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Abstract 

In recent years, there has been a variety of research which has addressed the factors 

affecting the measurement of error bounds when using high frequency (HF) radar 

for ocean parameter measurements. The study presented here is conducted in order 

to identify other important factors that should also be considered in establishing 

meaningful error bounds on any ocean parameter extracted from the received radar 

signal. Specifically, this research aims at investigating the fluctuations in the Bragg 

peaks of the HF radar received spectra based on recent cross section models. 

The first part of the research work reviews the electric field equations for 

the backscattered signals when pulsed and frequency modulated continuous wave 

(FMCW) waveforms are used as transmitting waveforms. The incident radar sig

nal is assumed to be scattered from the ocean surface, which is represented as a 

zero-mean Gaussian random process. Various operat ing parameters are select ed 

to simulate the t ime series electric field for different conditions, and the power 

spectral densities (PSD) are calculated by t he periodogram method. Again, an in

vestigation is carried out to examine the signal to noise relationship in the Doppler 

spectra when a pulsed radar system has a noise limited reception . The noise is 

assumed to be external with no attempt to address internal noise features. It is 

assumed that the noise is an addditive white Gaussian process. To develop the 

noise contaminated signal, a suitable noise model is incorporated in the time do

main of the electric field signal. The Doppler spectra are calcula ted and examined 
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for various signal to noise ratios. 

The second part of the research work examines the fluctuations in the Bragg 

peaks of the received Doppler spectra from the ocean surface. An investigation 

is first carried out for an ideal noiseless radar system. Choosing various operat

ing frequencies, pulse widths (pulse waveform) and frequency bandwidths (FMCW 

waveform) for the simulations , numerical examinations of the existance of spec

tral fluctuations and Bragg distributions are conducted . The centroid posit ions of 

the Bragg peaks are calculated and compared with t heoretical values to reveal the 

relative difference. To check the significance of the fluctuations , the standard de

viations of the centroid positions of the Bragg regions are analyzed and compared 

to the resolution imposed by the fast Fourier transform (FFT). The results show 

that the standard deviations vary for various operating parameters of the radar. 

Finally, using the noise model int roduced in the first part of the analysis, the 

investigation of the Bragg fluctuations is extended to a noise limted pulsed radar 

waveform . The st andard deviat ions of the centroid positions are observed for differ

ent signal-to-noise ratios, operating frequencies and pulse widths. The significance 

of the noise level in the Bragg fluctuations is considered at the end of the analysis. 
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Chapter 1 

Introduction 

1.1 Purpose of Research 

Over many year , researchers have us d various instruments and techniques to 

gather informa tion about the ocean. Knowledge of parameters uch as directional 

wave height pectra , surface currents velocity and wind fields are u ed to describe 

the state of the ocean. This information i important in areas uch as offshore oil 

development , coastguard application and fisheries research. One of the parameters 

which is of great interest to oceanograph rs is the ocean surfac currents. Ocean 

current measurements are used to determine the movement of the wa ter surface, 

providing useful information in applications such as wa ter pollutant monitoring, 

search and r scue operations and navigation. Also, long term moni toring of the 

surface curT nts is used in fisheries applications, for example, to moni tor fish larvae 

from the location they originate to where they settle and grow to maturity. 

Traditionally, oceanographic informa tion has been acquired u ·ing technologies 

such as current m ters , pressure sen ors and satelli te-based instruments such as 

alt imeters. However , these conventional technologies for ocean parameter mea

surements ar expensive and difficult to deploy. Additionally, apart from drifters 
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the effect of external noise is not included in the fluctuat ion analysis. In Chapter 

4, the analysis of the Bragg fluctuations is extended to a noise limited pulsed sys

tem. The statistical properties are examined for different noise levels, operating 

frequencies and pulse widths. 

Chapter 5 presents a summary of results and conclusions, and suggestions for 

future work. 



Chapter 2 

The Doppler Spectrum for a 

Monostatic Radar Configuration 

Assuming a Pulsed and an 

FMCW Source 

2.1 Introduction 

The electric field equa tions used in this portion of the research are based upon 

models developed by Walsh and his colleagues for first- and second-order scat ter 

for a monostatic radar configuration using a pulsed and an FMGW source. In 

this chapter, we first choose a model for the direct ional ocean wave sp ectra. T ime 

series of the electric field are simula ted using P ierson 's model [37] for a zero-mean 

Gaussian process as a descr iptor of t he ocean surface. T hen , the Doppler sp ectra 

are estimated using t he periodogram method. 
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Figure 2. 1: Monostatic radar configuration. Symbol meanings are addressed in the 
text. 

2. 2 Fourier Series Representation of Elect ric field 

Equations for a Pulsed Waveform 

For a monostatic radar configuration shown in Figure 2.1 in which the t ransmit-

ter (T) and receiver (R) are collocated, the analysis leading to the backscattered 

electric field equations is found in [21] and [38] . Here, the source of the signal is as-

sumed to be a vertical dipole of length 6.l with a current distribution of peak value 

10 , located at the origin. In this analysis, the current distribut ion is assumed to be 

a periodic pulse of radian frequency w0 and pulse width To . The scat tering patch 

6.p8 , which is the smallest radial distance that can be unambiguously distinguished 

by the HF radar, is given by 

A - CTQ 
u.ps --

2 
(2.1) 

where c is the speed of light in vacuum. The Fourier series representation of the 

electric field equations including the first and second-order scatt er as given in [21] 
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is 

E(t) =lv1 0 lpi(,wejwt VJ< ejpoK 6 p8 Sa [ .0.:s (K- 2ko)] 
K ,w 

(2.2) 

where M is, 

NI 

(2.3) 

In these equations, fJo is the intrinsic impedance of free space, ko is the incident 

electromagnetic wavenumber , Pt and Gt are the transmit ting source peak power 

and gain respectively, p0 is the distance between the scattering patch and the 

radar components (i .e., in Fig. 2. 1, p0 = p1 = p2 ), F (p0 , w0 ) is the Sommerfeld 

attenuation function , Sa(-) is the sampling function (Sa(-) = s i(~ i )), R1 and R2 are 

first-order ocean wave vectors ofradian frequencies w1 and w2 , respectively, rr is the 

total coupling coefficient as given in equation (2.6) below and t is time in seconds. 

In equation (2.2) , the expression involving the first summa tion is t he contribut ion 

of the first-order scatter, that is, a single scatter from a first-order surface wave of 

wave vector R and radian frequency w . The first-order ocean surface, for which 

the Fourier coefficients are 1PR,w• has been verified experimentally to be generally 

statistically sta tionary with a normal distribution (see Barrick and Snider [30]) 

for the typical integration times (on the order of several minutes) used for HF 

radar ocea n measurements. The second-order contribution expression involving 

the double summation in (2 .2) arises as a result of: 
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• a single scatter from a second-order ocean wave of wave vector K which 

resul ts from the interaction of two first-order ocean waves of wave vectors /(1 

and i(2 of radian frequencies w1 and w2 , respectivelly; this is referred to as 

the hydrodynamic second-order scatter. 

• a double scatter from two first-order ocean waves of wave vectors J{ 1 and J{2 ; 

this is referred to as the electromagnetic second-order scatter. The constraint 

relating J{1 , i(2 and K appears in Section 2.4.2. 

The total coupling coefficient f r associated with these two types of second-

order scatter is a combina tion of the hydrodynamic, r r-1 and the electrodynamic 

f E [36] and are given by 

(2.4) 

and 

(2.5) 

Hence 

(2.6) 

where g is t he acceleration due to gravity and 6. is the normalized surface impedance 

of the interface [39] . 

2.3 Directional Ocean Wave Spectra 

To carry out the calculations of the radar cross sections , a par ticular model needs 

to be specified for the ocean surface. Here, this model, also used by Gill [40] is 

discussed in advance. 
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Several of the ocean spectral models in current use typically consist of a product 

of a non-directional spectrum S1 (I< ), and a normalized directional factor, g(Bf( ) 

where e!< is the direction of J?(eg. see Kinsman [41] and Tucker [42]) : 

(2.7) 

with 

(2.8) 

Clearly, 

(2.9) 

For illustration purposes, the Pierson-Moskowitz non-directional spectrum, Sp!VJ , 

[43] is selected as the ocean wave spectrum with a modification of 

(2.10) 

by Gill [40], where 

O:p!VJ (-0.74g
2

) 
Sp!VJ = 2]{4 exp ]{2U4 . (2.11) 

Here, apJ\;f is a non- dimensional parameter of value 0.0081 and U is the wind speed 

in m /s measured a t 19.5 m above the ocean surface. 

