Wit(;,:,147) = [124

140.1; 140 170]; Wtt(:,;,104) =[104 140.1; 140 166];
140.1; 140 166]; Wtt(:,;,106) =[102 140.1; 140 164];
140.1; 140 160]; Wit(:,:,108) = [102 140.1; 140 164];
140.1; 140 173];Wtt(:,;,110)=[97 120.1; 120 159];
120.1; 120 158]; Wtt(;,:,112)=[95 120.1; 120 157]:
120.1; 120 159]; Wit(;,;,114) = [101 140.1; 140 163];
120.1; 120 160]; Wit(:,;,116) = [96 120.1; 120 158];
120.1; 120 157];Wtt(:,:,118) = [98 120.1; 120 160];
120.1; 120 154];Wtt(:,:,120) = [93 120.1; 120 155];
150.1; 150 157);Wtt(:,:,122) = [104 140.1; 140 166];
140.1; 140 166];Wt(:,:,124)=[104 140.1; 140 166];
140.1; 140 166]; Wtt(:,:,126) =[99 140.1; 140 161];
140.1; 140 164]; Wtt(:,;,128) =[105 140.1; 140 167];
140.1; 140 167]; Wtt(:,:,130) = [105 140.1; 140 167];
140.1; 140 168]; Wtt(:,:,132) = [107 140.1; 140 169];
140.1; 140 176]; Wtt(:,;,134)=[110 140.1; 140 172];
140.1; 140 175]; Wtt(:,:,136) =[114 140.1; 140 176];
140.1; 140 176]; Wtt(;,;,138)=[116 140.1; 140 178];
140.1; 140 177); Wu(:,:,140) = [109 140.1; 140 171];
140.1; 140 171]; Wtt(:,:,142) = [122 160.1; 160 184];
160.1; 160 185]; Witt(:,:,144) =[126 160.1; 160 188];
160.1; 160 183]; Wtt(;,:,146) =[122 160.1; 140 184];
160.1; 160 186]; Witt(:,;,148) = [128 160.1; 160 190];

— p— p— — p— p—
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Wit(:,:,149) = [128 160.1; 160 190];
Wit(;,;,151) = [131 160.1; 160 194]; Wit(:,:,152) =
]
]

witt(:,:,153) =
witt(:,;,155) =
Witt(:,:,157) =
wtt(:,:,159) =
Wwtt(:,:;,161) =
witt(:,:,163) =[98
wtt(:,:,165) =

[
[
[
[93
[
[
[
[
wtt(:,;,167) =
[
[91
(92
[
(61
[65
[68
[60

98

8
witt(:,:,169) = [82
wit(:,:;,171) =
wtt(;,:,173) =
wtt(:,:,175) =
wt(:,:,177) =
wit(:,:;,179) =
witt(:,:,181) =
Wit(:,:,183) =
Witt(:,:,185) =[70
wtt(:,:,187) = [80
Wwitt(:,:,189) = [66
wtt(:,:;, 191) =[57
Witt(:,:,193) =[59
Witt(:,:,195) = [61]
witt(;,:,197) = [68
wtt(:,:,199) = [68
Witt(:,:,201) = [64

[62
(65
[74
[74
[61
[56

7
8
8

9

Witt(:,:,203) =
wit(:,:,205) =
Wwitt(:,:,207) =
Witt(:,:,209) =
we(:,:,211) =
Wit(:,:,213) =
Wit(:,:,215) = [63
Witt(:,:,217) = [38
Witt(:,:,219) = [41
Wit(:,:,221) = [55

132 160.1; 160 194
129 160.1; 160 191

Wit(:,:,150) =[128 160.1; 160 190];
133 160.1; 160 195];
126 160.1; 160 188];
; Wit(:,:,156) =[122 160.1; 160 184];
120.1; 120 155]; Wtt(:,;,158) =95 120.1; 120 157];

120.1; 120 160]; Wtt(:,:,160) =[99 120.1; 120 161];

; Wit(:,:,154) =

————

101 140.1; 140 163];Wtt(:,:,162)=[104 140.1; 140 166];

140.1; 140 160]; Wtt(;,:,164) =[101 140.1; 140 163];

102 140.1; 140 164];Wtt(:,:,166) = [86 120.1; 120 148];

120.1; 120
120.1; 120
120.1; 120
120.1; 120
120.1; 120
120.1; 120
120.1; 120
100.1; 100
100.1; 100
100.1; 100
120.1; 120
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1; 100
100.1: 100
100.1; 100

140]; Wtt(:,:,168) = [
1447; Wtt(:,:,170) = [92
153]; Wtt(:,:,172) = [92
154]; Wtt(:,:,174) = [96
1517; Wit(:,:,176) = [83
123];Wtt(:,:,178) = [62
127];Wtt(:,:,180) = [68
130]; Wtt(:,:,182) = [59 100.1; 100 120];
122]; Wit(:,;,184) =[61 100.1; 100 123];
132]; Wtt(:,:,186) = [75 100.1; 100 137];
142]; Wit(:,:,188) = [65 100.1; 100 127];
128]; Witt(:,:,190) = [68 100.1; 100 130];
119]; Wit(:,:,192) = [59 100.1; 100 121];
121]; Witt(:,:,194) = [59 100.1; 100 121];
123]; Wit(:,:,196) = [65 100.1; 100 127];
130]; Witt(:,:,198) = [63 100.1; 100 125];
130]; Wtt(:,:,200) =[66 100.1; 100 128];
126]; Witt(:,:,202) = [62 100.1; 100 124];

[64

[68

[

[65

[55

[

76 120.1; 120 138];
120.1; 120 154];
120.1; 120 154];
120.1; 120 158];
120.1; 120 145];
120.1; 120 124];
120.1; 120 130];

59
59

124]; Wtt(:,:,204) = 100.1; 100 126];
127]; Wtt(:,:,206) = 100.1; 100 130];
136]; Wtt(:,:,208) =[66 100.1; 100 128];
136]; Wtt(:,:,210) = 100.1; 100 127];
123]; Witt(:,:,212) = 100.1; 100 117];
100.1; 100 118]; Wtt(:,:,214) =[67 100.1; 100 129];
100.1; 100 125]; Wtt(:,:,216) = [40 80.1; 80 102];
80.1; 80 100]; Witt(:,:,218) = [44 80.1; 80 106];
80.1; 80 103];Wtt(:,:,220) =42 80.1; 80 104];
80.1; 80 117];

%% Initializing Wind turbine Hub Height (varies due to contour height) H=53, GE
wind turbines; H2=221 Mitsubishi wind turbines;
%% H = GE Wind Turbines

H=

[146; 153; 152; 159; 154; 156; 169; 168; 171; 167; 153; 155; 154; 159; 163, 163;

168; 168; 168; 171; 171; 165; 159; 164; 170, 169; 171; 181; 178; 185; 177; 180;

176; 181;

183; 180; 179; 165; 171; 171; 174; 179; 178; 177; 164; 167; 171;

168; 167,

164; 164; 164; 164];
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% H2 = Mitsubishi Wind Turbines

H2 =[138; 141; 144; 151; 150; 151; 150; 151; 1565 160; 147; 145; 145; 141; 143; 146;
148; 149; 150; 149; 154; 155; 156; 155; 158; 159; 157; 141, 140; 144; 140; 141; 144;
149; 152; 153; 156; 155; 156; 159; 160; 161; 161; 161; 162; 165; 164; 166; 165; 164;
165; 164; 165; 166; 169; 166; 126; 132; 131; 132; 130; 134; 135; 141; 140; 139; 141,
143; 145; 147; 154; 155; 153; 156; 156; 157; 147; 149; 150; 151; 151; 153; 153; 155;
159; 160; 162; 163; 164; 163; 162; 160; 163; 114; 116; 119; 126; 121; 119; 123; 124;
138; 139; 135; 135; 133; 129; 133; 142; 128; 127; 125; 128; 132; 129; 127; 126; 129;
123; 124; 126; 135; 135; 135; 135; 130; 133; 136; 136; 136; 137, 140; 145; 141;

144; 145; 145; 147; 146; 140; 140; 153; 154; 157; 152; 153; 155; 159; 159; 159; 163;
164; 162; 157; 160; 153; 124; 126; 129; 130; 132; 135; 129; 132; 133; 117; 109; 107,
113;123;122; 123; 123; 127; 120; 114; 92; 93; 96; 99; 99: 90; 91, 92; 101; 106;
111;96; 97; 99; 88; 90; 90; 90; 92; 96; 99; 94; 99; 97; 95; 93; 93; 95, 96; 99; 105; 97,
105; 96; 92; 86; 87; 98; 94; 71, 69; 75; 72; 73; 86];

%% SOLVING NUMERIC INTEGRATION USING FUNCTION;[Y,y and Y2,y2 are
variables of GE and Mitsubishi wind turbines]

%%

Y =[u_69,u 80,u 100, u_120, u_ 160, u 200, u 220, a69t080, a80to100, al00to120,
al20to160, al60t0200, a200t0220]; % GE Wind Turbine; Assign variables to solve
equation

Y2 =[ul_69,ul_80,ul _100,ul_120,ul 160, ul_200, ul_220, al69to80, al80to100,
al100to120, all20to160, all160t0200, al200t0220]; % Mitsubishi Wind Turbine;
Assign variables to solve equation

GE Wind Turbine; Assign variables to solve equation

y = [3,10,4,11; 3,10,4,11; 3,10,4,11; 4,11,5,12; 3,10,4,11; 3,10,4,11; 4,11,5,12;
4,11,5,12;  4,11,5,12; 4,11,5,12;- 3,10,4,11; 3,104,11; 3,10,4,11; 4,11,5,12;
4,11,5,12;  4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12;  4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12;  4,11,6,13:4,11,5,12;  4,11,5,12;  4,11,5,12; 4,11,5,12; 4,11,6,13;
4,11,6,13; 4,11,6,13; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12] .; % To access the variable that is
Yoassigned(Eg; 3 =u_100;4 =u_120; 10 =2al100to120; 11 = al20to160)

