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Abstract

The Harris-Nesbet variational method is used to carry out accurate calculations
for electron collisions with hydrogen atoms at low energy below the first hydrogenic
excitation threshold. Calculations are done with the employment of different coupling
schemes which are composed of the atomic hydrogen states and pseudo states and a great
number of correlation terms. Singlet and triplet phase shifts are obtained for the partial
waves L=0, 1, 2, 3, 4, 5, 6 and 7. Phase shifts at the nine energies, where experimental
data of differential cross section are available, are obtained with the partial waves L equal
to up to 18, and then used to deduce the elastic differential and total cross sections for
electron collisions with hydrogen atoms at these energies. The results of the present
Harris-Nesbet calculations are compared with those made available in literature by other
research groups. The differential cross sections obtained are compared with experimental

data, and an excellent agreement is found between the two.
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Chapter 1

Introduction

1.1 Introduction

The field of electron-atom collision has been considered to be important in practice and
of great scientific interest since the last few decades. This is due to the fact that the
understanding of these fundamental collision processes plays a significant role not only in
the study of the dynamics of many-particle quantum systems but also in many other fields
such as astrophysics, quantum chemistry, laser physics, etc. For example, in the modeling
of non-equilibrium plasmas, it is necessary to have sufficient knowledge of cross sections
for elastic scattering, excitation, ionization and recombination in electron collision with
neutral and/or ionized atomic species.

Collision of electrons with hydrogen atoms has been of a particular interest to
atomic collision theorists working in this area. This is because the wave functions of the
hydrogen atom are known exactly, and hence these collision processes should be the best
testing ground for the various approximation methods developed for use in the studies of
electron-atom collision. Throughout the years, a significant number of theoretical
investigations have been carried out for electron collisions with hydrogen atoms. In

particular, for electron collisions with hydrogen atoms at energies below the first



excitation threshold of H, one may cite, for instance, the work by Schwartz (1961) [1]
who considered the Kohn variational method with the employment of 50 Hylleraas-type
trial wave functions in a calculation of the S—wave phase shifts. Sloan (1964) [2] studied
elastic scattering of electrons from atomic hydrogen, using the method of polarized
orbitals. Armstead (1967) [3] also considered the Kohn variational method in the
calculation of the P—wave phase shifts, using 84 Hylleraas-type trial wave functions.
Calculations of electron-hydrogen-atom collision at low energy were also carried out by
Burke et al. (1969) [4] for the lowest (S, P, D and F) partial waves. These authors
employed a modified close-coupling expansion of the wave function for their
calculations. Matese and Oberoi (1971) [5] also did calculations for S— and P-wave
elastic scattering of electrons from atomic hydrogen by using the same modified close-
coupling method. Das and Rudge (1976) [6] investigated elastic scattering of electrons
from hydrogen atom for P partial wave using a variational method. Callaway (1978) [7]
considered the Harris-Nesbet variational method to study electron collision with atomic
hydrogen for S—, P—, D- and F-partial waves. Scholz et al. (1988) [8] studied elastic
scattering of electrons from atomic hydrogen for S, P and D partial waves, using the R-
matrix method. In 1992, Botero and Shertzer [9] used a direct numerical method to
perform calculations of electron-hydrogen collision for S—, P- and D-partial waves.
Bhatia and Temkin (2001) [10] obtained S-wave elastic scattering of electrons from
hydrogen atom, using the complex-correlation Kohn T-matrix (CCKT) method.

On the experimental side, a few measurements of differential and total cross

sections for electron collisions with atomic hydrogen have been made available in the



literature. In an early work, Gilbody et al. (1961) [11] measured the differential cross
sections for elastic scattering of electrons from atomic hydrogen at energies of 3.8, 5.7,
7.1 and 9.4 eV. Williams (1975) [12] employed the method of crossed electron and
modulated atom beams to perform measurement of absolute differential cross sections at
energies from 3.8 to 8.7 eV.