In equation (2. 7) , the directional distribution g( e R), is a function of the wavenum

ber ]{ , and e j(, and taken to be 

(2.12) 

where s( I<) is called the spread function and e(I<) is the dominant direction of 

the waves [42]. In simulations, it is usual to replace e(I<) by the Bw, t he wind 
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direction with respect to the radar look direction. \ iVhen the frequency depen

dency is removed from the spread function as is normally done [42], the directional 

distribution an be written simpl:v as 

[
e- - e ] g(B1() = F (s) cos25 K 

2 
w . 

The normalization in equation (2 .7) is satisfied when F(s) is written as 

2 (2s- l ) f 2(s + 1) F(s) - __ __;___ __ 
- 7rr(2 + 1) ) 

(2.13) 

(2 .14) 

where r i the gamma function. A typical value of s = 2, such ha b en widely 

used b:v previou investigators ([40, 16]) , is chosen for our simualtion . For this case 

4 
F(s = 2) =-

37r 

The directional ocean wave spectrum may then be written as 

8 ( R) = [cxpll! ( - 0.74g
2

) ] [_!_ 4 (eR + ~- Bw)] 
t m 4 J(4 exp J(2U4 37r cos 2 

(2.15) 

(2 .16) 

In this thesis, all the simulations carried out are based upon this ocean wave model. 

Figure 2.2 illu trates Pierson-Moskowitz ocean wave spectra for wind speeds of 10 

mjs, 12m/ sand 15 mjs. It is obvious that when the wind speed increases, the peak 

increases in ampli tude and shifts towards the lower frequenci s. This influences 

the second-order continuum in the Doppler spectrum causing this continuum to 

increase in en rg:v and to approach the first order. However, the first-order cross 

section is not affect cl to any great extent by the changing wind speeds since the 

ocean waves that produce the first-order peaks are generall:v in the saturated, 

high frequencv end of the ocean spectrum. For example, for operating frequencies 
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Figure 2.2: Pierson-Moskowitz ocean wave spectrum as a function of wavenumber 
for different wind speeds. 

between 3 to 30 MHz, corresponding to 0.0628 to 0.628, t he Bragg peak governed 

by 2K0 occurs for 0.1256 < K < 1.2566. It may be seen that these values of K 

are indeed in the high frequency end of S PM and are of nearly constant spectral 

energy. 

2.4 Radar Cross Sections of t he Ocean Surface 

The radar cross sections for the first- and second-order scatter are obtained by first 

calculat ing the power spectral density (PSD) of the t ime-varying received signal 
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E( t ). The PSD may be obtained by the Fourier transform of the autocorrelation 

of E(t) [44] . An alternative way of calculating the PSD, as will be used in Section 

2.5.1 , is the so-called periodogram method, given by [44] 

(2.17) 

where P(wd) is the PSD of E (t) as a function of radian frequency wd and the t ime 

intervalt:..t is from t 1 to t 2 . The subscript d attached tow indicates a Doppler radian 

frequency. From t his, the Doppler radar cross section CJ(wd ) may be obtained using 

the radar range equation given by 

(2.18) 

where Ap is the area of the scattering patch and ,\0 is the radar wavelength. 

2.4.1 First-Order Cross Section 

The expresson for the first order radar cross section CJ1 (wd) for a pulsed radar, as 

obtained in [21], is 

(2.19) 

where 5 1 ( mR) is the ocean directional wave spectrum now given by (2 .16) and 

K is t he scattering wave vector, wd is t he radian Doppler frequency, k0 ( = ~ 

where c is the speed of light in vacuum) is the radar operating wavenumber and 

m = ± 1 is used to disinguish t he positive and negative portions of the Doppler 

shifts. The Doppler frequencies wd are rela ted to the scattering wavenumbers J( by 
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the dispersion relation, given by 

wd = -mj;K, (2.20) 

This means t hat, 

m = 1 when wd < 0 (2.21) 

and 

m = -1 when wd > 0. (2.22) 

Figure 2.3 illustrates an example of the firs t-order cross section obtained directly 

using equation (2 .19) for an operating frequency of 25 MHz, a wind speed of 15 

m/s perpendicular to the radar look direction, and a scattering patch width of 1200 

m. It may be noted that , the sampling funct ion Sa(· ), that produces the first-order 

peaks, is maximum when its argument is zero. That is, when 

J( = 2k0 . (2 .23) 

2 .4. 2 Second-order Cross Section 

As stated in Section 2.2, the second-order patch scatter consist of two types of 

scatter, namely the hydrodynamic second-order scatter , and the electromagnetic. 

In order to generate t he second-order for both cases, the constraint on the wave 

vectors R1 and R2 , shown in Figure 2.4, is [21] 

(2 .24) 
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Figure 2.3: An example of the first-ord r cross section for a radar operating fre
quenc:v of 25 l\IIHz, wind velocity of 15m/s perpendicular to the radar look direction 
and a patch width of 1200 m. 

where j( has a magnitude of 2ko , in the direction of the radar look direction eN. 

The second ord r radar cross section for patch scatter as given in [21 J is, 

3 2 / ; ·rr /'XJ - - 2 2 CJ2p(wd) =2 7fko 6.Ps L L lr Jo S1(m1Kl)SJ (m2!(2)1frl I< 
ffii = ± 1 ffi2= ± 1 ° - 'lr 

0 

Sa2 
[ 6.;s (I<- 2k0 ) ] S(wc~ + m1 j9i{; + m2;gK';)K ldK1deR

1
dK 

(2.25) 

where c5(-) is th Dirac Delta function. In equation (2 .25) there are four different 

possible combinations of m 1 and m 2 . These combinations represent four dist inct 

port ions in the Doppler frequency region of the second-order cross section. For the 

case of m1 = m2 , 

when m 1 = m 2 = 1 } 

when m 1 = m 2 = - 1 
(2.26) 



-+ 

f{ 
Figure 2.4: Illustrat ion of the second order scatter. 

For the case of m 1 =/: m 2 , -wa < wd < wa and 

and 

m 1 = - 1, m2 = + 1 if K 1 > K2 or 

m1 = + 1, m 2 = - 1 if K 1 < K 2 

21 

(2.27) 

where wa is the Doppler radian frequency of the Bragg peaks. It can be shown 

that for typical scattering patch widths, the squared sampling function in equation 

(2.25) may be reduced to a delta function [21]. T his simplifies equation (2.25) to 

(2 .28) 

Then, the remaining delta constraint may be solved numerically [17]. An example 

of the second-order radar cross section is shown in F ig. 2.5 using equation (2.28) 

for an operating frequency of 25 1\IIHz, a wind speed of 25 m/ s, 90° to the radar 

look d irection and a scattering patch of 1200 m. 
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F igure 2.5: The Four portions of the second-order cross section for a radar operating 
frequency of 25 MHz, a wind velocity of 15 m/s perpendicular to the radar look 
direction. Only the K 1 < K 2 case is simulated here. 

Note that in obtaining the cross section expressions and consequently the figures 

for the first- a nd second-order scatter (see Figures 2.3 and 2.5) in Sections 2.4.1 and 

2.4.2, an infinite t ime is assumed. Hence, the magnitude and frequency locations 

of the spectra can be precisely determined. However, in practice, measurement are 

taken in a finite t ime. In the next section, a finite t ime domain series electric field 

will be simulated and then the Doppler spectra calculated . 

