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ABSTRACT 

Many physical systems in general, and soil materials in particular, exhibit relatively 

large spatial variability in their properties, even within so-called homogeneous layers. 

Physical descriptions of this spatial variability are not feasible owing to the prohibitive cost 

of sampling and uncertainty induced by measurement errors. This variability is widely dealt 

with as uncertainty in soil properties. Probabilistic methods currently used to represent this 

uncertainty often suffer from many limitations. For instance, they often only account for 

uncertainty in estimating the average soil properties. A probabilistic approach was 

developed here to investigate the effects of soil heterogeneity and provide practical 

recommendations and guidelines to account for these effects in routine engineering design. 

There are still many unknown consequences of spatial variability. It is shown here 

that natural variability of soil properties within geologically distinct and so-called uniform 

layers affects soil behaviour. This study found that the phenomena governed by highly 

nonlinear constitutive relations are the most affected by spatial variability of soil properties. 

The bearing capacity of shallow foundations and lateral interaction loads of buried 

pipelines are functions of soil shear strength and, therefore, are governed by highly 

nonlinear stress-strain relationships. 

The effects of soil heterogeneity were investigated for a strip foundation placed on 

elastic perfectly plastic soil and subjected to vertical loads. From a comparison of Monte 

Carlo simulations, accounting for the spatial variability of soil strength, and deterministic 

analyses assuming uniform soil properties, it was found that the soil heterogeneity changes 
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the mechanical behaviour of foundations. A parametric study was performed to quantify 

the effects of soil heterogeneity parameters on foundation response; the studied cases were 

pre-designed using statistical methods (Design of Experiments, DOE). It was observed that 

soil strength's degree of variation and probability distribution, which characterize the 

amount of weak pockets of soil, have the most effects on the foundation behaviour for the 

range of parameters considered. Correlation distances also affected the variability of 

foundation responses owing to local averaging effects. 

The results of the parametric study are presented as simple regression equations 

(response surfaces) to estimate probabilistic characteristics of foundation responses -

namely mc~an and coefficient of variation of bearing capacity and bearing pressures at 

damage criteria. They were used to calibrate partial design factors for limit state design 

methods, LSD, and estimate characteristic values for routine engineering design. The 

results, in terms of regression equations, can also be employed directly in level II & III 

reliability <malysis methods. 

A similar study with a limited scope was performed for lateral loading of a buried 

pipeline. Only one burial depth (geometrical configuration) was taken for the pipeline. 

Among th(! probabilistic characteristics of soil considered here, the degree of variability of 

soil strength was found to be the most significant factor affecting pipeline response. The 

response and failure mechanism of a laterally loaded buried pipeline is complicated and is 

dependent on several deterministic factors such as burial depth, pipe-soil interaction 

coefficients, and soil weight. The study could be further developed to account for other 
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probabilistic characteristics and deterministic parameters, and their corresponding 

interactions. 
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CHAPTER 1 

INTRODUCTION 

1.1. GENERAL REMARKS 

In 1the past few decades, engineering codes have tried to adopt rational analysis and 

design approaches to deal with uncertainties in design. Engineering design should provide 

satisfactory performance while securing desired levels of safety. A rational design is 

possible through quantifying the risk associated with every scenario and assessing probable 

damage costs. Hence, engineering codes have tried to employ reliability and risk concepts 

in defining appropriate safety levels by comparing the cost of damage from failure with the 

cost of a higher safety level; in addition, social and political factors are often considered. It 

is vital to establish robust design methods to secure the desired safety level. However, 

current design methods in geotechnical engineering are primarily based on engineering 

experience and suffer from an insufficient theoretical background. 

Estimation of reliability levels requires quantification of the probabilistic 

characteristics of load and resistance. This study focused on the latter part; design loads and 

their probabilistic characteristics are independent of the studied subject and were not 

addressed here. In geotechnical engineering, resistance uncertainties are induced by various 

sources: natural inherent variability of soil properties, measurement errors, limited 
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availability of information about subsurface conditions, transformation errors, model 

uncertainty, etc. (see Lumb, 1974 [115]; Vanmarcke, 1977 [208]; DeGroot and Baecher, 

1993 [45]; Phoon and Kulhawy, 1999a&b [154&155]). A major source of uncertainty in 

geotechnical systems is the natural variability of soil properties. For instance, Phoon and 

Kulhawy (1996) [153] studied the inherent soil variability as observed from some common 

in-situ soil test measurements. They expressed the observed degree of soil strength 

variability by means of the coefficient of variation. Coefficients of variation- Cv= 20% to 

40% for clay materials, and C v = 20% to 60% for sand materials - were found in a large 

number of cone tip resistance measurements. Some of the scatter might have been induced 

by measurement errors. However, in the case of cone penetration tests, the scatter in results 

produced by measurement errors is estimated as C v = 5% for electrical cones and C v = 

10% for mechanical cones (ASTM, 1989 [7]). Remaining variability can be attributed to 

soil heterogeneity. 

Natural variability of soil properties within geologically distinct and uniform layers 

has been proven to affect soil behaviour; heterogeneous materials may behave differently 

from homogeneous materials having the same average properties (e.g. Nobahar and 

Popescu, 2001c [140]). 

1.2. OBJECTIVES 

The influence of soil spatial variability on soil-structure interaction problems -

namely bearing capacity of shallow footings and lateral loading of buried pipelines - was 

studied to quantify the soil heterogeneity effects and provide design recommendations. The 
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main objective is to provide design recommendations for the effects of spatial variability in 

phenomena involving soil-structure interaction (namely bearing capacity of shallow 

foundations and lateral loading ofburied pipelines). For this purpose, 

• a methodology for stochastic analysis of geotechnical systems has been developed, 

• the effects of spatial variability of soil properties on bearing capacity of shallow 

foundations and lateral loading of buried pipelines have been assessed and 

quantified, and 

• methodologies to incorporate the estimated effects of soil heterogeneity in Limit 

State Design (LSD) method and reliability analysis have been developed. 

The aforementioned analyses were performed for bearing capacity of shallow strip 

foundations as discussed in chapters 3 and 4. An extensive parametric study, which 

included ranges of degree of variability, probability distribution shape and correlation 

structure of soil shear strength and soil stiffness, was performed to assess and quantify the 

effects of soil heterogeneity. Statistical methods were incorporated to optimise the 

parametric study by using Design of Experiment (DOE) methodology. 

For lateral loading of buried pipelines, the study had a limited scope due to a higher 

level of complexity for pipeline behaviour and a higher number of relevant factors, and can 

be regarded as a starting point for an extensive parametric study. Factors affecting 

behaviour of pipelines are not well understood in a deterministic analysis and its failure 

mechanism in uniform soil remains a matter of contention. It is essential to first know all 

these dete1ministic factors and their contribution to pipeline response before starting an 

extensive parametric study on the effects of soil spatial variability. 
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For the sake of clarity and to strictly emphasize the effects of soil heterogeneity, 

this study is limited to analysis of overconsolidated clayey soils under undrained condition. 

In this way, a fairly straightforward elastic perfectly plastic model was used (namely 

Tresca) and a single soil heterogeneity parameter was considered (namely undrained shear 

strength, cu). Variable deformation moduli, E, is assumed perfectly correlated with soil 

shear strength over the analysis domain. This study does not analyse specific geostatistical 

data for a particular site. 

1.3. METHODOLOGY 

A Monte Carlo simulation methodology combining generation of stochastic fields 

with finite element analyses was employed. The parametric study was statistically pre­

designed and results were studied through a series of probabilistic calculations. SINOGA, a 

program :fi:>r digital generation of multidimensional, multivariate non-Gaussian random 

fields (Popescu, 1995 [158]) was used to generate sample functions of stochastic fields. 

MATLAB® (MathWorks, 2000 [116]), Microsoft Excel® and Microsoft Visual Basic® 

were used to develop and automate the stochastic analysis and Monte Carlo simulations. 

ABAQUS/Standard, a general multi-purpose finite element program with large­

deformation, finite-strain and nonlinear analysis capabilities was used to model 

geotechnical system behaviour and soil-structure interaction (Hibbitt et al., 1998 & 2001 

[92&94]). 
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1.4. ORGANIZATION OF THESIS 

This thesis is divided into three main sections. The first section comprises the 

literature review, which discusses the geotechnical engineering background, previous 

developments, and engineering and design materials related to this study. The second 

section describes the methodology customized, automated and used to quantify and assess 

the effects of soil heterogeneity in nonlinear soil-structure interaction problems. The third 

section includes applications of the methodology in geotechnical problems, results of 

parametric study, and design recommendations. 

Thils thesis has six chapters. Chapter 1 is an introduction to the background, scope, 

methodology and organization of this study. 

Chapter 2 presents the literature review, which is divided into four subsections. The 

first subsection discusses soil heterogeneity and includes quantification of the probabilistic 

characteristics of soil properties and uncertainties involved in geotechnical design. It also 

presents stochastic models to simulate the spatial variability of soil properties, available 

stochastic analysis approaches, and an overview of previous work in quantifying of the 

effects of soil heterogeneity on the geotechnical systems. The second and third subsections 

present related engineering background, and analyses and design methods for shallow 

foundations and buried pipelines. The fourth subsection discusses engineering design 

methods in geotechnical engineering, and their philosophy, advantages and shortcomings. 

Chapter 3 introduces the methodology developed and used in the course of study 

for the assessment of the effects of soil spatial variability. This includes: 1) deterministic 

aspects of conventional finite element analysis of geotechnical systems involving soil­
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structure interaction and failure mechanism; 2) methodology used to digitally generate 

sample functions of a non-Gaussian stochastic field, with each sample function 

representing a possible realization of the relevant soil properties over the domain of 

interest; 3) presentation of finite element analysis with stochastic input and its 

customisation, development, and automation; 4) main concepts of Monte Carlo simulation 

methodology used in this study; 5) statistical design of parametric studies using Design of 

Experiment (DOE); 6) statistical study, optimisation, and regression of the results of 

parametric studies; and 7) methods to calibrate the results for usage in engineering design 

and to provide design recommendations. 

Chapter 4 presents the application of the aforementioned methodology to the 

bearing capacity of shallow foundations on heterogeneous soil. It describes the effects of 

soil heterogeneity on the bearing capacity from two aspects: changes in failure mechanism 

and statistical effects. An extensive parametric study was performed to address the effects 

of soil shear strength's degree of variability, probability distribution, and correlation 

structure. This study also addressed the effects of soil deformation moduli on serviceability 

criteria for foundations placed on heterogeneous soil. The results of the parametric study 

were statistically analysed and summarized in regression equations and are discussed in 

chapter 4; also, applications of the results to engineering design methods and the three 

levels ofre:liability analysis are demonstrated. 

Chapter 5 presents the application of the methodology used in this study to lateral 

loading of a buried pipeline. It also presents issues related to the deterministic analysis of 

laterally loaded buried pipeline in uniform soil. It discusses the complexity of the behaviour 
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of a buried pipeline subjected to soil movement. The effects of soil heterogeneity on the 

response of buried pipelines are also presented. 

Finally, Chapter 6 summarizes the results presented m earlier chapters and 

recommends areas for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1. EI~FECTS OF SOIL HETEROGENEITY 

2.1.1. Spatial Variability of Soil Properties 

Uncertainty in prediction of geotechnical responses is a complex phenomenon 

resulting fiom many disparate sources. In this section, a classification of these sources is 

presented, and aspects of soil heterogeneity- one of the main sources of uncertainty in 

geotechnical engineering - are discussed. 

2.1.1.1. Characteristics of soil variability 

It is well known that soil properties are variable from point to point in so-called 

homogeneous soil layers. Variability in measured properties in these layers comes from 

different sources. Phoon and Kulhawy (1999a) [154] quantified the inherent variability, the 

measuremtmt errors, and the transformation uncertainty as primary sources of geotechnical 

uncertainty, as illustrated in Figure 2.1. The inherent spatial variability originates from the 

natural geological process that produced and continually modify the soil mass. Tang (1994) 

[196] attributes this to small-scale variation in mineral composition, environmental 

conditions during deposition, past stress history, and variations in moisture content. 
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Measurement errors, including those caused by equipment, procedural-operators, and 

random testing effects constitute the second source of error. Collectively, these two sources 

can be classified as data scatter. The third source of uncertainty is introduced when field or 

laboratory measurements are transformed into design soil properties using empirical or 

other correlation models. 

SOIL __..,.. IN-SITU __,... TRANSFORMATION __..,.. ESTIMATED 

inheren~ 
soil 

variabililly 

MEASUREMENT 

I 
I 

data statistical 

scatter uncertainty 

I 
inherent measurement 

soil 
variab illty error 

MODEL 

model 
uncertainty 

SOIL PROPERTY 

Figure 2.1 Uncertainty in soil property estimates (after Kulhawy, 1992 [102]). 

Spatial variation of soil properties, as shown in Figure 2.2, can be represented by 

(e.g. Phoon and Kulhawy, 1999a [154]), 

Y(X) = T(X) + E (X) Eq. 2.1 

where Y(.A) is the soil property at point X; T(X) is the deterministic function giving the 

mean soil property at X (T(X) is also called trend function); and E(X) is the residual 

(fluctuating component) at point X and can be defined as a homogeneous random function 
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or field (Vanmarcke, 1983 [209]). This function can be rewritten to account for random 

error (DeGroot and Baecher, 1993 [ 45]), 

Y(X) = T(X) + B, (X)+ en (X) Eq. 2.2 

where Br(X) is the residual of soil property due to natural inherent variability, and Bn(XJ is 

the residual due to measurement noise. Separation of measurement errors from inherent 

variability of soil properties is an imprecise procedure, as discussed by Phoon and Kulhawy 

(1999a&b) [154&155]. One attribute of inherent variability of soil properties is the 

correlation structure, i.e. these properties do not vary randomly in space, but exhibit some 

coherence from one spatial location to another. Therefore, er{X} describes a set of 

correlated random variables. A rational means of quantifying inherent variability is to 

model Br(X) as a homogeneous random field (Vanmarcke, 1983 [209]). 

Using results of cone tip resistance records (Figure 2.2), Popescu et al. (1997) [ 162] 

showed that the probabilistic characteristics of inherent spatial variability of soil can be 

represented using stochastic fields with the following attributes (further discussion on 

stochastic models is presented in later sections): 

• Mean values. These may follow a trend (such as an uniform increase of soil 

shear strength with depth). These systematic trends can be identified and 

separated. 

• Variance. This represents the degree of scatter of the fluctuations about 

mean values. 
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• Correlation structure. This describes the similarity between fluctuations 

recorded at two points as a function of the distance between those points. As 

shown in Figure 2.2, some degree of coherence between the fluctuations can 

be observed, with this coherence becoming more noticeable as the 

measuring points become closer. This coherence between values of each 

material property at different locations can be described by auto-correlation 

functions (e.g. Vanrnarcke, 1983 [209]; other models discussed in Section 

2.1.1.2). The main parameter of the auto-correlation function is called 

correlation distance (or scale of fluctuation) - a length over which 

significant coherence is maintained. 

• Probability distribution. Many researchers (e.g. Lurnb, 1966 [113]; Shultze, 

1971 [181]; Harr, 1977 [87]; Jefferies, 1989 [98], Griffiths and Fenton, 

1993 [74]) have fitted various probability distributions for soil properties. 

Popescu et al. (1998a) [163] concluded that (1) most soil properties exhibit 

skewed, non-Gaussian distributions, and (2) each soil property can follow 

different probability distributions for various materials and sites. Therefore, 

in addition to mean and variance, it is also necessary to have more 

information about probability distributions of soil properties. 
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Figure 2.2 Recorded in-situ cone tip resistance (after Popescu et al., 1997 [162]). 

2.1.1.2. Stochastic models 

Various stochastic methods can be used to obtain and represent soil stochastic 

characteristics. Fenton (1999a) [62] pointed out the following methods as being commonly 

used in obtaining and representing stochastic characteristics of soil: the sample correlation 

or covariance function, the semi-variogram, the sample variance function, the sample 

wavelet coefficient variance function, and the periodogram. In addition, a decision should 

be made to use a finite-scale model (also known as a short memory model) or a fractal 

model (also known as statistically self-similar, long-memory model) to represent the 
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correlation structure of soil properties. Fenton (1999a&b) [62&63] compared different 

tools used in identifying stochastic models best suited to represent soil properties. 

The most common stochastic model currently used in geotechnical engineering is 

the finite scale one (e.g. Vanmarcke 1983 [209]; Popescu 1995, 1997 & 1998b [158, 

162&164];, Degroot, 1996 [44]; Hegazy et al., 1996 [91]; Ural, 1996 [206]; Fenton and 

Griffiths, 2002 [65] among others). However, the finite-scale stochastic model has several 

disadvantages because the scale of fluctuation is dependent on the size of analysis domain 

and on the: sampling interval (see DeGroot and Baecher, 1993 [45]; Fenton, 1999b [63]). 

From studying the vertical variation of CPT qc data, Fenton (1999a&b) [62&63] observed 

that soil properties seem to be fractal in nature. Fenton demonstrated that when sampling 

from a fractile process, the scale of fluctuation is dependent on the domain size. Hence, a 

fluctuation scale will become smaller/larger as the domain decreases/increases. Similarly, 

engineers interested in characterizing a very small/large domain should use small/large 

fluctuation scales in the site model. What this means is that if a researcher obtains a scale of 

fluctuation of 10 m for a 50-m wide domain, the scale may be much larger if the domain is 

10 times larger. However, Fenton (1999b) [63] illustrated that using a fractal model does 

not eliminate the dependency on the domain size, but allows a better understanding of 

stochastic variation. Finally, there would be little difference between a properly selected 

finite-scale model and the real fractal model over the finite domain. 

It is concluded that a finite-scale model using a correlation function is by far the 

most commonly used model (see Popescu, 1995 [158] for discussion of different types 
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correlation functions). Fractal models (long-memory), though theoretically more 

appropriate for soil properties, have yet to be developed and tested. 

Stochastic models are also used in other areas of science and engineering. It is 

convenient to use independent mathematical-statistical theory to model physical processes. 

However, models that involve statistical dependence in time or space are often more 

realistic. A few examples of stochastic processes are (1) particle movement in Brownian 

motion, (2) emissions from a radioactive source, (3) fluctuating current in an electric 

circuit, (4) wave profile in the ocean, (5) response of an airplane to wind gusts, and (6) 

vibration of a building by an earthquake (Ochi, 1990 [143]). Cressie (1991) [39], among 

others, gathered literature and information on the development of statistics for spatial data. 

The notion that data close together in time or space are likely to be correlated is a natural 

one and has been used successfully by statisticians to model physical and social 

phenomenon (Cressie, 1991 [39]). Spatially correlated models have been developed in 

many areas of science, including geology, soil sciences, atmospheric science, and 

oceanography. Simply, spatially correlated models are used in every discipline that 

involves data collected from different spatial locations. For example, Peters and Bonelli 

(1982) [151] collected meteorological space-time data sets to study the effects of 

atmospheric pollution. 

S011lie et al. (1990) [191], Chiasson (1995) [30], and Deutsch, 2002 [51] used 

variogram to represent the variability of clay deposits. The geostatistical model used in 

those studies is similar to the one used in this study, except this study used the covariance 

function, rather than variogram, to express spatial correlation. V ariogram is the measure of 
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dissimilarity between two points in space separated by a distance h, according to the 

relation 

2y(h) = Var[Z(x +h)- Z(x)] Eq. 2.3 

where 2r(h) is the variogram value at a separation distance h; Z(x) is the value of the 

random variable at location x. In this study, the covariance function is selected to represent 

the correlation structure; thus, readers are referred to Cressie (1991) [39] for more 

information on the use ofvariogram. 

2.1.1.3. Probabilistic characteristics of the spatial variability of soil properties 

After extensive research, Phoon and Kulhawy (1999a&b) [154&155] produced 

some "approximate guidelines" for ranges of uncertainty in geotechnical properties. They 

used a homogeneous random field to represent the inherent soil variability. They evaluated 

coefficients of variation, Cv, due to the inherent variability, ranges for scale of fluctuation 

of inherent variability, and Cv due to measurement error. For the undrained shear strength, 

cu, of clayey soil deposits, they found a typical Cv range of between 10% and 55%, 

resulting solely from the inherent spatial variability of soil strength. This range was 

obtained from extensive study of data from cone penetration tests (CPT), vane shear tests 

(VST), and laboratory tests, which included: unconfined compression tests (UC); 

unconsolidated-undrained triaxial compression tests (UU); and consolidated isotropic 

undrained triaxial compression tests (CIUC). Figure 2.3 shows ranges of Cv (COV) of 

inherent variability from laboratory tests. 
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The undrained shear strength Cv from measurement errors is the result of 

equipment, procedural-operator, and random testing effects. It was found to range between 

about 5% to 45% for field and 5% to 40% for lab tests (However, they recommended a 

value of 5% to 15% for lab tests). Phoon and Kulhawy (1999b) [154] suggested a method 

for estimating the uncertainties in soil design properties resulting from transformation 

errors (from index to geomechanical properties). 
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Figure 2.3 Coefficient ofvariation (COV) of inherent variability of soil undrained shear 
strength (su) vs. mean Su (after Phoon and Kulhawy, 1999a [154]). 

Cherubini et al. (1993) [28] collected the coefficient of variation of soil undrained 

shear strength. They found a very wide range of 12% to 145% for Cv of soil undrained 

shear stnmgth. Figure 2.4 shows the reported values of Cv vs. mean undrained shear 

strength. Variability caused by measurement is not separated from these values (Figure 

2.4). Ch~~rubini et al. found that variability decreases as soil undrained shear strength 

increases.; thus, they recommended a range of C v = 12% to 45% for medium to stiff soil. 
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Smtlie et al. (1990) [191] studied the structure of spatial variability ofthe undrained 

shear strength within a clay deposit. The site for that study is located on the shore of the 

Broadback River in the James Bay area of Quebec. The value of Cv of undrained shear 

strength for this site was about 22% and was determined using a series of vane tests. 
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Figure 2.4 Coefficient of variation, C v, of soil undrained shear strength vs. mean soil 
undrained shear strength, Cu (after Cherubini et al., 1993 [28]). 

Fredlund and Dahlman (1972) [69], Lumb (1972) [114], Morse (1972) [131], and 

Matsuo and Kuroda (1974) [119] reported a range of 30% to 50% for Cv of unconfined 

compression strength of clayey soil deposits. Lumb (1972) [114] also reported values ofCv 
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in the rang1e of 60% to 85% for extremely variable clay. Ejezie and Harrop-Williams (1984) 

[55] reported a range of C v = 28% to 96% for undrained shear strength of clays. 

Many other researchers have investigated the variability of natural soils. Based on 

studies by Harr (1984) [88], Kulhawy (1992) [102], and Lacasse and Nadim (1996) [105], 

Duncan (2000) [54] suggested a Cv of 13% to 40% for undrained shear strength. Similarly, 

Meyerhof (1993) [127] gave a range of 20% to 60% for Cv of soil undrained shear 

strength. 

In conclusion, a range of C v = 10% to 40% is suggested for inherent variability of 

undrained shear strength of medium to stiff clayey soil deposits. For highly variable soft 

soil, this variability may reach to a possible upper limit of Cv = 80%. These ranges are 

inferred for soil inherent variability; the measured values of undrained shear strength may 

have higher variation due to measurement errors. 

Ranges for scales of fluctuation for undrained shear strength have been estimated 

from both laboratory and field tests (Phoon and Kulhawy, 1999b [155]). In the vertical 

direction, {)v, scales ranged from 0.5m to 6.0m (mostly between 1m to 2m), and in the 

horizontal direction, f)h, scales ranged from 40m to 60m. Lacasse and Nadim (1996) [105] 

provided values of correlation distances obtained by various authors based on cone 

penetration records. The values ranged between 1m and 3m in the vertical direction and 

between 5m and 38m in the horizontal direction. Research suggests that the assessed scale 

of fluctuation depends on the sampling interval (e.g. DeGroot and Baecher 1993 [45]; 

Fenton, 1999b [63]). This issue is especially important for the horizontal direction, where a 

sufficient number of closely spaced measurements are rarely available. For example, based 
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on such closely spaced measurements, Popescu (1995) [158] found a horizontal scale of 

fluctuation of about 12m for a sandy soil deposit, and Przewlocki (2000) [173] found a 

horizontal scale of fluctuation of 5m for a clayey soil deposit. Soulie et al. (1990) [191] 

found autocorrelation distances of 7m and 30m in the horizontal direction and 3m in the 

vertical direction for clayey soil. Chiasson et al. (1995) [30] estimated an autocorrelation 

distance of 2m for a clay deposit in the vertical direction. 

For physical reasons, soil properties follow non-Gaussian probability distributions; 

for example they do not assume negative values (See Harr, 1977 [87]; Popescu et al., 1998a 

[163]). Based on numerous studies reported in the literature, it can be concluded that each 

soil property can follow different probability distributions for different materials and sites. 

Several researchers recommended Beta distribution for soil shear strength, including Harr 

1977 [87], Ejezie and Harrop-Williams (1984) [55], and Failmezger, 2001 [61]. Based on a 

limited number of soil deposits, Popescu et al. (1998a) [163] concluded that probability 

distributions of soil strength in shallow layers are skewed to the right, indicating a stronger 

influence of a lower bound, while strength of deeper soils tends to follow a more 

symmetrical distribution. 

2.1.2. Stochastic Finite Element Analysis 

classes, 

Finite element approaches used for random media can be categorized into two main 

• Stochastic finite element method (SFEM): in these approaches statistical 

properties of the random variables are built into the finite element equations 
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(e.g. Baecher and Ingra, 1981 [11]; Righetti and Harrop-Williams, 1988 

[177]; Brenner, 1991 [19]; Yeh and Rahman, 1998 [224]). 

• Monte Carlo simulations using deterministic finite element analysis with 

stochastic input. 

Th~~ first approach, is theoretically appealing and computationally effective, but 

suffers from several drawbacks when applied to soil mechanics problems. Most notably, it 

is not usefhl for analysis of highly nonlinear problems, nor can it address soil properties 

with non-Gaussian distribution and large variability. Soil properties exhibit a high degree 

of nonlinearity and follow a non-Gaussian distribution often with large degree of 

variability; therefore, the application of these approaches in most areas of geotechnical 

engineering is not recommended. Elkateb et al. (2000) [56] summarized the limitations of 

SFEM as D)llows: 

• The shape of the probability distribution for input random variables does not affect 

the analysis results. Therefore, it is not able to capture the effects of skewness in 

distribution of soil properties. Furthermore, a distribution has to be assumed for the 

output response variable as SFEM provides only its mean and standard deviation. 

• Element variance and the covariance matrix are functions of the finite element 

shape and geometry and their determination becomes quite complicated for 

irregular element shapes. 

• Limited to small variability due to the error associated with the truncation of higher 

order terms in the Taylor expansion, which is used to determine the mean values of 

the response variables. 
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• Integration of the random variable field over each element may result in a change in 

the anisotropy ratio of the correlation structure of soil properties. 

Yeh and Rahman (1998) [224] conducted a comparative study using four different 

SFEM approaches for seismic response of soil materials. They concluded that a direct 

Monte Carlo simulation is the most reliable stochastic finite element method for the 

analysis of seismic response of soils. They stated that stochastic finite element analyses 

other than Monte Carlo are unsuitable for when it comes to evaluation of nonlinearity in 

system responses. 

The second approach was deemed as the most general and reliable approach. It has 

been widely used for geotechnical problems in the last decade (e.g. Griffiths and Fenton, 

1993 [74];, Paice et al., 1995 [145]; Popescu, 1995 [158]; Fenton and Vanmarcke, 1998 

[67]; Popescu et al., 1997 [162]; Rahman & Yeh, 1999 [174]; Nobahar and Popescu, 2001a 

[138]; Fenton and Griffith, 2002 [65]). It is capable of handling highly nonlinear 

geotechnical problems (e.g. Popescu et al., 1997 [162]) as well as capturing changes in 

behaviour of systems, such as changes in failure mechanism and triggering patterns (see 

Popescu, 1995 [158] and Nobahar and Popescu 2001a [138]). Its well-known drawback is 

high computational cost. However, rapid advances in the computer industry have alleviated 

this problem to some degree. 

There are a few efficient sampling techniques such as Latin-Hypercube to optimise 

the number of Monte Carlo simulations. These sampling techniques are applicable for 

random variables, whereas sample functions of a random field are generated in this study. 
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2.1.3. Effects of Soil Heterogeneity on Geotechnical System Behaviour 

It has been proven that natural variability of soil properties within geologically 

distinct and uniform layers affects soil behaviour. Previous work in this area addressed 

these effects on seepage through spatially random soils (e.g. Griffiths and Fenton, 1993 

[73] and Gelhar, 1993 [70] among others), settlements (Phoon et al., 1990 [157]; Paice et 

al., 1994 [145]; Brzakala and Pula, 1996 [22]; Fenton and Griffiths, 2002 [65]), 

liquefaction potential (Popescu et al., 1997 [162]; Fenton and Vanmarcke, 1998 [67]), 

seismic response of soils (Rahman and Yeh, 1999 [174]), seismic wave propagation 

through ht:::terogeneous soils (Assimaki et al., 2002 [6]), and slope stability (Griffiths and 

Fenton, 2000 [76]; Gui, 2000 [79]). 

It was found that soil heterogeneity affects the system response in two ways: (1) by 

inducing a certain degree of variability in the response, and (2) by inducing changes in the 

mean response, as compared to the response obtained from deterministic analyses (i.e. 

assuming uniform soil properties). 

2.1.3.1. Settlement of shallow and deep foundations 

Paice et al. (1996) [146] used a random, spatially correlated field for soil stiffuess to 

study the effects of soil heterogeneity on the total settlement of a uniformly loaded flexible­

strip footing on an elastic soil. A parametric study was performed for a range of 

coefficients of variation and depths of the spatially variable soil layer. The study results 

indicated significant effects of soil heterogeneity on the response variability. However only 

a modest increase in average settlement was predicted for soil stiffuess variability ranges of 
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10% to 40%. For soil stiffness with a coefficient of variation Cv = 42% (upper value 

recommended by Lee et al., 1983 [107]), the expected (average) settlement was observed to 

be 12% higher than the deterministic value calculated using a uniform Young's modulus 

with a mean value. Relatively small changes in results were due to the fact that elastic 

settlement is a linear phenomenon; therefore, the spatial variability effects on the resulting 

average settlements were modest. Fenton et al. (2002) [65] developed the study to assess 

total and differential settlements of strip foundations in a probabilistic framework. 

Phoon et al. (1990) [157] presented a reliability analysis of pile settlement 

accounting for spatial variability of soil properties. They used a stochastic finite element 

method (SFEM), in which statistical properties of the random variables were built into the 

finite element equations. They modelled the soil as an elastic linear material, and 

characterized Young's modulus as a homogeneous random field (Vanmarcke, 1977 [208]). 

The mean and coefficient of variation, C v, of the pile head settlement for single piles were 

evaluated using a first order second moment (FOSM) analysis. Subsequently, reliability 

analysis (Der Kiureghian and Ke, 1985 & 1988 [48&49]) was applied to obtain the 

reliability index and probability of unserviceable behaviour. In this study, Phoon et al. 

(1990) looked at the effects of Young's modulus variability for soil, its horizontal and 

vertical correlation distances, relative stiffness of soil/pile, and slenderness ratio of pile. 

Variation of Cv of pile head settlement and reliability index (Hasofer and Lind, 1974 [90]) 

versus the mentioned parameters were investigated and design charts were provided. 

Combining stochastic finite element analysis with reliability analysis provided a good 

means of assessing the effects of soil variability for geotechnical systems. The study 
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considered a very wide range of correlation distances. The ability of the coarse mesh used 

in capturing small correlation distances is questionable. No mention of decrease in mean 

settlement of pile was reported compared to deterministic analysis. 

2.1.3.2. Seepage flow through heterogeneous soil 

Fenton and Griffiths (1996) [64] performed a study on free surface flow through a 

stochastically heterogeneous earth darn. They assumed a stationary spatially random field 

for the soil permeability with a lognormal distribution and spatial correlation structure. It 

was concluded that the stochastic predictions were dependent on the ratio of the scale of 

fluctuation to the length of flow domain, for the given darn shape and soil variability. 

Griffiths and Fenton (1997) [75] performed three-dimensional analyses for seepage 

through spatially random soils using Monte Carlo simulation methodology. Similar to the 

aforementioned study, a lognormally distributed random field generated by local average 

subdivision method (LAS) was used to characterize isotropic soil permeability. They 

studied se<;:page under single sheet-pile using 2D and 3D models. They concluded that for 

practical ranges of correlation distances (scales of fluctuation), the average flow rate fell 

consistently with increases in the coefficient of variation of the soil permeability. However, 

it should be mentioned that according to the results of analytical studies by Gelhar (1993) 

[70], the average flow rate increases as the variance of soil permeability (hydraulic 

conductivi1ty) increases for a heterogeneous three-dimensional isotropic system. The results 

of 3-dirnensional analysis were compared to the previous results of 2D analysis (Griffiths 

and Fenton, 1993 [74]). It was observed that the variability of response (i.e. flow rates) 

predicted Jfrorn three-dimensional analysis was smaller than those predicted from two-
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dimensional analysis. Also, the mean flow rates predicted from three-dimensional analysis 

were closer to deterministic values than those predicted from two-dimensional analysis. In 

other words, the effect of three-dimensionality was shown to be a reduction in overall 

response randomness. However, it was concluded that there was not a great difference 

between the 2D and 3D results, suggesting that the simpler and less expensive 2D approach 

may give acceptable accuracy for the cases considered. One of the drawbacks of this 

analysis is that it used equal correlation distances for vertical and horizontal direction. 

Usually correlation distances in a horizontal direction are much larger than those in a 

vertical direction. 

For Griffiths and Fenton's (1997) study, changes in the mean flow rate were 

modest. For instance, at Cv= 50%, for a wide range of correlation distance from 1m to 8m, 

the predicted mean flow rate had dropped by less than 8% (Figure 2.5). This was possibly 

due to the linearity of seepage phenomenon. It should also be mentioned that built-in first 

order second moment stochastic finite element methods (see first category Section 2.1.2 -

e.g. Choot, 1980 [31] and Hachich, 1981 [81]) are deemed to provide reasonable results for 

linear problems and are numerically much less costly. 
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2.1.3.3. Liquefaction potential 

Popescu (1995) [158] studied the effects of soil spatial variability on liquefaction. 

He concluded that both the pattern and the amount of dynamically induced pore water 

pressure build-up were strongly affected by spatial variability of soil properties. He 

concluded that the amount of predicted excess pore pressure was strongly affected by the 

probability distribution of soil parameters and, more specifically, by the left tail of the 

distribution, corresponding to presence of loose pockets in the soil deposit. 

Popescu et al. (1997) [162] performed Monte Carlo simulations for soil liquefaction 

using experimental in-situ soil data accounting for spatial variability of soil. The 

predictions from the stochastic approach were compared with the deterministic ones based 

on average values and range of percentiles of soil strength. Using the characteristic 

percentile approach, it was possible to define a characteristic percentile of index soil 

properties (cone tip resistance that is directly related to soil strength) for a deterministic 

analysis that would predict a response equivalent to that predicted by more expensive 

Monte Carlo simulations. Comparisons were performed for various degrees of liquefaction 

of the soil deposit and for seismic excitations with various ranges of maximum spectral 

response amplitudes. For the soil analysed (loose to medium hydraulically placed sand) and 

for the range of input motions considered, the SO-percentile of soil strength was found to be 

a conservative enough characteristic value for equivalent deterministic analysis. It is 

mentioned that current design codes recommend use of 90 to 95 percentile of soil strength 

for soil liquefaction analysis (e.g. ENV, 1994 [59]). In subsequent studies (e.g. Prevost et 

al., 1997 [172] and Popescu et al., 1998c [165]), it was observed that the degree of 
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variability and the marginal probability distribution functions for soil parameters has 

significant effects on the predicted soil liquefaction. 

