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ABSTRACT 

Orthostatic pressure changes have been shown to significantly affect sympathetic 

nervous system responses in order to maintain balance and homeostasis. Neuromuscular 

responses have not been extensively, if at all, investigated in an inverted body position. 

Muscle force, activation and other neuromuscular factors are necessary, for instance, to 

successfully complete escape procedures from a secured inverted seated position of a 

overturned car or aircraft. 

It is known that both central and peripheral factors contribute to muscle force 

output. With an increase in pressure to levels above the heart in an inverted body 

position, cerebral blood pooling is likely. Even though there is evid~nce of a decrement 

in sympathetic functioning in similar circumstances to inversion, specific 

vestibulosympathetic responses during inversion are unknown, but possibly contribute to 

neuromuscular impairment. Peripheral factors such as l~_wer levels of blood flow to the 

contracting muscles leading to decreased perfusion pressure and an oxygen deficit within 

the muscle results in a decreased force output. Decreased hydrostatic pressure in areas 

below the heart during inversion may also be a contributing hindrance to neuromuscular 

performance, but this has not been demonstrated. 

Based on the lack of literature in this area, the following experiment was 

implemented. Maximal and submaximal voluntary and evoked forces and EMG were 

recorded, and the contractions were analyzed for peak force, rate of force development 

and activation with upright and inverted seated positions. It was expected that inversion 
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induced deficits in muscle force and activation would suggest impairment in 

neuromuscular efficiency in this tilt position. 

It was found that both quadriceps EMG activity during submaximal contractions, 

as well as instantaneous strength during maximal contractions, demonstrated a deficit in 

the inverted position. Therefore, during the inverted seated position it seems that 

neuromuscular function is impaired. 
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LITERATURE REVIEW 

1. INTRODUCTION 

Neuromuscular performance during an inverted body position has not been widely 

studied. However, there are various situations where muscle tension is required in the 

lower limbs to escape or perform optimally while inverted (i.e. aircraft accidents). 

Muscle force output is controlled by central and peripheral factors (Bigland & 

Lippold, 1954; Schneider & Chandler, 1973). Hence, anything that may inhibit these 

factors will have an adverse affect on muscle force. During an upright body position, 

hydrostatic pressure in the lower limbs is regulated by venovasoconstriction and muscle 

pumps that act to limit blood pooling (Vissing, Seeber & Victor, 1997; Miller, Pegelow, 

Jacques & Dempsey, 2005; Delp & Laughlin, 1998). However, it is not known if the 

same mechanisms present during upright activities act in a similar manner, or are 

adequate, to maintain neuromuscular function during knee extension while inverted. The 

baroreceptor reflex may be desensitized during inversion due to the increased resistance 

against gravity to pump blood below the heart (Jennings, Seaworth, Howell, Tripp & 

Goodyear, 1985). The vestibulospinal reflex normally acts to maintain or restore postural 

tone (Berne & Levy, 2001 ). While some studies showed that sympathetic activity is 

decreased in a supine body position (Bosone, 2004), the vestibulosympathetic reflex has 

not been studied during inversion. There also may be other unknown mechanisms that are 

active during inversion to maintain homeostasis, while competing with the large increase 

in cerebral pressure. If neither of these mechanisms proves to be effective in maintaining 

the perfusion pressure to the exercising muscle in the lower limb while inverted, a 



decrease in force output and/or activation may be the result since there is a linear 

relationship between perfusion pressure and force production in the supine body position 

(Koga, Shibasaki, Kondo, Fukuba & Barstow, 1999; Hogan, Richardson & Kurdak, 

1994). 

Accordingly, additional research is required to find out if an inverted body 

position hinders neuromuscular performance. Thus, the proposed study will employ a 

novel rotational chair about the horizontal axis to test a subject's level of muscle 

activation and force output during complete seated inversion. 

2. MUSCLE FORCE OUTPUT IS DUE TO CENTRAL AND PERIPHERAL 

FACTORS 

Muscle force is controlled by central and peripheral factors. Central factors 

control muscle force mainly through motor unit recruitment (Kukulka & Clamann, 1981 ), 

firing frequency (Bigland & Lippold, 1954) and synchronicity (Milner-Brown, Stein & 

Lee, 1975). Peripheral variables involved in muscle force production include the synergy 

of excitation-contraction coupling and myofilament cross bridge kinetics. Changes in 

twitch responses are associated with alterations with excitation-contraction coupling, 

whereas modifications in tetanic force are more reflective of changes in cross bridge 

kinetics. The following section will discuss work that has been published related to how 

changes in hydrostatic pressure affect the production of muscle tension. 

3. WHY WOULD CENTRAL FACTORS BE INHIBITED WHILE INVERTED? 

3.1. FACTORS REGULATING HYDROSTATIC PRESSURES IN LIMBS 
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Pressure at the lower limbs when upright is regulated by various mechanisms, 

such as vena-vasoconstriction (Vissing, Seeber & Victor, 1997), respiratory muscle pump 

(Miller eta/, 2005) and the skeletal muscle pump (Delp & Laughlin, 1998). All of these 

mechanisms contribute to limiting the pooling of blood in the lower limbs. It is unclear 

what mechanism(s) are active in the cerebrum with inverted body positions to regulate the 

high pressures, or alternatively control the consequent decreased pressures on the lower 

limbs in order to try and maintain neuromuscular function. 

3.2. IS THERE A DECREASE IN HYDROSTATIC PRESSURE AT THE LOWER 
LIMBS DURING INVERSION? 

The following are possible mechanisms of the gravity-induced increase in arterial 

pressure resulting in an increase in perfusion pressure and muscle blood flow after muscle 

contraction. The muscle pump allows for increased perfusion to exercising muscles 

during whole body tilt upwards, due to low venous hydrostatic pressure during relaxation 

(Folkow eta/. 1971 ). Intramuscular pressure is another factor that contributes to blood 

flow alterations via mechanisms such as the muscle pump, therefore any modifications to 

intramuscular pressure (i.e. whether due to muscle contraction itself or some extraneous 

factor) can influence muscle function (Sejersted & Hargens, 1995). In the supine 

position, the effects of hydrostatic pressure seem to be minimal and therefore there is not 

much of a change in perfusion pressure (Laughlin and Schrage, 1999). Vascular tone is 

likely to increase with body tilt (MacDonald eta!. 1999), and a gravity-induced rise in 

arterial pressure and vasodilation increases blood flow while inclined. Although not 

researched to date, a similar muscle pump effect as experienced in the lower limbs while 
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upright may not be as efficient in the upper body when inverted. Hence, in an inverted 

body position the muscle pump effect may not be adequate to increase perfusion to the 

lower body musculature. Relative to the extensive volume of lower limb skeletal 

muscles, the muscle pump's influence on the cerebrum may be minimal or non-existent. 

Therefore, when inverted, the limited muscle pump action may lead to a limited or 

restricted ability to prevent cerebral blood pooling. If the preceding postulates are 

correct, then what are the effects of possible cerebral blood pooling and increased 

hydrostatic pressure on central nervous system (CNS) functioning? Furthermore, what 

are the inversion-induced effects of decreased lower body hydrostatic pressure on lower 

limb function? 

3.3. AMOUNT OF PERFUSION AND THUS 0 2 DELIVERY EFFECTS 

It has been demonstrated that there are variations in the rate of alveolar oxygen 

uptake, perfusion and distribution (Cerretelli et al. 1977; Convertino, Goldwater & 

Sandler, I 984 & Hughson, Cochrane & Butler, 1993 ), time to task failure (Rochette et al. 

2003), and changes in endurance and fatigue (Egana & Green, 2005) with changes in 

body position. Supine exercise resulted in increased oxygen deficit and decreased V02 

capacity (Conventino, Goldwater & Sandler, I 984), further supporting the idea that a 

peripheral oxygen deficit may contribute to neuromuscular impairment. 

MacDonald et al. (I 998) investigated blood flow at the femoral artery during the 

onset of supine and upright exercise involving larger muscles. Results indicate drops in 

mean arterial pressure, heart rate (HR), V02 and rate of blood flow in the supine versus 

upright position. These findings led to the suggestion that alterations in metabolic control 
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by the availability of oxygen at the onset of supine exercise may limit the amount of 

muscle oxygen uptake. Hence, the reduction in leg blood flow and oxygen delivery 

during supine exercise may be attributed to reduced perfusion pressure at that body 

position. 

In support of these findings, Koga et al. ( 1999) stated that the blood flow 

availability to the working muscles is decreased in the supine position (Eiken, 1988 & 

Folkow et al. 1971). In the supine position, the majority of the blood flow is at the same 

level as the heart and brain, and therefore there is no need to compensate for about 750 ml 

of thoracic blood being rapidly pushed downward as with standing upright (Stewart, 

2000). Koga et al. (1999) also put forth the possible contributions ofthe hydrostatic 

gradient effect loss in supine positions, lending to a decrease in arterial pressure in the 

lower extremities followed by a blunt in the cardiovascular response. 