In recent years, Gien and Gien et al. [13-33] have employed the Harris-Nesbet
variational method to carry out the accurate calculations of electron and positron
collisions with atoms and ions, considering a large coupling scheme for the calculations.
In particular, Gien (1998, 2000) [26, 27, 29] also did calculations of electron collisions
with hydrogen atoms at low energy, as well as determined the sequences of Feshbach
resonances below the n=2 H excitation threshold for this scheme. A large scheme, the so-
called 13-state scheme, was considered for these calculations (Gien 1998 [26]). This
scheme is composed of the thirteen states and pseudo states and believed to represent
well the interaction effects of the collision between electrons and hydrogen atoms at their
ground states. As was discussed by Gien previously (Gien, 1997 [25]), another possible
choice of large schemes which could also provide accurate results of calculation at low
energy is to select a basic set of states and pseudo states which can reasonably take into
account the various interaction effects of the collision system and then to add to the
scheme a large number of correlation terms that are to improve both short-range and
long-range interaction effects of the collision system. To some extent, the second scheme
may be preferred over the first one as it has advantage of being able to improve the

accuracy of the results of calculation by increasing the number of correlation terms to be



added to the scheme. In practice, the number of correlation terms to be included may be
increased gradually until the results of phase shift and cross section obtained no longer
change significantly.

For the work of this thesis, we shall use the Harris-Nesbet variational method to
obtain accurate results of phase shift, differential and total cross section at low energies
below the first excitation threshold for elastic scattering of electrons from atomic
hydrogen, considering the coupling schemes of the second kind. We shall use the so-
called extended 4-state (E4S) coupling scheme, which is composed of the
(]s, 2s, 2p, 5) H states (P. G. Burke et al. 1969 [4]) plus a great number of correlation
terms for our calculations. The reason for the choice of this scheme has been expounded
in detail elsewhere (Gien, 1997 [25], 2002 [32]). This scheme can account for both the
short-range and long-range interaction effects of the collision system rather adequately.
In order to show that our results of phase shift and cross section obtained already reach
their convergent values and should, thereby, be very accurate, we also carry out
calculations with the so-called extended 6-state (E6S) scheme, which is composed of the
(ls, 23.2p, g, 5, EE)H states and pseudo states (Geltman and Burke, 1970 [34]) plus a
large number of correlation terms, and the so-called 3-state (E3S) scheme, which consists
of the (1s, 2s, 2p) H states supplemented by a great number of correlation terms (Burke et
al. 1966 [35]). Furthermore, for comparison and to show the significant effect of the
correlation terms on the phase shifts (and cross sections) obtained, we also do

calculations with the 3S, 4S and 6S coupling schemes which are composed of the (1s, 2s,

2p) H, (15,25, 2p,3_p)Hand (ls, 2s, 2p,.3_s,3_p,§)Hstates respectively,  without



including the correlation terms. The results of our calculations will be compared with the
theoretical values obtained by other groups who employ different numerical methods.
They will also be compared with experimental data of differential cross section measured
by Williams (1975) [12]. In view of the reliability of the Harris-Nesbet variational
method in producing very accurate results for phase shifts and cross sections in electron
and positron collisions with hydrogen atoms at low energy (Gien and Gien et al. [13-33]),
our results may serve to double-check the accuracy of the results obtained by other

authors for this process.

1.2 Outline of the thesis

The thesis will be organized as follow. In chapter 2, we shall describe the Harris-Nesbet
variational method in electron (positron) collisions with atomic targets. We shall also
briefly show how the method will be used for the special case of hydrogen atoms as
targets. The method of calculation and numerical results of elastic electron-hydrogen
collision below the first excitation threshold of H will be presented in Chapter 3 with

discussion. We shall summarize the results of our work in chapter 4.