2.1.3.4. Slope stability 

Griffiths and Fenton (2000) [76] studied the stability of an undrained soil slope 

having spatially randomly varying shear strength. They characterized soil shear strength as 

an isotropic stochastic field with lognormal probability distribution. They performed 

parametric studies for a range of coefficients of variation and correlation distances. They 

used a Monte Carlo simulation methodology using deterministic finite elements with 

stochastic input. "Failure" was considered to have occurred if, for any given realization, the 

algorithm was unable to converge within 500 iterations. The probability of failure was 

defined as the ratio of non-converged simulations to the total number of simulations. It was 

concluded that for the considered slope with a factor of safety, FS = 1.47 (based on mean 

shear strength), the single random variable approach gave conservative estimates of the 

probability of failure for coefficient of variation values typically ranging from 0 to 50% (as 

marked in Figure 2.6). Single random variable analysis was defined as analysis using 

uniform soil at each simulation (common in most engineering probabilistic analysis) or in 

other words, using a correlation length ~n cu of infinity (Figure 2.6); ~n cu is the correlation 

distance of the logarithm of undrained shear strength. For higher values of the coefficient 

of variation (>50%); however, the single random variable approach gave non-conservative 

estimates. This conclusion may be affected by the assumption of failure based on numerical 

convergence. One would expect that the failure probability of a slope depends on the 
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average shear strength of the failure surface. Consequently, due to local averagmg 

(Vanmarcke, 1983 [209]), a smaller failure probability is expected for small correlation 

distances. Contrary to this hypothesis, results from Fenton and Griffiths (Figure 2.6) show 

larger failure probabilities for smaller correlation distances for values of Cv higher than 

50%. This may be caused by the assumption of failure - i.e. large presence of loose pockets 

of soil may cause numerical procedure not to converge. It should be noted that range of 

coefficient of variation used in this study- 10% to 1000% - is misleading as a Cv of 

undrained shear strength. Practical ranges are generally 10% to 60%, with most being :from 

10%to40%. 
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2.1.3.5. Effects of soil heterogeneity on bearing capacity of shallow foundations 

At the start of this research, no literature was found on the effects of soil 

heterogeneity on the bearing capacity of shallow foundation. Nobahar and Popescu (2000) 

[137] studied the effects of inherent spatial variability of soil properties on the bearing 

capacity of shallow foundations subjected to vertical loads, and placed on an elastic 

perfectly plastic soil deposit. The numerical model simulated the behaviour of an 
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overconsolidated clayey soil under undrained condition. A Monte Carlo simulation 

methodology combining deterministic finite element analysis with digital generation of 

stochastic :fields was used. The undrained shear strength of soil was modelled as a random 

field with Cv = 40% following a Beta distribution. An exponential decay function for 

correlation structure was used. 

Two-dimensional finite element analyses were performed for a strip foundation 

assuming undrained loading conditions. Bearing capacity, settlements, and foundation 

rotations predicted by Monte Carlo simulations that accounted for the spatial variability of 

soil strength were compared with deterministic analysis results that assumed uniform soil 

properties. Results showed that the bearing capacity of shallow foundations is strongly 

affected by the natural variability of soil strength in both resulting variability and average 

values. The predicted failure mechanism was unsymmetrical and significantly different for 

heterogeneous soil compared to uniform soil. 

For the probabilistic characteristics of soil variability considered in that study, and 

for the nwnerical analysis assumptions (undrained loading of purely cohesive soil), the 

average ul1timate bearing capacity predicted by Monte Carlo simulations was 25% lower 

than that predicted by a deterministic analysis assuming uniform soil with undrained shear 

strength, cu, equal to the average Cu in Monte Carlo simulations. A characteristic percentile 

(nominal value) was proposed for use in design accounting for the effects of spatial 

variability. Despite a decrease in mean bearing capacity, the 95-percentile of bearing 

capacity predicted by Monte Carlo simulations was 38% higher than that obtained using the 

31 



95-percent:ile of soil strength (nominal value recommended by design codes), due to spatial 

averaging effects. 

For the probabilistic characteristics of soil properties considered in that study, 

Nobahar and Popescu (2000) [ 13 7] concluded that a characteristic percentile of 88% of the 

soil strength used in a deterministic analysis would ensure 95% reliability. That study 

consisted a preliminary research and the effects of the degree of variability, probability 

distribution, and correlation distances were not addressed. 

Foundation differential settlements resulting from spatial variability of soil were 

found to b1;: likely to control the design. In deterministic analysis, due to the assumption of 

uniformity, there is no rotation for symmetrically loaded foundations. However, a more 

realistic analysis (Nobahar and Popescu, 2000 [137]) showed that limiting the slope of 

foundation to 0.5% imposes a limit of240 kPa for bearing capacity (Figure 2.7b). This was 

13% lower than the ultimate bearing capacity shown in Figure 2.7a (namely 280 kPa). In 

this case, the "nominal value" of soil strength (or characteristic percentile) for deterministic 

analysis is the 91-percentile. 

Nobahar and Popescu (2001a) [138] continued their study of bearing capacity of 

shallow foundations by looking at range of coefficients of variation and two probability 

distributions. Results showed that the shape of the left tail of the distribution (i.e. amount of 

loose pockets in the soil mass) affected the predicted response variability and average 

bearing capacity values. This aspect will be further discussed in Section 4.3.3.2. 
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Griffiths and Fenton (2001) [77] performed a study on bearing capacity of spatially 

random soil placed on undrained clay. A Monte Carlo simulation methodology using 

elasto-plastic finite element analysis with stochastic input was used. A random field using a 

lognormal distribution, isotropic correlation distance and Markovian spatial correlation 

function represented the undrained shear strength. 2D plane strain finite element analyses 

were perfi)rmed using 8-node reduced integration quadrilateral elements. An elastic 

perfectly plastic stress-strain law with a Tresca failure criterion was used to model the 

undrained soil behaviour. A local average process was used to map the random fields on 

the finite element mesh. Local averages preserved the mean, but reduced the standard 

deviation. For each case, 1000 simulations were performed. A typical deformed mesh is 

shown in Figure 2.8. Foundations on heterogeneous soil should exhibit asymmetric 

behaviour. However, as it can be seen in Figure 2.8, the foundation rotation was fixed in 

these analyses and may not represent the real behaviour of a foundation. 

Griffiths and Fenton (2001) [77] studied the variation of the resulting bearing 

capacity and its coefficient of variation versus soil strength's coefficient of variation and 

correlation distance (see Figure 2.9 for an example). They concluded that a very high factor 

of safety (about 3) is required to reduce the probability of failure of foundation caused by 

natural variability of soil with the range of Cv = 10% to 50%. This is in agreement with 

standard gt~otechnical practice (Lambe and Whitman, 1969 [106]). They explained, in a 

probabilistic context, why factors of safety used in bearing capacity calculations are 

typically much higher than those used in other limit state calculations in geotechnical 

engineering, such as slope stability and earth pressures. 
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Figure 2.8 Typical deformed mesh. The darker regions indicate weaker soil (after 
Griffiths and Fenton 2001 [77]). 

Though using high factors of safety, 2 or 3, is common for shallow foundations, 

there are other main sources of uncertainty (e.g. measurement error and uncertainty in 

model as discussed in Section 2.1.1 ). Therefore, attributing only these safety factors to the 

uncertainty caused by natural variability does not seem reasonable. There are researchers 

who believe that natural variability of soil has minimal effects on the uncertainty of 

geotechnical systems and that most uncertainty comes from uncertainty in models or 

measurement (e.g. Li and Lam, 2000 [110]). In the author's opinion, using different safety 

factors in geotechnical engineering may also be attributed to different target reliability 

levels in each area. 

Fenton and Griffiths (2003) [66] extended their studies for bearing capacity of 

foundations placed on a soil with friction and cohesion. They used a two dimensional 

model to simulate strip foundations. They found that the geometric average of soil shear 

strength beneath the foundation in a domain with plastic deformations (taken to have a 

depth of B and length of 5B - B as the foundation width) may be used as a representative 

35 



value of soil shear strength. They found that a correlation distance of (} = B results in the 

lowest values for foundation bearing capacity; therefore, when sufficient data are not 

available, it can be used as a conservative value in calculations. 
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Figure 2.9 Graphs showing the relationship betweenp(Nc < 5.14/F) and F for a soil 
with Cvcu= (a) 12.5%, (b) 25%, (c) 50% and (d) 100% (after Griffiths and 
Fenton, 2001 [77]). 

2.2. BI~ARING CAPACITY OF SHALLOW FOUNDATIONS 

F01mdations in civil engineering are divided into two main categories: 1) shallow 

foundations, and 2) deep foundations. This study investigated shallow foundations; 

hereafter the word "foundations" refers to "shallow foundations". 
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Figure 2.10 Spread foundation shapes and dimensions (Coduto, 2001 [35]). 
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Shallow foundations are those that transmit loads to near-surface soils. These can 

be classified as (1) spread footings, and (2) mat or raft foundations. Different types of 

spread footings are illustrated in Figure 2.10. A mat foundation is essentially a very large 

footing that usually encompasses the entire footprint of the structure. This study researched 

general methods of analysis for strip foundations to review their possible use in stochastic 

analysis, and for comparison with stochastic results. 

2.2.1. Conventional Methods 

This section presents a short review of behaviour of shallow foundations placed on 

clayey soil in undrained situation. 
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Figure 2.11 A general failure mode captured by finite element analysis: (a) contours of 
plastic strains and (b) schematic normalized pressure-normalized settlement 
relationship. 
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2.2.1 Failure mechanisms of shallow foundations 

A foundation is said to have reached its ultimate bearing capacity when the 

settlement increases without significant changes or even with a decrease in applied load 

(Figure 2.11 b). This behaviour is the result of failure. There are three possible failure 

mechanisms for a foundation (e.g. Vesic, 1973 [212]; Coduto, 2001 [35]): (1) general shear 

failure, (2) local shear failure, and (3) punching failure (Figure 2.12). The failure mode of a 

foundation depends on several factors, including soil strength and ductility, soil 

compressibility, stress state, foundation geometry, and loading conditions. 
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(a) General Shear Failure 

(b) 

(c) 

Figure 2.12 Failure mechanism of a foundation: (a) general shear failure, (b) local shear 
failure, and (c) punching failure (after Coduto, 2001 [35]). 
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2.2.2. Analysis Methods 

In engineering practice, usually bearing capacity problems are investigated 

assuming a perfectly rigid perfectly plastic behaviour for soil materials. 

2.2.2.1. Limit analysis method 

The solution of a boundary value problem in continuum mechanics involves 

satisfying 15 equations, including stress equilibrium equations, compatibility equations, 

and stress-strain relationships. In limit analysis method, the response is approximated using 

an idealize:d stress-strain relationship. Limit analysis methods are generally classified into 

upper and lower bound approaches. It is usually possible to bracket a true solution between 

upper bound and lower bound limit analysis solutions with desirable accuracy (Chen, 1975 

[26]; Chen and Han, 1988 [27]). 

In the upper-bound method, a velocity field (deformation mode), which satisfies the 

velocity boundary conditions as well as the strain and velocity compatibility conditions, is 

considered. The loads, determined by equating the external rate of work to the internal 

work rate of dissipation in a kinematically admissible velocity field, are not less than the 

actual collapse load (Chen, 1975 [26]). 

For the lower-bound method, an admissible stress distribution, satisfying the 

equilibrium equations and the stress boundary conditions and not violating the yield 

criterion, is applied to the problem. The load determined from such an assumption is not 

greater th<m the actual collapse load. The lower-bound approach only considers the 

equilibrium equations and yield criterion (Chen, 1975 [26]). 
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2.2.2.2. Limit equilibrium method 

In this method, failure surfaces are assumed, and minimum failure load is sought. 

Due to approximations induced by assuming the failure mechanism, the result is not 

necessarily a lower bound or an upper bound solution. 

2.2.2.3. Method of characteristics (slip-line method) 

In this method, a region of the soil mass near a foundation is considered. 

Equilibrium and yield criteria provide a set of differential equations. Imposing stress 

boundary conditions, the differential equations can be solved for specific problems. For 

more infonmation, refer to Chen (1975 [26]). 

2.2.2.4. Bearing capacity of foundations in engineering practice 

The bearing capacity of a shallow foundation in engineering practice is usually 

calculated using formulas based on Terzaghi's (1943) [198] equation, 

Eq. 2.4 

Terzaghi (1943) [198] (also see Terzaghi et al., 1996 [201]) assumed that friction, 

cohesion, and overburden pressure have separable effects and, therefore, the bearing 

capacity equation is comprised of the superposition of three separable components. Nc, Nq, 

and Nr are three dimensionless bearing capacity factors for cohesion, overburden and 

friction effiects in Eq. 2.4. Terzaghi proposed one set ofbearing capacity factors. His values 

are frequently used in practice; however, there are many values from other authors (e.g. 
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Meyerhof, 1963 [124]; Hansen, 1970 [86]; Vesic, 1973 [212] & 1975 [213]). The main 

difference between the suggested values is the value of Nr· Nr has the widest suggested 

range of values of any of the bearing capacity factors (Bowles, 1997 [20]). A literature 

search rev(~als that the range of Ny is: 

38 < Ny< 192 for¢ =40 degrees 

Terzaghi (1943) [198] realized that due to simple superposition, bearing capacity 

obtained from Eq. 2.4 has some errors. However, he concluded that these errors are on the 

conservative side and less than 10% to 20%. 

2.2.2.5. Some important issues in foundation design 

Practical plasticity methods usually postulate a rigid perfectly plastic model and a 

general failure system for soil. However, this assumption is suitable for dense sand and stiff 

clay, but is not necessarily logical for soft soil where there is a chance of punching shear 

failure. In large foundations, failures are also most likely to happen because of punching 

mode. 

The roughness of the footing also has a significant impact on the bearing capacity. 

Meyerhof (1955) [123] concluded that the bearing capacity of a perfectly smooth 

foundation on the surface of sand is only half of that of a rough foundation. Currently, 

using the finite element method, it is possible to address these aspects in a more rational 

manner. 
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2.2.3. Nlllmerical Methods for Bearing Capacity of Foundations 

To obtain a more accurate solution for bearing capacity of foundations, the finite 

element method can be employed. The finite element method has been used successfully in 

many engineering applications and it can be adopted for bearing capacity problems as well. 

Chen (1975) [26], Zienkiewicz et al. (1975 & 1978) [231&232], Davidson and Chen 

(1976) [43], Christian (1977) [32], Griffiths (1982) [73], Britto and Gunn (1987) [21], Zhu 

(1998) [234], Merifield (1999) [122], and Taiebat and Carter (2000&2002) [193&194] 

among others applied the finite element method to estimate the bearing capacity of 

foundations. In comparison to other aforementioned methods, the finite element method 

uses relatively fewer assumptions; therefore, it is deemed to provide results that are more 

accurate. 

In conducting a review of finite element analysis of shallow foundations, a number 

of studies were consulted (Nagtegaal et al., 1974 [132]; Griffiths, 1982 [73]; Sloan and 

Randolph, 1982 [189]; Sloan, 1988 [188]; Merifield et al., 1999 [122]; Taiebat and Carter, 

2000 & 2002 [193&194]). Relatively few finite element solutions for bearing capacity of 

cohesionless soils are available due to the complex behaviour of frictional soil and 

numerical problems. 

Griffiths (1982) [73] carried out finite element analysis of strip footings on 

frictional and cohesive materials, separately assessing Nc due to soil cohesion, c; Nq due to 

overburden pressure, q; and Ny for cohesionless soil assuming weightless soil. He 

employed the Mohr-Coulomb failure criterion with zero plastic volumetric strain. The 

elastic properties were E = 2x105 kN/m2 and v= 0.35. Perfect plasticity was implemented 
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using the visco-plastic technique (Zienkiewicz and Cormeau, 1972 & 197 4 [229&230]). 

Bearing resistance was mobilized by applying a prescribed vertical displacement at the 

base of the foundation. For a smooth footing, those nodes are allowed to move 

horizontally; for rough footing, the horizontal displacement is fixed. 

According to the finite element results presented by Griffiths (1982) [73] and the 

comparison with closed form solutions or well-known approximate solutions available for 

highly idealized soil properties, it was suggested that the finite element method could be 

used with confidence to estimate the bearing capacity factors Nc and Nq. The predicted 

values for Nyhad relatively good agreement with practical values. The dependence of Nr on 

footing roughness was confirmed. The calculated values of Nr decreased with increased 

footing size. A friction angle of 35 degrees appeared to be the limit for obtaining a 

reasonable resistance factor using the visco-plastic technique. Griffiths concluded that the 

finite element method enables bearing capacity problems involving collapse prediction to 

be tackled with confidence. Such problems would be those involving irregular boundaries 

or loading conditions. 

However, applying finite element methods to geotechnical engineering has several 

drawbacks in practice. Practice has shown that the results obtained from the displacement 

finite element method tend to overestimate the true load limit (Nagtegaal et al., 1974 [132]; 

Sloan and Randolph, 1982 [189]; Merifield et al., 1999 [122]; Taiebat and Carter, 2000 & 

2002 [193 & 194]). 

Merifield et al. (1999) [122] applied a new plasticity solution for the bearing 

capacity of foundations. They provided numerical formulations for upper and lower bound 
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limit theorems, developing a new finite element formulation. Using this method, they 

bracketed the exact collapse load for the foundations placed on a two-layered soil within 

12%. 

In the past few decades, there have been several finite element studies on the 

bearing capacity of foundations. These studies usually did not address load eccentricity and 

inclination. In addition, only elastic perfectly plastic constitutive models were employed. 

This may be explained by the reasoning that these studies mainly aimed to show the 

efficiency of the finite element method by comparing it to conventional methods, such as 

limit analysis. Moreover, accurate modelling of soil behaviour requires sophisticated 

constitutive models that account for hardening and softening. 

2.3. PIPE-SOIL INTERACTION 

This section presents a literature review of significant issues related to modelling 

pipe-soil interaction. The study focused primarily on pipe-soil interaction in clay (mainly 

lateral loading of buried pipes). Experimental and empirical engineering methods, as well 

as numerical models were studied. The review has three parts: (1) engineering practical 

methods, which focus on parameters and methods used in engineering practice and 

guidelines based on previous studies and experience, (2) experimental studies, which 

review the parameters and findings of past experimental studies regarding lateral loading of 

pipeline, and (3) numerical modelling, which discusses numerical aspects of modelling of 

pipe-soil interaction and presents findings of some previous studies in this regard. These 

three parts were used to validate the deterministic finite element model used in this study 
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and to screen the main interaction parameters affecting lateral loading of pipeline. Since 

deterministic analysis ofburied pipes is not the main goal of this study and is only used as a 

tool, the review presented here is limited and does not include all aspects of soil-pipe 

interaction. 

2.3.1. Engineering Practical Methods 

In engineering practice, the soil-pipeline system is represented by a numerical 

model including structural beam elements for the pipe and elasto-plastic spring elements 

for the soil in the axial (longitudinal), transverse horizontal, and transverse vertical 

directions (ASCE, 1984 [5]), Figure 2.13. The current state of practice is reflected in the 

ASCE (1984) [5] guidelines, Dutch Code NEN3650 [133], and more recently, in the PRCI 

guidelines (Honegger and Nyman, 2001 [95]). This simplification is derived from the 

concept of sub-grade reaction originally proposed by Winkler (1867) [219]. The maximum 

soil spring forces and associated relative displacement necessary to mobilize these forces 

are computed using different equations corresponding to assumed conditions. 
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Figure 2.13 Soil-pipeline interaction (a) continuum analysis, (b) idealised structural 
model and (c) soil load-displacement response (tu, Xu, Pu, Yw quu, Zuu, qud, Zud 

are spring characteristics). 
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The critical task in the beam/spring model for buried pipelines is determining the 

analytical expressions of soil resistance functions fx, h and /z. Various relationships have 

been proposed for axial t-x, transverse horizontal p-y, and transverse vertical interaction q­

z. Hyperbolic and bilinear forms are the most widely used force-displacement relationships. 

The characterization of soil loads on pipeline is performed using three approaches: ( 1) use 

of theoretical soil mechanics to derive equivalent simplified relationships, (2) use of 

numerical modelling of soil media mainly using finite element method and (3) use of 

physical model test (small- or large- scales) data to develop empirical relationships. 

In elastic continuum models (see Reissner, 1958 [176] and Vlazov & Leontiev, 

1966 [214]1 among others), assumptions about the distribution of displacements and stresses 

are based on physical laws. The springs describing the soil resistance to deformation are 

usually assumed independent of one another; therefore, no connection between adjacent 

soil zones is considered. However, the assumption of independent soil slices does not truly 

replicate the observed behaviour (Kettle, 1984 [100]; Popescu and Konuk, 2001 [167]). 

Winkler-type soil models are unable to describe complicated soil behaviour, such as 

dilatancy, stress path dependency and, to some extent, strain softening. When soil is under 

large deformation, these phenomena may have significant effects on the soil loads and can 

only be simulated by using more sophisticated constitutive models and continuum 

numerical modelling techniques. 

ASCE Guidelines (1984) [5] defined the transverse horizontal yield load (pu) per 

unit length (kN/m) as, 
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Eq. 2.5 

where Nch is the transverse horizontal bearing interaction factor adapted from Hansen 

(1961) [86] or Rowe and Davis (1982a) [179]. These bearing capacity factors 

recommended by ASCE are illustrated in Figure 2.14. Paulin's (1998) [149] experimental 

data are also plotted in Figure 2.14, which suggests that the later model was more 

appropriate. For HID ratio greater than 1.5, the bearing capacity factor for Rowe and Davis 

(1982a) [179] can be expressed as, 

N<, ~ 4.3+0.321n(~J 
Eq. 2.6 

The PRCI guidelines (Honegger and Nyman, 2001 [95]) consider the contributions 

of both soil friction and cohesion to lateral soil resistance in two separate terms for 

cohesive and frictional soil. For these guidelines, bearing capacity factors were derived 

from fits to the published empirical results. 
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Figure 2.14 Transverse horizontal bearing interaction factors for cohesive sediment. 

2.3.2. Experimental Studies 

2.3.2.1. Latera/loading of buried pipeline 

The format presented in equation Eq. 2.5 is advised by more recent researchers (e.g. 

Rizakalla l':~t al., 1992 [178]). However, it lacks a weight term. For instance, early small-

scale experimental work by Mackenzie (1955) [117] suggested the following equation for 

lateral resistance of shallow to medium depth buried anchors, 

Eq. 2.7 
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where H+D0 is the burial depth of an anchor from its bottom. Puis limited for deep burial 

by the following equation (Mackenzie, 1955 [117]), 

Eq. 2.8 

W<mtland et al. (1982) [216] conducted field and laboratory tests to determine the 

effect of pipe weight, pipe diameter, embedment depth, loading rate and type of soil on the 

lateral resistance to a pipeline buried in clay. The Nc values increased with the embedment 

ratio h!D0 , with an upper limit in the order of 5 to 6. For h!D0 = 1, 2 and 5, the values of Nc 

(approximate average of test data) were about 2.2, 3.4 and 5.0 respectively. Nc was not 

significantly affected by pipeline diameter. It was suggested that lateral soil resistance to 

pipeline in clay is similar to the bearing capacity of a foundation and that an upper bound 

plasticity mechanism for bearing capacity could be applied to a laterally loaded pipeline. 

Using the foundation analogy, the maximum lateral resistance to a pipeline would be 

5.14cuDo at h = 2D0 • Wantland et al. (1982) [216] recognized that the actual maximum 

lateral resistance for a pipeline may be different from the value suggested by the plasticity 

theory and, therefore, a deeper embedment may be necessary to achieve the maximum 

value. Finally, they advised using an average Cu from a distance of2Do above the pipe base. 

Various centrifuge tests have been conducted to investigate soil-pipe interaction. 

Investigations included the effect of groundwater level on buried pipes (English and 

Schofield, 1973 [57]), the behaviour of flexible circular pipes subjected to surface loads 

(Valsangkar and Britto, 1979 [207]), thaw induced settlement of pipelines (Smith, 1991 
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[190]), influence of excavation on buried pipes (Kusakabe, 1984 [104]; Phillips, 1986 

[152]), and the effect of earth pressure on buried flexible pipes (Tohda et al., 1985 [203]). 

Paulin (1998) [149] conducted a full series of centrifuge tests of pipelines with a 

prototype diameter of 0.95m to investigate the effects of trench geometry, soil 

preconso1idation stress, pipeline displacement rate, and backfill type on the pipe-soil 

interaction. The pipes were placed in trenches with widths of 1.5m to 3m while the cover 

depth vari(~d from 0 to 3.25m. The testbed soil was a kaolin-silt mixture preconsolidated to 

either 140kPa or 400kPa. The type of trench backfills included slurry, chunks of backfill, 

remoulded material and fine sand. The experimental data indicated that when the HID0 

ratio varied from 1.0 to 1.84, the normalized lateral load increased with HID0 ; however, the 

effect of cover depth on lateral load was not significant when HID0 > 1.84. On the other 

hand, when partial drainage was permitted or the loading velocity was decreased, the lateral 

load on pipeline increased (Figure 2.15). For the tests performed under undrained 

conditions (i.e. at high loading speed), experimental data appeared to be bounded by the 

interaction curves from Rowe and Davis (1982a) [179] and Hansen (1961) [86] for 

embedment ratios of HID0 less than 2. For greater embedment ratios, the experimentally 

derived lateral soil resistance was similar to that found by Rowe and Davis (1982a) [179]. 
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Figure 2.15 Dependency of soil force on loading rate: pipelines buried in saturated clay 
(after Paulin et al. 1998). 

Based on experimental results of centrifuge tests, Rizakalla et al. (1992) [178] 

suggested a routine design of laterally loaded pipelines should incorporate Rowe and 

Davis' (1982a&b) [179 & 180] work, which was based on the elasto-plastic finite element 

analysis of vertical smooth anchors. It should also consider the recommendation of the 

ASCE Committee on Gas and Liquid Fuel Lifeline (ASCE, 1984 [5]), which was based on 

Hansen's (1961) [86] work oflaterally loaded piles. 

2.3.3. Numerical Modelling of Pipe-Soil Interaction 

Practical engineering solutions, which often use structural finite element 

(numerical) analysis, are advantageous in terms of the simplicity, functionality and utility 

for conducting preliminary assessment of pipeline integrity and parametric analysis. The 

procedures, however, are limited by the underlying assumptions and idealizations 

considered. Furthermore, analytical difficulties are encountered for pipe-soil interaction 
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events considering non-uniform boundary conditions, spatial variation in characteristics of 

the pipeline and soil media, large amplitude, accumulated or cyclic deformational loading 

mechanisms, and nonlinear material behaviour. For these issues, numerical methods for 

continuum media provide a rational basis for conducting pipe-soil interaction studies. In 

addition, numerical and experimental studies have been used to calibrate parameters 

required for state of practice engineering solutions. 

2. 3. 3.1. Numerical aspects 

Continuum finite element models are robust and comprehensive numerical tools 

and can address a number of limitations in reproducing, 

1. soil constitutive behaviour, 

2. soil deformation mechanisms (e.g. shear load transfer), 

3. soil-pipe interaction (e.g. variable circumferential or longitudinal pressure 

distribution), and 

4. complex pipeline response mechanisms (e.g. ovalization, or wrinkling). 

The significant disadvantages of continuum finite element modelling are the 

demands on computational resources, limited availability of realistic soil constitutive 

models, and the requisite experience and knowledge of the analyst. A number of studies 

have been conducted to investigate pipe-soil interaction using continuum finite element 

modelling, including studies conducted by Bruschi et al. (1995) [23], Altaee et al. (1996) 

[8], Popescu et al. (1999) [166], Nobahar et al. (2000) [141] and Popescu and Konuk 

(2001) [167]. Other researchers have studied pipeline research, including Yoshizaki et al. 

(1998) [227] and Yoosef-Ghodsi et al. (2000) [226]. 
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2.3.3.2. Soil-pipeline interface 

Correct modelling of soil-structure interaction is very important for accurate 

simulation of the load transfer to the pipeline. Relative movement often takes place at the 

interface, involving slip and/or separation. In a state-of-the-art approach, the pipe and the 

soil are discretized in 2D/3D finite elements. The pipe-soil interface is modelled with true 

interface elements that can account for relative displacements. Various types of interface 

elements have been used, including zero-thickness elements (e.g. double nodes with 

relative motion allowed), thin layer elements, and modified quadrilateral/brick elements. 

Ng et al. (1997) [134] compared the performance of three interface elements implemented 

in the finit1;: element code CRISP. To test the ability of the interface element in simulating 

gapping, they upgraded one of them, and performed 2D simulations of lateral pipe loading 

in an elastic perfectly plastic soil. Using a three node contact element implemented in 

ABAQUS/Standard, Yin et al. (1993) [225] conducted a similar plane strain analysis that 

involved large relative displacements and gapping. 

Popescu et al. (1999) [166], Nobahar et al. (2000) [141], Popescu and Konuk 

(2001) [167], and Popescu et al. (2002) [169] used the contact surface approach 

implemented in ABAQUS/Standard. It allowed for separation and sliding of finite 

amplitude and arbitrary relative rotation of the contact surfaces, and included an equivalent 

shear stress limit. 
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2.3.3.3. Soil constitutive models 

Nwmerous constitutive models have been proposed for simulating the soil 

surrounding a buried pipeline. Some authors assumed linear behaviour, modelling the soil 

either with elastic springs (Zhou and Harvey, 1996 [233]; Karadeniz, 1997 [99]; Zhuang 

and O'Donoghue, 1998 [235], among others), or as an elastic continuwm (e.g. Tohda et al., 

1994 [204]; Fernando and Carter, 1998 [68]). However, the linear elastic asswmption is 

only applicable to situations involving a relatively low strain level, such as compressor­

induced vibrations, or moderate vertical loads on the backfill. The next step was to assume 

elastic perfectly plastic behaviour of the soil materials. Workman (1992) [221], Yin et al 

(1993) [225], Popescu and Konuk (2001) [167], and Guo and Popescu (2002) [80] 

simplified the soil as an elastic-plastic continuum. Several other studies have also used 

nonlinear hyperbolic soil models (e.g. Javanmard and Valsangkar, 1998 [97]). 

However, to correctly simulate the pipe-soil interaction in problems involving large 

deformations, there must be an appropriate soil model that can reproduce both strain 

hardening and softening. Also, in the case of saturated soil materials, coupled field 

equations capabilities are required to reproduce pore water pressure build-up and suction 

phenomena induced by pipe movements through soil. The following are examples of such 

finite element analyses. Altaee and Boivin (1995) [8] and Altaee et al. (1996) [9] conducted 

2D plane :strain analyses of pipes moved laterally through soil. They investigated the 

performance of various nonlinear soil constitutive models implemented in CRISP and 

AGAC. Cam-Clay models were deemed to provide satisfactory results for normally 

consolidated and slightly overconsolidated clays. A boundary surface soil constitutive 
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model was recommended for overconsolidated clays. In those analyses, no special 

consideration was given to the soil-pipe interface. 

Yang and Poorooshasb (1997) [223] studied the effects of ice scour on buried 

pipelines. Using the Drucker-Prager soil model implemented in ABAQUS/Standard, they 

carried out 3D finite element analyses to investigate the effects of ice scour on pipelines 

buried in a sandy seabed. The pipeline was modelled as an elastic beam, and no slip was 

allowed at the interface. 

Extensive experimental and numerical research on interaction between soil and 

buried pipes subjected to very large relative deformations (e.g. Popescu et al. 1999 [166]; 

Nobahar e:t al., 2000 [141]; Nobahar and Popescu, 2001b [139]) indicated that: (1) a 

modified Cam-Clay model with isotropic hardening was adequate for analysing pipes 

loaded in day under drained conditions, and (2) a non-associated Mohr-Coulomb model 

with isotropic hardening/softening provided good results for pipes loaded in sand. A 

contact surface approach, allowing for separation and sliding of finite amplitude and 

arbitrary relative rotation of the contact surfaces was used. It was mentioned, however, that 

kinematic hardening is needed for capturing hysteretic effects in saturated soils subjected to 

cyclic loading. 

2.3.3.4. Numerical results 

Rowe and Davis (1982a) [179] conducted an elasto-plastic finite element analysis 

of vertical anchor plates subjected to lateral loading in cohesive soil. The anchor under 

plane-strain conditions was thin and rigid, with a height of D and a depth of h (embedment 

depth). The effects of embedment depth, overburden pressure, breakaway conditions, 
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anchor roughness, thickness and shape were investigated. In the case of "immediate 

breakaway", the back of the anchor separated from the surrounding soil. However, for the 

"no breakaway" condition, the back of the anchor remained in contact with the soil. The 

failure of a shallow anchor was characterized by plastic flow to the soil surface, while the 

failure of a deep anchor was characterized by local failure. The resistance of soil increased 

with depth up to a critical depth ratio (hiD). If the depth ratio was further increased, the 

anchor capacity did not change very much with depth. This critical depth ratio was about 3 

for horizontally loaded anchors in both "immediate breakaway" and "no breakaway" 

conditions. Furthermore, the value of Nc was greatly influenced by breakaway conditions. 

For example, for depth ratios of 1, 2 and 3, the corresponding values of Nc were 

approximately 2, 4 and 5 for "immediate breakaway" and about 4, 9.5 and 11.5 for "no 

breakaway". The results were found to be comparable with small-scale anchor tests 

conducted by Mackenzie (1955) [117] and Ranjan & Aurora (1980) [175]. 

2.4. DESIGN APPROACHES 

2.4.1. G~eneral Design Criteria 

Primary objectives of engineering design are safety, serviceability, durability, and 

economy. This is reflected in most engineering codes by two categories of limiting criteria: 

1) ultima!<::: limit states (ULS), and 2) serviceability limit states (SLS) - e.g. AASHTO 

(1992) [1], CSA (1992) [41], CGS (1992) [25], ENV (1994) [59], NRC (1995) [142], Z662 

(1999) [228], and DNV (2000) [53]. An appropriate engineering design should satisfy both 

criteria considering the overall economy in design. Engineering systems as well as other 
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physical systems always deal with uncertainties and, therefore satisfying these two 

engineering limiting criteria requires certain tools to measure and quantify the degree of 

uncertainty. Eurocode 1 "Basis of Design" (ENV, 1999 [60]) states that the structural 

reliability against one or more potential risks must take into account the structural failure 

probabilities as well as the probabilities that these failures lead to prejudicial consequences. 

These engineering uncertainties are generally caused by uncertainties in measuring 

parameters:, uncertainties in loads or actions, and model uncertainties. Natural variability of 

parameters: also contributes to uncertainty, both directly by increasing response variability 

and indirectly, by affecting the failure mechanism. Many physical, biological, and social 

systems exhibit complex patterns of variation in space and time. In many cases, the 

consequences of this spatial variability have not yet been well understood. In addition, 

deterministic approaches may not be able to appropriately describe the true physical 

behaviour due to the large number of parameters involved. 

Engineering codes demand safe design and the application of safety factors. There 

are many design approaches in engineering. However, it is possible to divide them into two 

main categories: 1) conventional method of overall safety factor (FOS), and 2) limit state 

design method (LSD). More recently, advanced methods based on reliability theory have 

also been recommended in engineering codes. In these methods, the probability of failure is 

limited to a sufficiently low level. The goal is to achieve an appropriate safety level. An 

appropriate safety level should be selected taking into account the consequences of failure. 

