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Abstract

Evolutoids of a plane curve are a generalization of an evolute. They form a one-
parameter family of curves whose tangents cut the given curve under a fixed angle,

which in the case of the evolute is the right angle. The evolutoidal transformation

is a point transformation determined by the inclination of the said tangents and the
radius of curvature of the original curve at the given point. Iterated evolutoidal trans-
formations depend on the derivatives of the radius of curvature.

The main results of this thesis concern the geometry and structure of the sets consist-
ing of all images of a certain point on the original curve (image-sets) under iterated
evolutoidal transformations with varying inclinations of tangents. To my knowledge,
a systematic study of such sets has not been undertaken before and several results
presented in this thesis are new. A number of special curves, such as sinusoidal spirals
and epi- and hypocycloids, appear frequently in this study, in particular, as bound-
aries of the image-sets. A geometrical construction of the 2nd and 3rd iterations as
well as some particular cases of iterations of higher orders reveal interesting connec-
tions to elegant theorems of Euclidean geometry. Some of them do appear in old

literature, but here they are reinterpreted and proved in a different way.
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Chapter 1

Overview

Let a smooth plane curve « be given. At each point of v, draw a line forming angle
6 with the oriented tangent to . The envelope of such lines is a curve called the
6-evolutoid of v and denoted by 7. In the case § = 7, the f-evolutoid of a curve is

its evolute, that is, the locus of all centers of curvature of +.

(b)

Figure 1.1: Two examples of a curve(1), its £-evolutoid(2) and evolute(3).

Two examples of evolutoids for curves given by parametric equations: (&) (e°*¥,e%"¥);

1



(b) (2cos g, sin ) are shown in Figure 1.1.

The family of evolutoids realizes two homotopies from a curve to its evolute as the

parameter ¢ runs from 0 to & and from 7 to 7.

Study of evolutoids (développoides, the original French term) has a long history that
goes back to Réaumur (1709) and Lancret (1811). Higher order evolutoids (evolu-
toids of evolutoids and so on) were studied by Haton de la Goupilliere and Aoust
[18]. However, these two authors constructed evolutoids and iterated evolutoids as
curves determined by radius of curvature as a known function of a parameter. In
contrast, we define evolutoidal transformation as a point transformation in the plane.
Although evolutoids have never been an object of mainstream research in geometry,
they have never been abandoned altogether. For example, [1] is a doctoral disserta-
tion defended in France in 1938. Later, starting in the 1960s, evolutoids appear from
time to time in literature on theorv of singularities. Some properties of evolutoids
and their applications in mechanics and optics are given in [17, pp. 148-166] (Gravi-
tational catastrophe machines) and in very recent papers [9], [16].

The motivation, which brought us to the evolutoids, is different from a generalization
of evolute. We consider an oriented oval «y, that is, a smooth oriented closed plane
curve bounding a convex region D, a point P € D and the pencil of secants to
through P, that is of {fTX) | X € «v}. Consider a problem of finding the minimal angle
formed by the tangent to v at X and _FTX) as X runs over . It appears as part of a
problem about asymptotics of a certain integral arising in diffraction theory (Section
2.1). For a given 0, the set of points in D for which 68* = 6 is called the 8-level and
denoted 44. We prove that the #-level is a subset of the #-evolutoid (Theorem 2.4.3).
Thus, we consider the #-evolutoid as a generalization of the #-level: for the latter  is
the global minimum whereas for the former # is the local minimum. Note that points

of the f-evolutoid may lay outside of D (see Figure 1.1). Some basic theorems on



geometry of evolutoids are presented in Chapter 2.

The transformation that produces the #-evolutoid from the original curve v point-wise
is called the #-evolutoidal transformation. The main subject of our study is composi-
tions of evolutoidal transformations.

Denote by Xy the image of a point X € v under the f-evolutoidal transformation. By
the definition of the transformation, the line X Xy is tangent to 4 at Xy and forms
angle 6 with the tangent to v at X. The evolutoidal transformation is local: Xy is
determined by the point X, the direction of tangent to v at X, and the radius of
curvature of v at X, R(X). The radius of curvature of a curve can be endowed with
the sign so that the theory of evolutoidal transformation is linear. In Chapter 3, we
define orientation of a curve and its evolutoids (with possible cusps), and define the
signed radius of curvature. We prove that the so defined orientation is preserved by
evolutoidal transformations (Theorem 3.2.14).

Let Xy,9, be the image of the point Xy, € <5, under the 8s-evolutoidal transforma-
tion of v4,. A fundamental property is commutativity of evolutoidal transformations:
X0, = Xoy9, for any 61,05, This property was probably discovered by Haton de la
Goupilliere [18]. We prove it analitically in a different way in Theorem 3.3.1, and
give a geometrical interpretation of a composition of two evolutoidal transformations,
which is believed to be new, in Theorem 3.3.3.

Different sets {6, ...,0n5} and {61, ...,0%} define, in general, different compositions of
N evolutoidal transformations, and may yield different images, but their geometry
exhibits similar pattern. This geometric pattern prompts us to refer to a composition
of N evolutoidal transformations as the Nth iteration, N = 1,2, ..., emphasising the
number of transformations, even if 4y, ...,0x are not all equal. Chapter 4 is devoted
to the construction and some general properties of the Nth iteration.

The image of the Nth iteration of a point X € ~y is denoted by Xy, 4, . Iterated evolu-



toidal transformations of X are determined by the germ of v at X. More precisely, the
Nth iteration Xy, 4, is determined by the (N +1)th jet of v at X, jni+1(v, X). Equiv-
alently, Xg, g, is determined by X and the derivatives R(X). R'(X),.... R¥"D(X)
of the radius of curvature of v at X with respect to a Gaussian parameter.

From now on, let us fix the curve v and a point X € ~. We study the ranges of
the iterations Xy, g,. IV 2> 1, as the angles 0; vary. The set of Xy, 4, for all values
of 8; € [0, 7], that is, the range of the map (6;,....,0x) = X, g,. will be called the
image-set and denoted by Q%.

Our study concerns shapes of such image-sets Q¥. In the case N =1, the set Q% is a
circle Cy of radius R(X)/2, tangent to v at X. For N > 1, Q¥ is generally a closed
2-diniensional region.

The boundary of 2% is the parametric curve {Xgy, 0 < 6 < m} and can be identified
as a cardioid. Geometric and analytic proofs of this remarkable fact are presented in
Chapter 3 (Theorem 3.4.7).

A cardioid can be viewed as either an epicycloid with one cusp! or as a sinusoidal
spiral of order n = 1/2 with polar equation 7" (p) = a™ sin(ny) [14].

The image-set 2% of the third iteration in general is bounded by arcs of one of in-
volutes of a nephroid 2. The proof of this statement (Theorem 6.1.13) is based on a
sequence of elegant and interesting theorems of Euclidean geometry proved synthet-
ically and analytically in Chapters 5 and 6. We also established algebraic relations
for R(X),R'(X), R"(X) that determine different types of a nephroidal involute. For
example, if R(X)+ R”(X) = 0, then Q% is bounded by that involute which is itself

a nephroid.

"Epicycloid is a curve produced by tracing a given point on a circle of radius =, which rolls
around a fixed circle of radius R. The ratio R/r is called the ratio of epicycloid. [14, p. 168]. Up
until Chapter 8, we will consider only cases with integer ratio, which is equal to the number of cusps
of epicycloids. A cardioid occurs when the radii of the two circles coincide.

2A nephroid is an epicycloid with two cusps [14, p. 171].
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Another distinguished nephroidal involute, a sinusoidal spiral of order 1/3 called the

Cayley sextic [14, p. 178], corresponds to the case where R(X). R'(X). R"(X) form a
geometric sequence. This fact admits a nice generalization for all N > 1. The image-
set of X under the N-th iteration is bounded by arcs of a sinusoidal spiral of order
1/N if the sequence R(X), R(X),..., R¥=D(X) is geometric. This is the Sinusoidal
Spiral Theorem (7.2.6) proved in Chapter 7.

In order to get insight about a more general situation (for an arbitrary germ ~ at X)
in case of N > 3 iterations, we pay close attention to the «-constant sum image-sets,
that is, we will require that 8, + 6, + ... + #y = amod 7, where « is some constant.
In the case of the 3rd iteration, a constant sum image-set is bounded by either a
deltoid (which is a three-cusped hypocycloid) * or an affine image of a deltoid, which
is treated as a parallel projection in R? of a deltoid in Theorem 6.2.24. Note that
constant-sum image-sets overlap and do not tile the whole image-set. Interestingly,
the areas of all these image-sets are equal (Lemmas 6.2.19 and 6.2.23). It turns out
that the envelope (in the usual sense, “tangent envelope”) of the family of the del-
toid’s projections is a circle or a circular arc connecting the cusps of a curve bounding
the image-set of X (Theorem 6.4.5). The latter curve is the cuspidal envelope of the
deltoid’s projections (Figure 1.2).

The radius of the circle or of the arc depends on R(X), R'(X), R"(X) and could be
infinite as it is in Figure 1.2(c). The latter happens precisely when R(X) + R"(X) =
0, that is, the boundary of Q% is a nephroid (Theorem 6.1.13). In this important
particular case, the constant sum image-sets are bounded by proper (as opposed to
projected) deltoids.

The observation that the locus of cusps of all deltoids from this family is the two-

3Hypocycloid is a curve produced by tracing a given point on a circle, which rolls inside a fixed
circle. The ratio of a hypocycloid and its equality to the number of cusps of a hypocycloid is defined
as in the case of an epicycloid.
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Figure 1.2: The tangent envelopes (a circle or an arc) and the cuspidal envelopes of
the deltoid’s projections.
cusped epicycloid is generalized in the Epicycloid Envelope Theorem (Theorem 7.1.16)
that pertains to the case of general N. For instance, as shown in Figure 1.3(a), the
cuspidal and tangent envelopes of the family of 4-cusped hypocycloids are the 3-
cusped epicycloid and the 3-cusped hypocycloid respectively. Another part of the
Theorem is illustrated by Figure 1.3(c): the cuspidal and tangent envelopes of the
family of 2-cusped epicloids are the 3-cusped hypocycloid and the 3-cusped epicycloid
respectively. Finally, looking at the deltoids on Figure 1.2(c), we see that the centers
of these deltoids lie on a circle centered at the center of the large nephroid (Figure
1.4). A generalization of this fact is the third part of Theorem 7.1.16.
This result is known in the literature [15]. However, in our work it appears in a
different context and has a different proof based on the Triple Envelope Theorem
(Theorem 6.3.2), which is outlined below.
Denote Xygv = Xg,9, 05, if 4 = 02 = ... = Oy = 6. Then denote I'y = {Xy~}j_,.
Incidentally I'y contains the boundary of Q¥ (Theorem 6.4.9). For example, the
boundary of Q% is the cardioid {Xy2}5_,, as mentioned earlier.
Next, we introduce three family of curves, each formed by points Xy 9, ¢, where all

but one 8; are equal. Namely,
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Figure 1.3: An illustration to the Epicycloid Envelope Theorem and The Triple En-
velope Theorem.

Figure 1.4: An illustration to the centroid part of Epicycloid Envelope Theorem.



— family (A) consists of curves f‘j’{, = {Xgn-1(a(Nv-1)0) } o0}

— family (B) consists of the circular image-sets of the first iteration of the evolutoidal
transformations of all points X, ~—1 € T'y 1, i.e. f% = {Xpov—1}o_0;
— family (C) consists of the curves I'Y = { Xygn-1 150
The Triple Envelope Theoren states: The envelopes of the three families of curves
(A), (B) and (C) cotncide for all N > 2. The illustration on this theorem is presented

in Figures 1.3 and 1.5.

//:5:;.

7
7/
(l/ ‘n'p! X
1.'.'.0;:
W

Figure 1.5: Another illustration to The Triple Envelope Theorem, (R, R, R") =
(1,0,—1). (a) The family (A) of deltoids: (b) The family (B) of circles; (c) The
family (C) of cardioids.

This theorem is a key point for understanding many aspects related to the evolutoidal
transformation and its iterations. As well, it provides new approaches to proofs of
already known facts from geometry of planar curves, in particular, of epi- and hypocy-
cloids.

In Chapter 8 the reader will find a brief discussion of statements which could be proven
based on the results and methods developed in this Thesis, as well as an overview of

future possible research directions.




Chapter 2

Envelopes of f-secants

2.1 Motivation: Asymptotics of a contour integral

The origin of this thesis is related to the study of asymptotics as A — oo of an integral

from diffraction theory [11], [12]

I\ 1) = /ei“’t(s) ds.
Y

Here v : I — R2?, s — X(s), is a convex smooth curve parametrized by arclength s,

X is a fixed point inside v, and the phase factor ®,(s) is given by
i(s) = [| X (s) — Xol| + ts.
The stationary phase method leads to the equation

cosf(s,) =t



for the critical points of the phase, where #(s.) is the angle' between the tangent to
v at X(s.) and vector m (s«). It turns out that a real critical point exists if and
only if there is a point X € 7 such that the angle between ﬁ and the tangent to
« at X is less than #. For points close to boundary, a solution is more likely to exist
than for points deep inside.? The rest of this Chapter is devoted to a way to describe
geometric conditions assuring existence of the special points.

While this research was initially prompted by an asymptotic problem in diffraction

theory, this line will not be pursued in the thesis.

Here 6(s.) has the same meaning as 8(X) in (2.2.1).
2In terms of Definition 2.2.2, the critical points exist iff X lies outside the curve 4.
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2.2 Extremal problem for a pencil of secants

In this Section, we consider some properties of a special class of curves, called ovals.
A region is an open connected set {19, Ch. 10.1].

A curve bounding a convex region in R? is called a convex curve, although it may not

be a convex set.
Definition 2.2.1. An oval is a smmooth closed plane curve®, bounding a convex region.

Let v be an oriented oval, that is, an oval such that when travelling on it one always
has the curve interior to the left (or to the right). Denote the interior of v by D.
Take a point P ¢ . For each point X € v, the angle § = (X, P) between P_)(t and

a tangent vector ¥(X) = ¢ to vy at X is determined by

PX. 7
cosf = . (2.2.1)
IPX ||| 7|

The direction of ¥ must agree with orientation of ~.

By the pencil of secants to ~v through the point P, we understand the family of rays
(PX X €},

Let us consider the following question: What is the range of all possible values of 8 as
X runs over 4?7 We assume that 0 < 6 < x throughout. There are two possible cases:
(1) The point P ¢ D, i.e. P lies outside +, as in Figure 2.1(a). Then there are two

tangents from P to v. We have:

min g = 0, maxf = 7,
Xey Xey

and cos ¢ can take any value in [—1, 1].

3A curve has two meanings: (1) a map I — R? (a parametrized curve): (2) the range of this
map (a geometric curve). Before we introduce parametrization, we will treat a curve as a geometric
object.

11



(2) The point P € D, i.e. P lies inside v, as in Figure 2.1(b). Then the map X — cos@
is a continuous function from the compact set v to R. Therefore, it must attain its

min 1 0 ) 1111'11 6 < ( H 1 H

Oonace( %, 7) = 100X H(X, P).

If in a given context, the curve 7 is fixed, we simply write Omin(P) and Omax(P). There
are points X, = X,(P), Xux = X.ux(P) € v corresponding to the minimal and maximal
angles respectively. These points X, and X,,. are not necessarily unique.

Remark. For any P there exist a point X; € v that minimizes and a point X, € v
that maximizes the distance from P to X € 7y respectively. These points X; and Xp
are not necessarily unique. The lines PX; and PX, are perpendicular to the tangents
to v at X; and X, respectively. Therefore, the value § = 7/2 is always attainable.

Consequently, Omin(P) < 7/2 < Omax(P).

(a) (b)

Figure 2.1: What is the range of all possible values of 8(P) as X runs over v? (a) P
lies outside of v; (b) P lies inside 7.

We will now introduce a curve 4y, a part of the #-evolutoid vy to be defined in Section

24,
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Definition 2.2.2. Given 6 € [0,7/2], the set (possibly empty) of all points P € D
for which B,,(P) = 6 will be called the 8-level set and denoted by ~y. That 1s.

A = {P € D|0un(P) = 6}. Denote the set {P € D|0,,:.(P) > 8} by D(F).

Remark. Let 7_ be the curve v with reversed orientation. Then 6,,(P,v_) =
7 — Bmax(P.7y). For this reason. we do not introduce a curve analogous to 4y by the
condition 6, (P) = 6.

As an example, let us compute 6, and .., In two elementary cases.

Example 1. Let v be the circle

0< <2

At a point X = (x.y) on 7, the tangent vector to v is given by v = (de/dp,dy/dp) =
(—sing, cos p). Let O be the center of 4 and a point P be such that |[OP| < 1. We
may assume that P = (p.0). 0 < p < 1. Then PX = 04)(é _ 0P = (cos p — p.sin ).
(see Figure 2.2(a)).

Let cos§ be defined as in (2.2.1).

Proposition 2.2.3. For all ¢, we have —p < cosf < p. The catremal values B, =

arccos p and B4, = 7™ — arccos p are attained at the points X, = (p. /1 — p?) and

Xuw = (p. =1 — p?). where ¢ = p and p = —p respectively. (See Figure 2.2(b)).

Proof. If p=0.i.c. P = O, then §(X. P) = const = 7.
If p > 0. then by (2.2.1). the angle 6 between 194){Z and ¢. can be expressed in terms

of p and ¢:
psin g
\/p2 —2pcosp+ 1

cosf =

13



N/emin(P)
0 f———— g/ z
/ -

(a) (b)

Figure 2.2: Circular case: (a) Point X in general position; (b) Extremal angles.

The condition for extremum d cos 8()/dp = 0 yields the equation

p*cos’ o — (p+ p°) cosp + p* = 0, (2.2.2)

whose solutions are cosp = p or 1/p. The only* relevant value cos = p corresponds

tox=p, y==%1-—p? a

Corollary 2.2.4. ° If v is a unit circle and 6 € [0,7/2], then 4y is the concentric

circle of radius cosé.

O

Example 2. Let v be the ellipse with semiaxes a > b, given by parametric equations®

X = (z(v),y(p)),

T = acosy
y 0< < 2m.

y = bsingp

‘Because ;1; > 1 lies outside of the range of cosp.
5This is, although in a different context, a particular case of Réaumur’s Theorem 2.4.6.
®That is, a parametrization by a trammel (ellipsograph) of Archimedes, see [10].

14




Consider the case P = (0,0). Determine the range of 8(X (p), P) as ¢ varies from 0

to 2m.

Proposition 2.2.5. For all ¢, we have

b2 — g2 a2 — b2
< . 2.
prawY <cosf < prae (2.2.3)

2 2 522 :
The extremal values Gy, = arccos%mg and Gp,,. = arccos E’TZ’ are attained at the

points corresponding to ¢ € {I, %’5} and p € {ST”, %} respectively, regardless of the

values a and b.

Proof. We have OX = (acos p,bsinp), ¥ = (—asinp,cosp). Hence

s6(0) oxX. 7 (b — a?)sinpcos ¢
|O_X} I -7 \/(a2 cos? o + b2 sin® ) (a2 sin® ¢ + b2 cos? )
(b% — a2) smgocos @
\/(a2 + )2 — — b?)2 cos? 2(,0'

Differentiating, we get

d cos B(p) 2(b2 — a?) cos 2p(4a?b? + 3(a® — b?)?sin 2(,0)
dip ((a? + b2)2 — (% — b2)2 cos? 2¢)%

Since b2 — a? < 0 and 4a%b? + 3(a? — b%)%sin? 2¢ > 0, the extrema of cos §(y) coincide

with zeros of cos2¢. Therefore cosf attains its minimum at ¢ = 7, %’r and its maxi-
mum at ¢ = ‘%“, 74—“. O

Remark. If P is not the center of the ellipse, then the condition of extremum leads

to an equation Ps(p) = 0, where P is a trigonometrical polynomial of degree 6.
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2.3 Properties of 0-level sets

Let v be an oriented oval and vector ¥ be the tangent vector to v at X € 4.

Definition 2.3.1. The line that crosses v at X and forms the exterior angle 8 with

¥ is called the -secant to v at X and denoted by Ix ().

Denote by mx(6) the open half-plane bounded by [x(6) and containing the tangent
vector ¥ to v at X and by Dx{(6#) the part of D, the region bounded by 7, lying
in mx(8). Denote also by 7x(§) and by Dx () the closures of 7x(f) and Dx(6)
respectively. The boundary of the closure of any region @ will be denoted by Q.

Denote D(H) = U ’3’9/.
9'>0

Lemma 2.3.2. If D(6) # @ then a curve 4y of an oval is a convez closed curve.

Proof. Let us take an oval 4. Fix a 6 such that D(6) is nonempty. Then the line Ix ()
partitions D into two convex parts, as in Figure 2.3.

A vector PX from a point P € D \ x(0) forms with ¢ at X an angle which is less

Figure 2.3: Partitioning of an oval by a 6-secant.

then 6. So, D() C Dx(6).
Therefore, if a point P € 45, then P € [\ Dx(6). Since any Dx () is convex, () Dx(6)
X %

is convex, too.
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Note that if a point P € Dx(6) then ]TX) forms with v at X an angle greater than ¢,

therefore vy ¢ () Dx. Consequently 4, C 0[] Dx (8).
X e
On the other hand, any point P € 0 Dx(6) lies on the chord (¢ () D for some X ey,
X

e — ——

- - - -
ie. PX,v(X) =6, and if we take any X’ € « such that X’ = X then PX, ¢(X’) > 6,
otherwise P € D \ Dx:(6#). Hence 9 Dx(8) C Ap.
X
Therefore 0() Dx(6) = 4s. O
X

Definition 2.3.3. A curve that is tangent to each member of a family of curves is

called an envelope” of a family of curves [2, §5.12].

Lemma 2.3.2 gives a good insight on the relationship between the 44 and the envelope
of the family of lines {lx(#)}xe,, that is, the envelope of -secants®. The latter is
a convenient object to observe since its equations can be easily obtained from the
equations of v [2, §53.3].
If v contains a rectilinear segment X'X", then #-secants are parallel for all points of
~ lying between X’ and X", hence there are smooth curves for which envelopes of
f-secants do not exist. To guarantee the existence of an envelope, we will introduce
the restricted class of ovals called strict ovals.

An oval with no linear segments and points of hyperosculation, that is points where

the curvature is zero, is called a strict oval.

Lemma 2.3.4. If v is a strict oval, then 4y does not contain a rectilinear arc.”

Proof. Suppose there is a ¢ such that 4, contains an arc PP’, which is straight.
Then this arc is a part of some chord of v, XX'. Set P = 9Dx(#)() XX’ and
P =0Dx ()N XX".

"There are many alternative definitions of envelope, but for the current purposes this one matches
best. More detailed definition will be presented later in this Chapter.
8A more detailed relationship will be established in Section 2.4.
9This statement is valid even if we allow + to have points of hyperosculation.
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Now, take any point Py € [P, P'], Py ¢ {P,P'}. Then there will be X, ¢ {X, X'}

such that 9Dy, (f) > Py. Note that Py = dDx,(0) () X X'. Then either P’ & Dx,(0)
or P ¢ Dx,(6). The one which does not belong to Dx,(6) can not belong to As.

Contradiction. O
Lemma 2.3.5. If 6, > 6,. then D(6,) C D(02) and s, lies inside g, .

Proof. 1f 81 # 04, then 4y, N 4y, = &, because a point P € D belongs to only one 7y,
namely, P € Jg_.. p- O
The following Lemma introduces a special point of an strictly convex oval, which will

be used to characterize 4y as a distinguished part of the envelope of the #-secants at

the end of this Chapter.

Lemma 2.3.6. (Existence of the special point for a strict oval) For any oriented

strict oval 7. there exists a unique value 6* such that g~ is a point.

Proof. Consider the family of 4y of a given v. By Lemma 2.3.5, 49, N 5y, = @, if
61 # 0,, so the curves are nested. Note that for § = 5, D(f) = &, because we can
always drop perpendicular to v from any point P € D, connecting P to the most and
the least distant points of 7, as D is compact.

On the other hand, if D(6) # @, then there is a point P € D(f) such that g =
Omin (P) > 0. Hence P € 4;, which lies inside 45. Thus, having a sequence 0 < 6; <
0, < ... < I, the corresponding sequence D(6;) D D(fy) O ... 2 @. By the Bolzano-
Weierstrass theorem, there must be 6* < /2, where D(6*) = & and for any 6 < 8
the corresponding D(6*) is not empty.

Further, by Lemma 2.3.2, 45+ can not consist of two coinciding arcs ab and 81\17 since
all chords of 4y must lie entirely inside it, nor can ab and ba be line segments, since
Ag+« must not contain any straight arc by Lemma 2.3.4.

Hence, 44~ is just a point, P*. The uniqueness of 8* implies the uniqueness of P*. []
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Remark. If we need to find the locus of points in D for which given 8 is the global
maximum on v instead of the minimum, we may simply change the orientation of =y
and consider the f-level family in that case. We will again end up with some critical
point, P**, which will represent the member of the family, corresponding to the critical
value of 6 denoted by 6**, i.e. 4p-. = {P**}.

