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Abstract

Rainfall-runoff models used for hydrological modelling usually involve

many parameters that must be calibrated using observed rainfall and runoff data

before they can be used for any water resources study. Traditionally, calibrations

of these models are done using a trial and error approach or by using numerical

optimisation methods. neither of which is entirely satisfactory. In this thesis. a

calibration based on Statistical Experimental Designs and Response Surface

Methodology is presented. This method integrates statistical experimental

designs. regression modening techniques. and optimisation methods in the

calibration process. This method can effectively select the parameters and

indicates their interactions thai will significantly affect the response variable.

which in this case is a goodness.-of4 frt criterion. The method also determines the

optimal values of the parameters tha t should be used in the model to produce the

best fit of calculated runoff amounts to observed runoff amounts. Full factorial

and fract ional factorial designs and two popular responsa-surtace designs:

central composite (CCO) and Box-Behnken were compared.

Mock's rainfall-runoff model. a popular model for irrigation planning in

Indonesia will be used to illustrate the proposed methodology. It has six

parameters to be calibrated from observed monthty rainfall and runoff data. The

results of the proposed methodology of calibrating the six parameters of the



Mock model will be compared to those already obtained previously using the trial

and error method. Observed rainfall-runoff and evapotranspiration data from

1973 - 1976 for the Babak River Basin in Lombok, Indonesia will be used in the

calibration of the model. Data for 1977 and 1978 will be used for verification of

the model.

The results showed that the proposed methodology gave a better

understanding of how the parameters interact with each other , is more

systematic, and the optimised values gave a better fit of computed and observed

runoffs.
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Chapter 1

Introduction

Rainfall-runoff models are computer based conceptua l models used for

water-resources management purposes. These models normally have many

parameters or coefficients that must be calibrated before the model can be used

effectively. Hence. the calibrationof a rainfall-runoffmodel is a necessitybefore it

can be used on a particular catchment. This chapter will describe rainfall-runoff

models in general. and briefly describe various calibration methods. The

objectivesand outline of the thesis are also presented in this chapter.

1.1.Rainfall-Runoff Models

Hydrolog y is the study of water on the earth. It consists of the study of

the water resources , observations. management, and elements of the hydrologic

cycle : rainfall , evaporation , infiltration , runoff, etc. One of the main concerns of

hydrologists is the study of the water balance in a river basin. Understanding the

water balance allows for better management of the water resources available in

the basin. A water balance study is basically an accounting procedure to quantify

the amount of water that is entering the basin from the atmosphere in the form of

precipitation, and the amount of water that is leaving the basin in the form of

runoff , infiltration , and evapotranspiration. Hence , from a study of the water



balance over a long period record, one can determine if a persistent shortage of

water or a surplus of water is present. One can then determine how the available

water should be allocated for water supply, irrigation, hydropower , etc.

The characteristic measurements of runoffs from catchments are very

complex. Over the last few years, studies about runoffs have become

increasingly important to the community because of the increase in demand for

water . Therefore, hydrologists must investigate the availability of runoff in river

and other water systems to see whether the needs of the community can be met.

When long periods of record of rainfall. runoff. evaporation . and other losses are

available, the study of the water balance is rather straightforward in that the

historical data can be used directly in the accounting process . However, in most

situations, especially in a developing country like Indonesia. runoff records are

often very short while rainfall records tends to be available for a much longer

period. This is because it is easier and cheaper to measure rainfall than runoff.

In such situations. it is common for hydrologists to use mathematical models that

mimic the hydrological processes of the river basin to generate simulated runoff

data based on available rainfall data. Ideally, models that fully replicate the runoff

processes should be used. However. it would be impossible to apply a full

description because it is very complicated and interrelated. Alternatively.

simulation models can be used. These models are based on a collection of

principles set out in mathematical formulation that attempt to describe the

characteristics of a river basin. These mathematically based hydrologic models

are normally called rainfall-runoff models or more accurately. conceptual rainfall-



runoff models. Many such models are available ranging from the very

complicated to rather simple ones. Some are discrete event (based on a single

rainfall-runoff event) models, while others are continuous events (based on

hourty, daily, or monthly data) models. Some of the better known discrete event

models are Hydrologic Engineering Center (HEe- t ) Model, Runoff Routing

Model Hydrograph Synthesis Model. and Storm Water Management Model

(SWMM). Some well-known continuous event models include Tank Model,

Streamflow Synthesis and Reservoir Regulation (SSARR) Model, Simple

Lumped Reservoir Parametric (SLURP) Model, Hydrological Simulation Program

- Fortran (HSPF) Model, (Sorooshian and Gupta. 1995). Practically all rainfall­

runoff models are in the form of a computer program. Modals that are based on

hourty or daily data can also be used for flood forecasting purposes.

With the advent of fast modem computers, these computer-based

rainfall-runoff mode ls are becoming easier and more convenient to use in

practice. These models can be used to generate simulated runoffs for different

scenarios of rainfalls, land use changes, etc. in ontya matter 01minutes on a fast

computer.

However, before the chosen model can be effectively used, the model

parameters must be property calibrated. Different models have different number

and types of parameters. Two types of model parameters are normally used in

rainfall-runoff models: ' physicai and 'precess' (Sorooshian et. at 1995).

Physical parameters are parameters that represent physically measurable

properties of the watershed, for example. drainage areas, fractions of the



watershed covered by lakes, suTface and stream slopes, etc. Process

parameters are parameters that represent indirectly measurable properties of the

watershed, for example, effective depths of water, interflow rates, coeffICientsof

infiltration, percolation, soil storage, etc. Mistaking the true value of parameters

will lead to incorrect results. As such, these parameters must be properly

calibrated with observed rainfall· runoff data so that the parameters can truly

represent the raintall-nmottprocess of the river basin being modelled.

1.2.Rainfall-Runoff Model Calibration

In hydrology, Sorooshian and Gupta (1995) define calibration as the

process by which the parameters of a model are adjusted. Calibration is needed

to adjust the model parameters so that the model can produce simulated runoffs

that are similar to the observed runoff data.

There are three general methods of model calibration: -manuaf (see, for

example: liong, 1991; Sorooshian and Gupta 1995), Mnumericaf (see, for

example: Sorooshian and Gupta 1995; and Javaheri, 1998), and -Response

Surface Methodology" (see, for example: Liang and Ibrahim 1991, 1993 and

1995). Manual methods, also called trial and error methods, are commonly used

in practice. However, these methods require numerous trials and little guidance

is available to optimise the parameters of the model unless the user has

extensive experience with the model and river basin. All parameters are treated

independently and usually the relationships among parameters are not explicitly



known. The more parameters involved in the model the more difficult it is to

determine the correct values of the parameters.

Numerical methods are automatic calibration methods invented to

overcome the problems of manual methods (DaWdy and Donnell, 1965).

However, researchers are also not satisfied with most numerical methods

because they have to develop their own computer programs which are very

specific to the model and are very difficult to be modified by new users (Beck and

Arnold, 1976; Sorooshian and Gupta. 1983). Building the program is the most

difficult part of the work. as the modellers have to spend a great deal of time

developing the programs rather than conducting the model calibration itself. In

addition. how the parameters are interrelated is also not explicitly known and

taken into account in the calibration process.

To overcome some of the difficulties with the above two methods, Liang

and Ibrahim (1991. 1993, and 1995) suggested the use of the response surface

method, a statistical-mathematical combination method for model calibration.

Liang and Ibrahim used this new method to calibrate the eight parameters of the

Storm Water Management Model (SWMM) to preserve the response of peak­

flows and runoff-volumes from storm data in Singapore. They used the Nash

Coefficient (~ values as the response for the goodness-of-fit objective-function.

Their results showed that the Response Surface Methodology is an effective

model--ca.libration method. It was simpler and more methodical than the manual

and numerical methods.



1.3 Thesis Objectives

This thesis wilt presen t the use at the Response Surface Methodology for

model calibration suggested by Liang and Ibrahim. While the Response Surface

Methodology is well documented in statistical applications, its application to

rainfall-runoff model calibration is still limited . Many practical issues dealing with

the method and transferability of the method to other models need to be

addressed.

This thesis has tour objectives , all of which are related to the use of the

Response Surface Methodology for calibrating a rainfall·runoff model. These

objectives are:

1. To calibrate the Mock rainfall·runoff model using the Response Surface

Methodology. The Mock model is used as the illustration because it is

commonly used in Indonesia especially in irrigation planning (Mock, 1973;

Kadarisman, 1993; and Kurniawan, 1994). The Mock model has six

parameters that require calibration using observed rainfall and runoff data.

2. To investigate how the parameters of the Mock model are related and interact

with one another. Unlike other methods, one of the benefits of the Response

Surface Methodology is the ability to analyse the interaction of parameters. It

is important to consider the effects of interactions because they contribute to

obtaining the global optimum values of the parameters . The Response

Surface Methodology applies experimental design methods for this purpose.

The results of two types of experimental designs, full factorial and fractional

factorial designs, will be compared in selecting the signiflC8Jltparameters and



parameter-interacnons to optimise the objective functions . Kadarisman (1993)

argued that only using one objective function is not sufficient to analyse the

results of calibrations because different objective functions provide different

measurements of a specific change of data and parameters . As such three

different objective functions will be used in this thesis.

3. To select the optimum parameter values for the Mock model. Two common

experimental designs for Response Surfaco Methodology , Box-Behnken and

Central Composite Designs will be compared . The number of required

experiments based on the two designs will also be compared .

4. To demonstrate the accuracy of the Response Surface Methodology over the

trial and error method. Statistical approaches and verification techniques will

be used to compare predicted and observed runoffs based on different

scenarios of data availability . The trial and error method is used as the

comparison because it is the most common method of model calibration in

practice and because an automatic calibration routine is not available for the

Mock model at present.

Monthly rainfall, runoff, and evapotranspiration data from 1973 to 1976

for the Sabak River basin in Lombok, Indonesia will be usec:l for the model

calibration . Data for 19n and 1978 will be used for verification of the calibrated

model. Further information concerning the Sabak River basin can be found in

Kadarisman (1993).



1.4 Outline of The Thesis

The thesis consists of se...en chapters. Chapter 1 introduces lhe

background of rainfall-runoff model calibration, objecti ves of the research , and

outline of the thesis. It also discussed what rainfall-runoff models are, their

purpose , and why they need to be calibrated.

Chapter 2 provides a detailed review of model calibra tion methodology,

especially previous appl ication of the Response Surface Methodology for rainfall­

runoff modelling.

Chapter 3 describes the orthogonal experimental designs: full 2k factorial

and fractiona l i'- factorial designs , as this is the first stage of the Response

Surface Methodology. Advantages, disadvantages, and difficulties of the

experimental designs are discussed . In addition. three objective functions: Sum

of Absolute Differences between the observed and simulated runoffs, IEl, Nash

Coefficient, R'. and Deviation of Runoff Volume, Dv are defined here. The results

of goodness-of·fit measures using the three objective functions will be used as

the inputs in the response-surface optimisation stage.

Chapter 4 describes the two popular techniques of response surface

optimisations: Box-Behnken and Central Composite Designs. In addition,

procedures for model verification are presented in this chapter .

Chapter 5 briefly explains how the Mock rainfall-runoff model works . The

parameters of the model are described here. The logic of the model is presented

using flowcharts .



Chapter 6 discusses the results of experiments, effect estimations.

polynomial models, results of optimisations and verifications. In addition. the

comparison among the results of manual calibration, Box-Behnken, and Central

Composite Designs are presented here.

Chapter 7 presents the conclusions and recommendations for further

study.



Chapter 2

Literature Review of Calibration

Methods

This chapter provides a general description about model calibration

methods that are currently used. Manual Method will be described in

Subsection 2.1. followed by Numerica l Methods in Subsection 2.2, and then

Response Surtace Method in Subsection 2.3. The reasons as to why the

Response Surface Methodology is advantageou s among those methods are

also explained in this chapter.

2.1.Manual Method

Engineers and modellers traditionally conduct calibration of hydrOlogic

models , using ~manual calibration methods" (Soemarto, 1995) commonly

known as the ~ tri3J and error methods" (e.g., Brazil. 1988 and Kadarisman.

1993). While the method is easy to use and simple in concept, the results are

not always accurateand satisfactory. Subjectivity, personalexperiences. and

even luck are very much involved in the calibration process results. In

general , modellers have to manually adjust the parameters one by one. The

parameters are repeatedly adjusted to obtain a match between simulated and
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observed runoffs. The match can be evaluated using graphs and I or

qccooess -ot-nt criteria. In the graphical method, each time a model parameter

is adjusted, both simulated and observed runoffs are plotted together in a

graph. The graph has typically a vertical scale of runoffs and a horizontal

scale of time. Optimum results are achieved if the simulated runoff curves are

similar to the observed runoff curves. In the qoodness-ot-ftt analysis method,

goodness-of·fit criteria are used as a measure of closeness between

simulated and observed runoffs. Commonly used criteria include Sum of

Absolute Differences between the observed and simulated runoffs, I EJ. Nash

Coefficient, R2• and Deviation of Runoff Volume, Dv. In the optimisation

process, modellers have to minimise the lEi, to maximise the R2
, and to

minimise the Dv. The perfect optimum results are achieved if lEi is zero, ~ is

one, and Dv is zero.

The manual method usually has no set sequence for adjusting model

parameters. Modellers freely choose and make a set sequence of model

parameter adjustments unless the mcceuer is familiar with the special

behaviour of the parameters of the model. they can then detennine the

sequence of the parameters to be adjusted. However, the results are

sometimes different when starting with a different parameter. This is because

parameter-interaction effects cannot be taken into account in the manual

calibration process. Therefore, the results obtained are not the global optimal

parameters.

Typical steps required in manual calibration (Kadarisman, 1993) are:

11



(1) Select the possible range of all model parameters. Every model

parameter must have a possible range where the parameter can

significantly affect the model output (runoffs). The parameters ' ranges

should be taken from the basin of interest because all the model

parameters indicate the particula r characteris tics of the basin of interest

(2) Divide each model parameter's range into several levels. The divisions are

at least two levels: the low and the high to find the direction of the

optimum. More levels used will produce better results. The main purpose

of the range of division is to determine the optimum and the number of

peaks in the range. One peak range is called un;'modal range and more

than one peak is called mutti-modal range. In the case of uni-modaf

ranges, the opt imisation can directty be analysed at around the peak..

However, in the case of multi-modal ranges if the opt imum of interest is

the peak, the optimisation must be tried at around every peak or at around

the highest peak..

(3) Set an parameters to the lowest level. As in the preliminary stage of the

process, all parameters are set to the lowest level to have a basic value of

optimisation.

(4) Choose and calculate the objective functions. The objective functions are

goodness-of-fit measures to be described in detail later in Chapter 3. This

research deals with three goodness-of-fit objective functions: lEi, R', and

0..
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(5) Choose one parameter to be adjusted. The optimisation of the parameters

can only be done one by one. As mentioned before, there is no priority in

selecting the first parameter to adjust.

(6) Set the parameter to the next level of the range and recalcurate the

objective functions.

(7) Compare the recalculated obj9Ctive functions to the previous calculation.

(8) Choose the better resuns of objective function calcula tions. The better

results replace the previous basic values.

(9) Plot and see the match of the simulated and observed runoffs. The graph

is for visually check ing the goodness·of-frt.

(10) Repeat steps (6) to (10) until the optimum values of Objecti ve functions

are achieved. The optimum values of the parameters will be indicated , if

the next level of parameters cannot produce better results anymore.

(11) Repeat steps (5) to ( 10) tor another parameter to be adjusted. All

parameters must be adjusted to obtained the optimum value of objective

function. The calibration exercise is terminated after all parameters are

adjusted , although it is not possible to know if the result is really the global

optimum value.

13



Disadvantages of the Manual Methods:

The trial and error method while easy to conduct. is unsatisfactory

because:

(1) This method cannot explain the relationships between the parameter­

interactions. It is difficult to adjust those parameters without understanding

the effect of parameter-interactions. Sometimes, increasing one

parameter while the other parameter is at a low value has a very different

effect from when the other parameter is at a high value.

(2) Adjusting parameters cannot be done all together at the same time.

must be done one by one. This is why the method requires a great deal of

time.

(3) Manual calibration methods cannot achieve the global optimum because

of the perameter-interactions.

(4) It is difficult to know exactly when the process should be terminated

because it is difficult to know whether the optimal values of the

parameters have been obtained.

(5) ModeHerswho are trained and experienced may be able to obtain good

results using this calibration method. However, it normally takes a long

time for a less experienced person, because there is usually very limited

guidance in the calibration process.

In view of the above problems, modellers have developed new

methods usually facilitated by the advantages of computers. These methods

14



are called the "Automatic Calibranon" or "Namer icaj" methods (Dawdy and

O'Donnell, 1965 and Nash and Sutcliffe, 1970). The methods are technically

the extension of manual calibrations (Sorooshian and Gupta, 1993). The next

section describes these methods.

2.2. Numerical Methods

Numerical methods are developed based on numerical measures of

qoodness-of-ftt using mathematical solutions usually facilitated by using

advanced computer programs. The numerical measures are normally

computed using methods such as Least Squares (Kuczera, 1982), and

Maximum Ukelihood (Sage and Melsa, t971 . Bard, 1974. Diskin and Simon,

t9 n . Sorooshian and Dracup, 1980. Sorooshian and Arfi, 1982. Sorooshian

and Gupta, 1983) among others. The principles of least squares estimation

and the maximum likelihood estimations are not given here but they can be

found elsewhere, for example. Devore (1995), The performance of the

objective function computation is the main consideration instead of comparing

the simulated and observed curves to obtain the optimum result. The results

of objective function computations can also be plotted in three--dimensional

graphs that can show relationships among every two-parameters of interest

and the yields of the process. Modellers can then focus the experiments to

the region of interest that is shown in the graph to obtain the optimum.
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Numerical methods are normally categorised as belonging to l.ocal

Search Methods" or -Global search Methods ", (Soroos hian and Gupta, 1983

and 1995). These methOds are described next.

Local Search Methods

The method s are des igned to efficiently optimise uni-modal functions

(Sorooshian and Gupta , 1993). Unl-modat functions are functions that have

only one peak or trough . Exercises included in the method (Sorooshian and

Gupta , 1995) are :

(1) Select a direction to the optimum using surlace graphs . Modellers can

eas ily select the direct ion to the place of optimum us ing the sur1ace graph.

The sur1acegraphs are built from the objective function plots.

(2) Calculate rtl8 necessaty distance to move . After finding the direction to the

optimum , rnodel\ers have to conduct other experiments or trials that are

expected to produce improving results of objective functions such as

minimising objective functions. The distance to move can be calculated

using the methods of steepest ascent or steepest descent (Myers and

Montgomery, 1995).

(3) Compute the Objective function and plot the result. After getting to the new

region of experiments , the new experiments have to be conducted and

then the objective function must be recalculated based on the new

experiments . The results of objective functions are then plotted on the

surface graphs .

16



(4) The procedures (1) to (3) are conducted repeatedly to find the optimum

result. Termination of the process is if the results have achieved the

optimum. It means that the process cannot improve the values of objective

functions anymore.

The methods utilise three operations, reflection, contraction, and

expansion (Javeheri. 1998). Javaheri defined a reflection by a reflection

coefficient and the points on where the experiments are conducted. An

expansion is carried out when a new minimum is produced. However. if the

reflection cannot produce a minimum. then a contraction must be conducted.