Chapter 2

The Harris-Nesbet Variational Method

The Hulthe’n - Kohn method (1944) [36], (1948) [37, 38] is a well-known variational
method developed for collision problems. This method is based directly on the
differential variational principles. One of the earliest applications of the Hulthe'n - Kohn
method was done by Schwartz (1961) [1] to study S—wave elastic scattering of electrons
from hydrogen atom, using 50 trial wave functions of Hylleraas type. Even though
Schwartz obtained the results of phase shift below the first excitation threshold which are
believed to be close to the exact values, he occasionally encountered large deviations
(Schwartz (1961) [1, 39], Seiler et al. (1971) [40]) in his results. In order to avoid these
fluctuations, Harris (1967) [41] proposed an expansion method for calculations of phase
shift and cross section in atomic collision theory. The detail of this method which is,
subsequently, known as the Harris variational method, will be discussed in the first

section of this chapter.
2.1 Harris’s expansion approach

For a single-channel scattering process with Hamiltonian H and wave function ¥ at

energy E, the Schrodinger ’s equation is



(H-EW¥=0 (2.1)
Following Harris (1967) [41], the total wave function ¥ can be expanded in the form

Y=d+a,5+a,C, (2.2)
S and C are asymptotic eigenfunctions of the Hamiltonian H at large distance r. The
coefficients ¢; in Eq. (2.2) (i=0,1 corresponding to S and C functions respectively)
characterize the scattering processes. They define the relative amplitude of the S and C
functions, and thereby the phase shift of the scattering process.

The total wave function ¥ is to represent the electron-atom collision system at
both short and long distance r. Since S and C in Eq. (2.2) only take care of the collisional
state at large distance, it is necessary to include in ¥ a short-range wave function @ to
represent it at a short distance. The function @, which is known as the bound-part of ¥,
should be chosen in such a way that it is normalizable and does not affect the asymptotic
behavior of ¥ at large distance. Thus, one starts by choosing a set of bound-state

functions 7, i=1,...,n which can be canonically transformed into a basis that
diagonalizes the Hamilltonian H in the subspace spanned by the functions 7,. This is
equivalent to constructing and solving the finite matrix equation:

(H-ES)X =0, (2.3)
where H =<17,|H|771.> and S, =(7,|7;) are elements of the Hamiltonian matrix H and

the overlap matrix S, respectively. Solving Eq. (2.3), one obtains a set of the

eigenfunctions @, =X, corresponding to a set of the eigenvalues E;, i=1,...,n, that



forms the basis mentioned above. The short-range function @ can now be expanded in

terms of this basis set
D= Z C.o; (2.4)
i=l

The coefficients C; in Eq. (2.4) are determined by the (variational) conditions that the
state (H —E)'I’ has no components in the subspace spanned by the basis of
eigenfunctions ¢,, i.e.

(o|H-E¥)=0,i=1,...n, 25)

or

z":(:p,.[H - E,)C, =~(p|H - Ela,S +&,C) . i=1,... n. 2.6)

J=
The internal function @ (bound part) and the external functions S and C are quadratically

integrable and connected at the boundary. At energy E=E;, Eq. (2.6) becomes

a,(g|H - E|S)+a,(p|H - E|C) =0, @7
that can be solved for the ratio % . This ratio is nothing else but the tangent of the
0

phase shift of the scattering process.

To summarize, the Harris’s expansion approach consists of the following steps.
First, one chooses a set of basis functions 7,, i=1,...,n and diagonalizes the
Hamiltonian H. One then picks an eigenvalue E; that corresponds to a relevant scattering

solution X,. Next, one defines the specific forms of the asymptotic functions S and C at




this energy. Finally, one solves for % from which one deduces the phase shift of the
0

scattering process at energy E;.

This method, however, has some limitation in obtaining the scattering information
of a collision process. Indeed, it can provide the scattering information only at a discrete
set of energies which are eigenvalues of H corresponding to the set of basis functions
chosen. One can, of course, always adjust the parameters of the set of basis functions 7,
to get a desired scattering energy, but this procedure would require a tremendous amount
of time (and also computer time) to achieve. Nesbet (1968) [42] proposed a method,
referred to as the Harris-Nesbet variational method, which is just an extension of the
Harris one but allows for the calculation of phase shifts and cross sections at any arbitrary

scattering energy. We shall describe this method in the subsequent section.

