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ABSTRACT 

In this research, the wind speed model and the wind farm power model is developed 

and the results are estimated and simulated in the MA TLAB from the designed 

algorithm using the historic input wind data. For the wind speed forecasting, the 

historic input wind speed data is used to estimate and forecast the wind speed in 

advance from the wind speed models. For the wind farm power model the input to the 

power model is the historic wind speed, pressure, temperature, wind direction, and air 

density. The wind farm power is determined from the designed algorithm simulated in 

the MATLAB. 

The wake effect is considered in the wind farm power model and it depends on the 

wind direction and the wind farm layout. Transmission loss due to the power 

transmission in the cables is determined for the wind farm. Using this approach the 

wind farm power of the Fermeuse wind farm and the Cedar Creek Colorado wind farm 

is determined. This thesis presents the details and results of research. 
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Chapter 1 

Literature Review of the Wind Speed Model and the Wind Power Model 

1.1 Introduction 

In this research, the wind speed model and the wind power model is developed and 

implemented in the MATLAB software. The focus ofthe work is to develop a short 

term wind speed prediction model. The wind speed model is implemented using the 

Auto Regressive Moving Average (ARMA) model and the Kalman fil ter and the 

Unscented Kalman filter. The Kalman filter is used fo r the linear model and the input 

to the Unscented Kalman filter is the non linear model. The difficulties were involved 

in developing and implementing the non linear model. To develop the wind farm 

power model, the physical factors that affect the wind turbine rotor disc are studied 

that takes into account the wake effect and the transmission loss due to the power 

transmission in the cables . The developed model is implemented fo r the Fermeuse 

wind farm located in the Newfoundland and the Cedar Creek Colorado wind farm 

located in the United States. The input wind data is in time series order to the wind 

speed model and the wind power model. The output is the processed and forecasted 

wind speed data in the time series order from the wind speed mode l. For the wind 

power model, the input is the wind data such as the wind speed, the pressure, the 

temperature, the air density, the wind direction in the time series order and the output 

is the wind power in the time series order. Detailed overview of the methods and the 

techniques has been proposed in this chapter for the wind speed model and the wind 

power model. From the proposed wind speed model and the wind power model , the 



algorithm is designed and implemented in the MA TLAB. The results are simulated in 

the MA TLAB and are presented in the thesis in the next section. 

1.2 Summary of the Research Papers 

Below is a brief review on some of the research papers studied relevant to the 
wind speed and the wind power forecasting. 

Wind Shear, Vertical Wind Shear and Horizontal Wind Shear: 

Wind shear refers [10] to the variation ofthe wind speed either horizontal or vertical 

distance. Small changes in the wind speed will change the power significantly. The 

wind speed shear is given by the power law equation of shear at two different heights 

with the shear exponent 'a' . Increase in the wind velocity will increases the power 

generated significantly. Vertical wind shear is the rate of change of the wind with 

respect to altitude. Horizontal wind shear is the rate of change of the wind on a 

horizontal plane. Both the factors affect the power output, and results in a scatter larger 

than expected in the power curve if no additional information to the wind speeds at the 

hub height is taken into account. Therefore wind shear is a very important factor in 

predicting the wind power of a wind turbine. 

Direction Shear: The direction she~r is the component of the wind shear [4] which is 

due to the change in the wind direction with the height. In the speed shear and the 

directional shear, both the angle and the length of the wind vectors are changing with 

the height. A smal l clockwise direction shear increases the performance ofthe wind 

turbine resulting in a higher local tangential force, whereas an anticlockwise direction 

shear decreases the performance. The main difference with the speed shear effect is 
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that the direction shear implies a variation ofthe horizontal component of the wind 

orthogonal to the wind turbine axis. The direction shear has a smaller effect on the 

wind turbine power output than the speed shear. There is a greater effect when both the 

phenomena are combined. 

Turbulence: An average power curve [ 4] of various turbulence intensities are shown 

in Figure 1.1. The effect of turbulence is more complex than that for shear and is 

therefore more difficult to account for in the power curve. Increasing the turbulence 

intensities will increase the power in the concave region and will decrease the wind 

power in the convex region of the power curve. Reduction in the energy production 

starts beyond 15% increase in the turbulence intensity. Thus turbulence is considered 

as a very important factor in predicting the wind power of a wind turbine. 

p o ....,.,r [ k W] 

3 000 

2 0 0 0 

1000 

Figure 1.1 : Average power curves for various turbulence intensities (5% (red), I O%(blue), 15%(green), 

20%(yellow)) [ 4]. 

Icing [6] has a major effect on the power production and the wind turbine can stop 

operating under severe icing condition. Lift reduces and drag increases along the wind 

turbine blade following the power law. During icing events, ice accumulates on the 

wind turbine rotor blades, thus reducing the aerodynamic efficiency and torque, 

resulting in the power loss. Torque drops to zero under severe icing event and the wind 
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turbine stops operating and there is a complete loss in the power production. Therefore 

icing is considered as an important factor in predicting the wind power of a wind 

turbine. 

Wake Effect: 

The wake effect has a major effect on the power production in the wind farm when 

many wind turbines are operating at the same time [5] . The wind direction and the 

distance between the neighboring wind turbines has a significant influence on the 

wake effect. Due to the compact arrangement of the wind turbines in a wind farm, a 

wind turbine is operating in the wake of another wind turbine. The wind turbines 

extract energy from the wind and downstream there is a wake from the upstream or 

neighboring wind turbine, and the w·ind speed is reduced. The wake effect has the 

aggregated influence on the energy production in the wind farm, which results from 

the changes in the wind speed caused by the impact of the wind turbines. The wake 

effect is considered as an important factor in the power production of a wind farm. 

Air Density: 

An air density ' p' is an important factor affecting the output power of a wind turbine 

[3]. The power curve of the variable speed wind turbines with different air density is 

shown in Figure 1.2. From the figure, we see that the wind turbines output power wil l 

increase with increase in air density .. An air density is closely related with the 

humidity, the temperature, and the pressure. Therefore, the pressure factor is 

considered in the wind power prediction. The density of air decreases with increase in 

temperature and altitude. The denser the air, the higher is the wind power density and 

vice versa. The wind power is directly proportional to the air density and any change 
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in the air density will change the output wind power of a wind turbine proportionately. 

The major factor affecting the power generation of the wind turbine is the wind speed 

and the atmospheric pressure. An air density plays an important factor in predicting the 

wind power. 
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Figure 1.2: Wind turbine power curve with different a ir density [3] 

Temperature: 

The temperature [6] is a very important factor in predicting the wind power. 

If the temperature is too low and if ice accumulates on the wind turbine rotor disc, the 

wind turbine stops working. Therefore the temperature is considered as an important 

factor in predicting the wind power of a wind turbine. 

Dust: The wind turbine blade [7] surface roughness has a significant influence on the 

aerodynamic load and the wind power production. Therefore, increasing the wind 

turbine operation period without cleaning the dust from the blade surface results in 

increase ofthe blade surface roughness, and consequently, there is increases in the loss 

in the wind turbine output power. The blade surface roughness reduces the 

effectiveness of the airfo il to extract the useful power from the wind and also results in 

reduced output power of the wind turbine. The accumulation of dust after years of 
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operation will affect the wind power production. Therefore dust accumulation has a 

smaller effect in predicting the wind power of a wind turbine. 

Complex Terrain: 

The wind farms [1 2] are generally situated in a more complex terrain. lfthere are 

severe up flow conditions induced by the terrain, there can be significant reduction in 

the performance of the wind turbine. The wind turbine experiencing a constant up flow 

angle of I 0 degree at the hub height would have energy production 

approximately by 5% lower than that of an equivalent site with the horizontal flow. 

Therefore topography is an important role in the wind farm power production. 

1.3 The Wind Speed Forecasting Models 

Below is the list of some of the forecasting models used in predicting the wind 
speed and the corresponding wind power: 

Persistence Model 

Auto Regressive Model (AR Model) 

Auto Regressive and Moving Average (ARMA Model) 

Autoregressive Integral and Moving Average (ARIMA) 

Arti ficial Neural Network 

Neural Network 

Numerical Weather Prediction Model 

Hybrid Model 

Numeric Weather Prediction (NWP) Model: Numeric Weather Prediction model 

[8] corresponds to the weather variab les, mainly hourly mean wind speed, wind 
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direction, pressure, and temperature. In statistical approach, the forecasted value is 

based on the last known data for the power production . NWP obtain good result for the 

forecast horizon of about 72 hours up ti II 7 days in advance. 

Auto-regressive Moving-average (ARMA): Auto Regressive Moving A ~erage 

models are the mathematical models ofthe persistence, or the autocorrelation [11] in a 

time series. The ARMA models can 'effectively be used to predict the behavior of a 

time series from the past values alone. The ARMA models have an advantage that they 

can provide very accurate results for short term wind power prediction if data have 

fairly smooth trend and stationary. lfthe data are not stationary and there are quite 

high variations and change trend suddenly they may result in very inaccurate results. 

The autoregressive model includes lagged terms on the time series itself, and the 

moving average model includes lagged terms on the noise or the residuals. Combining 

the lagged terms gives the auto regressive moving average (ARMA), models. 

Therefore ARMA models can be usc;;d for short term wind power prediction and should 

not be used for long term wind power prediction. 

Artificial Neural Networks (ANNs): Artificial Neural Network depends on the 

training data [II] and takes less amount of time in learn ing. The best network is 

chosen by trial and error method. It does not require very large amount of historical 

data but may require use of manual input in the training data. 

Hybrid Model: Hybrid model is a combination of two or more forecasting model [9] . 

The forecasting models are classified as physical or statistical or a combination of both 

the models. Artificial Neural Networks have been developed to predict the wind power 

of a wind farm located in a complex terrain. The neural network has been used as a 
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statistic model based on the time series of the wind power. It has been integrated with 

numerical weather predictions and has a greater performance, with the longer time 

horizons. The pressure and the temperature have a significant influence in improving 

the forecasting models. The optimal model is a combination of both the models, 

physical considerations is used to capture the airflow in the region of the wind turbines 

and advanced statistical model is used to supplement the information given by the 

physical models. The errors are reduced with the combination of a hybrid model. Thus 

hybrid model gives accurate result to predict the wind power of a wind turbine. 

1.4 Design Overview of the Wind Power Physical Model 

The wind power is the conversion of the wind energy to produce electricity using the 

wind turbines. It is considered as an .alternate source of the renewable energy. Various 

factors are considered in predicting the wind power of a wind turbine. These factors 

determine the actual production ofthe wind power using the wind turbine. The 

physical factors determine the wind power produced in real time and the wind turbine 

manufacturer power curve assumes ideal condition. The wind farm consists of many 

wind turbines and various physical factors are taken into account to pred ict the wind 

power of a wind turbine. Forecasting the wind power is essential for utility operators. 

The forecasting time horizon ranges from I Om in, hour ahead, and 5 hours ahead up ti ll 

seven days in advance. The physical factors considered predict the actual wind power 

in advance. 
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1.5 Research Goals 

The research involves finding a simulation model of a wind farm that could be used for 

the development of the wind power prediction software. The wind power model 

includes a simple individual wind turbine dynamic model, variation in the wind speed 

with height, variation in the wind speed over the site area and the wake interaction 

between the wind turbines. Detailed Computational Fluid Dynamics (CFD) based flow 

models of a wind farm including dynamic model of a wind turbine are too complex 

and are not suitable for the real time power prediction and it requires supercomputer 

for calculation. The main challenge for this work is to find a simple model that wi ll 

take a topographical map, a wind farm layout and the long term site wind and the 

atmospheric data and uses this information to calcu late the wind speed at all the wind 

turbines. A wind turbine corrected power curve that takes into account wind turbulence 

can be used as a simple model of a wind turbine. Using the wind turbine simple model 

the output power of each individual wind turbine in a wind farm can be established and 

the wake effects can be calculated. The work should focus on a method to determine or 

predict the output power of a wind farm. The resulting simple model of a wind farm 

will be used to develop a computer program that is fast and can be used in real time. 

The code will effectively employ real time wind and weather data to predict the 

expected short term and the long term output power of a wind farm. 
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1.6 Typical Method or Technique Applied in Predicting the Wind Power of a 
Wind Turbine 

The wind turbine manufacturer supplied power curve [ I] is digitized by plotting power 

vs. wind speed characteristics and fitting a polynomial in MATLA B for an accurate 

estimation. Weather Research and F9recasting (WRF) has a wind data i.e. average 

wind speed, wind direction, pressure, temperature as input to the wind power physical 

model. WRF has pressure levels known as eta levels which intersect the wind turbine 

rotor disc. The height of these model levels which intersect the wind turbine rotor disc 

needs to be determined for the wind power physical model. The wind data is given in 

every ten minutes time series order. From the given wind data, the turbulence intensity, 

the turbulence adj usted wind speed, the equivalent disc wind speed can be calculated at 

the given model levels. The turbulence intensity is determ ined from the ratio of the 

average wind speed and the standard deviation value of the wind speed data. The 

turbulence adjusted wind speed is determ ined at the given model levels or heights of 

the wind turbine rotor disc. The wind shear exponent 'a' is calculated from the power 

law equation of shear using the turbulence adjusted wind speed at the given model 

levels. The wind speed data is evaluated for the entire wind turbine rotor disc by 

numerically integrating the wind speed data from the lower wind turbine rotor tip to the 

upper wind turbine rotor tip and evaluating the wind data values using the designed 

algorithm. This value is assumed to be at the hub height of a wind turbine. From the 

evaluated disc speed, the uncorrected power can be determined which is subsequently 

adjusted for air density. The wind power physical model is implemented in the 

MATLAB software to evaluate the disc speed and the corresponding wind power. 
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Using this approach, the wind power is predicted for one wind turbine. For predicting 

the wind power ofthe wind farm, the wind power is determined for each of the wind 

turbines and influence of the wind direction and the wake effect is considered. The 

implemented wind power model in MA TLAB software is tested for accuracy with 

different wind data sets in every I 0 minutes time series order of the wind data. 

1.7 Thesis Outline 

This thesis has five chapters. Concise information about the chapters is given below: 

The first chapter gives the outline of the research work. It discusses the proposed 

models and research methods or techniques applicable to the research work. 

The second chapter discusses the short term wind speed prediction model. It discusses 

the wind speed estimation and accuracy for the selected range of the wind speed. It 

discusses the work related to the ARMA modeling of the wind speed, the Kalman filter 

and the Unscented Kalman filter. 

The third chapter discusses the wind farm power model, and the wake power model 

and the power loss due to the power transmission in the Fermeuse wind farm. 

The fourth chapter discusses the wind farm power model, and the wake power model 

and the power loss due to the power .transmission in the Cedar Creek Colorado wind 

farm. 

The fifth chapter presents the conclusion of the research work. It also presents the 

research outcome and the future work. 
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Chapter 2 

Short Term Wind Speed Prediction 

2.1 Background Information on the Wind Speed Prediction 

The wind is the mass movement of air due to the difference in pressure between the 

two sections on the earth. It is characterized by its speed, direction, time of occurrence. 

The wind energy is infi nite and inexhaustible and its use in energy production does not 

lead to any pollution and is a better way to produce energy without being against the 

environment. Better techniques need to be adopted fo r efficient usage of the wind 

energy. The most important factor which influences the wind energy production is the 

local wind speed [13] and there is a great need of development ofthe improved 

forecasting methods which will directly improve the resource allocation and will 

determine the reliability ofthe energy producing company and the operation of the 

energy production systems and the energy distribution [14]. Various models have been 

investigated for accurate prediction. The fo recast of hourly average wind speed of few 

hours in advance is requi red for the power plant operators. Predicting the output power 

of the wind farm is essential for the operation of the conventional electric power plants 

that are connected to the same power grid as those conversion systems. The wind 

speed in near future depends on the values of other meteorological variables, such as 

atmospheric pressure, moisture content, humidity, rainfa ll etc. 

This chapter includes the fo llowing sub topics on the wind speed pred iction: 

Design of Five Hours In-advance Wind Speed Pred ictor and, An Hour Ahead Wind 

Speed Prediction Using the Kalman Filter and the Unscented Kalman Fi lter 
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The details are provided below. 

2.2 Design of Five Hours In-advance the Wind Speed Predictor 

2.2.1 Introduction 

In this section wind speed prediction five hours in advance using Auto Regressive and 

Moving Average (ARMA) model is described. Various models have been investigated 

and ARMA model is chosen for predicting the wind speed. The ARMA has 

autoregressive and the moving average parameter and the computation is performed 

based on the past data. The aim of this work is to evaluate the applicability of the 

ARMA model to the time series of the hourly average wind speed, and assess the 

predictive behavior of the obtained model. The input to the wind speed model is the 

per hour time series wind speed data and the processing is done by the ARMA model. 

The parameters are estimated and prediction is computed for the specified duration and 

further testing is done on the predicted data to test accuracy and the error between 

expected and the predicted output should be zero. The application of ARMA models 

requ ires the time series to be stationary, i.e. the method assumes that the process 

remains in equi librium about a constant mean level [ 13]. 

2.3 Detail Overview of the Wind Speed Prediction Models 

Various models have been investigated for predicting the wind speed 

in advance and some details are given below. 
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Numeric Weather Prediction Model: Numeric Weather Prediction is accurate for 

long term fo recast. Time horizon for· th is model ranges from a day ahead up to 7 days 

in advance. It gives inaccurate results for the short term prediction and requires 

supercomputer for wind speed estimation [24]. 

Persistence Model: Persistence model [II] gives accurate result for very short term 

wind speed prediction and ranges from few minutes till 2 hrs in advance, the 

estimation is inaccurate fo r more than 2 hours and is not considered. 

ARIMA Model: The popularity of the ARIMA model is due to its statistical 

properties as well as to the well-known Box-Jenkins methodology in the model 

building process [ 15]. A RIMA models assume that future values of a time series have 

a linear relationship with 

current and past values as well as with the white noise. Real time physical systems are 

often nonl inear so approximations by ARIMA models may not be adequate for 

complex nonlinear problems and they require a large amount of historical data in order 

to produce accurate results and are not considered for predicting the wind speed in 

advance. 

Neural Network: The major advantage of neural networks is their flexi ble nonlinear 

modeling capabil ity and high accuracy [ 16]. ANNs are data-driven, self-adaptive 

methods in that there are few a priori assumptions made about the models for problems 

under study. ANNs, models have data limitation. The amount of data for network 

training 
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depends on the network structure, the training method, the complexity of the particular 

problem or the amount of noise in the data; it requires supercomputer for computation 

and thus is not considered. 

Fuzzy forecasting: These methods are suitable under incomplete data conditions and 

require fewer observations than other forecast ing models. Although fuzzy forecasting 

methods can be applied to situations with scant available data and have no data 

limitation, their performance is not always satisfactory [24]. 

Hybrid forecasting: These models have been proposed using ARIMA, Artificial 

Neural Networks (ANNs), and Fuzzy logic and applied to financial time series 

forecasting with good prediction performance. They require super computers for 

forecast prediction [24]. These methods are usually quite complex in nature and are 

difficult to implement, furthermore these methods cannot guarantee the optimal 

solution for all real time forecasting ·problems. 

ARMA Model: The Autoregressive and Moving Average Model [13] gives very 

accurate result for the short term wind speed prediction for few hours in advance, it 

does not require very large amount of historical data for accurate prediction as 

compared to ARTMA and does not require super computers for computation, it can be 

implemented on a simple desktop provided data have stationary values. It gives 

inaccurate result for the non linear data. 

Kalman Filter: The Kalman fi lter is an algorithm that provides an efficient 

computational or recursive mean to ~stimate the state of a process and minimizes the 

mean of the square error [23]. It supports estimations of the past, present, and future 

states without knowing the precise nature of the modeled system. It is a tool for 
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filtering, smoothing, and prediction applied to the continuous models and the discrete 

models. 

Thus theoretical part ofthe Kalman. filtering is studied in this course and the model 

will be developed to predict the wind speed from the actual wind speed data. 

Auto Regressive Model: The Auto Regressive is an appropriate method to simulate 

the hidden correlation between the data. A second order autoregressive model 

considers the effect ofthe relationship between the consecutive values in a series as 

well as the correlation between values two periods apart. The estimation ofthe model's 

parameters based on the historical data of the wind speed is an important role in 

modeling, and they determine the precision, reliability and efficiency of the model. 

Therefore, the best approximation is. by least squares error method [25]. 

Unscented Kalman Filter: Unscented Kalman Filter (UKF) is an extension of 

Unscented Transform to the recursive estimation. The Unscented transformation (UT) 

is a method for calculating the statistics of a random variable which undergoes a non 

linear transformation. It is used for the non linear system [28]. 

Non Linear ARX: The Non linear ARX model is nonlinear auto regressive model 

with external input. The nonlinear arx model is implemented by one of the following 

nonlinearity estimators such as sigmoid net, wavelet, tree partition, custom net, neural 

net, linear [29]. It is used for the non linear system. From the literature search of the 

investigated models, the work is focused on the AR model, the nonlinear ARX model, 

the Kalman Filter and the Unscented Kalman for an hour ahead wind speed estimation. 
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2.3.1 Detailed Overview of the ARMA Model 

The Auto Regressive Moving Average (ARMA) models are the mathematical models 

of the persistence, or the autocorrelation in a time series. There are severa l possible 

reasons for fitting the ARMA models to the data. The w ind speed modeling 

contributes to the understanding of the physical system by revealing about the physical 

process that builds persistence into the series. ARMA models can a lso be used to 

predict the behavior of a time series from the past values. 

2.4 The Mathematical Model of the ARMA Model 

The ARMA models can be described by a series of equations [ 19] and is given in the 

equation (2.1 ). 

y(t) = Y(t)- Y where t = 1,2 ... N (2.1) 

Where y (t) is the original time series, Y is its sample mean, and Y (t) is the mean 

adjusted series. One subset of the ARMA models is the autoregressive or the AR 

models. An AR model expresses a time series as a linear function of its past values. 

The order of the AR model determines the number of the lagged past values. The 

simplest AR model is the first order autoregressive model, given by the equat ion (2 .2). 

y(t) + a1 * y(t- 1) = e(t) (2.2) 

where y(t) is the mean-adjusted series in timet, y(t-1) is the series in the previous 

time, a I is the lag- 1 autoregressive coefficient, and e(t) is the no ise. The no ise or the 

residuals e (t) is assumed to be random in time i.e. not auto corre lated and normally 

distributed. 
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The equation for the AR (I) model is given in the equation (2.3). 

y(t) = - a1 * y(t- 1) + e(t) (2.3) 

The AR (I) model has the form of a regression model in which y (t) is regressed on its 

previous value. In this form, a I is analogous to the regression coefficient and e (t) to 

the regression residuals. The autoregressive refers to the regression on self. Higher 

order autoregressive models include more lagged y (t) terms as predictors. The moving 

average (MA) model is a form of ARMA model in which the time series is regarded as 

a moving average or unevenly weighted random series e (t). The first order moving 

average or MA (I) model is given by the equation (2.4) 

y( t) = e(t) + c1e(t- 1) (2.4) 

where e (t), e (t-1) are the residuals at times t and t-1, and c 1 is the first order moving 

average coefficient. Higher order MA models include higher order lagged terms. The 

autoregressive model includes lagged terms on the time series itself and that the 

moving average model include lagged terms on the noise or the residuals. Both the AR 

and MA models together are called the autoregressive moving average or the ARMA 

models. The order of the ARMA mo.del is included in parentheses as ARMA (p, q), 

where p is the autoregressive order and q is the moving average order and is given in 

the equation (2.5). 

y(t) + a1y(t - 1) e(t) + c1e(t- 1) (2.5) 
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2.5 The Wind Speed Modeling Using ARMA Model 

The first step is to identify the model [ 19, 11 ]. Identification consists of specifying the 

appropriate structure (AR, MA or ARMA) and order of the model. Identification is 

sometimes done from the plots ofthe autocorrelation (act) and partial autocorrelation 

function (pact) or by an automated iterative procedure. The second step is to estimate 

the coefficients of the model. Estimation of the parameters ofMA and ARMA models 

usually requires a more complicated iteration procedure. It is accomplished 

automatically by a computer program with little or no user interaction. The third step is 

to check the model and is called diagnostic checking or verification. Checking is 

required to ensure that the residuals of the model are random, and to ensure that the 

estimated parameters are statistically significant. The classical method ofthe model 

identification as described by the Box and Jenkins [ 19] is to determine the appropriate 

model structure and order from the appearance of the plotted acf and pacf. 

The partial autocorrelation function (pact) at lag k is the autocorrelation at lag k after 

first removing the autocorrelation with an AR (k -1) model. The identification of 

ARMA models from the acf and pacf plots is difficult. 

The acf and pacf for an AR (1) model is: 

Acf: Declines in geometric progression from its highest value at lag 1 

Pacf: Cuts off abruptly after lag 1 

The opposite types of patterns apply to an MA (I) process: 

Acf: Cuts off abruptly after lag 1 

Pacf: Declines in geometric progression from its highest value at lag I 
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Prediction differs from simulation in that the objective of the prediction 

is to estimate the future value of the time series as accurately as possible from the 

current and past values. Prediction utilize past values of the observed time series. A 

prediction form ofthe AR (I) model is given in the equation (2.6). 

Y(t) = - a1Y(t- 1) (2.6) 

Where the - indicates an estimate 

The equation can be applied one step ahead to get estimate y(t) from observed y (t-1 ), 

fork step ahead AR (1). Prediction can be made by recursive application of equation 

(2.6). In recursive application, the observed y at time I is used to generate the 

estimated y at time 2. That estimate is then substituted as Y(t- 1) to get the estimated 

y at time 3; the k-step-ahead predictions eventually converge to zero as the prediction 

horizon k increases. 

2.6 MATLAB Implementation of the ARMA Model 

The designed algorithm is implemented in MATLAB for predicting the wind speed 

five hours in advance and is compared with actual wind data [ 11]. Hourly wind speed 

data from the Environmental Canada website, StJohn 's is downloaded. The acfand 

pacf Jag is determined and prediction' is computed. For the ARMA model, the order 

chosen is armax (I I) and ifthe data is in time series order, it is written as [I I]. Using 

this order we get the Autoregressive and Moving Average parameters and are given 

below [20]. A copy ofthe MATLAB code is given in Append ix A. 

Discrete-time IDPOL Y model of armax (I , I) is given by the equation (2. 7): 
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A (q) y (t) = C (q) e (t) (2.7) 

A (q) = 1-0.9864 q/\-1 

c (q) = 1 - 0.2986 q/\-1 

Estimated using ARMAX from the data set z 

2.7 The MATLAB Simulation Results 

Input for the ARMA model is hourly controlled wind data, output data after processing 

with the ARMA model should be predicted wind speed five hours in advance, and 

further testing has to be done to detennine the accuracy by comparing the actual and 

the predicted wind data and the error should be zero. A copy of the partial 

autocorrelation of the MATLAB code for the hourly wind speed data is attached in the 

Appendix Band the autocorrelation of the MATLAB code for the hourly wind speed 

data is attached in Appendix C. Figure (2.1) and Figure (2.2) is the autocorrelation and 

partial autocorrelation plots of the hourly wind data showing lag of 20 hours. 
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Figure 2. 1: Autocorrelation o f the input wind speed data. 
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Figure 2.2 : Partial autocorrelation ofthe input wind speed data. 

Figure (2 .3) is the plot of per hour 1600 time series wind speed data set. Figure (2.4) 

is the plot of predicted wind speed data five hour in advance using arm ax( 1,1 ). 

Figure (2.5) is the plot of predicted wind speed data five hour in advance usmg 

ann ax( 1,1) for a time span of 500 hours. 
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60 

Figure 2.3 : Input hourly wind speed data. 
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Figure 2 .4: Predicted hourly five hours in advance wind speed data . 
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Figure 2.5: Predicted wind speed using armax (I , I) for a time span of 500 hours. 

Figure 2.6 is the comparison ofthe actual and the predicted wind speed data 

and there is a very less variation between the actual and the predicted wind data 

and the error is close to zero. 
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Figure 2.6: Comparision of the actual and the predicted wind speed data in km/hr and time in 

hours. 

Table 2.1: Data Analysis of the Actual and the Predicted Wind Speed 

Statistics 

Mean 

Median 

Standard 
Deviation 

Actual wind 
s eed data 

5.12 m/s 

5.0 1 m/s 

2.48 m/s 

Predicted wind 
s eed data 

5.52 m/s 

5.26 m/s 

2.78 m/s 
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The above table 2.1 gives the data analysis results in detail and we can see that there is 

very less difference of mean, median and standard deviation between the actual and the 

predicted wind data and the prediction accuracy increases with large data and the error 

will be zero. 

2.8 An Hour Ahead Wind Speed Prediction Using the Kalman Filter and the 
Unscented Kalman Filter 

2.8.1 Introduction 

This section reports an AR (Auto Regressive) model and a non linear Auto Regressive 

Exogenous model for a short term wind speed prediction to predict an hourly average 

wind speed up to I hour in advance. The Kalman filter and the Unscented Kalman 

Filter are used for filtering associated noise in the input wind speed for accurate 

estimation. The input to the wind speed model is an unprocessed wind speed. The 

input time series wind speed data is downloaded from the Environmental Canada 

website. The historic input wind speed data is in per hour time series order. 

Autoregressive model is studied in detail, the raw wind speed data is processed using 

Autoregressive model of order 2. Further the Kalman filter is used for fi ltering 

unwanted noise parameter and for accurate estimation of the wind speed. The 

Unscented Kalman Filter is used for the nonlinear system. The non linear ARX model 

state space equation is determ ined in MATLAB and Unscented Kalman Filter is used 

for further correcting and estimating the wind speed. System identification toolbox in 

MA TLAB is used to process the time series wind speed data. The input wind speed 

data is I 000 per hour time series data. The input per hour time series wind speed data 
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is stored in excel file and is imported into system identification toolbox GUT. The wind 

speed data is divided into the training data and the validation data. From the input 

wind speed data, 2/3rct of the input wind speed data is used for training the data and 

l/3rct of the input wind speed data is used for the validation purpose. The linear and the 

non linear parametric model in the system identification toolbox GUI is used for wind 

speed estimation. The model structure used for the estimation is an AR model and a 

non linear ARX model of various model orders. The best fit data is tested by 

comparing actual wind speed data with the estimated data from the system 

identification toolbox GUI. From the best fitted data, the particular model structure of 

the best fit wind speed data is chosen for further wind speed processing. The Kalman 

Filter and the Unscented Kalman Filter are used for further wind speed processing. 

The state space equation of the parti~ular model structure is determined from the 

model order. The parameters determined from the state space equat ion are used as 

input to the filter. The best fit model is estimated in the MA TLAB System 

identification toolbox by comparing various model orders and estimating the best fitted 

model order. The code is written in MATLAB from the chosen best fit model order. 

The model parameters and the state space equation are determined for the chosen 

order. Further wind speed processing is done using the Kalman Filter and the 

Unscented Kalman Filter. The model output is estimated and the corrected wind speed 

data from the Kalman filter and the Unscented Kalman Filter is compared to test 

accuracy. 
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2.9 Part 1: System Identification Toolbox GUI 

2.9.1 Best fit estimation for the Auto Regressive Model 
Figure 2.7 is the plot ofthe input wind speed data with respect to time. It is imported 

into system identification toolbox GUI [30] using "ident" command in MA TLAB. The 

wind speed data is in 1000 per hour time series data. 
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Figure 2.7: Input wind speed is plotted with respect to time. 

The input wind speed data is divided into training data and the validation data. From 

the input wind speed data, 2/3rd of the input wind speed data is used for training the 

data and l /3rct of the input wind speed data is used for validation purpose. The input 

wind speed data is divided into training data and the validation data and is shown in 

Figure 2.8. 
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Figure 2.8 : Input wind speed has 2/3rd data as training data (green) and l /3rd data as validation data 

(red). 
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In Figure 2.9 we see the input wind speed processing and estimation of linear 

parametric model using AR (Auto Regressive) model and ARMA (Auto Regressive 

and Moving Average) model in the system identification toolbox. 
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Figure 2.9: Wind speed data processing in the system identification. 

In Figure 2.9, we see that the input wind speed is divided into training data and the 

validation data. The linear parametric model is used for the estimation purpose. For 

training the input wind speed data, 2/3rct of the wind speed data is used for training the 

data and 1/3rd of the wind speed data is used for validating the data in the System 

Identification toolbox. From the given model structure, Auto Regressive model of 

various order and Auto Regressive Moving Average model of various model order is 

tested with the actual validation data. In Figure 2.10 and Figure 2.11 , we see that the 

best fitted data is compared with various model structures and model order. The 

measured and one step predicted output is shown in Figure 2.10 below. From Figure 

2.10 we can conclude that the Auto Regressive model of order 2 is the best fitted 

model structure. The percentage ofthe best fitted data is 58.87%, as the model order is 

increased; the best fitted data has no significant improvement and remains the same. 
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As compared with the ARMA model, the best fitted data is nearly the same percentage 

as the AR model. This is the maximum best fitted data for one step predicted output 

from the available inbuilt model structure in the System Identification toolbox GUI 

[30]. As the model order is increased, the percentage of the best fitted data is almost 

the same and has no significant improvement with increase in the model order. For this 

reason the Auto Regressive model of order 2 is chosen as the best fitted model for the 

one step predicted output. With AR model order as 2, less number of parameters is 

estimated and the system is less complex. 

Measured and 1 step predicted output 
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Figure 2. 10: Best fitted one step ahead wind speed data tested with AR model and the ARMA model of 

different model order in the system identification toolbox . 

In Figure 2. 11 , we see the best fitted Auto Regressive second order model for one step 

predicted output. Figure 2.1 2 is the plot of the autocorrelation of the residuals 

estimated from the AR 2nd order model. 
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Figure 2. 11 : One step ahead estimated AR 2nd order model and percentage of the best fit estimate. 
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Figure 2. 12 : Autocorrelation of the residual estimated using AR, 2nd order model 

2.10 The Kalman Filter Wind Speed Estimation Using Auto Regressive Model 

2.10.1 Detail Overview of the Kalman Filter 

The Kalman filter [26] is a tool for filtering, smoothing and prediction. This method 

can be applied to both continuous and discrete models. The Kalman fi lter is an 

algorithm that provides an efficient computational (recursive) mean to estimate the 

state of a process minimizing the mean ofthe square error. The filter supports 

estimations ofthe past, present, and future states, even when the precise nature ofthe 
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modeled system is not known. The Kalman filter provides a method for the recursive 

estimation of the unknown state based on all observation values up to time't'. As such, 

the equations for the Kalman filter fall into two groups [26] ' time update' equations 

and ' measurement update' 

equations. The former are responsible for projecting forward in time the current state 

and error covariance estimates to obtain a priori estimates for the next time step, while 

the latter are responsible for the feedback, i.e. for incorporating a new measurement 

into the a priori estimate to obtain an improved a posterior estimate. The main goal is 

the simulation of the evolution in time of an unknown process or state vector, whose 

value at time't' is denoted by 'xt' . The Kalman filter provides a method for the 

recursive estimation of the unknown state based on all observation values up to timet. 

2.10.2 The Kalman Filter State Estimation 

The input wind speed is assumed to have associated noise when estimated using Auto 

Regressive model. The Kalman filter is used to reduce the noise parameter associated 

with the input wind speed, estimated. using Auto Regressive model of order 2 [26]. 

The Kalman filter estimates the state 'x' of a discrete-time controlled process that is 

governed by the linear stochastic difference equation and is given in the equation (2.8). 

Here A and B are the matrix, u is the input, w is the process noise and, k and k-1 

represents current step and previous step respectively. 

(2 .8) 
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The measurement 'zk' is given as shown in the equation (2.9). Here v is the 

measurement noise, and H is the matrix that relates the state to the measurement. 

(2.9) 

The random variables w (k) and v(k) represent the process noise and the measurement 

noise respectively. They are assumed to be independent of each other and with normal 

probability distributions as given in equation (2.1 0). Here Q is the process noise and R 

is the measurement noise. 

p(w) ~ N(O, Q), 

p(v) ~ N(O, R) 

The process noise covariance and the measurement noise covariance 

(2.1 0) 

matrices might change with each time step or the measurement. The matrix in the 

difference equation relates the state at the previous time step to the state at the current 

step, in the absence of either a driving 

function or process noise. 

The a priori estimate error covariance is given in equation (2 .1 I). Here E is the 

expected value, e·k e·kT is the priori error covariance, and p-k is the priori estimate. 

(2.11) 

The posterior estimate error covariance is given in equation (2.12). Here ek ek T 

is the posterior estimate error covariance, and Pk is the posterior estimate. 

Pk = E [ek ekT] (2.12) 

Time Update Equation: Time update equations project the state (x~-) and 

covariance (PIZ) estimates forward from time step k-1 to step k. Equation (2.1 3) 
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and equation (2 .14) gives the time update equation. Here A, Bare the matrix and 

AT is the matrix transpose. 

x~- = A* xk- 1 + B * uk-1 

PJ{ =AT A* PK-1 + Q 

(2.13) 

(2. 14) 

Measurement Update Equation: The first task during the measurement update is to 

compute the Kalman gain, Kk. The next step is to actually measure the process and then 

to generate an aposterior state estimate by incorporating the measurement. The fina l 

step is to obtain an aposterior error covariance estimate. The steps are given in 

equation (2.15). The recursive nature is one of the important features ofthe Kalman 

filter Here Kk is the Kalman gain. H is the matrix, HT is the matrix transpose. I is the 

identity matrix. 

Kk = p ·k HT( HP-k HT + Rf1 

X' k =X'- k + Kk ( zk - Hx' -k) 

Pk = (I - KkH) pk-

2.10.3 Filter Parameters and Tuning 

(2. 15) 

In the actual implementation ofthe filter, the measurement noise covariance is usually 

measured prior to the operation of the filter [26]. Measuring the measurement error 

covariance is possible because we need to be able to measure the process while 

operating the fi lter, we should be able to take some off-line sample measurements in 

order to determine the variance of the measurement noise. The determination of the 
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process noise covariance is generally more difficult as we typically do not have the 

ability to directly observe the process we are estimating. In this case the process 

measurements are reliable. The filter performance can be obtained by tuning the filter 

parameters. 

2.10.4 MATLAB Implementation of the Designed Algorithm of the Kalman 
Filter 

The equation is written in the state space form as shown below. The parameters are 

estimated using 2nd order AR model determined in MATLAB and one step pred icted 

output using hourly wind speed time series data given in the equation (2.16) and 

equation (2. 17). 

(
x1(t+1)) = ( al a2 )* ( x1(t+1)) 
x2(t+l) 0 0 x2(t+l) 

(2.16) 

Here a1 = 0.8963 ; a2 = 0.09091 ; 

Y(t) = (1 O) * ( xl(t)) 
x2(t) 

(2 .17) 

2.10.5 Observability and Controllability Test 

The observability and controllability test is performed on the estimated 2nd order, Auto 

Regressive model. 

Observability: In order to see what is going on inside the system under observation, 

the system must be observable. 

Observability Test 
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A= [0.8963 0.09091; 0 0]; 

B= [0; 0]; 

C= [1 0]; 

D= [0] ; 

Ts= I; 

observe I = [C; C* A]; 

r I =rank (observe 1) 

DI = det (observe I) 

Test Result 

observe I = 1.0000 0 

0.8963 0.0909 

r I = rank (observe I) =2; 

DI = det (observe I) = 0.0909; 

The rank of the matrix is 2 and the determinant of the matrix # 0. 

Therefore the system is observable. 

Controllability: In order to be able to do whatever we want with the g iven dynamic 

system under control input, the system must be controllable. 

Controllability Test 

A= [0.8963 0.09091 ; 0 0] ; 

B= [0; 0] ; 

C= [I 0]; 

D= [0] ; 

Ts= I; 
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Co = [B A*B]; 

r2 = rank (co); 

02 = det (co) 

Test Result 

Co = 0 0 

0 0 

r2 = rank (co) =0 

02 = det (co) =0; 

The rank ofthe matrix is 0 and the determinant of the matrix is 0. Therefore the system 

is not controllable. 

2.11 MATLAB Simulated and Corrected Wind Speed Estimation Using Kalman 
Filter 

Figure 2. 13 shows the Kalman filter state est imation with properly tuned parameters. 

The filter parameters are properly tuned with the process noise and the measurement 

noise. Figures 2.13, Figure 2. 14, Figure 2. 15 show the Kalman fi Iter state est imation 

for state x I. The state x I is the observed state; the actual and the measurement fo llow 

closely at properly tuned filter parameters. For the Kalman filter, the linear time series 

mode ls were developed using historica l data. It is estimated an hour ahead and the best 

fit is around 60% due to the non linear nature of the wind speed. Using the state space 

equat ion of the linear AR model as initial conditions to the Kalman fi lter, the Kalman 

filter is used to filter and correct the bias in prediction. The prediction is validated 
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using the real data. For the Kalman filter, the process noise and the measurement noise 

is tuned properly using the filter parameters. The testing is done by proper tuning of 

the filter, it is assumed that the actual and measurement follow each other by properly 

tuning the Kalman filter parameters. This is shown in Figure 2.13. It shows that the 

Kalman filter has good performance in noise rejection and the actual and measurement 

follows each other. 

J Properly Tunod 

5 

4o~-----=2o~o~----~4~oo~----~s~o=o----~e~o~o----~,~oo~o~--~,d200 
Numbe r of T im• S te.pe ( h our ) 

Figure 2.13: Properly tuned Kalman filter wind speed estimation. 

Figure 2 .14 shows the Kalman filter state estimation with the introduction of 

measurement noise. The state xI is the observed state, the actual and the measurement 

are not fo llowing closely and there is a deviation. It means that we need to trust 

process more and measurement less. 

n ,-----__;Ka.=.:l~.:..:.a~n.:..:.F.:..:.;:.::tte::;,r....:.V'.:.:~;.:..:."d::...=.S:::..:pe:..:e:;:.d..=E:..:•.:..:.ti'".:.:=:at::.:; o.:..:.n..=o.:...f =.St:.::a.:..:.t•:_'x::_':..,.' --------, 

1 2 00 

Figure 2.14: Kalman filter estimation with increase in measurement noi e. 
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Figure 2.15: Kalman Filter estimation with increase in process noise (Qt) and the 

measurement noise (Rt) is remaining constant. 

2:0 0 
Nu~-,bgr o r T l .-.,o S t o p e 

Figure 2.16: Section of Kalman filter with increase in process noise (Qt). 

From the above figures we conclude that the Kalman filter performance is good. 

Appendix D gives the Auto Regressive code for determining the 'idpoly' model of 

the time series data for one step predicted output The code for the Kalman filter is 

written in Appendix E. The code is implemented in MA TLAB from the designed 

algorithm. The state space equation is determined and the model parameters are used 

in the Kalman Filter. State x 1 is the observed state, Kalman filter performance is 

observed with the introduction of the noise parameters. We can conclude that the 

Kalman filter has good performance over noise rejection and its performance is 
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observed by minimizing the error. Tuning the filter parameters is understood and its 

effect on system perfo rmance is observed. 

