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ABSTRACT

The liver is a key organ for the catabolism ofamino acids in mammals. However,the

processes for the catabolism of arginine and ornithine in liver have not been studied in

great detail. Neither the extent to which these amino acids are catabolized, nor the

location within the liver of this catabolism is known. With respect 10 the localization of

these processes, certain metabolic pathways are restricted to specific regions within the

liver. Thus. it is possible that the processes for catabolizing ornithine and arginine are

not distributed homogeneously throughout the liver, but are contained within a specific

region. Funhennore. the catabolism ofamino acids such as glycine and glutamine in

liver is known to be regulated by various dietary and hormonal stimuli; the rates of

catabolism ofarginine and ornithine may also respond to such stimuli.

It was discovered lIlat the catabolism of both ornithine and arginine could be carried

out, in their entirety, in the perivenous cells or the liver (those cells lining the central

vein. where blood normally exits lhe liver). Also, the rates ofcatabolism ofornithine and

arginine are subjetl 10 regulation by the amount ofdietary protein. Rats fed a high

protein diet over a period ofdays showed increased rates ofcatabolism ofthesc amino

acids, when compared wilh rats fed a diet wilh normal protein content. With respect to

the effects of hormones. it was demonstrated that the catabolism of arginine, but not of

ornithine. is subject 10 acute stimulation by glucagon. whereas insulin was without effect.
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CHAPTER I

INTRODUCTION

THE METABOLISM OF ARGININE AND ORNITHINE



THE DIETARY REQUIREMENT FOR ARGININE IN MAMMALS

The basic amino acid arginine (2...mno-S-guanidinovalaic acid), first isolaled in the late

nineteenth century, is shown in Fipn 1.1. It is present in human and rat plasma at

concentrations between O.lmM and O.2mM (BNSilow and Horwich. 1989; RCmCsy {t II.

1918), The dietary requirement for arginine dift'cn among mammals mel may vary

during the development of individual members ofa species. In adult humans. arginine

was defined as a •non-csscntial' amino acid (Rose Ill!. 1954). This is to say that

endogenous de novo synthesis ofarginine proceeds at a rate sufficient to meet the demand

for arginine in humans. This study, in common with all the piooccring experimmts of

Rose. used the parameters ofgrowth and nifroBen balance to assess the dietary

requirement. In the same decade it was demonstrated that arginine was not required for

growth or maintenan« ofnitrosen balance in human infants (Snydennan ~ I!. 1959). In

the immature rat arginine is required for optimum growth, but not for mainlmlUK:e of

nitrogenbalance(Rose~l!l.1948;Milner U I!. 1974). (nspeciessucbaseats{Morris.

1985) and ferrets (Deshmukh and Shope:, 1983) Ihere is an absolute requirement for this

amino acid. The tenn 'condirionallyessential' (CbippooiClIL. 1982) is most often

applied when discussing the requirement for lI'Iininc (for allemltive nomenelature. sec

Laidlaw and Kopple, 1987; Young and ElaKboury, 1995). Arginine's ~uimnent is

conditional upon the species in question as well as the developmental stage under

investigation. In this respm. it was acknowledged by Rose in his earlier studies thIt

arginine may be<:ome an essential amino ac:id in humans under certain conditions (Rose ~

!!.. 1948).
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Figure 1.1. Chemi.al stru.tures of arginine and ornithine.



De novo synthesis ofqiniDe is adUeved priocCpeJJy by the toatmed actioD of the

intestine and kidney. Trivial amouncs oftbe ciIn&lliDc, produced from &hdamiDr ill the

intestine (Windmutlkr and Speeth, 1981), are aabolizcd in the liver aviaa the

majority to proceed co the kidney where it isCOll'Va1cd, sIOiebiometricalIy.1O qiniDc:

(Featherston ~!l. 1973; Dbanakoti l!!!. 1990). Arginine production trom. citrulline also

OC:CUJS in endothelial ceUs (Sessa d!!. 1990) aDd macropbages (WU aDd BfOSDIIl, 1992).

This second and quanritari'Vely minor route serves 10 m:ycle citrulline which is gmerated

in the producrion of nitric oxide (NO) from arginine.

Considerable debate continues u to whclhcr criteria based solely on the panmden of

growth and nitrostn baIancc arc adequate forthe accunIc assessment of the ctidary

"'luirem<nl Co< uginine (V0ck, 1986; YOUIIIlIlld EI-Khoury. 1995). Arising fn>m Ibis

discussion is the prtJI)OS&I that orotic Kid exa'dioD should abo be mooitorcd, as Ibis is a

more sensitive indicator ofatJiniDe stIlUs (MilDer lI; Il. 1974). Briclly, as the urea c:yde

becomes depleted of arginine ~1-pbosphaIcaccumw.es withiD the

mitochondria, the excess ofwbich IbcD teaks iDeo tbe C)'IOpI&sm. This cart.moyt-.

phosphate is consumed in the production oforotic Kid, III inIamediue in pyrimidine

biosynthesis. Orotic Kid levels quicldy exceed the renal cbresbold for this molecule IDd

that amount excreted in the urine can be routinely quantifitd (Kesner, 1965). Orotic Kid

excretion is a more sensitive indicaaor, as the minimum qinine requin:ment to ensure

basal orotic acid excretion is pater than thai requiml for optimum growth (MilDer It Il.

1974). On a moregcncn1 note, it isplaatsibletbata wide I'InIt ofspecific mmboIiccs



may be used in the assessmeot of tile optimal requimncnts for the individual Imino acm

at some point in the future.

The currently recommended iDtake of protein (FAOIWHOIUNU. 1985) of0.88

proteinlkg body weight/day meets the requimnent for growtb and developmenl in Ihe

human population at large and, as such, argues apinst the case for reanalysis ofme

dietary requirement ofamino acids in hunwlS. However. known pathophysiological

situations exist in which arginine becomes an essential nutrient for humans. For example.

patients with inborn errors oftbc urea cycle require dietary supplemmtation with arginine

(BrusHow. 1984). Also. supplcmmtation ofdiets with arginine has been shown to

improve wound healing in nits (Seifter~ I!. 1978). and immune system function in

humans (Barbul ~M. 1981). Therapeutic administration ofsupra-diewy amounts of

arginine is made feasible by the low toxicity associated with this amino acid. In hwnan

studies 30gtday ofarginine-Hel have bcal. adminiSlCrtd orally over a period of7 days

(Barbul ~!l. 1981), or by a single Lv. injection over a 30 minute period (Goodner and

Porte. 1972), the patients incurring only minor side effects. A key distinc:lion should be

made between the issue of requirement for the population II large, which appears to be

adequate, from that ofspecialised needs which is at the heartofmuc:h of the current

debate. Those processes which fonn the basis ofa demand for arginine arc DOW

discussed.



..o.RGININE'S ROLES IN MAMMALIAN METABQUSM

The metabolic processes in which arginine participates are outlined in FiI;_re 1.1. The

reaction catalyzed by arginase (EC 3.5.3.1) provides the principal link between arginiDe

and ornithine. As a protein or common amino acid., arginine serves as a substrate for.

specific tRNA-synthetase. In contrast, arginine can also fum:tion in the degradation of

certain proteins; arginine is conjugated to the acidic N-terminal residues ofproteins. in

the fonn ofan amin<*yl-tRNA, as a preparalory skp in a ubiquitin«pcodenl protein

degradation pathway (Cicthanovcr and Schwartz. 1989). Thus, competition for available

arginyl-tRNA between these opposing processes may occur within the ccU (Sivanm and

Deutscher, 1990). Arginine is an intermediate ofthc urea cycle, a process forthe

detoxification ofammonia (Krm and Hcnseleit, 1932) carried OUI in the livers of

animals. In vitro, arginine is an activator orN-acetyl glutamate synthase (EC 6.2.3.11),

the product, N-acetyl glutamate. can stimulate carbamoyl-phosphate synthesis (Meijer ~

!L 1990). In addition. increasing dietary protein which increases cimllating arginine

levels results in increased citnllJinc synthesis in isolated rat liver mitochondria. In these

experiments. increasing dietary protem increased the mitochondrial content ofN-acet)'1

glutamate (Morimoto g!L 1990).

Arginine can be convened 10 agmatine in a reaction e:ataJyzed by arginine dew'boxylase

(EC 4.1.1.19). This reaction is quantitatively minor in terms ofdaily arginine

consumption. The recenl isolarionofagmarine in bovine btain (Li~'" 1994) is the first

demonstration of this substance in mammals. This molccule is capable ofdisplacing d1c
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Figure 1.2. The metabolic roles of arginine and ornithine in
mammals.



anti-hypertensive drug clonidinc by bindina; to bolb a2-adrenergK: receptors as well as

both classes of imidazoline recepcors O. and 12). Agmatine stimulates Ibc production of

epinephrine and norepinephrine in adrenal chromaffm cells via an inlenlcrion with the h

class ofimidazoline ~eptors (Li ~ II. 1994). A further study R'pOrts the presence of

agmatine (I0·12M_IO-~ in rat brain, kidney and liver as well as plasma (Raasch ~lIL

1995). Agmatine production may occur within the tissues as arginine decarboxylase

mRNA nas been found in rat kidney, brain. gut, adrenal gland and liver (Morrissey tt I!.

1995). However, the prcsenc:e ofa particular mRNA species is not definitive evKlcnce

for the existence ofme corresponding protein. Particular atlention ttas focused upon the

role ofthis molecule in the regulation of kidney function; agmatine: increases the single

nephron glomelular filtration rate and absolute proximal reabsorption vja independent

mechanisms (Lortie f! I!. 1996). In bacteria, agmatine serves as precursor to the

polyamines, however, ~ent evidence suggests that this molecule reduces the production

of the polyamines in mammals (Sabiano ~!L 1998).

Arginine is consumed in the production of nitric: oxide (NO). Cumntty, this is one of

the most actively resean:hed areas in the field ofamino acid meu.bolism. QriairWly

known as the "endotheliwn derived relaxing factor" (FurtbgoU and zawadski, 1980) this

gas has been shown to be an important rqulator of blood pressure (palmcr~!1. 1987),

neurotransmission (Bredt and Snyder, 1989) and is 3150 raponsible for the cytotoxic:

activity of macrophages (Hibbs ~!L 1988). Nitric: oxide synthase, which reqUlres the

cofactors tetrahydrobiopterin. FMN, NADPH and FAD (Stuehr, 1997), catalyzes the



reaction in which arginine aDd moIcc:ular oxygea. are COQvened to citrulline IDd NO. NO

production appears to be a tabft olmost DIUDIDa1ian cell types (NatbaD aDd Xie., 1~).

The three isofonns ofnitric: oxide synthase wbic:h hive been c:bIracteriz:ed to dIle.-e

endothelial (type I) and""",,) (type 3), IbeeoIc:~I"depeadent

constitutively expressed isoforms.lDd the iDduc:ible (type 2) wbic:h is c:akium

independent (Stuehr. 1997). NO production may not always be benefICial. For example,

NO plays a protective role in a model ofac:ute kidney dysfunction (Waddinstoo g Il.

1996) as well as natural killer cell activity (Hibbs IlIL 1988) whereas excessive NO

production may be a key factor in the developmml of. number ofncurodegeoentive

diseases (Hantraye nil. 1996).

NO production, in the normal rat liver. is below the level ofdetec:tion in bocb a

rcc:ircuJating perfusion (Pastor II J1. 1995) and • sinaJc1las pcTf\Lsion model (Wettstein

~ jJ. 1994). (The lower limit ofdelectioll of the staDdIrd USI)'S f«NO is between 10"

M and 10·' MJ. Thus, 1lepotK: NO producOoa boo little impoct on Ibe daily C<lIISlIIIIpIio

ofarginine in the nomW liver. However, hepWc NO producOoa does iDcrease cIurins a

septic insult, principally due to the action ofttle inducible NO-synthase isoform. NO

production is also stimulated by cytokines, and by traaneDt of rats with killed

Coryncbactcriwn-parvum (Pastor Cl J!, 1995) or bM:teria1 endoIoxin (Wctlslein a tI.

1994; Pastor ~jJ. 1995). Under these conditions, NO production assumes a more

significant role in terms ofdaity qinjnc: consumptioo.



Arginine is a setretagogue, stimulating the secretion of insulin (Mulloy ~!L 1982),

gluoagon (Assan <l!ll, 1977) and gruwth hormone (Alba-Roth <l IlL 1989). Endogcooos

steroid secretion also incrcucs with increased arginine supply (BarbuI.c!!I. 1983).

Arginine serves as the sole source ofamidino groups for the' synthesis ofcreatine. a

molecule important in muscle and energy metabolism. A &action of this creaciDe

spontaneously degrades to creatinine (in clinical biochemistry creatinine is the most

widely used indicator of kidney function). Visek contends that the currmtly K<:epted

daily requirement for argininoe is barely sufficient 10 replace daily obligatory losses oflhis

molecule (Visek. 1986). However, for every moiefi:ule ofcreatine formed from arginine,

there is a concomitant production ofan ornithine molecule in this process which may then

be recycled to arginine. Dietary arginine is the t:hiefsource of1he amino add ornithine

and thus arginine must be viewed IS a primary precursor to the procflSCS ofornithine

metabolism. These pnx:esses 1ft now diKussed.

THE ROLE OF ORNITHINE IN MAMMALIAN METABOLISM,

The non·pro1ein amino at:id ornithine (2,'-diamioo-pen18lloic acid, Fiprel.1), derived

principally from dietary arginine, is present in human and rat plasma at l:OOCeOtntions of

approximately O.lmM (Valle and Simmell, 199': Remesy !l!L 1978). Ornithine is ..

intennediate of the urea cyde (Krebs and Henseleit, 1932). Reactions whidt consume

ornithine are catalyzed by ornithine aminotransferase (EC 2.6.1.13; OAn and ornithine

decarboxylase (EC 4.1. I.17), !be former being the major catabolic: enzyme ofornithine

and the [after an enzyme required for polyamine production, a quantitatively minor route

\0



for disposal ofthe dailyornilhiDe bwl. PoIyImiDcs function in ceU growth-.d

differentiarioo, but much rcmaiDs lmImown cooc:erniDa the physiological niles ofmae

polycationic molecu~ (Tabor _ Tabor. 1984). Ornithine may be converted to proline

or glutamate, these duec amifto acids.-e aU linked lIia the lntermediate pyrroJine.S­

carboxylate (Jones, 1985; Herzfdd rill. 1977). Based on the distribution oftbe CbZ)'IDCS

P5C·reductase and ornithine am.inocransferasc the: capecity 10 produce proIiDe &om

ornithine is common in rat tissues, particularly in rat fetal tissues (Herzfeld !!!b 1977)

and in the laclating rat mammary gland (Mez] and Knolt. 1977; Jones, 1985). In addition,

production of proline from P5C, catalyzed by P5C-reducwe in cells such as human

erythrocytes may function to regullte the ratio ofoxidlzcd to reduced nucleotide pyridines

i.e. NADPINADPH. This is baed on the: mzymes preremrtiaJ use ofNADPH within

lhese cells and the obKrvllion that NADP, but not proline, CIa ifthibit this enzyme

(MmiU.U), 1989). Asempbosizod" F1p.. I.2 up,;ne _ bcoxidizod1llrouab

ornithine aminotransfcme, after its conversion to Oftlithinc. This process is tbe primary

conc:emofmisthesis.

INBORN ERRORS or METABOLISM or ARGININE AND ORNITHINE IN

HUMANS

Frequently, clues concerning the physiologieal t61e ora particular process arise &om dw:

situations in which the process malfunctions. Studies tnvestipbng the genetic disordcn

ofarginine and ornithine metabolism have provided answers 10 two questions bt are of

particular relevance to thislbesis. 1bc:se deal with dw: praeoc:e of isoforms ofarJinuc

\I



within mammalian tissues, and the importance of the OAT reaction to the disposal oftbc

daily loads ofarginine.

Argininemia, a deficiency ofthc liver-type arginase (AI type), is the Ieut common oftbe

inborn errors of urea cycle metabolism (Prasad f!!L 1997; Brusilow and Horwic:h. (989),

with 27 cases reported in the literature to date. II is an autosomal R'CCSSive disease

produced by a variety ofmutations in the AI arginase gene (Uchino ~!L 1995; Uchino d

!l, 1992); this heterogeneity at the gene level results in clinical symptoms of varying

severity among sufferers. In addition to greatly elevllCd plasma arginine concentrations

(400-1500J.lM), clinical symptOmS include progressive mental retIrdation, spasticity,

decreased mOlor function and episodic hyperammonemia. Ncar-normal urea production

persists due to the functioning ofthe kidney-type arginase (AIl type), an important f.etor

in the relatively mild clinical course of the disease. The limited human biopsy samples

available to date show elevated All arginase ac:tivity; the range afthis inacase is from 2­

30 fold, relative to nonnal individuals(S~ ~!!. 1980; Grady ~ II. 1993). Raised

circulating levels ofarginine may be responsible for the induction of AD; in vitro SNdies

with a human embryonic kidney cell line show that elevated arginine concaltl'8lions in

the medium cause an induction ofthc AIl enzyme (Grady ~ II. 1989). The prneoce ofa

substantial kidney arginase activity in these patients, concomitant with the comptete

absence of the AI isozyme, was, at !be time, a subslantive piecc= ofevidence in favour of

the presence within humans ofat least two independently rqulated arginase genes. The

human genes for the AI (Ohtake ~U!. 1988) and AU (Vocldey ~uL 1996) arginase genes

12



have since been clooed.

With respect to omithioe metabolism.1)TIIIC IIrOpby of the choroid IDd retina is III

autosomal recessi~ disease, ctwKtrriz:ccl by. defICiency ofOAT, in whic:b plasma

ornithine levels reach 400-1COO~ (Valle and SimeU. 1995) and O.s to 10 mmoksof

ornithine may be excreted daily. There have been ISO c:asa docutnelltQt, with.

particularly high prevalence among Finnish people. Cliniul symptOms include myopia

and night blindness leading to tunnel vision in the second dcadc of life. CatIncts may

also occur with retinal damage usually resulting in complete blindness by the fourth

decade. Tubular aggregates are also apparent in type-U muscle' fibers. Creatine

administration is effmive in dealing with the tubular qgrqateS in type-n fibres. The

most efficacious ofthc thenpeutic mcuurcs employed to dIlc bas been the provision of

an arginine-restricted did since OAT is a majorcoasumer oflbe daily lrJiniDe. and thus,

ornithine load. In cascs in whK::h rniduaJ. OAT ICtivity exists supra-physioJop doses

of pyridoxine and pyridoxal pbospIwe (!be ..fOcIor for dlis enzyme) bave shown pn>mise

in reducing circulating levels ofomichinc. Tbc non.-uDiformity of respoasc 10 tbc: v.-ious

treattnents is a reflection oftbc: beterogeoeity oftbis dtseue at the level of the OAT JCDC

(Park ~ iL 1992). The other inborn cnor of metabolism invOMnlornithine mNbolism

which has so far been described in only 40 patients (Valle and SirDeD, 1995) is thoughl to

occur as a result ofa defective mitoeboodrial transporter for omilhinc. This autosomal

recessive disease is known as bypcromiIhlnemia-byperammoaania-bomocilrullmuria..