If v has an axis of symmetry, the points P* and P** lie on the axis. Hence if 7 has
more than one axes of symmetry, the points coincide, and 6* +6* = 7. But in general,
P* £ P*™ and the sum of two critical angles is not necessarily .

One may give the following description of the 4s-family. Suppose a train goes

1

Figure 2.4: Train model.

around a rail-road loop of the shape of our v in counter-clockwise direction. Let us
fix 4 searchlights on the train: the first sends its light-beam forward, the second —
backwards, the third and the fourth point inside D and form angles ¢, < §* and
Oy < 7 — 0" with the light-beams pointing backwards and forward, respectively, as
shown in Figure 2.4. Then the boundaries of the regions unlit by the third and the
fourth searchlights will have the shapes of 44, for v oriented counter-clockwise and

Ya, for v oriented clockwise respectively.
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2.4 Evolutoids

Let ~ be a strict oriented oval whose radius of curvature is a continuous function
of the parameter. Then v can be locally represented (up to the 2nd derivative of
its parametric representation) by its osculating circle!®. This fact allows us to take
advantage of the results obtained in the circular case (Proposition 2.2.3 and Figure

2.2(b)). Given 6 € [0, 7], let us define the f-evolutoid of v by explicit construction.

Definition 2.4.1. Let a point X € . Let E be the corresponding center of curvature
of v. Draw the 0-secant to v at X, [x(6). Let P be the foot of the perpendicular EP
dropped from FE to Ix(6), (see Figure 2.5(a)). The locus of all such points P for all

X €« is called the §-evolutoid of v and denoted by 7.

Note that P may be inside or outside of the region bounded by ~ or it may lie on ~,

since it is determined by local properties of v in a neighbourhood of X.

31

bR W 0BT\ P

osculating circle

(a) (b)

Figure 2.5: Construction of a point P on 7y, corresponding to a point X € .

1A curve v is the envelope of its osculating circles [2, Ch. 5]
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Lemma 2.4.2. Let R be the radius of curvature and @i be the unit normal vector to

v at X pointing inward the region bounded by y. Then
Rsin®6 = ii - XP. (2.4.1)

Proof. Look at Figure 2.5(b). (Here b is for sin?#). The scalar product 7 - XP is the
orthogonal projection of vector XP onto 7. which is |[EX|sin®# = Rsin?4. O

We will now establish a relation between the curves 4y and .
Theorem 2.4.3. The set 4y is a subset of .

Proof. Let an oval v be parametrized by its arclength, s, and let ¥(s) be a tangent
to v at X(s). Let a point P be such that ﬁ(so) and ¥(sg) form angle 6. Let also
R be defined as in Lemma 2.4.2. The statement of the theorem is equivalent to the

assertion: if P € 4, then equation (2.4.1) holds. We have, [|¥]| = 1, and

cosf = PX. ) (2.4.2)
IPX]

If G (P, X(89)) = 6 then A(s) has a global minimum at s = so. Hence, it must have

a local minimum at this point. That implies <<% | _ — 0.

ds

Differentiating the components of (2.4.2)

APX| w5 . 1
& T

ds R’

:17‘

di 7 dPX
ds

we have:

I
3
f&

T
P
<y

+

31
3|

S

;E';l

Il—

IPX|?(cos ),




From here, we obtain:

g a2
1+%-1?X):<ﬁ ) = cos? 6,

BE

and the equation (2.4.1) follows. O
Thus, a necessary condition for a point P € D to lie on 9y is P € yy. To determine
a condition for a point P € vy to lie on g, let us focus our attention on the family

{76 }5-0-

Let a curve 7 be given by the parametric equations X = (z.y) = (z(¢), y(¢)), where

@ is some parameter. Denote & = dx/dp, § = dy/dyp, and let ¥(¢) and R(y) be the

tangent vector to 7y and the radius of curvature of v at the point X respectively.

Lemma 2.4.4. Let 6 € [0, 7] be fired. The parametric equations of the 6-evolutoid

are

rg = — gsinB(& cosf + ysin b) R
79: , g:___
Yo =y + gsinf(sinf — ycosh)

(2.4.3)

Proof. We have ¥ = (2.9), 71 = (—y,%).
If we consider the radius of curvature R from the geometrical point of view, it is a

positive number
3
2

(&% +§°)"

|4 — 2y

(2.4.4)

However, for a closed convex oriented curve the expression (¥4 — #y) is always of the
same sign, so the absolute value symbol may be dropped!!.

According to our construction presented in Definition 2.4.1, the equation of -, has

UTn our definition of normal vectors, the choice of sign is consistent with the formula for the
evolute: E = X + Rni*. where 7* = 7i/|/7i|| is a normal unit vector. Thus we will take that R < 0 for
a clockwise oriented oval, i.e. the unit normals are exterioir. Hence, local minima of R on -y oriented
clockwise will coincide with local maxima of R on the same curve oriented counter-clockwise. and
visa versa. For more details, see Section 3.2.
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the following vector form (see Figure 2.5(b)):

P = X + Rsinf(—(cos )7 + (sin 8)7). (2.4.5)

From (2.4.5), we can immediately obtain the parametric equation for vs. 0
Before we prove the next statement, we introduce the precise definition of the envelope.
Let each curve C,, in the family F be given as the solution of an equation f,(z,y) =
0, where ¢ € [a,b] is a parameter. Write F(p,z,y) = f,(x,y) and assume F is

differentiable.

Definition 2.4.5. The set of points D, for which F(p,z,y) = %(ap, x,y) = 0 for
some value of ¢ € [a, b, is the envelope of the family F.

There are alternative definitions:

(1) The envelope Dy is the limit of intersections of nearby curves C,; (2) The envelope
D, 1s a curve tangent to all of Cy; (3) The envelope Ds is the boundary of the region
filled by the curves C,. Then Dy C D, Dy C D and D3 C D [2, §§5.3-5.18].

A curve Dy, which is an envelope in the sense of Definition 2.3.3, is called a tangential

envelope. By Definition 2.4.5, it is a subset of the envelope in general.

Theorem 2.4.6. (Theorem of Réaumur). The envelope of the §-secants to v is the

f-evolutoid.

Proof'* Let a point P = (x,,y,) lie on the f-isocline passing through a point X =

(2. y) = (x().y(w)) €7

Denote cosf = ¢, sinf = s. Then

PX. 7 PX. 7
cosfl = ,  sinf=— ‘ (2.4.6)
IPX -7l IPX ||| 7

2We do not know the original proof and present our own. Réaumur defined the #-evolutoid as
the envelope of #-secants and then showed its equivalence to the locus described in Definition 2.4.1.
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Expanding equations (2.4.6), we get

s(@(z —zp) + Yy — o)) = gz — 2p) — (Y — Yp)). (2.4.7)
Define the function
f(Zp, Yps ¢, 0) = Tp(—E5+ ) +yp(—ys — c) + s(xZ +yy) +c(—yz +2y) = 0. (2.4.8)

By Definition 2.4.5, the condition for envelope is

df(.’ltp, Yo, ¥, 9)

d(p == f(zpa Yor s 0) = 0. (249)

We have

df(xp,yp’ ‘Pvg)

T = 2p(—i5 +§c) +yp(—fis — &c) + s(&* + 9 + 22 +ygy) +c(dy — jz) = 0.

(2.4.10)
Equations (2.4.8) and (2.4.10) form a system of two linear equation with respect two
variables, z, and y,. The solution of the system matches (2.4.3). O
As an example, several evolutoids for the case of an ellipse are shown in Figure 2.6.
We can see that even for such elementary case, evolutoids may have singularities and
self-intersections. A necessary condition for singularities of an evolutiod is established
in Chapter 3.
According to Theorem of Réaumur, each point on 8-evolutoid corresponds to a point

on the original curve. So there is a point-wise map & : v — 7.

Definition 2.4.7. The point-wise map & : v — 7, such that the line passing
through X € v and E(X) € 7o 1s the O-secant to v at X, is called the 0-evolutoidal

transformation.
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Figure 2.6: Some evolutoids of an ellipse with semiaxes v2a and a.

Lemma 2.4.8. For any strict oval, v, if 6 < 8* and the map &y is invertible, then 7y

coincides with .

Proof. By Lemma 2.3.4, 4y is a strictly convex closed curve, and by Theorem 2.4.3,
it is a subset of vp.

Invertibility of £ implies that 7, has no self-intersection point'®. So, 7y is a closed
simple curve, whose subset, 73, is a strictly convex curve. Any proper subset of such
curve is not a closed curve, hence 95 and vy coincide. O
The inverse statement is not always true, for instance, the evolute of a circle v, that
is, the circle’s central point, is both vz and 4z, meanwhile 5% is not invertible in that
case. A less trivial counterexample is when ~ contains an arc of a logarithmic spiral'.
As one can easily show. there is a 8’ such that £ maps the whole arc into a point,
the pole of the spiral. Then it is possible to construct the rest of v such that the pole
of the spiral is inside the region bounded by v and belongs to both 44 and ~y.

However, the key point to distinguish between the two curves is convexity of 4.

Bgself-intersection of a closed curve v(p). ¢ € [a.b] € R, v(a) = 7(b), means, that there are

@1 # 2 € (a.b) such that v(¢1) = v(p2)
L4that is, a curve, whose equation in polar coordinates is r = a¥, [21, p. 300].
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Proposition 2.4.9. For any strict oval v, and 8 < §*, the curves yy and 7y coincide

if and only if the latter is not self-intersecting.

Proof. If vy is not self-intersecting, it is strictly convex by the reasons presented in
Lemma 2.4.8. Then the curves coincide since 44 is enveloped by f-secants to v, and
~g is the envelope of them. The converse is obvious. O
Lemma 2.4.8 and Proposition 2.4.9 give insight on sufficient conditions of a point to

lie on v, (details are shown in Figure 2.7).

(a) (b) (¢)

Figure 2.7: Difference between 4y and 7y. In the picture, v is an ellipse oriented
clockwise: (a) 7 and 9z; (b) v and vz; (c) 7, vz and 4=z. In that case, yz and 7z
coincide.

Suppose now that «, is self-intersecting. Since it is a closed curve, the region it bounds
can be broken into regions!® bounded by simple curves, which are unions of arcs of 7.
Let us call such simple curves constituents of v and denote by wf, k=1,2,.... If we
know the position of P*, that is 4y-, we can easily spot the proper constituent, which
is 49, since the region it bounds contains P*. It is clear, due to nesting property of
f-levels established in Lemma 2.3.5.

From the analysis of properties of 44, we move to that of evolutoids; the latter contain
the former and can be conveniently parametrized. Starting from the next Chapter we

focus our attention on local properties of evolutoids and of the map &,.

15Tt can be shown that the number of such regions is finite, if we do not allow ~y to have infinitely
many isolated vertices, that is the points of local extrema of the curvature of ~.
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Chapter 3

Evolutoids of evolutoids

3.1 Radius of curvature of an evolutoid

We will denote by X, a point on #-evolutoid of a curve v, corresponding to a point

X € v, and write Xy € 7p.

Definition 3.1.1. For a fized 8 € [0, 7], the pointwise map of a parametrized curve vy
into 1ts O-evolutoid is called the 6-evolutoidal transformation of the curve and denoted

by E : vy — v5, X — Xo.

Consider a g, 0 € [0,7] of a given v € C* with non-zero curvature, parametrized by
an arclength parameter, .
We will use the following notations:

—

U = Up(yp) = (Xp, Yy) the tangent vector to vy at Xp(i0);

Ry = Re(p), R = R(p) and Rg = Rz(p) - radii of curvature of v, at Xp(y), v at
X(¢), and vz at Xz (p) respectively;

Ey = Ey(p), B, = E(p)- centers of curvature of 75 at Xy(yp) and the evolute, vz, at

2,
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E respectively.

Lemma 3.1.2. The center of curvature of ve at Xe(p), Eg, lies on the line PE.

Proof. The statement follows from perpendicularity of PX and PE, by construction
of g, since PX is tangent to #-evolutoid at P = X,. O

Let us calculate 75(y) , using the short notations s and ¢ for sin 8 and cos 6 respectively:

Gy = Xp = X + R(—cst + °71) + R(—cst+ %) = vc(c — Rs) +7is(Rs — ¢). (3.1.1)

Denote ¢ — Res and Rs? — ¢s by Ay and By respectively. Then v = Ag(d,y) +
Bg(—1y,x). Then we get

Xp =14 — yBs

(3.1.2)
Yy = yAg + @ Bo.
Since A2 + B2 = (¢ — Rs)?, calculating ||55]|? vields:
. S22 . . :
gl = Xo~ + Yy = (A% + Bp) (&% + %) = (c — Rs)~. (3.1.3)
N —

=[7]*=1

The formula for the radius of curvature of an evolutoid of a curve, parametrized hy
some parameter ¢, not necessarily the arclength parameter, is given in the following

proposition, which was offered as an exercise in [6, p. 47].

Proposition 3.1.3. The radius of curvature' of vy can be expressed via R and R:

|Ry| = |(c — Rs)R|. (3.1.4)

'For now, we do not focus on sign of radius of curvature and looking for its absolute value.
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Proof. To calculate Ry, let us express all the constituents of the formula

(X} +Y7):

| XpYs — Yy Xl
in terms of &, %, v, and 6. We have:
Xy =3Ag — By + 3 Ag — yBy
(3.1.6)

Yy = @Bp + ijAs + 2By + 1 Ao.

Note, that BgAy = AgBs. Then plugging the expressions 3.1.6 in the denominator of

(3.1.5), we obtain:
XoYy — Yo Xy = (A + Bf) (Lot — yacis). (3.1.7)

From equation (3.1.7), we note that the signs of XY, =Yy X, and Zgys — 1js 7y coincide.

Finally, using 3.1.3, we get the desired result:

2

o = o Vo)

E AR DL
XY, - Yo X |(c — Rs)R|. (3.1.8)

A2+ Bl —————— =
0 0 ‘330’!19 - ‘yeil'o|

O
Note that singularities of vy correspond to Ry = 0. Equivalently, Rsinf — cosf = 0,

i.e. R = cot#. Thus. we obtain the following statement.

Corollary 3.1.4. If R = cot8 at some point of v, then the corresponding point of

B-evolutoid is singular.

From Proposition 3.1.3 follows a well-known [2, Ch. 2] identity for Rz, the radius of

curvature of the evolute of ~.

\Rz| = |RR]. (3.1.9)
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3.2 Invariance of the orientation.

Let us provide a brief background needed to give a justification for our choice of a

sign for the radius of curvature of an evolutoid.

Definition 3.2.1. An oriented pair is an ordered pair of orthogonal unit vectors
@, 7}, te ||T]| = 7] =1, (v,7) =0.

For each direction of U, we have two choices for ni(s):

(a) Left orientation. The rotation of vector ¥ by m/2 counter-clockwise places it in
the position of .

(b) Right orientation. The rotation of vector v by w/2 clockwise places it in the

position of 7.

Definition 3.2.2. The orientation of the oriented pair {U, 7} 1s the number

1. if {¥,7} is a left-oriented pair,
e({v,1}) = (3.2.1)

—1, if {¥,7n} is a right-oriented pair.
Let I € R be an interval.

Definition 3.2.3. An oriented smooth curve parametrized by an arclength parameter,
s. 1s a triple (v = X(s),7(s).7(s)) of vector functions I — R2, where

(1) v 1s a smooth curve parametrized by an arclength parameter;

(2) 4(s) = dX(s)/ds

(3) {v.7} is an oriented pair for each s € I continuously depending on s.

The vector fields ¥(s), 7i(s) are called the tangent and normal vectors respectively.

(4) The orientation () is defined as e({U,7}), which has the same value for any

sel.
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Definition 3.2.4. An oriented curve with a return point (in other words, a cusp?) s,
parametrized by an arclength parameter, s, is a triple (v = X (s), 7(s), ni(s)), where
(1) v: I_Us,Ul, — R?is a (non-oriented) curve with a returning point parametrized
by an arclength parameter s;

(2) v and 1 are vector fields defined on I_ U I such that (v, 7, 1)|;. are oriented
smooth curves, where I_ ={s € I]|s <s.}, I, ={s€l|s>s.}.

(3) e = lim 7ni(s). We require i = 1y, i.e. 7i(s.) can be defined as the lim7i(s),

8§58, 10

making 1i(s) a continuous vector function.

Remark. If we define ¥ = lim #(s) and ¥4 = lim #(s), then the oriented pairs
58« —0 5—8.+0

{v_,7i_} and {vy, 7} are related by

S

&
I
[
P

(3.2.2)

3
+

I
;i

Definition 3.2.5. The curvature of a smooth curve (z(s),y(s)) in the arclength

parametrization s is given by the formula:

K(s) = @i — 9. (3.2.3)

Remark. Let 7i(s) be the interior normal, i.e.® 7i(s) 17 ¥(s). The pair {7, 7} may be
either left- or right-oriented. Since the sign of the number (i3 — &) coincides with
the sigh of ¥ x v, in the left-oriented case k(s) > 0, and in the right-oriented case

K(s) <0, 2, Ch. 2].

Definition 3.2.6. The radius of curvature R(s) is defined as R(s) = x~1(s), provided

2Cusps are local singularities in that they are not formed by self intersection points of the curve.
The plane curve cusps are all diffeomorphic to one of the following forms: z2 — y2**t! = 0, where
k > 1is an integer. [2]

3We will use the notation & T b if vectors @ and b are codirectional.
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k(s) # 0.
If v is a curve with a return point s,, then generally we do not define R(s,) and x(s.),

although in many cases it turns out lim R(s,) = 0 exists, and in these cases we can
S8«

define R(s.) = 0.
Thus R(s,) and k(s,) are signed numbers as defined by (3.2.3). If x(s) # 0 for all s,

then sgn (k(s)) = const.

Definition 3.2.7. The tangent and normal unit vectors v and 11, called collectively
the Frenet — Serret frame [6] of a curve v, form an orthonormal basis in R?:
vector ¥ is the unit vector tangent to the curve, defined earlier in 3.2.3,

vector 7 1s the normal unit vector, the derivative of U with respect to the arclength
parameter of the curve, divided by its length: @ = U/h

The definition 3.2.7 does not leave freedom for the curve orientation, since it allows
only left-oriented pairs {#,7}. The following definition helps avoiding this disadvan-
tage.

Definition 3.2.8. The tangent and normal unit vectors v and 7. called collectively
the VN frame of a curve vy, form an orthonormal basis in R?:

vector U is the unit vector tangent to the curve, defined earlier in 3.2.3,

vector i1 is the normal unit vector, the derivative of U with respect to the arclength

parameter of the curve, divided by its length and multiplied by e(v) : @ = E('y)f*/m.

Under such definition, vectors v, ﬁ, it and 7 are bound by the two equations:

7= —e(v)Tk
(3.2.4)

T = e(y)iis.

The consistency of formulas (3.2.4) with formula (3.2.5) is shown in Table 3.1.

The radius-vector of the center of curvature E(s) of v at X(s) is defined by
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case
€ -1 1 1 -1
K, R <0 >0 <0 >0
Ty — Ty <0 >0 <0 >0
sgn(v, i) + + - - = U = rie(y)
sgn (i, U) - - + + = 1 = —kve(y)

Table 3.1: Table of signatures for different cases of oriented pairs {7, 1}

E(s) = X(s) + R(s)e(v)iils). (3.2.5)

Definition 3.2.9. A curve 7y is traced counterclockwise (clockwise) at a point X € vy
if the pair {7, H?H} is left-oriented (right-oriented), where ¥ and E are the tangent

vector and the center of curvature of v at X.

Theorem 3.2.10. Consider a smooth oriented curve (v = X(s),%(s),7i(s)), where

{U(s).7(s)} is a VN frame. Let 6 € [0,7]. Then vector

—

X (s) + R(s)sin#(—(cos 6)7 + (sinf)e(v)i) (3.2.6)

is Xo(s), if v is traced counterclockwise at X (s), or X,_q(s), if v is traced clockwise

at X(s).

Proof. Suppose v is traced counterclockwise at X (s). Then formula (2.4.5) is the
left-oriented case, i.e. £(v) = 1. In the right-oriented case, a curve differs from its
left-oriented counterpart, that is, from the curve with the same tangent and the same
signed radius of curvature, only by the direction of the normal vector. Then the
multiplication of the normal vector by e(v) makes the formula (2.4.5) work. The
proof of the case of v traced clockwise at X () is analogous. [

The definition of R(s) makes (3.2.5) orientation-independent in the case of a smooth
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curve. On the other hand, the notions of curvature, radius and center of curvature in
formula (3.2.5) remain valid for a curve with a return point s,: excluding the value
s., we apply the previous definition to the smooth components 7|, of . The formula
(3.2.3) is still consistent if SlLIEl R(s) = 0. In that case we assign R(s.) = 0.

Consider the familyv of evolutoids of a curve v parametrized by an arclength parameter
s and smooth at a point X(s*). By Corollary 3.1.4, a singularity appears at a point
Xy, (s*) € v, if R(s5%) = cotf. Since the range of cot § is (—oco. +00), and it is one-

to-one on (0, 7), there must be exactly one evolutoid out of the family, which has a

singularity at Xg(s*).

Definition 3.2.11. Let X(s*) be a point on a smooth oriented curve v and denote
the circle with X (s*)E(s*) as its diameter by I'1(s*). Define on I'1(s*) the vector field
of tangents to vy, Uy(s*) = f(};(s)/ds |s=s=, 0< 8 <, asin 3.1.1.

We require the corresponding normal vector field mig(s*) be continuous in 8 on the

interval [0, 7.

Theorem 3.2.12. Fir o value s* of the parameter of an oriented smooth curve vy
and let 6y = arccot dR/ds. The orientations ({Tp(s).Ma(s*)}) and e({J(s7),7i(s*)})

coincide if 8 € [0,61), and are opposite if 6 € (6,.7].

Proof. We will consider only the case of a left-oriented v with 7i(s™) pointing toward

the center of curvature of v at X{(s*), since the proof for the other cases is identical.

Let 6§ € [0,0;). Then ~y at Xp(s*) is regular. By Lemma 3.1.2, normals to 6-

evolutoids, 7ig(s*), are placed along corresponding lines E(s*)X,(s*) for 6 € [0,7].
—

By continuity of the vector field of normals, 77(s*) TT Xp(s*)E(s*), 6 € [0,5) and

— P4 — —

g(s*) T E(s*)Xo(s*), 8 € (5, 7). For § = I, #y(s*) 17 0(s*).

There are two possible cases:

(1) 6 € [0,6)). In the formula (3.1.2), Ay > 0 and By < 0. That implies Tp(s*) 17
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— -
Xo(s*)X (s*) and the pair (v(s*),7ig(s*)) is left-oriented.
—_—
(2) 0 € (6;,7]. We have Ay < 0 and By > 0, hence ¥y(s.) 1T X(s.)Xp(s4), and the

pair (vp(s*),1g(s™)) is right-oriented. O

Definition 3.2.13. The signed radius of curvature of the 8-cvolutiod at a point Xg(s)
18

Ry = (cosf — Rsin6)R. (3.2.7)

Theorem 3.2.14. The orientation £() is invariant under evolutoidal transformation

in the sense of formula (3.2.5):

—

Ep(s) = Xp(s) + Ro(s)e(7)lp(s). (3.2.8)

Proof. Fix an s* € I. By Theorem 3.2.12, the signature of Ry(s*) changes simultane-
ously with the change of the orientation of the #-evolutoid at X,(s*). Therefore, the

normal ng(s*) becomes exterior if it was interior on v, and visa versa. Il
Corollary 3.2.15. Curves g at Xp(s) and v at X (s) are traced in the same way.*
Lemma 3.2.16. Curves v and v, coincide pointwise and have opposite orientation.

Proof. Consider the behavior of the family of evolutoids of a curve v, {v5}5_, at the
points corresponding to a fixed value of the parameter s* € I. By Lemma 3.1.4, there
is only one 6; € [0, 7] such that =y, (s*) is singular, namely 6, = arccot R(s*). Then
we have:

(1) cosf — Rsinf >0, 0 € 10,61),

(2) cosf — Rsinf < 0, 6 € (0,7

That implies that R and Ry have the same sign in the case (1) and different signs

in the case (2). On the other hand, curves v and 7, coincide point-wise by formula

1Of course, if v is not singular at Xg(s), i.e. 0 # arccot R(s).
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(2.4.3). By equation (3.2.7), R,(s*) = —R(s") and hence «y and ~, are oriented in an

opposite way. [l
Lemma 3.2.16 implies that m-evolutoidal transformation, &,, maps a curve « into the
same curve but of opposite orientation. More precisely, the direction of the tangents
is the same, but the direction of the normals is opposite. Denote such curve by 7,
so that 7 = 7,. Since the evolutes of ¥ and 7 coincide, the formula (3.2.5) holds
provided R(s) = —R,(s) for all s € I. Note also that 5 = ~.

In order to avoid computational complications and extend the domain of parameter of
the evolutoidal transformation & from 0 to 27 in a way consistent with its geometrical

interpretation, we introduce the following object.
Definition 3.2.17. Let ¢ € [0,7]. A curve yp4x) is defined as 7,.

We always think of # as of a value defined mod 27. Thus if 6 is a multiple of 7, then
&y is an involution, that is, its square is the identity transformation.

