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Abstract

Rainfall-runoff models used for hydrological modelling usually involve
many parameters that must be calibrated using observed rainfall and runoff data
before they can be used for any water resources study. Traditionally, calibrations
of these models are done using a trial and error approach or by using numerical

optimisation methods, neither of which is entirely satisfactory. In this thesis, a

based on isti i Designs and F Surface
Methodology is presented. This method i

designs, i ing i and optimisati in the

calibration process. This method can effectively select the parameters and

their i i that will signil affect the variable,
which in this case is a goodness-of-fit criterion. The method also determines the
optimal values of the parameters that should be used in the model to produce the
best fit of calculated runoff amounts to observed runoff amounts. Full factorial
and fractional factorial designs and two popular response-surface designs:
central composite (CCD) and Box-Behnken were compared.

Mock’s rainfall-runoff model, a popular model for irrigation planning in

Indonesia will be used to il the prop gy. It has six
to be cali from monthly rainfall and runoff data. The
results of the prop of ing the six of the




Mock model will be compared to those already obtained previously using the trial
and error method. Observed rainfall-runoff and evapotranspiration data from
1973 ~ 1976 for the Babak River Basin in Lombok, Indonesia will be used in the
calibration of the model. Data for 1977 and 1978 will be used for verification of
the model.

The results showed that the proposed methodology gave a better
understanding of how the parameters interact with each other, is more
systematic, and the optimised values gave a better fit of computed and observed

runoffs.
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Chapter 1

Introduction

Rainfall-runoff models are computer based conceptual models used for

These models normally have many

or i that must be cali before the model can be used

Hence, the calibration of a rainfall ff model is a ity before it

can be used on a particular catchment. This chapter wil! describe rainfall-runoff

models in general, and briefly describe various ibration The

objectives and outline of the thesis are also presented in this chapter.

1.1. Rainfall-Runoff Models

Hydrology is the study of water on the earth. It consists of the study of

the water ob ions, and of the hydrologic
cycle: rainiall, evaporation, infiltration, runoff, etc. One of the main concemns of

hydrologists is the study of the water balance in a river basin. Understanding the

water balance allows for better of the water i in

the basin. A water balance study is basically an

ing p to quantify
the amount of water that is entering the basin from the atmosphere in the form of
precipitation, and the amount of water that is leaving the basin in the form of

runoff, infiltration, and evapotranspiration. Hence, from a study of the water



baiance over a long period record, one can ine if a i of

water or a surplus of water is present. One can then determine how the available
water should be allocated for water supply, irrigation, hydropower, etc.
The characteristic measurements of runoffs from catchments are very

complex. Over the last few years, studies about runoffs have become

increasingly important to the c: ity of the i in demand for
water. Therefore, hydrologists must investigate the availability of runoff in river
and other water systems to see whether the needs of the community can be met.
When long periods of record of rainfall, runoff, evaporation, and other losses are
available, the study of the water balance is rather straightforward in that the

historical data can be used directly in the accounting process. However, in most

i i ina ping country like Ir ia, runoff records are
often very short while rainfall records tends to be available for a much longer
period. This is because it is easier and cheaper to measure rainfall than runoff.

In such situations, it is for hy gists to use ical models that

mimic the hydrological processes of the river basin to generate simulated runoff
data based on available rainfall data. Ideally, models that fully replicate the runoff
processes should be used. However, it would be impossible to apply a full

description because it is very i and i A

y,

simulation models can be used. These models are based on a collection of

principles set out in mathematical formulation that attempt to describe the

characteristics of a river basin. These matt i based hydrologic models

are normally called rainfall-runoff models or more accurately, conceptual rainfall-



runoff models. Many such models are available ranging from the very
complicated to rather simple ones. Some are discrete event (based on a single
rainfall-runoff event) models, while others are continuous events (based on
hourly, daily, or monthly data) models. Some of the better known discrete event
models are Hydrologic Engineering Center (HEC-1) Model, Runoff Routing

Model Hydrograph Synthesis Model, and Storm Water Management Model

(¢ ). Some well-ki i event models include Tank Model,

and i i (SSARR) Model, Simple
Lumped Reservoir Parametric (SLURP) Model, Hydrological Simulation Program
— Fortran (HSPF) Model, (Sorooshian and Gupta, 1995). Practically all rainfall-
runoff models are in the form of a computer program. Models that are based on
hourly or daily data can also be used for flood forecasting purposes.

With the advent of fast modem these based

rainfall-runoff models are becoming easier and more convenient to use in
practice. These models can be used to generate simulated runoffs for different
scenarios of rainfalls, land use changes, etc. in only a matter of minutes on a fast
computer.

However, before the chosen model can be effectively used, the model
parameters must be properly calibrated. Different models have different number
and types of parameters. Two types of model parameters are normally used in
rainfall-runoff models: "physical" and ‘process® (Sorooshian et. al. 1995).

Physical are that




watershed covered by lakes, surface and stream slopes, etc. Process

are that repi indirectly ble properties of the
watershed, for example, effective depths of water, interflow rates, coefficients of
infiltration, percolation, soil storage, etc. Mistaking the true value of parameters
will lead to incorrect results. As such, these parameters must be properly
calibrated with observed rainfall-runoff data so that the parameters can truly

represent the rainfall-runoff process of the river basin being modelled.

1.2. Rainfall-Runoff Model Calibration

In hydrology, Sorooshian and Gupta (1995) define calibration as the
process by which the parameters of a model are adjusted. Calibration is needed
to adjust the model parameters so that the model can produce simulated runoffs
that are similar to the observed runoff data.

There are three general methods of model calibration: *manuarl’ (see, for
example: Liong, 1991; Sorooshian and Gupta 1995), “numerical’ (see, for

example: Sorooshian and Gupta 1995; and Javaheri, 1998), and “Response

Surface (see, for Liong and Ibrahim 1991, 1993 and
1995). Manual methods, also called trial and error methods, are commonly used

in practice. However, these require trials and little

is available to optimise the parameters of the model uniess the user has
extensive experience with the model and river basin. All parameters are treated

independently and usually the relationships among parameters are not explicitly



known. The more parameters involved in the model the more difficult it is to

determine the correct values of the parameters.

are d ibrati invented to

the of manual (Dawdy and Donnell, 1965).
However, researchers are aiso not satisfied with most numerical methods
because they have to develop their own computer programs which are very
specific to the model and are very difficult to be modified by new users (Beck and
Amold, 1976; Sorooshian and Gupta, 1983). Building the program is the most
difficult part of the work, as the modellers have to spend a great deal of time

developing the programs rather than conducting the model calibration itself. In

addition, how the p. are il is also not explicitly known and
taken into account in the calibration process.
To overcome some of the difficulties with the above two methods, Liong

and lbrahim (1991, 1993, and 1995) suggested the use of the response surface

method, a isti th i ination method for model calibration.

Liong and Ibrahim used this new method to calibrate the eight parameters of the
Storm Water Management Model (SWMM) to preserve the response of peak-
fiows and runoff-volumes from storm data in Singapore. They used the Nash

Coefficient (R’) values as the for the f-fit objective-function.

Their results showed that the R Surface gy is an effecti

model-calibration method. It was simpler and more methodical than the manual

and numerical methods.



1.3 Thesis Objectives

This thesis will presant the use of the Response Surface Methodology for
model calibration suggested by Liong and Ibrahim. While the Response Surface

is well in isti ications, its i to

rainfall-runoff model calibration is still limited. Many practical issues dealing with
the method and transferability of the method to other models need to be
addressed.

This thesis has four objectives, all of which are related to the use of the
Response Surface Methodology for calibrating a rainfall-runoff model. These
objectives are:

1. To calibrate the Mock rainfall-runoff model using the Response Surface
Methodology. The Mock model is used as the illustration because it is
commonly used in Indonesia especially in irrigation planning (Mock, 1973;

Kadarisman, 1993; and Kurniawan, 1994). The Mock model has six

that require calibration using observed rainfall and runoff data.

n

To investigate how the parameters of the Mock model are related and interact
with one another. Unlike other methods, one of the benefits of the Response
Surface Methodology is the ability to analyse the interaction of parameters. It
is important to consider the effects of interactions because they contribute to

obtaining the global optimum values of the parameters. The Response

Surface applies i design for this purpose.

The results of two types of experimental designs, full factorial and fractional

factorial designs, will be p: in ing the signif and




parameter-interactions to optimise the objective functions. Kadarisman (1993)

argued that only using one objective function is not sufficient to analyse the

results of calibrations different objective functions provide different
measurements of a specific change of data and parameters. As such three
different objective functions will be used in this thesis.

3. To select the optimum parameter values for the Mock model. Two common

peril designs for F Surface \ , Bo and
Central Composite Designs will be compared. The number of required

experiments based on the two designs will also be compared.

4. To the of the R Surface over the
trial and error method. isti | and verification techniques will
be used to pi i and ob: runoffs based on different

scenarios of data availability. The trial and error method is used as the

comparison because it is the most common method of model calibration in

practice and an automati libration routine is not available for the

Mock model at present.

Monthly rainfall, runoff, and evapotranspiration data from 1973 to 1976
for the Babak River basin in Lombok, Indonesia will be used for the model
calibration. Data for 1977 and 1978 will be used for verification of the calibrated
model. Further information conceming the Babak River basin can be found in

Kadarisman (1993).



1.4 Outline of The Thesis

The thesis consists of seven chapters. Chapter 1 introduces the

gl of rainfall ff model calil , objectives of the research, and
outline of the thesis. It also discussed what rainfall-runoff models are, their
purpose, and why they need to be calibrated.

Chapter 2 provides a detailed review of model calibration methodology,

previ ication of the R Surface for rainfall-

runoff modelling.

Chapter 3 ibes the orthog i designs: full 2* factorial
and fractional 2* factorial designs, as this is the first stage of the Response

Surface Methodology. Advantages, disadvantages, and difficulties of the

designs are di In addition, three objective functions: Sum

of Absolute Differences between the observed and simulated runoffs, /E/, Nash

Coefficient, R?, and Deviation of Runoff Volume, Dv are defined here. The results

of goodness-of-fit measures using the three objective functions will be used as
the inputs in the response-surface optimisation stage.

Chapter 4 describes the two popular techniques of response surface

optimisations: Box-Behnken and Central Composite Designs. In addition,

p for model verification are in this chapter.
Chapter 5 briefly explains how the Mock rainfall-runoff model works. The
parameters of the model are described here. The logic of the model is presented

using flowcharts.



Chapter 6 discusses the resuits of i , effect

polynomial models, results of optimisations and verifications. In addition, the

comparison among the results of manual calibration, Box-Behnken, and Central

C ite Designs are here.

Chapter 7 presents the conclusions and recommendations for further

study.



Chapter 2
Literature Review of Calibration

Methods

This chapter ides a general iption about model

methods that are curmently used. Manual Method will be described in
Subsection 2.1, followed by Numerical Methods in Subsection 2.2, and then
Response Surface Method in Subsection 2.3. The reasons as to why the

Surface gy is advar

g among those methods are

also explained in this chapter.

2.1.Manual Method

Engineers and ti conduct calibration of hy

models, using “manual ibrati 1995)

known as the “trial and error methods” (e.g., Brazil, 1988 and Kadarisman,
1993). While the method is easy to use and simple in concept, the results are
not always accurate and satisfactory. Subjectivity, personal experiences, and
even luck are very much involved in the calibration process results. In

general, modellers have to manually adjust the parameters one by one. The

are j 1o obtain a match between simulated and

10



observed runoffs. The match can be evaluated using graphs and / or
goodness-of-fit criteria. In the graphical method, each time a model parameter
is adjusted, both simulated and observed runoffs are plotted together in a
graph. The graph has typically a vertical scale of runoffs and a horizontal
scale of time. Optimum results are achieved if the simulated runoff curves are
similar to the observed runoff curves. In the goodness-of-fit analysis method,
goodness-of-fit criteria are used as a measure of closeness between
simulated and observed runoffs. Commonly used criteria include Sum of

Absolute Differences the and si runoffs, / E/. Nash

Coefficient, R?. and Deviation of Runoff Volume, Dv. In the optimisation
process, modellers have to minimise the /E/, to maximise the R?, and to
minimise the Dv. The perfect optimum results are achieved if /E/ is zero, R® is
one, and Dv is zero.

The manual method usually has no set sequence for adjusting model
parameters. Modellers freely choose and make a set sequence of model
parameter adjustments unless the modeller is familiar with the special
behaviour of the parameters of the model. they can then determine the

of the to be adj However, the results are

sometimes different when starting with a different parameter. This is because
parameter-interaction effects cannot be taken into account in the manual
calibration process. Therefore, the results obtained are not the global optimal
parameters.

Typical steps required in manual calibration (Kadarisman, 1993) are:



(1) Select the possible range of all model parameters. Every model
parameter must have a possible range where the parameter can
significantly affect the model output (runoffs). The parameters’ ranges
should be taken from the basin of interest because all the model
parameters indicate the particular characteristics of the basin of interest.

(2) Divide each model parameter’s range into several levels. The divisions are
at least two levels: the low and the high to find the direction of the
optimum. More levels used will produce better results. The main purpose
of the range of division is to determine the optimum and the number of
peaks in the range. One peak range is called uni-modal range and more
than one peak is called muiti-modal range. In the case of uni-modal
ranges, the optimisation can directly be analysed at around the peak.
However, in the case of multi-modal ranges if the optimum of interest is
the peak, the optimisation must be tried at around every peak or at around
the highest peak.

(3) Set all parameters to the lowest level. As in the preliminary stage of the

process, all parameters are set to the lowest level to have a basic value of

optimisation.

(4) Choose and the objectiy i The objecti ions are
g f-fit to be i in detail later in Chapter 3. This
research deals with three of-fit objecti jons: /E/, R, and
Dv.



(5) Choose one to be adj The optimisation of the

can only be done one by one. As mentioned before, there is no priority in
selecting the first parameter to adjust.

(6) Set the parameter to the next level of the range and recalculate the
objective functions.

(7) Compare the

jectit ions to the p

(8) Choose the better results of objective function calculations. The better
results replace the previous basic values.

(9) Plot and see the match of the simulated and observed runoffs. The graph
is for visually checking the goodness-of-fit.

(10) Repeat steps (6) to (10) until the opti values of obji

are i The opti values of the will be indi , if
the next level of parameters cannot produce better results anymore.

(11) Repeat steps (5) to (10) for another parameter to be adjusted. All
parameters must be adjusted to obtained the cptimum value of objective
function. The calibration exercise is terminated after all parameters are
adjusted, although it is not possible to know if the result is really the global

optimum value.



Disadvantages of the Manual Methods:

The trial and error method while easy to conduct, is unsatisfactory

because:

(1) This method cannot explain the i ip the
interactions. It is difficult to adjust those without ur ing
the effect of i { i i i one

parameter while the other parameter is at a low value has a very different
effect from when the other parameter is at a high value.

(2) Adjusting parameters cannot be done all together at the same time. It
must be done one by one. This is why the method requires a great deal of
time.

(3) Manual calibration methods cannot achieve the global optimum because
of the parameter-interactions.

(4) It is difficult to know exactly when the process should be terminated
because it is difficult to know whether the optimal values of the
parameters have been obtained.

(5) Modellers who are trained and experienced may be able to obtain good
results using this calibration method. However, it normally takes a long
time for a less experienced person, because there is usually very limited

guidance in the calibration process.

In view of the above have new

P

methods usually facilitated by the of These
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are called the “Automatic Calibration” or i (Dawdy and

O'Donnell, 1965 and Nash and Sutcliffe, 1970). The methods are technically

the ion of manual calibrati jian and Gupta, 1993). The next

section describes these methods.

2.2.Numerical Methods

Numerical methods are developed based on r i of
goodness-of-fit using i i usually ili by using
advanced progi . The i are normally

computed using methods such as Least Squares (Kuczera, 1982), and
Maximum Likelihood (Sage and Melsa, 1971. Bard, 1974. Diskin and Simon,
1977. Sorooshian and Dracup, 1980. Sorooshian and Arfi, 1982. Sorooshian
and Gupta, 1983) among others. The principles of least squares estimation
and the maximum likelihood estimations are not given here but they can be
found elsewhere, for example. Devore (1995). The performance of the

jective function ion is the main i ion instead of

the simulated and observed curves to obtain the optimum resuit. The results
of objective function computations can also be plotted in three-dimensional
graphs that can show relationships among every two-parameters of interest
and the yields of the process. Modellers can then focus the experiments to

the region of interest that is shown in the graph to obtain the optimum.
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Numerical methods are normally categorised as belonging to “Local
Search Methods” or “Global Search Methods”, (Sorooshian and Gupta, 1983

and 1995). These methods are described next.

Local Search Methods
The are i to i optimise uni-modal
(Sorooshian and Gupta, 1993). Uni-modal i are i that have

only one peak or trough. Exercises included in the method (Sorooshian and

Gupta, 1995) are:

(1) Select a direction to the optimum using surface graphs. Modellers can
easily select the direction to the place of optimum using the surface graph.
The surface graphs are built from the objective function plots.

(2) Calculate the necessary distance to move. After finding the direction to the
optimum, modellers have to conduct other experiments or trials that are

expected to produce improving results of objective functions such as

The dist: to move can be calculated
using the methods of steepest ascent or steepest descent (Myers and
Montgomery, 1995).

(3) Compute the objective function and plot the result. After getting to the new

region of i the new i have to be conducted and
then the objective function must be recalculated based on the new
experiments. The results of objective functions are then plotted on the
surface graphs.