13



THE RATIONALE FOR THIS THESIS

Adult mammals in nitroam baIanee must oxid.iz:e au amount of proteiD cquallO chit

which is absorbed from thed~ A baImcc is achieved between tbe supply IDd the

consumption ofprottin. ArJinine bmDce could, ill princip&e, be achieved by alt.erin& the

metabolic: processes which~ or consume this amino acid. In Ibis rc:prd.. the

existing studies show that the CIlabolic. nther than the synlbetk. processes ftucnwe

under conditions of varying arginine intake in humans (Castillo ell!. 1994a; Cutillo a!l.

1994b). ralS (DhanakOli nII. 1990) ond pigs (Prior and G..... 1995). The prooesscs

involved in the catabolism ofarginine are the subject olthis thesis.

Quantitatively, the most important plthway for Ihe acabolism ofarginine and omitbiDe

in rats and humans occurs through OAT. In pllients with the genetic disease gynlte

atrophy OAT defICiency leads to immeDse increases in biood and tissue levels of

ornithine as well as a substantial omithinuria (Valle IDd SimelL, 1995). As discussed

earlter. one ofthc most effective tzarmcots for this diseue is resbiction ofdietlly

arginine. Inhibition orOAT in IIlice ads to substaDtiai increases in the levels of

ornithine in all tissues studied (AIcxtso IDd Rubio. 1919; Seila' U Il. 1989). I.D Idditioa,

in adult mice in which the OAT gcoc bas bcco deftd similar intft:ases in omithiDe_

seen (Wang ~ BL 1995). The ocher processes in which Ibcsc amino acids are consw:ncd..

as discussed earlier, are quantiwiveiy eilher minor or result in the productioo ofa

substrate which may be m:yc:1cd blc:k 10 arginine. The catabolism ofqinine aDd

ornithine through OAT is the focus of this thesis.
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Liver contains all the enzymes necessary for the complete catabolism ofarginine and

ornithine to C<h through OAT and is the key orgaD for post·pnmdial amino acid

clearance (loogas n!l. 1992). This work was undertaken with the goal ofuodcrstanding

more fully the factors (nutritional and bonnonal) which regulate these processes in the rat

liver, and to detennine their localization within rat liver. The oKidatton ofargiDine and

ornithine through OAT is now discussed as well as the localization of metabolic

processes within the mammalian liver and possible sites of regulation.

THE OXIDATIVE CATABOLISM OF ARGINlNE AND ORNITHINE IN

MAMMALIAN LIVER

TnDsport of the catio.k ....in .dd. late tM liver

In mammaJian liver the y' transporter is responsible for the transport of the cationic:

amino acids (White, 1985). This Na··independent, electrogenic:, amino acid transporter,

first described by Christensen in the 1960's (Chriscensm, 1964), is. low atrmity

transporter for arginine, ornithine, histidine and lysine. This transpOrter WIS shown 10 be

specific for the L·amino Kids, subject to trans--stimulation, and, in the pmence ofNa',

may also carty neutral amino acids (Christensen, 1984). The y' transporter has since bceD.

cloned (Kim ~!!. 1991), a serendipitous discovery arising &om the study of murine

retrovirus receptors. One oftMse viruses subverts this transporter to gain KCCSS to the

cell interior. This lransporter/vinl rtteptor was MJtlt'd the mwe cationic amino acid

transporter-I (MCATI). This gene codes for a protein with 622 amino Kid residues

containing 14 putative hydrophobic membrane--spmming regions, a motifprevalent
IS



among nutrient transporters. Subsequent studies revealed the presence of. related sene,

with high sequence homology to MCATI, tbIt is differentially transcribed to produce the

MCAT2AandMCAT28_(CIOSS<lIl.I99l). MeAT! ~.llJl"S'Odino1l ..11

types studied to date with the exception ofadult hcpatocytes (Maillard f! II. 1995). Only

the low affmity MCAT2A transporter is expressed in normal adult bepaIoeytes (Kakuda

~!L 1993). This may explain the low uptake of the cationic amino &CHis in the perfused

rat liver (pardridge and Jefferson. 1975). This tran5pOIU1' bas an apparent Km between 2­

5mM and, thus, is not saturated at the physiolosical concentrations ofme cationic amino

acids (cumulative concentration for qinine, ornithine and lysine in humans is O.2SmM).

Net movement ofarginine via the Na*-independent y"lraDspOrIet is made possible by the

decreasing concentration gradient of this amino Kid which exists between excncellulu

and inlI'acellular compartments of the liver. due to the high arginase activity within

hepatocytes. Also. since the cell iDtmor is clectrochemically negativc (membrane

potential for cclls are typically·7OmV) relativc to the cells exterior. qininc flow would

be attracted inwards to achieve elettricaJ neutrality. Unlike the MCATl and MCAna

transporters, MeAT2A is a low affinity transporter that is not subject to reguJarion by

trans-stimulation. Most ohhc studies conccmed with lhc transport of the cationic amino

acids measure the cumulative action of all MCAT gene produw exPRSSCd in a particular

tissue (designated y' transporter activity). In the cases where a pIIlticular MCAT gene

product has been studied I will refer to the 5pC(:ific transportcT in question (MCATI,

MCAT2A or MeAT2S), otherwise the transporter activity will be refmed 10 as y".
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Key euylMS dvolved ill tIte rata....of UJiaiM onidMM

Arginase (L-arginine ureoby_ EC 3.5.3.1~ F1pn 1.3. bcsllalown fo< i1s

participation in the urea eyde, CIrries out the irrevenib&e rac:tioIl convatiDg qinine to

ornithine. Arginase activity is pmatl in 1ridney,IMI'DI'DII)' aJand, intestine. brain.

submaxillary gland, as well as a VIriecy ofocher tissues (Rcddi nil. 1975; Aminilri IDd

Vaseghi. 1992). The exua-hepltic wginases must fUnctioa in processes otbcrtban the

urea cycle as the liver is the only tissue: in wbk:b this process is fully fun<:tionaI (Meijer

g it. 1990). Arginase requires Mn1
+ for activity and the crystal structure for trimeric m.

liver arginase has been refmed 10 a 2.1 A0 resolution (Kanyo Cl!l. 1996). Early

comparisons made between rae liver arginase and partially purified preparatioIlS from til

marnm"Y 81and (Glass and Knox. 1973) and ... 1Udney (Kay... and SoockCT. 1973;

Reddi g!b 1975) demonstnIed differma:s in kiDdie puameten. cbarge properties.

inhibition profiles., cofactor requirements. immunological cbIrKtcristic:se~

mobility. subcellular location and solubility charactcrislk:s. Marked cliffcrences in the

properties ofhepatk: veP'SKf oon-bcpItic arginases were abo demorlscraII:d in bumms

(Spector <! >1 1982). These SlUd;es Iended ...... 10 Ift..roc. specuIarioo (Cabello ..

!!. 1965) that mammalian lissues contained differenl forms ofdlis enzyme.

The number of isozymes ofqinue presenl in buman and ratlissues has since been

reported 10 be between two and five (SpcctorClIL 199<4; Zamec:ka aDd Pomnbska,

1988). It is dear thai allast two isozymes ofqioue exist, aDd dw the activity of1hcK

accounts for the vast rtlIjority ohbc arginase activity within rDIIDIIII.lia tissues (Kayscn
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and Strecker, 1973; Reddi~J!, 1975). However, cwmltevideoce docs not preclude me

possibility of the presence ofstill milIor fonDS. Quantitatively, the two priDcipaJ

isozymes are AI ('liver type') and AIl ('kidney type'). AI. expressed in liver and in

erythrocytes. is cytoplasmic while AIl, present in many other tissues, is mitochondrial

(Spector~!1 1994). Cederbawu's group, using immunoassays, produc:ed eviden« for

the presence of AI arginase in the kidney (SpectOr t! I!. 1994) but in recent studies, using

in situ hybridization. the same group showed only the presence of the AIl isozyme

(Vackley ~!l. 1996); this resuk is in agreement with data produced by other groups

(Kaysen and Strecker, 1973; Glass and Knox, 1973). Based on the distinct cbarac:teristics

and differential regulation of these isozymes, it was predicted dw the two arginases were

the products ofseparate genes.

The cloning ofdistinct genes for the AI and AIl arginases confmned this view. The AI

gene was cloned from rats (Kawamoto t! Ii. 1986) and humans (HlU1IgUChi ~ II. 1987)

subsequent to its assignment 10 chromosome band 6q23 in humans (Sparkes a!L 1986).

The deduced amino acid sequence for the human and rat sene products both contain 322

amino acids (M.W. 35,000 daltons) aDd sIuft high sequence homology. Previous

protocols for purification ofhwnanliver and erytbrocyte AI arginase yielded a

homotrimer (lkemoto ~!b 1989). lnterestinaly, expression of tile human AI gene in li·

£2li yielded a monomer; apart &om this diffnence in quaternary structure it possessed

many of the characteristic properties ofdtc AI arginase (lkemoto ~Ul. 1990). However,

when concentrated in an alkaline environment, chis monomer associated to form dimeric
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and trimeric protein species. StaDdard puriftCation proccd~ for liver arginase based on

that developed by Schimke (Schimke, 1964) involve COOCCDtntioo in an alkaline

environment. A newly developcd purificalion scheme for the isolation ofhuman hepatic

arginase also yielded a monomer (Kuhn ~!!. 1995). Thus. it is possible that the

quaternary confonnation ofargi.nasc is an experimental ancfact and that in vivo this

protein ex.ists as a monomer. The gmc for All bas been cloned recently (Yeckley Ill&.

1996); this gene codes for a protein of3SS amino acids and contains a mitochondrial

signal sequence. In humans. the gcne has been assigned to chromosome position

14q24.1-24.3 (Gotoh<!l!b 1997).

Several functions have been proposed for the All uginase, including proline and

glutamate production. arginine and ornithine catabolism as well as a rille in the regulation

of NO production. In the mammary gland ofa lactating Rl, uginase All functions in the

production of proline and glutamate for milk production (Yip and Knox., 1972; MezI and

Knox. 1977). With increased milk production there is a c:o-ordinate increase in the

activity ofarginase. OAT and PSC·rcductasc (tbcsc enzymes, operaring in c:onc:crt, are

capable ofcatalyzing the conversion of..loine to proline). These studies dcmoosttatcd

that in tissue minces and homogeutes ofmammary gland thcR was. significant

labelling of both proline and glutamate &om (U_14C] qininc. whereas incubation with

[U.l4C] proline showed thai the production ofargininc from proline was negligible:.

Neither was there a significant proline oMtase or PSC dehydrogenase activity within this

tissue, enzymes responsible for the degradation ofprolinc (Adams and Frank, 1980).
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Several studies indicate that the All qiDase is more sensitive to inhibition by proliDe

than the AI isozyme (Kay... Uld S_. 1973; Carjaval Uldc-.... 1986),.

property which may enab5e feedbKk iJIhibitioD ofprolioe synthesis at the tint step of Ibis

process.

The pyridoxal-phosphale dependent enzyme Ol1Iithioe aminocnnsfense (L-omithine:.2·

oxoglutarate aminotransfenase. EC 2.6.1.13) catalyzes the convcnion ofomi1bine and 2­

oxoglutarate to pyrroline--5~xylate and g1uWJWe. This reaction was first described in

mammals in studin using rat liver preparations (Meister. 19n). OAT is a mitochondrial

matrix. protein in mammalian tissues (Peraino and Pitot, 1962; StlUker. 1965). The K.,.

for this reaction in rat liver. using. putially purified prepIt'Itton wu cakulaled to be 11;

thus the forward reaction is somewhat favoured (Strecker. 1965). However. earlier

attempts to reverse this reaction using pWaily purifted prcpuations showed negligible

reverse reaction (Meister. (953). The productioa ofcitrulline from aluaamine within

enterocyte5 means that the revcnc raction proceeds in vivo In rats (WiDdmucUer aMI

Spaeth. 1981). G1........ (fanned from g1_ in dle _ emIy20d by

glutaminase) and pyrroline·5-c:arboxyLa1e are converted to 2-ox.oglutanlc IDd omithlne;

the ornithine is then converted to citrulline in a rcM:tion invotvinlomidtine

transcarbamoylasc. In addition.,. SNdy using pNculioe (3·amino. 2.3,4ibydrobcazoic

acid) to inhibit OAT demonstnted that the rcactioo ca1aJyz.ed by OAT is involved in boch

the synthesis ofornithine as wcllas its dqradatioa. Infusion ofI·C~to mice

resulted in the re<:Overy ofsignificalt IIDlQI1S of the radioKtive label in the ammo acicb
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arginine and ornithine; pblculinc admini.stntion rahac:cd signil\cantly the ina:wpontioo

Of(I~CJ into arginine and omithine in mouse tissues. lnfusion Of(14C~ithiDe ~ltcd

in the production of 14C~;pbKu1inc: Idministration reduced sipi6cantly the

production of I~CO:1 in these mice (Alonso IDd Rubio. 1989). It is likely Ibat OAT

functions in diffcTt'ln dim:tions in the diffamt tissues. The pi was dctcnniDcd 10 be S.38

indicating that this protein is ac:idK: at the physiotogicaJ pH (Pttaino n!L 1969). The

gene for rat OAT has bml sequenced (Shull g!l. 1992) IS has the human (Dougherty ~

!!. 1992). In humans the OAT gene has becD mapped 10 IOq26 {but several pscudogenes

are also p,esent in the genome (Gffaghly g!L 1993». Crystal 5ttUCtUteS for native

human OAT (Shen tilL 1998) and OAT ~plexed with the inhibitors pb&culine and

canaline (Shah g il. 1997) hive been determined Te«lrtly.

Relatively less is known conccming the cbaractcristics of pyrollinc-XaTboxylale

dehydrogenase (PSCOH). The eDNA sequence for hwun PSCOH is known (Hu n!L

1996). This enzyme is • mitocbonlbia1 matrix procciD and has heal purified from rat liver

mitochondria (smaU and Jones. 1990).

HEPATOCYTE HETEROGENEITY: "METABOLIC ZONATION" ACROSS

THE LIVER

This section deals with the loca1izatioo ofme processes for the catabolism ofornithine

and arginine within the liver. The most widely accepced model describing the functiona1

unit of mammalian liver is the 'hepatic acinus' model first described by Rappeport
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(Rappaport. 1954; Rappaport. 1973). In this model blood is supplied to tbe liver via a

dual afferent system, comprised oftbc portal vein and the hepatic artery, the blood then

flows through the sinusoidal system ofchannels and leaves the liver tfttough the terminal

hepatic vein. The acinus describes. miCfOoCirculatory unit in which the bepatocytes are

classified based on their position relative to the blood supply. Those bepatocytes

proximal to the affi~nt portal vein are tcnncd 'periportal' while those surrounding the

effluent hepatic vein are called 'perivenous.' The term 'metabolic zonarion' originated

with Jungennann (Katz and Jungermann, 1976). Seminal studies in the ftCld of hepatic

carbohydrate matabolism produced evidence for a noo-unifonn distribution of the

enzymes for gluconeogenesis and glycolysis across the hepatic acinus. The processes of

gluconeogenesis and glycogenolysis are known to be primarily periportal in location

while glycolytic activity is more abundant in the perivenous region. Subsequcot studies

demonstrated that in regard to hepatic metabolism, zonation is the rule rather than the

exception.

Experiments using a vaneI)' oftecbniqUl:S demonstrated the differential distributions of

enzymes, amino acid transportcn, hormone receptorS etc. across the hqmic acinus (for

reviews sec Jungermann and KeilZmarlrl. 1996; Gebhardt, 1992; Hlussinser ct!l. 1992;

Jungennann and Thurman, 1992; Katz. 1992 ; Hlussingcr. 1990; Juogcrmaon and Katz,

1989). There is no strict anatomical dcmaramon of periportal &om perivenous cells,

rather the dimensions of these zooes are specifIC to the individual metabolic process

under consideration. Distribution patterns across the acinus follow two basic designs for
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companmentation. These are 'strict companmentarioo' and 'gradient compattmentatioo.'

In strict comparnncntation the individual process or enzyme is present in certain cells

across the acinus while is absent in otben, and there is a clearly defiDed boundary

separating these two cell types. In the aduk rat. glutamine synthetase and~I

phosphate synthetase I follow a strict compartmentation pattern, the fonner's distribution

being restricted to a small population of hepat<q1eS surrounding the central vein

(Gebhardt and Mecke, 1983) while the latter is prncnt only in the periportal cells

(Gaasbeek·Jansen ~!l. 1984). A recent mRNA in situ hybridization study

simultaneously investigated the localization ofall five urea cycle enzymes and showed

that the transcripts predominated in the periportal region (Dingcmanse I!!l. 1996); thus,

the urea cycle is a periportal process. Gradient companmentarion is characterized by a

gradual increase or decrease in the abundance ofan enzyme across the acinus. It is likely

that a combination of factors operates to maintain the pattern ofgene expression. such as

hormone and oxygen gradients, cell to cell interactions etc. At the gene level, glutamine

synthetase may be restricted to the perivenous region through a transcriptional regulalOf

interaction with an upstream enhancer element (Lie·Venema. 1995); in tnmsgenic rats in

which a DNA construct CODtaining this e~en.t and a reporter gene (chknmphenicol

acetyltransferase) were integnted into the host DNA the expression ofthe reporter Sene

was limited to cells oflhe perivenous rqion. The co-ordinate regulation of1he urea cycle

enzymes may be achieved by the presence ofsuch elements in the genome (Morris,

1992).
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The distribution pattern ofa putiadar enzyme or mctIbolic process in the liver may

alter during oonnaI developnmt or with varyina physiological status (a process kDowD as

'dynamic zonation'). The pattrm and CXlCnt ofcxprc:ssion of the various ureacyc:ke

enzymes changes across the hepatic:: acinus during development, puticularty duriD& the

perinatal period (Ding........"lb 1996). In .... subjected 10 told "'J'OSUl" (4"C for IS

hours) the periponatlperiVC00U5 ratio oflong cbain: fatty acid oxidation changed from 1.4

to 0.5 in enriched populations of perivenous and periportal hcpIIocytes (GU2'JIWt ctll.