Remark. The parametric equations of vy~ and 74 are the same. It follows from
equations (2.4.3).

The results of this Section allow us to bypass the discrepancy between the analytic
expressions and the geometrical picture of the evolutoidal transformations. The pres-
ence of the orientation of v in formula (3.2.6) could be removed. Indeed, the choice
of the normals is optional because the evolutoidal transformation of «y is well defined
by its tangents. Hence we can always stick to the left-oriented case.

If we have two curves passing through the same point X, whose tangents coincide
and centers of curvature at X are symmetrical {(with respect to X), then the point
on the f-evolutoid of one of the curves corresponding to X will be symmetrical (with
respect to X)) to the point of (7 — #)-evolutoid of the other. Analytically, it becomes
clear if we replace in formula (3.2.6) R by —R, # by m — @, and remove (7). Thus,

in the case of a counter-clockwise v, we choose the interior normals, and the exterior
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normals otherwise and apply the equations (2.4.5) or (2.4.3).

Since the the local properties of the evolutoidal transfomations, that is, the geomet-
rical relationship between a point X € v and its image Xy € 75 do not depend on
g(y), we will restrict ourselves to the left-oriented case of v, and use the equations
(2.4.5) and (2.4.3) as a left-oriented particular case of a more general equation (3.2.6)

whenever our concern is not about global properties of evolutoids.
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3.3 Composition of two evolutoidal transformations

The problem of constructing successive evolutoids | that is, construction of evolutoids
of evolutoids, evolutoids of evolutoids of evolutoids, and so on, was considered in 19th
century. There are many interesting results on the topic in works of Réaumur, Aoust,
Haton, Lancret, Habich, Chasles, Dewulf and others [8]. However, global properties
of evolutoids were of major concern of these and many other mathematicians.

We will focus on the local properties of the evolutoidal transformation, and the rest
of this work will be about the images of a single point on a curve, given by parametric
equations, under two, three and more evolutoidal transformations.

Denote the curve, representing the result of ¥—evolutoidal transformation of v, by

vop and the image of X (@) by Xgy(w) 1 7 = You, X — Xopy.

Theorem 3.3.1. (Commutation of a composition of evolutoidal transforms). The
result of two consecutive evolutoidal transformations applied to a curve does not depend
on the order of application of the transforms: ~ygy, = yyo point-wise for any 0, €

0,7].

Proof. Denote ag = cosfsinf, Ay = cos? 6 — Rcosfsinb, by = sin®f. By = Rsin®4—

cosfsinf, and the equation (2.4.5), we have:

= = R _ . > . L q _
Xgu‘, == Xg + ﬁ(—aw‘vg + bw’nyg) =X + R(—CLQU — Qy Vg + bgTL -+ bw’n,(;). (331)
(4

and

— —

Xwg =X+ R(—awl_f‘ agﬁw + bwﬁ + bg’l'_iw). (332)
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Let us treat the equation above coordinate-wise:

Xoy = + R(—apd — by — byt By — byyAg — aytAg + ayyBy) =
=z + R(i(—ap — by(Rbg — ag) — ay(1 — agR — by))+

+(—bg — by(1 — agR — bg) + a(Rby — ag))) = (3.3.3)
=2+ R(i(—ay — bg(Rby — ay) — ag(1 — ay B — by))+

+9(=by = by(1 — ay R = by) + ae(Rby — ay))) = Xyp.

By the same technique of regrouping the like-terms, we get
Yo = Yyo. (3.3.4)

O
The fact that one can permute the angles taken for construction of successive evolu-
toids was proven by Haton de la Goupilliere [18]. However he proved the commuta-
tivity in terms of the curvature function defining a curve up tp a parallel shift. Our
proof is different. Let us give a geometrical interpretation of the Theorem 3.3.1 and
its proof.
Denote 6 = 50, P = % — 4. Then by the construction, we have: mw =
4. XEX, — 0, FX.X - FXX - &
Denote by E. the center of curvature of the evolute of v at point £ = Xz. (If the

evolute has a cusp at F, then F, coincides with F).

Lemma 3.3.2. The foot of the perpendicular dropped from E. to EXy is the center

of curvature of v at Xg. (see Figure 3.1).

Proof. By the proposition 3.1.4, we have |EE,| = |RR|, and since X E is tangent to
the evolute, E/CE( =73

From AEEyE, : EE, = EE.siné = RRsiné.
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y
T
P =Xy
9 £Ey
E = Xr| Le

evolute (yx)
Figure 3.1: Center of curvature of an evolutoid.

From AEX,X : EXg = Rcos®.
Hence, |EyXy| = |R(Rsinf — cos §)|. g

Theorem 3.3.3. (Geometrical interpretation of the commutation of evolutoidal trans-
formations) Points Xgy and Xy coincide and lie on the intersection of two perpen-

dicular lines Egly and Xg Xy,

Proof. Look at Figure 3.2. mo = E/.XT((; — @ - inscribed angles.
me = EG/EL/\,EC — @ - inscribed angles.

Therefore, EgEy X, =% —0=0 = EE, 1 X,X,.

Denote Xy Xy N EgEy = P.

Further,

mw = @(,ﬁ = - inscribed angles.

XoEyP = Xy XX = ¢ - the corresponding sides are perpendicular.

Thus, P = Xy by construction.
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Finally, EO/XTEw =0 = P = Xy by construction. O

Figure 3.2: Geometrical interpretation of commutation of evolutoidal transformations

The geometrical interpretation and construction of X,y = Xy, presented in Theorem
3.3.3 are believed to be new. They open a broad way to use the variety of tools of
Euclidean geometry to observe the local properties of multiple evolutoidal transfoma-
tions, i.e. to observe how a fixed point on a plane curve moves on the plane under

compositions of different evolutoidal transformations apllied to the curve.
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3.4 The range of Xy;,. The Cardioid Theorem

Denote Xgy by P(6, ).

Definition 3.4.1. The range of a point X € v under two evolutoidal transformations

is the locus of {P(0,)}7 y—o-

Lemma 3.4.2. Fiz an o € [0,7]. Then {P(0,¢)](04v) modr=a}jyo i the segment

between the points P(5.5) and P(%3E, %3%).

Proof. Choose any fixed a and arbitrary § and v such that (§+y) mod7 = a, o, 0,9 €

R modw. Without loss of generality we may assume that

h—9+t

(3.4.1)

a T a T a ma T
P(3-32*2)P(G2373)

(a) (b)
Figure 3.3: To Lemma 3.4.2.
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3.3(a)).

By simple geometry, the distance between the two lines is %(1 — cos 2t). For the same

reason, the line tangent to the circle EOE, at E% and the line FyE,, will be distance
%(1 — cos2t) apart.

By our construction, the two tangents are perpendicular and so are the lines Xy Xy
and FEgFEy.

Thus, the rectangle (Figure 3.3(b)) built on those two pairs of parallel lines has the
same ratio between its sides, namely R, regardless of the choice of a, 8, 1.

Hence, the position of P(§ +t,§ —t) = XX, N EyEy, t € [0, 5] remains on the line

a+m a+mw

segment connecting the point P(%,5) and P(%3", %2

) corresponding to t = 0 and

t = /2 respectively. O

Corollary 3.4.3. The segments P(§.$)P(%E, &) pass through O, the second in-

tersection point of the circles XEO and EE.O, for any a € [0, 7).

Proof. Since the tangents to the two circles at E are perpendicular, so are the tan-
gents at O.

Since fO\EC — EOX = 5, we have: O € XE..

From AXFEE, : XEO = X/Ee\E = arccot R.

For a given «, choose @ = arccot R and 1 = a — arccot R and then P(#,¢) = 0.0
Lemma 3.4.2 and its corollary give us a nice way to construct locus of {P(0.v) }oyy=a,
for a given constant «.

Draw the tangents to circles XEO and EE.O at Xa, X$ and Esg, E% respec-
tively. Then the segment connecting the intersection points of the correspondent
tangents will be the desired locus.

To describe the range of {Pw"w)}g.w:o-f we have to describe the locus spanned by
segments P(0,0)P(0 + 7,6+ 7), letting 6 run from 0 to 7, or simply the locus traced

by the endpoints of the segments.
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Denote circles XOFE and EE,O by €; and €y and their centers by O; and Os re-
spectively. Denote the circle built on [0, 0] as its diameter by  and |010,| = 2r.

Denote the center of Q1 by C.

Lemma 3.4.4. The locus of centres of the segments {P(6.4)} g1 y—const 15 2.

Proof. Choose any « € [0, 7]. Construct the segment PQ. where P = P(a,a) and
Q = Pla+ Z,a + %) and denote by B the midpoint of PQ (Figure 3.4).
Note that [PQ| = RV/1 + R? as the length of the diagonal of a rectangle with sides

R and RR. Draw the lines [; and I, going through O, and O, parallel to the tangent

Figure 3.4: To Lemma 3.4.4.

to §2; at X, and to {13 at E, respectively. Obviously, [, and [, will pass through
B: B= 11 N lQ.
Since I} L ly, B lies on the circle built on [0;05] as its diameter (on ﬁ).

On the other hand, each point on € is the center of the segment (P(6, ) y—2o for
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some o € RmodZ. It becomes clear if we reverse our chain of reasoning backward,

constructing the corresponding [PQ] for a given B. O
Corollary 3.4.5. Points E and O belong to .

Proof. The statement follows immediately from the fact that €; and 2, intersect

under the right angle. O

Definition 3.4.6. A cardioid is a curve, traced by a point on a circle, rolling upon a

fized circle of the same size.

Theorem 3.4.7. (The Cardioid Theorem.) The range of Xgg, 6 € [0, 7). is a cardioid.

The cardioid passes through X. E, and O, O being its cusp, and is tangent to v at X.

Proof. Since [010| is a middle line of AX E'E,, we have |0,04| = %]XE8| = @.
Consider Q, defined above, and take any segment [PQ)], crossing Q at points O and
B such that |PB| = |BQ| = |0,0;| = 2r.

Draw a segment [AD] of the length 4r passing through the center of  (Figure 3.5),
denoted by C, parallel to PQ such that |AC| = |{CD|. Then, AQBC and CBPD are
equal parallelograms, since sides [AC], [QB], [C'D] and [P B] are equal and parallel.
Then, we have |AQ| = |CB| = |DP| =r.

Also, since |AC| = |CD| =r and |CF| = |CG| =r, we have |[AF| =r and |GD| =r.
From the trapezoids OCDP and OCAQ, we get OCD = PDC and @1?} — ACO.
Now, draw two circles of radii r centered at A and D (dotted circles on the picture).
The arcs C/Q?? = (/)?? and 6—@ = 155, because the corresponding central angles are
equal.

Therefore, points () and P take positions of a fixed point on a circle radius r, rolling
upon §), and at the moments when the circles’ common point is O the fixed point

coincides with O.
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Figure 3.5: To The Cardioid Theoren.

By definition this point traces a cardioid with the cusp at O.

Replace P and @) by P(a,a) and P(0 + 5,0 + %) respectively, and the statement of
the Theorem follows. O
Thus, the wholc image-set of Xgy, 6,4 € [0, 7], is the closed region bounded by this

cardioid, (see Figure 3.6)!

Definition 3.4.8. For a plane curve v and a given fized point P, the pedal curve of
v is the locus of points X such that PX is perpendicular to a tangent to the curve

passing through X. The point P is called the pedal point.

The Cardioid Theorem has several nice generalizations and corollaries about proper-
ties of cardioids in particular and limagons of Pascal in general which do not require

lenthy proofs. One of them is the following Corollary.

Corollary 3.4.9. A pedal curve of a circle with respect to one of its points is a
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Figure 3.6: The locus {Xgg}j_, and two circles based on [XE] and [FE,] as their
diameters.

. =4
cardioid”.

Proof. According to the definition 3.4.8, the statement of the corollary follows imme-
diately from our construction of the set {Xgy}j_, if we take for X one of the vertices
of v, that is, one of the points on «, where R attains its local maximum or minimum.
Indeed, if X is a vertex, then R = 0. Hence, E coincides with E, and with O, so the
locus of all possible Xyg is the locus of points P such that PFE is perpendicular to a
tangent to the circle radius £ the center at C € XE : |CX|=4|CE|. By definition,
this is the pedal curve to the circle with respect to £, and by the Cardioid Theorem,
it is a cardioid. 0
Using the technique of the proof of the Cardioid Theorem, we may prove a nice state-
ment generalizing the way of constructing a cardioid by means of finding the locus
of points, which lie on intersection of perpendicular tangents to two perpendicular

circles.

5This fact is known [14], but the approach of our proof is believed to be new. In Chapter7, we
prove its generalization.
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Theorem 3.4.10. [f two lines intersecting at o fized angle are moved continuously

tangent to two given circles, their intersection traces a limagon of Pascal whose double

point lies on the circle of similitude of the two given circles.

This theorem was proved by J.H. Butchart in 1945, using a slightly different technique

[3].
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3.5 Analytic proof of the Cardioid Theorem

Since Lemma 3.4.2 implies that the image-set of the second iteration could be de-
scribed by the locus of {Xpg}j_,, let us obtain the equation of this locus analytically.

By the vector form of the equation of §-evolutoid of 8-evolutoid, we have
Xpo = X + R(—ag(T + Tp) + by(i + 7ip)). (3.5.1)
or omitting subscripts 8 and plugging in the expansions for v and 7y, we get
Xpo = X + R(0(—a — aA —bB) + 7i(b — aB + bA)). (3.5.2)

Using the notations ¢ and s for cosf and sin @ respectively and expanding the expres-

sions for a, A, b, B in the latter equation, we finally obtain
Xpo = X + R(#(—cs — (cs — Rs®)( — %)) +7i(s> + 2cs(cs — Rs?))). (3.5.3)

For simplicity sake, let us denote cos and sin of multiple § by ¢, and s,, where n is
the multiplicity of 4, i.e. cos46 is denoted by simply ¢y.
To get rid of a constant vector X and to simplify the coeflicients, we introduce a new

vector of consideration, F:
L4 L .
F=5(Xog = X) = (=Fu, Fo). (3.5.4)

where

F, = 4(cs + (cs — Rs%)cy)

F, =4(s* + (cs — Rs?)sy).
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F,.=2s, + 262(82 — R(l — Cg)) = RC4 + 54 + 2(52 — RCQ) + R

Fp=2(1 —c3) + 282(s2 — R(l —C)) = —cs + Rss — 2(.92}? +c9) + 3.

Let

et _ FU - R F" _ F’I’L - 3

o Rz+1T Y R241
Denoting Ril and kﬂl—ﬂ by cos 3 and sin 3 respectively (since cos? 3 +sin* 3 = 1), we
can see

F, = cos(49 —_ 5) — 2COS(29 + 5)

F, =sin(46 — 3) — 2sin(20 + 3).

Let us look for such y and v that

40 — 3 =2u+v, 20+ 5 =p+vr.

We get
u=20-23 v=33

Now we apply linear change to the parameter p = 28 — 2 arccot R and obtain

F, = cos(2u + 308) — 2 cos(u + 33)
(3.5.5)

E, = sin(2u + 33) — 2sin(u + 38).

Vector (F,(p), F,(u)) is an equation of the trace of a fixed point on a unit circle rolling
over a fixed unit circle centered in the origin, which is a cardioid. The cusp of this

cardioid is located in the point (cos 343, sin33).
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Chapter 4

Image-sets of higher order

evolutoidal transformations

4.1 (aussian map parameter

Consider the set of external (pointing away from the centers of curvature) normals 77
to an oval v given by the C*-map s — X (s), s being an arclength parameter. Fix a
vector w in the plane and call its direction the reference direction. We will introduce
a new parameter v» by which v may be defined via the curvature function R{%) up to

a parallel shift in the plane.

—

Definition 4.1.1. The angle v = 1,0 between the external normal 1 to the curve vy
and the reference direction 0 is called the Gaussian parameter. The map i — R(1))

ts called a Gaussian parametrization. (See Figure 4.1(b)).

Look at Figure 4.1(a). Here, as usual, E represents the center of curvature of y at
X, s is the arclength parameter of +; 7 and 7 + df are the outer unit normals to
at X and X + dX respectively; dy» = 71,7 + dn; ds represents the arc of v between

X and X 4+ dX. Since the unit vector tangent to v at X is ¢ = Rdii/ds, we have

-
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AN\ x
Y
R
dyp
Reference direction
E

Figure 4.1: Gaussian parametrization
ds = Rdy = R = ds/dy. Hence

dnl B dmn ds B

7
_aaes _ Vp_ i 4.1.1
W dsdw  RETY (4.1.1)

and similarly

dv
2 - _F 4.1.2
ds " ( )

Let us express the radius-vector Xg of the f-evolutoid and its ¥-derivative dfg /di as

functions of . First of all,

dX dX ds
- == _ ¥R 1.
- dsdw B (4.1.3)
Then, setting a = sinf cosf, b = sin’f, we get
dX, dX dR, . .. . _ dR . dR
W w+dfw(—av—b7z)+R(a7l—bv) = tv(R—@a—Rb)+n(—wa+aR). (4.1.4)

Since d)?g/dl/? is the tangent vector to 7y at Xy, let us denote this vector by 7. Note
that if & = 7, then ¢ is parallel to the normal 7i to v at X (). In general ||t} # 1,

moreover, in some particular cases ||73|| can be zero.




By (3.2.7), Rg = RdR/ds. Then

dR dsdR dR
Rg = RE T Wds v (4.1.5)

The simplicity of the expression for Rg via R, when R is a function of a Gaussian
map parameter plays a significant role in further calculations. Also, using this type of
parametrization, we can easily treat the case when [|[dX/dy| = 0 (and hence R = 0),

avoiding division by zero in the parametric equations of vy (2.4.3).




4.2 Introduction to the general approach

The goal of this Section is to describe the shapes of image-sets of the n-th evolutoidal
iteration (n > 3) of a curve at a given point', or simply the nth iteration.

For brevity, we will denote X9191-~-91 6,.6,...6,. by Xe';’lmgxlm. The superscript for

T

multiplicity one will be omitted. ”Analogously, we will denote by ypu_ grm, Hyni grm
and Egn_gpm the curve obtained by the same composition of evolutoidal transforma-
tions from the original curve, its radius of curvature at a point Xgni gnn, and the
point on the evolute of yym1_grm corresponding to Xgm gun .

Denote cos#; and siné; by ¢; and s; respectively.

Lemma 4.2.1. (The radius of curvature of yym_gum) The radius of curvature of

Yori_ gm0t Xgu gon can be calculated via the differential operator:

Refl_"(g;;‘m = (Cl - 81—)n1...(an - Sm_)n-mR, (421)

dy

where ¥ 1s the Gaussian map parameter of .

Proof. Let us convert formula (3.2.7) for a natural parametrization into the Gaussian
map parameterization, using (4.1.5):

o d
Ry = (cosf — SmQZZE)R' (4.2.2)

Applying the differential operator n; times with appropriate values of 8;, (i = 1,...,m)
to R(v) we will obtain the desired formula. O
Remark. Thus, the radius of curvature of a curve resulting from n evolutoidal

transformations depends only on the radii of curvature of the evolute, the evolute of

'We will always assume that a curve of consideration « is continuously differentiable at a point
. . . . . 92 "
of consideration X as many times as it is needed, so that R, % Suﬁ. LLen

continuous.

Gyn are assumed to be
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evolute and so on (n — 1) times, and on 6;, i = 1,...,n.

Denote by I', the set {X4-., 6 € [0,7]}. It is clear that this is a curve, depending on

parameter # and the first n+ 1 derivatives of v at X. T'y is a circle. From the Cardioid

Theorem 3.4.7, we know that I’y of any curve v is a cardioid, and the image-set of
the second iteration is the region bounded by that cardioid. For further observation
of image-sets of the nth iteration, we will focus our attention on the study of T',,
and we show later in Chapter 6 that the image-set of the nth iteration is a region
bounded by arcs of I',,, in general. According to Remark to Lemma 4.2.1, the shape
and the size of the image-set of the nth iteration of X € «~ depend only on the set
{R(Y), R'(), ..., R~V (¢)}, or simpler {R, R',..., R"~V}. We will also use notation
I (R.R,R", .. R V) for T, if we want to be specific about a particular image-set.
Since the image-set of a point X on a curve does not depend on the curve’s orientation
and the way it is traced (by Theorem 3.2.14), we will consider only left-oriented curves
traced counterclockwise at X. To further simplify the study of the shapes of T',, let
us apply an appropriate rotation and translation to the coordinate axes to move the
point of consideration, X € =, to the origin, so that the center of curvature lies on
the positive half of the z-axis, and the positive direction of the y-axis is opposite to
that of the tangent to 7. Let us choose the negative direction of the z-axis for the
reference direction of the Gaussian map parameter v, by which v is parametrized.?

Let us fix 6 € [0, 7] and construct the polygonal line with nodes at X, X4, i = 1,....n.
Lemma 4.2.2. Vector Xgi(:gm = Ry sinf(sinif, cosif).

Proof. Look at Figure 4.2. By our construction of #-evolutoid of ~4:, we have

| Xg: Xgi+1]| = |Rgi sin 6], (4.2.3)

2The sign R < 0 is allowed, and the picture is symmetric to the case R > 0 with respect to the
origin. In that case, the z-coordinate of the center of curvature will be negative, and the direction
of the tangent to v at X will coincide with that of the positive direction of the y-axis.
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and line Xg: Xgir1 will form angle 8¢ with positive direction of y-axis. U

Note that some of the numbers Ry could be zero. These are the roots of the trigono-

R sind cosd R9251n9 cos30
oK —*—(note :cos38 <0)
| ~n—— >
I |
I 1 Rgsing cos20
It [
I |
Risino B
1 IX 1
K\ [
I N2
I |
[ |
11Ye 1
1 1
I |
[ |
ResinﬂsinZB | :
RERW
(B !
ol [
o I
------------- 1Y X
L
A
[
P
R sinB sin30 b
: |
1/ 0
[
I
Xg?
vy X

Figure 4.2: An illustration of the polygonal line construction of X method for the
first three iterations. Here R, Ry, Ry2 > 0.

metrical polynomial P;(cos 8, sinf) = 0, hence there are only finite number of § € [0, 7]

such that Rg = 0. If Rg: = 0, then points Xy and Xyi+1 coincide.

An example of the development of I',,, n = 2,3,4, is shown in Figure 4.3(a). Lemma

4.2.2 gives clear tool to #-parametrization of the equations of I',,.
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Denote sin(6; + ... + 6x),cos(6) + ... + 6;) by Sk, C respectively, 1 < k < n.
Corollary 4.2.3. The coordinates of the image of a point X € ~ under the nth

iteration with angles 01, ..., 0, are:

T = RS% + Ry, 5955 + 391925353 + ...+ Rglmgwhlsnsn
(4.2.4)

y = Rsje + R918202 + 391928303 + ...+ Rglmen.qsncn,

Proof. Tt follows from Lemmas 4.2.2 and 4.2.1, since the radius-vector of Xy, 4, is a

direct sum of Xglu_gliglmglﬂ, i=0,..,n—1,if weset X = X,,. O

Corollary 4.2.4. The parametric equations of ', are

= Rs? + Rypssy + Rp25853 + ... + Rgn-155,

(4.2.5)
y = Rsc+ Rgscy + Rgzscy + ... + Rgn-15Cy,
where s =sinf, ¢ = cosf, sy =sinkf, ¢ =coskb, k > 1.
Proof. Tt follows immediately from Lemma 4.2.2. O

The following lemma will be also helpful in the future to prove Lemma 6.2.2.

Lemma 4.2.5. For fized 6,a € [0,7] the locus of points {Xgn(ﬂ_t)<ﬂ+t>}t%:0 is the

segment [Xgnaz Xgu(ar )2

Proof. The statement follows from application of Lemma 3.4.2 to the curve g at
point Xgn. U
Remark. Define a linear space L,, of n-tuples (R, R', ..., R*™'), which determine the
shape and size of T',. Vectors (0.0....,0,1,0,...,0) with RY) =0, j #iand R =1
obviously form a basis in L,. Since the parametric equations of T, are linear with

respect to R, i = 0....,n, the curves [,(R, ..., R" V) and [,(AR, ... AR 1) are
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0 {1 @\ © i @) @) (€]

(a) (b)

Figure 4.3: (a) An example of development of I'y, n = 2,3,4: the curves: (1)
Ta(1,—1); (2) I'3(1,—1,0); (3) Ty(1,-1,0.0.5). (b) The homothetical curves (with
respect to X): (1) I'4(0.5.—0.5,0,0.25); (2) T'4y(1,—1,0,0.5); (3) T'4(1.5,—-1.5,0,0.75),
the point of consideration, X, is in the origin in all three cases of (a) and (b).
homothetical (see Figure 4.3(b)) with respect to X, any line in L, passing through
the origin represents the shape of I',,. Note that different lines may represent the same
shape of I',,, for instance, all curves I'y are cardioids.

Thus, for further observation of shapes of I',, we may first try the basic cases and then
consider their linear combinations, where the sum of two or more curves is understood
as a coordinate-wise summation of their parametric equations (4.2.5). Also, we may

realize a real projective space with homogeneous coordinates (R : R’ : ... : R("™D)

as the set of lines in L, passing through the origin, if the size of T",, is not of our concern.