% Mitsubishi Wind Turbine; Assign variables to solve equation

y2 = [3,10,4,11; 3,10,4,11; 3,10,4,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11;
4,10,5,11; 4,10,5,11; 4,10,5,11; 3,10,4,11; 3,104,11; 3,104,11; 3,104,11;
3,104,11;  3,104,11; 3,10,4,11; 3,10.4,11; 4,10,5,11; 3,10,4,11; 4,10,5,11;
4,10,5,11;  4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 3,11,5,12;
3,104,11;  3,10,4,11;3,104,11; 3,104,11; 3,104,11; 3,10,4,11; 4,10,5,11;
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4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5 12; 4,11,5,12;
4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12;, 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
2,10,4,11; 3,104,11; 3,10,4,11; 3,104,11; 3,10,4,11; 3,10,4,11; 3,10,4,11;
3,10,4,11; 3,10,4,11; 3,104,11; 3,104,11; 3,104,11; 3,10,4,11; 3,10,4,11;
4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 3,104,11;
3,10,4,11; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12; 4,11,5,12;
4,11,5,12; 4,11,5,12; 2,9,4,10; 2,9,4,10; 2,94,11; 2,94,11; 29,4,11; 2,104,11,
2,10,4,11; 2,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,104,11; 3,10,4,11;
3,10,4,11; 3,104,11; 3,10.4,11; 2,10,4,11; 2,10,4,11; 2,10,4,11; 2,10,4,11;
3,10,4,11; 2,10,4,11; 2,10,4,11; 2,10,4,11; 2,10,4,11; 2,10,4,11;
2,10,4,11;2,10,4,11;  3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11;
3,10,4,11; 3,104,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11;
3,10,4,11; 3,104,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11; 3,10,4,11;
3,10,4,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11;
4,10,5,11; 4,10,5,11; 4,10,5,11:4,10,5,11; 4,10,5,11; 4,10,5,11; 4,10,5,11;
4,10,5,11; 4,10,5,11; 2,9,4,10; 2,9,4,10; 2,94,10; 2,9.4,10; 3,10,4,11; 3,10,4,11;
3,10,4,11;, 3,104,11; 3,104,11; 2,10,4,11; 1,9,4,10; 1,94,10;, 2,10,4,11;
2,10,4,11; 2,10,4,11; 2,104,11; 2,104,11; 2,104,11; 2,10,4,11; 2,10,4,11;
1,9.,4,10; 1,94,10; 1,94,10; 1,94,10;, 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10;
1,9,3,10; 1,9,3,10, 2,10,4,11; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10;
1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10;
1,9.3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10;
1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,9,3,10; 1,8,2,9;
1,8,2,9; 1,829, 18729, 1,829, 1,8,2,10]; % To access the variable that is
assigned(Eg; 3=ul 100;4=ul_120; 10 =2al1100t0120; 11 =al120to160)

%%%%%%%  Calling GE Wind Turbine Using Function

v = zeros(N,1,53);

% last value =53 GE Wind Turbines; Area of GE Wind Turbine = 4657;

foril =1:53 % last value = 53 GE Wind Turbines

v2 =gt v(il); % Calling using functions for 53 GE Wind Turbines %v2 ;v
v(:,:,i1) =(2/4657).* v2(:,:); % Result of Disc Speed is stored in variable v; or

Equation = (2/ A) *( Udisc) '

end

x1 =v(,,1); % 1 =First WT disc speed

x2 = v(:,:,2); % 2= Second WT disc speed

x3 =v(;,:3); % 3 =Third WT disc speed

x4 = v(;,5,4); % 4 =Fourth WT disc speed

X5 =v(:,:,5); % 5=Fifth WT disc speed
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%% Calling Mitsubishi Wind Turbine Using Function

v4 = zeros(N,1,221);

fori3 =1:221 % last value = 221 Mitsubishi Wind Turbines; Area of Mitsubishi
Wind Turbine = 3019; v4 = gtt_v(i3); % Calling using functions for 221 Mitsubishi
%Wind Turbines %v4; v4

v5(:,5,i3) =(2/3019).* v4(:,:);% Disc Speed is stored in variable v5; or Equation = (2/
A) *( U _disc)

end

x11 =v5(,:,1); % 1 = First WT disc speed

x12 =v5(,,2); % 2 = Second WT disc speed

x13 =v5(,:,3); % 3 =Third WT disc speed

x14 = v5(.,:,4); % 4 =Fourth WT disc speed

x15=v5(,:,5); % 5=Fifth WT disc speed

%% END OF DISC SPEED

%% POWER PREDICTION FROM DISC SPEED FOR GE 1.5 MW; 53 WIND
TURBINES %

for il =1:53 % Last value = 53 WT; GPuncor = Uncorrected Power of GE Wind
Turbine

gpuncor(z,;,il) =
q2(18)Hq2(17).*¥(v(:,,i)HQ2(16).*¥(v(:,;,i 1)) A2)HQ2(15) . * (v(:,:,11))./3)+(q2(14) . *(v
(55,1 1) A)HQ2(13)*(v(, 5L 1)A5)H(q2(12). 2 (v(:,:, 11)).26)Hq2( 1) .*¥(v(:,5,i1).AT)
+q2(10).*(v(:,:,i1)).78)

+(q2(9).*(v(:,5,11).2NH(q2(8). * (v(:,5,i 1)) M0)+H(q2(7) ¥ (v(:,:,11)).0 1 )

+(q2(6).*(v(:,:,1 1) A1 2)HQ2(5) X (v, 5L 1)) A3)Hq2(4). ¥ (ve,:Li D)) AM4)Hq2(3) * (v, i
INAISH(Q2(2) ¥ (v(e, i D)) A16)Hq2(1) *(v(:,:,i 1)) 7)),
gpcor(:,:,il)=gpuncor(:,:il).*(act_density./1.225);

end

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR GE
WIND TURBINE;%%

nn2 = length(v(:,:,il));

foril =1:53

AA1 = find(gpcor(:,;,i1)>=1500); % Rated power is equal to 1500 KW

nn3 = length(AA1);

forj2 =1:nn3

gpecor(nn2*(il-1)+ AA1(j2))=1500; = % Power remains constant after rated wind
speed

end

end

figure(5)

v8(:,, )= sort(v(:,;, 1))

gplcor = sort(gpcor(:,:,1));

plot(v8(:,:,1),gplcor,'r-");

xlabel('Wind Speed (m/s)');
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ylabel('Wind Power (kw)");

title(" GE 1.5 MW Wind Turbine');
axis([0 25 0 1800]);

pause

figure(6)

v8(:,:,2)=sort(v(:,:,2));

gp2cor = sort(gpcor(:,:,2));
plot(v8(:,:,2),gp2cor,'k-");
xlabel("Wind Speed (m/s)");
ylabel('Wind Power (kw)");

title(' GE 1.5 MW Wind Turbine");
axis([0 25 0 1800));

pause

%% POWER PREDICTION FROM DISC SPEED FOR MITSUBISHI 1 MW; 221
WIND TURBINES %

for i3 =1:221 % Last value = 221 Mitsubishi WT ; MPuncor = Uncorrected Power of
Mitsubishi Wind Turbine

mpuncor(:,:,i3) =ql{19)+ (q1(18).*(v5(:,:,i3)))+ q1(17).*(v5(,:,i3))."2)+
(q1(16).*(v5(:,:,i3))."3)+H(q1(15).¥(v5(,:,i3)).)+(q 1 (14).*(v5(:,:,13)).A5+H(q 1 (13).%(v5
(2,5,13)).26)Hq1(12).*(v5(:,,i3)). )+

(ql(11).%(v5(,:,i3))."8) +(q1(10).*(v5(,:,i3)).”9)+ (q1(9).*(v5(:,:,13)). M 0)+
(q1(8).*(v5(:,5i3)). M 1)+ (q1(7).¥(v5(,:,i3)).M2) +(q1(6).*(v5(:,:,13)) N 3)+

(q1(5).* (V5(:,5i3)) M) HqI(4). *(v5(:,5,13)) A 5)+
(q1(3).*(v5(:,5,13)).716)+(q1(2). *(V5( LLI3)) AT (I (1) *(vS(2,:,13)).18);
mpcor(:,:,i3)=mpuncor(:,:,i3).*(act_density./1.225);

end

%%

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR
MITSUBISHI WIND TURBINE;%%

nn = length(v5(:,:,i3));

fori3 =1:221 '

AA = find(mpcor(:,:,i3)>=1000); % Rated power is equal to 1000 KW

nnl = length(AA);

forjl = l:nnl

mpcor(nn*(i3-1)+ AA(j1))=1000; % Power remains constant after rated wind speed
end

end

%%

figure(7)

Mv(:,:, 1)= sort(v3(:,:,1));

mpcorll = sort(mpcor(:,:,1));

plot(Mv(:,:,1),mpcorl1,'k-");

xlabel("Wind Speed (m/s)");
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ylabel("Wind Power (kw)");

title(" MITSUBISHI | MW Wind Turbine');

axis([0 25 0 1200)); '

pause

figure(8)

Mv(:,:,2)= sort(v3(:,:,2));

mpcor12 = sort(mpcor(:,:,2));

plot(Mv(:,:,2),mpcor12,'r-");

xlabel("Wind Speed (m/s)");

ylabel("'Wind Power (kw)");

title(" MITSUBISHI | MW Wind Turbine');

axis([0 25 0 1200));

%% WAKE MODEL FOR GE WIND TURBINE

%% WAKE SPEED ESTIMATION FOR GE 1.5 MW, 53 WIND TURBINES %

% Rrot = Radius of GE Wind Turbine; x = Distance between nearest wind turbine;
Ashad = Area of shadow region of wind turbines

% Arot = Area of GE wind turbine rotor; Ct = Thrust coefficient of wind turbine; tana
= 0.04(no-wake)/0.08(wake); Rx = Radius of shadow cone