(4) The procedures (1) to (3) are ly to find the optir
result. Termination of the process is if the results have achieved the
optimum. It means that the process cannot improve the values of objective

functions anymore.

The utilise three op ions, ion, contraction, and
expansion (Javaheri, 1998). Javaheri defined a reflection by a reflection
coefficient and the points on where the experiments are conducted. An
expansion is carried out when a new minimum is produced. However, if the
reflection cannot produce a minimum, then a contraction must be conducted.
The Local Search Methods can be divided into two classes of strategy: “Direct
Search Optimisation Strategy” and “Gradient Optimisation Strategy”

(Sorooshian and Gupta, 1995).

1. Direct Search Optimisation Strategies
The strategy to achieve the optimum relates directly to the value of

objective function. It was reported by Sorooshian and Gupta (1995) that many

had lly applied the e. g., R (1960),
Nelder and Mead (1965), Dawdy and O'Donneil (1965), Pickup (1977),
Sorooshian and Arfi (1982) and Sorooshian and Gupta (1983) among others.

Typically, the strategy follows the steps (Sorooshian and Gupta, 1993) below:



(1) Start from initial point in the graph. The graph is built from the objective
function plots. The initial point of interest can be chosen at any point in the
graph. The point represents the value of objective function in the graph.
The initial point is called the central point.

(2) Select some new points around the central point. This step is to determine
the direction of the optimum.

(3) Calculate the appropriate distances to move in that direction. The methods
of steepest ascent or steepest descent (see for the details of the methods,

Myers and Montgomery, 1995. Montgomery, 1997) are applied here to

the distal The new i based on the distance are
conducted.
(4) Evaluate the objective function at the new points. The objective functions
are recalculated based on the new experiments.
(5) Take the point that improves the value of objective function as the new
point replaces the initial point. Objective functions at all selected points are

compared. The point that ani

p 1t of objective function
is taken as the new central point instead of the previous central point.

(6) The procedures (1) to (5) are

P until the
result is achieved. The process is terminated after achieving the optimum
result that is indicated by the smallest, largest, or certain values of

objective function.



Sorooshian and Gupta (1995) reported that the strategy provides no
guidance to choose the best initial point for starting the process. Naturally, the
exercises are done forward at all directions around the initial point. After
finding the best direction to move the experiment, the values of objective
function have to be evaluated. If the new point has an improving value of
objective function then the new experiment replaces the previous one and the
procedure is repeated. However, if the new point has a worse optimal value of
objective function then the distance of moving is reduced. The search
terminates after the strategy cannot find improvement in all directions.

Javaheri (1998) reported that the strategy provided a good fit between

observed and sil flows as indi with Nash Coefficient, R* values

mostly above 0.80. However, Javaheri found that the use of the strategy was

not very robust. The successfulness of the strategy depends on the starting

location. It, could i mislead to obtain the global

optimal solution because of being trapped in the local optimal region.

2. Search O

The strategies deal with the information of function values and
function gradients. The strategies have been applied by Duan et al. (1992).
Most gradient strategies are analysed based on the eq. (2.1) (Sorooshian and

Gupta, 1995).



©/,1=0,-p.AVE, (2.1)

where

©;41 = New point,

©, =Initial point,
P = Distance of moving,
A = the matrix of moving direction from @, to ©,, ,

Ve, = Function gradient matrix at the initial point.

As in the direct strategies, the new point will replace the previous
point if the value of ©,, can improve the results of optimisation. The
strategies will be terminated after finding the improvement is impossible. It is
also indicated by the gradient value if it is significantly close to zero. The
reason that the local search methods are unsatisfactory is that they cannot
detect the appearance of multi-modal functions. The multi-modal functions are

the functions that have more than one peak or trough. The method can

analyse one peak or trough only. C , the opi i is not

the global opti but the local opti ile, most

g

cases have multi-modal functions (Sorooshian and Arfi, 1982). Therefore,

“Global Search are as an i

p 1t of the “Local
Search Methods™.
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Global Search Methods

The are i to optimi: Iti-modal functions. The

app ies include the of “Random Search”, “Multi-start
Algorithms”, and “Shuffled Complex Algorithms” (Sorooshian and Gupta,
1995).

1. Random Strategy

The strategy uses random bers g d based on y
distribution functions. Mostly used is the uniform distribution (Sorooshian and
Gupta, 1995). For the “Pure Random Search” strategies, Sorooshian
assumes there is no prior knowledge of where the best parameter set exists.
All exercises included in the method are purely randomised. therefore, there
is no guidance from the previous exercise to the next exercise. It makes the
methods inefficient. Latterly, the “Adaptive Random Search” strategies are
developed to improve the performance of the “Pure Random Search”.
However, it was reported by Sorooshian and Gupta (1995) that Duan et al
(1992) were not satisfied with their results because there was only a 30 %
success rate. The method has been applied by Brazil and Krajewski (1987).
Typically, the strategies follow (Duan, et al., 1992) as:
(1) Choose a focal point. This point is for the centre of the process of
optimisation. It can be the best point obtained in the preliminary process of
defining the parameter range. The best point means the point that has for

example the smallest value of objective function. Store the set of
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parameters that produces the focal point. Name the set of parameters as
the focal parameters.
(2) Generate a set of N points for the parameters randomly distributed based

on the focal parameters. Sorooshian suggests using uniform or normal

The values of objective function are computed for every point
of the set of parameters. Choose the location of the point with the best
value of objective function. Store the set of parameters that produces the
best point and name them as the new focal parameters.

(3) Repeat step (2) based on the new focal parameters. This repetition will
produce a better value of objective function.

(4) Compare all the stored points and determine the point with the best value
of objective function. Re-define this point to be the new focal point. Record
in which range level this point was found.

(5) Repeat steps (2) to (4) until the optimum objective function is found. The

process is terminated when the optimum value of objective function is

The set of that p the opti value is set

as the calibrated parameters.

2. Multi-Start Algorithms

This is a simple combination method that deals with multiple optima.
Here, the failure probability of the problem of interest, which can still be
accepted, must be determined first. The strategy is to run n number of trials of

a local search method starting from a random initial point to find the minimum



failure probability. The ici of any iti-start varies

nonli y based on the

failure ility. A ing to ian

and Gupta (1995), Duan et al (1992) successfully demonstrated the strategy

to a simple hydrologi model. of the

(Sorooshian and Gupta, 1995) are:
(1) Results that are more accurate require a large number of random
numbers.

() Itisi by decision b it needs an accepted failure

probability.
(3) There is very limited guidance to conduct the optimisation procedures for
a new model.

(4) The relationships between and their i {{ are never

described.

In general, steps of the process follow the strategy of random search
methods. The difference between the multi-start algorithms and the random
search methods is the multi-start algorithms starts from all points of possible

parameters (Sorooshian and Gupta, 1995).

3. Shuffled Complex Algorithms (SCA)
According to Javaheri (1998), Duan et al. (1992) had concluded that
the large number of minor optima was the most probable reason why the

previ were not Theref the method of Shuffied
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Complex Algorithms was developed. This method is based on the notion of
sharing information and on concepts drawn from principles of natural
watersheds (Sorooshian and Gupta, 1995).

Here, the weight of the complexes is indicated first, then the sample
size of interest is calculated. The sample is generated based on a uniform
sampling distribution without prior information. The strategy of this method
consists of computing a sample size, generating a sample, ranking the points,
partitioning into complexes, evolving each complex, shuffling complexes, and
checking the convergence (Sorooshian and Gupta, 1995). Measures of the
convergence often depend on how the closeness of measuring the distance

between functions is defined. Another common description of measuring a

(ol is, uniform which requires that the maximum value
of the absolute errors in the domain is zero (Elden and Koch, 1990). This is
stronger than point-wise convergence as it requires a uniform rate of
convergence at every point in the domain. The other commonly used
measure is convergence in mean that involves measuring an average of a
function of the point-wise-error over the domain (Lorenzen and Anderson,

1993). The convergence properties of an algorithm are described by two

analytic i order and ratio. A
{Xu} is said to ge to X* if the ing equation holds
Limg e X = X*/ = 0. (2.2)
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where:
X« = Sum of absolute errors.

X* = Target of sum of absolute errors.

Convergence properties of most minimisati i are

through their ication to convex i ions, for second
order polynomial models. General functions can be approximated by a

quadratic convex function in the neighbourhood of their local minima. The

convergence properti btained for convex dratic functions are usually
applied locally to general functions. However, such generalisations do not
guarantee good behaviour in practice on complex, large-scale functions.

The Shuffled Complex Algorithms procedures are complex, iterative,

and require ti isi The it decision of every modeller

is different which is why each modeller has to write his or her own program.

Usually, the logic of the programs is difficult to be followed by other modellers.

The strategy of the SCA is as follows (Sorooshian and Gupta, 1995):

(1) Selectp 2 1 and m 2 n+1, where p = number of complexes, m = number of
points in each complex, and n = dimension of the problem. Compute the
sample size, s=pxm.

(2) Generate sample S points in the feasible space of parameters. Compute
the objective function value at each point. In the absence of prior

information, Sorooshian suggests using uniform distributions.
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(3) Rank points in order of increasing objective function value. This rank of
points is then stored in an array, D.

(4) Evolve each complex ing to the Ci itive Complex

(CCE) ithm outlined sep The CCE i required for the

evolution of each complex in the step (4) of the Shuffied Complex
Evolution method (Sorooshian and Gupta, 1995).

(5) Shuffle Shuffie the by ing them into D and

then sort D in order of increasing objective function value.
(6) Check convergence. This is the step of terminating the process. The

process can be stopped after the of errors { is

achieved. It means that the algorithms cannot significantly improve the
value of the objective function. This condition is considered to indicate
arrival at the location of an optimum (please refer to “Function

Convergt and “P C g ", jan and Gupta,

1995).

All methods discussed earlier are iterative procedures. Some of them
need personal decisions. Therefore, results obtained tend to be different
among modellers. Those methods also require high-speed computers.
Usually, modellers cannot recognise that the best optimum has aiready been

achieved. Therefore, a function and a

are needed to identify the termination.
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Theoretically, the advantages of the methods (Sorooshian and Gupta,

1995) are:

(1) Random can be easily g and used in the error term of
the model.
(2) Iteration can be repeated many times.

(3) Subjective factors can be reduced.

Javaheri (1998) reported that the strategy was very successful to

librat

of a Storm A 1t Model applied to

the Upper Bukit Timah in Singap It is indi by the Nash

Coefficient, R’ values for all storms were close to 1.0.
The typical difficulties of the methods (Sorooshian and Gupta, 1995)
are:

(1) The methods involve very

for the non-linear structural istics typical of hy gy models.

(2) The methods are still not able to explain the effects of parameters and
interactions.

(3) Modellers have to develop their own programs, which are very difficult to

modify or understand by others.

In view of the inherent weaknesses of the trial and error and

for model calibration, the Response
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Surface is

prop to the of the
previous methods.

Numerical methods will not be used for results’ comparison in this
study. The reasons are:

(1) Modellers have to write their own computer programs to apply the
methods to their particular model because software of the methods is not
available yet.

(2) Writing the program takes a great deal of time, especially for those who

are L i in

P! ing.
(3) Itis usually difficult to follow the logic of the programs written by others, if

such a program exist.

2.3. Response Surface Methodology (RSM)

According to Myers and Montgomery (1995) RSM was first introduced
by Box and Wiison (1951) based on the theory of “Experiment and Optimum
Design” and then further developed by Box and Hunter (1957). Bradley
(1958), Davies (1960), and Hunter (1958, 1959a, 1959b) made wide use of
the method and developed the strategy of the approach. In hydrology, Liong

and Ibrahim (1991 and 1993); and Liong, et. al. (1994) have applied the

p of R Surface gy to cali the Storm Water
Management Model (SWMM) parameters for modelling the peak storm

runoffs of the Bukit Timah Catchment in Singapore.
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The RSM i ical and statisti iques, (Myers,

R. H. and y, D. C., 1995. A y, 1997) and was essentially

developed from numerical methods. The mathematical techniques are to

compute objective functions, to build polynomial models and to optimise the

model-| The statisti i are to analyse the significance
of acceptable resuits.

The RSM is initiated with an experimental design commonliy called
design of experiment (DOE) to screen model-parameters before going to the
optimisation process (Myers and Montgomery, 1995). The types of the
experimental design can be either Factorial or Fractional Factorial Designs
(see Chapter 3 for details). The DOE can effectively select the parameters of
importance and indicate their interactions that significantly affect the response
variables. Therefore, using the DOE, RSM easily optimise the values of
model-parameters that are used in the model to produce the best fit between

and observed

The benefits of the method (Myers and Montgomery, 1995.
Montgomery, 1997. Comnell, 1990) are:

(1) lican ine the effects of i ions on the response.

(2) It has a high ability to guide researchers to select the best model (first,
second, or third order polynomials) of response surface to adjust the best

value of parameters.

(3) It is more ic and in guiding to find the

optimum.
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(4) The design and analysis can be using

software without the need to write custom programs for a particular model.

As a method for model calibration, the procedure is in two stages:
Screening Analysis and Optimisation Analysis (Myers and Montgomery,

1995).

Screening analysis using DOE

In general, the purposes of the screening using DOE are to conduct
experiments, to select the model-parameters, and to set the range of the
model-parameters. In addition, DOE can estimate the effects of parameters
and interactions. In this step, modellers have to determine whether a
screening experiment is required. If so, an experiment design is created and
executed that allows modellers to select the model or process parameters to
find the minimum required number of critical experiments. Identification of the

critical i allows to use surface for the

optimisation. DOE that will be used in this research are Factorial Designs and
Fractional Factorial Designs. These designs will be discussed later in the

Chapter 3.

ysis using surface

In this step, modellers have to create and execute a response surface

design. Once the technique analyses the results of the experiment design,
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prediction plots are ilable. Therefore, can quickly identify the

imp ( using the icti plots by

paring relative

significance of the various terms in the model and selecting those with the

greatest impact. The allow to build poly ial models

based on the effects of and ir ions that are i using
experimental designs. The polynomial models are used to fit the surface
graph of responses and to determine the values of parameters and
interactions that can achieve the optimum value of responses. Modellers may

optimise a single response or a combination of criteria for multiple responses.

Optimisation may be to a mini i or a target value. For combined
responses, a specification range may be entered for each of the included
responses. With the DOE, researchers can develop statistically exact

p that allow ping a strategy to find the

simultaneous targets. The optimum is achieved while using the minimum
number of trials. The two popular designs of RSM are Central Composite and

Box-Behnken Designs. These designs will be discussed later in Chapter 4.

The RSM requires certain assumptions to simplify the optimisation
(Sorooshian and Dracup, 1980). Based on the research of Liong and Ibrahim
(1991 and 1993), and Liong, et al. (1994) assumptions used were:

(1) Al are istril The type of distribution is usually

uniform.

(2) There are only two ranges of parameters that are considered, upper and

lower limits.
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(3) Experimental Designs and Response Surface Methodology are applied to

optimise the parameters.

(4) The i ip and is as a

second-order polynomial modeli:
X g L )
h(Xe)=a,+ YaX +Y YaXX +YbX +¢. (2.3)
= =i -

where
h(X,e)= Response surface objective function,
a,, a; and a;= Coefficients of polynomial models,

X; and X; = Parameters of polynomial models.

(5) The Optimisation is achieved by solving the difference function expressed

as

h(X,e)-h,=0 (2.4)

where
h(X,e) = Fitted response surface,

h,=Measured system response.

32



The application of the research by Liong and Ibrahim (1995) was to
demonstrate the use of response surface procedures to calibrate a SWMM
that was applied in the Upper Bukit Timah, Singapore. Three calibration
storms were used to derive the average optimal set of calibration parameters.

They analysed 273 experiments to adjust the eight parameters of the Model.

The verification was obtained by si ing three additi storms from the

average of three calibration storms. The results showed a very good fit

observed and sil storm runoffs indi by a low value of the

standard error and a high value of the R’. They concluded that the RSM was

ona in Si and the

was to the system

The next two chapters will explain in detail the two stages of applying
the RSM.



Chapter 3

Experimental Designs

In this chapter, commonly used experimental designs will be
described. Full Factorial and Fractional Factorial Designs will be described in

subsections 3.2 and 3.3,

pectively. The ion of three obj

which are i in the surface optimisation, will be

described in subsection 3.4.

3.1.Introduction to Experimental Design

It is very important to have i in

especially for research that involves a large number of parameters. Formal
experimental designs are thus widely used as the preliminary step in any
research methodology (Myers and Montgomery, 1995). The design
procedure, commonly known as Design of Experiments (DOE), if properly
conducted provides a predictive knowledge of complex and muiti-variable
processes with the fewest trials possible (Taguchi, 1987a; Lorenzen and
Anderson, 1993). Knowing where to run those critical few trials is the key to

the i of DOE ( inski, 1998). can

optimise the process for all of the critical outputs to find the best place to

achieve the goals once a predictive model exists. DOE deals with optimising



the p and imise the i i from the

process of experi ion, while minimising the cost. In other words, DOE
optimises the number of trials required to achieve the best result and to allow
drawing valid conclusions about the process. In short, DOE is a systematic
process in which some purposeful changes are made to the input variables of
a process or system so that we may observe and identify the reasons for
changes in the output response. Experiments, if designed and used properly,
are also a very powerful research method that can test hypotheses about
cause-effect relationships. The essential part of experiments, or experimental
research, is good control of all extraneous interference. By keeping

extraneous factors under control, the relationships between dependent and

can be by i ing the levels of
independent variables, and some kind of cause-effect inference can be made
based on the results. The designs of DOE are very useful methods that have
already been applied broadly in many disciplines to improve the performance

of any process. The benefits of ing a proper imental design

according to Myers and Montgomery (1995) are:

(1) Gives unbiased results: DOE select the region of interest or particular
points of experiment. Hence, outliers and the results of bias can be
avoided.