2 . 5 The Simulated Time Series for a Pulsed Source 

Radar 

The electric field equation for a pulsed source radar can be simulated directly using 

equation (2.2). By considering the R, w mesh to be infinitesimal, the sums may 
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be replaced by integrals. The Fourier coefficients 1Pi{,w' of the first order ocean 

surface may be chosen to have the form [8] 

l PR ,w = L ~S(mK)dJ?c5k(w + m;gK)ejm~(mR) 
m=±l 

(2.29) 

where 6~.; is the Kronecker delta and c( m!?) is a random phase uniformly distributed 

between 0 and 2n for each K. This form for the 1 PR ,w is identical to P ierson's 

model for a zero-mean Gaussian surface [37]. Substituting equation (2 .29) into 

equation (2.2) and solving t he delta function constraint , the backscattered electric 

field equation for a narrow beam receive array may be written as 

E(t ) = M V D.psd¢ej2kopo { 1( JK ejpo(J( - 2ko) ;;;:;;;sa [ D.;s (K- 2ko) l 
L ~~ S(mJ?)K df{ ejmE(mR) e-jm.jgKt 

m =±l Y 2 

+ v"hko ~~ L L V S (mJ(l)S(m2!?2)d!?l f r 
f{ l ffi] =±1 ffi2 = ±1 

. ejm JE(ml /(l )ejm2 E(m2R2)e-j (m J.jg}(!+m2.jgf(2)t } (2.30) 

In t he above equation, K2 = 2k0k- i( 1 and ¢ is the direction of K. The electric 

field mav be simulated using equation (2.30) by conver ting the integral equation 

into a summation equation of the form [37] 

?jJ (t) = D / ejwtejE(x) ~~(x) dx 
Jx 27r 

p (2.31) 
= D lim L eJx2q+ lt eE(x2q+ l ) 

X2p-7CXJ 

(X2q+2 - X2q)-70 q=O 

where D is a constant, p and q are integers and x 0 , x1 , x 2 · · · are net points on the 

x-axis. Fig. 2.6 shows an example of a 5120-point electric field t ime series obtained 
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Figure 2.6: An example of a 5120-point simulated first- and second-order scatter 
times series electric field. 

using equa tion (2 .30) when the radar operating frequency is fo = 25 I\IIHz (,\0 = 12 

m) , Pt = 16 kW, Gt = 2 dBi ~ 1.585, p0 = 50 km, To = 8 J-LS (corresponding 

to 6p8 = 1200 m) , the wind speed is 15 m/ s, the wind direction is 90° to the 

radar look direction and a sampling time of 0.25 s are used. The Sommerfeld 

attenuation function F( p0 , w0 ) is calculated from a Fortran routine developed by 

Dawe [45]. F igure 2.7, an expanded section of Figure 2.6, shows the existence of 

sinusoidal components which give rise to the Bragg peaks in the Doppler spectrum 

(see Figure 2.8) 

1400 
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2.5.1 The D oppler Spectra 
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From the simulated time series E(t), the Doppler spectrum can be estimated using 

the so-called periodogram method given by [44] 

1 I ·t
2 

1

2 

P(w) = !:::.t l E(t )e- jwtdt (2.32) 

where, the time interval is t 1 to t2 , that is !:::. t = t2 - h and P (w ) is the power 

spectral density. Another way to calculate the Doppler spectrum is to Fourier 

transform the autocorrelation [44]. Since the periodogram method is usually used 

in practice to estimate the Doppler spectrum, it will be employed throughout the 

analysis. F igure 2.8 shows the power spectral densities estimated as periodograms 

for different lengths of electric field time series. The parameters used for the simu-

lations are the same as those used for the electric field. In Figure 2.8 (a) , the PSD 

is calcula ted from a 256-point FFTs, in (b) 512-point FFT and in (c) , an average 

from 10, 512-point FFT with 50% overlap and using a Blackman window. 
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Figure 2.8: A simulated Doppler spectrum for first and second order scatter for a 
radar operating frequency of 25 MHz and wind direction of 90° to t he radar look 
direction . Ot her parameters are specified in the text. 
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2.5.1.1 Effects of Wind Direction 

The Doppler spectra for wind directions Bw of 90° , 60° , 30° and 0° relative to the 

radar look direction are shown in Figure 2.9. A wind speed of 15 m/ s and an 

operating frequency fo = 25 MHz are used. It is clearly seen that , the strengt h 

of the left and right Bragg peaks differ for different wind directions. When the 

wind direction is perpendicular to the radar look direction (see Figure 2.9(a)), the 

energy carried by the two sides is similar , however when the wind direction is 60° , 

30° or 0° to the radar look direction , one side of the spectrum is greatly enhanced 

compared to the other (see Figures 2.9 (b), 2.9(c) and 2.9(d) ). From this property, 

HF radar can be used to detect wind direction, and studies have been focused in 

this area by some researchers (for example, see [46],[47], [28]) 

2.6 Analysis of the FMCW Waveform 

2.6.1 Introduction 

In the pulse radar system, the width of the pulse determines the range resolution 

in the system (see equat ion (2.1)). Clearly, the narrower the pulse, the better 

the resolution. Then again , t he range capabilities of the pulse radar system are 

determined by the average power in the signal. This means that the peak power 

in the narrow pulse should be substantial to achieve longer range. Clearly, there 

is a tradeoff between increasing the range resolution and achieving a longer range. 

However , the FMCW waveform is known to achieve a higher average power wit h 

reasonable peak power. As a result of this, the use of the frequency modulated 

continuous wave (FMCW) waveform is becoming more and more popular among 

the HF radar remote sensing community. 

In this section , we will develop the t ime series electric field based on the models 
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Figure 2.g: Doppler spectrum for a wind speed of 15 m/ s wit h different wind 
directions of Bw = goo, 60° , 30° and 0° to the radar look direction . T he operating 
frequency, f 0 , is 25 MHz. 
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derived in [36]. The power spectral densities will be obtained using the periodogram 

method for different lengths of t ime. 

2.6.2 The FMCW Waveform 

In [36], the electric field equations for the backscattered signal are derived by 

assuming the transmi tting dipole to be carrying a frequency-modulated continuous 

waveform (FMCW) signal x (t) given by 

x (t ) =locos [21r (fo ± ~t) J , (2.33) 

wh re 10 is the peak current, a is the frequency sweep rate, t is time and ± 

represents the up and down frequency sweeps and fo is the centre frequency of the 

sweep. As in [36] , the up frequency sweep will be consider d in this analysis. An 

example of an FMCW signal and a frequency-time plot is shown in Figure 2.10. 

The parameters are 10 = 1 A, f o = 40 Hz, a = 40 Hz/s and a sweep time interval 

~· = 1 s. It can be seen that wi thin a sweep interval - ~ ~ t ~ Jf , the frequency 

of the signal changes with time from 20Hz to 60Hz, with a center frequency of 40 

Hz. 
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Figure 2.10: An example of the FMCW signal and a frequency-time plot wit h 
fo = 40 Hz and Tr = 40 Hz/ s. 
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2.6.3 Electric Fie ld Equations for an FMCW Waveform 

As derived in [36], the Fourier series representation of the electric field equations 

including the first- and second-order for a monostatic radar configuration is 

E(t ) = j l o1]ofl lk6 F
2
(Pr) { - ~. P - lj(e-j1r e j wtej(J<-2ko+kr )P,- (T D.p)Sm (K k D. ) 

(2 )3; 2 L...- 1 J( ,w V I\ r , B , r 
7rPr -

J< ,w 

(2.34) 

In this equation, F (pr) is the Sommerfeld attenuat ion function , Tr is the sweep 

time interval, D. p is the range resolution , Pr is the radar range, kr is a variable 

defined by 

(2.35) 

T he Sm(K , ka , D.r) is defined as 

1 
Sm(K , ka, D.r) = - {S i [(K - 2Ko + ka )D.r] - Si [(K - 2Ko - ka )D.r]} (2.36) 

7f 

where 

Si(x) = r sin t dt 
Jo t 

(2 .37) 

In t hese equations, k8 = 2
:

8 (where B is the sweep bandwidth). The parameters 

± D.r appear as integral limits in the analysis leading to t he derivation of equation 

(2.34) [36] . T his parameter is used to study the interaction between range bins. 

r p is the total coupling coefficient associated with the two types of second-order 

scatter , analogous to r r in equa t ion (2.2) except , as derived in [36], 

(2.38) 
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All other parameters have the same meaning as Section 2.2. 

2.6.4 The Simulated Time Series and Doppler Spectrum 

Using Pierson 's model [37] for a zero-mean Gaussian process, equation (2.34) can 

be cast as 

· I: 
m=±l 

~ S ( mR)di{ ejm(m. R) e -jm/9Kt 
2 

+1 ~· r -/Ke-Jn/4eJ(J(-2ko+k,.)p,. (7:t0,.p)Sm(I< k t0,. ) _ _ P r , B, r 
!(] [(2 

1 - - - -· L L 4S(m1I<I)S(m2 I<2)di<1di<2 
m1=±l m2=±l 

. ejml E(m t i(l ) ejm2£(m2R2) e-j(m] v9K1 +m2v'9fG)i } 

(2 .39) 

where S ( mR) is the directional ocean wave spectrum. The t ime series electric 

field may be generated using the same procedure described in Section 2.5 for the 

pulsed radar waveform. Figure 2.11 shows a 512-point time series for the electric 

fi eld equation for first- and second order scatter. In this figure, the parameters are 

f o = 25 I!Hz , B = 500kHz, Tr = 0.5 sand a wind speed of 15 m / s perpendicular to 

the radar look direction. All other parameters are t he same as Figures 2.6 and 2. 7. 