% v(:,:,i1) = Disc Speed; Uwake(:,:,il)= Wake Speed of Wind Turbine
x=[262;262;292;296,296;306;0;301;201;259;0,298;298;302;246;246;258;302;302;269
;269;282;0;335;0;248;248;209;209;344;0;293;293,283,266;266;288;0;299;0,0;,264;264
;325;0;229;298;255;255;0;226;226;408];
Ashad=[2500;2500.0;2500.0;2500.0;1900.0;2100.0;2500.0;2500.0;2400.0;1500.0;250
0.0;2100.0;2100.0;2100.0;2500.0;2500.0;2500.0;2100.0;2100.0;2400.0,2400.0;
2100.0;0.0000;  0.0000;2500.0;2500.0;2500.0;  2000.0;2000.0;0.0000;  0.0000;
2000.0;2000.0;2000.00;2500.0;2500.0;2200.0;0.0000;2200.0;0.000; 0.000;
2200.0;2200.0;0.00;0.00;2000.0;1000.0;2400.0;2400.0;0.0000;2000.0;2000.0;
0.20007;

% Equation : Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for
% WT- Wind Turbine

% Ct = 3.5*(2*Vhub - 3.5)/ (Vhub)"2;

% R(x) = Rrot + x.tana ; tana = 0.04 (free speed) or tana = 0.08 (wake)%

% Uwake = Vi[I- sqrt(] - Ct)*(Rrot/R(x))"2*(Ashad / Arot)]

foril=1:53 % 53, GE 1.5 MW Wind Turbines
Rrot =38.5; ,

Ct(:,5,i1) = 3.5.%((2.¥v(:,5,i 1)) - 3.5)./(v(:,5,11)).72;

tana =0.08;

Rx(il) = Rrot + x(il)*tana;

Arot =4657;

Uwake(:,,il) = v(:,5,i1).*(1- sqrt(1 - Ct(:,:,i1)).*(Rrot/Rx(i1))"2.*(Ashad(il )/Arot));
end

%%

%% POWER PREDICTION FROM WAKE SPEED FOR GE 1.5 MW, 53 WIND
TURBINES % ’
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for il =1:53 % 53 GE 1.5 MW Wind Turbines; gpuncorw = Uncorrected Wake
Power of GE Wind Turbine;  gpcorw = Corrected Wake Power of GE Wind Turbine
gpuncorw(z,.,il) = q2(18)+(q2(17).*(Uwake(:,:,il))}*+ (q2(16).*(Uwake(:,:,i1))."2)+
(q2(15).*(Uwake(:,:,i1))."3)+
(q2(14).*(Uwake(:,:,i1)).)+(q2(13).*(Uwake(:,:,i1)).75)+
(q2(12).*(Uwake(:,:,11)).76)+q2(11).*(Uwake(:,:,i 1) )+

(q2(10).*(Uwake(:,:,11)).78) - +(q2(9).*(Uwake(:,:,11)).29)+
(q2(8).*(Uwake(:,:,i1)).0)+(q2(7).* (Uwake(:,:,i1)).~1 1)
+(q2(6).*(Uwake(:,:,i1)). M 2)+ (q2(5).*(Uwake(:,:,i1)). M3)+

(q2(4).*(Uwake(:,:,i1)). M 14)+(q2(3). *(Uwake(:,:,i1)). N 5)+
(q2(2).*(Uwake(:,5,il)). 16)+Hq2(1).*(Uwake(:,:,i1)).~17));
gpcorw(:,:,il) = gpuncorw(;,:,il).*(act_density./1.225);
end

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR GE
WIND TURBINE %%%%%%%
nn4 = length(Uwake(:,:,i1));
foril =1:53
AA3 = find(gpcorw(:,:,il)>=1500); % Rated power is equal to 1500 kw
nn5 = length(AA3);
forj2 = 1:nn5
gpcorw(nn4*(il-1)+ AA3(j2))=1500; % Power remains constant after rated speed
end
end

%% WAKE MODEL FOR MITSUBISHI WIND TURBINE%:%

%% WAKE SPEED ESTIMATION FOR MITSUBISHI 1 MW, 221 WIND
TURBINES %

% R2 = Radius of Mitsubishi Wind Turbine; x2 = distance between nearest wind
turbine; Ashad2 = Area of shadow region of wind turbines

% Ct2 = Thrust Coefficient of Wind turbine; Rx2 = Radius of shadow cone;

tana = 0.04(no-wake)/ 0.08(wake); -

% Uwake2 = Wake Speed ; v5(:,:,i3) = Disc Speed ;

Arot2 = Area of wind turbine rotor disc (3019)

R2=31;
x2=[194;194;234;230;230;232;223;193;193;195;214;214;222;237,206;206;232;232;23
6;232;234;234,235;240;258;258;221;221;220;220;212;212;194;194;220;210;210;231;
231;215;215;217;217;219;248,242;241;241,225;225;226:225;225;235;244;324;231;22
9;229;264;204;204;199;199;220;211;204;204;214;224:235;218;218;227;241;
271;271,227;227,227,213;211;211;198;197;197;216;216;218;242;236;236;201;201;22
7;207;207;223;225;224;116;116;202;202;202;274;164;164;222:;205;205:461:437;
437;214;214;220;291;188;188;215;213:;213;214;195;195;173;173:168;168;177;171;17
1;214;198;198;240;240;222,;222;236;231;231;236;281;281;258;221;221;213;211;211;
209;209;271;198;198;215;215;150;150;223;192;192;205;205;203;197;187;187;
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254;254;172;172;250;317;317;300;220;220;287;287,304;377;300,300;248;246;246;23
0;190;190;213;215;218;218;258;252,252;212;212;229;229;213;213;220;,226;226;207;
207;254;256;256;294;335;208;208;223;274;274;307];

NE =numel(x2); % Counting wind turbines
Ashad2=[0;1952.85;650.95;741.52;1741.52;1741.52;1801.9;1952.85;1952.85;1952.85
:0;1862.28;1801.9;0;1043.42;1043.42;0;1741.52;1650.95;1741.52;741.52;1741.52;741
.52:741.52;681.14;0;0;0;1801.9;2801.9;2801.9;1862.28;1862.28;1254.75;1254.75;180
1.9;1862.28;1862.28;0;1650.95;1862.28;1862.28;1801.9;1801.9;1801.9;0,1590.57;159
0.57;1590.57;1801.9;801.9;801.9;801.9;801.9;1650.95;2560.38,0;2650.95,681.14;681.
14;0;0;862.28,0;952.85;801.9;0;1043.42;1043.42;952.85;801.9;650.95;952.85;952.85;
801.9;590.57;0;0;650.95,650.95;0;801.9;801.9;1801.9;0,952.85;952.85,801.9;801.9;80
1.9;560.38;590.57;590.57;0;862.28;650.95;801.9:801.9;650.95:650.95;650.95;801.9;8
01.9;0;862.28,862.28;0,1405.7;1405.7,0,862.28,;
1862.28;0;0,0;0;741.52;650.95;0;1254.75;1254.75;0;1741.52;1741.52;1741.52;1103.8;
1103.8;1405.7;1405.7;1405.7;1405.7;1405.7,1405.7;1405.7;741.52;862.28,;
862.28;560.38;1560.38;741.52;741.52;0;650.95;650.95;650.95;0,0;0;741.52;741.52;80
1.9:801.9;3801.9;801.9;801.9;0;0;862.28;741.52;741.52;1556.65;1556.65:741.52;
862.28;862.28;0;862.28;1862.28;2952.85;1164.18;1164.18;0;0;1345.32;
1345.32;0;0;0;0,741.52;741.52;0;0;0;0;0;0;0;0;0;650.95;952.85;952.85;862.28;862.28;
862.28;0,0;0;801.9;801.9;650.95;650.95;0;1862.28:1801.9;0;1650.95;
801.9;1801.9;0;0;0,0;0;862.28;1862.28;1650.95,0,0;0];

% Equation : Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for
% WT- Wind Turbine

% Ct=3.5*(2*Vhub - 3.5)/ (Vhub)"2;

% R(x) = Rrot + x.tana ; tana = 0.04 (free speed) or tana = 0.08 (wake)%
% Uwake = Vi[1- sqrt(1 - Ct)*(Rrot/R(x))"2*(Ashad / Arot)]

for i3=1:221 % Last value =221 Mitsubishi WT

Ct2(:,:,13) = 3.5.*((2.¥v5(:,5,i3)) - 3.5)./(v5(:,:,i3)).72;

tana =0.08;

Rx2(i3) = R2 + x2(i3)*tana;

Arot2 =3019;

Uwake2(:,:,i3) = v5(;,:,i3).*%(1- sqrt(1 -
Ct2(:,:,i3)).*(R2/Rx2(i3))"2.*(Ashad2(i3)/Arot2));

end

%% POWER PREDICTION FROM WAKE SPEED FOR MITSUBISHI 1 MW, 221
WIND TURBINES %

xx1 = UwakeZ2 (;,:,i3);

for i3 =1:221

%Last value = 221 Mitsubishi WT; MPuncorw = Uncorrected Wake Power of
%Mitsubishi Wind Turbine; mpcorw = Corrected Wake Power of Mitsubishi Wind
%Turbine
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mpuncorw(:,;,i3) = ql(19)+(q1(18).*(Uwake2(:,:,i3))+(ql(17).*(Uwake2(:,:,i3))."2)+
(ql(16).*(Uwake2(:,:,13)).”3)+(q1(15).*(Uwake2(:,:,i3))."4)+(q1(14).*(Uwake2(:,:,i3)
)5)H(q1(13).*(Uwake2(:,:,i3)).76)+q 1 (12).*(Uwake2(:,:,i3))."7)+(q1(11).*(Uwake2(:
,513)).78)+(q1(10).*(Uwake2(:,:,i3)).”~9)+(q1(9). *(Uwake2(:,:,i3)).10)+(q1(8).*(Uwa
ke2(:,5,i3)). 7 1)+H(q1(7).*(Uwake2(:,:,i3)).~12)+(q1(6).*(Uwake2(:,:,i3))."13)+q1(5).*
(Uwake2(:,:,i3)).~ 14)+H(q1(4). *(Uwake2(,:,i3)). A 5)+Hql(3).*(Uwake2(:,:,i3))./16)+
(q1(2).*(Uwake2(:,:,i3)). 1 7)+(q1(1). *(Uwake2(:,:,i3)).”18);

mpcorw(:,:,i3) = mpuncorw(:,:,i3).*(act_density./1.225);

end

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR
MITSUBISHI WIND TURBINE;%%

nn6 = length(Uwake2(:,:,i3));

fori3 =1:221 .