The local Search Methods can be divided into two classes of strategy: ~Direct

Search Optimisation Strategy" and "Gradient Optimisation Strategy"

(Sorooshian and Gupta. 1995).

1. Direct Search Optim isation Strategies

The strategy to achieve the optimum relates directly to the value of

objective function. It was reported by Sorooshian and Gupta (1995) that many

modellers had successfully applied the methods e. g., Rosenbrock (t960) .

Neider and Mead (1965), Dawdy and O'Oonnen (1965), Pickup (1977),

Sorooshian and Arfi (1982) and Sorooshian and Gupta (1983) among others.

Typically. the strategy fo{lows the steps (Sorooshian and Gupta. 1993) below:
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(1) Start from inffial point in the graph. The graph is built from the objective

function plots. The initial point of interest can be chosen at any point in the

graph . The point represents the value of objective function in the graph .

The initial point is called the central point.

(2) Select some new points around the central point. This step is to determine

the direction of the optimum .

(3) Calculate the appropriate distances to move in that direction . The methods

of steepest ascent or steepest descent (see for the details of the methods ,

Myers and Montgomery , 1995. Montgomery , 1997) are applied here to

calculate the distance . The new experiments based on the distance are

conducted.

(4) Evaluate the objective function at the new points . The objective functions

are recalculated based on the new experiments.

(5) Take the point that improves the value of objective function as t~ new

point replaces the initial point. Objective functions at all selected points are

compared . The point that produces an improvement of objective function

is taken as the new central point instead of the previous central point.

(6) The procedures {I} to (5) are conducted repeatedly until the optimum

resun is achieved. The process is terminated after achieving the optimum

result that is indicated by the smallest, largest, or certain values of

objective function .
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Sorooshian and Gupta (1995) reported that the strategy provides no

guidance to choose the best initial point for starting the process. Naturally, the

exercises are done forward at all directions around the initial point. After

finding the best direction to move the experiment. the values of objective

function have to be evaluated. If the new point has an improving value of

objective function then the new experiment replaces the previous one and the

procedure is repeated. However, jf the new point has a worse optimal value of

objective function then the distance of moving ls reduced. The search

terminates after the strategy cannot find improvement in all directions.

Javaheri (1998) reported that the strategy provided a good fit between

observed and simulated flows as indicated with Nash Coefficient , Ff values

mostly above 0.80 . However, Javaheri found that the use of the strategy was

not very robust. The successfulness of the strategy depends on the starting

location. It, therefore. could sometimes mislead modellers to obtain the global

optimal solution because of being trapped in the local optimal region.

2. Gradient Search Optimisation Stretegies

The strategies deal with the information of function values and

function gradients. The strategies have been applied by Duan at el. (1992).

Most gradient strategies are analysed based on the eq. (2.1) (Sorooshian and

Gupta, 1995).
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8 ' +1 ::8 , -p .A.V8 ,

where

8'+1 = New point,

e , = Initial point.

= Distance of moving,

A = the matrix of moving direction from 8 , to 8 .."

V8 , = Function gradient matrix at the initial point.

(2.1)

As in the direct strategies. the new point will replace the previous

point if the value of 8 4 1 can improve the results of optimisation. The

strategies will be terminated after finding the improvement is impossible. It is

also indicated by the gradient value if it is significantly close to zero. The

reason that the local search methods are unsatisfactory is that they cannot

detect the appearance of multi-modal functions. The multi-modal functions are

the functions that have more than one peak or trough. The method can

analyse one peak or trough only. Consequently, the optimum achieved is not

the global optimum but the local optimum. Meanwhile, most hydrological

cases have multi-modal functions (Sorooshian and Am. 1982). Therefore,

"Gfobal Search Methods" are developed as an improvement of the "Local

Search Methods".
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Global Search Methods

The methods are designed to optimise multi-modal functions. The

approach strategies include the methods of ~Random Search", ~Mufti·start

Algorithms", and ~ShuffJed Complex Algorithms " (Sorooshian and Gupta,

1995 ).

1. Random Strategy

The strategy uses random numbers generated based on probability

distribution functions. Mostly used is the uniform distribution (Sorooshian and

Gupta, 1995). For the ~Pure Random Search " strategies, Sorooshian

assumes there is no prior knowledge of where the best parameter set exists.

All exercises included in the method are purely randomised. therefore, there

is no guidance from the previous exercise to the next exercise. It makes the

methods inefficient. Latterty, the "Adaptive Random Search" strategies are

developed to improve the performance of the "Pure Random Search ".

However, it was reported by Sorooshian and Gupta (1995) that Duan et al

(1992) were not satisfied with their results because there was only a 30 %

success rate. The method has been applied by Brazil and Krajewski (1987).

Typically, the strategies follow (Duan, et af., 1992) as:

(1) Chooss a focal point. This point is for the centre of the process of

optimisation. It can be the best point obtained in the preliminary process of

defining the parameter range. The best point means the point that has for

example the smallest value of objective function. Store the set of
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parameters that produces the focal point. Name the set of parameters as

the focal parameters.

(2) Generate a set of N points forthe parameters randomly distributed based

on the focal parameters . Sorooshian suggests using unifonn or normal

distributions . The values of objective function are computed for every point

of the set of parameters. Choose the location of the point with the best

value of objective function. Store the set of parameters that produces the

best point and name them as the new focal parameters .

(3) Repeat step (2) based on the new focal parameters . This repetition will

produce a better value of objective function.

(4) Compare all the stored points and determine the point with the best value

of objective function. Re-define this point to be the new focal point. Record

in which range level this point was found.

(5) Repeat steps (2) to (4) until the optimum objective function is found. The

process is terminated when the optimum value of objective function is

achieved. The set of parameters that produces the optimum value is set

as the calibrated parameters .

2. MultI-StartAlgorithms

This is a simple combination method that deals with multiple optima.

Here, the failure probability of the problem of interest, which can still be

accepted , must be determined first. The strategy is to run n number of trials of

a local search method starting from a random initial point to find the minimum
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failure probability, The efficiency of any mutti-start procedure varies

nonlinearly based on the accepted failure probability, According to Sorooshian

and Gupta (1995), Duan et al (1992) successfully demonstrated the strategy

to a simple hydrologic watershed model. Weaknesses of the methods

(Sorooshian and Gupta, 1995) are:

(1) Results that are more accurate require a large number of random

numbers,

(2) It is influenced by personal decision because it needs an accepted failure

probability.

(3) There is very limited guidance to conduct the optimisation procedures for

a new model.

(4) The relationships between parameters and their interactions are never

described.

In general, steps of the process follow the strategy of random search

methods. The difference between the mutti-start algorithms and the random

search methods is the multi-start algorithms starts from all points of possible

parameters (Sorooshian and Gupta, 1995).

3. Shuffled Compl•• Algorithms (SeA)

According to Javaheri (1998), Duan et al. (1992) had concluded that

the large number of minor optima was the most probable reason why the

previous attempts were not successful. Therefore, the method of Shuffled
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Complex Algorithms was developed. This method is based on the notion of

sharing information and on concepts drawn from principles of natural

watersheds (Sorooshian and Gupta, 1995).

Here. the weight of the complexes is indicated first, then the sample

size of interest is calculated. The sample is generated based on a uniform

sampling distribution without prior information. The strategy of this method

consists of computing a sample size. generating a sample, ranking the points,

partitioning into complexes, evolving each complex. shuffling complexes, and

checking the convergence (Sorooshian and Gupta, 1995). Measures of the

convergence often depend on how the closenessof measuring the distance

between functions is defined. Another common description of measuring a

convergence is, uniformconvergence, which requires that the maximum value

of the absolute errors in the domain is zero (Elden and Koch. 1990). This is

stronger than point-wise convergence as it requires a uniform rate of

convergence at every point in the domain. The other commonly used

measure is convergencein mean that involves measuring an averageof a

function of the point-wise-error over the domain (Lorenzen and Anderson,

1993). The convergence properties of an algorithm are described by two

analytic quantities: convergence order and convergence ratio. A sequence

{'4} is said to converge to X· if the following equation holds

Lim. _.1l4 - X-I = o. (22 )
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where:

Xl< =Sum of absolute errors.

X· = Target of sum of absolute errors.

Convergence properties of most minimisation algorithms are analysed

through their application 10convex quadratic functions , tor example: second

order polynomia l models. General functions can be approximated by a

quadratic convex function in the neighbourhood of their local minima. The

convergence properties obtained for convex quadratic functions are usually

applied locally to general functions. However, such generalisations do not

guarantee good behaviour in practice on complex, large-scale functions.

The Shuffled Complex Algorithms procedures are complex, iterative,

and require conditional decisions. The conditional decision of every modeller

is different which is why each modejer has to write his or her own program.

Usually, the logic of the programs is difficult to be followed by other modellers.

The strategy of the SCA is as follows (Sorcoshian and Gupta, 1995):

(1) Select p 2 1 and m 2 n+1. where p = number of complexes, m = number of

points in each complex. and n = dimension of the problem. Compute the

sample size, s = p x m.

(2) Generate sample S points in the feasible space ot parameters . Compute

the objective function value at each point. In the absence of prior

information, Sorooshian suggests using uniform distributions.
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(3) Rank points in order of increasing objective function value. This rank of

points is then stored in an array. O.

(4) Evolve each complex according to the Competitive Complex Evofution

(CCE) algorithm outlined separately . The CCE algorithm required for the

evolution of each complex in the step (4) of the Shuffled Complex

Evolution method (Sorooshian and Gupta, 1995).

(5) Shuffle complexes . Shuffle the complexes by replacing them into 0 and

then sort 0 in order of increasing objective function value.

(6) Check convergence . This is the step of terminating the process. The

process can be stopped after the convergence of errors evaluations is

achieved. It means that the algorithms cannot significantly improve the

value of the objective func1ion. This condition is considered to indicate

arrival at the location of an optimum (please refer to "Function

Ocnverqence" and "Parameter Convergence". Sorooshian and Gupta,

1995).

All methods discussed earlier are iterative procedures. Some of them

need personal decisions. Therefore, results obtained tend to be different

among modellers. Those methods also require highMspeed computers.

Usually, modellers cannot recognise that the best optimum has already been

achieved. Therefore, a function convergence and a parameter convergence

are needed to identify the termination.
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Theoretically, the advantages of the methods (Sorooshian and Gupta ,

1995) are:

(1) Random numbers can be easily generated and used in the error tenn of

the model.

(2) Iteration can be repeated many times.

(3) Subjective factors can be reduced.

Javaheri (1998) reported that the strategy was very successful to

calibrate parameters of a Storm Watershed Management Model applied to

the Upper Bukit Timah catchment in Singapore . It is indicated by the Nash

Coefficient, R2 values for aUstorms were close to 1.0.

The typical difficulties of the methods (Sorooshian and Gupta. t 995)

are:

(t) The methods involve very complicated mathematical functions , especially

for the non-linear structural characteristics typical of hydrology models.

(2) The methods are still not able to explain the effects of parameters and

interactions.

(3) Modellers have to develop their own programs, which are very difficult to

modify or understand by others.

In view of the inherent weaknesses of the trial and error and

numerical optimisation methods for model calibration , the Response
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Surface Methodology is proposed to overcome the weaknesses of the

previous methods.

Numerical methods will not be used for results' comparison in this

study. The reasons are:

(1) Modellers have to write their own computer programs to apply the

methods to their particular model because software of the methods is not

available yet.

(2) Writing the program takes a great deal of time, especially for those who

are untrained in computer programming.

(3) It is usually difficult to follow the logic of the programs written by others, if

such a program exist.

2.3. Response Surface Methodology (RSM)

According to Myers and Montgomery (1995) RSM was first introduced

by Box and Wilson (1951) based on the theory of -Experiment and Optimum

Design" and then further developed by Box and Hunter (1957). Bradley

(1958), Davies (1960), and Hunter (1958, 1959a, 1959b) made wide use of

the method and developed the strategy of the approach. In hydrology, liang

and Ibrahim (1991 and 1993); and Wong, et. al. (1994) have applied the

procedures of Response Surface Methodology to calibrate the Storm Water

Management Model (SWMM) parameters for modelling the peak storm

runoffs of the Bukit Timah Catchment in Singapore.
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The RSM integrates mathemat ical and statistical techniques, (Myers.

R. H. and Montgomery , D. C., 1995. Montgome ry, 1997) and was essentially

developed from numerica l methods . The mathematical techniques are to

compute object ive functions , to build polynomial models and to optimise the

model-parameters. The statistical techniques are to analyse the significance

of acceptable results.

The RSM is initiated with an experimental design commonly called

design of experiment (DOE) to screen model-parameters before going to the

optimisation process (Myers and Montgomery , 1995). The types of the

experimental design can be either Factorial or Fractional Factorial Designs

(see Chapter 3 for details) . The DOE can effect ively select the parameters of

importance and indicate their interactions that signif icantly affect the response

variables. Therefore , using the DOE, RSM easily optimise the values of

model-parameters that are used in the model to produce the best fit between

simulated and observed responses .

The benefits of the method (Myers and Montgomery , 1995.

Montgomery , 1997. Cornell , 1990) are:

(1) Ii can determine the effects of parameter -interactions on the response .

(2) It has a high ability to guide researchers to select the best model (first ,

second . or third order polynomials) of response surface to adjust the best

value of parameters .

(3) It is more systematic and accurate in guiding researchers to find the

optimum .
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(4) The design and analysis can be conducted using standard statistical

software without the need to write custom programs for a particular model.

As a method for model calibration, the procedure is in two stages:

Screening Analysis and Optimisation Analysis (Myers and Montgomery,

1995).

Screening analysis us ing DOE

In general , the purposes of the screening using DOE are to conduct

experiments, to select the model-parameters, and to set the range of the

model-parameters . In addition, DOE can estimate the effects of parameters

and interactions. In this step, modellers have to determine whether a

screening experiment is required. If so, an experiment design is created and

executed that allows model1ersto select the model or process parameters to

find the minimum required number of critical experiments. Identification of the

critical experiments allows modelters to use response surface methods for the

optimisation. DOE that will be used in this research are Factorial Designs and

Fractional Factorial Designs. These designs will be discussed later in the

Chapter 3.

Analysis using response surface optimisation methods.

In this step, modellers have to create and execute a response surface

design. Once the technique analyses the results of the experiment design,
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prediction plots are available . Therefore, modellers can qUickly identify the

important variables using the prediction plots by comparing relative

significance of the various terms in the model and selecting those with the

greatest impact. The methods allow modellers to build polynomial models

based on the effects of parameters and interactions that are recognised using

experimental designs. The polynomial models are used 10 fit the surface

graph of responses and to determine the values of parameters and

interactions that can achieve the optimum value of responses . Model1ersmay

optimise a single response or a combination of criteria for multiple responses.

Optimisation may be to 3 minimum, maximum or a target value. For combined

responses, a specification range may be entered for each of the included

responses. With the DOE, researchers can develop statistically exact

predictive response surfaces that allow developing a strategy to lind the

simultaneous targets. The optimum is achieved while using the minimum

number of trials . The two popular designs of RSM are Central Composite and

Box-Behnken Designs. These designs will be discussed later in Chapter 4.

The RSM requires certain assumptions to simplify the optimisation

(Sorooshian and Dracup, 1980). Based on the research of Uong and Ibrahim

(1991 and 1993), and Liang. et at (1994) assumptions used were:

(1) All parameters are randomly distributed. The type of distribution is usually

uniform.

(2) There are only two ranges of parameters that are considered. upper and

lower limits.
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(3) Experimental Designs and Response Surface Methodology are applied to

optimise the parame ters.

(4) The relationship between responses and parameters is expressed as a

second-order polynom ial model :

h(X,E)=ag + ±aiX i +~±a 'jX,X j +±.b;X;" + E. (2.3)
;_1 ,_I ,. l ,. 1

where

h(X,E)= Response surface objecti ve function,

a g , a j and a F Coefficients of polynomial mode ls,

XI and X i = Parameters of polynomia l models .

(5) The Optim isation is achieved by solving the difference funct ion expressed

as

where

h(X,E) = Frtted response surface ,

hm= Measured system response .

h(X.£) - h.= 0 (2.4)
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The application of the research by Liong and Ibrahim (1995) was to

demonstrate the use of response surface procedures to calibrate a SWMM

that was applied in the Upper Bukit Tlmah. Singapore. Three calibration

storms were used to derive the average optimal set of calibration parameters.

They analysed 273 experiments to adjust the eight parameters of the Model.

The verification was obtained by simulating three additional storms from the

average of three calibration storms. The results showed a very good fit

between observed and simulated storm runoffs indicated by a low value of the

standard error and a high value of the ~. They concluded that the RSM was

successfully demonstrated on a catchment in Singapore and the simulation

was matched to the measured system response.

The next two chapters will explain in detail the two stages of applying

the RSM.
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Chapter 3

Experimental Designs

In this chapter. commonly used experimental designs will be

described . Full Factorial and Fractional Factorial Designs will be described in

subseetions 3.2 and 3.3, respectively. The selection of three objective

functions, which are considered in the response surface optimisation , will be

described in subsect ion 3.4.

3.1.Introduction to Experimental Design

II is very important to have guidance in conducting research

especially for research that involves a large number of parameters . Formal

experimental designs are thus widely used as the preliminary step in any

research methodology (Myers and Montgomery, 1995). The design

procedure, commonty known as Design of Experiments (DOE), if property

conducted provides a predictive knowledge of complex and multi-variable

processes with the fewest trials possible (Taguchi, 1987a; Lorenzen and

Anderson, 1993). Knowing where to run those critical few trials is the key to

the technique of DOE (Jazwinski, 1998). Modellers can simultaneously

optimise the process for all of the critical outputs to find the best place to

achieve the goals once a predictive model exists. DOE deals with optimising
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the research processes and maximise the information collected from the

process of experimentation, while minimising the cost. In other words, DOE

optimises the number of trials required to achieve the best result and to allow

drawing valid conclusions about the process. In short, DOE is a systematic

process in which some purposeful changes are made to the input variables of

a process or system so that we may observe and identify the reasons for

changes in the output response. Experiments, if designed and used properly,

are also a very powertul research method that can test hypotheses about

cause-effect relationships. The essential part of experiments, or experimental

research, is good control of all extraneous interlerence. By keeping

extraneous factors under control, the relationships between dependent and

independent variables can be observed by manipulating the levels of

independent variables, and some kind of cause-effect inference can be made

based on the results. The designs of DOE are very useful methods that have

already been applied broadly in many disciplines to improve the performance

of any process. The benefits of conducting a proper experimental design

according to Myers and Montgomery (1995) are:

(1) Gives unbiased results: DOE select the region of interest or particular

points of experiment. Hence, outliers and the results of bias can be

avoided.

(2) Reduces variability and obtain results closer to target requirements: the

target requirements are the results that have very low effects of

experimental error (error variance due to the different sources of variation
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involved in the analysis). Therefore, the prime consideration in the

selection of an appropriate design is to reduce the experimental error.

(3) Is able to estimate effects of factors and interactions: effects that are

considered can be statistically tested using statistical tests of significance

via an analysis of variance (ANOVA).

(4) Reduces experimentation time: by analysing only in the particular region

or points of interest, researchers can reduce the time for experimentation.

Fewer experiments required will also lead to lower overall costs.