The changes in postural blood distribution seem to be dependent upon peripheral 

circulation, with the duration of graded exercise performance reported to be significantly 

longer during standing upright (Egana & Green, 2005). Leg blood flow was increased 

with acute supine exercise due to the gravity-induced differences in arterial pressure at 

the working muscle, attributed to hyperemia and vasodilation. 

During orthostasis there is an increase in blood hydrostatic pressure below the 

heart, resulting in increased arterial and venous pressures (Egana & Green, 2005). In 

support of previous finding, the arterial and thus perfusion pressures increase between 

muscular contractions during orthostasis (F olklow et al. 1971 ), which may explain the 

larger blood flow in the limbs during submaximal supine exercise, and decreased vo2 at 

the onset of upright exercise compared with supine (MacDonald et al. 1998). These 
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results may also apply to submaximal activity, and are thought to be improved with 

maximal contractions. During inversion, there is an increased hydrostatic pressure above 

the heart at the cerebral level (in relation to the anatomical position), but the effects of 

this pressure change on neuromuscular function are unknown. 

Oxygen availability is important in regulating recruitment of high-threshold motor 

units. It is suggested that the V02 slow component may be largely attributed to the motor 

unit recruitment of fast twitch muscle fibers, with lower efficiency and higher oxygen 

cost (Barstow, 1994; Barstow, Casaburi & Wasserman, 1993). The results indicate that 

there is a larger recruitment of fast twitch fibers in the supine position compared to 

upright heavy exercise. It was also suggested that during high intensity supine exercise, 

there is a reduction in oxygen delivery and use by the muscles. With an increase in fast 

twitch fiber recruitment and decrease in oxygen delivery and use by the muscles in the 

supine position, it could be hypothesized that there will also be a change in the force

EMG relationship. 

A key point related to this study is that force output is directly affected by blood 

flow in contracting muscles (Hogan, Richardson & Kurdak, 1994 ). Therefore, muscle 

force output during submaximal and moderately intense work is affected by changes in 

blood flow mediated by oxygen availability, which may be modified by altered 

hydrostatic pressure on both the muscle and the cerebrum during inversion. Therefore, it 

is hypothesized that inversion-induced decreased blood flow to the contracting quadriceps 

will result in a decreased force output. 

3.4. BARORECEPTOR FUNCTIONING 
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Orthostasis literally refers to standing upright. When an individual stands to an 

upright position, the baroreceptor reflex is activated due to the force of gravity pulling 

blood towards the legs and away from upper parts of the body. There is an immediate 

drop in blood pressure, which is counteracted by the baroreceptor reflex that acts to 

increase blood pressure to ensure cerebral perfusion (Ponte & Purves, 1974). If this 

baroreceptor reflex is inhibited in any way, there is a potential risk oflack of blood 

reaching the brain and subsequent syncope. 

Baroreceptors are stretch receptors found in the carotid sinuses and aortic arch 

which respond to stretch of the vessel due to increased arterial pressure. An increased 

firing rate coincides with inhibition of the vasoconstrictor regions, followed by peripheral 

vasodilation and decreased blood pressure (Berne & Levy, 2001 ). Baroreceptors play a 

key role in short term blood pressure regulation. Hence, it is clear that baroreceptors are 

crucial to acute changes in body posture for maintaining homeostasis. 

3.4.1. LOWER BODY NEGATIVE PRESSURE 

The lower body negative pressure (LBNP) test is another way of testing features 

of altered body positions. The LBNP test uses external negative pressure from the waist 

down, under well-controlled conditions, to simulate certain features. LBNP increases the 

pressure gradient at the heart with a reduction at the lower extremities, which is what is 

expected for an inverted body position. 

The effect of supine and upright submaximal exercise on cardiovascular 

parameters was investigated by Hughson, Cochrane and Butler (1993). Subjects were 

placed on a cycle ergometer positioned in upright and supine positions while LBNP was 
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applied in a supine position trial. During supine exercise, LBNP sends more blood to the 

lower body, thereby activating the baroreceptor reflex. It has been put forth that oxygen 

transport is rate-limiting in the supine body position, since exercising in the supine 

position during LBNP results in a faster rate of increase in V02 than without· LBNP. A 

study by Cooper and Hainsworth in 2001, found that a LBNP of -40 mmHg did not have 

any effect on cardiac responses. However, it did enhance vascular resistance responses 

and increase the peak gain of the baroreceptor reflex, helping maintain BP during 

orthostatis, as well as lower the pressure decreases during prolonged periods of stress 

(Cooper & Hainsworth, 2001 ). 

Surprisingly, a study by Jennings et al. (1985) found a significant increase in 

~··· 

diastolic BP at the 60 degree head down tilt (HDT) position, which was said to be 

reflective of the increased resistance against gravity to pump blood to levels below the 

heart. Jauregui-Renaud et al. (2005) found that the activation of carotid and aortic 

baroreceptors by HDT induced a decrease of pulse rate within seconds. Hence increased 

hydrostatic pressure may decrease cardiac output to relieve the perceived increase in 

systemic blood pressure in an attempt to decrease the perfusion pressure in the lower 

extremities when inverted. 

In a study by Arbeille and Herault (1998), during the 70 degree, three minute head 

up tilt (HUT) procedure, along with lower body negative pressure (LBNP) at four 

decreasing levels, at post-HDT the femoral resistances increased less and femoral flow 

reduced less compared to pre-HDT. It seems from this study that four days in HDT were 

enough to alter the lower limb arterial and venous response to HUT and LBNP. The 

HDT also reduced the flow redistribution in favor of the brain (Arbeille & Herault, 1998). 
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3.4.2. FUNCTION OF BARORECEPTORS DURING INVERSION 

Stimulation of the baroreceptors will inhibit vasoconstrictor tone of resistance 

vessels. Small increases in central venous pressure reduce the sensitivity of the 

baroreflex control of sympathetic nerve activity in healthy individuals (Charkoudian et al, 

2004). A study using 60-degree HUT on a tilt table for 20 minutes, resulted in decreased 

stroke volume (SV) and central venous pressure (CVP), suggesting pooling of blood in 

the dependent veins (Minson et al., 1999). Since hydrostatic pressure to the brain may be 

increased in a supine position, and to a greater extent in the inverted position, it can be 

postulated that CVP will acutely increase, therefore decreasing the sensitivity of the 

baroreflex during inversion. However, as the previous studies ha.d conflicting reports on 

cardiac function with the LBNP, it is difficult to predict the pressure consequences of an 

inverted position. Ifbaroreceptors fail to properly adjust central and peripheral blood 

pressure under inverted conditions, there could be consequences for the peripheral 

metabolism subsequently affecting performance. It is unclear how the baroreceptors react 

to inverted body positions. 

4. EFFECT OF PRESSURE ALTERATIONS ON THE CENTRAL NERVOUS 
SYSTEM 

4.1. VESTIBULAR SYSTEM CONTRIBUTIONS 

The vestibular system is a component of the sensory system. Changes in the 

head's position in space are quickly and accurately detected by vestibular input. The main 

components of the vestibular system, with regards to postural adjustments, are the otolith 

organs and the semi-circular canals. The otolith organs therefore sense linear acceleration 
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and orientation relative to gravity, including head tilted to left, right, forward, backward 

making the otoliths move along their gravity gradient. Maximal splanchnic activity 

resulting from firing of the otolith afferents is produced by head rotation in vertical planes 

(Yates & Miller, 1994). Yates and Miller ( 1994) also demonstrated that head down 

rotation (HDR) and nose-up pitch in cats signal the otolith organs to produce the 

vestibulosympathetic reflexes, resulting in positive changes in blood pressure. The 

vestibular effects on respiratory (i.e. vestibulorespiratory reflex) and sympathetic systems 

during postural changes are instrumental in maintaining homeostasis with regards to 

blood oxygenation and blood pressure as well (Yates, 1996; Kerman & Yates, 1998). 

Yates et al. (1994) also noted that the same response as seen in a cat should be dually 

found in humans during movements that may threaten homeostasis. The 

vestibulosympathetic reflex results in increased sympathetic nerve activity (Kaufmann et 

al, 2002) with differential outflow. In fact, otolith activation creates an increase in 

muscle sympathetic nerve activity (MSNA) but not skin sympathetic nerve activity (Ray, 

Hume & Shortt, 1997). The semicircular canals are activated by angular acceleration, 

including rotational movements. Both parts of the vestibular system evoke 

vestibulospinal reflexes acting on the limbs, especially by roll (Wilson et al, 1986). It is 

unknown how the vestibulosympathetic reflex will respond to inversion. 