1995). The localization ofother enzymes appears 10 be refractory to such changes in the

studies carried out to date i,e. these exhibit a static type ofzonation e.g. glutamine

synthetase (Matsuzawa n 11. 1994).

With respect 10 amino acid metabolism HlussmgCf brilliantly elucidated the paUcm of

distribution of the processes for ammonia daoxification across the he1-tic:: leinus

(Hlussinger. 1983). lD this study, in which rat livers WU'C perfused in a llClInCiradalina

manner, he demonsnted a reeipocal distrfbution of the activities of the um cycle and

glutamine synthetase to the periportal and perivenous regions, respectively. The key to

the success ofthese experiments lay in the abiJity to perfUse ral livCf in both the normal

physiological direction (antqrade) and in the direction opposite to this (teIr'ognde). see

Figure 1.4. The sinusoidal system for carryi.na blood throup the liver is valveless. The

urea synthesizing periportal rqion is much Iaraer than the glutamine producing

perivenous region. Hluss. demoostraIed that the principal nitrogcoous product

fanned in antegrade perfustoas was urea while in the teIr'ognde pcrfusioDs g1lamiDe
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production predominated. In 1'81 livers in which glutamine synthesis was inhibited., using

methionine sulfoximine. urea production was identical in anlegrade and retrograde

perfusions. (In all experiments, corx;:entrations ofammonia (O.2mM) were used which

were not saturating for either urea prodU(:lion or glutamine synthesis). This proved that

the processes were physically sepamted and that urea production occurs in the pcriponal

region while glutamine synthesis is a function ofthe perivenous region.

Panicularly relevant to this thesis is that OAT was found to be stric:dy compartmented to

a cell population surrounding the hepatic vein by mRNA in s;"" hybridiution (Kuo ~!!.

1991). An earlier study bad shown OAT to be prefl:mltiaUy expressed in a particular

subpopulation ofhepatic mitochondria, c:baractcrized by a smaller diameler and thought

to be localized to a small region surroundinS the central vein (Swick ~!l. 1970).

Immunohistochemical studies also localized OAT to this subpopulatioo ofhepatoc:ytes

(Matsuzawa ~!!. 1994). The separation ofOAT from the urea c:y<:1e enzymes

(Dingemanse C!!!. 1996) precludes the possibility ofOAT deplelina: the urea cycle of

ornithine. thus giving primacy to the vital function of the urea cycle. The distribution of

OAT within the liver. therefore. deflMS ornithine catabolism as a perivenous process.

Whether or not arginine catabolism throop OATis a perivenous process ckpeods on the

presence or absence ofan ugi.nase in this rqion. PSC debydrosense distribution within

the liver has not yet been studied.
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The Ioalliution Of.raiUR witliialtlteUnr: b dMn. perin..........1

It has been held that the arginase in liver is cyto5Olic and restricted in location to the

periportal cells. The sole function ofhcpatic uginase, it is widely believed., is as a

catalyst in the urea cycle. Raijman, however, has tq)Orted that there is a small amount of

arginase, with properties resembling those oftbe AD isozyme, which is mitochondrially

associated (Cheung and Rajman, 1981). Recent studies show dw !he mRNA for the All

isozyme is present in human and mouse liver (Gocoh C!!L 1997; Monis ~!L 1997). One

proposal is that this mitoe:hondrially-associated arginase, due to the magnitude of its

activity and its IlXation, could provide a mechanism by whicb the arginine that is

produced in the cytosolic reactions of the urea cycle could "channel" (for a review on

metabolic chanoelling see Srerc. 1987) ornithine back into the mitlXhondria to participate

in the urea cycle reactions of this compartment (Cheung~!L 1989; Watford, 1991).

Experimental evidence suggests that there is channelling ofbodl the cyI050li<: and the

mitochondrial reactions of the u.rea cycle, as well as the transport ofomithine back into

the mitochondria (Cheungn IL 1989; Cohen aII. 1987). Whether or not this

mitlXhondriatly-associated arginase functions in this manner has not been proven.

Raijman'5 group report that the cytosolic enzymes oftbe umI cycle are concentraled

around the mitochondrion rather than being hornosenously distributed throughout the

cytosol (Coben and Kuda. 1996; Cohen, 1996). Ahematively, this mitoehondrially

associated arginase may be involved in some other process within the liver. In this thesis

we investigate whether an arginase is prnetIt in the pcriVCDOUS rqion which may be

involved in the catabolism ofarginine.
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NUTRITIONAL AND HORMONAL REGULATION OF THE CATABOLISM OF

ARGININE AND ORNITHINE IN THE PERFUSED RAT LIVER: POSSIBLES

SITES FOR REGULATION.

Regulation by honnoaa.l and dietary factors is a common farwe ofamino acid

metabolism. Alterations may occur at the lc:vel ofsubsttatc availability, alklstcric or

covalent modification ofenzymes. or by enzyme induction or degradation. As one ofthe

foci afthis thesis is the regulation oCtile proc;:esses for the embolism. oflllinine and

ornithine the following section deals with possible sites Cordle regulation oftbese

processes.

Rtgulltio. of traasport

Mammalian amino acid transporters art: SUbj«1 to regulation by a range ofdifferent of

factors (for reviews see MacluJd. 1996; McGivan. 1996; MaiIJ.d rlll. t99S; Kilbcrz a

!l,1993;Whilc.198S). Alterations in subsn1e supply may reau1ale tnDSpOrter activity.

The portal vein conttntrll:ioos for many amino at" 1ft bekJw the K.s for their

respective transporters (Meiju rt tL 1990). ~fore. fluctuations in the leveb ofchnc

amino Kids in this vessel will attertbe I'I1es aCmeir IranSpOI1 into thc cell. The

concentration ofarginine in the portal vein ofnannal rats and hwnIns is O.I.Q.2mM

(Brusilow and Horwich, 1989; Remesy ~!L 1978) aod the K,. for the MeAnA

transporter (the only MeAT gene expressed in nannal bepltocytcs) is between 2 and

5mM (Closs~!L 1993). Thus. any aheTation in the concentntion ofarginine in this

vessel. within the physiologtca1 range. will result in cbaoan in !be rate of its trmspon by

the MCATIAtransporter.
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In rats that were fed either a hip carbobydrIIIc aDainin& diet (79% wlw sIardt; 13%

wfw casein) or a high proccin CCXlWning diet (42% wlw stwth; SO% wfwc:acin) fora

period of 10 days the rat portal vein CODCalb'atioa ofqiniDc iDaascd &on O.•4mM to

O.27mM in the "" fed the high _in diet (RbnCsy 1111. 1978). The dID &om 11>;'

experiment would lead one 10 predict iDcmtsed transport ofqiniDc by the MeAnA

transporter in the rats fed the hi&b proIein did. ID pIlients with hypcrarginiDcmia and

gyrate atrophy (discussed carner') one would also expect altered transport ofargininc and

omithine into the liver, and the etTetts oflhis increased supply ofsubstrate on processes

such as NO production and polyamine production would make an interesting study,

In the strepto:zotexin·induced diabetic nt, y. transpoftCf activity in primary rat

hepatocyte cultures is increased five fold when c:orIlJ*'td to ttUS iso1aled from n0n­

diabetic controls; ip adminisvation ofglucaaon (2ms'1oo& prior to kiUin&) also

increased y' transpoftCf Ktiviry by five fokl in mcsc ttUS when CODII*'Cd to saline

trealed n", (HU>dlogten and Kilbo<g, 1984). A ,ingIe hiP _in meal, and Iftdin&.

high protein diet ovtt a period ofdays, raises the cittulating levels of ghacIaon (Robinson

n II. 1981). Thus, it is possible tIw feeding rats a high protein dtct could iDcrcue y.

transpontt in the short-tmn by increasing subsnle supply (direct mechanism) and in the

long-tenn by inducing the: yo. transporter (indiftctty by incttasing the concentralioo of

circulating glucagon).

Increasing the arginine content akJne in the ctiet may iDcrase y. trmsporter activity; in
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rats and humans fed supradict:ary amounts ofarginine and alutamine, the activities of tile

transporters system N and y~ increases in bepatie plasma membrane vesicles (Espat ~Il.

1996). There is a discriminate induction ofthe transporters for the cationic amino acids;

in rat brain astroglial cultures, induction ofy~ transporter activity by endotoxin and

interferon.y is effected via an increase in the hiJ,h affinity CAT28 transporter without

altering the expression ofeither CATI or CAT2A (SteVens ~!L 1996). In untmued

hepatocytes. where the low atrmity MCAT2A transporter is expressed, any stimulus

which could induce either the MCATI ofMCAT28 would, by virtue oftbe higher

affmities of these transporters, aller dramatically the transport characteristics of these

cells at the physiological concentrations ofthe cationac amino acids. It is plausibie that

alterations in the delivery ofarginine and ornithine inlD liver. by the y. transporter, could

affect the rate ofcatabolism oftbese amino acids. The rumt diKovery of the MeAT

genes, and the current interest in the rqulation ofNO biosynthesis by the y. transporter

provide the impetus for rapid advances in this area.

Reeulatioa at tlte Inel of l.dhid..1euymes

Arginase catalyses the fU'St n~ilibrium reaction in the pathway outlined in Fipre

1.1. and, thus. regulation at this step would be an efficient means of regulaling arginine:

catabolism. Previous studies investigating the regulation ofrat liver arginase would

have, necessarily, been primarily concerned with the regulation of tile AI isozyme; any

AIl activity present in the lwer wouJd be quantitatively minor when compared to the AI

isozyme (as diKussed cartier). Rat liver arginase is subject to regulation by the level of
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dietary protein (Schimke, 1962; Morris ~ 1:11987), treatment with sIueaaon and by ip

injection ofdibutyryl cAMP (Morris, 1992). Possible comributions to these effeas by a

ralliver AIl arginase are obscured by the relatively larJer AI activity.

With respect 10 the regulation ofthc All arginase, il is increased in kidney in patients

with hyperargininemia (Grody ~ II. 1989), compared with normal petients. and results

from cell culture studies suggest; that this increase may be caused by increased circulating

levels ofarginine. A high protein diet increases circulating levels ofarginine (RCInCsy ~

!!l. 1978) and this may induce any All which may be pRSCnt in the li~. Inamurinc

macrophage-like cell line (Gotch ~!l. 1997) and in bone marrow.odcrived macrophages

(Corraliza ~!l, 1997) arginase (All) is induced by agents which increase the

concentration if intracellular cAMP, including dibutyryl-c:AMP. The caveat to this type

ofextrapolation is the possibility ofdifferential tissue regulltioo ofenzymes. For

example, OAT is regulated differently in liver than it is in kidney, and this difference is

not due to the presence of isoz:ymes (Dougherty ~!!. 1992). MlK:b muins unknown

concerning the regulation oflhe arginases in the liver and kidney, however, the advent of

advanced molecular biological techniques. and the receut doning of the AI and AllgC'ReS

should allow rapid progress to made in this field.

OATis induced in rat liver upon feeding rats a high proCCin diet (Volpe a!!. 1969), or

by treatment with glucagon (Lyons and PilOt, 1976). The: OAT induction may be effected

through glucagon; a high protein diet increases the circulating levels ofglucagon (Peret~
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II. 1981). In r"""lems,kidneyOAT;'_by_(llenfeldandKllol<, 1968).

PSCDH is regulated by increasing the amount ofproccin in the diet (Matsuzawa 1111.

1994).
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CHAPTER 2

MATERIALS AND METHODS



MATERIALS

Animals

Male Sprague Dawley rats were used. They were purchased from Charles River Ltd.

(Montreal, P.Q.). The rats, weighing between 100-150g, were housed in the

Biotechnology Animal Care facility at Memorial University in cages containing no more

than 3 animals, and were maintained under a 12:12 hour lightdark cycle. The nonnal

light period extended between 8a.m. and Sp.rn. Rats were provjded free access to

standard Purina'll chow diet and tap waler. The majority of food intake occurred during

the dark cycle. All the studies described used rats weighing between approximately 200

and 350g.

Purified diets ud reflii.g rqimcD

Diets were prepared based on AIN76 recommendations with modifications (Bieri ~M.

1977). The diets used were either normal protein (containing 15% casein) or high

protein (containing 6QO;. casein), and were isocaJoric. Diet constituents and amounts are

detailed in Table 2.1. The reduction in protein derived calories in the nonnal protein

diet, relative to the high protein diet. was compensated for by a commensurate increase

in cornstarch and sucrose«rived calorics. Purified diets were provided to the rats in

detachable metal containers placed inside the cages. Free acccss to these diets was

provided for a period lasting between 3 and 7 days and nonnal weight gain was a

prerequisite for panicipation within a study. T.blc 1..1. shows data typical for the
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Table 2.1. Composition of the 15% and 60% casein dielS.

IS% casein diet ~/t casein diet
(gikg) (gikg)

Sucrose m 192

Casein 14g.j j98.j

Cornstarch 170 61

Alphacel jQ jQ

Vitamin Mix (AIN 76) I 10 10

Mineral Mix (AIN 76) I H 3j

Com ail jO SO

Choline Bitartnte

L·methionine I.j I.S

I Details of the composition of the vitamin and mineral mix are provided
in Bien ~ i!! (1977).
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Tobie 2.2. Body weights of rats fed the 15% and 60% casein diets. Results
are expressed as the means ± S.D. for groups of 3 rats. Day I denotes the
initial weight.

0.,1 0." 0." 0."

Net Gain
(,I

15% 19U±I.1 199.J±I.1 2OS.J±U 2U.]±U 1ll.J±1.S 29.0
Casein

60% 200.):::}.1 196.0 tJ.S 209.3 1:2.1 211.0±2.0 223.3 ± I.S D.G
CUtin
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changes in weight of rats fed either a nonna1 protein (15% casein) or high protein (~.

casein) diet.

Chemicals

Diet components were purchased from lCN (Cleveland. Oh.io) with the exception of

cornstarch and L·methionine which 'WCt'e purchased from Sigma Chemical Co., Ltd. (SI.

Louis. Mo.). Mazola com oil was purchased from Scsi Foods Canada (Etobicokc, Onl).

{U.'~C].arginine, {U.I~C)-omithineand [I· '·C]-omithine and Omnifluor- were obtained

rrom Dupont.New England Nucleu (Mississauga, Ont). {U.1·C)-omithine and (1.1.C).

omithine were also purchased from Ammham Canada Ltd. Insulin, glucagon,

orthoaminobenzaldehyde. pbaculinc and bovine serum albumin (prepared from rr.ction

V; essentially ratty acid-free) were purchased from Sigma ChemicaJ Co., Ltd. (SI. Louis,

Mo.). Silicone oil was from Dow Coming (William F. Nyc, Inc. New Bedford, Ma.

USA). Heparin (sodiwn injection USP) was purchased from Allen and Hanburys (Gluo

Canada, Ltd., Montreal, P.Q.). All other reagents were ofanalytical grade.

METHODS

PerfusioD apparalus

The perfusion system used was a nonretirculating type, essentially as described by Sics

(Sies, 1978). The apparatus used is outlined in the schematic in Fipu 2.1. A5 shown,

the medium (gassed and mainlained at 37"C) is pumped from the reservoir to the
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oxygenator where equilibration with the gas mixture of~/C02 (19/1) occurs. The

medium is then passed thrOfJgh the liver and the effluent sampled. The viability ofme

liver was assessed by effluent analysis of 0 1consumption using a Ciba Coming 238

pHiblood gas analyzer. Any errors in medium preparation/gassing can also be detected

within a relatively snort time by monitoring the pH. During all perfusions, effluent

samples were taken at 5-minute intervals to assess J.102. pC~. pH and HCOl ". Perfusions

.....ere discontinued upon detection ofany abnormal reading in these parameters.

Following perfusion the entire liver was removed and dried to constant weight in an oven

set at 50°C. Typical data are shown for a rat fed a standard chow diet for the parameters

ofoxygen consumption. now rate and urea production in Figuu 1.1.

Surgical procedure

Rats were anaesthetized with Somnotol'S (Na-pentobarbital, 65mgtkg). An incision was

made to expose the femoraJ vein and 500IU of heparin was injected into this blood

vessel. An incision was then made to expose the abdomen. The fur was cut away with a

midline incision from below the abdomen to above the diaphragm. A saline swab was

used to remove any remaining fur from the flesh. An incision was made immediately

above the bladder towards the diaphragm. The surgical scissors were used to position the

liver away from the path of the incision, and the cut completed to the base of the

diaphragm. With the aid ofbemostats, incisions perpendicular to the midline incision

were made on both sides; this exposed the peritoneal cavity. The stomach and intestine
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figure 2.2. Typical data from an amegradc: perfusion carried out in a rat red a norm.l

protein diet (15% casein) roc 3 days. Oxygen consumption (A). flow rate (8) and urea N

production (el were measured as described in M.teriah ....M~. [U}~q·arginine

(O.2mM) was provided ror the duration of the perfusion indicated by the arrows.



I 4
A1

f 3

lU~fll~

:;;;0

~ 2~

t1

} 0
0 10 20 30 40 50

r_......... l"""I

60 B
_ 50 1U-~(O.2nIM)

:;;;0

i 40 • • • ••••••
I 30

! 20

10

0

0 10 20 30 40 50

I 500
n... .............. CftIiIII

I::
c

"'-"--:;;;0

~- 200t100

i 0

0 10 20 30 40 50
T1IM.................

42



were moved 10 the left allowing access to the portal vein. Ligatures #1 and #2 (see

Figure 2.3 for numbering and arrangement of ligatures) were placed around the portal

vein close 10 its point ofentry 10 the liver and ligature #3 was attached further behind on

the portal vein. Ligature #4 was placed around the inferior vena cava between the right

kidney and the liver. The portal vein ligature #3 liver was tied and the ends pulled gently

towards Ihe tail 10 produce a tension on the portal vein. The portal vein was then quickly

cannulated and connected to the perfusate inflow. The perfusate flow rate at1his point

was maintained at approximately IOmUmin. Ligatures #1 and #2 on the ponal vein were

tightened and knoned and the abdominal aorta was cut to allow flow through oftlle

perfusate. The ends ofall ligatures were cut and all hemostats were removed. The

thorax was cut through, to expose the hean, and ligatures #5 and #6 were attached. The

cannula was then run through the right atrium and the ligatures tightened and knotted.