(2) Reduces variability and obtain results closer to target requirements: the
target requirements are the results that have very low effects of

experimental error (error variance due to the different sources of variation
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involved in the is). Therefore, the prime i ion in the

selection of an appropriate design is to reduce the experimental error.

(3) Is able to estimate effects of factors and interactions: effects that are

can be statisti tested using statistical tests of si
via an analysis of variance (ANOVA).
(4) Reduces experimentation time: by analysing only in the particular region
or points of interest, researchers can reduce the time for experimentation.

Fewer experiments required will also lead to lower overall costs.

The applications of the techniques of DOE usually follow the following

strategies as given by Myers and Montgomery (1995):

(1) Select the range of model parameters: This is a lower and upper limit of
the parameters in the model of interest. It is important that physical
meaning of the range of each be carefully considered. For example, in
the case of a rainfall-runoff model, the ranges chosen cannot cause the

model to produce negative runoffs.

(2) Select the objective functi The objecti { are used to

evaluate the results of the optimisation. Usually, the functions are

f-fit

The more objecti i i the

more precise the optimisation (Kadarisman, 1993). It is more accurate to

choose objecti ions that will give i results (Lye, 1996). The
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objective functions used in this research will be described later in
subsection 3.4.

(3) Design the experiment. How the experiment is arranged and carried out is
the next step. Many methods exist but the methods that will be used here

are 2* factorial and fractional factorial designs for screening of important

and the of Central Composite and Box-Behnken
Designs will be used in the optimisation phase. Many off-the-shelf
computer programs can be used to design the experiments: for example,

Minitab, DOE-PC, Design Expert, Statistica, and SPSS.

(4) i effects of and i It is important

to consider the i ionships among and to decide on

their levels so that only the important parameters need be considered.

The effects are esti using a analysis of varia (ANOVA).

Factorial Designs

Experimental designs in which every level of every variable is paired
with every level of every other variable are called factorial designs, (Johnson,
N. L., et. al., 1977). A factorial design is a very general kind of design. This

can handle any number of treatments or block variables (called factors such

as model and their i i these factors can each have any
number of categories (called levels). The factorial design then consists of
taking the same number of observations for each combination of factor levels.

The common experimental designs are Factorial and Fractional Factorial
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Designs. When a modeller is interested in the effects of two or more
independent variables, it is usually more efficient to manipulate these
variables in one experiment than to run a separate experiment for each
variable. Moreover, only in experiments with more than one independent

variable is it possible to test for i ion among vari; This i of

designs can investigate all possible combinations of the two levels (low and
high) of the parameters, (Winner, 1962). In general, the total number of
experiments that are used for the designs to analyse the factors (parameters)
is based on the number of model-parameters. It means that the total number
of required experiments equals two to the power of the number of
parameters. The results of the experiments will be used in parameter effect
estimation and model fitting and optimisation. The significance of the effects
and the coefficients of polynomial models will be examined using “analysis of
variance” (ANOVA). The details of the ANOVA table for the factorial design

are discussed later.

Contrast and Etffect Estimation:
Contrast is a summation of the responses of treatment combinations
or experiments. Taguchi (1987a) defined contrasts as the count of total

variation that influences the main effect or interaction effect. The contrasts of

those and their i i can be i using the sign
table given in Appendix C, Tables C. 1 and C. 2, for the full two level factorial

design and the one half-fractional factorial design, respectively. The resuits of
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the contrast are used for the calculations of effects and the sum of squares.

The ion of the can be i in eq. (3.1) for the contrast

of A which is easier to explain using only a full factorial design of 2 factors (or

parameters), A and B.

Contrast A = {- (1) +a-b + ab} (3.1)

where:

Contrast A = Contrast value of parameter A

(1) = Response of the process when all parameters are set to the low limit
a = Response of the process when only parameter A is set to the high limit
b = Response of the process when only parameter B is set to the high limit

ab = Response of the process when parameters A and B are set to the high

limit

The effect of a parameter or an interaction indicates the influence of
the parameter or the interaction to the process or model. It is necessary to

study both the effects of main and their i i The main

effect of an independent parameter is the effect of the parameter averaging

over all levels in the i Two ir interact if the

effect of one of the parameters differs depending on the level of the other

In some might find the effect of one

main parameter (A) is very small and negligible when the other parameter (B)
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is at a low level. However, the effect of A becomes bigger when B is at a high
level. This means that the influence of A depends on the level of B.

Therefore, of the i ion AB is as useful as knowledge of the

main effect A. The calculation of effects of those parameters and their
interactions are given in eq. (3.2). An example for the calculation of the effect

of parameter A is:

Effect A = Conirast.4 @2)
n2

where:
Effect A= Effect value of parameter A
Contrast A= Contrast value of parameter A that calculated using eq. (3.1)

n = Number of replications for each experiment.

k= Number of model parameters.

These effects measure the influence of the parameters and
interactions to the response. Only parameters that have high effect either

positive or negative effect can be i as variables in the p

model. However, to obey the principle of hierarchy, some single parameters
sometimes must be included in the polynomial model if some interactions of
those parameters are involved in the model, although those single

parameters do not have high effect. The visualisation of effects and
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interactions can be described using Figures. 3.1.a to 3.1.h. In the diagram, X

is the response, A and B are factors.

B1
B2
X
Al A2

(a)
Fig. 3.1.a Effect Diagram: No effect of factor A, small effect of factor

B, and no interaction

R2

4

>
2

(b)

Fig. 3.1.b Effect Diagram: Large effect of factor A, small effect of

factor B, and no interaction

4



B1

B2

Al Al

(c)

Fig. 3.1.c Effect Diagram: No effect of factor A, large effect of factor

B, and no interaction

(@

Fig. 3.1.d Effect Diagram: Large effect of factor A, large effect of

factor B, and no interaction
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B2

B1

Al A2
(e)

Fig. 3.1.e Effect Diagram: No effect of factor A, no effect of factor B,

and large effect of interaction

Fig. 3.1.f Effect Diagram: Large effect of factor A, no effect of factor

B, and slight effect of interaction



B2

% - Center
\ -

Al A2

®

Fig. 3.1.g Effect Diagram: No effect of factor A, large effect of factor

B, and large effect of interaction

B1

(h)

Fig. 3.1.h Effect Diagram: Large effect of factor A, large effect of

factor B, and large effect of interaction



Significance of effect of parameters and their interactions can also be
evaluated using normal plots of effect and perturbation plots. The normal plot
of effect shows the absolute value of the term effects (horizontal axis) against

a normal probability scale (vertical axis). F and their i

that are insignificant will fall on a straight line.
The perturbation plot is useful when trying to decide which axes to

use on a contour or 3D plot. The most complex behaviour (most curved or

change rate) p can be seen in the perturbation plot. The
perturbation plot helps modellers compare the effect of all the factors at a
particular point in the design space. The response is plotted by changing only
one factor over its range while holding all the other factors constant. A steep
slope or curvature in a factor shows that the response is sensitive to that
factor. A relatively flat line shows insensitivity to change in that particular
factor. If there are more than two factors, the perturbation plot should be
used to find those factors that most affect the response. The influential
factors are good choices for the axes on the contour plots.

The sums of squares of effects defined as the total variation of the
individual effect means with respect to the grand mean are calculated from
the analysis of variance. Sums of squares of effects are divided by degrees
of freedom to produce mean squares. The mean squares of parameter are
divided by the mean square of error to produce the significance lack-of-fit test

(F,—test). The calculation of sums of squares of model parameters and their



interactions can be explained using eq. (3.3). The example for the calculation

of the sum of squares of parameter A are calculated using

2
S8, (Contr.asLA)
2'n

(3.3)
where:

S8, = Sum of squares of parameter A

Contrasts A= Contrast value of parameter A that calculated in eq. (3.1)

k = Number of parameters

n = Number of replications
The sum of squares of error is given by:
SSeror= SStotal - Z(SSparameters) (3.4)
where:
SSeror= Sum of squares of experimental error

SSio = Sum of squares of the total model

Z(SSparameters) = Summation of all sum of squares of parameter-effects.



The total sum of squares is given by:

SSiol = E(response’) - —@M

(3.5)
n2* B2
where:
SSiow = Sum of squares of the total model
=(resp ?) = ion of all of the
n = Number of replications
k = Number of parameters
The mean of squares can be calculated using:
Ss
MS === (36)

where:
MS = Mean of squares of parameter-effects
SS = Sum of squares of parameter-effects

df = Degree of freedom of parameter-effects

The degree of freedom (df) is an abstract statistical concept in terms

of the numbers that are free to vary or the number of independent
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components minus the number of parameters. In the case of having only one
point, there will be no degree of freedom (n - 1 = 0 where n = 1) for
estimation. In order to plot a regression line, there must be at least two data
points. In other words, the degree of freedom tells the number of useful data

for estimation. Thus, the lower the degree of freedom, the poorer the

estimation. The equations for calculating df of a two-factor experiment are:

df,=(p-1) 3.7)

where:
df, = Degree of freedom of parameter-effect A

p = Number of possible levels for parameter A

df,=(q—1) (3.8

where:
df, = Degree of freedom of parameter-effect B
q = Number of possible levels for parameter B

and

dfe=(p-1)(@Q-1) (3.9)



where:
df,; = Degree of freedom of interaction-effect AB
p = Number of possible levels for parameter A

q = Number of possible levels for parameter B

The ANOVA allows modellers to test the hypothesis of treatment
means using significance tests. The significance test is cast in the form of
accepting or rejecting the null hypothesis (H,), the hypothesis of no
difference. If the H, is rejected, there will be an alternative hypothesis (H,). In
the ANOVA, the H, is accepted or rejected on the basis of the test criterion

given by:

(3.10)

where:
F, = Value of calculated F- test
MS; = Mean squares of parameter

MSg = Mean squares of error

It is common in statistical procedures to use the 5 or 1 percent levels
shown in the F table. If the value of F found in the analysis is equal to or

greater than the value found in the F table at either the 5 or 1 percent level,
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then the Ho is rejected. in other words, the probability of finding a difference
as large as or larger than the obtained value in the experiment is P < 0.05 or
P < 0.01. Therefore, modellers can conclude that there is a significant

difference betv the means. The rejecting of Ho at the 5 percent

level means that there is less than 5 percent chance of finding a difference as
large as or greater than that of the treatment means. Further detail
explanation of ANOVA can be found elsewhere in e.g., Myers and

Montgomery (1995).

3.2. Full Two Level Factorial Design

When each factor is applied at two levels, the design is called Two-
Level Factorial Design. The term “wo levels” means the low level and the
high level of the parameters that are considered in the analysis. The levels
may be quantitative or qualitative, but in either case are represented by
elements of a finite set, usually by 0, 1, 2.... , S; — 1, where the i-th factor
occurs at S, levels. However, Montgomery (1997) defined that the levels can
be set as wide as the real range of the parameter or as close as possible to
the predicted value of the known parameter. The creation of full factorial
designs with low (-1) and high (+1) levels of each factor means that
experiments with two-, three-, or four-factor systems will have four-, eight-, or

sixteen-factor inati or i i In other words,

each replicate of the design has exactly 2* experimental run combinations, in
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which k is the number of involved parameters and all parameters have two
levels (low and high). Therefore, the design is called 2* Factorial Designs or
Full Factorial Designs (Myers and Montgomery, 1995). The design can be
constructed using Yates' forward algorithm or a sign-table. The construction
is illustrated below in Tables 3.1 and 3.2, assuming a process with response,

Y, that is affected by three factors: A, B, and C.

Table 3.1 Yates' Forward Algorithm Construction T:

Y Column 1 Column 2 Column3
()] a+(1) ab+b+a+(1) abc+bc+ac+c+ab+b+a+(1)
a ab+b abc+bc+ac+c abc-bc+ac-c+ab-b+a-(1)
b ac+c ab-b+a-(1) abc+bc-ac-c+ab+b-a-(1)
ab__ | abctbc abc-be+ac-c abc-be-ac+c+ab-b-a+(1)
c a-(1) ab+b-a-(1) abc+bc+ac+c-ab-b-a-(1)
ac ab-b abc+bc-ac-c abc-be+ac-c-ab+b-a+(1)
bc ac-c ab-b-a+(1) abc+bc-ac-c-ab-b+a+(1)
abc | abc-bc abe-bec-ac+c abc-be-ac+c-ab+b+a-(1)
where:

Y = Process that is affected by factors: A, B, and C.

(1 )= Response of the process when all factors are set at the low level.

a = Response of the process when only factor A is set at the high level.

b = Response of the process when only factor B is set at the high level.

¢ = Response of the process when only factor C is set at the high level.

ab = Response of the process when factor a and b are set at the high level.
ac = Response of the process when factor a and c are set at the high level.

bc = Response of the process when factor b and ¢ are set at the high level.
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abc = Response of the process when factor a, b, and c are set at the high

level.

Column 1 ins of the ion and st ion of row 1 and 2, 3 and 4,

5and 6, and 7 and 8 in Column Y.
Column 2 contains of the summation and subtraction of row 1 and 2, 3 and 4,

5and 6, and 7 and 8 in Column 1.

Column 3 ins of the ion and ion of row 1 and 2, 3 and 4,

5and 6, and 7 and 8 in Column 2.
Therefore:
The effect of factor A = abc-bc+ac-c+ab-b+a-(1) (as shown in Column 3)

The effect of factor B = abc+bc-ac-c+ab+b-a-(1)

The effect of i ion AB = abc-b b-b-a+(1)

The effect of factor C = abc+bc+ac+c-ab-b-a-(1)

The effect of i ion AC = abe-b b+b-a+(1)

The effect of ir ion BC = abc+b b-b+a+(1)

The effect of interaction ABC = abc-bc-ac+c-ab+b+a-(1)

Table 3.2 Sign Table

A AB [*] AC BC ABC

1 - - + - + + -

a + - - - + +

b - + - - + 2 +
ab + + + - - - -

c - - + + - - +
ac + - - + + - -
be - + - + - + -

abc + + + + + +
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where:
(-) = Sign of factor that is set at the low level.
(+) = Sign of factor that is set at the high level.
The fulfilment of main factor’s signs depends on the factor's effect of interest,
for example: the fulfilment signs under A, every time a appears will be signed
(+), otherwise (-).
The fulfilment of interaction’s signs follows the rules of multiplication, for
example: AB=AxB,AC=AxC,and ABC=AxBxC.
Therefore:
The effect of factor A = abc-bc+ac-c+ab-b+a-(1)
The effect of factor B = abc+bc-ac-c+ab+b-a-(1)
The effect of interaction AB = abc-bc-ac+c+ab-b-a+(1)
The effect of factor C = abc+bc+ac+c-ab-b-a-(1)
The effect of interaction AC = abc-bc+ac-c-ab+b-a+(1)
The effect of interaction BC = abc+bc-ac-c-ab-b+a+(1)
The effect of interaction ABC = abc-bc-ac+c-ab+b+a-(1)
The results of Yates' forward algorithm are the same as that of the sign table.
Applying the design that involves six parameters, the design will suggest 64
experiments to be conducted. The construction of 64 experiments, the total
possible combinations from low and high levels of the parameters are shown
in Appendix C Table 1.
As the number of parameters increases, the number of runs will also

increase rapidly because the number of parameters indicates the value of the



exponent. Modellers have tried to solve this problem using fractional factorial
designs, which can reduce the number of runs without neglecting the effect of
all parameters and their interactions. Fractional factorial designs will be

discussed next.

3.3.Fractional Two-Level Factorial Designs

The fractional factorial designs are invented to attempt to reduce the
number of experiments without neglecting the all-main factor effects
(Petersen, R. G., 1985). The designs work based on the assumption that
alias-parameters (aliases) that appear in the experiments can be neglected.

Myers and Montgomery (1995) suggested the alias parameters were

using desig The ing of aliases can be

explained as when the effect of one parameter is equal to the other

ori i then the is called aliased with the other

or i i For Effect A = % (a - b - ¢ + abc) and
Effect BC = % (a - b — ¢ + abc), then, A and BC are aliased (Myers and
Montgomery, 1995). Only by neglecting the aliases can the number of
experiments be reduced. The types of Fractional Factorial Designs, e. g.,
One-Half Fractional (OHF) and One-Quarter Fractional (OQF) Designs
(Myers and Montgomery, 1995) will be discussed in this chapter. In terms of
orthogonality, fractional factorial designs are normally constructed to have

both orthogonality and balance; however, they may have more rows than are
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required for estimating parameters and error. In such cases, appropriate rows
may be trimmed so that orthogonality is preserved but balance is lost.

