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Abstract 

A petroleum hydrocarbon contaminated site was evaluated using computer software (SEVIEW) 

in this study. Using a design of experiment approach, the model was calibrated and verified and 

a sensitivity analysis was completed. Based on the results of the experimental analysis it was 

found that the computer model adequately estimated the fate and transport of contaminants under 

conditions of natural attenuation. The estimated results were in reasonable agreement with the 

actual field measurements. The sensitivity analysis concluded the model was sensitive to 

chemical properties (Koc), soil properties (soil pore disconnectedness index, intrinsic 

permeability, effective porosity, foe and the Freundlich Exponent) and aquifer properties 

(hydraulic conductivity, longitudinal dispersitivity and transverse dispersivity). The calibrated 

model was then used to predict the time required for natural attenuation to remediate the site 

within acceptable risk values. The model was also used to predict the fate and transport of 

petroleum hydrocarbons in the groundwater. The model predicted that the concentration of 

petroleum hydrocarbons in the soil would be within regulatory guidelines in 16 to 17 years under 

natural attenuation. Additional remediation would be required for groundwater as the 

concentrations of petroleum hydrocarbons posed a risk to a down stream receptor (a small stream 

that was a tributary for a pond) in the future. The model predicted that the plume would reach a 

tributary, located downstream, in four years. The concentration would reach a maximum value 

at fifteen years and the stream would be considered impacted from year 10 onwards. 



Acknowledgments 

I wish to thank my supervisors, Dr. Tahir Husain and Dr. Cynthia Coles for their guidance 

throughout the completion of this thesis, as well as for their previous instruction. I would also 

like to thank Dr. Leonard Lye for his assistance with sensitivity analysis, calibration and 

verification using the Stat Ease Software and his instruction and direction during the completion 

of my Masters program. I wish to thank my family for their love and encouragement throughout 

my studies: my husband, Stephen for his unending support and my parents Joseph and Maureen 

who have always been there through the duration of my efforts. 



Table of Contents 

Abstract ........................................................................................................................................................................ 1 
Acknowledgments ........................................................................................................................................................ 2 
Table of Contents ......................................................................................................................................................... 3 
List of Tables ................................................................................................................................................................ s 
List of Figures .............................................................................................................................................................. 6 
List of Abbreviations and Symbols ............................................................................................................................ 7 
List of Appendices ....................................................................................................................................................... 9 
Chapter 1: Introduction .............................................................................................................................................. l 

1.1 
1.2 
1.3 

Background .................................................................................................................................................. 1 
Significance of Study ................................................................................................................................... 4 
Approach ...................................................................................................................................................... 6 

Chapter 2: Review of Literature .............................................................................................................................. 10 
2.1 Risk-Based Corrective Action and Monitored Natural Attenuation .................................................... 10 
2.2 
2.3 

Modeling Natural Attenuation at Contaminated Sites ........................................................................... 13 
Types of Models ......................................................................................................................................... 14 

2.4 

2.5 

Dimensional Classification of Models .......................................................................................................... 14 
2.4.1 
2.4.2 

One Dimensional Models .................................................................................................................. 14 
Multidimensional Models .................................................................................................................. 15 

Mathematical Classification of Models ........................................................................................................ 18 
2.5.1 Analytical Techniques ....................................................................................................................... 18 
2.5.2 Numerical Techniques ....................................................................................................................... 19 

2.6 Computer Models ...................................................................................................................................... 19 
2.6.1 Selection of Governing Equation and Computer Code .................................................................. 20 

2.6.2 SESOIL .................................................................................................................................................. 27 
2.6.3 AT123D .................................................................................................................................................. 30 

2.6.4 
2.6.5 
2.6.6 
2.6.7 
2.6.8 
2.6.9 

Application ......................................................................................................................................... 31 
Design of Model ................................................................................................................................. 32 
Calibration ......................................................................................................................................... 32 
Sensitivity Analysis ............................................................................................................................ 34 
Verification ......................................................................................................................................... 35 
Prediction ........................................................................................................................................... 35 

Chapter 3: Site Selection ........................................................................................................................................... 38 
3.1 Site 1: Petroleum Retail outlet .................................................................................................................. 38 
3.2 Site 2: Petroleum Retail Outlet ................................................................................................................. 39 
3.3 
3.4 
3.5 

Site 3: Petroleum Retail Outlet ................................................................................................................. 40 
Site 4: Industrial Fire Training Area ....................................................................................................... 42 
Site Selection .............................................................................................................................................. 43 

Chapter 4: Site Characteristics ................................................................................................................................ 45 
4.1 Site Characterization ................................................................................................................................. 45 
4.2 
4.3 
4.4 
4.5 

Soil Properties ............................................................................................................................................ 46 
Hydrogeology ............................................................................................................................................. 48 
Chemicals of Concern ................................................................................................................... , ........... 50 
Chemical Concentrations and Distribution ............................................................................................. 50 

4.6 Toxicity .................................................. , .................................................................................................... 56 
4.6.1 
4.6.2 

4.7 

Human Health .................................................................................................................................... 56 
Impacts on Plants and Microorganisms ....... , .................................................................................. 58 

Applicable Guidelines ............................................................................................................................... 59 
Chapter 5: Model Input File ..................................................................................................................................... 61 

5.1 Climate File Input parameters ................................................................................................................... 61 
5.2 Chemical File Input Parameters .......................................................................................................... 64 
5.3 Soil File Input Parameters .................................................................................................................... 67 
5.4 Washload Input File .............................................................................................................................. 70 
5.5 Execution Input File .............................................................................................................................. 72 
5.6 Application Input File ........................................................................................................................... 72 
5.7 Ratio parameters ................................................................................................................................... 73 



5.8 Soil Layer Input File ............................................................................................................................. 74 
5.9 AT123 Aquifer Input File ......................................................................................................................... 75 

5.9.1 AT123D Input File Parameters ........................................................................................................ 78 
5.9.2 AT123D Output Parameters ............................................................................................................. 79 

Chapter 6: Simulation Runs ..................................................................................................................................... 80 
6.1 Methodology ............................................................................................................................................... 80 

6.1.1 Two Factorial Approach ................................................................................................................... 82 
6.1.2 Sensitivity Analysis and Statistical Analysis ................................................................................... 83 

6.2 Experimental Design ................................................................................................................................. 86 
Chapter 7: Results ..................................................................................................................................................... 89 

7.1 
7.2 
7.3 
7.3.1 
7.3.2 

Calibration Results ................................................................................................................................ 89 
Verification Results ............................................................................................................................. 1 05 
Prediction Results ................................................................................................................................ 1 06 

Soil ..................................................................................................................................................... 106 
Groundwater .................................................................................................................................... 108 

Chapter 8: Conclusions ........................................................................................................................................... 109 
References ................................................................................................................................................................ 114 



List of Tables 

Table 2.1: Comparison of Vadose Zone Models ................................................................................. 21 
Table 2.2: Comparison of Groundwater Transport Models .............................................................. 23 
Table 3.1: Summary of Potential Sites ................................................................................................. 38 
Table 4.1: Summary of Soil Analytical Results- Total Petroleum Hydrocarbons (mg/kg) ........... 51 
Table 4.2: Summary of Groundwater Analytical Results- Total Petroleum Hydrocarbons (mg!L) 
••••••••••••••••• , •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••• 52 
Table 4.3: Summary of Human Toxicity for Fuel Oil ........................................................................ 57 
Table 4.4: Selected Range of Effect Concentration of TPH (Langley et al., 2003) .......................... 59 
Table 4.5: Summary of Applicable Guidelines ................................................................................... 60 
Table 5.1: Summary of Climate Input Parameters ............................................................................ 61 
Table 5.2: Typical Short Wave Albedo Values (Scheiker, 2000) ....................................................... 63 
Table 5.3: Typical Soil Bulk Density Values (Scheiker, 2000) ........................................................... 67 
Table 5.4: Default values for Soil Pore Disconnectedness Index (Bonazoutas and Wagner, 1984) 
......................•..•••..............................•..........................•.••....•......................••........................•..••••............ 68 
Table 5.5: Default Values for Effective Porosity (Bonazoutas and Wagner, 1984) .......................... 69 
Table 5.6: Typical values for Effective Porosity (Domenico et al, 1990) ........................................... 69 
Table 5.7: Typical Values of Soil Bulk Density (Scheiker, 2000) ....................................................... 77 
Table 7.1: Input Parameter Ranges: Initial Soil Concentration ....................................................... 89 
Table 7.2: 2-Factorial Design- Initial Soil Concentration ................................................................. 89 
Table 7.3: Percent Contribution of Factors to Initial Soil Concentration ........................................ 90 
Table 7.4: ANOVA- Initial Soil Concentration .................................................................................. 91 
Table 7.5: Refined ANOVA- Initial Soil Concentration .................................................................... 91 
Table 7.6: Input Parameter Ranges: Final Soil Concentration ......................................................... 94 
Table 7.7: 2-Factorial Design- Final Soil Concentration .................................................................. 94 
Table 7.8: Percent Contribution of Factors to Final Soil Concentration .......................................... 95 
Table 7.9: ANOV A- Final Soil Concentration ................................................................................... 96 
Table 7.10: Refined ANOVA- Final Soil Concentration ................................................................... 97 
Table 7.11: Input Parameter Ranges: Groundwater Concentration ................................................ 99 
Table 7.12: 2-Factorial Design- Groundwater Concentration ......................................................... 99 
Table 7.13: Percent Contribution of Factors to Groundwater Concentration ............................... tOO 
Table 7.14: ANOV A- Groundwater Concentration ........................................................................ 102 
Table 7.15: Refined ANOV A- Final Soil Concentration ................................................................. 102 



List of Figures 

Figure 1.1: Experimental Methodology ..................................................................................................... 7 
Figure 2.1: Summary of SEVIEW Model Interface ............................................................................... 26 
Figure 2.2: Schematic of SESOIL (adapted from Scheiker, 2000) ....................................................... 28 
Figure 4.1: Site Plan .................................................................................................................................. 47 
Figure 4.2: Groundwater Contour Lines ................................................................................................. 49 
Figure 4.3: Extent of Soil Contamination ................................................................................................ 53 
Figure 4.4: Extent of Groundwater Contamination (1997) .................................................................... 54 
Figure 4.5: Extent of Groundwater Contamination (2002) .................................................................... 55 
Figure 7.1: Normal Probability Plot oflnitial Soil Concentration Effects ........................................... 90 
Figure 7.2: Initial Soil Concentration Residual Normal Probability Plot ............................................ 92 
Figure 7.3: Initial Soil Concentration: Predicted vs Residuals .............................................................. 92 
Figure 7.4: Normal Probability Plot of Final Soil Concentration Effects ............................................. 96 
Figure 7.5: Final Soil Concentration Residual Normal Probability Plot .............................................. 97 
Figure 7.6: Final Soil Concentration: Predicted vs Residuals ............................................................... 98 
Figure 7.7: Normal Probability Plot of Groundwater Concentration Effects .................................... 101 
Figure 7.8: Groundwater Concentration Residual Normal Probability Plot ..................................... 103 
Figure 7.9: Groundwater Concentration: Predicted vs Residuals ...................................................... 104 
Figure 7.10: Concentration in Soil vs Time ........................................................................................... 107 
Figure 7.11: Groundwater Concentration Near Downstream Receptor ............................................ 108 



List of Abbreviations and Symbols 

K = Retarded dispersion tensor 

M = Contaminant source release rate 

n = Unit vector normal to S2 
"A = Radioactive decay constant 
V' =Gradient (Del operator with respect to x, y, and z) 
t = Duration of the contaminant release 
e =soil water content (ml/rnl) 
<I> =Hydraulic head 
\jf = Stream function 
aL = Longitudinal Dispersivity 
ar = Transverse Dispersivity 
av = Vertical Dispersivity 
Pb =Bulk density of the soil 
ANOVA =Analysis of Variance 
B =Width of the aquifer 
BTEX =Benzene, Toluene, Ethyl Benzene, Xylene 
B 1 = Starting coordinate of the source in the y-direction 
B2 = Ending coordinate of the source in the y-direction 
C = Dissolved contaminant concentration 
C 1 = Concentration on the boundary S 1 
CEC = cation exchange capacity of the soil (meg/1 00 g of dry weight soil) 
Ci = Initial contaminant concentration 
CoC = Chemical of Concern 
CONC =The concentration sorbed to the soil in !J.g /g 
Cs = Adsorbed contaminant concentration 
D = Contaminant depth 

D 
d. f. 
EBS 
EPA 
ESA 
ESRI 
fa 
foe 
G 
H 
H 
HHRA 
H1 
H2 
Jw 
Jw,z 
k 
K 
Kct 
Koc 
Kct 
L1 
L2 
Lp 

=Hydraulic Dispersion Coefficient Tensor 
= degrees of freedom 
= Environmental Baseline Study 
= Environmental Protection Agency3 
= Environmental Site Assessment 
= Environmental Systems Research Institute 
= f- e =air-filled porosity (ml/rnl) 
= Fraction of organic carbon 
=Green's function 
= Depth of the aquifer 
=Henry's Law Constant (rn3 atrn/mol) 
= Human health and risk assessment 
= Starting coordinate of the source in the z-direction 
= Ending coordinate of the source in the z-direction 
=water velocity (cm/s) 
=infiltration rate at depth z, which will be the boundary between two major layers ( cm/s) 
= number of factors 
= Chemical degradation rate 
=Chemical distribution coefficient (!lg/g)/( !J.g/rnl) 
= Organic carbon adsorption coefficient 
= Distribution coefficient 
=Starting coordinate of the source in the x-direction 
=Ending coordinate of the source in the x-direction 
= Plume length 



MNA =Monitored Natural Attenuation 
MS = Mean Square 
MSDS = Material Safety Data Sheet 
NAPLs =Non Aqueous Phase Liquids 
n = number of replications 
11e = effective porosity 
Oral Rat, LD50= Lethal Oral Dose for Rats 
P AH = Polycyclic aromatic hydrocarbons 
PCB = Polychlorinated Biphenyl 
PIRl = Partnership in RBCA Implementation 
POLIN =the contaminant load to apply in ~g /cm2/month 
q2 = The contaminant flux across the boundary at a given function of time and location on S2 
q3 =Contaminant flux across the boundary at a given function of time and location on S3 
R = A region with respect to x, y, and z (region modeled) 
R =Gas Constant (8.2 E 10-5 m3 atrn/(mol °K) 
RBCA = Risk Based Corrective Action 
Rl = Retardation factor 
Ro = A region with respect to 1:, 11 and c; 
RS =The soil bulk density of the soil in g/cm3 

S = The boundary of the region modeled R 
S 1 =A portion of S 
S2 = A portion of S 
S3 = A portion of S 
S0 = The boundary of the region modeled R 
SS = Sum of Squares 
t =Time 
T = Soil temperature eq 
TPH = Total Petroleum Hydrocarbons 
tc =Advection time (s) 
UST = Underground Storage Tank 
USGS =United States Geological Survey 

v 

X 

y 
y 

Yii 
z 

= Retarded Seepage velocity vector 
= Longitudinal coordinate 
= Transverse coordinate 
= Overall Total 
= Each value of treatment 
= Vertical coordinate 



Appendix A 
Appendix B 
Appendix C 
Appendix D 
Appendix E 
Appendix F 
Appendix G 
Appendix H 
Appendix I 
Appendix J 

List of Appendices 

F Table 
Calibration Runs for Initial Soil Concentration 
Sensitivity Analysis for Initial Soil Concentration 
Calibration Runs for Final Soil Concentration 
Sensitivity Analysis for Final Soil Concentration 
Calibration Runs for Groundwater Concentration 
Sensitivity Analysis for Groundwater Concentration 
Model Verification Run 
Model Prediction Run - Soil 
Model Prediction Run - Groundwater 



1 
Chapter 1: Introduction 

1.1 Background 

The field of environmental evaluation and clean up is a rapidly evolving field that has faced 

many challenges throughout its short history. 

The first awareness of environmental contamination and the magnitude of this issue began in the 

1970s, with hazardous waste sites such as Love Canal. As time progressed, environmental 

engineering grew to encompass a large number of major military and industrial waste disposal 

sites, leaking underground fuel tanks and the unique challenge of non-aqueous phase liquids 

(NAPLs) (Bedient et al., 1999). Presently, there are thousands of contaminated sites identified 

throughout North America alone. 

As more contaminated sites were uncovered and remediation systems installed, environmental 

professionals became aware of inefficiencies in the approach for the clean-up and remediation of 

many sites. The sites and contaminants involved became increasingly complex and the 

remediation measures in place often failed to meet clean-up goals (Bedient et al., 1999). In a 

1994 review, one study concluded that traditional clean up treatment systems had only reached 

clean-up standards in 8 of 77 sites (MacDonald, 2000). In addition, increased public awareness 

and stringent legislation had artificially inflated these, already unattainable, clean-up goals (Khan 

and Husain, 2003). 

However, environmental professionals have endeavored to overcome these roadblocks. Within 

the past decade the study of fate and transport of contaminants in the soil and groundwater has 

been undertaken. The improved understanding of fate and transport processes has been applied 
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by environmental professionals to more complex problems and a better understanding of the 

processes occurring within contaminated sites has been gained. Improved remediation 

technologies have been developed and accepted remediation approaches now encompasses a 

number of options, including monitored natural attenuation (MNA) (Atlantic PIRI, 2003). In 

conjunction with the use of natural attenuation a new remediation strategy has evolved in the 

form of risk-based corrective action (RBCA). Risk assessment is the determination of total risk 

to humans and the environment based on toxicity of the chemical, the receptor, and the exposure 

to the chemical. RBCA has now become a standard approach to risk assessment (Khan and 

Husain, 2002). 

Environmental professionals agree that the risks associated with soil and groundwater 

contamination are significant (Khan and Husain, 2002). However, this risk has been exaggerated 

in recent years and in tum the cost and effort required for clean-up have been exaggerated (Khan 

and Husain, 2002). Sites have even been left undeveloped because the cost for clean-up exceeds 

the value of the land (MacDonald, 2000). By using a risk assessment approach sites that present 

an actual risk to humans and ecological receptors can be identified and treatment systems 

implemented. However, some contaminated sites, based on a careful risk assessment process, 

are candidates for MNA. 

Natural attenuation is a term used for the naturally occurring processes in soil and groundwater 

that act without human intervention to reduce the mass, volume, concentration or toxicity of 

contaminants (Odencrantz et al., 2003). In MNA these processes are used in place of traditional 

remediation technologies, however the site is carefully monitored to ensure no risk is posed to 

humans and the environment. This allows much needed funds and resources to be used on the 

sites that pose an actual risk. 
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However, this leads to another challenge for environmental professionals. In order to apply a 

MNA approach the site-specific processes and fate and transport mechanisms must be well 

understood and documented. Long-term modeling is an integral part of the natural attenuation 

remediation process (Surampalli et al, 2002). In order to facilitate environmental modeling 

several computer models have been developed as tools for professionals involved in remediation 

projects. Increasingly, computer aided modeling has become an invaluable tool for studying 

contaminated sites. 

As with much of the technology developed in the environmental field, computer modeling has 

created additional challenges. As with any evolving field, much discussion has been presented 

regarding the advantages and disadvantages of modeling. Opponents argue that computer 

modeling requires too much data. As well, they argue that there is always uncertainty in the data 

that is available, since given the variable nature of soils and subsurface conditions many values 

are difficult to determine. Both of these factors may lead to a time-consuming and costly 

analysis. As well, some argue that the model can never be proven to be correct, resulting in a 

lack of confidence in the model output. 

Several studies have been presented in recent years that address these concerns. In a study by 

Chen et al. (2001) an integrated approach for environmental risk assessment of subsurface 

contamination was proposed. The fate and transport of pollutants in heterogeneous, porous 

media was studied and the distribution of pollutants under natural attenuation was determined. 

The study concluded that reasonable outputs were generated in the computer model. In another 

actual field investigation a site with a limited number of available monitor wells was studied to 

determine if natural attenuation was occurring. Only 12 monitor wells were available and based 
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on these monitor wells, field scale mass fluxes and first-order natural attenuation rate constants 

of benzene, toluene, ethyl benzene and xylenes (BTEX) and polycyclic aromatic hydrocarbons 

(P AHs) were estimated. The results indicated that, even at a heterogeneous site with a sparse 

monitoring network, reliable information could be obtained on field scale natural attenuation 

rates if a dependable flow model was available (Bockelmann, et al., 2003). 

The objective of this study was to utilize computer-aided modeling to determine whether MNA 

was a viable remediation alternative for a petroleum hydrocarbon contaminated site and to 

further address the issues related to the use of computer modeling in environmental fate and 

transport. Firstly, by using a design of experiment approach the issue of data requirements was 

addressed as well as concerns related to uncertainty in the data. This approach resulted in time 

and cost efficient modeling practices. In addition, the model was calibrated and verified, 

resulting in an improved confidence in the model and the model output. The significance and 

approach of this study are outlined in detail in the following sections. 

1.2 Significance of Study 

There were several objectives for this study. Specifically for the site studied, the first objective 

was to apply the use of computer aided modeling to model natural attenuation at a petroleum 

hydrocarbon contaminated site. Based on the modeling process it was determined whether or not 

MNA was a viable remediation option for the soil and groundwater on the site and whether 

additional remediation strategies were required for the site selected. By using SEVIEW to model 

the site contaminated with petroleum hydrocarbons, the modeling process was able to prioritize 

the site in terms of the risk presented to humans and the environment. As well, once the model 

had determined that additional remediation measures were required, a timeline to implement the 

remediation could be established. The model was also able to quantify the risk to humans and 
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the environment and this allowed the principals involved to use resources and funds effectively 

in the future. 

Secondly, the study was significant in that a computer model was applied to an actual site with 

sufficient data for verification. Often on actual sites additional data is not available for 

verification since funding is usually not available for additional investigation. Often times the 

site can only be modeled and calibrated. This is one of the issues previously discussed that some 

claim is a drawback of computer modeling. The model was verified for the site studied, as an 

additional data set was available. Often time models cannot be verified since a third data set is 

not available. Through verification the study has increased confidence in the model output. In 

the future, when similar sites are modeled, without data for verification, there will be an 

increased confidence in the model output. 

Thirdly, this study was also significant in that it addressed several other issues related to 

implementing computer models. As previously discussed problems related to implementing 

computer models included the amount of data and time required and the cost involved. As well 

there is considerable uncertainty in the data input and therefore the output is uncertain. These 

issues were addressed throughout the course of implementing the model. The use of a design of 

experiments approach is unique in studies of this type and its use demonstrates an effective 

modeling practice that will lead to a reduction of time and effort to implement modeling for other 

sites in the future when the same models are used. A sensitivity analysis was preformed as part 

of the design of experiment approach, which quantified the uncertainty in the model output and 

identified which factors influence the model output. 
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Finally, although there are thousands of contaminated sites in Newfoundland, there have been no 

previous studies of the application of computer aided modeling in a unique Newfoundland 

setting. Although environmental professionals have used computer modeling its accuracy has 

not been formally studied. Modeling studies have been completed in other areas, however 

Newfoundland sites are unique in many aspects, such high groundwater tables and dense soil 

conditions, and this study provides a comprehensive investigation of computer modeling on a 

site located in Newfoundland. 

The approach used to achieve these results is outlined in the following sections. 