There are various methods to naturally create a change in vestibular nerve activity. 

Whole body tilt, in particular off-vertical axis rotation (Kaufmann et al, 2002), can 

disrupt the release of vasoconstrictor efferents. Animal vestibular stimulation studies 

suggest positive activity changes in the vasoconstrictor fibers (Kerman & Yates, 1998) 

and other sympathetic afferents (Yates & Miller, 1994 ). During postural alteration, both 
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vascular resistance and vasoconstriction are imperative (Wilson et al, 2006). Evidently, 

gravitational stressed rats with the inner ear intact are better able to regulate blood 

pressure than vestibular deficient rats (Tanaka et al, 2006). Therefore, gravity plays a 

large role in the vestibulosympathetic reflex, an:d since gravity causes many changes in 

how the body responds to inversion, it can be inferred that the vestibulosympathetic reflex 

is crucial to maintain homeostasis at inversion. The question is how the mechanism(s) 

change to accommodate to an inverted body position and if any possible adjustments 

maintain or negatively impact quadriceps muscle function. 

In order to maintain homeostasis in the body, there must be patterns in the 

vestibular system adjustments to ensure that blood flow is adequately distributed 

throughout the body (Kerman, McAllen & Yates, 2000). The vestibulosympathetic reflex 

patterns according to the target organ, and the nerve's rostro-caudallocation (Kerman, 

Yates, and McAllen, 2000). It has been shown that the solitary tract, contributes to the 

vestibulosympathetic reflex by adding to cardiovascular control and sympathetic 

regulation (Costa et al. 1995). The solitary trac receives third order afferent inputs from 

the vestibular system (Yates et al. 1994). As well, nuclei tractus solitarius (NTS) synapse 

with the carotid sinus baroreflex (Spyer, 1981 ), and send inhibitory signals to the rostral 

ventrolateral medulla. Moreover, the vestibular system exhibits autonomic adjustments 

during postural changes to achieve autonomic control of visceral functions (Doba & Reis, 

1974). This could have implications for neuromuscular performance during downwards 

tilt. 

Furthermore, the vestibulospinal system may respond to downwards body tilts as a 

threat to balance by increasing co-contractions. Increased co-contractions have been 
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suggested to be related to lower force outputs (Behm & Anderson, 2006). Although an 

individual may be fully strapped while inverted, the altered afferent feedback (i.e. 

dangling feet) and the change in vestibular functioning could induce a sense of instability. 

Ray and Carter (2003) examined the effect of sympathetic activity by inducing 

head-down rotation (HDR) in subjects to physically alter the vestibular system. It has 

been concluded that the alterations in MSNA observed during HDR are a direct result of 

alterations in the otolith organs. 

Further investigations in the area of vestibular control and the neuromuscular 

mechanisms associated with it, may have practical implications in actual or simulated 

weightless environments. There has been evidence put forth of decreased sympathetic 

activity in such circumstances (Beckers et al, 2003), which may contribute to inhibited 

muscle function. 

4.2. SYMPATHETIC SYSTEM CONTRIBUTIONS 

Both peripheral and central processing factors are involved with postural 

adjustments (Ivanenko et al. 2000). Efferent and afferent signals within the sensorimotor 

system provide feedback from somatosensory, vestibular, and visual inputs (Kollmitzer et 

al. 2000), and consistent anticipatory postural adjustments (Slijper and Latash, 2000) 

contribute to balance. 

The efferent nerves send signals to adjust posture, thereby producing and/or 

maintaining muscle contraction. The efferent system also provides autonomic outflow 

and ensures optimal blood flow to the contracting muscles and brain, via somatic 

motoneurons. Output from the brain's central command acts in a feed-forward manner, 
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affecting both autonomic and somatic outflow. However, input from somatic and visceral 

afferents act in a feedback fashion. Therefore, decreases in blood volume, pressure and 

muscle contractions provide changes in afference (Kerman, McAllen & Yates, 2000). 

This also provides evidence to indicate that altered sympathetic activation due to an 

inverted body position could affect the ability to activate motoneurons. Thus, 

quantification of the changes in sympathetic activity to the vessels involved in postural 

alterations can be achieved by the direct recording of the neural sympathetic discharge 

from the peroneal nerve (Furlan, 2002). 

MSNA causes vasoconstriction in skeletal muscle in response to standing upright 

(Wallin & Sundlof, 1982). During orthostasis the immediate increase of sympathetic 

activity to the vessels is accompanied by an excessive cardiac sympathetic response, 

resulting in an abnormally rapid heart rate (Furlan, 2001 ). Furthermore, it was proposed 

that at high levels of sympathetic activity, postsynaptic adrenergic receptors may become 

saturated, resulting in maximum smooth muscle constriction (Fu, Witkowski & Levine, 

2004). It has also been shown that short-term vasoconstriction of skeletal muscles is 

gravity dependent (Cui eta!, 1997). Prolonged HUT is associated with a greater 

innervation density ofthe hindlimb blood vessels (Monos, Lorant & Feher, 2001). This 

in tum causes a potentiated acute myogenic response to pressure and an increased neural 

vasoconstrictor capacity of the blood vessels important to venous return and cardiac 

output (Domyei, 1996). The response in MSNA to inversion has not been directly 

studied. Therefore, we cannot assume to expect opposite results as seen in the upright 

position. 
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As the central nervous system becomes increasingly stressed, there are reports of 

elevated intracranial pressures in rabbits subjected to 45 degree head down body tilt 

(Tatebayashi, Doi & Kawai, 2002) and humans positioned at 30 degree head down body 

tilt (Bosone, 2004); ··The effect of increased intracranial pressure on human 

neuromuscular performance has not been previously investigated. 

The combination of increased intracranial pressures and decreased sympathetic 

outflow might reduce the neural outflow to the motor neurons adversely affecting the 

ability to fully activate all motor neurons, thus reducing maximal force output or the 

ability to sustain submaximal intensity contractions. 

In summary, there have been no studies performed with complete inversion, but it 

has been shown that acute head down body tilt lowers sympathetic nervous activity 

(Bosone, 2004; Cooke, Carter & Kussela, 2004;Cooke & Dowlyn, 2000), while having 

no effect on parasympathetic activity (Cooke, Carter & Kussela, 2004). Inhibition of 

sympathetic activity has been shown to decrease HR (Sundblad, 2000), blood pressure 

(BP) (Bosone, 2004) and total peripheral resistance (Goodman & LeSage, 2002). In order 

to balance the decreased HR, cardiac output (CO) reactively increases with 6 degree head 

down body tilt (Yao, 1999). Kowanokuchi et al. (2001) used 6-8.5 degree head down 

body tilt with LBNP to illustrate that sympathetic inhibition can be attributed more to a 

vestibulosympathetic reflex rather than cardiopulmonary baroreceptors. Since changes in 

body tilt have significant impact on cardiovascular and sympathetic responses it would be 

of interest to investigate inversion effects on neuromuscular performance. 
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5. LINKING CARDIOVASCULAR CHANGES TO NEUROMUSCULAR 

PERFORMACE 

As there are limited inversion studies in the literature, the effects of changes in 

peripheraJ·perfusion pressure and ischemia are discussed. 

The distance the muscle being tested is above or below the heart is one 

determining factor of perfusion pressure in the muscle. Neilsen (1983) demonstrated a 

decrease in perfusion pressure in the hand while the arm is raised above the heart. It has 

also been shown that lower limbs altered by positive pressures of up to 50 mmHg, 

reduces muscle perfusion and consequently decreases muscle performance (Eiken, 1987; 

Sundberg & Kaisjer 1992). Fitzpatrick et al. ( 1996) discovered that when the hand was 

raised above the heart, perfusion pressure in the hand decreased by 35 mmHg (ie. 

hydrostatic pressure of a 45 em column of blood) resulting in decreased force production 

and increased mean arterial pressure. Alternatively, when the hand was lowered below 

the heart, perfusion pressure increased by 35 mmHg and there was an increase in muscle 

force production. It was also found that the evident dependence of force production on 

the amount of perfusion pressure was enhanced when the workload was increased. 

Furthermore, animal studies performed with an isolated cat soleus muscle treated with a 

reduced mean blood pressure, resulted in decreased blood flow and force production with 

near maximal workloads (Hobbs & McCloskey, 1987). 

Hobbs et al. (1987) also found increased integrated EMG (iEMG) during leg 

elevation. The results were evidence of force output being affected by the perfusion 

pressure into the muscle. However, it was still uncertain if the increase in iEMG was due 

to recruitment of additional motor units to balance the decrease in muscle force output 
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with altered perfusion. Fitzpatrick et al (1996) modified the perfusion pressure in the 

adductor pollicis and found no systematic changes in EMG. However, there was an 

increase in muscle activation, thought to be responsible for the maintenance of constant 

force output with a decrease in perfusion pressure into the muscle. 

