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Abstract

In recent vears, there has been a variety of research which h : addressed the factors
affecting the measurement of error bounds when using high frequency (HF) radar
for ocean parameter measurements. The study presented here is conducted in order
to identifv other important factors that should also be considered in establishing
meaningful error bounds on any ocean parameter extracted from the received radar
signal. Specifically, this research aims at investigating the fluctuations in the Bragg
peaks of the HF radar received spectra based on recent cross section models.

The first part of the research work reviews the electric field equations for
the backscattered signals when pulsed and frequencv modulated continuous wave
(FMCW) waveforms are used as transmitting waveforms. The incident radar sig-
nal is assumed to be scattered from the ocean surface, which is represented as a
zero-mean Gaussian random process. Various operating parameters are selected
to simulate the time series electric field for different conditions, and the power
spectral densities (PSD) are calculated by the periodogram method. Again, an in-
vestigation is carried out to examine the signal to noise relationship in the Doppler
spectra when a pulsed radar svstem has a noise limited reception. The noise is
assumed to be external with no attempt to address internal noise features. It is
assumed that the noise is an addditive white Gaussian process. To develop the
noise contaminated signal, a suitable noise model is incorporated in the time do-

main of the electric field signal. The Doppler spectra are calculated and examined
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for various signal to noise ratios.

The second part of the research work examines the fluctuations in the Bragg
peaks of the received Doppler spectra from the ocean surface. An investigation
is first carried out for an ideal noiseless radar system. Choosing v ‘ious operat-
ing frequencies, pulse widths (pulse waveform) and frequency bandwidths (FMCW
wavefori) for the simulations, numerical examinations of the existance of spec-
tral luctuations and Bragg distributions are conducted. The centroid positions of
thie Bragg peaks are calculated and compared with theoretical values to reveal the
relative difference. To check the significance of the fluctuations, the standard de-
viations of the centroid positions of the Bragg regions are analyzed and compared
to the vesolution imposed by the fast Fourier transform (FFT). The results show
that the standard deviations varyv for various operating parameters of the radar.

Finallv, using the noise model introduced in the first part of the analysis, the
investigation of the Bragg fluctuations is extended to a noise limted pulsed radar
waveform. The standard deviations of the centroid positions are observed for differ-
ent signal-to-noise ratios, operating frequencies and pulse widths. The significance

of the noise level in the Bragg fluctuations is considered at the end of the analvsis.
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the effect of external noise is not included in the fluctuation analysis. In Chapter
the analvsis of the Bragg fluctuations is extended to a noise limited pulsed svs-
tem. The statistical properties are examined for different noise levels, operating
frequencies and pulse widths.
Chapter 5 presents a summary of results and conclusions, and suggestions for

future work.



Chapter 2

The Doppler Spectrum for a
Monostatic Radar Configuration

Assuming a Pulsed and an

. MCW Source

2.1 Introduction

The electric field equations used in this portion of the research are based upon
models developed by Walsh and his colleagues for first- and second-order scatter
for a monostatic radar configuration using a pulsed and an FMCW source. In
this chapter, we first choose a model for the directional ocean wave spectra. Time
series of the electric field are simulated using Pierson’s model [37] for a zero-mean
Gaussian process as a descriptor of the ocean surface. Then, the Doppler spectra

are estimated using the periodogram method.
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Figure 2.1: Monostatic radar configuration. Svmbol meanings are addressed in the
Xt.

2.2 Fourier Series Representation of Electric field
Equations for a Pulsed Waveform

For a monostatic radar configuration shown in Figure 2.1 in which the transmit-
ter (T) and receiver (R) are collocated, the analysis leading to the backscattered
electric field equations is found in [21] and [38]. Here, the source of the signal is as-
sunied to be a vertical dipole of length Al with a current distribution of peak value
Iy, located at the origin. In this analysis, the current distribution is assumed to be
a periodic pulse of radian frequency wp and pulse width 75. The scattering patch
Apg, which is the smallest radial distance that can be unambiguously distinguished
by the HF radar, is given by

Apg = — (2.1)

where ¢ is the speed of light in vacuum. The Fourier series represer ation of the

electric field equations including the first and second-order scatter as given in [21]
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is

| . Aps
E(t) =M 3" Pg ™' VEKe”X Ap,Sa { 2“ (K — 21;0)]

Kuw

| . Ap,
+A0 SN IPA:]M1PK~2M261(“’1+”2V\/R@”’”KFTA/OSS&{ P (K—zko)}

2

Kypwi Ko,wz

(2.2)
where M is,

! Fz(Po,wo) ik —j
M = j/ﬂokgfoAli(QWpo)g/g eIkops =i /4

oA FR 0 w0) konp. . —jnsa
= ]/\",O 87Tp0Pth (ZW—pO)‘—‘g/er 02Ps ] (23)

these equations, 7y is the intrinsic impedance of free space, £, is the incident
electromagnetic wavenumber, P, and (, are the transmitting source peak power
and gain respectively, pg is the distance between the scattering patch and the

radar compouents (i.e., in Fig. 2.1, po = p1 = p2), F(po,wo) is the Sommerfeld

¢ enuation function, Sa(-) is the sampling function (Sa(-) = Siz‘_g')), K, and K, are
first-order ocean wave vectors of radian frequencies wy and w,, respectively, 'y is the
total coupling coefficient as given in equation (2.6) below and ¢ is time in seconds.
In equation (2.2), the expression involving the first summation is the contribution
of the first-order scatter, that is, a single scatter from a first-order surface wave of
wave vector A and radian frequencyv w. The first-order ocean surface, for which
the Fourier coefficients are 1 P, has been verified experimentally to be generally
statistically stationary with a normal distribution (sce Barrick and Snider [30])
for the tvpical integration times (on the order of several minutes) used for HF

radar ocean measurentents. The second-order contribution expression involving

t » double summation in (2.2) arises as a result of:
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e a single scatter from a second-order ocean wave of wave vector A which
results from the interaction of two first-order ocean waves of wave vectors K,
and K3 of radian frequencies w;, and ws, respectivelly; this is referred to as

the hvdrodyvnamic second-order scatter.

e a double scatter from two first-order ocean waves of wave vectors K, and Ko;
this is referred to as the electromagnetic second-order scatter. The constraint

relating K, K> and K appears in Section 2.4.2.

The total coupling coefficient 't associated with these two tvpes of second-
order scatter is a combination of the hvdrodynamic, 'y and the electrodynamic

'z [36] and are given by

1 . g ~ oy [ gK + (W + wp)?
'y ==< K+ Ky+ KK,— K- K 2.4
=73 { 1 2 1 ( 1442 1 \2> LJK ~ (1 + )2 (2.4)

and
—}K’l X ]%1’2
I'p = — . (2.5)
2(2ky)? {\/—Kl R+ jAtOA]
Hence
[r=Ty+Tg (2.6)

where g is the acceleration due to gravity and A is the normalized surface impedance

of the interface [39].

2.3 Directional Ocean Wave Spectra

To carry out the calculations of the radar cross sections, a particular model needs
to be specified for the ocean surface. Here, this model, also used by Gill [40] is

discussed in advance.
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Several of the ocean spectral models in current use tvpicallv consist of a product
of a non-directional spectrum S;(/(), and a normalized directional factor, g(fy)

where A is the direction of £ (eg. see Kinsman [41] and Tucker [42]):

S1(R) = 81 (K)gl0) 2.7)
with
/-ﬂ 9(0)d0; =1 (2.8)
Clearly,
27 =
/0 S\ ()0 = S, () (2.9)

For illustration purposes, the Pierson-Moskowitz non-directional spectrum, Spyy,

[43] is selected as the ocean wave spectrum with a modification of
1
Si1(I) = 55131\/([()» (2.10)

by Gill [40], where

Spa =

. 2
Qpprs ( 0749 > (2.11)

—QKI ex s

K2yt
Here, apyy is a non- dimensional parameter of value 0.0081 and U is the wind speed
in m/s measured at 19.5 m above the ocean surface.