OHF Designs reduce the number of experiments to a half of the
original experiments produced by Two Level Factorial Designs and OQF
Designs reduce to a quarter of the original experiments. The number of the

experiments for a OHF and OQF are given by:

HF Design:

n=2" (3.16)

where:

n = Number of experiments

k = Number of parameters

OQF Designs

n=2%2 (3.17)
where:
n = Number of experiments

k = Number of parameters
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In the fractional factorial designs, it is important to recognise aliases

because ising aliases will the other effects that are not
computed in the fractional factorial designs. John (1971) suggested
recognising the aliases using the techniques of resolution designs. The
technique multiplies design-generators to the main effects to determine the
aliases. The design-generator (I) is an interaction factor that contains two,
three, or more factors depending on the type of resolution designs and the
number of parameters. There are many types of design resolutions (John,

1971); they are named based on the number of factors that are considered to

interact into the desig . The ion 1l design refers to the

design that uses three-factor i ion as the df

ig . In addition,
the resolutions IV and V indicate the designs that formed using four and five-
factor interaction, respectively. There are no resolution | or Il designs
because the simplest design of factorial is 2° (four experiments) and the
simplest design does not need any reduction. Consequently, the fractional
factorial design is about the reduction of three and more factors (Winer, 1962;
John, 1971; and Ogawa, 1974). Moreover, the types of design resolution can
be more than five depending on the number of parameters such as the
resolution VIl design presented by John (1971). However, the solutions will
be very complicated and difficult when the number of parameters are very
large, such as ten or more. Hydrological modellers usually consider very
carefully limiting the number of parameters of a process. The characteristics

of resolution Il IV, V, and VI are:
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(1) Resolution Il Designs. There is no main effect aliased with any other
main effect. Main effects are aliased with two-factor interaction. Some
other two-factor interactions may be aliased with each other. The design-
generator is e. g., | = ABC.

(2) Resolution IV Designs. There is no main effect aliased with any other
main effect or with any two-factor interaction. However, two-factor
interactions are aliased with each other. The design-generatoris e. g., | =
ABCD.

(3) Resolution V Designs. There is no main effect aliased with any other
main effect or with two-factor interaction. However, two-factor interactions

are aliased with three-factor i i The d

ig ise.g. =
ABCDE.

(4) Resolution VI Design. There is no main effect aliased with any other
main effect, two-, three- or four-factor interaction. However, two-factor

interactions are aliased with four-factor i ions. , three-

factor interactions are aliased with each other. The design-generator is e.

g.. | = ABCDEF. More resolutions’ characteristics can be determined using
the techniques of identification of aliases.

In general, only Resolution V and higher designs are useful. Lower

resolution designs would mean that two factor interaction are aliased with

other two factor interactions.
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3.4. Selection of Objective Functions

Each resp: inan i i above indit the result
of the process when the process-parameters are set in a certain

arrangement. In this the are of goodness-of-

fit between the observation and the Mock-model simulated runoffs.
Sorooshian and Gupta (1995) defined that an objective function is an
equation that is used to compute a numerical measurement of the difference

between the model-simulated output (usually the streamflow hydrograph) and

the observed (measured) runoffs. This i three objective-
functions. The three objective functions are:

(1) Absolute Sum of Error, Z/E/,

(2) Nash Sutcliffe Coefficient, R?,

(3) Deviation of the Runoff Volume, D,.

Each of the above functions are described below:

a. Absolute Residuals, ¥'|E|

It is a measure of the absolute differences of the simulated and

runoffs. The ion of the absolut iduals is as:

a

YIE = Y0y -Qol 3.13)
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where:
Y [E| = Sum of the absolute residuals

Q, = Simulated monthly river flows

Q, = Observed monthly river flows

E/ the total i errors that occur in the
simulation. The units of this measure are equal to the units of the data.
Therefore, modellers can directly recognise the differences between
simulated and observed data in terms of units. The smaller the vaiue of the
measure the better is the fit. A perfect match is when the value of Y'|E|

equals zero. Narula (1998) rep that the minii sum of errors

regression is more robust than the least squares regression for some types of
outliers because it sums the difference between every single simulated and
observed point. Further, it has been proven that even if the value of a certain

variable for an observation is changed within limits, it leaves the fitted

minimum sum of absolute errors i However, it cannot
be used to compare two sets of data that have different number of members,
such as different long periods, because the smaller members of data points
will automatically produce the smaller amount of E|E| Therefore, other

objective functions such as R* and Dv need to be considered.
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b. The Nash Sutcliffe Coefficient, R*
This measure was invented by Nash and Sutcliffe (1972). The

equation of the Nash Sutcliffe Coefficient is expressed as:

g(eo -Q,f

=y-E (3.14)

Sko-af

where:
R® = The Nash-Sutcliffe coefficient
Q, = The observed monthly river flows

Q, = The simulated monthly river flows

Q, = The mean of the observed monthly river flows

R the experil errors of sil values to the grand
mean of observed values. The value R is a fraction between 0.0 and 1.0, and
has no units. Therefore, R’ is always less than one. When R? equals 0.0,
there is no linear relationship between Q, and Q,. The measure is akin to the

ffici of ination used in

g ion analysis. M L it
emphasises the ratio of the difference between observed and simulated data
to the average of observed data. Therefore, a value of R equals 1.0, does
not imply a perfect match, it is only more robust than the absolute residuals to

indicate a perfect linear association.



c. The Deviation of the Runoff Volume, D,

This measurement was given by World Meteorological Organisation
(1986) as:

(3.16)

where:
D, = The Deviation of the Runoff Volume
V, = The observed runoff volume

V, = The simulated runoff volume

Dv measures the percentage of the total experimental errors to the
total observed values. Although, D, equals zero does not indicate a perfect

match but more likely measuring the quantity of runoff volume. A smaller

value of the indi that the and si runoff

volumes are similar in magnitude.
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Chapter 4
Response Surface Methodology

(RSM)

In this chapter, the procedure of optimisation using RSM will be
presented for calibrating a rainfall-runoff model. Central Composite (CCD)
and Box-Behnken (BBD) designs will be described in subsections 4.2 and 4.3
respectively, and followed by subsection 4.4, which explains the use of least

squares method for building polynomial models. Analysis of the polynomial

models will be p in ion 4.5. The last ion will d ibi
the verification tests on the performance of the calibrated model on selected

periods of rainfall data that were not used for the calibration.

4.1. Introduction to Response Surface
Methods

The RSM is a method for optimisil based on

surface analysis (Myers, R. H. and Montgomery, D. C., 1995). Montgomery

(1997) notes that R Surface gy (RSM) is a ion of

and isti i that are useful for the modelling and

analysis of problems in which a response of interest is influenced by several
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Its objective is to optimise the Re means the

of quality istics of a system. Here, responses are inputs

taken from the results of three objecti ions' ions  from

selected experiments by the DOE, where, the system concemned here is the
Rainfall-Runoff Model. An optimum response is obtained by optimising the
polynomial model that is built using the method of least squares. The
polynomial model can be easily optimised if there is not any serious
multicollinearity that affect the model and if the region of optimum is inside the

range of

p arise when the predictor

are highly i i.e., some predi or are

nearly linear combinations of others. Highly collinear models tend to have

unstable i fficient esti Therefore, to see whether the
pulynpmial can be optimised using trivial solutions, the values of variance
inﬂah!g‘n factor (VIF) or eigenvalues of the polynomial model must be analysed
before the optimisation. The VIF measures how much the variance of that
model coefficient is inflated by the lack of orthogonality in the design. VIFs

exceeding 10 indicate the i i i are poorly

estimated due to multicollinearity (Comell, 1990). Eigenvalues, the roots of
the polynomial model are required for recognising the physical shape of
polynomial models and predicting the location of the global optimum of
polynomial model (Burden and Faires, 1989). Another way to see the region
of optimum is by plotting 3D graphs called the surface graphs. However, 3D

graphs can only be drawn with 2 factors. Therefore, the perturbation plot



should be used to find those 2 factors that most affect the response. The
RSM is used to approximate system behaviour, which is highly complex, with
a smooth explicit differentiable function (Myers and Montgomery, 1995). The
experimental error is defined as variability in the observed values of a product

formed from the same set of i itions. The variability is caused

by factors that have not been i in the i Theref the

actual observed values denoted by Y can be expressed (Comell, 1990) as

Y=n+¢ (4.1)

where:
Y = Actual observed true values
7 = Hypothetical observed true values

€ = Experimental errors

The hypothetical simulated values that depend on many levels of

factors are denoted by (Cornell, 1990)

n=0 (Xy', X2', X3, X&', X5',...X,) @“2)

where:
7 = Hypothetical true values

X' = Levels of factors



The structure of n is usually unknown. Mathematical equations or
models called polynomial models that represent main effects, interactions,
and intercepts can easily approximate the relationship between n and the
levels of factors. The models can be used to fit any kind of phenomenon
(Jazwinski, 1998). These models can describe the main effects, curvature
effects, and interaction effects. The fitted models can then be used to draw

do-th

p: i i surface plots. First-order polynomial

models, the simplest forms, can only explain plane surface regions while
higher-order models such as second-order or third-order polynomial models
can fit curved surfaces. However, the third order polynomial models that are
developed by response surface are mostly aliased with the second order
(Cornell, 1990). Therefore, it is not used here. The first-order and second-
order polynomial models (Myers and Montgomery, 1995) are expressed as

eq. (4.3) and (4.4), respectively.

y=B,+ i&x, +zzﬂ“x‘x, 4.3)
y =B+ 25')(' +2ﬁ_x,:+225“x,x, 4.4)
where:
y = Response
B = Coefficients

x = Parameters

k = Number of parameters



and i i of that are

involved in the polynomial model are selected based on the effect estimation
and the principle of hierarchy. After having the form of the polynomial model,
then the estimates intercept (B,), main effects (B,, B, ...), curvature effects (B,,,
By --), and interaction effects (B,,, B, -..) are derived using the method of
least squares to complete the polynomial model.

In RSM, contour plots, which results from the polynomial model can
help in visualising the shape of the three-dimensional response surface
(Cornell, 1990). The contour plots are drawn on a graph whose coordinates
represent the levels of the factors. The use of the contour is to indicate the
different surface height values, which leads modellers to focus on the specific
experimental region of interest. The experimental region of interest is the
region of conceivable factor level values that represents the factor
combination of potential interest.

The region can also be determined by specifying the value of each

factor that the current ing conditions. licati of the

RSM technique include (Liong and Ibrahim, 1991):

(1) Approximating the behaviour of tubular joint of an offshore structure;

(2) Estimating the reliability of primary y system;

3) imating the iour of j to earthquake loads;

(4) Studying the effects of inties on dynamit of soil
interaction;

(5) Estimating fatigue reliability of
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There are many design types of Response Surface Methodology:
Central Composite, Box-Behnken, Three-Level Factorial, Hybrid, D-Optimal,
Distance-Based, Modified-Distance designs, etc. (Myers, et al, 1995; and
Cornell, 1990). The Central Composite Design is the most frequently used
because it is less complicated. The Box-Behnken Design is aiso
recommended by many experts (Myers and Montgomery, 1995) because it
needs the least number of required experiments under certain conditions.
Therefore, only Central Composite Designs (CCD) and Box-Behnken (BBD)
designs will be used in this thesis. These are described in Subsections 4.2
and 4.3, respectively.

The Central Ci ite Design (CCD) i by Box and Wilson

in 1951 is the most popular design to fit second-order designs (Myers and
Montgomery, 1995). The design is created from either factorial or fractional
factorial designs. The design can flexibly focus the region of interest based on
the axial distances and the number of centre runs. This design will be applied
in this research, and will be described later.

The Box-Behnken Design (BBD) was developed by Box and Behnken
in 1960. The design is an efficient method of fitting a second-order polynomial
model for the optimisation designs (Myers and Montgomery, 1995). The
design needs fewer experiments than other designs because it is created
from either fractional factorial or a balanced incomplete box (John, 1971;
Sorooshian and Arfi, 1982; and Myers and Montgomery, 1995). The design

will be applied in the research. Therefore, it will be described later.
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Activities that must be carried out to use the RSM are:

(1) Select the appropriate design (RSM-design). The types of RSM-designs
have already been discussed above. Details for CCD and BBD will be
described later.

(2) Conduct the experiments based on the type of DOE arrangement. The
type of DOE has already been discussed in Chapter 3.

(3) Calculate objecti i for each i as The

objective functions have already been discussed in Chapter 3.

(4) Establish polynomial models. The polynomial models can be established
using the method of least squares.

(5) Analyse the polynomial model using ANOVA to test for goodness-of-fit of
the polynomial model, and perform residual plots, contour and surface
plots, and perturbation plots. The plots, which are discussed later, are
used to identify outliers. The contour and surface plots, which are
discussed later, are used to help identify the optimum response.

(6) Obtain the vari; of the

poly ial model by estimating the
of the stationary point of the second-order polynomial model using partial
derivative methods.

The iterative DOE-RSM procedures are shown in Fig. 4.1

68



Start
Select the rainfall-runoff
model

1. Select the range of model-parameters
2. Select the objective function(s)

[ Design the experiments |

l Conduct the experiments '

Calculate objective
function(s)

Estimate Effects

Fig.4.1.a. DOE Iterative Procedure



Build Polynomial
odels
Using CCD or BBD

Mode! Residuals
Normal?

Obtain the variables of the
polynomial model as the
calibrated parameters

Verity

the rainfall-runoff model
Simulated = Observed?
(accepted in significance
5%)

Print the calibrated
parameters

Fig.4.1.b. RSM Optimisation lterative Procedure




4.2.Central Composite Designs (CCD)

Central Composite Designs are used to investigate the simultaneous

effects of two or three i is i on the pi
of p and p in and
mant ing. Central C ite Designs (CCD) are formed originally from

the two level factorial designs augmented by additional points to allow the
coefficients of a second-order model to be estimated (Unal, 1994 and
Montgomery, 1991). The additional points are axial points and centre points

as shown in Fig. 4.2.

A
A B ¢
1 LIS B 3
§ R I | /
1
Factorial O IS RS I
poson: 3 S IS @ B
6 | +1 1w A g
[ RS S e
AERE '
+ 0o 0
Axin nl o B of c
portion 22 o 8 o
3] o o B O 2" points
“l o o+ ®  Star points
Conter 5| o o @  Center point
o L °
B=1.682

Fig.4.2 Experimental design for three factors: A, B, and C
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In other words, the centre points are used for the evidence of curvature

(Myers and Y. 1995). The curvature is identified using
the significance F-test of curvature analysed using sum of squares and mean
of squares of curvature. The equation for the sum of squares of curvature

(Myers and Montgomery, 1995) is expressed as

SSc= ﬁ(;r__i (4.12)

Ne+n¢

where:

SS ¢ = Sum of Square of Curvature;

ng = Number of factorial design points;

nc = Number of additional replicates of central point;

§F= Average observations of factorial designs;

Yc = Average runs at the central point.

The equation for the mean of squares of curvature (Myers and

Montgomery, 1995) is expressed as
MS, =SS, / df (4.13)

where:

MS; = Mean of squares of curvature;
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SS,. = Sum of squares of curvature;

df, = Degrees of freedom of curvature.

The equation for the mean of squares of error affected by curvature

(Myers and Montgomery, 1995) is expressed as

MS, =SS,/ (.- 1) (4.14)

where:
MS, = Mean of squares of error;
SS, = Sum of squares of error (it has been discussed in Chapter 3);

n. = Number of centre points.

The equation for the F-ratio of curvature (Myers and Montgomery,

1995) is expressed as

F-ratio, = MS, / MS, (4.15)
where:
F-ratio, = Caiculated F-ratio of curvature;

MS, = Mean of squares of curvature;

MS_ = Mean of squares of error.
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The evi of cur can be ir i by comparing the
value of calculated F-ratio to F-ratio on the table. Therefore, polynomial
models that are established using CCD are more accurate than those of two-
factorial design, because CCD applies centre points (Myers and Montgomery,
1995). Central Composite designs are orthogonal in that all the parameters
for the CC model may be estimated, but the design itself is unbalanced. A
greater or lesser number of centre points is used to achieve an estimating
criterion and an error estimate (Comnell, 1980).

A CCD can be made rotatable. Rotatability is a desirable property
relating to the precision of the predicted response value. An experimental
design is rotatable if the variance of the estimated response depends on the
distance from the design centre and not on the direction (Comnell, 1990; Unal,
1994; and Myers and Montgomery, 1995). In other words, rotatability ensures

that the error in prediction stays constant around the design (Barker, 1985).

For jeving the it the distance of axial points is

determined using the equation (Myers and Montgomery, 1995)

(4.16)

where:
o = Axial distance;
F=Number of factorial points = 2¥;

k = Number of parameters.
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The condition of rotatability for the designs of six parameters can be
achieved using the axial distance of a = 2.828. The experiments on this
research based on Central Composite Design are shown in Appendix B Table
28. After having the additional points including the axial points, then the
required number of experiments based on Central Composite designs can be

expressed using the eq. (4.10) below (Myers and Montgomery, 1995)
n=2%+C 4.17)

where:
n = Required number of experiments;
k = Number of parameters;

C = The Number of additional points.

4.3.Box-Behnken Designs (BBD)

In the case of the designs having a large number of experiments, Box
and Behnken (1960) have developed highly fractionalised designs to screen
the maximum number of (main) effects in the least number of experimental

experiments. These designs are by ining two-level factorial

designs with incomplete block designs, and have complex confounding of
interaction (Box and Draper, 1969). The analysis of these types of designs

proceeds in the same way as was described in the context of fractional
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factorial designs. However, for each effect, modellers can now test for the
linear effect and the quadratic (non-linear effect). For example, when studying
the yield of a chemical process, temperature may be related in a non-linear
fashion, that is, the maximum yield may be attained when the temperature is
set at the medium level. Thus, non-linearity often occurs when a process
performs near its optimum. Technically, Box-Behnken designs can also be
constructed by fractionalising a full three-level factorial design so that only the
centre point and the edge points of the hyper-cube are used. These designs
are alternatively formed by combining two-level factorial designs with
incomplete block designs (Unal, 1994). Box-Behnken designs are used to
acquire data for a full second-order-polynomial model that will describe in
detail the system or process being investigated. The construction of Box-

Behnken Designs can be explained as in Table 4.1.