Denote by R, = R,(#) the radius of curvature of I',,. The following theorem estab-

lishes the relationship between R,,(6) and Rgn-1.

Theorem 4.2.6. (Radius of curvature of I',,.) The raduis of curvature of the curve
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[, can be expressed via Rgn-1 by the following equation

n
—Rgnfl .

Rn(e) B n+1

(4.2.6)

Proof. Denote the coordinates of a point Xgn € I, by (zgn.ys). First, let’s prove by
induction the two following equations
Dzgn =n Sinn+1 Rgn—l

a0

(4.2.7)

%%961 =ncos, 1 Rgn-1 .

n = 1. From (4.2.5). we get Oxgn /08 = Rsy, Oygn /08 = Rey. This matches (4.2.7).

Suppose, the statement is true for all k <n — 1, n > 2. By (4.2.5)

.Tan = xgnfl + SS‘nRgufl

(4.2.8)
Yon = Ygn-1 + ScnRgn—l.
Differentiating formula (4.2.1) for 6; = ... = 6,1 with respect to 6
aR =
800 - = —(n—1)(sRp2 + cRy. ), (4.2.9)

where Ry, , = ORgn-1/0.

Now, differenting x4 in (4.2.8) with respect to 6, we have

a.’l,‘gu

06

=(n —1)$yRgn—2 + Rygn-1(cs, +nsc,) — (n — 1)88,(sRgn-2 + cRpu2).

Combining the like-terms and using formula (4.2.9), we obtain the dzgn /00 = 1,1 Rgn-1.

Analogously, we obtain dygn /00 = nc, 1 Ren-:.




Let us calculate 922, /0?0 and Oy2./0%0.

% =n((n+ 1)cpr1Rgn-1 + Spr1 Rpa_i)
(4.2.10)
5,2
%‘1{2% - n(_(n ‘I‘ 1)Sn+1R91171 + CTLJrlRl@nfl)'
Plugging formulas (4.2.8) and (4.2.10) in formula (2.4.4), we get
n3R3n7 n
Rn(g) = W‘ = ’n—HRgn—l‘ . D

Corollary 4.2.7. The curve T',, is singular at a point Xy, if and only if ygn-1 is

singular at the point Xgn 1.
Corollary 4.2.7 allows us to veiw [, (f) as a smooth curve wherever Ry.—1 # 0.

Lemma 4.2.8. Let ypu-1 be regular at Xgwv—1, and let voe be reqular at Xg, . Then the

tangent to 'y and the 0-secant to vor at Xgr coincide.

Proof. We will prove it by induction.

n = 1. In this case I'; is the circle based on [X F], so the basis of the induction follows
from the construction of the image-set of the second iteration (see Theorem 3.3.3).
Suppose, the statement is true for all & < n. Then consider two close points,
Xon € yon and Xgyaom € Yoranyn (df < ), on I'y,, see Figure 4.4. To avoid bulky
notations in the Lemma, we denote Xgv, Xyaoy, For, Egrapn. Yor, Yo+ap)r by
Xn, X, En, E). . v, n> 0, and use similar notations with subscript n + 1 for
Xygn+1, etc . Denote also by M the point of intersection of the tangents to v, at X,
and to vy, at X|. The arc X, X] € I';, can be considered as a line segment, and, by
the induction step, is (8 + df)-secant to vy, at X i.e. Xm[ =0+ db.

It is clear that Xm; = ndf. That implies that the angle adjacent to M/Xn\X,;l is
equal to 6 + (n + 1)d6.

Denote the circles based on [X,E,] and [X] FE] as their diameters by 2, and
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Ih tangent

« to Yn

tan gept
to Yn

Figure 4.4: To Lemma 4.2.8.

respectively.

Construct X,1; and X7 ; by the routine procedure of continuation of #-secant to 7,
at X, and (6 + df)-secant to «y, at X, down to their intersections with the circles Q,
and 2/, respectively. Note that X/ +1/XD(H+1 = (n+1)dé.

Getting df — 0, we make Q;, — Q,, X; = X, and X, X, tangent to I',;; and
f-secant to Yn41 at Xpi1. ]
Consider the image-sets of the n-th iteration of X € v and £ = Xz € yz. Their
shapes and sizes will depend on R, R/,...R™~Y and R’, R”,...R™ respectively. Denote
the former by I',,(X) and the latter by I',(E).

Proposition 4.2.9. Lines, tangent to I',(X) and I',(E) at points corresponding to

the same values of 6, are perpendicular and intersect at points Xgn+1, 6 € [0,7].

Proof. Points on I'y(E) are Xzgn = Xgnz, since the order of application of evolutoidal

transformations does not matter (see Figure 4.5). In other words, they are centers
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Figure 4.5: Tangential construction of I', ;.

of curvature of 4g., 6 € [0,7]. By Lemma (4.2.8), tangents to I',(X) at X4~ and to
L(E) at Xonz are f-isoclines to curves ypn and ygnz respectively. Then the statement

follows from Definition 2.4.1. O

Theorem 4.2.10. The curve I'ny1 is enveloped by the circles based on [Xg, Ey,] as

their diameters, 6 € [0, 7].

Proof. From Lemma (4.2.8), it follows that circles based on [Xyn Egn] are tangent to
[Cnt1 at Xgn+1 for any 0 € [0,7]. Hence, I, is enveloped by the circles. d
Before continuing development of the topic on image-sets of the n-th iteration for
general n, let us take a close look on the 3rd iteration and study ['3(R, R', R") for
variety of (R, R',R") € Ls.
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Chapter 5

The 3rd iteration: Construction

In this Chapter, we provide the necessary background for construction of an image of

a point X € ~ under three successive evolutoidal transformation.

5.1 Similar-perspective triangles

Let us consider two coplanar intersecting circles 2, and €y, and R;, Ry be their
corresponding radii. Denote by A and B the points of intersection of the circles:
2, NQy ={A, B} We do not allow the points A and B coincide unless Ry = 0. Let
a be adjacent to the outer angle between the tangents to the circles at A (or at B).
In the degenerate case Ry = 0, « can be assigned any value we wish.

Define rotational homothety with respect to A as a transformation 7 = Ty[a, R], R =
g—f equal to the composition of two affine maps of the plane onto itself:

(a) the rdation of the plane around A by angle « so that the tangent to Q; at A is
mapped onto the tangent to {1y at A;

(b) the homothety centered at A with ratio R.

If a plane II is mapped onto itself by T' = T4]a, R|, A € 1I, we will denote the image

of any planar set of points G € 11 under T by Ta[o, R|(G) or simpler by T(G).
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Note that indeed, as the notation suggests, Ta[c, R] depends only on the ratio R =

Ry1/R, but not on R, and R, themselves. In other words, replacing the circles {2

and €), in the construction by their images under the same homothety with center

A has no effect on 7. In other words, replacing the circles €2; and €2, in the above
construction by their images under a homothety with center A has no effect on 7.
Obviously, T(€21) = §2,.

Remark. We will count « > 0 if the rotational part of T is counter-clockwise and
o < 0 otherwise.

To distinguish the line passing through two points, X and Y, on the plane and the
segment between the points, let us denote the line by XY and the segment by [XY].
We will count the angle between two not parallel coplanar lines a; and ay as the angle o
and denote it by a1, @» = «, a > 0 if the rotation around the point of their intersection

by (o mod 7) maps a; onto ay. Clearly, a7, ay = —Q3,0; OF 4,0y = T — Qy, 4]
Lemma 5.1.1. Let points P € Qy and P' = T(P) € Q. Then B € [PP'].

Proof. We will prove the statement if we show that PBA + ABP = 1.

Draw the chord in £, tangent to €2 at B and denote the second endpoint of the chord
by C' (see Figure 5.1). The angle T@C =, and T(C) € Q.

Let B’ € 2, and BB’ be tangent to £2;. Since the inscribed in Q; angle C'AB subtends
(CBJ, and [BB’| is tangent to () from the side of A, it is equal to the adjacent to
B'BC =n—a. SoCAB = . Therefore, B =T(C).

Further, T(ACPA) = ABP'A = ACP = ABP', (because T is conformal). Also
ACP =7 — P/E‘L since ACP and PBA are inscribed in 2, angles subtending the
same arc from different sides. Hence, PBA + ABP = 1. O]
In this Section, we consider special relation between similar triangles called homology.

We will call the sides of similar triangles opposing the same angles corresponding or

proportional sides.
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Figure 5.1: To Lemma 5.1.1.

Definition 5.1.2. We will call two similar triangles homological if the lines joining
vertices with same angles are concurrent. The concurrency point is called the center

of homology.

Definition 5.1.3. Two homological similar triangles are called perspective if the cor-

responding sides are not parallel.

Theorem 5.1.4. (Desargues Theorem) Let AABC and Aabe be two distinct triangles.
Then the lines Aa, Bb and Ce are concurrent if and only if the points ABNab, ACN

ac and BC N be are collinear.

The Desargues Theorem gives rise to an equivalent definition for similar perspective

triangles.

Definition 5.1.5. Two similar triangles with sides {A;}}_| and {a;}3_ respectively
are called perspective if there are permutations {iy,ia.i3} and {j1, 2, js} such that

“:—J"-‘—“ = const and the points flik N aj, arc collincar, k = 1,2,3, where fiik and aj;,
B

65



are lines containing the corresponding sides. The line, passing through the points

A Naj, k=1.2,3, is called the azis of homology of the two triangles.

Lemma 5.1.6. Let triangle AP be inscribed in Q1. Then T(AP) and AP are similar

perspective, and T(AP) is inscribed in §o.

Proof. AP and T(AP) are homological and B is the center of homology by Lemma
5.1.1, and the vertices of T(AP) lie on (2.
Further, since T is conformal, AP and T(AP) are similar. Finally, since A # B, we

have: o € (0,7), and hence the corresponding sides of the triangles are not parallel..

Lemma 5.1.7. Let a triangle NP be inscribed in Q. Let A, A* € Q. Consider
two maps T=Talce, R] and T* = Ta+[o, R], R > 0. Then T(AP) and T*(AP) are

congruent, and their corresponding sides are parallel.

Proof. Congruence of the images of the triangle and parity of their corresponding

sides follow from the equality of the rotations and ratios of homothety of T and 7*.00

Theorem 5.1.8. (Generalization of Simson's Theorem!) Let AP be a triangle in-

scribed in a circle Q) and let AP* = L (AP), where L,

ol < 7 is a rotation around
the center of . If we draw lines passing through A and parallel to the sides of AP*,

then the points of intersection of those lines with the sides of AP are collinear.

Proof. Let T = Tale, R|, R = % # 0 be a rotational homothety with respect to A.
By Lemma 5.1.6, T(AP) and AP are similar perspective.

Fixing o and approaching Ry — 0, we merge the center of the rotational homothety
and the center of homology, simultaneously shrinking T(AP) into a point. O

Remark. Thus, Theorem 5.1.8 is the limiting case of Lemma 5.1.6 when Ry, — 0.

IThe Simson’s Theorem states: Let points N, K, L be the feet of perpendiculars dropped from a
point on a circle to sides of a triangle, inscribed into the circle. Then N, K. L are collinear. The line
passing through them is called Wallace-Simson line (in some sources just Simson line) [20].
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Definition 5.1.9. A line passing through the intersection points described in 5.1.8
we will call Generalized Simson’s Line and denote by GSL(A. o, AP), where A € Oy
is the concurrency point, AP is the triangle of consideration and o is the angle of

rotation of AP.

B - isoclines

N
\
v
{ Ay
Ay
A

(a)

Figure 5.2: (a) B-isoclines to lines ¢; and ¢, along a line [; (b) construction of [ =

GSL(O. o, AABO).

Definition 5.1.10. Let 1l be plane, a; € Il be a set of lines, i = 1,2,.... Linesb;, €1l
are called a-isoclines to a; Zfﬁ =a, n,t € N. The points a;Nb;, are called vertices

of c-isoclines.

An example of S-isoclines to two lines ¢; and ¢y with vertices along line [ is show in
Figure 5.2(a).

Let € be a circle circumscribed around a triangle AABC and a point O € €. Let
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I* = GSL(O,a, AABC) and let | |y AB,l |y BC, | |/ AC. Finally, introduce the
family of lines parallel to I: L' = {I'| I" || I, I" #1}.

Lemma 5.1.11. Let a-isoclines to the sides of NABC at the points of their inter-
sections with o line I" € L' intersect pairwise in points A”, B",C". Triangles NABC

and NA"B"C" are similar perspective. The center of homology is O.

Figure 5.3: To Lemma 5.1.11.
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Proof. Denote the points | N AB = C;, I N BC = A, 1N AC = B;. We have

OA;, OB, OC; are a-isoclines to BC, AC and AB respectively as it is in Figure 5.2(b).
Choose a point A" € BC such that A’ # A; and draw the line passing through A" and
parallel to OA;. Denote by B” the point of intersection of this line and OB. Draw
the line parallel to OC; and passing through B”, denoting the intersection point of
these lines by C’. Draw also the line I’ € L', passing through A’, as it is shown in
Figure 5.3. Now, we have:

ABC,0 ~ ABC'B”, since all sides are parallel.

ABA,O ~ ABA'B" for the same reason.

[BO| _ |BA]| _ |BCY

BB = [BAT — BT The latter equality implies that A'C' =1'.

Therefore,

Since BAB” = BO'B" = m—a, B”is the intersection point of corresponding isoclines
to AB and BC at points of their intersections with . By construction B” € OB.
Set I' N AC = B'. Repeating the same chains of reasoning and construction routines
with a-isocline to AC at B’, that is, the line parallel to OB, and passing through B’,
we will get that it intersects C'B” and A’B” at some points lying on OA and OC.
Denote the points by A” and C” respectively. Hence, by construction, the triangles
NABC and ANA”B"C" are homological, center of homology being at O.

Finally, AABC ~ ANA"B"C", since we can make their corresponding sides parallel

by rotation NA”B”"C” by a around, for example, any of its vertices. O

Corollary 5.1.12. Any two triangles, similar perspective to a given one, and con-
structed as in Lemma 5.1.11 with respect to two lines I',1" € L', are homothetic with

respect to O.

Proof. By Lemma 5.1.11, the lines, passing through corresponding vertices of the
two triangles are concurrent, the point of concurrency being O. The parity of the

corresponding sides follows from the construction. U
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A~
Proposition 5.1.13. Given a circle 2, let K. K' € Q, KK' = «a. Let a triangle

ANABC be inscribed into Q0. Then for any 5 € Rmod 7, one of the angles between the
lines GSL(K, 3, AABC) and GSL(K', 3. AABC) is §.

Figure 5.4: To Proposition 5.1.13.

Proof. Choose a point D € Q) such that D ¢ {A, B,C} and choose 5 € Rmodw. Let
points D' € BC and A’ € BC be such that the angles AAC = DDC = 3.

Denote the point DI’ N by H and find the points £ € DD’ and D" € AC such
that DD'C = CAE = 3, see Figure 5.4.

Let us show that D'D"||AH.

Indeed, since DD"C = DD'C = &g, we may circumscribe a circle around quadrangle
D"D'CD. Therefore, D'CD =D'DD (inscribed angles subtending the same chord
(D'D") from the same side). But AHD = @, since they both are inscribed in §2
and subtend the same arc @ Hence AHD = D"D'D.

On the other hand, D'D" = GSL(D. 5, AABC) and AA' = GSL(A.3. AABC). The
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angle between these two lines is equal to 14/f-]\D, which is one half of the angular

~
measure of AD.
The cases D = A is trivial, and we may treat the cases when D coincides with either
B or C as limiting cases for D approaching one of the two vertices, getting the same
result.
Let us generalize the above mentioned. Consider two arbitrary taken points K, K’ €
~~ ~ ~~

2, and set AK = a and AK’ = 4. Obviously, K'K = |a — d].
Denote | = GSL(K. 3, AABC) and I' = GSL(K", 3, AABC). Then [.I' = I, AA" —
o A~

) -
I AA = %—5|:%KR’. O
Let a triangle AABC be inscribed in a circle Q and o € Rniod#. Let also L' be a

family of parallel lines.

Lemma 5.1.14. There exists a unique line I* € L' such that a-isoclines to the lines
AB, BC and AC at the points of their intersection with I are concurrent. The con-

currency point lies on €.

Proof. Consider first the case when L' is such that a line [ € L' (generator of L')
intersects each of the sides of AABC.

Given an «, take a point D’ € 2 and construct GSL(D’, o, ANABC). It will intersect
a generator of L' under angles 5 and 7 — 3. Let D € Q be such that BB’ =25. By
proposition 5.1.13, the angle between GSL(D', a, AABC) and GSL(D,a, AABC)
will be 5.

Hence, GSL(D,a, AABC) will either belong to L' or form angle 23 with its gen-
erator, depending on the direction of S-rotation of 2 mapping D’ onto D. We will
choose the first option, that is, D is such that GSL(D.a, AABC) € L. Denote
GSL(D,o, AABC) by [*. Take a line! € L', | # {*. But by Lemma 5.1.11, a-
isoclines to the lines AB, BC and AC at the points of their intersection with [ will

not be concurrent. Thus {* is the desired line by construction.
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In case, when a generator of L’ is parallel to one of the sides of AABC, the line [* ob-

viously coincides with that side since it is the only member of L', for which a-isoclines

defined in this Lemma make sense. O

Theorem 5.1.15. (Conditions of perspectivity for similar triangles). Two similar
triangles are perspective if and only if:

(a) Their circumscribing circles intersect at two distinct points (A and B).

(b) A rotational homothety, centered at either A or B and mapping one of the circles
onto another, maps also one of the triangles onto another.

If the center of homology is B then the center of rotational homothety is A and visa

versa.

Proof. 1. The direct statement follows from Lemma 5.1.6.

2. To prove the converse, let us consider two similar perspective triangles AP, and
AP, and let | be their axis of homology. Define the family of parallel lines L, generated
by [.

Applying Lemma 5.1.14 to each of this triangles and L, we find that the triangles’
homology center is one of the two points of intersection of the circles Q0 radius R; and
1, radius R, circumscribed around AP, and AP, respectively. Denote this point by
B, and another point of intersection of the circles by A. Thus, lines passing through
corresponding vertices of AP and AP, are concurrent at 5 € €23 N s,

By Lemma 5.1.1, Ty = T[4, «, %—} and T, = T[A. —a, 2—;] are such that Ty (AP)) =
AP, and To(AP,) = APy, where « is the properly signed outer angle of intersection
of ) and €. O
One may ask, "What is the relationship between the topic of the thesis and the similar
triangle questions?’ The answer surprisingly comes from observation of the behaviour
of the third iteration of an evolutoidal transform of the same smooth curve v at the

same point X (y), namely. the problem of finding the position of a point Xy 4,0, on
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Os-evolutoid of #y-evolutoid of 8;-evolutoid of v, that is, on vs,0,0,-

Since we have discovered before, that evolutoidal transformations commute, the order
of application of the transforms is not important - the result will be the same. In
other WOI“dS, X919293 = X929193 = X929391 = ... = X(,)nggl.

Following the construction described in Theorem 3.3.3, we get the Lemina.

Lemma 5.1.16. The tangent line to vg,p,0, at Xg,g,0, is the azis of homology of two

similar perspective triangles N Xy, Xo, Xg, and N FEy Fo, F, .

Proof. Let us show, that the points Xg,0, = Xg,0,, Xo,0, = Xo,0, and Xg,0, = Xo,0,
are collinear, and Xy, g,¢, lies on the line passing through these points.

Consider any of the three points, say, Xy,s,, and the point X, 4,9, on the curve vs,,0,-
According to our construction, the line Xy g, X04,0,0, 15 tangent to s 6,0, at Xg 0,0,
By the same reason, Xg,0,. Xp,0, € X0,05-5X0,0.65-

By construction, the two triangles A Xy, Xg, Xo, and A Ey, Ey, Fy, are similar perspec-
tive with the center of homology at E, and the line passing through Xy 4,, Xs,s, and
X, g, 1s their axes of homology. O
Note that the positions of tangents to 7s,,0, depend only on radii of curvature of vy
and its evolute.

Finally, we broadly used the notion of Simson’s line, and the envelope of Simson’s
lines of a triangle is a deltoid. This amazing (though long known) property of Sim-
son’s lines will give us a good insight concerning deltoid’s projections in Chapter 6.
Among the publications of many mathematicians, who studied similar perspective tri-
angles by the early 20th century, the paper by Frank Wood [23] looks most resembling
(but not identical) to our results in this Section (except Lemma 5.1.16), although the
context and proofs are different. His attention was focused on special points of trian-
gles (Miguel points) and the Desargues configuration arising from similar perspective

triangles, while our focus is on Generalized Simson Lines.
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5.2 The Homology Axis Theorem

In Chapter 3 we gave a synthetic construction of the second iteration of the evolutoidal
transformation. In this Section we will describe a more involved construction of the
third iteration based on the key Proposition 5.1.13 and Lemma 5.1.16.

Let the radius of curvature and its first two derivatives of a curve v at a point X be
R, R and R".

Consider the polygonal line with nodes at X(%)i, i=0,....3, where X(%)o = X. The

first segment goes downward from X(zy to X(zy. Draw the circles (2;, 2 = 1.2, 3 based

s
2

on the segments [X(x)i -1, X(x):| as their diameters. It is clear that |X(zyi-1. X(z)i| =

x
|RG-1)],

Different scenarios of the development of this polygonal line: cup-shaped, ladder-
shaped (or degenerated versions of them) depend on the signs of R, R’ and R” (or
they may be equal to zero). But we will often have to consider only one scenario,
namely, R, R” > 0, R’ < 0, since the generalization on the case of arbitrary taken

R, R', R" comes naturally. Sometimes, we will use the old notations of centers of

curvature, remembering )((%)i =Fu1,1=1,2, ...

Definition 5.2.1. Given a chain of intersecting circles, £, €. ..., the iterational
transformation P ;.1 of §); onto £;.1 is a point-wise one-to-one mapping such that
YN € §; the point E -1 lies on line passing through N and P;;11(N). Naturally, we
will denote the result of k consecutive iterational transformations of the same point

M €y by Pax(M).

Remark. To avoid bulky notations, we will denote Pi2(Xp,) and P13(Xs;) by Xj and

X(;’] Clearly, Xj = Xgx and X = Xp(zy2.

Lemma 5.2.2. The center of curvature of curve vp,g, ot Xg,0, lies on the intersection

of lines Xy Xy, and Xy Xy .



Proof. Take any 6,6, € [0, 7]. Assume 6; < 5. Construct the circles §2;, €2, and 2,
as they were described above in the beginning of this Section (see Figure 5.5), and

the pairs of points Xp,. Xy, € (1, Xy, Xy, € {25 and X, Xy € Q3.

Figure 5.5: To Lemma 5.2.2

As it was proved in Theorem 3.3.3, the point Xy 4, = Xg Xy, N Xy Xg,. It is clear
that ~g,6, is tangent to line Xy Xp, at Xy 4,, so the center of curvature of 44, at

. . P
Xg,0,, that is Ep,g,, lies on Xy X, .




Continue line Xy Xy up to the intersection with X4, Xp,, denoting the intersection
point by A, and drop perpendiculars from F to line Xy, Xy,, denoting the foot of the
perpendiculars by B, and from E. to lines EB and Xy Xg , denoting the feet of the
perpendiculars by C and D respectively.

From AXy, EB, we have |EB| = Rcp, cy,.

From AECE,, we have CTETE = 01 + 0,, hence |EC| = R'sin(6; -+ ;).

Finally, from APj3(Xy,)DE,, we obtain |E,D| = R"sg, sg,.

Clearly, | Xy,0,4| = || BC|—|E.D||, which brings us to the desired result after expand-

ing the absolute value signs. U

Corollary 5.2.3. Let a € [0, 7] be a fized constant. Then the locus of the centers of
curvature of the curves {Vog+a) }o—o at points {Xowia)}j_o respectively. is a limagon

of Pascal. In particular, when o = 0 the locus s a cardioid.

Proof. The lines XXy, , and X7 Xy, are perpendicular to each other and tangent
to the circles Cy and C; concentric to §); and €3 respectively. The radii of the circles
C> and C3 depend on a. The sought locus and the locus {X;X;,, N X7 X7, }5_o
coincide by Lemma 5.2.2. If o = 0, the sought locus is the locus of intersections of
corresponding tangents to €, and €3 at points Xg and X respectively. Then the
statement follows from Theorems 3.4.7 and 3.4.10. O]
The results obtained in Section 5.1 suggest an interesting construction of the third

iteration.

Theorem 5.2.4. (Homology Axis theorem). Consider 6y,0,,603 € [0, 7] and two pairs
of similar perspective triangles (degenerated cases when 6; = 6, for some © # j should
be treated as limiting):

1. AXyg, Xp,Xp, and NXy Xj Xy, with the aris of homology Iy,

2. DXy Xy Xy and AXy Xy Xy with the axis of homology lo.

The point Xg 0,0, € Yo,0,0, 1S the intersection point of I and l,.
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Figure 5.6: To Theorem 5.2.4
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Proof. Denote A Xy, Xg, Xg,, AXp Xy Xy, AXG Xy Xg by Ay, A, A respectively
(Figure 5.6). Let their circumcircles be §2; of radii R; respectively.
If we apply homothety Hpg centered at E with ratio %} to {21, then the homology axis

of Hg(A) and A, will be parallel to I; by Lemma 5.1.12 and perpendicular to [, by

A~
Lemma 5.1.13, since EE, = 7. Therefore, I3 L ;.