Therefore, it is possible to define the desired reliability level by comparing the probable 

damage costs with the extra expenses demanded by a higher degree of reliability. This can 
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be done through a risk analysis, though still there are many difficulties associated with such 

calculations. Becker (1996a) [15] stated that design should be based on a probability of 

failure that is comparable to risks that people (i.e. society) are willing to accept in specific 

situations or from natural and man-made work. Figure 2.16 summarizes observed risks 

associated with both natural events and engineering projects. 

LOSTLMS 
COSTtl$ 

1 10 100 ltXX) 10 (XX) 

lml. 10 mi. 100 mi. lbl. 10 tar. 

CONSECl.ENCE OF EVENIS I FAIJ..RES 

Figure 2.16 Risks for selected natural events and engineering projects designed in 
keeping with current practice (after Whitman, 1984 [218]; Boyd 1994 [18]). 

Design codes usually reflect this concept by using safety class methodology. For 

example, in Canadian Standard Association (CSA, 1992 [41]), three safety levels are 

defined: 1) safety class I, where there is a great risk to life or high potential for 
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environmental pollution or damage, 2) safety class II, where there is small risk to life and 

low potential for environmental pollution or damage, and 3) serviceability. For these 

classes, reliability levels of 1 o-S, 10-3 and 1 o-I respectively are required. 

2.4.2. Conventional Methods 

Using a conventional method, engineers apply a factor of overall safety (FOS) to 

secure the desired safety level. This is similar to the concept of allowable stress (or working 

stress design, WSD), in which engineers estimate the expected stress in the structure and 

compare it with an allowable stress, often defined as a portion of ultimate or yield stress. 

All the uncertainties involved in the design process are addressed by means of a single 

global sa£ety factor. FOS and WSD have been the traditional design basis in civil 

engineering since they were first introduced in the early 1800's (Becker, 1996a) [15]. The 

values of the global factor of safety selected for design reflect past experience and 

consequence of failure. A more serious consequence of failure and/or a higher uncertainty 

require a higher factor of safety. Some values of global factors of safety used in 

geotechnical engineering, as suggested by Terzaghi and Peck (1948, 1967) [199&200] and 

Terzaghi et al. (1996) [201] are shown in Table 2.1. 

A global factor of safety represents a relationship between allowable and applied 

quantities. It can be written as, 

FS= R 
s Eq. 2.9 
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where RandS are resistance and actions (loads). A single global safety factor would have 

unambiguous meaning if carefully prescribed standard procedures for estimating resistance 

and load were always used in design. However, in geotechnical engineering, engineers use 

different approaches and select different values of strength for design. Some engineers may 

use mean value for strength, while others may use a conservative assessment of strength 

based on their own experience. Still, others may use statistics and use a certain percentile of 

resistance. Therefore, for the same factor of safety value, the actual reliability of the same 

structure would be different (see Becker, 1996a&b [15&16] for more discussion). 

Moreover, various components of the "resistance" or of the "load" may have various 

degrees of uncertainty. 

It is possible to define two formats for the global safety factor. The mean factor of 

safety using mean resistance and loads, 

Eq. 2.10 

And nominal factor of safety using nominal (characteristic) resistance and nominal 

(specified) load values in design, 

Eq. 2.11 

This is demonstrated graphically in Figure 2.17 (from Becker, 1996a [ 15]). 

Nominal (characteristic) resistance is defined in next section. 
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Table 2.1 Ranges of global factor of safety commonly used for geotechnical 
engineering (Terzaghi and Peck, 1948, 1967; Terzaghi et al., 1996) 

Failure: type 

Shearing 

Seepage 

Ultimate pile loads 

Item Factor of safety, FS 

Earthworks 1.3-1.5 

Earth retaining structures, excavations 1.5-2 

Foundations 

Uplift heave 

Exit gradient, piping 

Load tests 

Dynamic formulae 

2-3 

1.5-2 

2-3 

1.5-2.0 

3 

MEANFS- R/S 
NOMINALFS • Rn/Sn 

Figure 2.17 Design values for loads and resistance (after Becker, 1996a [ 15]). 
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2.4.2.1. Characteristic (nominal) values 

Usage of conservative values instead of mean strength is common in many 

engineering fields. These conservative values are so-called nominal, specified, or 

characteristic values in structural engineering. The characteristic values have significant 

importance in ensuring a uniform safety level in engineering design because they reflect 

not only mean resistance values, but also the variability of resistance (See Li et al., 1993 

[108] and Cardoso and Fernandes, 2001 [24] for discussion of nominal values in 

geotechnical design). 

It is very important to have a unified definition for characteristic values (see 

Becker, 1996a [15]; Cardoso and Fernandes, 2001 [24]). Attempts have been made to unify 

the definition of these values. Structural codes have prescribed procedures to define these 

values. The characteristic values are also related to statistical indices. Most structural codes 

use 95-per~centile as characteristic values (95-percentile is a value of resistance with 95% 

reliability). In other words, it is a value derived such that the calculated probability of a 

worse value governing the occurrence oflimit state is not greater than 5%. 

2. 4. 2. 2. Limitations of the conventional method 

The main shortcoming of this method is illustrated in Figure 2.18. In all three plots, 

the factor of safety has the same value. However, there is a very low probability of failure 

for Case 1. Case 2 is a common case in foundation engineering, where structural loads 

applied on foundations are well estimated and involve small amounts of uncertainty, but 

foundation resistance involves much higher uncertainty. The third case involves load and 
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resistance, both of which are quite uncertain. Examples of Case 3 are earthquake loading 

and bearing capacity of piles. Although the factor of safety is the same for all three cases, 

the probability of failure increases from case one to case three. The overlapping area, which 

is shaded, is related to the probability of failure. Hence, it is obvious that an overall safety 

factor cam10t guarantee a uniform safety level. Conventional methods are deterministic by 

nature and the probability of failure cannot be directly inferred from them. As 

aforementioned, all uncertainty is dealt with by one lumped factor of safety; there is no 

distinction between different sources of uncertainty and their magnitude. 
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Figure 2.18 Possible load and resistance distributions (after Green, 1989 [72]): (a) very 
good control of RandS; (b) mixed control of RandS; (c) poor control of R 
andS. 

2.4.3. Li.mit State Design Method 

Overall safety factor (conventional method) does not seem appropriate in all cases 

due to variability in the nature of engineering problems. It may lead to over-designed 

structures in some cases or it may fail to achieve the desired reliability level in others. 

Therefore, in recent decades and in conjunction with other engineering and scientific 

advancements, there has been a trend towards the use of reliability concepts in design (e.g. 
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Duncan, 2000 [54]). Limit state design (LSD) method was introduced to engineering 

practice as a simple method to overcome some of the problems in conventional approaches, 

and to introduce reliability bases for design. LSD method provides a more logical 

framework to deal with uncertainties in engineering design. Thus, it is expected to provide 

a more uniform design reliability level due to its use of different load and resistance factors 

(Meyerhof, 1982 [125]). 

Limit states are defined as conditions under which a structure or its component 

members no longer perform their intended functions. Limit state design (LSD) is a formal 

way of stating the design criteria in a performance-based way. As previously mentioned, 

two classes of limit states are normally considered: (1) ultimate limit states (ULS) and, (2) 

serviceability limit states (SLS). 

There are two main approaches in LSD methods: the factored strength and the 

factored resistance. The format for the first LSD method, the factored strength, 1s as 

follows (e.g. Becker, 1996a [15] and Baikie, 1998 [12]): 

Eq. 2.12 

where RNJ is the resistance obtained using factored strength parameters (The factored 

strength parameters are obtained by applying strength reduction factors on nominal strength 

parameters) and SNare the nominal loads, dead load, and live load; aN are the load factors 

for the corresponding loads. 

The format for the second LSD method, the factored resistance, is (e.g. Becker, 

1996a [16] and Baikie, 1998 [12]): 
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Eq. 2.13 

where ¢ is a resistance factor and RN is the nominal resistance calculated usmg 

characteristic soil parameters. This study focuses on undrained shear strength of soil. The 

bearing capacity of a foundation or the lateral load on a buried pipeline is directly related to 

undrained shear strength (e.g. qu = Nc.cu); therefore, there would be no practical difference 

between using the factored strength and the factored resistance here. 

The following are advantages of the LSD concept in geotechnical engineering 

(Meyerhof: 1982 [125]): 

• Facilitates a greater degree of compatibility between the geotechnical and 

structural design, which are now codified in Canada and in many other 

countries based on LSD. 

• Sets up a rational way to obtain safety factors. 

• Obtains a consistent approach leading to a more uniform margin of safety 

for different types and components of earth structures and foundations 

under different loading conditions. 

The importance of the first and second points is obvious. The second and third 

points also have a significant value. The factoring of separate sources of uncertainties, 

particularly if derived from statistical data reflecting the probability of their occurrences, is 

a qualitatively more accurate concept. However, the application of LSD method in 

geotechnical engineering has faced critical problems. For instance, Been et al. (1993) [17], 

Lin (1996) [111] and Nobahar (1999 & 2000) [135&136] investigated the problem of 
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dependence between loads and resistance in foundations. Li et al. (1993) [108] showed that 

the constant partial factor LSD methods, commonly used in structural codes, are not 

suitable for geotechnical design owing to the wide range of uncertainty involved. Based on 

probabilistic analysis, they advised on use of a lumped, variable partial factor for 

resistance. This factor varies as a function of uncertainty involved in geotechnical design -

i.e. a larger reduction in resistance for a higher uncertainty. Day (2001) [42] demonstrated a 

more notilceable lack of physical interpretation for LSD methods in geotechnical 

engineering compared to structural engineering. Due to the complex behaviour of soil, 

strength or resistance reduction factors have often been obtained by direct calibration from 

available conventional design methods (Meyerhof, 1984 & 1995 [126&128]; Baikie, 1998 

[12]). They are not based on strong theoretical or systematic experimental studies aimed at 

securing a uniform target reliability level. Therefore, there is a need to establish strong 

theoretical and experimental bases to obtain strength or resistance design factors. 

Becker (1996b) [16] proposed the following methodology for deriving resistance 

factors co1Tesponding to a given set of load factors based on a calibration methodology 

using reliability theory: 

1. Estimate the level of safety or reliability inherent in current design methods. 

2. Select a target reliability index based on the level of safety or probability of 

failure used in current designs. 

3. Calculate resistance factors consistent with the selected target reliability 

index. It is also important to couple experience and judgment with the 
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calibration results in the final decision process of selecting appropriate 

values of resistance factors for various design situation or problems. 

4. Validate or verify the new design approach by comparing actual designs 

based on the resistance factors resulting from the calibration, with designs 

obtained from current (conventional) approach. 

5. Recalibrate and modify resistance factors as required. 

Some partial design factors used in design codes are summarized in Table 2.2 (see 

Meyerhof, 1982, 1984, 1993&1995 [125, 126, 127&128]; Baikie, 1998 [12]). 
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Table 2.2 Values of partial factors (after Meyerhof, 1995 [128]) 

Hansen Hansen Denmark Eurocode Canada Canada U.S.A. 

(1953) (1956) DS415 7 (ENV, CGS NBCC ANSIA58 

[84] [85] (DI, 1965 1993 [58]) (1992) (NRC, (ANSI, 

[52]) [25] 1995 1980[4]) 

[142]) 

LOADS 

Dead loads, 1.0 1.0 1.0 1.1 1.25 1.25 1.2-1.4 

soil weight 

Live loads 1.5 1.5 1.5 1.5 1.5 1.5 0.5-1.6 

Water 1.0 1.0 1.0 1.0 1.25 1.25 

pressure 

Accidental 1.0 1.0 1.0 

loads 

Shear strength 

Friction (tan 1.25 1.2 1.25 1.25 1.25 Resistance Resistance 

¢) factor of factor of 

Cohesion (c) 1.5 1.5 1.5 1.4-1.6 1.5 1.25-2.0 1.25-2.0 

Slope, earth on ultimate on ultimate 

pressures resistance resistance 

Cohesion (c), 1.7 1.75 1.4-1.6 2.0 using using 

Spread unfactored unfactored 

foundations strength strength 

Piles 2.0 2.0 1.4-1.6 2.0 

Ultimate pile capacities 

Load tests 1.6 1.6 1.7-2.4 1.6-2.0 1.6 

Dynamic 2.0 2.0 2.0 2.0 

formulas 

Penetration 2.0-3. 2.5 

tests 

Deformations* 

1.0 1.0 1.0 1.0 1.0 1.0 
. . 

*For deformations (serviceability cntena), engmeenng codes often apply a partial factor ofuruty . 
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2.4.4. Reliability and Probabilistic Design 

Reliability and probabilistic design methods have attracted increasingly more 

interest in recent years (e.g. Harr, 1987 [89]; Phoon et al., 1990 [157] & 2000 [156]; Li and 

Lo, 1993 [109]; Tang, 1993 [197]; Christian et al., 1994 [33] etc.). In reliability-based 

design, the parameters are treated as random variables rather than as constant deterministic 

values. The measure of safety is the probability of failure, which can be computed directly 

if the actual probability density function or frequency distribution curves are known or 

measured for the loads and resistance. The probability of failure is related to the shaded 

area representing the overlap between load and resistance curves as shown in Figure 2.19. 

In a formal format, it is possible to define a performance function, 

g(X) =R-S Eq. 2.14 

And the probability of failure is, 

p(g(X) < 0) Eq. 2.15 
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Figure 2.19 Typical variation of load and resistance for reliability analysis. 

Conventional structural reliability methods are usually concerned with probabilities 

that every specified limit state will not be reached during the design life of a structure. 

However, they do not account for failures caused by human errors or other gross errors. 

Reliability based design has important potential advantages, such as being more 

realistic, rational, consistent, and widely applicable. It is capable of systematically 

analysing the uncertainties associated with each design parameter. However, statistical data 

are needed for each parameter, and sufficient data are often scarce. Palmer (1996) [147] 

examined the applicability of reliability theory in offshore pipeline design. He showed how 

exact value:s of reliability and failure probability cannot be determined because of the lack 

of complete understanding and lack of data. Data pertaining to the tail of probability 
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distributions are not reliable due to too small samples. This is a well-known reality in 

reliability analysis. Melchers (1992) [ 121] stated that the tail sensitivity problem is merely 

a reflection of the various uncertainties, which arise in quantifying the variables to be 

considered in reliability analysis. However, Melchers suggested considering the failure 

probability as a "formal" measure of structural reliability. In this way "failure probability" 

is not a qmmtitatively actual value, but demonstrates the level of reliability. 

Alt,ematively, a reliability index can be used. The reliability index shows the 

distance between load and resistance in terms of their standard deviations. It can be related 

to failure probability by assuming probability distributions for load and resistance. 

Thoft-Christian and Baker (1982) [202] discussed different application levels for 

structural reliability and categorized them into the following levels: 

• Level I design method, in which appropriate degrees of structural reliability 

are provided on a structural element basis by use of a number of partial 

safety factors or partial coefficients, is related to pre-defined characteristic 

or nominal values of the major structural and loading variables. This is 

merely a reliability analysis; it is the same as limit state design (discussed in 

Section 2.4.3). 

• Level II methods or approximate probabilistic methods involve 

approximation of distribution curves of load and resistance. Usually the 

actual probability distributions of random variables are not available, but 

their shapes and types are assumed. Typically normal or lognormal 

distributions are used in this type of analysis. 
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• Level III reliability method is also known as the fully probabilistic method. 

In this category, the actual probability distribution curves are already known 

or are measured for each random variable. Theoretically, this is the most 

complete treatment of safety. The main problem associated with Level III is 

lack of complete statistical data. Statistical data analysis and full 

probabilistic calculations are also time-consuming and complicated. 

An example of level II reliability method is the second moment probabilistic 

method, in which the random nature of the variables is defined using only the mean and the 

coefficient of variation. In this method, safety is defined by the reliability index (Allen, 

1975 [3]; CSA, 1981 [40]; Harr, 1987 [89]; Li et al., 1993 [108]). The reliability index 

provides a simple quantitative basis for assessing risk/failure probability and/or comparing 

the relative safety of various design alternatives. The reliability index can be obtained 

simply and avoids many difficulties inherent in applying complete statistical analysis. It 

can also be connected with failure probability by assuming probability distributions for 

random variables. 

Duncan (2000) [54] presented simple reliability analyses, which do not involve 

complex theory or unfamiliar terms, and can be easily used in practice. Duncan showed 

how simple reliability analyses can provide means of evaluating the combined effects of 

uncertainty in parameters involved in the calculations. The presented reliability analyses 

calculated uncertainty in safety factor; therefore, they can be easily used together with 

factor of safety method as complementary of acceptable design. Duncan showed how 

additional parameters needed for reliability analyses (e.g. standard deviation of parameters) 
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can be evaluated using the same amount of data and types of correlation that are widely 

used in geotechnical engineering practice. 

As discussed in Section 2.4.1 design methods have changed to account for 

reliability concepts during the past few decades. There is a trend to provide reliability/risk 

bases for ~engineering design. It should be emphasised that the design methods always 

should be calibrated and validated based on past experience and conventional approaches. 

2.4.4.1. Application of response surface method 

Performance (failure) functions (Eq. 2.14) are often either complex or cannot be 

explicitly <;~xpressed. For many problems, the only practical reliability solution is the use of 

Monte Carlo simulations. A Monte Carlo approach needs a large number of replications, 

which have considerable computational costs. One solution is to approximate the complex 

response over the region of interest with simple functions (e.g. Cox and Baybutt, 1981 [38], 

Kim and Na, 1997 [101]; Tandjiria et al., 2000 [195]; Mohamed et al., 2001 [129]). These 

simple explicit functions can be used as a replacement model in reliability analysis. Han 

and Wen (1997a&b) [82&83] describe response surface as a method of approximating an 

unknown function of multiple variables (response surface in n-dimensional space) by a 

polynomial that facilitates solution procedures such as in finding the minimum values of 

the function. 

Bauer and Pula (2000) [14] used a mathematically simple function to approximate 

foundation settlements for reliability analysis using the FORM (first-order reliability 

method) and the SORM (second order reliability method). First, they approximated the 

response (foundation settlement) on a large interval (two standard deviations) of random 
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variable (here Young's modulus and Poisson's ratio). Then they reduced the interval in the 

proximity of the design points. This increases the accuracy of FORM and SORM, since 

most contribution to failure probability comes from the vicinity of design points. 

It is concluded that Response Surface Method (RSM) is a useful tool to study and 

approximate complex behaviours in the region of interest. A statistical design is required to 

minimize the number of points for surface fitting. This technique was used in this study and 

its application is discussed in Section 3.3. 
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CHAPTER 3 

METHODOLOGY 

3.1. INTRODUCTION 

Rapid advances in computers have made numerical methods, such as finite element 

and finite difference analyses, the state of practice in many civil engineering fields. 

Recently, probabilistic methods have become more common in many areas, partly due to 

decreases iln their numerical costs, as well as more demands for risk analysis from industry. 

There are several methods available for solving problems in continuum mechanics 

involving uncertain quantities described by stochastic processes or fields. However, Monte 

Carlo methodology is the only universal approach for engineering problems involving 

material and geometrical nonlinearity, such as those encountered in soil mechanics. As 

discussed iln Section 2.1, this approach was found to be the only practical method for highly 

nonlinear problems in geotechnical engineering involving soil heterogeneity. The main 

drawback of Monte Carlo simulation methodology using finite element method to analyse 

the effects of soil spatial variability on soil-structure interaction is its computational cost. 

However, recent advances in computer technology have alleviated this problem. 

The methodology illustrated in Figure 3.1 combined deterministic analyses with 

Monte Carlo simulations. It was not intended to study geostatistical data from a specific 
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site. This research evaluated the effects of stochastic variability of soil properties on 

bearing capacity through a series of parametric studies. Thus, the results of the study can be 

used to evaluate the effects of soil heterogeneity for every site having soil heterogeneity 

parameters within the studied ranges. These effects can be incorporated in engineering 

design. Design methods are based on many years of engineering practice and this research 

can be only regarded as a more accurate study of various sources of uncertainty. This could 

lead to a better understanding and identification of uncertainty sources, as well as 

improvement and optimisation in design. 
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Figure 3.1 Illustration of the applied methodology. 
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3.1.1. Elements of Proposed Methodology 

The methodology used in this research had the following elements, as shown in 

Figure 3.1, 

• Design of parametric studies for Monte Carlo simulations (Section 3.3). 

• Digital generation of sample functions of a non-Gaussian stochastic field. 

Each sample function represented a possible realization of the relevant soil 

properties (here, the soil property was the undrained shear strength) over the 

domain of interest. Generation of random samples is the most important part 

ofMonte Carlo simulations (Section 3.4) 

• Nonlinear finite element model (or more generally, numerical model) of the 

soil and structure accounting for their interaction. The numerical model is 

capable of analysing the system using stochastic input parameters (Section 

3.5). 

• Automation of the Monte Carlo simulation procedure and finite element 

analysis using stochastic input functions (Section 3.5.4 & Appendix B). 

• Analysis and processing of the results of Monte Carlo simulations for each 

case of parametric study, including post processing of the finite element 

results, statistical analysis of the responses, and comparison with 

corresponding deterministic analysis (see Appendix B). 

• Statistical analysis and regression of parametric study results (Section 3.3). 

• Processing of results by various reliability and probabilistic analysis 

methods, for providing practical design recommendations (Section 3.6). 
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Each of the above items is described in the following sections. 

3.1.2. l\1[onte Carlo Simulations 

Monte Carlo simulations were performed for each set of probabilistic 

characteristics for parametric studies; the parametric studies were designed using statistical 

approaches (design of experiments, DOE). The Monte Carlo simulation method used here 

accounted for the effects of the stochastic spatial variability of soil properties on the system 

performance. The ensemble of soil properties over the domain of interest was modelled as a 

bi-dimensional, non-Gaussian stochastic field. The Monte Carlo procedure has three steps 

(see Popescu, 1995 [158]): 

1. Obtain the probabilistic characteristic of the spatial variability of soil 

properties. Here these values were determined from design of parametric 

study. 

2. Digitally generate sample functions of a non-Gaussian stochastic field, with 

each sample function representing a possible realization of the relevant soil 

properties (here the undrained shear strength values) over the domain of 

interest (step 2 in Section 3 .1.1 ). 

3. Nonlinear finite element analyses usmg stochastic input parameters 

obtained from the generated sample functions of soil strength (part of step 3 

in Section 3.1.1). 

The simulation methodology in step 2 (Popescu, 1995 [158]; Popescu et al., 1998b 

[164]) is based on the spectral representation method as discussed in Section 3.4. It 
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combines the work by Yamazaki and Shinozuk:a (1988) [222], Shinozuka and Deodatis 

(1996) [186], and Deodatis (1996) [ 47], and extends it to the simulation of multivariate, 

multidimensional non-Gaussian stochastic fields. Bi-dimensional, non-Gaussian stochastic 

fields were generated as documented in Section 3.4 to represent the variability of soil 

undrained shear strength. "SINOGA", a Fortran program written by Popescu (1995) was 

used for this purpose. In step 3, the undrained shear strength determined from step 2 at each 

spatial location (finite element centroid) is employed for stochastic input finite element 

analyses for each sample function. 

2D plane strain total stress analyses were performed for each sample function using 

the ABAQUS/Standard code (Hibbitt et al. 1998a) [93]. A series of issues were addressed 

in this study, including: (1) data transfer from the discretization used for stochastic field 

generation to the finite element mesh was carried out using the mid-point method (Benner 

1991) [19] to preserve the prescribed (non-Gaussian) probability distribution function; (2) 

an appropriate size of the finite element mesh was used to capture the essential features of 

the correlation structure; (3) the soil Young's modulus (E) was assumed perfectly 

correlated with the shear strength, and the Poisson's ratio ( v) was assumed constant over 

the analysis domain (see Sections 3.5 & 3.5.4 for details). 

3.2. SELECTION OF PROBABILISTIC CHARACTERISTICS FOR 

SOIL VARIABILITY 

As shown in Figure 3.1, the first task was to determine ranges for probabilistic 

characteristics of soil properties based on available sources of information. These 
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probabilistic characteristics included degree of variability, probability distribution of soil 

strength and correlation structure. 

Based on the literature review presented in Section 2.1.1.3, the coefficient of 

variation of undrained shear strength can take values as high as Cv= 60% (and sometimes 

even high{;:r) for clay materials (Meyerhof, 1995 [128]; Phoon and Kulhawy, 1996 [153] 

and 1999b [155]; Duncan, 2001 [54]; also see Section 2.1). Some scatter is caused by 

measurement errors, as discussed in Section 2.1.1. In the case of cone penetration tests, the 

scatter in results produced by measurement errors is C v = 5% to 15% for electrical cones, 

Cv = 15% to 25% for mechanical cones, and Cv = 15% to 45% for standard penetration 

tests (Orchant et al., 1988 [144]; Kulhawy and Trautmann 1996 [103]). Also discussed in 

the literature review (Section 2.1.1.3), Cv of undrained shear strength decreases with 

increases in mean undrained shear strength. Therefore, a range of C v = 1 0% to 40% was 

assumed for undrained shear strength of medium to stiff clay and Cv = 20% to 80% was 

assumed for soft clay. 

Based on numerous studies reported in the literature, it can be concluded that each 

soil property can follow different probability distributions for different materials and sites, 

but for physical reasons, they are non-Gaussian distributed (see also Section 2.1.1.3). Beta, 

Gamma and Lognormal are common distribution models meeting this requirement. For 

given mean and standard deviation of the field data, Gamma and Lognormal models are 

one-parameter distributions - lognormal can be shifted to have a minimum value (three­

parameter or shifted lognormal distribution). They are both skewed to the right. Beta is a 
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two-parameter distribution, and therefore more flexible in fitting empirical data. Moreover, 

it can model data that are symmetrically distributed, or skewed to the left. 

To assess the effects of the probability distribution of soil strength, a symmetrical 

Beta probability distribution function with shape parameters p = q = 2.5, and a skewed 

Gamma probability distribution with shape parameter, It= 1. 73 were selected to describe 

the variability of undrained shear strength in this study. These two distributions were 

deemed to cover the field situation in terms of the extension of the left tail, which 

represents the presence of loose pockets in the soil mass. The selected probability density 

functions are shown in Figure 3.2. 

An important feature of stochastic fields is the concept of statistical correlation 

between fi·eld values at different locations in space. In this study, an exponentially decaying 

model, discussed by Shinozuka and Deodatis (1988) [184] among others, was selected for 

the auto-correlation function (see also Section 2.1.1). This model was found to describe 

relatively well the correlation structure recorded in various soil deposits (Popescu, 1995 

[158]). The main parameter of the auto-correlation function is called scale of fluctuation (or 

correlation distance). It represents a length over which significant coherence is still 

manifested. The mechanisms of soil deposit formation lead to different spatial variability 

characteristics in vertical direction (normal to soil strata) compared to those in horizontal 

direction. Therefore, a separable correlation structure based on the exponentially decaying 

model is deemed to capture the main characteristics of soil spatial variability (see Section 

2.1.1 for discussion). Due to the effects of geological layer deposition, soil properties have 

significantly different correlation distances in horizontal and vertical directions. Often 

86 



correlation distances in the horizontal direction are one order of magnitude larger than the 

correlation distances in the vertical direction. As discussed in Section 2.1.1, wide ranges 

are reported for horizontal and vertical correlation distances and many factors affect the 

estimation of these values. A literature review showed that vertical correlation distances are 

in the order of a 0.5m to 2m while horizontal correlation distances can take values in the 

order of tens of meters. 
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Figure 3.2 Probability density functions of the Beta and Gamma distributions assumed 
for shear strength, with mean of 100 kPa and coefficient of variation C v = 
40%. 

3.3. DI:SIGN OF EXPERIMENTS 

3.3.1. Introduction 

As shown in Figure 3.1, after deciding on the probabilistic characteristic parameters 

and their ranges, experiments were designed based on statistical principles for the 
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parametric study. Generally, an experiment is a test or a series of tests in which purposeful 

changes are made to the input variables or factors of a system so that we may observe and 

identify the reasons for changes in the output responses (Montgomery, 1997 [ 130]). 

Experiments in this study were Monte Carlo simulations, which were performed for each 

set of input variables (here input variables included: coefficient of variation, probability 

distribution function, correlation distances and ratio of soil stiffuess to soil undrained shear 

strength, Elcu). A sound strategy for experimental design was required to minimize the 

number of experiments, screen main factors, build a mathematical model, obtain prediction 

equations, and capture interaction between various factors. Statistically designed 

experiments allowed for efficiency and economy. The use of statistical methods in 

examining the data results in scientific objectivity when drawing conclusions. However, 

use of statistical designs has remained limited in geotechnical and structural engineering. 

The results obtained from these experiments were fitted by linear combinations of 

simple functions, with the coefficients being determined by least squares fitting. These 

functions are called response surfaces. 

3.3.2. Dtesign of Experiment Methods 

In practice, engineers and scientists often design experiments using the best guess 

approach and one-factor-at-a-time (Montgomery, 1997 [130]). Though these methods may 

often seem rational and the easiest way to do the study, they have disadvantages. These 

shortcomings include (1) inability to guarantee the best solutions, (2) failure to capture 

interaction,, and (3) requirement of a high number of experiments. Scientific methods for 
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design of experiments are based on statistical principles. Two of the most used methods in 

this area are two-level factorial and central composite designs. 

3.3.2.1. Two-level factorial design 

The factorial approach is the modem and most efficient method of experimental 

design. It allows factors to be varied together and has been used widely in some 

engineering areas. It is a very efficient method to study the effects of several factors on the 

output. There are different classes of factorial methods such as 2-level, 3-level and general 

factorial method (see Montgomery, 1997 [130]; Atkinson and Donev, 1992 [10]; Cornell, 

2002 [36]). In the 2-level factorial method, the effects of k factors are studied at only two 

levels for each factor. A complete replicate of such a design require 2 x 2 x · ·· x2 = 2k tests 

and is called a 2k factorial design. A fractional method can be used to reduce the number of 

sampling for cases where the number of the input factors is high (see Montgomery, 1997 

[130] for details). A 2-level factorial design for a 3-factor problem is illustrated in Figure 

3.3. It is possible to add a centre point to the 2-level factorial design as shown in Figure 

3.3b. 

3.3.2.2. Central composite design 

Central composite design is another method of experiment design. It has more 

flexibility in capturing responses with curvature and is used for fitting second order models. 

It consists of a 2k factorial runs plus 2k axial runs, and nc centre runs as illustrated in Figure 

3.3. Figun:~ 3.3c shows a face centred central composite design. This allowed for more 

flexibility in the expansion of the analysis domain. 
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Figure 3.3 Illustration of experiment design layouts for a 3-factor problem: (a) Two­
level factorial design, (b) Two level factorial design with central point, and 
(c) Central composite design (face-centred). 

3.3.3. Response Surfaces 

Many times an analytic output function does not exist for a problem. It may require 

a costly numerical analysis or physical testing to obtain the response for every combination 

of the input parameters. Thus, it is either impossible or too costly to perform a large 

number of experiments or numerical analyses to obtain responses for all ranges of 
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variables. The idea is to approximate the original complex and/or implicit function using a 

simple and explicit function (Kim and Na, 1997 [100]), a so-called response surface. To 

obtain this surface a series of experiments or numerical analyses is performed. These 

experiments should be designed according to a statistical experimental design, as discussed 

in Section 3.3.2. 

Th~~ suitability of the response surface obtained relies mainly on the proper location 

of so-called sampling points, from which response functions are approximated using a 

conventional regression technique. Many algorithms have been proposed to select 

appropriate sampling points, which promise to yield better response function fitting. In 

addition, the basic function shape adapted for fitting is also known to be another major 

factor that influences the accuracy of the response surface method. Response surfaces 

suitable for design schemes discussed in section 3.3.2 are presented. 

In a two-level factorial method, the fitted response is, 

k 

Y ==flo+ Lfljxi +£ 
j~l Eq. 3.1 

Tht~ above equation is linear and therefore is not able to capture the curvature in the 

true response. The interaction terms can be added to Eq. 3.1 to give, 

k 

Y ==flo+ Lfljxi + LLfliixixj +£ 
j~l i<j Eq. 3.2 

It is possible to check the curvature of response by adding a centre point to the 

factorial de:sign (Figure 3.3b). The above model is capable of capturing some curvature in 
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the response function. This curvature results from twisting of the response plane induced 

by the interaction terms, f3triXj· In some cases, the curvature in response cannot be 

adequately modelled using Eq. 3.2. A central composite design can be used as a solution, as 

explained in Section 3.3.2.2. A logical model to consider is, 

k k 

Y == f3o + Lf3jxi + LLf3iixixj + Lf3jjxJ + & 
j~l i<j j~l Eq. 3.3 

In cases of higher nonlinearity, none of the above models works for the whole 

domain. As a solution, the domain may be divided into several regions or more points can 

be added to the. experiment and a higher order polynomial be used for fitting (See Atkinson 

and Donev, 1992 [10] and Montgomery, 1997 [130] for more details). Special approaches 

are also developed for particular applications. For instance, Kim and Na (1997) [101] 

proposed a gradient projection technique to force the sampling points in the region close to 

the original failure surface in reliability analysis. 

3.3.4. Dt~sign of Experiment Set-up 

Design-Expert® software version 6.05 was used as an aid in design the experiments 

(points for series of Monte Carlo simulations). It is a powerful statistical tool with the 

following c:apabilities, among others, 

• Two-level factorial screening studies: identify the vital factors that affect a 

process or product 

• General factorial studies: suitable for categorical studies (categorical factors 

are factors that do not possess a numerical range but they can be at level A 
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or B - e.g. a probability distribution of shear strength can be Lognormal or 

Beta). 

• Response surface method (RSM). 

In this study, the experiment - defined as a set of Monte Carlo simulations using 

sample functions from a single stochastic field (see Figure 3.1) -was performed for each 

design point. Each design point is defined by a set of probabilistic characteristics including 

coefficient of variation, probability distribution and correlation distances of soil strength, Cu 

and ratio of Elcu (E is soil Young's modulus). As mentioned before, the experiment 

consisted of performing and processing a set of Monte Carlo simulations, as illustrated in 

Figure 3.1 (the blocked area for every designed case). Details of the Monte Carlo procedure 

are described in the following sections. 

Next, Design-Expert was used to fit a response surface to the results. This involved 

identifying significant factors and then performing an analysis of variance, ANOV A. 

Statistical criteria were checked to ensure the assumptions of ANOV A were met. In some 

cases, the experiment may also have to be redesigned or points added. Design-Expert 

provided equations for each response, which were in terms of simple analytical expression. 

The predictions from the equations were compared with the experimental data (here Monte 

Carlo simulations - see Figure 3.1 ). These equations could replace the costly Monte Carlo 

simulations for the range being studied. 
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3.4. SIMULATION OF RANDOM FIELDS 

3.4.1. General 

As discussed in the previous section, for every design case with a given set of 

probabilistic characteristics, corresponding sample functions of a stochastic field were 

generated for Monte Carlo simulations, as shown in Figure 3 .1. This section describes the 

generation of these sample functions. These sample functions were used for finite element 

analysis in with stochastic input and discussed in Section 3.5.4. 

The generation of sample functions of a random field representing possible 

realizations of the soil properties over the analysis domain is an important part of the 

Monte Carlo simulation methodology used here. In the past few decades, several methods 

were established to digitally generate sample functions of a random field, which may be 

stationary or non-stationary, homogeneous or non-homogeneous, one-dimensional or 

multidimensional, univariate or multivariate and Gaussian or non-Gaussian. 