1.3 Approach 

In the following study the background of computer modeling was reviewed. Several sites were 

considered for analysis in the study and based on the site characteristics the most appropriate site 

was selected. Following selection, the site underwent a detailed review. The detailed review 

included the site history, physical properties of the site and the contaminants present. 

The most appropriate modeling software for the site was selected and the computer model for the 

site was developed. Using Design Expert Software the model was calibrated and verified. The 

results of the modeling process were then considered and discussed. The experimental 

methodology used is presented in Figure 1.1. 
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Figure 1.1: Experimental Methodology 
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The above information is covered in the following chapters as follows: 

Chapter 1 provides an introduction to the study. The purpose and significance of the study is 

outlined and the study approach is presented. Chapter 2 is a literature review of the subject. 

Included in the literature review is a discussion of MNA, modeling and types of models. 

Computer models are reviewed and the models specific to this study are discussed. Finally, a 

discussion on developing a computer model is presented. Following the literature review, in 

Chapter 3 the site selection is presented. Once the site had been selected a conceptual model of 

the site was developed. In Chapter 4 the development of the conceptual model of the site is 

presented. The site-specific data are outlined and the contaminants of concern are defined. 

Based on the information gathered a computer model input file was completed. 

In Chapter 5 the input file complied, based on the site-specific data, is presented. Input files are 

outlined for climate, chemical properties, soil properties and erosion (washload). The 

application and preliminary execution of input files are also outlined. For the groundwater 

model the aquifer properties and points of interest are also presented. Once a preliminary input 

file was presented the simulation runs are outlined. In Chapter 6 the simulations methodology is 

discussed and the approach to simulation is outlined. The design of experiments approach, used 

to simulate fate and transport of the contaminants, is described. In Chapter 7 the simulation 

results are discussed, including calibration, verification and the sensitivity analysis. Once the 

model had been calibrated and verified, the results were used for prediction. The model was 

used to predict the future fate and transport of petroleum hydrocarbons in the soil and 

groundwater and the results are presented in Chapter 7. The concentration of petroleum 

hydrocarbons located at a downstream receptor is also predicted and these results are also 

provided in Chapter 7. The results and significance of the prediction exercise is then discussed. 
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In Chapter 8 the results of the computer modeling exercise, calibration, sensitivity analysis and 

verification are concluded. The discussion addresses the applicability of MNA on the site and 

the risk to a downstream receptor. 
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Chapter 2: Review of Literature 

2.1 Risk-Based Corrective Action and Monitored Natural Attenuation 

As previously discussed the introduction of petroleum hydrocarbons into the environment 

presents a risk to both humans and the environment. However, the growing awareness of the 

environmental issues related to petroleum hydrocarbons has led to strict remediation guidelines 

(Husain, 2004). This has resulted in an increase in the time and effort required to remediate sites 

and in some cases the site may be left undeveloped. Given the large number of contaminated 

sites this may also lead to a shortage of resources for high-risk sites. In risk-based corrective 

action each site is evaluated on a case-by-case basis. Where risk is present remediation 

technologies can be implemented. However, if there is no risk present, MNA can be applied. 

This allows a more cost-effective approach to remediating contaminated sites (Khan and Husain, 

2002). By using modeling, a site can be evaluated on a case by case basis to determine whether 

human intervention is necessary, and the most effective remediation strategies can be 

determined. 

Surampalli, et al. (2002) emphasized, however, that there is a need to monitor the migration of 

contaminants in the groundwater to evaluate the extent to which natural attenuation is occurring 

and that a contingency plan should be in place to protect down-gradient receptors. This is the 

focus of this study. Natural attenuation is a valid treatment but only should be used where the 

mechanisms responsible are well understood and documented (MacDonald, 2000). 

When a contaminant is released into the environment, the chemicals of concern can partition into 

one of three phases; air, water or soil; depending upon the chemical properties of the 

contaminant released and the receiving environment. Once present in each phase the chemical 
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will be broken down by naturally occurring mechanisms. These mechanisms make up the 

natural attenuation processes (Atlantic PIRI, 2003). 

Natural attenuation is a variety of physical, chemical, or biological processes that, under 

favorable conditions, act without human intervention to reduce the mass, toxicity, mobility or 

concentration of contaminants in soil and groundwater (Atlantic PIRI, 2003). Natural attenuation 

processes can be non-destructive, such as dispersion, sorption, dilution and volatilization or 

destructive, such as biodegradation and abiotic reactions (hydrolysis). MNA is the reliance on 

natural attenuation processes (within the context of a carefully controlled and monitored site 

clean-up approach) to achieve site-specific remediation objectives within a time that is 

reasonable (Atlantic PIRI, 2003). 

As previously mentioned, over the past number of years MNA has been increasingly considered 

as a remediation technology, due to the cost and inefficiencies of other remediation systems 

(MacDonald, 2000). The combination of the inability of traditional technologies to reach 

remediation standards and the increased ability to adequately model sites undergoing natural 

attenuation has lead to an increased use of non-intervention on contaminated sites. 

Several studies have been undertaken which have illustrated the effectiveness of MNA. In a 

recent case study by Khan and Husain (2003), an industrial complex with a residential facility 

was located 400 metres from a fuel oil contaminated site. The study explored the feasibility and 

efficiency of natural attenuation in remediation of the site. The analysis indicated that, while 

there was an initial high risk to workers from benzene and toluene, MNA was effective. After 15 

years the plume was diluted and degraded and risk was reduced to acceptable levels. Pennington 
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et al. (200 1 ), concluded that natural attenuation was also a viable remediation option for sites 

contaminated with explosives. 

Rifai, et al. (2000), used BIOPLUM III as a natural attenuation model to simulates aerobic and 

anaerobic biodegradation of fuel hydrocarbons. The model simulations indicated that natural 

attenuation was a viable remedy for the site. Skubal et al. (2001), used field biogeochemical 

characterization and laboratory microsm studies to access the potential for future 

biotransformation of trichloroethylene (TCE) and toluene in a plume containing petroleum 

hydrocarbons and chlorinated solvents. The study also concluded that natural attenuation was 

applicable for this site. Clement et al. (2002), assessed natural attenuation data from a Super 

Fund Site. The analysis indicated that the site had potential for natural attenuation. A detailed 

conceptual model was developed to determine exposure pathways and exposure points and study 

if determined plumes would degrade and attenuate within 1000 feet down gradient before 

reaching the exposure point. Using the BIOCHLOR (Aziz et al., 1999) model the researchers 

concluded that natural attenuation was a feasible remediation alternative (Clement et al., 2002). 

Natural attenuation of low molecular weight P AHs also appears to be promising for sites 

investigated (Roger et al., 2002). Seagren et al. (2002), stated that MNA had been accepted as a 

remediation technology and that a large number of sites contaminated with BTEX had been 

naturally attenuated. 

In all of the studies outlined above, site characterization was an integral part of the 

implementation of natural attenuation. Site characterization, reactive fate and transport modeling 

and long-term monitoring are required to implement MNA as a remedial measure (Khan and 

Husain, 2002). Site characterization determines the extent of contamination, soil properties and 
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aquifer properties. This information is used in a reactive transport model to predict the fate of 

the contaminants and their transport to receptors. Long-term monitoring assesses concentrations 

by fate-and-transport modeling of the contaminants and these concentrations are later compared 

against the observed values. 

The ultimate objective of natural attenuation modeling is to reproduce effectively the chemical 

and physical behaviour of the site from a fundamental understanding of the processes so that 

long-term behaviour of the plume might be confidently predicted (Husain, 2004). 

2.2 Modeling Natural Attenuation at Contaminated Sites 

A model can be defined in various ways. Boulding (2002) defines a model as: 

" ... a simplified description of an existing physical system or an assembly of concepts in the 

form of mathematical equations that portrays understanding of a natural phenomena." 

Natural attenuation modeling methods, such as those used in this study, predict natural 

attenuation and are tools designed to represent a simplified version of a real field site. They are 

an attempt to take physical, chemical and biological processes and translate them into 

mathematical terms. The resulting model is only as good as the conceptual understanding of the 

processes. The goal of the modeling exercise is to predict the concentration distribution of a 

given chemical in the soil and groundwater over a given time period and distance (Boulding, 

2002). 
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2.3 Types of Models 

Several classifications exist for contaminant models and several types of models have been 

developed for modeling the fate and transport of contaminants in the subsurface. The number of 

dimensions modeled also varies from model to model. Models can also be considered 

deterministic or stochastic. A deterministic model assumes the occurrence of a given set of 

events results in a unique solution (Boulding, 2002). A stochastic model assumes that factors 

contributing to an outcome are uncertain. The model calculates the probability within a desired 

level of confidence of a specific value occurring at any point (Boulding, 2002). The governing 

equations for both deterministic and stochastic models can be solved either analytically or 

numerically. The applicable model types for this study are outlined in the following sections. 

2.4 Dimensional Classification of Models 

2.4.1 One Dimensional Models 

There are a limited number of relatively simple 1-D problems for which analytical solutions exist 

(Bedient et al., 1999). A 1D model assumes that the chemical is ideal with a constant density 

and viscosity; the fluid is not compressible; the medium is homogenous and isotropic; and, only 

saturated flow is considered. 

The model used in the computer program SESOIL for vadose zone transport, which was selected 

for this study, is an example on a one-dimensional model. The model in SESOIL models 

transports in one direction only since it only considers vertical transport of contaminants. 

Vertical transport of the contaminant is determined by the following equation: 



D= Jjc 

B+p K + faH 
Equation 2.1 (Scheiker, 2000) 

Where: 

b d R(T+273) 

D = contaminant depth 
Iw =water velocity (cm/s) 
tc =advection time (s) 
8 = soil water content ( cm3 /cm3

) 

Ph= soil bulk density (g/cm3
) 

KI =Chemical distribution coefficient (J..Lg/g)/( )..lg/ml) 
fa = f-8 = the air filled porosity (ml/m1) 
H =Henry's Law constant (m3 atm/mol) 
R = Gas Constant [8.2 X 1 0"5 m3 atm/mol °K] 
T = Soil temperature CC) 

2.4.2 Multidimensional Models 
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Multidimensional methods consider longitudinal, transverse and vertical dispersion along with 

advection in one dimension. The governing equation is altered to include only velocity in the x 

direction, and a first order decay term can be added. 

A computer program that uses three-dimensional modeling was selected to model the transport 

of contaminants in groundwater for the site selected for this study. AT123D uses a three-

dimensional modeling domain. 

The AT123D model is based on the advection-dispersion equation that was used in this study to 

determine the contaminant distribution in groundwater. Assuming incompressible flow the 

advection-dispersion equation is: 
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-~e - = V * (n DV * Cq + M- Kn C- b s + A-p C Equation 2.2 (Scheiker, 2000) 8( n C) = .... . ( o(p c ) ) 
ot e e ot b s 

Where: 

C =Dissolved contaminant concentration 

Cs = Adsorbed contaminant concentration 

D = Hydraulic dispersion coefficient tensor 

K = Chemical degradation rate 

M = Contaminant source release rate 

ne = effective porosity 

.... 
q =Darcy's velocity vector 

t =Time 

V = Gradient (Del operator with respect to x, y, and z) 

/... =Radioactive decay constant 

Pb =Bulk density ofthe soil 

By definition the Vis: 

V= i-+ j-+k-(
. a .... a .... a J 
ox ay az Equation 2.3 (Scheiker, 2000) 

The term on the left side of advection-dispersion equation represents the time rate of change of 

dissolved contaminant mass per unit volume of the aquifer. The first term on the right side of the 

equation represents the combined effects of hydraulic dispersion and molecular diffusion. The 

second term on the right side represents the advection of the contaminant. The third term 

represents the contaminant source load to the aquifer system. The fourth term on the right side of 

the equation accounts for the chemical and biological degradation of the contaminant, while the 
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fifth term represents radioactive decay. The last two terms of the equation represent the effects of 

ion exchange and sorption. 

The initial condition for the equation is: 

Where: 

Equation 2.4 (Scheiker, 2000) 

C = Dissolved contaminant concentration 
Ci = Initial contaminant concentration 
R =A region with respect to x, y, and z (the region modeled) 
t =Time 
x = Longitudinal coordinate 
y = Transverse coordinate 
z = Vertical coordinate 

This initial condition requires that the background concentration of the contaminant be known 

before the load is released into the aquifer. 

The solution to the 3D model in AT123D for the site under consideration is given by the 

equation: 

Equation 2.5 (Scheiker, 2000) 
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Where: 

C = Dissolved contaminant concentration 
Ci = Initial contaminant concentration 
C1 =Concentration on the boundary S1 
G =Green's function (see Scheiker, 2000) 

K = Retarded dispersion tensor 
M = Contaminant source release rate 
fie =Effective porosity 

n = Unit vector normal to S2 
q2 = The contaminant flux across the boundary at a given function of time and 

location on s2 
q3 = Contaminant flux across the boundary at a given function of time and location 

on s3 
R =A region with respect to x, y, and z (region modeled) 
Ro = A region with respect to s, 11 and c; 
S =Boundary of Region R 
S1 =A portion of S 
S2 = A portion of S 
S3 = A portion of S 
So = The initial boundary of the region modeled R 
t =Time 
x =Longitudinal coordinate 
y = Transverse coordinate 
z = Vertical coordinate 
\1 =Gradient (Del operator with respect to x, y, and z) 
't = Duration of the contaminant release 

2.5 Mathematical Classification of Models 

Mathematical models are usually described by the number of dimensions simulated (as 

previously discussed); and, the mathematical approaches used, which include analytical or 

numerical methods. SESOIL and AT123D employ both numerical and analytical, iterative 

techniques. 

2.5.1 Analytical Techniques 

Analytical models are useful for defining the magnitude of a contaminant problem. If data is 

limited or the hydrogeological conditions are simple, an analytical model can simulate 

contaminant fate and transport (Khan and Husain, 2002). Analytical methods use exact closed 
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form solutions for the appropriate differential equations. The solution is continuous in space and 

time and employs many simplifying assumptions concerning the system. Analytical models are 

based on steady-state, isotropic and homogeneous conditions and data needs are moderate. 

2.5.2 Numerical Techniques 

Numerical methods are used in the solution of partial differential equations and auxiliary 

conditions. Numerical techniques are more complex than analytical solutions and use less 

simplifying assumptions than analytical models and are capable of addressing more complicated 

problems. 

In order to facilitate the use of analytical and numerical methods several computer programs, 

such as those used in this study have been developed. A computer program that implements the 

analytical and numerical model is referred to as a computer code or computer model. 

2.6 Computer Models 

The development of an accurate contaminated site computer model was a critical step in 

modeling natural attenuation at the subject site. In order to comply with regulations and to be 

cost-effective a scientific and systematic approach must be used to access the site (Husain, 

2004). A methodology proposed by Anderson and Woessner (1992) was reviewed and used to 

develop the computer model. 
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2.6.1 Selection of Governing Equation and Computer Code 

The selection of a model for the site was based on the assumptions used, features, input data 

required, accuracy, flexibility and validation history (Husain, 2004). Two models were needed, 

one for the vadose zone and one for the groundwater zone. 

Several studies were reviewed to establish the criteria used to select the computer program. The 

first consideration is that the model must fully account for all the various interactions between 

pollutants and soil fractions (Odencrantz, 1992). 

Secondly, the equations of flow and transport must be capable of incorporating all factors 

involved in the spill migration in the environment (Geotrans, 1988). 

According to Odencrantz (1992) the vadose zone transport model must, at a minimum be: 

• A one-dimensional vertical model that can be separated into at least three layers, with 

varying soil properties and chemical loading concentrations by layers; 

• Capable of representing one mobile chemical component in three phases (adsorbed, 

aqueous, and gaseous) 

• Capable of representing biodegradation, volatilization, and gaseous diffusion; and, 

• Capable of representing the variable effects of local climate (precipitation, temperature, 

etc.) 

Several vadose zone models for soil modeling were reviewed for the study to determine which 

were most appropriate for the site selected and are summarized in Table 2.1. 
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Table 2.1: Comparison of Vadose Zone Models 

Model Description Comments Source 
CMLS - Chemical • calculates the movement and dissipation • can deal with soils with up to 20 Nofziger 
Movement in of non-polar chemicals in soil in layers or horizons and 
Layered Soils response to water application, • enables the user to enter partition Hornsby, 

evapotranspiration, soil properties, plant coefficients for each horizon in 1987 
rooting depth and properties of the the soil 
chemical chosen • enables the user to simulate 

movement of the chemical for up 
to 15 years 

MOFAT- • two-dimensional, finite element • complicated and not easy to use ESRI, 1990 
Multiphase Organic modeling code 
Flow and Transport • can represent the transport of up to five 

components between four phases allows 
for up to ten soil layers of differing 
properties 

• considers interphase mass transfer and 
compositional dependence of phase 
densities 

V Leach (Vadose • one- dimensional finite difference model • Liquid phase dispersion is Ohio EPA, 
Zone Leaching • simulates leaching of an organic neglected; 1996 
Model) contaminant through the vadose zone • No free product can be present; 

• The contaminant is not subject to 
in-situ biodegradation; 

• Volatilization from the surface is 
either completely unimpeded or 
completely restricted. 

CHEMFLO • one-dimensional model to simulate • Predictions are sensitive to the Ohio EPA, 
(Chemical Flow water and chemical movement in specified boundary conditions 1996 
Model) unsaturated soils • Assumes soil and chemical 

properties to be homogenous with 
depth and ignores partitioning and 
movement of chemicals in the 
vapour or gaseous phase 

• Some input parameters utilized 
could be extremely difficult to 
measure in field 

SESOIL (Seasonal one-dimensional vertical transport model for utilizes less soil, chemical and Scheiker, 
Soil Compartment the unsaturated soil zone simultaneously meteorological values as input than 2000 
Model) models water transport, sediment transport most other similar models 

and pollutant fate • allows the soil profile to be 
includes soil erosion algorithms and is discretized into a maximum of 
designed to perform "long-term" simulations four layers with varying soil 
of chemical transport and transformations in properties and chemical loading 
soil concentrations 
can represent the transport of one chemical 
component through three phases (aqueous, 
gaseous and adsorbed), with a fourth "pure 
chemical phase" representative as an 
immobile storage phase 

Due to ease of use and wide acceptance SESOIL was selected, as the most efficient vadose zone 

model software. The Council for Health and Environmental Safety of Soils' (CHESS) Analysis 
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and Environmental Fate Committee also reviewed several existing environmental fate models 

and recommended the SESOIL model for further consideration as a tool to aid the risk 

assessment process (Calabrese and Kostecki, 1992). Brar (1996) also selected SESOIL as the 

governing computer code. More recently, Khan and Husain (2002) evaluated available models 

for vadose zone modeling and also concluded that SESOIL was the most appropriate. 

Once the vadose zone has been modeled the simulated mass flux rates at the bottom of the 

vadose zone must be routed into a groundwater transport model to estimate resulting 

groundwater concentrations. For ease of implementation the groundwater model should 

interface directly with the vadose zone model. The groundwater transport model should also 

handle variable-size areas and be capable of representing biodegradation, adsorption and 

advective dispersive transport (Odencrantz, 1992). 

Although there are numerous groundwater transport models only a fraction of these are capable 

of representing both chemical retardation and degradation. Of those models with these required 

capabilities only a few are publicly available, well-documented, PC compatible and accepted by 

the scientific and regulatory communities (Odencrantz, 1992). 

Groundwater transport models that generally meet the above minimum requirements have been 

evaluated for their usefulness in solving the subject problem and are summarized in Table 2.2. 
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Table 2.2: Comparison of Groundwater Transport Models 

Model Description Comments Source 
AQUA3D (3-D Groundwater • 3-d groundwater flow and contaminant • developed to solve 3D- Vatnaskil 
Flow and Contaminant transport model groundwater flow and Consulting 
Transport Model) • uses the Galerkin finite element transport problems Engineers, 1998 

method 
using the Galerkin 
finite-element method 

• solves transient 
groundwater flow with 
inhomogeneous and 
anisotropic flow 
conditions 

BIOF&T • models biodegradation flow and transport • models convection, Scientific 
2D/3D(Biodegradation, Flow in the saturated and unsaturated zones in dispersion, diffusion, Software Group, 
and Transport in the two or three dimensions in heterogeneous, desorption and 1998 
Saturated/Unsaturated Zones) anisotropic porous media or fractured microbial processes 

media 
ChemFlux (Finite Element • finite-element, contaminant transport • predicts the movement Soil Vision 
Mass Transport Model) modeling software. of contaminant plumes Systems Ltd, 

through the processes of 2004 
advection, diffusion, 
adsorption and decay 

FLONET/TRANS (2-D • 2-D cross-sectional groundwater flow and • simulates advective- Molson and 
cross-sectional groundwater contaminant transport modeling dispersive contaminant Frind, 2002 
flow and contaminant transport problems with 
transport modeling) spatially-variable 

retardation and multiple 
source terms 

FLOWPATH (2-D • 2-D groundwater flow and contaminant • models unconfined, Scientific 
Groundwater Flow, transport confined and leaky Software Group, 
Remediation, and Wellhead aquifers with 1998 
Protection Model) heterogeneous 

properties, multiple 
pumping wells and 
complex boundary 
conditions 

GFLOW (Analytic Element • based on the analytic element method • particularly suitable for Gay and Gloski 
Model with Conjunctive • models steady-state flow in a single modeling regional (1984) 
Surface Water and heterogeneous aquifer horizontal flow 
Groundwater Flow and a • supports conjunctive 
MOD FLOW Model Extract surface water and 
Feature) groundwater modeling 

using stream networks 
with calculated 
baseflow 

MOC (2-D Solute Transport • 2-D solute transport in flowing • assumes that gradients Konikow and 
and Dispersion in groundwater and one- or two-dimensional of fluid density, Bredehoeft 
Groundwater) problems involving steady state or transient viscosity and (1988) 

flow temperature do not 

• aquifer may be heterogeneous and/or affect the velocity 
anisotropic distribution 

• incorporates first-order irreversible rate-
reaction; reversible equilibrium controlled 
sorption with linear, Freundlich, or 
Langmuir isotherms; and reversible 
equilibrium-controlled ion exchange for 
monovalent or divalent ions 
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MT3D (A Modular 3D Solute • three-dimensional numerical model for • has a modular design Zheng,C. (1990) 

Transport Model) simulating solute transport in complex that permits simulation 
hydrogeologic settings of transport processes 

independently or jointly 

• capable of modeling 
advection in complex 
steady state and 
transient flow fields, 
anisotropic dispersion, 
first-order decay and 
production reactions, 
and linear and nonlinear 
sorption 

POLLUTE (Finite-Layer • used for contaminant migration analysis • does the numerical Scientific 

Contaminant Migration • "I Yz-dimensional" solution to the stability problems of Software Group, 

Model - Landfill Design) advection-dispersion equation alternate approaches 1998 

• in addition to advective-
dispersive transport, can 
consider adsorption, 
radioactive and 
biological decay, phase 
changes, and transport 
through fractures 

V AM2D (2-D Variably- • two-dimensional finite-element • contaminant transport Huyakom et al. 
Saturated Groundwater groundwater model that simulates transient option can account for (1991) 
Analysis Model) or steady state groundwater flow and advection, 

contaminant transport in porous media hydrodynamic 
dispersion, equilibrium 
sorption, and first-order 
degradation 

WinTran (Groundwater Flow • finite-element simulator • contaminant mass may Scientific 

and Finite-Element be injected or extracted Software Group, 

Contaminant Transport using any of the 1998 

Model) analytic elements 
including wells, ponds, 
and line sinks 

• transport model 
includes the effects of 
dispersion, linear 
sorption (retardation), 
and first-order decay 

ATI23D • three-dimensional groundwater transport • linked to SESOIL by Scheiker, 2000 

and fate model the SEVIEW interface 

• developed to simulate contaminant program 
transport under one-dimensional 
groundwater flow 

• results can be used to estimate how far a 
contaminant plume will migrate and can be 
compared to groundwater standards to 
evaluate risk at specific location and times 

• mechanisms simulated include advection, 
dispersion, sorption and biological decay 

BIOSCREEN • screening level groundwater transport • linked to SESOIL by Scheiker, 2000 

model that simulates the natural attenuation the SEVIEW interface 
of dissolved hydrocarbons program 

• based on the Domenico analytical 
contaminant transport model 

• can simulate natural attenuation based on 
advection, dispersion, adsorption and 
biological decay 
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Most of the models are numerical and are more difficult to use and much more computationally 

demanding than AT123D, so they should be considered for use only where needed (Odencrantz, 

1992). BIOSCREEN, while less complicated than AT123D, cannot handle the level of 

complexity required for the modeling process. AT123D is also very flexible and user friendly. 