2.12 Wind Speed Estimation Using Unscented Kalman Filter: 

2.12.1 Algorithm of the Unscented Kalman Filter 

Unscented Kalman Filter is an extension of Unscented Transform to the recurs ive 

estimation. The Unscented transformation (UT) is a method for calcu lating the 

statist ics of a random variable which undergoes a non linear transformation [28] and is 

given in equation (2. 18). 

y =f(x) (2.18) 

The variable 'x' is a random variable with mean X and covariance Pxx· The variable y 

is related to the variable x through the non linear function (f(x)) . As seen in Figure 

2.1 7, the nonlinear function is applied to each point to yield a cloud of 

transformed points. The mean y and covariance P xx are statistics of transformed points. 

We have to calculate the mean y and covariance Pxx. 

~· 
~ · 

···· ... . 

..... ~ ... .. 

Figure 2 .1 7: Principle of Unscented T ransform [2 8] . 
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A set of points or sigma points are chosen so that their mean and covariance are X 

and Pxx respectively. The nonlinear function is applied to each point, the samples 

are not random points and follow an algorithm . Then-dimensional random 

variable x with mean x and covariance Pxx is approximated by 2n+ 1 weighted points 

by the following [31] . Here n =2 and k = 1. 

XO = x 

WO = k/(n+k) (W is weight) 

Xi= x + UCn + k)Pxxi) Wi= l/2(n+k) 

Xi+n=x-(~(n + k)Pxxi) Wi+n=-l/2(n+k) 

(2. 19) 

(2.20) 

(2.21) 

(2.22) 

Here k is the tuning parameter to fine tune higher order moments of approximation. 

Here x(k) is assumed Gaussian, select n+k = 3. Instantiate each point through the 

function to yield set oftransformed ~ igma points. 

The transformed sigma points are: 

Yi=f [Xi] 

Mean is given by: Y =.Lz~o WiYi 

The associate covariance ( Py y ) is given by: 

Py y = LZ~o Wi{Yi- y}{Yi- y}T 

(2.23) 

(2.24) 

(2 .25) 

The transformation process which occurs in the Kalman Filter consists of fo llowing 

steps [28]. 

Predict new state of the system or mean value. 

Predict its associated covariance. It must take into account process noise. 
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Predict the expected observation and the innovation covariance. 

The reduction should include effect of observation noise. 

Predict the cross correlation matrix: 

2.13 MATLAB Results of the Unscented Kalman Filter Using Autoregressive 
Model 

In Figure 2.18, we see the properly tuned Unscented Kalman Filter response. The code 

is written in MATLAB from the steps ofthe Unscented Kalman Filter. The process 

noise and the measurement noise parameters are properly tuned. The state x 1 is the 

observed state, the wind speed estimation of the actual and the measurement follow 

each other. Unscented Kalman Filter has good perfonnance in state estimation. 
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Figure 2. 18: Unscented Kalman Filter response at properly tuned . 

1 6 0 0 

The UKF response is shown in Figure 2. 19 and the measurement noise is introduced in 

the system. The measurement is trusted less and the process is trusted more. There is a 

deviation in the wind speed estimation of the actual and the measurement data. 
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Figure 2.19: Unscented Kalman Filter response with the introduction of measurement noise. 

The UKF response is shown in Figure 2.20 we see that the process noise is introduced 

in the system. The measurement is trusted more and the process is trusted less. There 

is a deviation in the wind speed estimation of the actual and the measurement data. The 

UKF has good performance by minimizing the noise effect. 
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Figure 2.20: Unscented Kalman Filter response with the introduction of process noise. 

From Figure 2.20, we conclude that the Unscented Kalman filter has good 

performance. The code for the filter is written in Appendix F. The code is implemented 
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in MATLAB from the designed algorithm ofthe UKF. State space equation 

determined from the model parameters is used in the Unscented Kalman Filter. State 

xI is the observed state, the Unscented Kalman filter performance is observed with the 

introduction of noise parameters. Therefore, the Unscented Kalman filter has good 

performance over noise rejection and its performance is observed by minimizing the 

error. 

2.14 PART II: System Identification Toolbox GUI 

2.14.1 Best fit estimation for the non linear Auto Regressive Exogenous Model 

The nonlinear ARX model is used in the system identification toolbox. The wind 

speed in the time series order is taken from the Environmental Canada website. The 

best fit estimation ofthe wind speed is performed in the System Identification toolbox. 

The wind speed is divided as training data and validation data and is shown in Figure 

2.21. The wind speed data is I 000 per hour time series. The wind speed is divided as 

the training data for the wind speed range I :650 and the validation data for the wind 

speed range 65 1: I 000. The best fitted wind speed data is est imated by comparing non 

linear arx model with different model order. The comparison of the best fitted data is 

shown in Figure 2.22. From the comparison of the best fitted data, we conclude that 

the 2nd order 'arx ' model is the best fitted data. As the model order is increased there is 

no further increase in the best fit esti'mation. With increase in model order, there is no 
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significant increase in the best fitted estimation ofthe wind speed and it remains the 

same which is about 58.08 %. 
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Figure 2.2 1: Non linear ARX model compared with various model orders 
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Figure 2.22: Training and Validation data for the wind speed in System Identi fication toolbox 

Figure 2.23 and Figure 2.24 shows the best fit estimation of the non linear ' arx' model 

for various model orders. From the best fi t estimation we see that the, ' nlarx2' is 

chosen as the best fitted data. The model chosen is nlarx2 with lower model orders for 

further estimation as less parameter are estimated and there is less complexity. With 

higher order model, more complexity arises as more parameters are estimated. 
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Figure 2.25 shows the autocorrelation of the residual for nlarx 2nd order model. 
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Figure 2.23 : Comparision ofthe best fit nlarx model of various orders. 
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Figure 2.24: The nonlinear ARX best fitted I stand 2nd order model. 
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Autocorrelation of residuals for output y1 

Figure 2.25 : Autocorrelation o f residuals for the nlarx model. 

2.15 MA TLAB Code analysis of the 2nd order non linear ARX Model 

The state space model for the non linear 2nd order arx model is used in the Unscented 

Kalman Filter. The code is implemented in the MA TLAB for second order nonlinear 

ARX model to estimate the best fitted data. A copy of the MATLAB code is attached 

in Appendix G. Figure 2.26 shows the best fitted data for 2nd order nlarx model. 
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Figure 2 .26: Nonlinear best fit estimation of the non linear arx 2nd order model. 
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MA TLAB Code for 2"d order non linear ARX Model from the nonlinear parameters is 

estimated from the model. The wind speed is estimated using second order non linear 

arx model using sigmoid function. The following results are estimated from the 

implemented MA TLAB code. 

m l.nonlinearity.Parameters 

Result= RegressorMean: [13.4477 13.448] 

Nonlinear Subspace: [2x2] double 

Linear Subspace: [2x2 double] 

Dilation: [2x10 double] 

Translation: [30.7162 -29.2601 6.0578-9.3062-1.4186-0.4608 2.9542 

2.7222 -8.6089 8.5297] 

OutputCoef: [I Ox I double] 

Output Offset: 22.9998 

m l .nonlinearity.Parameters.NonLinearSubspace 

ans = 0.0825 -0.4050 

0.0825 0.4050 

m l.nonlinearity.Parameters.LinearSubspace 

ans = 0.0825 -0.4050 

0.0825 0.4050 

The difficulty is in designing the state space model for the non linear ARX model. The 

state space of the nonlinear ARX model is determined using the non linear subspace 

parameters. The parameter for the non linear ARX model in state space form is 

assumed to be ofthe form given in equation 2.26: 
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A (q) y (t) = B (q) u (t) +e (t) (2.26) 

From this equation, we get: 

al =0.0825 a2 = -0.4050 

bl =0.0825 b2 =0.4050 

or it is rewritten as given below 

A = [0.0825 -0.4050; 0 0]; 

B = [0 .0825 -0.4050; 0 0]; 

C =[ I 0]; 

Assuming that the nonlinear structure of the arx model is as given in equation (2 .27) 

a2) * ( xl(t+l)) 
0 x2 (t+ l ) 

b2) * ( ul(t+ l )) 
0 u2(t+ l ) 

(2.27) 

Y(t) = (1 0) * ( xl(t)) 
x2(t) 

2.16 MATLAB simulated results of the Unscented Kalman filter using Non 
Linear Autoregressive Exogenous model 

The state space determined in equation (2 .27) is used in the Unscented Kalman Filter 

from the non linear parameters estin~ated from the non linear ARX model. The 

exogenous input is used in the Unscented Transform and the wind speed is estimated. 

The code is written in MATLAB from the designed algorithm of the UKF and a copy 

of code is attached in Appendix H. In Figure 2.27, we see that the state x 1 is the 

observed state. Both the process noise and the measurement noise is properly tuned, 

the actual and the measurement estimation of the wind speed fol low closely. The UKF 

performance is observed at properly tuned filter parameters. 
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Figure 2.27: Process noise and measurement noise is reduced with UKF properly tuned . 

Figure 2.28 and Figure 2.29 shows variation in the actual and the measurement data. 

In Figure 2.28, we see process noise is increased and measurement noise is tuned at a 

very low value by the tuning parameters. We need to trust process less and 

measurement more. ln Figure 2.29, we see process noise is low and measurement 

noise is increased by the tuning parameters. We need to trust process more and 

measurement less. We can conclude that the UKF performance is great with the 

associated noise, as it is minimizing the noise effect. 
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Figure 2.28: UKF performance with increase in process no ise. 
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Figure 2.29: UKF performance with increase in measurement. 

2.17 Conclusion 

In this chapter, the short term wind speed predictor model is developed. From the 

analysis of the wind speed predictor model, it is concluded that an accurate estimation 

of the wind speed distribution is critical to the assessment of the wind energy potential. 

An hourly time series wind speed data gives accurate result for the short term wind 

speed prediction and the ARMA models have an advantage that they can provide very 

accurate results for the short term wind speed prediction. If the data are not stationary 

and there is a high variations and change trend suddenly it gives inaccurate results. The 

ARMA model gives accurate prediction for the range of the wind speed 4 m/s to 

11 m/s. The wind speed data ranges from 1 m/s to 20 m/s for this predictor design. The 

MATLAB code works on different wind data file and is tested for accuracy. The wind 

speed is estimated an hour ahead using the Kalman filter and the Unscented Kalman 

Filter. From the models investigated for the short term wind speed prediction, AR 

model and Nonlinear ARX model is chosen for step or hour ahead prediction of the 

wind speed. System identification toolbox in MA TLAB is used for estimating the best 

fitted data from the available model in the toolbox. From the literature review and the 
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available statistical model structure in system identification toolbox, Auto Regressive 

model and Auto Regressive Moving Average model is chosen for testing and 

estimating the best fitted data. The input wind speed is divided as training data set and 

validation data set. The AR model of various model orders and non linear ARX model 

of various model orders is tested by comparing the actual data with the estimated data 

from the selected model order. The best fi tted data is of Auto Regressive, 2nd order 

model and fo r non linear system Autoregressive Exogenous, 2 nd order model. For more 

accuracy the Kalman Filter and the Unscented Kalman Filter is used for further 

correction and estimating the states ofthe wind speed from the Auto Regressive model 

and nonlinear ARX model. Both the fil ter performance are observed and compared. 

The filter performance is observed when process noise and measurement noise is 

introduced in the system. From the results of Kalman filter for the AR model and UKF 

fo r AR model and non linear arx model, we see that for the case of Kalman fi lter the 

input is linear, as the wind speed is estimated from the linear AR model. The 

constraints in case of Kalman filter are both the functions h and y in MA TLAB code 

are assumed to be linear with noise t~rms 'w' and ' v' , uncorrelated and Gaussian. 

estimation using the Kalman filter is easier as it incorporates almost all linear 

calculation except a matrix inversion. In case of the Unscented Kalman Fi lter, we 

assume that some non linearity is present in the input because all real time physical 

system are non linear in nature. Comparing the UKF with the AR model and the non 

linear ARX model, we can see that more accurate estimation is with UKF for non 

linear ARX. Instead of linearising a non linear function it uses 2N+ I sigma points for N 

states and then propagates these points through the actual non-l inear function, 
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eliminating linearization. It approximates the probability distribution. With this 

approach the computational complexities is reduced and at the same time there is 

improvement estimation accuracy. By comparing the results, it is concluded that 

almost similar results are estimated from the Kalman filter and the Unscented Kalman 

Filter. This shows that the developed and estimated results can be applied for short 

term wind speed prediction. The change in performance can be observed for long term 

wind speed prediction and very large historic data is taken as input to the system, and 

this introduces more non linearity in the system. At the same time it gives more 

accurate wind speed estimation for real time system. As Unscented Kalman Filter is 

used for non linearity and gives good performance for long term wind speed 

estimation. Thus the Kalman filter cannot be used under such condition. As the focus 

of the chapter is on short term or hour ahead wind speed estimation, both the Kalman 

filter and Unscented Kalman Filter has good performance. 
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Chapter 3 

Power Prediction of the Fermeuse, Newfoundland Wind Farm 

3.1 Introduction 

The wind power is the conversion of the wind energy to produce electricity using wind 

turbines and is an alternate source of renewable energy. The wind power forecasting is 

essential for utility operators to plan shutdown ofthe thermal units in the system. 

Physical factors such as vertical shear, turbulence intensity, turbulence adjusted wind 

speed, air density, pressure, and temperature are considered to predict the wind power 

of a wind turbine. The wind farm consists of many wind turbines. The physical factors 

determine the wind power estimation in real time. In this chapter, an algorithm is 

designed considering all physical factors affecting the wind power of the wind turbines 

in the wind farm. The code is written in MA TLAB to estimate the wind power in real 

time. The wind turbine manufacturer supplied power curve assumes ideal conditions 

and in reality there is a variation in physical factors. The physical factors considered 

estimate of the wind power of the wind turbines in the wind farm . The Fermeuse wind 

farm is located in the community of the Fermeuse on the Southern Shore, Avalon 

Peninsula in Newfoundland [45] . The wind farm has nine wind turbines in an 

operating condition. The wind turbine used at the Fermeuse wind farm is the Vestas 

V90 3MW and the total capacity of the windfarm is 27MW. The main challenge for 

this work is to find a simple model that wi ll take a topographical map, a wind farm 

layout, the long term site wind and atmospheric data. It utilizes this information to 

calculate the wind speed at all the wind turbines. The designed algorithm estimates the 
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wind speed adjusted for shear and turbulence for the wind turbine rotor disc from the 

lower hub height to the upper hub height. Air density is adjusted to predict the wind 

power of a wind turbine. For estimat'ing power for the wind farm, speed and height for 

each wind turbine varies and depends on the distance between wind turbines, contour 

height, and layout information. The wake model is incorporated when wind turbines 

are placed at a closer distance and power ofthe wind farm is estimated from the input 

wake speed. The resulting simple model of a wind farm is used to develop a computer 

program that is fast and can be used on a windows computer. 

3.2 Wind Turbine Power Estimation 

The detail ofthe Vestas V90 3MW wind turbine is required in the initial design stage. 

The supplied wind turbine power vs. wind speed characteristics is studied in detail. It 

is digitized from the power curve data. Thus the power curve of the Vestas V90 3 MW 

wind turbine is produced in the initial design stage. Figure 3.1 shows the Vestas V 90 

3MW wind turbine at the Fermeuse. 
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Figure 3. 1: Vestas Y90 3MW wind tu rbine [46]. 

The Vestas V90 3MW wind turbine is designed to be light weight, making it easier to 

transport with lower instal lation and foundation cost. The tower is lighter and uses 

magnets instead of welding to attach the tower internals to the tower wall. Some 

technical specifications ofthe Vestas V90 3 MW wind turb ine are given below. 

Technical Specifications ofthe Vestas V90 3MW wind turbine 

Operational data: 

Rated power: 3,000 kW 

Cut-in wind speed: 3.5 m/s 

Rated wind speed: 15 m/s 

Cut-out w ind speed: 25 m/s 
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Re-cut in wind speed: 20 m/s 

Wind class: IEC lA and IEC IIA 

Operating temperature range: standard range -20°C to 40°C, low temperature option -

30°C to 40°C 

Rotor diameter: 90 m 

Swept area: 6,362 m2 

Nominal revolutions: 16.1 rpm 

Operational interval: 8.6 - 18.4 rpm 

Air brake: full blade feathering with three pitch cylinders 

Frequency: 50 Hz/60 Hz 

Generator type: 4-pole doubly fed generator 

Gearbox: Two planetary stages and one helical stage 

Power regulation: Pitch regulated with variable speed [ 43] 

The power curve supplied by the manufacturer assumes ideal conditions and in reality 

there is variation in physical parameters and variation in the output power. The wind 

turbine manufacturer supplied power curve can be digitized by extracting data from the 

power vs. speed characteristics. The Fermeuse wind farm has nine wind turbines. The 

actual height of a wind turbine rotor disc is determined by the hub height and wind 

turbine base elevation. The sensor height at the metrological (MET) tower is assumed 

to be at the height of 80m. The site measured and predicted wind speed of wind data 

are given at the sensor height. To determine a wind turbine output power, the wind 
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speed data should be known at the lower rotor tip of the wind turbine to the upper rotor 

tip of the wind turbine. The input wind data at unknown heights is determined using 

the power law equation of shear using 117 shear exponent val ue. The input wind speed 

data provided is typically sampled every second, averaged and stored every I 0 minutes 

fo r I 0000 time series. From a sensor measured input wind speed, pressure, 

temperature, and wind direction for every ten minutes, the wind turbine power is 

estimated. The turbulence adjusted wind speed is determined from the input wind 

speed and the turbulence intensity at the known model levels or height wh ich intersects 

the wind turbine rotor disc. The wind shear exponent is calcu lated using the power law 

equation of shear from the turbulence adjusted wind speed data at known heights. The 

estimated disc wind speed, which is adjusted for turbulence and vertical shear, is 

evaluated for the entire rotor disc by numerically integrating the wind speed values 

from the lower rotor tip to the upper rotor tip of the wind turbine by solving the 

equation of the disc speed. The estiniated disc speed value is assumed to be at the hub 

height. The uncorrected power curve function is determined from the digitized power 

curve supplied by the manufacturer. The disc speed is substituted in the uncorrected 

power curve function and is subsequently adjusted for the air density to estimate the 

power of a wind turbine. Thus the wind power is estimated for one wind turbine from 

the disc speed which is adjusted for turbulence and vertical shear. 

3.3 The Fermeuse Wind Farm Power Estimation 

The Fermeuse wind farm has nine wind turbines in the wind farm . After a site 

visit to the Fermeuse wind farm and the information co llected through extensive 
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research it was concluded that the wind farm has nine wind turbines all in operating 

condition. The contour height ofthe wind turbine is determined from the wind turbine 

base elevation and the assumed horizontal distance between wind turbines. The power 

of each wind turbine is estimated from the input time series wind data; therefore wind 

power for al l the nine wind turbines is estimated. Implementation of the wind power 

model ofthe wind turbines in the Fermeuse wind farm is done in MATLAB. The wake 

model is implemented when the wind turbines operate in the wake of upstream and 

neighboring wind turbines. For a particular wind direction, a wind turbine may operate 

in the partial shadow or the complete shadow of upstream and neighboring wind 

turbines. This results in considerable reduction in the wind power. lt is determined 

from the input predicted disc speed, radius of the shadow cone, nearest distance 

between wind turbines, radius ofthe.rotor disc, area of the wind turbine rotor disc, and 

area of shadow region of the wind turbine. The output of the wake model is reduced 

wind speed due to the wake effect. The uncorrected power curve function has input 

wake speed and is subsequently adjusted for air density to determine corrected power 

of the wind turbine. The estimated power is the wake power of the wind turbine. The 

wake power of each wind turbine in the wind farm is added to determine the power of 

the wind farm . With the wake effect, there is a considerable reduction in the wind 

power of downstream wind turbines. For all other wind directions there is no reduction 

in the wind speed and the wind turbines operate at a maximum power. 

57 



3.3.1 Layout of the Fermeuse Wind Farm 

After a site visit to the Fermeuse wind farm and after extensive research regarding the 

layout information, the wind farm layout is estimated [36] as shown in Figure 3.2. 

Assumptions are made to the wind turbines placed in the wind farm, as the actual 

information is commercially sensitive. 

Figure 3.2: Fermeuse wind farm layout [36]. 

The contour height of the wind turbine is determined from the wind turbine base 

elevation. The horizontal distance between the wind turbines is obtained from the 

layout information. The wake effect is considered for the wind turbine for a particular 

wind direction in the wind farm and depending on the wind turbine placement 

available in the layout information. The wind speed for a wind turbine operating in the 

wake effect is reduced and therefore there is a considerable reduction of wind power. 

For a particular wind direction, the wind turbines operating in partial shadow or 
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complete shadow of upstream and neighboring wind turbines will result in a 

considerable low power. The estimated wind power of each wind turbine in the wind 

farm is added and the total power of the wind farm is determined. For all other wind 

direction there is no reduction ofthe.wind speed and the wind turbines operate at a 

maximum power. Figure 3.3 below shows a flow chart of wind power physical model. 

Figure 3.4 below shows a flow chart ofwake power model in the wind farm. 
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Sensor height of MET tower, topography, Wind farm has 'N ' wind turbines. Wind 
contour height, rotor diameter and hub height speed and wind turbine height varies. 
of wind turbine (N = number of wind turbines in wind 

farm) 

l 
Meteorological 

Digitize manufacturer supplied power 
Input: Pressure, 
Temperature, Wind ..... 

curve by plotting power vs. speed Speed, Wind 
characteristics of a wind turbine direction, Time 

Mete 
input 

oro logical 
data stored 
I 0 minutes 

series order 
every 
time 

Wind speed at wind turbine is estimated from the meteorological input wind 
data: Calculation of turbulence intensity, vertical shear, turbulence adj usted 
speed and disc wind speed 

Disc wind speed is input to the uncorrected power curve function, which is 
determ ined using the MATLAB polyfi t command by di gitizing the power 
curve 

Air density adj usted to the estimated uncorrected power curve equation to 
determine corrected power curve of wind turbine at the hub height of wind 
turbine from the time series data. 

.I Output is a corrected power curve of the wind turbine 

I 
~ 

Estimated average value of wind power is the output power of the wind turbine 

Figure 3.3: Flowchart of the wind power model. 
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Estimated disc speed of Wind direction at the wind Wind farm (N wind turbines): 
N wind turbines in the farm site from the input time Wind speed and height of each 
wind farm (same steps as series data wi nd turbine varies 
in prev ious flow chart) 

1 
Wake effect determination from topography, Layout ofwindfarm, 

With wind turbines 
latitude and longitude in formation, contour height of wind turbines 

.------ in the wind farm 
placed at a larger 
distance, there is no -~ 
wake effect in wind farm 

With wind turbines placed at a smaller distance, I there is wake effect in wind farm 

l Input: Thrust coefficient 

I+-Wake speed determined for the of wind turbine, disc 
wind turbine operating with speed, radius of rotor, 
reduced speed in the w ind farm and shadow cone. Area 

All other direction 
of shadow region and the 

(except 45° ± 5° or LJ rotor area of wind 

225° ± 5°) 45°± 5° or 
225° ± 5° 

Wake effect: Wake speed of wind turbine is input to the 
uncorrected power curve function 

No wake effect: Disc 1 
speed of wind turbine is L: Uncorrected wind power with input wake speed using uncorrected 
input to the unco rrected power curve function and is determined using the MATLAB polyfit 
power curve function command by digitizing the power curve 

L Corrected wind power with more of wake 
1 speed and less of disc speed or only wake 

L Uncorrected wind power with input disc speed and is adjusted with air density 
speed using uncorrected power curve functron 
and is determined us ing the MATLAB poly fit 
command by digitiz ing the power curve 

Average of the wind power estimated 
is the output power of wind farm 

L: Corrected power of wind 
turbines with input disc speed Average value of the estimated wind power is the o utput 
adjusted with density power of wind farm 

Figure 3.4: Flow chart of the wind fa rm wake model. 

61 



3.4 Methods/ Techniques Applied in Estimating Wind Turbine Power 

The wind turbine manufacturer supplied power curve is digitized and the 81
h order 

polynomial is fitted in the MATLAa for an accurate prediction. The curve fi tted 

equation [32] of g th degree is uncorrected power curve. The curve fi tting equation is 

valid for the wind speed range below the rated wind speed till the rated wind speed of 

the wind turbine. Weather Research and Forecasting (WRF) forecasts metrological 

data i.e. wind speed, pressure, temperature, and wind direction which is used as input 

to the Wind Power Physical Model (WPPM). WRF has pressure levels, known as eta 

levels which intersect the wind turbine rotor disc. The height of these model levels that 

intersect the rotor disc of the wind turbine is determined. The Fermeuse wind farm has 

nine wind turbines; the height of each wind turbines is determined by considering its 

base elevation. The input wind speed is given at the sensor height. The input wind 

speed data should be determined at the lower rotor tip of the wind turbine to the upper 

rotor tip of the wind turbine. The wind speed at unknown height is determined from the 

power law equation of shear. The input wind data is sampled every I 0 minutes and has 

I 0000 data points. From the given input wind data, the physical facto rs considered 

such as turbulence intensity, turbulence adjusted speed and wind shear exponent can 

be calculated at the given input model levels. Turbulence intensity is determined from 

the average wind speed and standard deviation value of wind data. Turbulence adjusted 

wind speed is determined from the iri.put wind speed and turbulence intensity at the 

known model levels or height which intersect with the wind turbine rotor disc. Wind 

shear exponent 'a' is calculated using the power law equation of shear from the 

. turbulence adjusted wind speed data at the given model levels. Final disc wind speed 
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which is adjusted for turbulence and vertical shear is evaluated for the entire rotor disc 

by numerically integrating in the range H-R (hub height - rotor radius) to H+R (hub 

height + rotor radius) or the lower rotor tip of the wind turbine to the upper rotor tip of 

the wind turbine by solving the equation of the disc speed. The estimated value of the 

disc speed is assumed to be at the hub height. The uncorrected power function is 

determined from the fitted equation. The disc wind speed substituted in the uncorrected 

power curve function is subsequently adjusted for air density to estimate the power of 

the wind turbine. 

3.5 Designed Algorithm of the Wind Power Model 

3.5.1 Wind power of a wind turbine with no-wake effect 

The manufacturer supplied power curve ofthe Vestas V90 3MW wind turbine is 

power vs. wind speed characteristics [43] . The uncorrected power curve fu nction is 

determined using the MA TLAB polyfit command from the curve fitting toolbox [32]. 

In the curve fitted equation the variable x, for the Vestas V90, 3 MW wind turbine is 

replaced by the wind turbine rotor disc speed ( Doisk) estimated from the algorithm 

adjusted for turbulence and shear. 

The uncorrected power Pl(uncorr) is determined from the disc wind speed, 

substituted in the polyfit equation as given in the equation (3 .1 ). 

Pl (uncorr) = q(9) + q(8) * x + q(7) * x2 + q(6) * x3 + q(S) * x4 + 

q(4) * x5 + q(3) * x6 + q(2) * x7 + q(l) * x8 

Here X= Doisk = Estimated disc speed value ofVestas V90, 3 MW 
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wind turbine (3.1) 

Wind speed is calculated at the hub height (Hhub) of the wind turbine using a power 

law equation of shear from the input sensor speed (U 1) at the sensor height (HI) and is 

given in equation (3.2). 

(3.2) 

Turbulence Intensity (Iu) at known heights is calculated using equation (3.3) from the 

input wind speed (U) and standard deviation data ( cr) at the hub height of the Vestas 

V90 3 MW wind turbine. 

Iu = ~ 
u 

(3.3) 

Turbulence adjusted wind speed U'(TI) is calculated from the input wind speed and 

turbulence intensity (Iu) at the hub height ofthe Vestas V90, 3 MW wind turbine as 

given in equation (3.4). 

u· (TI) = 3_}u 3 * (1 + 3I5). (3 .4) 

Wind shear exponent (a) is calculated [37] from the above turbulence adjusted wind 

speed U'2 (TI) and U'l (TI) at various model levels or heights H2 and H1 ofthe wind 

turbine rotor disc. It is given by the power law equation of shear as in equation (3.5). 

(3.5) 

Wind velocity across the wind turbine rotor disc [I] which is adj usted for turbulence 

and vertical shear, is calculated using equation (3.6) from the lower rotor tip (H-R) to 

the upper rotor tip (H+R) of a wind turbine. 

(3.6) 
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Here H is the wind turbine hub height, R is the radius of the wind turbine rotor disc 

and A is the area of wind turbine rotor disc. 

Air density (p) [32] correction is applied to the disc power using the input pressure (P) 

and the temperature (T) as given below using equation (3.7) . 

p 
p = 3.4837 * :r (3 .7) 

Corrected power Pl(corr) of a wind turbine [32] is determined from the actual air 

density at Standard Temperature Pressure (STP) and the uncorrected power 

Pl(uncorr) from the curve fitting equation, using the equation (3.8). 

Pl(corr) = Pl(uncorr) * P 
pat STP 

(3.8) 

3.5.2 Wind power of a wind farm with no-wake effect 

Below is the general equation to determine the wind power of the wind turbines with 

no-wake effect. For the Fermeuse wind farm, details of the wind farm layout, number 

of wind turbines, contour height ofwind turbine, and distance between nearest wind 

turbines are studied. These values are considered to estimate the power of the wind 

turbines in the wind farm. For a particular wind direction, the wake effect is 

considerable when the wind turbines are placed at a distance less than four times the 

rotor diameter. For all the other wing directions, the wind turbines operate in free wind 

speed. The wind turbines operate at a maximum power and power of the wind farm is 

determined by adding power of each wind turbine with no-wake effect. The Fermeuse 

wind farm has nine wind turbines and the total power of the wind farm is the sum of 
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the power of each wind turbine in the wind farm and it is calculated us ing equation 

(3.9), where the number of wind turbines is denoted by n. 

z:g~~ Pl(corr) =Total Windfarm No_wake Power (3 .9) 

3.5.3 Wind power of a wind turbine with the wake effect 

Figure 3.5 : Wake effect in a wind farm [44). 

Figure 3.5 shows [44] the wake effect in a wind farm. Below is the general equation to 

determine the wind power of the wind turbines with the wake effect. With the wake 

effect, the wind speed for downstream wind turbine reduces depending on the shadow 

area ofthe rotor disc, the radius of the shadow cone, the thrust coefficient of the wind 

turbine and this result in a reduction of the wind power. The wake speed of the wind 

turbine is determined from the free ~isc speed at the rotor di sc and correspondingly the 

wake power is determined. Depending on the distance between the wind turbines (X), 
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the radius ofthe shadow cone (Rx) [33] of upstream turbine is calcu lated using 

equation (3 .1 0) from the radius of rotor (R) and tan a. The value of tan a is 0.04 under 

free stream and 0.08 under wake stream. 

Rx = R +X* tana (3 .1 0) 

The thrust coefficient (Ct) of the wind turbine [34] is calculated from the disc speed 

adjusted for vertical shear and turbulence using equation (3.11) and is given below. 

The disc speed is assumed to be at the hub height of the wind turbine. 

Ct = 3.5 * (2• Doisc- 3.5) 
(U Disc) 

(3 .11) 

The wake speed (Uwake) of a wind turbine [38] is calculated from the disc speed, the 

thrust coefficient, the radius of rotor disc, the radius of the shadow cone (Rx) ofthe 

rotor disc, the area of shadow region· (AS) of rotor disc and the area ofthe wind turbine 

rotor (A) using equation (3 .12). 

(3.12) 

The supplied power curve is used to determine the uncorrected power curve function. 

The variable in the po1yfit equation is replaced by the wake speed. The uncorrected 

wake power P2(uncorr_wake) of the wind turbine is calculated using equation (3 .13) 

for the Vestas V 90, 3MW wind turbine. 

P2(uncorrwake) = q(9) + q(8) * Uwake + q(7) * U2 wake + q(6) * U3wake + 

q(S) * U4 wake + q( 4) * U5wake +. q(3) * U6wake + q(2) * U7wake + q(l) * 

U8wake. (3 .1 3) 

The actual air density is determined from the input pressure (P) and the temperature 

(T) using equat ion (3 .7). Air density correction is applied and the corrected wake 
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power, P2(corr_wake) ofthe wind turbine [32] with the wake effect is determined 

from the actual density, the density at STP and the uncorrected wake power from the 

curve fitting equation of MATLAB using equation (3.14). 

P2(corr_wake) = P2(uncorr_wake) * P 
pat STP 

(3.14) 

3.5.4 Wind power of a wind farm with the wake effect 

The Fermeuse wind farm has nine wind turbines and the corrected power 

(P2(corr_wake)) of each wind turbine with the wake effect is summed using equation 

(3 .15) and the total power of the wind farm with the wake effect is determined. Table 

3.1 gives the details ofthe wind turbines of the Fermeuse wind farm operating in the 

wake effect and the area of shadow region ofthe rotor disc for a particular wind 

direction. 

Ig~~ P2(corr_wake) =Total Windfarm Wake Power (3.15) 

3.5.5 Wake coefficient of the wind turbines in the wind farm 

The wake coefficient (WC) [33] of the wind turbines in the wind farm is calculated 

using equation (3. 16) by the ratio of the summation of the total output power of the 

wind farm with the wake effect to the summation of the total output power of the wind 

farm neglecting the wake effect. 
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we = Lg~~ P2 (corr_wake) 

Lg~~ Pl (corr) 

3.6 Detail Overview of the Fermeuse Wind farm 

(3.16) 

The Fermeuse wind farm has nine Vestas V90, 3MW wind turbines. The wind turbine 

specifications are given in detail in Table 3.1 [43] . The sensors at the MET tower are 

assumed to be located at a height of 80m to record the wind speed. 

Table 3. 1: Specification of the Vestas V90 3 MW Wind Turbine. 

Specifications of the Vestas V90 3MW 
Wind Turbine Wind Turbine 

Cut in wind speed 3.5 m/s 

Rated wind speed 15 m/s 

Rotor Diameter 90 m 

Rated Power 3.0MW 

Hub Height 80m 

Cut out wind speed 25 m/s 

The details of the wind turbines of the Fermeuse wind farm are given in Table 3.2. The 

wind turbine hub height is determined from the turbine base elevation. The lower rotor 

tip and the upper rotor tip height of the wind turbine are determined from the radius of 

the wind turbine and its hub height. The nearest distance between the neighboring 

wind turbines is determined from the wind farm layout and is given in Table 3.3. 
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Table 3.2: Wind Turbines Details in the Fermeuse Wind farm . 

Number of Contour Lower Upper Hub Height 
Wind Height of Rotor Tip Rotor (m) 
Turbine Wind (H-R) (m) Tip (m) 

Turbine+ 
Hub Height 
(m) 

WTI 95 50 140 80 

WT2 95 50 140 80 
WT3 95 50 140 80 

WT4 127 82 172 112 

WT5 153 108 198 138 

WT6 140 95 185 125 

WT7 128 83 173 113 

WT8 148 103 193 133 

WT9 120 75 165 105 

Table 3.3: Nearest Distance between the Neighboring Wind Turbines. 

Wind Turbines Nearest Distance Between Wind 
Turbines (m) 

WT1 WT2 250 

WT2 WT3 250 

WT3 WT4 1000 

WT4 WT9 250 

WT5 WT9 250 

WT5 WT6 250 

WT6 WT8 250 

WT8 WT7 250 
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Table 3.4: Wind direction and shadow region of the wind turbines (WT _Ash) in the 

Fermeuse wind farm. 

Shadow Region 45°± 5° or All Other Wind 
of Wind Turbine 225°±5° Direction 

WTl 3181 mL 0.0 m-

WT2 3181 mL 0.0 mL 

WT3 0.0 mL 0.0 m-

WT4 3181 m- 0.0 mL 

WT5 4772 m2 0.0 mL 

WT6 3181 mL 0.0 mL 

WT7 0.0 mL 0.0 m-

WT8 4772 m2 0.0 m2 

WT9 3181 mL 0.0 mL 

Table 3.4 gives the details ofthe shadow region of the wind turbines operating at the 

influence of the wake effect. From the layout information ofthe Fermeuse wind farm, 

the area of the shadow region of the wind turbines at the Fermeuse wind farm is 

assumed. It depends on the wind direction at the Fermeuse wind farm site and the 

nearest distance between the wind turbines. MA TLAB simulated and estimated results 

of the wind turbine-2 tested with different input wind speed data fi les is given in 

Table 3.5, Table 3.6, Table 3.7, and Table 3.8. For all the individual physical factors 

considered, its contribution to the wi_nd speed estimation is determined from the 

designed algorithm using average value ofthe wind speed for the Vestas V90 3MW 

wind turbine -2 from the input I 0,000 time series wind data set. 
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Table 3.5: Wind speed estimation of the physical factors affecting wind turbine-2 in 

the Fermeuse wind farm determined from the input wind speed data file I. 

Physical Factors of the Wind Vestas V90, 3MW Wind Turbine 
Power Model -2 (Mean Value at the Hub 

Height) 
Sensor Height Wind Speed 9.21 m/s 
(Mean Wind Speed) 

Vertical Wind Speed Shear 9.45 m/s 

Turbulence Adjusted Wind I 1.32 m/s 
Speed 

Disc Speed of Wind Turbine 10.57 m/s 

Wake Speed of Wind Turbine 9.86 m/s 

Table 3.6: Wind speed estimation ofthe physical factors affect ing wind 

turbine-2 in the Fermeuse wind fa rm from the input wind speed data fi le2. 

Physical Factors of Wind Power Vestas V90 3MW Wind 
Model Turbine -2 (Mean Value at the 

Hub Height) 
Sensor Height Wind Speed 9.96 m/s 
(Mean Wind Speed) 
Vertical Wind Speed Shear 10.21 m/s 

Turbulence Adjusted Wind 12. 13 m/s 
Speed 

Disc Speed of Wind Turbine 11.3 1 m/s 

Wake Speed of Wind Turbine I 0.55 m/s 
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Table 3.7: Wind speed estimation ofthe physica l factors affecti ng wind 

turbine 2 in the Fermeuse wind farm from the input wind speed data fi le3. 

Physical Factors of Wind Power Vestas V90 3MW Wind 
Model Turbine-2 

(Mean Value at Hub Height) 
Sensor Height Wind Speed 8.72 m/s 
(Mean of Wind Speed) 
Vertical Wind Speed Shear 8.94 m/s 

Turbulence Adjusted Wind 11 .05 m/s 
Speed 

Disc Speed of Wind Turbine I 0.30 m/s 

Wake Speed of Wind Turbine 9.64 m/s 

Table 3.8: Wind speed estimation of the physica l factors affecting wind 

turb ine-2 in the Fermeuse wind fa rm from the input wind speed data fi le4. 

Physical Factors of Wind Vestas V90 3MW Wind Turbine-
Power Model 2 

(Mean Value at Hub Height) 
Sensor Height Wind Speed 7.00 m/s 
(Mean of Wind Speed) 
Vertical Wind Speed Shear 7. 18 m/s 

Turbulence Adjusted Wind 8.81 m/s 
Speed 
Disc Speed of Wind Turbine 8.23 m/s 

Wake Speed of Wind Turbine 7.74 m/s 
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The wind power of the wind turbine -2 placed in the Fermeuse windfarm is 

determined from the designed algorithm. For the physical factor considered, 

the average value of the wind speed is substituted in the equation of the 

uncorrected power curve function and the corresponding wind power is 

determined. The estimated result ofthe wind turbine-2 in MATLAB is tested 

with different input wind speed data files and is given in Table 3.9, Table 

3.1 0, Table 3.11 and Table 3.12. The effect of individual physical factor 

considered and its contribution in estimating the wind power of a wind 

turbine-2 is determined. 
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Table 3.9: The wind power ofthe wind turbine -2 showing the effect of the ind ividual 

physical factors considered from the input wind speed data file I. 

Physical Factors of Wind Power Vestas V90 3MW Wind Turbine 
Model Considered from the 
Designed Algorithm 
Average value of the estimated 1.43 MW 
speed of the vertical shear at (Estimated power using average 
hub height value of speed of vertical shear) 
Average value ofthe estimated 2.15 MW 
turbulence adjusted speed at (Estimated power using average 
hub height value ofturbulence adjusted speed) 
Average value ofthe estimated 1.86 MW 
disc speed at hub height (Estimated power using average 

value of disc speed) 
Average value ofthe estimated 1.91 MW 
air density adjusted disc speed (Estimated power using average 

value of air density adjusted disc 
speed) 

Table 3. 10: The wind power of the wind turbine -2 showing the effect of the individual 

physical factors considered from the input wind speed data file2. 

Physical Factors of Wind Power Vestas V90 3MW Wind Turbine 
Model considered from the 
Designed Algorithm 
Average value ofthe estimated 1.73 MW 
speed of vertical shear at hub (Estimated power using average 
height value of speed of vertical shear) 
Average value of the estimated 2.41 MW 
turbulence adjusted speed at hub (Estimated power using average 
height value ofturbulence adjusted speed) 

Average value ofthe estimated 2. 14MW 
disc speed at hub height (Estimated power using average 

value of disc speed) 
Average value of the estimated 2.1 9MW 
air density adj usted disc speed (Estimated power usi ng average 

value of air density adjusted disc 
speed) 
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Table 3.11: The wind power of the wind turbine -2 showing the effect of the individual 

physical factors considered from the input wind speed data fi le3. 

Physical Factors of Wind Power Vestas V90 3 MW Wind Turbine 
Model considered from the 
Designed Algorithm 
Average value ofthe estimated 1.24 MW 
speed of vertical shear at hub (Estimated power using average value 
height of speed of vertical shear) 
Average value ofthe estimated 2.05 MW 
turbulence adjusted speed at hub (Estimated power using average value 
height of turbulence adjusted speed) 
Average value ofthe estimated disc 1.77 MW 
speed at hub height (Estimated power using average value 

of disc speed) 
Average value of the estimated air 1.81 MW 
density adjusted disc speed (Estimated power using average value 

of air density adjusted disc speed) 

Table 3. 12: The wind power ofthe wind turbine -2 showing the effect of the individual 

physical factors considered from the. input wind speed data fi le4. 

Physical Factors of Wind Power Vestas 3.0 MW Wind Turbine 
Model considered from the 
Designed Algorithm 
Average value of the estimated 626.69 KW 
speed of vertical shear at hub (Estimated power using average value 
height of speed of vertical shear) 
Average value of the estimated 1.18 MW 
turbulence adjusted speed at hub (Estimated power using average value 
height of turbulence adjusted speed) 
Average value of the estimated 960.98 KW 
disc speed at hub height (Estimated power using average value 

of disc speed) 
Average value of the estimated air 983. 10 KW 
density adjusted disc speed (Estimated power using average value 

of air density adjusted disc speed) 
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Table 3.13: The Wake coefficient data determined from the wind direction and the 

shadow effect of the wind turbines in the wind farm. 