The power spectral density of the signal is estimated using the periodogram method 

(see Figure 2.12). The power spectral density (a) of Figure 2.12 is calculated using a 

512-point t ime series and in (b) an average for ten 512-point FFTs are implemented 

with a 50% overlap. Comparing the Doppler spectra obtained using the F 1CW 

waveform to t hose of the pulse waveform, it can be observed that the first-order 

Bragg peaks occur essentially around the same frequency location. 



..---.... 
s 

-----> ...___.., 

'"0 .......... 
Q) ....... 
~ 
u . ...... ..... 

_..;:, 
u 
Q) 

.......... 
~ 

X 10-5 

6 ~----~------~----~------~------.------.------, 

4 

2 

0 II ~ ~~ 1\ ~ 
-2 

- 4 

-6 ~----~------~----~------~------~----~------~ 
0 20 40 60 80 

Time (s) 

100 120 140 

33 

Figure 2. 11: An example of a t ime series electric field for an FMCW waveform 
with fo = 25 MHz, Tr = 0. 5 sand B = 500kHz. 
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2. 7 General Chapter Summary 

The procedure to develop the Doppler spectra from the electric field equations 

has been reviewed . Beginning from the elctric field equations for a pulsed and an 

FlVICvV waveform, t he t ime series are simulated using Pierson's model [37] for a 

zero-mean Gaussian process as an ocean wave descriptor. The Doppler spectra 

are calculated using the periodogram. This is demonstrated for various operating 

parameters and condit ions. At this point in the analysis , external noise has not 

been added to the radar received signal. The random nature of the backscattered 

signal is due to the randomness of the ocean surface. 

Since in practice, the HF radar system has a noise limited reception, there is 

the need to incorporate a sui table noise model into the backscattered signal. In 

the following chapter, an external noise model will be defined for the time domain 

backscattered ignal. The signal to noise relationship will be demonstrated for 

various opera ting parameters and condit ions. This model will be useful in la t ter 

analysis in the examination of the fluctuations in Bragg regions of the Doppler 

spectrum. 



Chapter 3 

Developing a Suitable Noise 

Model 

3.1 Introduction 

Having discussed the Doppler spectrum in Chapter 2, we can clearly see that 

apart from the scattering surface the strengt h of the signal received from the ocean 

depends on various parameters associated with the radar itself. These parameters 

include t he operating frequency of the radar, the gains of the t ransmitter and 

receiver antennas, the transmit ted power , attenuat ion functions associated wit h 

the medium, the distances of t he scattering patch from the radar components and 

the size of the patch. Since we are using the generally valid assumption that HF 

radar has an externally noise limited reception, the received signal contains not 

only useful elements of the ocean clutter but a lso unwanted noise. 

To reflect what generally occurs in practice, this chapter aims a t presenting 

a suitable noise model for a pulsed source HF radar system. In Gill 's analysis 

[40] (also see Gill and Walsh [34]) , a suitable model for a zero-mean white Gaus

sian noise is introduced , and the received clutter signal to noise relationship is 

36 
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thoroughly examined for a pulsed radar system. In this Chapter, based on Gill 's 

model, the t ime domain signal of clutter and noise is developed for a pulse radar 

s:vstem. Here, internal system noise will be ignored but could easily be included 

if the noise figures of the various system components were known. The procedure 

includes incorporating addit ive white Gaussian noise into the received electric field 

equations in the t ime domain and estimating the power spectral densities using 

the periodogram method. The effec t of noise on the Doppler spectrum will then 

be examined for different operating parameters and conditions. 

3 .2 The Time-Domain Noise Model 

A model suitable for external noise in the HF radar system is assumed to have the 

following properties: 

• the noise is additive, i. e., the received signal from the ocean surface equals 

the ocean clutter plus some external noise. 

• the noise is white i. e., it has a flat power spectral density. T his means, the 

autocorrelation of the noise signal is zero for any non-zero time offset . 

• the noise samples have a normal distribution . 

Here, the noise samples are assumed to be statistically independent of the signal. 

Using Pierson 's model [37] for a one-dimensional stationary Gaussian process, the 

noise voltage n(t) may be wri tten as [34] 

n(t) = 1, [h (w' + ~ ) - h (w' - ~)] ejw'tejc(w') SN (w')~~ - (3.1) 

In the above equation, t is time in seconds, w' is the radian frequency, SN (w') is the 

power spectral density of the noise, c:(w') is a random phase uniformly distribu ted 
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between 0 to 2n for every w1
, h[x] is the Heaviside function used to account for 

the fact that receiver system has a limited noise bandwidth, B. The integral is 

calculated over the Doppler spectrum band B , where w1 is in the range 

B I B -- < w < -2 - - 2 (3.2) 

The external noise may be man-made or may arise from galactic or a tmospheric 

sources [48]. The nature of the external noise varies with geographic locations, the 

t ime of the day and the seasons. Because of these variations, median noise values 

are used for the simulations. 

In equation (3 .1) the power spectral density SN(w1
) is defined as [40] 

1 kT0 £run. 
SN(w) = -10 10 

2n 
(3.3) 

where k = 1.38 x 10- 23 J / K is the Boltzmann 's constant and T0 is the reference 

temperature taken as 290 K. Fam is an external noise figur e, available for many 

geographic regions in documents such as ITU-R Recommendations [48] . If the noise 

figure of a par t icular operating environment is known, the noise signal may be 

generated for any bandlimited reveiver system . Figure 3.1 shows the time domain 

noise signal n(t ) for an Fam = 22 dB and a B = 500kHz. The development of n(t) 

allows us to simulate the total received signal En(t ) simply as 

En(t) = n(t) + E(t) (3.4) 

3.2.1 Signal-to-Noise Ratio (SNR) 

The most common and well understood performance measure for the HF radar 

sytem is the signal-to-noise ratio (SNR). This is normally expressed in decibels 
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Figure 3.1: T he time domain ambient noise voltage for an Fam 
B =500kHz. 
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(dB) . If the average signal power is denoted by Ps and the average noise power , 

denoted by Pn, the SNR is given by 

SNR = ;s 
n 

(3.5) 

The SNR simply measures the strength of t he received signal relative to t he back-

ground noise. In calculating the SNR, the average power of the backscattered signal 

E(t) may be calculated as [49] 

Ps = lim - IE (t )l 2dt 1lot 
L--too t 0 

(3.6) 

where t is the observation t ime in seconds. 

3.3 Power Spectral Density 

The power spect ral density (PSD) of the noise contaminated received signal is 

depicted in Fig. 3.2. This was obtained using a wind speed of 15 m/ s perpendicular 

to the radar look direction, an operating frequency of 25 MHz, noise figure F a.m = 22 

dB and a radar range of 10 km. It is easily observed that the spectral t ails of the 

ocean clutter is buried in the noise floor. If there is an increase in the noise level, 

significant port ions of the ocean spectral density will become buried in the noise 

floor. T his decreases the SNR of the system. Whether or not the SNR increases or 

decreases depends on various factors such as radar operating frequency, the range 

at which the measurements were taken and the wind direction. To illustrate the 

latter point, the behaviour of the PSD will be examined for the cases of different 

wind directions and different range of measurements for a given noise level: 
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Figure 3.2: An example to illustrate t he relationship of the ocean clutter and noise 
power spectra l density for a noise figure of 22 dB 
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1. Effects of Wind Directions 

Fig. 3.3 illustrates the signal to noise rela t ionship for different wind directions 

of ew = 90°, 60°, 30° and 0° with respect to the radar look direction. A wind 

speed of 15 m/ s and a radar operating frequency of 25 11Hz. T he noise figure 

is kept constant at 22 dB for all the simulation. It can be seen that , when the 

wind direction is perpendicular to the radar look direction (see Fig. 3.3 (a )), 

the energy carried by t he two Bragg peaks is similar , hence the two sides of the 

doppler spectrum are at the same level above the noise floor . However , when 

the wind direct ion is parallel to the radar look direct ion (see Fig. 3. 3 (d)), 

one side of the spectrum will be greatly enhanced above the noise floor whilst 

the other side is essentially buried in the noise floor . Clearly, whether or not 

the ocean spectrum exceeds the noise floor depends on the wind direction. 