Finally, ligature #4 was tied. During a wash period ofapproximately 5 minutes the liver

was gently agitated to help removal ofblood and the flow rate is adjusted to 40-45

mUmin which ensured adequate delivery ofdissolved oxygen to all parts of tile liver.

The flow rate was maintained between 4O-45mUmin throughout the perfusion.

Medium preparatioD (or perf'usioDs

Krebs-Henseleit medium (pH 1.4), maintained at31'C and gassed with OtICOt (1911),

served as the basic mediwn for all perfusion procedures. This medium contained

ll8mM NaC!, 4.8mM Ket, 1.2mM MgSO~, 1.2mM K.H2PO~, 25.0mM NaHCO] and
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Figure 2.3. Oudiu of surgical procedure for rat Iinr pcrfUSioDS.
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2.5mM CaCI!. To this 2.lmM IICtic acid and O.3mM pyruvate was added to provide

oxidizable substrates and 10 eftSlft cooect balance of the NADINADH ratio; this did not

result in any change in the pH afme mediwn.. The amino Kids [U.I·q.L.argininc and

(U.HC]- or fl.1·C].L. ornithine were added at various concentrations. In cases wbcTe

amino acids were added in amounts resulting in a finaJ concentration of > ImM the

medium osmolarity was adjusted by varying the NaCl concentration. Similarly, in

studies which investigated the effects ofaltered osmolarity the various media differed in

Ihe final concentration ofNaC!. All media was filtered through a preparative filter

(1IJm) before use. In experiments in which the pancreatic honnones glucagon and

insulin were infused an infusion pump was used 10 inttoduce these into the strtam of the

influent perfusion medium. The concentration ofeach honnonc in the infused stock

solution was chosen 10 provide a final concentration of these honnones 10 the liver of

approximately 10.7 M and was based on a calculation of tile rate ofdelivel}' oflhe

infusion pump and the approximate perfusate flow rale (43mVmin). Thus, fluctuations in

the perfusate flow rate will aJter somewfIal the nominal final concentration oftbe:se

honnones which is delivered 10 the liver. However, the fluctuation in perfusate flow

rates in the perfusions did not exceed 10% and in the majority ofcases was lower than

S%

Antegradelretrogradc perf_lIS

Antegrade!retrograde perfusions were carried out as des<:ribed by HAussinger



(H!ussinger. 1983). In vivo, blood Oows into the liver thouah the portal mn (and 10 a

lesser extent hepatic anery) and leaves the liver through the hepatic vein. Perfusions in

which various media are supplied through the portal vein and the effluents are collected

leaving the hepatic vein are Icnown as amegrade perfusions. Perfusions carried out in the

opposite direction are called retrograde perfusions. Owing the course ofa single

perfusion procedure it is possible 10 switch from an antegradc: to a retrograde perfusion

and vice versa. Fic.re 1.4 outlines the apparatus used for alternating the flow between

anlegrade and retrograde perfusions. A loop is constructed using silicon tubing and a

series ofclamps. as represented in Fig_re 1.4. ruel A shows the configuration of this

loop when one is perfusing in the antegrade direction. When the direction needs to be

reversed to the retrograde ('.HI B) the open clamps are closed and those that were

closed opened. The opening and closing ofclamps must be performed simultaneously to

ensure uninlen'Uptcd supply of the perfusate to the liver, this required two people.

We validated our antegradclretrograde perfusion protocol by repeating the experiments

ofH!ussinger on ammonia metabolism (Hlussinger, t983). In these experiments

H!ussinger provided a low concentration ofammonia to the perfused rat liver and altered

the direction of perfusion antegrade to retrograde. When he did this the system that

encounlered the ammonia first (i.e. the urea cycle in the antegrade direction and

glutamine synthetase in the retrograde direction) provided the primary nittogeOO\lS

product (i.e. urea in the antegradc and glutamine in the retrograde). The experiments
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Figure 2.4. Configuration of clamps for ..tegrade and retrogl'llde perfaslons.
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shown in Figure 2.5 show the pattern of urea-N and ammonia production from ammonia

as the direction of the perfusion is changed. The increased rate of urea-N at the

beginning of the perfusion is thought occur as a result of the emptying ofttle urea pool

present in livers rather than a change in the rate of urea cycle activity (this pattern is

typical, as shown in Figure 2.1). The rate ofurea-N production was about 600

nmoleslminlg wet liver in the anlegrade direction and this fell to about 400 nmoleslminlg

wet liver in the retograde direction. Thus. we were able to reproduce Hlussinger's

results and have confidence that our antegradeJretrograde perfusions were reliable. The

pattern ofammonia concentrations in the effluent were also consistent with Hllussinger's

results.

Measurement of I~COt in soI.tiou

Perfusate samples were taken under mineral oil to prevent loss ofCO!. Sml ofeach

perfusate sample were injected into a stoppered 2Sml Erlenmeyer flask. containing GAml

ofO.IM Hel. The flasks were fitted with center wells containing filter paper and GAml

ofNCS tissue solubilizer. The: evolved CD,. was trapped in the center wells during

incubation in a shaking water bath at 37"C for I hour. The center wells were transferm1

to scintillation vials containing IOmI ofscintillacion fluid (Omnifluor~'), and counted in a

scintillation counter (LKB-rack beta) for I~C. Medium blanks were also prepared so as to

account for any preformed I~C02 which might be present in the radioactive compounds.

Cpm were corrected to dpm in the scintillation counter using an elCtemai standard. In
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Figure 2.S. Antegrade/retrograde perfusions and the panem of urea-N and ammonia in

the effluent. Rat livers were perfused with Krebs--Henseleit medium (pH 7.4) containing

lactic acid (2.1 mM), pyruvic acid (O.3mM), Nl-LCI (O.2mM) and ornithine (2mM). Rats

were fed a standard Purina~ chow diet. Results are shown as mean :t: S.D. for four

independent experiments.
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antegrade perfusions carried OUI with 0.2mM [U_14c]_arginine. no alteration in the rate of

14C02 production occurred upon the addition of 0.2mM a-ketoglutarate; this

demonstrated that a-ketoglutarate was not limiting for the: catabolism ofarginine in our

experiments; a-ketoglutarate is required in the transamination reat;tion ofOAT).

Determin.lion o( urea nltrogell i. tbe perfuate

Urea was detennined using the thiosem.icarbazjde-diacetlymonoxime method developed

by Gayer and Dabich (Gayer and Dabich, 1971). Briefly.ana1iquot{O.I~.sml)of

perfusate brought to a total volume ofO.5mJ. ifne<:essary with distilled water. was added

l.Oml of the color reagent (6J.7mM Butane-2.3-monoxime and 3.6mM

thiosemicarbazide) foHowed by 1.5ml oflhe acid reagent (3.6M H2SO4. 0.12mM FeCI)

and 38.6mM H)P04 ). The solutions were mixed thoroughly and iocubated at IOO"'C for

I0 minutes. The tubes were cooled to room temperature and the absorbance was

measured at 520nm. Standard urea-N containing solutions (0. 0.0833 and 0.166 mM)

were prepared during each assay and were used to calculate the con~ntration in the

effiuent. The aliquot ofperfusate which was assayed, depended on the experimental

conditions in question, and was chosen to faU within the range of the standards. The

influent perfusate (to which no urea was added) served as the medium blank for these

assays.
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DeterminatioD ofam.oail Upbke Kross tile perfused rat linf

Perfusate samples were taken from the inOuenl and effluent perfusion media. An

aliquot of the perfusate (O.lml) was brought to a final volume ofO.Sml with water in a

glass test tube. This was mixed with Iml ofa phenol containing reagent (0.53M phenol

and 0.84mM sodium nitroprusside) and Iml ofan alkali-hypochlorite reagent (0.625M

sodium hydroxide and 28.2mM sodium hypochlorite) and incubated at 31"C for 20

minutes. The solutions were allowed to cool to room temperature and the absortance

was read at 630nm. Standard solutions containing known amounts ofammonia (0, 0.1,

0.25 and O.5mg ammonia per tube) were prepared during each assay and used to

calculate the ammonia concentration in the perfusate sample. The aliquot of perfusate

which was assayed, which depended on the experimental conditions in question, was

chosen to fall within the range ofme standards. To calculate the ammonia uptake across

the liver the effluent perfusate concentration ofammonia was subtracted from the

influent (as a known amount ofammonia was added, this served as a further check. on the

accuracy of this assay) and the difference multipled by the flow nue and then divided by

the wet liver weight.

Assay for omithiee ...iHtransfenue activity

1001-11 ofsonicated liver homogenate (100,4 wi" in buffer containing 0.25M sucrose and

50mM Tris, pH 7.6) was added to the oftho.aminobenzaJdehyde containing reagent

mixture (0. 125M KHzPO., 0.02M a-ketoglutarate, 0.2SmM pyridoxal phosphate, O.IM
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ornithine and O.OIM onhcHminobenzaldehyde, pH 7.6). The solutions were mixed

thoroughly and incubated at 37"C for 30 minUleS. The reaction was termirwed by the:

addition on.OmI ofa 1.5% trichloroacetic acid solution. The puUculate matter was

sedimented in a clinical centtifuge and the absorbance of the supernatant was measW"Cd

at 44Onm. A molar extinction coefficient on.71 (Herzfeld and Knox, 1968) was used to

calculate the production of pyrroline-S-<:arboxylate. Fiprr 2.6 contains data from

preliminary studies which were earned out to detennine whether the assay was linear

with respect to time and protein content.

Admillistratioll of pbK.ll.e (1.J.~i.ydrobr.zQkacid)

Gabaculine (OAT inhibitor), in 0.9% saline. was administered (2Omgfml)

intraperitoneallyat a dose of sOmgl1tg body weight, 2 houn prior to using the rats.

Control rats were administered the saline vehicle by i.p. injection.

Assay for perfusate a.i.. Kids

Effluent amino acids were measured on a Beckman mode1121·M amino acid analyzer as

described by Lee (1974) following adjustmc:nt ofpH to 2.2 using lithium citrate (0.2N).

Preparaooll or rat linr mltoclloltdria

Rats were killed by cemcal dislocation. The liver was removed and cut into

approx.imalely Imm·2mm sections using a pair ofSW'gical scissors and homogenized in a
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FigUf"e 2.6. Ornithine aminotransferase activities in ralliver homogenatcs as a fWlClion of

lime (0-31 minutes with 4mg protein., Plot A) and protein concentralion (0-3.8 mg liver

protein., 30 minute incubation. PlotB~ Experimental data from both plots correlated well

(r > 0.99) with the: lines ofbest·f!t from regression analysis.
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hand-held Teflon homogenizer. The homogenization buffer used (Hampson~!L 1983)

contained 225mM mannitol, 15mM sucrose, ImM ethyleneglycolbis'-aminoethylether)­

N,N,N,N-tetraaceticacid (EGTA),5mM-2-T-hydroxyethylpiperazine-N-2-ethanesulphonic

acid (HEPES), at pH 7.4. The homogenate (total volume IOOml) was centrifuged at

600Xg for 10 minutes. The decanted supernatant was centrifuged at 8,200Xg for 10

minutes resulting in the pellcting of the mitochondrial fraction. The mitochondrial

fraction was resuspended in the homogenitation medium (total volume - 20ml) and

centrifuged for 10 minutes at 8,200Xg. This last step was repeated. The pellet was then

resuspended in the medium to give a final mitochondrial protein concentration between

60 and 80 mWml. Protein concentration was determined by the Biuret method (Gomall

~ ill. 1949) using BSA as standard protein and deoxycholate to solubilize lipids.

Respiratory controll'llrio aad proli.e oxidatiotl

Oxygen consumption was measured using a Clark-electrodc. The respiratory control

ratio (RCR), using the substrate 2-oxogluW8te, served as an indicator of the quality of

the mitochondrial preparations. Those preparations with RCR values less dian 4.0 were

discarded. This was rarely nc«ssary. The composition of the respiration medium was as

follows: 1mwml BSA, 140mM Kel,l mM ethylenediamineotctraaceticacid, 4mM

KH,PO~, 5mM MgClz. 5mM HEPES, pH 1.4. This medium was equilibrated with

respect to atmospheric oxygen concentration at a temperature of30°C. The volume of the

electrode chambers used were between 1.1ml and 1.8ml. The mitochondrial protein
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amount in the chamber was between Img and 1.5mg and the adenosine.5'-diphospbatc

(ADP) concentration was O.5mM. Where proline oxidation was studied., its

concentration was varied.

Studie5 illvolving tbe effects of feedial • liack Meal

Rats were provided free access 10 the nonnal protein diet for 3 days durinS which time

they were maintained under a reversed 12:12 hour light cycle. The light period extended

between Sp.rn. and &a.m. The rats were subdivided into 3 groups; the control group, the

nonnal protein meal group and the high protein meal group. On the fourth day at 12

midnight food was removed but the animals continued to be provided with water. At 8

a.m, the following morning, the normal protein meal group were provided with the

nonnal protein diet, the high protein group with the high protein diet and the control

group continued to receive no food; the rats, being in the post-absorptive state, ale

promptly. At \0 a.m. rats from the 3 groups were k.illed.

Intraperitolleal admiailt...tiH of gl.capa

An intraperitoneal injection ofglucagon, dissolved in 0.9% saline and 0.05% eSA, was

administered to rats at a dose oro. Imgll OOg body weight. Control rats were

administered the saline eSA vehicle. RalS were killed 25-30 minutes after the injection.
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Trelt.~.tord.bl

Experimental results were reported as means.:l: standard deviations. Comparisons

between data groups were made using the Student t..test. In all casc:s a probability, p <

0.05 was regarded as indicating a statistical significance. The data reported in fipra

3.1,3.2,4.1 and 4.1 w= p10acd using the oompuIeT program G<>phPAD(G<>phPAD

Software, San Diego, California. USA) where the curve of best fit (rectangular

hyperbola) is arrived at by an iterative process using an algorithm that minimizes the sum

of the squares ofdifferences between the dependent variable in the equations and the

observations. Regression analysis was carried out using the Sigmaplot lt for Windows

version 1.0 program (Jandel Cot'p01'8tion).
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CHAPTERJ

CRARACTERIZAnON OF THE CATABOLISM OF ORNITHINE

AND ARGININE IN THE PERFUSED RAT LIVER



SYNOPSIS

The production of l"Co, from C"CJ.argininel and (1.fC}-ornithine was measured to

detconine the rates ofcatabolism ofthese amino acids in the isolated nonrecircuJating

perfused rat liver. At physiological,.t portal vein concentrations oftbcsc: amino acids,

the catabolic processes an: not saturated. Treabncnt with gabaculine (an inhibitor of

OAT) demonstrated that the majority ofornithine's, and arginine's. hepatic catabolism is

carried out through OAT. A substantia! carabolism afme carbon backbone ofornithine

occurs; results suggest complete oxidation arthis amino acid. Antegradclretrogn

perfusions show that the rate ofcatabolism ofarginine is independent of perfusion

direction. This final observation means that there must be a perivenous arginase.

INTRODUCTION

A necessary step towards a comprehensive understanding ofwhole body arginine and

ornithine catabolism is the determination ofthc roles of the individual organs in these

processes. A study of particular relevance to this tbc:sis, tarried 0tI1 in mil:e (Alonso and

Rubio. 1989), showed that tJ'CIbnent with gabKuline (5OmWkg) decreased the

production of I"C~ from [t-I.fC]-omithine by more than 80'.4, indicating that QAT is •

key enzyme in whole body ornithine catabolism in this mammal. The live!' is a key organ

in clearance of amino acids post-prandially (Jungas ~ iL 1992), and is known to contain

all the enzymes necessary 10 complete the catabolism ofarginine and omithine through

OAT (for pathway sec fipre 1.3.). This chapter presents data .elating 10 the catabolism
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of arginine and ornithine, through OAT, in the isolated nonrecirculating perfused rat

liver.

The presence ofa mitochondrially-associated rat liver arginase protein that ditTers in its

properties from the cytosolic arginase (Cheung and Raijman, 1981) suggested that liver

may conmin various forms ofarginase, or isozymes. Arginase nmRNA has been

detected in human (Gotoh ~!!. 1997; Morris ~~ 1997) and mouse liver (Morris ~ i!..

1997). Cederbaum's group failed to detect hwnan arginase 0 mRNA in the liver

(Vockley ~!M.. 1996); ho~ver, they also failed to demonstrate the presence of this

transcript in tissues e.g. spleen and thymus that have been shown to contain the transcript

(Moms ~!!L 1997). The distribution of these and, perhaps, other arginase isozymes

within ralliver is not clear. As discussed in Cbapter t, the distribution ofcertain

enzymes and entire metabolic processes may be restricted to certain areas within the

liver. The urea cycle and the enzyme glutamine synthetase (EC 6.3.1.2) are spatially

separated within the liver (HAussinger, 1983). The process for the catabolism ofarginine

may also be conmine<! within a specific sub-population ofcells. Swick determined by

density gradient centrifugation that only a specific subset of liver mitochondria contained

OAT (Swick, 1970) and proposed that these ~re contained within cells of the

perivenous region. Darnell's group(Kuo~!l. 1991) using the technique of in situ

hybridization subsequently confirmed this. Thus, the catabolism ofornithine is a

perivenous process. Whether or not arginine catabolism can be carried out in this region
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depends on the presence. or ab5enee ofa pcri~nous arginase. A key question posed in

this chapter is: Is the catabolism ofarginine. tbrougb OAT, • perivenous process?

OBJECTIVES

(t) To determine some kinetic characteristics of the catabolism ofarginine and ornithine

in the isolated perfused rat liver.

(2) To determine the importance ofOAT 10 the catabolism ofarginine and ornithine in

the isolated. perfused rat liver.

(3) To determine the extent of1he catabolism of the carbon backbone ofomithine in the

isolated perfused rat liver.

(4) To detennine the rates ofcatabolism ofarginine in antegrade and retrograde

perfusions.

IGDelic charKtemtits of lite ca"boHsa 0(onit~iMalld arp.fMo

Experiments were carried OUI with varying c:oncentrations of labeled arginine and

ornithine 10 determine the kinetic characteristics of the catabolism of these amino acids.