Thus, AT123D is most useful for the subject problem. Khan and Husain (2002) also selected 

AT123D as the governing computer code, due to its analytical capability, simplicity and 

prec1s10n. 

Based on the above SESOIL and AT123D were selected for modeling the site. SEVIEW was 

selected as the modeling software since it provides an interface between the two programs. 

SEVIEW is Windows based menu-driven, integrated contaminant transport and fate modeling 

system. The code was written by Scheiker (1993) to create a program that extracted the 

contaminant mass that volatilized to the atmosphere and the concentrations that leached to the 

groundwater. BIOSCREEN is also incorporated into SEVIEW but was not utilized in the 

modeling exercises undertaken. A schematic of the computer model is presented in Figure 2.1. 
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Figure 2.1: Summary of SEVIEW Model 
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2.6.2 SESOIL 

Scheiker (2000) provides a description and governing equations for SESOIL in the user manual 

for SEVIEW. Bonazountas and Wagner (1981) developed SESOIL for the EPA's Office of 

Water and the Office of Toxic Substances. SESOIL is a seasonal compartment model that 

simulates long-term pollutant fate and migration in the unsaturated zone. The model computes 

pollutant masses in water, soil and air phases. It simulates remediation through natural 

attenuation based on diffusion, adsorption, volatilization, biodegradation and hydrolysis and is 

designed to simultaneously model contaminant, soil water and sediment transport in the soil. 

SESOIL can consider only one chemical at a time and the model is based on mass balance and 

equilibrium partitioning of the chemical between different phases (dissolved, sorbed, vapour and 

pure). There are five input files in SESOIL; chemical; climate; soil; washload (sediment 

transport); and, application. SESOIL estimates the contaminant mass entering groundwater, 

however, the saturated zone is not modeled. The output from SESOIL can be used for 

generating input values for groundwater transport models to simulate chemical movement in the 

saturated zone (Scheiker, 2000). 

Figure 2.2 illustrates the process involved in SESOIL. 
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Figure 2.2: Schematic of SESOIL (adapted from Scheiker, 2000) 

The SESOIL model is based on three assumptions (Brar, 1996): 
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• Pollutant concentrations in all phases and in all compartments of the soil system are at 

equilibrium at all times; 

• The law of mass conservation determines the equilibrium concentration of chemical 

species over a series of monthly or yearly steps; and, 

• Pollutant transport takes place in the unsaturated soil zone. 

There are several advantages to using the SESOIL modeling software (Brar, 1996): 

• Data requirements are not extensive; 
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• The compartmental module lets many users run the model for specific data sets or site 

conditions; 

• Periodically, SESOIL is improved and modified by the Oak Ridge National Laboratory; 

• The scientific community engaged in chemical fate modeling has accepted and 

recognized the SESOIL model; 

• The model is structured to simulate chemical transport for more than a month. SESOIL 

accommodates physical, chemical and biological changes in the contaminant leaked into 

the soil system; 

• The sensitivity analysis was conducted on adsorption and volatilization for different soil 

types and in different climates; 

• SESOIL's hydrologic cycle has been found to be a good long-term predictor for 

groundwater and surface runoff, evapotranspiration and infiltration; and, 

• Uncertainty analysis is introduced into the hydrological cycle with probability density 

functions, which produces probability distributions of water balance and yields long-term 

seasonal averages of the water balance. 

Along with its benefits SESOIL also has several drawbacks (Brar, 1996): 

• The present code for SESOIL uses a single homogeneous soil column for the 

hydrological cycle. As a result, SESOIL will not work at sites having large vertical 

variations in soil properties. 

• The use of SESOIL is limited because it requires site-specific data for calibration. When 

input data are not available, the model user must use complex calculations to generate an 

input file. The user needs the expertise to select the appropriate equations required for 

developing input data. In a situation where site-specific data are not available, using data 
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published in the literature or default values might simulate results that are inaccurate by 

orders of magnitude. 

• The model does not address the free product movement in the vadose zone. The model 

accommodates the migration of a single solute in an aqueous phase rather than a 

nonaqueous phase. The model's inability to distinguish between the NAPL phase and the 

water phase (dominant transport carrier) can create significant errors in simulations. 

• Simulations with SESOIL are very poor when run with laboratory-generated input data. 

• SESOIL does not address the soil-water spatial variability and water flow in each 

compartment. Therefore, chemical transport and distribution in the soil column could be 

affected because the retardation coefficients and volatilization fluxes of certain chemicals 

are water-sensitive. 

2.6.3 AT123D 

AT123D is an acronym for Analytical Transient 1-, 2-, and 3-Dimensional Simulation of Waste 

Transport in the Aquifer System. It is a generalized three-dimensional groundwater model 

developed by G. T. Yeh (1981) at Oak Ridge National Laboratory. Significant modifications 

were made in 1982, 1984 and, 1986 of the University of Wisconsin-Madison. Robert A. Scheiker 

at Environmental Software Consultants, Inc further modified AT123D in 1997. 
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The model was developed to estimate concentrations of contaminants transported, dispersed, 

degraded and sorbed in one-dimensional groundwater flow. The transport mechanisms simulated 

by AT123D include advection, dispersion, sorption, decay/biodegradation and heat losses to the 

atmosphere. Model results can be used to estimate how far a contaminant plume will migrate and 

can be compared to groundwater standards to evaluate risks at specific locations and times 

(Scheiker, 2000). 

2.6.4 Application 

SESOIL and AT123D have been applied in numerous modeling studies. Odencrantz (1992) 

incorporated SESOIL and AT123D in a study to determine soil clean up levels for leaking 

underground fuel tanks in California. The study noted that SESOIL and AT123D were 

appropriate models in determining soil clean-up levels that were protective of water quality. 

Sanders (1995) utilized SESOIL, along with four other vadose zone models, to predict leaching 

of volatile organic compounds from the soil to groundwater. 

Brar (1996) used SESOil to assess leaching of benzene in Alaska. Brar concluded that SESOIL 

was a well-developed vadose zone model. Peng et al. (1996) utilized SESOIL to estimate 

pentachlorophenol concentrations in the soil leachate, prior to the leachate entering the 

groundwater table. AT123D was utilized by Klinchun (1997) to evaluate the fate and transport 

of BTEX from residual crude oil. By using AT123D the study was able to conclude that MNA 

was the most favorable able and cost-effective mechanism to remediate BTEX. Sullivan (1997) 

incorporated SESOIL in the modeling of the fate and transport of diesel fuel. 
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Husain (2002) also incorporated the SESOIL and AT123D models in the development of a risk-

based corrective action computer model. Khan and Husain (2002) utilized SESOIL and AT123D 

to evaluate natural attenuation of a petroleum hydrocarbon contaminated site. 

2.6.5 Design of Model 

Following the methodology of Anderson and Woessner (1992) once the appropriate model was 

selected the model design could then be developed. This step included the selection of a grid 

design, time parameters, initial and boundary conditions and developing estimates of model 

parameters. Model design involved data collection, analysis from the field and site 

characterization. 

2.6.6 Calibration 

Once the model has been selected and the input file developed model calibration is required. 

Calibration refers to the process of determining a set of model input parameters that approximate 

field measured heads, flows and/or concentrations. The purpose of calibration is to establish that 

the model can reproduce field-measured values of the unknown variable. It was noted in several 

studies (Odencrantz, 1992) that calibration was quite subjective and in many cases did not yield a 

unique set of parameters that reproduced field conditions. 

Several studies were available on the calibration of vadose zone models. Calibration of 

unsaturated soil zone models can be uncertain and difficult because climate soil moisture, soil 

infiltration and percolation are strongly interrelated parameters that are difficult to measure in the 

field (Scheiker, 2000). However, if at all possible input parameters for any unsaturated soil zone 

model should be calibrated so that hydrological predictions agree with observations (Eagleson, 

1978; Eagleson and Tellars, 1982). 



33 
As suggested by Anderson and Woesner (1992) the results of the calibration were evaluated 

relative to the measured values both qualitatively and quantitatively. To date, there is no 

standard protocol for evaluating model calibrations. A qualitative evaluation of the calibration 

involves comparing trends in the simulated results to those observed from the measured data 

(Scheiker, 2000). 

Intrinsic permeability, soil disconnectedness index, and effective porosity have been found to be 

sensitive parameters in SESOIL (Scheiker, 2000). It was recommended that these values be 

varied to calibrate results to field data at the site (Scheiker, 2000). In SESOIL, parameters 

required for the hydrologic cycle can also be difficult to determine. The soil pore 

disconnectedness index, for example, which is defined as the exponent relating the "wetting" or 

"drying" time dependent permeability of a soil to its saturated permeability (Eagleson, 1978; 

Eagleson and Tellars, 1982) is not commonly found in the literature. Default values for the soil 

pore disconnectedness index suggested by Eagleson (1978) and Bonazountas and Wagner (1981, 

1984) are; clay 12; silty clay loam 10; clay loam 7.5; silt loam 5.5; sandy loam 6; sandy clay 

loam 4; and sand 3.7. Other sensitive parameters for the hydrologic cycle are the effective 

porosity and the intrinsic permeability. 

Bonazountas and Kallidromitou (1993) report that the model must be calibrated for site-specific 

variables such as biodegradation rate, soil organic carbon content, local climate and depth to the 

water table. 

Ladwig et al. (1993) tested the SESOIL model for benzene, ethylbenzene, toluene, xylene and 

1 ,2-dichloroethane under Wisconsin conditions and discovered that the model was most sensitive 

to soil type, biodegradation rate, residual concentration, residual layer thickness and organic car-
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bon content of the soil. The model was least sensitive to climate, soil disconnectedness index, pH 

and depth of contaminant burial. Furthermore, the model was highly sensitive to intrinsic 

permeability for benzene in sand. However, it was insensitive to intrinsic permeability for 

treatment ofbenzene in till. 

Hetrick et al. (1993) recommended that the user conduct sensitivity analyses or evaluate results 

obtained by assigning distributions to the input parameters (O'Neil et al. 1982, Gardner 1984, 

Hetrick et al. 1991). 

Oregon State regulator Anderson (1992) tested the SESOIL model to simulate transport of 

organic contaminants through the vadose zone. He also used the MINTEQA1 model (USEPA 

1987) to simulate inorganic speciation and concentrations under specified field conditions. 

Sensitivity analyses were performed on organic contaminants-benzene, carbon tetrachloride, 

ethylbenzene, methyl chloride, naphthalene, perchloroethylene, toluene, 1,1, 1-trichloroethane, 

1,1 ,2-trichloro-ethylene and o-xylene. The results of the tests indicated that the most important 

parameters controlling organic contaminant transport in the SESOILIAT123D models were the 

thickness of the contaminated zone, depth from the contaminated zone to groundwater, hydraulic 

conductivity and gradient, and the fraction of the organic carbon in the soil. 

2.6. 7 Sensitivity Analysis 

The next step in the development of the model is to determine the effects of uncertainty on 

model runs. This is sometimes referred to as a sensitivity analysis. Sensitivity is a measure of 

the degree to which model results are affected by changes in selected input parameters such as 

hydraulic properties. The model parameters are varied individually within a range of possible 

values, and the effect on model results is evaluated (Odencrantz, 1992). 
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The purpose of a sensitivity analysis was to quantify the effects of uncertainty in the estimates of 

model parameters on model results. In a study conducted by Schneiker (1997) 530 model 

scenarios were used in SESOIL to predict groundwater contamination concentrations. Four 

parameters were considered for the sensitivity analysis; soil disconnectedness index; soil 

permeability; air diffusion coefficient; and, soil organic content. High and low values were 

selected for each parameter. For each sensitivity analysis model run a single parameter was 

varied. Secondary effects of the parameters were not considered. The highest variation occurred 

when permeability was reduced. The lowest flux occurred when the fraction of organic carbon 

was reduced. 

2.6.8 Verification 

This step involves testing the model's ability to reproduce another set of field measurements 

using the model parameters that are developed in the calibration process. Because of 

uncertainties in parameter estimation for a given site, the calibrated model parameters may not 

accurately represent the system under a different set of boundary conditions or hydrological 

stresses. In the verification exercise, values of parameters and hydrologic stresses determined 

during calibration are used to simulate a transient response for which a set of field data exists. 

2.6.9 Prediction 

Prediction is the estimation of results based on the calibrated model (Anderson and Woesner, 

1992). Prediction is one of the more common motivations for modeling. In the predictive 

simulation, the parameters determined during calibration are used to predict future conditions or 

the response of the system to future events. 
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To assess SESOIL's predictive capabilities for contaminant movement, a contaminant transport 

and validation study was performed by Arthur D, Little, Inc. under contract to EPA 

(Bonazountas et al., 1982). The application/validation study was conducted on two field sites, 

one in Kansas and one in Montana. SESOIL results were compared to data for the metals 

chromium, copper, nickel, and sodium at the Kansas site and the organics naphthalene and 

anthracene at the Montana site. Results showed reasonable agreement between predictions and 

measurements, although the concentrations of the metals were consistently underestimated, and 

the rate of metal movement at the Kansas site was consistently overestimated. At the Montana 

site, the concentrations of the organics were overestimated by SESOIL. 

Bonazountas et al. (1982) stated that the over estimations for the organics were probably due to 

the fact that biodegradation was not considered in the simulations. Hetrick et al. (1989) 

compared predictions of the improved version of SESOIL with empirical data from a laboratory 

study involving six organic chemicals (Melancon et al., 1986). They also compared values from 

three different field studies invoking the application of aldicarb to two field plots (Hornsby et al., 

1983; R. L. Jones, 1986; Jones et al., 1983, 1985) and atrazine to a single-field watershed (Smith 

et al., 1978). Results for several measures of contaminant transport were compared including the 

location of chemical peak vs. time, the time-dependent amount of contaminant leached to 

groundwater, the depth distribution of the contaminant at various times, the mass of the chemical 

degraded, and the amount of contaminant in surface runoff. This study showed that SESOIL 

predictions were in good agreement with observed data for both the laboratory study and the 

field studies. SESOIL correctly predicted the leading edge of the chemical profile (Hetrick et al., 

1989), due mainly to the improvement of the contaminant depth algorithm to include the 

chemical sorption characteristics. Also, when a split-sample calibration/validation procedure 
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was used on 3 years of data from the single-field watershed, SESOIL correctly predicted the 

amount of chemical in the runoff. 

The model is less effective in predicting actual concentration profiles; the simulated 

concentrations near the soil surface under estimate the measurements in most cases. One 

explanation is that SESOIL does not consider the potential upward movement of the chemical 

with the upward movement of water due to soil evaporation losses. 

Care should be taken when applying SESOIL to sites with large vertical variations in soil 

properties since the hydrologic cycle assumes a homogeneous soil profile. Only one value for the 

soil moisture content is computed for the entire soil column. If different permeabilities are input 

for each soil layer, the soil moisture content calculated in the hydrologic cycle using the 

vertically averaged permeability might not be valid for the entire soil column Schneiker (2000). 
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Chapter 3: Site Selection 

The first task in the study was to gather information on a number of potential sites to model. 

Based on the site characteristics and available data one site was selected for further analysis. 

Initial sites considered are summarized in Table 3.1 and are outlined in further detail in Section 

3.1 through Section 3.4. 

Table 3.1: Summary of Potential Sites 

Site Area Type Contaminants of Concern 
Site 1 5200 m2 Petroleum Retail Outlet Petroleum Hydrocarbons in the fuel 

oil range and benzene 
Site2 1590 m2 Petroleum Retail Outlet Petroleum Hydrocarbons in the 

gasoline range 
Site 3 2030 m2 Petroleum Retail Outlet Petroleum Hydrocarbons in the fuel 

oil and lube oil range 
Site 4 633 hectares Industrial Fire Training Area Petroleum Hydrocarbons in the fuel 

oil range and free phase petroleum 
_E_roduct 

3.1 Site 1: Petroleum Retail outlet 

The site building was 100 m2 and was operated as a gas bar and convenience store. Petroleum 

storage and distribution equipment consisted of four 22,700 litre underground storage tanks 

(USTs) located to the north of the site building and two 25,000 litre USTs located to the west of 

the site building. 

In May, 1993 six monitor wells were completed as part of the site investigation. Petroleum 

hydrocarbon contamination was found in the soil and groundwater located on the site. In 

October and November 1993 site remediation was carried out. The site was excavated and 

backfill was placed on the site. A total of about 8500 m3 of impacted soil was excavated and 

disposed of. Following the remediation elevated levels of TPH remained in the subsurface soils 
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at the north building foundation and a partial barrier wall was installed along the east site 

boundary. 

In July 1994, a soil and groundwater characterization of the site was conducted. Groundwater 

was found to be impacted with benzene and petroleum impacted soils were also present on the 

site. In October 1995, an environmental site assessment was carried out on the site. Gasoline 

range impacts were present in the groundwater. In 2002 and 2003 groundwater modeling was 

carried out on six existing monitor wells. Following the groundwater-monitoring event, four 

boreholes were completed and one groundwater monitoring well was installed. Soil and 

groundwater samples were collected for the analysis of petroleum hydrocarbons. Gasoline range 

impacts were present in the groundwater. 

3.2 Site 2: Petroleum Retail Outlet 

The site building was 170 m2 and consisted of a service station, gasoline retail outlet, and a 

former car wash. Petroleum storage and distribution equipment consisted of five underground 

gasoline storage tanks, two pump islands, one underground fuel tank, one underground used oil 

tank and associated underground pipes. 

In July 1994, a soil and groundwater characterization of the site was conducted. One water 

sample was impacted with metals, however no detectable levels of petroleum hydrocarbon 

concentrations were reported for any of the groundwater samples tested. Benzene, toluene, ethyl 

benzene and xylenes (BTEX) and total petroleum hydrocarbons were not detected in any of the 

soil samples tested. 
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In October 1995 an environmental site assessment was carried out on the site to compare 1995 

groundwater quality with data collected in 1994. There were no detectable petroleum 

hydrocarbon indicator parameters at any of the monitor wells. 

In 2002 and 2003 a groundwater monitoring event was carried out on six existing groundwater 

monitor wells. Following the groundwater monitoring event three boreholes were completed and 

four groundwater-monitoring wells were installed. Four additional site wells were then installed 

and soil and groundwater samples were collected for the analyses of petroleum hydrocarbons. 

Petroleum hydrocarbon impacts were found to be present in the soil and groundwater. 

3.3 Site 3: Petroleum Retail Outlet 

The site building was 200 m2 and consisted of a gasoline retail outlet and convenience store. 

Petroleum storage and distribution equipment consisted of three underground gasoline storage 

tanks and two pump islands and associated underground pipes. 

In July 1994 soil and groundwater characterization of the site was conducted. Only one 

groundwater sample contained elevated levels of benzene, however petroleum hydrocarbon 

impacts were detected. In October 1995 an environmental site assessment was carried out on the 

site to compare 1995 groundwater quality with data collected in 1994. There was strong gasoline 

range contamination detected in 1994. These high concentrations ofBTEX compounds and TPH 

represented a saturated condition of soluble petroleum hydrocarbon species in groundwater. In 

1995 the TPH levels had disappeared. 
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In 1996/1997 due to the observations and chemical analysis of groundwater samples in 1994 and 

1995 the existing USTs and associated gasoline installations were replaced. During the 

replacement 4300 tonnes of petroleum hydrocarbon contaminated soil and rock were removed. 

The remaining contamination underneath the service station was isolated by the installation of a 

cut-off wall. A TPH concentration of 13,013 mg/kg was encountered in one soil sample 

collected from below the southwest comer of the building. 

After the completion of the site remediation, eleven monitor wells were installed on the site and 

three wells were installed off-site. 

Prior to remediation, free product was present in two monitor wells. Following site remediation 

groundwater samples from remediated areas did not contain BTEX components in detectable 

quantities. Some remaining TPH was detected on the site, primarily in the former oil 

contaminated area in the front of the workshop. 

Contamination (mainly waste oil) remained underneath the service station building and under the 

eastern pump island canopy foundation (gasoline). Contamination may also have been present at 

the northern pump island apron adjacent to the building. 

Unremediated gasoline contamination extended off-site to the south. The extent of any off-site 

impacts was not known. Groundwater from two out of three off-site monitor wells contained 

BTEX components. The BTEX impacted wells were located down gradient of the former 

gasoline contaminated area. All three off-site wells contained TPH components. 
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In 2002 and 2003 a groundwater monitoring event was carried out on six groundwater monitor 

wells. Following the groundwater monitoring event six new on-site groundwater monitor wells 

were installed, followed by an additional four off-site monitor wells. Soil and groundwater 

samples were collected for the analysis of petroleum hydrocarbons. BTEX impacted wells were 

again present down gradient of the former gasoline contaminated area and all three off-site wells 

contained TPH components. 

3.4 Site 4: Industrial Fire Training Area 

The property was situated about 140 meters above sea level. This site was inactive and was 

formerly used for fire training exercises. A former scrap vehicle storage site and a former 

operations area bound it on the west and northwest. A disposal site borders the area to the 

immediate east and to some extent covered part of the fire training area. The property to the 

south and southeast was treed with a mixture of moderate to full growth softwood. 

The site was active during the 1980s and use was discontinued in the mid 1980s. Potential 

contaminants of concern included petroleum hydrocarbon components, P AH compounds and 

trace metals associated with the handling, storage and combustion of fuel products as part of the 

training exercise. 

The former fire training area, disposal sites, former scrap vehicle area and former bulk storage 

area were investigated during an environmental baseline study (EBS) carried out in 1997 and 

1998. The EBS identified the fire tire area as being heavily impacted. The disposal sites and the 

former bulk storage area had minor metal impacts. 



43 
In 2001/2002 a Phase III Environmental Site Assessment (ESA) was conducted. This study was 

initiated because the EBS did not fully delineate and characterize the area of concern at the fire 

training area. 

In 2003 a Human Health and Ecological Risk Assessment (HHRA) was conducted on the fire 

training site and also concluded that contamination above applicable guidelines had been 

identified for soils, groundwater, stream surface water and stream sediments. Contaminants of 

concern included metals and dissolved phase petroleum hydrocarbons (monocyclic aromatic 

hydrocarbons and polycyclic aromatic hydrocarbons). 