2. PSD for Different Ranges 

Fig. 3.4 shows how the signal to noise relationship is affected by different 

ranges of observat ions. A wind speed of 15 m/s perpendicular to the radar 

look direct ion and an operating frequency of 25 MHz are used . Here, the 

distances selected are 10 km, 20 km, 30 km and 50 km . T he noise f igure 

Fam = 22 dB is used throughout the simulation. We can see that, not 

surprisingly, the signal to noise ra t io improves significant ly at closer ranges. 

T his is due to t he fact that, t he signal attenuates rapidly with increasing 

distance. 

In pract ice, it is important to set an acceptable SNR threshold in order to obtain 

useful measurements from the radar data. All data that falls below the SNR 

t hreshold is discarded . If one side of the Doppler spectrum has a higher energy 

above the noise floor than the other, as is the case of ew = 60° and 30° (see Figures 

3.3(b) and 3.3(c)), t he side with the higher energy is used for ocean parameter 
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Figure 3.3: T he Doppler spectrum for a wind speed of 15 m/ s and an SNR of 30 
dB for wind directions of 90°, 60°, 30° and 0° respectively. The radar operating 
frequency fo = 25 MHz. 
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Figure 3.4: The relationship between the ocean and the noise power spectral densi ty 
for different ranges, p0 . 
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measurements. 

3.3.1 Incorporating Noise in the Cross Sections 

The noise model may also be incorporated directly into the cross-sect ions obtained 

in equations (2.19) and (2.25). As already emphasized , if the received ocean clutter 

is denoted by E(t), and the external noise is denoted by n(t) , the signal received 

from the ocean is given by 

En(t) = E (t ) + n(t ) (3.7) 

where En ( t) is the received singal. To obtain the power spectral density, the Fourier 

transform of t he autocorrelation of En(t) is calculated. The autocorrelation , R (T), 

of the received signal is given by 

IE[En(t)] (3.8) 

IE[(E(t) + n(t))(E(t + T) + n(t + T))] (3.9) 

IE[E(t)E (t + T)] + IE[E (t )n(t + T)] + IE[E(t + T)n(t)] + (3.10) 

IE[n(t )n(t + T)] (3 .11) 

where IE[x] is the expected value of x . If the noise samples are assumed to be 

statistically independent of the ocean clutter signal, t hen 

IE[E(t)n(t + T)] = IE[E (t + T)n(t)] = 0. 

The autocorrela tion reduces to 

IE [E(t)E(t + T)] + IE[n(t)n(t + T)] 

R E(i)(T) + R n(t)(T) 

(3 .12) 

(3. 13) 

(3 .14) 
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where R E(t)(T) is the autocorrelation of E(t) and R n(t) (T) is the autocorrelation 

of n(t) . The autocorrelation of E(t) may be found in [21] . Since the bandwidth of 

the received signal B --+ oo, the autocorrelation of the noise signal reduces to 

(3. 15) 

where 6 ( T) is the delta function and CJ~. is the variance of the noise signal. Taking 

the Fourier transform of R ( T) yields PSD of the received signal PEn(t ) as 

(3 .16) 

However , this assumption is usually an idealisation of physical noise. Since the HF 

system is a band limited system , the ocean clutter is affected by the noise within 

this band. In Gill [40] , a mathemat ical expression is obtained to incorporate noise 

directly into the Doppler spectrum for a bandlimited system. In decibels, the noise 

power spectral density PN(f) as a function of frequency f is given by [40] 

3.4 General Chapter Summary 

A suitable noise model has been reviewed for a pulsed HF radar system. Based 

on a noise model introduced by Gill [40] for a pulsed radar waveform, an external 

noise model is incorporated into the received electric field in the t ime domain. The 

Doppler spectra are estimated as periodograms for different operating conditions. 

Various wind directions and observation ranges are chosen to investigate the 

signal to noise relationship. It was shown that the SNR improves greatly or reduces 

significantly depending on the direction of the wind and the range at which the 
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measurements are taken. 

Having examined the noise model for the received electric field equations, atten

tion will now be focused on applying these results to an examination of appropriate 

error bounds for ocean surface current measurements in the next chapter . 



Chapter 4 

Analysis of the Bragg 

Fluctuations 

4 .1 Introduction 

In surface current m asurements , the locations of the Bragg frequencies in the 

Doppler spectrum of the time-varying electric field voltage de crib d in Sections 

2.5 and 2.6.4 are very important. Due to the random nature of th ocean surface, 

fluctuations occur in the Bragg regions of the Doppler spectra . In order to obtain a 

better understanding of the errors associated with surface currents measurements, 

the statistical properties of the Bragg fluctuations were discu eel extensively in 

[ J. However in [ ], t he effects of ext rnal noise on these Bragg fluctuations are not 

considered in the ana l:vsis. 

In this chapter , the statistical properties of the fluctuation · in the Bragg peaks 

are first rcvi wed for an ideal system for both pulsed and an FMCW radar , and 

then they ar examined for the case of an externally noise-limited pulsed radar 

s:vstem. The analysis is conducted for vari ty of signal- to-nois ratios (SN Rs) and 

radar operating parameters. 

48 



49 

4.2 Centroids of the Bragg Peak Region 

T he measured Bragg frequencies of the Doppler spectrum are taken to be the 

centroid posit ions of the Bragg regions. T he centroid is defined as the frequency 

position that divides the Bragg region into two equal areas. The following numerical 

procedure, presented by Bobby [25], is used to locate the centroids in the Bragg 

peaks: 

1. Locate the posit ions of the maximum values Wp and WN, in the posit ive and 

negative regions of the Doppler spectrum, respectively. 

2. Locate the nulls on both sides of the Bragg peaks by calculating the average 

power over the range of frequencies falling within the intervals known to 

include th nulls. Here, the intervals chosen are -1.8 WN to -1.2 WN and 

- 0.8 WN to -0.3 WN for the negative Doppler ranges. The intervals chosen 

to locate the nulls in the posit ive Doppler ranges are 1.2 wp to 1.8 wp and 

0.3 Wp to 0.8 Wp 

3. The nulls are determined as t he first set of local values on each side of the 

peak that fa ll below t he appropriate average. 

4. F ind the centroid frequency for each side of t he Doppler spectrum as that 

frequency that divides the entire area between the two nulls. 

The presence of ocean swell is known to cause a narrow peak between t he second

and the first-order Doppler spectrum. T his will affect the location of nulls using 

the algorithm above, but for the purpose of this analysis, the influence of swell will 

be ignored. 
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Figure 4.1: Fluctuations of the Bragg region for fo = 25 MHz and a wind speed 
of 15 m/ s perpendicular to the radar look direction. The centroid posit ions are 
indicated as dashed lines from top to bottom. 

4.3 Analysis of Bragg fluctuation in a Pulsed Radar 

Waveform 

4 .3.1 Introduction 

To illustrate the variations in the Bragg peaks, Fig. 4.1 is obtained by segment ing 

a time series electric field developed using Equation (2.30) , into t hree equal-length 

consecutive parts, each of length 512 points. The power spectral densit ies are 

estimated using the periodogram method and the centroid positions are located 

for each segment. The centroid positions for each Bragg region are indicated by 

short dashed lines from top to bottom. A closer look at the left-hand side peak of 

Fig. 4.1 as presented in Fig. 4.2 shows that the cent roid positions of the Bragg 

region differ for each Doppler spectrum. This indicates that the measured Bragg 

frequencies for each portion of an extended time series may differ. 
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Figure 4.2: A closer look at the left-hand peak of Fig. 4.1. 

4.3.2 Distribution of the Bragg Fluctuations 

The distribut ion of t he cent roid posit ions has been shown in [8] to depend on 

the width of the Bragg regions, which in turn, depends on the radar operat ing 

parameters such as the frequency, the sampling time and the transmitted pulse 

width used. In t his section, the distribution will be examined numerically for both 

the positive and negative Bragg regions of the Doppler spectrum. 

Throughout the simulations, a constant steady wind velocity of 15 m/ s, per

pendicular to the radar look direction is used. A time series of 65,536 points (using 

a sampling ra te of 0.25 s, this corresponds to 16384 s) , generated using equation 

(2 .30) is segmented into 128 equal-length consecutive parts each containing 512-

points. The PSD for each segment is calculated using the periodogram method 

and cent roid positions are determined for a variety of cases as discussed below. 