In the case ofornithine (Fta.re 3.1) the data fit well to a rectangular hyperbola

(~=O.994). A VInL'l of94 nmoleslminlswet livcrwas calculatcd and the ornithine

concentration at which half-maximal stimulation occurred was 4,SmM. It is clear that at

the physiological ponal vein concentration ofornithine (0.1 mM) this process is not

saturated. Thus, ornithine catabolism in the perfused rat liver responds to changes in the
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Figure 3.t. Substrate curve for the oxidation ofornithine in the isolated,

nonrecirculating. perfused rat liver. Livers were perfused in the antegrade dim:tion with

different concentrations of [I_l~q-ornithine.as described in MIIten-1s .... Mdltods.

Rats were fed a nonnal protein diet (IS'!. casein) for a period of3 days before the

experiments. The data were used to consttuet a n:ctangular hyperbola using the

GraphP~ p<ogram.
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concentration of this amino acid in the physiological range.

Figure 3.2 shows the data from similar experiments that were carried out with arginine.

Once again. the data worn: fitted to a rectangular hyperbola(~.984). The Vma is 210

nmoles/minlg wet liver with the half-maximal. velocity occurring at an arginine

concentration of5.25mM. Note that the higher Vma for the arginine experiments. versus

ornithine. occurs because we measured the l~C02 released from [U_I~C]-arginine and the

I~CO! released from (1-I·C]-omithine; further experiments show substantial oxidation of

the carbon backbone ofornithine and so the rate of release: of I'C~ from [U_I"C]­

ornithine is greater than thaI from [I-l'q-omithine: (approximately 5 times. suggesting

complele oxidation ofcarbon backbone: ofornithine; see FiI.re 3.5). At similar

concentrations of these amino acids. using [U.l.C) ornithine: and (U.lolC) arginine, the

rate ofornithine catabolism is higher than that ofarginine:. The key poim is that the

process for arginine: catabolism is not saturated at the physiological concentration of this

amino acid (0.2mM). Thus., arginine catabolism in the perfused rat liver responds to

changes in the concentration of lhis amino acid within the physiological range. The next

step was to determine the nature of the processes responsible for this catabolism.

Specifically, the question as to the extent ofornithine: aminotransferase's participation in

this process was addressed.
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Figure 3.2. Substrale curve for the oxidation ofarginine in the isolated. nonrecircuJating.

perfused rat liver. Various concentrations ofru·l~C].argininewere perfused across rat

livers in the antegrade direction. Further details of this procedure are provided in

Materials aDd Methods. RAtS were fed • nonnaI protein diet (I S% casein) for a period

of) days before the experiments. The results are the means for 2 independent

experiments. The data were used 10 consttuet a rcaangular hypelbola using the

GraphPad~ program.
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The i.pomace of OAT tG dtf: cam.... of ......_ alld onidl"

Figue J.J demonstrates.. in rats fed a normal protein diet, that treatment with

gabaculine. at the dose ustd by Alonso and Rubio in mice (5Omglkg body weight).

reduces the catabolism ofornithine (as measured by 14C01 production from [I.I~C]­

ornithine) at all time·points during the perfusions (verified by Student's unpaired t-test).

At the 39 minute time-point the rate in the saline treated controls was .50.3 nmoles/min/g

wet liver while in the gabaculine treated rats the rate was 4..5 nmoleslmin/g wet liver.

representing a lXW. inhibition of tile catabolism ofornithine by gabaculine. The OAT

activity in livers from these rats were inhibited by -80% (iud F'..~ 1.3). In the case

ofarginine catabolism (Fic.~J.4) administration ofgabaculine resulted in I substantial

inhibition of the arginine catabolism. At the 39 minute time-point the rate of ["COl

production from {U-I~CJ-arginine was 140 nmoles/minlg wet liver in the saline connols

while in the gabaculine treated rats the rate at this time-point was.59 nmoles/minlg wet

liver. representing a 60'/. inhibition ofthc 1"~ prcx1oction by gabaculinc. The inset in

Fi1;ure 3.4 shows that gabaculine tJeatment inhibited the OAT activity by 80%. The

OAT activity detennined in livers from rats fed the 1.5% casein diet an: in close

agreement with previous studies in rats fed diets similar in protein content (Henfeld and

Knox ,1968; Volpe~!!.I969).

Tbe exteat of c=atabolu of tk earboll backboH ofonitlliiDC

The next experiments were carried out to detcnnine the extent ofcatabolism of the:
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Figure 3.3. The effect ofgabaculine administration on the oxidation ofornithine in the

isolated. nonrecirculating, perfused rat liver. Gabaculine was administered to rats, by

intraperitoneal injection. at a level of50ml?/kg body weight. 2 hours later, the rats were

killed. Control rats were given the saline velticle. Livers were perfused in the antegrade

direction with 3mM [I.I~C}-omithine as described in M••emls ..d Metltodl. The

arrow indicates the time at which the radio-labeled ornithine was added. Rats were fed a

normal protein diet (15% casein) for 3 days before the eltperimcnts. (e) = control rats,

(.) = gabaculine treated rats. Each point represents the mean ± S.D. for 3 independent

eltperiments. • denotes a significant difference (p<O.05) from the gabacuJine treated rats.
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figure 3.4. The effet.t of gabaculine administration on the oxidation of arginine in the

isolated., nonrecirculating, perfused rat liver. Gabaculine was administered to rats, by

intraperitoneal inj«tion. at a level ofSOmg/kg body weighl 2 hours later, the rats were

killed Control rats y,.erc given the: saline vehicle. livers were perfused in the: antegrade

direction with 3mM [U.I·Cj-arginine as desl:ribcd in Makriais altd MdIIods. The

arrow indicates the time at which the radio..labcled arginine was added. Rats were fed a

nonnal protein diet (15''- casein) for 3 days before the experiments. (.) =controll1lLs.

(.) "" gabaculine treated rats. Each point represents the mean ± S.D. for 3 independent

experiments. .. denotes a significant difference (P<O.OS) from the gabaculine treated rats.
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carbon backbone of ornithine (Fic_re loS). This was achieved using [I-'~C)~milhine

and [U- 14C}-ornithine; these radiolabeled tracers can be used to monitor the C~ released

from the carbon at position 1. and that released from all five carbons ofornithine (see

Figure t.1 for structure), respectively. The raleS of 14C01 production are approximately

5 times greater from all five carbons ofornithine than they are from position one (12.4 ±

5.65 versus 2.58 ± 0.38 nmoleslminlg wet liver for [U.t~q-ornithine and [I.t4C)_

ornithine. respectively. at the 39 minule time-point. these are the means ± S.D. for 3

independent experiments). These results are similar to those of Alonso and Rubio who

showed a substantial oxidation ofme carbon backbone ofornithine in mice (Alonso and

Rubio, 1989)

ADlegrade/retrograde perfusiou

The next experiments deal with the question ofa IXlssible localization ofan arginase

within the perivenous hepatocytes. There is a zonation of metabolism across the liver

acinus (see Introduction). It has been shown that OAT is localized to the perivenous

hepatocytes (Kuo ~ ll1 1991). Thus. the catabolism ofornithine is a perivenous process

(the ornithine enters the liver and may enter the urca cycle but this cycle cannot

catabolize ornithine). Only when ornithine is taken up by the perivenous cells and

metabolized does catabolism occur.

Whether or not arginine catabolism can occur in the perivenous hepatocytes depends on
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Figurt: 3.5. The extent to which the carbon backbone ofornithine is catabolized. Rat

livers were perfused. in the ~direction, with ather [1_1~C}-omithine{.)of[U­

'~C}-<lmithine(.) at a concentration ofO.lmM.. The arrow indicates the time at which

the radio-labeled ornithine was introduced. Rats ~re fed a normal protein diet (IS'!.

casein) for 3 days befm: the experiment Results aR from a typical experiment



r'Cf-orriI'*w:(O.lrllM)

14

o • I

~
1L--, /

/ ....
/

/
/

/

~
/

~
o 15 20 25 30 35 40

Time during perfusion (min)

7S



whether there is a perivenous arginase. In a mrognde perfusion, argin.ine catabolism

would not occur unless there: is a perivenous arginase. F".re 3.6 (A) illustrates that in

the presence ofa perivenous arginase, in a retrogRde perfusion, the arginine would be

converted to ornithine. and this would then be catabolized to CCh at a rate equallO that

produced by arginine in the antcgDde perfusion (Fic.rt: 3.6. (8». This follows from the

exclusive location ofOAT and the fact thai we used a nonrec:irculating perfusion system.

In order to cany out these experiments livers were perfused for 20-30 minutes in the

antegrade direction with the I~C_labelled amino acid and then the flow direction was

reversed for a 20 minute wash-oul period ( the amino acid used for Ihis period was non­

radioactive). This reduced the production of I"C02 to low levels so that we could then

continue the perfusion in the retrograde direction for a further 20-)0 minutes with the

labeled amino acid

Having demonstrated previously that recirculation is not a feature of the perfusion

system being used (Materiats •• Medtods, F••re U) the fim set ofexperiments was

carried out using ornithine. As shown in rilue l.7 the experiments began in the

antegrade direction. The flow was then reversed to the~ and a wash-out period

in which only cold amino acid was included lasted for 20 minutes. The l~C tracer was

reintroduced for a further 30 minutes after which the perfusion was tenninated. The

results show( 1) that the wash-out period is sufficient to remove the bulk of the remaining

radioactive label and (2) thai there is no significant difference in the rales of l~C0:2
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Figure 3.6. The effects of arginase localization on arginine catabolism through OAT.



Figure 3.7. The effect of me direction of perfusion on the oxidation ofornithine. A

detailed account of the perfusion procedure is presented in Materials and Methods. Rat

livers were perfused with O.Im..\i (U.I"C]~ithine between 10 and 40 minutes and

between 60 and 90 minutes and with unIabeI.led ornithine between 40 and 60 minutes.

Rats were a normal protein diet (IS% casein) for a period of3-5 days before the

experiment Each point rqxesents the mean ± S.D. for 4 independent experiments.
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production from ornithine in the antegrade and retrograde directions.

The next step was to cany out these experiments using arginine. As can be seen from

Figure 3.8, there is no significant difference in the rate of ,·C~ production from

arginine between the antegrade and retrograde directions. On the contmy, the rates are

remarkably similar. Thus, there is a perivenous arginase.

DiKussiOQ

From the kinetic analysis. the concentration ofamino acids required to produce half­

maximal rales ofcatabolism are 4.SmM and S.2SmM for ornithine and arginine,

respectively (Figures 3.t ..d 3.1). Thus, any change in the portal vein concentration of

arginine and ornithine within the physiological range (0. 1-O.2mM) will produce a change

in the rate ofcatabolism, making regulation possible at the level of substrate supply. It

has been known for some time that arginine and ornithine transport into the liver is

carried out by a low activity transporter (White, 1985; Christensen. 1984). This may be

10 avoid degradation ofarginine by the large amounts ofarginase in the liver. It may also

limit the availability ofarginine for the production of nitric oxide. The recently

characterized transporter, MeAnA, which is responsible for the uanspon of the basic

amino acids into liver has a K", between 2 and SmM (Closs!!!~ 1993). Comparison

with the Kms for the catabolic processes suggests that transport could be a site of

regulation, or ratc limiting step, for the processes ofarginine and ornithine catabolism.
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Figure 3.8. The effect of the direction ofpetfusion on the oxidation ofarginine. A

detailed account ofme perfusion procedure is presented in Maten.Is.1td Mdllods. Ral

livers were perfused with 0.2mM [U.l.(q-arginine between 10 and 30 minutes and

between 50 and 70 minutes and with unlabelled arginine between 30 and SO minutes.

Rats were fed a nomal protein diet (IW. casein) for a periodof3.S days before the

experiment. Each point represents the mean ± S.D. for 3 independent experiments.
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Teleologically, regulation at the first step {in this case, transport) is an efficient manner

orcontrolling a metabohc proc::e:ss. Other exampks or regulation orcatabolic processes

by uansport exist in the field oramino acid transport {system A transport represents the

rate limiting step in alanine catabolism in rat liver parenchymal cells (Sips ~ 11. 1980)

The distribution orlhe MCATIA uansponer within the liver has yet to be established.

As the complete degradation orarginine can occur in the perivenous region, it is likely

that a transporter is present in the perivenous region. In situ hybridization or the

MeATIA transcripts, complemented with an immunological study using a monoclonal

antibody ror the corresponding protein, could be used 10 determine the distribution or

MCATIA within mammalian liver.

The data in Figure 3.3 show that OAT is responsible ror the great bulk ofornithine

catabolism. Thus, in the rat liver, the ~thway responsible for the catabolism orornithine

is that shown in Figure 1.3. Any remaining activity may, in pan, be due to residual

uninhibited OAT activity. A minor ornithine decarboxylase (EC 4. I. I. 11) activity exists

in liver and will produce CO:! rorm ornithine; gabaculine does not inhibit ornithine

decarboxylase (Jung and Seiler. 1918; Rando arid Bangerter, 1911).

The catabolism orarginine was not inhibited to the same extent by treatment wilh

gabaculine (Figure 3.4). Two possible explanations exist:

(I) Alternative processes ror the catabolism of arginine exist within the rat liver that do
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not require the involvement ofOAT and are capable ofcarabolizing a significant amounI

of arginine. As discussed in the l.trodKtiH, arginine consumption by the other

processes, under normal physiological conditions, are quantitatively minor andfor result

in the production ofan intennediate that may be recycled back 10 arginine (e.g. c:ittu.lline

in nitric oxide production). Relatively little is known c:onc:eming the production of

agmatine (decarboxylated arginine) from arginine in mammalian tissues. A recent report

indicates the presence ofmRNA for the enzyme arginine decaJboxylase (EC 4.1.1.19)

within the liver (Morrissey ~!!. 1995). No arginase decarboxylase protein has been

shown present in liver to date. The levels ofagmatine in mammalian tissues studied.

including liver, is in the nanomolac-picomolar range (Raasch ~!!. 1995). The

measurement of I~C02 release from [1_I~C}-arginine in enriched liver milochondrial

fractions is not an appropriate way to determine arginine decarboxylase ac:tivity, as was

done recently (Lortie ~ 11. 1996). This is not merely a measW'C ofany possible arginine

decarboxylase enzyme within the tissue, but also a measure of the activity ofw pathway

shown in FiI.rc IJ of the l.trodlldiH. It is not a specirtc assay for arginine

decarboxylase, and so its usefulness is limited. By vinue of the assay design used. the

fact that no arginine decarboxylase protein has been shown in mammalian liver and the

low levels of agmatine in tissues, it is unlikely that this pathway has a major role in

arginine consumption. As was the case with ornithine, there will also be a contribution

from ornithine decarboxylase to the rate of l..COz production, albeit a minor one.

(2) The residual OAT activity after gabacuJinecould been higher in the: experiments
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with argjnine lhan those with ornithine. This could be: due to the presence: ofan initial

higher OAT activity in the rats used in the arginine experiments compared with those

used in the ornithine experiments. There is a higher level of0 AT activity in the rats

used in the arginine experiments treated with gabaculine when comfWtd with the

activity in the rats used in the ornithine experiments (1.0 J,UnOleslminlg liver protein

versw 0.5 IJ.moleslminlg liver protein. respectively). This may account for the reduction

in !he inhibition of 14COl production.

The extent oflhe catabolism of the carbon backbone (Fi.ure J.~) is instructive. The

carbon backbone ofornithine enters the Krebs cycle as a-ketoglutarale. However, this

alone cannot account for lIS complete oxidation. Our results show that complete

catabolism of the caroon backbone ofornithine occurs; the rates of 14CO:! production are

approximately 5 times gtUter from all five carbons ofornithine than they are ftom

position one (12.4 ::I: 5.65 versus 2.58 ± 0.38 runoteslmin/g WClliver for [U}4C]-omithine

and (1. 14C)-ornithine. respectively. at the 39 minute time-point). An intennediate: must

leave the Krebs cycle and re-enler as P'fTUV.te to allow the complete oxidation of the

carbon backbone. This can be: achieved by one of two mechanisms. or a combinalion of

these. Malic enzyme (EC 4.1.1.40) can conven malate direclly to pyruvate.

Alternatively, oxaloacetate could be converted to phosphoenolpyruvale by

phosphoenolpyruvate carboxykinase (PEPCK; EC 4. 1.1.29) which can then be convened

to pyruvate by pyruvate kinase (EC 2.7.1.40). The resulting pyruvate will be: compll:lely
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oxidized via pyruvale dehydrogenase and the Krebs ~Ie. Pyruvate kinase is present in

the perivenous cells. as it is in all mammalian cells studied to date. A gradient exists in

the distribution of the glycolytic enzymes increasing from periponallO perivenous cells

(Jungermann and Katz, 1982). PEPCK protein (Andmen ~!!.. t982) by

immunohistochemistry, and mRNA by in situ hybridization (Banels ~!!. 1989) have

been shown to be preferentially expressed in the periponal region. but the mRNA is

certainly present in low levels in the perivenous cells (Bartels ~ IL 1989). Analysis of

malic enzyme activity shows thai it is present in both periportal and perivenous cells

(Tosh ~Ul. 1989).

Having established both the rale ofcatabolism ofornithine and arginine at the

physiological concentrations of these amino acids. and that there is a substantial

catabolism of tile carbon backbone it is possible to estimate the total amount oflhe

arginine load which can be c;a1.boHzcd Ihrough the liver by this process on a daily basis.

The daily food intake for a rat on • normal protein diet (1.5% casein) is approximately

109. Thus. the intake of protein is 3g. Arginine makes up 3% of the total amino acid

composition ofcascin, therefore O.09g ofargininc is Iaken in daily (or 0..5 mmoles of

arginine is taken in daily). AI the physiological rat ponal vein concentration of arginine

(0.2mM) tne rale of l~COl production is 14 nmoleslminlg wet liver (Filurt: 3.1) from the

entire backbone oCthe arginine molecule (since [U.I(C)..arginine was used as the tracer).

As a substantial catabolism oflhe carbon backbone occurs from each arginine (if we
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take the ornithine data., this represents a complete catabolism of the carbon backbone) the

number ofarginine molecules catabolized is lower than 14 nmoleslminfg wet liver. If we

assume complete catabolism of the uginine molecule together with release ofa urea

molecule, each mole of uginine will produce 5 moles ofC~ and Imole of urea. Thus.

the rate ofarginine disposal is 2.8 nmoleslminfg Wet liver. Over a 24 hour period and in

a 300g rat with a 12g liver the IOtalload ofarginine catabolized is approximately

48J,lmoles or about lool, of the lotal daily arginine load. We know lhat the small intestine

removes one third of the arginine in a single pass (Windmueller and Spaelh, 1916), thus

liver can catabolize \50/, of the total absorbed arginine. Data shown in Ch_ptcr 4

suggests that the inclusion of the pancreas may increase this number by as much as 50'/,.