In equation (2.7), the directional distribution g(fy ), is a function of the wavenum-

ber It', and @, and taken to be

g0, K) = F(s(K)) cos?*5D) {@%‘W} (2.12)

where s(/) is called the spread function and §(K) is the dominant direction of

the waves [42]. In simulations, it is usual to replace §(K) by the 6, the wind
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direction with respect to the radar look direction. When the frequency depen-
dency is removed from the spread function as is normally done [42], the directional

distribution can be written simply as

9(0z) = F(s)cos™ {@} . (2.13)

he normalization in equation (2.7) is satisfied when F(s) is written as

2(‘25-1)1“2(5 + 1)
(28 +1) '

F(s) = (2.14)

where I" is the ganuna function. A tvpical value of s = 2. such has been widely

used by previous investigators ([40, 16]), is chosen for owr simualtion. For this case
F(s=2)=— (2.15)

The directional ocean wave spectrum may then be written as

o TanM (—0.749‘2” S

Y = J— ¢ - o ) -
Si(m ) eXp | = — COS (2.16)

| 4431 3T 2

In this thesis, all the simulations carried out are based upon this occan wave model.
Figure 2.2 illustrates Pierson-Moskowitz occan wave spectra for wind speeds of 10
m/s. 12 m/s and 15 m/s. It is obvious that when the wind speed increases. the peak
increases in amplitude and shifts towards the lower frequencies. This influences
the sccond-order continuum in the Doppler spectrum causing this continuum to
increase in energy and to approach the first order. However, the first-order cross
section is not affected to any great extent bv the changing wind speeds since the
ocean waves that produce the first-order peaks are gencrallv in the saturated,

high frequency end of the ocean spectrum. For example, for operating frequencies
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Figure 2.2: Pierson-Moskowitz ocean wave spectrum as a function of wavenumber
for different wind speeds.

between 3 to 30 MHz, corresponding to 0.0628 to 0.628, the Bragg peak governed
by 2K, occurs for 0.1256 < K < 1.2566. It may be seen that these values of A
are indeed in the high frequency end of Spj; and are of nearly constant spectral

energy.

2.4 Radar Cross Sections of the Ocean Surface

The radar cross sections for the first- and second-order scatter are obtained by first

calculating the power spectral density (PSD) of the time-varying received signal
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E(t). The PSD may be obtained by the Fourier transform of the autocorrelation
of E(t) [44]. An alternative way of calculating the PSD, as will be used in Section

5.1, is the so-called periodogram method, given by [44]

1 2

g .
— E(te “dt
Al / (t)e

t)

P(wg) = (2.17)

where P(wy) is the PSD of F(t) as a function of radian frequency wy and the time
interval At is from ¢; to t;. The subscript d attached to w indicates a Doppler radian
frequency. From this, the Doppler radar cross section o(wy) may be obtained using

the radar range equation given by

P(wd) _ /\OQPthGr|F(p0,w0)|4

7y (4m)i! o(wq) (2.18)

where A, is the area of the scattering patch and Ay is the radar wavelength.

2.4.1 First-Order Cross Section

The expresson for the first order radar cross section o,(wy) for a pulsed radar, as

¢ tained in [21], is

L K3 Ao.
ol(we) =2 3§ D Sl(mK)]LA,osSa2 [ .n (K - 2};,0)1 (2.19)
m=21 \/g Z

where Sl(m]?) is the ocean directional wave spectruni now given by (2.16) and
I is the scattering wave vector, wy is the radian Doppler frequency, kg (= =2
where ¢ is the speed of light in vacuum) is the radar operating wavenumber and
m = =1 is used to disinguish the positive and negative portions of the Doppler

shifts. The Doppler frequencies wy are related to the scattering wavenumbers K by



the dispersion relation, given by

wy = —my/gK, (2.20)

This means that,

m =1 when wy <0 (2.21)

1d

m = —1 when wy > 0. (2.22)

Figure 2.3 illustrates an example of the first-order cross section obtained directly
ing equation (2.19) for an operating frequency of 25 MHz, a wind speed of 15
/s perpendicular to the radar look direction, and a scattering patch width of 1200

n. It may be noted that, the sampling function Sa(-), that produces the first-order

peaks, is maximum when its argument is zero. That is, when

K = 2k (2.23)

2.4.2 Second-order Cross Section

As stated in Section 2.2, the second-order patch scatter consist of two tvpes of
scatter, namely the hvdrodynamic second-order scatter, and the electromagnetic.
In order to generate the second-order for both cases, the constraint on the wave

vectors Iv; and Ko, shown in Figure 2.4, is [21]

K =K + K. (2.24)
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Figure 2.3: An example of the first-order cross section for a radar operating fre-
quency of 25 MHz. wind velocity of 151m1/s perpendicular to the radar look direction
1d a patch width of 1200 m.

where I\ has a magnitude of 2k, in the direction of the radar look direction .

he second order radar cross section for patch scatter as given in [0 s,

. 5 gae) T N - - .
02/»(@1) :2%7(A6A,05 Z Z / / / Sl('”1[\1)51(‘1119[\3) T|—[\_
mi==+1ma=+1"U - JO
2 Apa

Sa* 5 (N — 2kg) | (wy + my/ gy + mg\/gI\'g)I\'ldI\’ld,QK,l dK

(2.25)

where o(-) is the Dirac Delta function. In equation (2.25) there are four different
possible combinations of my and ms. These combinations represent four distinct
portions in the Doppler frequency region of the second-order cross section. For the

ase of my iy,

Wy < —wg, when m;y=ms=1

wqg >wpg. when my=my= -1
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Figure 2.4: [llustration of the second order scatter.

For the case of m; # mo, —wp < wy < wp and

my = —1, my=+11if Kj < K5 or
—wp <wg <0
my = —+1, my = —1 if ]X,1 > [\72
and (2.27)
my=—1, my=+1if I{; > Ky or
0 < wy < wp
m; = +1, Moy = —1if ]\,1 < [(2

where wy is the Doppler radian frequency of the Bragg peaks. It can be shown
that for tvpical scattering patch widths, the squared sampling function in equation

(2.25) may be reduced to a delta function [21]. This simplifies equation (2.25) to

. 2 foo . .
oap(we) =2°w°ky > > / /o Sy (my ) S (myKs)
mi=+1mg=+1""T (228)

D726 (wa + mayy/ g1+ may/gKo) K dId s

Then, the remaining delta constraint mayv be solved numerically [17]. An example
of the second-order radar cross section is shown in Fig. 2.5 using equation (2.28)
for an operating frequency of 25 MHz, a wind speed of 25 m/s, 90° to the radar

look direction and a scattering patch of 1200 m.
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Figure 2.5: The Four portions of the second-order cross section for a radar operating
frequency of 25 MHz, a wind velocity of 15 m/s perpendicular to the radar look
rection. Only the K| < Ky case is simulated here.

Note that in obtaining the cross section expressions and consequently the figures
for the first- and sccond-order scatter (see Figures 2.3 and 2.5) in Sections 2.4.1 and
2.4.2, an infinite time is assumed. Hence, the magnitude and frequency locations
of the spectra can be preciselv determined. However, in practice, measurement are

ken in a finite time. Int the next section, a finite time domain series electric field

will be simulated and then the Doppler spectra calculated.