Hobbs & McCloskey (1987) used the cat to show that muscles consisting of type I 

muscle fibers demonstrated the positive perfusion pressure - force development 

relationship, while muscles composed of mainly type II muscle fibers did not. In a 

human study by Fitzpatrick et al (1996) the adductor pollicis was the muscle investigated, 

which is mainly composed of fiber types I and IIA. Therefore, the demonstrated early 

rapid decline in muscle force, followed by an extended period of slower muscle force 

decline are reflective of these two muscle fiber types being present and exhibiting change. 

Whereas it is known that force production is decreased when perfusion is lowered, there 

was no direct evidence to suggest that changes in muscle performance were due to 

changes in oxygen delivery to the muscle or other factors related to blood flow. 

Lanza et al (2006) investigated adenosine triphosphate (A TP) synthesis during 

ankle dorsiflexion in the supine position with cuff occlusion to the tibialis anterior. With 

a decrease in A TP synthesis by oxidative phosphorylation due to a decrease in P02, 

which is required for mitochondrial ATP synthesis, it was found that the A TP balance 

was maintained during ischaemia via decreased A TP demand. The lower demand for 

A TP was attributed to decreased muscle force production as well as increased metabolic 

economy. 

The lower A TPase rates during ischaemic contraction were suggested to be an 

indication of greater decrease in muscle force output during ischaemia, since muscle force 
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production controls the rate of ATP production. Other contributing factors to decrease in 

muscle force production may be the decrease in phosphocreatine and enhanced 

myoglobin desaturation with ischaemic contractions (Lanza et al. 2006). Even with the 

voluntarily maximal activation of the tibialis anterior, glycolytic A TP production was 

unchanged between free flow and ischaemic contractions (Lanza et al. 2006). However, a 

study by Greenhaff et al (1993) examined maximal electrical stimulation of the 

quadriceps and found opposite results. It was found that glycogenolytic rates were 

similar between ischaemic and free flow contractions in type II muscle fibers. 

Contrastingly, glycolytic flux was increased more with ischaemic contractions versus free 

flow contractions by type I fibers. Lanza et al. (2006) contributed the differences in 

observations between these two laboratories to the difference in muscle groups studied, 

muscle activation technique, as well as the glycolytic flux quantifYing method. 

Lanza et al. (2006) also demonstrated a decrease in the force-time integral, 

reflecting more muscle fatigue during ischaemic contractions. The greater decrease in 

muscle force generating capacity was party attributed to A TP hydrolysis becoming less 

favored, as apparent by A TP supply being closely connected to muscle force output 

(Dawson et al. 1978). 

In summary, during maximal or near maximal muscle contractions, if there is a 

decrease in perfusion pressure (i.e. decrease in hydrostatic pressure), there is a decrease in 

muscle force production. Also, type I muscle fibers are the most sensitive to changes in 

perfusion pressure and therefore most likely to affect muscle force output. Furthermore, 

ischaemic muscle contractions result in decreased mitochondrial ATP synthesis and 

hence, since there is a larger decrease in muscle force production during such contractions 
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there is also a decrease in A TP demand. Although ischaemic conditions do not exactly 

replicate the inverted posture these studies may give some indication of possible lesser 

fluctuations in energy output with inversion. 

6. EFFECT OF INCREASED HYDROSTATIC PRESSURE ON MUSCLE FORCE 
OUTPUT 

Early investigations into the effects of high pressure on muscle were conducted by 

Cattell & Edwards (1928), who began by studying the energy changes involved in 

contractions under high pressure, while Brown ( 1934) looked at the effect of rapid 

changes in hydrostatic pressure on muscle contraction. It was found that high pressure 

applied at the onset of contraction increased the twitch tension (Cattell & Edwards, 1928), 

while decreasing rates of contraction and relaxation (Brown, 1934). Since twitch tension 

was more adversely affected than tetanic tension, the changes in tension were attributed to 

excitation contraction coupling modifications (Cattell & Edwards, 1928). Both Brown 

(1958) and Ikkai and Ooi ( 1969) found that raised hydrostatic pressure decreased the 

attraction of actin to myosin, thereby hindering the actomyosin ATPase reaction. 

Geeves and Ranatunga ( 1987) furthered these concepts by investigating how 

isometric tension production in a single rabbit psoas muscle fiber was affected by high 

hydrostatic pressures. Pressure was increased for 2-1 0 seconds and then held constant for 

10-20 seconds. The result was a 15% decrease in isometric active tension in a maximally 

calcium activated fiber. It was thought that a lower number of active cross bridges and/or 

a decrease in the force per cross bridge was responsible for this linear relationship. It was 

later deduced that the amount of products ofthe ATPase reaction determines how much 
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the maximum active tension is decreased (Fortune, Geeves & Ranatunga, 1989). With 

increased hydrostatic pressure applied, tension was decreased more by the presence of 

inorganic phosphate, while ADP lessened the amount of tension reduction, providing 

more evidence that a cross bridge incident is responsible for tension alterations induced 

by increased hydrostatic pressure. 

The differences in a twitch and tetanus tension response to higher hydrostatic 

pressures were more thoroughly explored by Ranatunga & Geeves (1991). This study 

used the extensor digitorum longus of the rat, which is composed of mainly fast twitch 

fibers, to determine the isometric contraction response to augmented hydrostatic pressure. 

It was shown that during increased hydrostatic pressure the peak tension, time to peak and 

the time to half-relaxation of the elicited twitch contraction were enhanced. 

Alternatively, with the administration of a fused tetanus there was decreased tension 

production. This lowering of tension was thought to be composed of an increased half

time of exponential relaxation (i.e. due to hydrostatic compression of muscle fiber 

elasticity) and a decreased half-time of tension rise. 

Fortune, Geeves & Ranatunga (1994) compared the effects of hydrostatic pressure 

on both maximally and submaximally contracted rabbit psoas muscle fibers. The results 

displayed opposite responses for each type of contraction. For contractions at low Ca2
+ 

levels (i.e. submaximal contraction), there was a steady tension increase. However, at 

high levels of Ca2
+ (i.e. maximal contraction), there was a decrease in steady tension. 

The reason for this difference was suggested to be due to the high hydrostatic pressure 

affecting other processes such as Ca2
+ uptake and release. During a submaximal 

contraction of an intact muscle fiber, such an alteration in this process could increase 
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contractile activation and force output. This theory provided further support for the idea 

that Ca2
+ regulates cross bridge recruitment rather than the rate of a particular step within 

the cross bridge cycle. Another study also found that increased twitch tension due to 

enhanced hydrostatic pressure may be caused by increased release of Ca2
+ (Vawda, 

Ranatunga & Geeves, 1996). Other studies have shown that high hydrostatic pressures 

causes pulsing acetylcholine receptor release, decreasing its effect on muscle firing 

frequency (Heinemann, Stuhmer & Conti, 1987), and another study demonstrated 

decreased enzymatic activity of lactic dehydrogenase (Schmid, Ludemann & Jaenicke, 

1979). Both of these studies are further evidence that high hydrostatic pressures result in 

neuromuscular impairment. 

All of these aforementioned studies were completed with animal models. There is 

very little research conducted, if any, on humans in this area. It is interesting that there 

are seemingly opposing results to the above animal skeletal muscle studies found in the 

rat cardiac muscle. Ornhagen & Sigurdsson (1981) found that high hydrostatic pressure 

resulted in increased force of atrial contraction. 

An inverted position would be expected to increase blood pooling in the brain 

while decreasing blood perfusion in the lower limbs, and therefore less hydrostatic 

pressure acting on the lower limb vessels. The effect of less hydrostatic pressure as 

compared to the animal studies examining high hydrostatic pressure would not 

automatically translate into the opposite response (i.e. increases rather than decreases in 

maximum force). Due to the lack of literature in the area of reduced hydrostatic pressure 

(Parazynski et al, 1991) in human limbs due to inversion, it is of interest to investigate 

this question. 
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6.1. FORCE-EMG RELATIONSHIP 

In addition to blood flow to the contracting muscle, the nervous system 

contributes to control of time to task failure of a submaximal sustained contraction 

(Akima et al. 2002) in varying body positions. Rochette et al. (2003) examined time to 

task failure and the patterns of EMG activity of the quadriceps in supine and seated 

postures. Increased EMG activity indicates recruitment of additional motor units during 

contraction along with progressive fatigue (Fallentin, Jorgensen & Simonsen, 1993). The 

results showed that the submaximal torque recorded before the fatiguing contraction was 

the greatest in the seated position. EMG activity increased throughout the fatiguing 

contraction in the supine position. The rate of increase in EMG was similar in both 

positions, while the average rate of torque increase did not differ. The time to task failure 

performed at the same relative target torque was unchanged by altered body positions 

(Rochette eta!. 2003). 