The antegradelretrograde ex.periments show that there is a perivenous arginase. Thus,

the catabolism ofarginine, through OAT, can be canied out completely in the perivenous

region. The periportal arginase could, in theory. produce ornithine for conswnplion in

the perivenous region; however. the marked similarity in the anlegraddrctrograde rates of

catabolism (Fic_re 3.8) sugse:st that cooperation between periportal and perivenous cells

is unlikely. As mentioned in the .ntrodKtion, the AI and All account for the vast

majority of the arginase activity in mammalian tissues. Ex.periments 10 date do not

preclude the presence of still minor forms of arginase. Immunological studies, using

anti·AI and anti·An antibodies to pinpoint the location of these isozymcs across the liver•

.....ould be useful. Cederbaum's groups have. for almost 20 years, investigated the tissue
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distribution of arginases in humans and rats.. prirx:ipally by immunoprecipttation

techniques. The results show that the anti-AI anbbody can precipitate >95% of the total

arginase activity in rat and human liver(Spectorgi!. 1994). The assumption which

prevailed until recently was that all liver arginase was of the AI variety, and functioned in

the urea cycle. Cederbaum's group showed that the anti·AI antibody also pcecipitated

approximately 50% of the arginase activity in rat kidney; the remainder was pcecipitated

by the anti-All antibody. The mRNA transcript for the AI arginase has been found. to be

absent in kidney by groups(Morris~~ 1997), includingCedeTbaum's(Vock.ley~!!..

1996). The presence ofa specific mRNA docs not guarantee the production of the

corresponding protein, but no pcotcin can exist without a corresponding maNA

transcript Thus, Cedemaum's anti-AI antibody may not be specific enough.

Any fonn ofarginase, other than the AI isozyme, pt'esent in rat liver will have

substantially lower activity than AI. Raijman's group (Cheung and Raijman, 1981)

demonstrated the presence ofa minor Ktivity ofa mitochondrially associated arginase,

possibly the All isozyme. (Watford postuIatcd that this low Ktivity ofarginase ftmetions

to complete the urea cycle as a 'metabolon' (Watford. 1991». The number ofcells

containing OAT, and thus arginase. which is 2 to 3 cell layers surrounding the central

vein (Kuo ~ M. 1991), accounts for <5% of the totalltepatocyte population so that

arginase activity here will be minor. Distinguishing the various isozymes ofarginase

within rat liver, on the basis ofenzymatic activities, is. al best, a difficult task; it involves



accurate partition ofa large activity (the arginase AI activity) from a mue:h smaller

activity (the AlI activity and other possible isozymes). lmmunoprecipitation studies. in

this case. are not sensitive enough to dctennine the absence, or presence. of the minor

fonns of arginase within rat liver. In situ hybridization, using radioactively labeled

antibody probes. could be used to good effect in this field.
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CllAPTER4

REGULAT'ON OF THE CATABOLISM OF ORNITRlNE AND ARGININE



SYNOPSIS

The rates of catabolism ofarginine and ornithine, in isolated nonrecirculating rat liver

perfusions, were established in rats fed a high protein diet (60% casein). Kinetic analysis

shows that the processes are not saturated at the physiological concentrations of these

amino acids. Thus, substrate supply can regulate these processes. Livers from rats fed a

high prolein diet (60010 casein) catabolized ornithine (O.lmM) at rates foW' times higher

than from rats fed a normal protein diet (15% casein). The rates of 14COt pfOduction

from [IYC)-omithine were 14.4 ± 5.3 and 63.6 ± 22.6 nmoleslminlg wet liver for rats

fed 15% casein and 600/0 casein diets. respectively. Thus, ornithine catabolism in the rat

liver is subject 10 chronic regulation by the level ofdietary protein. Rates of [U_14C]_

arginine (O.2mM) catabolism were 13.8 ± 4.9 and 74.5 ± 22.S nmoles I~CO!lminig wet

liver for 15% casein and 600/. casein diets. respectively. Thus, arginine catabolism is

also subject to regulation by the level of protein in the diet Glucagon (IO"M) acutely

stimulaled the catabolism ofarginine by approximately 4()01o in rats fed a high protein

diet. Similar experiments carried oul with omithine showed no such stimulation in the

rate of its catabolism. Dibutyryl- cAMP (0.1 mM) also stimulated the rate ofcatabolism

ofarginine by approximately 44)0/.. fn retrograde perfusions, glucagon stimulated the

catabolism ofarginine by approximately 2-fold; this means that glucagon exens its

effects in the perivenous region. Insulin infusion had no effect on either arginine or

omithine catabolism in rats fed the high protein diet

91



INTRODUCTION

The catabolism ofarginine, and ornithine. decrease: under conditions of limited uginine

supply. in effect conserving the supply of these amino acids. This has been shown to be

the case in both rats (Dhanakoti~!!. 1990) and humans (Castillo~!!. 1994; Castillo~

~, 1993). The roles of the individual organs, indeed of individual processes, in these

homeostatic mechanisms remains unclear.

Schimke (1962) demonstrated that increasins the level ofdietary protein fed to rats

resulted in a directly proportional increase in the level ofurea excretion. and the

activities of the individual enzymes of the urea cycle in rat livers. In this study, tats were

fed diets containing either IS'I. or 6QO,.. casein. for a period ofa week. With mpect to

shon·tenn regulation, our group has shown that feeding rats a single high protein meal

stimulates the glycine cleavage system (Ewart ~!!.. 1992), and glutaminase activity

(Ewart ~i!. 1993), in isolated rat liver mitochondria. In these examplcs..lhc agent of

such changes in enzyme activity may be an alteration in the secn:rion of glucagon.

Feeding tats a single high procein meal inc:rcasc:s the circulating level of plasma glucagon

(Robinson ~!!. 1981). Also, it has been shown that isolated hq:MIocyte preparations

treated with glucagon exhibit stimulated activities ohhe glycine cleavage enzyme (lois

~M. 1989).
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The experiments described in this chapter were designed to investigate whether the

catabolism ofarginine and ornithine in the perfused rat liver was subjecl to regulalion by

die level ofdietary protein (chronic regulation) and/or acute regulation by pancreatic

honnones such as glucagon and insulin.

OBJECTIVES

(I) To establish the kinetic characteristics of the catabolism ofarginine and ornithine in

the isolated perfused rat liver from raIs fed a high prolein diet.

(2) To detennine the importance of the enzyme OAT to these processes.

(3) To compare the rates ofcatabolism of these amino acids in rats fed a high protein

(60% casein) diet with those in rats fed a nonnal protein (15% casein) diet.

(4) To establish the extent to which the carbon backbone ofornithine is catabolized.

(5) To detennine whether an infusion ofglucagon (final concentration 1O.7M) alters the

rate ofcatabolism ofarginine, or ornithine, in rats fed a high protein diet.

(6) To establish whether an infusion of insulin (final ooncentnUion 1O.7M) alters the rate

cfcatabolism of ornithine, or arginine, in rats fed a high protein diet

As an effect ofglucagon upon arginine catabolism was evident, further objectives

included:

(7) To localize the site ofglucagon action within the liver.

(8) To detennine whether dibutyTyl-cAMP could mimic the effects which glucagon

exerted on the catabolism ofarginine.
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RESULTS

Hilh proteiD diet fed rats; duinc1f:ristics of tIte ctIt1bo1.. ofonidli. alHl

argilli_e. aDd dtpe..-ee of dteIe pn:tftI8a .poa OBit......i.Ht,.....ft'Ut

Figure 4.1 (plot A) shows the production of l~cOt from (J .1~C]~thine as a function

of ornithine concentration. I~CO:! production from [I-'~C~mithine was detennined at a

range ofornithine concentrations so as to determine the kinetic characteristics of the

system. The data show thai the Vn- for this process is 324nmoles '~CChlminlg wet liver,

and that the substrate concentration at which half-maximal catabolism occurs is 3.3mM.

(To detennine these kinetic characteristics lhe data were fil to a rectangular hyperbola

(r=<l.992). Similar experiments. which monitored the release ofcarbons from all

positions of arginine (using [U.Hq.argininc), are shown in Fiprt 4.1. Plot B. The data

also fit well to a rectangular hyperbola (,-1=0.997). The V-. is 697 MlOles I~CWmi"'g

wet liver. and a concentration of 3.4mM is needed to give half-maximal rates of

catabolism. Thus. at the physiologieal concentntions ofthcse amino acids the processes

are far removed from satwation.

Treatment with gabaculine inhibits the catabolism orornithine by 80% when the last

three time points orthe perfusion were averaged (16.25 ± 0.12 versus 3.1 ± 0.45

nmoleslminlg wet liver, Fit_re4.1. Plot A). In the livers rrom these rats OAT activity is

inhibited by 92% (14.3± 5.91 versus 1.16 ± 0.31 J.U1'lolesiminlg liver protein).
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Figure 4.1. Substrate curves for the oxidation ofomithine and arginine in the isolated.

non·retirculating, perfused rat liver. Livers were perfused in the antegrade direttion with

different concentrations of [t.l(q-omithine (Plot A) and [U.](q.arginine (Plot B) as

described in Materials aDd MetUds. Rats were fed a high protein diet (60% casein) for

a period of 3 days prior to the experiments. Each point represents the mean ± standard

deviation for three independent experiments. The data were used to cons1rllc1 a

rectangular hyperbola using the GraphPAD- program.
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Figure 4.2. The effect ofgabaculine administration on the oxidation ofornithine and

arginine in the isolated, non·recirculating, perfused rat liver. Gabaculine was

administered to rats, by intraperitoneal injection. at a level of SOmgtlcg body weight. 2

hours subsequent to this, the rats were killed. Control rats were given the saline vehicle.

Livers were perfused in the antegrade direction with either O. ImM [U.I(C}-omithine

(Plot A) or 3mM [U.l~C].arginine (Plot B), as described in M..kri.1s .ad Methods.

The aITOW indicates the time at which the radiolabel was added. Rats were fed a high

protein diet (60% casein) for a period of3 days piorto the experiments. (e):: control

ralS, (.):: gabaculine treated rats. Each point represents the mean ± S.D. for 3

independent experiments. - denotes a significant difference (Student's unpaired t·test,

P<O.05) from the gabaculine treated rats.
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Experiments camed out with arginine (Figure 4.2, Plot B) show that treatment of these

rats with gabaculine inhibits the OAT activity by 82% (17.3 ± 3.45 versw 3.18 ± 1.17

Ilmoleslminlg liver protein. for saline treated and gabaculine treated rats, respectively)

while reducing the rate of I·C02 production from [U.I·C}.arginine by 70010 at the last

three time points of the perfusion (S4S ± 16.3 versw 168 ± 20.1 nmoleslminlg wet liver).

Comparilao of tbe rates ofelgbolislD of .rgiaiDe aad onitbie iD rats fed. the

normal protein diet (15% caseiD) witb tllose for n" fed. tM bigb protei. did (WI.

casein)

Figure 4.3 shows that, at the physiological portal vein concentration of ornithine

(O.lmM), the livers from rats fed the high protein diet catabolize this amino acid at rates

which are approximately four fold higher than in rats fed the normal protein diet (63.6 ±

22.6 versus 14.4 ± 5.3 nrnoles I·COz/minig wet liver from [I-I·C}-omithineat the 29

minute time-point). In the case ofarginine (Ficure 4.4) the rates ofcatabolism were

increased by approximately five fold in rats fed the high protein diet versw those fed the

normal protein diet (74.S ± 22.5 versus 13.8 ± 4.9 nmole~minlgwet liver. at the 29

minute time-point). We also see differences in the rates of oxygen conswnption; urea-N

production and liver OAT activity between rats fed the high protein diet and those fed the

normal protein diet. These are shown in FiC.re 4.5. The results are those from the

saline groups from Figure 3.3 and Figure 4.2 (P'ot: B) (the only variable being the

protein content of the diet). These show higher rates of oxygen consumption., urea-N
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Figure 4J. Chronic regulation of the catabolism ofornithine by diewy procein. Rats

were fed either a normal protein diet(. 15% casein) or. high proteindiet(. 60%

casein) for a period of 3-4 days prior to the experiment liven were perfused in the

an1egrade direction with 0.1 mM [U.I·C}~thine as described in Mliterials ••

Methods. Each poim represents the mean ± standard deviation for each time-poin1 from

3 independent experiments. • denotes. significant diff~nce (P<t).OS) from the nonnaI

pro1ein group (detennined by Student's unpaired t-lest).



100

90
(U-"Cl-ornithine (O.1mM)

~ t•
~

80

.;t/t-i
r 70

~ 60
.!!
0 50E
.s
c 40 r0.,
u 30"."e

20Cl.

d=f3:t1,ON

~ 10

0 /
/

0 10 15 20 25 30 35 40

Time during perfu8lon (minI

101



Figure 4.4. Chronic regulation of the catabolism ofarginine by dietary protein. Rats

were fed eilher a normal protein diet (. 15% casein) or a high protein diet (. 60%

casein) for a period of3-4 days prior to the experiment. Livers were perfused in the

antegrade direction with O.2mM [U.I~C].arginine as described in Materials aDd

Methods. Each point represents the mean ± standard deviation for each time point for 3

independent experiments.• denotes a significant difference (P<O.05) from the normal

protein group (detennined by Student's unpaired t·tesI).
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Figure 4.5. Chronic regulation of urea·N production. oxygen consumption and OAT

activity by dietary protein. Rats were fed either a normal protein diet (e IS% casein} or a

high protein diet (.60-A casein) for • period of3-4 days prior to the experiment. Livers

were perfused in the antegrade direction with 3mM (U.I·Cj-arginine. Urea N production

(Plot A), oxygen consumption (Plot B) and OAT activities were measured as described

in Materillb ..d MetWs. Each point represents the: mean ± standard deviation for 3

independent experiments. • denotes a significant difference (P<O.OS) from the nonnaI

protein group. detmnined by Student's unpaired t·test.
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production and OAT activities in the rats fed the high protein diet. aU consistent with

previous studies in which rats have been fed high protein diets ve,:rus normal protein

diets.

Tbe exlelll of cataboliYI ofdie arbN~ oronitlli.

In the next experiments we perfused rat livers in the antegradc direction with [I.I.C)_

ornithine (O.lmM) or [U- Uq..()f1lithine (0.1 mM); these radioactively labeled substrates

were used to monitor the 1.001release from the carbon It position I and from all S

carbons of ornithine, respectively. The results (Fipl"f: 4.6) show that the rate of I·C01

production from all five positions ofornithine is approximately four times greater than

that from position 1 ofomithine(79.4 ± 11.3 ve,sU$ 19.6 ±6.94 nmoles '~CWminig wet

liver). Thus, in rats fed a high protein diet. there is a substantial oxidation of the carbon

backbone ofornithine.

Tbe efftcts of _ II.ap i.r...... die ambol_ of -rei_i. aM o,..itllilte i. nib

fed a higb protei. dtd

We next investigated possible acute regulation ofarginine and ornithine catabolism

processes by the pancreatic hormone glucagon. Ftpl"f: ...7(Pa.dA)showsatypical

experiment in which glucagon is infused during the perfusion procedure. Glucagon does

not affect the rate of 1·C02production at any time point. The results of four independent

experiments are shown in Pa.d C; these demonsuate lhat glucagon brings about an
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Figure 4.6. The extent to which the carbon backbone ofornithine is oxidized. Rats, fed a

high. protein diet for 3 days, were perfused antegrade with either [U_14C] omithine

(0.1 mM) Ce) or [1. 14C]-omithine (0.1mM) (.). Perfusion procedures are described in

Malerials ud Mdhods. Each point represenlS the mean ± sIandard deviation for each

time-point from 3 independent experiments. • denotes a significant difference from the

group perfused with ornithine (determined by Student's unpaired t-test).
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Figure 4.7. The effect ofglucagon infusion on the catabolism ofornithine and arginine.

Rats. fed a high prolein diel for 3 days, were perfused antegrlde with ruYCl·arginine

(O.2mM) or [U~HC)-orn.ithine(O.ImM). PcriUsion pnxcdures are dcscnDed in Mlteriliis

slid Mdbods. Glucagon (final concaltrabon in the perfusate: to"M) was infused at the

times indicated by the IIITOWS. Typical experiments are shown for ornithine ('.HI A)

and Mginine (P••d B) petfusions. Pa!HI C shows the percentage stimulation in the T1Ites

of catabolism ofarginine and ornithine by gllJCalOR (expressed as the mean ± standard

deviation for 3 independent experiments).
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average increase of 4.2 ± 2.6% (calculated from the mean values for the 34 and 39

minute time points and the means for the 54 and 59 minute time points for each

experiment). This was not statistically significant.

In Panel B we see that arginine catabolism is stimulated by glucagon; the stimulation

for four independent experiments upon infusion ofglucagon is 415 ± 7.~1o (Palltl C).

This increase was statistically significant (Student's paired I-test, P<O.05) between the

means of the two time points prior to the infusion of glucagon and the means of the 49,

54 and 59 minute time points; thus, glucagon elicits its effcct within 10 minutes. Thus,

in rats fed a high protein diet, the catabolism ofarginine, but not that ofornithine is

subject to acute regulation by glucagon. As glucagon was dissolved in IOmM Hel,

control experiments in which IOmM Hel was infused (to give a final concentration in the

perfusate of 8J.!M), under the same conditions, were also canied out Figure 4.8 shows

that there is no difference in the catabolism ofornithine (Plot A) or arginine (Plot B)

upon infusion of 10mM He!.

The effects or dibutyryl-eAMP oe tlte calaboUs. of_rei.i_ i. nib fed _ Itigh

protein diet

The next experiments were conducted to determine whether the effccts ofglucagon on

arginine catabolism could be mimicked by infusion ofdibutyryl-<:AMP (0.1 mM). FiI;.re

4.9 (Plot A) shows the data from this study. The graph shows data from a typical

III



Figure 4.8. Controls for the effect ofglucagon infusion on the catabolism ofornithine

and arginine. Rats, fed a high protein diet for 3 days, were perfused antegrade with [U.