In 2003 an existing information review was conducted and a site characterization was completed 

which included the installation of eleven groundwater monitor wells, three test pits and a 

hydrogeological study. 

3.5 Site Selection 

Several factors were considered for site selection and included: 

• Availability of data; 

• Type of contaminants and reliability of the source input; 

• Less uncertainty in data; 

• Consistency in sampling; 

• Applicability of model for the site; and, 

• Site history. 

Based on the data available and the level of site characterization Site 4 was selected as the study 

area. The site had undergone extensive investigation and data over several years was available. 
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The previous environmental assessment reports were available and the site had been consistently 

sampled and monitored over a number of years. SESOIL and AT123D modeling could be 

applied to the site since the site subsurface was undisturbed and no prior remediation activities 

had been carried out on site. As well, additional data was available for the site such as a detailed 

hydrogeological study and a quality human health and ecological risk assessment that had been 

completed on the site. 

A detailed discussion of the site is presented in Section 4.0. 
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Chapter 4: Site Characteristics 

Site characterization included identification of the subsurface geology, history of contamination, 

and water quality at the site. The stratigraphy was determined using soil borings, well logs and 

test pit results. The subsurface geological data was interpreted into values of the hydraulic 

conductivity and porosity, which was used as input to the model. The elevation of the water 

table was interpreted by constructing water level contours to determine the general direction of 

groundwater flow. 

Water quality data collected at specified time intervals from monitoring wells were analyzed to 

determine the trends in the spatial and temporal distributions of chemicals at the site. The 

collected water quality data for a specific chemical were contoured to determine the extent of the 

plume of contamination. 

Following site selection available information for the site was compiled and is outlined in the 

following sections. 

4.1 Site Characterization 

The first step in the site characterization process was an existing information review. In the 

previous work on the site the area was sub-divided into four regions, A, B, C and D, which are 

indicated by the monitor well prefixes. Following the existing review additional site 

investigations were carried out. 

Based on the findings of the previous work, the scope of work for the fieldwork consisted of the 

following: 
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• Three test pits were excavated and three groundwater monitor wells were installed in the 

area south of the fire training area to determine the presence or absence of petroleum 

hydrocarbons, metals, P AH and PCBs in the soil and groundwater (see Figure 4.1 - Site 

Plan); and, 

• Eight groundwater monitor wells were installed to carry out a hydrogeological study. 

4.2 Soil Properties 

The site is underlain by Precambrian, Proterozoic III sandstone. The majority of soils 

encountered during test pitting consisted of very dense, brown silty sand and gravel with 

numerous cobbles and boulders. The majority of soils encountered during the drilling program 

consisted of loose to very dense, grey-green brown, silty sand, clay and gravel with numerous 

cobbles and boulders. 

In the 2002 site investigation program, bedrock was encountered from 1.5 metres to 3.0 metres 

below ground level. 
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4.3 Hydrogeology 

A small stream flows along the northern edge of the site. No other ecological receptors were 

located in the vicinity of the site. 

As part of the site characterization a groundwater survey was conducted on November 3rd, 2003. 

Groundwater was encountered at depths ranging from 0.96 to 5.757 metres below ground level. 

From the groundwater survey, equipotential lines were developed using contouring software 

(Surfer 6.0) and are illustrated in Figure 4.2. As shown in Figure 4.2, the groundwater from the 

fire training area flows in a northeasterly direction. 

Following the groundwater survey, hydraulic conductivity testing was conducted on six 

groundwater-monitoring wells (D-MWl, D-MW3, DMW4, D-MW6, B-MWlO and B-MWll). 

Data from two of the wells could be interpreted from the single well response tests using the 

Hvorslev method (D-MWl and D-MW4). This method assumes that the aquifer medium is 

homogeneous, isotropic, infinite in extent and incompressible. The hydraulic conductivities 

determined from the bail down test from D-MWl and D-MW4 were 5.9 x 10-4 cm/s and 4.3 x 10-4 

cm/s; respectively. 
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Data from four of the wells could not be interpreted due to instantaneous recovery. In a single 

well response when an instantaneous amount of water is removed the change in water level in 

the monitoring well is recorded with respect to time. However, in monitor wells D-MW3, D-

MW6, B-MWlO and B-MWll the water levels instantaneously recovered and the well data was 

not adequate to determine the hydraulic conductivity, however based on field observations of 

instantaneous recovery it can be inferred that the hydraulic conductivity is in the order of 1 

em/sec. 

The vertical gradient measured at a nested well site located adjacent to the stream suggests a 

slight downward movement of the groundwater in this area. Although a downward vertical 

gradient generally indicates recharge conditions, it is assumed that groundwater discharge occurs 

at some point within the stream located down gradient. It is therefore likely that 

groundwater/surface water interaction is ongoing. 

4.4 Chemicals of Concern 

As a result of the field investigation several contaminants of concern have been identified on the 

site. The focus of the model, however is to model the petroleum hydrocarbon impacts present on 

the site. 

4.5 Chemical Concentrations and Distribution 

The results of the field investigations for concentrations of benzene, toluene, ethyl benzene and 

xylenes (BTEX) and total petroleum hydrocarbons (TPH) in soil and groundwater are provided 

in the following tables. It should be noted that the petroleum hydrocarbons present on the site 

were identified as weathered fuel oil, based on laboratory analysis. 
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Table 4.1: Summary of Soil Analytical Results- Total Petroleum Hydrocarbons (mg/kg) 

Sample Depth Date Benzene Toluene Ethyl Xylenes Total Comments 
Location Sampled Benzene Petroleum 

Hydrocarbons 
A-BH1 0.0-0.6 June 1997 < < < < 29 -
A-BH2 0.0-0.6 June 1997 < < < < 44 -
A-MW1 4.6-5.0 July 1997 < < < < 9.2 -
A-MW2 3.8-4.3 July 1997 < < < < 83 -
A-MW3 0.0-0.6 July 1997 < < < < 22 -
B-BH2 1.8-1.96 Feb 1998 < < < < 22 -
B-MW2 0.0-0.6 June 1997 < < < < 2200 -
B-MW3 0.0-0.6 Oct 1997 < < < < 56 -
B-MW4 0.0-0.6 Oct 1997 < < < < 95 -
B-MW5 0.6-1.2 Feb 1998 < < < < < -
B-MW6 0.6-1.2 Feb 1998 < < < < < -
B-MW7 0.0-0.6 Feb 1998 < < < < < -
B-MW8 2.44-2.6 Feb 1998 < < < < < -
B-BH1 0.8-1.4 June 1997 < < 0.68 3.4 55000 Fuel Oil 

Range 
B-MW9-SS1 1.5-2.1 July 2002 < < < < < -
B-MW9-SS5 3.1-3.7 July 2002 < < < < < -
B-MW10-SS2 0.8-1.4 July 2002 0.05 0.383 0.84 6.82 11628 Fuel Oil 

Range 
B-MW10-SS4 2.3-2.9 July 2002 < < < < 177 -
B-MW11-SS2 0.8-1.1 July 2002 < < < < < -
B-TP1-SS1 0.0-1.0 July 2002 < < < < 255 -
B-TP1-SS3 2.0-3.0 July 2002 < < < < 36 -
B-TP2-SS1 0.0-1.0 July 2002 < < < < 2370 Fuel Oil 

Range 
B-TP3-SS1 0.0-1.0 July 2002 < < < < < -
B-TP3-SS2 1.0-1.5 July 2002 < < < < < -
C-MW1 0.0-0.6 June 1997 < < < < < -
D-TP1-SS1 0.0-1.0 Oct 2003 < < < < < -
D-TP1-SS3 2.0-3.0 Oct 2003 < < < < < -
D-TP2-SS1 0.0-1.0 Oct 2003 < < < < 102 -
D-TP2-SS3 2.0-3.0 Oct 2003 < < < < < -
D-TP3-SS1 0.0-1.0 Oct 2003 < < < < < -
D-TP3-SS3 2.0-3.0 Oct 2003 < < < < < -
D-MW1-SS1 0.3-0.6 Oct 2003 < < < < 44 -
D-MW1-SS4 2.7-2.9 Oct 2003 < < < < < -
D-MW2-SS1 0.3-0.9 Oct 2003 < < < < 7207 Fuel Oil 

Fraction 
D-MW2-SS4 2.7-3.3 Oct 2003 < < < < < 
D-MW3-SS1 0.3-0.9 Oct 2003 < < < < < 
D-MW3-SS4 2.7-3.0 Oct 2003 < < < < 19 
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Table 4.2: Summary of Groundwater Analytical Results- Total Petroleum Hydrocarbons 
{mg/L)_ 
Sample Date Benzene Toluene Ethyl Xylenes Total Comments 
Location Sampled Benzene Petroleum 

Hydrocarbons 
A-MWl 1997 < < < < 0.39 -
A-MW2 1997 < < < < < -
A-MW3 1997 < < < < 0.29 -
A-MW4 1997 < < < < 0.24 -
C-MWl 2002 < < < < < -
C-MW2 2002 < < < < < -
C-MW3 2002 < < < < < -
D-MWl 2003 < < < < 0.06 -
D-MW2 2003 < < < < 0.18 -
D-MW3 2003 < < < < < -
B-BHl 1997 0.21 0.0079 0.036 0.352 17.22 -
B-MWl 1997 < < < < 0.61 -
B-MW2 1997 0.35 0.0016 0.025 0.147 252 Weathered Fuel Oil 
B-MW2 1997 0.33 < 0.011 0.154 350 Weathered Fuel Oil 
B-MW3 1997 < < < < 1.30 -
B-MW4A 1997 < < < < < -
B-MW4B 1997 < < < < < -
B-MW5 1997 < < < < < -
B-MW6 1997 < < < < < -
B-MW7 1997 < < < < < -
B-MW8 1997 < < < < < -
B-BHl 2002 0.033 < < < 52.8 Weathered Fuel Oil 
B-MWl 2002 < < < < 0.16 -
B-MW3 2002 < < < < 0.13 -
B-MW4A 2002 < < < < < -
B-MW4B 2002 < < < < < -
B-MW9 2002 < < < < 0.09 -
B-MWlO 2002 < 1 < 4 25.5 Weathered Fuel Oil 
B-MWll 2002 < < < < < -

The extent of soil contamination is illustrated in Figure 4.3. The extent of groundwater 

contamination (including contour lines) is illustrated in Figure 4.4 and Figure 4.5. 
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4.6 Toxicity 

4.6.1 Human Health 

Some aspects of the toxicity of petroleum oils depend on the chemical composition of the oil. 

Where this has been studied, most toxicity has been found associated with the aromatic 

compounds in oil (Pierzynski et al., 2000). 

Many toxicological effects are related to organic chemicals. The simple alkane, alkene, and 

alkyne hydrocarbons are volatile gases that cause asphyxial disorders, which are related to 

insufficient oxygen intake. Hydrocarbon liquids are known to cause dermatitis which is 

associated with the dissolution of fatty skin tissues and results in inflammation, drying and scaly 

skin. Other problems associated with some of these substances are irritation, headaches, 

dizziness and nervous system disorders (Pierzynski et al., 2000). 

Fuel oil is derived from crude petroleum and is a mixture of aliphatic (64%), aromatic (35%) and 

olefinic (1-2%) hydrocarbons (Tripathi, 2001). A summary toxicological information offuel oil 

is provided in Table 4.3. 
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Table 4.3: Summary of Human Toxicity for Fuel Oil 

Effect Toxicity Source 
Acute Probable effects Level (PEL)= 400 Tripathi, 2001 
Ingestion- respiratory, neurotoxic ppm (8 hours/day for 40 hour work 
and gastrointestinal effects week) 
Dermal/Inhalation - cardiovascular, 
hematological, renal effects 

Chronic 
Heaviness on chest 
Eye irritation 
Dermatosis 
Acute Oral Rat; LD50 = 14,500 mg/kg Material Safety Data Sheet (MSDS) 
Inhalation - irritation, depress (Oral ingestion rate for lab rates at on #2 Fuel Oil, 2002 
central nervous system, giddiness, which there is a 50% mortality rate) 
headache, vomiting, lack of 
coordination, narcosis, stupor, coma 
and unconsciousness 
Ingestion - irritation, depress central 
nervous system, giddiness, 
anesthetic stupor, coma, death 
Dermal- drying, cracking and 
defatting dermatitis 
Chronic 
Inhalation - dizziness, weakness, 
weight loss, anemia, nervousness, 
renal failure, degenerative changes 
of liver kidneys may occur 
Ingestion- no data available 
Dermal - irritation, dermatitis and 
rash 
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4.6.2 Impacts on Plants and Microorganisms 

The mechanisms of TPH toxicity are not well studied. Although the inherent toxicity of some 

compounds is a probable cause, the lack of water and nutrients in oily soils has been found to be 

a significant factor in an organism's response (Langley et al., 2003). In addition, plant response 

is determined by the exposure mechanisms (ie atmospheric deposition, spill, water contamination 

or land application). 

Organic chemicals introduced into the environment can have senous impacts on certain 

organisms. The toxicity of petroleum hydrocarbons in soil has been studied using a range of 

species, including bacteria, algae, earthworms and plants, and a range of lethal and sub-lethal 

effects, related to seed germination, root elongation and reproduction (Langley et al., 2003). 

Most of the published literature has focused on the whole product toxicity, with the majority 

using crude oil. Toxic effects have appeared over a large range of TPH concentrations. 

However, most effect concentrations are > 1000 mg/kg (Langley et al., 2003). The lowest ECso 

(effect concentration for which 50% of the plants are effected) for seed germination studies are 

in the range of 2000 to 3000 mg/kg (Langley et al., 2003). The low molecular weight aromatic 

component is likely to be a significant contributor to the toxicity of these mixtures (Langley et 

al., 2003). 

A range of effect concentrations for TPH are presented in Table 4.4. 
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Table 4.4: Selected Range of Effect Concentration of TPH (Langley et al., 2003) 

Product Age Endpoint Value Comment 
Plants 
Fuel Oil-light Fresh Seed germination 3000 mg/kg (sand) Maize 
fraction LCso 
Fuel Oil -heavy Fresh Seed germination 60,000 mg/kg (sand) Maize 
fraction LCso 
Fuel Oil Fresh Seed germination 3000 mg/kg-70,000 7 crops (most 

LCso mg/kg (sand) sensitive lettuce, 
least sunflower) 

Diesel Fuel Fresh Seed germination 25,000 mg/kg (sand) 9 species of grasses 
LCso 

Diesel Fuel Fresh Seed germination 50,000 mg/kg (sand) 22 species of grasses 
LCso for 50% of the legumes and 
species conunercial crops 

Light Crude Oil Fresh Significantly 4200-26,600 mg/kg Wheat and oats. 
reduced growth - More sensitive but 
(20-70%) more variable than 

seed germination 
Microalgae 
Diesel Oil Weathered Biomass and <2,120 mg/kg ---

enzyme activity 
NOEC 

Soil Invertebrates (Earthworms) 
Light Crude Oil Artificially Survival 42-96 mg/kg Dependent on the 

Weathered LCso organic content of 
the soil 

Crude Oil Weathered Survival 1000 mg/kg Generally non-toxic 
NOEC above 4000 mg/kg 

4. 7 Applicable Guidelines 

Based on the site's location two sets of guidelines may to apply to the site. The first being the 

Atlantic Partnership in Risk Based Correction Risk-Based Screening Levels. Under the Atlantic 

PIRI classifications system the site would be classified as a commercial site with coarse-grained 

soil and non-potable groundwater. Also considered were the federal guidelines for commercial, 

non-sensitive sites, developed by the CCME. These guidelines are summarized in Table 4.5. 
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Table 4.5: Summary of Applicable Guidelines 

Soil (mg/kg) 
Atlantic PIRI Guidelines 
Receptor Groundwater Use Soil Type Exposure Compound of Allowable 

Pathway Concern Concentration 
Commercial Non-Potable Coarse Grained Indoor Air Diesel/#2 7400 

Soil Ingestion 7400 
Soil Leaching Not Applicable 

for non-potable 
scenarios 

CCME 
Non-Sensitive TPH 1000 
Groundwater (mg/L) 
Atlantic PIRI Guidelines 
Receptor Groundwater Use Soil Type Exposure Compound of Allowable 

Pathway Concern Concentration 
Commercial Non-potable Coarse-grained Indoor Air Disel/#2 20 

Ingestion Not Applicable 
for non-potable 
scenarios 

CCME 
No guideline in place 

For Atlantic PIRI a value of 20 mg/L is applied to any calculated groundwater value that exceeds 

20 mg/L as this is considered the upper concentration limit. Concentrations above this value 

may represent the presence of free product. 

Using the above table the target levels were specified as 1000 mg/kg for soil and 20 mg/L for 

groundwater. 
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Chapter 5: Model Input File 

Based on the information gathered, the site characterization, and the history of the site a 

SEVIEW input file was created for the site. 

5.1 Climate File Input parameters 

The SESOIL climate data set contains information describing the specifics of the local climate. 

This includes; air temperature, cloud cover, relative humidity, short wave albedo, mean 

evapotranspiration rate, monthly precipitation, mean length of precipitation events, number of 

precipitation events per month and the distribution of precipitation events throughout the month. 

The site specific climate file was completed and is summarized in Table 5.1. 

Table 5.1: Summary of Climate Input Parameters 

Month Air Cloud Relative Short Evapo. Precip1 Storm #Storm Length 
Temp Cover Humidity 1 Wave Rates (em) Duration Events Rainy 
(oC)I Fraction2 Albedo (days) Season 

(days) 
Jan -4.8 0.78 0.85 0.7 0 15 0.6 5.91 30.4 
Feb -5.4 0.66 0.76 0.7 0 12.52 0.63 5.05 30.4 
March -2.5 0.62 0.76 0.7 0 13.08 0.62 5.80 30.4 
April 1.6 0.51 0.74 0.5 0 12.18 0.6 5.74 30.4 
May 6.2 0.62 0.76 0.2 0 10.09 0.54 5.80 30.4 
June 10.9 0.47 0.72 0.2 0 10.19 0.39 5.63 30.4 
July 15.4 0.52 0.67 0.2 0 8.94 0.32 5.27 30.4 
Aug 15.5 0.69 0.72 0.2 0 10.81 0.38 5.16 30.4 
Sep_t 11.8 0.45 0.76 0.2 0 13.09 0.47 4.52 30.4 
Oct 6.9 0.56 0.74 0.2 0 16.19 0.58 4.58 30.4 
Nov 2.6 0.80 0.84 0.8 0 14.40 0.6 6.13 30.4 
Dec -2.2 0.72 0.87 0.8 0 14.80 0.63 6.16 30.4 

1 Environment Canada 
2 http://www.geocities.com/meteomode 

The air temperature is entered in degrees Celsius. The air temperature is used to determine the 

monthly evapotranspiration rates and soil temperatures. The air temperature averages were 

obtained from Environment Canada and are the monthly averages collected from St. John's 

Airport. 
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The cloud cover is entered as a fraction. In SESOIL the cloud cover is a dimensional fraction 

ranging from 0.0 to 1.0 and is used to calculate the evapotranspiration rates. The cloud cover 

data was obtained from local weather observations of cloud cover. 

The fractions were determined by the following values: 

Overcast= 1 
Cloudy= 0.9 

Mostly Cloudy= 0.8 
Mainly Cloudy= 0. 7 
Partly Sunny= 0.6 

Variable Clouds = 0.5 
Partly Cloudy= 0.4 
Mainly Sunny= 0.3 
Mostly Sunny= 0.2 
A few Clouds = 0.1 

Sunny= 0 

Relative humidity is also provided as a fraction. It is used to calculate evapotranspiration rates. 

The relative humidity averages were obtained from Environment Canada and are the monthly 

averages collected from St. John's Airport. 

The short wave albedo is provided as a fraction. In SESOIL the albedo fraction is the ratio of the 

reflective short wave energy to the incoming energy. An array of the short wave albedo fraction 

for each month of the year (dimensionless fraction ranging from 0.0 to 1.0) is used to determine 

the soil temperature, which is used to calculate evapotranspiration rates. Using typical short 

wave albedo values provided in Table 5.2 and based on the site conditions the short wave albedo 

fractions for each month of the year were determined and ranged from 0.2 to 0.8. 
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Table 5.2: Typical Short Wave Albedo Values (Scheiker, 2000) 

Surface Range Typical 
Values 

Soil and Bedrock 
Dark moist soil with high humus content 0.05-0.15 0.10 
Grey moist soil 0.10-0.20 0.15 
Dry desert soil 0.20-0.35 0.30 
Sand, wet 0.20-0.30 0.25 
Sand, light dry 0.30-0.40 0.35 
Soil (black, moist) 0.05-0.10 --
Soil (black, dry) 0.10-0.15 --
Desert 0.25-0.40 0.37 
Desert, clayey 0.29-0.31 --
Granite 0.12-0.18 --
Rocks in general 0.12-0.15 --
Sand, wet 0.15-0.25 --
Snow 
Fresh dry snow 0.70-0.90 0.80 
Old snow 0.60-0.75 0.70 
Dirty snow 0.40-0.75 --
Thawing snow 0.35-0.65 0.50 
Vegetation 
Grasses 0.15-0.30 0.20 
Green grass 0.18-0.27 --
Green vegetation (short) 0.10-0.20 0.17 
Grassland parched 0.16-0.30 --
Grassland, dry 0.25-0.30 --
Dry vegetation 0.20-0.30 0.25 
Forests 0.05-0.20 --
Coniferous forest 0.10-0.15 0.12 
Green deciduous forest 0.15-0.25 0.17 
Yellow deciduous forest (autumn) 0.33-0.38 --
Man made Surfaces 
Concrete 0.15-0.35 0.20 
Asphalt 0.05-0.10 0.07 

The evapotranspiration rates were not available for the area. This value was omitted and was 

calculated by SEVIEW based on the other input parameters provided. 

The precipitation is measured in em/month. The precipitation averages were obtained from 

Environment Canada and are monthly averages. 

The duration of individual storm events is measured in days. Site-specific values were not 

available for the site. The values from the SESOIL climate file for Portland, Maine were used 

since the climate and latitude of the site are similar to the climate and latitude of Portland Maine. 
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The number of storm events is measured in storm events/month. In SESOIL it is array of the 

number of storm events per month for each month of the year. Again site-specific values were 

not available for the site. The values for the SESOIL climate file for Portland, Maine were used 

since the climate and latitude of the site are similar to the climate and latitude ofPortland Maine. 

The length of the rainy season is measured in days. The rainy season is defined as the number of 

days in a given month upon which rain may occur. For most regions of Canada, this parameter 

should be set to 30.4 for all months, since rain events may occur throughout the entire month. 

The length of rainy season was entered as 30.4. 

5.2 Chemical File Input Parameters 

The chemical input file contains information describing the chemical and physical properties of 

the contaminant released or applied to the soil column. This information includes water 

solubility, an air diffusion coefficient, Henry's Law constant, an organic carbon adsorption 

coefficient, a soil partition coefficient, the molecular weight, the valance of the compound, acid, 

base and neutral hydrolysis rate constants, liquid and solid phase biodegradation rates, a ligand 

stability constant, the moles ligand per mole of compound and the molecular weight of the 

ligand. Fuel oil is not a ligand compound and therefore the ligand stability constant, the moles 

ligand per mole of compound and the molecular weight of the ligand were applicable. A zero 

value was entered for these three compounds. The remaining chemical input parameters are 

described in the following paragraphs. 