2.2 The Harris-Nesbet variational method
2.2.1 Single-channel scattering process

It is convenient to rewrite the total wave function ¥ in the form given by Schwartz
(1961) (1, 39]

¥ = a, (D5 +5)+a, (P +C), 28)
in which the bound part @ is divided into two parts @, and @,.corresponding to the free
functions S and C. The procedure used to construct the bound parts @ and @,. is similar

to the one of the Harris’s expansion approach. Assuming that the numerical set of basis



functions @,, i=1,...,n has already been found, the bound parts @; and @. can be

written as

D= ZC.‘S@ » 29)
=

D =) Cfg,. (2.10)

i=l
The conditions (2.5) that allow the determination of the coefficients C; and Cf in this

case are

> (0l - By, )C3 = ~{g|H - ElayS), i=1,....n, @i
1

Jj=1

(0l - Bl ) =~{p|H - Ha,C) . i=1.... n 212)

]

The free parts S and C are the so-called sin-like and cosine-like functions which have the

- asymptotic forms proportional to sin(kr —%lﬂ') and cos(kr —%llt) respectively
S(r) ~ sin(kr — %ln‘) . (2.13)

C(r) ~ cos(kr —%lzr) (2.14)
As usual, the variational functional = for the case of one-channel scattering is
= =(¥|H - E|7) @2.15)

Substituting Eq. (2.8) into Eq. (2.15) and applying the conditions (2.11) and (2.12), one

obtains the variational functional = as



E =m0 +(mg, +m,q o0, +m, o, (2.16)

where
m,, = (SH-E|® +5), @.17)
m,, =(CH-E®. +C), (2.18)
m,, =(SH-E/®. +C), (2.19)
m,, = (CH-Ej@; +S), (2220)

my,and m,, satisfy the following relation
el
mm—mm=51, (2.21)

where mj; is the Hermitian adjoint of m,y, and I is the unit 1x1 matrix.
Thus, the infinitesimal variation of the functional = is
8Z = 2m 01,80t +2m, 0, 801, + (my, +m )(or,Scr, + o, Sty ). (2:22)
In the Kohn variational method (Nesbet (1980) [43]), the matrices o, and o, are defined
as
ay =1, a, =R, (2.23)
and hence
dau, =0, Sot, =0R . (2.24)

~ Applying Egs (2.21), (2.23) and (2.24) into Eq. (2.22), one deduces that
82 =2(m,, +m”R)6R+%5R. (2.25)

One can choose a trial matrix R () such that



m,, +m; R =0, (2.26)

or

R = —mjim,,. 227

With this choice, Eq (2.25) reduces to
‘-‘-(R(o))__R(O) =08 (2.28)

o
3[R]=0. (2:29)
Thus,

[R]=R(-28(R ) (2.30)
is the Kohn functional and is stationary. Using Egs (2.16), (2.21), (2.23) and (2.27), one
- obtains

[R]=-2(mg, - mjym;m,, ). @31)
Eq. (2.31) is known as the Kohn formula for a single-channel scattering process.
- Analogous formulas are also obtained in the inverse Kohn variational method. Here, the

- matrices @, and @ are defined as (Nesbet (1980) [43])

o, =R, o, =1, (2.32)

S0, =8R™, oo, =0. (2:38)
T substituting Eqs (2.32) and (2.33) into Eq. (2.22), one obtains the infinitesimal

‘ariation of the variational functional Z as



82 = 2(my,, + muR ™SR! —%SR" : (2.34)

In this case, R('O') can be chosen such that

my, +muRG =0, (2.35)
o or
Rg) = —mgomy, - (2.36)

With this choice, Eq. (2.34) becomes

{E(R('é))%l*(&)) =0, @37
: or
3R |=0. (2.38)
Thus,
R ]=Rr+ 225, R3) 239

is the inverse Kohn functional and is stationary. Using Egs. (2.16), (2.21), (2.32) and
E (2.36), one arrives at the following formula for the inverse reactance matrix in the inverse

~ Kohn variational method

R]=2(m,, - mgmzim,,) . (2.40)
2.2.2 Multi-channel scattering process

fter succeeding in improving the Harris method to enable the calculations of the

cattering parameters at any arbitrary energy for the case of single-channel scattering



(Nesbet 1968 [42]), Nesbet (1969) [44] extended his method to the multi-channel
scattering case. Details of the Harris-Nesbet variational method for multi-channel
scattering will be presented in this section.