The applications of the techniques of DOE usually follow the following

strategies as given by Myers and Montgomery (1995):

(1) Select the range of model parameters: This is a lower and upper limit of

the parameters in the model of interest. It is important that physical

meaning of the range of each be carefully considered. For example, in

the case of a rainfall-runoff model, the ranges chosen cannot cause the

model to produce negative runoffs.

(2) Select the objective funetion(s). The objective functions are used to

evaluate the results of the optimisation. Usually, the functions are

goodness-of-fit measures. The more objective functions considered, the

more precise the optimisation (Kadarisman, 1993). It is more accurate to

choose objective functions that will give unbiased results (Lye, 1996). The
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object ive functions used in this research will be described later in

subsection 3.4.

(3) Design the experiment How the experiment is arranged and carried out is

the next step. Many methods exist but the methods that will be used here

are 2'" factorial and fractional factorial designs for screening of important

parameters . and the methods of Central Composite and Box-Behnken

Designs will be used in the optimisation phase . Many off-the-shelf

computer programs can be used to design the experim ents: for exampte,

Minitab. DOE·PC , Design Expert. Statistica , and SPSS .

(4) Estimate effects of parameters and parameter-fnteractions. It is important

to consider the interrelationships among parameters and to decide on

their levels so that only the important parameters need be considered .

The effects are estimated using a standard analys is of variance (ANOVA).

Factoria l Designs

Experimental design s in which every level of every variable is paired

with every level of every other variable are called factorial designs , (Johnson,

N. L., et. at , 19n). A factorial design is a very general kind of design . This

can handle any number of treatments or block variables (called factors such

as model parameters) and their interactions, these factors can each have any

number of categories (ca lled levels) . The factorial design then consists of

taking the same number of observations for each combination of factor levels.

The common experimental designs are Factorial and Fractional Factorial

37



Designs. When a mcdeller is interested in the effects of two or more

independent variables, it is usually more efficient to manipulate these

variables in one experiment than to run a separate experiment for each

variable. Moreover, only in experiments with more than one independent

variable is it possible to test for interaction among variables. This technique of

designs can investigate all possible combinations of the two levels (low and

high) of the parameters, (Winner, 1962). In general, the total number of

experiments that are used for the designs to analyse the factors (parameters)

is based on the number of model-parameters. It means that the total number

of required experiments equals two to the power of the number of

parameters. The results of the experiments will be used in parameter effect

estimation and model fitting and optimisation. The significance of the effects

and the coefficients of polynomial models will be examined using "analysis of

variance" (ANOVA). The details of the ANOVA table for the factorial design

are discussed later.

Contrast and Effect Estimation:

Contrast is a summation of the responses of treatment combinations

or experiments. Taguchi (1987a) defined contrasts as the count of total

variation that influences the main effect or interaction effect. The contrasts of

those parameters and their interactions can be determined using the sign

table given in Appendix C, Tables C. 1 and C. 2, for the full two level factorial

design and the one half-fractional factorial design, respectively. The results of
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the contrast are used for the calculations 01effects and the sum of squares .

The calculation of the contrasts can be explained in eq . (3.1) for the contrast

of A which is easier to explain using only a full factorial design of 2 factors (or

parameters), A and B.

Contrast A = {- (1) + a- b + ab} (3.1)

where:

Contrast A = Contrast value of parameter A

(1) = Response of the process when all parameters are set to the low limit

a = Response of the process when only parameter A is set to the high limit

b = Response of the process when only parameter B is set to the high limit

ab = Response of the process when parameters A and B are set to the high

limit

The effect of a parameter or an interaction indicates the influence of

the parameter or the interaction to the process or model. II is necessary to

study both the effects of main parameters and their interactions. The main

effect of an independent parameter is the effect of the parameter averaging

over all levels in the experiment Two independent parameters interact if the

effect of one of the parameters differs depending on the level of the other

parameter. In some experiments , researchers might find the effect of one

main parameter (A) is very small and negligible when the other parameter (B)
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is at a low level. However, the effect of A becomes bigger when B is at a high

level. This means that the influence of A depends on the level of B.

Therefore, knowledge of the interaction AB is as useful as knowledge of the

main effect A. The calculation of effects of those parameters and their

interactions are given in eq. (3.2). An example for the calculation of the effect

of parameter A is:

EffectA =co: ;:r.A (3.2)

where:

Effect A= Effect value of parameterA

Contrast A= Contrast value of parameter A that calculated using eq. (3.1)

n = Number of replications lor each experiment.

k = Number of model parameters.

These effects measure the influence of the parameters and

interactions to the response. Only parameters that have high effect either

positive or negative effect can be considered as variables in the polynomial

model. However, to obey the principle of hierarchy. some single parameters

sometimes must be included in the polynomial model if some interactions of

Ihose parameters are involved in the model, although those single

parameters do not have high effect. The visualisation of effects and
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interactions can be described using Figures. 3.1.a to 3.1.h. In the diagram, X

is the response. A and B are factors.

BI

x

Al

Cal

A2

Fig. 3.1.a Effect Diagram: No effect of factor A, small effect of factor

B. and no interaction

x <;
, . R2

AI

Cbl

A2

Fig. 3.1.b Effect Diagram: Large effect of factor A. small effect of

factor 8 . and no interaction
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BI

x

B2

Al

Icl

Al

Fig. 3.1.c Effect Diagram: No effect of factor A, large effect of factor

B, and no interaction

x i-- i, -----..J BI

Al

Idl

Al

Fig. 3.1.d Effect Diagram: Large effect of factor A. large effect of

factorB,and no interaction
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X~/182
~81

Al

leI

A2

Fig. 3.1.9 Effect Diagram: No effect of factor A, no effect of factor B,

and large effect of interaction

'N::
i !

AI A2

Fig. 3.1.1Effect Diagram: Large effect of factor A. no effect of factor

8. and slight effect of interaction
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(g)

A2

Fig. 3.1.9 Effect Diagram : No effect of factor A, large effect of factor

B. and large effect of interaction

x
~81

~. ;ii ~B2

AI

(bl

A2

Fig. 3.1.h Effect Diagram: Large effect of factor A, large effect of

factor atand large effect of interaction
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Significance of effect of parameters and their interactions can also be

evaluated using normal plots of effect and perturbation plats. The normal plot

of effect shows the absolute value of the term effects (horizontal axis) against

a normal probability scale (vertical axis). Parameters and their interactions

that are insignificant will fall on a straight line.

The perturbation plot is useful when trying to decide which axes to

use on a contour or 3D plot. The most complex behaviour (most curved or

steepest change rate) parameter can be seen in the perturbation plot. The

perturbation plot helps modellers compare the effect of all the factors at a

particular point in the design space. The response is plotted by changing only

one factor over its range while holding all the other factors constant. A steep

slope or curvature in a factor shows that the response is sensitive to that

factor. A relatively flat line shows insensitivity to change in that particular

factor. If there are more than two factors , the perturbation plot should be

used to find those factors that most affect the response. The influential

factors are good choices for the axes on the contour plots.

The sums of squares of effects defined as the total variation of the

individual effect means with respect to the grand mean are calculated from

the analysis of variance . Sums of squares of effects are divided by degrees

of freedom to produce mean squares . The mean squares of parameter are

divided by the mean square of error to produce the significance lack-of-flt test

(Fo-test). The calculation of sums of squares of model parameters and their
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interactionscan be explained using eq. (3.3). The example for the calculation

of the sum of squares of parameter A are calculated using

where:

55 " = Sum of squaresof parameterA

Contrasts A= Contrast value of parameter A that calculated in eq. (3.1)

k = Numberof parameters

n = Numberof replications

The sum of squaresof error is given by:

where:

SSermr= Sum of squaresof experimentalerror

SStotaJ = Sum of squaresof the total model

(3.3)

(3.4)

l:(SSplI~)= Summation of all sumof squaresof parameter-effects.
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The total sum of squares is given by:

where:

SStomI = Sum of squares of the total model

E(response2
) = Summation of all responses of the experiments

n = Number of replications

k =Number of parameters

The mean of squares can be calculated using:

MS=~
df

where:

MS = Mean of squares of parameter-effects

SS = Sum of squares of parameter-effeets

df = Degree of freedom of parameter-effects

(3.5)

(3.6)

The degree of freedom (elf} is an abstract statistical concept in terms

of the numbers that are free to vary or the number of independent
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components minus the number of parameters. In the case of having only one

point, there will be no degree of freedom (n - , = 0 where n = t) for

estimation . In order to plot a regression line, there must be at least two data

points. In other words. the degree of freedom tells the number of useful data

for estimation . Thus, the lower the degree of freedom, the poorer the

estimation. The equations for calculating df of a two-factor experiment are:

df.= (p-l)

where:

dt, = Degree of freedom of parameter-effect A

p = Number of possible levels for parameter A

df.=(q-l)

where:

df, = Degree of freedom of parameter-effect B

q =: Number of possible levels for parameter B

and

df~=(p-l)(q-11

(3.7)

(3.8)

(3.9)
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where:

df...= Degree of freedom of interaction-effect AB

p =Number of possible levels for parameter A

q = Number of possible levels for parameter B

The ANOVA allows modetlers to test the hypothesis of treatment

means using significance tests. The significance test is cast in the form of

accepting or rejecting the null hypothesis (H~). the hypothesis of no

difference. If the H~ is rejected, there will be an alternative hypothesis (H,). In

the ANOVA, the H~ is accepted or rejected on the basis of the test criterion

given by:

F = MS ~
e MSr

where:

Fa= Value of calculated F· test

MSp = Mean squares of parameter

MSe = Mean squares of error

(3.10)

It is common in statistical procedures to use the 5 or , percent levels

shown in the F table. If the value of F found in the analysis is equal to or

greater than the value found in the F table at either the 5 or 1 percent level,
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then the Ho is rejected. In other words. the probability of finding a difference

as largeas or targer than the obtained value in the experiment is P s:0.05 or

P S 0.01. Therefore. modellers can conclude that there is a significant

difference between the treatment means. The rejecting of Ho at the 5 percent

level means that there is less than 5 percent chance of finding a differe nce as

large as or greater than that of the treatment means . Further detail

explanation of ANOVA can be found elsewhere in e.g.. Myers and

Montgomery (1995).

3.2. Full Two Level Factorial Design

When each factor is appfied at two levels. the design is called Two­

Level Factorial Design. The term "two levels· means the low level and the

high level of the parameters that are considered in the analysis. The levels

may be quantitative or qualitative. but in either case are represented by

elements of a finite set. usually by O. 1, 2•...• 81 - 1. where the i-th factor

occurs at S, levels. However. Montgomery (1997) defined that the levels can

be set as wide as the real range of the parameter or as close as possib le to

the predicted value of the known parameter. The creation of full factorial

designs with low H} and high (+1) levels of each factor means that

experiments with two-, three-, or four-factor systems will have rccr -. eight-. or

sixteen-factor combinations or experiments, respectively . In other words,

each replicate of the design has exactly Z.experimental run combina tions. in
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which k is the number of involved parameters and all parameters have two

levels (low and high). Therefore, the design is called 2k Factorial Designs or

Full Factorial Designs (Myers and Montgomery, 1995). The design can be

constructed using Yates' fOlWard algorithm or a sign-table. The construction

is illustrated below in Tables 3.1 and 3.2. assuminga process with response,

Y, that is affectedby three factors: A, B, and C.

Table3.1 Yates' FOlWard Algolithm ConstructionTable

y Column 1 Column 2 Column3, a+ 1 ab+b+a+ 1 abc+bc+ac+c+ab+b+a+ 1
a ab+b abc-be-a c-e abc-be-ac-e-eb-b-a- 1
b ac-e ab-b+a- 1 abc- be-ac-e-ab-b-a- 1
ab abc+bc abc-be-ac-e abc-be-ac-e-ab-b-a- 1
c a-1 ab+b-a- 1 abc-be-ac-e-ab-b- a- 1
ac ab-b abc-be-ac-e abc-be-a c-e-eb-b-a- 1
be ac-e ab-b-a- 1 abc-be-ac-e-ab-b-a- 1
abe abc-be abc-be-ac-e abc-be-ac-e-ab-b-e- 1

where:

Y = Processthat is affectedby factors: A, a.and C.

(1 )= Responseof the processwhen all factors are set at the low level.

a = Responseof the processwhen only factorA is set at the high level.

b = Responseof the process when only factor B is set at the high level.

c = Responseof the process when only factorC is set at the high level.

ab = Responseof the processwhen factor a and b are set at the high level.

ac = Responseof the processwhen factor a and c are set at the high level.

be =Responseof the processwhen factor band c are set at the high level.
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abc = Response of the process when factor a. b. and c are set at the high

level.

Column 1 contains of the summation and subtraction of row 1 and 2. 3 and 4,

5 and 6, and 7 and 8 in Column Y.

Column 2 contains of the summation and subtraction of row 1 and 2. 3 and 4.

5 and 6, and 7 and 8 in Column 1.

Column 3 contains of the summation and subtraction of row 1 and 2. 3 and 4.

5 and 6, and 7 and 8 in Column 2.

Therefore :

The effect of factor A = abc-be-ac-e-ab-b-a-It) (as shown in Column 3)

The effect of factor B = abc-be-ac-e-eb-b-a- rt)

The effect of interaction AS = ebc-bc-ec-c-ab-o-a-tt )

The effect of factor C = abc-bc-ec-c-eb-o-e-rt)

The effect of interaction AC =ebc-bc-ec-c-eb-b-a-rt )

The effect of interactio n BC = abc-be-ac-e-ab-b-a-It )

The effect of interaction ABC = abc-be-ac-e-ab-b-a-It}

Table 3.2 Sign Table

A B AB C AC BC ABC
1 + + +
a + + +
b + + +
ab + + +
e + + +
ae + + +
be + + +
abc + + + + + + +
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where:

(-) = Sign of factor that is set at the low level.

(+) = Sign of factor that is set at the high level.

The fulfilment of main factor's signs depends on the factor's effect of interest,

for example: the fulfilment signs under A, every time a appears will be signed

(+), othe rwise H.

The fulfilment of interaction's signs follows the rules of multiplication , for

example: AB = A x B, AC =A x C, and ABC =A x B x C.

There fore:

The effect of facto r A = abc-oc-ec-c-eb-c-e-tt)

The effect of factor B = abc- bc-ac-c-eb-b-e-t t j

The effect of interaction AB = abc-be-ac-e -eb-b-a-It }

The effect of factor C = abc-ec-ec-e-eo-c-e-t t j

The effect of interaction AC = arc -be-ac-e-eo-c-a- rt )

The effect of interaction BC = abc+bc-ac-e-ab-b+a+(1 )

The effect of interaction ABC = abc-bc -ac+c-ab+b+a,·(1)

The results of Yates' forward algorithm are the same as that of the sign table.

Applying the design that involves six parameters , the des ign will suggest 64

experiments to be conducted . The constructio n of 64 experiments, the total

possible combinations from low and high levels of the parameters are shown

in Appendix C Table 1.

As the number of parameters increases , the numbe r of runs wiD also

increase rapidly because the number of parameters indicates the value of the
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exponent. Modellers have tried to solve this problem using fractional factorial

designs. which can reduce the number of runs without neglecting the effect of

all parameters and thei r interactions . Fractional factorial designs will be

discussed next.

3.3.Fract ional Two-Level Factorial Designs

The fractional factorial designs are invented to attempt to reduce the

number of experiments without neglecting the all-main factor effects

(Petersen. R. G.• t 985). The designs work based on the assumption that

alias-parameters (aliases) that appear in the experiments can be neglected.

Myers and Montgomery (1995) suggested the alias parameters were

recognised using design-generators. The meaning of aliases can be

explained as when the effect of one parameter is equal to the other

parameters or interactions, then the parameter is called aliased with the othe r

parameters or interactions. For example : Effect A = ~ (a - b - c + abc) and

Effect Be = ~ (a - b - c + abc), then, A and BC are aliased (Myers and

Montgomery , 1995). Only by neglecting the aliases can the number of

experime nts be reduced. The types of Fractional Factorial Designs, e. g.•

One-Half Fractional (OHF) and One-Quarter Fractional (oaF) Designs

(Myers and Montgomery, 1995) will be discussed in this chapter . In terms of

orthogonality, fractional factorial designs are nonnally constructed to have

both orthogona lity and balance; however , they may have more rows than are
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required for estimating parameters and error. In such cases, appropriate rows

may be trimmed so that orthogonality Is preserved but balance is lost.

OHF Designs reduce the number of experiments to a half of the

original experiments produced by Two Level Factorial Designs and OaF

Designs reduce to a quarter of the original experiments. The number of the

experiments for a OHF and OQF are given by:

OHFDesigns

(3.16)

where:

n = Number of experiments

k = Number of parameters

OQF Designs

(3.17)

where:

n = Number of experiments

k "" Number of parameters
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In the fractional factorial designs, it is important to recognise aliases

because recognising aliases will complete the other effects that are not

computed in the fractional factorial designs. John (1971) suggested

recognising the aliases using the techniques of resolution designs. The

technique multiplies design-generators to the main effects to determine the

aliases. The design-generator (I) is an interaction factor that contains two.

three, or more factors depending on the type of resolution designs and the

number 01 parameters. There are many types of design resolutions (John.

1971); they are named based on the number of factors that are considered to

interact into the design-generator. The resolution 111 design refers to the

design that uses three-factor interaction as the design-generator. In addition,

the resolutions IV and V indicate the designs that fanned using four and five­

factor interaction, respectively. There are no resolution I or II designs

because the simplest design of factorial is ~ (four experiments) and the

simplest design does not need any reduction. Consequently, the fractional

factorial design is about the reduction of three and more factors (Winer, 1962;

John, 1971; and Ogawa. 1974). Moreover, the types of design resolution can

be more than five depending on the number of parameters such as the

resolution VII design presented by John (197t ). However. the solutions will

be very complicated and difficult when the number of parameters are very

large, such as ten or more. Hydrological modellers usually consider very

carefully limiting the number of parameters of a process. The characteristics

of resolution III, IV, V, and VI are:
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(1) Resolution III Designs. There is no main effect aliased with any other

main effect. Main effects are aliased with two-factor interaction . Some

other two-factor interactions may be aliased with each other. The design­

generator is e. g., I = ABC.

(2) Resolution IV Designs. There is no main effect aliased with any other

main effect or with any two-factor interaction . However , two-factor

interactions are altased with each other . The des ign-generator is e. g., I =

ABCD.

(3) Resolution V Designs. There is no main effect aUased with any other

main effect or with two-factor interaction . However , two-factor interactions

are aliased with three-factor inte ractions . The design-generator is e. g., 1=

ABCDE.

(4) Resolution VI Design. There is no main effect aliased with any other

main effect , two-, three- or four-factor interaction. However , two-factor

interactions are aUased with four-factor interactions. Moreover , three­

factor interactions are aliased with each other. The des ign-generator is e.

g.• I = ABCDEF . More resolution s' characteristics can be determined using

the technique s of identifica tion of aliases .

In general , only Resolution V and higher des igns are usefu l. lower

resolution designs would mean that two factor interaction are ajiased with

other two factor interactions.
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3.4. Selection of Objective Functions

Eachresponse in an experimentdiscussedabove indicates the result

of the process when the process-parameters are set in a certain

arrangement. In this research, the responsesare measuresof goodness-of­

fit between the observation and the Mock-model simulated runoffs.