Time Series Wind Wake Coefficient for a Wake Coefficient for all 
Speed Data of Equal Wind Direction other Wind Direction 
Length (10 min) ( 45° ±5°; '225° ±5°) (except 45°± 5° and 

225°± 5°) 
Wake Coefficient 0.84 1.00 -
of Wind Data I 

Wake Coefficient -
of Wind Data 2 0.85 1.00 

Wake Coefficient -
of Wind Data 3 0.83 1.00 

Wake Coefficient -
of Wind Data 4 0.80 1.00 

Estimated wake coefficient results of the wind farm power model are given in 

Table 3. 13. Layout information ofthe wind farm and the wind direction at the wind 

farm site is a major contributing factor when estimating wind farm power. The wake 

effect takes place for a particular wind direction when wind turbines are placed at a 

closer distance due to the shadow effect of a neighboring wind turbine. It results in the 

reduction ofthe wind speed, and correspondingly, the wind power. The wake 

coefficient is determined using equation 16 and a value of I indicates that the wind 

turbines operate at a maximum power and a value less than I indicates that the wind 

turbines operate at a reduced power due to the wake effect or the shadow effect of the 

neighboring wind turbines. The results are estimated and tested for different input 

wind data files. 

77 



Table 3.14 Estimated average value of the wind power of the wind turbine-2 

operating at the disc speed in the Fermeuse wind farm. 

Time Series Wind Speed Wind Turbine-2 Power of 
Data of Equal Length ( I 0 Yestas Y 90- 3 MW Wind 
min) Turbine 

(No Wake Effect) 

Wind Data I 1.75 MW 

Wind Data 2 1.92 MW 

Wind Data 3 1.63 MW 

Wind Data 4 1.06 MW 

The estimated power of the Yestas Y90 3 MW wind turbine -2 is given in Table 3.1 4. 

It gives the average value of power of the I 0,000 time series of the Yestas Y90 3 MW 

wind turbine -2, operating at the disc speed and is tested with different input wi nd data 

set. 

Table. 3. 15 Estimated average value ofthe wind power of the wind turb ine-2 

operati ng at the wake speed in the Fermeuse wi nd farm. 

Time Series Wind Speed Wind Turbine-2 Power of 
Data of Equal Length (I 0 Vestas Y 90 3 MW Wind 
min) Turbine (Wake Effect) 

Wind Data I 1.41 MW 
Wind Data 2 1.58 MW 
Wind Data 3 1.31 MW 
Wind Data 4 805.82 KW 
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The estimated power of the Vestas V90 3 MW wind turbine -2 is given in Table 3.15. 

It gives the average value of power of 10,000 time series ofthe Vestas Y90 3 MW 

wind turbine -2, operating at the wake speed .. MA TLAB code is tested with different 

input wind speed data files. 

Table 3.16: Estimated average value of the wind farm power of the fcrmeuse wind 

farm, with the wind turbines operating at the disc speed. 

Time Series Wind Wind farm Power 
Speed Data of Vestas V90 3MW 
Equal Length ( I 0 Wind Turbines 
min) (3 MW- 9 WT) 

Wind Data I 17.34 MW 
Wind Data 2 18.76 MW 
Wind Data 3 16.26 MW 
Wind Data 4 11.16MW 

The Fermeuse wind farm has nine Vestas V90 3MW, wind turbines. Table 3. 16 gives 

the estimated average value of the wind farm power of the input I 0,000 time series 

wind data set. The average value of the wind farm power is determined with the wind 

turbines in the wi nd farm operating at the disc speed. The estimated results are tested 

with different input wind data set. 
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3. 7 Transmission Loss in the Wind Farm 

The transmission loss occurs due to the flow of current in a cable and it results in a 

reduction of power. When the current flows through the wires, a voltage drop occurs 

and a corresponding power loss occurs in the cable. These losses are the copper loss 

and the induction loss [42], as follows: 

i) Copper loss occurs due to heating ofthe material. 

ii) Induction loss occurs when the metallic object absorbs the power due to 

the electromagnetic field generated by the current carrying conductors. 

After extensive research on power loss, it is concluded that power loss within a wind 

farm is about I% due to the transmission of current through cables [ 40, 4 I]. Actual 

transmission details and parameters ofthe Fermeuse wind farm were not avai lable. 

Therefore, the wind farm power loss of the Fermeuse wind farm is assumed to have a 

transmission loss of I%. The power loss factor of 0.99 is multiplied to estimate the 

wind farm power in real time. 
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Table 3. 17: The Fermeuse wind farm power estimated before and after a constant 

transm ission loss (TL) of I% in the wind farm with and without wake effect. 

Time TL Average Average Average Average Wind 
Series Wind farm Wind farm Wind farm farm Power 
Wind Power Power Power after TL 
Speed before TL after TL before TL (Wake effect) 
Data of (No-wake (No-wake (Wake 
Equal effect) effect) effect) 
Length 
(10 min) 

Wind 1.0% 17.34 MW 17.16MW 16.37 MW 16.20 MW 
Data I 
Wind 1.0% 18.76 MW 18.57 MW 17.84 MW 17.66 MW 
Data 2 
Wind 1.0% 16.26 MW 16.10MW 15.32 MW 15.16MW 
Data 3 
Wind 1.0% 11. 16 MW 11.04MW 10.29 MW 10.18MW 
Data 4 

Above, Table 3.17 gives the average value of the wind farm power before and after 

transmission loss. The average value of the wind farm power is estimated considering 

that the wind turbines are operating with the wake effect and with no wake effect with 

a constant transmission loss factor of I%. The resu lts are estimated and tested with 

different input wi nd speed data files. 
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Table 3.18: The estimated average value of the loss in power, given a constant 

transmission loss of I%, with the wake effect and without wake effect. 

Time Series TL Loss in Power Loss in Power 
Input Wind (No wake effect) (Wake effect) 
Speed Data of 
Equal Length 
(I 0 min) 

Wind Data I 1.0% 0.17MW 0.16MW 
Wind Data 2 1.0% 0.19MW 0.18MW 
Wind Data 3 1.0% 0.16MW 0.15 MW 
Wind Data 4 1.0% 0.1 2MW O.IOMW 

Above, table 3.18 gives the estimated average value of the loss in power due to the 

transmission of power. The loss in power is determined from the difference in power 

when the wind turbines operate at the disc wind speed with no transmission loss and 

when the wind turbines operate at the disc wind speed with the transmission loss. 

Similarly loss in power is determined from the difference in power when the wind 

turbines operate at the wake speed with no transmission loss and when the wi nd 

turbines operate at the wake speed with the transmission loss. The estimated results are 

tested with different input wind speed data files. 

3.8 Wind Farm Power Calculation Results 

3.8.1 Simulated MA TLAB resul~s using the designed algorithm to estimate the 
wind farm power 

Using the Fermeuse wind farm layout information [39], the designed algorithm is 

implemented in the MATLAB. A copy of the MATLAB code is found in the 

Appendix I and Appendix J. Figure 3.6 is the manufacturer supplied power curve of 
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the Vestas V90 3MW wind turbine [52]. The supplied power curves are used to 

estimate the actual power curves. MATLAB software has curve fitting toolbox and 

after exploring various curve fitting techniques, it is concluded that the best fit 

polynomial curve is of order 9 for the Vestas V90 3MW wind turbine and is shown in 

Figure 3.7. 
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Figure 3.6: Power vs. Wind Speed characteristics ofthe Vestas Y90 3 MW wind turbine (supplied 

power curve). 
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Figure 3.7: Power vs. Wind Speed characteristics of the Vestas V90 3 MW wind turbine (digitized and 

curve fitted). 
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The input wind speed data file 2 is recorded from the anemometer at a MET tower. It 

is assumed that the Fermeuse wind farm has a MET tower with the sensor located at a 

height of 80 m. The recorded wind speed is shown in Figure 3.8 for the Vestas V90 

3MW wind turbine for a time range of 10,000 minutes. The average value of the wind 

speed data shown in Figure 3.8 is 9.96 m/s. 
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Figure 3.8: Recorded sensor height wind speed data for the Vestas Y90 3MW wind turbine-2. (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

The Fermeuse wind farm has 9 wind turbines. The hub height wind speed of the wind 

turbine is calculated from the input wind speed at the sensor height using the power 

law equation of shear with the shear exponent of 1/7 for each wind turbine hub height 

using equation (3.2). The hub height of each wind turbine is determined from the wind 

turbine base elevation. Figure 3.9 shows the estimated hub height wind speed for the 

Vestas V90 3MW wind turbine-2. The average value of the wind speed in Figure 3.9 

is 10.21 m/s. 
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Figure 3.9: Hub he ight wind speed is estimated for the Vestas Y90 3MW wi nd turbine-2 at the hub 

height. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = 10000 minutes). 

The turbulence adjusted wind speed is estimated for the Vestas V90 3MW wind 

turbine-2 at the hub height. It is calculated using equation (3.4) from the input wind 

speed and the estimated turbulence intensity at the hub height. The resulting wind 

speed is shown in Figure 3.10 for the Vestas V90 3MW wind turbine. The average 

value of the wind speed in Figure 3. 10 is 12.13 m/s. 
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Figure. 3. 10: Turbulence adjusted wind speed estimated for the Vestas Y90 3MW wind turbine-2 at the 

hub he ight. (Note: T ime Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 
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The disc wind speed adjusted for vertical shear and turbulence adjusted speed, is 

calculated using equation (3 .6) from the lower rotor tip to the upper rotor tip of the 

wind turbine. The resulting wind speed is assumed to be at the hub height and is 

plotted in Figure 3.11 for the Vestas V90 3MW wind turbine-2. The average value of 

the wind speed in Figure 3.11 is 11.31 m/s. 

D isc Speed of Ve s ta s VVind T u r b i n e - 2 
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Time (min) 

Figure 3. 11: Estimated disc speed adjusted for turbulence and shear for the Vestas Y90 3 MW wind 

turbine-2 at the hub height. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

The estimated wake wind speed is shown in Figure 3.12 for the Vestas V90 3MW 

wind turbine-2. The wind speed is reduced due to the wake effect from the upstream 

turbines. The wind direction is a major contributing factor in estimating the wake 

effect. The wake effect is estimated from the thrust coefficient of the wind turbine and 

is influenced by the nearest distance between the neighboring wind turbines. It is 

calculated using equation (3 .I 0), equation (3 .11) and equation (3 .12). The average 

value ofthe wind speed in Figure 3.12 is 10.55 m/s. 
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Figure 3. 12: Wake speed estimated for Vestas 3 MW wind turbine-2 at hub height (Note: Time Scale: 

X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

Using the polynomial curve fitted supplied power curve, the actual power curve of the 

Vestas V90 3MW wind turbine is estimated from the uncorrected power curve 

function adjusted with air density using equation (3.8). There is an increase in the 

estimated power with air density adjustment as given in Table 3.6 for the wind turbine-

2. The power curves are estimated for nine wind turbines of the Fermeuse wind farm. 

A simulated result of the power curve for one of the wind turbine is shown in 

Figure3.13. 
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Figure 3. 13: Estimated power curve of the Yestas 3M W wind turbine adjusted with air density. 
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The wake power model is developed in this chapter and the wake power is determined 

from the estimated wake speed. There is a reduction in power with the wake effect 

(black) as shown in Figure 3.14 for the Vestas Y90 3MW wind turbine-2. The 

estimated wind power of the wind turbine-2 is compared with the wake effect (black) 

and without wake (red) effect and is plotted with respect to time as shown in 

Figure 3 .14. The wind power remains constant after rated wind speed of the wind 

turbine is reached and the corresponding power is called rated power. With further 

increase in wind speed beyond rated wind speed, there is no significant improvement 

in the power and is shown in Figure 3.14 and Figure 3.15. 
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Figure 3. 14: Comparison of the wind power of the wind turbine -2 operating at the wake effect (black) 

and no wake effect (red). 

As shown in Figure 3.15, the wind farm power is determined from the wind turbines 

operating at the free disc speed and is plotted with respect to time. The wind farm 

power is estimated from the Vestas V90 3MW wind turbines. The total power of the 

wind turbines in the wind farm is added and is the estimated wind farm power. The 

average value ofthe wind farm power in Figure. 3.15 is 18.76 MW. 
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Figure 3.15: Estimated wind farm no-wake power with respect to time (Note: Time Scale: X axis: 

unit = I 0 minute; I 000 unit = I 0000 minutes). 

In Figure 3 .16, the wind farm power is determined at the wake wind speed and is 

plotted with respect to time. The wind farm power is estimated from the Vestas V90 

3MW wind turbines. The total power of the wind turbines in the wind farm is the 

estimated wind farm power. The average value ofthe wind farm power in Figure 3.16 

is 17.84 MW. 
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Figure 3. 16: Estimated wind farm wake power with respect to time. (Note: Time Scale: X axis: I unit 

= I 0 minute; 1000 unit = I 0000 minutes). 

The wind farm power is estimated from the Vestas V90 3MW, wind turbines with the 

wake effect (red) and without wake effect (black) as shown in Figure 3.1 7. The 
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estimated wind farm power at the free disc speed is compared with the estimated wind 

farm power at the wake speed and is plotted with respect to time. 

K 1 o•c ornp• r i e l o n o~ V'Vi n d -fa r ..,., P o w e r V'Vi1 h •nd VV11hO LJ1 ( b l a o:::k.)V'Va k e E.n'ec:1 

3 
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Figure 3.17: Comparison of estimated wind farm power with the wake effect (red) and without wake 

effect (black) is plotted with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = 

I 0000 minutes). 

The wind farm power is determined from the wind direction and the shadow effect of 

the neighbouring wind turbines. The wake coefficient data determines the wind farm 

efficiency. Figure 3.18 is a plot of the wind direction at the wind farm site and Figure 

3.19 is a plot of the wake coefficient. The wake coefficient of 1 indicates that the wind 

turbines operate at a maximum power and a value less than 1 indicates that the wind 

turbines operate at a reduced power or at the wake speed. In Figure 3.19, we see that at 

a wind direction of 45° ± 5° and 225° ±5°, there is a wake effect and the wind speed is 

reduced as the wind turbines are placed at a closer distance. For all other wind 

direction, the wind turbines operate at a maximum power and this factor is determined 

from the wind farm layout and the distance between neighboring wind turbines. 
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Figure 3. 18: Wind direction (degrees) at the wind farm site for a time span of I 0,000 minutes. (Note: 

Time Sca le: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes) . 
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Figure 3. 19: Wake coefficient determined from the wind direction is plotted with respect to time. (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

Figure 3.20 is a plot of the wind direction at the windfarm site for a time span of 5000 

minutes and Figure 3.21 is a plot of wake coefficient for a time span of 5000 minutes. 

Figure 3.20: Wind di rection (degrees) at the wind fa rm site for a time span of 5000 minutes. (Note: 

Time Scale: X axis: I unit = I 0 minute ; I 000 unit = I 0000 minutes) . 
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Figure 3.21: Wake coefficient determined from the wind direction is plotted with respect to time (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

With a transmission loss of 1%, there is a further reduction in the estimated wind farm 

power. Figure 3.22 and Figure 3.23 shows loss in power in the wind farm due to the 

transmission of power without the wake effect and with the wake effect respectively. 

The wind farm power loss due to the transmission of power is plotted with respect to 

time. With the wake effect there is a more reduction in power as compared to the 

power loss without the wake effect. The average value of power in Figure 3.22 is 

18.57 MW and the average value ofpower in Figure 3.23 is 17.66 MW. 
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Figure 3.22 : Wind farm output power with power loss ( I%) in transmission with no wake effect is 

plotted with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 
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Figure 3.23: Wind farm output power with power loss in transmission (I %) and the wake effect is 

plotted with respect to time. (Note: Time Scale: X axis : I unit = I 0 minute; I 000 unit = I 0000 minutes). 

3.9 Conclusion 

In this chapter, the working wind power model of the Fermeuse wind farm is 

developed, using the historic data of atmospheric parameters as input to the wind 

power model for the wind power estimation. The manufacturer supplied power curve 

assumes ideal conditions and the variation in atmospheric parameters results in the 

variation of the output power. In this chapter, details of the wind turbine characteristics 

and its specifications, wind farm layout, and the number of wind turbines are studied. 

The location of the MET tower and the sensor height is assumed from the layout 

information of the Fermeuse wind farm. The actual turbine power curves are produced 

when the power is plotted as a function of equivalent wind speed or disc speed instead 

of the hub height wind speed. This suggests that both vertical shear and turbulence are 

important factors in power production. Air density is an important factor in power 

production and the corrected power curve of the wind turbine is estimated from the 

equivalent wind speed adj usted with air density. The corrected power curves of the 

wind turbines are produced from the atmospheric parameters affecting the wind 
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turbine rotor disc and the wind farm output power is estimated. The wind direction and 

the wind farm layout have a significant influence upon the power output mainly due to 

the wake effect. The wake model is developed as the wind turbines are placed at a 

closer distance. The impact of the wake is to disturb the wind flow to the wind turbines 

and this result in power loss as compared to the wind turbines operating in undisturbed 

wind flow. This effect can be minimized by increasing the distance between the wind 

turbines. It is concluded that there is a reduction in the output power of the wind farm 

than ifthe ideal wind turbines layout in a wind farm is assumed. Thus, the MATLAB 

code is tested with different input time series wind speed data files. An accurate result 

is estimated and tested with every!O minutes time series wind data file and is 

presented in this chapter. 
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Chapter 4 

Power Prediction of the Cedar Creek, Colorado Wind farm 

4.1 Introduction 

The Cedar Creek wind farm is located in the United States [50]. The wind farm has 

274 wind turbines in operating condition. The wind turbines of the Cedar Creek -1 

wind farm are the Mitsubishi I MW and the GE I.SMW wind turbines and the total 

capacity ofthe wind farm is 300MW. The wind turbine manufacturer suppl ied power 

curve assumes ideal conditions and in reality there is a significant variation in physical 

factors. Physical factors considered in this chapter are the vertical shear, the turbulence 

intensity, the turbulence adjusted wind speed, air density, pressure, and temperature to 

estimate the wind power of a wind tyrbine. The main challenge for this work is to find 

a simple model that wi ll take a topographical map, a wind farm layout and the long 

term site wind and atmospheric data and uses this information to calculate the wind 

speed at all the wind turbines. The designed algorithm estimates the wind speed 

adjusted for shear and turbulence for the wind turbine rotor disc from the lower rotor 

tip to the upper rotor tip of the wind turbine. The value estimated is the effective wind 

speed and is assumed to be at the hub height. Air density is adjusted to predict the 

wind power of each wind turbine. The speed and height for each wind turbine varies 

when estimating power for the wind farm. It depends on the distance between the wind 

turbines, the contour height and the layout information. The wake model is 

incorporated when wind turbines are located less than four times the rotor diameter of 

upstream turbines or at a very closer distance from the neighboring wind turbines. The 
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wake power of the wind farm is estimated considering the wind direction, the wind 

farm layout information, the thrust coefficient of the wind turbine, and the free disc 

speed. The resulting simple model of a wind farm is simulated in the MATLAB 

software. The simulation results for a number of wind speed data sets are presented in 

this chapter. 

4.2 Wind Turbine Power Estimation 

The wind turbine details of the Mitsubishi I MW and the GE 1.5 MW are given below 

and are required in the in itial design. The wind turbine power vs. wind speed 

characteristics is studied. It is digitized from the power curve data. Thus power curve 

ofthe Mitsubishi I MW and the GE 1.5 MW wind turbine is produced in the initial 

design stage. Figure 4.1 gives details and some specifications of the Mitsubishi I MW 

wind turbine. The GE 's 1.5-77 wind turbine is a three blade, upwind, horizontal axis 

wind turb ine and has a rotor diameter of77 meters. This series of wind turbines has 

hub height of 65m and 80 m. The specifications of a wind turbine are given below. 

The wind turbine operates at a variable speed. It uses asynchronous generator. The 

power curve in the initial design stage is the supplied power curve of the GE 1.5 MW 

wind turbine. Below is the I ist of some of its features. 

GE 1.5 MW Wind Turbine Technical Specification 

Designed to IEC 61400-1 

TC lb: I 0 m/s average wind speed; 8 turbu lence intensity 

Standard and cold weather extreme options 
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Rotational direction: Clockwise viewed from an upwind location 

Speed regulation: Electric drive pitch control with battery backup 

Aerodynamic brake: Full feathering of blade pitch 

Cut in wind speed: 3.5 m/s 

Cut out wind speed: 25 m/s 

Rated power: 1.5 MW [48] 

MITSUBISHI WIND TURBINE GENERATOR 

r 6 211.0 iff!W1-JOOQ1IJ 
'lcchnical D ata 

Operation Data 
Cut~n 

Rated 

Cut-<>ut 

Wind Class 

Rotor 
Diameter 

Swept Area 

Rotational Speed 

Blacle Length 

Aerodynamic Brake 

Generator 
Type 

Rated Power 

Voltage 

Frequency 

Tower 
Hub Heigl1t 

Figure 4. 1: Mitsubishi Wind Turbine [48]. 
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61.4 m 
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19.8 rpm 
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lnduct1on Generator (4 Pole Type) 

1.000 kW 

690 V/ 600 V (50 HZ/ 60 HZ) 

50Hz/ 60 Hz 
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As mentioned above the Cedar Creek -1 wind farm has the Mitsubishi 1 MW and the 

GE 1.5MW wind turbines. Some specifications [49] ofthese wi nd turbines are shown 

in Figure 4.1 Recently, 123 more wind turbines has been added to the site in the 

second phase of the project called Cedar Creek - II [50]. This chapter only covers the 

first phase of the Cedar Creek wind farm. The wind turbine manufacturer supplied 

power curve assumes ideal conditio~ and in reality there is a variation in physical 

parameters and a variation in the output power. The wind turbine manufacturer 

supplied power curve can be digitized by extracting data from power vs. wind speed 

characteristics. The Cedar Creek wind farm has 274 wind turbines. The actual height 

of the wind turbine rotor disc is determined by considering its contour height i.e. hub 

height and the wind turbine base elevation. The site measured wind speeds are given at 

the sensor heights. To determine a wind turbine output power, the wind speed data 

should be known at the lower rotor tip of the wind turbine to the upper rotor tip ofthe 

wind turbine. The input wind data at unknown heights is determined using the power 

law equation of shear using 1/7 shear exponent value. The input wind speed data 

provided is typically every I 0 minutes, 45000 time series. Using live measured wind 

speed data AMEC can produce a predicted wind speed data. From a given predicted 

input wind speed data measured from the sensor; the turbulence intensity, the 

turbulence adj usted wind speed, the wind shear exponent, and the free disc speed of 

the wind turbine is determined. The turbulence adj usted wind speed is determined 

from the input wind speed and the turbulence intensity at the known model levels or 

heights which intersect the wind turbine rotor disc. The wind shear exponent is 

calculated usi ng the power law equation of shear from the turbulence adjusted wind 
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speed data at known heights. The disc wind speed which is adjusted for turbulence and 

vertical shear is evaluated for the entire rotor disc by numerically integrating the wind 

speed values from the lower rotor tip to the upper rotor tip of the wind turbine by 

solving the equation of disc speed. The estimated value of the disc speed is assumed to 

be at the hub height. The uncorrected power is determined from the designed algorithm 

of the physical factors considered and the digitized and curve fitted wind turbine 

power curve supplied by the manufacturer. The disc speed is substituted in the 

uncorrected power curve function and is subsequently adjusted for air density to 

estimate the corrected power of a wind turbine. Thus wind power is estimated for one 

wind turbine from the estimated disc speed, adjusted for turbulence and vertical shear. 

4.3 The Cedar Creek Wind Farm Power Estimation 

4.3.1 Layout of the Cedar Creek Colorado Wind farm 

The wind farm layout [47] is plotted using Arc Geographic Information System (GIS) 

software available at Queen Elizabeth II , Memorial University of Newfoundland as 

shown in Figure 4.2 below using the latitude and longitude data of all the wind 

turbines and metrological tower (MET) tower locations. Figure 4.3 shows a section of 

the wind farm layout. 
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Figure 4 .2: Cedar Creek- I Wind farm Layout [47] . 
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Figure 4.3 : A section of the Cedar Creek Wind farm Layout (47]. 

The contour height ofthe wind turbine is determined from its layout informat ion 

and the horizontal distance between the nearest wind turbines and is estimated 
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from the map. The wake effect is considered for the wind turbines for a particular 

wind direction in the wind farm. Th~ wake effect arises when the wind turbines are 

located at a closer distance. The wind speed for the wind turbines operating in the 

wake is reduced and therefore there is a considerable reduction ofthe wind power. 

For a particular wind direction, the wind turbines operating in a partial shadow or a 

complete shadow of the upstream or the neighboring wind turbines will produce a 

considerable low power. The wake speed of all the wind turbines operating due the 

wake effect is determined from the thrust coefficient of the wind turbine, the free disc 

speed, and the wind farm layout information. The wind power is estimated for all the 

wind turbines operating due to the wake effect. Finally, the output power of each wind 

turbine in the wind farm is added to determine the total power of the wind farm. Figure 

4.2 indicates that the wind farm will have some reduced power when wind is from 

north-east or from south west. For all other wind direction there will be negligible 

reduction of the wind speed and the wind turbines will operate at a maximum power. 
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Sensor height of M ET tower, topography, Wind farm has 'N' wind turbines. Wind 
contour height, rotor d iameter and hub height speed and wind turbine height varies . (N = 

of wind tu rbine number of wi nd turbines in wind farm) 

l 
Meteorological 

Digitize manufacturer suppl ied power 
Input: Pressure, 
Temperature, Wind 

curve by plotting power vs. speed Speed, Wind 
characteristics o f a wind turbine d irection, Time 

Meteorol ogical 

Wind speed at wind turbine is estimated fro m the meteorological input wind 
data: Calculation of turbulence intensity, vertical shear, turbulence adjusted 
speed and disc wind speed 

~ 
Disc wind speed is input to the uncorrected power curve function, which is 
determined us ing the MATLAB polyfit command by dig itiz ing the power curve 

Air density adjusted to the estimated uncorrected power curve 
equation to determine corrected power curve of wind turb ine 
at the hub height of wind turbine from the time series data. 

Output is a corrected power curve of the wind turbine I 

input dat a stored 
minutes 

es order 
every 10 
ti me seri 

I Estimated average value of wind power is the output power of the wind turbine 
I 

Figure 4.4: Flowchart of the wind power model. 
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Estimated disc speed of Wind direction at the wind farm Wind farm (N wind turbines) : 
N wind turbines in the site from the input time series data W ind speed and height of each 
wind farm (same steps as wind turbine varies 
in previous flow chart) 

Wake effect determination from topography, Layout of wind farm, 

With wind turbines 
latitude and longitude information, contour height of wind turb ines 

,----- in the wind farm 
placed at a larger 

+ distance, there is no 
wake effect in w ind farm 

With wind turbines placed at a smaller distance, there is wake effect 
in wind farm 

~ Input: Thrust coefficient 
Wake speed determined for the 1+- of wind turbine, disc 
wind turbine operating with speed, radius of rotor, 
reduced speed in the wind farm and shadow cone. Area 

All other direction 
of shadow region and the 

(except 45°± 5° or 0 
rotor area of wind 

225° ± 5°) 45°± 5° or 
225° ± 5° 

Wake effect: Wake speed of wind turbine is input to the 
uncorrected power curve function 

No wake effect: Disc ~ 
speed of wind turbine is ~ Uncorrected wind power with input wake speed using uncorrected 
input to the uncorrected power curve function and is determined using the MATLAB polyfit 
power curve function command by digitizing the power curve 

, ~Corrected wind power with more of wake 
speed and less of d isc speed or only wake speed 

~Uncorrected wind power with input disc speed and is adjusted with air density 
using uncorrected power curve function and is 
determined using the MATLAB poly fit 
command by digitiz ing the power curve 

Average of the wind power estimated is the 
output power of wind farm 

~Corrected power of wind 
turbines with input disc speed 

I 
adjusted with density Average value of the estimated wind power is the 

output power of wind farm 

Figure 4.5: Flow chart of the wind farm wake model. 
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4.4 Wind power of a wind turbine with no-wake effect 

The manufacturer supplied power curve of the GE 1.5MW wind turbine and the 

Mitsubishi I MW wind turbine is digitized by plotting power vs. wind speed 

characteristics. The uncorrected power curve function is determined using the polyfit 

command by the curve fitting toolbox [32] in the MATLAB software. In the curve 

fitted equation the variable's' for the GE 1.5MW wind turbine and the variable 'r' for 

the Mitsubishi I MW wind turbine is replaced by the wind turbine rotor disc speed 

( Doisk) estimated from the algorithm adjusted for turbulence and shear for the GE 

1.5MW and the Mitsubishi I MW wind turbine. The uncorrected power is determined 

from the disc wind speed substituted. in the polyfit equation and is given in equation 

( 4.1 ) and equation ( 4.2). 

For the GE 1.5MW wind turbine 

GPuncor = q1(18) + q1(17).* (s) 1 + q1(16).* (s) 2 + ql(lS).* (s) 3 + q1(14). 

* (s) 4 + q1(13).* (s') 5 + q1(12).* (s) 6 + ql(ll). (s) 7 + ql(lO). 

* (s) 8 + q1(9).* (s) 9 + q1(8) * (s) 10 + q1(7). (s)11 + q1(6).* (s) 1 2 

+ ql(S).* (s) 1 3 + q1(4).* (s) 14 + q1(3).* (s) 1 5 + q1(2).* (s) 1 6 

+ ql(l).* (s)1 7 

Heres = Estimated disc speed value of the GE 1.5 MW wind turbine ( 4.1) 
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L 

For the Mitsubishi I MW wind turbine 

MPuncor = q2(19) + q2(18).* (r)1 + q2(17).* (r) 2 + q2(16).* ( r) 3 + q2(15).* 

(r) 4 + q2(14).* (r) 5 + q2(13).* (r) 6 + q2(12).* (rf + q2(11) .* ( r) 8 + q2(10).* 

(r) 9 + q2(9).* (r) 1 0 + q2(8).* (r)11 + q2(7).* (r) 12 + q2(6) .* (r)13 + q2(5).* 

(r) 14 + q2( 4).* (r) 15 + q2(3).* (r)1 6 + q2(2).* (r)17 + q2(1).* (r)18 

Here r = Estimated disc speed value of the Mitsubishi 1MW wind turbine ( 4.2) 

The wind speed at the hub height ofthe wind turbine is calculated using the power law 

equation of shear from the input sensor wind speed at known height and wind speed, 

and is given in equation (4.3). 

Uhub = Ul * thub)"0.143 
Hl 

(4.3) 

The turbulence intensity (lu) at a known heights is calculated using equation (4.4) 

from an input wind speed (U) at a MET tower height of 69m and 80m for Mitsubishi 

I MW and GE 1.5 MW wind turbine respectively and using standard deviation data (o) 

of the input wind speed. 

lu = ~ 
u (4 .4) 

The turbulence adjusted wind speed (U' (TI)) is calculated using equation (4.5) from 

the input wind speed and the turbulence intensity (lu) for the Mitsubishi I MW and the 

GE 1.5MW wind turbine. 

(4.5) 

The wind shear exponent (a) is calculated [37] from the above turbulence adjusted 

wind speed U'2 (TI) and U' l (TI) at various model level or heights H2 and H 1 of a 
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wind turbine rotor disc. It is given by the power law equation of shear as in equation 

(4.6). 

(4.6) 

The wind velocity across the wind turbine rotor disc [I] which is adjusted for 

turbulence and vertical shear, is calcu lated using equation (4 .7) from the lower rotor 

tip (H-R) to the upper rotor tip (H+R) of the wind turbine. Here His the wind turbine 

hub height and R is the radius ofthe wind turbine rotor disc and A is the area of wind 

turbine rotor disc. 

-u - 2 rH +R -' 2 2 2d 
Disk - A JH- R Uz v R - H + 2HZ- Z Z (4.7) 

Actual air density is determined from the input pressure and the temperature as given 

in equation (4.8). 

p 
p = 3.4837 * :r (4.8) 

Air density (p) [32] correction is applied to the estimated disc speed and the corrected 

power Pl (carr) of a wind turbine [32] is determined from the actual air density, the 

air density at the Standard Temperature Pressure (STP), and the estimated uncorrected 

power Pl(uncorr) from the curve fitting equation and is given in equation (4.9) for 

the GE 1.5MW wind turbine and the Mitsubishi I MW wind turbine. 

Pl(corr) = Pl(uncorr) * P 
p a t STP 

(4.9) 

Where Pl(uncorr) = GP(uncorr) for the GE wind turbine and MP(uncorr) 

for the Mitsubishi wind turbine. Pl(corr) = GP(corr) for the GE wind turbine 

and MP(corr) for the Mitsubishi wi.nd turbine 
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4.5 Wind power of a wind farm with no-wake effect 

Below is the general equation to determine the wind power of a wind farm with no-

wake effect. For the Colorado wind farm, detail study of the wind farm layout, the 

number of wind turbines, the contour height ofthe wind turbine and the distance 

between the wind turbines are studied. These values are considered to estimate the 

power of wind turbines in the wind farm. For a particular wind direction, the wake 

effect is considerable when the wind turbines are placed at a closer distance. For all 

other wind direction, the wind turbines operate in free wind speed. With no-wake 

effect, the wind turbines operate at a maximum power if the wind speed is above the 

rated value and the wind farm power is 

determined by adding power of each wind turbine. The Colorado wind farm has 274 

wind turbines and the total power of the wind farm is sum of the power of each wind 

turbine in the wind farm and is calculated using equation ( 4.1 0), where number of 

wind turbines is denoted by n=274. 

l;g~~ Pl(corr) =Total Windfarm No_ wake Power (4.1 0) 

4.6.1 Wind power of a wind turb~ne with the wake effect 

Figure 4.6 shows [51] the wake effect in a wind farm. Below is the general equation to 

determine the wind power of a wind turbine with the wake effect. The wind speed for 

the downstream wind turbine reduces due to the wake effect depending on the shadow 

area of the rotor disc, the radius ofthe shadow cone, the thrust coefficient of the wind 

turbine resulting in a reduction in the wind power. The wake speed ofthe wind turbine 
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is determined from the free disc speed at the rotor disc and correspondingly the wake 

power is determined. 

Figure 4.6: Wake Effect in a Wind farm [5 1]. 

Depending on the distance between the wind turbines (X), the radius of the shadow 

cone Rx [33] of the upstream turbine is calcu lated using equation (4. 11 ) from the 

radius of rotor (R) and tana. The value oftana is 0.04 under the free stream and 0.08 

under the wake stream. 

Rx = R + X * tana ( 4. 11 ) 

The thrust coefficient (Ct) of the wind turbine [34] is calculated from the disc speed 

adjusted for vertical shear and turbulence using equation (4.1 2) and is given below. 

The disc speed is assumed to be at the hub height of the wind turbine. 

(4 .12) 

The wake speed (Uwake) of a wind turbine [38] is calculated from the disc speed, the 

thrust coefficient, the radius ofthe rotor disc, the radius of the shadow cone (Rx) of 
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rotor disc, the area of shadow region (AS) of rotor disc and the area of the wind turbine 

rotor (A) using equation ( 4.13). 

- ( R )2 (AS) Uwake= Uoisc*[1-~(1-Ct)* Rx *A] (4.13) 

The supplied power curve is digitized by plotting power vs. wind speed characteristics 

and the uncorrected power is determined. The variable from the polyfit equation is 

replaced by the wake speed. The uncorrected wake power of the wind turbine is 

calculated using equation (4.14) and equation (4.15) for the GE 1.5MW and the 

Mitsubishi I MW wind turbine respectively 

For the GE 1.5MW Wind Turbine 

GP(uncorr_wake) 

= q1(18) + q1(17).* (Uwake1) 1 + q1(16).* (Uwake1) 2 + q1(15). 

* (Uwake1) 3 + q1(14).* (Uwake1) 4 + q1(13).* (Uwake1) 5 

+ q1(12).* (Uwake1) 6 + q1(11).* (Uwake1) 7 + q1(10). 

* (Uwake1) 8 + q1(9).* (Uwake1) 9 + q1(8).* (Uwake1) 10 

+ q1(7).* (Uwake1) 11 + q1(6).* (Uwake1)12 + q1(5).* (Uwake1)13 

+ q1( 4).* (Uwake1)14 + q1(3).* (Uwake1)1 5 + q1(2).* (Uwake1) 1 6 

+ q1(1).* (Uwake1) 1 7 

Here Uwake1 =The wake speed determined using equation ( 4.13). (4.14) 
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For the Mitsubishi I MW Wind Turbine 

MP(uncorr wake) = q2(19) + q2(18).* (Uwake2)1 + q2(17).* (Uwake2) 2 + 

q2(16).* (Uwake2)3 + q2(15).* (Uwake2)4 + q2(14).* (Uwake2) 5 + q2(13).* 

(Uwake2) 6 + q2(12).* (Uwake2) 7 + q2(11).* (Uwake2) 8 + q2(10).* 

(Uwake2) 9 + q2(9).* (Uwake2)10 + q2(8).* (Uwake2) 1 1 + q2(7).* 

Uwake212+q26.*Uwake213+q25. 

* (Uwake2) 14 + q2( 4).* (Uwake2) 15 + q2(3).* (Uwake2)16 + q2(2).* 

Uwake217+ q2l.*Uwake218 Here Uwake2=The wake speed determined using 

equation ( 4 .13) (4.15) 

Actual air density is determined from the input pressure (P) and the temperature (T), 

using equation (8). Air density correction is app lied and the corrected wake power, 

Pl(corr-wake) ofthe wind turbine [32] with the wake effect is determined from the 

actual density, the density at STP and the uncorrected wake power from the curve 

fitting equation of MA TLAB using equation( 4. 16) 

Pl(corr wake) = Pl(uncorr wake) * P 
- - patSTP 

(4.16) 

Here Pl(uncorr_wake) = GP(uncorr_wake) for the GE wind turbine and 

MP(uncorr_wake) for the Mitsubishi wind turbine determined using equation (4. 16). 

Pl(corr_wake) = GP(corr_wake) for the GE wind turbine and MP(corr_wake) 

for the Mitsubishi wind turbine using equation (4. 16). 
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4.6.2 Wind power of a wind farm with the wake effect 

The Cedar Creek wind farm has 274 wind turbines and the corrected wake power of 

each wind turbine with the wake effect is added using equation ( 4. 17) and the total 

power of the wind farm with the wake effect is determined. Table 4-2 gives the details 

of the wind turbines of the Cedar Creek wind farm. From the layout data and the 

details of the wind turbine in Table 4-2, shadow effect of the wind turbines in the wind 

farm is estimated for a particular wind direction. Equation ( 4.1 7) determines the total 

wind farm wake power. 

Ig~~ Pl(corr_wake) = Total Windfarm Wake Power (4. 17) 

4.6.3 Wake coefficient of a wind turbines in the wind farm 

The wake coefficient (WC) [33] of a wind turbine in the wind farm is calcu lated using 

equation ( 4.18) by the ratio of total output power of the wind farm with the wake effect 

to the total output power of the wind. farm neglecting the wake effect. 

~n-n k WC = 4-n:::; 1 Pl(corr_wa e) 

Lg :::; ~ Pl(corr) 
(4. 18) 

4.7 The Cedar Creek Wind Farm Data 

The Cedar Creek - 1 wind farm [50] has 53, G.E 1.5MW wind turbines and 22 1, 

Mitsubishi I MW wind turbines. The wind turbine specifications are given in detail for 

the two wind turbines. There are two MET towers and the sensors are located at a 
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height of 80m and 69m for the GE 1.5 MW and the Mitsubishi I MW wind turbines to 

record the wind speed. 

Table 4.1: Specifications of the Wind Turbines. 

Specifications of GE 1.5 MW Wind Mitsubishi I MW 
Wind Turbine Turbine Wind Turbine 
Cut in wind speed 3.5 m/s 3.5 m/s 

Rated wind speed 12.5 m/s 12 m/s 

Rotor Diameter 77m 61.4 m 

Rated Power 1.5 Mw 1.0 MW 

Hub Height 80 m 69 m 

Cut out wind 25 m/s 25 m/s 
speed 

Table 4.2 : Layout data of wind turbines of Colorado wind farm [9] . Here FlO is 

nearest feature identity. 