Table 4.1 The Box-Behnken Constructing Table

Treatmen!

B [

exp_ H* H* L
exp__ H* L H*
["exp_: i H H
exp_4 H* H* c
exp 5 | H 3 H*
Cexp_6 3 CH H
oxp_7 o c o
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where

A, B, and C = Parameters;

exp_1, 2, ... = Experiments number 1, number 2, ...;
H* = The Highest value of parameter;

L* = The Lowest value of parameter;

C* = The central value of parameter.

Therefore, the required number of experiments based on Box-

Behnken designs can be expressed using the eq. (4.4) below:

n=2":+¢" (4.18.a)
M = (k-1) (4.18.0)
where
n = Required number of experiments;
k =is the number of parameters;

C’= The number of central points.

The designed experiments based on the Box-Behnken Design for this

research are shown in Appendix B Table B.2.



4.4.Least Squares Method For Establishing

Polynomial Models

The simple and common method to obtain parameter estimates is the
least squares method (Beck and Amold, 1976). Beck and Amold
recommended using the method, particularly when nothing is known
regarding the measurement errors. Myers and Montgomery (1995) defined

that the principle of least squares asserts that a set of estimates of

can be i by minimising the sum of i errors
(Ze). This principle of estimation can be used to establish the polynomial
models commonly known as the technique of regression using least squares
estimation. There are many references containing the process of building the

model. It, is not i in this thesis. However, it can

be found in, e. g., Myers and Montgomery (1995), Devore (1995).

The pc ial model i its must obey the principle of

hierarchy. Comnell (1990) defines hierarchy as the ancestral lineage of effects

flowing from main effects (parents) down through successive generations of

higher order i ions (chi ). For isti reasons, models that
contain subsets of all possible effects should preserve hierarchy. Although
the response may be predicted without the main effects when using the coded
variables, predictions will not be the same in the actual variable levels unless
the main effects are included in the model. Without the main effects, the

model will be scale-dependent.



4.5.Polynomial Model Analysis

The polynomial models that are established must be analysed using
ANOVA to obtain the best model to fit the response surface. These analyses
include determining:

(1) The level-order of polynomial model;
(2) The coefficient of every factor or parameter;

(3) The validity of the assumptions of the model.

The level order of the polynomial model is tested using the sum of
squares of curvature that is expressed as the eq. (4.12); the coefficient of
every factor is analysed using the eq. (4.13), (4.14), and (4.15). The residuals,

which are obtained from the difference between, observed values and

values of must also be to check the validity of

all the statistical tests. The residuals should be independent, homoscedastic,

and normally distributed. The residuals must also be checked for outliers and

that no ob ion is unduly infl ing the results. All these tests are
standard tests normally carried out in a regression analysis and hence will not

be discussed further here.



4.6.Verification Procedures

The accuracy of calibration must of course be proved using a
verification scheme. This is because the results of any calibration process are

conditional on several factors, for : the calibration data, the obj

function, and the imisation [ For ificati the

parameters must be used in the model to simulate runoffs beyond the years
of the calibration periods. Then, the simulated runoffs are compared with the
observed runoffs of the same years. This verification will use a two-year
rainfall period, 1977 to 1978 to simulate two-year runoffs by using the
parameters from the calibration in the Mock Model using four scenarios. This

is illustrated in Fig. 4.3.

[e73 [ - [ - T - 1 1977 | 1978 |
Calibration | - | B | - | Verification |

Fig. 4.3.a Calibration Using One-Year Data to Estimate Two-Year

Runoffs In Verification

1973 [ 1974 - [ - [ 1977 T 1978
[ Calibration [ - | - [ Verification |

Fig. 4.3.b Calibration of Two-Year Data to Estimate Two-Year Runoffs

In Verification



[ 1973 [ 1974 | 1975 | - [ 1977 [ 1978 |
[ Calibration | - i Verification ]

Fig. 4.3.c Calibration of Three-Year Data to Estimate Two-Year

Runoffs In Verification

[ 1978 T 1974 | 1975 1976 | 1977 | 1978 |
| Calibration | Verification |

Fig. 4.3.d Calibration of Four-Year Data to Estimate Two-Year

Runoffs In Verification

The longer period of time for which data is available to calibrate the
model will produce the more accurate future prediction. However, in some
cases, modellers may have limited data. Therefore, using the four scenarios

of verificati above, can estimate the of each period of

calibration to predict the future runoffs.
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Chapter 5

Mock Rainfall-Runoff Model

This chapter will describe the Mock Rainfall-Runoff Model in general,
which will be used as illustration of the use of RSM for calibrating rainfall-
runoff models. The complete description of Mock Rainfall-Runoff Model

can be found in Mock (1973).

5.1.Mock Rainfall Runoff Model Description

Runoff is an element of the hydrologic cycle that appears on the
earth’s surface. Surface runoffs that occur in tropical countries, e.g.,
Indonesia, are caused by rainfall. In general, the amount of rainfall that

causes the runoff is the total amount of effective rainfall in the basin after

of irati i ion, and other minor losses.
E piration and i jon are i by three main factors:
climate, , and soil istics. Therefore, rainfall-runoff models

developed to simulate the rainfall-runoff process must involve these factors.

These models can be ified as either tt ical or empirical models

(Wiest, 1965). A theoretical model includes a set of general laws or

If all the g ing physical laws were well known and

could be i by { of ical physics, the model would
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be physically based. An empirical model omits the general laws and is in

reality a representation of observed data. Depending on the character of the

results i models are ified as ic or inistic. If one or

more of the vari in the matt ical model are as random

variables having a probability distribution, then the model is stochastic. If all
the variables are considered free from random variation, the model is
deterministic.

Most existing rainfall-runoff models are physically based deterministic

models bt ct istics are by fixed model
parameters (Liong and Ibrahim, 1994). Examples of rainfall-runoff models
include: HEC-1 Flood Hydrograph Package (Feldman, 1981), Tank Model
(Sugawara, 1974), Xinanjiang Model (Zhao, 1992), University of British

Columbia (UBC) Watershed Mode! (Quick, 1977), Streamflow Synthesis and

Reservoir Regulation (SSARR) Model (| , 1982), Hy

Simulation Program Fortran (HSPF) (Donigian, 1984), and Mock Rainfall-

Runoff Model (K i 1993 and Kumi 1, 1994)

The Mock Rainfall-Runoff Model that will be used as illustration in this
research was developed in Indonesia to calculate monthly water availability
for water management purposes (Mock, 1973). This model is commonly
used for irrigation planning. The calculation of resulting runoff uses rainfall
and evapotranspiration as inputs, and six soil characteristic factors as the
model parameters. The Mock model is quite simple to use because only six

(soil it layer, ient of infiltrati fficient of




recession, soil moisture capacity, initial soil moisture, and initial storage
value) are involved in the calculation. However, these six parameters must be
calibrated for the catchment of interest before its use. In this thesis, the Mock
Model will be used to model the monthly water availability on the Babak River
Catchment in Lombok, Indonesia. The rainfall data were taken from the

Dep of Hydro-N gy in ia. The rainfall data are

presented in Appendix E Table E.1, as well as evapotranspiration and

historical runoff data.

5.1.1. Effective Rainfall

Rainfall data (P) is the main input to the runoff process. The rainfall
data used in the calculation is the average rainfall data from gauging stations

in the basin. This average is i using the well-ki Thiessen

polygon method (Harto, S., 1993; Soemarto. C. D., 1995; and Lye. L. M.,
1996).

5.1.2. Evapotranspiration

It is difficult to measure evapotranspiration directly in the field;
therefore, in general, it is estimated based on measured climatic data. Mock
(1973) suggested using the Penman method (Mock, 1973 and Soeprapto,

1994) because the Penman method uses more variables than other methods.



The iration can be ji either using Penman'’s equations or

interpolating from the tabulated values to determine the amount of monthly

The iration data used herein were

taken from the D 1t of Hydro

gy

5.1.3. Calculation of water balance

The Mock model the rainfall-runoff of a it on a

monthly basis. Runoff (RO) of a river is directly affected by the amount of
monthly baseflow (bf), direct runoff (dro), and storm-runoff (storm) (Mock,
1973). Each element will be described later. RO is mathematically expressed

as

RO = bf + dro + storm (5.2)

where:

RO = Amount of catchment runoff
bf = Amount of monthly baseflow
dro = Amount of direct runoff

storm = Amount of storm runoff



Mock (1973) i that monthly flow (bf) can be

based on the amount of infiltration in the particular month after subtracting the

monthly change of storage volume. It is expressed as

bf=it-AV, (5.3)
where:
bf = Monthly baseflow
i t= = Infiltration in the particular month

AV, = Monthly change of storage volume

Mock (1973) defined the infiltration rate, |, based on the coefficient of
infiltration and the availability of water surplus. The equation of the infiltration

rate is expressed as:

1=COIxWS (5.4)

where:

| = Infiltration rate

COI = Coefficient of infiltration

WS = Water surplus
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Mock (1973) defined Water surplus, WS, as the excess of

over iration by idering the amount of sail

moisture. The water surplus is calculated using the equation below.
WS =Pr-Ea (5.5)
where:
WS = Water surplus
Pr = Amount of monthly rainfall (precipitation)

Ea = Effective evapotranspiration

Mock (1973) defined Storage volume, V, at the time T calculated

based on the icient of ion, the previ storage volume, and the
rate. The ion to the storage volume is:
Vi=KVi +%(1+K) | (5.6)
where:

V, = Storage volume
Vi1 = Previous storage volume
K = Coefficient of recession

| = Infiltration rate
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Mock (1973) di i infall-runoffs into two ies, Direct
runoff, dro and Stormrunoff, storm. Mock defined dro as the difference
between the available water surplus and the infiltration rate. The equation to
calculate direct runoff is given by:

dro=WS-1 5.7)

where:
dro = Direct runoff
WS = Water surplus

| = Infiltration rate

Mock (1973) then defined storm runoff as the amount of initial
precipitation, which occurs in the beginning of raining season that cannot be
infiltrated into the ground. The storm runoff occurs because the outer surface
layer is still very dry and the infiltration capability is still very low. This
condition is affected by the percentage of impermeable layer and calculated

using:

storm = Pr x IMLA (5.8)

where;
storm = Amount of storm runoff
Pr = Amount of precipitation (rainfall)

IMLA = Percentage of impermeable layer.
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5.2. Parameters of the Mock Model

Mock (1973) defined six parameters in his model: coefficient of
Impermeable layer (imla), initial storage value (V,), coefficient of Infiltration
(COl), soil moisture capacity (SMC), monthly coefficient of recession (K) and
initial soil moisture (SM,). The range of all parameters must be known before
the calibration process. In general it is better to have a smaller range or
otherwise, it may be difficult to find the optimum values of the parameters

because the wider the range, the flatter will be the response surface.

a. Impermeable Layer, Imia
Mock (1973) described the range of this parameter between 8 % to
12 % or (0.08 to 0.12). It has a positive effect on the storm runoff. It means

that it also has positive effect to the direct runoff and monthiy flows.

b. Initial Storage Value, V,
This parameter is the previous amount of storage value. The storage
value has negative effect to the direct runoff. According to Kadarisman

(1993), the range of this parameter is between 150 to 250 mm.



c. Coefficient of Infiltration, COI
According to Soeprapto, M., (1994), the COIl has a range between
0.35 to 0.65 mm. It has a positive effect to the amount of infiltration. It means

that it also has negative effect to the direct runoff and monthly flows.

d. Coefficient of Recession, K
Kadarisman (1993) specified that the range of K is between 0.6 to
0.8. It has a positive effect to the amount of storage volume. It means that the

amount of storage volume will i i as Ki

e. Soil Moisture Capacity, SMC
This parameter is for the use of water surplus calculation. It has a
negative effect to the amount of direct runoff. Mock (1973) explained that the

range of this parameter is between 180 to 220 mm.

{. Initial Soll Moisture, SM,
This parameter is the previous amount of soil moisture. The
summation of this amount to the precipitation will be compared to the amount

of soil moisture capacity. The range of this parameter is between 190 to 210

mm.



Although, every model-parameter has a particular range in the real

field, modellers have to be very careful to set the range of those model-

in calibration p A wide range of parameters may lead to

L results of calibrations b the optimisation process may be
trapped and terminated in an incorrect result, for example: in a local optimum.

A wide range can also lead to an error ion of a

program. Similarly, a narrow range may also lead to an unresolved result
because the location of optimum result is beyond the range. Therefore, it is

better for to use the gui of DOE to ine the specific

range of those parameters, which are more appropriate for the Calibration of
Mock rainfall-runoff model using RSM. Later in Subsection 1, Chapter 6, the

range ination is i ing to the iption of

effect estimations.
The Mock Rainfall-Runoff Model Parameters with the codes for the

calibration are presented in Table 5.1 below.

Table 5.1. Th rs
Parameters Code | Units | Low Level | High Level
% of Impermeable Layer | IMLA A - 0.08 0.12
Initial Storage Value v, B mm 150 250
Coet. of Infiltration col [+ - 0.35 0.65
Monthly Coef. of Recession K D - 0.6 0.8
Soil Moisture Capacity SMC E mm 180 220
Initial Soil Moisture SM, F mm 190 210
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5.3.Logic of the Mock Model

The logic of the Mock model is presented in the flowcharts shown in Fig.

5.1.a. and Fig. 5.1.b. Different sub-c ions are i y in

the calculation, depending on the value of the parameters. The different

cases for sub-calculation are also shown as a flow chart in Fig.

5.2
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Input: IMLA, Vo,
COl, K. SMC, SMo

No

SM and SS
(second condition)

No:

Fig. 5.1.a. The Mock Rainfall-Runoff Model Flow Process (part one)
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Ro = bf + dro + storm

End of Data?

Yes
Stored data:
Roand V,

Fig. 5.1.b. The Mock Rainfall-Runoff Model Flow Process(part two)



4
i

Pe+(SM-
1)<SMC
No

SM3 and SS3 Sm2 and S$S2

(pe+SM-1)<0? SM6 and SS6

SM7 and SS7

H-4-4
4

Fig. 5.2 Sub-Calculation Based On Different Conditions
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Chapter 6

Results and Discussions

Results of the model calibration and the verification are di in

this chapter. The results and discussions start systematically from effect

estimations, minimum required number of experiments, analysis of

p ial model for optimisation, final calil and the results

of model verification.

6.1. Effect Estimations

Effect estimations using Full Factorial (FF) and One-Half Fractional

Factorial (OHF) resolution VI are compared and shown in Table 6.1. The

effect analyses based on the three resp (sum of absol i 18

R?, and Dv) produced similar results. Hence, only the effects based on the

P of sum of absoll i |E|, are p as representative of
the other The objective was to minimise the sum of the absolute
residuals.

The Mock model parameters: IMLA, V,, COI, K, SMC, and SMO are
represented by the letters A, B, C, D, E, and F, respectively. The table shows
all effect estimations except the effects of alias factors. The high effect factors

and additional factors will be used to establish the polynomial model for the
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phase. The i factors are factors that although have

relative low effect, must still be included into the polynomial model to obey the

principle of hierarchy.

Table 6.1 The Effect Estimation based on the response of absolutt
residuals calculated using FF and OHF Designs

Par/Interac. Effects
Full OHF
A 0.978906

B 26.17097

AB 0.58978

c 228.1398)

AC 0589

BC -10.7

ABC

D

AD

BD

ABD

€D

ACD

BCD

ABCD

E 66. 66.30631
AE -1.04122]_-0.73169)
BE -27.2814] -27.2912)
ABE | -0.32909 -0.21744)
CE -13.8896| -13.8887]
ACE | -0.32909] -0.21744]

BCE 8.697781|=ADF
ABCE -0.83447|=DF

DE 22.72134| 22.71944)
ADE 0.755906| 0.717687|

BDE 60334/=ACF
ABDE F
CDE BF

ACDE -1.00328|=BF
BCDE 3.831531|=AF
ABCDE | 0.433219|=F
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F -3.72828| -3.29506
AF 0.009406| -1.28844|
BF 1.031469| -26.1612]
ABF 0.001281| -0.70144|

CF 1.200906| -1.22101
ACF -| -15.4227
15.45996
BCF -0.03822/=ADE
ABCF -0.00191|=DE

DF -0.82553| -0.83655)
ADF 9.03114| 9.86506)

BDF -0.56403=ACE

ACEF
| BCEF
[_ABCEF
DEF
ADEF
BDEF
ABDEF
CDEF
ACDEF
BCDEF
ABCDEF | -0.00153]=!

Table 6.1 shows that, FF and OHF generally gave similar resuits,
especially those for high effects. Among the 63 factor effects, the main
parameters B, C, D, and E have high effects on the response. The highest
and the second highest effect parameters being C (Coefficient of Infiltration)
and D (F
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For two-parameter interactions, BC, AD, BD, CD, BE, CE, and
DE are considered to have high effects. Fig. 6.1 to Fig. 6.14 show the
relationship among these interactions. There is no interaction of more than

two parameters having a high effect.

Two-factor interactions:

Parameters B and C

Interaction Graph

1187.21 o

|
1087 n—-‘

| es G
sa8512

|
820,163

Actai Res

590 484 —

arars <

Interaction of 8:8 and C.C

Fig.6.1 Relationship Between Par: ers B and

Parameter B has positive effect on the change of the process as

shown in Fig. 6.1. It means that i i B will il the yield

(response) of the process. H the i ion of this with

parameter C, that has very high positive effect, will have high negative effect
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to the change of the process. Figure 6.2, shows the three-dimensional

surface graph of parameters B, C and the response.