2.5 The Simulated Time Series for a Pulsed Source

Radar

The electric field equation for a pulsed source radar can be simulated directly using

cquation (2.2). By considering the A, w mesh to be infinitesimal, the sums may
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be replaced by integrals. The Fourier coefficients 1 Pz , of the first order ocean

surface may be chosen to have the form [§]

/1 L o me(mi?
L= Y 5 S(MR)AK S (w +m g )ememi) (2.29)
m==+1

P

where 9;, is the Kronecker delta and e(mf:’) is a random phase uniformly distributed
between 0 and 27 for cach K. This form for the IPR,W is identical to Pierson’s
model for a zero-mean Gaussian surface [37]. Substituting equation (2.29) into
equation (2.2) and solving the delta function constraint, the backsc: sered electric

field equation for a narrow beam receive array may be written as

E(t) = M /Apsd(bej%’p“ {/ VI elPolE=2ko) [ A Sa[

C S =SB K dI e ) g mim VoK
m=4+1

+ \/ﬂko/ Z Z \/S TTLII{I mgﬁg)df?l FT

K mi=+11mo==+1

)

) ejm]E(mlKl)ejmge(mzlz'z)e*j(ml\/91\’1+7”2V9K2)t} (230)

In the above equation, Ky = 2koK — K, and ¢ is the direction of K. The electric
fiel mayv be sinmulated using equation (2.30) by converting the integral cquation
into a summation equation of the form [37]

et gelx d:
v() = D [ e 2 @) 5
x ™

(2.31)

Lop—r 00 27-(-
(:l 29+2— lvq)—>0 4=0

j _ LTog+2 — T2
=D lim Z GJIQQ+”€€($2(’+1)\/~:<f172(1+1)_u

where D is a constant, p and ¢ are integers and g, 2, x5 - - are net points on the

r-axis. Fig. 2.6 shows an example of a 5120-point electric field time series obtained



Electric Field (V/m)

! I L 1 1
200 400 600 800 1000 1200 1400

Time (s)

Figure 2.6: An example of a 5120-point simulated first- and second-order scatter
times series electric field.

using equation (2.30) when the radar operating frequency is fo = 25 MHz (A\g = 12
m), I =16 kW, G, = 2 dBi = 1.585, pp = 50 km, 7y = & pus (corresponding
to Apy = 1200 m), the wind speed is 15 m/s, the wind direction is 90° to the

radar look direction and a sampling time of 0.25 s are used. The Sommerfeld

Dawe [45]. Figure 2.7, an cxpanded section of Figure 2.6, shows the existence of
sinusoidal components which give rise to the Bragg peaks in the Doppler spectrum

|
|
|
|
|
|
\
\
|
attenuation function F(pg,wp) is calculated from a Fortran routine developed by
(see Figure 2.8)

|
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Figure 2.7: An cxpanded view of Figure 2.6.

2.5.1 The Doppler Spectra

From the simulated time series F(t), the Doppler spectrum can be estimated using

the so-called periodogram method given bv [44]

2

P(w) ﬁ

t? _
/ E(t)e 7 dt (2.32)
i1

where, the time interval is ¢; to #y, that is At = ¢, — ¢; and P(w) is the power
spectral density. Another way to calculate the Doppler spectrum is to Fourier
transform the autocorrelation [44]. Since the periodogram method is usually used
in practice to estimate the Doppler spectrum, it will be emploved throughout the

1alysis. Figure 2.8 shows the power spectral densities estimated as periodograms
for different lengths of electric field time series. The parameters used for the simu-
lations are the same as those used for the electric field. In Figure 2.8 (a), the PSD
is calculated from a 256-point FEFTs, in (b) 512-point FFT and in (c), an average

from 10, 512-point FF'T with 50% overlap and using a Blackman window.
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Figure 2.8: A simulated Doppler spectrum for first and second order scatter for a
radar operating frequency of 25 MHz and wind direction of 90° to the radar look
direction. Other parameters are specified in the text.
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2.5.1.1 Effects of Wind Direction

The Doppler spectra for wind directions 6,, of 90°, 60°, 30° and 0° relative to the
radar look direction are shown in Figure 2.9. A wind speed of 15 m/s and an
operating frequencv f, = 25 MHz are used. It is clearlv seen that, the strength
of the left and right Bragg peaks differ for different wind directions. When the
wind direction is perpendicular to the radar look direction (see Figure 2.9(a)), the
energy carried by the two sides is similar, however when the wind direction is 60°,
30° or 0Y to the radar look direction, one side of the spectrum is greatly enhanced
compared to the other (see Figures 2.9(b), 2.9(c) and 2.9(d)). From this property,
HF radar can be used to detect wind direction, and studies have been focused in

this area by some researchers (for example, see [46],[47],[28])

2.6 Analysis of the FMCW Waveform

2.6.1 Introduction

In the pulse radar system, the width of the pulse determines the range resolution
in the system (see equation (2.1)). Clearly, the narrower the pulse, the better
the resolution. Then again, the range capabilities of the pulse radar svstem are
determined by the average power in the signal. This means that the peak power
in the narrow pulse should be substantial to achieve longer range. Clearly, there
is a tradeoff between increasing the range resolution and achieving a longer range.
However, the FMCW waveform is known to achieve a higher average power with
reasonable peak power. As a result of this, the use of the frequencyv modulated
continuous wave (FMCW) waveform is becoming more and more popular among
the HF radar remote sensing community.

In this section, we will develop the time series electric field based on the models
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Figure 2.9: Doppler spectrum for a wind speed of 15 m/s with different wind
directions of 6, = 90%,60°,30° and 0° to the radar look direction. he operating
frequency, fy, is 25 MHz.
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rived in [36]. The power spectral densities will be obtained using the periodogran

ethod for different lengths of time.

2.6.2 The FMCW Waveform

In [36], the electric field equations for the backscattered signal are derived by
suming the transmitting dipole to be carrving a frequencyv-niodulated continuous

waveform (FMCW) signal z(t) given by

x(t) = Iycos

o <f0 + %t)] , (2.33)

where [y is the peak current, « is the frequency sweep rate, ¢ is time and =+
represents the up and down frequency sweeps and fy is the centre frequency of the
sweep. As in [36], the up frequency sweep will be considered in this analysis. An
example of an FMCW signal and a frequency-time plot is shown in Figure 2.10.
The parameters are Iy =1 A, fy = 40 Hz, @ = 40 Hz/s and a sweep time interval

.= 1s. It can be seen that within a sweep interval —% <t< %, the frequency

of the signal changes with time from 20 Hz to 60 Hz, with a center frequency of 40

Hz.
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Figure 2.10: An example of the FMCW signal and a frequencv-time plot with
"y =40 Hz and T, = 40 Hz/s.



2.6.3 [Electric Field Equations for an FMCW Waveform

As derived in [36], the Fourier series representation of the electric field equations

including the first- and second-order for a monostatic radar configuration is

E(t) = S 1Py VK e Tt el Kot ko (T A pYSm( K, kg, A)

Lo ALKZF2(p,) {
K,w

(2, )7

+ Z Z 1Pz 1P, 0l p K e Imgiwt gl tK=2katho)or (T Ap\Sm(K, kg, A, )}

I\lwl I\g Wy

(2.34)

In this equation, F(p,) is the Sommerfeld attenuation function, 7, is the sweep
time interval, Ap is the range resolution, p, is the radar range, &, is a variable
defined by

k. dmap,/c’. (2.35)

1e Sm(K, kg, A,) is defined as
S(K, k. A,) = %{Sz’[([x’ — 2Ky 4 k)AL — SI(K — 2Ky — )AL} (2.36)

where
T gint

Si(x) = /O = (2.37)

In these equations, kp = £

(where B is the sweep bandwidth). The parameters

A, appear as integral limits in the analvsis leading to the derivation of equation
(2.34) [36]. This parameter is used to study the interaction between range bins.
I'p is the total coupling coefficient associated with the two tvpes of second-order

scatter, analogous to 'y in equation (2.2) except, as derived in [36],

Fp = FE - FH (238)
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All other parameters have the same meaning as Section 2.2.