AA4 = find(mpcorw(:,;,i3)>=1000); % Rated power is equal to 1000 kw

nn7 = length(AA4);

for jl = 1:nn7

mpcorw(nn6*(i3-1)+ AA4(j1))=1000; % Power remains constant after rated speed
end

end

%% START OF WAKE COEFFICIENT At 45 and 225 degree

% Sum of No-wake power of windfarm = GE_Mit cpw

% Sum of wake power of windfarm = GE_Mit_wpw

% Wake Coefficient = Sum of No-wake power/Sum of Wake power

GE_Mit_cpw = mpcor(:,;,1) + mpcor(:,:,2)+ mpcor(:,:,3)+ mpcor(:,:,4)+ mpcor(:,:,5) +
mpcor(:,:,6)+ mpcor(:,:;,7)+ mpeor(:,:,8)+ mpeor(:,:,9)+ mpcor(:,:,10)+ mpcor(:,:, 1 1)+
mpcor(:,:,12)+ mpcor(:,:,13)+ mpcor(:,:,14)+ mpcor(:,:,15)+ mpcor(:,:,16)+
mpcor(:,:,17)+ mpcor(:,:,18)+ mpcor(:,:,19)+ mpcor(:,:,20)+ mpcor(:,:,21) +
mpcor(:,:,22)+ mpcor(:,:,23)+ mpcor(:,:,24)+ mpcor(:,:,25)+ mpcor(:,:,26)+
mpcor(:,:,27) + mpcor(:,:,28)+ mpcor(:,:,29) + mpcor(:,:,30)+ mpcor(:,:,31)+
mpcor(:,:,32)+ mpcor(:,:,33)+ mpcor(:,:,34)+ mpcor(:,:,35) + mpcor(:,:,36) +
mpcor(:,:,37)+ mpcor(:,:,38)+ mpcor(:,:,39)+ mpcor(:,:,40)+ mpcor(:,:,41)+
mpcor(:,:,42)+ mpcor(:,:,43)+ mpcor(:,:,44)+ mpcor(:,:,45)+ mpcor(:,:,46)+
mpcor(:,:,47)+ mpcor(:,:,48)+ mpcor(:,:,49)+ mpcor(:,:,50)+ mpcor(:,:,51)+
mpcor(:,:,52)+ mpcor(:,;,53 )+ mpcor(:,:,54)+ mpcor(:,:,55)+ mpcor(:,:,56)+
mpcor(:,:,57)+ mpcor(:,:,58)+ mpcor(:,:,59)+ mpcor(:,:,60)+ mpcor(:,:,6 1)+
mpcor(:,:,62)+ mpcor(:,:,63)+ mpcor(:,:,64)+ mpcor(:,:,65) + mpcor(:,:,66) +
mpcor(:,:,67)+ mpcor(:,:,68)+ mpcor(:,:,69)+ mpcor(:,:,70)+ mpcor(:,:,71)+
mpcor(:,:,72) + mpcor(:,:,73)+ mpcor(:,:,74)+ mpcor(:,:,75)+ mpcor(:,:,76)+
mpcor(:,:,77)+ mpcor(:,:,78)+ mpcor(:,:,79)+ mpcor(:,:,80) + mpcor(:,:,81)+
mpcor(:,:,82)+ mpcor(:,:,83)+ mpcor(:,:,84)+ mpcor(:,:,85)+ mpcor(:,:,86)+
mpcor(:,:,87) + mpcor(:,:,88)+ mpcor(:,:,89)+ mpcor(:,:,90)+ mpcor(:,:,91) +
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mpcor(;,:,92)+ mpcor(:,:,93)+ mpcor(:,:,94)+ mpcor(:,:,95)+ mpcor(;,;,96)+
mpcor(:,:,97) + mpcor(;,:,98)+ mpcor(:,:;,99)+ mpcor(:,;,100)+ mpcor(;,:;,101)+
mpcor(:,:,102)+ mpcor(:,:,103)+ mpcor(:,:,104)+ mpcor(:,:,105)+ mpcor(:,:,106)+
mpcor(:,:, 107+ mpcor(:,:,108)+ mpcor(:,:,109)+ mpcor(:,:,110)+ mpcor(:,;,1 1 1)+
mpcor(:,:,112)+ mpcor(:,:,113) + mpcor(:,:,114)+ mpcor(:,:,115)+ mpcor(:,:,1 16)+
mpcor(:,:,117)+ mpcor(:,:,118)+ mpcor(:,:,119)+ mpcor(:,:,120)+ mpcor(:,:,121)+
mpcor(:,:,122)+ mpcor(:,:,123)+ mpcor(:,:,124)+ mpcor(:,:,125)+ mpcor(:,:,126)+
mpcor(:,:,127)+ mpcor(:,:,128)+ mpcor(:,:,129) + mpcor(:,:,130) + mpcor(:,;,131)+
mpcor(:,:,132)+ mpcor(:,:,133)+ mpcor(:,:,134)+ mpcor(:,:,135)+ mpcor(:,:,136)+
mpcor(:,:,137)+ mpcor(:,:,138)+ mpcor(:,:,139)+ mpcor(:,:,140)+ mpcor(:,:, 1 41)+
mpcor(:,:,142)+ mpcor(:,:,143)+ mpcor(:,:,144)+ mpcor(:,:,145)+ mpcor(:,:,146)+
mpcor(:,:,147)+ mpcor(:,:,148)+ mpcor(:,:,149)+ mpcor(:,:,150)+ mpcor(:,:,1 51)+
mpcor(:,:,152)+ mpcor(:,:,153)+ mpcor(:,:,154)+ mpcor(:,:,155)+ mpcor(:,:,156)+
mpcor(:,:,157)+ mpcor(:,:,158)+ mpcor(:,:,159)+ mpcor(:,:,160)+ mpcor(:,:,161)+
mpcor(:,:,162)+ mpcor(:,:,163)+ mpcor(:,:,164)+ mpcor(:,:,165)+ mpcor(:,:,166)+
mpcor(:,:,167)+ mpcor(:,:,168)+ mpcor(:,:,169)+ mpcor(:,:,170) + mpcor(:,:,1 71)+
mpcor(:,:,172)+ mpcor(:,:,173)+ mpcor(:,:,1 74)+ mpcor(:,:,175)+ mpcor(:,:,1 76)+
mpcor(:,:,177) + mpcor(:,:,178) + mpcor(:,:,179) + mpcor(:,:,180)+ mpcor(:,:,181) +
mpcor(:,:,182) + mpcor(:,:,183)+ mpcor(:,:,184)+ mpcor(:,:,185) + mpcor(:,:,186)+
mpcor(:,:,187) + mpcor(:,:,188) + mpcor(:,:,189)+ mpcor(:,:,190)+ mpcor(:,;, 191)+
mpcor(:,:,192)+ mpcor(:,:,193)+ mpcor(:,:,194)+ mpcor(:,:,195)+ mpcor(:,:,196)+
mpcor(:,:,197)+ mpcor(:,:,198)+ mpcor(:,:,199)+ mpcor(:,:,200) + mpcor(:,:,201) +
mpcor(:,:,202) + mpcor(:,:,203)+ mpcor(:,:,204)+ mpcor(:,:,205)+ mpcor(;,:,206 )+
mpcor(:,:,207) + mpcor(:,:,208)+ mpcor(:,:,209) + mpcor(;,:;,210)+ mpcor(:,;,21 1)+
mpcor(:,:,212)+ mpcor(:,:,213)+ mpcor(:,:,214)+ mpcor(:,:,215)+ mpcor(:,:,216) +
mpcor(:,:,217)+mpcor(:,:,2 18)+mpcor(:,:,219)+mpcor(:,:,220)+mpcor(:,:,22 1)+
gpcor(:,:,1)+gpeor(:,:,2)+gpcor(:,:,3)+gpcor(:,:,4)+gpcor(:,:,5)+gpcor(:,:,6)+gpcor(:,:,7)
+gpcor(:,:,8)+gpcor(:,:,9)+gpcor(:,:,10)+gpcor(:,:, 1 1)gpcor(:,:,12)+
peor(:,:,13)+gpcor(z,:, 14)+gpeor(:,:, 15)+gpcor(:,:,16)+pcor(:,:,1 7)+gpcor(:,:, 1 8)+gpcor
(5,5, 19)+ gpeor(:,:,20) + gpeor(:,:,21)+gpeor(:,:,22)+gpcor(:,:,23)+ gpeor(:,:,24)+
gpeor(:,:,25)+gpcor(:,:,26)+gpcor(:,:,27)+gpcor(:,:,28)+gpcor(:,:,29)+gpcor(:,:,30)+gpc
or(:,;,31)+gpcor(:,:,32)+gpcor(:,:,33)+gpcor(:,:,34)+gpcor(:,:,35)+gpcor(:,:,36)+
gpeor(:,:,37)+gpcor(:,:,38)+gpcor(:,:,39)+gpcor(:,:,40)+gpcor(:,:,4 1 )+gpcor(:,:,42)+gpc
or(:,:,43)+ gpcor(:,:,44) + gpcor(:,:,45)+gpcor(:,:,46)+gpcor(:,:,47)+gpcor(:,:,48)+
gpcor(:,:,49)+gpcor(:,:,50)+gpcor(:,:,51)+gpcor(:,:,52)+ gpcor(:,:,53);