1. Different Operating Frequencies: 

Figures 4.3 and 4.4, show the histogram plots of the centroid positions for 

operating frequencies of 25 MHz and 5 MHz. In calculating the PSD, the dis-
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crete Fourier transform (DFT) is implemented using the fast Fourier trans

form (FFT) algorithm. For each case, a fixed pulse width of 8 /-LS and a 

sampling t ime of 0.25 s are used. An FFT resolut ion b.FFT of 0.0078 is im

posed by the sampling t ime. The standard deviations (STD) of the centroid 

frequencies with respect to the theoretical Bragg frequencies and the FFT 

resolut ion b.FFT ' are plotted for comparison. For surface currents measure

ments, fluctuations are considered to be significant when the standard devi

ations (STD) exceed 0.5 b.FFT· It is seen that for an operating frequency 

of 25 MHz (see Fig. 4.3), the STDs for both the positive and negative Bragg 

peaks, indicated by the green solid line, are wit hin half the FFT resolut ion . 

Thus, the Bragg fluctua tions for this case are considered to be insignificant 

for the given pulse width . However, the Bragg fluct uations are considered 

significant in the case of a 5 MHz operating frequency (see Fig. 4.4), when 

the standard deviation exceeds half the FFT resolut ion. This indicates that 

the fluctuations vary for different operating frequencies, and in some cases 

may be significant. 

2. Different Pulse Widths: 

The distribution of the centroid positions using pulse widths of 7 /-LS and 2 ~ts 

are shown in Figures 4.5 and 4.6 , respectively. T he same operating frequency 

of 15 MHz and an FFT resolut ion of 0.0078 are used for both simulations. 

The same wind speed of 15 m/ s, perpendicular to the radar look direction , 

is used. When To = 2 /-LS (see Fig. 4.6) , the measured standard deviations 

obtained for the left- and right-hand side Bragg peak are 0.0044 and 0.004 7 

respectively, corresponding to ocean current speed resolut ions of 8.8 cm/ s 

and 9.4 cm/ s. These exceed half of the b.FFT of 0.0039, which corresponds 

to an ocean current speed resolution of 7.8 cmj s. However , when To = 7 ~ts, 
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Figure 4.3: The distribution of the centroid positions with f 0= 25 MHz and pulse 
width To = 8 Jt.s. The abscissa is the frequency difference between the centroid 
frequency and the theoretical Bragg frequency. 
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Figure 4.4: The distribut ion of the centroid positions with f 0=5 MHz and To = 8 
p,s. 
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as seen in Fig. 4.5, the fluctuations are insignificant because the standard 

deviations of 0.0032 for the left-side peak and 0.0036 for the right-side peak 

are within the half ~FFT · These correspond to speeds of 6.4 cm/ s and 7.2 

cm/s, respectively. Thus, it may be seen that the size of the pulse width may 

or may not cause significant fluctuations in the Bragg peaks. 

To further investigate the dependence of the Bragg fluctuations on pulse widths 

and operat ing frequencies, the standard deviations are calculated for other values 

of these two parameters. Operating frequencies of 25 MHz, 15 MHz and 5 MHz, 

representing the upper, middle and lower frequency bands are chosen for the sim-

ulation. Since the received elect ric field voltages are stationary Gaussian random 

variables, the centroids dist ibutions as well as the calculated standard deviat ions 

differ for each realization. As a result, an average standard deviation, calculated 

from five (5) different realizations is used to estimate the "appropriate" standard 

deviation using the same operating parameters. Of course a better estimation of 

the standard deviation will require an average from many more realizations. Fig-

ures 4. 7 and 4.8 show the plot of the standard deviations of the centroid posit ions 

as a function of the pulse width for different operating frequencies . The half ~FFT 

are indicated by dashed black lines. T he ocean surface current speed resolution 

V ppy, corresponding to the half ~FFT will take different values since 

V _ C~FFT 
FFT- 2fo . ( 4.1) 

Tables 4.1 , 4.2 and 4.3 provide a summary of the results of Figures 4.7 and 4.8 and 

their corresponding current speed resolutions. The standard deviations for the left-

and right-hand Bragg regions are denoted by STDL and STDR, respect ively. VL 

and VR are the calculated ocean current speeds asscociated with the left- and right

hand side standard deviations respectively. Clearly, it can be seen that the standard 
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Figure 4.5: The distribution of t he centroid positions with f0= 15 MHz and To=7 
/-LS. 
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Figure 4. 7: Plots of the standard deviations of the centroid posit ions as a function 
of the pulse width for different operating frequencies for the left-hand peak. 

Right-Hand p eak 

-- 25 MHz 
-- 15MHz 

7 --5MHz 

- - - 0 ·5 LI.FFT 

01~------~2--------3~------~4--------~5------~6L_------~7 ______ __J8 

Pulse w idths(p,s) 

Figure 4.8: Plots of the standard deviations of t he centroid positions as a function 
of the pulse width for different operating frequencies for t he right-hand peak. 
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deviations vary for different operating frequencies and pulse widths. However we 

not ice that the fluc tuations are seen to be more significant for lower operating 

frequencies. For example, we not ice that the standard deviations for fo = 15 MHz 

and 5 MHz in Figure 4. 7 are comparatively more significant than the standard 

deviations at 25 MHz. 

Table 4.1: The STDs for different pulse widths with fo = 25 MHz. The ocean 
surface current VFFT associated with 0.5~FFT = 4.7 cm/ s. 

To (J-L)S STDL (Hz) VL ( cm/ s) STDR (Hz) VR (cm/ s) 
8 0.0028 3.24 0.0029 3.6 
7 0.0033 3.96 0.0026 3.12 
6 0.0031 3.72 0.0037 4.44 
5 0.0032 3.84 0.0028 3.36 
4 0.0029 3.48 0.0036 4.32 
3 0.0034 4.08 0.0030 3.6 
2 0.0032 3.84 0.0028 3.36 
1 0.0036 4.32 0.0038 4.56 

Table 4.2: The STDs for different pulse widths with fo = 15 MHz. The ocean 
surface current V FFT associated with 0.5~FFT = 7.8 cm/ s. 

To (J-L s) STDL (Hz) VL (cm/ s) STDR (Hz) V R (cmj s) 
8 0.0037 7.4 0.0038 7.6 
7 0.0035 7.0 0.0032 6.4 
6 0.0037 7.4 0.0033 6.6 
5 0.0037 7.4 0.0034 6.8 
4 0.0039 7.8 0.0042 8.4 
3 0.0037 7.4 0.0039 7.8 
2 0.0049 9.8 0.0042 8.4 
1 0.0052 10.4 0.0056 11.2 

Up to this point in the analysis, there is no noise or other contamination in the 

t ime series. The only source of the fluctuations is due to the randomness of the 

ocean surface . 
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Table 4.3: The STDs for different pulse widths with fa =5 MHz. The ocean surface 
current VFFT associated with 0.56FFT = 23.4 cm/ s. 

To (J-LS) STDL (Hz) VL (cm/ s) STDR (Hz) VR (cm / s) 
8 0.0044 26.4 0.0041 24.6 

7 0.0045 27.0 0.0049 29.4 
6 0.0044 26.4 0.0046 27.6 
5 0.0051 30.6 0.0048 28.8 
4 0.0047 28.2 0.0051 30.6 

3 0.0046 27.6 0.0044 26.4 
2 0.0053 31.8 0.0051 30.6 
1 0.0071 42.6 0.0067 40.2 

4 .3.3 Standard D eviations for Different ~FFT 

As m ntioned earlier in t he analysis, the centroid positions of the Bragg peaks are 

dependent on the wid th of t he Bragg region. For a fixed 6FFT, t he standard 

deviations of the centroid positions have been shown to be linearly proportional to 

the width of the Bragg region [8]. However , different 6FFT will vary the width of 

the Bragg regions, and this may change the centroid positions of the Bragg peaks. 

An investigation is carried out to calculate the standard deviations of the centroid 

position for a different 6FFT· 

In the previous sections, a fixed sampling rate of 0.25 s is used for the simula-

tions. This imposes an FFT resolution 6FFT = 0. 0078. In this section, a sampling 

rate of 0.8 s, imposing an 6FFT = 0.0024 is used to investigate the significance 

of the Bragg fluctuations. In F igures 4.9 and 4.10, the standard deviations are 

plotted against the pulse widths. The parameters used are a wind speed of 15 

m/s perpendicular to the radar look direction and operating frequencies of .fo = 25 

MHz, 15 MHz and 5 MHz. Comparing these Figures to Figures 4.7 and 4.8, 

it can be seen that the standard deviations are relatively higher for a finer FFT 

resolut ion. Thus, a sampling rate of 0.8 s as compared to 0.25 s results in relatively 
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Figure 4.9: The standard deviation of the cent roid posit ions as a function of pulse 
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more significant fluctuations. This is because a finer sampling rate int roduces more 

frequency points to the Bragg region and this adds more randomness in the fixed 

region. It is a lso noticed that the Bragg fluc tuations are more significant for lower 

operat ing frequencies. 