Wind Name of Wind Near Contour H+R H-R 
Turbine Turbine FlO Height+ (m) (m) 

Hub 
Height(m) 

AOI GE 1.5 0 146.02 184.52 107.52 
A02 GE 1.5 I 152.52 191.02 114.02 
A03 GE 1.5 2 152.19 190.69 11 3.69 
A04 GE 1.5 3 158.62 197.12 120.12 
A05 GE 1.5 4 154.34 192.84 115.84 
A06 GE 1.5 5 156.12 194.62 11 7.62 
A07 GE 1.5 6 169.4 207.9 130.9 
A08 GE 1.5 7 167.54 206.04 129.04 
A09 GE 1.5 8 170.62 209.1 2 132.12 
AIO GE 1.5 9 167.1 205 .6 128.6 
801 GE 1.5 10 152.83 191.33 114.33 
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802 GE 1.5 II 154.89 193.39 116.39 
803 GE 1.5 12 153.98 192.48 115.4 
804 GE 1.5 l3 158.88 197.38 120.38 
805 GE 1.5 14 163.49 201.99 124.99 
806 GE 1.5 15 163.2 201.7 124.7 
807 GE 1.5 16 168.37 206.87 129.87 
808 GE 1.5 17 168.34 206.84 129.84 
809 GE 1.5 18 167.74 206.24 129.24 
810 GE 1.5 19 170.66 209.16 132. 16 
811 GE 1.5 20 171.48 209.98 132.98 
812 GE 1.5 21 165.2 203.7 126.7 
813 GE 1.5 22 158.99 197.49 120.49 
814 GE 1.5 23 164.03 202.53 125.53 
815 GE 1.5 24 170.06 208.56 131.56 
816 GE 1.5 25 168.6 207.11 130. 11 
817 GE 1.5 26 170.8 209.3 132.3 
818 GE 1.5 27 181.33 2 19.83 142.83 
819 GE 1.5 28 178.04 216.54 139.54 
820 GE 1.5 29 184.59 223 .09 146.09 
821 GE 1.5 30 177.1 2 15.6 138.6 
822 GE 1.5 31 179.77 2 18.27 14 1.27 
823 GE 1.5 32 176.34 2 14.84 137.84 
824 GE 1.5 33 180.58 2 19.08 142.08 
825 GE 1.5 34 183.08 221.58 144.58 
826 GE 1.5 35 180.35 218.85 141.85 
827 GE 1.5 36 179 2 17.5 140.5 
CO l GE 1.5 37 165 .3 203 .85 126.85 
C02 GE 1.5 38 170.89 209.39 132.39 
C03 GE 1.5 39 170.8 209.33 132.33 
C04 GE 1.5 40 173.85 2 12.35 135.35 
C05 GE 1.5 41 179.35 217.85 140.85 
C06 GE 1.5 42 178.49 2 16.99 139.99 
C07 GE 1.5 43 176.8 215.36 138.36 
C08 GE 1.5 44 164.32 202.82 125.82 
C09 GE 1.5 45 167.44 205.94 128.94 
C IO GE 1.5 46 170.73 209.23 132.23 
C ll GE 1.5 47 167.69 206.19 129.19 
C l2 GE 1.5 48 167.09 205.59 128.59 
C l3 GE 1.5 49 164.38 202.88 125.88 
C l4 GE 1.5 50 164. 1 202.6 125.6 
C l5 GE 1.5 51 163.76 202.26 125.26 
Cl6 GE 1.5 52 164.1 202 .6 125.6 
DOO Mitsubishi 1.0 53 137.84 168.84 106.84 
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DOl Mitsubishi 1.0 54 141 172 110 
002 Mitsubishi 1.0 55 143.6 174.65 112.65 
003 Mitsubishi 1.0 56 150.86 181.86 119.86 
004 Mitsubishi 1.0 57 150.35 181.35 119.35 
DOS Mitsubishi 1.0 58 150.6 181 .6 119.6 
006 Mitsubishi 1.0 59 150.1 4 181.14 119.14 
D07 Mitsubishi 1.0 60 151.23 182.23 120.23 
008 Mitsubishi 1.0 61 156.42 187.42 125.42 
009 Mitsubishi 1.0 62 160. 16 191.16 129.16 
DIO Mitsubishi 1.0 63 146.8 177.83 115.83 
011 Mitsubishi 1.0 64 144.73 175 .73 113.73 
01 2 Mitsubishi 1.0 65 145.06 176 114 
013 Mitsubishi 1.0 66 141.49 172.4 110.49 
014 Mitsubishi 1.0 67 143.32 174.32 112.32 
015 Mitsubishi 1.0 68 145.6 176.6 114.6 
016 Mitsubishi 1.0 69 147.99 178.9 11 6.9 
Dl7 Mitsubishi 1.0 70 148.71 179.7 117.71 
D18 Mitsubishi 1.0 71 150.4 181.4 11 9.4 
019 Mitsubishi 1.0 72 148.8 179.8 117.8 
020 Mitsubishi 1.0 73 153 .5 184.56 122.56 
D21 Mitsubishi 1.0 74 154.91 185.91 123.91 
022 Mitsubishi 1.0 75 155.86 186.86 124.86 
0 23 Mitsubishi 1.0 76 155.38 186.38 124.38 
024 Mitsubishi 1.0 77 157.91 188.92 126.91 
025 Mitsubishi 1.0 78 159.23 190.23 128.23 
D26 Mitsubishi 1.0 79 156.62 187.62 125.62 
EO ! Mitsubishi 1.0 80 140.74 171.74 109.74 
E02 Mitsubishi 1.0 81 140.2 171.2 109.2 
E03 Mitsubishi 1.0 82 144.44 175.44 11 3.44 
E04 Mitsubishi 1.0 83 140.42 171.42 I 09.42 
E05 Mitsubishi 1.0 84 140.74 171.74 109.74 
E06 Mitsubishi 1.0 85 143.6 174.6 112.6 
E07 Mitsubishi 1.0 86 149.33 180.33 118.3 
E08 Mitsubishi 1.0 87 151.84 182.84 120.84 
E09 Mitsubishi 1.0 88 153.06 184 122.06 
E IO Mitsubishi 1.0 89 155 .6 186.67 124.67 
Ell Mitsubishi 1.0 90 155.41 186.41 124.4 
E12 Mitsubishi 1.0 91 156.42 187.42 125.42 
El3 Mitsubishi 1.0 92 158.91 189.9 1 127.91 
El4 Mitsubishi 1.0 93 160.15 191.1 5 129.15 
E l5 Mitsubishi 1.0 94 160.71 191.71 129.71 
£ 16 Mitsubishi 1.0 95 160.95 191.95 129.9 
E17 Mitsubishi 1.0 96 161.2 192.2 130.2 
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E18 Mitsubishi 1.0 97 161.73 192.73 130.73 
FOI Mitsubishi 1.0 98 165.21 196.21 134.21 
F02 Mitsubishi 1.0 99 163 .59 194.59 132.59 
F03 Mitsubishi 1.0 100 165 .57 196.57 134.57 
F04 Mitsubishi 1.0 10 I 164.93 195 .93 133.93 
F05 Mitsubishi 1.0 102 163.66 194.66 132.66 
F06 Mitsubishi 1.0 103 165.4 196.4 134.4 
F07 Mitsubishi 1.0 104 164.49 195.49 133.49 
F08 Mitsubishi 1.0 105 164.63 195.63 133 .63 
F09 Mitsubishi 1.0 106 166.08 197.08 135.08 
FlO Mitsubishi 1.0 107 168.71 199.71 137.71 
Fll Mitsubishi 1.0 108 165.93 196.93 134.93 
GO! Mitsubishi 1.0 109 126.07 157.07 95 .07 
G02 Mitsubishi 1.0 110 132.03 163 .03 I 01.03 
G03 Mitsubishi 1.0 Ill 130.84 161.84 99.84 
G04 Mitsubishi 1.0 11 2 132.09 163 .09 I 01.09 
G05 Mitsubishi 1.0 113 129.79 160.79 98.79 
G06 Mitsubishi 1.0 114 134.27 165.27 103.27 
G07 Mitsubishi 1.0 115 135 .26 166.26 104.26 
G08 Mitsubishi 1.0 11 6 141.1 9 172.1 9 110.1 9 
G09 Mitsubishi 1.0 117 139.79 170.79 108.79 
GIO Mitsubishi 1.0 118 139.38 170.38 I 08.38 
G 11 Mitsubishi 1.0 119 141.12 172.12 110.1 2 
Gl2 Mitsubishi 1.0 120 142.89 173 .89 111.89 
G13 Mitsubishi 1.0 12 1 144.94 175.94 113.94 
G l4 Mitsubishi 1.0 122 147.24 178 .24 116.24 
G IS Mitsubishi 1.0 123 153.88 184.88 122.88 
Gl6 Mitsubishi 1.0 124 154.56 185.56 123.56 
Gl7 Mitsubishi 1.0 125 153.1 7 184. 17 122.17 
Gl8 Mitsubishi 1.0 126 156.4 187.4 125.4 
Gl9 Mitsubishi 1.0 127 155.92 186.92 124.92 
G20 Mitsubishi 1.0 128 156.56 187.56 125 .56 
G21 Mitsubishi 1.0 129 147.21 178.21 116.2 
G22 Mitsubishi 1.0 130 149.2 180.2 118.2 
G23 Mitsubishi 1.0 131 150.1 8 181.18 119.18 
G24 Mitsubishi 1.0 132 151. 16 182.16 120.16 
G25 Mitsubishi 1.0 133 150.89 181.89 119.89 
G26 Mitsubishi 1.0 134 153.01 184.01 122.01 
G27 Mitsubishi 1.0 135 153.19 184.19 122.19 
G28 Mitsubishi 1.0 136 155.02 186.02 124.02 
G29 Mitsubishi 1.0 137 159.2 190.2 128.2 
G30 Mitsubishi 1.0 138 159.65 190.65 128.65 
G3 1 Mitsubishi 1.0 139 162.33 193.33 131.33 
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G32 Mitsubishi 1.0 140 162.51 193.51 131.51 
G33 Mitsubishi 1.0 141 164.47 195.4 7 133.47 
G34 Mitsubishi 1.0 142 163.4 7 194.47 132.47 
G35 Mitsubishi 1.0 143 162.09 193 .09 131.09 
G36 Mitsubishi 1.0 144 159.69 190.69 128.69 
G37 Mitsubishi 1.0 145 162.67 193.67 131.67 
HOI Mitsubishi 1.0 146 113.65 144.65 82.65 
H02 Mitsubishi 1.0 147 116 147 85 
H03 Mitsubishi 1.0 148 118.59 149.59 87.59 
H04 Mitsubishi 1.0 149 125.6 156.6 94.6 
H05 Mitsubishi 1.0 150 120.56 151.56 89.56 
H06 Mitsubishi 1.0 151 118.94 149.94 87.94 
H07 Mitsubishi 1.0 152 122.8 153.89 91.89 
H08 Mitsubishi 1.0 153 I23.53 I54.53 92.53 
H09 Mitsubishi I.O 154 138.23 I69.23 I07.23 
HIO Mitsubishi 1.0 155 I39.44 I70.44 I08.44 
HII Mitsubishi I.O I 56 I35.39 I66.39 I04.39 
HI2 Mitsubishi I.O I 57 I34.78 165.78 I03.78 
HI3 Mitsubishi 1.0 I 58 I33.14 164.14 I02.14 
HI4 Mitsubishi 1.0 159 I28.83 159.83 97.83 
HIS Mitsubishi I .O 160 133 I64 I02 
HI6 Mitsubishi 1.0 161 141.82 172.82 110.82 
Hl7 Mitsubishi I.O I62 I28.II I59.1I 97.1I 
HIS Mitsubishi 1.0 I63 127.12 158.12 96.12 
Hl9 Mitsubishi 1.0 164 125.7 156.7 94.7 
H20 Mitsubishi 1.0 165 127.84 158.84 96.8 
H21 Mitsubishi 1.0 166 132.25 163.25 I 01.25 
H22 Mitsubishi 1.0 167 128.8 159.8 97.8 
H23 Mitsubishi 1.0 168 126.82 157.82 95 .82 
H24 Mitsubishi 1.0 169 125.61 156.61 94.61 
H25 Mitsubishi 1.0 170 129 .1 160. 1 98.1 
H26 Mitsubishi 1.0 171 122.99 153.99 91.99 
H27 Mitsubishi 1.0 172 123.88 154.88 92.88 
H28 Mitsubishi 1.0 173 126 157 95 
H29 Mitsubishi 1.0 174 I35.02 166.02 104.02 
H30 Mitsubishi 1.0 175 135.38 166.3 8 104.38 
H31 Mitsubishi 1.0 176 135.2 166.25 104.25 
H32 Mitsubishi 1.0 177 135.43 166.43 104.43 
H34 Mitsubishi 1.0 178 129.81 160.81 98.8 
H35 Mitsubishi 1.0 179 132 .59 163.59 101 .5 
H36 Mitsubishi 1.0 180 135.85 166.85 104.85 
H37 Mitsubishi 1.0 181 135.78 166.78 104.78 
H38 Mitsubishi 1.0 182 135.7 166.7 104.7 
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H39 Mitsubishi 1.0 183 137.06 168.06 106.06 
H40 Mitsubishi 1.0 184 137.91 168 .91 I 06.91 
H41 Mitsubishi 1.0 185 144.8 175.8 11 3.8 
H42 Mitsubishi 1.0 186 140.82 171.82 109.82 
H43 Mitsubishi 1.0 187 143.93 174.93 112.93 
H44 Mitsubishi 1.0 188 145 .17 176. 17 114.17 
H45 Mitsubishi 1.0 189 144.79 175.79 113.79 
H46 Mitsubishi 1.0 190 147.35 178.35 116.35 
H47 Mitsubishi 1.0 191 145.9 176.9 114.9 
H48 Mitsubishi 1.0 192 139.95 170.95 108.95 
H49 Mitsubishi 1.0 193 140.1 171.1 109.1 
H50 Mitsubishi 1.0 194 153.46 184.46 122.4 
H51 Mitsubishi 1.0 195 153.71 184.71 122.71 
H52 Mitsubishi 1.0 196 156.68 187.68 125 .68 
H53 Mitsubishi 1.0 197 152.1 183 .1 121.1 
H54 Mitsubishi 1.0 198 153.32 184.32 122.32 
H55 Mitsubishi 1.0 199 155.22 186.22 124.22 
H56 Mitsubishi 1.0 200 159.2 190.2 128.2 
H57 Mitsubishi 1.0 201 159.35 190.35 128.35 
H58 Mitsubishi 1.0 202 159.3 190.3 128.3 
H59 Mitsubishi 1.0 203 162.75 193.75 131.75 
H60 Mitsubishi 1.0 204 164.28 195.28 133 .28 
H61 Mitsubishi 1.0 205 162.88 193 .88 131.88 
H62 Mitsubishi 1.0 206 156.9 187.9 125.9 
H63 Mitsubishi 1.0 207 159.8 190.8 128.8 
H64 Mitsubishi 1.0 208 152.7 183.7 121.7 
101 Mitsubishi 1.0 209 123 .74 154.74 92.74 
102 Mitsubishi 1.0 210 126. 16 157.1 6 95 .1 6 
103 Mitsubishi 1.0 211 129.33 160.33 98.33 
]04 Mitsubishi 1.0 212 130.07 161.07 99.07 
J05 Mitsubishi 1.0 213 132.23 163.23 101.23 
J06 Mitsubishi 1.0 214 134.89 165.89 103.89 
J07 Mitsubishi 1.0 215 129.27 160.27 98.27 
108 Mitsubishi 1.0 216 132.27 163.27 I 01.27 
J09 Mitsubishi 1.0 217 132.66 163.66 I 01.66 
KOI Mitsubishi 1.0 218 116.58 147.58 85.58 
K02 Mitsubishi 1.0 219 109.4 140.4 78.4 
K03 Mitsubishi 1.0 220 106.98 137.98 75.98 
K04 Mitsubishi 1.0 221 11 2.58 143.58 81 .58 
K05 Mitsubishi 1.0 222 123.4 154.4 92.4 
K06 Mitsubishi 1.0 223 122.37 153 .37 91.3 
K07 Mitsubishi 1.0 224 123.28 154.28 92.28 
K08 Mitsubishi 1.0 225 122.75 153.75 91.75 
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K09 Mitsubishi 1.0 226 127.1 158.1 96 
K10 Mitsubishi 1.0 227 11 9.87 150.87 88.87 
K11 Mitsubishi 1.0 228 113 .79 144.79 82.79 
L01 Mitsubishi 1.0 229 92.4 123.44 61.44 
L02 Mitsubishi 1.0 230 93.48 124.48 62.48 
L03 Mitsubishi 1.0 231 95.8 126.89 64.89 
L04 Mitsubishi 1.0 232 98.6 129.62 67.62 
LOS Mitsubishi 1.0 233 98.6 129.64 67.64 
L06 Mitsubishi 1.0 234 89.8 120.8 58.8 
L07 Mitsubishi 1.0 235 91.03 122.03 60.03 
LOS Mitsubishi 1.0 236 91.59 122.59 60.59 
L09 Mitsubishi 1.0 237 101.34 132.34 70.34 
LIO Mitsubishi 1.0 238 106.2 137.2 75.2 
Lll Mitsubishi 1.0 239 II 0.64 141.64 79.64 
L12 Mitsubishi 1.0 240 95.7 126.7 64.7 
Ll3 Mitsubishi 1.0 241 97.38 128.38 66.38 
L14 Mitsubishi 1.0 242 98.78 129.78 67.78 
MOl Mitsubishi 1.0 243 87.84 118.84 56.84 
M02 Mitsubishi 1.0 244 89.91 120.91 58.9 
M03 Mitsubishi 1.0 245 89.83 120.83 58.83 
M04 Mitsubishi 1.0 246 89.87 120.87 58.87 
MOS Mitsubishi 1.0 247 92.33 123.33 61.33 
M06 Mitsubishi 1.0 248 95.59 126.59 64.59 
M07 Mitsubishi 1.0 249 98.85 129.85 67.85 
M08 Mitsubishi 1.0 250 93.83 124.83 62.83 
M09 Mitsubishi 1.0 25 1 98.64 129.64 67 
MlO Mitsubishi 1.0 252 97.26 128.26 64.24 
Mil Mitsubishi 1.0 253 95.24 126.2 61.97 
M12 Mitsubishi 1.0 254 92.97 123.97 62.11 
Ml3 Mitsubishi 1.0 255 93.1 1 124.11 64.02 
M14 Mitsubishi 1.0 256 95 .02 126.02 65.4 
M15 Mitsubishi 1.0 257 96.4 127.4 67.79 
M16 Mitsubishi 1.0 258 98.79 129.79 74.04 
POl Mitsubishi 1.0 259 105.04 136.04 66.43 
P02 Mitsubishi 1.0 260 97.43 128.43 74.1 6 
P03 Mitsubishi 1.0 26 1 105. 16 136.16 64.81 
P04 Mitsubishi 1.0 262 95 .81 126.8 1 61.2 
P05 Mitsubishi 1.0 263 92.24 123.24 54.96 
P06 Mitsubishi 1.0 264 85.96 116.96 55 .71 
P07 Mitsubishi 1.0 265 86.71 117.71 67.07 
P08 Mitsubishi 1.0 266 98.07 129.07 63.45 
P09 Mitsubishi 1.0 267 94.45 125.45 39.9 
PIO Mitsubishi 1.0 268 70.9 I 01.99 38. 12 
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PII Mitsubishi 1.0 269 69.12 100.12 44.39 
Pl2 Mitsubishi 1.0 270 75.39 106.39 40.9 
Pl3 Mitsubishi 1.0 271 71.9 102.9 42.02 
PI4 Mitsubishi 1.0 272 73 .02 104.02 55.47 
PIS Mitsubishi 1.0 273 86.47 117.47 126.58 

The layout information is supplied from the AMEC, StJohn's. From the latitude and 

longitude information of the wind turbines, the nearest distance between the wind 

turbines is estimated. The Arc GIS software is used to estimate the nearest feature 

identity for a particular wind turbine in the wind farm. 

Table 4.3: Wind Direction and Area of Shadow of the Wind Turbines in the Wind 
farm. 

Wind Turbines in the Area of Shadow of Wind For all Other 
Wind farm Turbine in (m2

) at Wind Direction 
45°±5°/225°±5° (mz) 

GEWT1 2500.0 0 
GEWT2 2500.0 0 
GEWT3 2500.0 0 
GEWT4 2500.0 0 
GEWT5 1900.0 0 
GEWT6 2 100.0 0 
GEWT7 2500.0 0 
GEWT8 2500.0 0 
GEWT9 2400.0 0 
GEWT10 1500.0 0 
GEWT11 2500.0 0 
GEWTI2 2100.0 0 
GEWT13 2 100.0 0 
GEWTI4 2100.0 0 
GEWT15 2500.0 0 
GEWT16 2500.0 0 
GEWT17 2500.0 0 
GEWT18 2 100.0 0 
GEWT19 2100.0 0 
GEWT20 2400.0 0 
GEWT21 2400.0 0 
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GEWT22 2 100.0 0 
GEWT23 0:0000 0 
GEWT24 0.0000 0 
GEWT25 2500.0 0 
GEWT26 2500.0 0 
GEWT27 2500.0 0 
GEWT28 2000.0 0 
GEWT29 2000.0 0 
GEWT30 0.0000 0 
GEWT31 0;0000 0 
GEWT32 2000.0 0 
GEWT33 2000.0 0 
GEWT34 2000.0 0 
GEWT35 2500.0 0 
GEWT36 2500.0 0 
GEWT37 2200.0 0 
GEWT38 0.0000 0 
GEWT39 2200.0 0 
GEWT40 0.000 0 
GEWT4 1 0.000 0 
GEWT42 2200.0 0 
GEWT43 2200.0 0 
GEWT44 0.000 0 
GEWT45 0.000 0 
GEWT46 2000.0 0 
GEWT47 1000.0 0 
GEWT48 2400.0 0 
GEWT49 2400.0 0 
GEWT50 0.0000 0 
GEWT51 2000.0 0 
GEWT52 2000.0 0 
GEWT53 2000.0 0 
MITWTI 0.0000 0 
MITWT2 1952.85 0 
MITWT3 650.95 0 
MITWT4 741.52 0 
MITWT5 1741.52 0 
MITWT6 1741.52 0 
MITWT7 1801.9 0 
M1TWT8 1952.85 0 
MITWT9 1952.85 0 
MITWT IO 1952.85 0 
MITWTII 0 0 
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MITWT12 1862.28 0 
MITWT13 1801.9 0 
MITWT14 0 0 
MITWT15 I 043.42 0 
MITWT16 I 043.42 0 
MITWT17 0 0 
MITWTI8 1741.52 0 
MITWTI9 I (550.95 0 
MITWT20 1741.52 0 
MITWT21 74 1.52 0 
MITWT22 1741.52 0 
MITWT23 741.52 0 
MITWT24 74 1.52 0 
MITWT25 68 1.14 0 
MITWT26 0 0 
MITWT27 0 0 
MITWT28 0 0 
MITWT29 1801.9 0 
MITWT30 280 1.9 0 
MITWT31 2801.9 0 
MITWT32 I 862.28 0 
MJTWT33 1862.28 0 
MITWT34 1254.75 0 
MITWT35 1254.75 0 
MITWT36 1801.9 0 
MITWT37 1862.28 0 
MITWT38 1862.28 0 
MITWT39 0 0 
MITWT40 1650.95 0 
MITWT41 1862.28 0 
MITWT42 1862.28 0 
MITWT43 1801.9 0 
MITWT44 1801.9 0 
MITWT45 1801.9 0 
MITWT46 0 0 
MITWT47 1590.57 0 
MITWT48 1590.57 0 
MITWT49 1590.57 0 
MITWT50 1801.9 0 
MITWT51 801.9 0 
MITWT52 801.9 0 
MITWT53 80 1.9 0 
MITWT54 80 1.9 0 
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MITWT55 1650.95 0 
MITWT56 2560.38 0 
MITWT57 0 0 
MITWT58 2650.95 0 
MITWT59 681.14 0 
MITWT60 681.14 0 
MITWT61 0 0 
MITWT62 o· 0 
MITWT63 862.28 0 
MITWT64 0 0 
MITWT65 952.85 0 
MITWT66 801.9 0 
MITWT67 0 0 
MITWT68 I 043.42 0 
MITWT69 I 043.42 0 
MITWT70 952.85 0 
MITWT71 801.9 0 
MITWT72 650.95 0 
MITWT73 952.85 0 
MITWT74 952.85 0 
MITWT75 801.9 0 
MITWT76 590.57 0 
MITWT77 0 0 
MITWT78 0· 0 
MITWT79 650.95 0 
MITWT80 650.95 0 
MITWT81 0 0 
MITWT82 801.9 0 
MITWT83 801.9 0 
MITWT84 1801.9 0 
MITWT85 0 0 
MITWT86 9:52.85 0 
MIT WT87 952.85 0 
MITWT88 801.9 0 
MITWT89 801.9 0 
MITWT90 801.9 0 
MITWT91 560.38 0 
MITWT92 590.57 0 
MITWT93 590.57 0 
MITWT94 0- 0 
MITWT95 862.28 0 
MITWT96 650.95 0 
MITWT97 801.9 0 
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MITWT98 801.9 0 
MITWT99 650.95 0 
MITWTIOO 650.95 0 
MITWT101 650.95 0 
MITWTI02 801.9 0 
MITWTI03 801.9 0 
MITWTI04 0 0 
MITWTI05 862.28 0 
MITWTI06 862.28 0 
MITWTI07 0 0 
MITWTI08 1405.7 0 
MITWT109 1405.7 0 
MITWTIIO 0 0 
MITWTIII 862.28 0 
MlTWTII2 1862.28 0 
MITWTI13 0 0 
MITWTII4 0 0 
MITWTII5 0 0 
MITWTII6 0 0 
MITWTI17 741.52 0 
MITWTII8 650.95 0 
MITWT119 0 0 
MITWTI20 1254.75 0 
MITWTI21 1254.75 0 
MITWTI22 0 0 
MrTWT123 1741.52 0 
MITWTI24 I 741.52 0 
MITWTI25 I 741.52 0 
MITWT126 1103.80 0 
M1TWTI27 1103.80 0 
MITWT128 1~05 .70 0 
MlTWTI29 1405.70 0 
MITWTl30 1405.70 0 
MITWTI31 1405.70 0 
MITWTI32 1405.70 0 
MITWTI33 1405.70 0 
MITWT134 1405.70 0 
MlTWTI35 741.52 0 
MlTWTI36 862.28 0 
MITWT137 862.28 0 
MITWTI38 560.38 0 
MITWTI39 1560.38 0 
MlTWTI40 74 1.52 0 
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MITWT141 741.52 0 
MITWT142 0 0 
MITWT143 650.95 0 
MITWT144 650.95 0 
MITWT145 650.95 0 
MITWT146 0 0 
MITWT147 0 0 
MITWT148 0 0 
MITWT149 741.52 0 
MITWT150 741.52 0 
MITWT151 801.9 0 
MITWT152 801.9 0 
MITWT153 3801.9 0 
MITWT154 801.9 0 
MITWT155 801.9 0 
MITWT156 0 0 
MITWT157 0 0 
MITWT158 862.28 0 
MITWT159 741.52 0 
MITWT160 741 .52 0 
MITWT161 1556.65 0 
MITWTI62 1556.65 0 
MITWTI63 741.52 0 
MITWT164 862 .28 0 
MITWT165 862.28 0 
MITWTI66 0 0 
MITWTI67 862.28 0 
MITWTI68 1862.28 0 
MITWTI69 2952.85 0 
MITWTI70 1164.18 0 
MITWT171 I"l64.18 0 
MITWTI72 0 0 
MITWTI73 0 0 
M1TWT174 1345.32 0 
MITWTI75 1345.32 0 
MITWT176 0 0 
MITWT177 0 0 
MITWTI78 0 0 
MITWT179 0 0 
MITWTI80 741 .52 0 
MITWTI81 741 .52 0 
MITWTI82 0 0 
MITWT183 0 0 
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MITWT184 0 0 
MITWT185 0 0 
MITWT186 0 0 
MITWT187 0 0 
MITWT188 0 0 
MITWT189 o· 0 
MITWT190 0 0 
MITWT191 650.95 0 
MITWT192 952.85 0 
MITWT193 952.85 0 
MlTWT194 862.28 0 
MITWT195 862.28 0 
MITWT196 862.28 0 
MITWT197 0· 0 
MITWT198 0 0 
MITWT199 0 0 
MITWT200 801.90 0 
MIT WT201 801.90 0 
MITWT202 650.95 0 
MITWT203 650.95 0 
MITWT204 0 0 
MITWT205 1862.28 0 
MITWT206 1801.90 0 
MITWT207 0 0 
MIT WT208 1650.95 0 
MITWT209 801.90 0 
MIT WT2 10 1801.90 0 
MITWT211 0 0 
MITWT2 12 0 0 
MITWT2 13 0 0 
MITWT2 14 0 0 
MITWT2 15 0 0 
MIT WT2 16 862.28 0 
MITWT217 1862.28 0 
MITWT218 1650.95 0 
MIT WT2 19 0 0 
MIT WT220 0 0 
MIT WT22 1 o. 0 

MATLAB estimated results of the w ind turbine-2. The average value of the w ind 

speed data of the GE 1.5 MW wind turbine-2 and the Mitsubishi I .0 MW wind turb ine 
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is determined from the designed algorithm and the estimated results are tested with 

different input time series wind data files implemented in MA TLAB software. 

Table 4.4: Estimated results of the wind turbine-2 from the input wind data 

file 4. 

Physical Factors ofthe Wind GE 1.5MW Wind Mitsubishi 1 MW 
Power Model Turbine-2 (Mean Wind Turbine-2 

Value at Hub (Mean Value at 
Height) Hub Height) 

Sensor Height Wind Speed 7.37 m/s 7.22 m/s 
(Mean Value of the Wind 
Speed) 
Vertical Wind Speed Shear 8.08 m/s 7.99 m/s 

Turbu lence Adjusted Wind 9.71 m/s 9.59 m/s 
Speed 
Disc Speed of Wind Turbine 9.62 m/s 9.53 m/s 

Wake Speed of Wind 8.25 m/s 7.80 m/s 
Turbine 

Table 4.5: Estimated results ofthe wind turbine-2 for an input wind data file 3. 

Physical Factors of Wind GE 1.5 MW Wind Mitsubishi 1.0 
Power Model Turbine-2 (Mean MW Wind 

Value at Hub Turbine -2 
Height) (Mean Value at 

Hub Height) 
Sensor Height Wind Speed 7.37 m/s 7.22 m/s 
(Mean of Wind Speed) 
Vertical Wind Speed Shear 8.09 m/s 7.99 m/s 
Turbulence Adjusted Wind 9.71 m/s 9.59 m/s 
Speed 
Disc Speed of Wind Turbine 9.62 m/s 9.54 m/s 

Wake Speed of Wind Turbine 8.25 m/s 7.80 m/s 
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Table 4.6: MATLAB estimated results of w ind turbine-2 for an input wind data file 2. 

Physical Factors of Wind GE 1.5 MW Mitsubishi 1.0 
Power Model .Wind Turbine-2 MW Wind Turbine 

(Mean Value at -2 ( Mean Value at 
Hub Height) Hub Height) 

Sensor Height Wind Speed 7.35 m/s 7. 19 m/s 
(Mean of Wind Speed) 
Vertical Wind Speed Shear 8.06 m/s 7.97 m/s 

Turbulence Adjusted Wind 9.71 m/s 9.59 m/s 
Speed 
Disc Speed of Wind Turbine 9.63 m/s 9.54 m/s 

Wake Speed of Wind Turbine 8.25 m/s 7.80 m/s 

Table 4.7: MATLAB estimated results ofwind turbine-2 for an input w ind data file 1 

Physical Factors of Wind GE 1.5 MW Mitsubishi 1.0 MW 
Power Model Wind Turbine-2 Wind Turbine-2 

(Mean Value at (Mean Value at Hub 
Hub Height) Height) 

Sensor Height Wind Speed 7.33 m/s 7.18 m/s 
(Mean of Wind Speed) 
Vertical Wind Speed Shear 8.04 m/s 7.95 m/s 

Turbulence Adjusted Wind 9.68 m/s 9 .57 m/s 
Speed 
Disc Speed of Wind Turbine 9.59 m/s 9.50 m/s 

Wake Speed of Wind Turbine 8.22 m/s 7 .78 m/s 

T he estimated power of individual physical factors considered and its contribution in 

determining the w ind power of a wind turbine is given in the table below. T he change 

in wind power is determined from the physical factors considered. The uncorrected 
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power curve function determined from the curve fitting toolbox using the polyfit 

command in MA TLAB is used to estimate the corresponding power. The average 

value of wind speed is substituted in the equation of uncorrected power curve function 

and corresponding wind power is determined for the physical factor considered. 

Table 4.8: The wind power of a wind turbine -2 in the wind farm with the input time 

series data file I. 

Physical Factors of GE 1.5 MW Wind Mitsubishi 1 MW Wind 
Wind Power Model Turbine Turbine 
Considered from the 
Designed Algorithm 
Average value of the 635 .92 KW 275.89 KW 
estimated speed ofthe (Estimated power (Estimated power 
vertical shear at hub using average value of using average value of 
height speed of vertical shear) speed of vertical 

shear) 
Average value of the 1.15 MW 632.66 KW 
estimated turbulence (Estimated power (Estimated power 
adjusted speed at hub using average value of using average value of 
height turbulence adjusted turbulence adjusted 

speed) speed) 
Average value ofthe 1.12 MW 617.44 KW 
estimated disc speed at (Estimated power (Estimated power 
hub height using average value of using average value of 

disc speed) disc speed) 
Average value of the 1.14 MW 631.65 KW 
estimated air density (Estimated power (Estimated power 
adjusted disc speed using average value of using average value of 

air density adjusted air density adjusted 
disc speed) disc speed) 
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Table 4.9: Wind power of wind turbine -2 in the Colorado wind farm with the input 

wind data file 2. 

Physical Factors of Wind GE 1.5 MW Wind Mitsubishi I MW 
Power Model considered Turbine Wind Turbine 
from the Designed 
Algorithm 
Average value of the 636.45 KW 276.33 KW 
estimated speed of (Estimated power (Estimated power 
vertical shear at hub using average value using average value 
height of speed of vertical of speed of vertical 

shear) shear) 
Average value of the 1. 15 MW 633 KW 
estimated turbu lence (Estimated power (Estimated power 
adjusted speed at hub using average value using average value 
height of turbulence of turbulence 

adjusted speed) adjusted speed) 
Average value ofthe 1.12 MW 618 KW 
estimated disc speed at (Estimated power (Estimated power 
hub height using average value using average value 

of disc speed) of disc speed) 
Average value of the 1.15 MW 632.14KW 
estimated air density (Estimated power (Estimated power 
adjusted disc speed using average value using average value 

of air density of air density 
adjusted disc speed) adjusted disc speed) 
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Table 4.10: Wind power of a wind turbine -2 in the wind farm using the input wind 

data file 3. 

Physical Factors of GE 1.5 MW Wind Mitsubishi 1 MW 
Wind Power Model Turbine Wind Turbine 
considered from the 
Designed Algorithm 
Average value ofthe 628.86 KW 272 KW 
estimated speed of (Estimated power (Estimated power 
vertical shear at hub using average value of using average value of 
height speed of vertical speed of vertical 

shear) shear) 
Average value ofthe 1.148MW 633.09 KW 
estimated turbulence (Estimated power (Estimated power 
adjusted speed at hub using ayerage value of using average value of 
height turbulence adjusted turbu lence adjusted 

speed) speed) 
Average value ofthe 1.124 MW 617.87 KW 
estimated disc speed at (Estimated power (Estimated power 
hub height using average value of using average value of 

disc speed) disc speed) 
Average value ofthe 1.15 MW 632.1 KW 
estimated air density (Estimated power (Estimated power 
adjusted disc speed using average value of using average value of 

air density adjusted air density adjusted 
disc speed) disc sreed) 
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Table 4.1 1: Wind power of a wind turbine -2 in the Colorado wind farm with the input 

wind data file 4 . 

Physical Factors of GE 1.5 MW W ind Mitsubishi 1 MW 
Wind Power Model Turbine Wind Turbine 
considered from the 
Designed Algorithm 

Average value ofthe 622 KW 268.18 KW 
estimated speed of (Estimated power (Estimated power 
vertical shear at hub using average value using average value 
height of speed of vertical of speed of vertical 

shear) shear) 
Average value of the 1.139 MW 625.34 KW 
estimated turbulence (Estimated power (Estimated power 
adjusted speed at hub using average value using average value 
height of turbulence of turbulence 

adjusted speed) adjusted speed) 

Average value ofthe 1.115 MW 610.14KW 
estimated disc speed (Estimated power (Estimated power 
at hub height using average value using average value 

of disc speed) of disc speed) 

Average value ofthe 1.1409 MW 624. 18 KW 
estimated air density (Estimated power (Estimated power 
adjusted disc speed using average va lue using average value 

of a ir density of air density 
adjusted disc speed) adjusted disc speed) 

Results ofTable 4-12 are estimated from the wind farm power model. The layout 

information of the wind farm and the wind direction at the wind farm site is a major 

contributing factor to estimate the wind farm power. The wake effect takes place for 

a particular wind direction when wind turbines are placed at a closer distance due to 

the shadow effect of neighboring wind turbines. It results in reduction in the w ind 

speed and correspondingly the wind power. The wake coefficient is determined using 

equation ( 4.18). T he wake coefficient of I indicates that the wind turbines operate at a 
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maximum power and a value less than 1 indicates that the wind turbines operate at 

reduced power due to the wake effect or the shadow effect of neighboring wind 

turbines. The results are estimated and tested with different input wind data files . 

Table 4.12: Wake coefficient data determined from the wind direction and shadow 

effect of the wind turbines in the wind farm . 

Time Series Wind Wind Direction All other Wind 
Speed Data of Equal ( 45° ±5°; 225° ±5°) Direction 
Length (I 0 min) (except 45°± 5° and 

225°± 5°) 
Wake Coefficient of -
Wind Data 1 0.8451 1.0 

Wake Coefficient of -
Wind Data 2 0 .8452 1.0 

Wake Coefficient of -
Wind Data 3 0.8440 1.0 

Wake Coefficient of -
Wind Data 4 0.8439 1.0 

Table 4.13: Estimated power output ofthe Colorado wind farm . 

Time Series G.E Wind Mitsubishi Average Wind 
Wind Speed Turbines Wind farm 
Data of Equal (1 .5 MW- 53 Turbines (G E + 
Length (I 0 WT) (IMW-22 1 Mitsubishi) 
min) WT) 
Wind Data 1 49.10 MW 111.4 MW 160.5 MW 

Wind Data 2 49.34 MW 112.1 MW 161.3 MW 

Wind Data 3 49.55 MW 11 2.29 MW 161.7 MW 

Wind Data 4 49.50 MW 112.19MW 161.6 MW 
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The Colorado wind farm has the Mitsubishi I MW, 221 wind turbines and the GE 1.5 

MW, 53 wind turbines. Results ofTable 4-13 are the estimated average value ofpower 

ofthe GE wind turbines and the Mitsubishi wind turbines, when the wind turbines are 

operating at the disc speed. The MA TLAB code is tested with different input wind 

speed data files. 

4.8 Transmission Loss in the Wind farm 

Transmission losses occur due to the current flow in the cables and there is reduction 

in power. When current flows through wires, voltage drop occurs and thus 

correspondingly power loss occurs in the cable. The losses include copper loss and 

induction loss [42]. 

i) Copper loss is as a consequence of heating ofthe material with a potential 

difference. 

ii) Induction losses occur when metallic object absorbs power due to electromagnetic 

field generated by current carrying conductors. 

After an extensive research on power loss it is concluded that the power loss within a 

wind farm is about I% due to transmission of current through cables [ 40, 4 1]. Actual 

transmission details and parameters of the Colorado wind farm were not avai lable. 

Therefore, wind farm power loss of the Colorado wind farm is assumed to have I% 

transmission loss. The power loss factor of 0.99 is multiplied to estimate the wind farm 

power in real time. 
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Table 4.14: Estimated Colorado wind farm power before and after transmission loss 

(TL) in wind farm . 

Input TL Average Average Average Average 
Time Wind Farm Wind Farm Wind Farm Wind Farm 
Series Power Power after Power Power after 
Wind before TL. TL before TL 
Data of (No- wake (No- wake TL (Wake (Wake 
Equal effect) effect) effect) effect) 
Length 
( I 0 min) 
Wind 1.0% 160.51 158.89 135.63 134.27 
Datal MW MW MW MW 

Wind 1.0% 161.31 159.68 136.33 134.97 
Data2 MW MW MW MW 

Wind 1.0% 161.71 160.08 136.49 135.12 
Data3 MW MW MW MW 

Wind 1.0% 161.64 160.03 136.4 1 135.05 
Data4 MW MW MW MW 

Results ofTable 4-14 are the average value of the wind farm power due to 

transmission loss of I%. Actual power is the wind farm power after transmission loss. 

The actual power data is estimated when the wind turbines are operating at the disc 

speed with the transmission loss of I% and when the wind turbines are operating at 

the wake speed with the transmission loss of I%. 
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Table 4.15: Estimated Loss in the power of the Colorado wind farm due to power 

transm ission. 

Time Series Transmission Loss in Power Loss in Power 
Input Wind Loss (No wake (Wake effect) 
Speed Data of effect) 
Equal Length 
(I 0 min) 

Wind Data I 1.0% 1.605 MW 1.356 MW 
Wind Data 2 l.O% 1.6 13 MW 1.3633 MW 
Wind Data 3 1.0% 1.6172 MW 1.3649 MW 
Wind Data 4 1.0% 1.616 MW 1.364 MW 

Resu Its of Table 4-15 are the estimated net loss in power due to the power 

transmission. The transmission loss factor is I%. Estimated net loss in power is 

determined from the difference in power when the wind turbines operate at the disc 

speed (no transmission loss factor) and when the wind turbines operate at the disc 

speed considering the transmission loss factor (l %). Similarly net loss in power is 

determined from the difference in power when the wind turbines operate at the wake 

speed (no transmission loss factor) and when the wind turbines operate at the wake 

speed considering transmission loss factor. The loss in power is estimated and tested 

with different input wind speed data files. 
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4.9 Wind Farm Power Calculation Results 

4.9.1 Simulated MATLAB Results using the designed algorithm to estimate 
wind farm power 

Using the Cedar Creek layout information [50], the designed algorithm was 

implemented in MA TLAB. The Simulated results in MA TLAB are shown in the 

figure below. A copy of MA TLAB code is attached in Appendix K, Appendix L, and 

Appendix M. Figure 4.7 and Figure 4.8 are the manufacturer supplied power curve of 

the Mitsubishi 1 MW wind turbine [49] and the GE 1.5 MW wind turbine [48] 

respectively. The supplied power curves are used to estimate the actual power curve. 

The first step is to digitize the power curves i.e. the curve is fitted to the supplied 

power curve of the M itsubishi 1 MW wind turbine and the GE 1.5MW wind turbine as 

shown in Figure 4.9 and Figure 4.10 respectively. The MA TLAB has curve fitting 

toolbox and after exploring various curve fitting techniques, it is concluded that the 

best fit polynomial curve is of order 18 for the Mitsubishi 1 MW wind turbine and of 

order 17 for the GE 1.5MW wind turbine. 

/ 
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Figure 4.7: Power vs. Wind Speed characteristics of Mitsubishi I MW wind turbine (supplied power 

curve). 
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Figure 4.8: Power vs. Wind Speed characteristics ofG E 1.5 MW wind turbine (supplied power curve). 
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Figure 4.9: Power vs. Wind Speed characteristics of Mitsubishi I MW wind turbine (curve fitted) . 
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Figure 4. I 0: Power vs. Wind Speed characteristics of G E 1.5 M W wind turbine (curve fitted) . 
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The input wind speed data file 1 is recorded from the anemometer at the MET tower. 

The Colorado wind farm has two MET tower. The MET tower 1 records the wind 

speed for the GE wind turbines at a height of 80m and the MET tower 2 records 

the wind speed of the Mitsubishi wind turbines at a height of 69m. The recorded wind 

speed is from the wind speed data file 1 and correspondingly results are simulated in 

MATLAB. The recorded wind speed is shown in Figure 4.11 and Figure 4.12 for the 

GE 1.5 MW wind turbine and the Mitsubishi 1 MW wind turbine respectively for a 

time range of 45,000 minutes. The average value of the wind speed data in Figure 4.11 

is 7.33 m/s and the average value of the wind speed data in Figure 4.12 is 7. 18 m/s. 

The average value of the wind speed data in Figure 4.11 is a bit higher than the 

average value ofthe wind speed data in Figure 4.12. 
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Figure 4.11 : Sensor he ight wind speed data for the G E 1.5 MW wind turbine-2 recorded from MET 

tower!. (Note: Time Scale : X axis: I unit = 10 minute; 1000 unit = 10000 minutes) . 
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Figure 4. 12 : Sensor height wind speed data for theM itsubishi 1.0 MW wind turbine-2 recorded from 

MET tower2. (Note: Time Scale: X axis: I unit = 10 minute; 1000 unit = 10000 minutes). 