There are several ways to generate sample functions of Gaussian homogeneous 

stochastic fields, including (1) spectral representation method; (2) covariance 

decomposition; and (3) autoregressive moving average (ARMA) models. 

The;: methodology described by Popescu et al. (1998b) [164] based on the spectral 

representation method, was used to generate sample functions of a 2D non-Gaussian 

stochastic vector field, according to prescribed cross spectral density matrix and a 

prescribed (non-Gaussian) probability distribution function. First, a Gaussian vector field 

was generated according to the target spectral density function. Next, it was transformed 
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into the desired non-Gaussian field using a memory-less nonlinear transformation coupled 

with an iterative process. 

3.4.2. Theoretical Bases 

3.4.2.1. Digital generation ofmV-nD Gaussian stochastic vector fields 

Let fcr(X) be a m V-nD, homogeneous, non-Gaussian stochastic field with mean 

value equal to zero, autocorrelation matrix R0 
( ~) and cross-spectral density matrix S 0 

( K) . 

In the general case the cross-spectral density function and the autocorrelation 

matrix can be expressed as: 

Eq. 3.4 

Eq. 3.5 

where: 

Eq. 3.6 
and, 

Eq. 3.7 
with, 
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E[fcr (X)]= 0 Eq. 3.8 

and, 

E[fcr (X) fer (X+.;)] = Ro (.;) Eq. 3.9 

where S~ (K) is the complex cross-spectral function, S 0 (K) is hermitian and non-negative 

definite (Shinozuka, 1987 [182]), K =(K1J K2J ···J Kn) is the n-dimensional wave number 

vector, R 0
(.;) is autocorrelation matrix and.; =(.;1J .;2J ···J .;n) is space-lag vector (separation 

vector). The cross-spectral density matrix is real, symmetric and non-negative, and 

therefore, under certain conditions, Cholesky decomposition can be applied and results in: 

Eq. 3.10 

where H(K) is a lower triangular matrix and HT(K) is its transpose. The off-diagonal 

elements of H(K) are generally complex and, therefore, can be written as: 

Eq. 3.11 

where, 

B (K)= tan-I{Im[Hrs(K)]} 
rs Re[HjK)] Eq. 3.12 

is the angle of Hrs(K) in complex representation. Combining the simulation for 1 V-nD 

stochastic fields and m V-1 D stochastic fields, the r1
h component of a homogeneous m V-nD 
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Gaussian stochastic vector field with mean value equal to zero can be expressed by the 

following series as N1, N2, •.• , Nn ~ cc simultaneously (Popescu et al., 1998b [164]): 

where, 

r ~~ Nn 

1 

( ) 

fGr (X)= 2L L L · ··L L H,.s fiK1st1 ,lzKzs/2 ,. •• ,lnKnst. ~.-JL1K1iJKz ·· · iJKn · 
s=1 11=1 12 =1 1.=1 /1=1; 1;=±1 

i=2,3, ... ,n 

cos[f1K1si
1
X1 + lzKzst,Xz + · ·· + fnKnsl,Xn- B,.s (f1K1s/1 ,fzKzs/

2 
, ... ,fnKnst. )+ l/J:.1:,l~::.~:] 

r == 1,2, ... ,m 

Eq. 3.13 

Eq. 3.14 

is the wave number increment in the TQ direction with Kiu denoting cut-off wave number 

(Shinozuka and Deodatis, 1996 [ 186]), the subscript 0 in /Gr(X) is for a Gaussian field, 

X=(x1,X2, .... ,xn) is the n-dimensional vector of space coordinates, and <1>~~~~~·.:~1: are m.2n-J 

sequences of independent random phase angles uniformly distributed between 0 and 2n. 

Aceording to the central limit theorem, the simulated scalar fields are 

asymptotically Gaussian as N1, N2, ... , Nn ~ oo. 

The fast Fourier transform technique (FFT) is applied to speed-up the process. For 

more information in this regard, refer to Shinozuka and Deodatis (1996) [186], and 

Popescu et al. (1998b) [164]. 
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3.4.2.2. Digital generation of m V-nD non-Gaussian stochastic vector fields 

First, having the target spectral density S0 (K), Gaussian sample functions are 

generated as described in section 3.4.2.1. Next, the simulated sample functions JG,(x) are 

mapped to non-Gaussian sample functions having a marginal cumulative distribution 

function, F'sr, prescribed for all the scalar components of the non-Gaussian vector field: 

r = l,2, ... ,m Eq. 3.15 

where F o denotes the Gaussian cumulative distribution function. The transformation in Eq. 

3.11 is nonlinear, and therefore the cross-spectral density matrix resulting from obtained 

non-Gaussian sample functions will not match the target cross-spectral density matrix. To 

solve the problem, Yamazaki and Shinozuka (1988) [222] proposed an iterative scheme. 

Figure 3.4 presents the flowchart to generate a random non-Gaussian m V-nD sample 

functions, after Popescu (1995) [158]. 
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Input data 
Target cross-spectral density matrix, tJ(K) 

Prescribed marginal probability distribution 
functions: 

FBr; r=l,2, ... ,m 

Set initial cross-spectral density matrix of 
Gaussian mV-nD field: si1J(K)4(K) and 

set iteration counter i= 1 

__.j i=i+l ~~----------------~~~ ~~---------~~ r 

Update cross-spectral density 
matrix used to generate 
Gaussian m V -nD field: 

H 

Generate sample function of Gaussian vector 
field using FFT: siJ (K) -? fiJ (X) 

.,,. 
Transform generated Gaussian vector field 

fa(i) (X) into non-Gaussian vector field fB(i) (X) 

r = 1,2, ... ,m 

H 

Compute cross-spectral density matrix of 
resulting non-Gaussian vector field using FFT: 

No .... 

fi'l(X)---)- S¥\K) 

Yes .,, 
END 

Figure 3.4 Flowchart for simulation of m V-nD non-Gaussian stochastic vector fields 
(after Popescu, 1995 [158]). 
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3.4.3. Generation of Sample Functions of a Stochastic Field 

3.4.3.1. Stochastic field mesh 

As described in Section 3.4.2, the continuous stochastic field describing the spatial 

variability of soil properties was estimated at predefined spatial locations. The distances 

Llxi, which are referred to as "stochastic field mesh size", depend on the upper cut-off 

frequency, kiu. and the ratio between Ni and Mi - the number of simulation points in wave 

number domain and in spatial domain, respectively, 

i = 1,2, ... n 
Eq. 3.16 

where the subscript i is the index for spatial dimensions and iJki is the mesh size in the 

wave number domain. The ratio of M/Ni shall be greater than two (Shinozuka and Deodatis 

(1991) [185]). On the other hand, a large value of Ni is required for a reliable discretization 

in the wave number domain. The values of Mi are limited by memory size. The upper cut-

off frequency, kiu, shall be selected according to the correlation structure of the stochastic 

field. 

3.4.3.2. Generated sample functions of stochastic field 

An exponentially decaying model, discussed by Shinozuka and Deodatis (1988) 

[184] among others, was selected for the auto-correlation function. This model is derived 

from the Exponential Decaying (ED) spectral density function, 
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Eq. 3.17 

The expression for the corresponding correlation function is derived using the 

Wiener-Khinchine relation in the form ofFourier cosine transform (Popescu, 1995 [158]), 

Eq. 3.18 

The spectral density function is shown in Figure 3.5. Its spectral density function 

has a zero value at K = 0 and, therefore, is appropriate for the digital simulation procedure 

used in this study (Section 3.4). None of the classical expressions for evaluation of 

correlation distance (Vanmarcke, 1983 [209]) are appropriate for this model. Popescu 

(1995) [158] concluded that the model has finite correlation distance for b1 > 0 and b2 > 0.3. 

Popescu (1995) [158] studied the variation of correlation distance with parameters b1 and 

b2, as shovvn in Figure 3.5c and approximated the correlation distance by, 

8 - = 1.04 -1.3logb2 
bJ Eq. 3.19 

Eq. 3.19 was used for selecting the parameters of the target SDF as a function of 

correlation distances. The cut-off frequency, Kiu, was selected by limiting s(Kiu) < c: (c: ~ 

10-3 to 10-4) obtained from Eq. 3.17. For two generated sample functions of the stochastic 

field, the spectral density functions are compared in Figure 3.6 with the target SDFs and the 
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cumulative::: probability distributions are compared in Figure 3.7 with the target cumulative 

probability distributions. Every generated sample function of soil shear strength followed 

the target probability distribution. 
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3.5. FINITE ELEMENT ANALYSIS 

3.5.1. General Description 

The finite element (FE) method has been widely used in engineering analysis in the 

last few decades. The origins of finite element method can be traced back to three different 

branches of research: applied mathematics (see Courant, 1943 [37]), (2) physics (see 

Synge, 1957 [192]), and (3) engineering (see Agyris and Kelsey, 1954 [2]). The 

development of FE method for practical engineering problems is closely connected with 

the development of digital computers. Though finite element was initially developed in 

structural mechanics (Hrennikoff, 1941 [96] and McHenry, 1943 [120]), it was soon 

applied to other engineering problems in virtually all fields of engineering analysis, 

including heat transfer and fluid mechanics. FE is a numerical method for solving 

engineering and mathematical problems (differential equations), such as stress-strain 

analysis, heat transfer, fluid flow and electromagnetic potential. Continuum finite element 

method is widely used in geotechnique as a general tool for stress and displacement 

analysis. 

This study used finite element analysis to obtain responses for spatially variable soil 

in Monte Carlo simulations, as well as uniform soil for comparison and validation purposes 

(Figure 3.1). This section discusses some general aspects of the finite element analysis 

method used here and presents its application for spatially variable soil. 
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3.5.2. l\1[ain Elements of the Finite Element Model 

3.5.2.1. Element type 

Overconsolidated clay materials were studied in undrained condition. Soil 

undrained loading exhibits an almost incompressible behaviour, which is similar to the 

behaviour of metals at large strains (plastic region). Many researchers have studied the 

application of finite element methods to analysis of incompressible materials. It is known 

that except for plane stress cases, conventional finite element meshes often exhibit too stiff 

behaviour with such material behaviour. The finite element solution of a structure with a 

perfectly plastic material cannot exhibit a limit load; instead, it shows a steadily rising load­

displacement curve attaining load values far in excess of the true limit load (Hibbitt et al., 

1998a [93]). 

The cause of this problem is that the volume at each integration point must remain 

fixed, which puts severe constraints on the kinematically admissible displacement fields. 

For instanee, in a refined three-dimensional mesh of 8-node hexahedra, there is one node 

with three degrees of freedom per element on average. The volume at each integration 

point must remain fixed. Since full integration uses 8 points per element, we have as many 

as 8 constraints per element but only 3 degrees of freedom, resulting in overconstrained 

mesh (it loeks ). A similar problem arises in almost all fully integrated meshes. 

Tht:re are several methods to overcome this problem among others, 

• Using reduced integration elements 

• Using irregularity in meshes 
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• Selective reduced integration element 

• Using hybrid (mixed) elements 

As discussed in the literature review, there are also special finite element 

formulations developed for this purpose (e.g. Merifield et al., 1999 [122]). Using reduced­

integration elements is a common approach to overcoming this behaviour. Reduced 

integration elements result in meshes that are less constrained and, therefore, are less likely 

to become overconstrained. Hibbitt et al. (1998 & 2001) [93 & 94] expressed that usage of 

reduced integration elements effectively eliminates volumetric locking. ABAQUS/Standard 

uses a modified form of selectively reduced integration approach for "fully integrated" first 

order elements ( 4-node elements in two dimensions and 8-node elements in three 

dimensions). This approach is known as B-approach since the strain-displacement 

relationship matrix (the B matrix, [c] = [B] .[u]) is modified. 

Another approach is use of hybrid (mixed) elements. In this approach, 

incompressibility constraints on each element are imposed in some average sense by a 

Lagrange multiplier technique. This approach allows for modelling of fully incompressible 

material behaviour, due to the fact that coupling only involves the inverse of the bulk 

modulus. 

The reduced integration elements were selected for the finite element analyses 

described in Chapters 4 & 5 for two-dimensional plane strain analysis. Also, the behaviour 

of material is assumed approximately incompressible ( v = 0.49) to simulate undrained 

loading condition. 
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3.5.2.2. Mesh size 

Mesh size effects are well known, particularly in prediction of collapse loads. An 

accurate prediction of failure loads needs very fine meshes or use of remeshing (adaptive 

meshing) in areas where failure surfaces develop. However, using a fine mesh is 

numerically very expensive, particularly for this research where thousands of finite element 

analyses were performed. Use of new techniques, such as adaptive meshing, is 

sophisticated and costly as well. 

It is acknowledged that regular meshes fail to predict the collapse load precisely; 

however, they are able to predict the collapse load by very good approximation. The main 

goal in this research was to investigate the effects of soil spatial variability on predicted 

loads. Hence, rather than using finer meshes or sophisticated approaches, a comparison 

study was conducted. The results of the finite element analyses with stochastic input were 

compared to results from the finite element analyses with uniform soil. In both analyses, 

identical meshes were used to compensate for the mesh effects. This is detailed for 

foundation and pipe analysis in Chapters 4 & 5. 

3.5.2.3. Plasticity models 

Tresca (Tresca, 1867 [205]) and von Mises (von Mises, 1913 [215]) - simple 

pressure independent plasticity models - were considered to model undrained behaviour of 

overconsolidated clay. Tresca's yield criterion stipulates that yielding occurs when the 

maximum shear stress reaches the critical intensity, k. Tresca's criterion states that for 

plastic flow, the largest of the differences of principal stresses has the value of cu (k = 2c,J. 
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This is graphically demonstrated in terms of principal stress in Figure 3.8. If cr1 > cr2> cr3, 

this can be written in terms of principal stress, 

Eq. 3.20 

It c:an be expressed in terms of stress invariants according to Figure 3.9, 

(jl = p + }3 p; sin( e + 
2
; ) 

cr2 = p + }3 jJ; sin(B) 

cr = p + _1_ fJ sin(B -
2

7t ) 3 -[3"\fJz 
3 

Thus, Tresca criterion can be written as, 

2-..J'T; cos e = k 

Eq. 3.21 

Eq. 3.22 

where Bean be measured from Figure 3.9. B is the polar angle measured from the plane of 

pure shear or undrained loading and can be written as, 

. 3-J3J3 
sm3B =-

312 2J3 

7r 7r 
for --~B~+-

6 6 Eq. 3.23 

where stress invariants h and J3 can be defined in terms of principal stresses as, 

Eq. 3.24 

Eq. 3.25 
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For axial loading, B =- 7d6J and for undrained loading in plane strain condition, 

B= 0. In terms of stress invariants, Tresca's yield surface can be expressed by, 

Eq. 3.26 

Another yield surface frequently used for pressure independent material is von-

Mises crit~~rion, 

Eq. 3.27 

For axial loading condition, k is the yield stress measured in axial experiment and is 

similar to Tresca's criterion. However, the model is different for pure shear or undrained 

loading. Looking at Figure 3.8 and Figure 3.9, it is possible to determine that the model has 

about 15% difference for undrained loading (--./4/3 = 1.15). Differences between Tresca and 

von Mises models are shown in Figure 3.10. Concerning soil materials, the maximum shear 

stress usually governs the behaviour. Consequently, the Tresca model was selected in this 

study to model soil behaviour. 
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Figure 3.8 Tresca yield surfaces (after Prevost, 1990 [171]). Von Mises yield criteria is 
shown by dashed line. 
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Figure 3.9 Deviatoric stress plane (after Prevost, 1990 [171]). 
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Figure 3.10 Comparison of Tresca and von Mises yield surfaces in 3 dimensional 
principal stress space (after V enkatraman and Patel, 1970 [211 ]). 

3.5.3. Finite Element Code, ABAQUS/Standard 

0"1 

The finite element code, ABAQUS/Standard v5.8, 6.1 and 6.2, was used in the 

study. ABAQUS is a general purpose program for the static and transient responses of two 

and three-dimensional systems; it offers standard options, or can be customized to address 

many of the challenges involved in a study of geotechnical structures, such as: (1) 3D soil-

structure analysis, using complex finite strain constitutive models and accounting for large 

deformation effects; (2) coupled field equations capabilities for two phase media; (3) 

contact analysis capabilities for simulating the soil-structure interface; and ( 4) large 

deformation formulation capable of capturing collapse mechanisms and strain localisation. 
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ABAQUS/Standard is widely available, and its use is well documented. The program has 

been widely used for 2D and 3D finite element analyses of soil-structure interaction 

involving large relative deformations, and it has been validated based on results of full­

scale tests (Popescu et al., 1999 [166]; Nobahar et al., 2000 [141]; Popescu et al., 2001 

[160]). 

3.5.3.1. Modelling soil-structure interaction 

ABAQUS offers very general contact capabilities and can model possible 

interaction, sliding, and loss of contact between soil and structure bodies. One approach is 

to define contact surfaces and then pair surfaces that are in contact or may potentially 

contact eaeh other. Surface interaction properties, such as friction, can be defined for each 

contact pair. Several types of contact problems can be defined using the general approach 

that follows (Hibbitt et al., 2001 [94]), 

• Contact between two deformable bodies. The structures can be either two­

or three-dimensional, and they can undergo either small or finite sliding. 

Examples of such problems are 2D and 3D analysis of buried pipelines 

(Popescu et al., 2001 [160] and Nobahar et al., 2000 [141]). 

• Contact between a rigid surface and a deformable body. The structures can 

be either two- or three-dimensional, and they can undergo either small or 

finite sliding. For example, contact between a rigid foundation or pipe and a 

deformable soil can be modelled using this option. 
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• Contact between a set of points and a deformable surface. These models can 

be either two- or three-dimensional. An example of this class of contact 

problem is a building model by structural beams on a deformable soil. 

• Problems where two separate surfaces need to be "tied" together so that 

there is no relative motion between them. This modelling technique allows 

for joining dissimilar meshes. 

Structure-soil (foundation-soil or pipe-soil) contacts can be included in the first 

category. ·when surfaces are in contact, they usually transmit shear as well as normal forces 

across the:ir interface. There is generally a relationship between these two force 

components. The relationship, known as the friction between the contacting bodies, is 

usually expressed in terms of the stresses at the interface of the bodies. The friction model 

in ABAQUS is an extended version of the classical isotropic Coulomb friction model. It 

allows the friction coefficient to be defined in terms of slip rate, contact pressure, average 

surface temperature at the contact point, and field variables. A shear stress limit, which is 

the maximum value of shear stress that can be carried by the interface before the surfaces 

begin to slide, can be prescribed. The method is implemented with a stiffness (penalty) 

method. It has several other capabilities and can be customized using user subroutines. 

3.5.3.2. Soil material behaviour modelling 

Both von-Mises and Tresca plasticity models are available in ABAQUS/Standard. 

The Von Mises plasticity criterion is developed in ABAQUS/Standard as a classic isotropic 

metal plasticity model, which may have several yield surfaces with associated plastic flow. 
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It can be used in crash and general collapse studies. The Tresca model in ABAQUS is 

developed based on Mohr Coulomb plasticity model. 

3.5.4. Fllnite Element Analysis with Stochastic Input- Issues 

As discussed in Section 2.1.2, stochastic finite element methods are a class of 

methodologies used to analyse structures with spatial uncertainty in loads, material 

properties and/or geometry. As mentioned, the only universal SFEM that can be used for 

any structure (e.g. involving material and geometric nonlinearity, large parameter 

variability and non-Gaussian distribution of parameters) appears to be the Monte Carlo 

simulation technique. 

In this regard, a conventional deterministic finite element method with spatially 

variable input was used for each realization of the soil properties over the analysis domain 

(a sample function of a stochastic field). As described in Section 3.4, sample functions of 

uncertain quantities were digitally generated to be compatible with prescribed probabilistic 

characteristics. These generated sample functions were used to define input parameters for 

each finite element analysis. Each finite element analysis was taken as one realization of 

foundation failure on heterogeneous soil in the framework of Monte Carlo simulation 

methodology. 

3.5.4.1. Transfer and mapping of random data 

There are substantial restrictions for the stochastic field mesh size in spatial 

domain. The finite element mesh used in analysis should be selected according to 

numerical needs for modelling of the physical problem and its behaviour. Hence, it is very 
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likely to have different meshes for the random field discretization and the finite element 

analysis of the structural or geotechnical systems. Thus, a transfer of data may be required 

from one mesh to another mesh. In this study, this transfer was avoided as much as 

possible. However, in the case of the lateral loading of buried pipeline, this was not 

possible due to geometric restrictions. 

Numerous transfer methods are available (see Brenner, 1991 [19]). The following 

two methods were evaluated, 

• The midpoint method (e.g. Shinozuka and Dasgupta, 1986 [183]; Yamazaki 

et. al. 1988; Der Kiureghian and Ke, 1988 [49]; Deodatis, 1989 [46]) is a 

point discretization type method. The random field is represented by its 

values at centroids of each finite element (or closest point to the centre of 

element). 

• The local averaging (or spatial averaging) method, proposed by V anmarcke 

(1977) [208] and Vanmarcke and Grigoriu (1983) [210], assigns to each 

element a value obtained as an average of stochastic field values over the 

element domain. 

Popescu (1995) [158] performed a study for comparison of these two methods, and 

concluded that for non-Gaussian fields, the midpoint method is more appropriate, as it 

preserves the probability distribution of the original field. Der Kiureghian and Ke (1988) 

[ 48] concluded that the midpoint method over-represents the variability of the random field 

while the spatial averaging method tends to under-represent the true variability. They also 

demonstrated that for Gaussian fields, the spatial averaging method seems to be a more 
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logical approach to random field discretization; it was proven to provide better accuracy 

than the midpoint approach. In this study, non-Gaussian probability distributions were 

considered for soil properties, so the midpoint method was selected here. Geometrically 

similar finite element and stochastic mesh were used to facilitate the transfer of data 

between the two meshes. 

3. 5.4.2. Automation of the generation and mapping of sample functions of a stochastic 

field 

For the parametric studies, a large number of sample functions of various stochastic 

fields were simulated for each case. Next, these sample functions were used to create input 

files for finite element analysis (see Figure 3.1). A sample of this input file is presented in 

Appendix A. For each case, 100 to 1200 finite element input files were executed and post­

processed. Results were used in the framework of Monte Carlo simulation to obtain 

probabilistic characteristics of the desired response. These procedures were automated 

using Microsoft Excel® spreadsheets, Microsoft Visual Basic® for Application and 

MATLAB®. Appendix B provides an explanation of the automation ofthese procedures. 
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3.6. CALIBRATION OF RESULTS FOR ENGINEERING DESIGN 

3.6.1. Introduction 

At1ter performing Monte Carlo simulations, the results were analysed to assess the 

effects of soil heterogeneity on bearing capacity. This included systematic parametric 

studies. Probabilistic characteristics of response (e.g. mean and coefficient of variation of 

bearing capacity) were obtained for every design case. These results can be directly used in 

reliability analysis level II and level III. Also it is possible to use them in the limit state 

design method (reliability level I) and incorporate them with other routine engineering 

concepts. J[n this section, it is shown how the results of the study can be used to evaluate 

characteristic values, evaluate the required safety factor for desired reliability levels, and to 

account for them in a formal limit state design format. 

3.6.2. Characteristic Values/Percentiles 

As mentioned, usage of conservative values instead of mean strength is common in 

engineering design. These values are so called nominal or characteristic values (see Section 

2.4). As mentioned in Section 2.4, it is very important to have a unified definition for 

characteristic values (see Becker, 1996a [15]; Cardoso and Fernandes, 2001 [24]). As 

noted in the literature review (Section 2.4.2.1 ), characteristic values are defined based on 

engineering experience and statistical percentiles. A 95-percentile is a value of resistance 

with 95% reliability. In other words, 5% fractile of resistance is taken as characteristic 

resistance. 
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Soil strength has high point variability, however this high variability itself is not 

important. Soil strength average value on the failure surface and its corresponding 

variability are important for design. Here results of Monte Carlo simulations are used to 

obtain characteristic values of bearing capacity for each case analysed. These values are 

defined as bearing capacity values with 95% reliability. These values are curve fitted as 

functions of parameters of soil spatial variability (coefficient of variation, probability 

distribution and correlation distances). The results can be used to estimate the characteristic 

bearing capacity or corresponding characteristic value of soil shear strength to be used in a 

conventional analysis (assuming uniform soil), resulting in an equivalent bearing capacity 

with the one of the heterogeneous soil for a given confidence interval (here 95%). The 

calculations are detailed in Chapter 4 for investigated cases. 

It i:s also possible to define a certain percentile of soil shear strength to be used in 

design. As mentioned, some design codes advise on use of resistance with 95% of 

reliability. However, due to high point variability of soil strength, using a 95% of soil 

strength would be too conservative. In addition, as discussed in the literature review, 

behaviour of heterogeneous materials differs from uniform materials. For example, 

Nobahar and Popescu (2000) concluded that 88-percentile of recorded soil strength used in 

a deterministic finite element analysis will provide similar results with the 95-percentile 

of the bearing capacity resulting from Monte Carlo simulations for a specific set of 

probabilistic characteristics of soil properties. However, using another set of probabilistic 

characteristics results in a different characteristic percentile. 
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3.6.3. Reliability Analysis and Required Safety Factors 

Using the results of Monte Carlo simulations, it is possible to estimate the required 

safety factor to secure probability of failure at target probability level or target reliability 

index. The number of samples in Monte Carlo simulations performed in this regard was not 

sufficient for estimating the target reliability levels in the range of 1 o-3 to 1 o-5
. Therefore, 

theoretical probability distributions are fitted to the predicted results, and the results are 

extrapolat(!d to the target level. Such extrapolations are common in risk and reliability 

analysis. Load variability was not considered here. 

Also, two types of reliability indices can be used here (e.g. Thoft-Christian and 

Baker [202]; Barker and Puckett, 1997 [13]): (1) reliability indices based on normal 

distribution, 

and (2) reliability indices based on lognormal distributions, 

R 
ln(-=-) 

fJ= s 
~vz + vz R S 

Eq. 3.28 

Eq. 3.29 

where a-~ VR, a-s, and Vs are the standard deviation and the coefficients of variation for 

resistance, R, and load, S, respectively. R is average resistance and S is average load; 

both are assumed to be independent variables. 

122 



3.6.4. Calibration of Partial Design Factors 

Calibration of design factors should be conducted to ensure a specific goal. This 

goal may be to optimise safety, risk, economic indices etc. The selection of a structural 

reliability level against one or more potential risks takes into account the structural failure 

probabilities as well as the probabilities that these failures may lead to prejudicial 

consequences. So, a non-uniform reliability level may lead to optimal solutions from an 

economical point of view. As a matter of fact, the complete calibration process should take 

into account complex criteria such as failure modes, the expected consequences, the risk 

prevention methods, the fluctuating construction costs, the expected failures costs as well 

as the maintenance and the repair costs. 

Design codes have roots in engineering experience, which is very valuable and 

continues 1to empirically address design needs. As such, design codes have steadily been 

improved. To provide a unified and scientific approach, design codes have been calibrated 

to secure some target reliabilities. An appropriate set of load and resistance factors together 

with a clear method of estimation of nominal or characteristic value shall be used to secure 

a desired n;:liability level. The goal usually is to have a uniform reliability in structure. This 

goal is used here to calibrate resistance factors. 

Reliability is often presented by a reliability index in engineering codes. In general 

a reliability index fJ of 3 to 4 is considered suitable in structural and geotechnical design. 

Using a calibration technique, the weighted average of corresponding values of fJ in 

Canadian structural design specifications, for most practical or typical combinations of 

123 



loads, was found to range from 2.5 to slightly greater than 4.0 (MacGregor, 1976 [118]; 

Allen, 1975 [3]). 

This study focused on the uncertainty in the resistance. The goal was assumed to be 

the calibration of partial design factors to satisfy a uniform reliability index of 3.5. It is 

possible to separate the effects of load and resistance uncertainty on reliability index in the 

approach presented hereafter. In this way, partial load factors are only functions of load 

uncertainty and partial design factors are only functions of resistance uncertainty. In this 

study, only soil undrained shear strength was addressed. Thus, only one partial factor was 

calibrated based on uncertainty in undrained shear strength. 

Assuming Eq. 3.29 for the reliability index, Becker (1996b) [16] has shown that 

resistance and load factors can be obtained by, 

<D = k e -8f3VR 
R Eq. 3.30 

Eq. 3.31 

where ~ a are resistance and load factors. kR and ks are reduction and increase factors used 

to obtain the characteristic (nominal) resistance and load, 

R=!!_ 
n k 

R 

S=_§_ 
n k 

s 
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where Rn, R , Sn, S are nominal and average resistance and load, respectively. B is 

separation coefficient defined as, 

Eq. 3.34 

where VR, Vs are the coefficients of variation for resistance and load. It was found that 

B varies from a minimum of about 0.7 to maximum of 1.0. For an expected practical range 

of VR!Vs of 0.5 to 5, the value of B varies within a relatively narrow range of 0.7 to 0.85. 

Becker (1996b) [16] stated that, in view of the complexity of the analysis and the 

insufficient geotechnical database, a value of B = 0.75 can be taken. This value was used 

for calibrating the resistance factor. 

The average resistance in Eq. 3.31 should be the predicted mean resistance on 

heterogeneous soil from Monte Carlo simulations. It can be expressed as resistance on 

uniform soil divided by a heterogeneity factor, 

Eq. 3.35 

Therefore, Eq. 3.30 should be changed to, 

Eq. 3.36 

Similarly, if normal distributions are assumed for load and resistance, 
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<1> = 1- BfJVR .k ~ 4- 3fJVR .k 
k R 4k R 

H H Eq. 3.37 

See Appendix C for details of calculations. 

Using the described approach, the required partial design factor for resistance is 

calculated using the fitted response surface equations. The partial design factor for soil 

undrained shear strength was obtained using two different methodologies to satisfy a 

reliability index of 3.5. In the first approach, it was assumed that the value of kR = 1 in Eq. 

3.36. In other words, it was assumed that average resistance is taken as a characteristic 

value (common in geotechnical design). Next, the required partial resistance factor was 

determined from the described approach. In the second approach, characteristic values 

suggested in section 3.6.1 were used to obtain the required resistance factor at each point. 

This means that a variable kR depending on uncertainty involved was used. 

3.7. SUMMARY 

The methodology used here is presented in Figure 3.1. The methodology, as 

presented in this chapter combined a deterministic finite element model with stochastic 

input (sample function of a stochastic field) and Monte Carlo simulation approach to 

evaluate the effects of stochastic variability of soil properties in geotechnical design 

(namely bearing capacity problem) through a series of parametric studies. The integration 

of the Monte Carlo simulations and the methodology is detailed in Figure 3 .1. From in-situ 

tests, it is possible to extract the characteristics of soil spatial variability. Here, the ranges of 

the characteristics of soil spatial variability (coefficient of variation, shape of probability 
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distribution, and correlation distances) were evaluated based on a literature review (Phoon 

and Kulhawy, 1999b [155]; Popescu, 1998b [163] -see Section 2.1). Parametric studies 

were designed using the design of experiment (DOE) methodology as described in Section 

3.3. Then, sample functions of the stochastic field were digitally generated for every case 

as detailed in Section 3.4. Monte Carlo simulations were performed for every case. For 

each replication of Monte Carlo simulations, a sample function of the stochastic field was 

generated. This sample function was used to define soil properties (here shear strength) at 

each point over domain of interest and mapped to an appropriate finite element mesh. 

Conventional finite element analysis was performed to obtain the structural response (e.g. 

bearing pressure vs. settlement). The procedure was replicated for the required number of 

simulations. The results of the Monte Carlo simulations were studied through the 

investigation of the system's behaviour and failure mechanism on heterogeneous soil, as 

well as statistical analysis. Having a sufficient number of results of Monte Carlo 

simulations based on realistic data, it was possible to determine probabilistic characteristics 

of bearing capacity, such as mean and standard deviation. The influence of various 

probabilistic characteristics of soil strength on the geotechnical system could then be 

assessed. 

Since Monte Carlo simulations are complicated and numerically very costly, the 

goal was to compare the results of stochastic analysis with conventional deterministic 

analysis to provide some design recommendations to account for the effects of soil 

heterogeneity in conventional analysis. This has been done through: 
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• Providing characteristic values. Design codes account indirectly for 

variability of soil properties by using a "conservatively assessed nominal 

value" of soil strength. This value, in structural engineering (advised in 

general in Eurocode and Canadian LSD code) is taken as the 95-percentile 

soil strength, determined from a number of measurements. This 

conservative value is not established based on strong theoretical or 

experimental studies. 

It is also possible to define a characteristic percentile of soil strength that, when used in 

deterministic analysis, will provide a similar pressure-settlement relationship as was 

obtained from Monte Carlo simulations for a given confidence interval. 

• Calibration of the required safety factor for the desired reliability levels. 

• Calibration of the partial resistance factor as detailed in Section 3.6. 

Consequently, the conventional methods can be verified and adjusted to provide a 

more realistic reliability level. Of course, it should be mentioned that design methods are 

based on many years of engineering practice, and this research can help provide a better 

assessment of uncertainties involved in geotechnical problems with high natural variability 

and nonlinear behaviour. 

It is also possible to use the results of the study in terms of probabilistic 

characteristics of foundation response on heterogeneous soil in reliability analysis level II 

and III. This can be done through back calculations of partial design factors for reliability 

level II analysis (Section 3.6) and through the use of cumulative distribution functions of 

resistance for reliability level III analysis. 
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Finally, it is possible to provide a more accurate assessment of reliability level of 

geotechnical structures accounting for the effects of spatial variability. Such assessments 

can become fundamental in establishing a robust theoretical approach for verifying design 

methods based on the target reliability level, which may lead to adjustment and verification 

of current safety factors and/or design approaches to secure a more uniform desired 

reliability Ievel. 
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CHAPTER 4 

BEARING CAPACITY OF SHALLOW 
FOUNDATIONS 

4.1. INTRODUCTION 

4.1.1 Description 

The effects of inherent spatial variability of soil properties on the bearing capacity 

of strip footings subjected to vertical loads, and placed on a perfectly elastic-plastic soil 

deposit were investigated through a series of parametric studies. A Monte Carlo simulation 

methodology, discussed in the previous chapter, was used here. Results from Monte Carlo 

simulations accounting for the spatial variability of soil strength, and deterministic analyses 

assuming uniform soil properties were compared. Effects of the probability distribution, 

soil strength variability, and correlation distances were investigated through parametric 

studies. As described in Section 3.3, the studied cases were designed using statistical 

approaches (DOE). The results were statistically analysed to draw scientific conclusions. 

The main parameters of probabilistic characteristics of heterogeneous soil affecting 

foundation responses and their contributions were determined. Based on the results, some 

design recommendations were put forward. In this Chapter, the word 'foundation' refers to 

a strip foundation placed at the ground level. 
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4.1.2 Objectives 

Monte Carlo simulation approach and other adequate probabilistic approaches are 

complicated and numerically expensive for routine design. Thus, the aim of this study was 

to determine the effects of spatial variability of soil on bearing capacity and behaviour of a 

foundation and consequently provide necessary design recommendations for engineering 

application. This provides a tool to assess the effects of soil heterogeneity with minimal 

analysis efforts and limited statistical information. The objectives of this study were: 

• To investigate the effects of soil heterogeneity on differential settlement and 

bearing capacity of shallow foundations. 

• To screen and determine the contributions of the main factors influencing 

soil spatial variability characteristics (degree of variability of the soil 

strength, probability distribution functions, horizontal and vertical 

correlation distances and ratio of soil Young's modulus to its shear strength, 

E/cu). 