DESIGN-EXPERT Piot

Actual Factors. :
x=8 892
v=C

Actual Constants: 659
A=010 543
=070 2 4
E-20000 & 426
F =200.00

065
i 250.00
Z 2 “225.00
080 N2 ~"200.00
¢ 042 _~"175.00
N~ 8
035 150.00

Fig. 6.2 Three-dimensional graph of the relationship among
parameters B, C. and the yield of the process (|E|).

As shown in Fig. 6.2, to minimise the response of the process, the value of
parameter B is somewhere between 150 and 200, and the value of parameter

C is between 0.45 and 0.50.

Parameters A and D
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Interaction Graph

18721

sa8.512
o.

Actual Res

829,183 o4 D+ |
i

Fobivio]

s0.484

CAREEE
it

Interaction of A:A and D:D

Fig. 6.3 Relationship Between Parameters A and D

Parameter A, as shown in Fig. 6.3, has small positive effect to the
change of the process. However, according to the effect estimation, it will
have high positive effect while interacting with parameter D that has a high
negative effect. From Fig. 6.4, the three-dimensional graph of the relationship
among parameters A, D, and the response, shows the region of prediction
values of the parameters. Fig. 6.4 shows that the minimum yield of the
process will be achieved when the value of parameter A is somewhere

between 0.08 and 0.11, and the value of Dis

0.70 and 0.75. Beyond those values, the yield of the process will not be the

minimum.
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Fig. 6.4 Three-dimensional graph of the relationship among

parameters A, D, and the vield of the process.
Parameters B and D
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The interaction between parameters B and D are shown in Fig. 6.5. In

this case, i i B, while ing D will increase

the yield of the process. However, as shown in Fig 6.6, the minimum of the
process' yield will be achieved when the value of parameter B is somewhere
between 150 and 200, and the value of parameter D is between 0.68 and
0.73.

DESIGN-EXPERT Plot
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Y=0
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0:85 0.80 150.00
o
Fig. 6.6 Three-dimensional graph of the relationship among
aramete and the yield of rocess

Parameters C and D
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Fig. 6.7 Relationship Between Parameters C and D

Fig. 6.7 shows that the interaction of parameter C, which has a
positive effect, on parameter D, which has a negative effect, will increase the
yield of the process. It means that the increase of C and the decrease of D

will increase the value of response. However, the objective is to set the

to minimise the Theref to reduce the response,

C must be and D must be i Further

as shown in Fig. 6.8, the optimum process' yield is achieved when the value

of Cis 0.45 and 0.55, and the value of

parameter D is between 0.72 and 0.78.
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Parameter E has high positive effect on the response of the process.
Parameter B also has a high positive effect on the response of the process.
However as shown in Fig. 6.9, the interaction of these parameters BE, has a

high negative effect. Here, the i of E, while i

g
parameter B will cause the decrease of the process' yield. Fig. 6.10 which
shows the three-dimensional graph of the relationship among parameters B,
E, and the response, indicates that the optimum is achieved when the both
parameters B and E are set to the low level. The valuses are approximately

150 and 180 for B and E, respectively.
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Fig. 6.10 Three-dimensional graph of the relationship amon
ramet and the yield of th SS

106



Parameters C and E
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Fig. 6.11 Relationship Between Parameters C E

Both parameters C and E have the same positive effects but their
interaction has a negative effect. Therefore, to reduce the yield of the
process, it is better to decrease both parameters. Fig. 6.12 shows the three-
dimensional graph of the relationship among parameters C, E, and the
response. It shows that the minimum yield of the process is achieved when

the value of parameter C is between 0.42 and 0.52 and the value of

p Eis set in the low-level, 180.
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Parameter D has high negative effect and parameter E has high
positive effect. However, their interaction, DE has a high positive effect on the

response of the process. Therefore, an increase of parameter D and

of E will the yield of the process. Figure 6.14
shows the three-dimensional graph of the relationship among parameters D,
E, and the response. It shows that the effect of the interaction between D and
E in fact affects the location of prediction region. The optimum process is
achieved when parameter D is set between 0.72 and 0.80, and parameter E

is set in the low-level, 180.

DESIGN-EXPERT Plot
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parameters D, E, and the yield of the process
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Effects of and their i

s can also be clearly

distinguished using a normal plot view shown below.

Normal plot

DESIGN-EXPERT Prot
Res

Tmoos»
Tmoo®>

Normal % probabitly

385 1877 11720 21763 31808
Ettect

Fig. 6.15 The Normal Plot of Effects

Fig. 6.15 shows parameters C, D, E, and interaction CD lying far
away from the normal line. Therefore, C, D, E, and interaction CD are
considered to have high effects to the process.

The effect estimations have given some insights into how the various
parameters interact and how they can be adjusted to achieve the desired
objective. In addition, plots of parameters C and D are seen very curved or
steep in the Perturbation plot in Fig 6.15, which were constructed based on

the resp: of sum of i [E/. Theref C and

D are considered to highly affect to the differences between observed and
simulated runoffs using the Mock model. This consideration is confirmed by
other perturbation plots shown in Appendix D, Figs. D.1, and D. 2, which are

constructed based on R?, and Dv, respectively.
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6.2. Minimum Required Number of

Experiments
For y and cost i the mini number of
experiments that will give a fit of the signi ial model

must be explored. The minimum required number based on manual, CCD,

and BBD calibrations are compared for the case of six parameters:

Manual calibration: (uncertain) = 112 experiments used here.

CCD full: (2% main + (2x6) augmented + 1 central point = 77 experiments

1



CCD Res. VI: (2° main + (2x6) augmented + 1 central point = 45 experiments

BBD: (2°) main + (2*) augmented + 1 central point = 49 experiments

BBD requires fewer experiments than a Full CCD. However, CCD resolution

VI for 6 parameters requires fewer experiments than BBD. However, having

the i ion of the mini number of iments cannot guarantee the

most accurate calibration. Analysis of the ial models and

of the calibrated model must be conducted to prove that one method of

calibration is indeed producing the best results.

6.3. Analysis of Polynomial Models

The significance of the polynomial models, which can fit the

p is i ified using lack-of-fit tests. The results, shown in Tables 6.2
and 6.3 are used to examine the best model that can fit the response. CCD
and BBD gave similar results. Therefore, only the results of CCD are shown

in the examination of the best model.

Table 6.2 ANOVA Table for the CCD Model

Sum of Mean F
Source Squares DOF Square | Value pyalue

Mean | 22144100| 1 | 22144100
Linear 385721 | 6 | 64286.8 | 1.9165 | 0.0978
Quadratic | 1544720 | 21 | 73558.2 | 60.0704 | < 0.0001
Residual | 31837.8 | 26 | 1224.53
Total [24106400 | 54 | 446415

112



Table 6.2 shows that a linear model is not appropriate because p-
value (0.0978) is not statistically significant at the 5% level. Therefore,
response prediction using a linear model can be ruled out. For the quadratic
model however, the p-value is less than 0.0001 indicating a statistically
significant result. The model is thus identified as a quadratic model. The
results in Table 6.3 test the lack-of-fit of the quadratic model against linear

model.

Table 6.3 ANOVA Table for Lack-of-Fit Tests for the CCD Model

Root Adjusted | Predicted
Source MSE__| R-Squared | R-Squared | R-Squared | PRESS

Linear | 183.15 | 0.196568 | 0.094002 | 0.05644 |2073040
Quadratic { 34.9933 | 0.983775 | 0.966926 | 0.915233 | 166336

The examination is about focusing on the model to minimise the

“PRESS" or equivalently to maximise the “Prediction R-Squares”. PRESS
stands for the prediction sum of squares. Table 6.3 shows that the quadratic
model is superior against the linear model. The quadratic model gave a
“PRESS" of 166336 and a "Prediction R-Square” of 0.915233. These results
are superior compared to that of the linear model.

After finding out the order of the polynomial model, the next task is to
obtain the coefficients for each parameter in the model. Both CCD and BBD
will develop their own quadratic model. Based on the t-test statistics, only
parameters C, D, E, and their interactions are selected by CCD to establish

the quadratic model shown in Table 6.4. On the other hand, all parameters:
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A, B, C, D, E, F, and their interactions, shown in Table 6.5, are selected by

BBD to establish the quadratic model.

Analysis of the second-order polynomial model developed using CCD

Table 6.4 ANOVA Table of the Coefficients of Polynomial Model developed
using CCD Based on 4-Years of Calibration Data

Coefficient Standard | t for HO
Estimate [DF| Error Coeff=0 | Prob > |t| VIF
488.678 10.4179
7.18915 .5122 | 0.93296 0.318 1
12.32 .5122 .07018 | 0.0881 1
105.3828 .5122 | 8.19853 | <0.0001 1
-51.79274 .5122 | -0.503185 | < 0.0002 1
40.2711 1 .5122 | 2.62949 | <0.0003 1
-22.6462 | 1 .5122 |-0.403591 | 0.0077 1
26.79206 | 1 .63472 | 0.704957 | 0.0083 1.02947
328.253 | 1 .6347: 0.02 < 0.0001 1.02947
114.79 1 .6347: 3.99 < 0.0001 1.02947
-31.11549 | 1 .63472 | 0.115778 | 0.0082 1.02947
20.993 1 12.871 1.24256 | 0.0181 1
-13.6407 | 1 12.871 -1.0598 0.0928 1
159.025 | 1 12.871 12.3553 | < 0.0001 1

Table 6.4 shows that, although the parameters A, B, and interaction

BE are not statisti significant at the 5% level, they must be
recruited into the model in order to obey the principle of hierarchy. Single
parameters C, D, and F are statistically significant for the linear and quadratic

coefficients. Almost all VIF of the coefficients are one, except VIF of quadratic

1.02947. , they are symmetric and orthogonal.
Therefore, these indicate no multicollinearity problem occurs in the

polynomial model and the region of stationary point is inside the orthogonal
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polynomial. The ability to fit the response of the polynomial model can be

analysed using ANOVA table below

Table 6.5 ANOVA Table of the Polynomial Model to fit the Response

developed usin Based on 4-Years of Calibration Data
Sum of Mean F
Source | Squares | DF | Square Value [Prob>F
Model | 7972540 | 13 613272 | 157.8429 | <0.0001
Residual | 763371 | 38 902.4
Lack of Fit | 763371 | 33 1017.3 | 63660000 | < 0.0001
Pure Error 0 5 0
Cor Total [ 8735910 51 | Aa=Ap=Ac=Ap=Ag=Ar=1.00
I
Root MSE [ 102.968 R-Squared| 09781 |

Table 6.5 shows that the residuals of the polynomial model are linear

and therefore, if the residuals are equally spread along the data, the

polynomial model provides a good fit to the response. In addition, all

eigenvalues, A« are approximately equal to one. It means that the optimum

value of the response is inside the orthogonal polynomial and the

ptimisation is to

the

formed by CCD is

then:

Y =488.678 + 7.18915 A + 12.32 B + 105.3828 C

model. The quadratic model

- 51.79274 D + 40.2711 E - 22.6462 F + 26.79206 A°

+328.253 C* + 114.79 D* - 3111549 F* + 20.993 AC

—13.6407 BE + 159.025 CD

(6.1)
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where:

Y = Response (Sum of absolute residuals)

A=F of Coefficient of Layer
B = Parameter of Initial Storage Value
C = Parameter of Coefficient of Infiltration

D=P of i ient of R

E = Parameter of Soil Moisture Capacity

F = Parameter of Initial Soil Moisture

A =Q i of Layer
C* = Quadrati of C ient of
D’=Qi i of Coefficient of ion

F? = Quadratic-Parameter of Initial Soil Moisture

AC =1r d F Coefficient of Layer (A)
and Coefficient of Infiltration (C)

BE =Ir i F Coefficient of Initial Storage Value (B)
and Coefficient of Soil Moisture Capacity (E)

cD = i F C ion (C) and

Coefficient of Recession (D)
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of the lynomial velo) i

le 6.6 ANOVA T: the Coefficients of Polynom: | devel
i 4-Years of Calibrati
Coefficient| | Standard | t for HO
Factor | Estimate |DF| Ermor | Coeff=0 | Prob > It| VIF
rcept| 446.14 1 .41892
A-A 6.76013 .89394 | 0.98059 | 0.3327 1
B-B 12.2365 .89394 | 1.77496 | 0.0835 1
c-C 105.193 .89394 | 15.2587 | < 0.0001 1
D-D -51.4581 .89394 | -7.46424 | < 0.0001 1
40.8853 .89394 | 5.93061 | < 0.0001 1
-22.1624 6.89394 |-3.21476 | 0.0026 1
27.2969 10.2254 | 2.66952 | 0.0109 1.22222
328.812 0.2254 | 32.1565 | < 0.0001 1.22222
114.445 0.2254 | 11.1922 | <0.0001 1.22222
-33.5313 0.2254 |-3.27923 | 0.0022 1.22222
21.2552 1.9407 | 1.78007 | 0.0827 1
-15.2595 .44332 | -1.80728 | 0.0782 1
154.099 1.9407 | 12.9054 | < 0.0001 1

For the BBD, single-parameters A and B, and interactions AC and BE
are indicated to have p-values equal 0.3327, 0.0835, 0.0827, and 0.0782,
respectively. Therefore, they are i isti insigni at the

5% level. Nevertheless, according to the principle of hierarchy, they must be
included into the model. BBD gives a similar model to the model produced by
CCD. Both BBD and CCD agree on the singl C,D,E,

parameters C, D, and interaction CD as the main consideration on building

the respective models. Aimost all VIF of the coefficients are one, except VIF

of i i 1.22222. , they are symmetric and

which  indi no icolli ity problem occurs in the

polynomial model and the region of stationary point is inside the orthogonal
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polynomial. The ability to fit the response of the polynomial model can be

analysed using ANOVA table below

Table 6.7 ANOVA Tabile of the Polynomial Model to fit the Response
developed using BBD Based on 4-Years of Calibration Data

Sum of Mean F
Source | Squares | DF | Square Value | Prob>F
Model | 1916650 13 147435 129.257 | <0.0001
Residual | 45625.4 | 40 | 1140.64
Lack of Fit | 45625.4 | 35 1303.58 | 63660000 | < 0.0001 |
Pure Error 0 5 0
Cor Total | 1962280 | 53 | Aa=Ag=Ac=Ap=Ag=Ar=1.00

Root MSE | 33.7733 R-Squared | 09767 |

Table 6.7 shows that R-Squares of the polynomial model is 0.9767.
Therefore, the polynomial model can really fit the response. in addition, all

eigenvalues are also equal to one. It means that the optimum value of the

response is inside the orthogonal poly ial and the imisation is to

the ial model. The quadratic model formed by BBD is:

Y =446.14 + 6.76013 A + 12.2365 B + 105.193 C
- 51.4581 D+ 40.8853 E — 22.1624 F + 27.2969 A’
+328.812 C* + 114.445 D’ - 33.5313 F* + 21.2552 AC

—15.2595 BE + 154.099 CD 6.2)

where:

118



Y = Response Data (Sum of absolute residuals)

A=P of Coefficient of Layer
B = Parameter of Initial Storage Value

C = Single-Parameter of Coefficient of Infiltration

D = Single-F of Coefficient of F ion

E = Single-Parameter of Soil Moisture Capacity

F = Single-F of Initial Soil

A’ = Quadratic-Parameter of Coefficient of Impermeable Layer

c=Q ic-F of Coefficient of

D? = Quadratic-F of Coefficient of F

F? = Quadratic-Parameter of Initial Soil Moisture

AC = ion F of C ient of Layer

and Initial Storage Value

BE = ion B F of Initial Storage Value And Soil
Moisture Capacity

CD = ion between P of C ient of ion And
Coefficient of Recession

After building these two second-order (quadratic) polynomial models,

the models must be examined to ensure the models can significantly fit the

P! and the i of ion are not violated. This

examination can be done by the inspection of various plots of the model-
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residuals shown in Fig. 6.17, Fig 6.18, and Fig 6.19. Here, the results of CCD
will be compared against the results of BBD.

Figure 6.17 shows the normal probability plot of the studentized
residuals. Fig. 6.18 shows the outlier-T plot between the run numbers and the
outliers-T. Fig. 6.19 shows the leverage plot between the run numbers and
the leverages.

Normal Plots

Normai ot o resicuals Normat pot ot cemauls

(a) BBD (b) CCD
Fig. 6.17 Normal Plots of Studentized Residuals

In Fig. 6.17, both (a) and (b) i show that model

p by CCD are

pproxi normally distril However, the

residuals for BBD are not normally distributed.
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Outlier-T Plots

(a) BBD (b) CCD
Fig. 6.18 Outlier-T Plots for CCD and BBD

From the plots in Fig. 6.18, the polynomial model established by BBD
produces three outlier-points, shown as the three points lying outside the
boundary. However, since the number of data points is 49, the three outlier-
points are not considered unusual. Fig. 6.18 (b) shows that the polynomial

model established by CCD does not produce any outlier-point.
Leverage Plots

Lomrmew Aun Lomaew nun

ocsouorerng, o0 T

(a) BBD (b) CCD

Fi erage Pl r BBD and CCD
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From Fig. 6.19, there no outliers are produced by both BBD and
CCD. All the data points are within the bands. Therefore, it can be concluded
that the models obtained from both BBD and CCD are equally valid. No
assumptions of regression were violated except for the normality of the

residuals from the BBD.