The results from this study concluded that sustained submaximal contraction of 

the quadriceps did not show the changes reported in the elbow flexor muscles reported by 

Hunter & Enoka (2003). These results suggest that control of muscle activation is related 

to the structural organization of the muscle group. However, the synergist muscle was 

unrepresentative of the activation patterns of the entire muscle group because the 

amplitude and rate of increase in EMG activity was not uniform among the quadriceps. 

The time to task failure was similar in both positions, but the decrease in maximal torque 

was greater in the seated position suggesting that they are controlled by differing 

mechanisms (Rochette eta!, 2003). 
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Published research concerning the EMG-force relationship and muscle activation 

of the knee extensors while in static inverted seated positions are rare. Hence, it is 

important to investigate the general neuromuscular response during this type of 

contraction and body posture, with the practical applications possibly leading to 

enhancement of the preparation and training for accident situations and also influencing 

the working efficiency of individuals in the unique situation of whole body inversion. 

7. CONCLUSIONS 

In conclusion, this literature review has provided information to indicate that 

neuromuscular function to the lower limbs may be impaired during inverted body 

positions. Since muscle force output is due to central and peripheral factors, inhibition of 

either of these nervous systems will contribute to alterations in muscle force. 

Presently, the only known hindrance to the cerebral area during inversion is an 

increased hydrostatic pressure above the heart, and a probable decrease in baroreflex 

sensitivity. However, these factors alone could result in cerebral blood pooling with 

drastic effects on central factors controlling lower limb function. 

There is persuading evidence that inversion will result in neuromuscular 

impairment. Expected gravitation changes to certain areas of the body, for example 

during seated inversion, will induce otolith activation, consequently stimulating the 

vestibulosympathetic reflex and a resulting decrease in muscle sympathetic nerve activity 

to the leg muscles. Furthermore, since force output is directly affected by blood flow, a 

decrease in blood flow availability to the quadriceps during inversion may lead to oxygen 
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deficit and a decreased V02 capacity within the muscle. A resultant decrease in perfusion 

pressure at the muscle will likely cause a decrease in force output, followed by a decrease 

in A TP production and demand. Likewise, a possible decrease in hydrostatic pressure 

below the heart during inversion can also lead to a decrease in tension production. For 

example, head down tilt has been shown to increase resistance against gravity to pump 

blood to levels below the heart. It is acknowledged that EMG activity is increased with 

high hydrostatic pressures; however, the EMG response to decrease hydrostatic pressure 

at the muscle is unknown. 

23 



The Effect of an Inverted Body Position on Muscle Force and Activation 

Author: Natasha Paddock 

School of Human Kinetics and Recreation 

Memorial University of Newfoundland· 

Running Title: Inversion effects on muscle force and activation 

24 



ABSTRACT 

Progressively tilting the body from supine to upright, have been utilized to 

examine changes in the vestibular, autonomic and cardiovascular responses. The purpose 

of this study was to investigate neuromuscular responses to upright and inverted seated 

positions. Sixteen subjects tested their knee extensors under upright and inverted seated 

positions for maximal voluntary contraction (MVC) force, level of muscle inactivity, 

electromyographic (EMG) activity and evoked contractile properties. Surface EMG 

electrodes were placed on the rectus femoris and semitendenosis. Stimulating electrodes 

were placed over the inguinal space and distal portions of the quadriceps. The evoked 

and voluntary contractions were analyzed for peak force, rate of force development and 

activation. During 50% and 75% MVC, the quadriceps EMG activity was significantly 

greater in the upright position compared to the inverted position. The results showed a 

trend for quadriceps MVC EMG activity to be greatest in the upright position. There 

were no significant differences in the force-EMG relationship between the conditions. 

Instantaneous strength in the inverted position was 19.3% lower than the upright position. 

It was concluded that the inverted seated position had detrimental effects upon muscle 

activation during submaximal contractions. These findings could have negative 

implications for individuals attempting to escape from trapped inverted seated positions 

such as an overturned aircraft or vehicle. 

Keywords: inversion, electromyography, evoked contractile properties, strength 
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INTRODUCTION 

Neuromuscular performance during upright positions is ubiquitous throughout the 

literature. The activation associated with force output produced by short duration 

maximal voluntary contractions (MVC) can be represent~d by EMG activity (Bigland & 

Lippold, 1954). This activity shows an increase in global action potential amplitude, 

which can be caused by many factors such as increased motor unit recruitment (Kukulka 

& Clamann, 1981 ), firing rate (Bigland & Lippold, 1954) and synchronicity (Milner

Brown, Stein & Lee, 1975). These parameters of analysis are quite helpful when 

examining fatigue and overall performance, and also provide a model to study various 

disease or disorder conditions, in addition to general muscle physiology mechanics. 

Muscle activation and force studies are typically conducted during seated or standing 

positions. However, there are a number of scenarios where an individual may have to 

perform maximal contractions under inverted conditions. The question arises regarding 

the neuromuscular responses to inversion while submerged in an overturned helicopter, 

motor vehicle, performing evasive maneuvers in military aircraft or other unique and 

dangerous environments. Therefore this research was initiated to increase our 

understanding of how force output and muscle activation changes in upright and inverted 

seated positions. 

A number of studies have examined related neuromuscular function in upright 

whole body tilt from supine to upright positions (Furlan, 2001), head-up (Arbeille & 

Herault, 1998) head-down (Yasumasa, 2002), and head-rotation (Ray, 2000). It is 

possible that changes in hydrostatic pressure of both the cerebrum and the working 

muscle, in addition to changes in both the cardiovascular and sympathetic systems may 
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contribute to alterations in neuromuscular performance during different body positions. 

This may be especially apparent in an inverted position compared to upright posture. 

1. PURPOSE OF STUDY 

This paper was developed to explore how neuromuscular function may change 

when the body is placed in an inverted body position. It was believed that the information 

provided by this study would contribute knowledge regarding the physiological changes 

associated with inversion, as well as shedding some light onto possible mechanisms 

behind these changes, by determining the extent to which neuromuscular performance is 

impaired during inversion. 

2. RESEARCH HYPOTHESES 

It was hypothesized that an inverted body position will induce neuromuscular 

impairments. More specifically, during inversion it was hypothesized that: 

( 1) MV C force output will decrease 

(2) EMG activity will be decrease during MVC and increase with submaximal 

intensity contractions 

(3) Muscle activation will decrease 
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METHODOLOGY 

1. SUBJECTS 

Sixteen male subjects (height= 178.25 em+/- 7.59, weight= 82.04 kg+/- 12.29, 

age= 25.06 +/- 3.70) from Memorial University ofNewfoundland participated in the 

study. All subjects performed the protocol in Memorial University's Exercise Physiology 

Laboratory. All participants had no previous history of any hypertensive or cerebral 

related conditions or serious injury, and were between 19 to 35 years old. Subjects 

included both competitive and recreational athletes; resulting in a heterogeneous group of 

active individuals. There. were no sedentary participants. All participants were given an 

overview ofthe procedure, a Physical Activity Readiness Questionnaire (PAR-Q) form 

(Health Canada, 2004 ), and signed an informed consent form. They also participated in 

an orientation session prior to the data collection. The study was granted ethical approval 

by Memorial University's Human Investigations Committee. 

2. EXPERIMENTAL DESIGN 

2.1. PROTOCOL 

Subjects were instructed to not smoke, drink alcohol or exercise at least 6 hours 

prior to testing and to not eat food at least two hours prior to testing (Health Canada, 

2004). Subjects were given an orientation session at least 48 hours prior to testing. The 

orientation allowed them to become familiar with the protocol, as they performed all of 

the same procedures as they would during testing. All participants were required to 
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perform a warm-up activity prior to testing, consisting of pedaling on a cycle ergometer 

set at 1 kp and 70 rpm (70 Watts) for 5 minutes, keeping the heart rate above 70 beats per 

minute. 

Every testing session began with an initial measure conducted from an upright 

seated position for consistency purposes. This measure involved progressively increasing 

twitch magnitude elicited to the subject until force output reached a plateau, indicating the 

maximum resting twitch. Hence, this twitch value was then utilized for each subsequent 

stimulation during the ITT. The following measures were then tested in the randomly 

selected tilt position (seated upright or inverted; Figures 1 & 2 respectively). 

First, the subject performed 2-3 maximal voluntary contractions (MVC's). 