• To provide simple regression equations for bearing capacity and foundation 

responses based on soil stochastic characteristics and demonstrate their 

applicability in design and reliability analysis. 

• To provide design recommendations by (1) proposing characteristic values 

of soil properties and characteristic resistance values for use in design and 

assessment of reliability level of geotechnical systems, (2) regression of 

partial design factors, and (3) back calculation of safety factors. 
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4.1.3 Limitations 

The main limitation of the study was the relatively small number of samples in 

Monte Carlo simulations. This was due to the numerical cost. Monte Carlo simulation 

results can be confidently used to obtain probabilistic characteristics of structural resistance 

(e.g. mean and standard deviation). However, in order to estimate reliability levels of the 

order of 1 o-3 to 1 o-4
, common probabilistic distributions were fitted to the results of Monte 

Carlo simulations and extrapolated for the tails. An alternative way is the second moment 

probabilistic method, which only uses mean and standard deviation of the results (e.g. 

Becker 1996a&b [15&16]). As discussed in Section 3.6, this method is identical to using a 

normal/lognormal fit. 

To counter the above limitation, different theoretical probabilistic distributions 

(normal, lognormal, and gamma) were fitted to the results of Monte Carlo simulations. 

However, no single distribution was found to be the most suitable for all studied cases. 

Lognormal distribution was selected to be the overall best representative. This was another 

limitation of study and it was related to the first limitation. It requires further investigation 

by using a much larger number of replications for Monte Carlo simulations and statistical 

analysis. 
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4.2. DETERMINISTIC FINITE ELEMENT ANALYSIS 

4.2.1 Optimisation of Numerical Model 

4.2.1.1. Finite element domain and boundaries 

A study was performed for a strip shallow foundation on homogeneous soil to find 

the necessary extent of the analysis domain. A 4m wide strip foundation was placed on the 

surface of a 1Om deep layer of over-consolidated clay, as shown in Figure 4.1. The soil was 

discretized using 4-node linear finite elements with reduced integration (CPE4R) in 

ABAQUS/Standard. A rigid layer was assumed at the base of the analysis domain. This 

rigid layer had minimal effect on the bearing capacity of the foundation. According to a 

study perfi)rmed by Merifield et al. (1999) [122], the rigid layer at the base of the analysis 

domain for a two-layered soil deposit does not have a noticeable effect on the static 

response of the foundation for depths of rigid layer larger than the foundation width, B. In 

this study, the rigid boundary was assumed at a depth, z = 2.5B. 
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Figure 4.1 Finite element mesh. 
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The effects of the lateral boundary condition on the foundation response were 

investigated (see Figure 4.2). The length of the analysis domain, L, varied from 24m to 

48m. The results showed almost no difference in the predicted bearing pressure-settlement 

curves. The results in terms of bearing pressure and settlements were normalized. The 

normalized pressure was defined as the ratio of the average pressure beneath the foundation 

to the mean undrained shear strength. The normalized settlement was defined as the ratio of 

the average settlement to foundation width. A width of 30m for the analysis domain is 

considered hereafter. 
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Figure 4.2 Effects of lateral boundary conditions. 

4.2.1.2. Selection of the finite element type 

Deterministic finite element analyses of a strip foundation on undrained soil stratum 

were performed using several types of2-D plane strain elements, as discussed hereafter. An 

elastic perfectly plastic model with a Tresca yield criterion was selected. According to 

Hibbitt et al. (1998 & 2001) [92&94], a finite element analysis of a perfectly plastic 

material cannot predict a limit load, rather will predict a steady increasing load 

displacement curve attaining loads far in excess of the true limit load. This behaviour is due 

to volumetric locking. Reduced integration elements have fewer constraints for volumetric 

locking and, therefore, are recommended for this type of analysis. An alternative approach 

is to use a selectively reduced integrated approach. This method is available for 4-node 

full-integrated elements in ABAQUS/Standard. A comparison was performed to study 

these elements. Figure 4.3 shows the predicted force-displacement curves in terms of 
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normalized pressure vs. normalized settlement from four types of finite elements. The 4-

node reduced integration element had the best performance (among elements available in 

ABAQUS/Standard for plane strain analysis) and the lowest computational cost; thus, it 

was selected for this study. 
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Figure 4.3 Comparison of the effects of element type on predicted bearing capacity of a 
shallow foundation. 

4.2.1.3. Mesh size selection 

An appropriate size of the finite element mesh should be selected to correctly 

capture the~ failure mechanism and the failure load of the foundation. In addition, the mesh 

size should be capable of capturing the essential features of the correlation structure (e.g. 
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Popescu, 1995 [158]). Therefore, this mesh size depends on the correlation distances ofthe 

soil properties. Der Kiureghian and Ke (1988) [48] suggested that 0.25 to 0.5 of the 

correlation distance should be taken as maximum mesh size. The correlation distances in 

the vertical directions were assumed in range of 1m to 4m (minimum of 1 m). Therefore, a 

finite element size of 0.25m in the vertical direction was selected. Assumed horizontal 

correlation distances were larger than or equal to 4 m, imposing an upper limit of 1m to 2m 

on the finite element size in the horizontal direction. 

A study was performed on the effects of the mesh size on the predicted bearing 

capacity of the foundation. The different meshes used are shown in Figure 4.4. The results 

of foundation response in terms of normalized pressure vs. normalized settlement (pn vs. 

Lln) are shown in Figure 4.5. The bearing capacity predicted by the numerical model was 

higher than the theoretical value obtained assuming a rigid perfectly plastic behaviour with 

a smooth contact surface between foundation and soil (shown by a dashed line in Figure 

4.5). This difference was due to a number of reasons, including: 1) elastic perfectly plastic 

behaviour postulated here resulted in a gradual increase of plastic zones, which caused a 

steady increase in bearing capacity, and 2) use of a frictional contact surface below the 

foundation increased the bearing capacity due to its rough behaviour. It can be seen that the 

fine mesh yielded results that were closer to the theoretical value of 5 .14. An explanation is 

the capability of a finer mesh to reproduce plastic strain concentration in narrower zones. In 

this study,, a large number of finite element analyses were required. Exact numerical 

prediction of collapse load was not the main goal, rather its relative variation due to soil 

heterogeneity. Therefore, a finite element mesh size of 0.25m in the vertical direction and 
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0.5m in the horizontal direction was selected. This was labelled as "standard mesh" in 

Figure 4.5. 
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a. 

b. 

c. 

Figure 4.4 Finite element meshes for bearing capacity of foundation: (a) mesh size of 
1.0 by 0.5 m (b) mesh size of0.5 by 0.25 and (c) mesh size of0.25 by 
0.125m. 
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Figure 4.5 Effects of mesh size on the predicted bearing capacity of foundation. 

4. 2.1. 4. Numerical issues 

Bearing capacity of a strip footing on a uniform cohesive soil can be obtained using 

the theory of plasticity. However, estimation of the failure loads of geotechnical systems 

using the displacement finite element method faces numerical difficulties. It is well known 

that displacement-based finite element methods tend to over-predict the failure load of 

geotechnical systems. Many researchers have investigated the predictions of failure load of 

geotechnical systems and their difficulties particularly in an undrained situation (e.g. 

Nagtegaal et al, 1974 [132]; Merifield et al., 1999 [122]; Taiebat and Carter 2000 & 2002 

[193&194]). Capturing a definite failure point for purely elastic perfectly plastic material is 

not possible. Taiebat and Carter (2000) [193) stated that for elastic perfectly plastic finite 
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element analyses of foundation subjected to vertical loading, it is very difficult to find a 

point at which the overall failure can be deemed to occur. They attributed this to gradual 

developmtmt of plastic zones. They used a small horizontal force to capture the failure 

point and defined the point of decrease in horizontal load as the failure load. In this study, a 

certain displacement was taken as the failure point after studying hundreds of finite element 

runs. The aim was to compare the results of uniform and heterogeneous soil; the bearing 

capacity at the same displacement for uniform and heterogeneous soil was obtained- i.e. at 

normalized settlement Ltn = 0.0125. 

4.2.2 Deterministic Finite Element Analysis 

4.2.2.1. Analysis set-up 

Based on the study described in Section 4.2.1, the finite element mesh shown in 

Figure 4.1 was used in analysis hereafter. The lateral and horizontal boundary conditions 

are illustrated in Figure 4.1 and discussed in Section 4.2.1.1. The interface between soil and 

strip foundation was modelled using the contact surface capability implemented in 

ABAQUS/Standard. A frictional Coulomb interface with separation capability was 

considered between the foundation and soil. The limiting value for the shear resistance at 

the interface was taken to be about one third of the undrained shear strength of soil (Paulin, 

1998 [150]). The soil was discretized using 2400 4-node linear finite elements with reduced 

integration (CPE4R). Vertical displacements were gradually imposed to the centre of the 

foundation base to simulate a vertical central load at the foundation level. Some researchers 

suggest that imposing vertical displacements instead of loads tends to overestimate collapse 
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load. However, applying force creates numerical difficulties related to softening of the 

foundation. The model had large deformation/strain formulations and was capable of 

capturing unsymmetrical behaviour. 

An elastic perfectly plastic model with a Tresca yield criterion was selected for this 

study (see Section 3.5.2.3 for discussion). The model required the following constitutive 

parameters: Young's modulus (£), Poisson's ratio (v), and cohesion (cu). A uniform 

overconsolidated soil stratum with average undrained shear strength, Cu of 1 OOkPa is 

considered in deterministic analysis. A range for the Young's modulus for undrained 

loading was assumed by considering two extreme values: E = 300 cu and E = 1500 cu (see 

Bowles, 1997 [20] for typical values of soil stiffness). A value v = 0.49, appropriate for 

undrained eonditions, was assumed for the Poisson's ratio. 

4.2.2.2. Results 

Finite element results in terms of normalized pressure vs. normalized settlement are 

presented in Figure 4.6 for two cases: (a) high E, using Young's modulus E = 1500 cu and 

(b) low E, using Young's modulus E = 300 Cu. Pressure beneath the foundation and 

foundation settlement were normalized by dividing by soil shear strength and foundation 

width respectively. Figure 4.6 shows that failure load may not be exactly the same for the 

foundation placed on stiff soil and soft soil. To avoid the interference of these effects with 

the effects of soil heterogeneity, Monte Carlo simulation results were always compared 

relative to their corresponding base cases- namely deterministic analysis results. 
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Figure 4.6 Predicted normalized pressure vs. normalized settlement curves for a strip 
foundation placed on uniform soil. 

4. 2. 2. 3. Effects of imperfection in deterministic analysis 

The effects of an imperfection in the soil were investigated by considering a 

uniform soil with an imperfection presented by a small portion ofthe soil comprised of four 

finite elements with Cu = 200 kPa, as shown in Figure 4.7a. The results of the two analyses 

are compared in Figure 4. 7b&c. The imperfection imposed significant changes in the 

behaviour of the soil-structure system. Obviously, there was no rotation in the uniform soil 

but the soil with imperfection induced a significant rotation of the foundation, which could 

become a governing criterion from serviceability aspect. The evolution of equivalent plastic 

strain contours (Figure 4.8) illustrates the predicted failure mechanism. Results showed that 
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ABAQUS/Standard is able to capture the effects of imperfection in failure mechanism and 

soil spatial variability may cause significant changes in the response of the foundation. 
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Figure 4.7 Analysis of the effects of imperfection with ABAQUS/Standard: (a) finite 
element mesh (b) Predicted pressure-settlement relationship of the 
foundation on uniform soil and soil with imperfection; (c) Predicted 
pressure-rotation relationship of the foundation on soil with imperfection. 

144 



The equivalent plastic strain, y, is expressed as (Hibbitt et al. 1998), 

~~ y(t) =Yo + f -dy: dy 
0 3 Eq. 4.1 

where Yo == 0 is the initial equivalent plastic strain and dyis the plastic strain rate tensor-

the operator":" represents the trace of two tensors. 

a. Initial soil 
level 

b. 
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Figure 4.8 Predicted deformed shape and contours of equivalent plastic strain, y, for a 
foundation on uniform soil and soil with imperfection at settlement d=40 
em: a. uniform soil; b. soil with imperfection. 

4.3. STOCHASTIC FINITE ELEMENT ANALYSIS 

4.3.1 The Studied Ranges of Probabilistic Characteristics for Soil 

Variability 

Soil probabilistic model and its parameters were selected based on values published 

in the literature review (as discussed in Section 2.1 and 3 .2). Since shallow foundations are 

usually placed on medium to stiff clays, a range of Cv= 10% to 40% was selected for soil 
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beneath shallow foundations. This was based on findings in the literature review (Section 

2.1.1.3 ). A separable correlation structure with ranges of scale of fluctuations, ~n = ~IB = 

1.0 to 4.0, and Bvn = B/B = 0.25 to 1.0, was considered in the parametric study (where B is 

the width of the foundation, and ()h and Bv are correlation distances in the horizontal and 

vertical directions). Two different probability distribution functions were assumed for the 

soil strength: (1) a Gamma distribution skewed to the right, and (2) a symmetrical Beta 

distribution (see Figure 3.2). 

4.3.2 Filnite Element Analysis with Spatially Variable Soil 

Figure 4.9b and Figure 4.9c show the results of a finite element analysis with 

spatially variable soil properties in terms of plastic shear strains. Figure 4.9a shows the 

point variability of shear strength over the domain of interest. This point variability was 

mapped to the finite element mesh using the mid-point method, as discussed in Section 

3.5.4. Figure 4.9b and Figure 4.10b show how a local shear failure develops below the 

foundation at a much lower bearing pressure than the general symmetric failure in Figure 

4.8a does. Subsequently, increasing the imposed foundation settlement caused another 

asymmetric general shear failure to develop. It should be mentioned that both failure 

surfaces were developed mainly through the loose pockets of soil, indicated by darker 

patches in Figure 4.9a. Figure 4.10 shows the predicted normalized pressure/normalized 

settlement and normalized pressure/slope for the sample realization of heterogeneous soil 

shown in Figure 4.9. The effects of soil heterogeneity were clearly captured by the finite 
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element model. Spatial variability of soil shear strength affected the failure mechanism and 

response of the foundation. 
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One sample function for shear 
"'"r"'"'""" ratio 

.05 

Figure 4.9 A finite element analysis with spatially variable soil input (one sample 
realization ofMonte Carlo simulations) (a) realization of undrained shear 
strength - the contours shows the ratio of actual undrained shear strength to 
the average value used in the deterministic analysis, (b) contours ofplastic 
shear strain showing the local failure and (c) contours of plastic shear strain 
- asymmetric general shear failure. 
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4.3.3 Monte Carlo Simulation Results 

4. 3. 3.1. Example of a typical analysis 

Results of a study by Nobahar and Popescu (2000) [137] assuming a Beta 

distribution with Cv = 40% for undrained shear strength and correlation distances: ~n = 

1.25 and Bvn = 0.25, are summarized in Figure 4.11. This figure presents the results of 

Monte Carlo simulations for 100 sample functions representing possible realizations of soil 

strength distribution over the domain of analysis by thin lines in terms of normalized­

pressure vs. normalized-settlement. A similar curve resulting from a deterministic analysis 

is represented by a thick dashed line. The Monte Carlo simulations, accounting for spatial 

variability of soil strength, yielded bearing capacity values that were generally lower than 

those predicted by the deterministic analysis. It is mentioned that the average soil strength 

used in the Monte Carlo simulations was equal to the uniform soil strength used in the 

deterministic analysis. Asymmetric foundation failure mechanisms, as captured in the 

Monte Carlo simulations (Finite element analysis with variable soil as shown in Figure 

4.12), lead to earlier shear failure than predicted by the deterministic analysis assuming 

perfect symmetry. In addition, the deterministic analysis did not produce any foundation 

rotation. On the other hand, the Monte Carlo simulations, accounting for spatial variability 

of soil properties, resulted in significant rotations in foundation. These rotations may 

become the main criterion for the foundation design. Figure 4.11 b shows the normalized 

pressure v1ersus rotation relations predicted by Monte Carlo simulations. The predicted 

deformed mesh and the contours of equivalent plastic strains are shown in Figure 4.12 for 

150 



one of the samples used in Monte Carlo simulations (pressure-settlement and pressure-

rotation curves for that sample function are shown by thick continuous lines in Figure 

4.11). 
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Figure 4.11 Comparison ofMonte Carlo simulations and deterministic analysis results: 
a. pressure-settlement curves; b. pressure-rotation curves (no rotation is 
predicted in the deterministic analysis). 
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Figure 4.12 Predicted deformed shape and contours of equivalent plastic shear strain, y: 
a. normalized average settlement L1n= 0.0125; b. L1n = 0.0625; c. L1n = 0.1. 

Next, the average and 95-percentile of these results were calculated at each 

displacement or foundation slope value (Figure 4.13). Based on the assumptions in this 

study and considering a value L1n= 0.0125 as the reference settlement (corresponding to 

ultimate bl~aring capacity), the average bearing capacity value resulting from Monte Carlo 

simulations was 25% lower than that predicted by the deterministic analysis. As in 

conventional approaches, a deterministic analysis was performed using a nominal soil 

strength value considerably lower than the average value (namely the 95-percentile of soil 

strength) and the results were compared with Monte Carlo simulation results. As seen in 

Figure 4.13, the 95-percentile value of bearing capacity resulting from the Monte Carlo 
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simulations exceeds by 38% the bearing capacity resulting from a deterministic analysis 

using the 95-percentile of soil shear strength. 
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Figure 4.13 Comparison of deterministic and Monte Carlo simulation results for average 
and 95 percentile: a. pressure-settlement relationships; b. pressure-rotation 
relationships. 

4.3.3.2. Effects of probability distribution of soil strength 

A series of Monte Carlo simulations was performed assummg a Gamma 

distribution for the soil shear strength. The distribution is skewed to the right (shape 

parameter A,= 1.73 and skewness coefficient Vj]j= 1.15). The same degree of variability 

( C v = 40%) and correlation structure were assumed as for the Beta-distributed soil strength 

(described in the previous section). The two probability density functions are presented in 

Figure 3.2. The ranges of results for the two series ofMonte Carlo simulations, as well as 

the predicted average pressure-settlement relations are presented in Figure 4.14. The results 
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showed that the shape of the left tail of the distribution (i.e. amount of loose pockets in the 

soil mass, see Figure 3 .2) affected both the predicted variability (Figure 4.14a&b) and the 

predicted average values (Figure 4.14c) ofbearing capacity. 
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Figure 4.14 Comparison of Monte Carlo simulations: a. symmetric Beta distribution b. 
skewed Gamma distribution c. averages resulting from Monte Carlo 
simulations and deterministic analysis. 
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Nobahar and Popescu (2001) found that the shape of the left tail of probability 

distribution function, which indicates presence of loose pockets in the soil mass, has a 

significant impact on the predicted mean bearing capacity. Figure 3.2 shows the Beta and 

Gamma probability distribution functions used for simulating the undrained shear strength 

in the two examples presented here (both have the same mean and coefficient of variation). 

It can be s,een that the Beta distribution has a much fatter left tail than Gamma distribution, 

which represents the amount of loose pockets in the soil mass. The effects of probability 

distribution were statistically studied in a parametric study, as discussed in Section 4.4. 

4.3.3.3. Effects of variance 

It was observed in the literature review (e.g. Popescu et al. 1998c [165]) that the 

degree of variability (variance) of soil strength was the most important factor affecting soil 

behaviour. A parametric study was performed here to investigate its effects on bearing 

capacity. Five sets of Monte Carlo simulations were carried out for a range of coefficients 

of variation of shear strength. The Gamma probability distribution was assumed for the soil 

strength with ~n = 1.25 and Bvn = 0.25 (A similar study was performed using Beta­

distributed soil shear strength. Similar results were obtained, but are not reported here). 

Monte Carlo simulations were performed for five different coefficients of variation ( C v = 

10%, 20%, ... , 50%) using 100 sample functions for each value of the coefficient of 

variation. The results of Monte Carlo simulations in terms of average values are presented 

in Figure 4.15. As the coefficient of variation of shear strength increases, the average 

predicted bearing capacity decreases. This again emphasizes the effects of the loose 
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pockets in the soil mass on the predicted bearing capacity. Also, it was observed in all cases 

that the scatter in the predicted bearing capacity was significantly lower than those assumed 

for the shear strength (Table 4.1 ). This effect of decrease in the response variance is well 

known to be the effect of local averaging (Vanmarcke, 1977 & 1983 [208 & 209]). Local 

averaging effects are further discussed in the next section. 
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Figure 4.15 Influence of the coefficient of variation of soil strength on bearing capacity. 

Table 4.1 Coefficient of variation: input for soil strength and resulting for predicted 
bearing capacity. 

C v (soil shear 10 20 30 40 50 
strength)% 

C vsc (predicted 2 6 9 13 16 
bearing capacity) % 
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4.3.3.4. Effects of local averaging 

The study was further developed to investigate the effects of horizontal correlation 

distances. The ratio of horizontal correlation distance to foundation width can take a large 

range of values. Here a range of 1.25 to 4.0 was investigated. The Gamma-distributed soil 

shear strength (Figure 3.2) with coefficient of variation of 40% is considered. The results of 

Monte Carlo simulation are presented in Table 4.2. The reduction in coefficient of variation 

of bearing capacity was also calculated using the variance reduction function (V anmarcke, 

1983 [209]) and reported in the table. The mean bearing capacity ratio, Rnsc was defined as 

the ratio of the mean bearing capacity of heterogeneous soil resulting from Monte Carlo 

simulations to that of uniform soil having the same average shear strength. It can be seen in 

Table 4.2 that both the mean and the coefficient of variation of the predicted bearing 

capacity increase with increasing horizontal correlation distance. The last line represents 

the results that would be obtained using a large number of sample functions in which the 

undrained shear strength of the soil is uniform over each sample, but varies from one 

sample to :mother according to the probability density function shown in Figure 3.2. 

The decrease in the coefficient ofvariation of the resulting bearing capacity leads to 

a higher reliability of a foundation. This is the effect of local averaging (e.g. V anmarcke, 

1977 & 1983 [209]). Failure occurs along a slip surface, therefore, there is a variability 

reduction in the predicted bearing capacity due to spatial averaging. This phenomenon is 

known and accounted for in reliability assessment of geotechnical structures (See Li and 

Lam, 2001 [110], Cherubini, 2000 [29], Casrdoso and Fernandes, 2001 [24]). 
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Table 4.2 Results of Monte Carlo simulation for the effects of horizontal correlation 
distance 

ehn Mean bearing Coefficient of Coefficient of 
capacity ratio, variation of variation of 

RnBC bearing bearing 
capacity(%) capacity 

(analytical 
approximations 

-E_g. 4.21 
1.25 0.81 13.1 13.4 
2.0 0.82 14.9 16.1 
4.0 0.838 17.3 19.5 

Uniform 1.0 (*) 40 (*) 40 
soil 

(*) Theoretical values, not resulting from actual Monte Carlo simulations 

A sample calculation for variance reduction factor based on Vanmarcke (1983) 

[209] is presented. For local averaging theory, the reduction in variance over a two-

dimensional domain having length of T1 and width of T2 was defined by, 

Eq. 4.2 

where r(I'l, T2) is the variance reduction function, if Tis the reduced variance, and ci is the 

point variance. The variance reduction function for a homogeneous (quadrant symmetry) is 

defined as, 

Eq. 4.3 

The correlation function is separable here (p(rpr2 ) = p(r1).p(r2 ) and is defined 

in Eq. 3.18. The domain for averaging was selected based on Prandtl theoretical solution 

for cohesive soil as 3B in length and 0.7B in depth (B is the foundation width). The above 
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integral was numerically solved for the cases presented in Table 4.2 and the values of 

obtained coefficients of variation are reported. These values were generally in agreement 

with results of Monte Carlo simulations. The difference can be attributed to changes in 

failure mechanism and the fact that the resulting variability depends on variability on 

failure surface, which cannot be captured exactly with a theoretical solution. 

However, the effects of spatial variability on mean bearing capacity should also be 

considered in a reliability assessment. To illustrate these effects, a required overall safety 

factor was calculated to secure a probability of failure of 104
. For this calculation, a 

theoretical probability distribution was fitted to predicted results, as discussed in Section 

4.3.3.5. Then it was extrapolated to the target level; load variability was ignored for 

simplification. Similarly, the required safety factor was calculated accounting only for the 

reduction i[n the predicted coefficient of variation (using Eq. 4.2). The results are presented 

in Table 4.3. The table illustrates the importance of changes in failure mechanism. 

Accounting only for the effects of local averaging on bearing capacity variability, the 

required safety factors are about 20% lower in Table 4.3. Not accounting for spatial 

averaging may lead to overestimating the probability of failure, while only considering the 

beneficial effects of local averaging and ignoring the changes in failure mechanism that 

would induce a significant reduction in the mean bearing capacity, may result in 

underestimating the failure probability. For example, the required safety factor is FS = 3.1 

for unifonn soil with variable mean shear strength (the last line in Table 4.3). Whereas 

assuming ()h/B = 2, the required safety factor from Monte Carlo simulations accounting for 
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changes in failure mechanism is FS = 2.3 and in the case where only the reduction of soil 

variability due to local averaging is considered, the required safety factor is FS = 1.84. 

Table 4.3 Required safety factors, FS obtained from 100 sample functions 

e,;B Factor of safety for target Factor of safety for target 
failure probability of 104 failure probability of 104 

(Monte Carlo simulation) (analytical approximations) 
1.25 2.1 1.66 
2.0 2.3 1.84 
4.0 2.5 2.09 

Uniform soil 3.1 (*) 3.1 
(*) Theoretical value, not resultmg from actual Monte Carlo simulatiOns 

Limit state design methods can be used to obtain a uniform safety level. The 

resulting failure probability from limit state design methods depends on the selection of 

characteristic values and the partial safety factors. Eurocode 7 (ENV 1997-1, 1994 [59]) 

states that statistical methods may be used in the selection of characteristic values for 

ground properties, which should be derived such that the calculated probability of a worse 

value governing the occurrence of a limit state is not greater than 5%. Using 95-percentile 

values of :soil strength as characteristic values is often too conservative and practically not 

acceptable in many geotechnical applications due to the large natural variability of soil 

properties .. The Monte Carlo simulation method used here accounted for both the beneficial 

effects of local averaging and the decrease in mean predicted bearing capacity, and could, 

therefore, produce reasonable characteristic values for undrained shear strength. 

The factors of safety reported in Table 4.3 only account for the effects of natural 

variability of soil properties, while ignoring other sources of uncertainty, such as 

measurement errors, model uncertainty and load variability. 
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4.3.3.5. Sample size 

One hundred sample functions were used for each analysed case reported in this 

section (Section 4.3). For Cv = 40%, a Gamma probability distribution and Bhn = 1.25, 1200 

sample realizations were analysed to investigate the effects of sample size. Figure 4.16 

shows the effects of sample size on the predicted mean and coefficient of variation; it can 

be seen that the predicted mean and variance remain practically constant for sample sizes 

larger than 100. In addition to the mean and standard deviation, the cumulative probability 

distribution of the predicted bearing capacity was analysed. Lognormal and gamma 

probability distributions were fitted to the empirical probability distribution function of the 

predicted bearing capacities (Figure 4.17). Figure 4.18 shows the same fits in logarithmic 

scale for cumulative probability distributions. The left tail, representing the presence of 

loose zones in the soil mass, has significant importance in design. Therefore, the left tails of 

these probability distributions are also illustrated in Figure 4.17 (similar plots are shown for 

cases with 100 sample functions in Appendix B). Both Gamma and lognormal distributions 

seem to be acceptable at least for inferring the mean and coefficient of variation of the 

response. Use of this type of extrapolation in risk analysis with high reliability levels (e.g. 

probability of failure of 1 o-3 to 1 o-4
) is, however, debatable (probability distribution of the 

response at tails is not known). A Gamma fit was used to extrapolate the results of 

predicted bearing capacity to obtain factors of safety in Table 4.3. 
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Figure 4.16 Effects of sample size on predicted mean and standard deviation. 
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moments: (a) Lognormal fit and (b) Gamma fit. 
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Figure 4.18 Fitting probability distribution to the empirical probability distribution 
function of the predicted bearing capacity for 1200 samples using method of 
moments: (a) Lognormal fit and (b) Gamma fit. 
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4.3.4 Accounting for Three-Dimensional Soil Variability 

This study investigated the effects of soil heterogeneity for a rigid strip footing 

assuming two-dimensional plane strain condition. This implied that an infinite correlation 

distance was considered in one horizontal direction. These assumptions are commonly 

acceptable in foundation engineering. 

It was shown in this study that accounting for soil heterogeneity resulted in 

variability of predicted structural response as well as decrease of average predicted bearing 

capacity (due to changes in failure mechanism). 

It is deemed that when adding the 3rd direction in the analysis, the variability of 

predicted response will be reduced. As shown in Sections 4.3.3 & 4.4.3, at finite correlation 

distances, Bh!B, the variability in the predicted response resulted in significantly lower 

values than input variability (i.e. variability of actual soil strength). This is due to local 

averaging of soil strength over the length of the failure surface. Based on those results, it is 

deemed that, for the real situation with soil variability in the third direction ( fhz/L<oo, where 

L is the ac1tuallength of foundation), the predicted response variability will be smaller than 

that predicted for 2D assumption. In this respect, 2D results are conservative. 

With respect to average bearing capacity, when accounting for real 3D variability, 

the predicted failure surface will have more degrees of freedom, so it is expected that the 

average shear strength over the failure surface will be lower than for the 2D case. However, 

the 3D layout will generally result in a larger area per meter of foundation length for the 

failure surface than the 2D one due to end effects, with an expected increase in predicted 

overall bearing capacity. In conclusion, it is expected that the 2D approach gives 
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conservative results for a real situation. A more accurate evaluation of 3D effects can be 

further studied using 3D Monte Carlo simulations in the future. 

4.4. PARAMETRIC STUDIES 

4.4.1 nesign of Experiments 

As described in Section 3.3.2, a statistical methodology called design of 

experiments (DOE) was used here to pre-design the parametric studies. Two design 

approaches were used: (1) factorial method with central point and (2) face-centred central 

composite design. The Design-Expert® software (2000) [50] was used to design the 

experiments. Next, a set of Monte Carlo simulations was performed for each experiment -

18 cases :fi)r factorial and 30 cases for central composite design. For each experiment, 100 

finite element runs were executed. It should be mentioned that 18 points of the factorial 

design were included among the 30 points of the central composite design. Therefore, 3000 

nonlinear finite element analyses were performed for the parametric study using Elcu = 

1500. A similar study was also performed for Elcu = 300. However, for this case, based on 

the results obtained for Elcu = 1500, the vertical correlation distance was screened out from 

the study. It was also concluded in the first study (with Elcu = 1500) that factorial design 

adequately captured the curvature in the responses. Thus, using a factorial design, only 10 

cases were analysed in the second study, with Elcu = 300. 
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4. 4.1.1. Facto rial design 

The design layout for factorial method is presented in Table 4.4 (see Figure 3.3 for 

illustration of the factorial design). Factorial design is one ofthe most efficient designs. It is 

very useful in screening the main influencing factors. However, it may fail to capture 

curvatures in the response surface. To monitor the curvature, a central point was added to 

the factorial design (experiments 17 and 18 in Table 4.4). 

Table 4.4 Factorial design for foundation analysis on heterogeneous soil 

Factor 1 Factor 2 Factor 3 Factor 4 
(Numerical) (Numerical) (Numerical) (Categorical) 

Normalized 
Normalized 

Experiment # 
Coefficient of horizontal 

vertical correlation 
Probability 

variation, C v (%) correlation distribution 
distance, ~n 

distance, Bvn 

1 10 1 0.25 Gamma 

2 40 1 0.25 Gamma 

3 10 4 0.25 Gamma 

4 40 4 0.25 Gamma 

5 10 1 1 Gamma 

6 40 1 1 Gamma 

7 10 4 1 Gamma 

8 40 4 1 Gamma 
9 10 1 0.25 Beta 

10 40 1 0.25 Beta 

11 10 4 0.25 Beta 

12 40 4 0.25 Beta 

13 10 1 1 Beta 
14 40 1 1 Beta 

15 10 4 1 Beta 
16 40 4 1 Beta 
17 25 2.5 0.625 Gamma 

18 25 2.5 0.625 Beta 
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4.4.1.2. Central composite response surface 

The central design approach needed a higher number of experiments. A face­

centred design was used here. The design, together with results of Monte Carlo 

simulations, is presented in Table 4.5; see Figure 3.3 for illustration of the central 

composite design. It had 12 additional points compared to the factorial method. This 

method is believed to be capable of capturing higher degrees of curvature in the results. 

4.4.2 Statistical Analysis of Results 

Using the results of Monte Carlo simulations, a cumulative probability distribution 

of ultimate bearing capacity was obtained for each case. From these CDFs, four responses 

were estimated for ultimate bearing capacity: (1) mean bearing capacity ratio, R8 c, (2) 

standard deviation, (3) characteristic bearing capacity (95-percentile), and (4) bearing 

capacity at failure probability of 104 by fitting a lognormal probability distribution using 

the method of moments, as shown in Table 4.6. It should be mentioned that the values of 

bearing resistance at failure probability level as low as 104 may have significant errors due 

to extrapolation of the fitted probability distributions. In other words, the number of 

replications of Monte Carlo simulations was insufficient, as discussed in Section 4.1.3. 

These values were normalized respectively as (1) mean bearing capacity ratio, R8 c, defined 

as the ratio ofbearing capacity of heterogeneous soil to the bearing capacity of uniform soil 

having th(: same average shear strength, (2) coefficient of variation of bearing capacity 

from heterogeneity effects Cv, (3) characteristic (nominal) bearing capacity ratio, Rnsc, 

defined similar to R8 c, and (4) normalized bearing capacity at target probability level10-4
, 
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Rtsc, also defined similar to Rsc. The results are shown in Table 4.5 for E = 1500cu and in 

Table 4.6 forE= 300cu. These results are discussed and analysed in the next section. As 

discussed earlier, the results of the first study (E = 1500cu) were used to screen out 

unnecessary experiments for the second study (E = 300cu). Hence, the number of 

experiments was reduced from 30 to 10. 

Similarly, cumulative distributions of bearing pressure for the three serviceability 

criteria discussed in Section 4.5.2 were obtained. A lognormal fit was used for these 

curves; thc~refore, bearing pressure CDF curves at the reference rotation criteria can be 

expressed in terms of the mean and standard deviation of bearing pressure at damage 

criteria. The mean values and coefficients of variation of bearing pressures at damage 

criteria were also taken as responses. Design-Expert® was used to statistically analyse the 

responses and fit the response surfaces. 

The Design-Expert software was used to fit the response surface and to check the 

significance of fits through several statistical procedures (Design-Expert, 2000 [50]). For 

each response, non-significant factors were screened out and appropriate surfaces were 

fitted. These surfaces could be plane or curved, and have interaction terms and/or quadratic 

terms. The procedure is discussed in Section 3.3. Each of these responses is discussed in 

detail in the next section. These response surfaces (fitted equations) are only valid in the 

studied ranges and can only be used in practical engineering applications to approximate 

complex behaviour in these ranges. 

Based on the study reported in Section 4.3.3.5, it was observed that the lognormal 

distribution is an appropriate fit for the results of Monte Carlo simulations. For all studied 
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cases, three different probability distributions - lognormal, Gamma, and normal - were 

fitted. Lognormal distribution was observed to be the best fit. Gamma fits were close to 

lognormal:; hence, they are not reported here. However, for a few cases with highly variable 

Beta-distributed input soil, the empirical distribution had a richer left tail than that 

predicted by the lognormal fit. For those cases, the normal distribution provided a better fit. 