The Colorado wind farm has 274 wind turbines. The wind speed at the hub height is 

calculated from the input wind speed at the sensor height using the power law equation 

of shear with shear exponent of I 17 for each wind turbine at the hub height using 

equation ( 4.3). The hub height of each wind turbine is calculated considering the 

turbine base elevation. Figure 4.13 and Figure 4.14 shows the estimated hub height 

wind speed for the GE 1.5MW wind turbine-2 and the Mitsubishi I MW wind turbine-

2 respectively. The average value ofthe wind speed data in Figure 4.13 is 8.04 m/s. 

The average value of the wind speed data in Figure 4.14 is 7.95 m/s. The average value 

of the wind speed data in Figure 4.13 is a bit higher than the average value of the wind 

speed data in Figure 4.14. 

139 



Vert i c a l S h ear or G E V V i r, d Tur bine- 2 
30 

2 5 

2 0 

~ 

~ ' 5 

~ 
' 0 

5 

Ti m e ( m i n ) 

Figure 4 . 13: Hub height wind speed estimated for the GE 1.5 MW wind turbine-2. (Note: Time Scale: X 

axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 
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Figure 4.14: Hub height wind speed estimated for the Mitsubishi I MW wind turbine- 2. (Note: Time 

Scale: X axis: I unit = I 0 minute; I 000 unit = 10000 minutes). 

The turbulence adjusted wind speed is estimated for the GE 1.5MW wind turbine-2 

and the Mitsubishi 1 MW wind turbine-2 at the hub height of the wind turbine. It is 

calculated using equation (4.5) from the input wind speed and the turbulence intensity 

at the hub height. The resulting wind speed is shown in Figure 4 .15 and Figure 4.16 for 

the GELS MW wind turbine and the Mitsubishi 1MW wind turbine respectively. The 

average value ofthe wind speed data in Figure 4 .15 is 9.68 m/s. The average value of 

the wind speed data in Figure 4.16 is 9.57 m/s. The average value ofthe wind speed 
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data in Figure 4.15 is a bit higher than the average value of the wind speed data in 

Figure 4. 16. 
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Figure 4. 15: Turbulence adjusted wind speed estimated forGE 1.5 MW wind turbine- 2 at hub height. 

(Note: Time Scale: X axis: I unit = I 0 minute; 1000 unit = I 0000 minutes). 
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Figure 4.16: Turbulence adjusted wind speed estimated for Mitsubishi 1.0 MW wind turbine-2 at hub 

height. (Note: Time Scale: X axis: I unit = 10 minute; 1000 unit = 10000 minutes). 

The disc speed adj usted for vertical shear and turbulence adjusted speed is calculated 

using equation ( 4. 7) from the lower rotor tip to the upper rotor tip of the wind turbine. 

The resulting wind speed is assumed to be at the hub height of the wind turbine. The 

wind speed is plotted in Figure 4 .17 for the GE 1.5 MW wind turbine-2 and in Figure 

4.18 for the Mitsubishi I MW wind turbine-2. The average value of the wind speed 

data in Figure 4.17 is 9.59 m/s. The average value of the wind speed data in Figure 
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4.18 is 9.50 m/s. The average value of the wind speed data in Figure 4.17 is a bit 

higher than the average value of the wind speed data in Figure 4 .18. 
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Figure 4. 17: Estimated disc Speed (adjusted for turbulence and shear) forGE 1.5 MW wind turbine -2 at 

hub height. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes) . 
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Figure 4.1 8: Estimated disc speed (adj usted for turbulence and shear) for Mitsubishi 1.0 MW wind 

turb ine-2 at hub height. (Note: T ime Scale : X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

The wake speed is shown in Figure 4 .19 for the GE wind turbine-2 and in Figure. 4.20 

for the Mitsubishi wind turbine-2. The wind speed is reduced due to the wake effect 

from the upstream turbines. It is estimated from the thrust coefficient of the wind 

turbine and the closest distance from neighboring turbines using equation ( 4. 1 1 ), 

equation ( 4 .1 2) and equation ( 4.1 3). The average value of the wind speed data in 
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Figure 4.19 is 8.22 m/s. The average value of the wind speed data in Figure 4.20 is 

7.78 m/s. The average value of the wind speed data in Figure 4.19 is a bit higher than 

the average value of the wind speed data in Figure 4.20. 
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Figure 4.19: Wake speed estimated forGE 1.5 MW wind turbine-2 at hub height (Note: Time Scale: X 

axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

2 6 

Figure 4.20: Wake speed estimated for Mitsubishi 1.0 MW wind turbine-2 at hub height. (Note: Time 

Scale: X axis: I unit = I 0 minute; 1000 unit = I 0000 minutes) . 

Using the curve fitted supplied power curve, the actual power curves of the wind 

turbine is estimated from the uncorrected power adjusted with air density using 

equation (4.9). The power curves are estimated from the designed algorithm for 274 

wind turbines of the Colorado wind farm. The estimated power curves are shown in 

Figure 4 .21 for the GE 1.5 MW wind turbine- I and in Figure 4.22 for the GE 1.5 MW 
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turbine-2. Figure 4.23 and Figure 4.24 are the estimated power curves for the 

Mitsubishi lMW wind turbine-! and the Mitsubishi l MW wind turbine-2 respectively. 
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Figure 4.2 1: Estimated power curve ofGE 1.5 MW wind turbine- I adjusted with air density . 
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Figure 4.22: Estimated power curve of the GE I.SMW wind turbine-2 adjusted with a ir density. 
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Figure 4.23: Estimated power curve of the Mitsubishi I MW wind turbine- I adjusted with air density. 
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Figure 4.24: Estimated power curve of the Mitsubishi 1.0 MW wind turbine -2 adjusted with air density. 

The wake model is developed in this chapter and the wake power is determined 

from the estimated wake speed. There is reduction in power with the wake effect 

(black) as shown in Figure 4.25 for the GE wind turbine-2 and in Figure 4.26 for the 

Mitsubishi wind turbine-2. The estimated wind power of the wind turbine-2 is 

compared with the wake effect and without wake effect. When there is no wake effect, 

the power is not reduced (red). The wind power of the wind turbine-2 is plotted with 

respect to time. 
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Figure 4.25 : Comparison of power estimated with wake (black) and without wake (red) effect forGE 1.5 

MW wind turbine-2. (Note: Time Scale: X axis : I unit = I 0 minute; 1000 unit = I 0000 minutes). 
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Figure 4.26: Comparison of power estimated with wake (black) and without wake (red) effect for 

Mitsubishi 1.0 MW wind turbine-2. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 

minutes). 

As shown in Figure 4.27, the wind farm power is determined at the free disc speed and 

is plotted with respect to time. The wind farm power is estimated from the GE 1.5 MW 

and the Mitsubishi I MW wind turbines. The total power of the wind turbines in the 

wind farm is added and is the estimated wind farm power. 
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Figure 4.27: Estimated wind farm no-wake power with respect to time. (Note: Time Scale: X axis: 

unit = I 0 minute; I 000 unit = I 0000 minutes). 

As shown in Figure 4.28, the wind farm power is estimated at the free disc speed and 

is compared with the wake power of the wind farm. The wind farm power is plotted 

146 



---------------------------------------------------------------------------------------------------~ 

with respect to time. The wind farm power is estimated from the GE and the 

Mitsubishi wind turbines with the wake effect (red) and without wake effect (black) . 
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Figure 4.28: Comparison of estimated wind farm power with wake effect (red) and no-wake effect 

(black) with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute ; I 000 unit = I 0000 minutes). 

The wind farm output power is determined from the wind direction and shadow effect 

of the neighboring wind turbines. Figure 4.29 is a plot of a wind direction at the wind 

farm site. As shown in Figure 4.30, the wake coefficient of 1 indicates that the wind 

turbines operate at a maximum power and a value less than 1 indicates that the wind 

turbines operating at reduced power or at the wake speed. In Figure 4.30, we see that at 

a wind direction of 45° ± 5° and 225° ±5°, there is a wake effect and the wind speed is 

reduced as the wind turbines are placed at a closer distance. For all other wind 

direction, the wind turbines operate at a maximum power and this factor is determined 

from the wind farm layout and the distance between neighboring wind turbines. 
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Figure 4.29: Wind direction (degrees) at the wind farm site for a time span of 10000 minutes. (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit= I 0000 minutes). 
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Figure 4.30: Wake coefficient determined from wind direction is plotted with respect to time. (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes) . 

Figure 4.31 is a plot of the wind direction at the wind farm site for a time span of 5000 

minutes and Figure 4.32 is a plot of the wake coefficient determined from the wind 

direction for a time span of 5000 minutes. 
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Figure 4.3 1: Wind direction (degrees) at the wind farm site for a time span of 5000 minutes. (Note: 

Time Scale: X axis: 1 unit = 10 minute; I 000 unit = I 0000 minutes). 
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Figure 4.32 : Wake coefficient determined from wind direction is plotted with respect to time (Note: 

Time Sca le: X axis: I unit = IO minute; 1000 unit = 10000 minutes). 

With the transmission loss of I%, there is a further reduction in the estimated wind 

farm power. Figure 4.33 and Figure 4.34 gives loss in power of the wind farm due to 

the power transmission without the wake effect and with the wake effect respectively. 

The wind farm power loss due to the transmission is plotted with respect to time. Due 

to the wake effect there is more reduction in power as compared to power loss with no 

wake effect. 
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Figure 4 .33 : Wind farm output power with power loss (I %) in transmission with no wake effect is 

plotted with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes) . 

149 



V"Vin d .,.arm Pow• r L oee I n T ran e..,., i a• i on (Wake E ft'e c t. ) 
4000 

3500 

3 000 

A 2500 

J 2 000 

"' ~ '1 5 00 

'1 000 

5 00 

Figure 4.34: Wind farm output power with power loss ( I%) in transmission and wake effect is plotted 

with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute; 1000 unit = I 0000 minutes). 

Figure 4.35 and Figure 4.36 gives actual wind farm power considering the 

transmission loss due to the wake effect and no wake effect respectively. The actual 

wind farm power is plotted with respect to time. Due to transmission loss there is a 

reduction in power. There is more reduction in power due to the wake effect as 

compared to power loss without wake effect. The actual power is plotted considering 

the transmission loss. Net loss in power due to transmission of power is estimated with 

transmission loss of 1%. 
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Figure 4.35: Actual estimated wind farm power with transmission loss of I% due to wake effect is 

plotted with respect to time. (Note: Time Scale: X axis: I unit = I 0 minute; 1000 unit = I 0000 minutes) . 
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Figure 4.36: Actual estimated wind farm power with transmission loss of I% with no wake effect is 

plotted with respect to time (Note: Time Scale: X axis: I unit = I 0 minute; 1000 unit = I 0000 minutes) . 

4.10 Conclusion 

In this chapter working power model of the Cedar Creek -I, Colorado wind farm is 

developed with the historic data of atmospheric parameters as input to the wind power 

model for power estimation. The manufacturer supplied power curve assumes ideal 

condition and a variation of the atmospheric parameters results in a variation in the 

output power. In this chapter detail of the wind turbine characteristics, its 

specifications, wind farm layout and the number of wind turbines is studied. The 

location of met tower and the sensor height is known. The actual turbine power curves 

are produced when the power is plotted as a function of equivalent wind speed or disc 

speed instead of the hub height wind speed. This suggests that both vertical shear and 

the turbulence are important factors in power production. Air density has a major 

effect in power production and the corrected power curve of the wind turbine is 

estimated from the equivalent wind speed adjusted with air density. The corrected 

power curves of the wind turbines are produced from the atmospheric parameters 
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effecting wind turbine rotor disc and the wind farm output power is estimated and 

presented in the chapter. This chapter shows that the wind direction and the wind farm 

layout have a significant influence upon the power output mainly due to the wake 

effect. The wake model is developed as wind turbines are placed at a closer distance. 

The impact of wake is to disturb wind flow to the wind turbines and as a result it 

results in power loss as compared to the wind turbines operating in undisturbed wind. 

This effect can be minimized by increasing the distance between the wind turbines. It 

is concluded that there is a reduction in the output power of the wind farm than if the 

ideal wind turbines are assumed. The MA TLAB code is tested with different input 

wind data files. An accurate result is estimated with every! 0 minutes wind data file 

and is presented in this chapter. 
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Chapter 5 

Conclusion and Future Work 

5.1 Research Overview 

In this research the wind speed forecasting models and the physical factors ofthe 

atmospheric parameters were studied that affects the wind turbine power production 

and a working wind speed models and a wind farm power model were implemented in 

the MA TLAB. Major contributing factors in the wind power production are analyzed 

and their effect on the wind power estimation is understood. Some of the factors such 

as wind speed, topography, pressure, temperature, wind direction, air density and their 

contribution to the wind power generation are stud ied and the simulated results are 

presented that shows the effect ofthe individual physical factor in estimating the wind 

power of a wind turbine. The physical factors such as vertical shear, turbulence 

intensity, air density has a major effect on the energy production. The wind farm 

layout, the influence ofthe wind direction, the thrust coefficient of the wind turbine, 

and the wind turbine placements in the wind farm have a greater influence in 

determining the wake coefficient data in the wind farm. The transmission loss in the 

wind farm which results in the power loss is determined and the results are estimated 

for the Farceuse wind farm located in the Newfoundland and the Cedar Creek 

Colorado wind farm located in the United States. The physical model of the wind 

power combined with the statistical forecasting model is required for the effective use 

of the generated wind power for the utility operators. The designed algorithm takes 

into account the physical factors affecting the wind turbine rotor disc is implemented 
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in the MATLAB software, which is fast and accurate and can take any number of wind 

turbines as input to the power model with huge data set of historic time series wind 

data. It is tested for accuracy for every 10 minutes time series data set. 

The wind speed forecasting models are studied in this research work 

and some of the models are designed and implemented in the MA TLAB software and 

are tested for accuracy using the input time series wind speed data. The wind speed 

models studied and implemented in these projects are the Auto Regressive Moving 

Average model, the Kaman Filter, the Unscented Kaman Filter, and the Non Linear 

Auto Regressive Exogenous model. Accurate forecast of the wind speed is obtained 

for the selected range of the wind speed. The designed model on the wind speed 

estimation gives accurate result for the short term wind speed prediction for the time 

series wind speed data. The Kaman filter and the Unscented Kaman filter have a 

greater impact in minimizing the noise effect associated with the input wind speed 

data, and are crucial for accurate estimation for the wind speed forecasters. The noise 

associated in the wind speed can result in errors in the actual wind speed estimation. 

The working model of both the filters is implemented in the MA TLAB and its 

performance is tested for accurate estimation of the forecasted wind speed. 

5.2 Research Contribution 

The research contributions are: 

Short term wind speed prediction using the Auto Regressive Moving Average model 

for five hours in advance is developed and implemented in the MATLAB software. 
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The designed algorithm using Auto Regressive Moving Average model implemented 

in the MA TLAB software is fast, accurate and is tested wi th different input wind speed 

data sets. An hour ahead wind speed model using the Kalman filter is implemented in 

the MA TLAB software using linear parametric model or Auto Regressive model as 

input to the Kalman fi Iter. The developed hybrid model has the advantage of accurate 

estimation of the wind speed and the error is minimised. An hour ahead wind speed 

model using Unscented Kalman filter is developed in the MATLAB software using 

non linear Auto Regressive Exogenous (ARX) model as input to the Unscented 

Kalman filter. It gives accurate estimation of the wind speed and the performance is 

compared with the linear Auto Regressive model as input to the Unscented Kalman 

filter. It is proved from the wind speed prediction model that the Kalman filter gives 

accurate estimation for the linear models and the Unscented Kalman filter gives 

accurate estimation for the non linear model. The challenges and difficulties involved 

in developing a non linear model are studied and understood and one such model is 

developed in this research in estimating the wind speed. One of the major components 

of the research is predicting the wind power in real time considering the time varying 

atmospheric physical factors that affect the wind turbine rotor disc. The algorithm is 

designed considering the atmospheric parameters, and the results simulated in the 

MA TLAB software. The wake effect and its impact on the wind farm power 

production is implemented in the wake power model. It research shows the influence 

of the wind direction and the wind farm layout in the power estimation in the wind 

farm. The power loss occurs due to the wind power transmission in the cables and this 
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research shows the amount of estimated loss for the Colorado wind farm and the 

Fermeuse wind farm . 

5.3 Future Work on the Wind Speed and the Wind Power Forecasting 

In this research work, the wind power of a wind farm that takes into account the 

estimation ofthe wind speed, and the wind farm power model is developed and 

implemented in the MATLAB software. Below there are few suggestions for 

further improvement of the developed wind speed model and the wind power model. 

The future research work on the wind speed forecasting requires forecasting days 

ahead or a week ahead wind speed forecasting from Numerical Weather Prediction 

model. It is requires use of High Performance Computer Cluster. It has faster 

computational speed. The forecast of days ahead wind speed is usefu l for power utility 

operators and they can shut down the power un it and use the alternate source of power 

generated from the wind turbine [8]. 

The use of hybrid models in the win~ speed forecasting is essential for accurate 

estimation, the use of such models has a benefit from each of the model and the errors 

are reduced. The hybrid models will obtain a globally optimal forecasting 

performance. In such a forecast the combination of the forecasting models are given 

below. 

• Combinat ion of physical and statistical approaches. 

• Combination of models for the short term and for the medium term or 

the long term [1 4]. 
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The research on short term wind speed forecasting using Artificial Neural Network 

(ANN) is required and has the advantage of learning the relationship between the 

inputs and the outputs by a non statistical approach. They do not require any 

mathematical models and can provide results with minimum errors [14]. In the wind 

power forecasting, the future work should focus on the effect of atmospheric humidity, 

and the effect of turbulent kinetic energy which has a major contribution in the wind 

power estimation from the wind turbines. The effect of the horizontal shear has not 

been considered in the implemented wind power model. More research is needed to 

consider the effect of the horizontal shear. It contributes to the wind power estimation. 

The dust accumulation on the wind turbine rotor disc and its effect on the wind power 

generation should also be considered. Although its effect is smaller but its contribution 

along with other physical factors will have a greater impact in wind power estimation 

[7]. The atmospheric temperature has a major influence on the wind power forecasting. 

The effect of icing conditions and the ice accumulation on the wind turbine rotor 

blades has a greater influence in the wind power generation. Under severe icing 

conditions, the wind turbines stop operating and there is a complete loss in the wind 

power generation. The future work should focus on de-icing techniques under severe 

icing conditions [6]. 
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Appendices 

Appendix A 
% MA TLAB code for armax ( I, I) to predict wind speed in advance 
p_hrl.txt contains hourly w ind data 
load 
p_hrl.txt 
plot(p_hr1) 
figure( I) 
z=importdata('p_ hrl.txt') 
data= armax(z,[I I]) 
figure(2) 
predict( data,p_hr I ,5) 
figure(3) 
compare(p _hr 1,data,5) 
x label('t ime') 
ylabel('wind speed') 
tit le('armax( I, 1 )') 

Appendix B 
% Partial autocorrelation oftext file( p_hrl.txt) 
load p_hrl.txt 
x= importdata ('p_ hrl.txt') 
[pacf, lags, bounds] = parcorr(x) 
figure ( I ) 
parcorr(x) 

Appendix C 
%Autocorrelation oftext file( p_ hrl.txt) 
load p_hrl.txt 
y= importdata ('p_hr1 .txt') 

[ acf, lags, bound]=autocorr(y) 
fi gure( I) 
autocorr(y) 

164 



Appendix D 

% Auto Regressive Model MA TLAB Code 
array =dlmread('Control_speed.csv',','); 
%speed= array(:, I);% every I 0 min wind speed 
speed= array(:,4);% per hour wind speed 
time= array(:,2);% Time 
z =speed( 1: 1 000); 
data= AR(z,2,'ls'); 
M = idpoly(data); 
zhat = predict(z,data, I); %Every hour wind data 
% zhat = predict (z,data,6);% Every 10 min wind data 
figure(l) 
plot(time,z,'r') 
ylabel('Wind Speed (m/s)') 
xlabel('Time(hr)') 
title('Input Wind Speed') 
axis([O I 000 0 50]) 
pause 
figure(2) 
plot(time,zhat{ I , I} ,'k',time,speed,'r') 
y label('Wind Speed (m/s)') 
xlabel('Time(hr)') 
title('AR Estimated Wind Speed') 
axis([O I 000 0 40]) 
pause 

Result: 
Discrete-time IDPOL Y model : A(q)y(t) = e(t) 
A(q) = I - 0.8963 q/\-1 - 0.09091 q/\-2 
Estimated using AR ('ls'/ 'now') from data set z 
Sampling interval: I 
Note: System Identification toolbox gives similar idpoly model of AR 2nd order 
model. 
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Appendix E 

%Kalman Filter MATLAB Code Using AR Model Parameter 
A=[0.8963 0.09091 ;0 0] ; 
B= [0 0;0 0] ; 
C=[I 0] ; 
D =[0]; 
N = I 000; % Data Generation Steps 
x _ initial=[ I ; I] *0; 
h(: ,2)=[x _ initial]; 
x( :,2)=[ x _initial]; 
y(:,2)=C*x(:,2); 
Q= 0.0 15*eye(2); %Covariance of process noise 
R= 0.02 ; % Covariance of measurement noise 
%Tuning Parameters 
Qf=0.05*Q; 
Rf=0.05*R; 
% Initialisation Block 
Pu= [I 0 ;0 l] ; %Error Covariance of initial states 
P=Pu; 
fori = I :N 
L=chol(Q); 
h(: ,i+ l)=A *x(:,i)+ I +L *randn(2, I); 
LL=chol(R); % Gaussian Noise 
y(:, i)=C*h(:,i)+LL *randn( l , I) ; %Accurate Measurement 
%-----Predict-----
x(:,i+ I )=A *x(:, i)+ I ; %Prediction of State 
P _apri=A *P* A'+Qf; % Prediciton of Covariance 
%-----Update------
K=P _apri*C'*inv((C*P _apri*C')+Rf);% Obtaining Kalman Gain 
innov = y(:, I )-(C*x(:, i)) ; % Obta ining the Innovations (A priori Residuals) 
x(:, i+ I)=x(: , i)+K*(y(:,i)-(C*x(:, i))); % Updating the State (Aposteriori) 
resid = y(:, i)- (C*x(: , i)); %Obtaining the Residua ls (Aposteriori Res idua ls) 
P= P _apri-(P _apri*K*C); % Obtaining Aposteriori Covariance 
end 
figure(3) 
%subplot(2, I , l),plot([ I :N+ I]', h( I ,:).,'r-',[ I :N+ I]', x( I ,:),'k-') 
plot([ I :N+ l ]', h( I ,: ),'r-',[ I :N+ l ]', x( I,: ), 'k-') 
title('X I') 
fi gure( 4) 
subplot(2, l ,2),plot([ I :N+ I]', h(2,:),'k-',[ I :N+ I]', x(2, :),'r- '); 
title('X2') 
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Appendix F 

% Unscented Kalman Filter MA TLAB Code Using AR model Parameters 
A = [0.8963 0.09091 ;0 0]; %System in State Space form 
8 = [0 0]'; 
C=[I 0] ; 
D=O; 
H=C; 
Ts = 0.2; %Sampling Time 
Ad= A; 
8d= 8; 
delta_t = 0.2 ; %Time steps 
length = 300; 
N = length/delta_ t; 
Q =0.000 I *eye( I) ; %Covariance Matrix 
R = I; 

% Tunning Parameters 
Qf = 0.001 *Q;% Process Noise 
Rf =O.OOI *R; %Measurement Noise 
Po= 5*eye(2); 
P _a post = Po; 
h(: , l) = [2 2]'; % Initialize State 
y(: , l) = H*h(:, l); 
LL = chol(Q); % Cholesky Factorization Data generation 
fori = I :N 
h(: , i+ l) = Ad* h(:, i)+ I+LL*randn(2, 1); 
L = chol(R); 
y(: , i+ l) = H*h(:,i+ I)+8+L*randn(l,l); 
end 
x_initial = h(: , 1)*3; 
x(:, l) = x_ initial' ; 
n = 2; 

%% Prediction and Update 
% Prediction Step 
fori = I :N 
Pred = [chol(n*P _apost)]'; 
x I = x(: , i) + Pred(: , I) ; 
x2 = x(:,i) + Pred(: ,2); 
Txl = Ad* xi; 
Tx2 =Ad* x2; 
Tx = (Tx I + Tx2)/(2*n); 
P _apri = (((Tx I - Tx)*(Tx I - Tx)' + (Tx2 - Tx)*(Tx2 - Tx)'/(2*n)) + Qf); 
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UTran = [chol(n*P _ apri)]'; 
Ux I = Tx I + UTran(:, I); 
Ux2 = Tx2 + UTran(:,2); 
Yl=H*Uxl ; 
Y2 = H*Ux2; 
Y = (Yl + Y2)/(2*n); 
Py = (((YI- Y)*(YI- Y)' + (Y2- Y)*(Y2 - Y)'/(2* n)) + Rf) ; 
Pxy = (((Txl- Tx)*(YI- Y)' + (Tx2- Tx)*(Y2- Y)'/(2* n))); 
%Update Step 
K = Pxy*(l /Py); 
x(:,i+l) = (Tx + K*(y(:,i)- Y)); 
P _apost = P _apri- K*Py*K'; 
end 

% Plotting of Graphs 
figure( I) 
plot([ I :N+ I ]',h( I ,:), '--', [I :N+ I ]',x( 1 ,: ),'r-') 
title('Unscented Kalman Filter Wind Speed Estimation from State X I ') 
ylabel('Wind Speed (m/s)') 
x labei('Number of Time Steps') 
figure(2) 
plot([ I :N+ I ]',h(2 ,: ), '--',[I :N+ I ]',x(2,: ),'r-') 
title('Unscented Kalman Filter Wind Speed Estimation from State X2') 
ylabel('Wind Speed (m/s)') 
x label('Number ofTime Steps') 

Appendix G 
Non linear ARX model estimated from input hourly wind speed 
array =dlmread('Control_speed.csv',',') ; 
speed = array(:,4); 
time = array(: ,2); 
z = iddata(speed(65 1: I 000),[ ],0.1 ); 
m I = nlarx(z(651: I 00 I ),2,'sigmoid') 
figure( I) 
compare(z,m I , I) 
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Appendix H 
Unscented Kalman Filter w ind speed estimation using input non linear ARX model 
%%Unscented Kalman Filter For Non Linear System 
A= [0.0825 -0.4050;0 0]; %System in State Space form 

B = [0.0825 -0.4050;0 0] ; 
C=[IO]; 
D = O; 
H =C; 
delta_t = 0.2; %Time steps 
length = 1500; 
N = length/delta_t; 
Q =0.0 I *eye( I) ; %Covariance Matrix 
R =O.OI ; 

% Tunning Parameters 
Qf = 0.1 *Q;% Process Noise 
Rf =O.I *R; %Measurement Noise 
Po = 6*eye(2); 
P _apost =Po; 
u(2,:)=[ I *ones(N, I );3.5*ones(N, I );3 *ones(N, I) ; I *ones(N, I)] * I ; % External Input 
h(:, I) = [2 2]'; % Initialize State 
y(:, 1) = H*h(: , 1); 
LL = choi(Q); % Cholesky Factorization 
h(: , l)=[l 1]'; 
y(:, 1)= H*h(: , I); 
%Data generation 
fori = I :N 
h(:,i+ I)= A *h(: ,i)+ B*u(:,i)+ 15 .5+LL *randn(2, 1 ); 
L = choi(R); 
y(:, i+ 1 )=H*h(: ,i+ 1 )+ 1 O+L *randn(1 , I); 
end 
x_ initia l = [1 1]* l ; 
x = x_ initia l' ; 
n = 2; 

%% Prediction and Update 
% Prediction Step 
fori = I :N 
Pred = [chol(n*P _apost)]'; 
x I = x(:, i) + Pred(: , I) ; 
x2 = x(:, i) + Pred(: ,2); 
Dxl = A* x 1; 
Dx2 = A* x2; 
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Ox= (Ox I + Ox2)/(2*n); 
P _apri =(((Ox I - Ox)*(Ox I -Ox)'+ (Ox2- Ox)*(Ox2- Ox)'/(2*n)) + Qt); 
UTran = [chol(n*P _apri)]'; 
Ux I = Ox I + UTran(:, I) ; 
Ux2 = Ox2 + UTran(:,2); 
Yl = H*Uxl; 
Y2 = H*Ux2; 
Y = (Yl + Y2)/(2*n); 
Py = (((Y 1 - Y)*(Y 1 - Y)' + (Y2 - Y)*(Y2 - Y)'/(2 *n)) + Rt); 
Pxy = (((Ox I - Ox)*(Y I - Y)' + (Ox2 - Dx)*(Y2 - Y)'/ (2 *n))); 

% Update Step 
K = Pxy*(I /Py); 
x(:,i+l) =(Ox+ K*(y(:,i)- Y)); 
P _apost = P _apri - K*Py*K'; 
End 

% Plotting of Graphs 
figure( I) 
plot([5 :N+ 1 ]',h( I ,5 :end), 'k--',[5 :N+ I ]',x( I ,5 :end),'r-') 
title('Unscented Kalman Filter Wind· Speed Estimation from State X I') 
ylabel('Wind Speed (m/s)') 
xlabei('Number ofTime Steps') 
axis([5 1500 0 25 5 1500 0 25]) 
figure(2) 
plot([ 1 :N+ I ]',h(2,: ), '--',[I :N+ 1 ]',x(2,: ),'r-') 
title('Unscented Kalman Filter Wind Speed Estimation from State X2') 
ylabel('Wind Speed (m/s)') 
xlabel('Number of Time Steps') 
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Appendix I 

%% FERMEUSE WINDFARM IMPLEMENTATION 
%% Vestas 3 MW,-9 WIND TURBINES; 
%%IMPLEMENTATION OF 9 WIND TURBINES USING FUNCTION %% 
%array= dlmread('file.csv',',') ; %Accessing Input l 0 Minute Wind Data File 
array= dlmread('file2.csv',','); %Accessing Input I 0 Minute Wind Data File 
%array= dlmread('file3.csv',','); %Accessing Input I 0 Minute Wind Data File 
%array= dlmread('file4.csv',','); %Accessing Input I 0 Minute Wind Data File 
global Wt N Y y H 
hour= array(:,5); %Accessing I 0 Minutes Data in Time Series Order 
WS_80 =array(:, l); 
% Accessing Input Wind Speed at 80m Sensor Height for 
% Vestas 3 MW Wind turbine 
N = numel(hour); %Accessing Total Number of Time Series Data 
TK = array(:,2); %Accessing Temperature 
act_ density = array(:,4); %Accessing act_density 3.4837*Pressure/Temperature; 
wd = array(:,6); %Accessing Wind Direction time series data 

%% SOLVING FOUR EQUATIONS OF DESIGNED ALGORITHM%% 
% Vestas 3 MW 9, Windturbines 
% WS and WS I = Verical Shear using shear exponent 0.143; 
%%[Equation: U2/U l = (H2/H I )" 0.143] 
% sd and sd I= standard deviation of wind speed data; 
%% [Equation: sd =standard deviation of wind speed] 
% Iu and luI = Turbulence Intensity; 
%% [Equation: lu = Standard deviation of WS/ Mean (WS)] 
% u and u 1 = Turbulence Adjusted Speed; 
%%[Equation: U(TI)=cuberoot[(U)" 3*(1 + 31u"2 ))] 
i2 = I ; 
for Y = [50,80,95, 120,127,140, 148, 153,170, 195] % Y = Height Range at the wind 
%turbine rotor disc 
WS(:,i2) = WS_80.*(Y/80)." (0.143);% Wind Speed for Vestas 3 MW Wind turbine 
sd(: ,i2)=std(WS(:,i2)); %Standard Deviation for Vestas 3 MW Wind turbine 
lu(: , i2) = std(WS(:,i2))./(WS(: ,i2)); % Turbulence Intensity for Vestas 3 MW Wind 
turbine 
u(:, i2)=nthroot((power(WS(: ,i2),3). *( l +power(lu(:, i2),2) . *3)),3); 
%Turbulence %Adjusted Speed for 
i2 = i2+ 1; 
% Vestas 3 MW Wind Turbine 
end 
%%END % 
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%%Mean Data of Turbulence Intensity 
Tl_ge = mean(lu(: ,2)); % Vestas 3 MW WT 

%%Assigning Turbulence Adjusted Speed at the corresponding height level of rotor 
disc %% 
u_50 = u(: , l); u_80=u(: ,2); u_95=u(: ,3); u_l 20= u(:,4); u_l27=u(: ,5); u_l 40 = u(:,6); 
u_l48= u(: ,7); u_ l53 = u(: ,8); u_ l70 = u(:,9);u_ l95= u(:, I 0);% Vestas 3 MW Wind 
Turbine 

%%Calculation of Shear Exponent ofVestas 3 MW Wind Turbine %%% 
a50to80 = log(u_ 80.\u_50)./log(80\50); 
%alpha50to80 = (log(u_80.\u_50)./log(80\50)); 
a80to I 00 = log(u_95.\u_ 80)./log(95\80); 
%alpha80to I 00 = (log(u_95.\u_ 80)./log(95\80)); 
a 1 OOto 120 = log(u_ l27.\u_ 95)./log(l27\95); 
%alpha I OOto 120 = (log(u_ l27.\u_95)./log( 127\95)); 
a 120to 140 = log(u_ l40.\u_l27)./log( 140\ 127); 
%alpha 120to 140 = (log(u _140.\u_l27)./(log( 140\ 127)); 
a 140to 160 = log(u_l70.\u _ 140)./log( 170\ 140); 
%alpha 170to 140 = log(u_l70.\u_ l40)./log(l70\ 140); 
a 160to 195 = log( u _ 195 .\u _170)./log(l95\ 170); 
%alpha 195to 160 = log(u _ 195.\u_l70) ./log( 195\ 170); 

% Digitize Manufacturer Supplied Power C urve Vestas V90, 3MW Wind T urbine 
% Vestas 3MW Wind Turbine is Digitised by Plotting power vs speed 
Characteristics 
% START%% 
spd = [ 0 I 2 3 4 5 6 7 8 9 I 0 II 12 13 14 15 16 17 18 19 20 21 22 23 24]; 
pw = [0 0 0 0 81 190 353 581 885 1258 164 1 2004 2353 267 1 2888 2976 3000 3000 
3000 3000 3000 3000 3000 3000 3000]; 
figure( I) 
plot(spd,pw,'b-','MarkerSize',3) 
x labei('Speed (m/s)') ; ylabel('Power (kw)') 
title('Supplied Vestas 3 MW-Wind Turbine') 
ax is([O 24 0 3500]) 
pause 
q = polyfit(spd,pw,8); 
xp= 0:2:25; 
yp = polyval(q,xp); 
figure(2) 
plot(spd,pw,'o',xp,yp ); 
x labei('Speed (m/s)'); ylabel('Power (kw)'); 
title('Curve Fitted Vestas-Wind T urbine'); 
pause 
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%% DISC SPEED ESTIMATION FOR Vestas 3MW, 9 WIND TURBINES%% 
%% Equation; U_ Disk= 2/A* lnt[UZ *sqrt(R"'2- H"' 2+ 2HZ- Z/\2 )dZ] (Integral 
limits H-R to H+R) 
%% Solving using function the disc speed equation adjusted for turbulence and shear 
for wind turbines 
%% Initialising Height Range for Vestas 3MW, 9 Wind Turbines %% 
Wt = zeros(2,2,9); 
%Creating Array of9 Wind turbines; Last Value = 9, Vestas 3MW wind turbines 
Wt(:,:, I) = [50 95 .1 ;95 140]; Wt(: ,:,6) = [95140.1; 140 185] ; 

%Assign height range for 9 wind turbines to solve integral equation 
Wt(:,:,2)=[50 95.1;95 140] ; Wt(: ,:,7)=[83128.1 ; 128 173] ; 
Wt(: ,:,3) = [50 95. 1; 95 140] ; Wt(: ,:,8) = [103 148.1; 148 193]; 
Wt(: ,:,4) = [82 127.1; 127 172]; Wt(:,:,9) = [75 120.1; 120 165] ; 
Wt(: ,:,5) = [108 153.1; 153 198] ; . 

%%Initializing Wind turbine Hub Height (varies due to contour height) H=9, Vestas 
3MW wind turbines; 
%% H = Vestas 3MW Wind Turbines 
H =[95; 95; 95 ; 127; 153; 140; 128; 148; 120]; 

%%SOLVING NUMERIC INTEGRATION US ING FUNCTION;[Y,y are variables 
ofVestas 3MW wind turbines]%% . 
Y = [u_50, u_ 80, u_95, u_l20, u_ l27, u_ 140, u_ l48, u_ I53, u_ I70, u_ 195, a50to80, 
a80tol00, a l00tol20, al20tol40, al40to l60, a l 60tol95]; % Vestas 3MW Wind 
Turbine; Assign variables to solve equation 
%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Vestas 3MW Wind Turbine; Assign variables to solve equation 
y = [1 , 11 ,3, 13; 1, 11 ,3,13; 1, 11 ,3, 13; 2,13,5, 15; 3, 15,8, 16; 3, 14,8, 15; 2, 13,5, 15; 
3, 14,8, 16; 2, 13,5, 15;] ; %To access. the variable that is ass igned(Eg; 3 = u_95 ; 4 = 
u_ l20; I 0 = u_ I95 ; II = a50to80) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%% Calling Vestas 3MW Wind Turbine Using Function 
v = zeros(N, I ,9); %last value = 9-Vestas 3MW, Wind Turbines; Area of 
%Vestas 3MW Wind Turbine = 6362; 
for i I = I :9 % last value = 9 -Vestas 3 MW Wind Turbines 
v2 = ft_v(il ); %Calling using functions for 9 -Vestas 3MW Wind Turbines 
%v2 ; v 
v(: ,:,i l) =(2/6363).* v2(:,:);% Result of Disc Speed is stored in variable v; or 
%Equation = (2/ A) *( Udisc) 
end 
xI = v(: ,:, I) ; % I = First WT disc speed 
x2 = v(: , :,2); % 2 = second WT disc speed 
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x3 = v(:,:,3); % I =First WT disc speed 
x4 = v(:,:,4); % 2 =second WT disc speed 
x5 = v(:, :,5); % I =First WT disc speed 
%% END OF DISC SPEED %%%%%%%%%%%% 

%%POWER PREDICTION FROM DISC SPEED FOR Vestas 3MW; 9 WfND 
TURBINES% 
for i I = I :9 % Last value= 9 WT; VPuncor = Uncorrected Power of Vestas 3 MW 
Wind Turbine 
Vpuncor(: ,:, i I)= 
q(9)+( q(8). *(v( :, :, i I)))+( q(7). *(v( :,: ,i I )) ."'2)+( q( 6). *(v( :,:,i I)). "'3 )+( q(5). *( v( :, :,i I)). "'4) 
+( q( 4 ). * (v( :,:, i I)) . "'5)+( q(3) . *(v( :,:, i I ))."'6)+( q(2) . *(v( :, :, i I ))."'7) +( q( I). *(v( :, :,i I)). "'8); 
Vpcor(:,: , i I )=Vpuncor(: ,: ,i I). *(act_ density./ 1.225); 
end 
%%POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR Vestas 
3MW WIND TURBINE;%% 
nn2 = length(v(:,: ,i I)); 
for il = I :9 
AAI = find(Vpcor(:,:,il)>=3000); %Rated power is equal to 3000 KW 
nn3 = length(AA I); 
for j2 = I :nn3 
Vpcor(nn2*(i 1-1 )+ AA I 02))=3000; %Power remains constant after rated wind 
speed 
end; 
end 

%WAKE MODEL FOR Vestas 3 MW WIND TURBINE 
%WAKE SPEED ESTIMATION FOR Vestas 3 MW, 9 WfND TURBINES % 
% Rrot =Radius ofGE Wind Turbine; x = Distance between nearest wind turbine; 
%Ashad = Area of shadow region of wind turbines 
% Arot = Area ofGE wind turbine rotor; Ct = Thrust coefficient of wind turbine; tana 
%= 0.04(no-wake)/0.08(wake); Rx = Radius of shadow cone 
% v(: ,:,i I) = Disc Speed; Uwake(:,:, i I)= Wake Speed of Wind Turbine 

X= [250;250; I 000;250;250;250;0;250;250;]; 
Ashad =[2500;2500;0;3181 ;3772;2181 ;0;3772;3181 ]; 
% Equation: Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for WT
Wind Turbine 
% Ct = 3.5*(2*Vhub- 3.5)/ (Vhub)"'2; 
% R(x) = Rrot + x.tana; tana = 0.04 (free speed) or tana = 0.08 (wake)% 
% Uwake = Vi[!- sqrt(l- Ct)*(Rrot/R(x))"'2*(Ashad I Arot)] 
fori I = I :9 % 9, Vestas 3MW Wind Turbines 
Rrot =45 ; 
Ct(: , :, i I) = 3.5.*((2. *v(:,:, i I))- 3.5)./(v(: ,:,i 1))."'2; 
tana =0.08; 
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Rx(i I) = Rrot + x(i I )*tana; 
Arot = 6362; 
Uwake( :,:,i I) = v( :, :,i I).*( 1- sqrt( I - Ct(:,: , i 1 )). * (Rrot/Rx( i I ))/\2. *(Ashad(i I)/ Arot)); 
end 

%%POWER PREDICTION FROM DISC SPEED FOR Vestas 3MW; 9 WIND 
TURBINES% 
fori I = I :9% Last value= 9 WT; VPuncor = Uncorrected Power ofVestas 3MW 
Wind Turbine 
Vpuncorw(:,:, i I)= 
q(9)+(q(8). *(Uwake(: , :,i I)))+( q(7). *(Uwake(: ,:,i I )). /\2)+(q(6). *(Uwake(:,:, i I )). /\3)+( 
q(5). *(Uwake(: ,:,i I )) ./\4)+(q( 4). *(Uwake(:, :,i I )). /\5)+(q(3). *(Uwake(:,:, i I ))./\6)+(q(2). 
*(Uwake(:, :, i 1 )). /\7) +(q( I) . *(Uwake(:,:,i 1 )). /\8); 
Vpcorw(: ,:, i 1 )=Vpuncorw(:,:, i 1 ). *(act_density./1.225) ; 
end 

% POWER REMA INS CONSTANT AFTER RATED WIND SPEED FOR Vestas 
3MW WIND TURBINE 
nn4 = length(Uwake(:,:, i I)) ; 
for il = I :9 
AA3 = find(Vpcorw(: ,:,i 1)>=3000); . % Rated power is equal to 3000 kw 
nn5 = length(AA3); 
for j2"" 1 :nn5 
Vpcorw(nn4*(i 1-1 )+ AA3U2))=3000; % Power remains constant after rated speed 
end 
end 