GE_Mit_wpw = mpcorw(:;,;,1) + mpcorw(:,;,2)+ mpcorw(:,;,3)+ mpcorw(:,:,4)+
mpcorw(:,;,5) + mpeorw(:,;,6)+ mpcorw(:,:,7)+mpcorw(:,:,8)+ mpcorw(:,:,9)+
mpcorw(:,:,10)+ mpcorw(:,:,11)+ mpcorw(:,:;,12)+ mpcorw(:,:,13)+ mpcorw(:,:,14)+
mpcorw(:,;,15)+ mpcorw(:,;,16)+ mpcorw(:,;,17)+ mpcorw(:,:;,18)+ mpcorw(:,:,19)+
mpcorw(:,:,20)+ mpcorw(:,:,21) + mpcorw(:,:,22)+ mpcorw(:,:,23)+ mpcorw(:,:,24)+
mpcorw(:,;,25)+ mpcorw(:,:,26)+ mpcorw(:,:,27) +mpcorw(:,:,28)+ mpcorw(:,:,29) +
mpcorw(:,:;,30)+ mpcorw(:,;,31)+ mpcorw(:,:,32)+ mpcorw(:,:,33)+ mpcorw(;,:,34)+
mpcorw(:,:;,35) +mpcorw(:,:,36) + mpcorw(:,;,37)+ mpcorw(:,:,38)+ mpcorw(:,:,39)+
mpcorw(:,:,40)+ mpcorw(:,:,41)+ mpcorw(:,:,42)+ mpcorw(:,;,43)+ mpcorw(:,:,44)+
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mpcorw(:,:,45)+ mpcorw(:,:,46)+ mpcorw(:,:,47)+mpcorw(:,:,48)+ mpcorw(:,:,49)+
mpcorw(:,:,50)+ mpcorw(:,:;,51)+ mpcorw(:,:,52)+ mpcorw(:,:,53)+ mpcorw(:,:;54)+
mpcorw(:,:,55)tmpcorw(:,:,56)+ mpcorw(:,:,57)+ mpcorw(;,:;,58)+ mpcorw(:,:;,59)+
mpcorw(:,:,60)+ mpcorw(:,:,6 1)+ mpcorw(:,:,62)+ mpcorw(:,:,63)+ mpcorw(:,:,64)+
mpcorw(:,:,65) + mpcorw(:,:,66) + mpcorw(:,:,67)+ mpcorw(:,:,68)+ mpcorw(:,:,69)+
mpcorw(:,:,70)+ mpcorw(:,:,7 1)+ mpcorw(:,:,72) + mpcorw(:,:,73)+ mpcorw(:,:,74 )+
mpcorw(:,:,75)+ mpcorw(:,:,76)+ mpcorw(:,:,77)+ mpcorw(:,:,78)+ mpcorw(:,:,79)+
mpcorw(:,:,80) + mpcorw(:,:,8 1)+ mpcorw(:,:,82)+ mpcorw(:,:,83)+ mpcorw(:,:,84)+
mpcorw(:,:,85)+ mpcorw(:,:,86)+ mpcorw(:,:,87) + mpcorw(:,:,88)+ mpcorw(:,:,89)+
mpcorw(:,:,90)+ mpcorw(:,:,91) + mpcorw(:,:,92)+ mpcorw(:,:,93)+ mpcorw(:,:,94)+
mpcorw(:,:,95)+ mpcorw(:,:,96)+ mpcorw(:,:,97) + mpcorw(:,:,98)+ mpcorw(:,:,99)+

mpcorw(:,:,100)+mpcorw(:,:, 101 }+mpcorw(:,:,102)+mpcorw(:,:,103)+
mpcorw(:,:,104)+mpcorw(;,:,105)+mpcorw(;,:,106)+mpcorw(:,:,107)+
mpcorw(:,;,108)+mpcorw(:,:,109)+mpcorw(:,:,1 10)+mpcorw(:,;,1 1 1)+
mpcorw(:,:,112)+mpcorw(:,:,113)}+mpcorw(:,:,1 14)+mpcorw(:,;,115)+
mpcorw(:,;,116)+mpcorw(:,:,117)+mpcorw(:,:,1 18)+mpcorw(:,:,119)+
mpcorw(:,:,120)+mpcorw(:,:,121)+mpcorw(:,:,122)+mpcorw(:,:,123)+
mpcorw(:,:,124)+mpcorw(:,:,125)+mpcorw(:,:,126)+mpcorw(:,:,127)+
mpcorw(:,:,128)+ pcorw(:,:,129)+mpcorw(:,:,130)+mpcorw(:,:,13 1)+
mpcorw(:,:,132)+ mpcorw(:,:,133)+mpcorw(:,:,134)+ mpcorw(:,:;,135)+
mpcorw(:,:,136)+ mpcorw(:,:, 137+ mpcorw(:,:,138)+mpcorw(:,:,139)+
mpcorw(:,:,140)+mpcorw(:,:,141)+mpcorw(:,:,142)+mpcorw(:,:, 143)+
mpcorw(:,:,144)+ mpcorw(:,:,145)+ mpcorw(:,:,146)+ mpcorw(:,:,147)+
mpcorw(:,:,148)+mpcorw(:,:,149)+ mpcorw(:,:,150)+ mpcorw(:,:;,151)+
mpcorw(:,;,152)+ mpcorw(:,:,153)+mpcorw(:,:,154)+ mpcorw(:,:,155)+
mpcorw(:,;,156)+ mpcorw(:,:,157)+ mpcorw(:,:,158)+mpcorw(:,:,159)+
mpcorw(:,:,160)+mpcorw(:,:;,161)+mpcorw(:,:,162)+mpcorw(:,:,163)+
mpcorw(:,:,164)+ mpcorw(:,:,165)+ mpcorw(:,:,166)+ mpcorw(:,:,167)+
mpcorw(:,:,168)+mpcorw(:,:,169)+ mpcorw(:,:,1 70) + mpcorw(:,;,171)+
mpcorw(:,:,172)+mpcorw(:,:,173)+mpcorw(:,:,174)y+mpcorw(:,:,175)+

mpcorw(:,:,176)+ mpcorw(:,:,177) + mpcorw(:,:,178) + mpcorw(:,:,179) +

mpcorw(:,;,180)+ mpcorw(:,:,181) + mpcorw(:,:,182) + mpcorw(:,:,183)+
mpcorw(:,:,184)+ mpcorw(:,:,185) + mpcorw(:,:,186)+ mpcorw(:,:,187) +
mpcorw(:,:,188) + mpcorw(:,:,189)+ mpcorw(:,:,190)+ mpcorw(:,;,191)+
mpcorw(:,:,192)+ mpcorw(:,:,193)+ mpcorw(:,:,194)+ mpcorw(:,:,195)+
mpcorw(:,:,196)+ mpcorw(:,:,197)+ mpcorw(:,:,198)+ mpcorw(:,:,199)+

mpcorw(:,:,200) + mpcorw(:,:,201) + mpcorw(:,:,202) + mpcorw(:,:,203)+

mpcorw(:,:,204)+ mpcorw(;,:,205)+ mpeorw(:,:,206)+ mpcorw(:,:,207) +
mpcorw(:,:,208)+ mpcorw(:,:,209) + mpcorw(:,;,210)+ mpcorw(:,:,211)+
mpcorw(:,:,212)+ mpcorw(:,:,213)+ mpcorw(:,:,214)+ mpcorw(:,:,215)+

mpcorw(:,:;,216) + mpcorw(:,:,217) + mpcorw(;,:,218)+ mpcorw(:,:,219)+

mpcorw(:,:,220)+mpcorw(:,:,221)+gpcorw(:,:, 1 }+gpcorw(:,:,2)+gpcorw(:,:,3)+
gpcorw(:,:,4)+ gpcorw(:,:,5)+gpcorw(:,:,6)+gpcorw(:,:,7)+ gpcorw(:,:,8) +

gpcorw(:,:,.9)+gpcorw(:,:,10)+gpcorw(:,:,1 1)+ gpcorw(:,:,12)+
gpcorw(:,:,13)+gpcorw(:,:,14)+gpcorw(;,:,15)+gpcorw(;,:,16)+
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gpecorw(:,:, 1 7)tgpcorw(:,:, 18)+gpcorw(:,:, 19)+ gpcorw(:,:,20) +
gpeorw(:,;,2 1 y+gpcorw(;,:,22)+gpcorw(:,:,23)+ gpcorw(:,:,24)+
gpecorw(:,:,25)tgpecorw(:,:,26)+gpcorw(:,:,27)+gpcorw(:,:,28)+
gpcorw(:,:,29)tgpcorw(:,:,30)+gpcorw(:,:,3 1)+ gpcorw(:,:,32) +
gpcorw(:,:,33)+gpcorw(:,:,34)+gpcorw(:,:,35)+ gpcorw(:,:,36)+
gpeorw(:,:,37)+gpcorw(:,:,38)+gpcorw(:,:,39)+gpcorw(:,:,40)+
gpcorw(:,:, 4 1)+gpcorw(:,:,42)+gpcorw(:,:,43)+ gpcorw(:,:,44) +
gpcorw(:,:,45)+gpcorw(:,:,46)+gpcorw(:,:,47)+ gpcorw(:,:,48)+
gpcorw(:,:,49)+gpcorw(:,:,50)+gpcorw(:,:,5 1 )+gpcorw(:,:,52)+
gpcorw(:,:,53);

Totall = sum(GE_Mit_cpw); % No-wake windfarm power
Total2 = sum(GE_Mit_wpw); % Wake windfarm power

wc = Total2/Totall;

% Wake coefficient

%% Wind Direction and Wake Coefficient Evaluation

wd = array(:,7); % Accessing Wind Direction time series data

Wake Coeff = wc*(wd<=50) *(wd>=40)+ wc*(wd<=230).*(wd>=220)+
(wd>50).¥(wd<220)+(wd<40)+(wd>230); % Equation determining the
wake and Nowake data depending on the wind direction