2.6.4 The Simulated Time Series and Doppler Spectrum

Using Pierson’s model [37] for a zero-mean Gaussian process, equation (2.34) can
be cast as

JIQT]QA”LSFQ([),«)

FO = pm

{_ Ve Tl K= 2hotker (T Ap)Sm(K, kg, A,)
K

T . .
Z —S(m]()d](e]m(mlx)e—]m\/gT\,
m=t1 1 2

+ /ﬂ /ﬂ Fp\/—I?e_j”/4ej”‘"2k”“"‘)p"(TTA[))SIH(K, kg, A,)
Ky RS

—

DY S(my K1) S(ma Ky)d I dE

mi=t1my;=+1

. Pjnnc(nnKl)ejmge(mglx’g)efj(ml \/g}(1+7112\/g1\,2)t}

(2.39)

where S (m]?) is the directional ocean wave spectrum. The time series electric
field may be generated using the same procedure described in Section 2.5 for the
] lsed radar waveformi. Figure 2.11 shows a 512-point time series for the electric
field equation for first- and second order scatter. In this figure, the parameters are
Jo=25MHz, B =500 kHz, T, = 0.5 s and a wind speed of 15 m1/s perpendicular to
the radar look direction. All other parameters are the same as Figures 2.6 and 2.7.
The power spectral density of the signal is estimated using the periodogram method
(see Figure 2.12). The power spectral density (a) of Figure 2.12 is calculated using a
512-point time series and in (b) an average for ten 512-point FFTs are implemented
v ha 50% overlap. Comparing the Doppler spectra obtained using the FMCW
waveform to those of the pulse waveform, it can be observed that the first-order

Bragg peaks occur essentiallv around the same frequency location.
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Figure 2.11: An example of a time series electric field for an FMCW waveform
with fo = 25 MHz, T, = 0.5 s and B = 500 kHz.
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Figure 2.12: Power spectral density calculated from the time series signal for an
FMCW waveform. All parameters are as in Figure 2.11.
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2.7 General Chapter Summary

The procedure to develop the Doppler spectra from the electric field equations
has been reviewed. Beginning from the elctric field equations for a pulsed and an
FMCW waveform, the time series are simulated using Pierson’s model [37] for a
zero-mean Gaussian process as an ocean wave descriptor. The Doppler spectra

¢ calculated using the periodogram. This is demonstrated for various operating
parameters and conditions. At this point in the analvsis, external noise has not
been added to the radar received signal. The random nature of the backscattered
signal is due to the randomness of the ocean surface.

Since in practice, the HF radar svstem has a noise limited reception, there is
the need to incorporate a suitable noise model into the backscattered signal. In
the following chapter, an external noise model will be defined for the time domain
backscattered signal. The signal to noise relationship will be demonstrated for
various operating parameters and conditions. This model will be useful in latter
analysis in the examination of the fluctuations in Bragg regions of the Doppler

ectrum.



Chapter 3

Developing a Suitable Noise
Model

3.1 Introduction

Having discussed the Doppler spectrum in Chapter 2, we can clearly see that
i art from the scattering surface the strength of the signal received from the ocean
depends on various parameters associated with the radar itself. These parameters
include the operating frequency of the radar, the gains of the transmitter and
receiver antennas, the transmitted power, attenuation functions associated with
the medium, the distances of the scattering patch from the radar components and
the size of the patch. Since we are using the generally valid assumption that HF
radar has an externally noise limited reception, the received signal contains not
only useful elements of the ocean clutter but also unwanted noise.

To reflect what generally occurs in practice, this chapter aims at presenting
a suitable noise model for a pulsed source HF radar system. In Gill’s analvsis
[ ] (also sce Gill and Walsh [34]), a suitable model for a zero-mean white Gaus-

sian noise is introduced, and the rveccived clutter signal to noise r tionship is

36
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thoroughly examined for a pulsed radar system. In this Chapter, based on Gill’s
model, the time domain signal of clutter and noise is developed for a pulse radar
svstem. Here, internal svstem noise will be ignored but could easilv be included
if the noise figures of the various svstem components were known. The procedure
includes incorporating additive white Gaussian noise into the received electric field
equations in the time domain and estimating the power spectral densities using
the periodogram method. The effect of noise on the Doppler spectrum will then

be examined for different operating parameters and conditions.

3.2 The Time-Domain Noise Model

A model suitable for external noise in the HF radar system is assumed to have the

following properties:

e the noise is additive, i.e., the received signal from the ocean surface equals

the ocean clutter plus some external noise.

e the noise is white i.e., it has a flat power spectral density. This means, the

autocorrelation of the noise signal is zero for anv non-zero time offset.
e the noise samples have a normal distribution.

Here, the noise samples are assumed to be statisticallv independent of the signal.
Using Picrson’s model [37] for a one-dimensional stationary Gaussian process, the

noise voltage n{t) mav be written as [34]

n(t) = /ul)/ {/z (w' + —g—) —h (w’ ~ g)] ej“/tejc(“/)\/SN(w’)%. (3.1)

In the above equation, t is time in seconds, w' is the radian frequency, Sy (w’) is the

power spectral density of the noise, €(w’) is a random phase uniformly distributed
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between 0 to 27 for everv ’, hfz] is the Heaviside function used to account for
the fact that receiver system has a limited noise bandwidth, B. The integral is

calculated over the Doppler spectrum band B, where «' is in the range

ol &
IA
E\
A
vl

(3.2)

The external noise may be man-made or mayv arise from galactic or atmospheric

sources [48]. The nature of the external noise varies with geographic locations, the

time of the day and the seasons. Because of these variations, median noise values
e used for the simulations.

In equation (3.1) the power spectral density Sy(w’) is defined as [40]

]‘T Ly
Sy(w') = —2}910% (3.3)

where & = 1.38 x 107* J/K is the Boltzmann’s constant and Tj is the reference
temperature taken as 290 K. F,, is an external noise figure, available for many
geographic regions in documents such as ITU-R Recommendations [48]. If the noise
figure of a particular operating environment is known, the noise signal may be
generated for anv bandlimited reveiver system. Figure 3.1 shows the time domain
noise signal n(t) for an F,,, = 22 dB and a B = 500 kHz. The development of n(t)

allows us to simulate the total received signal £, (¢) simply as

E,(t) = n(t) + E(t) (3.4)

3.2.1 Signal-to-Noise Ratio (SNR)

The most common and well understood performance measure for the HF radar

svtem is the signal-to-noise ratio (SNR). This is normally expressed in decibels
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(dB). If the average signal power is denoted bv F; and the average noise power,

denoted bv P,, the SNR is given by
1T
SNR = — (3.5)

he SNR simply measures the strength of the received signal relative to the back-
ground noise. In calculating the SNR, the average power of the backscattered signal

E(t) may be calculated as [49]
= lim —/ \E(t)|*dt (3.6)
t—o0

where ¢ is the observation time in seconds.