6.4. Calibrated Model Parameters and
Model Verifications

The performances of RSM, which uses CCD and BBD, are compared
to the performance of the Trial and Error Method. Here, the first priority
objective is to minimise /E/, then to maximise R?, and finally to minimise Dv.
The /E/ will be analysed first. If the resuits of /E/ are the same, then R? will be
used to determine the best result. This analysis strategy will be continued to
the third and fourth priority objectives if the results of the first and the second
priority objectives produce equal results. Tables 6.8, 6.9, 6.10, and 6.11
present the results of calibrations and verifications based on the various

years of available calibration data.

122



Table 6.8 The Results of Calibrations Based On One-Year (1973) Data And

The Verifications Based On the Years of 1977 and 1978

Calibration of 1 year data (1973)
BBD

Items CCD
A 0.109 0.1 0.09
B 150 166.17 150
[o] 0.48 041 0.46
D 0.741 0.8 0.73
E 190 180 180
F 190 210 210
Calibration Verification Calibration Verification Calibration | Verification
JE/ 30.1389| 54.55705 | 40.9926| 52.7216 27.91947.2333
R 0.9966 8681 0.9958| 0.9891 0.9978| 0.9899
Dv 0.4812] 0.5984 0.4658| 0.494 0.4531| 0.4772

e Appendix D Tables D. 4 and D. 7 show The Polynomial Models
developed using CCD and BBD, respectively based on 1-Year
Calibration Data.

Table 6.8 shows that generally, Trial and Error, BBD, and CCD gave

similar results. However, the /E/ produced by CCD, 27.919 is the smallest. It

means that for y data calibrati 1973, CCD p the best
results. This is also confirmed by the highest of R?, 0.9978. Further, the
results of verification also showed that CCD produces the best resuits. The

results of the year data for calibration are then

to two-year,

th

year, and four-year of available data for

Table 6.9 presents the results of calibration and verification based on

two years of data.
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Table 6.9 Results of Calibrations Based On Two-Years (1973 and 1974) Data

and The Verifications Based On the Years of 1977 and 1978

Calibration of 2 years data (1973 and 1974)
Items BBD

A 0.12 0.10 0.11

B 150 150 150

C 0.508 0.450 0.460

D 0.715 0.760 0.760

E 187.854 180.020 180.000

F 190 210 190
Calibration Verification Calibration Verification Calibration Verification

Res |128.4568|175.6574| 91.1368 |108.9525 | 90.5997 | 106.8744

0.9938 | 0.9888 | 0.9976 | 0.8952 | 0.9977 | 0.9950

Dv 06716 | 0.6749 | 0.2386 | 0.3721 | 0.2329 .3953

e Appendix D Tables D. 4 and D. 7 show The Polynomial Models
developed using CCD and BBD, respectively based on 2 Years
Calibration Data.

The analysis of goodness-of-fit for two-year data calibrations showed
that the CCD gave the best results. Here, CCD produces the smallest /E/, the
highest of R, and the closest to zero of RME, although Dv does not show the
best result. This conclusion is also shown by the results of verifications. The
results of verifications showed that the performance of CCD is the best
because it gave the smallest /E/, the highest R?, and the smallest Dv. The
results of BBD are second best although the results of BBD are very close to
the results of CCD. The results of Trial and Error show are quite different
from the results of the BBD or CCD. Table 6.10 presents the results of

calibrations and verifications based on three years of available data.
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Table 6.10 Results of Calibrations Based On Three-Years (1973, 1974, and

975) Data and The Verifications Based On the Years of 1977 and 1978
Calibration of 3 year data (1973, 1974, and 1975) ]
Items TE BBD CCD
A 0.12 0.1 0.09
B 150 150.32 150
o] 0.521 0.45 0.46
D 0.71 0.76 0.74
E 186.015 180.02 180.01
F 190 210 210
Calloration_|_Verffication | Calbration | Verfication | Calibration | _Verification
Res | 200.3141]213.9945] 107.9525( 143.9203 | 107.2714] 143.1942
R 0.992/0.988293 0.9978| 0.9948 0.9979| 0.9949
Dv 0.4658(0.218837 | 0.3721] 0.2446 0.3161| 0.2422
.

Appendix D Tables D. 5 and D. 8 show The Polynomial Models

developed using CCD and BBD, respectively based on 3 Years
Calibration Data.

Table 6.10 shows either BBD or CCD can be used since they
produced similar results. Based on three years of data (1973, 1974, and
1975) for calibration, CCD gave the best results for calibration and
verification. It gave the smallest of /E/ and the highest of R®.

Table 6.11 shows the results of calibrations based on four available

years of data for calibration and the verifications.



Table 6.11 Results of Calibrations Based On Four-Years (1973, 1974, 1975,

and 1976) Data and The Verifications

Calibration of 4-year data (1973, 1974, 1975, and 1976)
TE BBD CCD

Items
A 0.12 0.10 0.10
B 150.0 150.6 150.0
[¢] 0.53 0.45 0.43
D 0.70 0.75 0.77
E: 180 180 180
F 190 197 197.3
Calibration | Verification | Calibration | Verification | Calibration | Verification
Res 213.978[389.0252| 101.5705/233.9174| 99.8054]223.1259
R2 0.9907/0.985322| 0.9981] 0.9978 0.9989| 0.9982
0.3587| 0.36683 0.3316| 0.3522 0.3067| 0.3233

For four years of calibration data, CCD gave the best results. It gave
the smallest of /E/, 99.8054 and the highest of R, 0.9989. Similarly for the
verifications, CCD gave the smallest of /E/, 223.1259, the highest of R?,
0.9982, and the smallest of Dv, 0.3233. These results are also the best
compared to those with less than four years of data for calibration. It shows
that the longer the available data for calibration, the better the resuits.

Fig. 6.20 and Fig. 6.21 show the plots of the simulated and observed

runoffs during the calibration and verification periods,
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Fig. 6.20 Observed and Simulated Runoffs for Calibration
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Fig.6.21 Observed and Simulated Runoffs for Verification
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Fig.6.20 and Fig.6.21 show that simulated runoffs that are generated

using p , which are calil i by both CCD and BBD, provide good
fit to the observed runoffs. The results have proved that CCD and BBD are
good methods to calibrate rainfall-runoff models. Since both can obtain
calibrated parameters, which can be used in the Mock model to produce
simulated runoffs that are very similar to the observed runoffs. The final
calibrated parameters based on BBD are shown in Table 6.10. The matches
between simulated and observed runoffs for the calibration and verification

are clearly shown in Fig. 6. 22 and Fig.6. 23.

cco
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Simulated Runoffs

Fig. 6.22.a The Plot of Simulated and Observed Runoffs for Calibration based

on CCD

Fig. 6.22.a shows that the plot of observed and simulated runoffs is

linear. All points lay on the line of the plot. It means that simulated runoffs

based on CCD for the calibration fit the observed runoffs.
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Fig. 6.22.b The Plot of Simulated and Observed Runoffs for Calibration based

on BBD

Fig. 6.22.b shows that the plot of observed and simulated runoffs is
linear. Almost all points lie on the line of the plot. Only one point is plotted out
from the line. It means that simulated runoffs based on BBD for the

calibration also fit the observed runoffs, although it is not as good as CCD.

Trial and Error

Simulated Runoffs

0 100 200 300 400 500
Observed Runoffs

Fig. 6.22.c The Plot of Simulated and Observed Runoffs for Calibration based

on Trial and Error

129



Fig. 6.22.c shows that the plot of observed and simulated runoffs is
linear with some points lie outside the line of the plot. It means that simulated
runoffs based on Trial and Error for the calibration is the worst fit the

observed runoffs compared to the CCD and BBD.

ccb

o
8 8

0 100 200 300 400 500
Observed Runoffs

Simulated Runoffs
P
g£5§¢8

Fig. 6.23.a The Plot of Simulated and Observed Runoffs for Verification

based on CCD
Fig. 6.23.a shows that the plot of observed and simulated runoffs in

the verification is linear. All points lay on the line of the plot. It means that

simulated runoffs based on CCD for the verification fit the observed runoffs.
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Fig. 6.23.b The Plot of Simulated and Observed Runoffs for Verification

based on BBD

Fig. 6.23.b shows that the plot of observed and simulated runoffs in
the verification based on BBD is linear. Almost all points lay on the line of the
plot. It means that simulated runoffs based on BBD for the verification also fit
the observed runoffs. However, it is not as good as CCD.

Next, Fig. 6.22.c shows that the plot of observed and simulated
runoffs is linear, with some points off the line of the plot. It means that
although the fit of simulated runoffs based on Trial and Error for the
calibration is accepted; it is however, the worst fit compared to the CCD and

BBD.
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Fig.6.23.c The Plot of Simulated and Observed Runoffs for Verification based

on Trial And Error

Table 6.12 The Calibrated P

of Mock Rainfall-Runoff Model Based

on Four Years (1973 to 1976) Data Using CCD

Parameters Code | Units | Values
% of Impermeable Layer | IMLA A - 0.10
Initial Storage Value V, mm 150.0
Coeft. of Infiltration col C = 0.43
Monthly Coef. of Recession K D - 0.77
Soil Moisture Capacity | SMC E mm 180
Initial Soil Moisture SM, F mm 197.3

As can be seen from Tables 6.8 to 6.12, the calibrated values of the

parameters of the Mock model changes each time additional data becomes
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available for calibration. The longer the period available for calibration will
always give better results and will give results that are more representative of

the basin over an extended period.



Chapter 7

Conclusions

The previ have the ication of the well-

known techniques of experimental design (DOE) and subsequent Response

Surface gy (RSM) in calibrating a rainfall-runoff model. These

tachni

are y used in i i i ion for product or
process improvements. The DOE-RSM approach provides a systematic way
of learning about the importance of each parameter in the model and more
importantly how they interact with one another. Then, using this knowledge a

simple

g ion type ion can be ped to model the

resulting response of the process or model. The values of the parameters

that imi inimise or imi the response can then be found.

Another of this app is that isti fty

packages such as Minitab, Statistica, SPSS, SAS which has DOE-RSM
capability and standard stand-alone DOE-RSM packages such as Design-
Expert and Design-Ease, can be used for model calibration. This obviates the
need for writing special computer programs as required in other numerical
calibration methods or spending endless amount of time in the trial-and-error
approach.

In this thesis the Mock rainfall-runoff model, which has six

parameters, was calibrated using the DOE-RSM approach. It was shown



~

that the calibrated model provided a very good fit between observed and
simulated data both for the calibration data sets as well as the verification
data sets. In general, it can be concluded that the DOE-RSM approach is

a viable and ive for the calibration of the muiti

Mock rainfall-runoff model. The following are specific conclusions
regarding some of the details in conducting the design of experiments and
the application of the Response Surface Methodology in calibrating the

Mock model:

. In the design of experiment phase, either full factorial or fractional factorial

designs can be used. It was shown that the Central Composite Design
(CCD), which uses a full factorial design or one-half fractional factorial
design, and the Box-Benhken Design (BBD) can provide accurate
calibration of the Mock rainfall-runoff model using a small number of

experiments. Both designs gave similar results.

. BBD required fewer experiments than the CCD of full version. However,

CCD of resolution VI can reduce the number of experiments less than
BBD. Moreover, the results of CCD resolution VI are the same as the
results of CCD of full version. They are better than BBD, although the
results of BBD are close to the results of CCD. Therefore, it is better to
use CCD using resolution VI instead of BBD, particularly when there are
large number of parameters to calibrate. However, further analysis must

be carried out before one can say that one design is better than the other.
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The better design is the one that will give a better match between the

simulated and observed data.

. Based on the effect analysis factors B, C, E, A%, C*, D?, AC, and CD have

high positive effects on the response of the model, while, D, F, F, BE
have high negative effects on the response of the model. It means that to

optimise the response of the process, for example: to reduce the absolute

sum of errors, have to and ir
that have positive effects and to il and il ions that
have negative effects. Theref the which are

as the priorities to optimise the process, are recognised. In this research,
for these particular data, the single-parameters, which affect very much
the change of the Mock model's process are: Coefficient of Infiltration
(COI) coded as C, Coefficient of Recession (K) coded as D, and Soil
Moisture Capacity (SMC) coded as E. While, only the interaction CD

highly affects the Mock model process.

While it was shown in this thesis that the DOE-RSM approach

successfully calibrated a model with 6 parameters, it may require more effort

when there are a large number of parameters to be calibrated (e.g., more

than 10 parameters). In this situation, to keep the number of experiments to

a manageable level, one may have to use highly fractional factorial designs

which may or may not be desirable because many of the factors will be

aliased.



In addition, when calibrating a model without any prior knowledge of the
possible ranges of the parameters, it may require major effort simply to

determine the workable ranges of each parameter. Then, for a more

timate of the the ranges must be shortened so that

the peak of the response surface is indeed the global optimal.
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Appendix A
A Computer Program For the Mock

Rainfall-Runoff Model

The quick basic program of Mock model

The Mock model is calculated using a program of quick basic (Kadarisman,
1993). The program is

‘MOCK MODEL PROGRAM.

GOSUB initialization
GOSUB water.balance

GOSUB run.off
END

initialization:

CLs

INPUT *impermeable layer (imla)="; imia
INPUT *initial storage (Vo)="; vo

INPUT "coefficient of infiltration (COI)="; coi
INPUT "monthly coefficient recession (K)=";
INPUT *soil moisture capacity (SMC)="; smc
INPUT *initial soil moisture (SMo)="; smo

LETa=4:b=12

DIM p(a, b): DIM ws(a, b): DIM eact(a, b)

DIM ce(a, b): DIM eto(a, b): DIM pe(a, b): DIM a1(a, b): DIM b1(a, b)
DIM inf(a, b): DIM vn(a, b): DIM ditvn(a, b): DIM bf(a, b)

DIM dro(a, b): DIM ro(a, b): DIM dsro(a, b): DIM storm(a, b)

DIM qo(a, b): DIM sm(a, b): DIM ss(a, b)

vn(1, 0) = vo:



RETURN

water.balance:

CLs

OPEN "aro.dat" FOR OUTPUT AS #1

OPEN "a:ws.dat" FOR OUTPUT AS #2

OPEN *a:dsro.dat' FOR OUTPUT AS #3

OPEN “a:eto.dat' FOR INPUT AS #4 'Pot.evapotrans.data
OPEN “a:montkada.dat* FOR INPUT AS #5 'monthly precipitation
OPEN "a:vn.dat" FOR OUTPUT AS #6

FORy=1TOa
FORm=1TOb
INPUT #5, p(y, m)
NEXT m

NEXTy

CLOSE #5

FORy=1TOa
FORmM=1TOb
INPUT #4, eto(y, m)
NEXTm

NEXTy

CLOSE #4

FORy=1TOa
FORmM=1TOb
IFm=1ANDy > 1 THEN
sm(y. (m - 1)) = sm((y - 1), b)
ELSEIF m=1ANDy=1THEN
sm(y, (m - 1)) = smo

END IF

‘The calculation of water balance

LET eact(y, m) = eto(y, m)

100 eact(y, m) = ce(y, m)

200 pe(y, m) = p(y, m) - eact(y, m)

IF pe(y, m) > 0 THEN

IF sm(y, m - 1) <smc THEN

IF (pe(y, m) + sm(y, (m - 1)) < smc THEN

ss(y, m) = pe(y, m): sm(y, m) = sm(y, (m - 1)) + ss(y, m)
ELSEIF (pe(y, m) + sm(y, (m - 1))) > smc THEN



ss(y, m) = smc - sm(y, (m - 1)): sm{y, m) =smc

END IF

ELSEIF sm(y, m - 1) = smc THEN

ss(y, m) = 0: sm(y, m) = sm(y, (m - 1)) + ss(y, m)
ENDIF

ELSEIF pe(y, m) < 0 THEN

IF sm(y, (m - 1)) = smc THEN

IF (pe(y, m) + sm(y, (m - 1))) <0 THEN

ss(y, m) = pe(y, m): sm(y, m) =0

ELSEIF pe(y, m) + sm(y, (m - 1)) > 0 THEN

ss(y, m) = pe(y, m): sm{y, m) = sm(y, (m - 1)) + pe(y, m)
END IF

ELSEIF sm(y, (m - 1)) <smc THEN

IF (pe(y, m) + sm(y, (m - 1))) <0 THEN

ss(y, m) = pe(y, m): sm(y, m) =0

ELSEIF (pe(y, m) + sm(y, (m - 1))) > 0 THEN

ss{y, m) = pe(y, m): sm(y, m) = sm(y, (m - 1)) + pe(y, m)
ENDIF

ENDIF

ENDIF

ce(y, m) = eto(y, m) * sm(y, m) / smc

IF ABS(ce(y, m) - eact(y, m)) > .01 THEN
GOTO 100

ELSEIF ABS(ce(y, m) - eact(y, m)) <= .01 THEN
ws(y, m) = pe(y, m) - ss(y, m)

ENDIF

PRINT

IF ws(y, m) = 0 THEN

dsro(y, m) = imla * p(y, m)

sm(y, m) = sm(y, m - 1) + pe(y, m) - dsro(y, m)
IF sm(y, m) > smc THEN

sm(y, m) =smc

ws(y, m) = sm(y, m - 1) + pe(y, m) - dsro(y, m) - smc
ELSEIF sm(y, m) < smc THEN

sm(y, m) = sm(y, m)

END IF

ELSEIF ws(y, m) > 0 THEN
TO 300

END IF

300 PRINT

WRITE #2, ws(y, m)
WRITE #3, dsro(y, m)
NEXT m

NEXTy

CLOSE #2: CLOSE #3



RETURN

run.off:

CLs

"This calculation is based on water balance principle

‘and refers to MOCK, (1973). Water Availability Appraisal,
‘Report for Land Capability Appraisal, Indonesia.