Since [; is tangent to vs,g,6, at Xg 6,0, by Lemma 5.1.16, then by the construction of
f;—evolutoid of vp,p,. the point Xy g0, is the foot of the perpendicular dropped from
the center of curvature of vy,g,, that is g p,, to {;. But by Lemma 5.2.2, Ey 4, € lo.

Hence, Xg,0,0, = lo N ;. O
Thus, the axis of homology of Ay and A3 is normal, whereas that of A, and A is

tangent to vg,0,6, at Xg,0,0,-




Chapter 6

The 3rd iteration: Image-sets

In the previous chapter we were concerned with the construction of individual posi-
tions of points under the third iteration, and in this chapter we study their collective

properties as the parameters 5 3 vary.

6.1 The Cayley Sextic Normal Front Theorem

Let us consider a few simple triples of (R, R', R”) and find the shapes of I'y determined
by the triples, denoting such I'y by I's(R, R, R”). If we are only concerned about the
shape of I's(R, R', R"), we use the homogeneous coordinate notation I'3(R : R’ : R”).
Many of the shapes can be described as or related to sinusoidal spirals, hence we begin
with a definition of these curves.

We will use the notations sinf = s, costl = ¢, sin k@ = s, cos k6 = ¢, in this Section.

Definition 6.1.1. The sinusoidal spirals are a family of curves defined by the equation

in polar coordinates

™ = a" cos(nf), (6.1.1)
where a is a non-zero constant and n s a rational number other than 0. We will call
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n the order of the spiral.

Note, that according to the definition, a circle and a cardioid are sinusoidal spirals of

orders 1 and % respectively.

Definition 6.1.2. A Cayley sextic is a sinusoidal spiral of the order —1§ (Figure 6.1(a))

(a) (b)

Figure 6.1: (a) a Cayley sextic; (b) to Lemma 6.1.3: Cayley sextics and the circles
whose second pedals with respect to the origin they are (1) The curve ['3(1,0,0), (2)
The curve I'3(0,0.1).

Then it is straightforward to establish the following results.

Lemma 6.1.3. The curves '3(0,0,1) and T'3(1.0,0) are congruent Cayley sextics,

each symmetric with respect to line XE, point X and E being their poles respectively.

Proof. Let us calculate Ry and Ry for (R, R, R")=(0,0,1) and then plug them in
equations (4.2.5).

We have: Rp = R=0, Ry = Rc — R's =0, Rgp = Rc®> — 2scR' + R"s?> = s°. Then

T = R's%sg
(6.1.2)

y = R//SB .
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On the other hand, the parametric equations of Cayley sextic are:
& =costcos® &

L

— 3
y =sintcos” 3 .

Substituting § = é + %, we get the desired result.
Let us take a different look at the construction of I'3(0,0, 1). It is clear, I'2(0, 0) is point
X. Then by Lemma 4.2.9 I'3(0,0,1) is the pedal curve of the cardioid representing
the image-set of the second iteration of £ € gz with respect to its cusp, which was
just proven to be Cayley sextic with the same pole and axes of symmetry. By the
same reason, I'3(1,0.0) is the pedal curve of the cardioid T'2(1,0) with respect to its
cusp, point . The congruence of I'3(0,0, 1) and I'3(1, 0, 0) is obvious, since they both
are double pedal for the same size circles (Figure 6.1(b)). 4

Thus, by the way, we have proven a well-known relationship between Cardioids and

Cayley sextic: the pedal curve of a cardioid with respect to its cusp is Cayley sextic.

Lemma 6.1.4. The curve I's(1,0,1) is a circle (double circle) of radius % centered at

Proof. We have Rpo = R =1, Ry = Rc— R's = ¢, Rgz = Rc¢®* — 2scR’ + R"s? = 1.
Then

@ = s(s+esp+s3) = s(s+2(1—5%)s+(1—-25)s+2(1—s?)s) = 65(s—s”) = 657c* = 23,
and

y=s(ctcee+ey) =s(c+c(2¢ —1)+ (22 = 1) + 2c(1 — *)) = sc(6¢? — 3) = 25905,
Clearly, the set of points with coordinates (%sg 33202) is the desired circle (Figure

6.2(a)) passed twice as § runs from 0 to 7. 4

Note that coordinates of points of I'3(1,0,1) are sums of coordinates of points of
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Figure 6.2: (a) To Lemma 6.1.4: the double circle curve I';(1,0,1); (b) to Lemma
6.1.6. Two congruent nephroids: (1) The curve I'3(1,0, —1), (2) The curve I'3(0, 1, 0).

['3(1,0,0) and T'3(0,0,1) corresponding the same values of §. So, we may formally

write I'3(1,0,1) = T'3(1,0,0) + ['3(0,0,1).

Definition 6.1.5. The trajectory traced by a fized point on a circle of radius R, which
rolls with no friction over a fized circle of radius 2R, is a nephroid. [14] Parametric

equations for the nephroid, with cusps on the x-axis, are given by

x = R(3cost —cos3t), y= R(3sint — sin3t). (6.1.3)

When the cusps lie on the y-axis, parametric equations are given by

x = R(3cost +cos3t), y= R(3sint + sin3t). (6.1.4)

The moving circle is called a generating circle.
Lemma 6.1.6. Curves I'3(1,0,—1) and I'3(0,1,0) are two congruent nephroids.

Proof. Consider first I'3(0,1,0). We have Rgpo = R =0, Ry = Rc— R's = —s, Ryp2 =

Rc? — 2s¢R' + R"s? = —2sc¢. Then:
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T = —s%sy — 25%csy = —5%(sy + 2c83)
y = —scy — 2s%cc; = —s5%(cy + 2ccs).

Applying rotation of axes by % and their reflection with respect to y-axis, we get

2
C
' =+ 28%cc; = 31—+ (l—ca)ecs =2 — 2 +ees—copes =% — 1 — % +
2
2 %9 _ cocs 1 . ¢ 1 _ e _c g 1 3. 1
> TS T3 = i Tt 1T T T4 T T3 T il 1%

An analogous routine leads to

I3 1
y —282—286.

Now, the curve I';(1,0, —1) is treated by the same means. We have Rp = 1, Ry =

¢. Rgz = co. Then, applying reflection with respect to y-axis:

' = —5? —cssy — 883 =~ + 2 — 2 2 4 R =1+ %CQ + ic(;.

By the same means
Y = cs+cscy + crse3 = %.92 + isﬁ.

Thus both curves are nephroids (Figure 6.2(b)) with generating circles of radius .0

Definition 6.1.7. A parallel of a curve (or a parallel curve) is the envelope of a
family of congruent circles centered on the curve. It can also be defined as a curve
whose points are at a fired normal distance from a given curve (a normal front of a

curve). [14]

Clearly, parallel curves have the same evolute, which is the envelope of their normals.
The alternative definition of evolute of a curve I' is the following: The locus of cusps
of curves parallel to T' is its evolute. So when a parallel curve touches the evolute,
it has a singularity (generically, it forms a cusp). An example of a family of parallel

curves is shown in Figure 6.3.

Lemma 6.1.8. A curve I's(r1,0,72), m1.72 € R has a shape of a normal front of a

Cayley sextic.
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Figure 6.3: A family of curves parallel to a Cayley sextic. The Cayley sextic is the
rightmost curve (bold). Note that the cusps of these curves lie on the evolute of the
Cayley sextic (a nephroid) in the middle.

Proof. Routinely, we get Rgpo =11, Ry = ric, Rge = c*ry + 8°ry = 11 + 5%(rg — 11),
and then calculate the coordinates of Xy using the results obtained in Lemmas 6.1.4
and 6.1.3:

&= T18° +riessy + 11883+ (ro —71)s%sy = 3rys3 + (rp — 71)s%s;

(6.1.5)

: 3 :
y =711+ ricscy +riscy + (1 — r)stey = 518202 + (12 — ri)s’cs.

Thus, Xg = 3r1(s3. s2c2) + (11 — 12)(5%s3, s%c3) in our coordinate system. The second
term represents a radius-vector of I'3(0,0,7, — ry), which is a Cayley sextic. Let us
modify the first term:

%rl(s%. S9C2) = %rl(l — ¢4, 84) = %rl(l,O) — %rl(c4, —54).

By Lemima 4.2.2, the tangent vector to I'3(0,0,77 — ry) at Xgs is (s4.¢4), and then
the vector 3ry(cy, —s4) is normal to I'3(0,0,7; — ;) at Xgs. Besides, it has constant

length.
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Thus, to obtain I's(ry,0,72), we have to first translate by constant vector (%Tl,O)

each point of Cayley sextic, representing I'3(0,0,r, —r;), and then translate it by %rl

toward the corresponding center of curvature by %7“1. U
Lemma 6.1.9. A curve ['s(ry.ry, —r1), 1,7 € R is a nephroid.

Proof. Consider I's(r1, 72, —7r1), 71,72 € R. Without loss of generality, we may assume

ro, 71 # 0 (the case r; = 0 or r, = 0 were considered in Lemma 6.1.6). We have:

F3(T’137‘2, —T‘l) = F3(0, T9, 0) + F3(T‘1, O, —T'l), (616)

By the same Lemma, I'5(0.75,0) has equations:
x=ro(l— %cz — 211-06)

y= 7‘2(%32 + isﬁ)-

and I's(ry, 0, —r) has equations:

Therefore, the equations of T's(ry, e, —r1) are:

T = i(4r2 — 3(racy +7182) — (racs — T156))
(6.1.7)

Yy = %(27"1 + 3(rgsy — ric) + (rose + 1r1c6)).



Denote arcsin

= B and 1+/77 + 3 = C. Then rewrite equations (6.1.7):
"2

T
2
L5

3

= C(4ry — 3sin(20 + 3) + sin(60 — 53))

(6.1.8)
y = C(2r — 3cos(20 + ) + cos(60 — 3)).
Now, setting § = ' + g we obtain:
x = C(4ry — 3sin(20" + 25) +sin(66" + 23))
(6.1.9)

y = C(2r; — 3cos(20' + 23) + cos(60' + 2/3)).

Therefore, the curve I's(ry, 7y, —71) is a nephroid with the segment, connecting the

cusps, rotated by 23 clockwise. U
Theorem 6.1.10. A curve I's has a shape of a curve parallel to a Cayley sextic.

Proof. Consider the parallels to the Cayley sextic representing I'3(0, 0, 2) translated
by %7"1 along z-axis. One of its normal fronts is the nephroid I's(1,0, —1) by Lemma
6.1.8. Let us take any € [0,7] and consider a pair of points Xgs and Xgyz)s
of the nephroid. The two points have been displaced from their counterparts on
the Caylev sextic along parallel lines in the same direction, since (cos46, —sin4f) =
(cosd(f + %), —sind(f + 5)). The vector of further development of the front for one
of the points i1s directed inside the nephroid, for the other - outside. Hence, we can
define! a normal front of Cayley sextic as the normal fronts of two opposite arcs of
a nephroid, with endpoints in its cusps®, the points of one of the arcs being displaced
toward, and the points of the other - away from, corresponding centres of curvature

by the same distance. The cusps’ displacement direction is treated as limiting.

'What we are defining is actually a description of an involute of a nephroid. [5. Ch.9]
2We will call these arcs main arcs of a nephroid.
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Now, consider I's(R, R', R"). Denote (R, R, R") = (r1,72.73). We have:

1 1 1 1 1 1 1 1
Fg(Tl,Tg,Tg) = 3(57"1 — 57"3,7‘2, 5’["3 — 57"1) -+ F3(§T1 -+ 57"3, 0. 57"3 -+ 57"1). (6110)

Obviously, the first curve on the RHS of (6.1.10) is a nephroid whose normal vectors
at points corresponding to € are (¢4, —s4) and the second curve is a double circle whose
points have coordinates %(%Tg + %Tl)(l —¢4. 54). In other words, the expression on the
RHS may interpreted as the sum of three radius-vectors: a constant vector 2( %rg +
1

371)(1,0), a radius vector of a point Xgs on the nephroid Fg(%?"l

1 1 1,
— 573, T2, 573 — §'"1),

and finally, a constant length vector 3(iry + $r1)(—c4, s4), which is normal to the
nephroid and is directed inside one of its main arc and outside another.

Hence, I'y(r1,79,73) is a parallel of the Cayley sextic. ]
Clearly, a parallel to a Cavley sextic is a connected curve. It follows from Lemma

6.1.8, since I'3(r1,0,75) must be a continuous and closed curve.

Definition 6.1.11. Given a Cayley sextic, I', we will call the family of its parallels
P(L), and T utself will be referred to as a generator of the family. For two curves
C1,Ch, € P(D), the difference between their normal displacements from I' is called
normal distance between C) and Cy. To avord ambiguily, when the normal displace-
ment from U to a parallel curve C € P(T) is directed away from the evolute, the

distance unll be negative, and positive otherunise.

A brief and routine examination of the equations (6.1.2) shows that the curve has
two vertices (local extrema of radius of curvature). One of the vertices is at the pole,
where the curve is singular (the radius of curvature is zero); the singularity is not a

cusp.

Lemma 6.1.12. Let I be a Cayley sextic and the distance between its vertices be R.

Then P(T) has two generators, the normal distance between the generators being R,
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and one nephroid distance £ away from the generators.
5 Y. g

Proof. Consider the curve I'3(0,0,1) and let C € P(I'3(0,0,1)) be normal distance
k away from the generator of the family. It follows fromn Theorem 6.1.10, that the

equation of C' € P(I'3(0,0,1)) is

T = -—3383 — ]\2'04 = —8353 + ]\?(1 — C4) —k
(6.1.11)

y = —s’cy+ ksy .

That implies that the curve I';(—1,0,0) translated —% units along x-axis is a member
of P(T'3(0,0,1)). Denote that curve by I'". Clearly, I is a Cayley sextic, too, and
hence each of members of P(I'3(0,0,1)) is also a member of P(I").

On the other hand, since the pole is the only point when the Cayley sextic touches
the evolute, any its parallel C' distance k& # R away from the generator is not a Cayley
sextic. Indeed, for k € (—o0,0) U (R, 00), C is a smooth curve, and for k € (0, R), C
has two cusps.

By the symmetry reason and fron: Lemma 6.1.6, the parallel of nephroidal shape in

the family P(I') is unique and equally distant from the generators. O

Theorem 6.1.13. (The Cayley Sextic Normal Front Theorem) The curve I's(ry,72,73)
is a Cayley sextic if and only if r5 = rir3. If and only if 1y = —r3, Ta(r1,7m0,73) 15 a

nephroid. Otherwise, it is an unnamed normal front of a Cayley sextic.

Proof. We can represent '3(71, 79, 73) as a linear combination of two curves:

™ —T3 Ty — T
y T2,
2 2

T1+T'3 ‘T'3+T1
2 772

Ca(ry, ro.73) = )+ Ts( ). (6.1.12)

The first curve on the RHS of (6.1.12) is a nephroid (by Lemma 6.1.9), the second

is a double circle (by Lemma 6.1.4). From the equations (6.1.8) of the nephroid we
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conclude that the nephroid is C = 4/ <r1_4r3)2 +r2 times bigger than the nephroid

['3(1,0.—1). Hence its normal distance from the generators of the family of parallels

3 /(ri=rs)?

it belongs to is £4/~2="= 4 r3 (see Lemma 6.1.8).

Looking at the double circle equations

_ 3(ritrs) 3 (ri+r3)
=23 —= 4
S (6.1.13)
y = %(7‘1;43)547
we conclude that if I'y(ry, o, 73) is a Cayley sextic, then

3 (T‘] - T’3)2 9 3 (7'1 + Tg)
) — = - —" 6.1.14
1 T2 (6.1.14)

The condition r% = ryr3, making I'3(ri,72,73) a Cayley sextic, follows immediately.

The condition 7 + r3 = 0, making ['3(r, 72, 73) a nephroid, follows from Lemma
6.1.12.

The reverse chain of reasoning proves the converse statement. 0

Lemma 6.1.14. If RR" — R”* > 0, T'3(R,R', R") is smooth, if RR" — R? = 0 it has
one singular point (the curve is a Cayley sextic), if RR" — R? < 0 it has two singular

ponts.

Proof. By Theorem 4.2.6 and Corollary 4.2.7, the solutions of
Rye =0 (6.1.15)
gives the us the answer on singularity of I'y question. We have:

Rpz = R® —2R'sc + R's> =0 = R— R'sy + J(R' = R)(1 —¢3) = 0.
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Thus, we obtain:

R R// R'— R 2 R/
+2 — \/( ) + R7? sin | 20 + arccos . (6.1.16)

4 (R"—R)?
=+ R"

This equation has no solution if RR” — R? > 0, since absolute value of sine can not

exceed 1. It has one solution on [0, 7] if RR” — R* = 0

(6.1.17)

Finally, the equation (6.1.15) has two roots on [0, 7], if RR” — R* < 0. O
Since the number RR” — R plays important role in determination whether T's is

smooth or not, we will call it the discriminant of the 3rd iteration.
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6.2 The Deltoid Theorem

Next we consider the 3rd iteration Xp,g,0, where 8; + 6, + 65 = kmod , for some
constant k. It will help us to understand the distribution of Xy, g,¢, inside the tmage-

set of the 3rd iteration.

Definition 6.2.1. We will call the image-set of Xy,p,0, when 64 + 0, + 03 = kmod ,
where k is some constant, a constant sum image-set in general and k-image-set in

particular.

As it follows from Lemma 4.2.2, tangents to vg,9,6, and g, 6,0, are parallel if
(0, + 0y + 03) mod 7w = (6] + 6, + 0,) modw =k, k€ [0,7). (6.2.1)

Thus, we may call constant sum image-sets by parallel tangent image-set.
Given a curve v let a point X € v and a constant k € [0, 7). Then the locus of points

{Xo2(k-20)}5-o Will be denoted by f’; Clearly, it is a curve parametrized by 6.

Lemma 6.2.2. The locus of points Xg,g,0,, th + 02+ 03 = kmodr, is bounded by f§

Proof. Since Xpo,0, € [Xp,02X0,(at1)2], Where o = f210s " the statement follows

immediately from Lemma 4.2.5. 0

Definition 6.2.3. We will call the curve f§ the boundary of constant sum image-sets,
or for brevity sake, the constant sum boundary. If we would like to be specific about

k., we unll refer to f’; as k-sum boundary.

Definition 6.2.4. Deltoid (Figure 6.4(a)) is the roulette created by a point on the
circumference of a circle as it rolls without slipping along the inside of a circle with

three times its radius. It can also be defined as a similar roulette where the radius of
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the outer circle is % times that of the rolling circle. A deltoid can be represented (up

to rotation and translation) by the following parametric equations

x = 2R cos(t) + Rcos(2t) (6.2.2)

y = 2Rsin(t) — Rsin(2t),

where R is the radius of the rolling circle. [14]

Proposition 6.2.5. I[f R=R" =1 and R’ = 0, the k-sum boundaries are deltoids, in-
seribed in the double circle U's(1,0,1). The cusps of the deltoids lie in X(§+m%)3, m=

0,1,2.

Proof. Let k € [0, 7] be a fixed number and consider the the equations of the curve

fﬁ(l 0,1):
T =%+ cssy +sin(k — 20) sink
(6.2.3)
y = sc+ sccy + sin(k — 20) cos k.
Simple manipulations with formulas (6.2.3) yield:
1 o 1 e g cos(2k—20) 3 cos(20—-2k) ¢4
S R R S R 2 —1 2 1
8 51 sin(2k—20)  sp  sin(20 — 2k) L5
YT 2 2 = 2
Substituting 8 = %’ — k. we get:
. 3 cos(¢' —4k)  cos(20' — 4k)
C4 2 , 4 (6.2.4)
sin(0' — 4k) N sin(20" — 4k)
y=- :

2 4

Finally, reflecting the curve (6.2.4) with respect to the x- and y-axes, we obtain the
equations (6.2.2).

The positions of the cusps are obvious. B
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Thus, we obtain an interesting construction of a deltoid. Take a unit circle ; and

0.6

W

N () d
\\“.""“"‘-!',{/’

04

02

-02
-04

-0.6

(a) (b)

Figure 6.4: (a) A deltoid; (b) to Lemma 6.2.5: The double circle I'3(1,0,1) and a few

constant sum image-sets’ boundaries.

let points O and X be its center and a fixed point on the circumference respectively.
Let point E € {21 be opposite to X.

Let XOA be counted clockwise and Ay = (%X/O\A) mod 7 be the coordinate of a
point A on the circumference. Pick any number k € [0,7) and let A, B.C € £, be
such that (Ax + Bx + Cx)modn = k. Let AA’B'C’ be symmetrical to AABC with
respect to O. Denote by ABC the point of intersection of Simson lines of the two
triangles with respect to E. Let ()3 be a circle such that its radius is % and (2 is its

meircle at X.

Theorem 6.2.6. The locus of {ABC} (a1 Bx+Cx)modr=k 15 a closed region bounded
by a deltoid inscribed in the circle Q1. The bounding deltoid is attained by considering

only triangles NABC with at least two vertices coinciding.
Proof. The statement follows from Theorem 5.2.4 and Proposition 6.2.5. O

Lemma 6.2.7. If I's has a singularity at Xgs, then fg passes through that point for

any k€0, 7.

93



Proof. Suppose I'3 has a singularity at ng. That implies that Rg(?) = 0, and then

Xgz = Xg2,, for any a € [0, 7]. Then the statement of Lemma follows immediately. O
0 0%

Lemma 6.2.8. (Lemma about three congruent deltoids) Given any k € R mod «, the

curves T'5(0,1,0) and T'5(1,0,—1) are deltoids congruent to T'%(1,0,1).

0.8
0.6
0.4

-0.4
-0.6

Figure 6.5: To Lemma 6.2.8. The upper nephroid, I';(0,1,0), with T'%(0,1,0), the
lower nephroid, I'3(1,0, —1), with I'%(1,0,—1) and the double circle, I';(1,0, 1), with
Fé‘(l, 0,1), where k = 1 in all three cases.

Proof. Consider first T%(0,1,0).

T = —5%89 — S25k_205k

Yy = —5%c; — s — 25k_20Ck.
Working out the coordinate expressions, we get:

= —5(1—cp)s2 — %82(02 — Cok—20) = iSZk = %82 + Sap-2k

B~

(6.2.5)

. gl 1 = P4 gl 1 1
Y= —5(1 - 02)02 & 5(82k—29 = 82)32 =3+ 7Ck — 5C2 — 7C49—2k -
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Substituting 8 = %9’ + k and reflecting the curve with respect to the z- and y-axes,

we finally obtain a model equation of a deltoid:

T = —i sin 2k + % sin(f" + 2k) — %Sin(%’ + 2k)

(6.2.6)
y = —3 — 082k + 3 cos(¢ + 2k) + } cos(26' + 2k).
Now, consider the equations of [5(1,0, —1).
=+ €589 + CoSk_20Sk
Y = €S + C5Cy + Ca85_09Ck-
Performing the same routine:
r=5—to+ -t +3E -t =1— jeu — 52— TCa9-n
(6.2.7)

—

_ 1 1 1 1 1 1
Y= 582 + 384 — 5C2800—2k — 5C252 = 352k + 582 — ;549-2k-

Substituting § = %0’ + k and reflecting the curve with respect to the x- and y-axes,

we obtain again a model equation of a deltoid:

= —1+ feor + 3 cos(f + 2k) + +cos(26 + 2k)
(6.2.8)

y = —3so — 3sin(f + 2k) + 1 sin(26’ + 2k).

The sizes of the deltoids (6.2.6), (6.2.8) and (6.2.4) are the same. O

Definition 6.2.9. Since I's{(R, R'. R") is a Cayley sextic if RR" — R = 0, we will

call the cone RR" — R = 0 in Lz the Cayley sextic cone.

Definition 6.2.10. Since I';(R, R, R") is a nephroid if R + R" = 0, we will call the

plane R+ R" = 0 in Lz the nephroidal plane.
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Lemma 6.2.11. (Nephroidal plane deltoids) The curves fé’(rl,rz, —ry) are deltoids

inscribed in the nephrotd Us(ry,re, —71) and passing through the nephriod’s cusps.
Proof. Let us represent ff;‘(rl,rg, —ry) as the sum:

T (ry,mg, —71) = T5(0,79,0) + T¥(ry, 0, —11), (6.2.9)

and work on the coordinate sum of the corresponding parametric equations (6.2.6)
and (6.2.8) ignoring for a while the constant terms and the argument shift 2k for

simplicity sake. We have:

. T r T T _ 1 1
T =Sy + Feae + 5289/ — 72829/ = §(T1Ce/ + 7o8g) + Z(T1C2gl — 72899 )

. ' . )
y = —"sy + Lsog + Zeg + Zoop = 5(—r18e + 12cs) + 7(r1520 + T2C0s1).
(6.2.10)

Denote p = \/r? +r3, and ™ = cos a, % = sina. Then:

”

r = Ecos(ff — a) + £cos(20' + a)
(6.2.11)
y = —5&sin(0 — a) + &sin(20' + a).