Sorooshian and Gupta (1995) defined that an objective function is an

equation that is used to compute a numericalmeasurementof the difference

between the model-simulated output (usually the streamflow hydrograph) and

the observed (measured) runoffs. This research considers three objective­

functions.The three objectivefunctions are:

(1) AbsoluteSum of Error, rJEI.

(2) Nash SutcliffeCoefficient,~,

(3) Deviationof the RunoffVolume, D•.

Each of the abovefunctions are describedbelow:

a. Absolute ResIduals, L IEI

It is a measure of the absolute differences of the simulated and

observed runoffs. The equation of the absolute residuals is expressed as:

(3.13)
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where:

LIEI = Sum of the absolute residuals

as= Simulated monthly river flows

00 = Observed monthly river flows

!lEi measures the total experimental errors that occur in the

simulation. The units of this measure are equal to the units of the data.

Therefore , modellers can directly recognise the differences between

simulated and observed data in terms of units. The smaller the value of the

measure the better is the fit. A perfect match is when the value of LIE!

equals zero. Narula (1996) reponed that the minimum sum of absolute errors

regression is more robust than the least squares regression for some types of

outliers because it sums the difference between every single simulated and

observed point. Punher. it has been proven that even if the value of a certain

variable for an observation is changed within limits, it leaves the fitted

minimum sum of absolute errors regression unchanged. However , it cannot

be used to compare two sets of data that have different number of members,

such as different long periods , because the smaller members of data points

will automatically produce the smaller amount of L IE! . Therefore , other

objective functions such as R~ and Dv need to be considered .
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b. The Nash Sutcliffe Coefficient, R2

This measure was invented by Nash and Sutcliffe (1972). The

equation of the Nash Sutcliffe Coeffic ient is expressed as:

t (Qo-Q,)'
Fr= 1 - -"'---

t (Qo-Q;;f

where:

Fr:::: The Nash-Sutcliffe coefficient

0 0 :::: The observed monthly river flows

as:::: The simulated monthly river flows

0: = The mean of the observed monthly river flows

(3.14)

~ measures the experimental errors of simulated values to the grand

mean of observed values. The value R2 is a fraction between 0.0 and t .0, and

has no units. Therefore , R~ is always less than one. When ~ equals 0.0,

there is no linear relationship between 0 0 and as,The measure is akin to the

coefficient of determination used in regression analysis . Moreover, it

emphasises the ratio of the difference between observed and simulated data

to the average of observed data. Therefore , a value of Frequals t .0, does

not imply a perfect match, it is only more robust than the absolute residuals to

indicate a perfect linear association .
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c. The Deviation 01 the Runoff Volume. D.

This measuremen t was given by World Meteorolog ical Organisation

(1986) as:

I lVo-V,1
D. = -'.'-.--

~Vo

where :

D. = The Deviation of the Runoff Volume

Vo = The observed runoff volume

V, = The simulated runoff volume

(3. 16)

Dv measure s the percentage of the total experimental errors to the

total observed values. Although , Dy equals zero does not indicate a perfect

match but more like ly measuring the quantity of runoff volume . A smaller

value of the measure indicates that the observed and simulated runoff

volumes are similar in magnitude .
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Chapter 4

Response

(RSM)

Surface Methodology

In this chapter. the procedure of optimisation using RSM will be

presented for calibrating a rainfall-runoff model. Central Composite (CeO)

and Box-Behnken (BBD) designs will be described in subsections 4.2 and 4.3

respectively, and followed by subsect ion 4.4, which explains the use of least

squares method for building polynomial models. Analysis of the polynomial

models will be presented in subsection 4.5. The last subsection will describe

the verification tests on the performance of the calibrated model on selected

periodsof rainfalldata that werenot used for the calibration.

4.1. Introduction to Response Surface
Methods

The RSM is a method for optimising processes based on polynomial

surface analysis (Myers, A. H. and Montgomery , D. C., 1995). Montgomery

(1997) notes that Response Surface Methodology (RSM) is a collection of

mathematical and statistical techniques that are useful for the modelling and

analysis of problems in which a response of interest is influenced by several
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variables. Its objective is to optimise the response. Response means the

measures of quality characteristics of a system. Here, responses are inputs

taken from the results of three objective-functions' computations from

selected experiments by the DOE, where, the system concerned here is the

Rainfall·Runoff Model. An optimum response is obtained by optimising the

polynomial model that is built using the method of least squares . The

polynomial model can be easily optimised if there is not any serious

multicollinearity that affect the model and if the region of optimum is inside the

range of parameters. Multicollinearity problems arise when the predictor

variables are highly interrelated, te .. some predictors or parameters are

nearty linear combinations of others. Highly collinear models tend to have

unstable regression coefficient estimates. Theretcre , to see whether the

polynomial can be optimised using trivial solutions, the values of variance (Jr
j ...

inflated' factor (V1F)or eigenvalues of the polynomial model must be analysed

before the optimisation. The VIF measures how much the variance of that

model coefficient is inflated by the lack of orthogonality in the design . VIFs

exceeding 10 indicate the associated regression coefficients are poorty

estimated due to multicollinearity (Cornell , 1990). Eigenvalues, the roots of

the polynomial model are required for recognising the physical shape of

polynomial models and predicting the location of the global optimum of

polynomial model (Burden and Faires, 1989). Another way to see the region

of optimum is by ploning 3D graphs called the surface graphs. However, 3D

graphS can only be drawn with 2 factors. Therefore, the perturbation plot

63



should be used to find those 2 factors that most affect the response. The

ASM is used to approximate system behaviour, which is highly complex, with

a smooth explicit differentiable function (Myers and Montgomery , 1995). The

experimental error is defined as variability in the observed values of a product

formed from the same set of experimental conditions. The variability is caused

by factors that have not been described in the experiment. Therefore , the

actual observed values denoted by Y can be expressed (Comell , 1990) as

Y=11 +£

where:

Y= Actual observed true values

11 =Hypothetical observed true values

£ = Experimenta l errors

(4.1)

The hypothet ical simulated values that depend on many levels of

factors are denoted by (Cornell , 1990)

n= ~ (X,. )(2', X3', X4', XS·••..X. ) (4.2)

where:

11 = Hypothetical true values

X. ' =Levels of factors
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The structure of .., is usually unknown. Mathematical equations or

models called polynomial models that represent main effects. interactions.

and intercepts can easily approximate the relationship between .., and the

levels of factors. The models can be used to fit any kind of phenomenon

(Jazwlnski . 1998). These models can describe the main effects, curvature

effects. and interaction effects. The fitted models can then be used to draw

pseudo-three-dlrnenslcnal response surface plots. First-Order polynomial

models, the simplest forms, can only explain plane surface regions while

higher-order models such as second-order or third-order polynomial models

can fit curved surfaces. However. the third order polynomial models that are

developed by response surface are mostly eltaeed with the second order

(Cornell. 1990). Therefore, it is not used here. The first-order and second-

order polynomial models (Myers and Montgomery, 1995) are expressed as

eq. (4.3) and (4.4), respectively .

y =~. + t.~.x . +~~);;X ; X j (4.3)

Y= ~. + t.~.X ; +~).X.' +~L~;,x .x , (4.4)

where :

y =Response

f!= Coefficients

x = Parameters

k =Number of parameters
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Parameters and interactions of parameters that are considered

involved in the polynomial model are selected based on the effect estimation

and the principle of hierarchy . After having the form of the polynomial model ,

then the estimates intercept (Pol. main effects (P" ~, ...),curvature effects (P".

Pa• ...), and interaction effects (P12' PZI' ..•) are derived using the method of

least squares to complete the polynomial model.

In RSM, contour plots , which resutts from the polynomial model can

help in visualising the shape of the three-dimensional response surface

(Cornell , 1990). The contour plots are drawn on a graph whose coordinates

represent the levels of the factors. The use of the contour is to indicate the

different surface height values, which leads modellers to focus on the specific

experimental region of interest. The experimental region of interest is the

region of conceivable factor level values that represents the factor

combination of potential interest.

The region can also be determined by specifying the value of each

factor that represents the current operating conditions . Applications of the

RSM technique include (Liang and Ibrahim, 1991):

(1) Approximating the behaviour of tubular joint of an offshore structure;

(2) Estimating the reliability of primary-secondary system;

(3) Approximating the behaviour of structure subjected to earthquake loads;

(4) Studying the effects of uncertainties on dynamic response of soil-structure

interaction;

(5) Estimating fatigue reliability of components.
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There are many design types of Response Surface Methodology:

Central Composite, Box-Behnken, Three-Level Factorial, Hybrid , D·Optimal,

Distance-Based , Modified-Distance designs, etc. (Myers, et ai, 1995; and

Cornell, 1990). The Central Composite Design is the most frequently used

because it is less complicated . The Box-Behnken Design is also

recommended by many experts (Myers and Montgomery, 1995) because it

needs the least numbe r of required experiments under certain conditions.

Therefore, only Oantrat Composite Designs (Ce O) and Box·Behnken (BBo)

designs will be used in this thesis. These are described in Subsections 4.2

and 4.3, respectively .

The Central Composite Design (CCO) introduced by Box and Wilson

in 1951 is the most popular design to fit second-order designs (Myers and

Montgomery, 1995). The design is created from either factorial or fractional

factorial designs. The design can flexibly focus the region of interest based on

the axial distances and the number of centre runs. This design will be applied

in this research, and will be described later.

The Box-Behnken Design (B8o) was developed by Box and Behnken

in 1960. The design is an efficient method of fitting a second-order polynomial

model for the optimisation designs (Myers and Montgomery, 1995). The

design needs fewer experiments than other designs because it is created

from either fractional factorial or a balanced incomplete box (John, 1971:

Sorooshian and Am, 1982; and Myers and Montgomery, 1995). The design

will be applied in the research. Therefore, it will be described later.
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Activities that must be carried out to use the RSM are:

(1) Select the appropriate design (RSM-design) . The types of RSM-designs

have already been discussed above. Details for CCD and BBD will be

described later.

(2) Conduct the experiments based on the type of DOE arrangement. The

type of DOE has already been discussed in Chapter 3.

(3) Calculate objective functions for each experiment as responses. The

objective functions have already been discussed in Chapter 3.

(4) Establish polynomial models . The polynomial models can be established

using the method of least squares .

(5) Analyse the polynomial model using ANOVA to test tor goodness-of-fit of

the polynomial model , and perform residual plots. contour and surface

plots. and perturbation plots. The plots, which are discussed later, are

used to identify outliers . The contour and surface plots, which are

discussed later. are used to help identify the optimum response.

(6) Obtain the variables of the polynomial model by estimating the coordinates

of the stationary point of the second-order polynomial model using partial

derivative methods.

The iterative DOE-RSM procedu res are shown in Fig. 4.1
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Fig.4.1.a. DOEIterativeProcedure
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Model Residuals
Normal?

r

Fig.4.1.b. RSMOptimisation Iterative Procedure
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4.2.Central Composite Designs (CCD)

Central Composite Designs are used 10 investigate the simultaneous

effects of two or three continuous variables on the perlormance

characteristics of products and processes in research, development, and

manufacturing. Central Composite Designs (Ce O) are formed originall y from

the two level factorial designs augmented by additional points to allow the

coefficients of a second-order model to be estimated (Unal, , 994 and

Montgomery, 1991). The additio nal points are axial points and centre points

as shown in Fig. 4.2.

F8d_{.......

~~{

<, A B C

, ., ., .,
• ., ., .,
3 ., ., .,
• · 1 - t .,
5 ., ., .,
• ., ., .,
7 ., ., .,
8 ., ., .,
• -e 0 0
'0 .p 0 0
11 0 -e 0

" 0 +P 0
13 0 0 -jl,. 0 0 +P
15 0 0 •

A

B

C

0 2" points

• Star points• Center point

~.1 .682

Fig.4.2 Experimental design for three factors: A, B. and C
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In other words , the centre points are used for the evidence of curvature

investigation (Myers and Montgomery , 1995). The curvature is identified using

the significance F-test of curvature analysed using sum of squares and mean

of squares of curvatur e. The equation for the sum of squares of curvatur e

(Myers and Montgomery , 1995) is expressed as

SS e= nFncGf-YcL
n F+ n C

where:

55 c = Sum of Square of Curvature ;

nF= Number of factorial design points ;

nc = Number of additional replicates of central point;

YF = Average observations of factorial designs ;

Yc"" Average runs at the central point.

(4.12)

The equa tion for the mean of squares of curvature (Myers and

Montgomery . 1995) is expressed as

where:

MSc = Mean of squares of curvature ;

(4.13)
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SSe = Sum of squares of curvature ;

dfe= Degrees of freedom of curvature.

The equation for the mean of squares of error affected by curvature

(Myers and Montgomery , 1995) is expressed as

where:

MSf = Mean of squares of error;

SS( = Sum of squares of error (it has been discussed in Chapter 3);

11c = Number of centre points .

(4 .14)

The equation for the F-ratio of curvature (Myers and Montgomery.

1995) is expressed as

where:

F-rati0e = Calculated s-raec of curvature ;

MSe = Mean of squares of curvature ;

MS( = Mean of squares of error.

(4. 15)
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The evidence of curvature can be investigated by comparing the

value of calculated F·ratio to F-ratio on the table. Therefore, polynomial

models that are established using CCO are more accurate than those of two­

factorial design. because CCO applies centre points (Myers and Montgomery,

1995). Central Composite designs are orthogonal in that all the parameters

for the CC model may be estimated, but the design itself is unbalanced. A

greater or lesser number of centre points is used to achieve an estimating

criterion and an error estimate (Cornell, 1990).

A CCO can be made rotatable. Rotatability is a desirable property

relating to the precision of the predicted response value. An experimental

design is rotatable if the variance of the estimated response depends on the

distance from the design centre and not on the direction (Cornell, 1990; Unal,

1994; and Myers and Montgomery, 1995). In other words, rotatability ensures

that the error in prediction stays constant around the design (Barker. 1985).

For achieving the rotatable condition, the distance of axial points is

determined using the equation (Myers and Montgomery, 1995)

(4.16)

where:

a = Axial distance;

F = Number of factorial points = 2k
;

k = Number of parameters.
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The condition of rotatability for the designs of six parameters can be

achieved using the axial distance of a = 2.828. The experiments on this

research based on Central Composite Design are shown in Appendix B Table

28. After having the additional points including the axial points, then the

required number of experiments based on Central Composite designs can be

expressed using the eq. (4.10) below (Myers and Montgomery , 1995)

(4.17)

where:

n =Required number of experiments;

k = Number of parameters;

C = The Number of additional points.

4.3. Box-Behnken Designs (BBD)

In the case of the designs having a large number of experiments, Box

and Behnken (1960) have developed highly fraetionalised designs to screen

the maximum number of (main) effects in the least number of experimental

experiments . These designs are constructed by combining two-level factorial

designs with incomplete block designs, and have complex confounding of

interaction (Box and Draper, 1969). The analysis of these types of designs

proceeds in the same way as was described in the context of fractional

75



factorial designs. However , for each effect , modellers can now test for the

linear effect and the quad ratic (non-linear effect) . For example, when studying

the yield of a chemica l process, temperature may be related in a non-linear

fashion , that is, the maximum yield may be attained when the temperature is

set at the medium level. Thus, non-linearity often occurs when a process

performs near its optimum. Technically , Box-Behnken designs can also be

constructed by fractional ising a full three-leve l factorial design so that only the

centre point and the edge points of the hyper-cube are used. These designs

are alternatively formed by combining two-level factorial designs with

incomplete block designs (Unal, 1994). Box-Behnken designs are used to

acquire data for a full second-order-polynomial model that will describe in

deta il the system or process being investigated. The constructio n of Box­

Behnken Designs can be explained as in Table 4.1.

Table 4.1 The Box-Behnke n Constructi ng Tab le

Treatment
A B C

ex , H" H' L'
ex 2 H' L' H"
ex 3 L' H" H"
ex 4 H" H" C'
e 5 H" C' H"
ex 6 H' H"
ex 3
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where

A, B, and C = Parameters :

exp_1, 2, ... = Experiments number 1, number 2•. ..;

H~ =The Highest value of parameter;

L* =The Lowest value of parameter;

,Q* = The central value of parameter.

Therefore , the required number of experiments based on Box­

Behnken designs can be expressed using the eq. (4.4) below:

n=2 M+C '

M=(k-1)

where

n =Required number of experiments ;

k = is the number of parameters ;

C' = The number of central points.

(4.18.a)

(4.18.b)

The designed experiments based on the Box-Behnken Design for this

research are shown in Appendix B Table 8.2 .
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4.4.Least Squares Method For Establishing

Polynomial Models

The simple and common methodto obtain parameter estimates is the

least squares method (Beck and Arnold. 1976). Beck and Arnold

recommended using the method, particularly when nothing is known

regarding the measurement errors. Myers and Montgomery (1995) defined

that the principle of least squares asserts that a set of estimates of

parameters can be obtained by minimising the sum of experimental errors

(!f). This principle of estimation can be used to establish the polynomial

models commonty known as the technique of regression using least squares

estimation. There are many references containing the process of building the

polynomial model. It. therefore. is not explained in this thesis. However, it can

be found in, e. g., Myersand Montgomery(1995), Devore (1995).

The polynomial model establishments must obey the principle of

hierarchy. Cornell (1990) defines hierarchy as the ancestral lineage of effects

flowing from main effects (parents) down through successive generations of

higher order interactions (children). For statistical reasons, models that

contain subsets of all possible effects should preserve hierarchy. Ahhough

the response may be predicted without the main effects when using the coded

variables, predictions will not be the same in the actual variable levels unless

the main effects are included in the model. Without the main effects, the

model will be scalEKtependent.
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4.5.Polynomial Model Analysis

The polynomial models that are established must be analysed using

ANOVA to obtain the best model to fit the response surface. These analyses

includedetermining:

(1) The level-order of polynomialmodel;

(2) The coefficient of every factor or parameter;

(3) The validityof the assumptionsof the model.

The level order of the polynomial model is tested using the sum of

squares of curvature that is expressed as the sq . (4.12); the coefficient of

every factor is analysed using the sq . (4.13), (4.14), and (4.15). The residuals,

which are obtained from the difference between, observed values and

predicted values of responses must also be analysed to check the validity of

all the statistical tests . The residuals should be independent, homoscedastic,

and normally distributed. The residuals must also be checked for outliers and

that no observation is unduly influenc ing the results . All these tests are

standard tests normally carried out in a regression analys is and hence will not

be discussed further here .
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4.6.Verification Procedures

The accuracy of calibration must of course be proved using a

verification scheme. This is because the results of any calibration process are

conditionalon several factors, for example: the calibration data, the objective

function, and the optimisation procedure. For verification. the calibrated

parameters must be used in the model to simulate runoffs beyond the years

of the calibrationperiods. Then, the simulatedrunoffs are compared with the

observed runoffs of the same years. This verification will use a two-year

rainfall period, 19n to 1978 10 simulate two-year runoffs by using the

parametersfrom the calibration in the Mock Model using four scenarios. This

is illustrated in Fig. 4.3.