% AVERAGE WINDFARM POWER %

% MITSUBISHI 1| MW, 221 WIND TURBINES

Avg MIT = mean(mpcor(:,:,1))}+mean(mpcor(:,:,2))+mean(mpcor(:,:,3))+
mean(mpcor(:,:,4))+ mean(mpcor(;,:,5)) + mean(mpcor(:,:,6)) +
mean(mpcor(:,:,7)) + mean{mpcor(:,:,8))+ mean(mpcor(:,:;, )+
mean(mpcor(:,:,10))+mean(mpcor(:,;, 11))

+ mean(mpcor(:,:,12)) + mean(mpcor(:,:,13)) + mean(mpcor(:,;,14)) +
mean(mpcor(:,:,15))+ ean(mpcor(:,:,16))+mean(mpcor(:,:,17))+
mean(mpcor(:,:,18))+ mean(mpcor(:,:,19))+ mean(mpcor(:,:,20)) +
mean(mpcor(:,;,21)) + mean(mpcor(:,:,22)) + mean(mpcor(:,:,23))+
mean(mpcor(:,:,24))+ mean(mpcor(:,:,25))+ mean(mpcor(:,:,26))+
mean(mpcor(:,:,27)) + mean(mpcor(:,:,28)) + mean(mpcor(:,:,29)) +
mean(mpcor(:,:,30))+ ean(mpcor(;,:,31))+mean(mpcor(:,:,32))+
mean(mpcor(:,:,33))+ mean(mpcor(:,:,34))+ mean{mpcor(:,:,35)) +
mean(mpcor(:,:,36)) + mean(mpcor(:,:,37)) + mean(mpcor(:,:,38))+
mean(mpcor(:,:,39))+ mean(mpcor(:,:,40))+ mean(mpcor(:,:,4 1))+
mean(mpcor(:,:,42)) + mean(mpcor(:,:,43)) + mean(mpcor(:,:,44)) +
mean(mpcor(:,:,45))+ ean(mpcor(:,:,46))+mean(mpcor(:,:,47))+
mean(mpcor(:,:,48))+ mean(mpcor(;,:,49))+ mean(mpcor(:,:,50)) +
mean(mpcor(:,:,51)) + mean(mpcor(:,:,52)) + mean{mpcor(:,:,53))+
mean(mpcor(:,:,54))+ mean(mpcor(:,:,55))+ mean(mpcor(:,:,56))+
mean(mpcor(:,:,57)) + mean(mpcor(:,:,58)) + mean(mpcor(:,:,59)) +
mean(mpcor(:,:,60))+ ean(mpcor(:,:,6 1))}+mean(mpcor(:,:,62))+




mean(mpcor(:,:,63))+ mean(mpcor(:,:,64))+ mean(mpcor(:,:,65)) +
mean(mpcor(:,:,66)) + mean(mpcor(:,:,67)) + mean(mpcor(:,:,68))+
mean(mpcor(:,:,69))+mean(mpcor(:,:,70))+ mean(mpcor(:,:,71))+
mean(mpcor(:,:,72)) + mean(mpcor(:,:,73)) + mean(mpcor(:,:,74)) +
mean(mpcor(:,:,75))+mean(mpcor(:,:,76))+mean(mpcor(:,:,77))+
mean(mpcor(:,:,78))+ mean(mpcor(:,:,79))+ mean(mpcor(:,:,80)) +
mean(mpcor(:,:,81)) + mean(mpcor(;,:,82)) mean(mpcor(:,:,83))+
mean(mpcor(:,:,84))+ mean(mpcor(:,:,85))+ mean(mpcor(:,:,86))+
mean(mpcor(:,:,87)) + mean(mpcor(:,:,88)) + mean(mpcor(:,:,89)) +
mean(mpcor(:,:,90))+ ean(mpcor(:,:,91))+mean(mpcor(:,:,92))+
mean(mpcor(:,:,93))+ mean(mpcor(:,:,94))+ mean(mpcor(:,:,95)) +
mean(mpcor(:,:,96)) + mean(mpcor(:,:,97)) +
mean(mpcor(:,:,98))+mean(mpcor(:,:,99))+ mean(mpcor(:,:,100))+
mean(mpcor(:,:,101))+ mean(mpcor(:,:,102)) + mean(mpcor(:,:,103)) +
mean(mpcor(:,:,104)) + mean(mpcor(:,:,105))+
mean(mpcor(:,:,106))+mean(mpcor(:,:,107))+mean(mpcor(:,:,108))+
mean(mpcor(:,:,109))+ mean(mpcor(:,:,110)) + mean(mpcor(:,;,111)) +
mean(mpcor(:,:,112)) + mean(mpcor(:,;,1 13))+mean(mpcor(:,:,1 14))+
mean(mpcor(:,:,1 15))+ mean(mpcor(:,:,116))+ mean(mpcor(:,:;,117)) +
mean(mpcor(.,:,118)) + mean(mpcor(:,:,119)) + mean(mpcor(:,:,120))+
mean(mpcor(:,:,121))+mean(mpcor(;,:,122))+mean(mpcor(:,:,123))+
mean(mpcor(:,:,124))+ mean(mpcor(;,;,125)) + mean(mpcor(:,:,126)) +
mean(mpcor(:,:,127)) + mean(mpcor(:,:,128))+mean(mpcor(;,:,129))+
mean(mpcor(:,:,130))+ mean(mpcor(:,:,131))+ mean(mpcor(:,:,132)) +
mean(mpcor(:,:,133)) + mean(mpcor(:,:,134)) + mean(mpcor(:,;,135))+
mean(mpcor(:,:,136))+mean(mpcor(,:,137))+mean{mpcor(:,:,138))+
mean(mpcor(:,:,139))+ mean(mpcor(:,:,140)) + mean(mpcor(:,:,141)) +
mean(mpcor(:,:,142)) + mean(mpcor(:,:,143))+mean(mpcor(:,:,144))+
mean(mpcor(:,:,145))+ mean(mpcor(:,:,146))+ mean(mpcor(;,:,147)) +
mean(mpcor(:,:,148)) + mean(mpcor(:,:,149)) + mean(mpcor(:,:,150))+
mean(mpcor(:,:,151))+mean(mpcor(:,;,152))+mean{mpcor(:,:,153))+
mean(mpcor(:,:,154))+ mean(mpcor(:,:,155)) + mean(mpcor(:,:,156)) +
mean(mpcor(:,:,157)) + mean(mpcor(:,:,158))+mean(mpcor(:,:,159))+
mean(mpcor(:,:,160))+ mean(mpcor(:,:,16 1))+ mean(mpcor(:,:,162)) +
mean(mpcor(:,:,163)) + mean(mpcor(:,:,164)) + mean(mpcor(:,:,165))+
mean(mpcor(:,;,166))+mean(mpcor(;,:,167))+mean(mpcor(:,:,168))+
mean{mpcor(:,:,169))+ mean(mpcor(:,:,170)) + mean(mpcor(;,;,171)) +
mean(mpcor(:,:,172)) + mean(mpcor(:,:,173))+mean(mpcor(:,:,174))+
mean(mpcor(:,:,175))+ mean(mpcor(:,:,176))+ mean(mpcor(:,:,177)) +
mean(mpcor(;,;,178)) + mean(mpcor(;,:,179)) + mean(mpcor(:,:,180))+
mean(mpcor(:,:,181))+mean(mpcor(:,;,182))+mean(mpcor(:,:,183))+
mean{mpcor(:,:,184))+ mean(mpcor(;,:,185)) + mean(mpcor(:,:,186)) +
mean(mpcor(:,:,187)) + mean(mpcor(:,:,188))+mean(mpcor(:,:,189))+
mean(mpcor(:,:,190))+ mean(mpcor(:,:,191))+ mean(mpcor(;,:,192)) +
mean(mpcor(:,:,193)) + mean(mpcor(:,:,194)) + mean(mpcor(:,:,195))+
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mean(mpcor(:,:,196))+mean(mpcor(:,:,197))+mean(mpcor(:,:,198))+
mean(mpcor(:,:,199))+ mean(mpcor(:,:,200)) + mean(mpcor(:,:,201)) +
mean(mpcor(:,:,202)) + mean(mpcor(:,:,203))+mean(mpcor(:,:,204))+
mean(mpcor(:,:,205))+ mean(mpcor(:,:,206))+ mean(mpcor(:,:,207)) +
mean(mpcor(:,:,208)) + mean(mpcor(:,:,209)) + mean(mpcor(:,:,210))+
mean(mpcor(:,:,211))+mean(mpcor(:,:,212))+mean(mpcor(:,:,213))+
mean(mpcor(:,:,214))+ mean(mpcor(:,:,215)) + mean(mpcor(:,:,216)) +
mean(mpcor(:,:,217)) + mean(mpcor(:,:,218))+mean(mpcor(:,:,219))+
mean(mpcor(:,:,220))+ mean(mpcor(:,:,221));

%GE 1.5 MW, 53 WIND TURBINES

Avg_GE = mean(gpcor(:,:,1))+ mean(gpcor(:,:,2))+ mean(gpcor(:,:,3))+
mean(gpcor(;,:,4))+ mean(gpcor(:,:,5))+ mean(gpcor(:,:,6))+ mean(gpcor(:,:,7))+
mean(gpcor(:,:,8))+ mean(gpcor(:,:,9)) + mean(gpcor(:,:,10))+ mean(gpcor(:,:;,1 1))+
mean(gpcor(;,:,12))+ mean(gpcor(:,:,13))+ mean(gpcor(:,:,14))+ mean(gpcor(:,:,15))+
mean(gpcor(:,:,16))+ mean(gpcor(:,:,17))+ mean(gpcor(:,:,18))+ mean(gpcor(:,:,19))+
mean(gpcor(:,:,20))+ mean(gpcor(:,:,21))+ mean(gpcor(:,:,22))+ mean(gpcor(:,:,23))+
mean(gpcor(:,:,24)) + mean(gpcor(:,;,25))+ mean(gpcor(:,:,26))+ mean(gpcor(:,:,27))+
mean(gpcor(:,:,28))+ mean(gpcor(:,:,29))+ mean(gpcor(:,:,30))+ mean(gpcor(:,:,31))+
mean(gpcor(:,:,32))+ mean(gpcor(:,:,33))+ mean(gpcor(:,:,34))+ mean(gpcor(:,:,35))+
mean(gpcor(:,:,36))+ mean(gpcor(:,:,37))+ mean(gpcor(:,:,38))+

mean(gpcor(:,:,39)) + mean(gpcor(:,:,40))+ mean(gpcor(:,:,41))+ mean(gpcor(:,:,42))+
mean(gpcor(:,:,43))+ mean(gpcor(:,:,44))+ mean(gpcor(:,:,45))+ mean(gpcor(:,:,46))+
mean(gpcor(:,:,47))+ mean(gpcor(:,:,48))+ mean(gpcor(:,:,49))+ mean(gpcor(:,:,50))+
mean(gpcor(:,:,5 1))+ mean(gpcor(:,:,52))+ mean(gpcor(:,:,53));