Remembering the ignored constant shift of the argument by +2& and constant terms

in the equations for the z- and y-coordinates, we get:

r=—ry+ Lcos2k — Zsin2k + Scos(# — a + 2k) + £cos(20 + o + 2k)

y = —Hsin2k — 2 — 22 cos 2k — £sin(0’ — o + 2k) + £sin(20' + o + 2k).
(6.2.12)
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By a routine change of variables #/ = #” — 2«, we get the model equation of a deltoid.

r = —ry + Fey — Zsin 2k + 5 cos(0” — 3a + 2k) + & cos(20” — 3o + 2k)

y = —"sin2k — 2 — Zcos2k — §sin(0” — 3a + 2k) + §sin(20” — 3a + 2k).

(6.2.13)

The deltoids (6.2.13) pass through the nephroid’s cusps by Lemma 6.2.7 and their

cusps lie on the nephroid, since X(§+%)3, m =0, 1,2, belong to both I'3(ry, 79, —71)

and f‘g(rl,frg, —71). OJ

Lemma 6.2.12. Fiz a k € Rmodnw. The chords [ng(k_gg)X(H%)z(k,gg)] of a deltoid

representing T5(ry,r0, —71) are tangent to it.

Proof. For f’g(rl,rg, —ry), we have: R=ry, Ry =r1c— 18, Rg2 =100 — ross.

Calculate the coordinates of Xgz2(;_09) = (21.%1) and Xorz)2(h20) = (22, y2):

T, — 7’182 + (Tlc — T’ZS)SSQ + (T1C2 - 7’232)8&;205&

(6.2.14)
Y1 = r1sc+ (ric — m98)scy + (r1c2 — 1952)Sk_29Ck-
Ty — 7’1C2 + (—7“15 — TQC)C<—SQ) + (-Tlcg -+ TzSg)(—Sk_g,g)Sh
(6.2.15)
Yyp = —118C + (=118 — roc)c{—cp) + (—r1co + 1252)(—Sk_26)Ck-
Clearly, 29 — 21 = 1163 + roso and yo — y1 = —r189 + 12y, SO

X o Xos 220y = V(wa — 1) + (2 —91)? = \[ri + 75, (6.2.16)

From the geometry of deltoid, we know that the tangents to a deltoid with generating
circle of radius a, measured between two points, where they cut the curve again,

are of constant length 4a.[13] By Lemma 6.2.11 we know that the radius of a circle
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— T'2 T'2 . . .
generating the deltoid T%(ry,ry, —r;) is Y f 2 which is 4 times smaller than the
ChOI‘d [ng(k~29)X(9+§)2(k“729)]' D

Lemma 6.2.13. (Lemma of three concurrent circles) If point (R, R',R") € L3 lies
on the Cayley sextic cone. the three circles based on the segments® [X(%)HA)X(%)L],

i=1,2,3, as their diameters, are concurrent. The concurrency point is the pole of the

Cayley sextic T'3(R, R', R").

Proof. Let us use the old notation for the circles: €2y, {2, {13 whose diameters are
the corresponding segments [X(%)(z—l)X(%)i], i=1,2,3, see Figure 6.6.
By definition 6.2.9. RR" = R”.

Figure 6.6: To Lemma 6.2.13.

If R" = 0, then either R = 0 or R" = 0, so two of the three circles are degenerated
into points, and the statement is obvious.
If R # 0, then neither R = 0 nor R” = 0. Denote by O and O the feet of the

perpendiculars dropped from Xz and X(z)2 to [XX(zy| and [Xz.X (x| respectively.

3We will count Xzp = X.
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Obviously point O is one of the points of intersection of €2; and {2y, whereas point O’

is that of €25 and Q5.

e —

Since & = g;,l,, the angles X/X%\X(%)2 =X X(g)sX(%)2 = arctan R@,,

R

hence X; X(;)s L
2 2

(NE]

XX<%)2. Therefore O and (' coincide.

Further, let us denote arctan % by a and calculate R,z2:

Ry = Rcos® a — R'sin2a + R"sin* a = ——(R — 2R+ R) = 0.
Therefore, v42 is singular at X2, and so is I'y at X,s by Cor 4.2.7. Since I'; is a
Cayley sextic, its only singularity is in the pole, so X3 is the pole. Clearly, X3

coincides with X2, which is the point O. O
Lemma 6.2.14. If (R, R', R") € Lj belongs to the Cayley sextic cone, then curves
f§(R, R',R") are chords of the Cayley sextic I'3(R, R',R") spanned twice (double

segments), passing through the pole.

Proof. Consider a curve 7, and construct the image-set of the second iteration of

Xo € Ya. Suppose RR” = R?. Let R’ # 0 (see Figure 6.7). Take any k,a € [0, )

0.5

Figure 6.7: To Lemma 6.2.14. The curve I'3(1,0.9,0.81) with a few chords, passing
through the pole.

and fix k. Then a segment [Xa(%)gXa(k-g-kﬂ)z} will be a chord of TX(R, R', R"), which
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is the collection of endpoints of all such segments as a runs from 0 to .

By the routine construction, the center of curvature of v, at X, is Xoz = [XGX%}OQL
The center of curvature of the evolute of 4, Yoz, at Xoz is Xo(zy2 = [XQ%X(%)Q]OQ;;,
since X(,(%)z = X(%)QQ, so the line XQgX(g):z meets line XQ%XO at a right angle.
Then the image-set of the second iteration of X, € 7, will be a cardioid with the
cusp at O. By Lemma 3.4.2, the segment [XM%)ZXG(H.%)Z] passes through O. It
will form angle 2("*7") = arccot % with v, (see Lemma 3.4.4) or angle k + arccot %
with v, i.e. the angle does not depend on «. Thus, all segments [Xa(%g)g)(a(;@%)z}
constituting k-image-set, are collinear, and therefore f’g(& R, R") is a line segment
passing through the pole.

Note, that the image-sets of the second iteration of points X

’ /
Trceot %—a € ,yarccot %—a

and X a € [0, 5] are the same, so the corresponding constant

arccot 117—;+a € ,Yarccotlll—;+a’
sum segments will totally overlap, therefore T5(R, R', R”) is spanned twice as a runs
from 0 to 7.

If ¥ = R =0and R" # 0, then the argument is not valid but we can easily prove

the statement in this case by examining the parametric equations of T¥(R, R', R").

We have Ry = s?, R = Ry = 0 and then:

r = sin? @sin(k — 20) sin k
(6.2.17)

y = sin?fsin(k — 260) cos k.

Clearly, the equations (6.2.17) for a fixed k are parametric equations of a segment,

™

and since the function sin®#@sin(k — 26) is Z-periodic, the segment is spanned twice

as @ runs from 0 to 7. U

Lemma 6.2.15. Let a point (r1.79.73) belong to the Cayley sextic cone. Then for any

r* € R and k € Rmod, the segment TX(r1,79,73) is tangent to a curve TE(ry. 7y, )
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at Xy € ;. (Figure 6.8(a)).

Ifri =0, ice. (ri.ra.r3) = (0,0,7r3), the segment fé‘(0,0,rg) is tangent to a curve

f§(0,7'*,r*) at the origin for any r.,r* € R. (Figure 6.8(b)).

Proof. Obviously, the segment T5(r).7y,74) and the curve T5(r, 79, 7*) have a com-

mon point, corresponding to # = 0, namely X, € 7y, since X = Xppz. It is

also clear that X € [Xo(k)QXO(EJrE)z}, because it is equivalent to the statement
2 22

X0 € [X(E)ZX(§+1)2L which follows from Lemma 3.4.2.
2 2 2

Consider the equations of fg‘(rl, ry,73):

x=r118" + (ric —ras)ssy + (r1c? — T980)skSk_26 + T35Sk Sk_0p

(6.2.18)
y = risc+ (r1e — 198)sCy + (117 — 1982) Sk 29 + T35 Sk 20,
and those of fg(rl, ro.7*)
xr = 'f'152 + (Tlc — 7"28)5-92 + (7'1C2 — TzSg)SkSk_zg + f‘*SZSkSk_zg
(6.2.19)

Yy =118C + (r1c — 198)sCo + (11¢* — 7982)ChSk 20 + T*S2ChSk_20.

Differentiating these equations with respect to 6 at § = 0, we notice that the cor-
responding equations differ only by the last term and derivatives of the last term in
each equation vanish. Hence the segment f’é’(rl, re.73) is tangent to fé(n, To, 7).

Further, consider the equations curve [5(0, 7., ")
T = —T,C880 — I'yS0S)Sk_00 + ¥ S2SpSk_29

(6.2.20)

Y= —7,85%Co — 1 89CkSk_0p + TS CkSk_29.

Clearly, both curves, f§(0,r*, r*) and f’f{(O, 0,73), pass through the origin when the

parameter is equal to zero. Then differentiating these equations with respect to 8 at
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(b)

Figure 6.8: To Lemma 6.2.15. In both Figures, segment (4) is tangent to curve (2).
(a) Curves: (1) T3(1,0.1), (2) T3(1,0,1), (3) '5(1,0,0), (4) T4(1,0,0), (5) T1(1), point
P = X; € y. Note, curves (5),(4),(2) pass through P; (b) Curves: (1) I'3(0,1, —1),
(2) T22(0,1, —1), (3) I'3(0,0, —1), (4) T22(0, 0. —1). Note, curves (2),(4) pass through

the origin.
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6 = 0, yields

r = —QT*SE,

(6.2.21)
Y = — 2T, S4Ck-

Thus, the tangent vector to ff;(O,r*,r*) at the origin is proportional to the vector
(sk.ck). and as it follows from the equation (6.2.17), the segment I'4(0.0,73) lies
along this vector. O
To economize on notations, we will call anything pertaining to the image-set of the
nth iteration of a point on a curve, whose value and the first n — 1 derivatives at this
point are R, R, ..., R~V by that of (R. R, ..., R" V) € L,. We will also denote by
Xo, 0, (R R .....R" V) apoint Xy, 4, € 7.0, of (R.R,...R" V)€ L,.

Lemma 6.2.16. Let oy, a9,k € Rmodw, oy # as and k is fired. Suppose a line
passing through X a,y2(k-2a,) 014 X(az)?(k—20z) O féf(O,r*, 0) 1s parallel to fé‘(O 0,r%),

T, 7" € R. Then the corresponding points on fé’(0.0, r*) coincide.

Proof. The radius-vectors of points X(a,)2(k=201)(0, 7+, 0) and X(a,)2(k—20,)(0, 74, 0) are
X(a1)2(k42al) = 7'*(_5(2115201 — 8201 8k—201 5k -331020{1 - SZalsk—Qalck)7 (6222)

v . 2 2
X(az)Q(k—Zag) - 7"*(_5(,232012 — S2a05k—2025k: T 54,0200 520231\'—20201\') (6223)

respectively. Since these two points lie on the line parallel to f§(0,077‘*), we have

X(al)z(k%m) — )Z"(m)z(k,g(m = [(sg.cx), for some 8 € R, and then we conclude that

2 2
5%, 5201 = Say,52az: (6.2.24)
2 2 .
55,0201 = SuyC2a- (6.2.25)

103



On the other hand, the radius-vectors of the corresponding points on f‘§(0, 0,r*) are

X(a1)2(k—2a1) - T*(Silsk*ZQISk! SilSk-zalck), (6'2'26)
X(az)z(k—Zaz) = T*(SiQSk_2Q28k, .sizsk_gazck). (6227)
Then we have: 8325;‘«*202 = siz(skch — CkS20a,) = Silsk—mp which implies that
X(al)Q(k—Zal) = X(ag)z(k‘—Zaz) on f§(0 07 T*). O

Corollary 6.2.17. The distance | X (a;)2(k-201)(0; 75, 7) X(ag)2(k—202) (0, 7, 77)| does not

depend on r*, if the line passing through them is parallel to fg'(o, 0,r*) (Figure 6.9).

3
)
(6)
(©)Ne!
2\\4) 2
E
D
(1)
P
1 2

Figure 6.9: Curves (1)-(5), passing through points P, X, Q, are: line y = zcotl,
10,2, —2), T5(0.2, —1), deltoid T'}(0,2,0), T'3(0,2,1). Line (6) is y = xcot 1 + 1.5.
Note, |AB| = |CD| = |EF| = |GH| as lines (1) and (6) are parallel.
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Proof. Since T5(0,7.,7*) = [%5(0,0,77) + T5(0,7,,0), we have
| X (02200 (0: 7. 7%) = Xag)2(k-202) (0 7 7)| = [(X(a1)25-201) (0, 7. 0)

- X‘(az)Q(k72ag)(O7 Txs O)) + ()Z'(al)z(k—Qal)(O: 07 T*) - X'(QZ)Q(/\‘*QOQ)(O* 0. T*))|'

By the Lemma above ]X(Ql)z(k_2m>(0,0,r*) - X'(OZ)Q(;C,QQ.Z)(O, 0,7%))] = 0, so distance

between such points is constant for a fixed r, and any r* € R. D

Corollary 6.2.18. The distance from a point X ay2(k-24)(0,7..0) to the line xcosk =
ysink 1s equal to the distance between the origin and the corresponding point on

f§(0 0, T'*), that is X<a)z(k,2u)(0, O, T'*).

Proof. Considering equation (6.2.22), we notice that the distances from the points
X(a)2(k—2a) (0,74, 0) and (—7482 820, —T+S2C2q) tO the line z cos k = ysin k are the same.
The latter can be calculated by simple geometry, as vector with the same coordinates
(—7v52 824, —Tw5%Caq) forms angle k—2a with vector (si, i) and |7, (=82 894, —82¢24)|| =
Ir.s2]. Then to find the distance between that point and the line, we have to multiply
|r. 82| by |Sx_24|, which, by equation (6.2.26), is the distance between X qy2(x_24(0, 0, 7.)
and the origin. D
For the future, we will count the distance from a point on fé(O 0,r),r* € R, to the

origin negative if the number r*s2s;_, is negative.

Lemma 6.2.19. Given a fized v, € R, the area covered by a k-image-set of (0,r.,7*)

is equal to the area of the deltoid T5(0,7.,0) for any k € [0, 7] and any r* € R.

Proof. Denote by C the region, bounded by f§(0 re,7*). By Corollary 6.2.17, if we
cut C' by slices along the lines parallel to I'5(0,0,1) and take the limit of the sum of
the areas of those slices getting their width approach 0, we will obtain the same result
as that of following the same procedure with the deltoid ff;'(O, 7..0), since the lengths

of corresponding slices of the figure and the deltoid are the same (Figure 6.9). D



Lemma 6.2.20. Let a point A be the foot of perpendicular dropped from the point
Xoy2(k-20){0.7,,0) to the line rcosk = ysink. Denote by B and C the points

Xia2(h-20) (0,74, 0) and X (a2 (k20 (0, 7, 7*) respectively. Then angle BAC = arctan :—

Proof. By Corollary 6.2.18, ;—ﬁ% = :— From the right triangle AABC, we have
) — B \BC[ e

Denote the homothety with the pole at point A and ratio § by H(A,4). If a point P
is mapped to a point P’ by this homothety, we will write P' = H(A, §)[P].
For brevity sake denote f"g (r1,79,73) by C(r1, 2. 73), for curves denoted like that, k

is the same unless otherwise specified.

Lemma 6.2.21. Suppose (ry,ro,73) € L3 belongs to the Cayley sextic cone. Let r* #
ry and consider three curves Cy = C(ry,ro,r3), Co = C(r1,re, —11), C3 = C(ry,re,r")
with points, corresponding to the same parameter 8, denoted by Fyy respectively, 1 =
1,2,3. Then for all 6 € [0, 7], the points Fig, Fog, F3y are lying along a line parallel to
C(0,0,1) and Fsg = H(Fig, 2=2)[Fy). (Figure 6.10).

r3+7r1

Proof. Consider the linear combinations Cy — C and C5 — Ci:

Cl - Cz = (T'3 + 7'1)0(0, O, 1) (6228)

C1—Cy = (ry —r")C(0,0,1). (6.2.29)

From the equations (6.2.28), (6.2.29), we conclude that points Fyy and F3g lie the
proportional distances away from Fyy along a line parallel to C(0,0,1).

Therefore Fiyg = H(Fyg, 211) [ Fyy) for all 6 € [0, 7). O

ry—r*

Corollary 6.2.22. Let C1 = C(ry,12.73) € Lz be a Cayley sextic. If the line passing
through two points on C(ry,r2,7%), r* € R, is parallel to Cy then the distance between

the two points does not depend on r,. O
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Thus, we see that curves TX(R, R, R”) have the relationship with deltoids similar to

that between rectangles and parallelograms having equal bases and heights (Cavalieri’s

principle).
2 (6)
(5)
®)
; @ [E
1 (3) D
C
(1 P B
0 Q
1 (7) 4
2

-1

Figure 6.10: To Lemmas 6.2.21 and 6.2.23. Curves (1)-(8) are: line y = x cot 1, circle
I'(2). I3(2,1,0), T5(2,1,—1), deltoid I'}(2, 1, —2), T'}(2, 1, —3), segment T'}(2,1,0.5),
linc y = zcotl — 1. Point P is passed through by curves (1)-(7), points S and @
belong to curves (3)-(7). Note, [AD| = 5|AB| = 2|AC| = 2|AE] as lines (1) and (8)
are parallel.

Lemma 6.2.23. Given (ry,79,7*) € L3, 71 # 0, the area covered by a k-image-set

of (ry,7r2.73) is equal to the area of the deltoid fg’(m,rg,—rl) times |75;;—:1| for any

k€ Rmodr and any r* € R.

Proof. The proof is similar to that of Lemma 6.2.19, but now, the length of the slices
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ra—r*

of k-image-set of (ry,rp,r*) cut along the line xcosk = ysink will be | | times

3T
that of the deltoid fg(rl, re, —r1) by Lemma 6.2.21. O
Theorem 6.2.24. (The Deltoid Theorem) Let perpendicular planes IT*, II** € R®
intersect along a line [* tangent to a deltoid D C II*, and a line . be such that
L. ¥ II**. Then a family of lines parallel to l. passing through D will cut on II"* a
curve which is of shape of TX(R. R', R") for some (R, R'. R") € Ly and some k € [0, 7].
The converse statement is true as well: given two perpendicular planes II*, II** € R3
and a deltoid D € IT*, for any (R, R',R") € Ly and any k € [0,7) there is a line
LTI such that a curve similar to TE(R, R, R") is cut on II™* by lines parallel to 1,

passing through D.

Proof. Let 11; be a plane with Cartesian coordinate system xQy. Suppose, we are to
find the shape of T%(ry, o, 7*) € II,.

Draw the deltoid, D = T'%(ry, 7y, —r1) and a line [; € II; containing

a) the segment fg(rl,rz,r3)7 Ty = % if r; #£0, or

b) the segment T4(0,0.7,) if r, = 0.

Denote the segment we chose out of a) or b) by C*.

It follows from Lemma 6.2.15 that [y is tangent to D at some point.

Let a plane II, L II; be such that IT, N II, = [; and a deltoid D’ be the result of
rotation of D by 90 degrees around [;.

Construct f§(r1,r2,r*) € II} and connect its points with the corresponding points
of D', As it follows from Lemmas 6.2.20 and 6.2.21, the triangles with vertices in
corresponding points of D, D’ and the segment C* are similar, hence the lines are
parallel. Denote the family of these lines by L.

If we move II; along the line perpendicular to Ils, the figure on II;, cut by the lines
from £ passing though D', will change neither the size nor the shape.

By Lemma 6.2.14, we know that fg(rl, ra,73), r1 # 0 passes through the pole of the
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corresponding Cayley sextic and through X, € ~,. Since the latter depends only on

r1, the former may take any position in semi-plane z < ry, should we vary ro (and
consequently, r3). Hence I'%(ry,r9,73) may form any angle with T5(0,0,73). That
implies that any family of parallel lines, such that they are neither parallel to Il
nor perpendicular to Iy, passing through D’ will cut on II; a curve similar to some
TY(R,R.R"), (R,R',R") € L.

On the other hand, there is nothing special about the tangency point of D and C*
(and therefore the orientation of D with respect to C*), it varies for different k with
fixed (r{,re, —r1) € La, taking all possible positions from a cusp to a cusp of the
deltoid. Tt follows from the fact that the deltoid makes a Z-rotation when £ run from
0 to 7 (see Lemma 6.2.11). Indeed, the cusps of the deltoids envelope the nephroid,
and no k-image-set coincide (X(%L)S # X(%Z)a, k1 # kg). Meanwhile, C* makes a
m-rotation as k runs from 0 to 7.

That implies that the orientation of D’ with respect to C* could be any, which com-
pletes the proof of the converse statement. 0
Remark. In the Deltoid Theorem, we actually deal with the projections (shadows)
of a deltoid. The projection directions are not orthogonal to the projection plane in

general. We will look at envelopes of those projections closely in Section 6.4.
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6.3 The Triple Envelope Theorem

Before resuming work on the 3rd iteration, we will prove an important statement over
a general n iteration image-set, since the proof of the same statement over the 3rd
iteration is no shorter. To do so we have to introduce a special curve, consisting of
points resulted in the nth iteration of X € . The Deltoid Theorem gives a good
insight to that introduction.

Given a curve v let a point X € v and a constant & € Rmod #. Then, by analogy to
the 3rd iteration case, the locus of points {Xpn-1(a—(n-1)6) }5_o Will be denoted by f‘f;

Clearly, it is a curve, depending on parameter 6.

Definition 6.3.1. Let o € Rmod 7 be some constant. We will call the image-set of
Xo, 6,, where (61 +...+6,)mod 7 = «, a constant sum image-set or a parallel tangent

tmage-set in general and a-image-set in particular.

The fact, that ff{ bounds the a-image-set in some important cases will be proven
later, and for now, we will manipulate with the notion of fg without using this prop-
erty. Further, we have not used the boundary property of I, so far. For now, we just
point out that tangents to curves Ygn-1(a—(n-1)8) 8t Xon-1(a—(n-1y9) are parallel.

Let us introduce two miore objects for further research:

(1) Let us take and fix o € [0, 7] and consider (n — 1) evolutoidal transformations of
the point X, € v,. Denote the set {X,gn-1}5_, by T'?. Clearly, it is a closed curve
parametrized by 6.

(2) Let us take and fix 6 € [0,7] and denote the set {Xgn-14}7_, by I'2. Clearly,
fﬁl‘ is a circle, representing the image-set of one evolutoidal transformation of a point
Xgn 1 € ygn 1.

Consider the equations of a family of curves in the form
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r=z(0,a)

(6.3.1)
y=y6, ),
where the parameters 6, € [0, 7]. Holding the parameter « fixed, we obtain para-
metric equations of a curve, and different values of « define different members of the
family (6.3.1).

In this setting, a point is in the envelope of the family if

oz Ox
0 Dol _y (6.3.2)
Oy 9y
06  Oo

Theorem 6.3.2. (Triple Envelope Theorem) The envelopes of families of curves
(a) {7 }oo-
(0) {Ti}azo
(c) {T3 Yoo

coincide. If 1"y has singular points, each of the curves I'y, and f‘; passes through them.

Proof. We will prove the statement for n + 1 iterations instead of n to make formulas
simpler.
Denote:

rg = Rs® + Rpssy + ... + Rgn-185,
(6.3.3)

Yo = Rsc+ Rgscy + ... + Rgn-18¢y,

Consider the equations of each of the three families of curves, where « is a fixed

parameter, defining a member of a family:

(a) I'C

n+1:

Ty = 19 + Ron sinasin(a + nh)

(6.3.4)
Y1 = Yo + Rgn sin acos(a + nd).
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(b) The circles (the image-sets of one iteration of Xgn), fg_H:

To = Tg + Ran sinfsin(6 + na)
(6.3.5)
Yo = Yo + Ron sinfcos(d + na).
\
() Topr: )
x3 = rg + Rpn sin arsin(a — nb)
(6.3.6)
Y3 = Yp + Rpn cos asin(a — nf).
\

Let us show that the first two families of curves have the same envelope(s). Notice,
that the parameters « and 6 just swap the places in the equations (6.3.5) and (6.3.4).
If a pair (., 6,) is a solution of equation (6.3.2) for the family (a), a pair (6,, a,) is

a solution of this equation for the faimily (b), and visa versa.

dxg

Ozgy g
o0

Plugging the equations (6.3.4) in (6.3.2) and denoting and%2 by xy and y; re-

spectively, we get

%%% - %%%% = Ron ((x} + (8—1;33 sin(nf +a) +nRg» cos(nd +a)) sin o) cos(nd +2a) —

(yy + (222 cos(nf + @) — nRyn sin(nf + a)) sin ) sin(nf + 2a)) = 0,

or after combining the like-terms,

ORgn
Rgn (2 cos(nf + 2¢) — yy sin{nf + 2a) — 899 sin® o + nRgnsina cosa) = 0. (6.3.7)
If we use the identities Rgn = cosfRyn-1 — sin 001{5—'1’2,—’1 (by (4.2.1)) and g%gl =

—nsinf@Ryn-1—n cos 06—]%.5;‘;1 (by (4.2.9)), we can combine the last two terms in (6.3.7):

Ryn (2 cos(nf + 20r) — yysin(nb + 2a) + nsin aRgn-1(p_q)) = 0. (6.3.8)

The equation (6.3.8) presents an implicit relationship between « and 6, which can be
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resolved locally by either

6 = T(a) (6.3.9)

or

o = (h). (6.3.10)

Without loss of generality. assume (6.3.9) is possible. Then plugging it in (6.3.7), we

get parametric equations on the envelope of the family (a)

=21 (¥(e), a)

(6.3.11)
y1 =y (¥a), ).
Then we obtain the same relationship for the family (b)
Ty = .Iz(\P(H) 0)
(6.3.12)

Yo = yQ(‘I’(Q);e)-

Hence, the two families have the same envelope(s). Moreover, it follows from (6.3.11)
and (6.3.12) that a pair (a.,#,) which satisfies (6.3.8) represents the same point as
the pair (f.,a.), solving the equation for the envelope(s) of the family (b). In other
words, Xgn-1, and X, .1, coincide. Hence, the envelope(s) are the locus of such
points.