Secondly, a MVC was performed with the interpolated twitch technique (ITT). The first 

twitch was elicited at the peak voluntary force, and the second while the muscle was 

relaxed. Next, 25%, 50% and 75% MVC trials were collected in random fashion. Each 

percentage of the maximum force for each subject was displayed on a computer screen, 

and the subject was prompted to maintain the force at each level by way of visual 

interpretation. Lastly, a post-test maximum potentiated twitch was elicited. The 

preceding order of tests was maintained for all testing sessions since a voluntary 

contraction prior to the resting twitch would potentiate the force. 

Blood pressure was monitored prior to testing, and again after each MVC to 

ensure the safety ofthe subject. Subjects were allowed a two minute rest period between 

each test condition. There were two testing sessions, with at least 48 hours between each 

one, and each subject was tested at similar times of the day for each subsequent session. 
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2.2. APPARATUS 

The study was conducted with subjects in a seated position on a rotational chair with hips 

and knees at 90°. To measure the moment about the knee joint, a reinforced strap was 

placed around the ankle, attached by a high tension wire to a Wheatstone bridge 

configuration strain gauge (Omea Engineering Inc., LCCA 250, Don Mills, Ontario, 

Canada), perpendicular to the lower limb. The subject's body was secured in the 

rotational chair via a 5 -point strap (waist, shoulders and groin), along with an additional 

leg brace located around both thighs. The securing of participants with strapping and a 

leg brace maintained posture and also helped to ensure stability, isolation and correct 

orientation of the quadriceps muscle and joints. 

3. DEPENDENT VARIABLES 

3.1. EVOKED CONTRACTILE PROPERTIES 

Twitches were evoked with stimulating electrodes. Stimulating electrodes were 

constructed in the laboratory from aluminum foil and paper coated with conduction gel 

(Aquasonic, Fairfield, NJ) and immersed in a saline solution. The length of the electrode 

was sufficient to wrap the width of the inguinal space and distal portion of the 

quadriceps, in order to stimulate the femoral nerve. The amperage and voltage of the 

stimulation were progressively increased until reaching a force plateau, indicating peak 

twitch force. Torque about the knee joint was measured by the strain gauge, amplified 

(DA 100 and analog to digital converter MPIOOWSW, Biopac Systems, Inc., Holliston, 

MA), and monitored on a computer (Compaq, St. John's, Newfoundland, Canada). All 

data was collected at 2kHz and then stored on a computer. 
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3.2. MVC-FORCE 

Verbal instructions to maximally contract the quadriceps as hard and fast as 

possible were given to the subject for the MVC. The arms were crossed in front of the 

chest, and the ankle cable was maintained in a taut position to help prevent movement of 

the knee joint during the data collection. Verbal motivation was given by the investigator 

during the contraction to promote a maximal response. The contraction lasted for 4 

seconds, followed by relaxation. If there was more than a five percent difference between 

the first two MVC trials, the subject was asked to perform a third trial, and the highest 

MVC force was recorded. All forces detected by the strain gauge were amplified and 

converted via an analog to digital (A/D) converter to be stored on a computer for further 

analysis. 

3.3. INTERPOLATED TWITCH TECHNIQUE (ITT) 

The ITT was incorporated during the MVC. The quadriceps muscles were 

subjected to interpolated stimulation by a doublet (two maximal twitches with a 100 ms 

interpulse interval). The superimposed twitch of the ITT activates any fibers that are not 

voluntarily recruited by the MVC. The segment of the MVC where peak force was 

achieved was identified in the preliminary MVC trials. This point in time was used to 

elicit the superimposed twitch for the MVC ITT trial. The same time frame was 

incorporated after the superimposed twitch to elicit the potentiated twitch. The subject 

was instructed to relax fully before the potentiated twitch was produced. An index of 

muscle inactivation was derived by expressing the potentiated twitch as a percentage of 

the superimposed twitch (Behm, St. Pierre & Perez, 1996). 
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3.4. FORCE-EMG RELATIONSHIP 

The MVC peak force measured by the strain gauge was utilized to estimate 25%, 

.50% and 75% MVC force. These force levels were subsequently displayed on the 

computer monitor for the subject to see. The subject was then requested to perform 

isometric knee extension contractions at an intensity that would match the prescribed 

force level indicated on the computer monitor. There were separate trials for each 

percentage ofMVC, and there were two minutes ofrecovery between each 4 second 

contraction. 

3.5. Electromyography 

The skin was prepared for surface and stimulating electrode placement by shaving 

the area, followed by rubbing with sand paper and then an alcohol swab to clean. Two 

bipolar surface electrodes (Kendall Medi-trace 100 series, Chikopee, MA) were placed 2 

em apart over the mid-belly of the vastus lateralis and the semitendinosis in alignment 

with the muscle fibers. The anterior superior iliac spine to the patella, and the gluteal fold 

to the knee fold were initially measured and the halfway mark recorded, so that for each 

successive session the surface electrodes were consistently placed. Ground electrodes 

were placed on the tibia and fibular head. 

The EMG signal was sampled at 2kHz with a Blackman -61 dB band-pass filter 

between 10-500 Hz, amplified 1000 times (Biopac Systems MEC 100 amplifier, Santa 

Barbara, CA; input impedence =2M, common mode rejection ratio> 100 dB [50/60Hz]; 
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noise > 5 UV), directed through an AID converter (Biopac MP 1 00) to be stored on a 

personal computer for further analysis. 

4. DATA ANALYSIS 

4.1. FORCE 

Data were recorded and analyzed with proprietary software (AcqKnowledge III, 

Biopac Systems Inc.). All MVC forces were analyzed using the maximum value of force 

output. The resting and potentiated twitch forces were also analyzed using the highest 

value. Instantaneous strength was analyzed as the force generated in the first 1 OOms of 

the MVC. The half relaxation time was calculated as the time period to reach half of the 

peak twitch force. The time to peak twitch was measured as the time period of the peak 

to peak value from baseline to the peak twitch force. 

4.2. EMG 

The quadriceps EMG signal during the percentage trials, along with both the 

vastus lateralis and the semitendonosis muscles EMG activity during the MVC trials, 

were amplified, filtered (10-1,000 Hz), monitored, and stored on a computer. The post

collections analysis software than rectified and integrated (iEMG) the data over a 500-ms 

period during which peak voluntary force was produced. The muscle action potential 

wave (M-wave) amplitudes were analyzed from the stimulated resting twitches and 

maximum values were recorded. 

5. STATISTICAL ANALYSIS 
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One-way analysis of variances (ANOVA) with repeated measures was conducted 

on all measures, in the upright and inverted positions (GB-STAT forMS WINDOWS V. 

6.0.). Differences were considered significant when p-values were below an alpha level 

of0.05. An EMG-Force relationship was derived for the MVC and percentage trials 

(25%, 50%,75% and 100% ofMVC) and described with a second-order polynomial 

equation (GB-STAT forMS WINDOWS V. 6.0.). From the second-order polynomial, 

differences in slope and curvature were investigated. A post-hoc Bonferonni- Dunn's 

Procedure test was also utilized to determine the values of pair wise comparisons, and 

detect the location of significant differences between upright and inverted positions. 

Effect sizes (ES = mean change I standard deviation of the sample scores) were 

calculated and reported (Cohen, 1988). Cohen applied qualitative descriptors for the 

effect sizes with ratios ofless than 0.41, 0.41 - 0.7, and greater than 0.7 indication small, 

moderate and large changes respectively. Descriptive statistics and figures include means 

+/- standard deviation (SD). 
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RESULTS 

1. EVOKED CONTRACTILE PROPERTIES 

There were no significant changes in resting or potentiated twitch forces with 

changes in position. Likewise, there were no significant changes in half relaxation time 

or time to peak twitch. However, there was a numerical indication that time to peak 

twitch decreased in the inverted body position (ES = 2.273). There data also suggested a 

(small to moderate effect sizes) tendency forM-wave amplitudes from the upright 

position to be 17.1% higher than in the inverted (ES = 0.517) position (p = 0.412). There 

was a moderate effect size (ES = 0.168) for the resting twitch forces to be 17.1% higher 

in the upright position rather than inverted (p = 0.168; Tables 1 & 2). 

2. MVC MUSCLE ACTIVATION AND FORCE 

There were no significant changes with position for MVC force, muscle activation 

as measured with the ITT or semitendonosis EMG activity. However, instantaneous 

strength was 19.3% lower than upright, in the inverted position (p = 0.0053; ES = 0.782; 

Figure 5). There was also a trend for vastus lateralis MVC EMG activity to be 41.3% 

greater in the upright position as compared with the inverted (ES = 0.413) position (p = 

0.078; Tables 1 & 2). 