%%%% COLORADO WIND FARM AVERAGE POWER

Avg farm = Avg MIT +Avg GE;

% AVERAGE WINDFARM POWER WITH TRANSMISSION LOSS OF 1%
%0%0%%%%%%%0%0%0%%%%%% %% %%

GE_Mit_loss = GE_Mit_cpw*0.99; %% Windfarm power lossof 1% (nowake Effect)
GE_Mit_wakeloss = GE_Mit wpw*0.99; %% Windfarm power lossof 1% (wake
%kEffect)

Actual_ power = GE Mit cpw-GE_Mit_loss; %%Actual windfarm power(nowake
%Effect)

Actual power wake = GE_Mit_wpw-GE_Mit_wakeloss; %%Actual windfarm wake
%power)

%% PLOTTING FIGURES FROM THE RESULT

%% SENSOR HEIGHT WIND SPEED GE WIND TURBINE %
figure(9)

plot(thour,WS 80,'b-")

axis([0 1000 0 30])

xlabel('Time (min)");

ylabel('Wind Speed (m/s)");
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title("Sensor Height of GE Wind Turbine');
pause

%% Mean value of wind speed data at 80m %
Sensor_80m = mean(WS_80);

% SENSOR HEIGHT WIND SPEED MITSUBISHI WIND TURBINE %
figure(10)

plot(hour, WS1 69,'k-")

axis([0 1000 0 30])

xlabel('Time (min)');

ylabel("Wind Speed (m/s)");

title('Sensor Height of Mitsubishi Wind Turbine');

pause

%% Mean value of wind speed data at 69m %

Sensor_69m = mean(WSI1_69);

%% DISC SPEED OF MITSUBISHI WIND TURBINE-2 %
figure(11)

plot(hour,v5(:,:,2),'b-")

axis([0 1000 0 30])

xlabel('Time (min)");

ylabel("Wind Speed (m/s)");

title('Disc Speed of Mitsubishi Wind Turbine-2');

pause :

%% Mean value of wind speed data at 69m %

discl_69m = mean(v5(:,:,2));

% DISC SPEED OF GE WIND TURBINE-2 %
figure(12)

plot(hour,v(:,:,2),'g-"

axis([0 1000 0 30])

xlabel('Time (min)";

ylabel("Wind Speed (m/s)");

title('Disc Speed of GE Wind Turbine-2');

pause

%% Mean value of wind speed data at 80m %
disc_80m = mean(v(:,:,2));

%% VERTICAL SHEAR OF GE AND MITSUBISHI WIND TURBINE-2 %

% GE WIND TURBINE %
figure(13)

plot(hour, WS(:,8),'r-"
axis([0 1000 0 30])
xlabel('Time (min)');
ylabel('"Wind Speed (m/s)");



title("Vertical Shear of GE Wind Turbine-2");
pause

%% Mean value of wind speed data at 80m %
vs_80m = mean(WS(:,8));

% MITSUBISHI WIND TURBINE %

figure(14)

plot(hour,WS1(:,9),'’k-")

axis([0 1000 0 307)

xlabel('Time (min)');

ylabel('Wind Speed (m/s)");

title("Vertical Shear of Mitsubishi Wind Turbine-2");
%% Mean value of wind speed data at 69m %
vsl_69m = mean(WS1(:,9));

%% TURBULENCE ADJUSTED SPEED OF GE AND MITSUBISHI WIND
TURBINE-2%

% GE WIND TURBINE %

figure(15)

plot(hour,u_153,'r-"

axis([0 1000 0 30])

xlabel('Time (min)");

ylabel("'Wind Speed (m/s)");

title('Turbulence Adjusted Speed of GE Wind Turbine-2");

pause

%% Mean value of wind speed data at 80m %
ts_80m = mean(u_153);

% MITSUBISHI WIND TURBINE %
figure(16)

plot(hour,u_141,'g-"

axis([0 1000 0 30])

xlabel('Time (min)");

ylabel("Wind Speed (m/s)");

title("Turbulence Adjusted Speed of Mitsubishi Wind Turbine-2');
pause :

%% Mean value of wind speed data at 69m %
ts1_69m = mean(u_141);

% WAKE SPEED OF GE AND MITSUBISHI WIND TURBINE-2%
% GE WIND TURBINE %

figure(17)

plot(hour,Uwake(:,:,2),'r-")

axis([0 1000 0 30])
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xlabel('Time (min)");

ylabel('Wind Speed (m/s)');

title("Wake Speed of GE Wind Turbine-2");
pause

%% Mean value of wind speed data at 80m %
wk_80m = mean(Uwake(:,:,2));

% MITSUBISHI WIND TURBINE %

figure(18)

plot(hour,Uwake?2(:,:,2),'g-")

axis([0 1000 0 30])

xlabel{'Time (min)");

ylabel{'Wind Speed (m/s)");

title("Wake Speed of Mitsubishi Wind Turbine-2");
pause

%% Mean value of wind speed data at 69m %
wk1l 69m = mean(Uwake2(:,:,2));

%% NO-WAKE AND WAKE POWER OF WIND TURBINE WITH RESPECT TO
TIME %

% MITSUBISHI WIND TURBINE %

figure(19)

plot(hour,mpcorw(:,:,2),’k-',hour,mp¢or(:,:,2),‘r-')

axis([0 1000 0 1200])

xlabel('Time (min)");

ylabel('Wind Power (kw)");

title('No-wake(red)and Wake Power of Mitsubishi Wind Turbine-2');
pause

%% Mean value of wind speed data at 69m %

wkpwl 69m = mean(mpcorw(:,:,2));

nowk_69m = mean(mpcor(:,:,2));

uncorr_pomiwt =mean(mpuncor(:,:,2));

% GE WIND TURBINE %

figure(20)
plot(hour,gpcorw(:,:,2),'k-",hour,gpcor(:,:,2),'r-")
axis([0 1000 0 1700])

xlabel('Time (min)");

ylabel("Wind Power (kw)"); )
title('No-wake(red)and Wake Power of GE Wind Turbine-2');
pause

%% Mean value of windpower data at 80m %
wkpl_80m = mean(gpcorw(:,:,2));

nowk 80m = mean(gpcor(:,:,2));
uncorr_pogewt =mean(gpuncor(:,:,2));
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%% WINDFARM POWER WITH RESPECT TO TIME
% GE WIND TURBINES + MITSUBISHI WIND TURBINES
figure(21)

plot(hour,GE_Mit_cpw,'k-")

axis([0 1000 0 400000])

xlabel('Time (min)');

ylabel('Windfarm Power (kw)');

title('Windfarm Power of Windturbines');

pause

%% Mean value of windfarm power data %
winowkpowl = mean(GE_Mit_cpw);

% COMPARISION OF WINDFARM POWER WITH AND WITHOUT
WAKE EFFECT %

% GE WIND TURBINES + MITSUBISHI WIND TURBINES

figure(22)

plot(hour,GE_Mit cpw,'k-"hour,GE_Mit_wpw,'r-"

axis([0 1000 0 400000])

xlabel('Time (min)');

ylabel('Windfarm Power (kw)');

title("Comparision of Windfarm Power With and Without(black)Wake Effect');
pause

%% Mean value of wakefarm power data %

wfwkpowerl = mean(GE_Mit wpw);

%% WIND DIRECTION AND WAKE COEFFICIENT OF WINDFARM
% Wind direction @45 degree and @225 degree, the wake coefficient is 0.84
figure(23) ‘

plot(hour,Wake CoefT,'k-")

axis([0 500 0 1.5])

xlabel('Time (min)');

ylabel("Wake Coefficient');

title("'Wind Direction and Windfarm Efficiency');

pause

%% WINDFARM POWER WITH TRANSMISSION LOSS OF 1% %
% TRANSMISSION LOSS POWER OF GE WIND TURBINES

+ MITSUBISHI WIND TURBINES WITH NO-WAKE EFFECT
figure(24)

plot(hour,GE_Mit_loss,'k-")

axis([0 1000 0 4000])

xlabel('Time (min)";

ylabel('"Windfarm Power (kw)');

title('Windfarm Powerloss in Transmission With No-Wake Effect');
pause '

%% Mean value of no-wake wind power transmission loss data %
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tinowkpwGE_MIT = mean(GE_Mit_loss);

% TRANSMISSION LOSS POWER OF GE WIND TURBINES
+ MITSUBISHI WIND TURBINES WITH WAKE EFFECT
figure(25)

plot(hour,GE_Mit_wakeloss,'r-")

axis([0 1000 0 4000])

xlabel('Time (min)");

ylabel(*Windfarm Power (kw)');

title('Windfarm Powerloss in Transmission With Wake Effect');
pause

%% Mean value of wake wind power transmission loss data %
tiwkpwGE_MIT = mean(GE_Mit_wakeloss);

% ACTUAL POWER OF GE WIND TURBINES + MITSUBISHI WIND
TURBINES(NO-WAKE-EFFECT)%

figure(26)

plot(hour,Actual_power,'k-")

axis([0 1000 0 4000007)

xlabel('Time (min)");

ylabel('Windfarm Power (kw)");

title(" Actual Windfarm Power With Transmission Loss(No-Wake Effect)");
pause ’