This issue still needs to be further studied by employing a larger sample of Monte Carlo 

simulations and statistical analysis. However, usage of larger samples for Monte Carlo 

simulations in parametric study was impractical. The results reported here for a probability 

level of 10-4 show the bearing capacity at a very low failure probability level; however, 

they should not be used quantitatively. 

Table 4.5 Foundation responses for factorial and central composite design normalized 
by deterministic value (forE= 1500cu) using 100 samples for each case. 

Factor 1 
Factor 

Factor 3 
Factor Response 

Response 2 Response 3 Response 4 
2 4 1 

Normalized 

Norm. 
Coefficient 

Characteristic 
bearing capacity 

Coeff 
horiz. 

Norm. Mean of 
(nominal) 

@target 
Exp. of vert. Pro b. bearing variation probability level 

# variat., 
correl. 

correl. dist. capacity of bearing 
bearing -4 

dist., capacity 10 'RtBC 
Cv (%) dist., Bvn ratio, Rae capacity, 

fhzn Cvac(%) 
ratio, Rnac 

Log. fit 

1 10 1 0.25 Gamma 0.98 2.7% 0.94 0.89 

2 40 1 0.25 Gamma 0.82 11.3% 0.67 0.54 

3 10 4 0.25 Gamma 0.98 5.1% 0.90 0.80 

4 40 4 0.25 Gamma 0.81 21.4% 0.52 0.36 

5 10 1 1 Gamma 0.98 2.7% 0.94 0.89 

6 40 1 1 Gamma 0.82 13.1% 0.61 0.50 

7 10 4 1 Gamma 0.98 5.9% 0.90 0.79 

8 40 4 1 Gamma 0.83 25.1% 0.50 0.32 

9 10 2.5 0.625 Gamma 0.98 4.7 0.91 0.82 
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Factor 1 
Factor 

Factor 3 
Factor Response 

Response 2 Response 3 Response 4 
2 4 1 

Normalized 

Norm. 
Coefficient 

Characteristic 
bearing capacity 

Coeff 
horiz. 

Norm. Mean of 
(nominal) 

@target 
Exp. of vert. Pro b. bearing variation probability level 

correl. bearing 
# variat., 

dist., 
correl. dist. capacity of bearing 

capacity 10
4 

'RtBC 
Cv (%) 

fhzn 
dist., Bvn ratio, Rsc capacity, 

ratio, Rnsc 
Cvsc (%) Log. fit 

10 40 2.5 0.625 Gamma 0.80 19.4 0.55 0.39 

11 25 1 0.625 Gamma 0.91 6.0 0.82 0.73 

12 25 4 0.625 Gamma 0.91 14.3 0.73 0.53 

13 25 2.5 0.25 Gamma 0.91 11.0 0.75 0.60 

14 25 2.5 1 Gamma 0.91 11.7 0.75 0.58 

15 25 2.5 0.625 Gamma 0.90 11.6 0.75 0.58 

16 10 1 0.25 Beta 0.98 2.9 0.93 0.88 

17 40 1 0.25 Beta 0.76 19.0 0.54 0.37 

18 10 4 0.25 Beta 0.98 6.6 0.88 0.77 

19 40 4 0.25 Beta 0.78 30.7 0.33 0.24 

20 10 1 1 Beta 0.98 3.0 0.93 0.88 

21 40 1 1 Beta 0.76 19.0 0.49 0.37 

22 10 4 1 Beta 0.98 6.6 0.87 0.77 

23 40 4 1 Beta 0.79 29.7 0.38 0.26 

24 10 2.5 0.625 Beta 0.99 5.3 0.90 0.81 

25 40 2.5 0.625 Beta 0.81 24.4 0.48 0.32 

26 25 1 0.625 Beta 0.90 8.2 0.78 0.66 

27 25 4 0.625 Beta 0.89 18.3 0.64 0.45 
28 25 2.5 0.25 Beta 0.88 15.2 0.64 0.50 

29 25 2.5 1 Beta 0.89 14.4 0.65 0.52 

30 25 2.5 0.625 Beta 0.92 13.7 0.71 0.55 
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Table 4.6 Parametric study for Elcu= 300, design layout ofMonte Carlo simulations 
and results for ultimate bearing capacity using 200 samples for each case. 

Normalized 
bearing 

capacity@ 
target 

!Factor 1 !Factor 2 Factor 3 Ultimate bearing capacity 
probability 

level 104
, Rrsc 

Coefficien Normalized Mean 
Coefficient 

of Characteristic 
of horizontal ratio, 

variation, ratio, Rnsc 
Log. fit 

Exp. variation, correlation Probability Rsc Cvsc(%) 
# Cv (%) distance, fhzn distribution 

1 10 1 Gamma 0.98 2.0 0.95 0.90 

2 40 1 Gamma 0.83 10.0 0.71 0.57 

3 10 4 Gamma 0.98 6.0 0.90 0.79 

4 40 4 Gamma 0.81 23.0 0.51 0.34 

5 10 1 Beta 0.98 3.0 0.94 0.89 

6 40 1 Beta 0.76 19.0 0.55 0.37 

7 10 4 Beta 0.97 6.0 0.86 0.77 

8 40 4 Beta 0.75 31.0 0.30 0.23 

9 25 2.5 Gamma 0.91 10.0 0.78 0.63 

10 25 2.5 Beta 0.89 14.0 0.70 0.53 

4.4.3 Results of Parametric Studies 

The results of the Monte Carlo simulations were studied using the factorial and 

central composite methods. Both methods yielded close results, which indicated that there 

was little curvature in the response surfaces. The regression equations obtained from the 

factorial design, which use only 18 points (Table 4.4), were able to closely predict the 

responses of an additional 12 points in the central composite design. This was a 

confirmation of the applicability of the regression analysis. Since the central composite 
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method used a larger number of points, the results from this approach are shown and 

discussed here. 

4.4.3.1. Mean bearing capacity 

The coefficient of variation, C v, and the probability distribution of soil shear 

strength were found to be the most important factors affecting the bearing capacity of 

foundation on heterogeneous soil. As expected, Cv had the largest contribution of all 

factors. It can be inferred that the amount of loose pockets was the most significant factor 

controlling the mean bearing capacity. Variation of mean bearing capacity Rae vs. 

coefficient of variation and horizontal correlation distance of a Beta distributed soil shear 

strength is plotted in Figure 4.19. The effects of the horizontal and vertical correlation 

distances were found to be negligible on the mean bearing capacity for the ranges 

considered in this study. Regression equations were obtained for the mean bearing capacity 

ratio, Rae, (reported in Table 4.5) for each probability distribution of soil shear strength. 

The equations are as follows: 

For Gamma-distributed shear strength, 

Eq. 4.4 

For Beta-distributed shear strength, 

RBC = 1.03-4.1 X 10-3 Cv- 5.4x 10-5 c~ Eq. 4.5 

where C vis the coefficient of variation of soil shear strength in the range of 10% to 40%. 

The accuracy of the fitted equations (Eq. 4.4 and Eq. 4.5) was statistically checked (R2 = 
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0.98 and predicted R2 
= 0.975). The predicted R2 is a measure of how the equations fits each 

point in the design (here each case in Table 4.5), computed by first predicting where each 

point should be from a model that contains all other points except the one in question. 

Statistical indices were also checked for significance of the fitted model and its terms (e.g. 

Cv, probability distribution, interaction terms in the fitted equations) in Table 4.7. The F 

value, in Table 4. 7, for a term is the test for comparing the variance associated with that 

term with the residual variance. It is the Mean Square for the term divided by the Mean 

Square for the Residual. The third column in Table 4. 7 (Pro b. > F) is the probability value 

associated with the F value for a term. It is the probability of getting an F value of this size 

if the term did not have an effect on the response. In general, a term that has a probability 

value less than 0.05 would be considered a significant effect (all the terms in Table 4.7 are 

significant). A probability value greater than 0.10 is generally regarded as not significant. 

The first row in Table 4. 7 shows these values for the fitted model. 

Table 4. 7 Statistical indices for significance of the fitted model for mean bearing 
capacity 

F value Prob. > F 
Model 359.8 < 0.0001 

Cv 1396.7 < 0.0001 
Probability distribution 17.0 0.00036 

c/ 8.2 0.0085 
Interaction between C v and 

17.2 0.00034 
probability distribution 

The results obtained from Eq. 4.4 and Eq. 4.5 were compared with the results of 

Monte Carlo simulations in Table 4.8. Figure 4.19 shows the scatter plots for Monte Carlo 

simulations and predicted values of mean bearing capacity ratio. The two points, shown by 
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circles, were obtained from Monte Carlo simulations for two cases assuming Gamma 

distributed soil shear strength with Cv= 20% and 30%, f4zn = 1.25, and Bvn = 0.25. These 

two points were not used in obtaining the regression equations. The scatter plots show the 

accuracy of regression equations in the studied ranges. Eq. 4.4 and Eq. 4.5 are regression 

equations and are only valid for a range of Cv = 10% to 40%. Many researchers only 

account for the effects of soil heterogeneity on the variability of bearing capacity through 

use of variance reduction function (e.g. Li and Lam, 2001 [110]). These effects are 

discussed in the next section. Griffiths et al. (2002) [78] studied the effects of correlation 

distance on mean bearing capacity using equal correlation distances in the horizontal and 

vertical directions. From their results, it can also be inferred that for the practical range of 

coefficient of variation (Cv < 50%) and for correlation distance in the range studied here, 

the effects of correlation distance on mean bearing capacity is small. Thus, the observed 

negligible effects of correlation distances on the mean bearing capacity for the studied 

ranges is reasonable. 

For example if soil shear strength has Cv = 30% and follows a Beta distribution, 

and knowilng the bearing capacity factor of uniform soil, Nc = 5.14 (Prandtl solution), then 

the average bearing capacity factor for the heterogeneous soil is, 

NcH = RBC'Nc = (1.03- 4.1 X 10-3 
X 30-5.4 X 10-5 

X 302
) X 5.14 = 4.41 
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Figure 4.19 Scatter plot for Monte Carlo simulations and predicted (Eq. 4.4 & Eq. 4.5) 
values of mean bearing capacity ratio. 

Table 4.8 Comparison of mean bearing capacity ratio, Rsc from Monte Carlo 
simulations and fitted response surface (Eq. 4.4 & Eq. 4.5) 

Experiment 
number (as Monte Carlo 

given in Table simulation Predicted Error 
4.5) values values (%) 

1 0.982 0.979 0.3% 
2 0.821 0.816 0.7% 
3 0.975 0.979 0.4% 
4 0.808 0.816 0.9% 
5 0.984 0.979 0.5% 
6 0.824 0.816 1.0% 
7 0.980 0.979 0.1% 
8 0.827 0.816 1.4% 
9 0.978 0.979 0.0% 
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Experiment 
number (as Monte Carlo 

given in Table simulation Predicted Error 
4.5) values values (%) 
10 0.803 0.816 1.6% 
11 0.908 0.909 0.1% 
12 0.909 0.909 0.0% 
13 0.911 0.909 0.1% 
14 0.906 0.909 0.4% 
15 0.903 0.909 0.7% 
16 0.978 0.983 0.4% 
17 0.757 0.779 2.9% 
18 0.982 0.983 0.1% 
19 0.781 0.779 0.3% 
20 0.979 0.983 0.4% 
21 0.758 0.779 2.7% 
22 0.983 0.983 0.0% 
23 0.787 0.779 1.0% 
24 0.986 0.983 0.4% 
25 0.806 0.779 3.4% 
26 0.897 0.893 0.4% 
27 0.893 0.893 0.0% 
28 0.881 0.893 1.3% 
29 0.889 0.893 0.5% 
30 0.916 0.893 2.5% 

4.4.3.2. Variability of predicted bearing capacity 

Another important response obtained from Monte Carlo simulations was the 

variability of predicted bearing capacity of a strip foundation on heterogeneous soil. A 

study was performed that was similar to the one for mean bearing capacity presented in 

Section 4.4.3.1. The response surface fitted on the coefficient of variation of bearing 

capacity, C vBc is shown in Figure 4.21 for Beta distributed soil shear strength. The 

coefficient of variation, probability distribution and normalized horizontal correlation 
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distance, t1hn, of soil undrained shear strength were deemed significant. The coefficient of 

variation of soil shear strength was the most important contributor to the variability of 

foundation bearing capacity on heterogeneous soil. The amount of variability significantly 

decreased due to local averaging phenomenon, which was more pronounced for small 

correlation distances. The regression equations obtained for Cvsc from the values in Table 

4.5 are: 

For Gamma distributed soil shear strength, 

Eq. 4.6 

For Beta distributed soil shear strength, 

Eq.4.7 

R2 was 0.988 and predicted R2 was 0.981 for the fitted model. Similar to mean 

bearing capacity, statistical indices were also checked for significance of the fitted model 

and its tenns in Table 4.9. The model and all the terms were significant. 

For example, taking Cv = 30%, Beta distribution, and fhzn = 2, the coefficient of 

variation of bearing capacity results as, 

Cvnc = -2.8 + 0.44 x 30 + 0.33 x 2 + 0.09 x 30 x 2 = 16.5% 

Again regression equations are only valid for the range of probabilistic 

characteristics considered here. For example, if a value of Cv = 0 is used in Eq. 4.6, it 

results in negative coefficient of variation for bearing capacity, which is impossible. The 

reason is that the above equations are only applicable for the studied ranges (Cv= 10% to 

40%, Bhn == 1 to 4 and Bvn = 0.25 to 1 ). Figure 4.20 shows the scatter plots for Monte Carlo 
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simulations and predicted (Eq. 4.6 & Eq. 4.7) values of coefficient of variation of bearing 

capacity. Again, the two points, shown by circles, were obtained from Monte Carlo 

simulations for two cases assuming Gamma distributed soil shear strength with Cv= 20% 

and 30%, fhtn = 1.25, and Bvn = 0.25. These two points were not used in obtaining regression 

equations. The scatter plots show the accuracy of regression equations in the studied 

ranges. 

The values obtained here were compared with values obtained using variance 

reduction factor based on the theory of random fields (Vanmarcke, 1983 [209]), as 

discussed in Section 4.3.3.4 and presented in Table 4.10. The results showed a general 

agreement. However, due to changes in failure mechanisms, the resulting coefficients of 

variation of bearing capacity were not solely dependent on correlation distances and input 

coefficients of variation of soil strength; the probability distributions of input soil strength 

also affected the resulting coefficients of variation. The numerical model, used in the study, 

has captured all these effects. Accounting only for the effects of local averaging does not 

capture the changes in response variance produced by changes in failure mechanisms of 

heterogeneous soil. 
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Table 4.9 Statistical indices for significance of the fitted model for variability of 
predicted bearing capacity 

F value 

Model 387.6 
Cv 1444.1 

Horizontal correlation 
296.5 

distance, Bhn 

Probability distribution 88.8 
Interaction between Cv and 
the horizontal correlation 64.3 

distance 
Interaction between C v and 

44.2 
probability distribution 

0.35 

0.3 + cases included in regression analysis 

0.25 

u 0.2 
g;: 

\....) 

0.05 

0 cases not used in regression analysis 

Prob. > F 
< 0.0001 
< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

< 0.0001 

0~----~------~------~------L-----~-------L----~ 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 
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Figure 4.20 Scatter plot for the Monte Carlo simulations and predicted (Eq. 4.6 & Eq. 
4.7) values of coefficient of variation of bearing capacity. 
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Figure 4.21 Variation of the coefficient of variation of bearing capacity with C v and 
Bh/B for Beta distributed soil shear strength. 

Table 4.10 Comparison of predicted values of C v from Monte Carlo simulations with 
analytical approximations for soil shear strength with Cv= 40%. 

Norm. horiz. Coefficient ofVariation of 

correl. Dist., 
Norm. vert. Bearing Capacity, Cv(%) 

fhzn 
correl. dist., Bvn 

Gamma 
Analytical 

Beta 
approximations 

1 0.25 11.3% 19.0% 12.2% 
4 0.25 21.4% 30.7% 19.5% 

2.5 0.625 19.4% 24.4% 24.1% 

1 1 13.1% 19.0% 19.1% 

4 1 25.1% 29.7% 30.4% 
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4.4.3.3. Characteristic bearing capacity 

Characteristic values play an important role in design (see Section 2.4). As 

previously mentioned, it is possible to define a characteristic percentile of soil strength that, 

when used in deterministic analysis, will provide a similar bearing capacity to that obtained 

from Monte Carlo simulations for a given confidence interval. Characteristic values of soil 

strength were obtained for every case with 95% reliability and then a response surface was 

fitted to them. The soil shear strength variability, its probability distribution and horizontal 

correlation distance were significant factors. The coefficient of variation had the highest 

contribution. Figure 4.23 shows the variation of characteristic bearing capacity vs. C v and 

Bhn of soil shear strength having a Beta probability distribution. The response equations 

obtained fi)r Rnsc from the values in Table 4.5 are: 

For Gamma distributed soil shear strength, 

Eq. 4.8 

For Beta distributed soil shear strength, 

Eq. 4.9 

R2 was 0.984 and predicted R2 was 0.981 for the fitted model. Similar to mean 

bearing capacity, statistical indices were also checked for significance of the fitted model 

and its tenns in Table 4.11. The model and all the terms were significant. Again the above 

equations are only valid for the range studied (Cv=10% to 40%, Bhn=1 to 4 and Bvn=0.25 to 

1 ). Figure 4.22 shows the scatter plots for Monte Carlo simulations and predicted (Eq. 4.10 

182 



and Eq. 4 .. 11) values of characteristic bearing capacity. Again, the two points, shown by 

circles, were obtained from Monte Carlo simulations for two cases assuming Gamma 

distributed soil shear strength with Cv= 20% and 30%, Bhn = 1.25, and Bvn = 0.25. These 

two points were not used in obtaining regression equations. For example, taking Cv = 30%, 

Beta distribution, ~n = 2 and bearing capacity factor of uniform soil Nc = 5.14, the 

characteristic bearing capacity with 95% confidence is, 

RnBC = 1.07-0.013 X 30-0.006 X 2-0.001 X 30 X 2 = 0.608 

Thus, the bearing capacity factor to obtain characteristic (nominal) bearing capacity 

IS, 

N,c = RnBC X Nc = 0.608 * 5.14 = 3.12 

It should be mentioned that due to a limited number of Monte Carlo simulations, 

the 95-percentile values obtained here may not be accurate. 

Table 4.11 Statistical indices for significance of the fitted model for characteristic 
bearing capacity 

F value Prob. > F 
Model 299.4 < 0.0001 

Cv 1315.8 < 0.0001 
Horizontal correlation 

81.2 < 0.0001 
distance, Bhn 

Probability distribution 61.8 < 0.0001 
Interaction between C v and 
the horizontal correlation 15.4 0.00065 

distance 
Interaction between C v and 

22.7 < 0.0001 probability distribution 
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As detailed in Section 3.6.2, it is possible to obtain a characteristic percentile of soil 

strength to be used in design. It should be mentioned that characteristic bearing capacity 

(resistance) corresponds to a certain confidence interval (here 95%). 

1 
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Figure 4.22 Scatter plot for the Monte Carlo simulations and predicted (Eq. 4.8 & Eq. 
4.9) values of characteristic bearing capacity. 
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Figure 4.23 Variation of characteristic bearing capacity vs. C v and ()h/B of soil shear 
strength having a Beta probability distribution. 

4. 4. 3. 4. Factor of safety for target failure probability 

Theoretical distributions were fitted to the resulting empirical probability 

distributions of bearing capacity and extrapolated to a desired probability level to obtain 

bearing capacity at desired reliability levels (see Section 4.3.3.4). It should be mentioned 

that the results obtained so far accounted only for the variability in response caused by soil 

heterogeneity. However, it is easy to add uncertainty from other sources. These additional 

uncertainties can be added by summation of the variability. For example, assuming 
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independence between different sources of uncertainty, Failmezger (2001) [61] presented 

the following equation, 

2 2 2 
0 spatial + (j noise + (j model Eq. 4.10 (}overall = 

where aovera/l, OSpatiat, anoise. amodel are the resulting (overall) standard deviation of the 

response, standard deviation of soil natural variability, standard deviation of noise in 

measurement, and standard deviation of model accuracy. It is possible to simplify the 

above equation by assuming that there are two categories of uncertainty. The first category 

is the uncertainty caused by measurement errors, simplification used in modelling of soil 

behaviour, transformation errors, etc. These uncertainties are taken to have a coefficient of 

variation denoted as C vu. The second category is the uncertainty caused by assuming 

uniform soil instead of modelling the realistic spatially variable soil. Furthermore, the 

errors can be biased. In this context, errors were assumed to have no bias. However, it is 

possible to account for bias in results in the same framework. In this study, the spatial 

variability of soil was shown to change the behaviour of geotechnical system. The 

empirical probability distribution of the bearing capacity was obtained. The effects of soil 

heterogeneity on mean bearing capacity and its variation were addressed. C vsc denotes the 

bearing capacity's coefficient of variation due to the natural variability of soil. Thus, using 

a first-degree approximation and assuming independence between different sources of 

uncertainty, the overall coefficient of variation ofbearing capacity is, 

Eq. 4.11 
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See Tang (1984) [196] for derivation ofEq. 4.11. Assuming Cvu = 0, the bearing capacities 

at target probability level of 10-4 were estimated by fitting lognormal distributions to the 

resulting bearing capacities and extrapolating the fitted distributions. 

For Gamma distributed soil strength, 

Rmc = 1.09- 0.0139Cv- 0.04718hn Eq. 4.12 

For Beta distributed soil strength, 

RtBc = 1.1- 0.0169Cv - 0.04718hn Eq. 4.13 

R2 was 0.981 and predicted R2 was 0.974 for the fitted model. It is also possible to 

add the additional uncertainty caused by other sources by direct numerical integration, as 

discussed in Section 4.6. It should be mentioned that, assuming no load variability, the 

required factor of safety at target probability level of 10-4 is, 

FS=-
1
-

Rtac Eq. 4.14 

The values of factors of safety were calculated and compared to values obtained 

theoretically that only accounted for variance reduction due to local averaging effects, as 

presented in Table 4.12 (similar to the ones calculated in Table 4.3). This shows that only 

accounting for the effects of local averaging may lead to a non-conservative design, 

reconfirming the conclusion in Section 4.3.3.4 
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Table 4.12 Comparison of safety factors obtained from Monte Carlo simulations and 
analytical approximations. 

Norm. horiz. Norm. vert. Safety factors, Fs 
correl. dist., ~n correl. Dist., Bvn Analytical 

Gamma Beta approximations 

1 0.25 1.86 2.71 1.59 

4 0.25 2.78 4.09 2.09 

2.5 0.625 2.59 3.13 2.49 

1 1 1.99 2.71 2.06 

4 1 3.12 3.90 3.16 

4.4.4 Design Recommendations 

The behaviour of soil and soil-structure systems in the nonlinear regime was found 

to be strongly affected by the natural spatial variability of soil strength within geologically 

distinct and uniform layers. The average bearing capacities of heterogeneous soils obtained 

from Monte Carlo simulations were consistently lower than the ones predicted assuming 

uniform soil strength. The predicted bearing capacities had a lower coefficient of variation 

than that input for the soil shear strength. These effects were incorporated in engineering 

design recommendations in this section. 

4.4.4.1. Characteristic values 

As discussed in the literature review (Section 2.4), design codes account indirectly 

for variability of materials by using "conservatively assessed values" of strength known as 

nominal or characteristic values. Statistically, these values are often taken as the 95-

percentile of strength resulting from a number of measurements. For example, a specified 
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Grade X65 for pipeline means that it is expected that from 20 tests performed for strengths 

of this pipeline, 19 of them will yield a value larger than 65 ksi (-448 MPa). In 

geotechnical engineering, the nominal or characteristic values are not well established (See 

Section 2.4). Selection of those values has great importance in securing a uniform safety 

level in LSD (see e.g. Cardoso and Fernandes, 2001 [24]). This deficiency in geotechnical 

engineering can be partly attributed to high point variability of soil properties. Other causes 

may be: insufficient soil data, relatively large measurement errors, relatively large 

uncertainties related to modelling of soil behaviour, etc. Section 4.4.3.3 explains how the 

characteristic bearing capacity values were obtained accounting only for the effects of soil 

heterogene:ity 

It is also possible to estimate uncertainty from other sources and then use the 

equations provided in Section 4.4.3.1 & 4.4.3.2 to calculate bearing capacity with 95-

percentile reliability as nominal value. For this purpose, Eq. 4.4 and Eq. 4.5 can be used to 

estimate mean bearing capacity. Eq. 4.6 and Eq. 4.7 can estimate the coefficient of 

variation of bearing capacity resulting from soil heterogeneity. This value should be added 

to uncertainty from other sources using Eq. 4.11. Assuming a lognormal distribution, the 

bearing capacity at every confidence level (here 95%) can be calculated easily. For 

example, for given values of Cv = 30% (variability due to soil heterogeneity), Beta 

distributed shear strength, and Bhn = 2, a resulting Rsc and Cv (of bearing capacity) were 

0.846 and ll6.5% (see Sections 4.4.3.1 & 4.4.3.2). Assuming a Cvu= 15%, from Eq. 4.11, 

Cvo = -J16.5 2 + 152 = 22.3% 
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Assuming a lognormal distribution with mean of0.846 and Cv= 22.3%, the bearing 

capacity with 95% confidence is Rnsc = 0.57. In other words, the calculated bearing 

capacity using uniform average shear strength shall be divided by a reduction factor kR = 

1.74. The values of reduction factors to obtain bearing capacity with 95% confidence are 

contoured in Figure 4.24 for the range of soil heterogeneity parameters studied here ( C v = 

10% to 40%, Gamma and Beta distributed soil shear strength, and ~n=l to 4) and Cvu = 5% 

to 20%. This approach was used to calculate the characteristic values for Calibration of 

partial factors, as discussed in Section 4.4.4.3. 
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Figure 4.24 Contours of the ratio of mean value to characteristic value for resistance vs. 
natural variability of soil, C v and uncertainty from other sources, C Vu· 
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4.4.4.2. Reliability analysis 

The equations recommended in Section 4.4.3 for the resulting mean and coefficient 

of variation of bearing capacity can be used in a framework of reliability analysis. A 

lognormal probability distribution was found in most cases to fit the resulting bearing 

capacity well. The reliability analysis can be implemented through approximate methods, 

such as FOSM or through direct use of numerical integration. Direct use of numerical 

integration is explained in Section 4.5.4. The approximate method is demonstrated in 

Section 3.6.4 and is applied in the next section to calibrate partial design factors. 

4.4.4.3. Calibration of partial design factors 

Partial design factors (resistance reduction factors) can be estimated using the 

methodology described in Section 3.6.4. For heterogeneous soil, mean bearing capacity and 

its coefficient of variation can be calculated using Equations 4.4, 4.5, 4.6, 4.7, and 4.11, 

similar to the calculations in Section 4.4.4.1. The partial design factors were estimated in 

two ways: (1) assuming use of mean shear strength in design, and (2) using a characteristic 

bearing resistance based on Section 4.4.4.1. 

Us:ing the first approach (i.e. using the mean shear strength as a design value), 

partial reduction factors were estimated for the range of parameters of spatial variability 

adopted here - Cv = 10% to 40%, a right skewed Gamma probability distribution or a 

symmetric: Beta probability distribution, a range of horizontal correlation distances of ~n = 

1.0 to 4.0. A range of Cvu = 5% to 20% was assumed for other sources of uncertainty. A 

target reliability index, fJ= 3.5 (using Eq. 3.29), was considered (Section 3.6.4). This target 
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reliability index is a typical value used in many codes (see AASHTO, 1992 [1]; NRC, 1995 

[142], etc.). 

The estimated partial design factors using the first methodology - using mean shear 

strength- are contoured in Figure 4.25. It shows that a highly variable partial reduction 

factor should be used in design to keep a uniform reliability index if mean soil shear 

strength is used in design. A variable reduction factor is suggested for different applications 

(see Li et al., 1993 [108] and CSA, 1992 [41]). 

However, there is often a tendency to use a constant reduction factor in design. To 

provide a constant partial design factor that will also result in a uniform reliability level, 

one may use characteristic resistance values instead of mean resistance values. Figure 4.26 

shows the required partial design factors using the second approach. Here the characteristic 

resistance values defined in Section 4.4.4.1 were used as design values. The ratios of mean 

resistance values to characteristic (nominal) resistance values used for calculation of partial 

factors are contoured in Figure 4.24. The required partial design factors in Figure 4.26 

show relatively small variability. A constant value of approximately 0.85 can be taken for 

the range of probabilistic characteristics considered here. A lower reduction factor is 

required, only for Beta distributed shear strength with very high variability. It should be 

mentioned that both methodologies are very close; they are just two different formal ways 

of design. 

Usilng Eq. 3.36, the values of reliability index were back calculated assuming a 

constant partial reduction factor of 0.5 (CGS, 1992 [25]; Meyerhof, 1984 [126]), using 

mean shear strength (kR = 1) and load partial factor from Eq. 3.31. Contours of the 
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estimated reliability indices are shown in Figure 4.27. A reliability index smaller than 3.5 is 

assumed undesirable. This shows the high non-uniformity of reliability index if a constant 

partial factor and mean shear strength is used. This problem can be solved by using one of 

the two methodologies presented here: (1) using variable partial factors, or (2) using a 

characteristic bearing resistance and a constant partial factor. This leads to a reduction in 

the non-uniformity of reliability index and consequently, it may result in safer and more 

economical designs. 

Using variable partial factors (the first methodology) is potentially capable of 

securing a more uniform reliability index. It also does not need the estimation of 

characteristic values. However, the second approach also has its own advantages (e.g. using 

a constant partial resistance factor for design). Therefore, both methodologies have been 

discussed here. 

4.4.4.4. An illustration design example 

Using a design example, application of the calibrated partial resistance factors in 

Section 4.4.4.3 is demonstrated here. It is intended to design a strip foundation for a long 

structure placed on clayey soil deposit with assumptions given in Table 4.13. 

Using values in Table 4.13, the factored load is, 

aS= 1.25 x 1500+ 1.5 x500 = 2625 kN/m 

Given Cv = 25% and Cvu = 10% from Figure 4.25, the partial resistance factor, ¢ = 

0.65 and 0.56 for Bhn = 1 and 4 respectively. Using a linear interpolation, ¢ = 0.62 for fhzn = 

2. Thus, the factored resistance is, 
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¢R = ¢NccuB = 0.62x5.14x140B = 446B kN/m (assuming bearing capacity factor 

Nc = 5.14 for uniform soil; B is the foundation width) 

¢R > aS => 446B > 2625 => B > 5.88m (say B = 6.0m) 

Table 4.13 Assumptions for design example 

Load Resistance 
Mean undrained shear 

Dead load (DL) 1500kN/m strength, Cu 140 kPa 
Cv (variability due to soil 

Live Load (LL) 500kN/m heterogeneity) 25% 
Cvu (variability due to other 

aD (partial load factor for sources of uncertainty- see 
DL), CGS, 1992 [25] 1.25 Section 4.4.3.4) 10% 

aL (partial load factor for Bhn (normalized horizontal 
LL), CGS, 1992 [25] 1.5 correlation distance) 2 

A required foundation width of 6.0m was obtained; this foundation width satisfies a 

target reliability index of 3.5. If the above foundation were designed based on current 

practice (CGS, 1992) using ¢=0.5, the required foundation width would be B = 7.3m (say 

B = 7 .5m). The values of the degree of variability assumed in this example are in the low 

ranges; th1~refore, the foundation width obtained here is smaller than what is calculated 

using current practise. If higher values for variability- namely Cv and Cvu in Table 4.13-

were considered, the calculated foundation width from the calibrated partial design factor 

(Figure 4.25) would be larger than those estimated from current practise. A foundation 

designed using the calibrated partial design factor would satisfy a more uniform reliability 

index. 
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Figure 4.25 Contours of partial design factors vs. natural variability of soil, C v and 
uncertainty from other sources, C vu. for design using mean shear strength. 
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For Gamma distributed soil strength 
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Figure 4.26 Contours of partial design factors vs. natural variability of soil, C v and 
uncertainty from other sources, C vu, for design using characteristic bearing 
capacity (see Section 4.4.4.1 ). 
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4.5. DIFFERENTIAL SETTLEMENT AND DAMAGE LEVELS 

4.5.1 Introduction 

The main purpose of this study was to evaluate the effects of soil heterogeneity on 

ultimate bearing capacity of foundation. However, even under vertical loading, a 

foundation placed on spatially variable soil exhibits rotations. The effects of these rotations 

were studied in this section using the damage criteria concept (described in Section 4.5.2). 

These crit1eria for rotations may not correspond to their realistic application in practise. 

They were used in this work for demonstration purposes. As mentioned in Section 4.5.2, 

often uni£orm settlements of a structure do not cause structural malfunction. Footing 

rotations or differential settlements may, however, cause problems (e.g. Bowles, 1997 

[20]). 

A relatively high ratio of Elcu = 1500 was used in the previous sections. This high 

ratio leads to relatively small rotations, but serves well the analysis for ultimate bearing 

capacity. Since Elcu differs for various soil types, this study considered two ratios - Elcu = 

300 and 1;;/cu = 1500 - to calculate foundation rotations. Deformation modulus, E, was 

assumed to be a variable perfectly correlated with soil shear strength. 

4.5.2 Damage Criteria 

In addition to the shear failure criterion, foundation settlements must be estimated 

and controlled with great care for buildings, bridges, towers, power plants, and similar high 

cost structures. Settlements are generally made up of immediate, consolidation and 
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secondary compression (creep) components. The analysis approach used here is only 

appropriate to account for immediate settlements. Consolidation and viscous analyses are 

required to capture the second and third components of settlement. 

It is convenient to express possible structural damage in the form of a few discrete 

damage states, selected as a function of feasibility of repairs (e.g. Park and Ang 1987 

[ 148]), serviceability or structural distress (e.g. Grant et al. 197 4 [71 ]). The latter approach 

was adopt(:d here. Three levels of structural damage, representing three serviceability limit 

states, were expressed in terms of footing rotations, as follows: 

• Minor damage- for rotations greater than 11500 

• Medium damage- for rotations greater than 11300, and 

• Major damage- for rotations greater than 1/150 

The probability that a certain level of damage will occur, or will be exceeded, under 

different load intensity may be expressed in the form of a cumulative distribution function 

(CDF) similar to the bearing capacity problem presented in the previous section. The CDF 

function corresponding to each damage level was constructed by first obtaining the 

empirical distribution for exceedance of each criterion from the results of Monte Carlo 

simulations. For each analysed case, plots similar to Figure 4.11 b were obtained (also see 

Figures B..3 to B.5). Using these plots, it is possible to obtain empirical probability 

distribution of bearing pressure at each damage criterion by reading the bearing pressures at 

absolute values of the damage rotations (1/500, 1/300, and 11150) from each curve (each 

curve is one finite element analysis for Monte Carlo simulations). A lognormal fit was used 

for this distribution. Thus, for the method of moments, it is sufficient to identify the mean 
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and coeffilcient of variation of resulting bearing capacity to define the theoretical 

probability distribution for each criterion. It is also possible to express this in terms of 

fragility curves (e.g. Shinozuka et al. 2000 [187]; Popescu et al., 2002 [170]). The latter 

approach is presented by Popescu et al. (2002 [168]). 

4.5.3 Experiment Design 

The design layout of experiments is outlined in Section 4.4.1. The following ranges 

of soil spatial characteristics were taken: Cv= 10% to 40%, Gamma and Beta probability 

distribution for soil shear strength, and fhzn = 1 to 4. Two ratios of Elcu = 300 and 1500 were 

considered. As mentioned, a range of the vertical correlation distance was considered for 

Elcu= 1500, but was screened out for Elcu= 300. 