%%%%% START OF WAKE COEFFICIENT At 45 and 225 degree 
%Sum ofNo-wake power ofwindfarm = VE_cpw 
%Sum of wake power ofwindfarm ~ VE_wpw 
%Wake Coefficient = Sum of No-wake power/Sum of Wake power 

VE_cpw = Vpcor(: ,:, l) + Vpcor(:,:,2)+ Vpcor(: ,:,3)+ Vpcor(:,: ,4)+ Vpcor(:, :,5) + 
Vpcor(:, :,6)+ Vpcor(: ,:,7)+ Vpcor(:, :,8)+ Vpcor(:, :,9); 
VE_wpw = Vpcorw(: ,: , 1) + Vpcorw(: ,:,2)+ Vpcorw(: ,:,3)+ Vpcorw(: ,:,4)+ 
Vpcorw(: ,:,5) + Vpcorw(:,:,6)+ Vpcorw(: ,:,7)+ Vpcorw(:,:,8)+ Vpcorw(:,:,9); 
Total I = sum(VE_cpw); % No-wake windfarm power 
Total2 = sum(VE_wpw); % Wakewindfarm power 
we = Total2/Totall ; %Wake coefficient 

%%%% Wind Direction and Wake Coefficient Evaluation 
wd = array(:,6); %Accessing Wind Direction time series data 
Wake Coeff= 
wc*(wd<=50). * (wd>=40)+wc*(wd<=230). *(wd>=220)+(wd>50). *(wd<220)+(wd<40 
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)+(wd>230);% Equation determinirrg the wake and Nowake data depending on the 
wind direction 
%% %%%%%%%%%%%% END%%%%%%%%%%%%%%%%%% 

%%AVERAGE WINDFARM POWER- Vestas 3MW, 9 WIND TURBINES 
Avg_ VE = mean(Vpcor(: ,:, I))+ mean(Vpcor(:,:,2))+ mean(Vpcor(: ,:,3))+ 
mean(Vpcor(: ,:,4))+ mean(Vpcor(:,:,5))+ mean(Vpcor(:,:,6))+ mean(Vpcor(:, :,7))+ 
mean(Vpcor(: ,:,8))+ mean(Vpcor(:,:,9)); 
Avg_ VE_wake = mean(Vpcorw(:, :, I))+ mean(Vpcorw(: ,:,2))+ mean(Vpcorw(: ,:,3))+ 
mean(Vpcorw(:,:,4))+ mean(Vpcorw(:, :,5))+ mean(Vpcorw(: ,:,6))+ 
mean(Vpcorw(:,:, 7))+ mean(Vpcorw(: ,:,8))+ mean(Vpcorw(: ,:,9)); 

% FERMEUSE WIND FARM AVERAGE POWER 
Avg_farm = Avg_ VE; 

%AVERAGE WINDFARM POWER WITH TRANSM ISSION LOSS OF I %% 

VE_Ioss = VE_cpw*0.99; 
VE_wakeloss = VE_wpw*0.99; 
Actual_power = VE_cpw - VE_ loss; 
Actual_power_ wake = VE_wpw - VE_wakeloss; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%PLOTTING FIGURES FROM THE SIMULATED RESULT 
%%SENSOR HEIGHT WIND SPEED Vestas 3MW WIND TURBINE% 
figure(3) 
plot(hour, WS _ 80, 'b-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabei('W ind Speed (m/s)'); 
title('Sensor Height of Vestas Wind Turbine'); 
pause 
%Mean value of wind speed data at.80m% 
Sensor_80m = mean(WS_80); 
std_sensor = std('Sensor_80m'); 

% DISC SPEED OF Vestas 3MW WIND TURBINE-2% 
figure(4) 
plot(hour, v( :,:,2),'g-') 
ax is([O I 000 0 30]) 
xlabei('Time (min)'); 
ylabel('Wind Speed (m/s)'); 
title('Disc Speed of Vestas Wind Turbine-2'); 
pause 
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%Mean value of wind speed data at 80m % 
disc_80m = mean(v(: ,:,2)); 
%% VERTICAL SHEAR OF Vestas 3MW WIND T URBINE-2 % 
% Vestas 3MW WIND TURBINE% 
figure(5) 
plot(hour, WS( :,2),'r-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
y label('Wind Speed (m/s)'); 
title('Yertical Shear ofVestas Wind Turbine-2'); 
pause 
% Mean value ofwind speed data at 80m % 
vs_80m = mean(WS(: ,3)); 

%% T URBULENCE ADJ USTED SPEED OF Vestas 3MW WIND TURBINE-2% 
% Vestas 3MW WIN D TURBINE% 
figure( 6) 
plot(hour,u _ 95,'r-') 
axis([O I 000 0 30]) 
x label('Time (min)'); 
ylabe l('Wind Speed (m/s)'); 
title('Turbulence Adjusted Speed ofYestas Wind Turbine-2'); 
pause 
% Mean value of wind speed data at 80m % 
ts_80m = mean(u_95); 

%% WAKE SPEED OF Vestas 3MW WIND TURBINE-2% 
% Vestas 3MW WIND TURBINE% 
figure(7) 
p lot(hour, U wake(:,: ,2), 'r-') 
ax is([O I 000 0 30]) 
x label('Time (min)'); 
ylabel('Wind Speed (m/s)'); 
title('Wake Speed ofVestas Wind Turbine-2'); 
pause 
% Mean va lue of wind speed data at 80m % 
wk_80m = mean(Uwake(:,:,2)); 

%%NO-WAKE AND WAKE POWE R OF WIND TURBINE WITH RESPECT TO 
T IM E% 
% Yestas 3MW WIND TURBINE% 
fi gure(8) 
plot(hour, V pcorw( :, :,2),'k-',hour, V pcor(:, :,2), 'r-') 
axis([O I 000 0 3200]) 
x label('Time (min)') ; 
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ylabei('Wind Power (kw)') ; 
title('No-wake(red)and Wake Power ofVestas Wind Turbine-2'); 
pause 
% Mean value of wind power data at 80m % 
wkp 1_80m = mean(Vpcorw(: ,:,2)); 
nowk_80m = mean(Vpcor(:,:,2)); 
uncorr_pogewt =mean(Vpuncor(:,: ,2)); 

%% WfNDFARM POWER WITH RESPECT TO TIME 
% Vestas 3MW WIND TURBfNES 
figure(9) 
plot(hour, VE _ cpw ,'k -') 
axis([O I 000 0 40000]) 
xlabel('Time (min)'); 
y labei('Windfarm Power (kw)'); 
title('Windfarm Power of Windturbines'); 
pause 
% Mean value of wind farm power data % 
wfnowkpowl = mean(VE_cpw); 

% COMPARISION OF WfNDFARM POWER WITH AND WITHOUT WAKE 
EFFECT% 
% Vestas 3MW WfND TURBfNES 
figure( I 0) 
plot(hour, VE_ cpw,'k-',hour, VE_ wpw,'r-') 
axis([O I 000 0 40000]) 
xlabei('Time (min)'); 
y labei('Windfarm Power (kw)'); 
title('Comparision of Wind farm Power With and Without(black)Wake Effect'); 
pause 
%Mean value ofwakefarm power data % 

wfwkpower l = mean(VE_wpw); 

%% WfND DIRECTION AND WAKE COEFFICIENT OF WfNDFARM 
% Wind direction @45 degree and @225 degree, the wake coefficient is 0.84 
figure( II) 
plot(hour, Wake_ Coeff,'k-') 
axis([O 500 0 1.5]) 
x label('Time (min)') ; 
ylabei('Wake Coefficient') ; 
title('Wind Direction and Windfarm Efficiency') ; 
pause 
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%% WINDF ARM POWER WITH TRANSMISSION LOSS OF 1% 
% TRANSMISSION LOSS POWER OF Vestas 3MW WIND TURBINES WITH 
NO-WAKE EFFECT 
figure(12) 
plot(hour, VE _loss,'k-') 
axis([O I 000 0 40000]) 
xlabei('Time (min)'); 
ylabei('Windfarm Power (kw)'); 
title('Windfarm Powerless in Transmission With No-Wake Effect'); 
pause 
% Mean value of no-wake wind power transmission loss data % 
tlnowkpwGE_MJT = mean(VE_Ioss); 

% TRANSMISSION LOSS POWER OF Vestas 3MW WIND TURBINES WITH 
WAKE EFFECT 
figure(13) 
plot(hour, VE _ wakeloss,'r-') 
axis([O 1000 0 40000]) 
x labei('Time (min)') ; 
y labei('Windfarm Power (kw)'); 
title('Windfarm Powerless in Transmission With Wake Effect'); 
pause 

%Mean value of wake wind power transmission loss data % 
tlwkpwGE_ MIT = mean(VE_wakeloss); 
%ACTUAL POWER OF Vestas 3MW WIND TURB INES(NO-WAKE-EFFECT)% 
figure( 14) 
plot(hour, VE _ loss,'k-') 
ax is([O 1 000 0 40000]) 
x labei('Time (min)'); 
ylabel('Windfarm Power (kw)'); 
title('Transmission Loss Power(No-Wake Effect)'); 
pause 

%Mean value of w ind power transmission loss data % 
actpwGE_M IT = mean(Actual_power); 
%ACTUAL POWER OF Vestas 3MW WIND TURBINES(WAKE EFFECT)% 
figure( IS) 
plot(hour, VE _ wakeloss,'g-') 
axis([O I 000 0 40000]) 
x labei('Time (min)'); 
ylabel('Windfarm Power (kw)'); 
title('Transmission Loss(Wake Effect)'); 
pause 
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%Mean value of wake wind power transmission loss data % 
actwkpwGE_MIT = mean(Actual_power_wake) ; 

% WIND DIRECTION PLOT 
figure(16) 
plot(hour, wd,'r-') 
axis([O 1000 0 400]) 
xlabei('Time (min)') ; 
ylabei('Wind Direction)'); 
title('Wind Direction in Windfarm Site'); 
pause 
figure(l7) 
plot(hour, wd,'r-') 
axis([O 500 0 400]) 
xlabei('Time (min)'); 
ylabei('Wind Direction)') ; 
title('Wind Direction in Windfarm Site'); 
pause 
figure(18) 
plot(hour, Wake_ Coeff, 'k -') 
axis([O I 000 0 1.5]) 
xlabei('Time (min)') ; 
ylabei('Wake Coefficient'); 
title('Wind Direction and Windfarm Efficiency') ; 
figure(19) 
v8( :, :, I)= sort(v(: , :, 1 )); 
Vp 1 cor= sort(Vpcor(: ,:, I)) ; 
plot(v8(: ,:, I ),Vp I cor,'r-') ; 
xlabei('Wind Speed (m/s)') ; 
ylabei('Wind Power (kw)'); 
title('Vestas 3 MW Wind Turbine-!') ; 
axis([O 25 0 3500]); 
pause 
fi gure(20) 

v8( :, :,2)= sort(v(: ,:,2)); 
Vp2cor = sort(Vpcor(:, :,2)); 
plot(v8(: ,:,2), V p2cor,'k-'); 
x labei('Wind Speed (m/s)') ; 
ylabei('Wind Power (kw)') ; 
title('Vestas 3 MW Wind Turbine-2') ; 
axis([O 25 0 3500]); 
pause 
fi gure(21) 

v8(:, :,3)= sort(v(: ,:,3)) ; 
Vp3cor = sort(Vpcor(: ,:,3)); 
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plot(v8( :,:,3), Vp3cor, 'r-'); 
axis([O I 000 0 30]) 
xlabei('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Disc Speed ofVestas Wind Turbine-3'); 
pause 
figure(22) 
v8( :,:,4 )= sort(v( :, :,4 )); 
Vp4cor = sort(Vpcor(:,:,4)); 
plot( v8( :,:,4 ), Vp4cor, 'r-'); 
xlabei('Wind Speed (m/s)'); 
ylabei('Wind Power (kw)'); 
title('Vestas 3 MW Wind Turbine-4'); 
axis([O 25 0 3500]); 
pause 
figure(23) 

v8( :, :,5)= sort(v(:,:,5)); 
Vp5cor = sort(Vpcor(:,:,5)); 
plot(v8( :, :,5), Vp5cor,'k-'); 
xlabei('Wind Speed (m/s)'); 
ylabei('Wind Power (kw)') ; 
title('Vestas 3 MW Wind Turbine-S'); 
axis([O 25 0 3500]); 
pause 
figure(24) 

v8(:, :,6)= sort(v(:,:,6)); 
Vp6cor = sort(Vpcor(:,: ,6)); 
plot(v8(: , :,6), V p6cor,'r-') ; 
x labei('Wind Speed (m/s)'); 
ylabei('Wind Power (kw)') ; 
title('Vestas 3 MW Wind Turbine-6'); 
axis([O 25 0 3500]); 
pause 
figure(25) 
v8(: ,:,7)= sort(v(:,:,7)); 
Vp7cor = sort(Vpcor(:,:,7)); 
plot(v8( :,:, 7), V p7cor, 'k-'); 
xlabei('Wind Speed (m/s) '); 
ylabei('Wind Power (kw)'); 
title('Vestas 3 MW Wind Turbine-7'); 
axis([O 25 0 3500]); 
pause 
figure(26) 
v8(:,:,8)= sort(v(:,:,8)); 
Vp8cor = sort(Vpcor(:,:,8)); 
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plot( v8( :, :,8), Vp8cor, 'r-'); 
xlabel('Wind Speed (m/s)') ; 
ylabei('Wind Power (kw)'); 
title('Vestas 3 MW Wind Turbine-S'); 
axis([O 25 0 3500]); 
pause 
figure(27) 
v8( :,:,9)= sort(v( :, :, 9)); 
Vp9cor = sort(Vpcor(:, :,9)); 
plot(v8( :,:,9), V p9cor, 'k-'); 
xlabei('Wind Speed (m/s)') ; 
ylabel('Wind Power (kw)') ; 
title('Yestas 3 MW Wind Turbine-9'); 
axis([O 25 0 3500]); 
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Appendix J 

% Vestas 3 MW WIND TURBINE FUNCTION% 
%%Calling function from main program to solve disc speed equation%% 
%% Sub program %% 
%%START%% 
function v = ft_ v(i I) % Function is called from main program and contains result of 

disc speed 
global Wt Y y N H 
z7 = Wt(l , 1,i1 ); %Lower Half of Rotor Disc (Minimum Height Limit) 
z7max = Wt(2, l ,i 1 ); %Lower Half Of Rotor Disc (Maximum Height Limit) 
R =45; %Radius of Wind Turbine 
H7 = H(i I); % Hub height is varying for each wind turbine 
dz=O.I; % dz is from disc equation and signifies height range in steps of o.l 
i = 1; 
v7 = zeros(N, I); %Creating Array for time series data 
while z7<=z7max % Lower rotor disc (Height limits from minimum to maximum 
value) 
v7( :, 1) v7( :, I)+ abs(Y (:;y(i I, 1 )). *power((z7 /80), Y ( :,y(i 1 ,2))). * sqrt((R/'2)-

(H7/'2)+(2.*H7.*z7)-(z7."'2)).*dz); % Udisc Equation 
i = i+1; 
z7 =z7+0.1; 

end 
z7 = Wt(1,2,i1); %Upper HalfofRotor Disc (Minimum Height Limit) 
z7max = Wt(2,2,i1); %Upper Half of Rotor Disc (Maximum Height Limit) 
i = 1; 
while z7<=z7max %Upper rot<?r disc (Height limits from min im um to maximum 
value) 
v7(: , I) v7(:, I)+ abs(Y(: ,y(i I ,3)). *power((z7 / 150), Y(:,y(i 1 ,4))). *sqrt((R. "'2)

(H7."'2)+(2.*H7.*z7)-(z7."'2)).*dz); % Ud isc Equation % "It adds all the results from 
H-R to H+R of rotor disc " 
i = i+ l; 
z7 =z7+0.1 ; 
end 
v = v7; 
end 
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Appendix K 

Main Program: MATLAB Code ofCedar Creek Colorado Wind farm 
%%CEDAR CREEK COLORADO WINDF ARM IMPLEMENTATION 
%% GE 1.5 MW, 53 WIND TURBINES; MITSUBISHI 1 MW, 221 WIND 
TURBINES 

%%IMPLEMENTATION OF 274 WIND TURBINES USING FUNCTION %% 
%array = dlmread('Inputdata 12.csv',','); % Accessing Input 10 Minute Wind Data 
from the file 
%array= dlmread('Inputdatal3 .csv',','); %Accessing Input 10 Minute Wind Data 
from the file 
%array = dlmread('Inputdata 14.csv',',');% Accessing Input I 0 Minute Wind Data from 
the file 
array = dlmread('Inputdatal5.csv',','); %Accessing Input 10 Minute Wind Data from 
the file 
global Wt N Y y H H2 Wtt Y2 y2 
hour = array(: ,5) ; %Accessing Minutes/Seconds Data in Time Series Order 
WS_80 =array(: ,6); %Accessing Input Wind Speed at 80m Sensor Height forGE 1.5 
MW Wind turbine 
WS 1_69 =array(: , 1 ); % Accessing Input Wind Speed at 69m Sensor Height for 
%Mitsubishi 1 MW Wind turbine 
N = numel(hour); %Accessing Total Number of Time Series Data 
TK = array(:,2); %Accessing Temperature 
act_density = array(:,4); %Accessing act_ density = 3.4837*Pressure/Temperature; 
wd = array(:,7); %Accessing Wind Direction time series data 

%%SOLVING FOUR EQUATIONS OF DESIGNED ALGORITHM %% 
%There are two different wind turbines GE and Mitsubishi 
% WS and WS I = Verical Shear using shear exponent 0.143 ; 
%% [Equation: U2/U I = (H2/H I )"'0'.143] 
% sd and sd I= standard deviation of wind speed data; 
%% [Equation: sd = standard deviation ofwind speed] 
% lu and luI = Turbulence Intensity; 
%% [Equation: lu = Standard deviation of WS/ Mean (WS)] 
% u and u I = Turbulence Adjusted Speed; 

%%[Equation: U(TI)=cuberoot[(U)"'3*(1+31u/\2))] 
i2 = I; 
for Y = [69,80, I 00, 120, 160,200,220, 153,141] 
% Y = Height Range at the wind turbine rotor disc 

WS(: , i2) = WS_80.*(Y/80)./\(0.143); 
% 80m Height forG E 1.5 MW Wind turbine 
WSI(: ,i2) = WSI _69.*(Y/69)./\(0.143); 
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% 69m Height for Mitsubishi 1.0 MW Wind Turbine 
sd( :,i2)=std(WS( :,i2)); 
% 80m Height forGE 1.5 MW Wind turbine 
sd I (:, i2)=std(WS I (:,i2)) ; 
% 69m Height for Mitsubishi 1.0 MW Wind Turbine 
lu(:,i2) = std(WS(:, i2)) ./(WS(:,i2)); % 80m Height forG E 1.5 MW Wind turbine 
luI (:,i2) = std(WS I (: , i2)) ./(WS I (:, i2)); % 69m Height for Mitsubishi 1.0 MW Wind 

Turbine 
u(: ,i2)=nthroot((power(WS( :,i2),3 ). *(I +power(l u(: ,i2),2). *3)),3); 
% 80m Height forGE 1.5 MW Wind Turbine 
u I (:,i2)=nthroot((power(WS I (: , i2),3). *(I +power(lu I (: ,i2),2). *3)),3); 

% 69m Height for Mitsubishi 1.0 MW Wind Turbine 
i2 = i2+ 1; 

end 
%% END 

%% Assigning Turbulence Adjusted Speed at the corresponding height level of rotor 
disc %% 
% GE 1.5 MW Wind Turbine 
u_69 = u(: , l); u_80=u(: ,2); u_IOO=u(: ,3); u_ l20=u(: ,4); u_160=u(:,5) ; u 200 = 
u(: ,6) ; u_220 = u(: ,7); u_ l53 = u(: ,8); u_ l41 = u(:,9); 

% Mitsubishi I MW Wind Turbine 
ul _ 69 = ul(:, l); ul _80=u1(: ,2); ui _ IOO=u1(: ,3); ul _ 120=u1(: ,4); ul _ l 60=u1(: ,5); 
ul _ 200 = u1(:,6); u1 _ 220 = ul(: ,7); ul _ l53 = ul (:,8); ul _ l41 = ul (:,9); 

%%Calculation of Shear Exponent 9fG E Wind Turbine %% 
a69to80 = log(u_80.\u_69)./log(80\69) ; 
% [Equation] %alpha69to80 = (log(u_ 80.\u_69)./log(80\69)); 
a80to I 00 = log(u_ l OO.\u_ 80)./log(l 00\80); 
%alpha80to 100 = (log(u_ l OO.\u_80)./log( I 00\80)); 

a100to 120 = log(u_ l20.\u_ IOO)./Iog(l 20\ 100); %alpha l00to 120 = 
(log(u_ l 20.\u_ 1 00)./log( 120\1 00)); 
a 120to 160 = log(u_160.\u_ 120)./log(1 60\ 120); %alpha 120to l60 = 
(log(u_ l60 .\u_1 20)./(log(160\ 120)); 
a 160to200 = log(u_200.\u_160)./log(200\ 160); %alpha 160to200 = 
(log( u_ 200.\u _ 160)./(log(200\ 160)); 
a200to220 = log(u_220.\u_200)./log(220\200); %alpha200to220 = 
(log( u _ 220.\u _ 200)./(log(220\200)); 
%Calculation of Shear Exponent of Mitsubishi Wind Turb ine %% 

a 169to80 =log(u I_ 80.\u I_ 69)./log(80\69);% Equation] 
%alpha 169to80 = (log(u 1_ 80.\u I_ 69)./log(80\69)) ; 
a 180to 100 = log(u 1_ 1 00.\u I_ 80)./log( I 00\80) ; 
%alpha 180to I 00 = (log(u 1_ 1 00.\u I_ 80)./log( I 00\80)); 

a I I OOto 120=1og( u 1_ 120.\u 1_ 1 00)./log( 120\ I 00); 

185 



%alpha II OOto 120 = (log(u 1_120.\u 1_1 00)./log( 120\ I 00)); 
al120to160 = log(u1 _ 160.\u1_120)./log(l60\ 120); 
%alphall20tol60 = (log(u1_160.\ul_l20)./(log(l60\ 120)); 

all60to200 = log(ul_200.\ul_l60)./log(200\ 160); 
%alpha 1160to200 = (log(u 1_200.\u 1_160)./(log(200\ 160)); 
al200to220 = log(ul _220.\u1_200)./log(220\200); 
%alpha 1200to220 = (log(u I _ 220.\u I_ 200)./(log(220\200)); 

%% DIGITIZE MITSUBISHI I MW WIND TURBfNE POWER VS SPEED 
CHARACTERISTICS 
spdl = [0 I 2 3 4.0 5.0 5.5 6.0 6.5 7.0 7.5 8.0 9.0 10 10.5 II 11.5 12 13 1415 16 1718 
19 20 21 22 23 24 25]; 
pwl = [0 0 0 0 10 20 30 55 90 140 200 280 480 730 830 900 950 980 1000 1000 1000 
1000 1000 I 000 I 000 I 000 I 000 I 000 1000 I 000 I 000]; 
figure( I) 
plot(spd I ,pw I ,'r-','MarkerSize',3) 
x label('Wind Speed (m/s)'); 
ylabel('Wind Power (kw)'); 
title('Mitsubishi I MW Wind-Turbine'); 
axis([O 25 0 1200]) 
q I = polyfit(spd I ,pw I , 18); 
% Curve Fitted to 18th degree 
xp= 0: I :25; 
yp = polyval( q I ,xp ); 
figure(2) 
plot(spd I ,pw l ,'o',xp,yp); 
x label('Wind Speed (m/s)') ; 
y labe l('Wind Power (kw)'); 
title('Mitsubishi I MW Wind-Turbine') ; 
axis([O 25 0 1200]) 

%DIGITIZE GE 1.5MW WIND TURBINE POWER VS SPEED 
C HARACTERISTICS 
spd2 = [I 2 3 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10 10.5 11 11.5 12 12.5 
13 14 15 16 17 18 19 20 21 22 23 24 25] ; 
pw2 = [0 0 0 15 20 35 50 90 160 250 340 470 600 750 950 1100 1220 1320 1400 1450 
1480 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500 1500]; 
figure(3) 
plot(spd2,pw2,'b-','MarkerSize',3) 
x label('Wind Speed (m/s)'); 
y label('Wind Power (kw)') 
title('GE 1.5 MW Wind-Turbine') 
axis([O 25 0 1800]) 
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pause 
q2 = polyfit(spd2,pw2, 17); 
%Curve Fitted to 17th degree 
xp= 0:1 :25; 
yp = polyval( q2,xp ); 
f = polyval(spd2,q2); 
figure(4) 
plot(spd2,pw2,'o',xp,yp ); 
xlabel('Wind Speed (m/s)') ; 
ylabei('Wind Power (kw)'); 
title('GE 1.5 MW Wind-Turbine'); 
axis([O 25 0 1600]) 
pause 

%%DISC SPEED ESTIMATION FORGE 1.5 MW, 53 WIND TURBINES %% 
%%Equation; O_ Disk= 2/A* Int[UZ *sqrt(R" 2- H"2+ 2HZ- Z" 2 )dZ) 
(Integral limits H-R to H+R) 
%% Solving using function the disc speed equation adjusted for turbulence and shear 
for wind turbines 
%Initialising Height Range forGE 1.5 MW, 53 Wind Turbines%% 
Wt = zeros(2,2,53); %Creating Array of 53 Wind turbines; Last Value = 53 GE 1.5 
%MW wind turbines 
%Assign height range for 53 wind turbines to solve integral equation 
Wt(:,: , l) = [l08 150.1; 150 185]; Wt(: ,:,2) = [114 150.1; 150 191); Wt(:, :,3)=[114 
150.1; 150 191] ;Wt(: ,:,4) = [120 1~0.1 ; 160 197] ; Wt(: ,:,5) = [116 160.1; 160 193) ; 
Wt(: ,:,6) = [118 150.1 ; 150 195] ; Wt(:,:,7) = [131 160.1 ; 160 208) ; Wt(:,:,8) = [129 
160.1 ; 160 206]; Wt(: ,:,9) = [132 160.1 ; 160 209); Wt(: ,:, IO)= [129 160.1; 160 
206] ; Wt(:, :, ll) = [114 150.1 ; 150 191); Wt(: ,:,12) = [116 150.1 ; 150 
193];Wt(: ,:, 13) = [116 150.1 ; 150 193) ; Wt(: ,:,14) = [120 160.1; 160 197); 
Wt(: ,:,l5) = [125 160.1; 160 202) ; 
Wt(:,:, l6) = [125 160.1 ; 160 202] ; Wt(: ,:, 17) = [130 160.1 ; 160 207) ; 
Wt(:, :, 18) = [ 130 160.1; 160 207) ; Wt(: ,:, 19) = [ 129 160. 1; 160 206) ; 
Wt(: ,:,20) = [132 160.1 ; 160 209] ; Wt(: ,:,21) = [1 33 160.1; 160 2 10]; 
Wt(: ,:,22) = [127 160.1; 160 204) ;Wt(:,:,23) = [121 160.1 ; 160 198) ; 
Wt(: ,:,24) = [126 160.1; 160 203) ;Wt(:,:,25) = [132 160.1 ; 160 209]; 
Wt(:,: ,26) = [130 160.1 ; 160 207) ;Wt(:,:,27) = [132 160.1 ; 160 209); 
Wt(: ,:,28) = [143 160.1; 160 200) ;Wt(:,:,29) = [140 160.1 ; 160 217] ; 
Wt(:,: ,30) = [146 200.1 ; 200 223];Wt(:,: ,31) = [139 160.1; 160 216] ; 
Wt(: ,:,32) = [141 160.1 ; 160 218] ;Wt(: ,:,33) = [137 160.1 ; 160 215] ; 
Wt(: ,:,34) = [142 160.1 ; 160 219] ;Wt(:,:,35) = [145 200.1 ;200 222]; 
Wt(: ,:,36) = [142 200.1 ; 200 219];Wt(:,:,37) = [141 200.1 ; 200 2 18] ; 
Wt(: ,:,38) = [1 27 160.1; 160 204] ;Wt(:,:,39) = [1 32 160.1 ; 160 209] ; 
Wt(: ,:,40) = [132 160.1 ; 160 209] ;Wt(:,:,41) = [135 160.1 ; 160 2 12); 
Wt(: ,:,42) = [141 160.1 ; 160 218) ;Wt(: ,:,43) = [140 160.1 ; 160 2 17] ; 
Wt(: ,:,44) = [138 160.1; 160 215) ;Wt(: ,:,45) = [1 26 160. 1; 160 203] ; 
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Wt(:, :,46)=[129 160.1 ; 160 206];Wt(:,:,47) = [132 160.1; 160 209] ; 
Wt(:, :,48) = [129 160.1; 160 206] ;Wt(:,:,49) = [129 160.1 ; 160 206] ; 
Wt(: ,:,50) = [126 160.1 ; 160 203];Wt(:,:,51) = [126 160.1; 160 203] ; 
Wt(: ,:,52) = [125 160.1 ; 160 202] ;Wt(: ,:,53) = [126 160.1 ; 160 203]; 

%% DISC SPEED ESTIMATION FOR MITSUBISHI 1 MW, 221 WIND 
TURBINES%% 
%% Solving using function the disc speed equation adjusted for turbulence and shear 
using functions for wind turbines 
% Initialising Height Range for MITSUBJSHI I MW, 221 Wind Turbine 
Wtt = zeros(2,2,221 ); % Creating Array of 221 Wind turbines; Last Value = 221 
MITSUBISHI Wind Turbines 

%Assign height range for 221 wind turbines to solve integral equation 
Wtt(: ,:, l) = [107 140.1; 140 169] ; Wtt(: ,:,2) = [110 140. 1; 140 172] ; 
Wtt(: ,:,3) = [113 140.1; 140 175] ; Wtt(:, :,4) = [120 160.1 ; 160 182] ; 
Wtt(: ,:,5) = [119 160.1 ; 160 181]; Wtt(:,:,6) = [120 160.1; 160 182] ; 
Wtt(:, :,7) = [119 160.1; 160 181]; Wtt(:,:,8) = [120 160.1 ; 160 182] ; 
Wtt(:, :,9) = [125 160. 1; 160 187];Wtt(:,:,l0)= [129 160.1; 160 191]; 
Wtt( :,:, 11) = [116 140.1; 140 178];Wtt(:, :, l2) = [114 140.1 ; 140 176]; 
Wtt( :, :,13) = [114 140.1; 140 176];Wtt(:, :, l4) = [110 140.1 ; 140 173]; 
Wtt(: ,:, l5) = [112 140.1 ; 140 174] ;Wtt(:, :, l6)= [115 140.1 ; 140 177] ; 
Wtt(:, :, l7)=[117 140.1; 140 179] ;Wtt( :, :, l8)= [118 140.1; 140 180]; 
Wtt(: ,:, l9) = [119 160.1; 160 18l] ;Wtt(:,:,20)= [118 140.1 ; 140 180] ; 
Wtt(:, :,21) = [123 160.1; 160 185] ;Wtt(:,:,22) = [124 160.1; 160 186]; 
Wtt(: ,:,23) = [125 160.1 ; 160 187] ;Wtt( :, :,24)= [124 160.1; 160 186]; 
Wtt(: ,:,25) = [127 160.1 ; 160 189] ;Wtt( :, :,26)= [128 160.1; 160 190]; 
Wtt(: ,:,27) = [126 160.1 ; 160 188] ;Wtt(:,:,28) = [110 140.1 ; 140 172] ; 
Wtt( :,:,29) = [109 140.1; 140 17l];Wtt(:,:,30) = [113 140.1 ; 140 175] ; 
Wtt(: ,:,3 1) = [109 140.1 ; 140 171];Wtt(:, :,32) = [110 140.1; 140 172] ; 
Wtt(: ,:,33) = [11 3 140.1 ; 140 175];Wtt(:,:,34) = [118 140.1; 140 180] ; 
Wtt(: ,:,35) = [121 160.1 ; 160 183] ;Wtt(:, :,36) = [1 22 160.1; 160 184]; 
Wtt( :, :,37) = [125 160.1 ; 160 187] ;Wtt(:,:,38) = [124 160.1; 160 186] ; 
Wtt(: ,:,39) = [125 160.1 ; 160 187] ;.Wtt(: ,:,40) = [128 160.1; 160 190]; 
Wtt( :,:,41) = [129 160.1 ; 160 191]; Wtt(: ,:,42) = [130 160.1; 160 192]; 
Wtt(:, :,43) = [130 160.1 ; 160 192] ; Wtt(: ,:,44) = [130 160.1 ; 160 192] ; 
Wtt( :, :,45) = [131 160.1 ; 160 193] ; Wtt(: ,:,46) = [134 160.1; 160 196]; 
Wtt(: ,:,47) = [133 160.1; 160 195] ;Wtt(:,:,48)= [135 160.1; 160 197]; 
Wtt( :, :,49) = [134 160.1; 160 196];Wtt(:,:,50)= [133 160.1 ; 160 195] ; 
Wtt(: ,:,51) = [134 160.1; 160 196] ;Wtt(:,:,52) = [133 160.1 ; 160 195] ; 
Wtt(: ,:,53) = [1 34 160.1; 160 196] ;Wtt(:, :,54) = [135 160.1; 160 197]; 
Wtt(: , :,55) = [138 160.1; 160 200] ;Wtt(:, :,56)= [135 160.1; 160 197; 
Wtt(:,:,57) = [95 140.1 ; 140 157];Wtt(:, :,58) = [101 140.1 ; 140 163]; 
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Wtt(:,: ,59)=[100 140.1 ; 140 162] ;Wtt(:, :,60) = [101 140.1; 140 163]; 
Wtt(: ,:,6 1) = [99 140.1; 140 161] ; Wtt(:,:,62) = [103 140.1; 140 165] ; 
Wtt(:, :,63)=[104140.1 ; 140 166] ;Wtt(:,:,64)=[110 140.1;1 40 172]; 
Wtt(:,:,65)=[109 140.1 ; 140 171] ;Wtt(:,:,66) =[108 140.1 ; 140 170]; 
Wtt(: ,:,67) =[110 140.1; 140 172] ; Wtt(:,:,68) = [112 140.1 ; 140 174]; 
Wtt(: ,:,69) =[114 140.1 ; 140 176] ;Wtt(:,:,70) =[116 140.1; 140 178] ; 
Wtt(:,:,71) = [123 160.1 ; 160 185];Wtt(:, :,72) = [124 160.1 ; 160 186] ; 
Wtt(:,:,73) = [122 160.1; 160 184];Wtt(:,:,74) = [125 160.1; 160 187]; 
Wtt(:,:,75) = [125 160.1; 160 187];Wtt(:,:,76) = [126 160.1; 160 188]; 
Wtt(:, :,77) = [116 140.1 ; 140 178] ; Wtt(:,: ,78) = [118 140.1; 140 180]; 
Wtt(:,:,79) = [119 140.1 ; 140 181] ; Wtt(:,: ,80) = [120 160.1 ; 160 182] ; 
Wtt(: ,:,81)=[120 160.1 ; 160 182];Wtt(:,:,82)=[ 122 160.1; 160 184]; 
Wtt(:,:,83)=[122 160.1; 160 184] ;Wtt(:,:,84)= [124 160.1 ; 160 186] ; 
Wtt(:,:,85) = [128 160.1 ; 160 190] ;Wtt(:,: ,86) = [129 160. 1; 160 191] ; 
Wtt(:, :,87)=[131 160.1; 160 193] ;Wtt(:, :,88) = [132 160.1; 160 194]; 
Wtt(:,:,89) = [133 160.1 ; 160 195] ;Wtt(:,:,90) = [132 160.1; 160 194] ; 
Wtt(:, :,91)= [131 160.1; 160 193] ; Wtt(:, :,92) = [129 160.1; 160 191]; 
Wtt(:,:,93) = [132 160.1; 160 194]; Wtt(: ,:,94) = [83 120. 1; 120 145]; 
Wtt(:, :,95) = [85 120.1; 120 147]; Wtt(: ,:,96) = [88 120.1 ; 120 150]; 
Wtt(:,:,97) = [95 120.1; 120 157];Wtt(:,:,98) = [90 120.1 ; 120 152]; 
Wtt(: ,:,99) = [88 120.1; 120 150]; Wtt( :, :, l00) = [92 120.1; 120 154] ; 
Wtt(: ,:, 101) = [93 140.1 ; 140 155];Wtt(:,:, 102) = [107 140.1 ; 140 169]; 
Wtt(: ,:, 103) =[ 108 140.1; 140 170];Wtt(:,:, 104)=[ 104 140.1 ; 140 166]; 
Wtt(: ,:, 105) = [104 140.1; 140 166];Wtt(:,:, I06) = [102 140.1; 140 164]; 
Wtt(: ,:, l07)=[98 140.1 ; 140 160] ; Wtt(: ,:, 108) = [102 140.1 ; 140 164]; 
Wtt(: ,:, 109)=[111 140.1 ; 140 173];Wtt(:,:, 110) =[97 120.1; 120 159]; 
Wtt(: ,:, 111) =[96 120.1 ; 120 158] ; Wtt(: ,:, 11 2)=[95 120. 1; 120 157] ; 
Wtt(: ,:, l1 3) = [97 120.1 ; 120 159]; Wtt(: ,:, 114) = [101 140.1 ; 140 163]; 
Wtt(: ,:, ll5)=[98 120.1 ; 120 160] ;Wtt(:,:, l16) = [96 120.1; 120 158] ; 
Wtt(: ,:, 117) = [95 120.1; 120 157] ;Wtt(:,:,l18) = [98 120.1 ; 120 160]; 
Wtt(: ,:,119) = [92 120.1 ; 120 154];Wtt(:, :, 120) = [93 120.1 ; 120 155]; 
Wtt(: ,:, 12 1) = [95 150.1; 150 157] ;Wtt(:,:, 122) = [104 140.1 ; 140 166]; 
Wtt(: , :, 123) = [104 140.1; 140 166] ;Wtt(: ,:, 124) = [104 140.1 ; 140 166]; 
Wtt(: ,:, 125) = [104 140.1; 140 166] ; Wtt(:,:, l26) = [99 140.1; 140 16 1] ; 
Wtt(: ,:, 127) = [102 140.1 ; 140 164] ; Wtt(: ,:, 128) = [105 140. 1; 140 167]; 
Wtt(: ,:, 129) = [105 140.1 ; 140 167] ; Wtt(:, :, 130) = [105 140. 1; 140 167] ; 
Wtt(:,:, 13 1) = [106 140. 1; 140 168] ; Wtt(:,:, 132) = [107 140. 1; 140 169]; 
Wtt(: ,:, l 33) = [114 140.1 ; 140 176];Wtt(:,:, l34) = [110 140.1 ; 140 172]; 
Wtt(:,:, 135) = [113 140.1 ; 140 175] ; Wtt(:,:, l36) = [114 140.1 ; 140 176]; 
Wtt(: ,:, 137) = [114 140.1 ; 140 176]; Wtt(:, :, 138) = [116 140.1; 140 178] ; 
Wtt(: ,:, 139) = [115 140.1; 140 177]; Wtt(:, :,140) = [109 140. 1; 140 171 ]; 
Wtt(: ,:, l 4 1) = [109 140.1; 140 171] ; Wtt(:, :, l42) = [1 22 160.1 ; 160 184]; 
Wtt(: ,:, l43) = [1 23 160.1; 160 185]; Wtt(: ,:, 144) = [126 160.1 ; 160 188] ; 
Wtt(: ,:, l45)=[12 1 160.1;160 183]; Wtt(:,:, l46) = [1 22 160.1 ; 140 184] ; 
Wtt(: ,:, l 47) = [1 24 160. 1; 160 186]; Wtt(: ,:, 148) = [1 28 160.1; 160 190]; 
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Wtt(: ,:,l49)=[128 160.1; 160 190];Wtt(:,:,l50)=[128 160.1; 160 190]; 
Wtt(:,:,l51)=[131 160.1; 160 194];Wtt(:,:, l52)=[133 160.1; 160 195]; 
Wtt(:,:,l53)=[132 160.1; 160 194];Wtt(:,:,I54)= [126 160.1; 160 188] ; 
Wtt(:,:,l55)=[129 160.1; 160 191];Wtt(:, :, 156)=[122 160.1; 160 184]; 
Wtt(:,:,157) = [93 120.1; 120 155]; Wtt(:,:,I58) = [95 120.1 ; 120 157] ; 
Wtt(:,:,l59) = [98 120.1; 120 160] ; Wtt(:, :,160) =[99 120.1; 120 161] ; 
Wtt(:,:,l61)=[101 140.1; 140 163] ;Wtt(:, :, l62) = [104 140. 1; 140 166]; 
Wtt(:,:,l63) = [98 140.1 ; 140 160] ; Wtt(: ,:,164) = [101 140.1 ; 140 163]; 
Wtt(:,:,l65) = [102 140.1; 140 164];Wtt(:,:, 166)=[86 120.1; 120 148] ; 
Wtt(:,:,167) = [78 120.1 ; 120 140] ;.Wtt(:,: , I68) =[76 120.1; 120 138] ; 
Wtt(:,:,169)=[82 120.1 ; 120 144];Wtt(: ,:, 170)=[92 120.1; 120 154] ; 
Wtt(: ,:,171)=[91 120.1 ; 120 153];Wtt(:,:, 172)=[92 120.1; 120 154]; 
Wtt(: , :, 173) = [92 120.1 ; 120 154]; Wtt(:,: , 174) = [96 120.1; 120 158] ; 
Wtt(: ,:, l75)=[89 120.1; 120 151] ; Wtt(: ,:, l76)=[83 120.1 ; 120 145] ; 
Wtt(: ,:, l77)=[61 120.1; 120 123];Wtt(:,:,l 78)=[62 120. 1; 120 124] ; 
Wtt(: ,:, l79) = [65 120.1; 120 127];Wtt(:,:,l80)=[68 120.1;120 130] ; 
Wtt(: ,:,181) = [68 100.1; 100 130] ;Wtt(:,:,l82)= [59 100.1; 100 120] ; 
Wtt(:,:,l83) = [60 100.1; 100 122];.Wtt(: ,:, l84)=[61 100.1; 100 123]; 
Wtt(: ,:, l85) = [70 100.1; 100 132] ; Wtt(: ,:, I86) = [75 100.1 ; 100 137]; 
Wtt(:,: , l87) = [80 120.1 ; 120 142]; Wtt(:,: , I88) = [65 100.1; 100 127] ; 
Wtt(: , :,I89) = [66 100.1; 100 128]; Wtt(:,:,190) = [68 100.1; 100 130] ; 
Wtt(: ,:, l91) = [57 100.1 ; 100 119]; Wtt(: ,:,192) = [59 100.1 ; 100 121] ; 
Wtt(:, :,193) = [59 100.1 ; 100 121]; Wtt(:,: ,194) = [59 100.1; 100 121]; 
Wtt(:,:,195) = [61 100.1 ; 100 123]; Wtt(: ,:,196) = [65 100.1; 100 127] ; 
Wtt(:,: ,197) = [68 100.1 ; 100 130]; Wtt(:,: , l98) = [63 100.1 ; 100 125] ; 
Wtt(: ,:,l99) = [68 100.1 ; 100 130] ; Wtt(: ,:,200) = [66 100.1 ; 100 128]; 
Wtt(: ,:,201) = [64 100.1; 100 126] ;·Wtt(: ,:,202) = [62 100.1 ; 100 124]; 
Wtt(: , :,203) = [62 100.1 ; I 00 124] ; Wtt(: ,:,204) = [64 I 00.1; 100 126] ; 
Wtt( :, :,205)= [65 100.1; 100 127] ; Wtt(: ,:,206)=[68 100.1; 100 130]; 
Wtt(: ,:,207) = [74 100.1; 100 136]; Wtt(: ,:,208) = [66 I 00.1; 100 128]; 
Wtt(:,:,209) = [74 100.1; 100 136]; Wtt(: ,:,210) = [65 100.1 ; 100 127]; 
Wtt(:,:,211) = [61 100.1 ; 100 123]; Wtt(: ,:,2 12) = [55 I 00.1; I 00 117]; 
Wtt(: ,:,213) = [56 100.1; 100 118] ; Wtt(: ,:,2 14) = [67 100.1 ; 100 129]; 
Wtt(: ,:,215) = [63 100.1;100 125];Wtt(: ,:,216) = [40 80.1 ; 80 102] ; 
Wtt(: ,:,2 17) = [38 80.1; 80 1 00] ; Wtt(: ,:,2 18) = [44 80.1 ; 80 1 06] ; 
Wtt(: ,:,219) = [41 80.1 ; 80 103];Wtt(:,:,220) = [42 80.1; 80 104]; 
Wtt(: ,:,22 1) = [55 80.1 ; 80 117] ; 