OPEN “a:\ws.dat* FOR INPUT AS #7
OPEN “a:\dsro.dat" FOR INPUT AS #8
FORy=1TOa

FORMm=1TOb

INPUT #7, ws(y, m): INPUT #8, dsro(y, m):
NEXT m

NEXTy

CLOSE #7: CLOSE #8:
FORy=1TOa

FORmM=1TOb

IFm=1ANDy> 1 THEN

vnly, (m - 1)) = v((y - 1), b)

END IF

inf(y, m) = coi * ws(y, m)

5* (k + 1) " inf(y, m)
bi(y, m) =k * va(y, m - 1)

vn(y, m) =ai(y, m) + bi(y, m)
WRITE #86, vn(y, m)

ditvn(y, m) = vn(y, m) -vn(y, m- 1)
bf(y, m) = inf(y, m) - ditvn(y, m)
dro(y, m) = ws(y, m) - inf(y, m)
storm(y, m) = dsro(y, m)

ro(y, m) = bf(y, m) + dro(y, m) + storm(y, m)
WRITE #1, ro(y, m)

NEXT m

NEXTy

CLOSE #1

RETURN

END
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Table B.1 Table of Experiments Arranged Ba: CCD for the Six

Parameters
B C D E F
150 | 0.35 180 | 190 |
150 035 180 90
250 035 180 90
250 .35 80 30
150 | 065 80 50
150 | 065 0. 80 0
250 | 065 0 80 | 190 |
250 | 065 80 | 190
150 | 035 80 | 190 |
; 150 | 035 80 90
08| 250 35 1 80 90
2 | 250 0.35 0. 80 | 190
I 150 0.65 0. 80 | 190
012 | 150 0.65 0. 80 90
008 | 250 0.65 0. 80 30
012 [ 250 0.65 0. 80 | 190
008 | 150 035 0 220 | 190
012 | 150 [ 035 0. 220 90
008 | 250 | 035 X 220 90
012 | 250 | 035 X 220 | 190
008 | 150 | 065 X 220 | 190
12| 150 | 065 X 220 90
008 | 250 0.65 0 220 | 190
012 | 250 0.65 220 90
[ 008 | 150 0.35 220 90
012 [ 150 0.35 220 90
008 | 250 | 035 220 | 190
012 | 250 | 035 220 | 190
008 | 150 | 065 220 90
012 | 150 65 220 | 190
[ 008 | 250 0.65 220 | 190
012 | 250 65 220 0
0.08 | 150 35 80 0
012 | 150 | 035 80
[ 0.08 35 80
012 .35 80
008 65 80
12 65 180
E .08 .65 180
0.12 65 180 0




0.08 150 0.35 180 0
0.12 150 0.35 180 0
008 | 250 0.35 ; 180 0
012 | 250 0.35 0. 80 0
o008 150 | 065 80 0
o012 150 | 065 80 0
008 | 250 65 180 0
012 | 250 65 180 0
08 150 .35 220 0
12 150 .35 220 0
008 | 250 | 035 220 0
.12 220 0
.08 220 0
; 220
220
220
220
220 0
220
220
220
220
220
X 220 )|
0. 200 | 200
200 | 200
200 | 200
; 200 | 200
7 200 | 200
200 [0.924264] 0.7 200 | 200
200 05 |0417157] 200 | 200
200 05 0.982843] 200 | 200
200 0.
. 200 0.
0. 200 0. X
200 0. 7
200 .7
200 ; .7
0. 200 : 7
200 7
200 7
200 ¥ 7
200 X 7




0.1 200 0.5 0.7 200 200

0.1 200 0.5 0.7 200 | 200 |
Table B.2 Table of riments Al Based On BBD for the Six
Parameters
A B o] D E F
| 0.08 | 150 0. 0 200 200
[ 042 | 150 0. 0 200 00
.08 | 250 0. 200 00
.12 | 250 0. 200 200
| 008 | 150 200 200
[ 012 | 150 200 200
.08 | 250 200 200
12 | 250 0. . 200 200
0 150 | 0.35 ¥ 80 200
0 250 | 035 i 80 200
150 | 0.65 0.7 80 200
) 250 .65 0 80 200
150 | 0.35 0 220 200
0 250 | 035 220 200
150 | 0.65 7 220 200
0 250 | 065 220 200
200 .35 0. 200 | 190
0 200 .65 0 200 0
200 | 035 200 0
200 .65 200 0
200 | 035 200 0
i 200 | 065 0 200
0. 200 .35 0 200 0
0 200 .65 0 200 | 210
0.08 [ 200 0. 80 200
0.12 | 200 80 200
| 0.08 | 200 80 200
1 200 80 200
0¢ 200 220 200
1 200 0. 220 200
[ 008 [ 200 X 220 | 200
012 | 200 220 200
0.1 150 . . 180 190
0.1 250 B B 180 190




01 | 150 220 | 190
0. 250 220 | 180

0. 150 ; 180 0
01 | 250 | O 180 0
0. 150 | . 220 0

01 | 250 | 0. 220 0
0.08 | 200 | 035 200 30
012 | 200 | 035 200 | 190
0.08 | 200 | 065 200 | 190

12 | 200 | 0.65 200 | 190 |

008 | 200 | 035 200 0
1 00 | 0.35 200 0
0.0¢ 00 | 0.65 200 0
012 | 200 | 065 200 0
0. 200 0. 200 200

01 | 200 200 | 200

0. 200 200 | 200

0. 200 g 200 | 200

0. 200 | 0. 200 | 200
0. 200 | o. 200|200
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Sign Tables
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APPENDIX D

Additional Results



TableD. 1 ffi imation




Table D.2 The imation nse of Dv
calculated using FF and OHF.
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T

T

al

le D.3 The ANOVA Table of The Polynomial el devel

using CCD ba: n 1-year

libration Data

[Factor  [eCeMictentTor [Frea™ [oenn [Pob>H
160.166) 6.43138|
12.2031 4.3143| 2.82852|0.0060
-1.20E- 4.31E+00| -0.27811]0.7817
0.46244| 4.3143| 0.107188/0.9149
2.72E+01 4.31E+00| 6.31478)< 0.0001
2.34E+01 3.57271| 6.55165|< 0.0001
2.73E+01 3.57271| 7.63457|< 0.0001
-8.70047/ 4.82353| -1.80375(0.0753
-1.36E+01 4.82353| -2.82927|0.0060
1.42E+01 4.82E+00| 2.95043|0.0042
4.82E+00| -1.95117]0.0548
13.944 4. 2.89083/0.0050
e [E/=27919
« R*=09978
e Dv=0.2831

ble D.4 The ANOVA Table of The Pol
i D n 2-

omial model develo
ibration

m



Table D.5 The ANOVA Table of The nomial model develo;
using CCD based on 3-years Calibration Data

Coefficient Standard |t for HO
Factor  |Egimate |°F |Error Coeti=0 |PToP >l
I 350.136{ 1| 13.8618|
1| 9.29877| 4.86687|< 0.0001
9.30E+00| 0.827367|0.4105
9.29877| 3.05258|0.0031
7.70E+00| 16.4541|< 0.0001
7.70039| 13.8638|< 0.0001
10.3963| 9.26517|< 0.0001

Table D.6 The ANOVA Table of The Polynomi el develo,
using Bl n 1-year Calibration D:

Coetficient Standard |t for HO

Factor  |egimate |OF [Emor |Cosfi=0 |Prob> I
[ 175.502] 1 4.8927|

B8 126466 1] 3.58109] 3.531490.0011

cc 243E+00] 1 3.58£+00] 0.678176[0.5017
D-D -17.3118] 1| 3.58108| -4.83424|<0.0001
E-E 3.71E+01 3.58E+00| 10.3721|< 0.0001
-2.23E+01 | 3.58108| -6.23215/<0.0001

1.25E+01 .31161]  2.36027(0.0234
37.3107| .31161]  7.02437|< 0.0001

2.18E+0 5.31161]_4.08813(0.0002

-1.59E+0° 5.31E+00]  -2.9987|0.0047

[ 1] 4.39E+00]_3.47911]0.0013

14.7394 620263 _2.37631/0.0225

[ 1.01E+01] 1] 4.39E+00) X
K 6.20263| 2.60191/0.0130
6.20263| -2.33365(0.0248

* * * RREARERER




Table D.7 The ANOVA Table of The Polynomial el
using BBD based on 2-year Calibration Data

lFmor =000 "‘::“']os Siendasd fLlork0. |th >
i 249,893 7.65969

BB 122303 4.25664] _2.67323/0.0066
cC 1.82E+01 426E+00]_4.27116/0.0001
DD -30.1225| 4.25664| _-7.0766/< 0.0001
EE 3.70E+01 426E+00| _8.70336/< 0.0001
FF 2.22E+01 25664| -5.20872|< 0.0001
B2 1.24E401] .43543|_1.92886(0.0612
C2 123,548 .43543|_19.1978|< 0.0001
D2 2.62E+01 .23108| _4.19878/0.0002
E2 2.12E+01 6.44E+00|_-3.29834/0.0021
F2 ~2.07E+01 6.44E+00| -3.21175(0.0027
BE 152591 521329| -2.92697/0.0058
CD 5.45E+01 737E+00 _ 7.3961/< 0.0001
cF 1.06E+01 521329| 2.02511/0.0499
DE 1.59E+01 7.37271]_2.15121/0.0879
OF -14.3824) 7.37271]_-1.95076/0.0585
o /E/=93.5997

e« R'=0.9975

* Dv=0.2529

Table D. 8 The ANOVA Table of The Polynomial | dev:

ing BBD based on 3-year Calibration Data

Standard

it for HO
Eror_|Coefi=0 I”"" >

6.2544| 0.756413|0.4537
6.25E+00| 1.95971/0.0569

42.8414) 6.2544|  6.8498|< 0.0001
-9.26697|< 0.0001
6.1426|< 0.0001
-3.546520.0010
2.20105(0.0334
24.9645|< 0.0001
7.39492|< 0.0001
-3.12 .0033
-1.98208/0.0530
$.05268|< 0.0001

;
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Appendix E

Input Data



Table E. 1 The Data of Rainfall, Ev. iration and Runoff

'Year [Month |Rainfall |[Evapo-transpiration |Runoff
1973] Jan 170 102.3 139
1973| Feb 165 98 51
1973 | Mar 110 108.5 45
1973 | Apr 265 102 76
1973 | May 378 102.3 198
1973 | Jun 350 S0 203

973 Jul 191 89.9 23

(1973 Aug | 198 105.4 16

[1973] Sep | 230 14 16

(1973 Oct | 220 127.1 05

Nov 40 17 23
Dec | 108 105.4 49
18 102.3 111
dd 98 40
310 108.5 41
75 102 40
| 305 102.3 65
442 90 263
3%0 89.9 247
350 105.4 241 |
g 420 14 281 |
£ 296 1271 21

11974 235 17 15

(1974 25 105.4 0

[1975 | 48 102.3 4
1975 | Feb 67 98
1975 | Mar 13 108.5 33
1975| Apr 150 102 4C
1975 | May 250 102.3 89
1975| Jun 150 90 56
1975| Jul 275 89.9 22
1975 | Aug 577 105.4 12
1975 | Sep 248 114 72
1975| Oct 165 127.1 01
1875| Nov 98 17 64
1975 | Dec 68 105.4 55
1976 | Jan 80 102.3 35
1976 | Feb 7 98 34
1876 | Mar 167 108.5
1976 | Apr 480 102 262
1976 | May 568 102.3 342




1976 | Jun 370 S0 252
1976 | Jul 335 89.9 234
1976 | Aug 115 105.4 96
1976 | Sep 130 96
1976 | Oct 78 57
1976 | Nov 95 54
[1976 | Dec | 45 39
[1977 | Jan 10 29
[1977] Feb | 12 19
1977 | Mar 20 108.5 4
1977 | Apr 38 02 15
(1977 May | 67 102.3 25
11977 Jun | 305 90 67
1977 Jul 308 89.9 41
11977 | Aug | 227 105.4 13
11977] Sep | 280 14 44
(1977 Oct | 150 127.1 85
(1977 Nov | 310 17 184
1977 | Dec 348 105.4 197
1978 | Jan 41 102.3 68
1978 | Feb | 145 98 59
1978 | Mar 75 108.5 48
1978 | Apr 08 102 279
1978 May | 406 102.3 301 |
1978 | Jun 245 90 7
1978 | Jul 368 89.9 244
1978 | Aug 530 105.4 342
1978 | Sep 585 114 403
19 Oct 424 1271 325
1978 | Nov 505 17 373
1978 | Dec 45 105.4 137
















	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Blank Page
	0005_Information To Users
	0006_Copyright Information
	0007_Title Page
	0008_Abstract
	0009_Abstract iii
	0010_Acknowledgements
	0011_Table of Contents
	0012_Table of Contents vi
	0013_List of Figures
	0014_List of Figures viii
	0015_List of Figures ix
	0016_List of Figures x
	0017_List of Tables
	0018_List of Tables xii
	0019_List of Symbols
	0020_List of Symbols xiv
	0021_List of Symbols xv
	0022_List of Symbols xvi
	0023_List of Symbols xvii
	0024_List of Symbols xviii
	0025_Chapter 1 - Page 1
	0026_Page 2
	0027_Page 3
	0028_Page 4
	0029_Page 5
	0030_Page 6
	0031_Page 7
	0032_Page 8
	0033_Page 9
	0034_Chapter 2 - Page 10
	0035_Page 11
	0036_Page 12
	0037_Page 13
	0038_Page 14
	0039_Page 15
	0040_Page 16
	0041_Page 17
	0042_Page 18
	0043_Page 19
	0044_Page 20
	0045_Page 21
	0046_Page 22
	0047_Page 23
	0048_Page 24
	0049_Page 25
	0050_Page 26
	0051_Page 27
	0052_Page 28
	0053_Page 29
	0054_Page 30
	0055_Page 31
	0056_Page 32
	0057_Page 33
	0058_Chapter 3 - Page 34
	0059_Page 35
	0060_Page 36
	0061_Page 37
	0062_Page 38
	0063_Page 39
	0064_Page 40
	0065_Page 41
	0066_Page 42
	0067_Page 43
	0068_Page 44
	0069_Page 45
	0070_Page 46
	0071_Page 47
	0072_Page 48
	0073_Page 49
	0074_Page 50
	0075_Page 51
	0076_Page 52
	0077_Page 53
	0078_Page 54
	0079_Page 55
	0080_Page 56
	0081_Page 57
	0082_Page 58
	0083_Page 59
	0084_Page 60
	0085_Page 61
	0086_Chapter 4 - Page 62
	0087_Page 63
	0088_Page 64
	0089_Page 65
	0090_Page 66
	0091_Page 67
	0092_Page 68
	0093_Page 69
	0094_Page 70
	0095_Page 71
	0096_Page 72
	0097_Page 73
	0098_Page 74
	0099_Page 75
	0100_Page 76
	0101_Page 77
	0102_Page 78
	0103_Page 79
	0104_Page 80
	0105_Page 81
	0106_Chapter 5 - Page 82
	0107_Page 83
	0108_Page 84
	0109_Page 85
	0110_Page 86
	0111_Page 87
	0112_Page 88
	0113_Page 89
	0114_Page 90
	0115_Page 91
	0116_Page 92
	0117_Page 93
	0118_Page 94
	0119_Page 95
	0120_Chapter 6 - Page 96
	0121_Page 97
	0122_Page 98
	0123_Page 99
	0124_Page 100
	0125_Page 101
	0126_Page 102
	0127_Page 103
	0128_Page 104
	0129_Page 105
	0130_Page 106
	0131_Page 107
	0132_Page 108
	0133_Page 109
	0134_Page 110
	0135_Page 111
	0136_Page 112
	0137_Page 113
	0138_Page 114
	0139_Page 115
	0140_Page 116
	0141_Page 117
	0142_Page 118
	0143_Page 119
	0144_Page 120
	0145_Page 121
	0146_Page 122
	0147_Page 123
	0148_Page 124
	0149_Page 125
	0150_Page 126
	0151_Page 127
	0152_Page 128
	0153_Page 129
	0154_Page 130
	0155_Page 131
	0156_Page 132
	0157_Page 133
	0158_Chapter 7 - Page 134
	0159_Page 135
	0160_Page 136
	0161_Page 137
	0162_References
	0163_Page 139
	0164_Page 140
	0165_Page 141
	0166_Appendix A
	0167_Page 143
	0168_Page 144
	0169_Page 145
	0170_Page 146
	0171_Appendix B
	0172_Page 148
	0173_Page 149
	0174_Page 150
	0175_Page 151
	0176_Appendix C
	0177_Page 153
	0178_Page 154
	0179_Page 155
	0180_Page 156
	0181_Page 157
	0182_Page 158
	0183_Page 159
	0184_Page 160
	0185_Page 161
	0186_Page 162
	0187_Page 163
	0188_Page 164
	0189_Page 165
	0190_Page 166
	0191_Appendix D
	0192_Page 168
	0193_Page 169
	0194_Page 170
	0195_Page 171
	0196_Page 172
	0197_Page 173
	0198_Page 174
	0199_Page 175
	0200_Appendix E
	0201_Page 177
	0202_Page 178
	0203_Blank Page
	0204_Blank Page
	0205_Inside Back Cover
	0206_Back Cover