4.5.4 Statistical Analysis and Results 

The mean and coefficient of variation of bearing pressure at major medium and 

minor damage criteria were obtained from results of Monte Carlo simulations. They are 

reported in Table 4.14 and Table 4.15 for Elcu = 300 and Elcu = 1500, respectively. The 

response surface methodology was used to analyse and fit a regression model to the results. 
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Table 4.14 Parametric study for Elcu = 300, design layout of Monte Carlo simulations 
and results for damage levels. 

Normalized bearing pressure 

Factor 1 Factor 2 Factor 3 Mean Coefficient of variation 
Normalized 
horizontal Minor Medium Major 

Coeff. of correlation Minor Medium Major damage, damage, damage, 
Exp. variation, distance, Pro b. damage, damage, damage, Cv-minor Cv-medium Cv-major 

# Cv (%) Bhn distrib. Rminor Rmedium Rmaior (%) (%) (%) 
1 10 1 Gamma 0.59 0.66 0.74 22 20 17 

2 40 1 Gamma 0.28 0.38 0.49 62 43 29 

3 10 4 Gamma 0.60 0.66 0.74 23 20 17 

4 40 4 Gamma 0.29 0.39 0.49 63 50 38 

5 10 1 Beta 0.56 0.64 0.72 24 21 18 

6 40 1 Beta 0.24 0.32 0.42 79 61 46 

7 10 4 Beta 0.59 0.67 0.74 25 21 18 

8 40 4 Beta 0.26 0.35 0.46 77 61 47 

9 25 2.5 Gamma 0.41 0.51 0.59 43 31 24 

10 25 2.5 Beta 0.38 0.48 0.57 53 37 28 
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Table 4.15 Parametric study for Elcu= 1500, design layout of Monte Carlo simulations 
and results for damage levels. 

tFactor 1 Factor 2 
Factor 

Factor 4 
3 Mean bearing capacity ratio Coefficient of variation 

Coeff. 
Norm. Norm. 

of 
horiz. vert. 

Pro b. 
Minor Medium Major 

variat., 
correl. correl. 

dist. 
Minor Medium Major damage, damage, damage, 

dist., dist., damage, damage, damage, Cv-minor Cv-medium Cv-major 
Cv (%) 

()hn ()vn Rminor Rmedium RBC-mqj()r (o/ll}_ _{o/~ _(_o/ll}_ 
10 1 0.25 Gamma 0.79 0.85 0.91 14 10 7 

40 1 0.25 Gamma 0.54 0.60 0.68 22 21 18 

10 4 0.25 Gamma 0.82 0.88 0.93 11 9 6 

40 4 0.25 Gamma 0.56 0.63 0.70 28 27 25 

10 1 1 Gamma 0.80 0.86 0.92 13 9 6 

40 1 1 Gamma 0.55 0.61 0.68 24 23 20 

10 4 1 Gamma 0.81 0.87 0.92 13 9 7 

40 4 1 Gamma 0.58 0.64 0.72 31 31 29 

10 2.5 0.625 Gamma 0.80 0.86 0.92 12 9 7 

40 2.5 0.625 Gamma 0.54 0.60 0.67 28 26 24 

25 1 0.625 Gamma 0.64 0.70 0.78 20 18 13 
25 4 0.625 Gamma 0.68 0.74 0.81 24 21 18 

25 2.5 0.25 Gamma 0.66 0.74 0.81 19 17 14 

25 2.5 1 Gamma 0.63 0.70 0.78 21 20 16 
25 2.5 0.625 Gamma 0.64 0.72 0.79 22 18 15 
10 1 0.25 Beta 0.78 0.85 0.90 14 11 8 
40 1 0.25 Beta 0.47 0.54 0.60 34 27 25 
10 4 0.25 Beta 0.81 0.88 0.93 14 11 9 
40 4 0.25 Beta 0.53 0.60 0.67 41 38 35 
10 1 1 Beta 0.78 0.84 0.90 15 11 8 
40 1 1 Beta 0.48 0.55 0.62 34 29 26 
10 4 1 Beta 0.81 0.87 0.92 15 12 10 
40 4 1 Beta 0.53 0.61 0.68 45 39 36 
10 2.5 0.625 Beta 0.81 0.88 0.93 14 11 8 
40 2.5 0.625 Beta 0.55 0.62 0.69 38 34 30 
25 1 0.625 Beta 0.64 0.70 0.78 22 19 14 
25 4 0.625 Beta 0.66 0.73 0.80 29 26 23 
25 2.5 0.25 Beta 0.65 0.72 0.78 27 25 21 
25 2.5 1 Beta 0.63 0.70 0.77 24 23 19 
25 2.5 0.625 Beta 0.66 0.74 0.81 25 21 18 
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4. 5. 4.1. Regression equations for damage levels 

Similar to ultimate bearing capacity, regression equations were obtained for the 

damage levels. The coefficient of variation of soil shear strength was found to be the main 

factor affecting mean limit bearing pressure at the three damage levels. The shape of the 

probability distribution of shear strength characterizing the portion of loose pockets of soil 

also influenced the results. For Elcu = 1500, the following equations were obtained for 

mean limit bearing pressure ratio at the three damage levels. Mean limit bearing pressure 

ratio is defined as the mean limit bearing pressure at damage criteria divided by the 

ultimate bearing capacity obtained deterministically from uniform soil assuming mean soil 

shear strength. In general format, the equation can be written as, 

Eq. 4.15 

where a, b, c, d are given in Table 4.16 and Table 4.17, and C vis in percents. The predicted 

R2 for all fitted equations (models) were from 0.97 to 0.98. Figure 4.28 and Figure 4.29 

show the scatter plots for Monte Carlo simulations and predicted (Eq. 4.15) values of 

bearing pressures at minor and major damage levels. 
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Table 4.16 Parameters a, b, c, din Eq. 4.15 for Gamma probability distribution and Elcu 
= 1500 

a b c d 

Minor damage 0.890 -0.0126 0.0113 8.66 x to-=> 

Medium damage 0.939 -0.0113 0.0118 6.11 X 10-:> 

Major damage 0.963 -0.00756 0.0109 0 

Table 4.17 Parameters a, b, c, din Eq. 4.15 for Beta probability distribution and Elcu = 
1500 

a b c d 

Minor damage 0.905 0.0139 0.0113 8.66 X 10-:> 

Medium damage 0.954 -0.0124 0.0118 6.11 X 10-:> 

Major damage 0.978 -0.00875 0.0109 0 

Similarly, for the coefficient of variation of limit bearing pressure ratio for damage 

levels, they can be written as, 

Eq. 4.16 

where e, f, g, h are given in Table 4.18 and Table 4.19 and all coefficients of variation are 

expressed in percents. The predicted R2 for all fitted equations (models) were from 0.97 to 

0.98. Figure 4.30 and Figure 4.31 show the scatter plots for Monte Carlo simulations and 

predicted (Eq. 4.16) values of coefficient of variation of bearing pressures at minor and 

major damage levels. 
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Table 4.18 Parameters e,f, g, h in Eq. 4.16 for Gamma probability distribution and Elcu 
= 1500 

e f g h 

Minor damage 10.3 0.259 -1.02 0.0898 

Medium damage 6.07 0.301 -0.925 0.0993 

Major damage 2.34 0.298 -0.544 0.0948 

Table 4.19 Parameters e, f, g, h in Eq. 4.16 for Beta probability distribution and Elcu = 
1500 

e f g h 

Minor damage 8.61 0.575 -1.02 0.0898 

Medium damage 
6.19 0.489 -0.925 0.0993 

Major damage 
2.48 0.481 -0.544 0.0948 

For each damage level, cumulative distributions ofbearing resistance (similar to the 

one for ultimate bearing capacity in Section 4.4.3) were constructed and various probability 

distributions were fitted for all the cases (an example is presented in Appendix B). The 

lognormal distribution fits well in most cases. Therefore, the mean and coefficients of 

variation in Eq. 4.15 and Eq. 4.16 could be used to construct cumulative distributions of 

limit bearing pressure at each damage level. Likewise, these distributions could be used in 

reliability analysis of foundations. 
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Figure 4.28 Scatter plot for Monte Carlo simulations and predicted (Eq. 4.15) values of 
mean bearing pressure at minor damage level. 
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For Elcu = 300, the regression equations were obtained for limit bearing pressure at 

damage levels similar to Elcu = 1500. The following simplified equations can be written for 

mean bearing pressure and its coefficient of variation at the three damage levels (for cases 

with Elcu == 300), 

Rminar I Rmedium I RmaJor =a+ bCv Eq.4.17 

CV-minor I CV-medium I Cv-major (%) = C + dCv Eq. 4.18 

where a, b, c, d are given in Table 4.20 and Table 4.21. The predicted R2 for all fitted 

equations except for Cv-major were larger than 0.95. The equation for Cv-major had a predicted 

R2 
= 0.86 and R2 

= 0.95. The damage levels were defined based on foundation rotations. 

These equations demonstrate that the foundation rotations were probably influenced by soil 

variability near the foundation particularly for the lower Elcu. Therefore, the correlation 

distance in the range studied was not a significant factor in Eq. 4.17 and Eq. 4.18. 

Table 4.20 Parameters for estimating mean limit bearing pressure at different damage 
levels (Eq. 4.17, for cases with Elcu = 300) 

Gamma Probability distribution Beta Probability distribution 
Damage llevels 

a b a b 

Minor 
0.689 

-0.0102 
0.681 

-0.0109 

Medium 
0.749 

-0.00913 0.759 -0.0107 

Major 0.821 -0.00840 0.828 -0.00981 
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Table 4.21 Parameters for estimating coefficient of variation ofbearing resistance at 
different damage levels (Eq. 4.18, for cases with Elcu = 300) 

Gamma Probability distribution Beta Probability distribution 
Damage llevels 

c d c d 

Minor 9.59 1.33 7.63 1.77 

Medium 11.0 0.873 7.40 1.31 

Major 11.5 0.536 8.00 0.933 

4.6. A1l>PLICATION TO DESIGN AND RELIABILITY ANALYSIS 

The results presented in Section 4.4 were used to calibrate partial design factors. 

The results in Section 4.5 can also be used in the same framework to calibrate partial 

design factors for damage criteria (serviceability criteria). It is also possible to estimate 

mean bearing pressure and its coefficient of variation at failure and several damage levels 

using the equations provided in Sections 4.4 and 4.5. These values can be used in reliability 

level II and III analyses. Calibration of partial design factors is an example of using these 

values in :reliability level II analysis. This section presents a possible integration of the 

results obtained in this study with more vigorous reliability analysis. 

Assuming uniform soil properties and weightless soil, bearing capacity of a shallow 

foundation can be defined as, 

q det = N C 
c u Eq. 4.19 
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where Nc is the bearing capacity factor (Nc= 5.14 for a Tresca soil- Prandtal solution) and 

cu is the soil shear strength. Based on the study presented here, the effects of soil 

heterogeneity can be accounted for by, 

Eq. 4.20 

where X is normalized bearing capacity (or pressure). X is a random variable; its mean can 

be obtained using Eq. 4.4 & Eq. 4.5 and its coefficient of variation can be obtained using 

Eq. 4.6 & Eq. 4.7. The empirical probability distributions ofbearing capacity were studied. 

It was found that a lognormal distribution often fit well. Use of lognormal distribution is 

also common in these applications - e.g. construction of fragility curves (Shinozuka et al., 

2000 [187]). Thus, a logarithmic distribution can be assumed for X As discussed in the 

literature review, there are other sources of uncertainty. For instance, there is uncertainty in 

Nc due to the complex behaviour of soil and there is uncertainty in mean Cu due to 

measurem::mt errors. Assuming independence between different sources of uncertainty, it is 

easy to obtain the cumulative probability distribution of bearing capacity if the probability 

distributions of other uncertainties are known. The cumulative probability distribution of q 

IS, 

F(q)= JfJXNccuf(X)g(NJh(cu) dX.dNc.dcu 
X.Nccu<q Eq. 4.21 

where J, g, and h are probability density functions, pdf, of their arguments. Similar to 

bearing capacity, the cumulative probability distributions can be obtained for bearing 

pressures at damage levels. Popescu et al. (2002) [170] performed such calculations to 
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obtain fragility curves at ultimate state and damage levels accounting for additional 

uncertainty due to measurement errors. 

4.7. SUMMARY 

The effects of soil heterogeneity on the bearing capacity of strip foundations under 

undrained conditions were examined using a Monte Carlo simulation method, including 

digital generation of non-Gaussian random fields and nonlinear finite element analyses 

with stochastic input. A parametric study was performed to investigate the effects of (1) 

degree of variability, (2) scales of fluctuation, (3) probability distribution of soil strength, 

and (4) soil deformability on predicted bearing capacity and differential settlements. The 

analysis c:ases were designed using a Design of Experiment (DOE) method. Main 

parameters (mean and coefficient of variation) of resulting bearing distribution at the 

ultimate state and three damage levels were derived based on statistical analyses using the 

response surface methodology. The results were summarized and studied in terms of 

cumulativ1e probability distribution curves that express the probability of exceeding a 

certain degree of structural damage. The three serviceability states associated with 

differential settlements, and a limit state associated with bearing capacity failure were 

analysed. Regression equations are provided to account for the effects of probabilistic 

characteristics of soil on bearing resistance of soil. They can be used in foundation design 

and reliability analysis. The following main results are derived, 
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• Behaviour of soil and soil-structure systems in the nonlinear regime is 

strongly affected by the natural spatial variability of soil strength within 

geologically distinct and uniform layers. 

• Increasing soil variability and the amount of loose pockets in the soil mass 

(controlled by the left tail of the probability distribution of soil strength) 

strongly diminished bearing capacity of soil and increased differential 

settlements. 

• The average bearing capacity of heterogeneous soils obtained from Monte 

Carlo simulations resulted in consistently lower values than those predicted 

assuming uniform soil strength. Soil shear strength variability and its 

distribution (amount of loose pockets) were the most significant factors. 

• The predicted bearing capacity had a lower coefficient of variation than 

that of the soil shear strength. This can be attributed to the effects of local 

averaging (V anmarcke, 1983 [209]). Variability of bearing capacity 

originates from soil shear strength variability. The horizontal correlation 

distance and probability distribution (amount of loose pockets) of soil shear 

strength variability affects the variability ofbearing capacity. 

• The study demonstrated how the effects of natural soil variability can be 

combined with other sources of scatter to estimate the total uncertainty in 

the bearing capacity. 

• A methodology was developed to account for the effects of natural soil 

variability in a limit state design method. Partial resistance factors were 
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calibrated for a target reliability index (/J= 3.5) considering the effects of 

soil natural variability as well as other sources of scatter (uncertainty). 

• Characteristic bearing capacity values of a heterogeneous soil deposit, 

corresponding to a failure probability of 5%, were obtained. The required 

reduction factors to obtain characteristic values were contoured in Figure 

4.24 for the ranges of probabilistic characteristics considered here. 
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CHAPTER 5 

JLATERAL LOADING OF A BURIED PIPE 

5.1. INTRODUCTION 

5.1.1 nescription 

A study of the effects of soil heterogeneity on lateral loading of a buried pipeline 

was conducted using Monte Carlo simulation methodology. Results of simulations 

accounting for the spatial variability of soil strength were compared to deterministic 

analyses assuming uniform soil properties. Soil response to movement of buried pipelines 

and corresponding failure mechanisms are still not well known for uniform soil. Due to the 

complex behaviour of pipeline and the large number of factors affecting pipe response, this 

study had a limited scope compared to the one on foundation and can be assumed as a 

starting point for future research. Only one configuration for a buried pipeline was 

considered. The effects of soil shear strength variability and correlation distances were 

briefly studied. Based on the results, recommendations were set forward for future work. 

Numerical, experimental and theoretical aspects of soil-pipe analysis are discussed in 

Section 2.3. 

215 



The response of oil and gas pipelines to soil movements is an important 

consideration in pipeline design and route selection. These soil movements may be due to 

landslides, seismic activity such as faulting or lateral spreading, or a variety of other causes. 

These soil movements displace the buried pipeline as exemplified in Figure 5.1. This is a 

displacement controlled loading scenario (e.g. ASCE, 1984 [5]; Paulin, 1998 [149]). The 

load transfer behaviour between a pipe and the surrounding soil is not well understood. A 

simplified approach to complex loading is to account for soil-pipe interaction in three 

distinct directions: axial, transverse lateral and transverse vertical (also see Section 2.3.1 ). 

In this study, only lateral movements of soil were considered. For simplification, it was 

assumed that the backfill soil has the same characteristics as native soil. 

5.1.2 Objectives and Limitations 

M:my factors, including soil shear strength, burial depth, pipe diameter and soil 

weight contribute to the response of buried pipelines subjected to soil movement. The 

failure mechanism of a pipeline also changes with the aforementioned parameters. In this 

study, only one configuration for buried pipelines was considered. The following objectives 

were pursued: 

• validate the capability of finite element method to capture the failure 

mechanism of a buried pipeline; 

• demonstrate the capability of the proposed methodology to capture the 

effects of soil heterogeneity; 
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• investigate the effects of degree of variability of the soil strength, Cv, and 

correlation distances on the response of pipeline; and 

• investigate the effects of soil heterogeneity on the behaviour and failure 

mechanisms of pipelines. 
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Figure 5.1 Lateral movements of soil: (a) an observed landslide in cohesive material; 
and (b) schematic representation of landslide. 
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5.2. DJETERMINISTIC FINITE ELEMENT ANALYSIS 

5.2.1 Finite Element Analysis Set-up 

5.2.1.1. Finite element mesh 

One embedment ratio was analysed with HID = 1.5 (shallow cover), where His the 

springline burial depth and Dis the pipe diameter. The finite element mesh and boundary 

conditions used are shown in Figure 5.2. The soil was discretized using 482 quadratic plane 

strain finite elements with 8 nodes and reduced integration (CPE8R in ABAQUS). During 

the course of projects conducted at C-CORE, it was concluded that these second order 

elements yielded higher accuracy than linear elements at the same computational effort for 

pipeline analysis. A rigid pipe section was modelled using 20 3-node quadratic beam 

structural elements (B22). These beam elements model a rigid pipe; therefore, their plane 

stress behaviour does not affect the analysis. Also, there is no nodal rotation in the pipeline 

section due to rigid behaviour; this satisfies the shape function compatibility between beam 

and 2D elements. 
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Figure 5.2 Typical finite element mesh and boundary conditions. 

The contact surface approach implemented in ABAQUS/Standard, allowing for 

separation and sliding of finite amplitude and arbitrary relative rotation of the contact 

surfaces, was used to simulate the pipe/soil interface. The contact was assumed frictional, 

with isotropic Coulomb friction. The shear stress between the surfaces in contact was 

limited by a critical stress Tcrit = JIP, where p is the normal contact pressure, and Jl is the 

friction coefficient. For clay materials, a maximum value was also assumed for the shear 

stress at the interface, Tmax, irrespective of the normal contact pressure. The critical shear 

stress is expressed as Tcrit = min( JIP, Tmax). Practical values of Tmax for pipe/soil interface are 

approximately one third of the undrained shear strength (e.g. Paulin et al., 1998 [ 150]). In 

this study, the interface between the soil and pipe was assumed to be adhesive; hence, Tmax 

= 0.33cu artd a large friction coefficient of Jl = 1 were assumed. 
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5.2.1.2. Material properties 

A clay material under undrained conditions was assumed. The soil material 

properties were as follows: 

Average undrained shear strength, Cu av = 50kPa 

Deformation modulus, E = 300 Cu 

Poisson's ratio, v= 0.49, to simulate an almost incompressible behaviour 

Total unit weight r= 18 kN/m3 

The pipe was modelled using a linear elastic material with very high stiffness to 

simulate a rigid pipeline. 

5.2.1.3. Analysis procedure 

First, a geostatic step was performed to establish the initial stress state in the soil. 

Next, the desired pipe movement was imposed as displacement controlled. Nodal 

displacements were prescribed in the horizontal direction, while the pipe was free to move 

in the vertical direction. Large deformations and finite strain analysis options were used 

throughout the study. 

The program generated the interaction forces only at contact nodes in the soil, so 

called the "slave" surface. Due to the large relative deformations at soil/pipe interface, it 

was difficult to follow the position of soil nodes relative to the pipe and, therefore, those 

nodes were not appropriate for calculating the forces on the pipe. The predicted soil/pipe 

interaction forces could be obtained using two methods: (1) from driving forces as nodal 

reactions - for nodes with imposed displacements, and (2) from element forces, using the 
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balance of the internal element forces over each node at the pipe/soil interface. The first 

method is deemed to provide correct numerical results, while the second may be affected 

by numerical errors induced by adding element forces that can differ by several orders of 

magnitude:. The first methodology was employed here. 

5.2.2 Finite Element Results 

The predicted interaction forces are presented as normalized pressure-normalized 

displacement curves, in which the normalized pressure is calculated as, 

F 
Pn=-D 

cu Eq. 5.1 

where F is the interaction force per meter of pipe, D is the pipe diameter, and cu is the 

undrained shear strength of clay. The pipeline displacement was normalized with respect to 

the pipe diameter. In this study, the pipeline diameter was one metre. 

5.2.2.1. Predicted force displacement results 

Predicted force displacement curves are shown in Figure 5.3 for two cases- one 

with and one without self-weight effects. The results were compared to the results of Rowe 

and Davis (1982a) [179]. This reference used weightless soil. Figure 5.3 shows very good 

agreement between predicted weightless ultimate capacity and those obtained by Rowe and 

Davis. The effects of weight on the bearing capacity factor of pipeline increases as the yhlcu 

ratio increases. This was demonstrated by performing the same analysis on soft clay with 

shear strength of 10 kPa as shown in Figure 5.3b. It is also known that increases in burial 
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depth of pipeline results in an increase in the bearing capacity factor. This can be attributed 

to changes in failure mechanism and stress level at pipeline. Figure 5.4 shows some of 

these effects. These issues are currently being studied through deterministic analysis 

assuming uniform soil properties (Popescu et al., 2002 [ 168]). As previously mentioned, 

only one configuration, as shown in Figure 5.2, was considered for stochastic analysis and 

the research can be further expanded to a more general parametric study. 
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Figure 5.3 Predicted normalized pressure-normalized displacement for pipeline as 
shown in Figure 5.2 and comparison with Rowe & Davis (1982a) results: a. 
firm clay used in stochastic analysis with Cu = 50 kPa; b. soft clay with 
cu=lO kPa. 
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5.2.2.2. Failure mechanism 

Figure 5.5 shows contours of plastic shear strain due to lateral loading of pipeline as 

described in Section 5.2.1. It illustrates the failure mechanism of firm clay (cu = 50 kPa, E 

= 300 x Cu = 15000kPa) under lateral loading of a rigid pipeline. 

PEMAG VALUE 
+O.OOE+OO 

+l.OOE-02 

+3.00E-02 

+5.00E-02 

+7.00E-02 

·+9.00E-02 

+2.59E-01 

Figure 5.5 Contours of plastic shear strain magnitude (PEMAG) demonstrating failure 
mechanism of firm clay subjected to lateral loading of rigid pipeline 
(uniform soil). 

5.2.3 Validation of the Numerical Model 

5.2.3.1. Validation offinite element model based on full-scale experimental results 

Using the continuum finite element method, a numerical model was constructed for 

pipe-soil interaction involving large relative displacements. The analysis procedure 

accounted for the nonlinear behaviour of soil materials, relative slip and separation at the 

pipe-soil interface. The calculations were performed in terms of large displacements/finite 

strains. The model was calibrated and validated based on full-scale experimental data (e.g. 
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Paulin, 1998 [ 149]). Various soil materials, soil-pipe relative flexibility and loading 

mechanisms were considered in the numerical program (see e.g. Nobahar et al., 2000 

[141]; Popescu et al., 2001 & 2002 [160 & 161]; Guo et al., 2002 [80]). 

For verification, numerical modelling results were compared with experimental 

data from a large-scale model study. The finite element mesh used in this verification is 

shown in Figure 5.6. Comparisons between finite element predictions using Tresca model 

and experimental measurements in terms of force-displacement curves are presented in 

Figure 5.7 for firm clay and soft clay. A range of results was obtained based on the range of 

shear strength estimated from different triaxial tests performed on the same soil (shaded 

area in Figure 5.7). The values are not shown due to the confidentiality of test results. 

Figure 5.8 presents the comparison of calculated plastic deformation zone in stiff clay and 

the observed deformation at the end of the test after excavation. 

J --

~ 

Figure 5.6 Finite element mesh for validation modelled according to large-scale 
experimental tank size. 
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Figure 5. 7 Recorded and predicted range of force-displacement relations for large-scale 
tests in clay, using the Tresca model: a. soft clay; b. stiff clay. 

Popescu et al. (1999) [166], Nobahar et al. (2000) [141], and Popescu et al. (2001) 

[160] impllemented more advanced models such as Cam-Clay model (with associated 

plastic flow rule) for clay materials and the extended non-associated Mohr-Coulomb 

plasticity model accounting for softening/hardening of sand to back-analysis the results of 

large-scale tests. Two-dimensional, nonlinear finite element analyses of large scale tests of 
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lateral loading of a rigid pipe were performed for numerical model validation, using the soil 

materials employed in the full-scale experiments: stiff and soft clays, and dense and loose 

sands. Comparisons between numerical predictions and full-scale experimental results 

proved that the finite element model was able to closely simulate the observed phenomena 

in terms of force-displacement relations (Figure 5.9) and failure mechanisms (Figure 5.10). 

Popescu et al. (1999) [166], Nobahar et al. (2000) [141] and Popescu et al. (2002) [168] 

presented a summary of the numerical results and model calibration, as well as a discussion 

of the limitations of the soil constitutive models used in these studies. 

5.2.3.2. Summary 

This section presents comparisons and validation of numerical analysis of pipe-soil 

interaction. As discussed in the literature review, there is a wide range of factors and 

equations suggested by researchers to calculate soil-pipe interaction response. The Tresca 

model, discussed in Section 3.5.2.3, was used here. In a plane strain condition, this model 

predicts interaction forces that are 15% lower than those obtained using von-Mises model 

and it is theoretically more rational (see Section 3.5.2). Force-displacement relations for the 

configuration used in stochastic analysis are presented in Figure 5.3. 

Comparisons between numerical modelling and large-scale model tests on pipelines 

buried in both sand and clay show that the proposed numerical procedure can reasonably 

reproduce pipe-soil interaction forces under different soil conditions, when soil parameters 

are correctly estimated. 
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Figure 5.8 Comparison of predicted and observed failure in stiff clay: a. observed (after 
Paulin et al. 1998 [150]); b. predicted using a finite element model of the 
experimental tests; c. predicted using finite element model used for 
stochastic analysis. 
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Figure 5.9 Validation of a numerical model for pipe/soil interaction: a. finite element 
mesh; b. comparison of recorded and predicted force-displacement relations 
(from Popescu et al., 2002 [169]). 
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Figure 5.10 Comparison ofpredicted and observed behaviour of dense sand: a. post-tests 
deformation tubes (after Paulin et al. 1998 [150], printed with permission 
from the Canadian Geotechnical Society); b. predicted displacements; c. 
predicted contours of plastic strain magnitude (after Nobahar et al., 2000 
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5.3. STOCHASTIC FINITE ELEMENT ANALYSIS 

5.3.1 s~election of Probabilistic Characteristics for Soil Variability 

The range of soil variability adopted in this study for the undrained soil strength 

was C v = 20% to 80%. This range was selected based on the literature review (Section 

2.1.1.3 ). Pipelines are buried in all types of soil having low or high shear strength; thus, a 

possible range of inherent variability of soil strength is wider for pipelines than for 

foundations. A separable correlation structure based on the exponentially decaying model 

was assumed, with a range of scales of fluctuations: Bhn = 2.5 to 5, and Bvn = 0.25 to 1.5 

(where Bhn, Bvn are correlation distances normalized with respect to the pipe diameter). Due 

to the limited scope of this study, a limited range of correlation distances was analysed. A 

Gamma probability distribution skewed to the right was assumed for the soil shear strength 

(Figure 3.2). The average shear strength, Cuav was 50 kPa. The soil deformation modulus for 

undrained behaviour was assumed as E = 300cu. 

Table 5.1 presents the cases analysed for lateral loading ofthe pipeline. A factorial 

design was followed, but only variation of two parameters, namely the degree of soil 

variability and the vertical correlation distance, was considered. For two cases, the 

horizontal correlation distance varied as well (cases 6 and 7). 
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Table 5.1 Stochastic cases analysed for lateral loading of pipeline 

Coefficient Normalized Normalized vertical 

Experiment of variation, horizontal correlation correlation distance, 

# Cv (%) distance, fhzn Bvn 

Factor 1 Factor 2 Factor 3 
1 20 5 0.5 
2 80 5 0.5 
3 20 5 1.5 
4 80 5 1.5 
5 50 5 1 
6 50 2.5 0.25 
7 50 1 0.25 

5.3.2 1\'Ionte Carlo Simulation Results 

5.3.2.1. Comparison with deterministic analysis 

For Monte Carlo simulations, a total of 4200 finite element analyses with stochastic 

input wen::~ performed (600 for each case shown in Table 5.1). For each analysis, the pipe 

response in terms of force vs. displacement was obtained, as discussed in Section 5.2.1.3. 

Figure 5.11 shows a sample realization of soil strength, the predicted failure mechanism 

using finite element method, and the corresponding force-displacement curve. The results 

were nomtalized in terms of normalized pressure vs. normalized displacement. For case 5 

in Table 5.1, the results ofMonte Carlo simulations are shown in Figure 5.12a. As shown 

in Figure 5.12b, the results were processed to obtain the average, and 5% and 95% fractile 

at each displacement. The results oflateralloading of the same pipe using uniform soil with 

shear strength, Cu =50 kPa are presented for comparison (Figure 5.12b). The Monte Carlo 

simulations, accounting for spatial variability of soil strength, yielded interaction forces that 
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were gem:rally lower than those predicted by the deterministic analysis. However, the 

effects of soil heterogeneity on pipeline seemed to be smaller than that of shallow 

foundation. This can be attributed to the observation that pipe failure in uniform soil is 

asymmetric for uniform soil in contrast to foundation failure. Therefore, soil heterogeneity 

does not significantly change the failure mechanism. The contours of plastic shear strains 

are shown for pipeline in Figure 5.1lb (compare to Figure 5.5). It should be noted that in 

pipeline, a lower interaction force is usually desirable for design purposes to decrease the 

stresses and strains in pipe steel section. 

5.3.2.2. Probabilistic analysis 

The results of Monte Carlo simulations were statistically studied for each case 

(Table 5.1 ). The pipe interaction forces were obtained at a reference normalized pipe 

displacement, Lln = 0.1 (Lin = SID). The empirical probability distributions of failure loads 

were constructed for all cases. Their means and standard deviations were estimated and 

different probability distributions were fitted to the results (an example of lognormal fit, for 

case 6, is shown in Figure 5.13). Lognormal distribution fit reasonably well the results in 

all studied cases. 
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Figure 5.11 A sample finite element analysis with spatially variable input soil: a. 
contours of undrained shear strength over domain of analysis (with average 
shear strength of 50 kPa); b. contours of plastic shear strain (PEMAG) 
demonstrating failure mechanism for the corresponding soil realization; (c) 
predicted normalized force-displacement relationship for the corresponding 
soil realization. 
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obtained for uniform soil with shear strength, Cu = 50 kPa. 
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5.4. ILLUSTRATIVE STUDY FOR A PIPE LOADED IN CLAY 

5.4.1 Statistical Analysis of Results - Rigid Pipe; 2D Analysis 

For all studied cases, the mean bearing ratio and coefficient of variation were 

normalized and are reported in Table 5.2. To obtain the mean bearing ratio, similar to the 

foundation case, the pressure obtained at the reference settlement was normalized by the 

corresponding pressure of a pipe in uniform soil with shear strength, Cu = 50 kPa 

(comparative study). This ratio shows the amount of decrease/increase in the average 

bearing pressure in stochastic analyses (Monte Carlo simulations) compared to that of a 

deterministic analysis using the same soil shear strength (i.e. the average shear strength 

used in the Monte Carlo simulations). Results showed that the decrease in mean pressure 

calculated by Monte Carlo simulations was smaller than the decrease found in foundation 

analysis; this was previously discussed in Section 5.3.2.1. The bearing pressure coefficient 

of variation, Cv was smaller than that of the soil shear strength, indicating the effect oflocal 

averaging. Similar to the foundation case, the vertical correlation distance in the range 

considered here was found to have non-significant effects on the bearing pressure (compare 

Cv of cases 1 and 3 and cases 2 and 4 in Table 5.2). An explanation could reside in the fact 

that the failure surfaces develop in the horizontal direction, similar to the case of bearing 

capacity of a shallow foundation. For cases 6 and 7, smaller correlation distances in both 

directions were considered, resulting in noticeable decreases in Cv of bearing pressure 
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(cases 5 to 7). The Cv of bearing pressure reflected the variability of average shear strength 

on surfaces in which failure occurred. 

Table 5.2 Results of lateral loading ofpipe in terms ofnormalized mean and 
coefficient of variation ofbearing pressure 

Bearing pressure at 
!Factor 1 Factor 2 !Factor 3 Lin= 0.1 
Coefficient Mean 
of variation Normalized Normalized bearing 

of soil horizontal horizontal pressure Bearing 
strength, C" correlation correlation ratio, RBc pressure, 

Exp.# (%) distance, ~n distance, Bvn (*) Cv 

1 20 5 0.5 0.95 6.7% 
2 80 5 0.5 0.73 32.3% 
3 20 5 1.5 0.95 7.0% 
4 80 5 1.5 0.72 34.2% 
5 50 5 1 0.88 17.4% 
6 50 2.5 0.25 0.86 10.9% 
7 50 1 0.25 0.86 8.6% 

* The mean bearing ratio defined as the pressure obtained at the reference settlement 
normalized by the corresponding pressure of a pipe in uniform soil with shear strength, cu = 

50kPa 

5.4.1.1. Regression equations 

As illustrated, the results obtained for parameters in Table 5.2 were statistically 

studied and a response surface, similar to that obtained for the foundation in Section 4.4, 

was fitted to the results. However, the ranges of studied parameters were limited, and 

therefore, the equations and results presented here are mainly for illustration purposes and 

are valid only in the specific range and set-up considered here. Only cases 1 to 5 were 

statistically designed and used in obtaining the regression equations. 

For mean bearing pressure ratio, the following equations were derived from fitting 

to the results in Table 5.2, 
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R11c = 1.03- 0.00376Cv Eq. 5.2 

For bearing pressure C v, 

CvBc(%) = -2.0+ 0.44Cv(%) Eq. 5.3 

The contribution of the vertical correlation distance in the predicted C v of bearing 

pressure was small for the limited studied range (Cv = 20% to 80%; fhzn = 5; Bvn= 0.5 to 1.5) 

and for the deterministic set-up here; therefore, it was omitted for response fit in Eq. 5.3. It 

should be noted again that only cases 1 to 5 were used in regression; thus, the above 

equations are only approximately valid for the studied ranges. It is well known that 

correlation distances affect the coefficient of variation of response. For example, for 

correlation distances of infinity, both soil strength and pipe response will have identical 

variation. The effects of correlation distances on variability of response (bearing pressure) 

are demonstrated using the results of cases 6 and 7 (Table 5.2). These effects should be 

investigated through a more detailed parametric study. 