%% Initializ ing Wind turbine Hub Height (varies due to contour he ight) H=53, GE 
wind turbines; H2=221 Mitsubishi wind turbines; 
%% H = GE Wind Turbines 
H = [146; 153; 152; 159; 154; 156; 169; 168; 17 1; 167; 153; 155 ; 154; 159; 163; 163; 
168; 168; 168; 17 1; 171 ; 165; 159; 164; 170; 169; 17 1; 181 ; 178; 185; 177; 180; 
176; 181 ; 183; 180; 179; 165; 171 ; '171 ; 174; 179; 178; 177; 164; 167; 17 1; 168; 167; 
164; 164; 164; 164] ; 
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% H2 = Mitsubishi Wind Turbines 
H2 = [138; 141 ; 144; 151; 150; 151 ; 150; 151 ; 156; 160; 147; 145; 145 ; 141 ; 143; 146; 
148; 149; 150; 149; 154; 155; 156; 155; 158; 159; 157; 141 ; 140; 144; 140; 141 ; 144; 
149; 152; 153; 156; 155; 156; 159; 160; 161 ; 161 ; 161 ; 162; 165; 164; 166; 165; 164; 
165; 164; 165; 166; 169; 166; 126; '132; 131 ; 132; 130; 134; 135; 141 ; 140; 139; 141 ; 
143 ; 145; 147; 154; 155; 153; 156; 156; 157; 147; 149; 150; 151; 151; 153; 153; 155; 
159; 160; 162; 163; 164; 163; 162; 160; 163 ; 114; 116; 119; 126; 12 1; 119; 123; 124; 
138; 139; 135; 135; 133; 129; 133; 142; 128; 127; 125; 128; 132; 129; 127; 126; 129; 
123 ; 124; 126; 135; 135; 135; 135; 130; 133; 136; 136; 136; 137; 140; 145; 141; 
144; 145; 145; 147; 146; 140; 140; 153; 154; 157; 152; 153; 155; 159; 159; 159; 163; 
164; 162; 157; 160; 153; 124; 126; 129; 130; 132; 135; 129; 132; 133; 117; 109; 107; 
113; 123; 122; 123; 123; 127; 120; 114;92;93;96;99;99;90;91;92; 101 ; 106; 
Ill ; 96; 97; 99; 88; 90; 90; 90; 92; 96; 99; 94; 99; 97; 95; 93; 93; 95; 96; 99; 1 05; 97; 
105 · 96· 92 · 86· 87· 98· 94· 71· 69· 75 · 72· 73 · 86] · 

' ' ' ' ' ' ' ' ' ' ' ' ' 

%%SOLVING NUMERIC INTEGRATION USING FUNCTION;[Y,y and Y2,y2 are 
variables ofGE and Mitsubishi wind turbines] 
%% 
Y = [u_69, u_80, u_ IOO, u_120, u_ 160, u_200, u_220, a69to80, a80to l00, a l00tol 20, 
a 120to 160, a 160to200, a200to220]; % GE Wind Turbine; Assign variables to solve 
equation · 

Y2 = [ul 69, ul 80, ul 100, u1 120, ul 160, ul 200, u1 220, a l69to80, a180to100, - - - - - - -
a1100to120, all20tol60, all60to200, al200to220]; % Mitsubishi Wind Turbine; 
Assign variables to solve equation 

GE Wind Turbine; Assign variables to solve equation 
y = [3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 4, II ,5, 12; 3, I 0,4, II ; 3, I 0,4, II ; 4, II ,5, 12; 
4, II ,5, 12; 4, II ,5, 12; 4, II ,5, 12; · 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 4, II ,5, 12; 
4,11 ,5,12; 4, 11 ,5, 12; 4,11 ,5,12; 4, 11 ,5, 12; 4,11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5,12; 
4,11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5,12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5, 12; 
4, 11 ,5, 12; 4, 11 ,6, 13;4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5,12; 4, 11 ,5, 12; 4,11 ,6,13; 
4, 11 ,6, 13; 4, 11 ,6, 13; 4, 11 ,5, 12; 4, 11 ,5, 12; 4,1 1,5, 12; 4, 11,5, 12; 4, 11 ,5,12; 
4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4,11 ,5,12; 4,1 1,5, 12; 4, 11,5, 12; 4, 11 ,5,12; 
4, II ,5, 12; 4, II ,5, 12; 4, II ,5, 12; 4, II ,5, 12] . ; % To access the variable that is 
%assigned(Eg; 3 = u_ IOO; 4 = u_ l20; 10 = a l00to 120; I I = al20to l 60) 

% Mitsubishi Wind Turbine; Assign variables to solve equation 
y2 = [3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 4, I 0,5, II ; 4, I 0,5 , II ; 4, I 0,5, II ; 4, I 0,5, 11 ; 
4, I 0,5, I I; 4, I 0,5, II ; 4, I 0,5, II ; 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, 11; 
3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, 11 ; 3, I 0,4, II ; 4, I 0,5, II ; 3, I 0,4, I I; 4, I 0,5, 11; 
4, I 0,5, II ; 4, I 0,5, II ; 4, I 0,5, II ; 4, I 0,5, II ; 4, I 0,5, I I; 4, I 0,5, I I; 3, I I ,5, 12; 
3, I 0,4, I I; 3, I 0,4, I I ;3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, I I; 3, I 0,4, II ; 4, I 0,5, 11 ; 
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4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11 ,5,12; 4, 11 ,5,12; 4,11 ,5,12; 4, 11 ,5 12; 4,11 ,5,12; 
4,11 ,5,12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4,11,5,12; 4,11,5,12; 4, 11 ,5,12; 4,11 ,5,1 2; 
4,11,5,12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11,5,12; 4, 11 ,5,12; 4, 11 ,5, 12; 4,11,5,12; 
2, I 0,4, 11; 3, I 0,4, 11; 3,1 0,4, 11 ; 3, I 0,4, 1 I ; 3, I 0,4, 1 I ; 3, I 0,4, 11 ; 3, I 0,4, 11; 
3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II; 3, I 0,4, 11 ; 3, I 0,4, 11 ; 3,1 0,4, II ; 3, I 0,4, 11; 
4,11,5,12; 4, 11 ,5, 12; 4, 11 ,5, 12; 4, 11,5, 12; 4,11 ,5, 12; 4,11 ,5, 12; 3,10,4, 11; 
3,10,4,11; 4, 11 ,5, 12; 4, 11 ,5,12; 4, 11 ,5, 12; 4,11,5, 12; 4,11,5,12; 4,11 ,5,12; 
4, 11 ,5, 12; 4, 11 ,5,12; 4, 11 ,5, 12; 4,11 ,5,12; 4, 11 ,5,12; 4, 11 ,5,12; 4, 11 ,5,12; 
4, 11 ,5, 12; 4, 11 ,5, 12; 2,9,4, I 0; 2,9,4, I 0; 2,9,4, 11; 2,9,4, 11 ; 2,9,4, 11 ; 2,1 0,4, 11 ; 
2,1 0,4, II ; 2, I 0,4, 11 ; 3, 1 0,4, II; , 3, I 0,4, 11 ; 3, I 0,4, II ; 3, I 0,4, 11; 3, I 0,4, 11 ; 
3,1 0,4, 11 ; 3, 1 0,4, 11 ; 3, I 0,4, 11 ; 2,1 0,4, 11; 2, I 0,4, 11 ; 2, 1 0,4, 11 ; 2, I 0,4, 11 ; 
3, I 0,4, 11 ; 2, I 0,4, 11 ; 2, I 0,4, 11 ; 2,1 0,4, 11 ; 2, I 0,4, 11 ; 2,1 0,4, 11 ; 
2, I 0,4, 11 ;2, I 0,4, 11 ; 3, I 0,4, 11; 3,1 0,4, 11 ; 3,1 0,4, 11 ; 3,1 0,4, 11 ; 3, I 0,4, I I ; 
3, I 0,4, II ; 3, I 0,4, 11; 3, 1 0,4, 11 ; 3, I 0,4, II ; 3, 1 0,4, 11 ; 3, 1 0,4, II ; 3, I 0,4, II ; 
3,1 0,4, II; 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 3, I 0,4, II ; 3,1 0,4, 11; 
3, I 0,4, 11 ; 4, I 0,5, 11 ; 4, I 0,5, II; 4, I 0,5, 11 ; 4, I 0,5, 11 ; 4,1 0,5, 11 ; 4,1 0,5, 11; 
4,10,5,11; 4,10,5,11 ; 4,10,5,11 ;4, 10,5, 11 ; 4,10,5, 1I; 4,10,5,11; 4,10,5,1I; 
4, I 0,5, I1 ; 4, I 0,5, II ; 2,9,4, I 0; 2,9,4, I 0; 2,9,4, I 0; 2,9,4, 1 0; 3,1 0,4, 11 ; 3, 1 0,4, 11 ; 
3,1 0,4, 11 ; 3,1 0,4, II ; 3, I 0,4, 11 ; 2,1 0,4, 11 ; 1 ,9,4, 1 0; I ,9,4, 1 0; 2,1 0,4, 11 ; 
2, I 0,4, II ; 2, 1 0,4, 11 ; 2,1 0,4, II ; 2, I 0,4, 11 ; 2, I 0,4, 11 ; 2, I 0,4, 11 ; 2, 1 0,4, I I ; 
1,9,4,10; 1,9,4, 10; 1,9,4, 10; 1,9,4,10; 1,9,3, 10; 1,9,3 , 10; 1,9,3, 10; 1,9,3,1 0; 
1,9,3,10; 1,9,3,10; 2, 10,4, 11; 1,9,3 ,10; 1,9,3 , 10; 1,9,3, 10; 1,9,3,10; 1,9,3,1 0; 
1,9,3,10; 1,9,3, 10; 1,9,3, 10; 1,9,3 ,10; 1,9,3,10; 1,9,3, 10; 1,9,3,10; 1,9,3,10; 
1,9,3, 10; 1,9,3, 10; 1,9,3, 10; 1,9,3 ,10; 1,9,3,10; 1,9,3, 10; 1,9,3, 10; 1,9,3, 10; 
I ,9,3, I 0; 1 ,9,3, I 0; I ,9,3, I 0; 1 ,9,3, I 0; 1 ,9,3, I 0; I ,9,3, I 0; I ,9,3, I 0; I ,8,2,9; 
I ,8,2,9 ; 1 ,8,2,9; I ,8,2,9; 1 ,8,2,9; I ,8,2, I OJ ; % To access the variable that is 
assigned(Eg; 3 = u 1_ 1 00; 4 = u 1_ 120; 10 =a ll OOto 120; II = a l120to 160) 

%%%%%%% Calling GE Wind Turbine Using Function 
v = zeros(N , I ,53); 
% last va lue = 53 GE Wind Turbines; Area ofGE Wind Turbine = 4657; 
fori I = I :53 % last va lue = 53 GE Wind Turbines 
v2 = gt_ v(i I) ; %Calling using functions for 53 GE Wind Turbines %v2 ; v 

v(:,:,i I) =(2/4657). * v2(:,:);% Result of Disc Speed is stored in variab le v; or 
Equation = (2/ A)*( Udi sc) · 
end 
x I = v(: ,:, 1 ); % 1 = First WT disc speed 
x2 = v(: ,:,2); %2 = Second WT disc speed 
x3 = v(: ,:,3); % 3 = Third WT disc speed 
x4 = v(: ,:,4); % 4 = Fourth WT disc speed 
x5 = v(: ,:,5); % 5 = Fifth WT disc speed 
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%%Calling Mitsubishi Wind Turbine Using Function 
v4 = zeros(N, I ,22 1 ); 
for i3 = I :221 %last value= 221 Mitsubishi Wind Turbines; Area of Mitsubishi 
Wind Turbine = 30 19; v4 = gtt_ v(i3); %Calling using functions for 221 Mitsubishi 
%Wind Turbines %v4; v4 
v5(:,:,i3) =(2/3019).* v4(:,:);% Disc Speed is stored in variable v5; or Equation = (2/ 
A)*( U_disc) 
end 
x II = v5(:,:, I); % I =First WT disc speed 
x 12 = v5(:,: ,2); % 2 =Second WT disc speed 
x 13 = v5(: ,:,3); % 3 =Third WT disc speed 
x 14 = v5(: ,:,4); %4 =Fourth WT disc speed 
x 15 = v5(: ,:,5); % 5= Fifth WT disc speed 

%%END OF DISC SPEED 
%%POWER PREDICTION FROM DISC SPEED FORGE 1.5 MW; 53 WIND 
TURBINES% 
fori I = I :53 % Last value = 53 WT; GPuncor = Uncorrected Power ofGE Wind 
Turbine 
gpuncor(:,:,il) = 
q2( 18)+( q2( 17). *(v( :, :,i I))+( q2( 16). *(v(: , :, i I)). A2)+( q2( 15). *(v(: ,:,i I)). A3)+( q2( 14 ). *(v 
(:,:,i I )).A4)+(q2( 13). *(v(:,:,i I )).A5)+(q2( 12). *(v(:,:,i I )).A6)+(q2( II). *(v(: ,:,i I )).A7) 
+(q2( I 0). *(v(:,:,i I )).A8) 
+(q2(9). *(v(:,:,i I )).A9)+(q2(8). *(v(:,:,i I )).A I O)+(q2(7). *(v(: ,:,i I )).A II) 
+( q2(6). *(v( :,:,i I)). A 12)+( q2(5). *(v( :, :, i I)). A 13)+( q2( 4 ). *(v(:,:,i I)). A 14)+( q2(3). *(v( :, :,i 
I )).A 15)+( q2(2). *(v( :,:,i I)). A 16)+( q2( I). *(v(:,:,i I )).A 17)); 
gpcor(: ,:,i I )=gpuncor(:,:,i I). *(act_density./1.225); 
end 

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FORGE 
WIND TURBINE;%% 
nn2 = length(v(: ,:, i I)); 
fori I = I :53 
AA I = find(gpcor(:, :, i I)>= 1500); % Rated power is equal to 1500 K W 
nn3 = length( AA I); 
for j2 = I :nn3 
gpcor(nn2*(i 1-1 )+ AA I U2))=1500; . %Power remains constant after rated wind 
speed 
end 
end 
fi gure(5) 
v8(: ,:, 1)= sort(v(: ,:, l)); 
gp I cor = sort(gpcor(:,:, I)); 
plot(v8( :,:, I ),gp I cor,'r-'); 
xlabel('Wind Speed (m/s)'); 
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ylabei('Wind Power (kw)'); 
title(' GE 1.5 MW Wind Turbine'); 
axis([O 25 0 1800]); 
pause 
figure(6) 
v8(:,: ,2)= sort(v(:, :,2)); 
gp2cor = sort(gpcor(:,:,2)); 
plot(v8(: ,:,2),gp2cor,'k-'); 
xlabel('Wind Speed (m/s)'); 
ylabel('Wind Power (kw)'); 
title(' GE 1.5 MW Wind Turbine'); 
axis([O 25 0 1800]); 
pause 

%% POWER PREDICTION FROM DISC SPEED FOR MITSUBISHI 1 MW; 221 
WIND TURBINES % 
for i3 = I :221 % Last value = 221 Mitsubishi WT ; MPuncor = Uncorrected Power of 
Mitsubishi Wind Turbine 
mpuncor(: ,:,i3) =q I (19)+ (q 1(18).*(v5(:, :,i3)))+ (q I (17) .*(v5(:, :,i3)).A2)+ 
( q I ( 16). *(v5( :,:,i3)). /\3 )+( q 1 ( 15). *(v5( :,:,i3)). /\4 )+( q 1 ( 14). *(v5( :, :,i3)). /\5+( q I ( 13). *(v5 
( :, :,i3 )). /\6)+( q I ( 12). *(v5(:,:,i3 )). /\7)+ 
(q 1(11).*(v5(:,:, i3))./\8) +(q I (I O).*(v5(: ,:,i3)).A9)+ (q I (9).*(v5(:,:, i3)).AJ 0)+ 
( q I (8). *(v5( :,:,i3)). !\ I I)+ ( q I (7). *(v5(: ,:,i3)). !\ 12) +( q 1 (6). *(v5(: ,:,i3)). A 13 )+ 
( q I (5). * ( v5(: , :, i3)). !\ 14)+( q I ( 4). * (v5( :, :,i3))./\ 15)+ 
( q I (3 ). *(v5( :,:,i3)).A 16)+( q 1 (2). *(v5( :, :,i3)). A 17)+ ( q I (I). *(v5(: , :, i3)).A 18); 
mpcor(: , :, i3 )=mpuncor(: ,:,i3). *(act_ density./! .225); 
end 
%% 
%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR 
MITSUBISHI WIND TURBINE;%% 
nn = length(v5(: ,:, i3)); 
for i3 = 1 :221 
AA = find(mpcor(:, :,i3)>= 1000); o/o Rated power is equal to 1000 KW 
nn I = length(AA); 

for j I = I :nn I 
mpcor(nn*(i3-l )+ AAU I))= ! 000; % Power remains constant after rated wind speed 

end 
end 
%% 
fi gure(7) 
Mv(:,:, I)= sort(v5(:,:, I)); 
mpcorl1 = sort(mpcor(:,:, I)); 
plot(Mv(:,:, l),mpcor11 ,'k-'); 
xlabel('Wind Speed (m/s)'); 
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ylabei('Wind Power (kw)'); 
title(' MITSUBISHI I MW Wind Turbine'); 
axis([O 25 0 1200]); 
pause 
figure(8) 

Mv(:, :,2)= sort(v5(:, :,2)); 
mpcor12 = sort(mpcor(: ,:,2)); 
plot(Mv(: ,:,2),mpcor 12,'r-'); 
xlabei('Wind Speed (m/s)'); 
ylabel('Wind Power (kw)') ; 
title(' MITSUBISHI I MW Wind Turbine'); 
axis([O 25 0 1200]); 
%%WAKE MODEL FORGE WIND TURBINE 
%%WAKE SPEED ESTIMATION FORGE 1.5 MW, 53 WIND TURBINES% 
% Rrot = Radius of GE Wind Turbine; x = Distance between nearest wind turbine; 
A shad = Area of shadow region of wind turbines 
% A rot = Area of GE wind turbine rotor; Ct = Thrust coefficient of wind turbine; tana 
= 0.04(no-wake)/0.08(wake); Rx =Radius of shadow cone 
% v(: , :,i I) = Disc Speed; Uwake(: ,:,i I)= Wake Speed of Wind Turbine 
x=[262;262;292 ;296;296;306;0;30 I ;'20 I ;259;0;298;298;302;246;246;258;302;302;269 
;269;282;0;335 ;0;248;248;209;209;344;0;293 ;293;283;266;266;288 ;0;299;0;0;264;264 
;325 ;0 ;229;298;255 ;25 5 ;0;226;226;408] ; 
Ashad=[2500;2500.0;2500.0;2500.0; 1900.0;21 00.0;2500.0;2500.0;2400.0; 1500.0;250 
0 .0;21 00.0;21 00.0;21 00.0;2500.0;2500.0;2500.0;21 00.0;21 00.0;2400.0;2400.0; 
21 00.0 ;0.0000; 0.0000;2500.0;2500.0;2500.0; 2000.0;2000.0;0.0000; 0.0000; 
2000.0;2000.0;2000.00;2500.0;2500.0;2200.0;0.0000;2200.0;0.000; 0.000; 
2200.0;2200.0;0.00;0 .00;2000.0; I 000.0;2400.0;2400.0;0.0000;2000.0;2000.0; 
0.2000] ; 

% Equation : Thrust Coefficient (Ct) and Wake Speed Calculation (Uwake) for 
% WT- Wind Turbine 
% Ct = 3.5*(2*Vhub- 3.5)/ (Vhub)"'2; 
% R(x) = Rrot + x.tana ; tana = 0.04 (free speed) or tana = 0 .08 (wake)% 
% Uwake = Vi[ I- sqrt(l- Ct)*(Rrot/R(x))"2*(Ashad I Arot)] 
for il = l:53 % 53 , GE 1.5 MW Wind Turbines 
Rrot =3 8.5 ; . 
Ct(:,:, il) = 3.5.*((2.*v(:,:, il))- 3.5)./(v(:,:, il))." 2; 
tana =0.08; 
Rx(i I) = Rrot + x(i I )*tana; 
Arot = 4657; 
Uwake(: ,:, i I) = v(:, :,i I).*( 1- sqrt( I - Ct(:, :, i I)). *(Rrot/Rx(i I ))"'2. *(Ashad(i I)/ Arot)); 
end 
%% 
%% POWER PREDICTION FROM WAKE SPEED FOR G E 1.5 MW, 53 WIND 

TURBINES % 
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for il =1:53 %53 GE 1.5 MW Wind Turbines; gpuncorw =Uncorrected Wake 
Power ofGE Wind Turbine; gpcorw =Corrected Wake Power ofGE Wind Turbine 
gpuncorw(:,:, i I) = q2(18)+(q2(17). *(Uwake(:, :, i I))+ ( q2( 16). *(Uwake(:,:,i I ))/'2)+ 
(q2(15). *(Uwake(:,:,i I )) / '3)+ 
(q2( 14). *(Uwake(:, :,i I ))."4)+(q2( 13). *(Uwake(:,:, i I ))."5)+ 
(q2( 12). *(Uwake(:,:, i I ))."6)+(q2( II). *(Uwake(:,: , i I ))."7)+ 
(q2( I 0). *(Uwake(:,:,i I ))."8) +(q2(9). *(Uwake(:,:, i I ))." 9)+ 
( q2(8). *(Uwake( :,:, i 1 ))." I 0)+( q2(7). *(Uwake( :, :,i I))." II ) 
+(q2(6). *(Uwake(:,:, i I)) ." 12)+ ( q2(5). *(Uwake( :,:, i I)) ." 13)+ 
(q2( 4). *(Uwake(: ,:, i I))." 14)+(q2(3). *(Uwake(:,:,i I))." 15)+ 
(q2(2) . *(Uwake(:,:,i I))." 16)+(q2(1 ). *(Uwake(:,:, i I)) ." 17)); 
gpcorw(: ,: , i I) = gpuncorw(:,: , i I). *(act_ density./1.225) ; 
end 

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR GE 
WIND TURBINE %%%%%%% 
nn4 = length(Uwake(: ,:,i I)); 
fori I = I :53 

AA3 = find(gpcorw(:,:,il)>=1500); % Rated power is equal to 1500 kw 
nn5 = 1ength(AA3); 

for j2 = I :nn5 
gpcorw(nn4*(i1-1)+ AA3U2))= 1500; % Power remains constant after rated speed 

end 
end 

%%WAKE MODEL FOR MITSUBISHI WIND TURBINE%% 
%% WAKE SPEED ESTIMATION FOR MITSUBISHI I MW, 221 WIND 
TURBINES% 
% R2 = Radius of Mitsubishi Wind Turbine; x2 = distance between nearest w ind 
turbine; Ashad2 = Area of shadow region of wind turbines 
% Ct2 =Thrust Coefficient of Wind turbine; Rx2 = Radius of shadow cone; 
tana = 0.04(no-wake)/ 0.08(wake); 
% Uwake2 = Wake Speed ; v5(:,: ,i3) = Disc Speed ; 
Arot2 = Area of wind turbine rotor disc (30 19) 
R2= 31; 
x2=[ 194; 194;234;230;230;232;223; 193 ; 193 ; 195 ;214;2 14;222;237;206;206;232;232;23 
6;232;234;234;235;240;258;258;221 ;221 ;220;220;212;2 12; 194; 194;220;2 1 0;21 0;23 1; 
23 1 ;2 15;2 15;2 17;2 17;2 19;248;242;24 1 ;24 1 ;225 ;225;226;225 ;225;235;244;324;23 1 ;22 
9;229;264;204;204; 199; 199;220;2 11 ;204;204;2 14;224;235 ;2 18;218;227;241 ; 
271 ;271 ;227;227;227;2 13 ;2 11 ;2 11 ; 1.98; 197; 197;2 16;216;2 18;242;236;236;20 I ;20 I ;22 
7;207;207;223 ;225;224; 11 6; 11 6;202;202;202;274; 164; 164;222;205 ;205 ;461 ;437; 
437;2 14;2 14;220;29 1; 188; 188;2 15;2 13;2 13;2 14; 195; 195 ; 173 ; 173; 168; 168; 177; 17 1 ;17 
I ;2 14; 198; 198;240;240;222;222;236;231 ;23 1 ;236;28 1 ;28 1 ;258;22 1 ;22 1 ;2 13;2 11 ;2 11; 
209;209;27 1; 198; 198;2 15;2 15; 150; 150;223 ; 192 ; 192;205 ;205 ;203; 197; 187; 187; 
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254;254; 172; 172;250;317;317;300;220;220;287;287;304;377;300;300;248;246;246;23 
0; 190; 190;2 13;2 15;218;218;258;252;252;212;212;229;229;2 13 ;213;220;226;226;207; 
207;254;256;256;294;335;208;208;223;274;274;307]; 
NE =numel(x2); %Counting wind turbines 
Ashad2=[0; 1952.85;650.95;741.52; 1741 .52; 1741.52; 180 1.9; 1952.85; 1952.85; 1952.85 
;0; 1862.28; 180 1.9;0; I 043.42; I 043.42;0; 1741.52; 1650.95; 1741.52;741.52; 1741 .52;741 
.52;741.52;681 . 14;0;0;0; 180 1.9;280 1.9;280 1.9; 1862.28; 1862.28; 1254.75; 1254.75; 180 
1.9; 1862.28; 1862.28;0; 1650.95 ; 1862.28; 1862.28; 180 1.9; 180 1.9; 180 1.9;0; 1590.57; !59 
0.57; 1590.57; 1801.9;801.9;80 1.9;80 1.9;80 1.9; 1650.95;2560.38;0;2650.95;681 .1 4;681. 
14;0;0;862.28;0;952.85;80 1.9;0; I 04;3 .42; I 043.42;952.85;80 1.9;650.95 ;952.85;952.85; 
80 1.9;590.57;0;0;650.95 ;650.95 ;0;80 1.9;80 1.9; 180 1.9;0;952.85;952.85;801.9;80 1.9;80 
1.9;560.38;590.57;590.57;0;862.28;650.95;801.9;80 1.9;650.95 ;650.95;650.95 ;80 1.9;8 
0 1.9;0;862.28;862.28;0; 1405.7; 1405.7;0;862.28; 
1862.28;0;0;0;0;741.52;650.95;0; 1254. 75; 1254.75;0; 1741.52; 1741.52; 1741 .52; I I 03 .8; 
II 03 .8; 1405.7; 1405.7; 1405.7; 1405.7; 1405.7; 1405.7; 1405.7;741 .52;862.28; 
862.28;560.38; 1560.38;741.52;741.52;0;650.95;650.95;650.95 ;0;0;0;741 .52;741 .52;80 
1.9;801 .9;3801.9;801.9;801.9;0;0;862.28;74 1.52;74 1.52; 1556.65 ; 1556.65;741 .52; 
862 .28;862.28;0;862.28; 1862.28;2952.85; 1164.18; 1164.18;0;0; 1345.32; 
1345.32;0;0;0;0;741 .52;741.52;0;0;0;0;0;0;0;0;0;650.95;952.85;952.85;862.28;862.28; 
862.28;0;0;0;80 1.9;80 1.9;650.95 ;650.95;0; 1862.28; 180 1.9;0; 1650.95; 
80 1.9; 180 1.9;0;0;0;0;0;862.28; 1862.28; 1650.95;0;0;0]; 

%Equation :Thrust Coefficient (Ct) and Wake Speed Calcu lation (Uwake) for 
% WT- Wind Turbine 
% Ct = 3.5*(2*Vhub- 3.5)/ (VhubY'2 ; 
% R(x) = Rrot + x.tana; tana = 0.04 (free speed) or tana = 0.08 (wake)% 
% Uwake =Vi[!- sqrt( J - Ct)*(Rrot/R(x))/\2*(Ashad I Arot)] 
for i3= 1 :221 %Last value= 22 1 Mitsubishi WT 
Ct2(:,:,i3) = 3.5 .*((2.*v5(:,:,i3))- 3.5)./(v5(: ,: , i3))./\2; 
tana =0.08; 
Rx2(i3) = R2 + x2(i3)*tana; 
Arot2 =30 19; 
Uwake2(: ,:, i3) = v5(:,:, i3).*(1- sqrt(J-
Ct2(: ,:, i3)). *(R2/Rx2(i3)Y'2. *(Ashad2(i3)/ Arot2)); 
end 

%% POWER PREDICTION FROM WAKE SPEED FOR MITSUBISH I I MW, 221 
WIND TURBINES% 
xx I = Uwake2 (: ,:, i3); 
for i3 = I :22 1 
%Last value = 221 Mitsubishi WT; MPuncorw = Uncorrected Wake Power of 
%Mitsubishi Wind Turbine; mpcorw = Corrected Wake Power of Mitsubishi Wind 
%Turbine 
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mpuncorw(:,:, i3) = q I ( 19)+( q I ( 18). *(Uwake2(:,:,i3)))+( q I (17). *(Uwake2(:,:,i3)):''2)+ 
(q I ( 16). *(Uwake2(:,:,i3)).A3)+(q I ( 15). *(Uwake2(: ,:,i3))./\4)+(q I ( 14). *(Uwake2(:,:,i3) 
). /\5)+(q I ( 13). *(Uwake2(: ,:,i3)). /\6)+q I ( 12). *(Uwake2(:,:, i3)). /\7)+(q I ( II ). *(Uwake2(: 
,:,i3))./\8)+(q I (I 0). *(Uwake2(:,:, i3)). /\9)+(q I (9). *(Uwake2(:,:,i3))./\ I O)+(q I (8). *(Uwa 
ke2( :, :, i3 )). !\ II)+( q I (7). *(Uwake2(:,: ,i3 )). !\ 12)+( q I ( 6). *(Uwake2( :,:, i3)). !\ 13)+( q I (5). * 
(Uwake2(:,:,i3))./\ 14)+(q I ( 4). *(Uwake2(:,:,i3))./\ 15)+(q I (3). *(Uwake2(:,:, i3)) ./\ 16)+ 
(q I (2). *(Uwake2(:,:,i3))./\ 17)+(q I (I). *(Uwake2(:,:,i3))./\ 18); 
mpcorw(:,: , i3) = mpuncorw(: ,: ,i3).*(act_density./1.225); 
end 

%% POWER REMAINS CONSTANT AFTER RATED WIND SPEED FOR 
MITSUBISHI WIND TURBINE;%% 
nn6 = length(Uwake2(:,:, i3)); 
for i3 = I :221 
AA4 = find(mpcorw(: ,:,i3)>= 1000); % Rated power is equal to 1000 kw 
nn7 = length(AA4); 
for jl = I :nn7 
mpcorw(nn6*(i3-l )+ AA4U I))= I 000; % Power remains constant after rated speed 

end 
end 

%% START OF WAKE COEFFICIENT At 45 and 225 degree 
%Sum ofNo-wake power ofwindfarm = GE_Mit_cpw 
%Sum of wake power ofwindfarm = GE_Mit_wpw 
%Wake Coefficient= Sum ofNo-wake power/Sum of Wake power 

G E_ Mit_cpw = mpcor(:,:, I )+ mpcor(: ,:,2)+ mpcor(:,: ,3)+ mpcor(: , :,4)+ mpcor(:,:,5) + 
mpcor(: ,:,6)+ mpcor(: , :,7)+ mpcor(: ,:,8)+ mpcor(:,:,9)+ mpcor(:,:, I 0)+ mpcor(: ,:, I I)+ 
mpcor(: ,:, 12)+ mpcor(: ,:, 13)+ mpcor(: , :, 14)+ mpcor(: , :, 15)+ mpcor(:,:, 16)+ 
mpcor(: ,:, 17)+ mpcor(: ,:, 18)+ mpcor(:,:, 19)+ mpcor(: ,:,20)+ mpcor(:,:,2 1) + 
mpcor(:, :,22)+ mpcor(: ,:,23)+ mpcor(: ,:,24)+ mpcor(: ,:,25)+ mpcor( :, :,26)+ 
mpcor(:,:,27) + mpcor(:,:,28)+ mpcor( :, :,29) + mpcor(:,:,30)+ mpcor(:,:,31)+ 
mpcor(:,:,32)+ mpcor(:,: ,33)+ mpcor(: ,:,34)+ mpcor(: ,:,35) + mpcor(:, :,36) + 
mpcor(:,:,37)+ mpcor(: ,:,38)+ mpcor(:,:,39)+ mpcor(:,:,40)+ mpcor(: ,:,4 1 )+ 
mpcor(:,: ,42)+ mpcor(: ,:,43)+ mpcor(:, :,44)+ mpcor(: ,:,45)+ mpcor(:,:,46)+ 
mpcor(:,:,47)+ mpcor(: ,:,48)+ mpcor(: ,:,49)+ mpcor(:,:,50)+ mpcor(:,:,5 1 )+ 
mpcor(:,: ,52)+ mpcor(: ,:,53)+ mpcor(: ,:,54)+ mpcor(: ,: ,55)+ mpcor(:,:,56)+ 
mpcor(: ,:,57)+ mpcor(:,:,58)+ mpcor(: ,:,59)+ mpcor(:, :,60)+ mpcor(:, :,6 1)+ 
mpcor(:,:,62)+ mpcor(:,:,63)+ mpcor(:,:,64)+ mpcor(: ,: ,65) + mpcor(: ,:,66) + 
mpcor(:,:,67)+ mpcor(: ,:,68)+ mpcor(: ,:,69)+ mpcor(: , :,70)+ mpcor(:,:,71)+ 
mpcor(: ,:,72) + mpcor(: ,:,73)+ mpcor(:,:,74)+ mpcor(:,:,75)+ mpcor(: ,: ,76)+ 
mpcor(:,:,77)+ mpcor(:, :,78)+ mpcor(: ,:,79)+ mpcor(: ,:,80) + mpcor(: ,:,81 )+ 
mpcor(:,:,82)+ mpcor(: ,:,83)+ mpcor(: , :,84)+ mpcor(: , :,85)+ mpcor(:,:,86)+ 
mpcor(:, :,87) + mpcor(:,:,88)+ mpcor(:,:,89)+ mpcor(:,:,90)+ mpcor(: , :,91) + 
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mpcor(: ,:,92)+ mpcor(:,:,93)+ mpcor(:,: ,94)+ mpcor(: ,:,95)+ mpcor(: ,:,96)+ 
mpcor(: ,:,97) + mpcor(:, :,98)+ mpcor(:,:,99)+ mpcor(:,:, IOO)+ mpcor(:,:, IOI)+ 
mpcor(: ,:, I 02)+ mpcor(: ,:, I 03)+ mpcor(: ,:, I 04)+ mpcor(:,:, I 05)+ mpcor(:, :, I 06)+ 
mpcor(: ,:, l 07)+ mpcor(: ,:, I 08)+ mpcor(:,:, l 09)+ mpcor(:, :, II 0)+ mpcor(:, :, I ll)+ 
mpcor(: ,:, 112)+ mpcor(: , :, 113) + mpcor(:,:, 11 4)+ mpcor(:,:, 115)+ mpcor(: , :, 116)+ 
mpcor(: ,:, 117)+ mpcor(: , :, 118)+ mpcor(:, :, 119)+ mpcor(: ,:, 120)+ mpcor(:, :, 121 )+ 
mpcor(:, :, 122)+ mpcor(: ,:, 123)+ mpcor(: ,:, 124)+ mpcor(: ,:, 125)+ mpcor(:,:, 126)+ 
mpcor(: ,:, 127)+ mpcor(: ,:, 128)+ mpcor(: ,:, 129) + mpcor(:,:, 130) + mpcor(:, :, 131 )+ 
mpcor(: , :, 132)+ mpcor(: , :, 133)+ mpcor(: ,:, 134)+ mpcor(: ,:, 135)+ mpcor(:,: , 136)+ 
mpcor(: ,:, 137)+ mpcor(: ,:, 138)+ mpcor(:,:, 139)+ mpcor(: ,:, 140)+ mpcor(:,:, 141)+ 
mpcor(:,:, 142)+ mpcor(: ,:, 143)+ mpcor(:, :, 144)+ mpcor(:,:, 145)+ mpcor(:, :, 146)+ 
mpcor(:,:, 147)+ mpcor(: , :, 148)+ mpcor(:, :, 149)+ mpcor(: ,:, 150)+ mpcor( :, :, 151 )+ 
mpcor(: ,:, 152)+ mpcor(:,:, 153)+ mpcor(: ,:, 154)+ mpcor(:, :, 155)+ mpcor(: , :, 156)+ 
mpcor(: , :, 157)+ mpcor(: , :, 158)+ mpcor(: ,:, 159)+ mpcor(: ,:, 160)+ mpcor(:,:, 161 )+ 
mpcor(:,:, 162)+ mpcor(: , :, 163)+ mpcor(: ,:, 164)+ mpcor(: ,:, 165)+ mpcor(: ,:, 166)+ 
mpcor(: ,:, 167)+ mpcor(: , :, 168)+ mpcor(:,:, 169)+ mpcor(:, :, 170) + mpcor(: , :, 171)+ 
mpcor(: ,:, 172)+ mpcor(: ,:, 173)+ mpcor(: , :, 174)+ mpcor(: ,:, 175)+ mpcor(:,:, 176)+ 
mpcor(: ,:, 177) + mpcor(: ,:, 178) + mpcor(:,:, 179) + mpcor(: ,:, 180)+ mpcor(: ,:, 181 ) + 
mpcor(: ,:, 182) + mpcor(: ,:, 183)+ mpcor(: ,:, 184)+ mpcor(: ,:, 185) + mpcor(:,:, 186)+ 
mpcor(: ,:, 187) + mpcor(: ,:, 188) + mpcor(: ,:, 189)+ mpcor(:, :, 190)+ mpcor(:,:, 191)+ 
mpcor(: ,:, 192)+ mpcor(: ,:, 193)+ mpcor(:, :, 194)+ mpcor(:,:, 195)+ mpcor(:,:, 196)+ 
mpcor(: ,:, 197)+ mpcor(: ,:, 198)+ mpcor(:, :, 199)+ mpcor(: ,:,200) + mpcor(:,:,201) + 
mpcor(: ,:,202) + mpcor(: ,:,203)+ mpcor(: ,:,204)+ mpcor(:,: ,205)+ mpcor(:,: ,206)+ 
mpcor(: , :,207) + mpcor(: ,:,208)+ mpcor(:, :,209) + mpcor(: ,:,21 0)+ mpcor(:,:,211 )+ 
mpcor(: ,:,212)+ mpcor(: , :,2 13)+ mpcor(: ,:,214)+ mpcor(: ,:,2 15)+ mpcor(: ,:,2 16) + 
mpcor(: ,:,2 17)+mpcor(:,:,218)+mpcor(: ,:,2 19)+mpcor(: ,:,220)+mpcor(: ,:,221 )+ 
gpcor(: ,:, 1 )+gpcor( :,:,2)+gpcor(: ,:,3 )+gpcor( :,:,4)+gpcor( :,:,5)+gpcor( :,:,6)+gpcor(:,:, 7) 
+gpcor(: , :,8)+gpcor(:,:,9)+gpcor(:, :, I O)+gpcor(:,:, II )gpcor(: ,:, 12)+ 
pcor(: ,:, 13)+gpcor(:,:, 14)+gpcor(:, :, 15)+gpcor(: ,:, 16)+pcor(: ,:, 17)+gpcor(:, :, 18)+gpcor 
(:,:, 19)+ gpcor(: ,:,20) + gpcor(: ,:,21 )+gpcor(:,:,22)+gpcor(: ,:,23)+ gpcor(:,:,24)+ 
gpcor(:,: ,25)+gpcor(: ,: ,26)+gpcor( :, :,2 7)+gpcor( :, :,28)+gpcor(: ,: ,2 9)+gpcor( :, :,30)+gpc 
or( :,:,31 )+gpcor(: ,:,32)+gpcor( :, :,33)+gpcor( :, :,34 )+gpcor( :, :,3 5)+gpcor( :, :,36)+ 
gpcor( :,:,3 7)+gpcor(:,:,3 8)+gpcor( :,:,39)+gpcor( :, :,40)+gpcor( :,:,4 1 )+gpcor( :, :,42)+gpc 
or(: , :,43)+ gpcor( :, :,44) + gpcor(: ,:,45)+gpcor( :,:,46)+gpcor( :,:,4 7)+gpcor( :, :,48)+ 
gpcor(:,: ,49)+gpcor( :,:,50)+gpcor(:,:;51 )+gpcor( :,:,52)+ gpcor( :,:,53); 