Water solubility is measured in f..Lg/ml. It is the solubility of the compound in water at 25°C. The 

reported values of water solubility for fuel oil were varied. Sources report values ranging from 

3.11 x 10"7 to 535 mg/L (Fitzgerald, 1989). From the available site information, the highest 
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concentration of TPH observed in the groundwater was 350 mg/L, therefore this value was used 

as the solubility of the TPH compound. 

The air diffusion coefficient is measured in cm2/sec. This parameter is used by SESOIL to 

calculate volatilization. In a study completed by Sullivan et al. (1997) a value of 0.0463 was 

used as the air diffusion coefficient for diesel fuel and therefore this value was entered as the air 

diffusion coefficient in the SESOIL input file. 

Henry's Law Constant is measured in M3-atm/mol and is a dimensional form of Henry's law 

Constant. Again the Henry's Law Constant for fuel oil is variable. In a study completed by 

Sullivan et al. (1997) a value of0.042 was used as the Henry's Law Constant and this value was 

entered into the SESOIL input file as the Henry's Law Constant. 

The organic carbon adsorption coefficient, Koc is a coefficient that describes the distribution of 

an organic chemical between the aqueous and soil organic matter phases. 

K =Kd 
oc I' 

J oc 

Equation 5.1 

Kocis measured in ().lg/g)/(mg/ml). Sullivan et al. (1997) used a Koc value of 1100 and this value 

was entered into the SESOIL input file as the value for Koc. 

The distribution coefficient, KI is also measured in ().lg/g)/(mg/ml). The KI value defines the 

distribution of the contaminant between soil solid and solution phases (Pierzynski et al., 2000). 
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A zero value was entered for the distribution coefficient and SESOIL calculated Kt by 

multiplying the organic carbon adsorption coefficient (Koc) times the soil organic carbon content, 

(Organic carbon in the soil input file). 

The molecular weight of the soil is measured in g/mol and the molecular weight was based on 

the value used by Sullivan et al. (1997) and was entered as 226. 

The valence of the compound is measured in g/mole and was used to calculate the cation 

exchange with the soil. The Cation Exchange Capacity algorithm was not used since the 

adsorption process was being modeled. This parameter was entered as zero. 

Hydrolysis involves the chemical transformation between an organic chemical and water that 

results in the breaking of one bond while forming a new carbon-oxygen bond. Since hydrolysis 

was not considered a major process for this site the neutral, base and acid hydrolysis rate 

constants were entered as zero. 

The liquid and solid phase biodegradation rates were measured in dai1 and are a measure of the 

biodegradation rates of the compound in the liquid and solid phase; respectively. Again, 

following the study conducted by Sullivan et al. (1997) the liquid and solid phase biodegradation 

rates were entered as zero since biodegradation mainly affects the benzene, toluene, xylene and 

ethyl benzene concentrations and the fresher fuel oil products. Once the product is weathered 

biodegradation no longer is a major source of natural attenuation for fuel oil (Sullivan et al., 

1997). 
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5.3 Soil File Input Parameters 

The soil-input file specifies information describing the soil properties for a SESOIL column. 

This information includes: soil bulk density, intrinsic permeability, soil disconnectedness index, 

effective porosity, organic carbon content, cation exchange capacity and Freundlich exponent. 

The SESOIL programs accounts for vertical variation in the soil column by allowing up to four 

soil layers. The variation of the soil properties for non-uniform soils is then specified in the 

application file. The soil-input parameters are provided in the following paragraphs. 

Bulk density is measured in g/cm3
. Typical soil bulk density values are provided in Table 5.3. 

Table 5.3: Typical Soil Bulk Density Values (Scheiker, 2000) 

Soil Type Estimated Bulk Density (g/cm3) 
Sand 1.18-1.58 
Silt 1.29-1.80 
Clay 1.40-2.20 

The bulk density for the site was not measured in the field and as a result a range of typical 

values was considered. 

Intrinsic permeability is measured in cm2
• Intrinsic permeability can be estimated by multiplying 

hydraulic conductivity in units of em/sec by 1.0 x 10-5 em sec. Based on the hydraulic 

conductivity testing carried out (see page 47) on the site the intrinsic permeability ranged from 

A range of values were also considered for the soil pore disconnectedness index. Typical values 

are provided in Table 5.4. 
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Table 5.4: Default values for Soil Pore Disconnectedness Index (Bonazoutas and Wagner, 
1984) 
USDA Textural Soil Class Soil Pore Disconnectedness Index 
Clay (very fine) 12 
Clay (medium fine) 12 
Clay (fine) 12 
Silty Clay 12 
Silty clay loam 10 
Clay loam 7.5 
Loam 6.5 
Silt loam 5.5 
Silt 12 
Sandy Clay 6 
Sandy Clay Loam 4 
Sandy loam 4 
Loamy sand 3.9 
Sand 3.7 

The effective porosity is a dimensionless ratio of the volume of interconnected voids to the bulk 

volume of the aquifer matrix. The porosity of the site was estimated as 0.25. However, the 

actual porosity was not measured. A range of values for effective porosity were considered 

based on the typical values provided in Table 5.5 and Table 5.6. 
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Table 5.5: Default Values for Effective Porosity (Bonazoutas and Wagner, 1984) 

USDA Textural Soil Class Effective Porosity 
Clay (very fine) 0.20 
Clay (medium fine) 0.20 
Clay (fine) 0.22 
Silty Clay 0.25 
Silty clay loam 0.27 
Clay loam 0.30 
Loam 0.30 
Silt loam 0.35 
Silt 0.27 
Sandy Clay 0.24 
Sandy Clay Loam 0.26 
Sandy loam 0.25 
Loamy sand 0.28 
Sand 0.30 

Table 5.6: Typical values for Effective Porosity (Domenico et al, 1990) 

Soil Type Effective Porosity 
Clay 0.01-0.20 
Silt 0.01-0.30 
Fine Sand 0.10-0.30 
Medium Sand 0.15-0.30 
Coarse Sand 0.20-0.35 
Gravel 0.10-0.35 
Sandstone 0.005-0.10 
Unfractured Limestone 0.001-0.05 
Fractured Granite 0.00005-0.01 

The organic carbon content is measured as a percent and is the organic carbon content of the 

uppermost soil layer. Since the organic carbon content was not measured in the field a range of 

organic carbon contents in the soil was considered in the calibration phase of the simulation. 

The cation exchange capacity is measured in milliequivalents/1 00 grams dry soil. Unless the 

combined effects of cation exchange and sorption are accounted for, these processes should not 

be used at the same time. Since sorption would dominate the fate and transport process this 

process was included and the cation exchange capacity was set to zero. 
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The Freundlich Exponent is dimensionless and is used to establish the chemical sorption for the 

top soil layer. Values of Freundlich Equation Exponent typically range from 0.9 to 1.4. If the 

value is not known, the default value of 1.0 is recommended. Since the Freundlich Exponent 

was not measured in the field, a range of values were considered in the calibration phase of 

simulation. 

5.4 Washload Input File 

The washload file contains data used by SESOIL to calculate the washload transport or the 

removal of the contaminants adsorbed to eroding soil particles. 

The washload area is measured in crn2
• The washload area should be equal to or less than the 

application area of the soil column. The washload area in the model was set to the application 

areaof1.4x 107 crn2
. 

The silt, sand and clay fractions are the fractions of silt, sand and clay in the washload topsoil 

and are estimated from site characteristics. An actual grain size analysis was not completed as 

part of the field work, however based on observations made during test pit and monitor well 

programs the silt, sand and clay fractions were set to 0.2, 0.66 and 0.14; respectively. 

The slope length or length of travel of the representative overland flow profile is measured in 

ern. The slope length was determined by field measurements and was specified as 6279 ern. 
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The land slope is measured in em/em. The land slope is the average slope over the representative 

overland flow profile. The land slope was determined by field measurements and was specified 

as 0.04 em/em. 

The soil erodibility factor is measured in tons/acre. This value typically ranges from 0.03 to 

0.69; the default value is 0.23. The soil erodibility factor was not measured in the field and was 

specified as the default value of 0.23. The default value was reasonable since the land was not 

cultivated and had a gentle slope and no erosion control measures were in place. 

The soil loss ratio is unitless. The ratio depends on the type of ground cover and land 

management practices. Typical values range from 0.0001 (well-managed land) to 0.94 (tilled 

soil). The soil loss ratio was not measured in the field and was specified as the default value of 

0.26 since the land was not tilled or cultivated and no erosion control measures were in place. 

The contouring factor is a fraction and is used for agricultural land. Typical contouring factors 

range from 0.1 (extensive practices) to 1.0 (no supporting practice). The contouring factor was 

not available for the site and was specified as the default value of 1.0 since the land was not 

cultivated and no agricultural activity was present on the site. 

Manning's Coefficient (unitless) for overland flow typically ranges from 0.01 to 0.40; the default 

value is 0.03. Manning's coefficient was not available for the site and was specified as the 

default value of0.03 since the land was vegetated with trees and grass. 
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5.5 Execution Input File 

Within SEVIEW the execution file is used to specify the number of years to be modeled by 

SESOIL. Years is the only parameter required and between 1 and 999 years can be specified. 

This value was varied and ranged from six to seven years in the calibration and verification 

processes and up to 50 years for the prediction process. 

5.6 Application Input File 

The application file contains information describing the amount of contaminant released or 

applied to the soil column. The application file also contains specifications regarding the 

dimensions of the soil column, the thickness of the soil layers, and the additional soil properties 

beyond those specified in the soil input file. 

Application area is measured in cm2 and is the aerial extent of contaminated soil in the SESOIL 

column. The application area was specified as 1.4 x 107 cm2
. 

The latitude of the site in decimal degrees is used, along with the climate parameters of 

temperature, relative humidity, short wave albedo and percent cloud cover to calculate 

evapotranspiration. The latitude was determined and was specified as 47.50 degrees in the 

SESOIL model. 

The spill index is unitless and indicates if a contaminant load is instantaneous or a continuous 

load over each month. The spill index was set to 1 to model an instantaneous spill occurring at 

the beginning of the month. 
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The layer thickness is measured in em and is the thickness of the SESOIL layers. The number of 

sublayers in each SESOIL layer was also specified. Upper, second, third and lower layers with 

thickness' of 5, 5, 125 and 5 em, respectively, were considered. 

The number of sub layers can be set from 0 to 10. SESOIL divides each layer into the 

appropriate number of sublayers of equal thickness. Each sub layer will have the same properties 

of the layer in which it resides. In the model the number of sub layers was specified as zero. 

5. 7 Ratio parameters 

Several ratio parameters are specified in the SESOIL model. 

The pH of each layer can be specified. The pH parameter is only used if the hydrolysis 

algorithm is utilized. The pH values for the layers were set to 7 since the hydrolysis algorithm 

was not utilized. 

The intrinsic permeability for each SESOIL layer can also be specified. The intrinsic 

permeability for individual soil layers was not specified and the intrinsic permeability was taken 

as the overall value specified. 

Several ratio parameters are included in the SESOIL application file and include; ratio of liquid 

phase biodegradation to upper layer biodegradation; ratio of solid phase biodegradation to upper 

layer biodegradation; organic carbon ratio to upper layer organic carbon; cation exchange ratios 

to upper layer cation exchange; Freundlich exponent ratio to upper layer Freundlich; and, 
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adsorption coefficient ratio to upper layer adsorption coefficient. For all model runs 1.0 was 

used for the layer ratios. 

5.8 Soil Layer Input File 

The soil layer values include the contaminant load, mass of contaminant transformed/removed, 

ligand load, volatilization/diffusion index, index of contaminant transport in surface runoff; and 

ratio of contaminant concentration in rainwater. These parameters are summarized in the 

following paragraphs. 

The contaminant load (POLIN) is measured in j.tg/cm2/month and is a measure of the monthly 

contaminant load (mass per unit area) entering the top of each soil layer. The contaminant load 

is calculated using the following equation: 

POLIN= CONC x D x RS Equation 5.2 

Where: 

POLIN 
CONC 
D 

RS 

=the contaminant load to apply in j.tg /cm2/month 
=The concentration sorbed to the soil in 1..1-g /g 
= the thickness of the layer in centimeters to which the contaminant is 
applied 
=The soil bulk density of the soil in g/cm3 

The POLIN values were based on the highest measured concentration of petroleum hydrocarbon 

present within the soil layer, the layer thickness and a soil bulk density of 2.2 g/cm3
• 

and 5.3 x 105 j.tg/cm2/month were applied to soil layers 1, 2, 3 and 4; respectively. 
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The mass of contaminant transformed is measured in ~g /cm2/month and is a measure the 

monthly mass of contaminant removed from each layer by a process not otherwise included in 

SESOIL. The value was specified as zero. 

The ligand load is measured in ~g /cm2/month and is the monthly ligand load input into each 

layer. The ligand load was specified as zero. 

The volatilization is measured as a fraction and is the index of volatilization/diffusion upward 

from a soil layer. Values range from 0.0 to 1.0. A volatilization index of 0.0 means there would 

be no volatilization/diffusion upward from the soil layer. A volatilization index of 1.0 means 

100 percent of the estimated volatilization/diffusion is modeled for the soil layer. The 

volatilization index was set to 1.0 for each soil layer. 

The index for contaminant transport in surface runoff may range from 0.0 to 1.0. The index of 

contaminant transport in surface runoff was specified as 0.0. 

The ratio of contaminant concentration in rain to water is measured as a fraction and is a measure 

of the contaminant load contained in the monthly precipitation. This value was specified as 0.0. 

5.9 AT123 Aquifer Input File 

The AT123D aquifer parameters describe the soil characteristics and aquifer geometry and this 

includes hydraulic conductivity, hydraulic gradient, effective porosity, soil bulk density, 

longitudinal, transverse and vertical dispersivities and aquifer width and depth. The input file 
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also contains information on the number of eigenvalues and the model steady state tolerance 

factor. 

Hydraulic Conductivity is measured in m/hour and is a measure of the horizontal hydraulic 

conductivity of the saturated porous medium. The hydraulic conductivity was based on the 

intrinsic permeability value in the SESOIL input file. 

The hydraulic gradient is measured in meters/meter and is the slope of the potentiometric 

surface. In unconfined aquifers this is equivalent to the slope of the water table. It is assumed to 

be along the longitudinal direction. Typical values range from 0.0001 - 0.05 mlm. The 

hydraulic gradient of the site was not measured in the field and a range of values from 0.003 

mlm to 0.04 mlm were considered. 

As previously discussed the effective porosity is a dimensionless ratio of the volume of 

interconnected voids to the bulk volume of the aquifer matrix. Typical values are provided in 

Table 5.5 and Table 5.6. 

The soil bulk density is measured in kilograms/m3 and is the bulk density of the aquifer matrix. 

Typical values are provided in Table 5.7. The bulk density at the site was estimated to be 1690 

kg/m3 however a wide variation was present. As a result, a range of typical values were 

considered. 
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Table 5.7: Typical Values of Soil Bulk Density (Scheiker, 2000) 

Soil Type Bulk density (kg/m3
) 

Clay 1400-2200 
Silt 1290-1800 
Sand 1180-1580 

Longitudinal/Transverse/Vertical Dispersivity are measured in meters and are a measure of the 

process whereby the plume will spread out in a longitudinal direction (along the direction of 

groundwater flow), transversely (perpendicular to groundwater flow), and vertically downwards 

due to mechanical mixing in the aquifer and chemical diffusion. 

Selection of dispersivity values is a difficult process, given the impracticability of measuring 

dispersion in the field. These values were estimated based on site characteristics. Methods to 

establish dispersivities in feet based on contaminant plume length (Lp) are presented below. 

Longitudinal Dispersivity: 

aL= 1.13 x {log10(Lp/3.28)} Equation 5.3 

(Scheiker, 2000) 

Note Lp is in feet 

Transverse Dispersivity 

ar = O.lOaL (Scheiker, 2000) Equation 5.4 

Vertical Dispersivity 

av =very low (i.e. 1 x 10"99 ft) Scheiker, 2000 Equation 5.5 
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Based on the above equations the values for longitudinal, transverse and vertical dispersivity 

were calculated and converted to meters. A range of values were considered for dispersivities. 

The aquifer width is measured in meters and measures the width of the aquifer in the y-direction. 

The aquifer width was specified as infinite. 

The aquifer depth is measured in meters and is a measure of the aquifer depth in the z-direction. 

The depth can also be set to an infinite value. In this model, however the aquifer depth was 

specified as 0.2 since the average depth to bedrock was 2.0 metres below the ground surface and 

the average depth to the groundwater table was 1.8 metres below the ground surface. 

The number of eigenvalues establishes the maximum number of terms that will be calculated for 

a series solution before truncation occurs. The default value of 500 was specified. 

Model error tolerance is the error tolerance if a steady state solution is desired. The default value 

is 0.001. The default value of 0.001 was specified. 

5.9.1 AT123D Input File Parameters 

The AT123D input parameters contains information describing the geometry of the source 

release and the contaminant properties. Input parameters include the starting and ending 

coordinates of the release, the chemical distribution coefficient, water diffusion coefficient and 

the first order decay coefficient. 
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Starting and ending coordinates of the source in the X/Y IZ-Directions are measured in meters 

and provide the starting and ending coordinates of the source in the x/y/z direction. The starting 

and ending coordinates of the source were specified as the SESOIL column. 

The distribution coefficient, Kl, as previously discussed, is measured in meters3 /kilogram and is 

a chemical specific partition coefficient. The air diffusion coefficient for the chemical is 

calculated by multiplying the water diffusion coefficient by the tortuosity. The values were 

based on the SESOIL input file. 

5.9.2 AT123D Output Parameters 

The AT123 output parameters contain information that specified contaminant concentrations at 

specific times and coordinates. Output parameters include the starting and ending points in time 

and the size of the time step. The output parameters also include information on the coordinates 

where the concentration would be determined in the x,y and z directions. The starting time step 

is provided in months and is the first month for which a solution is desired. The ending time step 

is also provided in months and is the final month for which a solution is desired. The time step is 

measured in months and is the number of months between results presented in the AT123D 

output file. These values were based on the SESOIL input values in the execution file. 

The X, Y and Z axis coordinates are measured in meters and are the coordinates in the x, y and z-

direction (direction of flow) where the concentration is desired. The total distance in the x, y and 

z direction was set to be slightly larger than down gradient point of concern. 

These coordinates were modified based on the desired output locations. 
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Chapter 6: Simulation Runs 

Following site selection and the selection and development of the computer model the simulation 

analysis was completed. In the design process the model was calibrated, verified and predictions 

were made. In each step of this process a statistical analysis was carried out which included a 

sensitivity analysis, a determination of statistical significance and calculation of the confidence 

intervals. 

6.1 Methodology 

Based on the site characterization study three data sets are available for modeling. The first set 

of data from 1997 was used to establish the initial concentration of petroleum hydrocarbons in 

the soil. The second set of data from 2002 was used to calibrate the model and the third set of 

data from 2002 was used to verify the model. 

The first step in experimentation is calibration. Calibration is the process of adjusting selected 

model parameters within an accepted range until the differences between model predictions and 

field observations are within selected criteria of performance. 

A design of experiment (DOE) approach was used for the calibration exercise as opposed to 

varying various factors. DOE was chosen since it is a systematic approach that incorporates the 

use of statistics in the experimental design and calibration process. 

The statistical design of experiments is defined as the: 
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" ... process of planning the experiment so that the appropriate data will be collected which may 

be analyzed by statistical methods resulting in valid and objective conclusions." (Montgomery, 

2001). 

DOE incorporates a factorial approach to experimentation. The alternative to DOE is a one 

factor at a time approach. One factor at a time experiments are regarded as easier to implement, 

more easily understood and more economical than factorial experiments. These assumptions 

however are incorrect. As well, there are two other key reasons why one factor at a time 

experiments should not be conducted, firstly it does not provide adequate information on 

interactions and secondly it does not provide estimates of the effects of factors. 

The first step in DOE is to define the objective of the experiment and to state the problem. The 

second step in DOE is to choose the factors involved and the levels over which the factors will 

be varied. The third step is to select the response variables and then an experiment design can be 

chosen. Following this step the experiment is performed and the data is analyzed. 

In data analysis the following procedure is followed (Montgomery, 2001): 

• the effects of the factors are estimated; 

• the significance of the effects is determined through normal probability plots, the analysis 

of variance (ANOV A) and comparison to standard error; 

• the residuals are analyzed to check for normality and equality of variance; 

• prediction of response using model if all tests (i.e. normality and equality of variance ) 

are okay; 

• confirmation of model; and, 

• interpretation of effects. 
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6.1.1 Two Factorial Approach 

Factorial designs are widely used in experiments involving several factors. In a two factorial 

design k factors are varied over two levels only, a high value and a low value, and 2k 

experiments are performed for the analysis (Montgomery, 2001 ). Say for example if four factors 

are studied then 24 or 16 experiments (or runs in a computer model) will be completed. All 

combinations of highs and lows are run. 

To estimate the effect, the contrast associated with each effect must be calculated. The contrast 

is determined as follows: 

Contrast AB =(a± 1)(b ± 1) .... (k ± 1) Equation 6.1 (Montgomery, 2001) 

When expanded the sign in each set of parentheses is negative if the factor is included in the 

effect and positive if the factor is not included. For example in a 23 factorial the contrast of 

factor AB (the interactive effect of A and B) would be: 

Contrast AB =(a -1)(b -1)(c + 1) =abc+ ab + c + (1) -ac -be- a -b 

Equation 6.2 (Montgomery, 2001) 

Once the contrast for the effect has been determined the effect can be estimated as: 

2 
AB ... K = n

2 
k ( Constrast A,B, .. .x) Equation 6.3 (Montgomery, 2001) 
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Where: 

A,B, ... K =Effect 

k = Number of Factors 

n = Number of Replications 

6.1.2 Sensitivity Analysis and Statistical Analysis 

The purpose of the sensitivity analysis is to examine how sensitive the output parameters (in this 

case the concentrations of petroleum hydrocarbons in the soil and groundwater) are to changes in 

various input parameters. Preliminary runs were made to narrow down the parameters 

considered since there were many variables. A DOE approach to calibration automatically 

incorporates a sensitivity analysis since the variables are changed over high and low values. 

However, less runs are required, as well the degree of sensitivity is quantified since the 

magnitude of the effect of each factor is provided. Lastly in DOE the statistical significance of 

the result is quantified. 

The statistical significance of the effects includes which effects are most important and which 

effects can be dropped. Statistical or sensitivity analysis focuses on the relative impact each 

parameter or term has on the model output, in order to determine the effect of data quality on 

output reliability. Uncertainty analysis seeks to quantify the uncertainty in the model output as a 

function of uncertainty in both model input and model operations (Box et al., 1978). 

Several statistical methods were included in the experimental design. The first method was 

based on the normal probability plot of the effects. When the effects are plotted on a normal 

probability plot effects that fall along a straight line are considered noise and outlying values are 

significant. The visual method is especially important when there is no replication, hence no 
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pure error estimates, as is the case in computer modeling. In unreplicated design the effects that 

are not found to be significant can be used as a measure of error (Montgomery, 2001). 