3.3 Power Spectral Density

The power spectral density (PSD) of the noise contaminated received signal is
depicted in Fig. 3.2. This was obtained using a wind speed of 15 m/s perpendicular
to the radar look direction, an operating frequency of 25 MHz, noise figure F,,, 22
dB and a radar range of 10 km. It is easilv observed that the spectral tails of the
ocean clutter is buried in the noise floor. If there is an increase in the noise level,
significant portions of the ocean spectral density will become buried in the noise
floor. This decreases the SNR of the svstem. Whether or not the SNR increases or
decreases depends on various factors such as radar operating frequency, the range
¢ which the measurements were taken and the wind direction. To illustrate the

ter point, the behaviour of the PSD will be examined for the cases of different

wind directions and different range of measurements for a given noise level:
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Figure 3.2: An example to illustrate the relationship of the ocean clutter and noise
power spectral density for a noise figure of 22 dB



1. Effects of Wind Directions
Fig. 3.3 illustrates the signal to noise relationship for different wind directions
of 6, 90° 60% 30° and 0° with respect to the radar look direction. A wind
speed of 15 n1/s and a radar operating frequency of 25 MHz. The noise figure
is kept constant at 22 dB for all the simulation. It can be seen that, when the
wind direction is perpendicular to the radar look direction (see Fig. 3.3(a)),
the energy carried by the two Bragg peaks is similar, hence the two sides of the
doppler spectruin are at the same level above the noise floor. However, when
the wind direction is parallel to the radar look direction (see Fig. 3.3(d)),
one side of the spectrum will be greatly enhanced above the noise floor whilst
the other side is essentiallv buried in the noise floor. Clearly, whether or not

the ocean spectrum exceeds the noise floor depends on the wind direction.

o

PSD for Different Ranges

Fig. 3.4 shows how the signal to noise relationship is affecte by different
ranges of observations. A wind speed of 15 m/s perpendicular to the radar
look direction and an operating frequency of 25 MHz are used. Here, the
distances selected are 10 km, 20 km, 30 km and 50 km. The noise figure
F,, = 22 dB is used throughout the simulation. We can see that, not
surprisinglv, the signal to noise ratio improves significantly at closer ranges.
This is due to the fact that, the signal attenuates rapidlv with increasing

distance.

In practice, it is important to set an acceptable SNR threshold in order to obtain
useful measurements from the radar data. All data that falls below the SNR
threshold is discarded. If one side of the Doppler spectrum has a higher energyv
above the noise floor than the other, as is the case of 6, = 60° aud 30° (see Figures

3.3(b) and 3.3(c)), the side with the higher energy is used for ocean parameter
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Figure 3.3: The Doppler spectrum for a wind speed of 15 m/s and an SNR of 30
dB for wind directions of 90%,60°, 30° and 0V respectivelv. The radar operating
frequency fy = 25 MHz.
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meastureiments.

3.3.1 Incorporating Noise in the Cross Sections

he noise model may also be incorporated directly into the cross-sections obtained
in equations (2.19) and (2.25). As alreadv emphasized, if the received ocean clutter
is denoted by F(t), and the external noise is denoted by n(t), the signal received

ym the ocean is given by

B, (1) = E(t) + n(t) (3.7)

wlhere £, (t) is the received singal. To obtain the power spectral density, the Fourier
transforni of the autocorrelation of E,(t) is calculated. The autocorrelation, R(7),

of the received signal is given by

R(r) = E[E.(1)] (3.8)
= E[(E({)+n()(E{t+7)+n(t+7)) (3.9)
= E[EQE(t+ ) +EEnE+ )] +EE(CE+7)nt)]+ (3.10)

E[n(t)n(t + 7)] (3.11)

where E[z] is the expected value of 2. If the noise samples are assumed to be

statistically independent of the ocean clutter signal, then

E[E(t)n(t + )] = E[E(t + m)n(t)] = 0. (3.12)

The autocorrelation reduces to

R(r) = E[EMEl+ 7))+ En()n(t+ 7)] (3.13)

R(T) = RE(t)(T)+er(t)(T> (314)
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where Rpg)(7) is the autocorrelation of E(t) and R, (7) is the autocorrelation
of n(t). The autocorrelation of E(¢) may be found in [21]. Since the bandwidth of

the received signal B — oo, the autocorrelation of the noise signal reduces to
Roin(7) = 025(7) (3.15)

where §(7) is tlie delta function and o2 is the variance of the noise signal. Taking

the Fourier transforni of R(7) vields PSD of the received signal Pg, ) as
P, (ws) = F{R(7)} (3.16)

wever, this assumption is usually an idealisation of physical noise. Since the HF
svstem is a band limited svstem, the ocean clutter is affected by the noise within
this band. In Gill [40], a mathematical expression is obtained to incorporate noise
directly into the Doppler spectrum for a bandlimited svstem. In decibels, the noise

power spectral densitv Py(f) as a function of frequency f is given by [40]

Pn(f)ap = 10log,, Pn(f) = 101log,,(kTo) + 101og,, 10 = —204+ F,,, (3.17)

3.4 General Chapter Summary

A suitable noise model has been reviewed for a pulsed HF radar svstem. Based
on a noise model introduced by Gill [40] for a pulsed radar waveform, an external
noise model is incorporated into the received electric field in  1e time domain. The
Doppler spectra are estimated as periodograms for different operating conditions.

Various wind directions and observation ranges are chosen to investigate the
signal to noise relationship. It was shown that the SNR improves grea  or reduces

significantly depending on the direction of the wind and the range at which the



neasurements are taken.

Having examined the noise model for the received electric field equations, atten-

tion will now be focused on applving these results to an examination of appropriate

error bounds for ocean surface current measurements in the next chapter.







4.2 Centroids of the Bragg Peak Region

he measured Bragg frequencies of the Doppler spectrum are taken to be the

centroid positions of the Bragg regions. The centroid is defined as the frequency

position that divides the Bragg region into two equal areas. The following numerical

procedure, presented by Bobbyv [25], is used to locate the centroids in the Bragg

peaks:

1.

Locate the positions of the maximum values wp and wy, in the positive and

negative regions of the Doppler spectrum, respectively.

Locate the nulls on both sides of the Bragg peaks by calculating the average
power over the range of frequencies falling within the intervals known to
include the nulls. Here, the intervals chosen are —1.8 wy to —1.2 wy and
—0.8 wy to —0.3 wy for the negative Doppler ranges. The intervals chosen
to locate the nulls in the positive Doppler ranges are 1.2 wp to 1.8 wp and

0.3 wp to 0.8 wp

. The nulls are determined as the first set of local values on each side of the

peak that fall below the appropriate average.

. Find the centroid frequencyv for each side of the Doppler spectruni as that

frequency that divides the entire area hetween the two nulls.

The presence of occan swell is known to cause a narrow peak between the second-

d the first-order Doppler spectrum. This will affect the location of nulls using

the algorithm above, but for the purpose of this analysis, the influence of swell will

[ ignored.
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Figure 4.1: Fluctuations of the Bragg region for fy = 25 MHz and a wind speed
of 15 m/s perpendicular to the radar look direction. The centroid positions are
indicated as dashed lines from top to bottom.