~19n11978
~ Verification

Fig. 4.3.8 Calibration Using One-Year Data 10 Estimate Two-Year

RunoffsIn Verification

1973 1974
Calibration

19n 1978
Verification

Fig.4.3.b Calibrationof Two-YearDatato EstimateTwo-YearRunoffs

In Verification
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1973 1974
Calibration

1975 19n 1978
Verification

Fig. 4.3.0 Calibration of Three-Year Data to Estimate Two-Year

Runoffs In Verification

1973 1974 1975
Calibration

1976 19n 1978
Verifi cat ion

Fig. 4.3.d Calibration of Four-Year Data to Estimate Two-Year

RunoffsIn Verification

The longer period of time for which data is available to calibrate the

model will produce the more accu rate future predi ction . However, in some

cases, mooellera may have limited data . The refore , using the four scenarios

of verifications above, modeUers can estimate the accuracy of each period of

calibration to predict the future runoffs .
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Chapter 5

Mock Rainfall-Runoff Model

This chapter will describe the Mock Rainfall-Runoff Model in general ,

which will be used as illustration of the use of RSM for calibrating rainfall­

runoff models. The complete description of Mock Rainfall-Runoff Model

can be found in Mock (1973).

5.1.Mock Rainfall Runoff Model Description

Runoff is an element of the hydrologic cycle that appears on the

earth's surface. Surface runoffs that occur in tropical countries, e.g.,

Indonesia. are caused by rainfall. In general, the amount of rainfall that

causes the runoff is the total amount of effective rainfall in the basin after

subtraction of evapotranspiration, infiltration, and other minor losses.

Evapotranspiration and infiltration are influenced by three main factors:

climate , topography, and soil characteristics. Therefore, rainfall-runoff models

developed to simulate the rainfall-runoff process must involve these factors.

These models can be classified as either theoretical or empirical models

(Wiest. 1965). A theoretical model includes a set of general laws or

theoretical principles. If all the govem ing physical laws were well known and

could be described by equations of mathematical physics, the model would
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be physically based. An empirical model omits the general laws and is in

reality a representat ion of observed data. Depending on the character of the

results obtained, models are classified as stochastic or determ inistic. If one or

more of the variables in the mathematical model are regarded as random

variables having a probability distribution. then the model is stochastic. If all

the variables are considered free from random variation. the model is

deterministic .

Most existing rainfall-runoff models are physically based deterministic

models because catchment characteristics are represented by fixed model

parameters (Liong and Ibrahim, 1994). Examples of rainfall-runoff models

include: HEC.l Flood Hydrograph Package (Feldman, 1981), Tank Model

(Sugawara, 1974), Xinanjiang Model (Zhao, 1992), University of British

Columbia (UBC) Watershed Model (Quick, 19n). Streamflow Synthesis and

Reservoir Regulation (SSARR) Model (Rockwood. 1982), Hydrological

Simulation Program Fonran (HSPF) (Donigian, 1984). and Mock Rainfall­

Runoff Model (Kadarisman, 1993 and Kurniawan, 1994)

The Mock Rainfall·Runoff Model that will be used as illustration in this

research was developed in Indonesia to calculate monthly water availability

for water management purposes (Mock, 1973). This model is commonly

used lor irrigation planning . The calculation of resulting runoff uses rainfall

and evapotranspirat ion as inputs. and six soil characteristic factors as the

model parameters. The Mock model is quite simple to use because only six

parameters (soil impermeable layer, coefficient of infiltration , coefficient of
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recession. soil moisture capacity , initial soil moisture, and initial storage

value) are involved in the calculation. However. these six parameters must be

calibrated for the catchment of interest before its use. In this thesis. the Mock

Model will be used to model the monthly water availability on the Babak River

Catchment in Lombok. Indonesia . The rainfall data were taken from the

Department of Hydro--Meteorology in Indonesia. The rainfall data are

presented in Appendix E Table E.1, as well as evapotranspiration and

historical runoff data.

5.1.1. Effec1ive Rainfall

Rainfall data (P) is the main input to the runoff process. The rainfall

data used in the calculat ion is the average rainfall data from gauging stations

in the basin. This average is approximated using the well-known Thiessen

polygon method (Harto, S., 1993; Soemarto . C. D.• 1995; and Lye. L. M.,

1996 ).

5.1.2. Evapotranspiration

It is difficuh to measure evapotranspiration directly in the field;

therefore , in general, it is estimated based on measured climatic data . Mock

(1973) suggested using the Penman method (Mock, 1913 and Soeprapto,

1994) because the Penman method uses more variables than other methods.
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The evapotranspiration can be obtained either using Penman's equations or

interpolating from the tabulated values to determine the amount of monthly

evapotranspiration. The calculated evapotranspiration data used herein were

taken from the Department of Hydro-Meteorology, Indonesia .

5.1.3. Calculation of water balance

The Mock model calculates the rainfall-runoff of a catchment on a

monthly basis. Runoff (RO) of a river is directly affected by the amount of

monthly baseflow (bf), direct runoff (dro), and storm-runoff (storm) (Mock,

1973). Each element will be described later. RO is mathematically expressed

as

RO = bf + dro + storm

where:

RO = Amount of catchment runoff

bf = Amount of monthly baseflow

dro = Amount of direct runoff

storm = Amount of storm runoff

(5.2)
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Mock (1973) explained that monthly baseflow (bf) can be calculated

based on the amount of infiltrat ion in the particular month after subtracting the

monthly change of storage volume . It is expressed as

bf= i t - ,W n

where:

bf = Monthly easencw

i t = I = Infiltration in the particular month

lJ.V"=Monthly change of storage volume

(5.3)

Mock (1973) defined the infiltration rate, I. based on the coefficient of

infiltration and the availability of water surplus. The equation of the infiltrat ion

rate is expressed as:

where:

I = Infiltration rate

COl = Coefficien t of infiltration

WS :: Water surplus

I =COl xWS (5.4)
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Mock (1973) defined Water surplus, WS. as the excess of

precipitation over evapotranspiration by considering the amount of soil

moisture. The water surplus is calculated using the equation below .

WS = Pr- Ea

where:

WS = Water surplus

Pr = Amount of monthly rainfall (precipitation)

Ea = Effective evapotranspiration

(5.5)

Mock (1973) defined Storage volume. V, at the time T calculated

based on the coefficient of recession, the previous storage volume. and the

infiltration rate. The equation to calculate the storage volume is:

VI:: K Vl _l + 1f.z (1 + K) I

where:

VI = Storage volume

VI. l = Previous storage volume

K = Coefficien1of recession

t =Infiltration rate

(5.6)
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Mock (1973) differentiated rainfall-runoffs into two categories. Direct

runoff. dro and Stormrunoff, storm. Mock defined dro as the difference

between the available water surplus and the infiltration rate. The equation to

calculate direct runoff is given by:

where:

dro = Direct runoff

WS = Water surplus

I = Infiltration rate

dro=WS -1 (5.7)

Mock (1973) then defined storm runoff as the amount of initial

precipitation, which occurs in the beginning of raining season that cannot be

infiltrated into the ground. The storm runoff occurs because the outer surface

layer is still very dry and the infiltration capability is still very low. This

condition is affected by the percentage of impermeable layer and calculated

using:

storm = Pr x IMLA

where;

storm =Amount of storm runoff

Pr = Amount of precipitation (rainfall)

IMLA= Percentage of impermeable layer.

(5.6)
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5.2.Parameters of the Mock Model

Mock (1973) defined six parameters in his model: coefficient of

Impermeable layer (imla), initial storage value (VJ, coefficient of Infiltration

(COl), soil moisture capacity (SMe), monthly coefficient of recession (K) and

initial soil moisture (SM.) . The range of all parameters must be known before

the calibration process. In general it is better to have a smaller range or

otherwise , it may be difficult to find the optimum values of the parameters

because the wider the range , the flatter will be the response surface .

8. Impermeable Layer, Imla

Mock (1973) described the range of this parameter between 8 % to

12 % or (o.oa to 0.12). It has a positive effect on the storm runoff. It means

that it also has positive effect to the direct runoff and monthly flows .

b. Inttla l Storage Value, V0

This parameter is the previous amount of storage value . The storage

value has negative effect to the direct runoff. According to Kadarisman

(1993), the range of this parameter is between 150 to 250 mm.
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c. Coefficient of Infiltration, COl

According to Soeprapto, M., (1994 ), the COl has a range between

0.35 to 0.65 mm. It has a positive effect to the amount of infiltration. It means

that it also has negative effect to the direct runoff and monthly flows .

d. Coefficient of Recession, K

Kadarisman (1993) specified that the range of K is between 0.6 to

0.8. It has a posit ive effect to the amount of storage volume. It means that the

amount of storage volume will increase simultaneously as K increases .

e. Soli Moisture Capacity, SMC

This parameter is for the use of water surpluS calculation . It has a

negative effect to the amount of direct runoff. Mock (1913) explained that the

range of this parameter is between 180 to 220 mm.

f. Initial Soli Moisture, SMo

This parameter is the previous amount of soil moisture. The

summation of this amount to the precipitation will be compared to the amount

of soil moisture capacity. The range of this parameter is between 190 to 210

mm.
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Although , every mooei-carameter has a particula r range in the real

field, modellers have to be very careful to set the range of those model-

parameters in calibrat ion processes . A wide range of parameters may lead to

unresolved results of calibrations because the optimisation process may be

trapped and terminated in an incorrect result , for example : in a local optimum.

A wide range can also lead to an error calculation of a particular computer

program . Similarly, a narrow range may also lead to an unresolved result

because the location of optimum result is beyond the range . Therefore, it is

better for modellers to use the guidance of DOE to determine the specif ic

range of those parameters, which are more appropriate for the Calibration of

Mock rainfall-runoff model using RSM. Later in Subsect ion 1, Chapter 6, the

parameters ' range determination is described following to the description of

effect estimations.

The Mock Rainfall-Runoff Model Parameters with the codes for the

calibration are presented in Table 5.1 below .

k odelTab~ 51Th. . emoe m parame ers

Parlmeters Cod. Units Law Level HighLevel

% of Impermeable Layer IMLA A 0.08 0.12

Initial Storage Value V. B mm 150 250

Coel. of Infiltration COl C 0.35 0.65

MonthlyCoef. of Recession K D 0.6 0.8

Soil Moisture Capacity SMC E mm 180 220

Initial Soil Moisture SM, F mm 190 210
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5.3.Logic of the Mock Model

The logic of the Mock model is presented in the flowchans shown in Fig.

5.1.a. and Fig. S.l .b. Different sub-calculations are sometimes necessary in

the calculation, depending on the value of the parameters. The different

conditional cases for sub-calculation are also shown as a flow chart in Fig.

5.2.
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Fig. 5.1.a . The Mock Rainfall-Runoff ModelAowProcess (pan one)
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Fig. S.l .b. The MockRainfall-Runoff ModelFlowProcess(part two)
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5Ml and 55 1

SM4 and 5S4

5 m2 and S52
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VII" SM6 and 5S6 I

5 M7 and 5S7

Fig. 5.2 Sub-CalculationBasedOn Different Conditions
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Chapter 6

Results and Discussions

Results of the model calibration and the verif ication are discussed in

this chapter. The results and discussions start systematically from effect

estimations, minimum required number of experiments, analysis of

polynomial model for optimisat ion , fina l calibrated parameters, and the results

of model verification.

6.1. Effect Estimations

Effect estimati ons using Full Factorial (FF) and One-Half Fractional

Factorial (OHF) resolution VI are compared and shown in Table 6.1. The

effect analyses based on the three responses (sum of absolu te residuals lEI.

At , and Ov) produced similar results. Hence. only the effects based on the

response of sum of absolute residuals , lEI.are presented as representative of

the other responses. The object ive was to minimise the sum of the absolute

residuals .

The Mock model parameters: IMLA, v; COl, K, SMC, and SMa are

represented by the letters A, B, C, 0, E, and F, respectively. The table shows

all effect estimations except the effects of alias factors . The high effect factors

and additional factors will be used to establish the polynomial model for the
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optimisation phase. The additional factors are factors that although have

relative loweffect. muststillbe included intothepolynomial model toobeythe

principle of hierarchy.

Table6.1 The EffectEstimation basedonthe response of absolute
residuals calculated usingFF andOHF Designs

Par/lnterac.

A
B

AB
C

AC
BC

ABC
o

AD
BO

ABO
CD

ACO
BCD

ABCO
E

AE
BE

ABE
CE

ACE
BCE

ABCE
DE

ACE
BOE

Effects
Full OHF

0.978906 1.288438
26.17097 26.16119
0.569781 0.701437
228.1398 228.1407
0.589781 0.701437
-10.7546 -10.7456
-2.52078 -3.34631
-83.6533 -83.6552
9.903281 9.865063
-16.9645 -16.9744
0.828156 0.829062
318.0513 318.0526
0.828156 0.829062
0.009559 =AEF
-0.69591 =EF
66.30784 66.30631
-1.04122
-27.2814
-0.32909
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AF
BF

ABF
CF

ACF

BCF
ABCF

DF
ADF
BDF

ABDF
CDF

ACDF
BCDF

ABCDF
EF

AEF
BEF

ABEF
CEF

ACEF
BCEF

ABCEF
DEF

ADEF
BDEF

ABDEF
CDEF

ACDEF
BCDEF
ABCDEF

Table6.1 shows that, FF andOHF generally gavesimilar results,

especially those for high effects. Among the 63 factor effects, the main

parameters 8, C, 0, and E have higheffectson the response. The highest

and the second highest effectparameters beingC (Coefficient of Infiltration)

and 0 (Recession constant), respectively.
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For two-parameter interactions, BC, AD, BO, CD, BE, CE, and

DE are considered to have high effects. Fig. 6.1 to Fig. 6.14 show the

relationship among these interactions. There is no interaction of more than

two parameters having a high effect.

Two--factor Interact ions :

Parameters Band C

Interac tion Graph

lU 7.~ , ~
I

, ou u l
.. ,,,e512 J c.
: i

t::: ~ ,----------,

Fig 6.1 Relationship Between parameters 8 and C

Parameter B has positive effect on the change of the process as

shown in Fig. 6.1. It means that increasing parameter B will increase the yield

(response) of the process. However, the interaction of this parameter with

parameter C, thai has very high positive effect. will have high negative effect
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to the change of the process. Figure 6.2. shows the three-dimensional

surface graph of parameters B. C and the response.

A<:1.... F ac lcn
x_a 1192 ·
v s c

2 0 0 0 0

175 00

15 0 .0 0

Fig. 6.2 Three-dimensional graph of the relationship among
parameters B C and the yield of the process li En.

As shown in Fig. 6.2. to minimise the response of the process. the value of

parameter B is somewhere between 150 and 200. and the value of parameter

C is between 0.45 and 0.50.

Parameters A and D
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Interac1ionGraph

Fig. 6.3 Relationship Between Parameters A and D

Parameter A, as shown in Fig. 6.3, has small positive effect to the

change of the process. However, according to the effect estimation, it will

have high positive effect while interacting with parameter 0 that has a high

negative effect. From Fig. 6.4, the three-dimensional graph of the relationship

among parameters A, 0 , and the response, shows the region of prediction

values of the parameters. Fig. 6.4 shows that the minimum yield of the

process wilt be achieved when the value of parameter A is somewhere

between 0.08 and 0.11, and the value of parameter 0 is somewhere between

0.70 and 0.75. Beyond those values, the yield of the process will not be the

minimum.

101



Fig. 64 Three-dimensional graph of the relationsh ip among
parameters A p and the yield of the process

Parameters B and 0

1117 2''':

'o" .. J,
..IS12 -;

In I n J:~.----------,o. l
I

1Q1."~ ~

::::::J

rig. 6.5 Relationship Between Parameters B and 0
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The interaction between parameters Band 0 are shown in Fig. 6.5. In

this case, increasing parameter B, while decreasing parameter 0 will increase

the yield of the process. However, as shown in Fig 6.6, the minimum of the

process' yield will be achieved when the value of parameter B is somewhere

between 150 and 200, and the value of parameter 0 is between 0.68 and

0.73.

-,,:t... I Con"l ntl
A .0.l0

C " O.50
E . 2OO.00
1'· 200.00

Fig. 6.8 Three-dimensional graph of the relationship among
parameters B Q and the Yieldof the Process

Parameters C and p
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Inte rac tion Grap h

14 1 .5 12 O••-----_:r'::::..__

Fig. 6 7 Relationship Between ParametersC and 0

Fig. 6.7 shows that the interaction of parameter C, which has a

positive effect, on parameter 0 , which has a negative effect, will increase the

yield of the process. It means that the increase of C and the decrease of 0

will increase the value of response. However, the objective is to set the

parameters to minimise the response. Therefore, 10 reduce the response,

parameter C must be decreased and parameter 0 must be increased. Further

as shown in Fig. 6.8, the optimum process' yield is achieved when the value

of parameter C is somewhere between 0.45 and 0.55, and the value of

parameter 0 is between 0.72 and 0.78.
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Fig. 6.8 Three-dimensional graph of the relationship among
parametersC 0 and the yield of the process

Parameters8 and E

Inl8rac:tion Graph

I 1U 2 1 ~

10UU J

u • .su J ':=========::::I ,.
u'I n ~ E.,
10' .'13 "';

:::::: ~
'--------- ----'

Fig. 6.9 RelationshioBetweenF'arameters Band E
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Parameter E has high positive effect on the response of the process.

Parameter B also has a high positive effect on the response of the process.

However as shown in Fig. 6.9, the interaction of these parameters BE. has a

high negative effect. Here. the increase of parameter E, while increasing

parameter B will cause the decrease of the process' yield. Fig. 6.10 which

shows the three-dimensional graph of the relationship among parameters 8 ,

E. and the response. indicates that the optimum is achieved when the both

parameters Band E are set to the low level. The values are approximately

150 and 180 for B and E. respectively.

-'c1.... Co" .lanl.·
... . 0.10
C · O.50
0.0.70
F .. 2OO.oo

Fig. S 10 Three-dimensional graph of the relationship among
parameters B E and the yield of the process
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Parameters C and E

InteraetlonGraph

1117 .2 11

~:::',:: j..~::
!,n ln ~ E.::::------

709 11 3 -; E·

590.•U-i

.71 ,lU.....;L -'

Fig 6.11 RelationshipBetween ParametersC and E

Both parameters C and E have the same positive effects but their

interaction has a negative effect. Therefore, to reduce the yield of the

process, it is bener to decrease both parameters. Fig. 6.12 shows the three­

dimensional graph of the relationship among parameters C, E, and the

response. It shows that the minimum yield of the process is achieved when

the value of parameter C is between 0.42 and 0.52 and the value of

parameterE is set in the low-level, 1eo.
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9 2 1 1

7 90'

Acl ual ConSl ants - 659 '
A ~ 0 10

B ~ 20000

~ =~~OOO ~ 39 7

Fig. 6.12 Three-dimensional graph of the relationship amon g
paramete rs C E and the response

Parameters D and E

Inle raction Graph

1 1 8 7 21 ~

'" "' ~
'---- - - --- - - ---'

Fig. 6.13 Relationship Between Parameters 0 and E
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Parameter 0 has high negative effect and parameter E has high

positive effect. However, their interaction, DE has a high positive effect on the

response of the process. Therefore, an increase of parameter D and

decrease of parameter E will decrease the yield of the process. Figure 6.14

shows the mree-oimensionai graph of the relationship among parameters D,

E, and the response. It shows that the effect of the interaction between D and

E in fact affects the location of prediction region. The optimum process is

achieved when parameter D is set between 0.72 and 0.80, and parameter E

is set in the low-level, 180.