The second statistical method employed was an analysis of variance or an ANOV A. In the 

ANOV A approach a significance level of 5% was chosen. The sum of squares was calculated 

by: 

1 2 
SS AB ... K = n

2
k (Contrast AB .. K) Equation 6.4 (Montgomery, 2001) 

The mean square was calculated by: 

ss MS = AB ... K 
AB ... K d.f. Equation 6.5 (Montgomery, 2001) 

Where: 

MS = Mean Square 

SS = Sum of Squares 

d. f.= degrees of freedom 

The estimate of experimental error (SSE) was obtained by subtraction: 

SSE = SST- Sum of SS of effects Equation 6.6 (Montgomery, 2001) 

and SST is calculated by: 

Equation 6.7 (Montgomery, 2001) 
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Where: 

Yij = each value of treatment 

y = overall total 

With only a single replicate of the 2k factorial it was not possible to determine the experimental 

error or the mean square error. In order to analyze the unreplicated design less significant factors 

(usually higher order interactions) were assumed to be negligible and combined to estimate 

experimental error (Box et al., 1978). 

The standard error of effects was used as a guide or confidence interval with a 5% significance 

level. If the confidence interval includes zero the effect is not significant since they were no 

different than zero (Montgomery, 2001). 

Based on the sum of squares and the mean square error the test statistic for each factor was 

determined by: 

F =MSA 
0 

MSE 
Equation 6.8 (Montgomery, 2001) 

F0 was then compared to the 5% F-table (See Appendix A) using one degree of freedom and 

2k(n-1) (in this analysis n was one). 

From the initial model, regression equations were developed for prediction. Only significant 

effects were used. Once the regression had been completed the assumptions of the regression 

were checked, which were as follows (Box et al., 1978): 
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• Residuals must be normally distributed (Residual= observed value- predicted value) 

• Check whether or not the residuals have a constant variance 

6.2 Experimental Design 

As previously stated the first step in the experiment was to establish the initial concentration of 

the soil. This was done using the initial data collected in 1997. 

The second process involved model calibration. As previously stated, calibration is the process 

of adjusting selected model parameters within an accepted range until the differences between 

model predictions and field observations are within selected criteria of performance (Donnigan 

and Dean, 1985). Data from 2002 was used to calibrate the model. Only one set of data was 

available from 2002 to calibrate the model for concentrations of petroleum hydrocarbon 

concentrations in 2002. Two points were available from 2002 to calibrate the model for 

petroleum hydrocarbon concentrations in the groundwater. Insufficient data was available to 

further calibrate the model. 

Based on a DOE approach the problem of calibration can be stated as the development of the 

required input values in order to achieve the required output. It is also desired that the 

calibration be carried out in a systematic manner so that the data can statistically analyzed. In 

order to facilitate the DOE approach the computer program, Stat Ease, was utilized. 

A number of factors were considered over two levels, a low and high. By varying selected 

parameters their effect was estimated and this information was used to calibrate the model. 
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Initially all factors and their interactions were considered. As the data were analyzed the terms 

that were not significant were removed and the model was refined. 

Three parameters were of interest in the model calibration. The first parameter required was the 

initial concentration in the soil, the second was the concentration in the soil in 2002. The final 

parameter of interest was the groundwater concentration in 2002. As previously discussed, the 

calibration of a soil and groundwater model can be a complex process. Given the nature of soil 

and the variability of the contaminant many unknowns existed in the model, which influenced 

the parameters of interest. A systematic and simplified approach was developed to obtain an 

appropriate model for the site. This approach was as follows: 

• Establish the initial concentration of petroleum hydrocarbons in the soil: Preliminary runs 

were made to determine which values affected the initial soil concentrations. The effective 

porosity, bulk density, soil pore disconnectedness value, the fraction of organic carbon, and 

the Freundlich exponent for soil were varied in the SESOIL model. The climate file was 

varied, in addition to the chemical parameters such as water solubility, Koc, Henry's Law 

Constant, air diffusion coefficient and molecular weight. After setting the water solubility to 

a fixed value, the factors that had influenced the initial soil concentration were varied within 

a two factorial design framework. Once the desired value had been established the 

influencing parameters were fixed and considered constants for the remainder of the 

calibration process. 

• Establish the concentration of petroleum hydrocarbons in the soil in 2002: In the next step of 

the calibration process the concentration of petroleum hydrocarbons in the soil in 2002 was 

established. Preliminary trial and error runs were made to determine which values influenced 
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the soil concentration in 2002. Chemical parameters such as the air diffusion coefficient and 

Henry's Law constant were varied along with soil parameters such as bulk density, intrinsic 

permeability, soil pore disconnectedness index and porosity. Of the six proceeding factors, 

intrinsic permeability, soil pore disconnectedness and porosity were the most influential on 

the soil concentrations. This is in agreement with the SEVIEW manual and with other 

published work on calibrating SESOIL. These three parameters were then varied within a 

two factorial framework and the desired concentration was established. These parameters 

were then set as constants for the final step in the calibration process. 

• Establish the groundwater concentration: In the final step of the calibration process input 

parameters in the AT123D input file were varied to establish the concentration in the 

groundwater in 2002. The parameters were varied within a two factorial design framework 

and included the hydraulic gradient, longitudinal dispersivity, transverse dispersivity and 

vertical dispersivity. 

Following the calibration of the model, washload input parameters were varied since default 

values were assumed in the initial calibration exercise since field data was not available. In the 

sensitivity analysis the values for soil erodibility, soil loss ratio, contouring factor and Manning's 

n were varied individually to determine if any of the parameters affected the concentrations of 

petroleum hydrocarbons. The parameters were varied over three intervals, the minimum value, 

the default value and the maximum value. 

Soil and groundwater petroleum hydrocarbon concentrations from 2003 were then used to verify 

the model. 
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Chapter 7: Results 

Following the methodology specified in Chapter 6 the simulation results were obtained. The 

results are outlined in the following sections. 

7.1 Calibration Results 

In the first calibration exercise the initial concentration in the soil was established. Based on the 

field measurements the initial concentration required was approximately 55,000 mg/kg. Three 

parameters were considered; Koc, the Freundlich Exponent and the fraction of organic carbon. A 

high and low value was selected for each parameter, and they are outlined in Table 7 .1. 

Table 7.1: Input Parameter Ranges: Initial Soil Concentration 

Parameter Low Value High Values 
Koc 1100 2000 
Freundlich Exponent 0.9 1.0 
foe 1 3 

In a two factorial design, with three factors, 23 (8) experimental runs were required. Summaries 

of the results of the model runs are outlined in Table 7.2. 

Table 7.2: 2-Factorial Design- Initial Soil Concentration 

Run Koc Freundlich Exponent foe Initial Concentration in Soil 
1 1100 0.9 1 7404 
2 2000 0.9 3 40180 
3 1100 1 3 11580 
4 1100 0.9 3 22210 
5 2000 1 3 21060 
6 2000 0.9 1 13460 
7 2000 1 1 7019 
8 1100 1 1 3860 

The percent contribution of each factor is summarized in Table 7.3. 
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Table 7.3: Percent Contribution of Factors to Initial Soil Concentration 

Factor % Contribution 
Koe 17.96 
Freundlich Exponent 21.31 
foe 60.74 
Koe - Freundlich Exponent 9.6 X 10"' 
Koe- foe 7.0 X 10"' 
Freundlich Exponent - foe 8.5 X 10"' 
Koe - Freundlich Exponent - foe 7.9 X 10·' 

The effect of each factor was plotted on a normal probability plot (See Figure 7.1 ), and based on 

visual observation the main factors were considered significant while the interactions were not 

considered. 
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Figure 7.1: Normal Probability Plot of Initial Soil Concentration Effects 

An ANOV A was then completed for initial soil concentration results, which confirmed the 

assumptions of the normal probability plot. The initial ANOV A results are presented in Table 

7.4. 
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Table 7.4: ANOV A- Initial Soil Concentration 

Source of Variation Sum Degrees of Mean Fo p-value 
Squares Freedom Squares 

Koe 0.13 1 0.13 2.3x10~ 0.0013 
Freundlich Exponent 0.16 1 0.16 2.7x10~ 0.0012 

foe 0.45 1 0.45 2.6x10' 0.0007 
Koe - Freundlich Exponent 7.2x1o· 1 7.2x10"7 1.21 0.4696 

Koe- foe 5.3 X 10· 1 5.3 X 10"7 0.89 0.5186 
Freundlich Exponent - foe 6.4x1o· 1 6.4x10"7 1.07 0.4888 
Koe - Freundlich Exponent - foe 5.9x 10· 1 5.9x 10-7 

The model was then refined to only include the significant terms. The refined ANOV A is 

summarized in Table 7.5: 

Table 7.5: Refined ANOV A- Initial Soil Concentration 

Source of Variation Sum Squares Degrees Mean Fo p-value 
of Squares 
Freedom 

Koe 0.13 1 0.13 4.0 X 10' <0.0001 
Freundlich Exponent 0.16 1 0.16 2.2 X 10~ <0.0001 
foe 0.45 1 0.45 2.6 X 10' <0.0001 
Residual 2.5 X 10-o 4 6.2 X 10· 

The assumptions of the factorial design were then checked. The residuals plotted as a straight 

line on a normal plot (See Figure 7.2). 
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Figure 7.2: Initial Soil Concentration Residual Normal Probability Plot 
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Next the residuals were checked for constant variance. A plot was made for the residuals versus 

the variance (See Figure 7.3). A detailed sensitivity analysis is provided in Appendix C. 

DESIGN-EXPERT Plot 
Log10(Conc in roil) 

3.00 1-. 

!!!. 1.50 
C'O 
::J 
-o ·c;; 

& 
-o 0.00 
Q) 
N 

~ 
Q) 
-o .a 
(/) -1.50 

-3.00 

m 

I 
3.59 

Residuals vs. Predicted 
-·--

0 CDm 

m 
= 

0 

I I I I 
3.84 4.10 4.35 4.61 

Predicted 

Figure 7.3: Initial Soil Concentration: Predicted vs Residuals 
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Based on the above results Koc was set to 2000, the Freundlich Exponent was set to 0.9 and the 

foe was set to 3%. The resulting soil concentration was 40,180 mg/kg which is in reasonable 

agreement with the actual field conditions of 55,000 mg/kg. The output of the calibrated run is 

provided in Appendix B 

In the second calibration exercise the final concentration in the soil was established. Based on 

the field measurements the final concentration required was approximately 11,000 mg/kg. Four 

parameters were considered; bulk density, intrinsic permeability, soil pore disconnectedness 

index and effective porosity. A high and low value was selected for each parameter, and they are 

outlined in Table 7.6. 
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Table 7.6: Input Parameter Ranges: Final Soil Concentration 

Parameter Low Value High Values 
Bulk Density 1.69 2.20 
Intrinsic Permeability 4.3 X 10·~ 0.00001 
Soil Pore Disconnectedness Index 3.7 12 
Effective Porosity 0.20 0.30 

In a two factorial design, with four factors, 24 (16) experimental runs were required. A summary 

of the results of the model runs is outlined in Table 7.7. 

Table 7.7: 2-Factorial Design- Final Soil Concentration 

Run Bulk Intrinsic Soil Pore Effective Final 
Density Permeability Disconnectedness Porosity Concentration in 

Index Soil 
1 1.69 4.3E-09 3.70 0.20 40380 
2 2.20 0.00001 12.00 0.20 40380 
3 2.20 4.3E-09 3.70 0.30 34040 
4 2.20 0.00001 3.70 0.30 14440 
5 1.69 4.3E-09 12.00 0.20 40380 
6 1.69 0.00001 3.70 0.20 28010 
7 1.69 0.00001 12.00 0.20 40380 
8 2.20 4.3E-09 12.00 0.20 40380 
9 2.20 0.00001 12.00 0.30 35840 
10 1.69 0.00001 12.00 0.30 40380 
11 1.69 0.00001 3.70 0.30 14480 
12 2.20 4.3E-09 3.70 0.20 39560 
13 1.69 4.3E-09 3.70 0.30 40380 
14 1.69 4.3E-09 12.00 0.30 40380 
15 2.20 4.3E-09 12.00 0.30 40380 
16 2.20 0.00001 3.70 0.20 24070 

The percent contribution of each factor is summarized in Table 7.8. 
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Table 7.8: Percent Contribution of Factors to Final Soil Concentration 

Factor % Contribution 
Bulk Density 2.15 
Intrinsic Permeability 30.84 
Soil Pore Disconnectedness Index 36.97 
Effective Porosity 3.78 
Bulk Density - Intrinsic Permeability 1.413xlo-j 

Bulk Density - Soil Pore Disconnectedness Index 0.24 
Bulk Density - Effective Porosity 0.68 
Intrinsic Permeability - Soil Pore Disconnectedness Index 20.93 
Intrinsic Permeability - Effective Porosity 0.68 
Soil Pore Disconnectedness Index - Effective Porosity 0.93 
Bulk Density - Intrinsic Permeability - Soil Pore Disconnectedness Index 1.03 
Bulk Densi!Y - Intrinsic Permeability - Effective Porosity 0.088 
Bulk Density - Soil Pore Disconnectedness Index - Effective Porosity 0.23 
Intrinsic Permeability - Soil Pore Disconnectedness Index - Effective Porosity 0.024 
Bulk Density - Intrinsic Permeability - Soil Pore Disconnectedness Index - Effective 1.62 
Porosity 

The effect of each factor was plotted on a normal probability plot (See Figure 7.4), and based on 

visual observation the intrinsic permeability, soil pore disconnectedness index, effective porosity 

and the interaction effect between intrinsic permeability and the soil pore disconnectedness were 

considered significant. The bulk density was not considered a significant factor (ie the soil 

concentration was not sensitivity to bulk density). 
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Figure 7.4: Normal Probability Plot of Final Soil Concentration Effects 
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An ANOV A was then completed for final soil concentration results, which confirmed the 

assumptions of the normal probability plot. The initial ANOV A results are presented in Table 

7.9. 

Table 7.9: ANOV A- Final Soil Concentration 

Source of Variation Sum Squares Degrees of Mean Fo p-value 
Freedom Squares 

Bulk Density 1.653E+023 1 1.653E+023 3.86 0.1068 
Intrinsic Permeability 2.369E+024 1 2.369E+024 55.26 0.0007 
Soil Pore Disconnectedness Index 2.839E+024 1 2.839E+024 66.24 0.0005 
Effective Porosity 2.906E+023 1 2.906E+023 6.78 0.0480 
Bulk Density - Intrinsic Permeability 1.085E+020 1 1.085E+020 2.532E- 0.9618 

003 
Bulk Density - Soil Pore Disconnectedness Index 1.836E+022 1 1.836E+022 0.43 0.5417 
Bulk Density - Effective Porosity 5.245E+022 1 5.245E+022 1.22 0.3190 
Intrinsic Permeability - Soil Pore 1.608E+024 1 1.608E+024 37.51 0.0017 
Disconnectedness Index 
Intrinsic Permeability - Effective Porosity 5.200E+022 1 5.200E+022 1.21 0.3209 
Soil Pore Disconnectedness Index - Effective 7.180E+022 1 7.180E+022 1.67 0.2521 
Porosity 
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The model was then refined to only include the significant terms. The refined ANOV A is 

summarized in Table 7.1 0. 

Table 7.10: Refined ANOVA- Final Soil Concentration 

Source of Variation Sum Squares Degrees Mean Fo p-value 
of Squares 
Freedom 

Intrinsic Permeability 2.369E+024 1 2.369E+024 45.37 < 0.0001 
Soil Pore Disconnectedness Index 2.839E+024 1 2.839E+024 54.38 < 0.0001 
Effective Porosity 2.906E+023 1 2.906E+023 5.57 0.0379 
Intrinsic Permeability - Soil Pore 1.608E+024 1 1.608E+024 30.79 0.0002 
Disconnectedness Index 
Residual 5.744E+023 11 5.222E+022 

The assumptions of the factorial design were then checked. The residuals plotted as a straight 

line on a normal plot (See Figure 7.5). 
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Figure 7.5: Final Soil Concentration Residual Normal Probability Plot 

Next the residuals were checked for constant variance. A plot was made for the residuals versus 

the variance (See Figure 7.6). 



A detailed sensitivity analysis is provided in Appendix E. 
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Based on the above results bulk density was set to 2.20, intrinsic permeability was set to 

0.00001, the soil pore disconnectedness index was set to 3.7 and the effective porosity was set to 

0.30. The resulting soil concentration was 14,440 mg/kg which is in reasonable agreement with 

the actual field conditions of 11,000 mg/kg. The calibrated output run is provided in Appendix 

D. 

In the final calibration exercise the groundwater concentration was established. Based on the 

field measurements the final concentration required was approximately 25.5 mg/L. Four 

parameters were considered; hydraulic gradient, longitudinal dispersivity, transverse dispersivity 
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and vertical dispersivity. A high and low value was selected for each parameter, and they are 

outlined in Table 7 .11. 

Table 7.11: Input Parameter Ranges: Groundwater Concentration 

Parameter Low Value High Values 
Hydraulic Gradient 0.003 0.04 
Longitudinal Dispersivity 2.00 10.0 
Transverse Dispersivity 0.20 1.00 
Vertical Dispersivity 0.05 0.24 

In a two factorial design, with four factors, 24 (16) experimental runs were required. A summary 

of the results of the model runs is outlined in Table 7 .12. 

Table 7.12: 2-Factorial Design- Groundwater Concentration 

Run Hydraulic Longitudinal Transverse Vertical Groundwater 
Gradient Dispersivity Dispersivity Dispersivity Concentration 

1 0.04 2.00 1.00 0.24 1.13 
2 0.04 2.00 1.00 0.05 1.13 
3 0.003 2.00 1.00 0.05 21.8 
4 0.003 10.00 1.00 0.24 21 
5 0.003 2.00 1.00 0.24 21.8 
6 0.003 10.00 1.00 0.05 21 
7 0.04 10.00 1.00 0.05 1.46 
8 0.04 10.00 0.20 0.05 1.56 
9 0.003 2.00 0.20 0.05 21.9 
10 0.04 2.00 0.20 0.05 1.13 
11 0.003 10.00 0.20 0.24 21.2 
12 0.003 2.00 0.20 0.24 21.9 
13 0.04 2.00 0.20 0.24 1.13 
14 0.04 10.00 1.00 0.24 1.46 
15 0.003 10.00 0.20 0.05 21.2 
16 0.04 10.00 0.20 0.24 1.56 

The percent contribution of each factor is summarized in Table 7.13. 
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Table 7.13: Percent Contribution of Factors to Groundwater Concentration 

Factor % Contribution 
Hydraulic Gradient 99.86 
Longitudinal Dispersivity 0.015 
Transverse Dispersivity 2.746xl0"3 

Vertical Dispersivity 0 
Hydraulic Gradient- Longitudinal Dispersivity 0.12 
Hydraulic Gradient - Transverse Dispersivity 3.47xl0"5 

Hydraulic Gradient - Transverse Dispersivity 0 
Longitudinal Dispersivity - Transverse Dispersivity 1.375xlo-j 
Longitudinal Dispersivity - Transverse Di~ersivity_ 0 
Transverse Dispersivity - Transverse Dispersivity 0 
Hydraulic Gradient - Longitudinal Dispersivity- Transverse Dispersivity 4.5xl0·4 

Hydraulic Gradient - Longitudinal Dispersivity - Transverse Dispersivity 0 
Hydraulic Gradient - Transverse Dispersivity - Transverse Dispersivity 0 
Longitudinal Dispersivity - Transverse Dispersivity- Transverse Dispersivity 0 
Hydraulic Gradient- Longitudinal Dispersivity- Transverse Dispersivity- Transverse 0 
Dispersivity 

The effect of each factor was plotted on a normal probability plot (See Figure 7.7), and based on 

visual observation the hydraulic gradient and the transverse and longitudinal dispersivities (and 

the two and three level interactions of these factors) were considered significant. The hydraulic 

gradient however had the highest effect level, or in other words had the highest sensitivity. The 

vertical dispersivity and its interactions were not considered significant factors (ie the 

groundwater concentration was not sensitive to vertical dispersivities). 
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Figure 7.7: Normal Probability Plot of Groundwater Concentration Effects 

An ANOV A was then completed for groundwater concentration results, which confirmed the 

assumptions of the normal probability plot. The initial ANOV A results are presented in Table 

7.14. 
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Table 7.14: ANOV A- Groundwater Concentration 

Source of Variation Sum Squares Degrees of Mean Squares Fo p-value 
Freedom 

Hydraulic Gradient 48.67 1 48.67 6.366E+007 < 0.0001 
Longitudinal Dispersivity 7.175E-003 1 7.175E-003 6.366E+007 < 0.0001 
Transverse Dispersivity 1.338E-003 1 1.338E-003 6.366E+007 < 0.0001 
Vertical Dispersivity 0.000 1 0.000 - -
Hydraulic Gradient- Longitudinal 0.061 1 0.061 6.366E+007 < 0.0001 
Dispersivity 
Hydraulic Gradient- Transverse 1.693E-005 1 1.693E-005 6.366E+007 < 0.0001 
Dispersivity 
Hydraulic Gradient- Vertical 0.000 1 0.000 - -
Dispersivity 
Longitudinal Dispersivity - 6.700E-004 1 6.700E-004 6.366E+007 < 0.0001 
Transverse Dispersivity 
Longitudinal Dispersivity - Vertical 0.000 1 0.000 - -
Dispersivity 
Transverse Dispersivity - Vertical 0.000 1 0.000 - -
Dispersivity 
Hydraulic Gradient- Longitudinal 2.194E-004 1 2.194E-004 6.366E+007 < 0.0001 
Dispersivity - Transverse 
Dispersivity 
Hydraulic Gradient - Longitudinal 0.000 1 0.000 - -
Dispersivity - Vertical Dispersivity 
Hydraulic Gradient- Transverse 0.000 1 0.000 - -
Dispersivity - Vertical Dispersivity 
Longitudinal Dispersivity - 0.000 1 0.000 - -
Transverse Dispersivity- Vertical 
Dispersivity 

The model was then refined to only include the significant terms. The refined ANOV A is 

summarized in Table 7.15. 

Table 7.15: Refined ANOV A- Final Soil Concentration 

Source of Variation Sum Squares Degrees of Mean Squares Fo p-value 
Freedom 

Hydraulic Gradient 48.67 1 48.67 6.366E+007 < 0.0001 
Longitudinal Dispersivity 7.175E-003 1 7.175E-003 6.366E+007 < 0.0001 
Transverse Dispersivity 1.338E-003 1 1.338E-003 6.366E+007 < 0.0001 
Hydraulic Gradient - Longitudinal 0.061 1 0.061 6.366E+007 < 0.0001 
Dispersivity 
Hydraulic Gradient - Transverse 1.693E-005 1 1.693E-005 6.366E+007 < 0.0001 
Dispersivity 
Longitudinal Dispersivity - 6.700E-004 1 6.700E-004 6.366E+007 < 0.0001 
Transverse Dispersivity 
Hydraulic Gradient- Longitudinal 2.194E-004 1 2.194E-004 6.366E+007 < 0.0001 
Dispersivity - Transverse 
Dispersivity 
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The assumptions of the factorial design were then checked. The residuals plotted as a straight 

line on a normal plot (See Figure 7.8). 
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Figure 7.8: Groundwater Concentration Residual Normal Probability Plot 

Next the residuals were checked for constant variance. A plot was made for the residuals versus 

the variance (See Figure 7.9). 