Following the same procedure by plugging the equations (6.3.6) in (6.3.2), and com-

bining the like terms in the way we just did above, we obtain:

Rgn (@y cos(20 — nf) — yysin(2c — nf) + nsin(o — nd) Rgn—1((ni1)6-a)) = 0. (6.3.13)

Suppose a pair {(a,,#.) is a solution of (6.3.13). Then setting a. — nf, = 3., and
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plugging 3, for «, in the equation, we get:

Ray (x5, cos(2f, + nb.) — yy, sin(26. + nb.,) + nsin(B.) Ryn-15._p) = 0. (6.3.14)

which means that the envelope of fgﬂ is a part of the envelope of I'G_ ;. On the other
hand, for any (a.,#.) solving (6.3.8), the point Xgn,, belongs to f"jflne‘. Setting
3, = a, + nf, and plugging it in the equation (6.3.8), we obtain, that the envelope of
', 1 is a part of the envelope fg .1~ Hence, the envelopes coincide.

Suppose I';41 has a singularity at Xg.+1. That means, that Rpn = 0, or, in other

words, Xygn coincides with X, -1 for any o € [0, 7]. Therefore, any curve I'f_; and
v ; 3

any curve I'Y | pass through all those points. 0
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6.4 The envelopes of the deltoid’s projections

In this Section, we will consider families of the boundaries of k-image-sets, k € [0, 7),
for the third iteration of a point X € . Namely, we will focus on their envelopes and
the envelopes of cusps of special families of cardioids, the image-sets of the second
iteration of X, € Vo, @ € [0,7). We will call them cardioids of the last two iterations.

Clearly, the last two iteration cardioids are curves I'§, « € [0, 7].

Lemma 6.4.1. If a point of the 3rd iteration X2, « # 8, lies on the part of the
envelope of the cardioids of the last two iterations, other then T's, then it 1s the cusp

of I'S, where a € [0, 7| is some fized number.

Proof. From The Triple Envelope Theorem, we know that if Xg2,, a # 6, belongs to
the cardioidal envelope, it coincides with X, 2y.

We have X, 29 = Xpoo and Xyz, = Xygag. In other words, Xgoe = Xoas. That implies
that Ryo = 0. Therefore, v4, has a singularity at Xp,. It follows from Theorem 4.2.6,
that Xy, is the cusp of the cardioid bounding the image-set of the second iteration of

Xy € Yo O

Theorem 6.4.2. (Cayley sextic construction). Let  be a circle and X € ) be a fized
point. Let [X X*| be a chord of Q, QF be a circle based on [ X X*] as its diameter and
C* be a cardioid obtained by tracing a fized point on a circle of the size of (1*, rolling

upon 2* starting from X. Then the envelope of such cardioids is a Cayley sextic.

Proof. The procedure described in the statement of this Lemma resembles that of the
construction of I'3(1,0,0). The latter was the following:

Let X € v be a point on a curve, passing through the origin with y-axis tangent to it.
Let v be parametrized by the Gaussian map parameter . Let the radius of curvature

and its first two derivatives with respect to ¢ of v at X be 1,0,0 respectively. Draw

115



——

!

——

Figure 6.11: To Theorem 6.4.2.
a unit circle given by parametric equations

x = sin’#
.0 €10, 7] (6.4.1)

y =sinfcosf

Then the range of the last two iterations of a point Xy will be a cardioid with the cusp
at (1,0) and the main chord (from the cusp to the opposite point) [X Xp]. The locus
of midpoints of chords [X Xj3] when 6 runs from 0 to 7 is a circle given by parametric

equations

y = +sinf

T = icosﬁ + %
.0 €10,7] (6.4.2)

|

Lemma 6.4.3. Let (R,R',R") = (1,0,r) € L3, r € R. Then the envelope of fg,
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other then I'y. is

(a) a complete cucle, if r > 0,

(b) a pownt. ifr = 0.

(¢) a circular arc connecting the cusps of I's. if r < 0.

In particular. if r = —1. the envelope is a line segment. which can be viewed as an

arc of a circle of zero curvature.

Proof. By The Triple Envelope Theorem, we know that the the cnvelopes of I'§ and
fg‘ coincide. Definitely, a part of this envelope is I'y. To observe the remaining part
of the envelope. we cousider the locus of cusps of cardioids of the last two iterations.
Let r > 0. Let 9, be a unit circle based on [X E] as its diameter, X = (0.0). £ =
Xz = (1.0)., E. = X(%)z = (1 = r,0), and Q3 be circle of diameter r tangent to €1,
at E from inside (Figure 6.12(a)). Let 6 € [0.7], and construct by usual procedure
Xy and Xo(z)z2, denoting them by A and C respectively. Let EB be a height of the
triangle AAEC, and O = CANXE.

By construction, AEC = 7. Since EXA = EOC = 7 — 0. the triangles AEX A and
[

IRt . |EO| _ |CE] _ rsing __
AEQOC are similar. Therefore., INE| = TNA] = Tsing — T

That implics. that the position of O € [X E] does not depend on f. Hence. B lies on
the circle based on [EQ] as its diameter. Clearly, as 6 runs from 0 to 7, B describes
the whole circle. The argument is still valid when r = 0, but then O coincides with
E.

Since rp = 0. we have E' = Xz = Xyz. Now. since E and (7 are respectively the
points on the evolute and the evolute of the evolute of 4, corresponding to A = Xj.
the point B corresponds to the cusp of the cardioid representing the image-set of the
second iteration of Xy. Apparently, the circle described by those cusps lies entirely
inside the mage-set of the 3rd iteration, since any cardioid of the last two iterations

contains £ by The Cardioid Theorem (see Figure 3.5). and the rest of the circle falls
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common

B tangent

E ZXE ZXGE
2 2

(a)

Figure 6.12: To Lemma 6.4.3. (a) The case r > 0; (b) The case r < 0.

inside I'g(71.0). If 73 = 0, then F is also an inner point of the image-set of the 3rd
iteration (see Figure 6.11).

Now, let » < 0. Keeping the same notations, we notice the sketch will differ from the
case r > 0 by the position of 3, since now it is tangent to (; at £ from outside.
(Figure 6.12(b))

The position of the point O = AC N X FE is constant, since the triangles AOX A and
AOEC are similar. We have: % = % Using [ XO| = |[EO| + 1 and % = -1,
we obtain |EO| = —5. That implies that the foot of perpendicular dropped on AC
from E (the cusp of the cardioid by Theorem (3.4.7)) lies on an arc of a circle of
radius -5 centered at O.

As we let 6 run from 0 to w, the cardioidal cusps describe a circular arc, which

endpoints lie on common tangents to {2; and {23. Denote one of the arc’s endpoints

(on the left) by B*. Simple geometry suggests that |EB*| = —rsin’*6# = cos?f. In
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other words, solving equation

rsin®d + cos? § = 0, (6.4.3)

we find the ”extremal” angles and the coordinates of the arc’s endpoints, cotf =
== —%. But the equation (6.4.3) is the condition for Rg2 = 0, therefore the endpoints

of the arc are the points of singularity of I's. U

Lemma 6.4.4. Let (R, R, R") = (r1,r2,73) € L3, ro # 0. The locus of cusps of the
cardioids representing the image-set of the second iteration of Xy € vp, 6 € [0,7] is a

circle or a circular arc.

Proof. Apply the setting of Theorem 5.2.4, let circles €2;, ¢ = 1,2, 3 be of radii r1, 79,73
respectively. Let 6; = %, 0, = arccot I, 63 € [0,7]. Define 64 = 7 + arccot 2, so that
X(%)294 € {15 N 3, and denote X(%)294 = 0, see Figure 6.13.

It is clear that X4, Xe 1 X4,X; and OXy 1L OX .

Assume first r;+73 # 0. Denote Xy, Xg N Xg Xi' = Q1 and Xg, Xy, NOP13(Xy,) = Qo.
Note, that AQ;Xe,Xp, and AQy Xy, X, are similar right triangles.

Now, denote Xj,Xp, N Xy, X; = N and note, that | Xy N| = ;% (see Lemma 6.2.13).

We have
ri7e
Xp, Xp, | = — 6.4.4
T3
10X, | = (6.4.5)

The similarity of AQ1Xg,Xg, and AQ20 Xy, implies

lX02X01| o T_l V T% % ] 3 (6 46)
AR
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On the other hand,

X0, Xg | _ V54 (6.4.7)
INXo|  ra/rE+72

Therefore NXyg || Q1Qo.

Since Ay and Aj are similar and the sides are parallel the line Xj Xj, passes

Figure 6.13: To Lemma 6.4.4.

through Q. Denote M = (,.X; N Xy Xy,. Also note that AQ, Xy Xy, is similar
to AQyXy Xy, (the same angles). Applying rotational homothety with respect to O,
mapping Ay onto Ay, we map the line Q,Xp, onto Xy Xy,. Since angle of rotation

is 5, (02X, L Xy Xg,. Therefore, M lies on a circle based on Q1@ as its diameter.
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But M is the foot of the height in A X, Xy Xy, and therefore the cusp of the cardioid
representing the image-set of the second iteration of Xg, € vs,.
The case ry + 13 = 0 is treated by the similar argument, but in this case @; and

‘

()2 are remote to “infinity”, since the corresponding lines are parallel. So, applying
the rotational homothety mapping &2 onto A3z we map the line parallel to Xg,Xs,
passing through Xy, onto the line parallel to O.Xj, passing through Xy . Clearly, the

locus of intersections of of such lines is a segment, which can be viewed as an arc of

a circle of zero curvature. O

Theorem 6.4.5. (Deltoid Projection Envelope Theorem) Let (R, R'. R") = (ry,7r2,73) €
Ly. The envelope of fg‘ other then I's, is a subset of a circle. Namely:

(a) a complete circle, if the discriminant® D > 0, (Figure 6.14(a)).

(b) a point, if D =0, (Figure 6.7),

(¢) a circular arc connecting the cusps of I's, of D < 0 (Figure 6.14(b)).

In particular, if (ry, 79, 73) belong to the nephroidal plane, the envelope is a line seg-

ment, which can be viewed as an arc of a circle of zero curvature (Figure 6.14(c)).

05

(a)

Figure 6.14: An illustration to Theorem 6.4.5: (a) (R, R', R”) = (1,0, 2), the envelope
is a complete circle ; (b) (R, R', R") = (1,1,0.5), the envelope is a circular arc; (c)
(R, R',R") = (1,1, —1), the envelope is a line segment.

4Recall that the discriminant D = RR” — R’? of the 31d iteration was defined in Section 6.1
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Proof. The statement of the Theorem holds when 7, = 0 by Lemma 6.4.3. Assumne
ry # 0. Denote by Q* the circle based on Q@ as its diameter®.

Applying the setting and notations of Lemma 6.4.4, consider the position of the point
Xy, with respect to the lines X X5, and Q;@Q3. There are three possible cases: (a)
D >0,(b) D=0, (c) D<0. Let us treat them separately.

(a) D > 0. Then it is clear that X, lies outside of the strip between X Xy, and @Q; Q.
It was shown in Lemma 6.4.4, that X, € Q* and O € Q*. (Figure 6.15).

Note, that 2* is an incircle for €, and €23, while Xy, and O being the corresponding

X

03

Figure 6.15: To Theorem 6.4.5. Case (a) D > 0.

tangency points: Xg, = Q2N Qy, O = Q" N Q3. It follows from the fact, proven in

Lemma 6.4.3, that Q,Qq || XXy, || X5Xg, so Q* is is homothetical to ; and 23,

>All the points are defined as in Lemma 6.4.3
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centers oh homotheties being X, and O respectively.

By Lemma 6.4.3, for any 03 € [0, 7, the foot of the height X AT of triangle A Xy, X Xy |
(point M), falls on Q*. Indeed, M, which is the cusp of the corresponding cardioid,
is the second intersection point of line Xy, Xy and circle 7, so the cusps of cardioids
of the last two iterations describe the whole circle as 653 runs from 0 to .

(b) The case D = 0 follows from Theorem 6.4.2.

(c) Let now D > 0. Then obviously X, lies inside the strip between X Xy, and Q,Q-.
If r, = ry =0, then the radii of Q7 and €23 are zero, and all the cusps of the cardioids
representing the last two iterations of Xy € vy fall on the segment with the endpoints
(0,0) and (0, 1), which coincide with the cusps of the nephroid I'3(0, 1,0) by Lemma
6.1.6.

Assume now that (ry.7g,73) # (0,72.0). Since the case is a little bit more compli-
cated, let us break it down into two separate cases:

Case 1. rir; > 0.

By the same argument presented in (a), 2* is the outcircle for 2, and §23, while X,
and O being the corresponding tangency points: Xy, = Q* N0y, O = Q* N Qy, see
Figure 6.16. Since ry + r3 < 9. we have 23N = @. We can also see that Q* is
no longer covered fully by the feet of perpendiculars dropped from Xj to XX} as 0
runs from 0 to 7. To determine the endpoints of the arc, draw two internal common
tangents to €27 and €23. Denote their tangency points on ; by Xg« and Xy, where
0.8 are corresponding angles at the vertex Xy of AX Xy Xg and AX Xy, Xge-
respectively. Without loss of generality, let 6* < 6*, 6*,6* € [0, n]. Following the
construction of X., Xj.., XJ., Xj.., according to definition 5.2.1, we conclude, that
Xp- and Xj.. coincide with the tangency points of common internal tangents, lying
on €. It follows from the homothety with pole at (), mapping 2, onto §23.

Denote by AM* and M™* the feet of heights in A Xy Xy, X7, and A Xge Xp.. X{.., cor-
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responding to Xj. and Xj.. respectively. So as the parameter § runs from 6* to 6,
the corresponding foot of the height of AX, X} X} describes the circular from M* and
M**, and as the parameter runs from #** to #* + 7, the arc is spanned backwards.
By the construction of the 2nd iteration, the point X .2 lies on the tangent to I'y = (2;
at Xg- and on the tangent to {2 at Xp.. But this is M*!. Thus, Xg-3» = M". Since
M~ is the cusp of the cardioid of the second iteration of Xj € vp-, we conclude, that
Y=y is singular. Therefore, by Lemma 6.1.15, M™* is a singularity point on I'y (a
cusp). By the same argument, M** is another cusp of I's.

Case 2. ryry > 0.

i "

Figure 6.16: To Theorem 6.4.5. Case (a) D < 0, ryrg > 0.
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We may use the picture to Lemma 6.4.4. In that case, (1* is an outcircle for §2; and

an incircle for €23. It is clear that the arc of £2* between to external tangents to §2;

and §23 is covered by the feet of perpendiculars dropped from X to Xy X/ as 6 runs

from 0 to w. The proof, that the endpoints of that arc are, in fact, the singularity
points of I's, is the same as presented above for the case ryr3 > 0.

By Triple Envelope Theorem, the envelopes of the family of cardioids of the last

two iterations and the boundaries of a-constant sum image-sets coincide. Then the

statement of the theorem follows from Lemma 6.4.1. O

Corollary 6.4.6. If 01,6,,0; are pairwise different (by mod ), then Xa g0, i an

inner point of the image-set of the 3rd iteration.

Proof. Let (6 + 05 + 63)modnw = « € [0, 7). Then, the statement follows from the

fact that the point Xy 4,6, is an inner point of fg, see Lemma 6.2.2. ]

Theorem 6.4.7. (The boundary of the 3rd iteration image-set) The the 3rd wteration

tmage-set is bounded by arcs of T'y.

Proof. By Theorems 6.4.5 and 6.3.2, the image-set of the 3rd iteration is bounded by
the envelope of cardioids of the last two iterations, which consists of I'y and *. But
all the points of the latter, except the arc’s endpoints and Xjy,, are inner points of
the image-set of the 2nd iteration, not to mention the 3rd. In the case of {0* being
a complete circle, it follows since all its points, except Xy, are inner points of the
['; and Xy, is an inner point of Fg‘, see Figure 6.15. In case of £2* being a circular
arc, it follows, since * lies within two circles triangle Xy, and based on [ Xy X}.| and
[ Xg++ X4 ] as their diameters, see Figures 6.16 and 6.13. The point Xy, is, obviously
an inner point of Fgl. In the case, when 'y is a Cayley sextic, {2*, which is the pole of
the Cayley sextic, is an inner point of the image-set of the third iteration by Theorem

6.4.2. 0



Corollary 6.4.8. If Xy, 9,9, lies on the boundary of the image-set of the 3rd iteration

and 1s not a singular point of '3, then 6, = 6, = 0.

Proof. Suppose, Xg,9,0, lies on the boundary of the image-set of the 3rd iteration and
is not a singular point of I's, and 8, = 0y = 65 is not true. Then by Corollary 6.4.6,
0,.0,, 63 can not be pairwise different (by mod ), so without loss of generality X, p,0,
is Xo2q,: 1 # Qo

Since X 2

afa

is not a cusp of I's, then ,2 is not singular by Lemma 6.1.14. But then
X420, Is an inner point of the region bounded by the cardioid I'5? and hence an inner
point of the image-set of the 3rd iteration. Contradiction. O
Now, let us denote by Q" (R, R/,..., R* 1) the image-set of the nth iteration and by
Q'{’;(R, R',.... R""1) the a-constant image-set. When it is irrelevant or clear, we will
omit the specific notation (R, R, ..., R"!) and write simply Q" and QZ

Theorem 6.4.7 gives a tool to prove the general statements about relationship be-
tween a curve I (R, R',....,R* ) and Q"(R,R',..., R" ') on one hand, and between
T*(R, R, ..., R" ") and Q*(R, R',..., R* ') on the other, n € N, o € Rmodn. Anal-
ogously to Qg we introduce also the image-set of the (n — 1)th iteration of a point
Xo € Yo a € [0,7) and denote it by Q7.

Denote also the boundaries of ", QF and QF by 90", 9O and 90" respectively.

We are going to present these relationships in the two following below theorems.

Theorem 6.4.9. (The boundary of the nth iteration image-set) The boundary of Q"

consists of arcs of the curve T',,.

Proof. Let T, = I',(R, R....,R"!). Apply mathematical induction. The cases
n =1,2.3 are true by Theorems 2.4.6, 3.4.7 and 6.4.7.
Suppose the statement is true for all K < n,n > 3.

Clearly, Q"' = uQ™*! o € [0,7), hence® its boundary, 90", is enveloped by the

By the induction step, each of Q7*!, a £ [0,7) is bounded by arcs of T, ;.
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family {T% }r_,. Therefore, 9Q"*! consists of arcs of envelope of {I'?_,}7_,. By

Triple Envelope Theorem, the latter consists of either points” Xqgn or points® Xgn:1.

Let Xgn € Q™ € [, be a regular point on vg.. Then by theorem 6.4.7, Xgpn,, o # 0,

|
is an inner point of the 3rd iteration of Xgn-2 € vgn—2 and therefore cannot belong to
aanLl.

On the other hand, if Xg. € Q" € [', is a singular point on ~g-, the whole circle

Xona}™_, degenerates into a point, and this point? belongs to Ty ;.
a=0 4€g P p g +

Therefore 9O € T4y O

"not all the points X,¢n lie on the envelope, see Theorem 6.3.2.

S8these are T,y

°T",, has only finite number of singular points, those are the roots of the trigonometrical polyno-
mial equation Ry, , = 0. So each singular point on T, is isolated.
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Chapter 7

Hypo- and Epicycloid Envelope

Theorem

The frequent appearance of classical curves during our study of image-sets of the sec-
ond and the third iterations prompts us to generalize the discovered facts, extending
some of the statements in the previous Chapters onto the case of iterations of higher
orders. We will begin with cycloidal curves. General decsription of them, the reader
can find in [14]. Theorems 7.1.3 and 7.1.16 could be viewed as particular cases of
Morley Theorem [15], but in this Section they appear in a different context and are

proved in a different way.

7.1 The Epicycloid Envelope Theorem

Definition 7.1.1. An epicycloid is a plane curve produced by tracing the path of a
chosen point of a circle called o generating circle which rolls without slipping around
a fized circle.

If the rolling circle has radius r, and the fived circle has radius R = kr, then the
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parametric equations for the curve can be gren by:

() =r(k +1)cosf +rcos((k+1)8)
(7.1.1)

y(0) =r(k +1)sinf + rsin((k + 1)0).

Definition 7.1.2. A hypocycloid is a plane curve produced by tracing the path of a
chosen point of a circle called a generating circle which rolls without slipping within
a fized larger circle.

If the rolling circle has radius v, and the fived circle has radius B = kr. then the

parametric equations for the curve can be given by:

(@) =7(k —1)cosd +rcos((k—1)0)
(7.1.2)

y(@) =71k —1)sind — rsin ((k — 1)0).

The theorems 6.4.5 and 6.3.2 give rise to nice generalizations in the realm of epicy-
cloids, hypocycloids and sinusoidal spirals, a few of which we are going to prove in

this section.

Theorem 7.1.3. (The Nephroid Envelope Theorem) A nephroid, generated by a circle
of radius R, 1is

(a) an enwvelope of cusps of the family of deltoids, generated by circles of the same
radius R, which envelope the segment, connecting the nephroid’s cusps.

(b) an envelope of family of cardioids. generated by circles of the same radius R, whose

cusps envelope the segment, connecting the nephroid’s cusps.

Proof. The statement follows from Theorems 6.4.5 and 6.3.2, and Lemmas 6.1.6 and
6.2.8 and 6.2.12. ) O
Note that the segment connecting the cusps of a nephroid could be viewed as a two-

cusped hypocycloid, generated by a circle of radius half the length of the segment,

129



that is, generated by a circle the same size of the nephroid’s generating circle. It is
an amazing fact that the statement of Theorem 7.1.3 can be generalized to the case

of an epicycloid of arbitrary many cusps.

Lemma 7.1.4. If L,.1 3 (R. R, ..., R"™) = (ri.ry, —ry, —7a,...), then

R =1 coskl —rysinkf, 6 € [0.7]. k=0,1,....n.

Proof. We can show it by mathematical induction.

1. k=0 Rgp = R =r,. Obviously, it is true.

2. Suppose Rge = rycoskf —rosinkf for all £ <m < n.
Then, we have:

OR
Rgrr1 = cosO Ry — sind il (7.1.3)

Taking into consideration another sequence Lyy1 3 (R, R, ..., R™) = (ry, =11, =72, 71, ...
and setting (cos — sin 03%)"’]? — Ry, we notice that 8—.5;3’# — Ry, which by the in-
duction step is equal to o cos k0 + rysin k), we have:

Rgri1 = cosO(rycoskl — rysink) — sinO(rycos kb + rysinkd) = ri(cosfcos kb —
sin fsin k) — ro(sin B cos kb + cosf sin kb).

Finally, we get

Ryirr = 11 cos(k + 1)0 — rosin(k + 1)6. (7.1.4)
U

Lemma 7.1.5. If L1 3 (R, R',...,R™) = (1,0,~1,0,...), then T, is an n-cusped

epicycloid.

Proof. Let us consider a curve v parametrized by the Gaussian map parameter 1,
whose radius of curvature and its first n + 1 derivatives with respect to ¢ at some

point X € v are respectively 1,0, -1,0,1,0, —1.0,...1

1Such sequence could be acquired, for instance, if R = cosvy and the point of consideration
corresponds to v = 0.
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Calculating Rgr, k= 0.1....,n, we get Rge = cos kf. So, the equations of I',,;, are:

x = 8(5+ ¢Sy + oS3+ o + CuSpi1)

(7.1.5)
y = 8(c+ccy+ CaCs+ o+ Crlnir).
Using formulas ¢,, 8y 41 = %(s + Som1) and CpCma1 = %(c + Comy1), We get
x=5((n+2)s+ s34+ 85+ ...+ 52011)
(7.1.6)

y=35((n+2)c+cs+cs+ .+ Cant1)

Then. expanding the products ssgpq and segy1, we obtain two telescoping sums

(n+2)—(n+2)ca+co—cy+ca—Cs+ ... + Con — Coni2)

]

(7.1.7)

y=+((n+2)sy+ 81— S+ 8¢ — 54+ ... + Sans2 — San)-

=

Finally, after performing all the cancellations and introducing a new variable ' = 26,

we obtain a model equation of an n-cusped epicycloid

z=1((n+2)— (n+1)cost — cos(n + 1)¢")
(7.1.8)
y=1((n+1)sin@ +sin(n + 1)¢').
O

Lemma 7.1.6. If L,y 3 (R.R,..R") = (ry ry.—ry. —ry....), then Tpyy is an

n-cusped epicycloid.