%% Mean value of wind power transmission loss data %

actpwGE_MIT = mean(Actual_power)

% ACTUAL POWER OF GE WIND TURBINES + MITSUBISHI WIND
TURBINES(WAKE EFFECT)%

figure(27)

plot(hour,Actual_power_wake,'g-") -

axis([0 1000 0 400000])

xlabel("'Time (min)");

ylabel('Windfarm Power (kw)');

title('Actual Windfarm Power With Transmission Loss(Wake Effect)');
pause

% Mean value of wake wind power transmission loss data %
actwkpwGE_MIT = mean(Actual_power_wake);

%%% END OF MAIN PROGRAM  %%%%%%%%%%%%%%%%
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Appendix L

Main Program Calling GE 1.5 MW Wind Turbine

Sub-Program: Function

% GE WIND TURBINE FUNCTION %

%% Calling function from main program to solve disc speed equation %%
%% Sub program %%

%% START %%

function v = gt_v(il) % Function is called from main program and contains
result of disc speed

global Wt Y yN H

z7=Wi(1,1,i1); % Lower Half of Rotor Disc (Minimum Height Limit)
z7Tmax = Wt(2,1,i1); % Lower Half of Rotor Disc (Maximum Height Limit)

R =38.5; % Radius of Wind Turbine
H7 = H(il); % Hub height is varying for each wind turbine
dz=0.1; % dz is from disc equation and signifies height range in steps of 0.1

i=1;

v7 = zeros(N,1); % Creating Array for time series data

while z7<=z7max % Lower rotor disc (Height limits from minimum to maximum
%value)

v7(:,1) = v7(, 1)+ abs(Y (., y(il,1)). *power((z7/80),Y(:,y(i1,2))). *sqrt((R."2)-
(H7.72)+(2.*H7.*27)-(27.72)).*dz); % Udisc Equation

i=itl;

z7 =z7+0.1;

end :

z7 = Wt(1,2,i1); % Upper Half of Rotor Disc (Minimum Height Limit)
z7max = Wt(2,2,il); % Upper Half of Rotor Disc (Maximum Height Limit)
i=1;

while z7<=z7max % Upper rotor disc (Height limits from minimum to maximum
Y%value)

V7(:,1) =v7(, 1)+ abs(Y(:,y(i1,3)).*power((z7/160),Y (:,y(i1,4))). *sqrt((R."2)-
(H7.22)+(2.¥H7.*27)-(27.72)).*dz);

% Udisc Equation % "It adds all the results from H-R to H+R of rotor disc "
i=i+l; '

27 =27+0.1;

end

v=vT7;

end
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Appendix M

Main Program Calling Mitsubishi 1.0 MW Wind Turbine

Sub-Program: Function

% MITSUBISHI WIND TURBINE FUNCTION %

%% Calling function from main program to solve disc speed equation %%

%% Sub program %%

%% START %%

function v4 = gtt_v(i3) % Function is called from main program and contains result of
disc speed

global N H2 Wit Y2 y2

z71 = Wit(1,1,i3); % Lower Half of Rotor Disc (Minimum Height Limit)
z7Imax = W1t(2,1,i3); % Lower Half of Rotor Disc (Maximum Height Limit)

R2 =31; % Radius of Wind Turbine

H71 =H2(i3); % Hub height is varying for each wind turbine

dz=0.1; % dz is from disc equation and signifies height range in steps of 0.1
i=1;

v71 = zeros(N, 1); % Creating Array for time series data

while z71<=z71max % Lower rotor disc (Height limits from minimum to

maximum value)
VLG 1= V71D bs(Y2(:,y2(i3,1)). *power((z71/80),Y2(:,y2(i3,2))). *sqrt((R2./2)-
(H71.°2)yH(2.*H71.*¥271)-(z71.72)).*dz); % Udisc Equation

i=itl;
271 =271+0.1;
end

z71 = Wit(1,2,i3); % Upper Half of Rotor Disc (Minimum Height Limit)
z71max = W1t(2,2,i3); % Upper Half of Rotor Disc (Maximum Height Limit)
i=1; :

while z71<=z7 I max

% Upper rotor disc (Height limits from minimum to maximum value)

V71, 1) =v71(;, 1)+abs(Y2(;,y2(i3,3)). *power((z71/160),Y2(:,y2(i3,4))).*sqrt((R2./2)-
(H71./2)+2.*H71.%271)~(z71./2)).*dz);

% Udisc Equation % "It adds all the results from H-R to H+R of rotor disc "
i=itl;

z71 =z71+0.1;

end

vd =v7Tl;

end

%% END OF SUB PROGRAM %%%%%%%%
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Appendix N

Wind power estimation with the wind turbines operating under the influence of
wake effect and no wake effect in the wind farm depending on the wind direction.

Wake Model for GE 1.5 MW Wind Turbine

Wind direction has a major effect in estimating the wind power in the wind farm when
the wind turbines are operating under the influence of wake effect. The wind speed and
the wind power is estimated for GE 1.5 MW, 2™ wind turbine placed in the wind farm
site operating under the influence of wake effect depending on the wind direction.

Symbols Used:

Rrot = Radius of GE wind turbine rotor;

x = Distance between nearest wind turbing;
Ashad = Area of shadow region of wind turbines
Arot = Area of GE wind turbine rotor;

Ct = Thrust coefficient of wind turbine;

tana = 0.04(no-wake) / 0.08(wake);

Rx = Radius of shadow cone

v(:...il) = Disc speed; % i1 =2 for second wind turbine and is called using function
Uwake(:,..i1)= Wake speed of wind turbine
x=|262];

Ashad=[2500]:  (Assumed for 2™ wind turbine)
gpuncorw = Uncorrected Wake Power of G Wind Turbine:
gpcorw = Corrected Wake Power of GE Wind Turbine

Equation:

Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for WT-2, (Wind
Turbine-2)

Ct=3.5*%(2*Vhub - 3.5)/ (Vhub)*2;

R(x) = Rrot + x.tana;

tana = 0.04 (frce speed) or tana = 0.08 (wake)

Uwake = Vi *[ |- sqrt(] - Ct)*(Rrot/R(x))"2*(Ashad / Arot)]

Calculation:

Uwake = Wind speed estimated under influence of wake effect for 2" wind
turbine (taken from part of Matlab code).

for il=1:53 % il = 2 for second wind turbine; There are 53 GE 1.5 MW Wind
Turbines

Rrot =38.5; % Radius of rotor

Ct(enil) = 3.5 %((2.*4v(e, i 1)) - 3.5)./(v(, L1 1)).°2; % v(:,:il) is called using function
tana =0.08;

Rx(il) = Rrot + x(il)*tana;

Arot = 4657; (Arca = 3.142*38.5*38.5) or A = n*r*r




Uwake(:,5,il) = v(:,5,i1).*¥(1- sqrt(1 - Ct(:,:,i1)).*(Rrot/Rx(i1))*2.*(Ashad(il)/Arot));
% il = 2 for second wind turbine
end

gpcorw = Wind power is estimated under wake effect from the input estimated
wind speed for 2"! wind turbine (taken from part of Matlab code).

for il =1:53 % il = 2 for second wind turbine; there are 53 GE 1.5 MW wind
turbines

gpuncorw(:,:,i1) = q2(18)+(q2(17).*(Uwake(:,;,il )}t (q2(16).*(Uwake(:,:,11))."2)+
q2(15).*(Uwake(:,:,11)).23)Hq2(14). *(Uwake(:,:,11)).*4)+(q2(13).*(Uwake(:,:,11))."3)
+(q2(12).*(Uwake(:,:,i1)).26)+(q2(11).*(Uwake(:,:,i1)).*7)}+(q2(10).*(Uwake(:,:,i1))."
8)+(q2(9).*(Uwake(:,:,i1)).79)+q2(8).*(Uwake(:,:,11)).~10)+(q2(7).*(Uwake(:,:,i1))."1
1) +(q2(6).*(Uwake(:,:,i1)).*12)+ (q2(5).*(Uwake(:,:,i1))."13)+
g2(4).*(Uwake(:,:,i1)).014)+(q2(3). ¥ (Uwake(:,,i1 ).~ 15)+
(92(2).*(Uwake(:,:,i1)).16)+(q2(1).*(Uwake(:,:,i1)).* 1 7)),

gpcorw(:,;,i1) = gpuncorw(:,.,il).*(act_density./1.225); % il = 2 for second wind
turbine

end

GE 1.5 MW wind turbine-2 operating at disc speed
Disc speed is estimated when the wind turbine operates at free flow of wind speed and
correspondingly the wind power is estimated from the disc speed.

Equation:

Refer equations to determine disc speed of wind turbine: page 104 to 106

Pcorr = Puncorr *actual density/density at STP (Corrected Power/Power)

Puncorr = Uncorrected power estimated from curve fitting function from input disc
speed (Uncorrected Power)
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Figure N.1: Wind direction (degrees) at the wind farm site for a time span of 10000 minutes.

(Note: Time  Scale: X axis: 1 unit=10 minute; 1000 unit = 10000 minutes).
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Figure N.2: Wind speed estimated for the GE 1.5 MW wind turbine- 2 at the hub height. (Note:

Time Scale: X axis: 1 unit=10 minute; 1000 unit = 10000 minutes).

Note: With wake effect, wake speed is estimated and is assumed to be at the
hub height
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Figure N.3: Wake speed estimated for GE 1.5 MW wind turbine-2 at hub height (Note: Time

Scale: X axis: 1 unit=10 minute; 1000 unit = 10000 minutes).

Note: With no- wake effect, disc speed is estimated and is assumed to be at the
hub height
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Figure N.4: Estimated disc Speed (adjusted for turbulence and shear) for GE 1.5 MW wind
turbine-2 at hub height. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit = 10000

minutes).
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Figure N.5: Comparison of power estimated with wake (black) and without wake (red) effect

for GE 1.5 MW wind turbine-2. (Note: Time Scale: X axis: 1 unit =10 minute; 1000 unit =

10000 minutes).
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