4.3.4 Analysis of the Bragg Fluctuations in a Noise Limited 

Pulsed Radar System 

Having invest iga ted the Bragg fluctuat ions in a noiseless ideal HF radar system, 

attention will now be focused on investiga ting the significance of external noise on 

ocean current measurements. The aim of this analysis is to help in estimating the 

errors associated with ocean surface current measurements in a typical operating 

environment . 

4.3.5 Doppler Spectra and Centroids of the Bragg Peak 

Regions 

Incopora ting the noise model developed in Section 3.2 into the electr ic field equation 

and developing the Doppler spectra, the centroid positions of t he Bragg regions are 

est ima ted numerically using the same algorithm as described in Section 4.2. 

4.3.6 Calculation of the Standard Deviation 

The st andard deviations of the centroid positions with respect to the theoretical 

Bragg frequencies are calculated for different noise levels. The SNR chosen for this 

simula tion is 30 dB, 20 dB and 10 dB . 

Table 4.4 shows how the changing SNR affects the standard deviations of the 

centroid posit ions for an operat ing frequency of 25 1VIHz and a pulse width of 8 p,s . 
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In this analysis, the same electric field signal is used in combination with different 

noise levels. Here, the standard deviations estimated for each SNR is an average 

from five realizations. Half of .6-FFT is 0.0039, corresponding to a ocean current 

resolut ion of 4.68 cm/s. All parameters have the same defini tions as in Table 4.1. 

Table 4.4: The STDs for an operating frequency f o = 25 11Hz, pulse width To = 8 
f-LS and 0.5 .6-FFT = 0.0039 Hz corresponding to a speed of 4.68 cm/ s. 

SNR (dB) STDL (Hz) VL (cm/s) STDR (Hz) VR (cm/ s) 
00 0.0028 3.36 0.0026 3.12 
30 0.0029 3.48 0.0034 4.08 
20 0.0025 3.00 0.0028 3.36 
10 0.0036 4.32 0.0039 4.68 
0 0.0056 6.72 0.0053 6.24 

It is seen that , when the SNR is high, such as oo dB, 30 dB or 20 dB, the 

standard deviations of the centroid positions are barely affected by the noise level 

making t he Bragg fluctuations insignificant . However , as the SNR reduces towards 

0 dB , the standard deviations start to go beyond the half .6-FFT> making the fluc

tuations in the Bragg peaks significant. This is because when the SNR approaches 

0 dB, the algorithm used to locate the centroid position becomes less and less ac-

curate. The second order nulls are affected by the noise level and that makes it 

difficult for the algorithm to accurately locate the nulls. Note that, since an average 

of five realizations is used to calculate the standard deviations, the results for SNRs 

of oo dB , 30 dB and 20 dB are close enough to be considered the same. Therefore, 

for these operating parameters, the threshold for the SNR could be considered to 

be 10 dB for minimal errors. 

To explore this furt her, the analysis is extended to different operating frequen-

ci s and pulse widths to check the dependencies of the standard deviations on these 

parameters when the signal is noisy. Figures 4. 11 and 4.12 are plots of the stan-
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dard deviations of the centroid positions as a function of the radar pulse width and 

SNR for an operating frequency of 25 MHz. Similarly, Figures 4. 13 and 4.14, are 

for an operating frequency of 15 MHz. The standard deviations for an operating 

frequency of 5 MHz are also shown in Figures 4.15 and 4.16. Half the 6FFT> is 

indicated by a solid line. We can see from these Figures that when SNR=30 dB or 

20 dB , the standard deviations are essentially similar to an ideal noiseless system. 

This is because, the noise floor in the Doppler spectrum is too low to have any 

effect on the area covered by the Bragg peaks. Therefore, for these SNRs, the 

standard deviation of the centroid positions of the Bragg regions are not affected 

much by the noise. However , when the SNR is 10 dB, the standard deviations are 

significantly different from that of an ideal noiseless system. This is due to the fact 

the fluctuations of the noise floor that is closer to the second-order peaks affects 

the location of the nulls using the algorithm above. 

Another conclusion that can be drawn from these figures is that the Bragg 

fluctuations are seen to be more significant at lower operating frequency band than 

that at high operating frequency band. However, in general, a high SNR is required 

to minimize the errors in currents measurements. 

4 .4 Analysis of the Bragg Fluctuations in an FMCW 

Waveform 

In this section, t he Bragg fluctuation analysis is extended to the FMCW waveform, 

but without the inclusion of noise. The statistical properties are examined for 

various operating frequencies and bandwidths using the same procedure as in the 

pulsed waveform. To illustrate the Bragg fluctuations phenomenon, the electric 

field time series is segmented into three consecutive parts, each having a length of 
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Figure 4.11: T he standard deviations of the centroid posit ions as a function of the 
pulse width and SNR for the left-hand peak. The operating frequency is 25 MHz 
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Figure 4.12: T he standard deviations of the centroid positions as a function of t he 
pulse width and SNR for the right-hand peak. The operat ing frequency is 25 MHz 



-3 

8
x10 

7 

1 

left- Hand Peak 
oo dB 

---- 30dB 
20 dB 
10 dB 

0 .5 ~FFT 

O L-------~------L-------L-------L-------L-------L-----~ 
1 2 3 4 5 6 7 8 

Pulse -widths(;.1.s) 

66 

Figure 4.13: The standard deviations of the centroid positions as a function of the 
pulse width and SNR for the left-hand peak. The operating frequency is 15 MHz. 
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Figure 4.14: The standard deviations of the centroid positions as a function of the 
pulse width and SNR for the right-hand peak. The operating frequency is 15 MHz. 
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Figure 4.15: The standard deviations of the centroid posit ions as a function of the 
pulse width and SNR for the left-hand peak. The operating frequency is 5 MHz. 

0 .0 1 2 
Right-Hand Peak 

-- = d B 
-- 30 d B 
-- 20dB 

0 .0 1 -- 1 0 d B 

.....--._ - - - 0.5~FFT 

N 

::r:: ......__.. 
UJ 
.:::: 
.s 
~ 

-~ 
> 
Cl) 

0 
-o ...... 
~ 

-o 
.:::: 
cO 
~ 

rJ:l 

0 .002 

0 
1 2 3 4 5 6 7 8 

Pulse Widt h (J..ts) 

Figure 4.16: The standard deviations of the centroid positions as a function of the 
pulse width and SNR for the right-hand peak. The operating frequency is 5 MHz. 
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Figure 4.17: Fluctuat ions of the centroid postions for fo and B = 100kHz 

512 points. The PSD is estimated for each segment, and the centroid positions of 

the Bragg regions are located. Figure 4.17 shows the Doppler spectra for f o = 25 

MHz and B = 100 kHz. For each segment, the centroid posit ions of the Bragg 

peaks are indicated by black dashed lines. A closer look at the Bragg regions (see 

Figure 4.18) shows the variations in the magnit udes of the Bragg peaks. This is 

one of the major causes of the fluctuations of the centroid positions. 