14C]-omithine (0. ImM) (Plot A) or [U.14C)_argininc (0.2mM) (Plot B). Perfusion

procedures are described in M.ttrials •• MdItods. Each point represents the mean for

each time-point from 2 independent experiments.
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experiment in which dibutyryl-<:AMP (0.1mM) was inuoduccd at the 35 minute time­

point Dibutyryl-<:AMP increases the rate Ofl~~ production from [U.I~C) arginine.

Statistical analysis ofdata from 5 independent experiments.. using Student's paired t-test,

showed a significant difference (P<O.05) in the rate ofI~~ production from [U_I~C}­

arginine (0.2mM) within ten minltteS of the inclusion dibucyryl-<:AMP, and this

difference increased steadily during the 35 minutes of treatment After 20 minutes

treatment with dibutyryl-<:AMP, the mean % increase in the rale of I~C02 production

from [U_l~C) arginine (the 34 minute time.point versus the 54 minute time-point) was

46.6 ± 18.7l'Io, for five independent experiments (inset). This difference was significant

(P< 0.05. Student's paired t-Iest). Control perfusions were carried out in which butyrate

(O.lmM) was added. These data are shown in Plot B, F••re4.9. The results show that

the inclusion of butyrate has no effect on the catabolism ofarginine.

The Iocaliulioa or Itle site of tM:tioll ... c1...oa .rp.iH e.taboliMl

Having established that glucagon stimulalC:$ the catabolism ofarginine in the perfused

rat liver, experiments were designed to dclennine the site at which this stimulation

OCCutS. The previous chapter showed that the catabolism ofarginine couJd be carried out,

in its entirety, in the perivenous region. Glucagon may exert its effect by:

(I) stimulating some enzyme or signal in the periportal region (e.g. arginase, or a

secondary messenger), an effect which would alter the rate of I~C02 from [UYC) in the

antegrade, but not a retrograde: perfusion (see Fipre "'IO).
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Figure 4.9. The effect ofdibutyryl<AMP infusion on the catabolism ofarginine. Rats,

fed a high protein diet for 3 days, were perfused antegrade with [U_14Q-arginine

(O.2mM). Perfusion procedures are described in Materials aDd MaUds. At the cime

indicated by the arrow, dibutyryl-cAMP (0.1 mM) was introduced. A typical experiment

is shown in Plot A. The inset shows the % st:imulation in the rate of t·COl production

from [U. 14q_arginine (expressed as the mean ± standard deviations for each time point

from 5 independent experiments). Plot B represents data from control experiments in

which butyrate (O.lmMl was introduced into the perfusate (data are expressed as the

mean oflwo independent experiments).
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(2) by directly affecting the proc:ess in the perivenous region. which would result in. the

stimulation of me 14COZ production from (U_l.q arginine in the retrograde perfusion

(see Fie_roe 4.10). Fic_rt "II shows that in a typical retrograde perfusion (Plot A). an

infusion ofglucagon (IO·7M) after 30 minutes in the perfusion causes an increase in the

uC~ production from (U.J.C) arginine (O.2mM) ofaImost 2 fold (29.8 and .57.8 nmoles

COiminlg wet liver at the 29 and 49 minute time-points, respectively). The inset shows

Ihe results from 4 independent experiments, and represents the mean percentage increase

in the production Ofl~C02 from [U-'·C)41ginine from the 29 minute to the 49 minute

time-point. Thus, glucagon can exert its effect directly on the perivenous region.

Control experiments (Plot .. Fia_re ...11) demonstrated that infusion of 10mM HCI to

give a final concentration in the perfusate of 8j..lM (the vehicle for the glucagon infusion)

does not alter the rate of I~C~ production from [U-14C].arginine (O.2mM).

The effects of illMli. i.fuiN _ tIte atabolila or onidliH _lid -rai.iae atabolinl

in rats red _Ilip protei. did

Similar experiments 10 those carried out to investigate the action ofglucagon in

antegrade perfusions were carried out using insulin. Fiprt ".12 shows data for

experiments carried out with (U.l4C)-omithine ('Iot A) and [U_14q_arginine (Plot B).

The results show that an infusion of insulin (IO·1M) has no effect on the rate of I~C~

production from either (U-I·C)-arginine (O.2mM) or (U-'~C]-omithine (O.ImM).
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Figure 4•• t. The effett ofglucagon infusion on the catabolism ofarginine in the

retrograde perfusion. Rats. fed a high protein diet for 3 days., were perfused retrograde

with [U-l~C]-arginine (O.2mM). Perfusion p'ocedurcs are described in M.'erills lad

Metbod!. Glucagon (final concentration in the perfusate to-1M) was infused at the times

indicated by the arrow in Plot A. Plot A represents a typical experiment. The inset

shows the % stimulation in the rates of catabolism due to glucagon (expressed as the

mean ± standard deviation for each time-point from 4 independent experiments). Plot B

represents data from control experiments in which the vehicle for glucagon (8)lM Hel,

final concentration in the perfusate) was added (indicated by the arrow).
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Figure 4.12. The elIect of insulin infusion on the catabolism ofarginine and ornithine.

Rats, fed a high prOlein diet for 3 days, were perfused antegrade with either [U_14C]_

arginine (0.2mM) or [U_14C]~mithine (0.1 mM). Perfusion procedures are deseribed in

Materials aad Methods. At the times indicated by the arrows, insulin (10·1M) was

introduced. Ptol A shows the means for two independenl ex.periments carried out with

ru-14C]-omithine (0. ImM). Plot B shows the mean ± standard deviation for each rime­

point from three independent experiments carried out with [U_14C]-arginine (O.2mM).
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DISCUSSION

The results from the saturation cwves show that at the physiological concentrations of

these amino acids. under the chosen dietary conditions. the processes involved in the

release ofCO2 from position I ofomithine (F••re4.1. Plot A) are not saturated; the

concentration at which half·maximal velocity occurs is 3.3mM. Similarly, the processes

involved in the release afthe entire carbon backbone ofarginine (monitored using fU·

1~C).arginine) are not saturated at the rat portal vein concentrations ofarginine under

conditions of high dietary protein. The concentration at which half-maximal velocity

occurs is 3.4mM (Figure 4.1, Plot B). In rats fed a 50% casein diet ..,e,sus lhose fed a

13% casein diet. the portal vein concentration ofarginine rises from O.14mM loO.27mM

(Remesy ~ i\l, 1978). The markedly higher rale ofcatabolism ofarginine V_l

(697nmoleslminlg wet liver), when compared with omilhine (324nmoleslminlg wet

liver), is a function of the radiolabels used rather than a higher rate ofcatabolism for

arginine per se; [U.I~C).arginine monitors the release from the entire carbon backbone

while [I.HC] ornithine monitors the carbon, released as I~CO!, from the carbon at

position I of ornithine. In this respect, it has been shown (Fipre 4.6), and is discussed

laler, that there is a substantial oltidation of the carbon backbone ofornithine. Note that

these concentrations are in the region of the estimated values for the Km of the MCAT2A

transporter in liver i.e. 2·SmM (Closs~!l. 1993); it is possible that transport is the rate

limiting step for both diet groups. In rats fed as much as SI% protein in the diet for a

period of 15 days, rat liver arginine levels were undetectable (Colombo ~!l. 1992). This
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is most likely due to a combination ofpoor supply of this amino acid to the: liver and the

very high levels ofarginase in this organ. Possibly, under conditions ofbigh dietary

protein the spectrum ofMCAT transporters differs from that present in livers from rats

fed a normal protein diet As was mentioned in the ltItrod1ldioll, the expression ofthe

individual MCAT transporters is regulated independently. For example, in rat brain

astroglial cultures, only the: MeATID transportcf responds to treatment with interferon-y

and endotoxin (Stevens ~I!. 1996) while the expression of MCATI and MCATI remain

unchanged. An approach that could be used to good effect would be to establish the

kinetics of the transport ofarginine into hepatocytes under conditions of varying protein

(for instance in isolated hepetic plasma membrane vesicles). A single low affinity

transporter should be seen in rats fod the normal protein diet (MCATIA). The induction

ofother transporters (in this case of higher affinity; MCATIB and MCATI) would be

evident by Eadie·HotTstee analysis. This type ofanalysis was not pontble in the case of

the data reported he~, as the enti~ process of the catabolism ofarginine was measured

and not the individual steps. Alternatively, cDNA probes for the transporters could be

used to determine their expression under diffe~t dietary conditions.

The dependence of these catabolic procfSSCS upon OAT is demonstrated in Fipre 4.1.

As was the case in rats fed. a normal protein diet, there is a marked reduction in the rale

of I~C02 production from (1_I.q omithine (0.1 mM) and (U_I~C] arginine (O.2mM). Any

residual production of I~COtoccurs as a result of the remaining OAT activity,~
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production from ornithine decarboxylase (rate limiting enzyme in polyamine synthesis),

and, in the case ofarginine catabolism. in agmatine synlhesis. It means that in rats fed.

high protein diet, the major mule for the disposal ofuginine and ornithine occurs via the

enzyme QAT and, therefore Ihrough the palbway oUIJined in Fiprf: 1.3 (1.trvdllCtiH:).

Comparison ohhe rates ofCO: production from ornithine (Fiprf: 4.3) show a marked

increase in rats fed a high protein die.. when compared to rats fed a nonnal prOiein diet.

There is a direct proponionality between the % protein in the diet and the rates of 14C02

production from ornithine; a fourfold increase in the 0/. of dietary protein (I 5%-60%)

caused a fourfold increase in the rates of I~C~ production from ornithine. The rate of

I~CO: production from arginine is also chronically regulated by the: level ofdietary

protein. Figure 4.4 shows that the nues are increased by over threefold in the rats fed a

high protein diet Schimke showed a similar linear relationship between the level of

dietary protein and the enzymes of the lII"Ca cycle, including ugina.sc: (Schimke, 1962).

Figure 4.5 shows that the: incJUSe in dietary protein also increases urea production and

OAT activity. These reswts are in agreement with previous studies (Schimke, 1962;

Volpe~!!. 1969).

As outlined in the latroduetioll (CIIi.pter t). the catabolic processes are the ones that

have been reported to fluctuate under conditions of limiting arginine. This is the case for

both humans (Castillo g!!. 1994) and rats{Dhanakhoti ~Il. 1990). The results
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presented here show that decreasing the level ofdictary protein (and, thus, arginine)

results in a reduced capacity to catabolize this amino acid in the rat liver. Therefcn, rat

liver can contribute to maintaining arginine levels under conditions in whic:h the supply

of this amino acid is reduced.

Although these studies do show altered rates of catabolism. they do not show the site(s)

at which these changes are brought about. We may specuJate that changes may be

effected through (1) increased enzyme activity (of one of the enzymes shown in Fta.re

I.J, Introduclion) or (2) increase in the y' transporter activity. In relation to enzyme

activity. it is known that both PSC-dehydrogenase and QAT are subject to induction upon

feeding a high protein diet A previous study showed that QAT activities in rats fed a

150/. protein diet \.'t'rsUf those fed a 6()0~ casein diet were 2.08 ~Ieslminlg liver protein

and 12.17 j.UOOlesiminlg liver protein, respectively (Volpe ~!l. 1969). Our resuJts show

a similar induction of OAT. With respect to the PSC-dehydrogenase activities, feeding

rats diets containing 10% protein versus S% protein., for a period ora week.. results in a 3

fold increase PSC-dehydrogenase activity (Matzuzawa ~!!. 1994). Arginase is induced

by increasing dietal'y protein (Schimke, 1962); it is not known whether the arginase All is

subject to such stimulation.

With respect 10 transpon, feeding specialized diets enriched in arginine and glutamine,

for a period of3 days, has been shown to increase the y' transponer aeti"ity in isolated
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hepatic plasma membrane vesicles by as much as fourfold (Espat!:!!l, 1996). As

mentioned in Ch.pler I feeding a high protein diet over a period of days is known to

increase the circulating levels ofglucagon (Peret ~!L 1981) and the glucagon/insulin

ratio. The change in rate of catabolism may be brought about indirectly by the action of

glucagon. In rats, an i.p. injection ofgiucagon (2mg/lOOg body weight) increases the

activity of the y" transponef activity in primary hepatocyte cultures isolated from these

rats (Handlogten and Kilberg, 1984).

As a result of the availability of the cONAs for the MCAT transponers (MCATI, 2A

and 28), arginase AI and AIl, OAT and PSC-dehydrogenase, the effects of feeding rats

different diets on the level of transcription of these enzymes (noobern blotting) within

the liver could be established. Monitoring the expression levels of the individual proteins

(immunohistochemistry) and their activity (enzymatic analyses) would have to be carried

in conjunction with the mRNA in situ hybridization study, This type ofstudy, ifcarried

out, would show which enzymes are changing and at which step they are changing

(possibilities exist for change at a number of levels e.g. transcription, translalion or post·

translational etc.).

In Figure 4.6 we see that a substantial catabolism of the carbon backbone ofornithine

occurs. This result can be interpreted as in Chlpter 3 to mean that the enzymes

PEPCKlpyruvate kinase and/or malic enzyme occur in the same site as the catabolic
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processes ofornithine to allow removal ofcertain KR'bs cycle intermediates, and their

subsequent reintroduction as pyruvate allowing further catabolism ofthe cubon

backbone of this molecule (sec: DiIcaIiM;, Cupter J).

Pancreatic hormones, such as glucagon (prodlJCCd by the a-c:ells) and insulin

(synthesized in the !Hells), are secreted into the hepatic ponai vein bloodstream, reach

the liver and are known to affect a number of metabolic processes within this organ.

Glucagon regulales a number of metabolic pnK:esses in amino acid metabolism. For

instance. glucagon is known to stimulate acutely flux through the glycine cleavage

system in vitro in isolated rat hepatocytes (lois ~!L 1989). Other experiments in this

study involved administration ofglucagon to rats (O.lmWIOOg body weight delivered by

i.p. injection 25 minutes prior to sacrifice) and subsequent isolation of liver

mitochondria. The results showed that the glycine cleavage system was activated,

relative to saline injected control rats, in these mitochondria. No anempt was made in

these experiments to maintain the phosphorylation slate, in fact mitochondria were

washed three times. This is an inlefeSting example of. short-term regulatory process

that persists for some time in the absence ofme initial stimulus.

In many metabolic situations, glucagon's action is opposite to that of insulin. After a

typical carbohydrate-containing meal the plasma insulin concentration is high while the

plasma glucagon concenuation is low. lnsulin is responsibie for activating those
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pl'ocesscs responsible for the storage of fuels in times ofexcess. In the fasted state the

levels of insulin an: low while those of glucagon are high. Glucagon activates the

pl'ocesses concerned with the mobilization and utilization of fuel in order to maintain an

energy supply. Fi&.~ 4.7 shows that the production of 14C~ from [U_l4C)-arginine is

subject to acute regulation (within a matter of minutes) by administration ofglucagon.

Thus, the arginine catabolic rate can respond in the shan·teTn') to fluctuations in

glucagon. In vivo the level ofarginine catabolism in the rat liver may alter from minute

to minute accordingly as the levels ofglucagon change. These ex.periments were not

designed to determine the location of the site(s) at which the alteration is effected.

However, the fact that there is no such stimulation in the production of l4C01 from [U­

l~C}-omithine suggests that regulation by glucagon may occur at the level of the arginase.

This assuming that the transport ofarginine and ornithine into hepatocytes and

mitochondria occurs via common transporters. As the pathway outlined in Fip~ 1.3

((ntrod_dio.) shows, the catabolism ofargininc through OAT differs from that of

ornithine at one step i.e. the step involving arginase. As p'eviously stated in CUpter 3,

it remains to be established which arginase isozyme is involved in catabolism ofarginine

through OAT. Experiments were carried out to study the effects of glucagon and insulin

in rats which were fed a normal protein diet (t.W. casein) but persistent problems were

faced with rats on this diet (i.e. rats developed rany livers); eventually, these studies had

to be abandoned.
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(n many cases the effects ofglucagon are exerted through an increase in the second

messenger cAMP. This cAMP can in tum stimulate cAMP..<fependent protein kinases to

phosphorylate various target enzymes, which in tum can increase or decrease the activity

of these enzymes. The experiments represented in Figure 4.9 were carried out to

determine: whether increased cAMP (provided as dibutyry1-cAMP (O.ImM» could

stimulate CO! production from arginine. The increased catabolism (which is ofa

magnitude similar to that caused by glucagon) shows that glucagon may be increasing the

catabolism ofarginine by increasing inttaeellular cAMP.

The: next piece ofwork using retrograde perfusions showed that the stimulation of

arginine catabolism caused by glucagon occur.; in the perivenous cells of the liver Figu~

4.11. The results suggest the presence ofglucagon receptors in the cells of the

perivenous reglon. Further studies in this area would best be carried out with

preparations of perivenous cells. The procedures to separate the perivenous cells from

the periportal vary from selective cell damage ofcells from one region to isolation on

gradients (Jungermann and Katz, 1989); the key problem lies with the consistency of the

preparations. Another potential pfOblem is the pheoomenon of"dynamic zonation"

(discussed in the IDtrodudioa). Currently, marker enzymes are used to dete:nnine: the

enrichment of a cell preparation in either perivenous or periportal cells. These are

enzymes which are known to be preferentially, or exclusively expressed, in either the

perivenous region or the: periportal region. It must be ensured that the under the
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conditions ofa given experiment the marker enzyme itselfdoes not alter its expression

within the different regions e.g. the processes for long chain fatty acid oxidation switch

from being primarily periponalto being preferentially carried out in the perivenous

region when the rats are subjected 10 cold exposure (Guzman!:!!!, I99S).
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CHAPTERS

SUMMARY ..\ND GENERAL DISCUSSION



SUMMARY

I. In the nonrecircuJating isolated rat liver perfusion, the majority aCthe catabolism of

arginine and ornithine is carried out through the metabolic pathway involving

omithine aminotransferase (OAn. This is true for rats fed eilher the nonnal protein

diet (15% casein) or the high protein diet (60% casein).

2. The rates of catabolism are arginine are the same in rat livers whether they are

perfused in the antegrade of retrograde direction. Thus, the catabolism ofarginine

through OAT, in the nonrecirculating isolated perfused rat liver, can be camed out in

its entirety in the perivenous hepatocytes. This in tum means thai there is a

perivenous arginase.

3. There is substantial catabolism of the backbone ofornithine. This was shown to be

the case whether the rats were fed normal or hihg protein diets. Experiments indicate

complete catbolism aCthe ornithine backbone; this requires the presence ofeither

malic enzyme or a combination of phosphoenolpyruvate carboxykinase and pyruvate

kinase in the perivenous hepatocytes.