4.3 Analysis of Bragg fluctuation in a Pulsed Radar

Waveform

4.3.1 Introduction

To illustrate the variations in the Bragg peaks, Fig. 4.1 is obtained by segmenting
a time series electric field developed using Equation (2.30), into three equal-length
consecutive parts, each of length 512 points. The power spectral densities are
estimated using the periodogram method and the centroid positions are located
for each segment. The centroid positions for each Bragg region are indicated by
short dashed lines from top to bottom. A closer look at the left-han side peak of
Fig. 4.1 as presented in Fig. 4.2 shows that the centroid positions of the Bragg
region differ for each Doppler spectrum. This indicates that the measured Bragg

frequencies for each portion of an extended time series may differ.
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Figure 4.2: A closer look at the left-hand peak of Fig. 4.1.

4.3.2 Distribution of the Bragg Fluctuations

The distribution of the centroid positions has been shown in (8] to depend on
the width of the Bragg regions, which in turn, depends on the radar operating
parameters such as the frequency, the sampling time and the transmitted pulse
width used. In this section, the distribution will be examined numerically for both
the positive and negative Bragg regions of the Doppler spectrum.

Throughout the simulations, a constant steady wind velocity of 15 m/s, per-
pendicular to the radar look direction is used. A time series of 65,536 points (using
a sampling rate of 0.25 s, this corresponds to 16384 s), generated using equation
(2.30) is segmented into 128 equal-length consecutive parts each containing 512-
points. The PSD for each segment is calculated using the periodogram method

and centroid positions are determined for a variety of cases as discussed below.

1. Different Operating Frequencies:
Figures 4.3 and 4.4, show the histogram plots of the centroid positions for

operating frequencies of 25 MHz and 5 MHz. In calculating the PSD, the dis-
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crete Fourier transform (DFT) is implemented using the fast Fourier trans-
form (FFT) algorithm. For each case, a fixed pulse width of 8 us and a
sampling time of 0.25 s are used. An FFT resolution Appy of 0.0078 is im-
posed bv the sampling time. The standard deviations (STD) of the centroid
frequencies with respect to the theoretical Bragg frequencies and the FFT
resolution AppT, are plotted for comparison. For surface currents measure-
ments, fluctuations are considered to be significant when the standard devi-
ations (STD) exceed 0.5 App . It is seen that for an operating frequency
of 25 MHz (sce Fig. 4.3), the STDs for both the positive and negative Bragg
peaks, indicated bv the green solid line, are within half the FFT resolution.
Thus, the Bragg fluctuations for this case are considered to be insignificant
for the given pulse width. However, the Bragg fluctuations are considered
significant in the case of a 5 MHz operating frequency (sce Fig. 4.4), when
the standard deviation exceeds half the FFT resolution. This indicates that
the fluctuations varv for different operating frequencies, and in some cases

may be significant.

Different Pulse Widths:

The distribution of the centroid positions using pulse widths of 7 s and 2 ps
are shown in Figures 4.5 and 4.6, respectively. The same operating frequency
of 15 MHz and an FFT resolution of 0.0078 are used for both simulations.
The same wind speed of 15 m/s, perpendicular to the radar look direction,
is used. When 79 = 2 us (see Fig. 4.6), the measured standard deviations
obtained for the left- and right-hand side Bragg peak are 0.0044 and 0.0047
respectively, corresponding to ocean current speed resolutions of 8.8 cni/s
and 9.4 cn/s. These exceed half of the AppT of 0.0039, which corresponds

to an ocean current speed resolution of 7.8 cm/s. However, when 70 = 7 pus,
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frequency and the theoretical Bragg frequency.



54

Left-Hand Side
15 ] N l '
I uctuations
A
45 | )'SAFFT
%10' S
-
0
0
ER 1
Z
0 | I | I |
-0.015 -0.01 -0.005 0 0.005 0.01 0015
Right-Hand Side
15 I T I
" I fuctuations
e
6 | IS
7 10F A
3
0
2 8 -
=
5
Z
0 | | . | | |
0015 -0.01 -0.005 0 0.005 0.01 0.015
Frequency (He)

Figure 4.4: The distribution of the centroid positions with fo=5 MHz and 7o = 8

LS.




55

as seen in Fig. 4.5, the fluctuations are insignificant because the standard
deviations of 0.0032 for the left-side peak and 0.0036 for the right-side peak
are within the half AppT. These correspond to speeds of 6.4 cm/s and 7.2
cm/s, respectively. Thus, it may be seen that the size of the pulse width may

or mayv not cause significant fluctuations in the Bragg peaks.

To further investigate the dependence of the Bragg fluctuations on pulse widths
and operating frequencies, the standard deviations are calculated for other values
of these two parameters. Operating frequencies of 25 MHz, 15 MHz and 5 MHz,
representing the upper, middle and lower frequency bands are chosen for the sim-
ulation. Since the received clectric field voltages are stationary Gaussian random
variables, the centroids distibutions as well as the calculated standard deviations
differ for each realization. As a result, an average standard deviation, calculated
from five (5) different realizations is used to estimate the "appropriate’ standard
deviation using the same operating parameters. Of course a better estimation of
the standard deviation will require an average from manv more realizations. Fig-
ures 4.7 and 4.8 show the plot of the standard deviations of the centroid positions
as a function of the pulse width for different operating frequencies. The half Appp
are indicated bv dashed black lines. The ocean surface current speed resolution

Verr, corresponding to the half Appp will take different values since

cArpr
Verpr = . 4.1
FET 5 (4.1)

Tables 4.1, 4.2 and 4.3 provide a summary of the results of Figures 4.7 and 4.8 and
their corresponding current speed resolutions. The standard deviations for the left-
aud right-hand Bragg regions are denoted by STDL and STDR, respectivelv. V,
and Vg are the calculated ocean current speeds asscociated with the left- and right-

hand side standard deviations respectively. Clearly, it can be seen that the standard
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Table 4.3: The STDs for different pulse widths with fy =5 MHz. The ocean surface
current Vppp associated with 0.5App = 23.4 cm/s.

m (us) | 1w (nzy | Vo (em/s) | STDR (Hz) | Vg (cm/s)
R 0.0044 26.4 0.0041 24.6
o 0.0045 27.0 0.0049 29.4

6 0.0044 26.4 1 N046 27.6
5 0.0051 30.6 U.u048 28.8
4 0.0047 28.2 0.0051 30.6
3 0.0046 27.6 0.0044 26.4
2 0.0053 31.8 N 0Na1 30.6
T 0.0071 42.6 vuvbr | 402

4.3.3 Standard Deviations for Different AFFT

As mentioned carlier in the analvsis, the centroid positions of the Bragg peaks are
dependent on the width of the Bragg region. For a fixed Appr, the standard
deviations of the centroid positions have been shown to be linearly proportional to
the width of the Bragg region [8]. However, different App will vary the width of
the Bragg regions, and this mayv change the centroid positions of the Bragg peaks.
An investigation is carried out to calculate the standard deviations of the centroid
position for a different App.

In the previous sections, a fixed sampling rate of 0.25 s is used for the simula-
tions. This imposes an FFT resolution Appp  0.0078. In this section, a sampling
rate of 0.8 s, imposing an App = 0.0024 is used to investigate the significance
of the Bragg fluctuations. In Figures 4.9 and 4.10, the standard deviations are
plotted against the pulse widths. The parameters used are a wind speed of 15
m/s perpendicular to the radar look direction and operating frequencies of fy = 25
MHz, 15 MHz and 5 MHz.  Comparing these Figures to Figures 4.7 and 4.8,
it can be seen that the standard deviations are relativelv higher for a finer FFT

resolution. Thus, a sampling rate of 0.8 s as compared to 0.25 s results in relatively
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Figure 4.9: The standard deviation of the centroid positions as a function of pulse
widths for the left-hand peak using a sampling time of 0.8 s.
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Figure 4.10: The standard deviations of the The standard deviation of the centroid
positions as a function of pulse widths for the right-hand peak using a sampling

time of 0.8 s.
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more significant fluctuations. This is because a finer sampling rate introduces more
frequency points to the Bragg region and this adds more randomness in the fixed
region. It is also noticed that the Bragg fluctuations are more significant for lower

operating frequencies.