4 .4 .1 Standard Deviations of the Centroid Positions 

Since the pulse width of the pulsed waveform radar system is related to the band-

width B by 

1 
To = B' (4.2) 

the range of values chosen for the bandwidth for the FMCW waveform is 

125 kHz ~ B ~ 1000 kHz, (4.3) 
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Figure 4. 18: A closer look at the left-hand peak region of Figure 4.17. The centroid 
positions are indicated by dashed lines. 

and this corresponds to 

1 J.LS ~ To ~ 8 J.LS (4.4) 

in the pulse waveform analysis. It may be recalled that the fluctuations are con-

sidered to be significant when the standard deviations exceed the 0.5.0.FFT· To 

calculate the standard deviations of t he centroid positions, a long electric field time 

series of 65536 points corresponding to a t ime of 273.0667 minutes, is generated 

using equation (2.34). The signal is segmented into 128 consecutive part, each 

having a lenth of 512 points. The PSD is estimated for each segment and the 

centroid positions of the Bragg regions are calculated. In Figures 4.19 and 4.20, 

the standard deviations are plotted against the frequency bandwidth for various 

radar operating frequencies of 25 MHz, 15 MHz and 5 MHz. The 0.5.0.FFT is 

indicated by black dashed lines. A sampling rate of 0.25 s for a 512-point FFT 

giving 0.5.0.FFT= 0.0039, is used. It may be not iced that the standard deviation 
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Figure 4.19: P lots of the standard deviations of t he centroid positions as a function 
of frequency bandwidth and operating frequencies of 25 MHz, 15 MHz and 5 MHz 
for the left-hand peak. 

of the centroid positions is a function of the radar bandwidth and the operating 

frequency. Depending on these operating parameters, the standard deviations may 

or may not exceed the 0 .5~FFT · For example, at an operating frequency of 5 MHz 

and a bandwidth of 500 kHz (see Figure 4.19) , the standard deviation is seen to 

exceed 0.0039 and thus makes the fluctuations significant . However in the same 

figure when the frequency is 5 MHz and the bandwidth is 250 kHz, the standard 

deviation is seen t o be below 0.0039. This makes the fluctuations insignificant . 

4 .5 General Chapter Summary 

A realistic way of estimating the errors associated with ocean current measure-

ments requires an analysis that reflects what generally happens in practice. Under 

Pierson's model [37], the ocean surface has been described as a Gaussian random 
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Figure 4.20: Plots of t he standard deviations of the centroid posit ions as a function 
of frequency bandwidth and operating frequencies of 25 MHz, 15 MHz and 5 MHz 
for t he right-hand peak. 

process. When the ocean surface is illuminated by HF radar signals, the received 

signal will also be Gaussian iu nature [30]. As a result of this , fluctuations occur 

in the Bragg peaks in the Doppler spectrum. In Zhang et al [8], these fluctuations 

were extensively examined. However, t he effects of external noise was not consid-

ered in t he analysis. In this chapter , the Bragg fluctuations are first examined for 

an ideal noiseless system for both a pulsed and an FMCW transmitting waveform. 

Using a suitable noise model introduced by Gill and Walsh [34] for a pulsed-type 

radar system, an addictive white Gaussian noise is incorporated in the t ime series 

electric field. The statistical properties of the fluctuations in the Bragg peaks, 

caused by both the random nature of the ocean surface and different noise levels 

are then investigated . 

The standard deviations of the centroid positions have b een checked for different 

operating parameters. It was seen that the fluctuation in the Bragg region is 
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a function of not only the operating frequency but also the pulse width (pulse 

waveform) or the bandwidth (FMCW waveform) . It was also realized t hat, at 

lower HF frequency band, the fluctuations are more significant than that of a 

higher HF frequency band. 

An examination of t he Bragg fluctuat ions for different SNRs shows that for 

higher SNRs, the standard deviations of the centroid positions are barely affected 

by the noise floor. T his is because the noise floor in the Doppler spectrum is, in 

this case, low enough to have litt le effect on the total spectral interval covered 

by the Bragg region. However , at lower SNRs, t he randomness of the noise floor 

affects the location of the nulls between the second- and first-order peaks. This 

affect the the calculation of the total area covered by the Bragg region and hence 

the determination of t he centroid positions. Therefore, minimizing the errors , gen

erally requires a high SNR and an optimum combinat ion of operating parameters, 

including t he choice of frequency and pulse width or, equivalently, bandwidth. 



Chapter 5 

Conclusions 

5.1 General Summary 

The main purpose, that being the investigation of factors that affect error bounds in 

any parameter extracted from the HF radar received signal, has been accomplished 

in this study. The outcomes of this work are intended to help improve existing 

models used for the application of HF radar to the measurement of ocean surface 

currents. 

5 .1.1 T he P roblem 

Pierson's model [37] describes the ocean surface as having wave components with 

which are associated random phases uniformly distributed over 0 to 27f . This 

model assumes that the ocean surface is a zero-mean Gaussian random process. 

As verified by Barrick and Snider [30], any linear operation on a Gaussian random 

variable produces another Gaussian random variable. Therefore , when HF radar 

signals are used to probe the ocean surface , the signal received from the ocean is 

Gaussian. 

In calculating t he Doppler spectrum of the received signal, if an infini te length 
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electric field t ime series is used as assumed in Walsh et al [21], and Walsh and 

Dawe [22] , the Doppler spectrum can be determined at each frequency compo

nent. This is because the random terms in the expression would be averaged out 

eventually [21]. However, in pract ice, measurements are always taken over finite 

time. Also, the HF radar system generally has an externally noise limited recep

tion. T his introduces varia tions in the Doppler spectrum of the received signal. In 

ocean surface current measurement , the location of the Bragg peaks are used for 

the calcula tion of surface current velocity. Due to the randomness in the Bragg 

peaks, an investigation needs to be conducted to examine the significance of these 

variations on ocean current measurement. 

5.1.2 Solution 

To address the problem, a finite electric field series is simulated based on existing 

electric field expressions for both pulsed and FMCW waveforms and the power 

spectral density of the time series is estimat ed as periodograms. Various operating 

parameters and conditions are used for the analysis. For the case of pulse radar 

operation, a sui table external noise model is incorporated in the electric field equa

t ions in the t ime domain and Doppler spectrum estimated for various radar ranges 

and wind directions. 

The second part of the study has looked at the fluctuations in the Bragg peaks 

of the Doppler spectrum. The long time series is segmented into equa l length 

consecut ive sequences. The power spectral density of each segment is estimated 

as a periodogram. The centroid positions of the Bragg peaks are estimated and 

compared to theoretical values. The standard devia tions of the centroid positions 

are calculated and compared to half the FFT resolution to check their significance. 

The Bragg fluctuations are assumed to be significant if the standard deviations 
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exceeds half the FFT resolution. The results have shown that the standard de

viations of the centroid posit ions are dependent on the operating frequency, the 

sampling time, the pulse widths (pulsed waveform) and the frequency sweep band

width (FMCW waveform) , and in some cases are significant . In particular, it was 

noticed that the Bragg fluctuations are more significant for lower frequency bands 

if other operating parameters and ocean surface conditions are fixed. 

After examining the Bragg fluctuations in the Doppler spectrum caused by 

the random nature of the ocean only, the analysis is extended to an externally 

noise limited pulsed radar system. Various operating frequencies, pulse widths and 

signal-to-noise ratios are chosen to conduct these investigations. Based from the 

results obtained, the Bragg fluctuations are seen to vary for different SNRs. At 

higher SNRs, the standard devia tions have been observed to be similar to the val

ues obtained for an ideal noiseless system. This is because, the noise floor in the 

Doppler spectrum will be too low to have an influence in the calculation of the 

centroid positions. However , at lower S IRs, the standard deviations have been 

noticed to be significantly different from the that obtained for an ideal noiseless 

system. Thus, when the noise floor approaches the second order nulls, the calcula

tion of the centroid posit ions are affected . Consequently, this affects the standard 

deviations in the Bragg centroids. T he conclusion is drawn from this study that 

generally, a high SNR, approaching at least 10 dB, is required to minimize errors 

introduced in ocean surface current measurements. 

5.2 Suggestions for Future Work 

The work presented in this research provides a basis for a number of ideas in future 

research and experimental work. 

First, although the algorithms developed in this study showed encouraging re-
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sults, they still need to be checked against real data. Since an HF radar system 

has been installed a t P lacentia Bay, near Argentia, NL, Canada, the data obtained 

from this system could be used to validate the analysis and results presented here. 

In the investigation of the Bragg fluctuations, the long time series is segmented 

into equal consecutive lengths of 512 point FFT. However, it would be a good 

idea to seqment the long time series into shorter or longer consecutive lengths to 

examine the significance of the observation times on the Bragg fluctuations. 

An obvious next step along this line of research is the analysis of the Bragg 

fluctuations in an externally noise limited FMC\V waveform radar system after the 

noise is properly introduced into the FMCW electric field equations. The analysis 

can be carried out for various operating parameters and conditions at different 

noise levels. 

In the investigation provided here, the effect of swell is ignored in calculating 

the centroid posit ions of the Bragg regions and t he standard deviations of the 

centroid positions. In any future analysis, the effects of swell contamination may 

be considered also. 

The analysis presented here can also be extended to the bistatic radar system. 

This study would be facilitated by the fact that models have already been developed 

for a pulsed radar waveforms in bistatic systems [40]. 
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