GE_Mit_wpw = mpcorw(: ,:, l) + mpcorw(:,:,2)+ mpcorw(: , :,3)+ mpcorw(:,:,4)+ 
mpcorw(:,:,5) + mpcorw(:, :,6)+ mpcorw(:, :,7)+mpcorw(: ,:,8)+ mpcorw(:,:,9)+ 
mpcorw(:,:, I 0)+ mpcorw(:, :, 11 )+ mpcorw(:,:, 12)+ mpcorw(:, :, 13)+ mpcorw(:, :, 14)+ 
mpcorw(:, :, 15)+ mpcorw(: ,:, 16)+ mpcorw(: ,:, 17)+ mpcorw(:,:, 18)+ mpcorw(:, :, 19)+ 
mpcorw(:,:,20)+ mpcorw(: ,:,2 1) + mpcorw(:,:,22)+ mpcorw(: ,:,23)+ mpcorw(:,:,24)+ 
mpcorw(:,:,25)+ mpcorw(: ,:,26)+ mpcorw(: ,:,27) +mpcorw(:,: ,28)+ mpcorw(: ,:,29) + 
mpcorw(: ,:,30)+ mpcorw(:, :,31 )+ mpcorw(:, :,32)+ mpcorw(: ,:,33)+ mpcorw(:,:,34)+ 
mpcorw(: ,:,35) +mpcorw(: ,: ,36) + mpcorw(:,:,37)+ mpcorw(:,:,38)+ mpcorw(: , :,39)+ 
mpcorw(: ,:,40)+ mpcorw(: ,:,41 )+ mpcorw(: ,:,42)+ mpcorw(:,:,43)+ mpcorw(: ,:,44)+ 
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mpcorw(:, :,45)+ mpcorw(: ,:,46)+ mpcorw(: ,:,47)+mpcorw(: ,:,48)+ mpcorw(:,:,49)+ 
mpcorw(:,:,50)+ mpcorw(: ,:,5 1)+ mpcorw(: ,:,52)+ mpcorw(: ,:,53)+ mpcorw(:,:,54)+ 
mpcorw(: ,:,55)+mpcorw(:,:,56)+ mpcorw(: ,:,57)+ mpcorw(: ,:,58)+ mpcorw(:,:,59)+ 
mpcorw(:,:,60)+ mpcorw(: ,:,61)+ mpcorw(: ,:,62)+ mpcorw(:, :,63)+ mpcorw(:, :,64)+ 
mpcorw(: ,:,65) + mpcorw(:,: ,66) + mpcorw(: ,:,67)+ mpcorw(: ,:,68)+ mpcorw(:,:,69)+ 
mpcorw(: ,:,70)+ mpcorw(: ,:,71)+ mpcorw(: ,:,72) + mpcorw(: ,:,73)+ mpcorw(: ,:,74)+ 
mpcorw(:, :,75)+ mpcorw(:,:,76)+ mpcorw(:, :,77)+ mpcorw(: ,:,78)+ mpcorw(:,: ,79)+ 
mpcorw(:, :,80) + mpcorw(:,: ,81 )+ mpcorw(:, :,82)+ mpcorw(: ,:,83)+ mpcorw(: ,:,84)+ 
mpcorw(:,:,85)+ mpcorw(:,:,86)+ mpcorw(: ,:,87) + mpcorw(:, :,88)+ mpcorw(: ,: ,89)+ 
mpcorw(:, :,90)+ mpcorw(: ,:,91) + rrrpcorw(:,: ,92)+ mpcorw(: ,:,93)+ mpcorw(: ,:,94)+ 
mpcorw(:,:,95)+ mpcorw(: ,:,96)+ mpcorw(: ,:,97) + mpcorw(: ,:,98)+ mpcorw(:,:,99)+ 
mpcorw(:, :, I OO)+mpcorw(: ,:, I 0 I )+mpcorw(:,: , I 02)+mpcorw(: ,:, I 03)+ 
mpcorw(:, :, I 04)+mpcorw(:,:, I 05)+mpcorw(:,:, I 06)+mpcorw( :, :, I 07)+ 
mpcorw(:,:, I 08)+mpcorw(: , :, I 09)+mpcorw(:,:, II O)+mpcorw(:,:, Ill)+ 
mpcorw(:,:, 112)+mpcorw(: ,:, 113)+mpcorw(: ,:, 114)+mpcorw(: ,:, 115)+ 
mpcorw(:,:, 116)+mpcorw(: ,:, 117)+mpcorw(: ,:, 118)+mpcorw( :,:, 119)+ 
mpcorw(:,:, 120)+mpcorw(: ,:, 121 )+mpcorw(:,:, 122)+mpcorw(:,:, 123)+ 
mpcorw(:, :, 124)+mpcorw(:,:, 125)+mpcorw(: ,:, 126)+mpcorw(: ,:, 127)+ 
mpcorw(: ,:, 128)+ pcorw(:,:, 129)+mpcorw(: ,:, 130)+mpcorw(:,:, 131)+ 
mpcorw(: ,:, 132)+ mpcorw(:,:, 133)+mpcorw(: ,:, 134)+ mpcorw(: ,:, 135)+ 
mpcorw(:,: , 136)+ mpcorw(: ,:, 137)+ mpcorw(: ,:, 138)+mpcorw(: ,:, 139)+ 
mpcorw(:, :, 140)+mpcorw(: ,:, 141 )+mpcorw(:, :, 142)+mpcorw(: ,:, 143)+ 
mpcorw(: ,:, 144)+ mpcorw(: ,:, 145)+ mpcorw(: ,:, 146)+ mpcorw(: ,:, 147)+ 
mpcorw(:,:, 148)+mpcorw(: ,:, 149)+ mpcorw(: ,:, 150)+ mpcorw(:,:, 151)+ 
mpcorw(:,: , 152)+ mpcorw(: ,:, 153)+mpcorw(:,:, 154)+ mpcorw(:,:, 155)+ 
mpcorw(: ,:, 156)+ mpcorw(:,:, 157)+ mpcorw(: ,:, 158)+mpcorw(: ,:, 159)+ 
mpcorw(: ,:, 160)+mpcorw(:, :, 161 )+mpcorw(:,: , 162)+mpcorw(:,:, 163)+ 
mpcorw(:,:, 164)+ mpcorw(:,:, 165)+ mpcorw(: ,:, 166)+ mpcorw(:, :, 167)+ 
mpcorw(: ,:, 168)+mpcorw(:, :, 169)+ mpcorw(:,:, 170) + mpcorw(:,:, 171)+ 
mpcorw(: ,:, 172)+mpcorw(: ,:, 173)+mpcorw(:,:, 174)+mpcorw(:, :, 175)+ 
mpcorw(: ,:, 176)+ mpcorw(: ,:, 177) + mpcorw(: ,:, 178) + mpcorw(:,:, 179) + 
mpcorw(: ,:, 180)+ mpcorw(: ,:, 181) + mpcorw(:, :, 182) + mpcorw(:,:, 183)+ 
mpcorw(:,:, 184)+ mpcorw(: ,:, 185) + mpcorw(:,:, 186)+ mpcorw(:,: , 187) + 
mpcorw(:,:, 188) + mpcorw(:, :, 189)+ mpcorw(:,:, 190)+ mpcorw(:,:, 191 )+ 
mpcorw(:, :, 192)+ mpcorw(: ,:, 193)+ mpcorw(:, :, 194)+ mpcorw(:,:, 195)+ 
mpcorw(:, :, 196)+ mpcorw(: ,:, 197)+ mpcorw(:,:, 198)+ mpcorw(:,:, 199)+ 
mpcorw(:,:,200) + mpcorw(:,:,20 I) + mpcorw(:,:,202) + mpcorw(: ,:,203)+ 
mpcorw(: ,:,204)+ mpcorw(: ,:,205)+ mpcorw(:, :,206)+ mpcorw(:,:,207) + 
mpcorw(: ,:,208)+ mpcorw(: ,:,209) + mpcorw(:, :,2 1 0)+ mpcorw(: ,:,2 11 )+ 
mpcorw(: ,:,212)+ mpcorw(: ,:,2 13)+ mpcorw(: , :,2 14)+ mpcorw(:, :,2 15)+ 
mpcorw(:,:,216) + mpcorw(: ,:,217) + mpcorw(:, :,218)+ mpcorw(: ,:,2 19)+ 
mpcorw(: ,:,220)+mpcorw(: ,:,221 )+gpcorw(:,:, I )+gpcorw(:,:,2)+gpcorw(:, :,3)+ 
gpcorw(:,:,4)+ gpcorw(:,:,5)+gpcony(:,:,6)+gpcorw(: ,:,7)+ gpcorw(:,:,8) + 
gpcorw(:,:,9)+gpcorw(:,:, 1 O)+gpcorw(:,:, II)+ gpcorw(:,:, 12)+ 
gpcorw(:,:, 13)+gpcorw(:,:, 14)+gpcorw(:, :, 15)+gpcorw(:,: , 16)+ 

200 



gpcorw(: ,:, 17)+gpcorw(:,:, 18)+gpcorw(:,:, 19)+ gpcorw(:, :,20) + 
gpcorw(:,:,21 )+gpcorw(:,:,22)+gpcorw(:,:,23)+ gpcorw(:, :,24)+ 
gpcorw(:,:,25)+gpcorw(:, :,26)+gpcorw(:,:,27)+gpcorw(:,:,28)+ 
gpcorw(:,:,29)+gpcorw(:,:,30)+gpcorw(:,:,31)+ gpcorw(:,:,32) + 
gpcorw(:,:,33)+gpcorw(:,:,34)+gpcorw(:,:,35)+ gpcorw(:, :,36)+ 
gpcorw(:,:,37)+gpcorw(:,:,38)+gpcorw(:,:,39)+gpcorw(: ,: ,40)+ 
gpcorw(:, :,4l)+gpcorw(:,:,42)+gpcorw(:,:,43)+ gpcorw(:, :,44) + 
gpcorw( :,:,45)+gpcorw( :,:,46)+gpcorw( :, :,4 7)+ gpcorw( :, :,48)+ 
gpcorw( :,:,49)+gpcorw( :,:,50)+gpcorw( :, :,51 )+gpcorw( :,: ,52)+ 
gpcorw(:,:,53); 
Total I = sum(GE_Mit_cpw); %No-wake windfarm power 
Total2 = sum(GE_Mit_wpw); %Wake windfarm power 
we = Tota12/Totall ; 

%Wake coefficient 
%%Wind Direction and Wake Coefficient Evaluation 
wd = array(:,7); %Accessing Wind Direction time series data 
Wake_Coeff = wc*(wd<=50) .*(wd>=40)+ wc*(wd<=230).*(wd>=220)+ 
(wd>50). *(wd<220)+(wd<40)+(wd>230);% Equation determining the 
wake and Nowake data depending on the wind direction 

%AVERAGE WINDF ARM POWER% 
% MITSUBISHI I MW, 221 WIND TURBINES 
Avg_MIT = mean(mpcor(: ,:, 1 ))+mean(mpcor(:, :,2))+mean(mpcor(: ,:,3))+ 
mean(mpcor(:,:,4))+ mean(mpcor(: ,: ,5)) + mean(mpcor(: ,:,6)) + 
mean(mpcor(: ,:,7)) + mean(mpcor(: ,:,8))+ mean(mpcor(: , :,9))+ 
mean(mpcor(: ,:, I O))+mean(mpcor(: ,:, II)) 
+ mean(mpcor(: ,:, 12)) + mean(mpcor(: ,:, 13)) + mean(mpcor(: ,:, 14)) + 
mean(mpcor(: ,:, 15))+ ean(mpcor(:,:, 16))+mean(mpcor(: ,:, 17))+ 
mean(mpcor(: , :, 18))+ mean(mpcorC:, 19))+ mean(mpcor(: ,:,20)) + 
mean(mpcor(:,: ,21)) + mean(mpcor(: ,:,22)) + mean(mpcor(: ,:,23))+ 
mean(mpcor(: , :,24))+ mean(mpcor(:,:,25))+ mean(mpcor(: ,:,26))+ 
mean(mpcor(: ,:,27)) + mean(mpcor(: ,:,28)) + mean(mpcor(: ,:,29)) + 
mean(mpcor(: ,:,30))+ ean(mpcor(: ,:,31 ))+mean(mpcor(: ,:,32))+ 
mean(mpcor(:, :,33))+ mean(mpcor(: ,:,34))+ mean(mpcor(: ,:,35)) + 
mean(mpcor(: ,:,36)) + mean(mpcor(: ,:,37)) + mean(mpcor(: ,:,38))+ 
mean(mpcor(:,:,39))+ mean(mpcor(: ,:,40))+ mean(mpcor(:,:,41 ))+ 
mean(mpcor(: ,:,42)) + mean(mpcor(: ,:,43)) + mean(mpcor(:, :,44)) + 

mean(mpcor( :, :,45))+ ean(mpcor( :,:,"46))+mean(mpcor( :, :,4 7))+ 
mean(mpcor(: ,:,48))+ mean(mpcor(: ,:,49))+ mean(mpcor(:,:,50)) + 
mean(mpcor(:, :,51 )) + mean(mpcor(: ,:,52)) + mean(mpcor(:,:,53))+ 
mean(mpcor(: ,:,54))+ mean(mpcor(:, :,55))+ mean(mpcor(: ,:,56))+ 
mean(mpcor(: ,:,57)) + mean(mpcor(: , :,58)) + mean(mpcor(:,:,59)) + 

mean(mpcor( :, :,60))+ ean(mpcor( :,:,61 ))+mean(mpcor(: , :,62))+ 
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mean(mpcor(:,:,63))+ mean(mpcor( :~ : ,64))+ mean(mpcor(: ,:,65)) + 
mean(mpcor(:,:,66)) + mean(mpcor(: ,:,67)) + mean(mpcor(: ,:,68))+ 
mean(mpcor(:,:,69))+mean(mpcor(: ,:, 70))+ mean(mpcor(: ,:, 71 ))+ 
mean(mpcor(:,:,72)) + mean(mpcor(: ,: ,73)) + mean(mpcor(:, :,74)) + 
mean(mpcor( :, :, 75))+mean(mpcor( :,:, 76))+mean(mpcor( :,:, 77))+ 
mean(mpcor(:,:,78))+ mean(mpcor(: ,:,79))+ mean(mpcor(: ,:,80)) + 
mean(mpcor(:,:,8 1)) + mean(mpcor(: ,:,82)) mean(mpcor(: ,:,83))+ 
mean(mpcor(:,:,84))+ mean(mpcor(: ,:,85))+ mean(mpcor(: ,:,86))+ 
mean(mpcor(:, :,87)) + mean(mpcor(~ ,:, 88)) + mean(mpcor(: ,:,89)) + 
mean(mpcor(:, :,90))+ ean(mpcor(:,: ,91 ))+mean(mpcor(:,:,92))+ 
mean(mpcor(:,:,93))+ mean(mpcor(: ,:,94))+ mean(mpcor(: ,:,95)) + 
mean(mpcor(: ,:,96)) + mean(mpcor(: ,:,97)) + 
mean(mpcor( :,:,98))+mean(mpcor(:,:,99))+ mean(mpcor(:,: , I 00))+ 
mean(mpcor(:,:, IOI))+ mean(mpcor(: ,:, I02)) + mean(mpcor(: ,:, I03)) + 
mean(mpcor(:,:, I 04)) + mean(mpcor(: ,:, 1 05))+ 
mean(mpcor(: ,:, I 06))+mean(mpcor(: ,:, I 07))+mean(mpcor(: ,:, I 08))+ 
mean(mpcor(:,:, I 09))+ mean(mpcor(: ,:, II 0)) + mean(mpcor(:,:, II I)) + 
mean(mpcor(: ,:, 112)) + mean(mpco~(: , : , 113))+mean(mpcor(:, :, 114))+ 
mean(mpcor( :,:, 115))+ mean(mpcor(:,:, 116))+ mean(mpcor( :, :, 117)) + 
mean(mpcor(:,:, 118)) + mean(mpcor(: ,:, 119)) + mean(mpcor(:,:, 120))+ 
mean(mpcor(:,:, 121 ))+mean(mpcor(:,:, 122))+mean(mpcor(: ,:, 123))+ 
mean(mpcor(: ,:, 124))+ mean(mpcor(: ,:, 125)) + mean(mpcor(: ,:, 126)) + 
mean(mpcor(:, :, 127)) + mean(mpcor(: ,:, 128))+mean(mpcor(: ,:, 129))+ 
mean(mpcor(:,:, 130))+ mean(mpcor(: ,:, 131 ))+ mean(mpcor(: ,:, 132)) + 
mean(mpcor(:,:, 133)) + mean(mpcor(: ,:, 134)) + mean(mpcor(: , :, 135))+ 
mean(mpcor(:,:, 136))+mean(mpcor(: ,:, 137))+mean(mpcor(: ,:, 138))+ 
mean(mpcor(:,:, 139))+ mean(mpcor(:,:, 140)) + mean(mpcor(: ,:, 141 )) + 
mean(mpcor(:,:, 142)) + mean(mpcor(: ,:, 143))+mean(mpcor(: ,:, 144))+ 
mean(mpcor(:,:, 145))+ mean(mpcor(:, :, 146))+ mean(mpcor( :,:, 147)) + 
mean(mpcor(:,:, 148)) + mean(mpcor(:,:, 149)) + mean(mpcor(: ,:, 150))+ 
mean(mpcor(:,:, 151 ))+mean(mpcor(:,: , 152))+mean(mpcor(: ,:, 153))+ 
mean(mpcor(:,:, 154))+ mean(mpcor(:,:, 155)) + mean(mpcor(:,:, 156)) + 
mean(mpcor(:,:, 157)) + mean(mpcor(:,:, 158))+mean(mpcor(: ,:, 159))+ 
mean(mpcor(: ,:, 160))+ mean(mpcor(: ,:, 161 ))+ mean(mpcor(: ,:, 162)) + 
mean(mpcor(:,:, 163)) + mean(mpcor(: ,:, 164)) + mean(mpcor(: , :, 165))+ 
mean(mpcor(: ,:, 166))+mean(mpcor(: , :, 167))+mean(mpcor(:, :, 168))+ 
mean(mpcor(:,:, 169))+ mean(mpcor(:,:, 170)) + mean(mpcor(:,:, 171 )) + 
mean(mpcor(:,:, 172)) + mean(mpcor(: ,:, 173))+mean(mpcor(: ,:, 174))+ 
mean(mpcor(: ,:, 175))+ mean(mpcor(:,:, 176))+ mean(mpcor(: ,:, 177)) + 
mean(mpcor(: ,:, 178)) + mean(mpcor(: ,:, 179)) + mean(mpcor(:,:, 180))+ 
mean(mpcor(:,:, 181 ))+mean(mpcor(: ,:, 182))+mean(mpcor(: ,:, 183))+ 
mean(mpcor(: ,:, 184))+ mean(mpcor(: ,:, 185)) + mean(mpcor(: ,:, 186)) + 
mean(mpcor(:, :, 187)) + mean(mpcor(: ,:, I 88))+mean(mpcor(:,:, I 89))+ 
mean(mpcor(:, :, 190))+ mean(mpcor(: ,:, 191 ))+ mean(mpcor(:,:, 192)) + 
mean(mpcor(:,:, 193)) + mean(mpcor(: ,:, 194)) + mean(mpcor(: ,:, 195))+ 
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mean(mpcor(:,:, 196))+mean(mpcor(:,:, 197))+mean(mpcor(:,: , 198))+ 
mean(mpcor(:,:, 199))+ mean(mpcor(:,:,200)) + mean(mpcor(: ,:,20 I)) + 
mean(mpcor(:,:,202)) + mean(mpcor(:,:,203))+mean(mpcor(:, :,204))+ 
mean(mpcor(:,:,205))+ mean(mpcor(:,:,206))+ mean(mpcor(:,: ,207)) + 
mean(mpcor(: ,:,208)) + mean(mpcor(:,:,209)) + mean(mpcor(: ,:,21 0))+ 
mean(mpcor(:,:,211 ))+mean(mpcor(:,:,212))+mean(mpcor(:, :,213))+ 
mean(mpcor(:,:,214))+ mean(mpcor(: ,: ,215)) + mean(mpcor(: ,: ,216)) + 
mean(mpcor(:,:,217)) + mean(mpcor(: ,:,218))+mean(mpcor(: ,:,219))+ 
mean(mpcor(: , :,220))+ mean(mpcor(:,:,221)); 

%GE 1.5 MW, 53 WIND TURBINES 
Avg_ GE = mean(gpcor(: ,:, I))+ mean(gpcor(: ,:,2))+ mean(gpcor(: ,:,3))+ 
mean(gpcor( :, :,4 ))+ mean(gpcor( :,:,5))+ mean(gpcor( :,:,6))+ mean(gpcor( :, :, 7))+ 
mean(gpcor(: ,:,8))+ mean(gpcor(:,: ,9)) + mean(gpcor(:,:, I 0))+ mean(gpcor(: ,:, II))+ 
mean(gpcor(: ,:, 12))+ mean(gpcor(:, :, 13))+ mean(gpcor(: ,:, 14))+ mean(gpcor(: ,:, 15))+ 
mean(gpcor(: ,:, 16))+ mean(gpcor(: ,:, 17))+ mean(gpcor(: ,:, 18))+ mean(gpcor(: ,:, 19))+ 
mean(gpcor(: ,: ,20))+ mean(gpcor(:,:,21 ))+ mean(gpcor(: ,:,22))+ mean(gpcor(: ,:,23))+ 
mean(gpcor(: ,:,24)) + mean(gpcor(:,: ,25))+ mean(gpcor(:,:,26))+ mean(gpcor(: ,:,27))+ 

mean(gpcor(: ,:,28))+ mean(gpcor(:,: ,29))+ mean(gpcor(:, :,30))+ mean(gpcor(:, :,31))+ 
mean(gpcor( :,:,32))+ mean(gpcor( :,:,33))+ mean(gpcor( :,:,34 ))+ mean(gpcor( :, :,35))+ 
mean(gpcor( :,:,36))+ mean(gpcor( :, :,3 7))+ mean(gpcor( :,:,3 8))+ 
mean(gpcor(:,:,39)) + mean(gpcor(:; :,40))+ mean(gpcor(:, :,41 ))+ mean(gpcor(:,:,42))+ 

mean(gpcor(: , :,43 ))+ mean(gpcor( :,:,44))+ mean(gpcor( :,:,45))+ mean(gpcor( :, :,46))+ 
mean(gpcor(: , :,4 7))+ mean(gpcor( :, :,48))+ mean(gpcor( :,:,49))+ mean(gpcor( :, :,50))+ 
mean(gpcor(: ,:,51 ))+ mean(gpcor(: ,:,52))+ mean(gpcor(: ,:,53)); 

%%%% COLORADO WIND FARM AVERAGE POWER 
Avg_farm = Avg_MIT +Avg_GE; 
% AVERAGE WINDFARM POWER WITH TRANSMISSION LOSS OF 1% 
%%%%%%%%%%%%%%%%%%%%% 
GE_Mit_ loss = GE_Mit_cpw*0.99; %% Windfarm power lossof I% (nowake Effect) 
GE_Mit_wakeloss = GE_Mit_wpw*0.99; %% Windfarm power lossof 1% (wake 
% Effect) 
Actual_power = GE_Mit_cpw-GE_Mit_loss; %%Actual windfarm power(nowake 

%Effect) 
Actual_power_wake = GE_Mit_wpw-G E_Mit_wakeloss; %%Actual windfarm wake 
%power) 

%% PLOTTING FIGURES FROM THE RESULT 
%% SENSOR HEIGHT WIND SPEED GE WIND TU RBINE% 
figure(9) 
plot(hour, WS _ 80,'b-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabel('Wind Speed (m/s)'); 
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title('Sensor Height ofGE Wind Turbine'); 
pause 
%%Mean value ofwind speed data at 80m % 
Sensor_80m = mean(WS_80); 

%SENSOR HEIGHT WIND SPEED MJTSUBlSHl WIND TURBINE% 
figure( I 0) 
plot(hour, WS I _ 69,'k-') 
axis([O I 000 0 30]) 
xlabei('Time (min)'); 
ylabel('Wind Speed (m/s)'); 
title('Sensor Height of Mitsubishi Wind Turbine'); 
pause 
%% Mean value of wind speed data at 69m% 
Sensor_69m = mean(WS 1_69); 

%% DISC SPEED OF MITSUBISHI WIND TURBINE-2 % 
fi gure(11) 
plot(hour, v5( :, :,2),'b-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabel('Wind Speed (m/s)'); 
title('Disc Speed ofMitsubishi Wind Turbine-2'); 
pause 
%% Mean value of wind speed data at 69m % 
discl _69m = mean(v5(:,:,2)); 

% DISC SPEED OF GE WIND TURBIN E-2% 
fi gure(12) 
plot(hour, v(: ,: ,2),'g-') 
axis([O 1000 0 30]) 
xlabel('Time (min)'); 
ylabel('Wind Speed (m/s)') ; 
title('Disc Speed ofGE Wind Turbine-2'); 
pause 

%%Mean value of wind speed data at 80m % 
disc_80m = mean(v(:,:,2)); 
%%VERTICAL SHEAR OF GE AND MITSUBISHl WIND TURBJNE-2 % 
% GE WIND TURBINE% 
figure( 13) 
plot(hour, WS( :,8),'r-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabel('Wind Speed (m/s)') ; 
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title('Vertical Shear ofGE Wind Turbine-2'); 
pause 
%%Mean value ofwind speed data .at 80m % 
vs_80m = mean(WS(:,8)); 

% MITSUBISHI WTND TURBTNE% 
figure(l4) 
plot(hour, WS I (:,9),'k-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Yertical Shear ofMitsubishi Wind Turbine-2'); 
%%Mean value ofwind speed data at 69m% 
vsi _69m = mean(WSI(:,9)); 

%% TURBULENCE ADJUSTED SPEED OF GE AND MITSUBISHI WTND 
TURBTNE-2% 
% GE WIND TURBTNE% 
figure( 15) 
plot(hour,u_ l53 ,'r-') 
axis([O I 000 0 30]) 
xlabei('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Turbulence Adjusted Speed ofGE Wind Turbine-2'); 
pause 

%% Mean value of wind speed data .at 80m % 
ts_80m = mean(u_ 153); 
% MITSUBISHI WIND TURBINE% 
figure( 16) 
plot(hour,u_ 141 ,'g-') 
axis([O I 000 0 30]) 
xlabel('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Turbulence Adjusted Speed ofMitsubishi Wind Turbine-2') ; 
pause 
%%Mean value of wind speed data at 69m% 
ts1 _69m = mean(u_ l41) ; 

%WAKE SPEED OF GE AND MITSUBISHI WIND TURBTNE-2% 
% GE WTND TURBINE% 
figure( 17) 
plot(hour, Uwake( :, :,2),'r-') 
axis([O I 000 0 30]) 
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xlabei('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Wake Speed ofGE Wind Turbine-2'); 
pause 
%%Mean value of wind speed data at 80m % 
wk_80m = mean(Uwake(: ,:,2)); 

% MITSUBISHI WIND TURBINE % 
figure( 18) 
plot(hour, Uwake2( :, :,2),'g-') 
axis([O I 000 0 30]) 
xlabei('Time (min)'); 
ylabei('Wind Speed (m/s)'); 
title('Wake Speed ofMitsubishi Wind Turbine-2'); 
pause 
%%Mean value ofwind speed data at 69m% 
wkl_69m = mean(Uwake2(:, :,2)); 

%%NO-WAKE AND WAKE POWER OF WIND TURBINE WITH RESPECT TO 
TIME% 
% MITSUBISHI WIND TURBINE% 
figure(l9) 
plot(hour,mpcorw(:,: ,2 ), 'k -',hour,mpcor( :, :,2), 'r-') 
axis([O I 000 0 1200]) 
xlabei('Time (min)'); 
ylabei('Wind Power (kw)'); 
title('No-wake(red)and Wake Power of Mitsubishi Wind Turbine-2'); 
pause 
%% Mean value of wind speed data at 69m % 
wkpwl _69m = mean(mpcorw(:,: ,2)); 
nowk_69m = mean(mpcor(:,:,2)); · 
uncorr_pomiwt =mean(mpuncor(: ,:,2)); 

% GE WIND TURBINE% 
figure(20) 
plot(hour,gpcorw( :, :,2), 'k -',hour,gpcor(:,: ,2), 'r-') 
axis([O I 000 0 1700]) 
xlabei('Time (min)'); 
ylabei('Wind Power (kw)'); 
title('No-wake(red)and Wake Power of GE Wind Turbine-2'); 
pause 
%% Mean value of wind power data at 80m % 
wkp 1_80m = mean(gpcorw(:, :,2)); 
nowk_80m = mean(gpcor(:,:,2)); 
uncorr_pogewt =mean(gpuncor(: ,:,2)); 
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%% WINDF ARM POWER WITH RESPECT TO TIME 
% GE WIND TURBINES + MITSUBISHI WIND TURBINES 
figure(21) 
plot(hour,GE_Mit_cpw,'k-') 
axis([O I 000 0 400000]) 
xlabel('Time (min)'); 
ylabei('Windfarm Power (kw)'); 
title('Windfarm Power of Windturbines'); 
pause 
%%Mean value of wind farm power data % 
wfnowkpowl = mean(GE_Mit_cpw); 

% COMPARISION OF WINDFARM POWER WITH AND WITHOUT 
WAKE EFFECT% 
% GE WIND TURBINES + MITSUBISHI WIND TURBINES 
figure(22) 
plot(hour,GE_Mit_cpw,'k-',hour,GE_Mit_wpw,'r-') 
axis([O I 000 0 400000]) 
xlabel('Time (min)'); 
ylabei('Windfarm Power (kw)'); 
title('Comparision of Windfarm Power With and Without(black)Wake Effect'); 
pause 
%%Mean value ofwakefarm power data % 
wfwkpowerl = mean(GE_Mit_wpw); 
%% WIND DIRECTION AND WAKE COEFFICIENT OF WINDF ARM 
%Wind direction @45 degree and @225 degree, the wake coefficient is 0.84 
fi gure(23) 
plot(hour, Wake_ Coeff,'k-') 
axis([O 500 0 1.5]) 
xlabei('Time (min)'); 
ylabei('Wake Coefficient'); 
title('Wind Direction and Windfarm Efficiency') ; 
pause 

%% WINDF ARM POWER WITH TRANSMISSION LOSS OF I% % 
%TRANSMISSION LOSS POWER OF GE WIND TURBINES 
+ MITSUBISHI WIND TURBINES WITH NO-WAKE EFFECT 
figure(24) 
plot(hour,GE_Mit_loss,'k-') 
axis([O I 000 0 4000]) 
xlabei('Time (min)'); 
ylabel('Windfarm Power (kw)'); 
title('Windfarm Powerloss in Transmission With No-Wake Effect'); 
pause 
%%Mean value of no-wake wind power transmission loss data % 
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tlnowkpwGE_ MIT = mean(GE_Mit_ loss); 

%TRANSMISSION LOSS POWER OF GE WIND TURBINES 
+ MITSUBISHI WIND TURBINES WITH WAKE EFFECT 
figure(25) 
plot(hour,GE _ Mit_ wakeloss,'r-') 
axis([O I 000 0 4000]) 
xlabei('Time (min)'); 
ylabel('Windfarm Power (kw)'); 
title('Windfarm Powerloss in Transmission With Wake Effect'); 
pause 
%%Mean value of wake wind power transmission loss data % 
tlwkpwGE_ MIT = mean(GE_ Mit_wakeloss); 

% ACTUAL POWER OF GE WIND TURBINES + MITSUBISHI WIND 
TURBINES(NO-WAKE-EFFECT)% 
figure(26) 
plot(hour,Actual_power,'k-') 
axis([O I 000 0 400000]) 
xlabei('Time (min)'); 
ylabei('Windfarm Power (kw)'); 
title(' Actual Wind farm Power With Transmission Loss(No-Wake Effect)'); 
pause 
%%Mean value of wind power transmission loss data % 
actpwGE_ MIT = mean(Actual_power) 

% ACTUAL POWER OF GE WIND TURBINES + MITSUBISHI WIND 
TURBINES(WAKE EFFECT)% 
figure(27) 
plot(hour,Actual_power _ wake,'g-') 
axis([O I 000 0 400000]) 
xlabel('Time (min)'); 
y label('Windfarm Power (kw)') ; 
title('Actual Windfarm Power With Transmission Loss(Wake Effect)') ; 
pause 
%Mean value of wake wind power transmission loss data % 
actwkpwGE_MIT = mean(Actual_power_wake) ; 
%%%EN D OF MAIN PROGRAM %%%%%%%%%%%%%%%% 
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Appendix L 

Main Program Calling GE 1.5 MW Wind Turbine 
Sub-Program: Function 

% GE WIND TURBINE FUNCTION % 
%%Calling function from main program to solve disc speed equation%% 
%% Sub program %% 
%%START%% 
function v = gt_ v(i I)% Function is called from main program and contains 
result of disc speed 

global Wt Y y N H 
z7 = Wt( I, I ,i I); %Lower Half of Rotor Disc (Minimum Height Limit) 
z7max = Wt(2,1 ,i l); % Lower HalfofRotor Disc (Maximum Height Limit) 
R =38.5; %Radius of Wind Turbine 
H7 = H(i 1 ); % Hub height is varying for each wind turbine 
dz=0.1; % dz is from disc equation and signifies height range in steps of o. l 
i = I; 
v7 = zeros(N, I); %Creating Array for time series data 
whi le z7<=z7max % Lower rotor disc (Height limits from minimum to maximum 
%value) 
v7(:, I)= v7(:, I)+ abs(Y(:,y(i I, I)). *power((z7/80), Y(:,y(i I ,2))). *sqrt((R/'2)

(H7/'2)+(2. *H7. *z7)-(z7."'2)). *dz); % Udisc Equation 
i= i+ l; 
z7 =z7+0.1; 

end 
z7 = Wt(1 ,2,il); %Upper Half of Rotor Disc (Minimum Height Limit) 
z7max = Wt(2,2, i I); %Upper Half of Rotor Disc (Maximum Height Limit) 
i = I; 
while z7<=z7max %Upper rotor disc (Height limits from minimum to maximum 
%value) 
v7(: , I) = v7(:, I)+ abs(Y(:,y(i I ,3)) . *power((z7/160), Y(: ,y(i I ,4))) . *sqrt((R./\2)

(H7./\2)+(2. *H7. *z7)-(z7./\2)). *dz); 
% Udisc Equation % "It adds all the results from H-R to H+R of rotor disc " 
i = i+ l ; . 
z7 =z7+0.1; 
end 
v = v7; 
end 
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Appendix M 

Main Program Calling Mitsubishi 1.0 MW Wind Turbine 
Sub-Program: Function 
% MITSUBISHI WIND TURBJNE FUNCTION% 
%%Calling function from main program to solve disc speed equation %% 
%% Sub program %% 
%%START%% 
function v4 = gtt_ v(i3) % Function is called from main program and contains result of 
disc speed 
global N H2 Wtt Y2 y2 
z71 = Wtt(l,l,i3); %Lower Half of Rotor Disc (Minimum Height Limit) 
z7 1 max= Wtt(2, I , i3); %Lower Ha lf of Rotor Disc (Maximum Height Limit) 
R2 =31; % Radius of Wind Turbine 
H71 = H2(i3); % Hub height is varying for each wind turbine 
dz=O.I; % dz is from disc equation and signifies height range in steps of o.l 
i = I; 

% Creating Array for time series data v71 = zeros(N,I); 
while z71 <=z71max % Lower rotor disc (Height limits from minimum to 
maximum value) 
v71 (:,I)= v71 (: , I)+ bs(Y2(: ,y2(i3 , I )).*power((z7 1 /80), Y2(: ,y2(i3,2))). *sqrt((R2/'2)
(H71 .''2)+(2. * H71. *z71 )-(z71 /'2)). *dz); % Udisc Equation 
i = i+ l ; 
z71 =z71 +0. 1; 

end 
z71 = Wtt(l,2,i3); %Upper Half of Rotor Disc (Minimum Height Limit) 

z71max = Wtt(2,2,i3); %Upper Half of Rotor Disc (Maximum Height Limit) 
i = I ; 
while z71 <=z7 1 max 
%Upper rotor disc (Height limits from minimum to maximum value) 
v71 (: , I) =v7 1 (:, I )+abs(Y2(:,y2(i3,3)). *power((z7 1 / 160), Y2(: ,y2(i3,4))). *sqrt((R2."2)

(H7 1." 2)+(2.*H71.*z71)-(z71."2)).*dz); 
% Udisc Equation % "It adds all the results from H-R to H+ R of rotor disc" 
i = i+ l ; 
z7 1 =z71 +0.1 ; 

end 
v4 = v71 ; 
end 

%%END OF SUB PROGRAM %%%%%%%% 
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Appendix N 

Wind power estimation with the wind turbines operating under the influence of 
wake effect and no wake effect in the wind farm depending on the wind direction. 

Wake Model forGE 1.5 MW Wind Turbine 
Wind direction has a major effect in estimating the wind power in the wind farm when 
the wind turbines are operating under the influence of wake effect. The wi nd speed and 
the wind power is estimated for GE 1.5 MW, 2nd wi nd turbine placed in the wind farm 
site operating under the influence of wake effect depending on the wind direction. 

Symbols Used : 
Rrot = Radius of GE wind turbine rotor; 
x = Distance between nearest wind turbine; 
Ashad = Area of shadow region of wind turbines 
Arot = Area of GE wind turbine rotor; 
Ct = Thrust coeffi cient of wind turbine; 
tana = 0.04(no-wake) I 0.08(wake); 
Rx = Radius of shadow cone 
v(:, :,i I) = Disc speed; % i I = 2 fo r second wind turbine and is ca lled using fu nction 
Uwake(:,:, i I)= Wake speed of wind turbine 
x=[262]; 
Ashad=[2500]; (Assumed for 2nd wind turbine) 
gpuncorw = Uncorrected Wake Power of GE Wind Turbine; 
gpcorw = Corrected Wake Power of GE Wind Turbine 

Equation: 
Thrust Coeffi c ient (Ct) and Wake Speed Calculation (Uwake) for WT-2, (Wind 
Turbine-2) 
Ct = 3.5*(2* Vhub - 3.5)/ (Vhub)/\2; 
R(x) = Rrot + x.tana; 
tana = 0.04 (free speed) or tana = 0.08 (wake) 
Uwake = Vi *[ 1- sqrt( I - Ct)*(Rrot/R(x)Y2*(Ashad I A rot)] 

Calculation: 
Uwake = Wind speed estimated under influence of wake effect for 2"d wind 
turbine (taken from part of Matlab code). 
fo r i I= I :53 % i I = 2 fo r second wind turbine; There are 53 GE 1.5 MW Wind 
Turbines 
Rrot =38.5; % Radius of rotor 
Ct(: ,:,i I) = 3.5. *((2. *v(:,:,i I)) - 3.5)./(v(: ,:,i I ))./\2; % v( :,:,i I) is ca lled using function 
tana =0.08; 
Rx(i I) = Rrot + x(i I )*tana; 
Arot = 4657; (Area = 3. 142*38.5*38.5) or A = n*r*r 
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Uwake(: ,:,i1) = v(:,:,il).*(1- sqrt(1 - Ct(:,:,i1)).*(Rrot/Rx(i1))"'2.*(Ashad(i1)/Arot)); 
% i 1 = 2 for second wind turbine 
end 

gpcorw = Wind power is estimated under wake effect from the input estimated 
wind speed for 2"d wind turbine (taken from part of Matlab code). 
for i1 =I :53 % i1 = 2 for second wind turbine; there are 53 GE 1.5 MW wind 
turbines 
gpuncorw(:,:,i 1) = q2( 18)+( q2(17). *(Uwake(:,:,i 1 ))+ (q2(16). *(Uwake(:, :,i 1 ))./\2)+ 
q2( 15). *(Uwake(:,: ,i 1 ))./\3)+( q2(14). *(Uwake(:,:,i 1 )). /\4)+( q2(13). *(Uwake(:,: ,i 1 ))./\5) 
+( q2( 12). *(Uwake(:,: ,i 1 ))./\6)+( q2(11 ). *(Uwake(:,:,i 1 ))./\7)+(q2(1 0). *(Uwake(: ,: ,i 1 ))./\ 
8)+( q2(9). *(Uwake(:,:,i 1 )). /\9)+q2(8). *(Uwake(:,: ,i 1 ))./\ 1 0)+( q2(7). *(Uwake(: ,:,i 1 ))./\ 1 
1) +( q2(6). *(Uwake(: ,:,i 1 ))./\ 12)+ ( q2(5). *(Uwake(:,: ,i 1 ))./\ 13)+ 
q2( 4). *(Uwake(:,:,i 1 ))./\ 14)+( q2(3). *(Uwake(:,: ,i 1 ))./\ 15)+ 
( q2(2). *(Uwake(:, :,i 1 ))./\ 16)+( q2(1 ). *(Uwake(:,:,i 1 ))./\ 17)); 
gpcorw(:,: ,il) = gpuncorw(:,:,i1).*(act_density./1.225); % i1 = 2 for second wind 
turbine 
end 

GE 1.5 MW wind turbine-2 operating at disc speed 
Disc speed is estimated when the wind turbine operates at free flow of wind speed and 
correspondingly the wind power is estimated from the disc speed. 

Equation: 
Refer equations to determine disc speed of wind turbine: page 104 to 106 
Pcorr = Puncorr *actual density/density at STP (Corrected Power/Power) 
Puncorr = Uncorrected power estimated from curve fitting function from input disc 
speed (Uncorrected Power) 

W io; d O i r- c:t i co o; 1,., Wi o-. ct·~- r~ S it -

Figure N.l: Wind direction (degrees) at the wind farm site for a time span of I 0000 minutes. 

(Note: Time Sca le: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 
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Figure N.2 : Wind speed estimated for the GE 1.5 MW wind turbine- 2 at the hub height. (Note: 

Time Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

Note: With wake effect, wake speed is estimated and is assumed to be at the 
hub height 
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Figure N.3: Wake speed estimated forGE 1.5 MW wind turbine-2 at hub height (Note: Time 

Scale: X axis: I unit = I 0 minute; I 000 unit = I 0000 minutes). 

Note: With no- wake effect, disc speed is estimated and is assumed to be at the 
hub height 
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0 o~--~=---~~~~---4~o~o~~~---=~--~=-~~~~g~o=o--~ 
T l ..,., • ( ..,.., i .,) 

Figure N.4: Estimated disc Speed (adjusted for turbulence and shear) forG E 1.5 MW wind 

turbine-2 at hub height. (Note: Time Scale : X axis: I unit = I 0 minute; I 000 unit = I 0000 

minutes). 
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Figure N .5: Comparison of power estimated with wake (black) and without wake (red) effect 

forG E 1.5 MW wind turbine-2. (Note: Time Scale: X axis: I unit = I 0 minute; I 000 unit = 

I 0000 minutes). 
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