3. FORCE-EMG RELATIONSHIP 
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The EMG activity for the 50% quadriceps MVC appeared to be 24.7% higher in 

the upright position than the inverted position (ES = 0.828; p = 0.039; Figure 3). During 

the 75% MVC, the vastus lateralis EMG activity was 29.3% greater in the upright 

position compared to the inverted position (ES = 0.769; p = 0.016; Figure 4). The 

unadjusted r2 has a p-value of 0.58, indicating a linear Force-EMG relationship (slope p = 

0.389). There were no significant differences in position for slope (Table 3). 

4. RELIABILITY 

The reliability of the twitch forces using an ICC was 0.8. MVCs, ITTs and the 

associated EMG were not pre-tested in every condition but previous research from this 

laboratory have reported reliability values ranging from 0.91 - 0.99 (Behm, St. Pierre, & 

Perez, 1996; Behm, & St. Pierre, 1997; Behm, & St. Pierre, 1997; Behm, Button, 

Barbour, Butt & Young, 2004; Behm, Anderson & Curnew, 2002). 
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DISCUSSION 

This is the first study to investigate the effects of an inverted body seated position 

on neuromuscular function. The main findings of this study were 1) a significant 

decrease in EMG activity of submaximal (i.e. 50% and 75% MVC) knee extensions 

during inverted tilt positions and 2) instantaneous strength was found to be significantly 

lower in the inverted position. Even though not statistically significant, there were 

important trends and numerical indications with considerably large effect sizes and 

percentage differences between tilt positions demonstrated. As this is the first study in 

this area, there are no comparable studies, which have replicated seated whole body 

inversion. However, other studies using whole body and head tilts may provide some 

insight into the mechanisms underlying these inversion-induced deficits. 

1. CHANGES IN SUBMAXIMAL MVC EMG ACTIVITY 

The initial hypothesis that EMG activity would be altered by changes in body tilt 

was substantiated in this study. There was a significant decrease in quadriceps EMG 

activity during both 50% and 75% MVC's while inverted. A decrease in EMG activity 

reflects inhibitory influences on activation, and can be due to multiple factors. A 

decrease in number of motor units recruited, size of motor units recruited, firing 

frequency of the motoneurone, synchronicity of action potential firing or a decreased 
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muscle action potential amplitude or duration can all contribute to a decreased EMG 

signal (Bigland & Lippold, 1954; Kukulka & Clamann, 1981; Milner-Brown, Stein & 

Lee, 1975). Essentially, a drop in EMG activity due to inversion could be related to an 

inhibition of central or peripheral factors. 

2. PERIPHERAL FACTORS AFFECTING CHANGES IN SUBMAXIMAL MVC EMG 

ACTIVITY 

There is evidence that a decrease in blood volume, blood presure and muscle 

contractions cause changes in afference (Kerman, McAllen & Yates, 2000). Furthermore, 

a decrease in lower limb conductivity, which affects motor unit action potentials, was 

shown to decrease EMG spectral content during tilt from vertical to supine. Rochette et 

al. (2003) reported a decrease in EMG activity during 20% MVC while lying supine 

compared to seated upright. They attributed the decrease in EMG to a decrease in 

afferent neural outflow to the motor neurons. Likewise, whole body tilt, in particular off

vertical axis rotation, can disrupt the release of vasoconstrictor efferents. There could be 

further decreases in neural outflow to the motor neurons with increased hydrostatic 

pressure and altered sympathetic activation during inversion. A decrease in 

neuromuscular efficiency is also possible during inversion, which could result in an 

increased neural drive to perform the same intensity of submaximal contraction. Barstow 

(1994) found a larger recruitment of fast twitch fibers during activity in the supine 

position versus upright. However, these contrasting results may be due to the differences 

in intensity of contraction, since Barstow's protocol involved maximal exercise, whereas 

the findings of the present study involve submaximal isometric contractions. However, 
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numerically, the vastus lateralis MVC EMG decreased by almost half in the inverted 

position compared to upright in the present study. However, the cause of the high MVC 

EMG variability in the present study which nullified significant results is not known and 

should be the study of further research. Furthermore, further studies are required to 

examine the underlying mechanisms of decreased EMG activity during seated inversion. 

3. CENTRAL FACTORS AFFECTING CHANGES IN SUBMAXIMAL MVC EMG 

ACTIVITY 

An inverted position would be expected to increase hydrostatic pressure in the 

cerebrum. During orthostasis increased hydrostatic pressure and consequent blood 

pooling in the lower limbs is offset by a number of mechanisms to ensure adequate 

venous return to the heart. These mechanisms include the muscle pump, thoracic or 

respiratory pump and ventricular pump effect as well as changes in vasomotor tone 

(Vissing, Seeber & Victor, 1997; Miller et al, 2005; Delp & Laughlin, 1998). However, 

relative to the extensive volume of lower limb skeletal muscles, the muscle pump may be 

minimal or non-existent in the cerebrum. Therefore, when inverted, the limited muscle 

pump action may lead to a limited or restricted ability to prevent cerebral blood pooling. 

This increased hydrostatic pressure and possible blood pooling could have negative 

consequences on the ability of the brain to normally activate the motoneurones resulting 

in a decreased neuromuscular efficiency (increased EMG activity or activation for a 

similar sub maximal resistance) 

Secondly, stimulation of the baroreceptors inhibit vasoconstrictor tone of 

resistance vessels. Small increases in central venous pressure reduce the sensitivity of the 
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baroreflex control of sympathetic nerve activity in healthy individuals (Charkoudian et al, 

2004). Since hydrostatic pressure to the brain may be increased to a great extent in the 

inverted position, it might be postulated that central venous pressure would acutely 

increase, decreasing the sensitivity of the baroreflex control of sympathetic stimulation 

during inversion. In addition, it has been shown that acute head down body tilt lowers 

sympathetic nervous activity (Bosone, 2004; Cooke, Carter & Kussela, 2004;Cooke & 

Dowlyn, 2000), while having no effect on parasympathetic activity (Cooke, Carter & 

Kussela, 2004 ). Inhibition of sympathetic activity has been shown to decrease heart rate 

(Sundblad, 2000), blood pressure (Bosone, 2004) and total peripheral resistance 

(Goodman & LeSage, 2002). Kowanokuchi et al. (2001) used 6-8.5° head down body tilt 

with lower body negative pressure to illustrate that sympathetic inhibition can be 

attributed more to a vestibulosympathetic reflex rather than cardiopulmonary 

baroreceptors. A decrease in sympathetic activation may also play a role in the ability of 

the central nervous system to adequately activate the motoneurones. 

4. INSTANTANEOUS STRENGTH 

During the MVC, instantaneous strength was significantly lower in the inverted 

position, compared to upright in the present study. Instantaneous strength was defined in 

this study as the force produced in the first 100 ms of the MVC. As the subjects were 

asked to contract maximally and explosively, instantaneous strength would be related to 

the ability of the participant to increase their rate of force development. The rate of force 

development has been reported to be positively related to the firing frequency or rate 

coding ofthe motoneurone (Miller, Mirka & Maxfield, 1981). Hence, any changes in 
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instantaneous strength would tend to affect this physiological parameter. Decreases in 

perfusion pressure can cause a decrease in muscle force output (Lanza et al, 2006). It is 

expected that both perfusion pressure and blood flow to the contracting muscle in the 

areas below the heart is reduced during inversion (Cerretelli et al. 1977; Convertino, 

Goldwater & Sandler, 1984 & Hughson, Cochrane & Butler, 1993). Force output is 

directly affected by blood flow in contracting muscles (Hogan, Richardson & Kurdak, 

1994). Furthermore, oxygen availability to the working muscle is an important factor in 

the recruitment of high-threshold motor units (MacDonald et al, 1998), which would have 

a strong impact on the rate of force development. Fluctuations in hydrostatic pressure at 

the muscle and the brain, as well as alterations in the vestibulosympathetic reflex and 

baroreflex function expected with inversion (Charkoudian et al, 2004; Doha & Reis, 

1974, Kerman, McAllen & Yates, 2000; Bosone, 2004; Fitzpatrick, 1996; Hobbs & 

McCloskey, 1987) would be expected to alter muscle rate offorce development as well. 

5. MVC FORCE OUTPUT 

The hypothesis that MVC force and activation would decrease during inverted 

body position was not substantiated in the present study. This result was surprising, since 

there is much evidence of decreased muscle force output with increased hydrostatic 

pressures. The previously discussed rationale for decreased neuromuscular efficiency 

with submaximal contractions was not sufficient to inhibit force or activation during a 

MVC in the inverted position in this study. 