:' 39 7

Acly ai COlllllant,

" · 0.1 0
8 . 200.00
e . o,so
F a2OO.oo

OESlm"·ElCPERT PIoI

AcI... FIoCIO.. 9 21 ~________

~ :~ 79 0 ~ I

Rg. S 14 Thre&-dimensional graph of the relationship among
parameters 0 E and the yield of the process
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Effects of parameters and their interactions can also be ctearty

distinguished using a normal plot view shown below.

Norm alplOI

e.e
00

to";

70 ,

Fig. 6.15 The NOrmalPlot of Effects

Fig. 6.15 shows parameters C, 0 , E, and interaction CD lying far

away from the normal line. Therefore, C, D, E, and interaction CD are

considered to have high effects to the process.

The effect estimations have given some insights into how the various

parameters interact and how they can be adjusted to achieve the desired

objective. In addition, plots of parameters C and 0 are seen very curved or

steep in the Perturbation plot in Fig 6.15, which were constructed based on

the response of sum of absolute residuals, lEi, Therefore, parameters C and

D are considered to highly affect to the differences between observed and

simulated runoffs using the Mock model. This consideration is confirmed by

other perturbation plots shown in Appendix D, Figs. 0.1, and O. 2, which are

constructed based on R2
, and Dv,respectively.
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Fig. 6.16 The Perturbation Plot of the Mock Model-Parameters Based

~

6.2. Minimum

Experiments

Required Number of

For efficiency and cost effectiveness. the minimum number of

experiments that will give a comparable fit of the significant polynomial model

must be explored. The minimum required number based on manua l. CCO,

and BBO calibrations are compared for the case of six parameters :

Manual calibration : (uncertain) ::c:112 experiments used here.

CCO full: {2~ main + (2x6) augmen ted + 1 central point =n experiments
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CCO Res. VI: (2~ main + (2x6) augmented + 1 central point e 45 experiments

BBO: (~) main + (24
) augmented + 1 centra l point = 49 experiments

BBO requires fewer experiments than a Full CCO. However, CCD resolution

VI for 6 parameters requires fewer experiments than BBD. However, having

the information of the minimum number of experiments cannot guarantee the

most accurate calibration. Analysis of the polynomial models and verifications

of the calibrated model must be conducted to prove that one method of

calibration is indeed producing the best results.

6.3. Analysis of Polynomial Models

The significance of the polynomial models, which can fit the

response, is identified using lack-or-fit tests . The results, shown in Tables 6.2

and 6.3 are used to examine the best model that can lit the response. CCD

and BBD gave similar results. Therefore, only the results of CCO are shown

in the examination of the best model.

Table 6.2 ANQVA Table for the CGO Model

Source
Sum of OF Mean F p-value

Sauares SQuare Value
Mean 22144100 1 22144 100
Linear 385721 6 64286 .8 1.9185 0.0978

Quadratic 1544720 21 73568.2 60.0704 < 0.0001
Residual 31837 .8 26 1224.53

Total 24106400 54 446415
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Table 6.2 shows that a linear model is not appropriate because p-.

value (0.0978) is not statistically significant at the 5% level. Therefore,

response prediction using a linear model can be ruled out. For the quadratic

model however, the p-value is less than O.OOOt indicating a statistically

significant result. The model is thus identified as a quadratic model. The

results in Table 6.3 test the lack-of·fit of the quadratic model against linear

model.

Table 6.3 ANOVA Table for Lack-of·Fit Tests for the CGo Model

Root Ad'usted Predicted
Source MSE R-S uared R-S uared R-S uared PRESS
Unear 183.15 0.196568 0.094002 0.05644 2073040

Quadratic 34.9933 0.983n5 0.966926 0.915233 166336

The examination is about focusing on the model to minimise the

~PAESS~ or equivalently to maximise the ~Prediction R·Squares~. PRESS

stands for the prediction sum of squares. Table 6.3 shows that the quadratic

model is superior against the linear model. The quadratic model gave a

~PRESS· of 166336 and a ·Prediction R-Square~ of 0.915233. These results

are superior compared to that of the linear model.

After finding out the order of the polynomial model, the next task is to

obtain the coefficients for each parameter in the model. Both ceo and BBD

will develop their own quadratic model. Based on the t-test statistics, only

parameters C, 0, E. and their interactions are selected by eGO to establish

the quadratic model shown in Table 6.4. On the other hand, all parameters:
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A. B. C. 0 , E. F. and their interactions, shown in Table 6.5, are selectedby

BBD toestablishthequadratic model.

Analysis of the second-orderpolynomial modeldeyeloPed using ceo

Table 6.4 ANOVATableof theCoefficientsof Polynomial Model developed
using CCO Basedon a-Yearsof Calibration Data

Coefficient Standard t lor HO
Factor Estimate OF Error Coeff=O Prob » t VIF

lnterce ot 488.678 , 10.4179
A-A 7.18915 , 6.5122 0.93296 0.318 ,
B-B 12.32 , 6.5122 1.070'8 0.088 1 1
C-C '05.3828 1 6.5122 8.19853 <0.0001 1
0-0 ·51.79274 1 6.5 '22 -0.503185 < 0.0002 1
E-E 40.2711 , 6.5122 2.62949 <0.0003 ,
F-F -22.6462 1 6.5122 -0.403591 o.oon 1
A 26.79206 1 9.63472 0.704957 0.0083 1.02947

328.253 1 9.63472 30.02 <0.0001 1.02947
0 114.79 1 9.63472 13.99 < 0.0001 1.02947
F -31.11549 1 9.63472 0.115n8 0.0082 1.02947
AC 20.993 1 12.871 1.24256 0.0181 1
BE ·13.6407 1 12.871 -1.0598 0.0928 1
CD ' 59.025 1 12.871 12.3553 < 0.0001 ,

Table 6.4 shows that. although the parametersA, B, and interaction

parameters BE are not statistically significant at the 5% level, they must be

recruited into the model in order to obey the principle of hierarchy. Single

parametersC. 0 , and F are statisticallysignificant lor the linearand quadratic

coefficients. AlmOS1 allVIF of the coefficientsare one, exceptVIF ofquadratic

coefficients, 1.02947. Moreover. they are symmetric and orthogonal.

Therefore, these indicate no multicollinearity problem occurs in the

polynomial model and the region of stationary pointis inside the orthogonal
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polynomial. The ability to fit the response of the polynomial model can be

analysed usingANOVAtablebelow

Table6 5 ANOVATableofthepolynomial Modelto fittheResponse

deyeloPed usingceQ Basedon 4-YearsofCalibration Data

Sumof Mean F
Source Snuares OF sece re Value Prob > F
Model 7972540 13 613272 157.8429 < 0.0001

Residual 763371 38 902.4
LackofFit 763371 33 1017.3 63660000 < 0.0001
Pure Error 0 5 0
Cor Total 8735910 51 I. .1. • ·1.0·1.<·1.<· 1.00

RootMSE 102.968 R-S uared 0.9761

Table6.5 shows that the residuals of the polynomial model are linear

and therefore. if the residuals are equally spread along the data. the

polynomial model provides a good fit to the response. In addition. alt

eigenvalues. Ak are approximately equal to one. 11 means that the optimum

value of the response is inside the orthogonal polynomial and the

optimisation is to minimise the polynomial model. The quadratic model

formed byceo is then:

Y = 488.678 + 7.18915A + 12.32 B + 105.3828 C

- 51.79274 0 + 40.2711 E - 22.8462 F + 26.79206 A'

+ 328.253 C' + 114.79 0 ' - 31.11549 F'+ 20.993 AC

- 13.6407 BE + 159.025 CD (6.1)
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where:

Y = Response (Sum of absolute residuals)

A :: Parameter of Coefficient of Impermeable Layer

B = Paramet er of Initial Storage Value

C = Parameter of Coeffi cient of Infiltration

o = Parameter of Coeffic ient of Recession

E =Parameter of Soil Moisture Capacity

F = Parameter of Initial Soil Moisture

A2
:: Quadratic-Parameter of Impermeable Layer

CZ=Quadra tic-Parameter of Coeffic ient of Infiltration

0 2
:: Quadratic-Parameter of Coefficient of Recession

~ :: Quadratic-Parameter of Initial Soil Moisture

AC :: Interaction Between Parameters Coeffic ient of Impermeable Layer (A)

and Coefficient of Infiltration (C)

BE :: Interaction Between Parameters Coefficient of Initial Storage Value (B)

and Coeff icient of Soil Moisture Capacity (E)

CO :: Interaction Between Parameters Coefficient of Infiltration (C) and

Coefficient of Recession (0)
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Analysi s of the seeond-orde ' polynomial model deyeloPed usin g BBD

Table 6 .6 ANOYA Table of the Coefficients of Polynomia l Model develoPed

using BBOBased on 4-Years of Calibration Data

Coeff icient Standard tfor HO
Factor Estimate OF Em" Coeff=O Prob » t VIF

Interce t 446.14 1 9.41892
A-A 6.76013 , 6.89394 0.98059 0.3327 1
B-B 12.2365 1 6.89394 1.n496 0.0835 1
c-c 105.193 1 6.89394 15.2587 < 0.000 1 1
0-0 -51.4581 1 6.89394 -7.46424 < 0.000 1 1
E-E 40.8853 , 6.89394 5.93061 < 0.0001 1
F-F -22.1624 1 6.89394 -3.21476 0.0026 1
A 27.2969 1 10.2254

11
0.0109 1.22222

328.812 , 10.2254 < 0.0001 1.22222
114.445 1 '0.2254 < 0.0001 1.22222
-33.5313 1 10.2254 0.0022 1.22222

AC 21.2552 1 11.9407 1.78007 0.0827 1
BE -' 5.2595 , 8.44332 -1.80728 0.0782 1
CD 154.099 , 11.9407 12.9054 < 0.0001 1

For the BBO, single-parameters A and B, and interactions AC and BE

are indicated to have p-values equal 0.3327. 0.0835. 0.0827. and 0.0782,

respectively. Therefore, tney are considered statistjcally insignifICant at the

5% level. Nevertheless, accoroing to the principle of hierarchy, they must be

included into the model. BBO gives a similar model to the model produced by

ceO.Both BBD and ceoagree on the single-parame ters C, 0 , E, quadrat ic-

parameters C, 0 , and interaction CD as the main consideration on building

the respective models . Almost ali YIF of the coeffic ients are one, except VIF

of quadratic coefficients, 1.22222. Moreover. they are symmet ric and

orthogonal, which indicates no multicollinearity problem occurs in the

polynomial model and the region of stationary point is inside the orthogonal
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polynomial. The ability to fit the response of the polynomial modelcan be

analysed using ANOVA tablebelow

Table 6.7 ANOyA Table of the Polynomial Modelto fitthe Resoonse

developedusing BBDBasedon4-Yearsof Cal"bration Data

Sum of Mean F
Source Snuares OF Snuare Value Prob > F
Model 1916650 13 147435 129.257 < 0.0001

Residual 45625.4 40 1140.64
Lackof Fit 45625 .4 35 1303.58 63660000 < 0.000 1
PureError 0 5 0
CorTotal 1962280 53 I. .1. • -l.n -1. -1.<- 1.00

RootMSE 33.n33 A-S uared 0.9767

Table 6.7 showsthat A-Squares of the polynomial model is 0.9767.

Therefore. the polynomial model can reallyfit the response. In addition. all

eigenvalues are also equal to one. It meansthat the optimum value of the

response is inside the orthogonal polynomial and the optimisation is to

minimisethe polynomial model. The quadratic model formed by BSD is:

Y. 446.14 + 6.76013 A+ 12.2365 B + 105.193 C

- 51.4581 0+ 40.8853 E -22.1624 F + 27.2969 A'

+ 328.812 e + t 14.445 D1
- 33.5313 F1 + 21.2552 AC

where:

- 15.2595 BE + 154.099 CD (6.2)
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Y :: Response Data (Sum of absolute residuals)

A :: Parameter of Coefficient of Impermeable layer

B :: Parameter of Initial Storage Value

C :: Single-Parameter of Coefficient of Infiltration

o :: Single-Parameter of Coefficient of Recession

E =Single-Parameter of Soil Moisture Capacity

F = Single-Parameter of Initial Soil Moisture

A1 = Quadratic-Parameter of Coefficient of Impermeable layer

~ = Quadratic-Parameter of Coefficient of Infiltration

[1 = Quadratic-Parameter of Coefficient of Recession

~ = Quadratic-Parameter of Initial Soil Moisture

AC = Interaction Between Parameters of Coefficient of Impermeable layer

and Initial Storage Value

BE :: Interaction Between Parameters of Initial Storage Value And Soil

Moisture Capacity

CD = Interaction between Parameters of Coefficient of Infiltration And

Coefficient of Recession

After bUilding these two second-order (quadratic) polynomial models,

the models must be examined to ensure the models can significantly fit the

response and the assumptions of regression are not violated. This

examination can be done by the inspection of various plots of the model-
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residuals shown in Fig. 6.17, Rg 6.18, and Fig 6.19. Here, the results of CCO

will be compared against the results of BBo .

Rgure 6.17 shows the normal probabil ity plot of the studentized

residuals. Fig. 6.18 shows the outlier-T plot between the run numbers and the

outliers-T. Rg. 6.19 shows the leverage plot between the run numbers and

the leverages.

o_ _ ,~ Ll~··-·""···
On ' h . " .! ; : ~ i

i ~~ ~ :
.~ ,
'1 _ I

(a) BBC

Fig. 6 17 NOrmal Plots of Studentized Residuals

(b) CCO

In Fig. 6.17, both (a) and (b) graphically show that model-residuals

produced by CCO are approximately normally distributed. However , the

residuals for BBD are not normally distributed .
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Outller-T Plots
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(a) 880

Fig, 8.18 Outlier-T Plots for ceo and BBD

(b) ceo

From the plots in Fig. 6.18, the polynomial model established by BBD

produces three outlier -points, shown as the three points lying outside the

boundary . However, since the number of data points is 49, the three outlier-

points are not considered unusual. Fig. 6.18 (b) shows that the polynomial

model established by CCO does not produce any outlier -point.

Leverage Plots

.....,.....~..
:~-'-" ' : : : 1

! : :~ ;-~ -.-.-.-.- - -----i ~ :~'-': ===='
''' j
'''1 ' '

(a) B80

Fig 6 19 Leverage Plots for BBD and ceQ

(b) ceo
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From Fig. 6.19, there no outliers are produced by both BBO and

CCD. All the data points are within the bands. Therefore, it can be concluded

that the models obtained from both BBD and CCO are equally valid. No

assumptions of regression were violated except for the normality of the

residuals from the BBO.

6.4. Calibrated Model Parameters and
Model Verif icati ons

The performances of RSM, which uses ceoand BBD, are compared

to the performance of the Trial and Error Method. Here, the first priority

objective is to minimise lEi. then to maximise R2
, and finally to minimise Dv.

The l Ei will be analysed first. If the results of lEi are the same, then Frwill be

used to determine the best result. This analysis strategy will be continued to

the third and fourth priority objectives if the results of the first and the second

priority objectives produce equal results. Tables 6.8, 6.9, 6.10. and 6.11

present the results of calibrations and verifications based on the various

years of available calibration data.
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Table 6 8 The Results ofCalibrationsBased Qn One-Year(1973)Data And

The VerificationsBased QntheYearsof 19V and 1978

Calibration of 1veardata 1973
Items TE BBO CCO

A 0.109 0.1 0.09
B 150 166.17 150
C 0.48 0.4 1 0.46
0 0.741 0.8 0.73
E 190 180 180
F 190 210 210

Calibration VllriticlltiOn ca~tiOn VltftliCalioo Calibnllion VltftliCatiOn

l Ei 30.1389 54.55705 40.9926 52.7216 27.919 47.2333
R' 0.9966 0.988681 0.9958 0.9891 0.9978 0.9899
Ov 0.4812 0.5984 0.465B 0.494 0.4531 0.4772

Appendix 0 Tables o. 4 and o. 7 show The Polynomial Models
developed using CCO and BBo, respectively based on t -vear
Calibration Data.

Table 6.8 shows thatgenerally, Trialand Error, BBo, and CCO gave

similar results.However, the lEi produced by CCo, 27.919 is the smallest. It

means that for one-year data calibration, 1973, CCO produces the best

results. This is also confirmed by the highest of SZ, 0.9978. Further, the

results of verificationalso showed thatCCo produces the best results. The

results of the one-year data for calibration are then comparedto two-year,

three-year, andfour-yearof available dataforcalibration.

Table 6.9 presents the resultsofcalibration and verification based on

twoyearsof data,
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Table 6.9 Results of Calibrations Based Qn Two-Years (1973 and 1974) Data

and The Verifications Based Qn the Years of 19n and 1978

Calibration of 2 ears data 1973 and 1974
Items TE BBD ceo

A 0.12 0.10 0.11
B 150 150 150
e 0.508 0.450 0.400
D 0.715 0.760 0.780
E 187.854 180.020 180.000
F 190 210 190

The analysis of goodness-of-fit for two-year data calibrations showed

that the ceo gave the best results. Here. ceo produces the smallest lEi. the

highest of ~. and the closest to zero of RME, although Ov does not show the

best result. This conclusion is also shown by the results of verifications . The

results of verifications showed that the performance of eco is the best

because it gave the smallest lEi. the highest ~. and the smallest Ov. The

results of BBO are second best although the results of BBO are very close to

the results of ceo. The results of Trial and Error show are quite different

from the results of the BSD or ceO. Table 6.10 presents the results of

calibrationsand verificationsbasedon three years of available data.
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Table6 10 Results ofCarbrations BasedQn Three-Years (1973 1974 and

1975)DataandThe Verifications Based Qn the Yearsof 19n and 1978

Calibration of3 vear data 1973 1974, and1975
Items TE BBD CCD

A 0.12 0.1 0.09
B 150 150.32 150
C

,
0.521 0.45 0.46

D 0.71 0.76 0.74
E 186.015 180.02 180.01
F 190 210 210

CtllDrttion Verlfication C61ibration lIeriIiclIlion Calibration ..... rilicetion

Res 200.3141 213.9945 107.9525 143.9203 107.2714 143.1942
R' 0.992 0.988293 0.9978 0.9948 0.9979 0.9949
Dv 0.46580.218837 0.372 1 0.2446 0.3161 0.2422

AppendIX 0 Tables O. 5 and O. 8 show The Polynomial Models
developed using CCO and BBo, respectively based on 3 Years
Calibration Data.

Table 6.10 shows either BBD or CCO can be used since they

produced similar results. Based on three years of data (1973, 1974, and

1975) for calibration, ceo gave the best results lor calibration and

verification. It gavethe smallest of lEi andthe highest of~.

Table 6.11 shows the results of calibrations based on four available

yearsofdataforcalibration andtheverifications.
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Table6.11 Results of Calibrations BasedQn Four·Years(]973 1974 1975

and1976)Data andThe Verifications

Calibration of a-veardata 1973. 1974 1975. and1976
Items TE BBO CCO

A 0.12 0.10 0.10
B 150.0 150.6 150.0
C 0.53 0.45 0.43
0 I 0.70 0.75 on
E 160 180 160
F 190 197 197.3

CalibrlollQn ,- co- VlllificabOn CalibnlbOn VenlielbOn

Res 213.978 389.0252 101.5705233.9174 99.6054 223.1259
R2 0.9907 0.986322 0.9981' 0.9978 0.9989 0.9982
~ 0.3587 0.36683 0.3316 0.3522 0.3067 0.3233

For four yearsof calibration data, CCO gavethe best results. It gave

the smallest of lEi, 99.8054 and the highest of ~, 0.9989. Similarly for the

verifications, CCO gave the smallest of fEl, 223.1259, the highest of ~,

0.9982, and the smallest of Dv, 0.3233. These results are also the best

compared to thosewith less than fouryearsof data forcalibration. It shows

thatthe longerthe availabledatafor calibration,the betterthe results.