5.4.2 L:ateral Loading of Flexible Pipeline, 3D Effects 

Soil bearing capacity on a laterally loaded pipeline buried in heterogeneous soil is 

quantified as a random variable in Section 5.4.1 assuming plane strain condition in a plane 

normal to pipe axis. These results can be used to define spring characteristics in structural 

models to analyze the effects of soil heterogeneity for a pipeline subjected to lateral soil 

movements; in structural models, the soil continuum is represent using springs (see Figure 
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2.13). Stmctural models as discussed in the literature review (Section 2.3.1) are state of 

practice in pipeline engineering. Here, the application of the study to a practical problem is 

demonstrated. 

A pipeline subjected to subscour deformation is considered. The soil deposit under 

ice-scour lmdergoes large deformations (e.g. Poorooshasb and Clark, 1990 [158]). Practical 

methods were developed by C-CORE to predict subscour soil deformation under a research 

program named PRISE. PRISE, the Pressure Ridge Ice Scour Experiment, was a jointly 

funded program to develop the capability to design pipelines and other seabed installations 

in regions scoured by ice, taking into account the sediment deformations and stress changes 

which may be caused during a scour event, Clark et al. (1998) [34]. Here, a pipeline buried 

in an overconsolidated clayey deposit subjected to ice-scour loading with characteristics 

given in Table 5. 3 were considered. Soil movements at pipeline springline were calculated 

based on C-CORE routines (Table 5. 4; see Woodworth-Lynas, 1996 [220]) as illustrated 

in Figure 5. 14a. It was necessary to simplify the complex sub-scour loading mechanism to 

allow for a meaningful comparison. Thus, only horizontal movements of soil and one 

loading condition were considered here. 

The lateral bearing capacity of uniform soil was estimated based on ASCE (1984) 

[5]. For heterogeneous soil, the lateral bearing capacity was assumed as a random variable 

with mean and coefficient of variation calculated according to Equations 5-2 & 5-3 and the 

lateral bearing capacity in uniform soil. The lateral bearing capacity along the pipeline, 

which defines the lateral spring capacity, is modelled as a 1D random field. The assumed 

parameters for soil heterogeneity and spring characteristics are given in Table 5. 4. One 
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sample function of the random field representing spring characteristics was generated and a 

finite element analysis was performed. The results obtained for uniform and heterogeneous 

soil are compared in Figure 5. 14b&c in terms oflongitudinal strains for points 1&2 of the 

pipeline section as shown in Figure 5. 14a. It can be seen that soil heterogeneity has 

changed the symmetric pattern of strain distribution in the pipeline. Also due to non-

uniformity of the soil reaction, the strains in the case analysed are significantly larger than 

those obtained for a pipeline buried in assumed uniform soil. When assuming uniform soil, 

both compression and tensile strains are satisfactory, based on DNV's (2000) [53] criteria. 

However, both strains are above the acceptable limits for heterogeneous soil (Figure 5. 14). 

Table 5. 3 Parameters used for the pipeline in Section 5.4.2 

Pipeline Characteristics 

Parameter Value/Type Explanation/ Reference 
Pipeline grade X52 Typical steel 
Yield strength for X52 358 MPa @ 0.5% strain Ramber _Osgood hardening 
Ultimate strength for X52 430MPa model (Walker and Williams, 

1995 [216]) 
Outside pipe diameter l.Om Practical values selected for the 
including concrete coating example 
Steel wall thickness 22.8mm 
Pipeline internal pressure 2.0MPa 
Depth from soil surface to 2.5m 
pipeline springline, Hs 
Tensile strain limit 2.5% DNV(2000) [53]. Tensile strain 
Compression strain limit 0.65% limit often is set due too 

welding flexibility. 
Compression strain limit is a 
function of pipeline thickness 
and internal pressure. 
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Table 5. 4 Soil and gouge characteristics 

Soil Characteristics 

Type Clay A typical example based on C-
Backfill material over Clay CORE routines 
pipeline 
Undrained shear strength, Cu 100 kPa 
Unit weight, y 18 kN/mj 
Coefficient of variation of 50% Practical values selected for the 
soil undrained shear strength example 
Horizontal correlation 5m 
distance 
Vertical correlation distance 1m 
Lateral bearing capacity 4.6 ASCE (1984) 
factor for 1miform soil, 
Nch(uniform) 

Lateral bearing capacity 3.87 Using Equation 5-2, 
factor for heterogeneous Nch(heterogeneous) = Rsc 
soil, Nch(heterogeneous) xNch(uniform) 

Coefficient of variation of 20% Using Equation 5-3 
lateral bearing capacity 

Gouge Characteristics 

Gouge Orientation Perpendicular to pipeline Practical values selected for the 
Gouge width, B 16m example 
Gouge depth, d 1.5 m 
Keel angle 15 (degrees) 
Maximum horizontal 2.94m C-CORE routines (see 
movement, U0 Woodworth-Lynas, 1996 [220] 

and Figure 1a) 
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Figure 5. 14 (a) schematic subscour soil deformation; (b&c) longitudinal strain 
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5.5. CONCLUSIONS 

A procedure for calculating the effects of soil heterogeneity on the pipe-soil 

interaction was established and the applicability of the proposed methodology was 

demonstrated. The methodology was similar to foundation and combined digital generation 

of stochastic fields with deterministic analysis through a Monte Carlo simulation. This was 

discussed in more detail in Chapter 3. 

Similar to the case of foundations, it was found that average bearing pressure of a 

pipe laterally loaded in heterogeneous soil was smaller than that of a pipe in uniform soil 

with shear strength equal to the average shear strength in Monte Carlo simulations. 

However, the decrease in average pressure was modest. The failure mechanism of laterally 

loaded buried pipe was not significantly affected by soil heterogeneity. This can be 

attributed to the observation that the failure mechanism of a foundation on heterogeneous 

soil is unsymmetrical in contrast to a foundation on uniform soil, while for shallow buried 

pipeline, the failure mechanism is unsymmetrical for both uniform and heterogeneous soil. 

The failure mechanism of pipeline changes by burial depth, stress level at springline 

(middle of the pipe), interaction factors, etc. Therefore, this observation may not be true for 

all cases. A more thorough study of laterally loaded buried pipelines is required, including 

an investigation of the effects of deterministic parameters such as burial depth, interaction 

factors, stress level at springline, and probabilistic characteristics. 

Similar to foundations, the predicted bearing pressures had a smaller variability 

than that of the soil shear strength. Coefficient of variation of bearing capacity originates 

from soil shear strength variability. For the limited number of parameters and ranges 
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considered in this study, the effects of soil heterogeneity on lateral loading of pipeline were 

analysed. Empirical probability distributions of bearing pressure were obtained and 

statistically processed. Results showed that a lognormal distribution fit those results well. 

The results, presented in terms of mean and coefficient of variation (Table 5.2), can be used 

in a probabilistic framework to analyse the reliability of a pipeline similar to that outlined 

for foundations. 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1. SUMMARY 

This chapter presents a summary of the observed effects of soil heterogeneity on a 

strip foundation and a laterally loaded pipe, as well as the corresponding design 

recommendations and suggestions for future work. This thesis outlines the application of a 

Monte Carlo simulation methodology, described in Chapter 3, to study the effects of soil 

heterogeneity on nonlinear problems in geotechnical engineering with consideration of 

soil-structure interaction and plastic behaviour. The methodology used conventional finite 

element analysis with spatially variable soil input parameters. A large number of finite 

element analyses were performed and processed by automation of the procedures. The 

method and automation procedure can easily be extended to other geotechnical problems 

such as those related to slope stability, piles, coupled analysis, etc. 

The Monte Carlo simulation approach used here is too complicated and numerically 

expensive for routine design. However, the aim of this study was to determine the effects of 

spatial variability of soil on foundation response and consequently provide necessary 

design recommendations and guidelines for engineering application. This provided a 

replacement approach for simple assessment ofthe effects of soil heterogeneity. 
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6.1.1 SJIJ.allow Foundations 

A series of parametric studies involving over 7200 nonlinear finite element analyses 

was performed. The effects of probabilistic characteristics of soil spatial variability -

degree of soil variability, probability distribution and correlation distances- and Young's 

modulus on the behaviour and responses of a shallow foundation were investigated. The 

range of soil variability adopted in this study for the undrained soil strength was C v = 10% 

to 40%. A separable correlation structure based on the exponentially decaying model was 

assumed, with ranges of scales of fluctuations Bhn = 1 to 4, and Bvn = 0.25 to 1. Two 

different probability distribution functions were assumed for the soil strength: (1) a Gamma 

distribution skewed to the right, and (2) a symmetrical Beta distribution. The soil 

deformation modulus for undrained behaviour was assumed to be perfectly correlated with 

soil shear strength, E = acu, with a ranging from 300 to 1500. The parametric study was 

pre-desigm~d using statistical methods for efficiency. The results were statistically analysed 

to quantify the effects of each probabilistic characteristic of soil spatial variability (Section 

4.4 and Section 4.5) and were qualitatively investigated for the effects of soil heterogeneity 

on failure mechanism. One failure criterion and three serviceability criteria were 

considered. Serviceability criteria are defined based on foundation rotations (see damage 

criteria - Section 4.5.2). Foundations placed on heterogeneous soil have significant 

rotations even under vertical loading due to non-uniformity of deformation modulus and 

soil strength. For each criterion, the researcher obtained empirical probability distribution 

of bearing resistance. Several probability distributions were fitted to the results, and for 

most cases, the lognormal distribution fit was the best. Response surfaces (regression 
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equations) were determined for the predicted mean and degree of variability. The fitted 

equations can be used for the studied ranges to estimate the effects of soil heterogeneity in 

reliability analysis. 

This thesis also presents an approach to estimating the required partial resistance 

factor, which can satisfy the desired reliability level, accounting for uncertainties caused by 

soil heterogeneity and other sources. Contours of required resistance factors are presented 

for the range studied for reliability index, fJ= 3.5. 

6.1.2 L:ateral Loading of Buried Pipeline 

Experimental and numerical studies have been performed on the behaviour of 

buried pipeline in the last decade (see Section 2.3). In this study, a numerical model for 

lateral loading of pipeline was developed. It was validated based on large-scale 

experimental tests and comparison with previous studies. The finite element model was 

then adapted for analysis of spatially variable soil. 

A limited study on the effects of soil heterogeneity on lateral loading of a shallow 

buried pipeline was conducted. One pipe diameter with one cover depth was considered 

(one configuration). The range of variability for the undrained soil strength was Cv = 20% 

to 80%. A separable correlation structure based on the exponentially decaying model was 

assumed, with ranges of scales of fluctuations: Bhn = 2.5 to 5.0, and Bvn = 0.25 to 1.5. 600 

finite element analyses were performed for each case. Ultimate failure criteria were also 

considered .. The ultimate pressure was obtained at normalized displacement of 0.1. At this 

displacement, all pressure-displacement curves were flat. The empirical probability 
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distributions of ultimate bearing pressure were constructed and statistically studied. Mean 

and coefficient of variation of ultimate pressure were obtained. Similar to the foundation 

problem, a lognormal distribution can be reconstructed from mean and C v for reliability 

analysis. 

6.2. CONCLUSIONS 

The following conclusions can be drawn from the results obtained when the 

developed methodology, described in Chapter 3, was applied to the geotechnical problems 

described in Chapters 4 and 5: 

1. Behaviour of soil and soil-structure systems in the nonlinear regime was 

strongly affected by the natural spatial variability of soil strength within 

geologically distinct and uniform layers. 

In heterog,eneous soil, the failure mechanism of the foundation changes to an asymmetric 

one, which passes through loose pockets of soil. The presence of loose pockets of soil and 

an asymmetric failure mechanism led to earlier shear failure than predicted by the 

deterministic analysis, which assumed perfect symmetry. These changes were less 

pronounced in lateral loading of a pipeline. This may be attributed to the observation that in 

uniform soil, the failure mechanism of a shallow buried pipe is initially asymmetric, while 

for the foundation it is symmetric. 

2. Increasing soil variability and the amount of loose pockets in the soil mass 

(controlled by the left tail of the probability distribution of soil strength) 
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strongly diminished bearing capacity of soil and increased differential 

settlements. 

3. The predicted ultimate bearing capacity had lower variability than that of 

the input for the soil shear strength. 

This can be attributed to the effects of local averaging (see the vanance function: 

Vanmarcke, 1983 [210]). The point-to-point variability is not identical to the variability of 

the response; the response variability depends on variability of the average soil strength 

over the le:ngth of failure surface. The coefficient of variation of the responses depends on 

soil shear strength variability. In addition to this factor, the correlation distances and 

probability distribution (amount of loose pockets) of soil shear strength affects the value of 

the coefficient of variation. 

4. The main parameters affecting foundation and ptpe response were 

determined. Regression equations were provided to account for the effects 

of soil heterogeneity on soil-structure interaction- namely bearing capacity 

and bearing pressures at damage criteria of foundation and lateral loading of 

buried pipeline (Sections 4.4, 4.5 and 5.4). 

The regression equations were presented as simple functions (response surfaces) of soil 

probabilistic characteristics, which can be used in foundation design and reliability 

analysis. These regressions are only valid for the range studied. 

5. Characteristic bearing capacity accounting for natural variability of soil 

properties were obtained for the ranges studied (Section 4.4.3.3). 
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6. Different methodologies accounting for the effects of soil spatial variability 

in reliability analysis and routine design were illustrated (e.g. Section 3.6 

and Section 4.6). These methodologies also considered the combination of 

the effects of soil spatial variability and uncertainties from other sources in 

reliability analysis. 

7. A methodology was developed to account for the effects of soil natural 

variability in a limit state design method (reliability level I- Section 3.6.4). 

Considering the effects of soil heterogeneity as well as other sources of 

uncertainty, partial resistance factors were calibrated for a target reliability 

index, jJ= 3.5 (Section 4.4.4.3). 

It was demonstrated that due to large uncertainty in geotechnical design and ambiguity in 

determining a characteristic value, a fixed partial design factor cannot guarantee an 

adequate level of safety unless very conservative values are selected. Therefore, using a 

lump-sum variable partial design factor is advised. This factor accounts for different 

sources of uncertainty and can be applied directly to estimated average shear strength. It is 

possible to use a constant partial design factor if a prescribed procedure, similar to the one 

demonstrated in Section 4.4.4, is used in determining characteristic resistance. 

8. The results of this study can be used to calibrate partial design factors and 

obtain nominal values with certain reliability for the three serviceability 

criteria through a level II reliability analysis, similar to the one for the 

ultimate bearing capacity limit. 
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9. The results of this study can be used in a full reliability analysis through 

numerical integration (see Section 4.6 and Popescu et al., 2002 [170]). 

6.3. FUTURE WORK 

There are still many unknowns regarding the nature of soil heterogeneity and its 

consequences. Quantification of the effects of soil heterogeneity requires a large amount of 

effort and research. In future studies, the following tasks can be done among others, 

1. The current study used a 2D model to analyse the effects of soil 

heterogeneity, but soil spatial variability is actually a 3D phenomenon. 

Therefore, a 3D analysis is required to address the problem more accurately. 

When faster computers are available, this can be more easily done using the 

methodology and automation program developed in this study. 

2. The work done here can be extended for a wider range of parameters. 

Particularly for pipeline, the study was limited. Many factors affect the 

behaviour of pipeline, including burial depth, pipe diameter, soil weight, 

and interaction factors, etc. These factors should first be investigated 

through extensive parametric study of uniform soil. Then based on the 

deterministic results, a parametric study of the effects of soil heterogeneity 

on lateral loading of pipeline can be developed. This study can also be 

extended for other loading conditions of pipeline (e.g. upward, downward, 

axial, and complex loading). 
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3. This study focused on the behaviour of cohesive soil in undrained 

conditions using a total stress analysis. This study can be further developed 

to include frictional material. In the course of the study, a calibration model 

was developed to estimate hardening/softening rules for frictional materials 

from direct shear box tests. Mohr-Coulomb constitutive model in 

ABAQUS/Standard was customized and developed to account for 

softening/hardening of soil. The model was validated based on large-scale 

tests (see Nobahar et al., 2000 & 2001 [141 & 139]). However, the 

application of the hardening/softening rules for frictional materials in 

stochastic analysis faced severe numerical limitations and can be studied in 

future work. 
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APPENDIIX A. A SAMPLE FINITE ELEMENT INPUT FILE, A 

DETERMINISTIC FINITE ELEMENT ANALYSIS WITH 

STOCHASTIC INPUT 

Parmeters used in this analysis for soil shear strength are: 
Cv = 25%, Bhn = 2.5, Bvn = 0.25, Gamma distribution, and Elcu = 300 

*HEADING 
nfs-CPE4R-0.25*0.5m elements- Cu1 OO-displacement-E150.0Mpa 
Concrete higlh 
Mohr coulomb-tresca 
Bearing capacity of strip foundation 
**-------------------~C>IL ---------------------------------
** 
************************************* 
** NC>DE~ DEFINING 
************************************** 
*******All dimension in meter and stress is kPa 
*NC>DE, N~ET=NA 1 
1001,0.0 
1061,30,0 
5001,0,10 
5061,30,10.0 
101,13,10 
301,13,16 
109,17,10 
309,17,16 
*NGEN, N~ET=NBC>T 
1001,1061,1 
*NGEN, N~ET=NTC>P 
5001,5061 '1 
*NGEN, N~ET=NFB 
101 '109 
*NGEN, N~ET=NFT 
301,309 
*Nset, NSET=NLOAD 
105 
*NFILL, BIAS=1., N~ET=N~()IL 
NBC>T,NTC>P,40, 100 
*NFILL, BIAS=1.0, N~ET=NF 
NFB,NFT,2, 100 
*N~ET, N~ET=N~IDE, GENERATE 
1001' 5001 '100 
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1061,5061 '1 00 
*NSET, NSET=NEND 
101 '109 
************************************* 
**SOIL ELEMENT DEFINING 
************************************** 
*ELEMENT, TYPE=CPE4R, ELSET=ELSOIL 
1001 '1 001 '1 002,1102,1101 
*ELGEN,ELSET=ELSOIL 
1001,60,1 '1 ,40, 100,100 
*ELSET,ELSET=ELST, GENERATE 
4901,4960 
*ELEMENT, TYPE=CPE4, ELSET=ELCON 
101 '1 01 '1 02,202,201 
*ELGEN,ELSET=ELCON 
101 ,8, 1 '1 ,2, 100,100 
*ELSET,ELSET=ELCONB, GENERATE 
101,108 
*ELSET,ELSET=ELS1001 
1001 
*ELSET,ELSET=ELS1 002 
1002 
*ELSET,ELSET=ELS1003 
1003 
*ELSET,ELSET=ELS1 004 
1004 
*ELSET,ELSIET=ELS1005 
1005 
*ELSET,ELSIET=ELS 1006 
1006 
*ELSET,ELSIET=ELS1007 
1007 
*ELSET,ELSIET=ELS1 008 
1008 
*ELSET,ELSET=ELS1009 
1009 
*ELSET,ELSET=ELS1010 
1010 
*ELSET,ELSET=ELS1011 
1011 

(Due to the large size of the file - over 2400 element sets and materials - only 
some parts of the input file are shown) 
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*ELSET,ELSET=ELS4952 
4952 
*ELSET,ELSET=ELS4953 
4953 
*ELSET,ELSET=ELS4954 
4954 
*ELSET,ELSET=ELS4955 
4955 
*ELSET,ELSET=ELS4956 
4956 
*ELSET ,ELSET=ELS4957 
4957 
*ELSET,ELSET=ELS4958 
4958 
*ELSET,ELSET=ELS4959 
4959 
*ELSET ,ELSET=ELS4960 
4960 

*SOLID SECTION,ELSET=ELS1001 ,MATERIAL=MSOIL 1001 
*MATERIAL,I\JAME=MSOIL 1001 
*ELASTIC 
22924.5 ' 0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
76.4 
*SOLID SECTION,ELSET=ELS1002 ,MATERIAL=MSOIL 1002 
*MATERIAL,I\JAME=MSOIL 1002 
*ELASTIC 
22104.6 '0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
73.7 
*SOLID SECTION,ELSET=ELS 1003 ,MATERIAL=MSOIL 1003 
*MATERIAL,NAME=MSOIL 1003 
*ELASTIC 
21116.9, 0.4B 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
70.4 
*SOLID SECTION,ELSET=ELS1004 ,MATERIAL=MSOIL 1004 
*MATERIAL,NAME=MSOIL 1004 
*ELASTIC 
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20151.6 ' 0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
67.2 
*SOLID SECTION,ELSET=ELS1005 ,MATERIAL=MSOIL 1005 
*MATERIAL,INAME=MSOIL 1005 
*ELASTIC 
19333.2 ' 0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
64.4 
*SOLID SECTION,ELSET=ELS 1006 ,MATERIAL=MSOIL 1006 
*MATERIAL,NAME=MSOI L 1006 
*ELASTIC 
18705.7 ' 0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
62.4 
*SOLID SECTION,ELSET=ELS1007 ,MATERIAL=MSOIL 1007 
*MATERIAL,NAME=MSOIL 1007 
*ELASTIC 
18257.6 '0.49 
*MOHR COULOMB 
0.0 

(Due to the large size of the file - over 2400 element sets and materials - only 
some parts of the input file are shown) 

*SOLID SECTION,ELSET=ELS4958 ,MATERIAL=MSOIL4958 
*MATERIAL,NAME=MSOIL4958 
*ELASTIC 
36566.3 '0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
121.9 
*SOLID SECTION,ELSET=ELS4959 ,MATERIAL=MSOIL4959 
*MATERIAL,NAME=MSOIL4959 
*ELASTIC 
38514.5 '0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
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128.4 
*SOLID SECTION,ELSET=ELS4960 ,MATERIAL=MSOIL4960 
*MATERIAL,NAME=MSOIL4960 
*ELASTIC 
40334.6 ' 0.49 
*MOHR COULOMB 
0.0 
*MOHR COULOMB HARDENING 
134.4 
*SOLID SECTION,ELSET=ELCON,MATERIAL=MCON 
*MATERIAL,NAME=MCON 
*ELASTIC,TYPE=ISO 
4.0E7,0.3 
********************************************************* 
**CONTACT 
**Soil-foundation contact 
**The joint between two surfaces are released. 
********************************************************* 
*SURFACE DEFINITION, NAME=SOIL T 
ELST,S3 
*SURFACE DEFINITION, NAME=CON 
101 ,S4 
201 ,S4 
ELCONB,S1 
108,S2 
208,S2 
*CONTACT PAIR, INTERACTION=SOIL 
CON,SOILT 
*SURFACE !INTERACTION, NAME=SOIL 
1. 
*FRICTION, TAUMAX=33.4 
1.0 
*RESTART, 'NRITE, frequency=1 
*BOUNDARY 
NBOT,ENCASTRE 
NSIDE,1,1 
*STEP, INC=10000, NLGEOM, UNSYMM=YES, amplitude=ramp 
*STATIC 
1 e-1, 1,1 e-12,0.25 
*CONTROLS,ANAL YSIS=DISCONTI NUOUS 
*CONTROLS, PARAMETERS=LINE SEARCH 
10 
*BOUNDARY 
nload,2,2,-0.25 
*EL PRINT, frequency=O 
*NODE PRINT, NSET=NLOAD, FREQUENCY=1 ,summary=no, total=yes 
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U2,RF2 
*NODE PRINIT, NSET=NEND, FREQUENCY=1 ,summary=no, total=yes 
U2 
**EL PRINT, ELSET=EMID, position=centroidal, summary=no,total=yes, 
**FREQUENCY=O 
**PEMAG 
*NODE PRit\IT, FREQUENCY=O 
*END STEP 
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APJPENDIX B. AUTOMATION OF MONTE CARLO 

SIMULATIONS 

B.l. INTRODUCTION 

For each case (meaning each experiment, i.e. each set of coefficient of variation, 

probability distribution, and horizontal and vertical correlation distances), a large number 

of finite element analyses with stochastic input were performed, as described in Section 

3.5.4. This meant that more than 7200 finite element analyses were performed during the 

course of this study. 

For each set of probabilistic characteristics of soil probability (each experiment), a 

set of Monte Carlo simulations was performed. This required generation of sample 

functions of stochastic fields, mapping the generated field to finite element input, execution 

of finite element runs, post-processing of finite element results to organize the relevant 

responses, caleulation of probabilistic characteristics of the response based on statistical 

inference. 

B.2. AUTOMATION OF THE GENERATION OF STOCHASTIC SAMPLE 

FUNCTIONS 

For the parametric studies, a large number of sample functions of stochastic fields 

with various probabilistic characteristics were required. The procedure was automated 

using Microsoft Excel® spreadsheets, Microsoft Visual Basic® for Application and 

MATLAB®. An interactive spreadsheet was created as shown in Figure B.1. The user 

could change parameters b 1 and b2 to obtain the desired correlation distances in each 

direction. The values of M, N, and Kiu could be changed to obtain the desired "stochastic 
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field mesh siz1e L1x & 4Y, and desired stochastic domain size Lx & Ly as shown in Figure 

B. I. The spectral density values were controlled by the spreadsheet to be acceptable at the 

cut-off frequency number for given inputs. Next, the Visual Basic subroutine "stoc_gen" 

was executed to generate input files for generating random files (this subroutine was linked 

to MATLAB for more efficiency). The input files were generated for each combination of 

the defined horizontal and vertical correlation distances (There were 3 x 3 = 9 cases in 

Figure B. I). The input files were stored in the location defined in the spreadsheet. 

Subsequently, the stochastic field generation program "SINOGA'' was run automatically to 

generate the desired stochastic sample functions. 
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Figure B.l 

Directory: C:\Work\thesis\pipe\stochastic\gamma_apr12 

Oh b1 b2 Kku 
5 2.71 0.24 6.28318531 

ev b1 b2 Kku 
0.5 0.35 0.5 25.13274123 

1 0.58 0.3 25.13274123 
1.5 0.87 0.3 12.5663 7061 

Table parameters, 

/Jh is horizontal correlation distance 
fN is vertical correlation distance 

N M 
8 10 

N M 
9 10 
9 10 
8 10 

b1 is used in defining correlation distances in input file for 
generation of stochastic fields 
b2 is used in defining correlation distances in input file for 
generation of stochastic fields 

For each direction in space or in the wave number domain 
Kku is cut off frequency 
N- 2AN number of points in wave number domain 
M - 2AM number of points in space 
Ll.K- mesh size in waive number domain =Kkui2AN 
Lix, Ll.y - mesh size in space 

~k 

0.02 

~k 

0.05 
0.05 
0.05 

.6X 
0.25 

~y 

0.125 
0.125 
0.125 

Sample num= 

Control for 
Capturing 

correlation 
b1' Distance, 

Lh (m) 0.1<b2<2 Ll.x< 0.25 * IJ Control SED 

256 OK OK SED<0.0001 

Contro for 
Capturing 

correlation 
b1' Distance, 

Lv(m) 0.1<b1<2 Ll.x< 0.25 * IJ Control SED 

128 OK OK SED<0.0001 

128 OK OK SED<0.0001 

128 OK OK SED<0.0001 

e= b1*(1.04-1.3 * b2) for 0.1<b2<2.0 
Ax (or y)=2x/Kku*(2"NI2"M) 
Ax<0.25* e 

Generation table for sample functions of stochastic fields. 
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B.3. FINITE ELEMENT ANALYSES: INPUT FILES, EXECUTION AND POST­

PROCESSING 

As described in the previous section, an Excel spreadsheet was used to organize 

the simulation of stochastic fields. In the same Excel workbook, another sheet was used to 

define the analysis cases according to experiment design (see Section 3.3). The advantages 

of the spreadsheet (its organization and visibility) were combined with the numerical and 

programming capabilities of MATLAB by using Excel with built-in Visual Basic 

programming options. 

A MATLAB routine, "inpgen _ spfn" was used to generate MA TLAB input files and 

specified direc:tories for Monte Carlo simulations. Due to numerical cost, the analyses were 

usually perfonmed on a UNIX workstation. Next, two MATLAB programs- "main_spfn" 

for foundation and "main _pipe" for pipe - were programmed to map the generated 

stochastic sample functions to the finite element meshes and then construct finite element 

input files (ABAQUS inps), run the analyses for each case (usually 100 to 1000 finite 

element runs with stochastic input) and post-process the results. The programs "main_ spfn" 

or "main _pipe" performed the following tasks, 

• Read corresponding generated sample functions of stochastic fields and 

mapped them to the finite element mesh. Every generated sample function 

of a stochastic field is contoured in Figure B.2. 

• Constructed corresponding finite element input files. 

• Ran the finite element analysis with stochastic input for each sample 

function 
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• Read foundation/pipe result outputs. For example, for foundation, load-

displacement and load-rotation relations were read for each finite element 

run and stored in separate files. Plots of load-settlement and load-

differential settlement were drawn for each run. An example is shown in 

Figure B.3. 

s 
0 ....... 

30m 
~--------------------------------------------· 

Figure B.2 A generated sample function of a stochastic field read by MATLAB routine, 
"main_spfn"- contours show spatially variable parameter, here undrained 
shear strength (in kPa), the distribution over the domain of interest. 
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Figure B.3 A sample of foundation responses read by MATLAB routine, "main_spfn". 

B.4. AUTOMATION OF PROBABILISTIC ANALYSIS 

Finally, the results of Monte Carlo simulations were processed for each experiment 

(group of sample functions). This post-processing was also automated using MATLAB 

routines. The functions named "call_post_spfn" and "call_post_pipe" were used for 
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foundation and pipe analysis, respectively. Each function called two main post processing 

subroutines, "post_spatial_foundation" & "resp__post_spfn" for foundation and "post__pipe" 

&"resp __post_j,ipe" for pipe and performed the following analysis, 

• Read the foundation/pipe responses in terms of the load-displacement 

and/or load-differential settlement 

• Stored and plotted all the foundation/pipe responses m one MATLAB 

matrix and one plot as shown in Figure B.4. It also estimated the 

foundation/pipe response (load/pressure) m equal increment 

displacement/rotation segments. 

• Stored and plotted the mean, percentiles and standard deviation at each 

displacement/rotation increment as shown in Figure B.5. 

• Obtained the desired response( s) (e. g. average pressure beneath foundation) 

for each finite element run at the given criteria (reference settlement for 

ultimate bearing capacity and reference differential settlements for damage 

criteria). It fit three different probability distribution functions (Lognormal, 

Normal and Gamma) on the obtained empirical probability distribution. It 

was potentially capable of fitting other probability distributions. A complete 

set of graphs is shown in Figures B. 6 to 17 for a case with the following 

probabilistic characteristics: Gamma distributed soil shear strength, Cv = 

25%, ()hn= 2.5, Bvn= 0.25, and Elcu = 1500. Subsequently, it calculated the 

mean, standard deviation and the desired percentiles of the response. Using 

fitted probability distributions, it was possible to extrapolate and estimate 

the response at lower probabilities. The calculated results were then 
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transferred to an Excel spreadsheet. These results were used in a Design­

Expert spreadsheet described in Section 3.3 for statistical calculations. 
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Figure B.4 Samples plot of pressure vs. settlement and differential settlement. 
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Figure B.5 A sample of plots provided by post processing program. 
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Figure B.6 An example of empirical probability distribution of foundation bearing 
capacity at reference settlement criterion (ultimate bearing capacity) using 
Lognormal fit for an experiment with Gamma distributed soil shear strength, 
Cv= 25%, Bhn = 2.5, Bvn = 0.25, and Elcu = 1500. 
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Figure B. 7 .An example of empirical probability distribution of foundation bearing 
capacity at reference settlement criterion (ultimate bearing capacity) using 
Normal fit for an experiment with Gamma distributed soil shear strength, Cv 
= 25%, Bhn = 2.5, Bvn = 0.25, and Elcu = 1500. 
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Figure B.9 .An example of empirical probability distribution of foundation bearing 
capacity at minor damage level criterion using Lognormal fit for an 
experiment with Gamma distributed soil shear strength, Cv= 25%, Bhn = 2.5, 
6~n = 0.25, and Elcu = 1500. 
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Figure B.l 0 .An example of empirical probability distribution of foundation bearing 
capacity at minor damage level criterion using Normal fit for an experiment 
with Gamma distributed soil shear strength, Cv= 25%, Bhn = 2.5, Bvn = 0.25, 
and Elcu = 1500. 
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Figure B.12 An example of empirical probability distribution of foundation bearing 
capacity at medium damage level criterion using Lognormal fit for an 
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Figure B.l3 An example of empirical probability distribution of foundation bearing 
capacity at medium damage level criterion using Normal fit for an 
experiment with Gamma distributed soil shear strength, Cv= 25%, Bhn = 2.5, 
()~n = 0.25, and Elcu = 1500. 
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Figure B.14 An example of empirical probability distribution of foundation bearing 
capacity at medium damage level criterion using Gamma fit for an 
experiment with Gamma distributed soil shear strength, Cv= 25%, Bhn = 2.5, 
8~n = 0.25, and Elcu = 1500. 
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Figure B.15 .An example of empirical probability distribution of foundation bearing 
capacity at major damage level criterion using Lognormal fit for an 
experiment with Gamma distributed soil shear strength, Cv= 25%, Bhn = 2.5, 
6~n = 0.25, and Elcu = 1500. 
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APPENniX C. CALIBRATION OF RESISTANCE FACTORS 

FOR HETEROGENEOUS SOIL USING RELIABILITY THEORY 

In reliability theory, load and resistance are considered to be random variables that 

can be described by their probability distributions. If the probability distributions of load 

and resistance are known, the risk or probability of failure can be obtained from direct 

integration assuming independence between R and S, 

Eq. C.l 

However, the actual probability distribution of load and resistance are rarely 

available with precision. So it is common to fit a probability distribution to the available 

data or assume~d a probability distribution for data based on some physical evidence or past 

experience. Normal and lognormal probability distributions are the most common 

probability distributions for this type of analysis. The probability of failure, P1 can be 

written as, 

P1 = P(R < S) = P(z = R- S < 0) Eq. C.2 

Assuming normal distribution for R and S, the probability of failure is purely a 

function of the: number of standard deviations between the average of z and zero (see Lind 

(1971) [112]; Allen, 1975 [3]). The number of standard deviations that the mean lies above 

zero or the failure limit is defined as the reliability index, fJ (Allen, 1975 [3]), 

Eq. C.3 
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Using Lind (1971) [112] linearization, 

Eq. C.4 

The above approximation is a very good approximation for practical ratios of a R 

as 

(see Section 3.6.4 for definition of B). Thus, to obtain partial factors to secure a certain 

reliability level, the design criteria can be written as, 

Eq. C.5 

Using approximation from Eq. C.4, 

R (1 - t9f3VR) ~ S (1 + Bf3Vs) Eq. C.6 

For heterogeneous soil and phenomena governed by nonlinear constitutive laws, the 

average geotechnical system resistance, R , is in general different from the resistance 

obtained assuming a uniform soil with soil strength equal to the average strength of the 

heterogeneous soil, Ru. The average geotechnical system resistance for heterogeneous soil 

can be written as, 

Eq. C.7 

Often, instead of average of resistance (e.g. shear strength), a conservatively 

assessed strength known as nominal or characteristic value is used in civil engineering 

design, 
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Eq. C.8 

Substituting the above equation into Eq. C.6, 

Eq. C.9 

Comparing the above equation with LRFD definition of load and resistance factor 

( C/JRn ;:::: aSn) --looking at left side of equations, the partial resistance factor can be defined 

as, 

Cl> = 1-- Bj]VR .k ~ 4- 3f3VR .k 
k R 4k R 

H H Eq. C.lO 

The right side of Eq. C.9 deals with loads and can be used to infer the partial load 

factors. The load factors are not addressed in this study. 
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