6. EVOKED CONTRACTILE PROPERTIES 
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There was a numerical indication that time to peak twitch decreased in the 

inverted body position (i.e. faster muscle response). Ranatunga & Geeves (1991) found 

that in a mainly fast twitch muscle fiber from the rat, peak tension, time to peak and the 

time to half-relaxation of an elicited twitch were all increased during increased 

hydrostatic pressure (i.e. slower muscle response). Similarly, high pressure applied at the 

onset of a contraction increased the twitch tension (Cattell & Edwards, 1928), while 

decreasing rates of contraction and relaxation (Brown, 1934) in early animal studies. 

Another study also found increased twitch tension due to enhanced hydrostatic pressure 

that may have been caused by increased release of Ca2
+ (Vawda, Ranatunga & Geeves, 

1996). However, the quadriceps in the present inversion study would have been in an 

environment of decreased hydrostatic pressure. Hence, the slower muscle response 

associated with higher hydrostatic pressures in the aforementioned animal studies may be 

reversed to a certain extent with lower pressures in humans. Further studies are needed to 

study the effects of inverted body tilt on muscle force, activation and related twitch 

responses in humans. 

7. LIMTIT A TIONS & CONSIDERATIONS FOR FUTURE RESEARCH 

There are a number of limitations involved with the present research study. 

Therefore, considerations for future research are critical to the advancement in knowledge 

regarding this novel subject area of inversion and neuromuscular function. 

Inverted body positions are a rare occurrence during daily activities; therefore 

precautions were taken in this study to ensure subject safety and accurate, reliable results. 

Prior health history was discussed with the subjects through the use of a PAR -Q form and 
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a list of other health related factors that are not included on the PAR -Q form (see 

methodology for further details). However, subjects mentioned a feeling of light

headedness after the tilting protocol. This feeling may have decreased the subjects' 

ability and willingness to perform at optimal levels. Hence, future studies should monitor 

cerebral pressures and blood pressure (i.e. how does intracranial pressure correlate with 

performance). 

With regards to the nervous system, future studies should consider the H-reflex 

function during inversion. Examining this variable was not possible during the present 

study since all electrically stimulated contractions performed were with maximal 

intensity. However, with submaximal contractions the excitability of the motoneuron 

could be investigated. There are currently conflicting results on tilt and the H-reflex. 

Knikou and Rymer (2003) reported a larger H-reflex response with 20 and 50 degree head 

down body tilt. However, Pacquet and Hui-Chan (1999) alternatively showed impedance 

of the H-reflex following head up body tilts. Moreover, a change from supine to vertical 

body position did not show any significant changes to the H-reflex (Alrowayeh, Sabbahi 

& Etnyre, 2005). Studies investigating the H-reflex will provide an even more 

comprehensive answer to the question of how neuromuscular function is impaired during 

inversion. Factors, such as those apparent in the present study (i.e. vestibular, 

cardiovascular, hydrostatic pressure at the limbs), may affect afferent excitability of 

motoneurones. 

Furthermore, qualitative studies may need to be completed to see how individuals 

vary with their feelings of discomfort during a MVC while inverted. There may have also 

been some level of subject fear of both the protocol and apparatus. Therefore, it may be a 
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good idea to include more orientation sessions prior to performing the actual protocol in 

future studies. 

The heterogeneity of the subjects implies both strengths and weaknesses. A 

heterogeneous group does increase the variability of the study; however, it also helps in 

transferring the results to the population as a whole. Therefore, future studies may 

consider separate sample groups, as well as increasing the number of participants. 

8. CONCLUSIONS 

The inverted seated position had detrimental effects upon muscle activation with 

submaximal contractions and maximal instantaneous strength. 

These findings are of interest at both basic physiological and applied levels. The 

impairments in submaximal muscle activation and instantaneous rate of force 

development likely illustrate the effects of changes in hydrostatic pressure, the 

cardiovascular parameters as well as sympathetic variables on muscle function. From an 

applied perspective, individuals confronted with inverted seated positions such as 

passengers within a helicopter that have crashed into water, military fighter pilots evading 

attack or drivers in overturned vehicles need a functional neuromuscular system to 

perform procedures allowing them to escape injury and survive. 

Future studies are needed to determine what are the effects on the vestibular and 

cardiovascular systems and hydrostatic pressure at the muscle during inversion. The goal 

of these studies should be to provide a more in depth examination of the actual 

mechanisms responsible for the reported results of decreased neuromuscular performance 

during inversion. 
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TABLES 

Table 1: Means and standard deviations of both tilt positions 

Condition Upright Inverted 

MVC Forces (Newtons) 612 +/- 132 563 +/- 104 

MVC EMG Hamstrings (mV.s) 0.00257 +/- 0.00342 0.00204 +/- 0.00104 

Hamstrings EMG 25% (mV.s) 0.0006 +/- 0.00813 0.00047 +/- 0.00043 

Hamstrings EMG 50% (mV.s) 0.00126 +/- 0.00126 0.00098 +/- 0.00067 

Hamstrings EMG 75% (mV.s) 0.00179 +/- 0.00316 0.00138 +/- 0.00068 

MVC EMG Quadriceps (mV.s) 0.0177 +/- 0.0163 0.01040 +/- 0.00431 

Quadriceps EMG 25% (mV.s) 0.0027 +/- 0.00163 0.00212 +/- 0.00061 

Quadriceps EMG 50% (mV.s) 0.00563 +/- 0.00168 0.00424 +/- 0.00171 

Quadriceps EMG 75% (mV.s) 0.0103 +/- 0.0039 0.00725 +/- 0.00291 

Hamstrings/Quadriceps Ratio 25% 0.262 +/- 0.308 0.235 +/- 0.185 

Hamstrings/Quadriceps Ratio 50% 0.226 +/- 0.26 * 0.271 +/- 0.216 

Hamstrings/Quadriceps Ratio 75% 0.203 +/- 0.255 * 0.281 +/- 0.307 

Quadriceps EMG M-wave 2.463 +/- 0.814 2.042 +/- 1.292 

ITT(% inactivation) 13.921 +/- 6.847 13.879 +/- 6.183 

Resting Twitch Forces (Newtons) 139.652 +/- 60.237 138.541 +/- 50.312 

Twitch Potentiation Ratio 0.87 +/- 0.0989 0.896 +/- 0.127 

Instantaneous Strength 258.997 +/- 74.936 * 208.807 +/- 118.645 

Half Relaxation Time (s) 0.0696 +/- 0.0187 0.066 +/- 0.025 

Time to Peak Twitch (s) 0.177 +/- 0.236 0.133 +/- 0.230 
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Table 2: Statistical results for inverted values in relation to the upright position 

Condition ES p-value % difference 

MVC Force 0.38 0.1964 8.2 

MVC EMG Hamstrings 0.155 0.4031 20.6 

Hamstrings EMG 25% 0.16 0.7714 21.7 

Hamstrings EMG 50% 0.221 0.4895 22.2 

Hamstrings EMG 75% 0.13 0.5227 22.9 

MVC EMG Quadriceps 0.413 0.0778 41.3 

Quadriceps EMG 25% 0.357 0.2857 21.5 

.... 
Quadriceps EMG 50% 0.828 0.0395 24.7 

Quadriceps EMG 75% 0.769 0.0156 29.3 

Hamstrings/Quadriceps Ratio 25% 0.086 0.8893 10.1 

Hamstrings/Quadriceps Ratio 50% 0.172 0.8097 -19.7 

Hamstrings/Quadriceps Ratio 75% 0.304 0.7778 -38.0 

Quadriceps EMG M-Wave 0.517 0.1682 17.1 

ITT 0.006 0.5392 0.3 

Resting Twitch Forces 0.412 0.1684 -10.4 

Twitch Potentiation Ratios 0.267 0.781 -3.0 

Instantaneous Strength 0.782 0.0053 -19.3 

Half Relaxation Time 0.215 0.1347 6.2 

Time to Peak Twitch 2.273 0.4294 -43.1 
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Table 3: Force-EMG position for slope values 

Slope r2 

··.·· 

Upright - 0.0000147 +/- 0.000116 0.966 +!- 0.0435 

Inverted 0.0000201 +/- 0.0000317 0.926 +!- 0.11 
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Figure 3: The graph depicts the mean EMG integral during 50% MVC knee extension, 

with values normalized so that the upright position is the control and set at 1 00%. 

-·--·-------· --------·--·--------- -, 
120.0 ... 

100.0 ... 

80.0. 

~ 60.0. 

40.0. 

20.0. 

Tilt Position 
I 

------·----------------------· ---------·------------ ------- ... ·-- ·--------··---~ 

Figure 4: The graph depicts the mean EMG integral during 75% MVC knee extension, 

with values normalized so that the upright position is the control and set at 1 00%. 
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Figure 5: The mean force (in Newtons) during the first lOOms of a MVC. Vertical bars 

represent SD. 
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