A detailed sensitivity analysis is provided in Appendix G. 
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Based on the above results hydraulic gradient was set to 0.003, longitudinal dispersivity was set 

to 2.0, transverse dispersivity was set to 0.20 and vertical dispersivity was set to 0.24. The 

resulting groundwater concentration was 39.7 mg/L and 29.8 mg/L in B-BHl and B-MWlO, 

which is in reasonable agreement with the actually field conditions of 52.8 mg/L and 25.5 mg/L. 

The calibrated output run is provided in Appendix F. 

As previously discussed, following the calibration of the model, washload input parameters were 

varied since default values were assumed in the initial calibration exercise since field data was 

not available. The parameters were varied over three intervals, the minimum value, the default 

value and the maximum value. The washload file input parameters however did not have any 

significant effect on the initial concentration of petroleum hydrocarbon in the soil, the final 

concentration of petroleum hydrocarbon in the soil and the final concentration of petroleum 

hydrocarbon in groundwater. 
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7.2 Verification Results 

Verification establishes that results from each of the algorithms of the model are correct and 

compares measured with predicted results. It includes analysis of the theoretical foundations of 

the model, focusing on the model's performance in simulating actual behavior of the chemical in 

the environment under study. 

The final concentration was verified by soil concentration measurements from 2003. The final 

model parameters chosen were inputted and a simulation period of seven years was selected. 

The soil concentration after seven years was estimated as 11,410 mg/kg (Appendix H). The 

actual soil concentration measured in the field was 7207 mg/kg. The relative percent difference 

between the field measurements and the predicted value was 58%. 

Given the variable nature of the soil and the contaminant being considered this is an acceptable 

level of agreement. As well, although there was only one set of data available, in this particular 

instance the model did overestimate the actual concentrations of hydrocarbons in the soil, as 

opposed to under estimating the concentration. 

As determined in the calibration exercise the final concentration will be sensitive to the 

parameters chosen. These values include; Koc. foe, and the Freundlich Exponent; and, soil 

parameters such as the intrinsic permeability, the soil pore disconnectedness index and effective 

porosity. 
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7.3 Prediction Results 

Once the model had been calibrated and the model had been verified the results were applied to 

predict contaminant behaviour on the subject site. First, the model was used to predict the time 

required for the concentration of petroleum hydrocarbons to be naturally attenuated to acceptable 

levels. Next the model was used to predict when concentrations of petroleum hydrocarbons in 

the groundwater would reach the downstream receptor (located approximately 70 metres down 

gradient), and the concentration of petroleum hydrocarbons present. 

7.3.1 Soil 

The acceptable level of petroleum hydrocarbons on the subject site was based on the Canadian 

Council of Ministers of the Environment (CCME) soil quality guidelines (2001) for the 

protection of human health and the environment. The site is not considered sensitive since the 

site was commercial and there were no residential properties in the surrounding area. A 

summary ofthe SESOIL run is provided in Appendix H. The results are plotted in Figure 7.10. 
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As shown in Figure 7.1, the model predicts that concentration of petroleum hydrocarbons in the 

soil will be within regulatory guidelines (1000 mg/kg) in between 16 and 17 years. Again, for 

this site, based on the data set available, the model is conservative and the actual time to reach 

regulatory values may be shorter. The model also predicts that the concentration of petroleum 

concentrations will be entirely naturally attenuated within approximately 30 years. 
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7.3.2 Groundwater 

Following the prediction of the concentration of petroleum hydrocarbons in the soil the model 

was used to predict the fate and transport of petroleum hydrocarbons in the groundwater. The 

model was used to determine if and when petroleum hydrocarbons would reach a downstream 

receptor and the concentration of petroleum hydrocarbons present at the downstream receptor. 

Based on the AT123D model run (See Appendix J), the petroleum hydrocarbon plume moves 

down gradient over time. The petroleum hydrocarbons reach the stream located 80 metres 

downstream after a four-year period, at a low concentration of 1.02 x 10-5 mg/L. The 

concentration of petroleum hydrocarbons increases to a maximum of 39.6 mg/L at year 15. The 

concentration then steadily declines. The results of the groundwater modeling are summarized in 

Figure 7.11. 
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Chapter 8: Conclusions 

Based on the modeling exercises conducted the following conclusions were derived: 

1. The results of the model calibration and verification exercise have demonstrated that the 

model can be calibrated to reproduce the field measurements. During the calibration exercise 

the initial concentration measured in the field was 55,000 mg/kg while the results of the 

computer model indicted an initial soil concentration of 40,180 mg/kg. This represents a 

relative percent difference of approximately 27%. 

2. The soil concentration after six years was measured in the field as 11,000 mg/kg. After six 

years, the computer model predicted the concentration of petroleum hydrocarbons in the soil 

as 14,440 mg/kg. This represented a relative percent difference of approximately 31%. 

3. The concentration of petroleum hydrocarbons in the groundwater was measured in the field 

as 52.8 mg/L in B-BH1 and 25.5 mg/L in B-MW10. After six years the computer model 

predicted the concentration ofpetroleum hydrocarbons in the groundwater as 39.7 mg/L and 

29.8 mg/L in B-BH1 and B-MW10; respectively. This represented an average relative 

percent difference of approximately 20%. 

4. In the verification exerc1se the model estimated that the concentration of petroleum 

hydrocarbons in the soil was 11 ,410 mg/kg while the actual field measurement was 7207 

mg/kg. This represented a relative percent difference of approximately 58%. 
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5. The sensitivity analysis was completed in conjunction with the calibration exercise. 

Preliminary runs indicated that the initial soil concentration established was not sensitive to 

effective porosity, bulk density, soil pore disconnectedness values, climate variations and to 

the chemical parameters such as Henry's Law Constant, air diffusion coefficient and 

molecular weight. The initial concentration of petroleum hydrocarbons in the soil was, 

however, sensitive to Koe. foe and the Freundlich exponent. The model was found to have the 

highest sensitivity to foe. followed by the Freundlich exponent and Koc. As previously 

discussed, following the calibration of the model, washload input parameters were varied 

since default values were assumed in the initial calibration exercise since field data was not 

available. In a follow-up sensitivity analysis the values for soil erodibility, soil loss ratio, 

contouring factor and Manning's n did not have any significant effect on the initial 

concentration of petroleum hydrocarbon in the soil, the final concentration of petroleum 

hydrocarbon in the soil and the final concentration of petroleum hydrocarbon in groundwater. 

6. For the final concentration of petroleum hydrocarbons in the soil, preliminary runs indicated 

that chemical parameters such as the air diffusion coefficient and Henry's Law constant did 

not influence the final concentration of petroleum hydrocarbons in the soil. A sensitivity 

analysis of soil parameters such as bulk density, intrinsic permeability, soil pore 

disconnectedness index and porosity indicated that, while the concentration of petroleum 

hydrocarbons was not sensitive to bulk density, the concentration was sensitive to intrinsic 

permeability, soil pore disconnectedness and porosity. The model was most sensitive to the 

soil pore disconnectedness index and the intrinsic permeability and the interaction between 

these two parameters. The model was also sensitive to the effective porosity, but to a much 

lesser extent. 
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7. The sensitivity analysis indicated that the hydraulic gradient, longitudinal dispersivity and 

transverse dispersivity influenced the concentration of petroleum hydrocarbons in 

groundwater. However, the model was not sensitive to vertical dispersivity. Due to the 

shallow water table vertical dispersivity did not influence the concentrations of petroleum 

hydrocarbons in groundwater. The hydraulic gradient had the greatest influence on the 

concentration of petroleum hydrocarbons in groundwater. The model was sensitive to 

longitudinal and transverse dispersivities, but to a much lesser extent. 

8. Following the calibration and verification exercises the model was used to predict the future 

fate and transport of petroleum hydrocarbons in the soil and groundwater. The model 

predicts that the concentration of petroleum hydrocarbons in the soil will be within 

regulatory guidelines between 16 and 1 7 years. The actual time to reach regulatory values 

could be shorter since the model was conservative and over estimated the actual 

concentration of petroleum hydrocarbons in the soil. The model also predicted that the 

concentration of petroleum concentrations would be entirely naturally attenuated within 

approximately 30 years. 

9. The presence of an ecological receptor, located down gradient, was of significant interest 

when determining the fate and transport of petroleum hydrocarbons in the groundwater. 

Based on the AT123D model run the petroleum hydrocarbon plume reached the stream, 

located 80 metres down gradient, after a four-year period, at a low concentration of 1.02 x 

10-5 mg/L. The concentration of petroleum hydrocarbons increased to a maximum of 39.6 

mg/L at year 15. The concentration then steadily declined. Based on a regulatory guideline 

of 20 mg/L (Atlantic PIRI, 2002), the stream would be potentially impacted from year 10 to 

year 20. 
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10. The results of the model calibration and verification exercise have demonstrated that the 

model can be calibrated to reproduce the field measurements. The differences in the actual 

versus the predicted values were well within acceptable limits. 

Based on the above conclusion the following items are recommended for the subject site: 

• Based on the modeling of the petroleum hydrocarbons in the soil the priority of the site 

would be considered low. There was no immediate risk to human and other receptors, no 

buildings were present on site and the impacted soil was below the surface. The soil would 

be naturally attenuated to regulatory guidelines between 16 and 17 years and within 30 years 

the petroleum hydrocarbons would be entirely naturally attenuated. 

• In terms of the fate and transport of petroleum hydrocarbons in the groundwater, based on the 

model predictions, the groundwater concentrations would not reach regulatory guidelines 

through natural attenuation alone. However, it should be noted that the petroleum 

hydrocarbons did not pose an immediate threat since the groundwater was not potable and 

the nearest ecological receptor was located 80 metres down gradient. As the stream would 

not be impacted until year ten the site could be given a medium priority. Within ten years a 

remedial strategy should be developed and during this period the groundwater should be 

monitored. 

• Using the natural attenuation model as a foundation, additional modeling could be carried out 

to determine the most appropriate remedial strategy for the site which might include 

technologies such as bioventing and air stripping. 
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As well the following recommendations should be incorporated into future modeling exercises 

for other sites: 

• Based on the findings of the modeling exercise the SEVIEW soil can be used with 

confidence in Newfoundland to model contaminated sites. Three data sets are recommended 

for calibration of verification, however two data sets would be sufficient for modeling 

purposes. 

• In future site characterization work additional soil data should be collected for future use in a 

risk-assessment process; such data should include the fraction of organic carbon; grain size 

analysis; soil bulk density; and, the contaminant properties. 

• A design of experiments methodology should be applied to determine the influence of 

various unknowns and to set their values in the calibration exercise. This methodology will 

also allow the modeler to perform a sensitivity analysis. 
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APPENDIX A 
So/oF-TABLE 



F-Table for 5°/o 

Percentage points of the F-distribution: 
upper 5% points . 5% 

... • 
dfnum 1 2 

dfd ... 
3 4 5 6 7 8 9 10 15 20 

1 161.45 199.50 215.71 224.58 230.16 233.99 236.77 238.88 240.54 241.88 245.95 248.01 

2 18.513 19.000 19.164 19.247 19.296 19.330 19.353 19.371 19.385 19.396 19.429 19.446 

3 10.128 9.552 9.277 9.117 9.013 8.941 8.887 8.845 8.812 8.786 8.703 8.660 

4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.858 5.803 

5 6.608 5.786 5.409 5.192 5.050 4.950 4.876 4.818 4.772 4.735 4.619 4.558 

6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 3.938 3.874 

7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.511 3.445 

8 5.318 4.459 4.066 3.838 3.687 3.581 3.500 3.438 3.388 3.347 3.218 3.150 

9 5.117 4.256 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.006 2.936 

10 4.965 4.103 3.708 3.478 3.326 3.217 3.135 3.072 3.020 2.978 2.845 2.774 

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.719 2.646 .. 
12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.617 2.544 

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.533 2.459 

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.463 2.388 

15 4.543 3.682. 3.287 3.056 2.901 2.790 2.707 2.641 2.588 2.544 2.403 2.328 

·16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.352 2.276 

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494. 2.450 2.308 2.230 

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.269 2.191 

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.234 2.155 

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.203 2.124 

21 4.325 3.467 3.072 2.840 2.685 2.573 2.488 2.420 2.366 2.321 2.176 2.096 

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 2.151 2.071 

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.128 2.048 

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 2.108 2.027 

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.236 2.089 2.007 

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.265 2.220 2.072 1.990 

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 2.056 1.974 

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 2.041 1.959 

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 2.027 1.945 

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 2.015 1.932 

40 4.085 3.232 2.839 2.606 2.449 2.336 2.249 2.180 2.124 2.077 1.924 1.839 

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.836 1.748 

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.910 1.750 1.659 

100K 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.939 1.880 1.831 1.666 1.571 

K (Multiply this value by I 000) 

3-29 



APPENDIXB 
CALIBRATION RUNS FOR INITIAL SOIL CONCENTRATION 



SESOIL Pollutant Fate Cycle Report for C1 O-C21 #2 Fuel Oil 

SESOIL Mass Fate 

1.60E+I4 ,.----------------------------. 

1.40E+I4 

1.20E+14 

I.OOE+14 

~ B.DOE+13 

B.OOE+13 

4.DOE+13 

2.00E+13 

4.0DE+D2 

3.5oE+D2 

Years 

Leachate Concentration 
.. ················· .... 

II VOL TOTAL 

•IN SOIL AIR 

DIAOSON SOIL 

Cl PURE PHASE 

SESOIL 
Profile (em) 

s.OoE+D2 ···················~·-···············-~·-- .... ! ............. ······1··········· 
I 2.50E+02 

I 2.00E+D2 

I.SoE+D2 

1.00E+02 

5.00E+OI 

O.OoE+OO 

SESOIL 
Process 
Volatilized 
Soil Air 

0 

Sur. Runoff 
lnWashld 
Ads On Soil 
Hydrol Soil 
Degrad Soil 
Pure Phase 
Complexed 
Immobile CEC 
Hyd.-ol CEC 
In Soil Moi 
Hydrol Mois 
Degrad Mols 
Other Trans 
Ottter Sinks 
Gwr. Runoff 
Total Output 
Total Input 
Input - Output 

C:\SEVIEW\SJMFTA.CLM 
C:\SEVIEW\soii1-2.CHM 
C:\SEVIEW\soii1-2.SOI 
C:\SEVIEW\BASE2.APL 
C:\SEVIEW\SITEWASH.WSH 
C:\SEVIEW\SOIL 1·2.0UT 

·i ................ j .......... .. ······'··············~···················! 

·····,,·.····· ................ ,.,····· ........................... : : . : -··-·········------·····r···· --)·····----·········--l 

r: r 1 r , r 1 

Pollutant 
Mass pg 
1.149E+14 
1. 481E+ll 
O.OOOE-01 
O.OOOE-01 
1.918E+l3 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
1. 724E+09 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
O.OOOE-01 
1.400E+12 
1.356E+l4 
1.357E+l4 
2.773E+10 

2 
Years 

Percent 
Input 

84.69 
0.10 
0.00 
o.oo 

14.13 
0.00 
o.oo 
0.00 
0.00 
0.00 
0.00 
0.00 
o.oo 
o.oo 
0.00 
o.oo 
1.03 

99.97 

4 5 I 7 

Maximum leachate concentration: 3.509E+02 mgtl 
Climate: ST. JOHN'S, Nl 
Chemical: C10-C21 #2 Fuel Oil 
Soil: Silty Sand and Gravel 
Application: MFA BH1 
Starting Depth (em): 137.60 Ending Depth (em): 140.00 
Total Depth (em): 140.00 

·117y-----..---.----.-----y---,---..----, 

.sa ................................. ~ ................. j ................ L ................................................. ! 

~158 . ••• • ....................... ···i· ............... +· .............. -~·-· ............................................... ·i 

!"'""'")" ···················· ········· . '''i 
. .,., .. ~ .. "(' 

.. ~ 

.... ~-----~---!----'-----

.. , ................................. · ................. : ................ ;.,, ................................................ : 
Years 



APPENDIXC 
SENSITIVITY ANALYSIS FOR INITIAL SOIL CONCENTRATIONS 



Use your mouse to right click on individual cells for definitions. 

Response: Cone in soil Transfonn: Base 10 log Constant: 

ANOVA for Selected Factorial Model 

!\nalysis of variance table [Partial sum of squares] 

Sum of Mean F 

Source Squares DF Square Value 

Model 0.75 3 0.25 4.025E+005 

A 0.13 1 0.13 2.168E+005 

B 0.16 1 0.16 2.573E+005 

c 0.45 1 0.45 7.335E+005 

Residual 2.477E-006 4 6.193E-007 

Cor Total 0.75 7 

The Model F-value of 402540.62 implies the model is significant. There is only 

a 0.01% chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. 

In this case A, B, C are significant model terms. 

Values greater than 0.1000 indicate the modeJ terms are not significant. 

0 

Prob>F 

< 0.0001 

<0.0001 

< 0.0001 

< 0.0001 

If there are many insignificant model terms (not counting those required to support hierarchy), 

model reduction may improve your model. 

i 

Std. Dev. 

Mean 

c.v. 
PRESS 

7.870E-004 

4.10 

0.019 

9.909E-006 

R-Squared 

Adj R-Squared 

Pred R-SquarE 

Adeq Precisior 

1.0000 

1.0000 

1.0000 

1829.333 

significant 

The "Pred R-Squared" of 1.0000 is in reasonable agreement with the "Adj R-Squared" of 1.0000. 

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your 

ratio of 1829.333 indicates an adequate signal. This model can be used to navigate the design space. 

Coefficient Standard 95%CI 95%CI 

Factor Estimate DF Error Low High VIF 

Intercept 4.10 1 2.782E-004 4.10 4.10 

A-Koc 0.13 1 2.782E-004 0.13 0.13 1.00 

8-Feundich -0.14 1 2.782E-004 -0.14 -0.14 1.00 

C-foc 0.24 1 2.782E-004 0.24 0.24 1.00 

page 1 of 4 for ANOVA of Cone in soil of C:\Program Files\DX6Triai\DATA\soil1.dx6 02:46PM May 30, 2004 



Final Equation in Tenns of Coded Factors: 

Log1o(Conc in soil) = 
+4.10 

+0.13 *A 

-0.14 *B 

+0.24 *C 

Final Equation in Tenns of Actual Factors: 

Log1o(Conc in soil) = 
+5.85476 

+2.87910E-OO.i * Koc 

-2.82260 * Feundich 

+0.23829 *foe 

Diagnostics Case Statistics 

Standard Actual Predicted 

Order Value Value 

3.87 3.87 

2 4.13 4.13 

3 3.59 3.59 

4 3.85 3.85 

5 4.35 4.35 

6 4.60 4.61 

7 4.06 4.06 

8 4.32 4.32 

* Case(s) with !Outlier Tl > 3.50 

Residual 

5.257E-005 

5.118E-004 

-5.664E-004 

2.078E-006 

5.469E-004 

-1.111E-003 

-3;301 E-005 

5.974E-004 

Student 

Leverage Residual 

0.500 0.094 

0.500 0.920 

0.500 -1.018 

0.500 0.004 

0.500 0.983 

0.500 -1.997 

0.500 -0.059 

0.500 1.073 

Proceed to Diagnostic Plots (the next icon in progression). Be sure to look at the: 

1) Normal probability plot of the studentlzed residuals to check for normality of residuals. 

2} Studentized residuals versus predicted values to check for constant error. 

3) Outlier t versus run order to look for outliers, i.e., influential values. 

4) Box-Cox plot for power transformations. 

If all the model statistics and diagnostic plots are OK, finish up with the Model Graphs icon. 

Cook's Outlier 

Distance t 

0.002 0.082 

0.211 0.897 

0.259 -1.024 

0.000 0.003 

0.241 0.977 

0.997 -30.989 ... 

0.001 -0.051 

0.288 1.102 

page 3 of 4 for ANOVA of Cone in soil of C:\Program Files\DX6Triai\DATA\soil1.dx6 02:46PM May 30, 2004 



DESIGN-EXPI::RT PlOt 
Log10{Conc in soil) 

99-

95-

1-

I 
-2.00 

Normal Plot of Residuals 

I 
-1.23 

I 
-0.46 

I 
0.31 

Studentized Residuals 

I 
1.07 

page 1 for Diagnostics of Cone in soil of C:\Program Files\DX6Triai\DATA\soil1.dx6 02:47PM May 30,2004 



APPENDIXD 
CALIBRATION RUNS FOR FINAL SOIL CONCENTRATIONS 



t. 

SESOIL Pollutant Fate Cycle Report for C1 O-C21 #2 Fuel Oil 

SESOIL Mass Fate 

1.eOE+14 .. ---------------------------, 

HOE+14 

1.20E+14 

1.00E+14 

~ 8.00E+13 

8.00E+13 

4.00E+13 

2.00E+13 

3.00E+02 

2. 50E+02 

~ 2.00E+02 

,§ 
1.50E+02 

Years 

Leachate Concentration 

Gl VOL TOTAL 

•IN SOIL AIR 

13 ADS ON SOIL 

Cl PURE PHASE 
•IN SOILI.I 01 

11'1 GNO WTR TOTAL 

SESOIL 
Profile (em) 

I 1.00£+02 ··················:····················=··· ··············t··················r··················:···················r···················! 

5.00E+01 ·········:············ + ·················· ... ·······'··············· ··:·.. . ..... . 
8.00E+OO 

3 4 5 G 7 
Years 

SESOIL Pollutant Percent 
Process Mass pg Input 
Volatilized 9. 725E+l3 71.67 
Soil Air 1.675E+ll 0.12 
Sur. Runoff O.OOOE-01 0.00 
lnWashld O.OOOE-01 0.00 
Ads On Soil 3.711E+l3 27.34 

Maximum leachate concentration: 2.675E-t02 mgn 
Climate: ST. JOHN'S, NL 
Chemical: C10-C21 #2 Fuel Oil 
Soil: Silty Sand and Gravel 
AppllcaUon: MFA BH1 
starting Depth (em): 137.60 Ending Depth (em): 140.00 
Total Depth (em): 140.00 

Hydrol Soil O.OOOE-01 0.00 
Degrad Soil O.OOOE-01 0.00 
Pure Phase O.OOOE-01 0.00 
Complexed O.OOOE-01 0.00 
Immobile CEC O.OOOE-01 0.00 
Hydrol CEC 0. OOOE-01 0.00 
In Soil Moi 1. 951E+09 0.00 

-117.----,-----.---.,.-----,-----.---.,...----. 

~1&8 ••.••••••••.•• •••••••••••••••••• ·:··· •..•••••••.•.•• f· ............... i ..... .................................... ' ..• ' ... . 

~us . .. . . .......................... : ................ i······ .......... -~· ................................................. . 

Hydrol Mois O.OOOE-01 0.00 
Degrad Mols O.OOOE-01 0.00 
Other Trans O.OOOE-01 0.00 
other Sinks O.OOOE-01 0.00 
Gwr. Runoff 1. 094E+l2 0.80 .... 
Total Output 1.356E+14 99.94 
Total Input 1. 357E+14 
lneut - output 6.810E+l0 

·11·~------..,..li.----'------'-----

-W1 ................................. · ................. : ................ : ................................................. . 

C:\SEVIEW\SJMFTA.CLM Years 

C:\SEVIEW\fueloll.CHM 
C:\SEVIEW\saii2-4.SOI 
C:\SEVIEW\BASE2.APL 
C:\SEVIEW\SITEWASH.WSH 
C:\SEVIEW\SOIL2-4.0UT 



APPENDIXE 
SENSITIVITY ANALYSIS FOR FINAL SOIL CONCENTRATION 



Use your mouse to right click on individual cells for definitions. 