Proof. By Lemma 7.1.5. Rgx = ricy — 128k = /73 +racos(8 + kf), where 3 =

arccos( —= . Denote p = +/r2 + 12 and write down the parametric equations of
r24r2 1 2
1 2
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Figure 7.1: To Lemma 7.1.6. Two epicycloids: a 4-cusped, I'5(1,3,—1,—3,1), and a
5-cusped, ['g(2,—1.—2.1,2, —1).

Loy

T = p3(C(3+09)8 + C(a+6)52 + C(3120)83 + ... + C(B4no)Sns1) (7.1.9)

Y = ps(c(a+00)C + C(p+0)C2 + C(p426)C3 + . + C(34n)Crt1)-

As we can see, the equations (7.1.9) represents a curve similar to that represented by

the equations (7.1.6), which is an n-cusped epicycloid. U

*

Corollary 7.1.7. The epicycloids I'n(r1.72, —71, —72....) and Tp(r}, v5, —r}, =03, ...)

are congruent if ri +ri =ri? 4+ 3%

Proof. The congruence follows from the equation (7.1.9), since each of them is p times

the same curve I, (1,0, —1,0,...). O

Lemma 7.1.8. If L4y 3 (R, R',..,R™) = (1,0,-1,0,...), then curves {I'%,}7_,,

are a family of (n — 1)-cusped congruent epicycloids.
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Proof. Let us take a fixed o € [0, 7] and write down the equation of I'] ;:

x=8(s+csy+ Sy + oo + CuSn) + CaSaS(atng)
(7.1.10)

y=s(ctcep+ oyt ) + CaSaClaing)-

Expanding the last terms in the equations for « and y coordinates of I'}, ;, we get:
CnSaS(a+rn) = %(1 + Con — C2a — C2n+20));

CnCaS(a+nb) = %(_5271 — 820 + S(2n+2a))-

Using the results proved in Lemma 7.1.5 and the expansion of the last terms, the

equations of I'f | takes the form

(n+42) = c20 — N2 — Cl2n420))

N

(7.1.11)

Y= %(SQQ + nsg + S(2n+2a))-

Changing he coordinates by (2/,y") = (—z,y) and the parameter in (7.1.11) by 6 =

£ — 2, we obtain a model equation of an (n — 1)-cusped epicycloid. O

Corollary 7.1.9. If L,y1 3 (R.R',...,R™) = (r,ry, =11, —73,...), then the curves
{Le,  }r_o. are a family of (n — 1)-cusped congruent epicyclotds.

Proof. The proof is identical to that of Lemma 7.1.6. U
Lemma 7.1.10. Given (1,0,—1,0....) € L,1. Then for a fized o € [0, 7], the curve

ng 1s an (n+ 1)-cusped hypocycloid with generating circle of the same radius as that

of the epicycloid Tpiq.

Proof. Let us take a fixed a € [0, 7] and write down the equation of ['?, :

x=58(s+ s+ 283+ ... + CrSn) + CrSa—noSa
(7.1.12)

y=s(c+cey+ ez + oo + ¢nCn) + CnSa—noCa-
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Expanding the last terms in the equations for # and y coordinates of f‘ﬁ‘ﬂ, we get:
CnS(a—nd)Sa = %(1 + Con — C2a — C(QH—EQ)):

. , — 1 .
CnS(a—ne)Ca = Z(_SQTL + 826 — 5(271—20))-

The expansions above and the results obtaining in Lemma 7.1.5, we get

(n+2) = oo — NC2 — 20 20))

PN

(7.1.13)

y = %(320 + NSy — 5(2n—2(1))'

Changing the coordinates by (2/,y’) = (—z,y) and the parameter in (7.1.13) by

§ = £ + -2, we obtain a model equation of an (n + 1)-cusped hypocycloid. 0

Corollary 7.1.11. If Lyy1 3 (R, R,.... R™) = (r1, 79, =71, =79, ...), then the curves
{fﬁﬂ}g:w are a family of (n + 1)-cusped congruent hypocycloids. The radius of gen-
erating circles of these hypocycloids is the same as that of the epicycloids, {I'S,}7_,

for the same point (ri,rq, =11, =72, ...) € Lpi1.

Proof. The proof of the first part of the statement is identical to that of Lemma 7.1.6.

By the same Lemma, it follows that the of radii of generating circles of the epi- and

\/rf-k—r,g D

4

hypocycloids are the same and equal to

Lemma 7.1.12. Given (1,0,—1,0,...) € L,.y. Then the cusps of the (n + 1)-cusped

hypocycloids, representing the curves {fg+1}g:0, lie on the n-cusped epicyeloid 'y 1.

Proof. All the points of a hypocvcloid f,‘;H, such that

a —nf = 0modr, (7.1.14)

lie on the epicycloid. Solving this equation with respect to 8, given a fixed a € [0, 7],
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we obtain {n + 1) distinct (by mod ) roots:

0:{a+m}” . (7.1.15)

n+ 1 k=0

On the other hand, by Theorem 6.3.2, each of the hypocycloids passes through the

cusps of the epicycloid T',,.1, which can be determined by solving

Rgn == 0. (7116)

Since Rgn = cosnf, we immediately have

h— —. (7.1.17)

Since we have (n + 1) points of contacts of an (n + 1)-cusped hypocycloid and the
n-cusped epicycloid, and the hypocycloid passes through the cusps of the epicycloid,
one point of contact at least will be not a cusp of the epicycloid. This peint of contact
is a cusp of the hypocycloid, since there could not be any tangency point between the
two curves, when a hypocycliod lie entirely inside an epicycloid. Due to the symmetry
of distribution of the points (7.1.15) over the interval [0, 7], all of them are the cusps

of the hyvpocyeloid. So, the two curves get their cusps resting on each other. U

Lemma 7.1.13. Given (1,0, —1,0....) € L,41. Then the envelope of the hypocycloids,
representing {fﬁﬂ}gzo, consists of the outer and inner parts, which are the n-cusped
epicycloid T, 41, and the n-cusped hypocycliod respectively. The cusps of the epicycloid

and the hypocycloid coincide.

Proof. Let us write the equation of envelope of the family of curves, each member of
which is described by equations (7.1.11) with a fixed value of the parameter a € [0, 7]

and # running from 0 to #. To do so, we have to calculate partial derivatives of
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coordinates with respect to 6 and a:

92 — 2(2sin(2a + 2n6) + 2sin 20) = ncos(a + (n — 1)0) sin(a + (n + 1)8),
9 — 1(2sin2a + 2sin(2a + 2nh)) = cos nf sin(20 + nb),
gg = 2(2cos(2ax 4 2n8) + 2c0s20) = ncos(a + (n — 1)#) cos(a + (n + 1)),
g{% = 1(2cos 20 + 2cos(2c + 2n6)) = cosnf cos(2a + nb).

%g% - %2—2 =ncos(a+ (n —1)f) cosnsin(fd — a) = 0. (7.1.18)

Thus, a point (z(8, a),y(8, «)) satisfies the equation(7.1.18) if
1. a = #mod . In that case, we obtain [', 1, an n-cusped epicycloid.

2. a=[(1—-n)0 £ I]mod2r. Let us plug this expression into (7.1.11):

z = 1((n+2)—cos(2(1 —n)f £ 1) —ncos20 — cos(2(1 —n)f £ 7 + 2nh))

(sin(2(1 —n)f + 7) + nsin20 + sin(2(1 — n)f £ 7 + 2nh)).

<
I
.

(7.1.19)
After combining the like terms, we obtain a model equation of an n-cusped hypocy-

cloid:

((n+2) +cos(2(n—1)8) — (n — 1) cos 20)

N

(7.1.20)
(sin(2(n — 1)8) + (n — 1) sin26).

==

y _—
Examining the equations of the epicycloid (7.1.8) and the hypocyeloid (7.1.20), we

see that their cusps coincide. O

Corollary 7.1.14. The statement of Lermma 7.1.13 is valid for any

(ri,mo, =11, =72, ...) € Ly,

Proof. Consider a general setting (ry,ry, —r1, —r2,...) € Lpy1. By Corollaries to

Lemmas 7.1.6 and 7.1.10, it differs from the particular setting (1,0,—1,0,...) € L,
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Figure 7.2: A family of curves f‘g(l, 0.5,—1,-0.5.1).

only by transition, rotation and homothety with respect to the origin and does not
affect the property of parity, tangency, normality and inclusion. See an example in
Figure 7.2. O
Denote the inner and outer envelopes of the hypocycloids {Fg+1}g:0 by I', and I™

respectively.

Lemma 7.1.15. Gwen (1,0,—1,0,...) € L,+1. The cusps of the family of epicycloids

{T2 1 }5_o lie on the hypocycloid T, and envelope it.

Proof. The proof is similar to that of Lemma 7.1.12.

Take a fixed « € [0, 7] and consider 'Y ;. Definitely, the point X,u+1 € T%; lies on

n
[™. By the equation (7.1.18) it is the only point of 'y, lying on I'*.
Now, let us find out the points, which are the cusps of I'; ;. It is clear, they are such

points Xgns that Rgn-1, = 0. We have

Rgn-14 = (cosa — sin QG%)R = cos allgn1 — sina
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By Lemma 7.1.4, we have

aRgn —1

Rgu— = cos(n — 1)8, o0

= sin{n — 1)6. (7.1.21)

Therefore,

Rgn-1, = 0 < cosacos(n — 1) —sinasin(n — 1)8 = cos(a + (n— 1)0) = 0, (7.1.22)

But this is exactly the condition for a point to lie on I',! Thus, all cusps of the

epicycloid I'y_, lie on I',. 4

Theorem 7.1.16. (The Epicycloid Envelope Theorem) Given an (n+1)-cusped epicy-
cloid, T'*, generated by a circle of radius R, and the hypocycloid, T, whose cusps
coincide with those of I'*. Denote by §1 the circle of radius R, centered at the centroid
of T, 2. Then

(a) I'* is the envelope of cusps of the family of (n + 2)-cusped of hypocycloids, gen-
erated by circles of the same radius R, which envelope T'. and pass through its cusps.
The centroids of those hypocycloids describe a circle €Q.

(b) I'. is the envelope of cusps of the family of n-cusped of epicycloids, generated by
circles of the same radius R, which envelope I'™* and pass through its cusps. If n > 1,

then the centroids of those epicycloids describe the circle (1.

Proof. In other words, the space between I'* and I', is filled by two families of curves,
passing through the common cusps of I'* and T,:

(a) (n + 2)-cusped congruent hypocycloids,

(b) n-cusped congruent epicycloids,

whose generating circles are of radius R.

2the centroids of I'* and T, coincide for alln = 1,2, ....
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Figure 7.3: The 5-cusped epicycloid and hypocycloid are enveloped by two families:
(a) {T'¢(1,2,—1,-2,1,2)}7_, and (b) {T'g(1,2, -1, —-2,1,2)}7 _,.

The statement of the theorem, except the centroid part, follows from Lemmas 7.1.12,
7.1.13, 7.1.15.

Let n > 1 and consider the epicycloids ' (1,0, -1,0,...). Take any oy € [0, 7.
Looking at the formulas of the family of the epicycloids (7.1.11), we notice that
the centroid of the epicycloid, corresponding to o = ¢ is positioned at the point
(n 4+ 2 — cos 2ap, sin 2agp). So, as a runs from 0 to 7, the centroids describe the circle
of radius %, which is the radius of a generating circle of the epicycloids, centered at
the point (n + 2,0), which corresponds to the centroid of T',.

The proof of the centroid part of (a) is analogous. O
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7.2 The Sinusoidal Spiral Theorem

Finally, before we prove a general statement about sinusoidal spirals, we would like

to prove a few more generalization, inspired by Epicycloid Envelope Theorem.

Definition 7.2.1. We will call the ordered sequence of points {XX%X(_z)z...X(zzr_),H}
evolutal sequence of lenght n. Then the polygonal line based on such sequence will be

called an evolutal chain.

Lemma 7.2.2. For any (ry,re,....,7,) € Ly, the curves
(a) Tn(ry, —ro,r3, =74, 75, ...),

(0) Tn(—=r1, 10, =13, 74. — 75,76, ...),

are congruent.

Proof. The curves (a) and (b) are obviously congruent, since they are symmetrical
with respect to the origin®.

Now, construct the evolutal chains of the curves (b) and (c¢). Denote curves, defining
the point (—ry, 79, =73, 74, =75, ...) € L, and (r1, 7y, ...,7,) € L, by 7 and ¢ respec-
tively. Their centers of curvature are in points (—r1,0) and (ry, 0) respectively. Since
the tangents to the two curves at X coincide, we conclude that they have opposite
orientations. That means, that #-secant to one of the curves is m — #-secant to another
(at X). Hence, the corresponding to X points on a #-evolutoid of one of the curves
and on (7 — f)-evolutoid on another are symmetrical with respect to y-axis. The
following construction of the evolutal chains of length n of the two curves are sym-
metrical with respect to y-axis, too. Hence, given any sequence of angles {6;,...,6,},

the corresponding points on vglmgn and Wg’w_gl)”“_gn

) are symmetric with respect to

3As usual, we place the point of consideration, X € ~ in the origin so that the direction of the
tangent vector to 4 at X is opposite to that of y-axis.
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y-axis. Hence, the curves (b) and (c) are congruent, and hence so are all three curves®.

An example is shown in Figure 7.4. OJ

(a) (b) (c)

Figure 7.4: To Lemma 7.2.2. Three congruent curves: (a) I's(1,—1,—3,—1,0); (b)
Is(~1.1,3,1,0): (¢) I's(1, 1, —3,1,0).

Lemma 7.2.3. Two curves I'y(r1,72, ....7n) and Uy (ry.70—1, ... T1) are congruent.

(a)

Figure 7.5: To Lemma 7.2.3. Two congruent curves: (a) I's(2.1,—4,5,5); (b)
['5(5,5.—4,1.2).

Proof. Let a curve 7 be such that at a point X € ~, the radius of curvature

and its first n — 1 derivatives with respect to Gaussian map parameter, i, are

41t follows, by the way, that curves (a) and (c) are symmetrical with respect to x-axis
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(R.R,R" ..,R" V) = (r1,7r9,...,;7n,7,). Then construct n circles 3, Qa,..., Qy
built on [X(;zr_)iX(%)m} as their diameters, ¢ = 0,1,2....,n — 1.

Let us take any 6 € [0, 7] and construct a polygonal line Xy Xgz Xy(zy2... Xg(z)n-1, that
is the evolutal chain of Xy € 5. Denote it by . (See the first and the last few chains
of the evolutal chain in Figure 7.6).

Let 4 be another curve that passes through Xzyn-1 perpendicular to the line

X

Figure 7.6: To Lemma 7.2.3. The beginning and the end of a polygonal line
XXQX&%‘XG(g)nAl

Xzyp1X(gyn—2. Suppose also that the direction of 4 and the radius of curvature

and its first (n — 1) derivatives are such that the chain of corresponding points on its
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evolute, evolute of evolute and so on coincide in reverse order with those® of 4. That
implies (R, R', ... ]?(“‘1) = (P =Tt (= 1)y (= 1))

According to our construction, the arrival point of P, will be f(%w. If we construct
the polygonal line X(%+0)X(%+9)g5€(%+9)(%)2...X(%+9)(%)n—l, we arrive, of course, at Xj.
Continuing that process further with evolutal chains of Xy € 4 and X 219 € Y149, WE
will get that the points X92(§)11~2 and z?(%+0)2(%)n—2 coincide with X(%w)z and Xy re-

spectively, and so on. Finally Xy coincides with X(%+0)r¢.. Therefore, T'y(ry, 72, ..., Ty)

and T (7n, —7n_1, ..., (—1)"7rj, ..., (=1)"r1) are congruent. By Lemma 7.2.2, so are
Co(ry,7r,.orn) and Ty(r, rpo1. ..., 71). (see examples in Figure 7.5). O
038

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0 R

111 1.

1293247 5"
['2(1,0); (¢) T'3(1,0,0); (d) T'4(1,0,0,0); (e) I'5(1,0,0,0,0). Each of the curves if pedal
to preceding with respect to the pole (point (1,0)).

Figure 7.7: To Lemma 7.2.4. Sinusoidal spirals of orders 1

(a) Tu(1); (b)

Lemma 7.2.4. Two curves T'gn (0,0, ...,0,1) and Tyn(1,0,0,...,0) are congruent sinu-

soidal spirals of order <.

SIf 7, < 0. then 7 is oriented clockwise.
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Proof. Consider first the curve I'p= (0,0, ...,0.1). The routine procedure of calculating

R Rg,...,Rgn1 vields: R = Ry = ... = Rgn2 = 0 and Rg.1 = sin" 6. Then the

equations of T'4.(0,0,....0,1):

x = sinnfsin™ §
(7.2.1)

y = cosnfsin™ 4.

after changing the parameter 8 = %/ become, according to (6.1.1), the equations of a
sinusoidal spiral of order % (See Figure 7.7). The congruence of the curves follows
from Lemma 7.2.3. O

From here follows a well-known property of sinusoidal spirals.

Corollary 7.2.5. A sinusoidal spiral of order % 18 pedal to a sinusoidal spiral of order

1
n—1

with respect to the pole.

Proof. The proof is identical to that of Lemma 6.1.3. O
This pedality property give rise to a nice generalization over sinusoidal spirals of order

% in the following Theorem.

Theorem 7.2.6. A curve I'y(R, R, R", ..., R™ V) is a sinusoidal spiral of order L if
the ordered sequences { R, R',R",..., R""V} or {R"V R2 R} form a geomet-

ric seriesS.

Proof. Without loss of generality, we will prove the statement for I',, (1.5, 8%, ..., 6" 1), b >
0, see Figure 7.8. (The case b < 0 is symmetrical, and the case b = 0 has already been

proven (see Lemma 7.2.4)).

SThe mentioning of the reverse order makes sense when (R, R/, R”....R"1U)=(0.0.....0,1).
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Let us calculate, by the regular routine, Rye, k=1,....,n — 1:
k
Rgr = Z C! b cos™ ' fsin' 6 = (cosf — bsinf)". (7.2.2)
i=0

Let us construct the chain X Xz... Xz and circles ;, i = 1, ....n, built on segments
[X(zyi-1X(z)] as their diameters. By the same argument used in Lemma 6.2.13, the
circles are concurrent. Denote the concurrency point by O and OX X z = (. From
XXgX(g)z, J = arccos ﬁ Denote vb? + 1 = p. Now, we may rewrite equation

(7.2.2):

Rox = pFcos® (0 + 3). (7.2.3)

Fix a § € [0,7]. Construct the chains XogXog... Xozyn—1, then XpXgox.. Xgo(zyn-2,

2

Figure 7.8: To Theorem 7.2.6.
and so on. Draw the corresponding circles built on segments of these polygonal lines.
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By the same argument, the new rows circles intersect in the same concurrency point,
O, as it is shown in the picture (Figure 7.8) for the first two iterations.

Next, drop perpendicular from O to XX, and denote the foot of the perpendicular
by Pp: OPy L X Xy. Clearly, the locus {3} is a circle based on XO as its diameter.
From the triangles AOXy Py, AOX(,X(,%7 AOXgPy and ANOX Py, we have:

Oﬁ z = Oﬁ% = 3, since they are angles inscribed in ;.

O/X\Pg = Xg/X%\Pg = 7 — 6 — [, denoted by «a in the picture.

|OPy| = | X O] cos(d + ) = cos 3 cos(f + 3).

|0Xg| = | XgXoz|cos 5.

On the other hand, | XpXpz| = Ry & [OXy| = pcos(f + 5) cos 5. Therefore

llg‘]\;:?‘l =pe XyOF, = 5.

Since all triangles AOXge Py« are similar, we conclude:

0Xp|
0Py "

and  XpOPy = 3. (7.2.4)

Let us finally apply mathematical induction to complete the statement of the theo-

rem.

The basic case, n = 1. Obviously, I'1, that is a circle, is a sinusoidal spiral of order 1.

Suppose, the statement if true for all n < k.

Then consider the triangle AO Xgr Py, By Lemma 4.2.9 and Theorem 6.3.2, Xgk+2 €

[Xok Pgr] and Xge Pyx is tangent to I'y at Xge. Hence, the locus of points I'y,, =

{Pgr+1}j_q is pedal to I'y with respect to the pole, O. Therefore, by Corollary 7.2.5,

I, is a sinusoidal spiral of order k_41-1

Since all [OXgx+1] are the result of rotation the corresponding [OPyxi1] around O by
1

the same angle § and their extension by p, x4y is a sinusoidal spiral of order =5,

too. 4
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Below, we present an illustration to Theorem 7.2.6. Clearly, the sequaences R, R, R", ...
of all the curves in the Figure 7.9 form geometric series, and the curves are sinusoidal

spirals of the corresponding order.

@\\ ®) ©/ @/

2 4

Figure 7.9: To Theorem 7.2.6. Curves: (a) I';(1), (b) I'y(1,1.1), (¢) I's(1, 1.1, 1.21),
(d) Ta(1. 1 L. 21 1.331), (e) I's(1,1.1,1.21,1.331,1.4641) are sinusoidal spirals of order
1, 13 1 3 respectively.

1
L
In the light of the Theorems and Lemmas, proved in this Chapter, many statements
in the previous Chapters become their particular cases. However, we needed to prove
those particular cases to better understand different image-sets under lower iterations.
For instance, The Cardioid Theorem (Theorem 3.4.7) may be viewed as a particular

case of either Theorem 7.2.6 or Lemma 7.1.6.




Chapter 8

Further research directions

Lack of time did not allow me to complete certain proofs. Some sketches and ideas
for these are outlined in this Chapter.

The results obtained in Section 7.1 pave the way to generalizations of The Epicycloid
Envelope Theorem (Theorem 7.1.16). They can be derived by the same technique if
we try to represent the image-set of the nth iteration as a set of image-sets of an mth
iteration of images of a point of consideration under & iterations, where n = m 4+ k.
The case when either m or k equals to 1 has been closely studied in Section 7.1.

Let us consider k +m =mn >3, k> 1, m > 1, and a fixed a € [0, 7). Define a curve
', as the locus of points {Xgegm }5_o- By the same technique used in proving The
Triple Envelope Theorem it should be possible to show that the envelope of family of
these curves coincides with the envelopes of family of curves I, .. Moreover, these
envelopes are epi- and hypocycloids; see Figures 8.1, where (a) depicting a family of
nephroids and (b) depicting a family of 3-cusped epicycloids.

Analogously, we may define a curve f‘ﬁ’k as the locus of points {Xek( a=koym }o_q. Defi-
nitely, the sums of angles, constituting the nth iteration, along curves f‘gk is constant,

a. So the family of curves {fg,k}gzo will play role of generalized a-constant sum
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0.5

-0.5

(2)

Figure 8.1: (a) The tangential envelopes of the family {T'g;(1,0,-1,0,1)}7_, are
the 4-cusped epi- and hypocycloids, and the cuspidal envelopes are the segments
connecting the cusps of the tangential envelopes; (b) The tangential envelopes of
the family {I'§4(1,0,-1,0,1,0)}7_, are the 5-cusped epi- and hypocycloids, and the
cuspidal envelope is the 5-cusped ”star-like” hypocycloid.

curves. By the technique used in the proof of Triple Envelope Theorem, we should be
able to show that if n = m + k, then the envelopes of the four families:

(@){T7 Yazos

o T
n,mJ a=0"

(b{T
(eHT7 1 }a=0:

(@OF o

coincide. This statement completes the cycloidal part of the Morley Theorem and
can likely be proved by induction.

Observation of the curves f‘ﬁk for different £ = 1,...,n — 1 should give a answers to
further questions concerning areas and shapes of boundaries of constant sum image-

sets.

In the end, we remark that curves I',, may be of shape of epicycloids whose ratio

1

(see the footnote on page 4) is not an integer. For example, I'4(1,0, 3,0) is such an
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epicycloid with one cusp, a double cardioid (Figure 8.2). Conditions for I, to be an
epicycloid in the general sense (with not necessarily an integer ratio) are subject to
further research.

A cardioid itself is called sometimes an apple without a stalk. But the envelope

0.4

02

0.5 1

-0.2

-0.4

-0.6

Figure 8.2: A double cardioid, I'y(1,0,3,0). This is an epicycloid with ratio 1/2.

of {I'%(1,0, 1,0)}7_, consists of I'4(1,0, 1,0) (of course) and a cardioid with a ’stalk’
lying entirely inside the cardioid-like inner loop of the double cardioid. (Figure 8.3).

Thus the image-set envelope approach is an interesting way to generate new curves.

Lo o

[/ 172 =&
77 ) SKK
NS/ / . N\
17X
"// bk

7. ' ‘

", ’/ \
1’5;/ Y

7%

Figure 8.3: (a) The family {fj{(l,O,%,O)}Z:O and the curve I'y(1,0,1,0); (b) a

zoomed-in inner envelope of {I'§(1,0, %, 0) }rzo-
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