4. The rates of catabolism ofarginine and ornithine were stimulated in nonrecirculating

isolated ralliver perfusions in rats fed a high protein diet (WA, casein) when

compared with rates in animals fed a nommal protein diet (15% casein).
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S. Glucagon. but not insulin. stimulated the rate ofcatabolism ofarginine in isolated

nonrecirculating rat liver perfusions.. This stimulation (SO% increase: when compared

with controls) oa;WTed within ten minutes of the introduction of the hormone.

Glucagon did not affect the rate ofornithine catabolism. Retrograde liver pcrfusions

showed that the glucagon effect docs not require the panicipation of tile periportal

region; contact of the hormone with the perivenous cells is all that is required for

stimulation to occur. The effect ofglucagon on arginine catabolism could be

mimicked by inclusion ofdibuyryl-cAMP in the perfusion medium showing the

second messenger cAMP can elicit this effect



GENERAL DISCUSSION

The liver is important to the catabolism ofexcess (excess over that required for protein

synthesis) amino acids apart from the branched chain amino acids. The liver is the first

organ to encounter the amino acids as they entcr the circulation from the intestine and so

palys a key rote in determining amino acid levels throghout the body. With respect to

arginine and ornithine. it is the catabolic processes that regulate arginine homeostasis

(Castillo ~!l. 1994a; Castillo~!l. 1994b; Dhanakoti S1.II. 1990). Thus. a fuller

understanding of these processes will aid in the deveopment of plans for maintaining

adequate nutritional status. Achieving this understanding has been the aim oflhis thesis.

There are however a number ofquestion that remain unanswered and these are

addressed in the following discussion.

Having established whether or not a process is retrieted to a particular part afthe liver,

the question arises as to how this localization is achieved. With recent advances in

moleeulr techniques. generic sequences (including promoter regions) are known for many

enzymes and transponers. Closer inspection of the sequences indicate commom genetic

elements. both in promoter regions. within the coding sequence itself, among genes

whose protein products are localized to the same cells ofthe liver. Furthennore, the

inclusion ofcenain genetic elements into sequences can direct the expression of the gene

product (the protein) to a particular set ofcells within the liver. Sequence elements from

the glutamine synthetase gene (including promoter region) can direct expression of the
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chlocamphenicol-acetyltransfera.se gene to the same set of perivenous cells as the

glutamine synthetase (Lie-Venema. 1995). In the case ofourstudy the distribution of

P5C-dehydrogense needs to be established. [n addition, the arginase present in the

perivenous cells has to be fully characterized (with respect to the isozyme type. sequence

etc.). and its localization established. If these mzymes are sp«ifally localized then they

may share common genetic elements that can direct their expression. Also. the

distribution of the MeAT transponcrs across the liver reamins unknown; as the members

of this group differ in their affinity for arginine. a particular transporter{s) present in the

perivenous cells will affect the rate ofsupply of this amino acid, abd possibly the rate of

catabolism.

The localization ofdifferent metabolic pro«sses within the same ::ells also makes

competition for substrates and intemlediales befwcen these more likely. For inslanCC.

arginine is the sole substate for the NO synthases. IfNO bisynthesis occurs in the

perivenous cells (NO production occurs in bcpaJocytc cultw'cs which are treated with

combination of insulin and g1lK:ag01\ to produce cells with perivenous attributes (Ohno ~

!!!.. 1995» then it is possible that affecting the catabolism ofarginine through OAT may

also effect the rate of NO biosynthesis in these cells. This would be the case if they draw

from the same pool ofarginine and the K",s of the enzymes for arginine as substare were

not appreciably different. In addition, L-OH-arginine (an intcnnediate of the NO

biosynthetic pathway is the most petenl arginase inhibitor known (Boucher C!!!. 1994».
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Thus, NO biosynthesis may be able to switch offarginase in the perivenous cells, and

Inus arginine catabolism, without aff«:ting the urea cycle. NO is a potent radiacl capable

ofcausing significant cellular damage. The possibility exists that the process

characterized herein plays an important mk. in controlling the NO production in the

perivenous cells. lsolalion ofpure cell preparations ofperivenous cells would allow a

sludy that could delennine whethr the ate ofcatabolism ofarginine affect NO

biosynthesis.

The details of the mechanism(s) at play in the stimulation ofarginine and ornithine

catabolism caused by increasing dietary prolein have yet to be fully elucidated. Previous

sludies provide us with some plausible mechanisms. Schimke (1962) studied the

increases in the urea cycle enzymes with increased dietary prolein and found a direct,

proportional, and coordinated increase in the levels oflne urea cycle enzymes with

dietary protein. Several hepatic amino acid catabolizing enzymes increase in

concentration in animals fed chronically with high protein diets (Krebs, 1972). To

increase Ihe rate ofcalabolism it is n«:essaJ)' to stimulate an enzyme or transporter which

is rate-limiting for the process. Increasing lhe activity ofth~ enzymes whose forward

and abckward reaction rates are kepi far from equilibrium (the irreversible enzymes) is

the most effeclive way of regulating a metabolic process. The first reaction catalyzed by

an irreversible enzyme which is involved in both arginine and ornithine catabolism (see

Figure t.J) is the conversion ofpyrroline-S-carboxylate to glutamate catalyzed by PSC.
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dehydrogenase. It is known that P5C«hydrogenase is elevated in livers nom rats

chronically fed a high protein diet (Matsuzawa~~ 1994); this is a a1ikely target site for

regulation. Transport may also be rate.limiting for this process. As mentioned earlier.

the specific transpoters fro arginine in the perivenous cells have yet to be determined.

Once this is known it would be possible to carry out northern blotting experiments to

determine the rates of transcription of the relevant transporter genes in livers from rats

fed differing amounts ofdietary protein. These studies would need to be complemented

by a determination of the level of the protein product (the transporter protein itself). It

should be mentioned that feeding high protein diets increases the activity of me rat liver

branched chain oxo-acid dehydrogense without increasing the level oflhis enzyme

(Miller ~ M. 1998). This is a type ofcovalent modification. a reversible

phosphorylation-dephosphorylation mechanism. Thus. increased enzyme amount is not

the only way of regulating enzymes ofamino acid metabolism.

With respect to the effects of glucagon on the catabolim ofarginine the mechanism of

signal transduction remains unknown. We have shown that the glucagon effect can be

mimicked by cAMP but this does not preclude the possibility that another classical

'secondary messenger' is involved. For example. it is known that both glucagon and

cAMP can increase cytoplasmic calcium levels (Charest ~~ 1983). so it could be that

these effects are caused. by calcium. Cahnges in cell volume caused by glucagon may

also be responsible for regulating metabolism (Hilussinger~~ 1997). Routine isolation
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or pure preparations or perivenous cells would be of benefit to future studies which

investigate lhis glucagon effect.
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APPENDIXA.

THE OXIDATION OF PROLINE IN ISOLATED RAT LIVER MITOCHONDRIA



INTRODUCfION

In addition to the studies concerning the catabolism ofarginine and ornithine, a smaller

project was undertaken to determine whether proline oxidation was affected by various

dietary and hormonal stimuli. It has been shown, in isolated liver mitochondria. that the

oll:idation ofglycine, via the glycine cleavage system, is stimulated by intraperitoneal

administration of glucagon to rats (lois S!~ 1992). 1be glucagon-mediated activation

of the glycine cleavage system is long.lived in that the activation persists in

mitochondria isolated 25 minutes subsequent to the glucagon administration. Also,

glutaminase activity is stimulated in isolated rat liver mitochondria by feeding rats a

single meal which is high in PJotein (60'/0 casein) after a 3-4 day period of feeding a 1S%

casein diet (Ewart and Brosnan. 1993). Circulating levels of glucagon increase in rat

plasma after a high protein meal (Robinson S!!!. 1981) and this is thougtlt to be a key

stimulus. In vitro, incubatton of mitochondria in a hypotonic medium (hormones may

elicit responses through increases in the mitochondrial matrix volume (see Halcstr.lp.

1989; Haussinger~!!.. 1997» increases me nux through the glycine cleavage system

(lois!ll!!... 1992). Proline oxidation. like glutaminase and the glycine cleavage system.

oc:c:urs within mitochondria (the steps involved in its oxidation are outlined in Fic;are

AI). Feeding rats a high protein diet over a period of days also results in the stimulation

of hepatic processes such as the ureac:yc:le (Schimke, 1962). Whether or not proline

oxidation in isolated rat liver mitochondria is subject to similar dietary and hormonal

regulation is not known. To detennine proline oxidation Tales, we measured the
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PROLINE OXIDAnON IN RAT LIVER MITOCHONDRIA
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figure AI. The metabolic pathway for the oxidation ofproline.
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oxygen consumption (in a Clark oxygen electrode) in isolated rat liver mitodlondria,

under state 3 conditions. with proline serving as the oxidizable substrate.

OBJECTIVES

(I) To detennine whether the oxidation of proline. in liver mitochondria isolated from

rats which were administered an i.p. injection ofglucagon. is regulated by this hormone.

(2) To detennine the effects offceding rats a single high protein meal on the oltidation of

proline in isolated rat liver mitochondria.

(3) To detennine whether feeding rats a high protein diet over a period ofa w«k affects

proline oltidation in isolated nlllliver mitochondria.

(4) To determine the effect on proline Olttdation of incubating isolated rat liver

mitochondria in a hypotonic medium.

MATERIALS AND METHODS

These are as described in full in CUpIer 2 of this thesis.

RESULTS

Figure A2 shows the effect on proline oxidation of administering an i.p. injection of

glucagon to rats (Imglkg) 25 minutes prior to begiMing the isolation of liver

mitochondria. Only at the highest concentration of proline (IOmM) is there a statistically

significant effect ofglucagon on the olt)'gen consumption due to the addition

1S8



Figure A2. The effect of intraperitoneal glucagon injection on proline oxidation.

Glucagon was administered as described in Mater.." aad Metllods. Rats were fcd a

normal protein diet (15% casein) for 1 days. Each point in tht upper plot represents the

means ± the standard deviation for 4 independent experiments using glucagon treated

rats (.) and saline treated controls (e). Control experiments in which flux through

glycine cleavage system was assayed an: shown below tht plot (see Materials and

Methods for details). The data represent the mean ± standard deviation from four

independent experiments. • denotes a statistically significant difference (P< 0.05) from

the control group, determined by Student's unpaired I-test.
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of proline (59.4 ± t 1.4 and 83.1 ±8.8 ngatoms O/minlmg protein for controls and

glucagon treated rats, respectively). The effects shown on the glycine cleavage system

are shown in the table in Fipn A1; glucagon administration results in an almost

threefold increase in the activity at physiological concentrations of this amino acid (in

agreement with previous studies earned out in this laboratory). Thus, glucagon has only

a minor effect on the oxidation of proline in isolated rat liver mitochondria.

Feeding rats a high protein diet (60% casein) results in approximately a 2 fold increase

in proline oxidation at all proline concentrations tested (Ficure Al). This effect could

occur through increased concentration ofone oftbe enzymes involved. It is known that

proline oxidase is increased in livers from rats fed a high protein diet (Kawabala!:.t!L

1980). Increased P5C-dehydrogenase could be responsible as this activity increases in

livers from rats fed high protein diets versus low protein diets (Matsuzawa!:.t!L 1994).

Both of these enzymes catalyze irreversible reactions and so could be rate limiting steps

for this process. However, in isolated rat liver cells the oxidation through glutamate has

been shown to be limiting for the oxidation of proline (Hensgens ~ ill. 1978). In this

respect regulation ofa:ketl;glutarate dehydrogenase (EC 1.2.4.2) by raised circulating

levels of glucagon could be responsible for the stimulation.

Figure A4 demonstrates that feeding rats a high protein meal (60010 casein), versus a

nonnal protein meal (15% casein), does not alter the rate of proline oxidation in isolated

16\



Figure AJ. The effects ofdietary protein on proline oxidation. Rats were fed either a

high protein diet (.) (60o/oeasein) or a nomal protein diet (e) (1.5% casein) for a period

of a week. Data represent the mean ± standard deviation from 4 independent

experiments.• denotes a statistiglly significant differem:e (P<O.OS) from the nonnal

protein group.
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figure A4. The effects ofa single high protein mea! on the oxidation of proline.

Experimental details are provided in M.terilll ••d Mct.odI. Rats were fed either a

single high protein meal (.) or a single normal protein meal (e). Each point on the plot

represents the mean ± standard deviation from 4 independent experiments. The

corresponding data for nux through the glycine cleavage system are shown in the lower

section of the diagram.• denotes a statistically significant difference (P<O.OS) from the

nonnal protein group. determined by Student's unpaired t-test.
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This conttasts with glycine oxidation; flux Ihrough the g1yt,ine cleavage enzyme is

increased by 3 fold in these experimenLS (in agreement with previous n:suIts from this

laboratory(Jois~!!.1992».

Finally, Fipre AS demonstrates that there is no effect ;n 'I';ITO ofincubaring rat liver

mitochondria in a hypotonic medium. whereas glycine oxidation is stimuJated in a

hypotonic medium almost 9 fold (0.19 ± 0.04 and 1.62 ± 0.30 nmoleslminlmg prolein for

the 310 mOsmol and 10000smoi media, respectively).

CONCLUSION

We conclude lhat proline oxidation (as measured by oxygen consumption under stale 3

conditions) is affected in a minoc' way by glucagon treatment of the animals. Incubating

milochondria in hypotonic media or feeding a sing! high procci meal has no cffect on

proline oxidation. This is in marked contrast 10 the mitochondrial oxidatton ofglutamine

and glycine (Ewart and Brosnan, 1993; Jois ~!!. 1992) Chronic feeding ofrats with a

high protein diel docs increase the oxidation of proline in isolated ralliver mitochondria.

Our studies show that there is a slow adaptation (presumably by enzyme induction) of

proline oxidation on feeding a high protein diet. but provides little support for the acute

regulation that is cvident in the catabolism of glutamine and glycine.
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Figure AS. The effect ofhypolonicity on the oxidation of proline. Isolated rat liver

mitochondria were incubated in media ofvarying osmolarity (see M.lerials .ad

Methods). (e) proline oxidation experiments, (0) corresponding flux through glycine

cleavage system experiments. Each point represents the mean ± standard deviation from

4 independent experiments.



80 -

1r-------__J_T
I 1

- 3

- 0

o----~-~--~-~--'

50 100 150 200 250 300 350
.000000rity

1611










	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Information To Users
	0006_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Acknowledgements
	0010_Table of Contents
	0011_Table of Contents v
	0012_Table of Contents vi
	0013_Chapter 1 - Page 1
	0014_Page 2
	0015_Page 3
	0016_Page 4
	0017_Page 5
	0018_Page 6
	0019_Page 7
	0020_Page 8
	0021_Page 9
	0022_Page 10
	0023_Page 11
	0024_Page 12
	0025_Page 13
	0026_Page 14
	0027_Page 15
	0028_Page 16
	0029_Page 17
	0030_Page 18
	0031_Page 19
	0032_Page 20
	0033_Page 21
	0034_Page 22
	0035_Page 23
	0036_Page 24
	0037_Page 25
	0038_Page 26
	0039_Page 27
	0040_Page 28
	0041_Page 29
	0042_Page 30
	0043_Page 31
	0044_Page 32
	0045_Page 33
	0046_Chapter 2 - Page 34
	0047_Page 35
	0048_Page 36
	0049_Page 37
	0050_Page 38
	0051_Page 39
	0052_Page 40
	0053_Page 41
	0054_Page 42
	0055_Page 43
	0056_Page 44
	0057_Page 45
	0058_Page 46
	0059_Page 47
	0060_Page 48
	0061_Page 49
	0062_Page 50
	0063_Page 51
	0064_Page 52
	0065_Page 53
	0066_Page 54
	0067_Page 55
	0068_Page 56
	0069_Page 57
	0070_Page 58
	0071_Chapter 3 - Page 59
	0072_Page 60
	0073_Page 61
	0074_Page 62
	0075_Page 63
	0076_Page 64
	0077_Page 65
	0078_Page 66
	0079_Page 67
	0080_Page 68
	0081_Page 69
	0082_Page 70
	0083_Page 71
	0084_Page 72
	0085_Page 73
	0086_Page 74
	0087_Page 75
	0088_Page 76
	0089_Page 77
	0090_Page 78
	0091_Page 79
	0092_Page 80
	0093_Page 81
	0094_Page 82
	0095_Page 83
	0096_Page 84
	0097_Page 85
	0098_Page 86
	0099_Page 87
	0100_Page 88
	0101_Page 89
	0102_Chapter 4 - Page 90
	0103_Page 91
	0104_Page 92
	0105_Page 93
	0106_Page 94
	0107_Page 95
	0108_Page 96
	0109_Page 97
	0110_Page 98
	0111_Page 99
	0112_Page 100
	0113_Page 101
	0114_Page 102
	0115_Page 103
	0116_Page 104
	0117_Page 105
	0118_Page 106
	0119_Page 107
	0120_Page 108
	0121_Page 109
	0122_Page 110
	0123_Page 111
	0124_Page 112
	0125_Page 113
	0126_Page 114
	0127_Page 115
	0128_Page 116
	0129_Page 117
	0130_Page 118
	0131_Page 119
	0132_Page 120
	0133_Page 121
	0134_Page 122
	0135_Page 123
	0136_Page 124
	0137_Page 125
	0138_Page 126
	0139_Page 127
	0140_Page 128
	0141_Page 129
	0142_Page 130
	0143_Page 131
	0144_Chapter 5 - Page 132
	0145_Page 133
	0146_Page 134
	0147_Page 135
	0148_Page 136
	0149_Page 137
	0150_Page 138
	0151_Page 139
	0152_References
	0153_Page 141
	0154_Page 142
	0155_Page 143
	0156_Page 144
	0157_Page 145
	0158_Page 146
	0159_Page 147
	0160_Page 148
	0161_Page 149
	0162_Page 150
	0163_Page 151
	0164_Page 152
	0165_Page 153
	0166_Page 154
	0167_Appendix
	0168_Page 156
	0169_Page 157
	0170_Page 158
	0171_Page 159
	0172_Page 160
	0173_Page 161
	0174_Page 162
	0175_Page 163
	0176_Page 164
	0177_Page 165
	0178_Page 166
	0179_Page 167
	0180_Page 168
	0181_Blank Page
	0182_Blank Page
	0183_Inside Back Cover
	0184_Back Cover