Response: Cone in SoU Transfonn: Power Lambda: 2.67 Constant: 

ANOVA for Selected Factorial Model 

- -~alysis of variance table (Partial sum of squares) 

Sum of Mean F 

Source Squares OF Square Value Prob>F 

Model 7.107E+024 4 1.777E+024 34.02 < 0.0001 significant 

8 2.369E+024 1 2.369E+024 45.37 

c 2.839E+024 1 2.839E+024 54.38 

D 2.906E+023 1 2.906E+023 5.57 

BC 1.608E+024 1 1.608E+024 30.79 

Residual 5.744E+023 11 5.222E+022 

Cor Total 7.681E+024 15 

The Model F-value of 34.02 implies the model is significant. There is only 

a 0.01% chance that a '"Model F-Vatue" tbis large could OCCI.Jf due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. 

tn this case B, C, 0, BC are signiljcant model terms. 

Values greater than 0.1000 indicate the model terms are not significant. 

<0.0001 

<0.0001 

0.0379 

0.0002 

If there are many insignificant model terms (not counting those required to support hierarchy), 

hodel reduction may improve your modet. 

Std. Dev. 2.285E+011 R-Squared 0.9252 

Mean 1.499E+012 Adj R-Squared 0.8980 

c.v. 15.24 Pred R-8quare 0.8418 

PRESS 1215E+024 Adeq Precisior 14.730 

The "Pred R-Squared" of 0.8418 is in reasonable agreement with the "Adj R-Squared" of 0.8980. 

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 41s desirable. Your 

ratio of 14.730 indicates an adequate signal. This model can be used to navigate the design space. 

Coaffaeiant Standard 9&-A. Cl 95%CI 

Factor Estimate OF Error Low High 

Intercept 1.499E+012 1 5.713E+010 1.373E+012 1.625E+012 

B-tntrinsic perm6~+011 1 5.713E+010 -5.105E+011 -2.590E+011 

C-SPD 4.213E+011 1 5.713E+010 2.955E+011 5.470E+011 

?-Effetive Porosily348E+011 1 5.713E+010 -2.605E+011 -9.032E-tr009 

BC 3.170E+011 1 5.713E+010 1.913E+011 4.427E+011 

VIF 

1.00 

1.00 

1.00 

1.00 

0 

page 1 of 6 for ANOVA of Cone in Soil of C:\Program Files\DX6Triai\DATA\soi12.dx6 04:32PM May 29, 2004 



___ final Equation in Tenns of Coded Factors: 
'! 

(Cone in Soil)2.67 = 
+1.499E+012 

-3.848E+011 * B 

+4.213E+011 * C 

-1.348E+011 * D 

+3.170E+011 *B*C 

Final Equation in Tenns of Actual Factors: 

(Cone in Soil)2.67 = 
+2.36144E+01: 

-1.96968E+01 i • Intrinsic permeability 

+2.50571E+01• * SPD 

-2.69541E+01• * Effetive Porosity 

+1.52839E+01• *Intrinsic permeability* SPD 

Diagnostics Case Statistics 

Standard Actual Predicted 

Order Value Value Residual 

1 1.988E+012 1.914E+012 7.375E+010 

2 1.882E+012 1.914E+012 -3.223E+010 

3 7.487E+011 5.109E+011 2.378E+011 

4 4.995E+011 5.109E+011 -1.139E+010 

5 1.988E+012 2.123E+012 -1.348E+011 

6 1.988E+012 2.123E+012 -1.348E+011 

7 1.988E+012 1.987E+012 7.886E+008 

8 1.988E+012 1.987E+012 7.886E+008 

9 1.988E+012 1.645E+012 3.433E+011 

10 1.260E+012 1.645E+012 -3.848E+011 

11 1.286E+011 2.414E+011 -1.128E+011 

12 1277E+011 2.414E+011 -1.137E+011 

13 1.988E+012 1.853E+012 1.348E+011 

14 1.988E+012 1.853E+012 1.348E+011 

15 1.988E+012 1.718E+012 2.703E+Ot.1 

Student Cook's Outlier 

Leverage Residual Distance t 

0.313 0.389 0.014 0.374 

0.313 -0.170 0.003 -0.162 

0.313 1.255 0.143 1.293 

0.313 -0.060 0.000 -0.057 

0.313 -0.711 0.046 -0.694 

0.313 -0.711 0.046 -0.694 

0.313 0.004 0.000 0.004 

0.313 0.004 0.000 0.004 

0.313 1.812 0.298 2.062 

0.313 -2.031 0.375 -2.449 

0.313 -0.595 0.032 -0.577 

0.313 -0.600 0.033 -0.582 

0.313 0.711 0.046 0.694 

0.313 0.711 0.046 0.694 

0.313 1.427 0.185 1.507 
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APPENDIXF 
CALIBRATION RUNS FOR GROUNDWATER CONCENTRATIOSN 



Dissolved Concentrations in Plume 

mg/1 

100 

__ ) 

AT123D INPUT PARAMETERS 
Effective Porosity: . 0.300 
Hydraulic Gradient: .003000 mlm 
Hydraulic Conductivity:3.600E+01 mlhr 1.000E+O em/sec 
Soil Bulk Density: 2.200E+03 kglm3 2.200E+O glcm3 
Aquifer Width: O.OOOE-01 m O.OOOE-01 ft 
Aquifer Depth: 2.000E-01 m 6.566E-01 ft 

OiiRtrsivltiu Meters Feet 
Longitudinal: 2.00 6.57 
Lateral: 1.00 3.28 
VertiCal; 0.05 0.16 

Distribution Coeflicient (Kd): 6.000E-02 m3/kg 
Molecular Dlffullon Coefficient: 3.528E-06 m21hr 
flrtt.Ordtr Decay Coefficient: O.OOOE-01 1/hr 

Load 8!aln {m) End (m) Beain (ftl 
X-Directlon ·15.810 15.810 -51.910 
Y·Direction -15.810 15.810 -51.910 
Z.Oitectlon 0.000 0.000 0.000 
INITIAL RESULTS 
Retardation Factor: 441.000 

End(ft) 
51.910 
51.910 
0.000 

Retarded Darq Velocity: 8.183E..o4 mlhr 2.267E-05 em/sec 
Ratardecl Longitudinal Dispersion Cofllclent: 1.633E..03 m21hr 

Depth (Z) • 0.00 meters, 0.00 feet. Retarded Lateral Dllptnlon CoffJclent: 8.164E...()4 m21hr 
Distribution In mgll at 2190.00 days, 6.00 years. Retarded Vartfcal Dispersion Cofftclent: 4.084E-05 m2/hr 
Maximum concentration of 3.290E+01 mg/1 (100.00 percent of the maximum concentration of 3.290E+01 mg/1). 

0.00 10.00 20.00 30.00 40.00 50.00 100.00 150.00 170.00 
Feet 0.00 32.83 85.67 98.50 131.33 164.17 328.33 492.50 558.17 

0.00 0.00 2.180E+01 3.2SOE+01 3.210E+01 2.1J80E+01 0.220E+OO 2A80E+OO 3.100E-08 
10.00 32.83 1.170E+01 2.800E+01 2.7eOE+01 1.7G+01 7.100E+OO 2.020E+OO 2.520E-08 
20.00 85.87 3.580E+OO 6.360E+OO 7 .2«)£+00 5.2SOE+OO 2A&OE+OO 8.890E..Q1 0.110E-07 
30.00 98.50 0.98CJE.02 2.GJE.01 3.370E-01 3.040E.Q1 1.7f0E-01 5.330E.O:Z 8.570E..()8 
40.00 131.33 8.190E-04 2.31()6.03 3.510E-03 3.530£.03 2.220E-03 7.7.ti0E-04 1.8QOE.09 
50.00 184.17 5.810E.Q6 USOE.o& 2.3o40E-05 2.2«1E.o& 1.340£.05 •AOOE.Q6 8.o400E·12 

100.00 328.33 
150.00 o492.50 

C:\SEVIEW'GW5.ATI 
C:ISEVIEW\GW5ATO 



APPENDIXG 
SENSITVITY ANALYSIS FOR GROUNDWATER 

CONCENTRATION 



Use your mouse to right click on individual cells for definitions. 

Response: GWConc Transfonn: Square root Constant: 

ANOVA for Selected Factorial Model 

- -"nalysls of variance table [Partial sum of squares] 

Sum of Mean F 

Source Squares DF Square Value 

Model 48.74 5 9.75 4.125E+005 

A 48.67 1 48.67 2.060E+006 

B 7.175E-003 1 7.175E-003 303.64 

c 1.338E-003 1 1.338E-003 56.63 

AS 0.061 1 0.061 2573.07 

BC 6.700E-004 1 6.700E-004 28.36 

Residual 2.363E-004 10 2.363E-005 

Cor Total 48.74 15 

The Model F-value of 412529.47 implies the model is significant. There is only 

a 0.01 o/o chance that a "Model F-Value" this large could occur due to noise. 

Values of "Prob > F" less than 0.0500 indicate model terms are significant. 

In this case A, B, C, AB, BC are significant model terms. 

Values greater than 0.1000 Indicate the model terms are not significant. 

0 

Prob>F 

< 0.0001 

<0.0001 

< 0.0001 

<0.0001 

<0.0001 

0.0003 

)there are many insignificant model terms (not counting those required to support hierarchy), 

model reduction may improve your model. 

Std. Dev. 

Mean 

c.v. 
PRESS 

4.861E-003 

2.89 

0.17 

6.049E-004 

R-Squared 

Adj R-Squared 

Pred R-Square 

Adeq Precisior 

1.0000 

1.0000 

1.0000 

1215.018 

significant 

The "Pred R-Squared" of 1.0000 is in reasonable agreement with the "Adj R-Squared" of 1.0000. 

"Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your 

ratio of 1215.018 indicates an adequate signal. This model can be used to navigate the design space. 

Coefficient Standard 95%CI 95% Cl 

Factor Estimate DF Error Low High VIF 

Intercept 2.89 1 1.215E-003 2.89 2.89 

A-Hydraulic Gradient -1.74 1 1.215E-003 -1.75 -1.74 1.00 

""':-Longitudinal Dis. 0.021 1 1.215E-003 0.018 0.024 1.00 

C-Tansverse Di&.9 .145E-003 1 1.215E-003 -0.012 -6.438E-003 1.00 
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AB 
BC 

0.062 

·6.471 E·003 

1 1.215E-003 0.059 0.064 

1 1.215E·003 -9.179E-003 -3. 763E-003 

Final Equation in Tenns of Coded Factors: 

Sqrt(GW Cone) = 
+2.89 

-1.74 *A 

+0.021 * B 

-9.145E-003 * C 

+0.062 *A* B 

-6.471 E-003 * B * C 

Final Equation in Tenns of Actual Factors: 

Sqrt(GW Cone) = 

+4.99160 

:-99.27091 * Hydraulic Gradient 

-0.010189 *Longitudinal Dis. 

+1.40347E-OO~ * Tansverse Dis. 

+0.83301 * Hydraulic Gradient * Longitudinal Dis. 

-4.04441E-003 *Longitudinal Dis. • Tansverse Dis. 

Diagnostics Case Statistics 

Standard Actual Predicted 

Order Value Value Residual Leverage 

1 4.68 4.68 2.674E-003 0.375 

2 1.06 1.07 -2.674E-003 0.375 

3 4.60 4.61 -4.731E-003 0.375 

4 1.25 1.24 4.731E-003 0.375 

5 4.67 4.67 -2.674E-003 0.375 

6 1.06 1.06 2.674E-003 0.375 

7 4.58 4.58 4.731E-003 0.375 

8 1.21 1.21 -4.731E-003 0.375 

9 4.68 4.68 2.674E-003 0.375 

10 1.06 1.07 -2.67 4E-003 0.375 

11 4.60 4.61 -4.731E-003 0.375 

Student 

Residual 

0.696 

-0.696 

-1.231 

1.231 

-0.696 

0.696 

1.231 

-1.231 

0.696 

-0.696 

-1.231 

1.00 

1.00 

Cook"s 

Distance 

0.048 

0.048 

0.152 

0.152 

0.048 

0.048 

0.152 

0.152 

0.048 

0.048 

0.152 

Outlier 

t 

0.677 

-0.677 

-1.268 

1.268 

-0.677 

0.677 

1.268 

-1.268 

0.677 

-0.677 

-1.268 
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12 1.25 1.24 4.731E-003 0.375 1.231 0.152 1268 

13 4.67 4.67 -2.67 4E-003 0.375 -0.696 0.048 -0.677 

14 1.06 1.06 2.674E-003 0.375 0.696 0.048 0.677 

15 4.58 4.58 4.731E-003 0.375 1.231 0.152 1.268 

16 1.21 1.21 -4.731E-003 0.375 -1.231 0.152 -1.268 

Proceed to Diagnostic Plots (the next icon in progression}. Be sure to look at the: 

1) Normal probability plot of the studentized residuals to check for normality of residuals. 

2) Studentized residuals versus predicted values to check for constant error. 

3) Outlier tversus run order to look for outliers, i.e., influential values. 

4) Box-Cox plot for power transformations. 

If all the model statistics and diagnostic plots are OK, finish up with the Model Graphs icon. 
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DESIGN-I:XPI=H. I Plot 
Sqrt(GW Cone) 

99-

95-: -
90..; 

80 

70 

50 

5-
- m 

1-

I 
-1.23 

Normal Plot of Residuals 

I 
-0.62 

I 
0.00 

I 
0.62 

Studentized Residuals 

I 
1.23 
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APPENDIXH 
MODEL VERIFICATION RUN 



SESOIL Pollutant Fate Cycle Report for C1 O.C21 #2 Fuel 011 

SESOIL Mass Fate 

3.00!+14 -r---------------------------. 
2.10£+14 

2.00£+14 

r 1.501•14 

1.DOE+t4 

5.801+13 

Veara 

Leachate Concentration-
3.00! •02 

2.50E+02 

I 2.0GE+D2 

J 
t.SOE+02 

t.OOE+02 

&.OOE+Ot 

:::-~::~~::: .. ·:::::T·--~--~~= ~~:-·~:::·· .. :J-~~~-::::·.~-~~-[~::.:~-~~~1~~-:::~::~..... -~:-~~~:=~-- :~:-~::: .. -~:~::: 
I 1 

-..... ~ .. h·-H-······"' ··-·~ .. -·--·-·-·--~· ---· ·---··---··· I ~ -............................ _r_ .................. -. -.. ··---·---... ·--------·---·-
...... _ .. ______ .. _________ ....... -· --·--· ............................... !-............. _,_ .. ___ ; .. 

! l 
___ , ......... ___ ............................ ' ,_ ... ___ ........ _. ___ .. ___ J__ ___________ .. .J ............... _ .. ___ ... ------·- ............... _. __ _ 

l ; 

! \ 
I ! 
I ! 

.......................................................................................... ·----·+·····""""'""'"""-+·-·"""'""-"- ............................... ·-----------·--
i f 
! ; 

I i 
O.OOE+OO 

I 

0 2 3 4 5 6 T 8 

• VOL TOTAL 
•IN SOIL AIR 
.ADS ON SOIL 

• GND WTR TOTAL 

SESOIL 
Proftfe. (em) 

-==~~----=~~--:---~-~v .• ,. 
SESOIL PMollutant Percent 

Maximum leachate concentration: 2.675E+02 mgll 

Process aas pg Input 
Volatilized 2. o99E+14 77.36 
SoH Air 2. 70~E+ll 0.09 
Sur. Runoff 0. OOOE-0 1 0 • 00 
In Waehld 0. OOOE-01 0. 00 
AdeOnSoll 5.850E+13 21.55 
Hydrol8oll O.OOOE-01 0.00 
Ditgra_d 8011 0. OOOE-01 0. 00 
Pure Phue 0. OOOE-01 0. 00 
Complaxed 0. OOOE-01 0. 00 
lmmobileCEC O.OOOE-01 0.00 
Hydrol CEC 0. OOOE-01 0. 00 
In Soil Mal 3 .150E+09 0. 00 
Kydi'OI MoiS 0. OOOE-01 0. 00 
Degracl Mofa 0. OOOE-01 0. 00 
Olher Trans 0. OOOI!l-01 0. 00 
Other Slnka 0. OOOE-01 0. 00 
Gwr. Runoff 2. 531E+12 o. 93 
Total Output 2. 7i2E+l4 §g. 95 
Tatallnput 2.714E+14 
lnput·CM!U! 1.128E+ll 

C:\SEVJ.EW\SJWTA.CLM 
C:\SEVIEW\constant.CHM 
C~E~tSCM 
C:\SEVIEWIASE3.APL 
C:\SEVIEW\SITEWASH.WSH 
C:\SEVIEWIVAUDATE.OUT 

Climate: ST. JOHN'S, NL 
Chemical: C10.C21 #2 Fuel 011 
Soil: Sil~ Sand and Gravel 
Application: MFA BH1 
Starting Deplh (em): 137.60 Ending Depth (em): 140.00 
Total Deplh (em): 140.00 
... ,,......._-r-_....,..... _ __, __ ,......._....---.---..----. 

·141 ......... I 
YNII 



APPENDIX I 
MODEL PREDICTION RUN- SOIL 



SESOIL Pollutant Fate Cycle Report for C1 O.C21 #2 Fuel 011 

SESOIL Mass Fate 

2.SOI+t4 

2.HE+14 

r 1.SDE+14 

1.001!+14 

S.DD!+fl 

D.OOE+OO 
0 

3.00£+02 

2.!0E•02 

I 2.08E+02 

I I.!OE+02 

I.ODE+02 

5.10E+Dt 

o.ooe.oo 

10 

a 5 10 15 

20 

Yeere 

20 25 so 35 

30 

•VOL TOTAL 
•IN SOIL AIR 
a ADS ON SOIL 
QPUREPHASE 
.IN SOILM 01 
• GND WTR TOTAL 

SESOIL 
Profile (em) 

-=::~==------::::~.-.oo:--"!"--~-....:..:Y •• ,. 
SESOIL PoHutant Percent 

Maximum leachate concentration: 2.675E+02 mgn 
Process Mass pg Input 
Volatilized 2. 675E+l4 98.56 
Soli Atr l. 94 8E+08 0. 00 
Sur. Runoff 0. OOOE-01 0. 00 
In Waehld 0. OOOE-01 0. 00 
AdaOnSoll 1.885E+10 0.00 
Hydrol SoH 0. OOOE-01 0. 00 
Degrad Soli 0. OOOE-01 0. 00 
Pure Phase 0. OOOE-01 0.00 
Com~xed O.OOOE-01 0.00 
lmmobileCEC O.OOOE-01 0.00 
Hydrol CEC 0. OOOE-01 0. 00 
In Soli Mol 2. 267E+06 0. 00 
Hydrol Molt 0. OOOE-01 0. 00 
Degrad Moll 0. OOOE-01 0. 00 
OtherTrana O.OOOE-01 0.00 
Other Sinks 0. OOOE-01 0. 00 
Gwr. Runoff 3. 813E+12 1. 40 
Total Output 2. 713E+l4 99.98 
TotallnpUt 2. 714E+l4 
Input• OUtput 4. 982E+l0 

C:ISEVIEW\SJP.FTA.CLM 
C:\SEVIEW\corlsant.CHM 
C:ISEVIEW\constant.SOI 
C:ISEVIEW\BASE3.APL 
C:\SEVIEW\SITEWASH.WSH 
C:ISEVISW\PREDICT3.0UT 

Climate: ST. JOHN'S, NL 
Chemical: C10-C21 #2 Fuel 011 
Soil: Silty sand and Gravel 
Application: MFA SH1 
Starling Depth (em): 137.60 Ending Depth (em): 140.00 
Total Depth (em): 140.00 
-or,.----,..---r----.--~---.--~---, 
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APPENDIXJ 
MODEL PREDICTION RUN- GROUNDWATER 



Dissolved Concentrations In Plume 

mg/1 

10 

70 -10 

AT123D INPUT PARAMETERS 
Etrectlve Porosity: . 0.300 
Hydraulic Gradient: .003000 mlm 
Hydraulic Conductlvlty:3.800E+01 mlhr 1.000E+O em/sec 
SoH Bulk Density: 2.200E+03 kglm3 2.200E+O glcm3 
Aquifer Width: O.OOOE-01 m O.OOOE-01 ft 
Aquifer Depth: 2.000E..01. m 8.586E-01ft 

DiaptHitvitlts Meters Feet 
Longitudinal: 2.18 7.09 
Lateral: 0.20 o.ee 
Vert1cal: 0.02 0.07 

Distribution Coefficient (Kd): 8.000E·02 m31kg 
Molecular Dlffullon Coefftclent: 3.528E-08 m21hr 
flrlt.Ordtr Decay Coefftclent O.OOOE-01 1/hr 

Load Bealn Cml End fm) Bealn (ft) · 
X-Directlon ·22.360 22.360 -73.415 
Y-Dilectlon -22.360 22.380 -73.415 
Z:DII!Ctlon o.ooo 0.000 o.ooo 
INITIAL RESULTS 
Retardation Factor: 441.000 

.Endfft) 
73.415 
73.415 
0.000 

tJ) g) 100 Rttlrded Darcy Velocity: 8.163E-04 mlhr 2.267E..Q5 cmtsec 
Ratlrdecl Longitudinal Dispersion Cofflcltnt: 1. 783E-o3 m21hr 

Depth (Z) • 0.00 meters, 0.00 feet. Rltlrcled l..aWII Dllptnlon Cofftcltnt 1.833E-04 m2lhr 
Distribution In mgll at 10950 .. 00 days, 30.00years. RttaldedYII'IIcaiDispentlonCofftcllnt: 1.835E-05m21hr 
Maximum concentration of 8.930E+OO mgll (15.57 percent of the maximum concentratton of 4.450E+01 mgll). 

0.00 10.00 20.00 30.00 40.00 50.00 80.00 70.00 80.00 90.00 100.00 
0.00 32.83 85.87 88.60 131.33 184.17 197.00 229.83 282.87 295.50 328.33 

-1o.oo -32.83 4.570E-G2 t.55QE.02 1.810£.01 a.1eoE-01 s.30CJE.01 a.e10E.Q11.380E+OO 2.0SOE+OO a1soe+OO 4.830E+OO e.esOE+OO 
-6.00 -18.42 4.580E.Q2 1.570E.Q2 1.GJE.01 3.18CJE.01 5.3&IJE.01 8.730E.ot 1.380E+OO 2.140E+OD 3.230E+OD 4.780E+OO 8.880E+OO 
0.00 0.00 4580E.Q2 1.570E.Q2 1.82CJE.01 3.180E.Q1 5.380E.ot 8.7-40&011.380E+OO 2.150E+OO 3.250E+OO 4.80DE+OO 8.830E+OO 
s.oo tt.42 4.580E-aZ 8.510E-G2 1.820E.o1 a180E-01 5.350E-01 a.730&.-01t.380E+OO 2.1«E+OO a.230E+OO 4.780E+OO t.880E+OO 

10.00 32.83 4.57CJE.02 t.550E-G2 1.810E.ot a1111JE.01 5.300£.01 a.etGE-01 t.380E+OO 2.080E+OO 3.150E+OO 4.830E..OO 8.850E+OO 

C:\SEVJe\W'REDICT3.ATI 
C;\SEVIEW\Pf®ICT3.ATO 