4.3.4 Analysis of the Bragg Fluctuations in a Noise Limited

Pulsed Radar System

Having investigated the Bragg fluctuations in a noiseless ideal HF radar system,
attention will now be focused on investigating the significance of external noise on
ocean cirrent measurements. The aim of this analysis is to help in estimating the
errors associated with ocean surface current measurements in a tyvpical operating

environnent.

4.3.5 Doppler Spectra and Centroids of the Bragg Peak
Regions

Incoporating the noise model developed in Section 3.2 into the electric field equation
and developing the Doppler spectra, the centroid positions of the Bragg regions are

estimated numericallv using the sanme algorithm as described in Section 4.2.

4.3.6 Calculation of the Standard Deviation

The standard deviations of the centroid positions with respect to the theoretical
Bragg frequencies are calculated for different noise levels. The SNR chosen for this
simulation is 30 dB, 20 dB and 10 dB.

Table 4.4 shows how the changing SNR affects the standard deviations of the

centroid positions for an operating frequency of 25 MHz and a pulse width of 8 us.
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this analysis, the same electric field signal is used in combination with different
noise levels. Here, the standard deviations estimated for each SNR is an average
from five realizations. Half of App is 0.0039, corresponding to a ocean current
resolution of 4.68 cm/s. All parameters have the same definitions as in Table 4.1.

Table 4.4: The STDs for an operating frequency fo = 25 MHz, pulse width 79 = 8
us and 0.5 AFFT = 0.0039 Hz corresponding to a speed of 4.68 cm/s.

Saux (dB) [ STDL (Hz) | V7, (em/s) | STDR (Hz) | Vz (cm/s)
00 0.0028 236 0.0026 3.12
30 0.0029 5.48 0.0034 4.08
20 0.0025 3.00 0.0028 3.36
10 0.0036 4.32 0.0039 4.68
0 0.0056 6.72 0 005”3 6.24

It is seen that, when the SNR is high, such as oo dB, 30 dB or 20 dB, the
standard deviations of the centroid positions are barely affected by the noise level
making the Bragg fluctuations insignificant. However, as the SNR reduces towards
0 dB, the standard deviations start to go beyond the half Appp, making the fluc-
tuations in the Bragg peaks significant. This is because when the SNR approaches
0 dB, the algorithim used to locate the centroid position becomes less and less ac-
curate. The second order nulls are affected by the noise level and that makes it
difficult for the algorithm to accuratelv locate the nulls. Note that, since an average
of five realizations is used to calculate the standard deviations, the results for SNRs
of oo dB, 30 dB and 20 dB are close enough to be considered the same. Thercfore,
for these opcrating parameters, the threshold for the SNR could be considered to
be 10 dB for minimal errors.

To explore this further, the analvsis is extended to different operating frequen-
cies and pulse widths to check the dependencies of the standard deviations on these

parameters when the signal is noisy. Figures 4.11 and 4.12 are plots of the stan-
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dard deviations of the centroid positions as a function of the radar pulse width and
SNR for an operating frequency of 25 MHz. Similarly, Figures 4.13 and 4.14, are
for an operating frequency of 15 MHz. The standard deviations for an operating
frequency of 5 MHz are also shown in Figures 4.15 and 4.16. Half the AppT, is
indicated by a solid line. We can see from these Figures that when SNR=30 dB or
20 dB, thie standard deviations are essentially similar to an ideal noiseless system.
This is because, the noise floor in the Doppler spectrum is too low to have any
effect on the area covered by the Bragg peaks. Therefore, for these SNRs, the
standard deviation of the centroid positions of the Bragg regions are not affected

uch by the noise. However, when the SNR is 10 dB, the standard deviations are
significantly different from that of an ideal noiseless svstem. This is due to the fact

the fluctuations of the noise floor that is closer to the second-order peaks affects

Another conclusion that can be drawn from these figures is that the Bragg
fluctuations are seen to be more significant at lower operating frequency band than
at at high operating frequency band. However, in general, a high SNR is required

to mininize the errors in currents measuremnents.

4.4 Analysis of the Bragg Fluctuations in an FMCW
Waveform

In this section, the Bragg fluctuation analvsis is extended to the FMCW waveform,
but without the inclusion of noise. The statistical properties are examined for
various operating frequencies and bandwidths using the same procedure as in the
pulsed waveform. To illustrate the Bragg fluctuations phenomenon, the electric

|
|
the location of the nulls using the algorithm above.
fleld time series is segmented into three consecutive parts, each having a length of
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Figure 4.11: The standard deviations of the centroid positions as a function of the
pulse width and SNR for the left-hand peak. The operating frequency is 25 MHz
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Figure 4.12: The standard deviations of the centroid positions as a function of the
pulse width and SNR for the right-hand peak. The operating frequency is 25 MHz
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Figure 4.13: The standard deviations of the centroid positions as a function of the
pulse width and SNR for the left-hand peak. The operating frequency is 15 MHz.
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Figure 4.14: The standard deviations of the centroid positions as a function of the
pulse width and SNR for the right-hand peak. The operating frequency is 15 MHz.
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Figure 4.15: The standard deviations of the centroid positions as a function of the
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Figure 4.16: The standard deviations of the centroid positions as a function of the
pulse width and SNR for the right-hand peak. The operating frequency is 5 MHz.
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Figure 4.17: Fluctuations of the centroid postions for f, and B = 100 kHz

512 points. The PSD is estimated for each segment, and the centroid positions of
the Bragg regions are located. Figure 4.17 shows the Doppler spectra for fy = 25
MHz and B = 100 kHz. For each segment, the centroid positions of the Bragg
peaks are indicated by black dashed lines. A closer look at the Bragg regions (see
Figure 4.18) shows the variations in the magnitudes of the Bragg peaks. This is

one of the major causes of the fluctuatious of the centroid positions.

4.4.1 Standard Deviations of the Centroid Positions

Since the pulse width of the pulsed waveform radar system is related to the band-

width B by

1
0 — E, (42)

the range of values chosen for the bandwidth for the FMCW waveform is

125 kHz < B < 1000 kHz, (4.3)
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Figure 4.18: A closer look at the left-hand peak region of Figure 4.17. The centroid
positions are indicated by dashed lines.

and this corresponds to

1 us <7 <8 us (4.4)

in the pulse waveform analysis. It may be recalled that the fluctuations are con-
sidered to be siguificant when the standard deviations exceed the 0.5App. To
calculate the standard deviations of the centroid positions, a long electric field time
series of 65536 points corresponding to a time of 273.0667 minutes, is generated
using equation (2.34). The signal is segmented into 128 consecutive part, each
having a lenth of 512 points. The PSD is estimated for each segment and the
centroid positions of the Bragg regions are calculated. In Figures 4.19 and 4.20,
the standard deviations are plotted against the frequency bandwidth for various
radar operating frequencies of 25 MHz, 15 MHz and 5 MHz. The 0.5AppT is
indicated by black dashed lines. A sampling rate of 0.25 s for a 512-point FFT

giving 0.5AppT=0.0039, is used. It may be noticed that the standard deviation
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Figure 4.19: Plots of the standard deviations of the centroid positions as a function
of frequency bandwidth and operating frequencies of 25 MHz, 15 MHz and 5 MHz
for the left-hand peak.

of the centroid positions is a function of the radar bandwidth and the operating
frequency. Depending on these operating parameters, the standard deviations may
or may not exceed the 0.5App1. For example, at an operating frequency of 5 MHz
and a bandwidth of 500 kHz (see Figure 4.19), the standard deviation is seen to
exceed 0.0039 and thus makes the fluctuations significant. However in the same

figure when the frequency is 5 MHz and the bandwidth is 250 kHz, the standard

deviation is seen to be below 0.003Y. This makes the fluctuations insignificant.