Fig. 6.20 and Fig. 6.21 showtheplotsof the simulated and observed

runoffsduring the calibration and verification periods, respectively.
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Fig.6.21 Observed and Simulated Runoffs for Verification
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Fig.6.20 and Fig.6.21 show that simulated runoffs that are generated

using parameters , which are calibrated by both CCO and BBO, provide good

fit to the observed runoffs . The results have proved that CCO and BBO are

good methods to calibrate rainfall-runoff models . Since both can obtain

calibrated parameters, which can be used in the Mock model to produce

simulated runoffs that are very similar to the observed runoffs . The final

calibrated parameters based on BBO are shown in Table 6,10 . The matches

between simulated and observed runoffs for the calib ration and verification

are clearly shown in Fig. 6. 22 and Fig.6. 23.

CCO

500~. '£ 400 ..•

~ 300 .' . - . -~,1200 . . •• ~ . '..'
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o
o 100 200 300 400 500

Qbsefved Runoffs

Fig. 6.22 .a The Plot of Simulated and Observed Runoffs for Calibration based

onCCO

Fig. 6.22.a shows that the plot of observed and simulated runoffs is

linear . All points lay on the line of the plot. It means that simulated runoffs

based on CCO for the calibration fit the observed runoffs.
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Fig. 6.22.b The Plot of Simulated and Observed Runoffs for Calibra tion based

on BBD

Fig. 6.22.b shows that the plot of observed and simulated runoffs is

linear. Almost all points lie on the line of the plot. Only one point is plotted out

from the line. It means that simulated runoffs based on BBD for the

calibration also fit the observed runoffs. although it is not as good as CGO.

Trial and Error

Fig. 6.22 .c The Plot of Simulated and Observed Runoffs for Ca libration base d

on Trial and Error
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Fig. 6.22.c shows that the plot of observed and simulated runoffs is

linear with some points lie outside the line of the plot. It means that simulated

runoffs based on Trial and Error for the calibration is the worst fit the

observed runoffs compared to the CCO and BBO.

cco

Fig. 6.23.a The Plot of Simulated and Observed Runoffs for Verification

based on CCO

Fig. 6.23.a shows that the plot of observed and simulated runoffs in

the verification is linear. All points lay on the line of the plot. It means that

simulated runoffs based on CCO for the verification fit the observed runoffs.
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Fig. 6.23.b The Plot of Simulated and Observed Runoffs for Verification

based on BBD

Fig. 6.23.b shows that the plot of observed and simulated runoffs in

the verification based on BBo is linear . Almost all points lay on the line of the

plot. It means that simulated runoffs base d on BBD for the verification also fit

the observed runoffs . However, it is not as good as CGO.

Next, Fig. 6.22.c shows that the plot of observed and simulated

runoffs is linear, with some points off the line of the plot. It means that

although the fit of simulated runoffs based on Trial and Error for the

calibration is accep ted ; it is however, the wors t fit compared to the CGO and

BBD.
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Table 6.12 The Calibrated Parameters of Mock Rainfall-Runoff Model Based

on Four Yea rs (1973 to 1976) Data Using CCD

Parameters Code Units Values

% of Impermeable Layer IMLA A 0.10

Initial Storage Va lue V, B mm 150.0

Coeff. of Infiltration COl C 0.43

MonthlyCoet. of Recession K D on
Soil Moisture Capac ity SMC E mm 180

Initial Soil Moisture SM, F mm 197.3

As can be seen from Tables 6.8 to 6.12, the calibrated values of the

parameters of the Mock model changes each time additional data becomes
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available for calibration . The longer the period available for calibra tion will

always give better results and wilt give results that are more representative of

the basin over an extended period.
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Chapter 7

Conclusions

The previouschaptershave demonstratedthe application of the well­

known techniques of experimental design (DOE) and subsequent Response

Surface Methodology (RSM) in calibrating a rainfall-runoff model, These

techniques are commonty used in industrial experimentation for product or

process improvements. The DOE-RSM approach provides a systematic way

of learning about the importance of each parameter in the model and more

importantly how they interactwith one another. Then, using this knowledgea

simple quadratic regression type equation can be developed to model the

resulting response of the process or model. The values of the parameters

that optimises (minimise or maximise) the response can then be found.

Another advantage of this approach is that standard statistical software

packages such as Minitab, Statistica, SPSS, SAS which has DOE·RSM

capability and standard stand-alone DOE·RSM packages such as Design­

Expertand Design-Ease, can be used for model calibration. This obviates the

need for writing special computer programs as required in other numerical

calibration methods or spending endless amount of time in the trial-and-error

approach.

In this thesis the Mock rainfal,",runoff model, which has six

parameters. was calibrated using the DOE·RSM approach. It was shown
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that the calibrated model provided a very good fit between observed and

simulated data both for the calibration data sets as well as the verification

data sets. In general, it can be concluded that the OOE·RSM approach is

a viable and excellent alternative for the calibration of the multi-parameter

Mock rainfall-runoff model. The following are specific conclusions

regarding some of the details in conducting the design of experiments and

the application of the Response Surface Methodology in calibrating the

Mock model:

1. In the design of experiment phase. either full factorial or fractional factorial

designs can be used. It was shown that the Central Composite Design

(CCO), which uses a full factorial design or one-half fractional factorial

design, and the Box-Benhken Design (BBO) can provide accurate

calibration of the Mock rainfall-runoff model using a small number of

experiments. Both designs gave similar results.

2. BBD required fewer experiments than the CCO of full version. However,

CCO of resolution VI can reduce the number of experiments less than

BBD. Moreover, the results of CCO resolution VI are the same as the

results of CCO of full version. They are better than B80, although the

results of BBO are close to the results of CCO. Therefore, it is better to

use CCO using resolution VI instead of BBD, particularly when there are

large number of parameters to calibrate. However, further analysis must

be carried out before one can say that one design is better than the other.
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The better design is the one that will give a better match between the

simulated and observed data.

3. Based on the effect analysis factors e , C, E, A2,~, OZ, AC, and CD have

high positive effects on the response of the model, while, D. F, P', BE

have high negative effects on the response of the model. It means that to

optimise the response of the process , for example: to reduce the absolute

sum of errors, modellers have to decrease parameters and interactions

that have positive effects and to increase parameters and interactions that

have negative effects. Therefore , the parameters. which are considered

as the priorities to optimise the process , are recognised . In this research,

for these particular data, the single-parameters , which affect very much

the change of the Mock model's process are: Coefficient of Infiltration

(COl) coded as C, Coefficient of Recession (I<) coded as 0 , and Soil

Moisture Capacity (SMC) coded as E. While, only the interaction CD

highly affects the Mock model process .

While it was shown in this thesis that the DOE-RSM approach

successfully calibrated a model with 6 parameters , it may require more effort

when there are a large number of parameters to be calibrated (e.g., more

than 10 parameters) . In this situation, to keep the number of experiments to

a manageable level. one may have to use highly fractional factorial designs

which mayor may not be desirable because many of the factors will be

aliased.
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In addition. when calibrating a model without any prior knowledge of the

possible ranges of the parameters, it may require major effort simply to

determine the workable ranges of each parameter. Then, for a more

accurate estimate of the parameters, the ranges must be shortened so that

the peak of the response surface is indeed the global optimal.
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Appendix A

A Computer Program For the Mock

Rainfall-Runoff Model

The quickbasicprogram of Mock model

The Mock model is calculated using a program of quick basic (Kadarisman.

1993). Theprogram is

'MOCK MODEL PROGRAM.

GOSUBinitiaJization
GOSUB water.balance
GOSUB run.off
END

initialization:

CLS
INPUT "impermeable layer (imla)="; imla
INPUT "initial storage (Vo):" ; vc
INPUT "coefficient of infiltration (COI)="; coi
INPUT "monthlycoeffiCient recession(K}=";k
INPUT 'soilmoisture capacity(SMC)="; sme
INPUT "initial soilmoisture(SMa)="; smo

LETa =4:b=12
DIM pIa. b): DIM ws(a. b): DIMeecue. b)
DIM cere, b): DIM alo(a. b): DIMpe(a. b): DIM al (a. b): DIM bl (a. b)
DIM inf(a. b): DIM vn(a. b): DIM dltvn(a. b): DIMbt(a. b)
DIMdro(a. b): DIM ro(a. b): DIM dsro(a. b): DIM storm(a. b)
DIMqo<a.b): DIM sm(a. b): DIMss(a. b)
vn(1. 0) = YO:
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RETURN

water.balance:

CLS
OPEN "a:ra.dar FOR OUTPUT AS .,
OPEN "a:ws.da" FOR OUTPUT AS '2
OPEN 'a :dsra.dar FOR OUTPUT AS ' 3
OPEN "aieto.dat' FOR INPUT AS . 4 'Pot.evapotrans.data
OPEN "a:montkada.dar FOR INPlIT AS ' 5 'monthlyprecipitation
OPEN "a:vn.dal' FOR OUTPUT AS'6

FORy .1T0 a
FORm . 1TO b
INPUT ' 5, PlY,m)
NEXTm
NEXTy
CLOSE '5

FOR y. , TO a
FORm . 1TO b
INPUT '4, OIO(y, m)
NEXT m
NEXTy
CLOSE 14

FOR y . , TOa
FORm .1TOb
IFm= 1 AND y > 1 THEN
sm(y, tm- 1)) . sm((y · 1), b)
ELSEIF rne 1 AND y . 1 THEN
sm(y, (m - 1)) =sma
END IF

'The calculationofwaterbalance

LET oaet(y, m) • olo (y, m)
100 oael(y, m) • ca(y, m)
200 po(y, m) • p(y, m) • oael(y, m)
IF po(y, m) > 0 THEN
IF sm(y. m·1 ) < smc THEN
IF (PO(Y, m) + sm(y , (m - 1))) < smc THEN
SS(Y, m) . po(y, m): sm(y, m) . sm(y , (m -1)) + ss(y . m)
ELSEIF (PO(Y, m) +sm(y. (m - l ))) > smc THEN
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sslY, m) =smc - sm(y, (m - 1)): sm(y, m) =sme
END IF
ELSEIF smlY, m - 1) =smc THEN
sslY, m) = 0: sm(y, m) = sm(y , (m · 1)) + sslY, m)
END IF
ELSEIF po(y, m) < 0 THEN
IF sm(y, (m - I )) =sme THEN
IF (po(y, m) + smlY, (m - I ))) < oTHEN
ss(y, m) =po(y, m): sm(y, m) =0
ELSEIF po(y, m) + sm(y, (m - I »)> 0 THEN
ss(y, m) =po(y, m): sm(y , m) =sm(y, (m- I )) + pe(y, m)
END IF
ELSEIF sm(y, (m - 1») < smc THEN
IF (polY, m) . smlY, (m - I ))) < 0 THEN
ss(y, m) =POlY, m): smlY, m) =0
ELSEIF (po(y, m) + smlY, lm · 1))) > 0 THEN
sslY, m) =po(y, m}: smlY, m) =sm(y, (m - I)) + pelY, m)
END IF
END IF
END IF

ce(y, m) :: eto(y, m)· sm(y, mi l smc
IF ABS(co(y, m) - oaet(y, m)) > .01 THEN
GOTO 100
ELSEIF ABS(ce(y, m) - oaet(y, m)) <= .01 THEN
ws(y, ml = po(y, m) • ss(y, m)
ENDIF
PRINT
IF wslY, m) = 0 THEN
dsro(y, m) =imla • p{y. m)
smlY, m) = sm(y, m - 1) . po(y, m)· dsro(y, m)
IF sm(y, m) > smcTHEN
sm(y, m) = sme
ws(y, m) = sm(y, m ~ 1) + pe(y, m) · dsro(y. rm -sme
ELSEIF sm(y. m} < smeTHEN
sm(y, m) = sm(y , m)
ENDIF
ELSEIF ws(y, m) > 0 THEN
GOT0300
END IF
300 PRINT
WRITE ' 2, wslY, m)
WRITE ' 3, dsro(y , m)
NEXT m
NEXTy
CLOSE ' 2: CLOSE ' 3
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RETURN

'=
run.off:
'=
CLS
Thiscalculationis basedonwaterbalance principle
'and refers toMOCK,(1973). WaterAvailability Appraisal.
'ReportforLandCapabilityAppraisal, Indonesia.

OPEN ·a:\ws.dat· FOR INPUT AS .7
OPEN 'a:\ds ro ,da~ FOR INPUT AS '8
FOR v» HO a
FOR m . H Ob
INPUT '7, ws(Y, ml: INPUT ' 8, dSro(y, m):
NEXTm
NEXT y
CLOSE '7: CLOSE ' 8:
FOR v»HOa
FOR m. H Ob
IFm = 1 ANDy > 1 THEN
vn(y, (m -' ll _vn«y - 1), b)
END IF
inf(y,m) = coi e wS(Y. m)
a'(y, ml • .5· (k + 1) ' inflY, m)
bl (y, mi ' k' vn(y, m -1)
vn(y, m) . a1(y, m) + b1(y, m)
WRITE 116, vn(y, m)
dltvnlY, m). vn(y, m) - vn(y, m - 1)
bf(y, m) • int(y, m) - dltvn(y, m)
dro(y, rm • ws(y, m) - inf(y, m)
storm(y, ml _ dsro(y, m)
ro(y, m) • bf(y, ml + dro(y, m) + stonm(y, m)
WRITE " , ro(y. ml
NEXTm
NEXT y
CLOSE . ,
RETURN
END
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Table B.l Table of Experiments Arranged Based Qn CCO for the Six

~

A B C 0 E F
0.08 150 0.35 0.6 180 190
0.12 150 0.35 0.6 180 190
0.08 250 0.35 0.6 180 190
0.12 250 0.35 0.6 180 190
0.08 150 0.65 0.6 180 190
0.12 150 0.65 0.6 180 190
0.08 250 0.65 0.6 180 190
0.12 250 0.65 0.6 180 190
0.08 150 0.35 0.8 180 190
0.12 150 0.35 0.8 180 190
0.08 250 0.35 0.8 180 190
0.12 250 0.35 0.8 180 190
0.08 150 0.65 0.8 180 190
0.12 150 0.65 0.8 180 190
0.08 250 0.65 0.8 180 190
0.12 250 0.65 0.8 180 190
0.08 150 0.35 0.6 220 190
0.12 150 0.35 0.6 220 190
0.08 250 0.35 0.6 220 190
0.12 250 0.35 0.6 220 190
0.08 150 0.65 0.6 220 190
0.12 150 0.65 0.6 220 190
0.08 250 0.65 0.6 220 190
0.12 250 0.65 0.6 220 190
0.08 150 0.35 0.8 220 190
0.12 150 0.35 0.8 220 190
0.08 250 0.35 0.8 220 190
0.12 250 0.35 0.8 220 190
0.08 150 0.65 0.8 220 190
0.12 150 0.65 0.8 220 190
0.08 250 0.65 0.8 220 190
0.12 250 0.65 0.8 220 190
0.08 150 0.35 0.6 180 210
0.12 150 0.35 0.6 180 210
0.08 250 0.35 0.6 180 210
0.12 250 0.35 0.6 180 210
0.08 150 0.65 0.6 180 210
0.12 150 0.65 0.6 180 210
0.08 250 0.65 0.6 180 210
0.12 250 0.65 0.6 180 210
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0.08 150 0.35 0.8 180 210
0.12 150 0.35 0.8 180 210
0.08 250 0.35 0.8 180 210
0.12 250 0.35 0.8 180 210
0.08 150 0.65 0.8 180 210
0.12 150 0.65 0.8 180 210
0.08 250 0.65 0.8 180 210
0.12 250 0.65 0.8 180 210
0.08 150 0.35 0.6 220 210
0.12 150 0.35 0.6 220 210
0.08 250 0.35 0.6 220 210
0.12 250 0.35 0.6 220 210
0.08 150 0.65 0.6 220 210
0.12 150 0.65 0.6 220 210
0.08 250 0.65 0.6 220 210
0.12 250 0.65 0.6 220 210
0.08 150 0.35 0.6 220 210
0.12 150 0.35 0.8 220 210
0.08 250 0.35 0.8 220 210
0.12 250 0.35 0.8 220 210
0.08 150 0.65 0.8 220 210
0.12 150 0.65 0.8 220 210
0.08 250 0.65 0.8 220 210
0.12 250 0.65 0.8 220 210

0.043432 200 0.5 0.7 200 200
0.156569 200 0.5 0.7 200 200

0.1 58.5786 0.5 0.7 200 200
0.1 341.421 0.5 0.7 200 200
0.1 200 0.075736 0.7 200 200
0.1 200 0.924264 0.7 200 200
0.1 200 0.5 0.417157 200 200
0.1 200 0.5 0.982843 200 200
0.1 200 0.5 0.7 143.431 200
0.1 200 0.5 0.7 256.569 200
0.1 200 0.5 0.7 200 171.716
0.1 200 0.5 0.7 200 228.284
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
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0.1
0.1

200
200

0.5
0.5

0.7
0.7

200
200

200
200

Table B.2 Table Qf Exoeriments Arranged Based Qn BBD fQrthe Six

~

A B C 0 E F
0.08 150 0.5 0.6 200 200
0.12 ISO 0.5 0.6 200 200
0.08 250 0.5 0.6 200 200
0.12 2SO 0.5 0.6 200 200
0.08 l SO 0.5 0.8 200 200
0.12 l SO 0.5 0.8 200 200
0.08 250 0.5 0.8 200 200
0.12 2SO 0.5 0.8 200 200
0.1 150 0.35 0.7 180 200
0.1 250 0.35 0.7 180 200
Q.l 150 0.65 0.7 180 200
0.1 250 0.65 0.7 180 200
0.1 1SO 0.35 0.7 220 200
Q.1 2SO 0.35 0.7 220 200
0.1 lSO 0.65 0.7 220 200
0.1 250 0.65 0.7 220 200
0.1 200 0.35 0.6 200 190
0.1 200 0.65 0.6 200 190
0.1 200 0.35 0.8 200 190
0.1 200 0.65 0.8 200 190
0.1 200 0.35 0.6 200 210
0.1 200 0.65 Q.6 200 210
0.1 200 0.35 0.8 200 210
0.1 200 0.65 0.8 200 210
0.08 200 0.5 0.6 180 200
0.12 200 0.5 0.6 180 200
0.08 200 0.5 0.8 180 200
0.12 200 0.5 0.8 180 200
0.08 200 0.5 0.6 220 200
0.12 200 0.5 0.6 220 200
0.08 200 0.5 0.8 220 200
0.12 200 0.5 0.8 220 200
0.1 lSO 0.5 0.7 180 190
0.1 250 0.5 0.7 180 190
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0.1 150 0.5 0.7 220 190
0.1 250 0.5 0.7 220 190
0.1 150 0.5 0.7 180 210
0.1 250 0.5 0.7 180 210
0.1 150 0.5 0.7 220 210
0.1 250 0.5 0.7 220 210
0.08 200 0.35 0.7 200 190
0.12 200 0.35 0.7 200 190
0.08 200 0.65 0.7 200 190
0.12 200 0.65 0.7 200 190
0.08 200 0.35 0.7 200 210
0.12 200 0.35 0.7 200 210
0.08 200 0.65 0.7 200 210
0.12 200 0.65 0.7 200 210
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
0.1 200 0.5 0.7 200 200
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Tables C.l Table Signs For Six Parameters Full Factorial Designs