4.5 General Chapter Summary

A realistic way of estimating the errors associated with ocean current measure-
ments requires an analysis that reflects what generally happens in practice. Under

Pierson’s model [37], the ocean surface has been described as a Gaussian random
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Figure 4.20: Plots of the standard deviations of the centroid positions as a function
of frequency bandwidth and operating frequencies of 25 MHz, 15 MHz and 5 MHz
for the right-hand peak.
process. When the ocean surface is illuminated by HF radar signals, the received
signal will also be Gaussian in nature [30]. As a result of this, fluctuations occur
in the Bragg peaks in the Doppler spectrum. In Zhang et al [8], these fluctuations
were extensively examined. However, the effects of external noise was not consid-
ered in the analysis. In this chapter, the Bragg fluctuations are first examined for
an ideal noiseless system for both a pulsed and an FMCW transmitting waveform.
Using a suitable noise model introduced by Gill and Walsh [34] for a pulsed-type
radar system, an addictive white Gaussian noise is incorporated in the time series
electric field. The statistical properties of the fluctuations in the Bragg peaks,
caused by both the random nature of the ocean surface and different noise levels
are then investigated.

The standard deviations of the centroid positions have been checked for different

operating parameters. It was seen that the fluctuation in the Bragg region is
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a function of not onlv the operating frequency but also the pulse width (pulse
waveform) or the bandwidth (FMCW waveform). It was also realized that, at
lower HF frequency band, the fluctuations are more significant than that of a
higher HF frequencv band.
An examination of the Bragg fluctuations for different SNRs shows that for
ghier SNRs, the standard deviations of the centroid positions are barely affected
bv the noise floor. This is because the noise floor in the Doppler spectrum is, in
this case, low enough to have little effect on the total spectral interval covered
bv the Bragg region. However, at lower SNRs, the randomness of the noise floor
affects the location of the nulls between the second- and first-order peaks. This
affects the the calculation of the total area covered by the Bragg region and hence
the deterniination of the centroid positions. Therefore, minimizing the errors, gen-
erallv requires a high SNR and an optimum combination of operating parameters,

including the choice of frequency and pulse width or, equivalently, bandwidth.



Chapter 5

Conclusions

5.1 General Summary

he main purpose, that being the investigation of factors that affect ervor bounds in
anyv parameter extracted from the HF radar received signal, has heen accomplished
in this studv. The outcomes of this work are intended to help improve existing
niodels used for the application of HF radar to the measurement of ocean surface

currents.

5.1.1 The Problem

Pierson’s model [37] describes the ocean surface as having wave components with
which are associated random phases uniformly distributed over 0 to 2w. This
model assumes that the ocean surface is a zero-mean Gaussian random process.
As verified bv Barrick and Snider [30], any linear operation on a Gaussian random
variable produces another Gaussian random variable. Therefore, when HF radar
signals are used to probe the ocean surface, the signal received from the ocean is
Gaussiail.

In calculating the Doppler spectrum of the received signal, if an infinite length

73
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clectric field time series is used as assumed in Walsh et al [21], and Walsh and
Dawe [22] , the Doppler spectrum can be determined at each frequency compo-
nent. This is because the random terms in the expression would be averaged out
eventually [21]. However, in practice, measurements are always taken over finite
time. Also, the HF radar svstem generally has an externallv noise limited recep-
tion. This introduces variations in the Doppler spectruni of the received signal. In
ocean surface current measurement, the location of the Bragg peaks are used for
the calculation of surface current velocityv. Due to the randomness in the Bragg
peaks, an investigation needs to be conducted to examine the significance of these

variations on ocean current measurement.

5.1.2 Solution

» address the problem, a finite electric field series is simulated based on existing
electric field expressions for both pulsed and FMCW waveformis and the power
spectral densitv of the time series is estimated as periodograms. Various operating
parameters and conditions are used for the analvsis. For the case of pulse radar
operation, a suitable external noise model is incorporated in the electric field equa-
tions in the time domain and Doppler spectrum estimated for various radar ranges
and wind directions.

The second part of the study has looked at the fluctuations in the Bragg peaks
of the Doppler spectrum. The long time series is segmented into equal length
consecutive sequences. The power spectral densitv of each segment is estimated

; a periodogram. The centroid positions of the Bragg peaks are estimated and
compared to theorctical values. The standard deviations of the centroid positions

e calculated and compared to half the FFT resolution to check their significance.

he Bragg fluctuations are assumed to be significant if the standard deviations
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exceeds half the FFT resolution. The results have shown that the standard de-
viations of the centroid positions arc dependent on the operating frequency, the
sampling time, the pulse widths (pulsed waveform) and the frequency sweep band-
width (FMCW waveform), and in some cases are significant. In particular, it was
noticed that the Bragg fluctuations are more significant for lower frequency bands
if other operating parameters and ocean surface conditions are fixed.

After examining the Bragg fluctuations in the Doppler spectrum caused by
the random nature of the ocean only, the analvsis is extended to an externally
noise limited pulsed radar svstem. Various operating frequencies, pulse widths and
signal-to-noise ratios are chosen to conduct these investigations. Based from the
results obtained, the Bragg fluctuations are seen to vary for different SNRs. At
higher SNRs, the standard deviations have been observed to be similar to the val-
ues obtained for an ideal noiseless svstem. This is because, the noise floor in the
Doppler spectrum will be too low to have an influence in the calculation of the
centroid positions. However, at lower SNRs, the standard deviations have been
noticed to be significantly different from the that obtained for an ideal noiseless
svsten. Thus, when the noise floor approaches the second order nulls, the calcula-
tion of the centroid positions are affected. Consequently, this affects the standard
deviations in the Bragg centroids. The conclusion is drawn from this studv that
generallv, a high SNR, approaching at least 10 dB, is required to minimize errors

introduced in ocean surface current measurements.

5.2 Suggestions for Future Work

The work presented in this research provides a basis for a number of ideas in future
research and experimental work.

First, although the algorithms developed in this studv showed encouraging re-
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sults, thev still need to be checked against real data. Since an HF radar system
has been installed at Placentia Bav, near Argentia, NL, Canada, the data obtained
from this svstem could be used to validate the analvsis and results presented here.

In the investigation of the Bragg fluctuations, the long time series is segmented
into equal consecutive lengths of 512 point FFT. However, it would be a good
idea to seqment the long time series into shorter or longer consecutive lengths to
exaniine the significance of the observation tinies on the Bragg fluctuations.

An obvious next step along this line of research is the analvsis of the Bragg
fluctuations in an externally noise limited FMCW waveform radar system after the
noise is properly introduced into the FMCW electric field equations. The analysis
can be carried out for various operating parameters and conditions at different
noise levels.

In the investigation provided here, the cffect of swell is ignored in calculating
tlie centroid positions of the Bragg regions and the standard deviations of the
centroid positions. In anv future analvsis, the effects of swell contamination may
be considered also.

The analvsis presented here can also be extended to the bistatic radar system.

his studv would be facilitated by the fact that models have already been developed

for a pulsed radar waveforms in bistatic svstems [40].
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