IA B ABC ACBCA 0 A B IA C A B A
B 0 0 B 0 C C B
C 0 0 0 C

0
1 + + + + + + +

a + + + + + + +
b + + + + + + +
ab + + + + + + +
e + + + + + + +
ae + + + + + + +
be + + + + + + +
abc + + + + + + +
d + + + + + + +
ad + + + + + + +
bd + + + + +
abd + + + + + + + + +
cd + + + + + + + + +
acd + + + + +
bed + + + + + + +
abed + + + + + + + + + + + + + + +

Tables C.1 Table Signs for Six Parameters Full Factorial Designs

E A B A C A B A o IA B A C IA B IA
E E B E C C B E 0 0 B 0 C

g ~E E E C E E 0 E 0
E E E E 0

E
1 + + + + + + + +

a + + + + + + + +
b + + + + + + + + +
ab + + + + + + +

+ + + + + + +
Be + + + + + + + + +
be + + + + + + + +
abc + + + + + + + +
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d + + + + + + + +
ad + + + + + + + +
bd + + + + + + + + +
abd + + + + + + +
cd + + + + + + +
acd + + + + + + + + +
bed + + + + + + + +
Iahcd

Tables C.1 Table Signs for Six Parameters FullFactorial Designs

F
~ ~ ~

C
~

B 0 B A C B
F C B F 0 0 B 0 C C B

F F F C F F 0 F 0 0 k:
F F F F 0

F
1 + + + + + + + +

+ + + + + + + +
0 + + + + + + +
aD + + + + + + + + +
c + + + + + + + + +
ac + + + + + + +
be + + + + + + + +
aile + + + + + + + +
d + + + + + + + +
ad + + + + + + + +
bd + + + + + + + + +
abd + + + + + + +
cd + + + + + + +
aed + + + + + + + + +
bed + + + + + + + +
abed
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Tables C.1 Table Signs for Six Parameters Full Facto rial Designs

E A B A C A B A 0
~ ~

A C A B
F E E B E C C B E B 0 C C B

F F E F E E C F E E 0 E 0 0 C
F F F E F F E F E E 0

F F F F E
F

1 + + + + + + + +
a + + + + + + + +
b + + + + + + +
ab + + + + + + + + +

+ + + + + + + + +
ae + + + + + + +
be + + + + + + + +
abc + + + + + + + +
d + + + + + + + +
ad + + + + + + + +
bd + + + + + + +
abd + + + + + + + + +
cd + + + + + + + + +

cd + + + + + + +
bed + + + + + + + +
abed + + + + + + + + + + + + + + + +

Tables C.1 Table Signs for Six Parameters Full Factorial Designs

B A C
~~

A 0
~ ~

A C
~~ ~B

~
B 0
0 D O C

0

• + + + + + + +
a. + + + + + + +
be + + + + + + +
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- + + + + + + +
bl + + + + + + +
ace + + + + + + +
bee + + + + + + +
abce + + + + + + +
d. + + + + + + +
.do + + + + + + +
bee + + + + +
abd. + + + + + + + + +
coe + + + + + + + + +.cd. + + + + +
bed. + + + + + + +
abed . + + + + + + + + + + + + + + +

Tables C.1 Table Signs for Six Parameters Full Facto"al Designs

E A B A C A B A 0 A B A C A B A
E E B E C C B E 0 0 B 0 C C B

E E E C E E 0 E 0 0 C
E E E E 0

E

• + + + + + + + +

•• + + + + + + + +
be + + + + + + +
abe + + + + + + + + +

+ + + + + + + + +
.ce + + + + + + +
bee + + + + + + + +
abce + + + + + + + +
d. + + + + + + + +
ade + + + + + + + +
bd. + + + + + + +
abd. + + + + + + + + +cd. + + + + + + + + +.cd. + + + + + + +
bed. + + + + + + + +
abed. + + + + + + + + + + + + + + + +
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Tables C.1 Table Signs for Six Parameters Full Factorial Designs

F A B A C A B 0 f6. B A C A
~ ~F F B F C C B F 0 0 B 0 C

F F F C F F 0 F 0 0 C
F F F F 0

F

• + + + + + + + +
a. + + + + + + + +
be + + + + + + +
abe + + + + + + + + +
ce + + + + + + + + +
ace + + + + + + +
bee + + + + + + + +
abce + + + + + + + +
d. + + + + + + + +

de + + + + + + + +
bde + + + + + + + + +
abd. + + + + + + +
coe + + + + + + +
aed. + + + + + + + + +
bed. + + + + + + + +
abed.

Tables C.1 Table Signs for Six ParametersFull Factorial Designs

E A B A C A B A o A B A C A B A
F E E B E C C B E o 0 B o C C B

F F E FE E C FE E 0 E 0 0 C
F F FE F FE F E E 0

F F F F E
F

• + + + + + + + +
a. + + + + + + + +
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be + + + + + + + + +
abe + + + + + + +
ce + + + + + + +
ace + + + + + + + + +
bee + + + + + + + +
abc8 + + + + + + + +
d. + + + + + + + +
ad. + + + + + + + +
bd. + + + + + + + + +
abd. + + + + + + +
cd. + + + + + + +
acd. + + + + + + + + +
bod. + + + + + + + +
abcde

Tables C.l Table Signs lor Six Parameters Full FaClorial Designs

A B A C
~ ~

A 0 A B A C A B A
B B 0 0 B 0 C C B

C 0 0 0 C
0

f + + + + + +
al + + + + + + +
bl + + + + + + +
abl + + + + + + +
c1 + + + + +
ad + + + +
bet +
abet + + +

+ + + + + +
ad! + + + + +
bdf + + + +
abdf + + + + + + + +
cd! + + + +
acdI + + +
bcdf
abcdf + + + +
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Tables C.l Table Signs for Six Parameters Full Factorial Designs

E A B A
~~

B A 0
~ ~

A C A B
E E B C B E B 0 C C B

E E E C E E 0 E 0 0 C
E E E E 0

E
I + + + + + + + +
al + + + + + + + +
bl + + + + + + + + +
abl + + + + + + +
el + + + + + + +
ael + + + + + + + + +
bet + + + + + + + +
abet + + + + + + + +
elf + + + + + + + +
ad! + + + + + + + +
bd1 + + + + + + + + +
abelf + + + + + + +
cdf + + + + + + +
acdf + + + + + + + + +
bcdl + + + + + + + +
abcdl
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Tables CITable Signs for Six Parameters Full Factorial Designs

F A B A C
~ ~ ~ ~

A B A A B A
F F B F 0 0 B 0 C C B

F F F C F F 0 F 0 0 C
F F F F 0

F
f + + + + + + + +
01 + + + + + + + +
bf + + + + + + + + +
abf + + + + + + +
ct + + + + + + +
act + + + + + + + + +
bet + + + + + + + +
abet + + + + + + + +
df + + + + + + + +
adf + + . + + . + .
bdf + + + + + + +
abdf + + + + + + + + +

+ + + + + + . + +
edt + + + + + + +

bcdf + + + + + + + +
abcdf + + + + . + + + + + + + .+ + +
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Tables C 1 Table Signsfor Six Parameters Full Factorial Designs

E A B IA IA B A 0 IA B IA A B IA
F E E B E C C B E 0 0 B 0 C C B

F F E F E E C F E E 0 E 0 0 C
F F F E F F E F E E 0

F F F F E
F

+ + + + + + + +
al + + + + + + + +
bf + + + + + + + + +
abl + + + + + + +
cf + + + + + + +
act + + + + + + + + +
bet + + + + + + + +
abet + + + + + + + +
df + + + + + + + +
adf + + + + + + + +
bdf + + + + + + + + +
abdf + + + + + + +
edt + + + + + + +
aedt + + + + + + + + +
bedf + + + + + + + +
abcdf
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Tables C.l Table Signs for Six Parameters Full Factoria l Designs

A B A C A B A 0 A B A C A B A A
B C C B 0 0 B 0 C C B B

C 0 0 0 C C
0 0

E
F

af + + + + + + +
aaf + + + + + + + +
bet + + + + + + + +
abef + + + + + + +
eet + + + + + + + +
aeel + + + + + + +
beef + + + + + + +
abeef + + + + + + + +
dat + + + + + + + +
adaf + + + + + + +
bdaf + + + + +
_af + + + + + + + + + +
<:def + + + + + + + + +
a<:def + + + + + +
bedaf + + + + + + + +
abedaf + + + + + + + + + + + + + + +

Tables 0 .1 Table Signsfor Six ParametersFullFactorial Designs

E A B A C A B A 0 A B A C A B A
E E B E C C B E 0 0 B 0 C C B

E E E C E E 0 E 0 0 C
E E E E 0

E
at + + + + + + + +
aet + + + + + + + +
bet + + + + + + +
abef + + + + + + + + +
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eel + + + + + + + + +
acet + + + + + + +
beef + + + + + + + +
abcel + + + + + + + +
<leI + + + + + + + +

def + + + + + + + +
bdef + + + + + + +
abdef + + + + + + + + +
cdef + + + + + + + + +
aedef + + + + + + +
bede l + + + + + + + +
obedel + + + + + + + + + + + + + + + +

Tables C.1 Table Signs lor Six Parameters Full Factorial Designs

F A B A C A B D B A C A B A
F F B F C C B F D D B D C C B

F F F C F F D F D D C
F F F F D

F
el + + + + + + +
ae f + + + + +
bef + + + + + + + +
abel + + + + + +
cet + + + + + + +
acet + + + + + + + + +
beef + + + + + +
abcef + + + + +
de l + + . . .
adel . + +
bdef + + + + +
abdel + + + + + + + + +
cdef + + + + + + + +
acdel + + +
bcd<ll + .
atx:def + + + +
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Tables C.l Table Signs tor Six Parameters Full Factorial Designs

E A B A C A B IA D A B A C A B A
F E E B E C C B E D D B D C C B

F F E F E E C F E E D E D D C
F F F E F F E F E E D

F F F F E
F

ot + + + + + + + +
aet + + + + + + + +
bet + + + + + + +
abe! + + + + + + + + +
eet + + + + + + + + +
ace! + + + + + + +
beet + + + + + + + +
abcef + + + + + + + +
det + + + + + + + +
adol + + + + + + + +
bdot + + + + + + +
_of + + + + + + + + +
cdof + + + + + + + + +
aedef + + + + + + +
bedo' + + . + + + + +
abedol + + + + + + + + + + + + + + + +
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Table C.2 Table Signs Six Parameters One-Haij Fractional Facto rial

A B C 0 E F AS AC AD AE AF BC BO BE BF CO
1 + + + + + + + + + +
at + + + + + + +
bl + + + + + +
ab + + + + +
ct + + + + + + + + + +
ac + + + + +
be + + + + + +

abel + + + + + + +
df + + + + + + + + +
ad + + + + + +
bd + + + + +

abdf + + + + + + + +
cd + + + + + + + + +

acdf + + + + + + + +
bedl + + + + + + + + +
abcd + + + + + + + + + +

ef + + + + + + + + + +
ae + + + + + + +
be + + + + + +

abel + + + + + + + + +
ce + + + + + + + +

ace l + + + + + + +
beel + + + + + + + +
abce + + + + + + + + +

de + + + + + + +
adaf + + + + + + + +
bdel + + + + + + +
abde + + + + + + + + + +
cdel + + + + + + + + +
acde + + + + + + + +
bede + + + + + + + + +

abedel + + + + + + + + + + + + + +
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Table C 2 Table SignsSix Parameters One·H alf Fractional Factorial

Designs(continued)

CE CF DE OF EF ABC ABO ABE ABF ACO ACE ACF ACE AOF AEF
1 + + + + +
af + + + + + + + . + + + + + + +
bf + + + + + + + + + + +
ab + + + + + + + + +
d + + + + +
ac + + + + + + + + + + +
be + + + + + + + + +

abel + + + + + + +
df + + + + + + +
ad . + + + + + + + +
bd + + + + + + . . +

abdf + + + + + + +
cd + + + + + + +

acdf + + + + +
bCdf + + + + + + +
abcd + + + + +

01 + + + + + +
ee + + + + + + + +
be + + + + + + + +

abef + + + + + +
ee + + + + + + + +

aeef + + + + + +
beof + + + + + + + +
ecce + + + + + +

do + + + + + + + +
odel + + + + + +
bdef + + + + + +
abde + + + + + + + +
cdol + + + + + + + + + +
acdo + + + +
bedo + + + + + +

abedo + + + + + + + +
I
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Additional Results
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Table D. 1 The EffectEstimationbased on the resoonseof R'
calculatedusing FF and OHF

A
B

AB
C
AC
Be

ABC
o

AO
BO

ABO
CO

ACO
BCD

ABCO
E

AE
BE

ABE
CE

ACE
BeE

ABCE
OE

ACE
BOE

ABOE
COE
AceE
BCDE

ABCOE
F

AF
BF

ABF
CF

ACF
BCF

ABCF
OF

AOF
BOF
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ABOF
COF

.COF
BCDF

ABCOF
EF

AEF
BEF

ABEF
CEF

ACEF
BCEF

ABCEF
DEF

ADEF
BDEF

ABOEF
COEF

ACOEF
BCOEF

ABCOEF

•
B

AB
C
'C
BC

ABC
o

AD
BO

ABO
CD

'CO
BCD

ABCO
E

AE
BE

ABE
CE

_E
-BE
oAE
-£

0.Q13658
"().0003 1

oACO
-co....,
-eo
-All
. 0

oABC
.ec
zAC
-e
oAB
. B
oA.,
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ACE
BCE

ABCE
DE

ADE
BOE

ABOE
CDE

ACOE
BCOE

ABCDE
F

AF
SF

ABF
CF
ACF
BCF

ABO'
DF

ADF
SOF

A80F
CDF
ACDF
BCllf

ABCDF
EF

AEF
BEF
ABEF
CEF

ACEF
BCEF

ABCEF
DEF

ADEF
SOEF

ABDEF
COEF

ACOEF
BCDEF

ABCDEF
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Table 0.3 The ANOVA Table of The Polynomial model developed
usingceo basedon 1·year Calibration Data

Faoto,

I
B-B
c-c
o-o
E·E
C2

A'
BD
BE
co
CE
DE t3.9U

lEI . 27.919
R'.0.9978

• Dv= 0.2831

Table 04 The ANOVA Table of The Polynomial model developed
usingceo basedon 2·years ca libration Data
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Table 0 5 The ANOVA Table of The Polynomial model developed
using CCO based on 3-years Calibrat ion Data

Factor ~~=nt OF ~::'dard
Inte 350.136 1
e-c 45.2559 1
0-0 7.69E+OO 1 9
E-E 28.3854 1
C2 127 E+{)2 1 7
02 1.07E+02 1 7
CD 9.63E+Ol 1 10

lEi = 107.271'
R'= 0.9978

• Dv = 0.3161

4.86687 0.000 1
0.827361 .4105

3.052S9 0.0031
16.4541 < o.OO()1
13.8638 < 0.000 1
9.265 17 < 0.000 1

Table 0 6 The ANOVA Table of The Polynomial model developed
using BBO based on I-year Calibrat ion Data

Fee"

'""Bo-c
p.p
E-€
F·F
B>
C,
E2

F'
BE
CD
CF
DE
OF ·l .45E+Ol

lEI = 40.9926
• R'= 0.9958
• Dv =0.4058
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Table 0 .7 The ANOVA Table of The Polynomial model developed
using880 basedon 2~year Calib@tion Data

I
e-s
c-c
oo
E.£
Fof
B2
C2
02
E2
F2
BE
co
CF
OE
OF

lEi =93.5997
R'= 0.9975
Dv=0.2529

Table 0 8 The ANOVA Table of The Polynomial model develooed
usingBBDbasedon 3--year Calibration Data

Foot"...............
cc
o-o
E·E
Fof
A2
C2
02
F2
BE
co

IEJ= 107.9525
R'=0.9978

• Dv=0.3721
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FIQ 0 1 The Perturbation Plot of the Mock Mode~Parameters Based on
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FIQ 0 3 !he perturbation Plot of the Mock Model=Parameters Based on

Ja
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Appendix E

Input Data
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Table E. 1 The Data of Rainfall Evapotranspiration and Runoff

Year Month Rainfall EvaD<>lrans tration Runoff
1973 Jan 170 102.3 139
1973 Feb 165 98 51
1973 Me' 110 108.5 45
1973 An, 265 102 76
1973 Mav 378 102.3 198
1973 Jun 350 90 203
1973 Jul 191 89.9 ' 23
1973 Aua 198 105.4 116
1973 see 230 114 116
1973 OCt 220 127.1 105
1973 N"" 240 117 123
1973 ll9c 108 105.4 49
1974 Jan 118 102.3 111
1974 Feb n 98 40
1974 Me, 310 108.5 141
1974 AD' 275 102 140
1974 Mav 305 102.3 165
1974 Jun 442 90 263
1974 Jul 390 89.9 247
1974 AUQ 350 105.4 241
1974 sao 420 114 281
1974 OCt 296 127,1 218
1974 N"" 235 117 151
1974 Dec 25 105.4 90
1975 Jan 48 102.3 54
1975 Feb 67 98 51
1975 Mar 13 108.5 33
1975 AD' 150 102 40
1975 Me 250 102.3 89
1975 Jun 150 90 56
1975 Jul 275 89.9 122
1975 Aua 5n 105.4 312
1975 SeD 248 114 172
1975 OCt 165 127.1 101
1975 N"" 98 117 54
1975 Dec 6B 105.4 55
1976 Jan eo 102.3 35
1978 Feb n 9B 34
1978 Mar 167 108.5 53
1976 AD' 480 102 2B2
1976 Mav 568 102.3 342

1n



1976 Jun 370 90 252
1976 Jul 335 89 .9 234
1976 Au 115 105 .4 96
1976 Sen 130 114 96
1976 0C1 78 127.1 57
1976 Nov 95 117 54
1976 Dec 45 105 .4 39
19n Jan 10 102 .3 29
19n Feb 12 98 19
19n Mar 20 108 .5 4
19n Anr 3& 102 15
19n Mav 6 102 .3 25
19n Jun 305 90 67
19n Jul 308 89 .9 141
19n Aun 227 105 .4 113
19n Sen 280 114 144
19n 0C1 150 127 .1 85
19n Nov 310 117 184
19n Dec 34B 105.4 197
1978 Jan 41 102 .3 58
1978 Feb 145 98 59
1978 Mar 175 108 .5 4B
1978 AMr 508 102 279
1978 Ma 406 102 .3 301
1978 Jun 245 90 173
1978 Jul 358 89 .9 244
1978 Aun 530 105.4 342
1978 sen- 585 114 403
1978 0C1 424 127 .1 325
1978 Nov 505 117 373
1978 Dec 45 105.4 137
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