At a given system energy E, if the collision system has n. open channels, the
total wave function of the entrance channel u,%*, is expressed in terms of n. open-

channel wave functions as

Pr = i{aw (@2 +5,)+a,, (@2 +C, ) (2.41)

=
: Again, assuming that a set of basis functions ¢, ;, i=1,...,n has already been obtained by
using the procedure of the Harris method, the bound functions @ and @£ corresponding

to the free functions S, and C, can be written as

o1 =3C0,, . (2.42)
i=1
DE=>Cca.. . (2.43)

i=1
Again, the coefficients Cj',» and Cii are determined by the (variational) conditions that

(H- E)#* have no component in the subspace spanned by the basis functions ¢, ;. i.e.

(o1 - El##)=0, @44)
33 (0, JH - Hay,, (@ +5,)=0. (2.45)
J=1 q=1 "



ii(%,s |H - Ela,, (@2 +C,))=0. (2.46)

=i

In the case of multi-channel scattering, the variational functional involving the entrance
~ channels of wave functions #* and ¥" is defined as
5, =(¥*|H - EP"). (2.47)

Substituting Eq. (2.41) into Eq. (2.47), one obtains

n 1
E'uv = 2 Zu;um?ahv ’ (2.48)
p.g=l i,j=0
where
mi =Mp -3 M* (M), M}?, (2.49)
G
or
mf =MP > MP(E-E,)J'M}. (2.50)
k

Here, i, j =0 or 1 correspond to the free functions S or C. Thus, the explicit forms of the

m-matrix elements (given by Eq. (2.50)) for the different cases of S and C functions are

mf =ME - > ME(E-E,)'ME, @51)
X

mi} =M - > ME(E-E,)'M¢, (2.52)
.

mfy =MX - > M¥(E-E,)'M¢*, (2.53)
v

mil =M% - Y M¥F(E-E,)'ME. (2.54)

k



The M matrices seen in Egs. (2.50), (2.51), (2.52), (2.53) and (2.54) are the so-called
bound-bound, bound-free and free-free ones. A bound-bound matrix element of H-E
~ connects a bound state with a bound state

M, =(@,|H-Ee,), (2.55)
~ while a bound-free matrix element connects a bound state with a free one such as

Myt =(s,H - El@,), @2.56)
Mg =(C,|H - Ele,), @57

~ and a free-free matrix element of H-E connects a free state with a free state such as

My =(s,[H-Es,), (2.58)
My =(s,|H-Ec,), (2.59)
MZ =(C,|H-Es,), 2.60)
Mg =(C,|H-E[c,). 2.61)

More explicitly, the matrices o and m are written as

a =(°‘°J, 2.62)
al
s [mw m‘"] b (2.63)
m]o m]l

matrices o, and o, in Eq. (2.62) are related to the reactance matrix R as
R= a,(xo_' if o, is not singular

to the inverse reactance matrix R as



R~ = 0,0, if 0, is not singular.

- If W* is an exact solution of the Schrodinger equation

(H-E)¥* =0, (2.64)

ma=[m°° m"‘](“"):o, (2.65)
m,, m; A0,

(o) (V]

(A R B VIR (2.66)
are! aene
my .o

TH i (sl R (2.67)
mPc! mPche

with i, j=0,1.
It should be noted that m,, and m,, are Hermitian while mand m, are not. They
 satisfy the following relation:
P
m,, —my, = EI. (2.68)
Here, m{; denotes the Hermitian adjoint of m,,,and I is the n. xn. unit matrix.
The variational functional E,, (Eq. (2.48)) can be rewritten in matrix form as
E, =0"ma, (2.69)

= 0 (mooCtg +migy 0, )+ 0 (o0t +my ). (2.70)



Thus, the infinitesimal variation of =, is given by

35, =5a*mu+(ma)‘8a+a'(m—m*)5a. (2.71)
vSubstituting Eqgs. (2.62), (2.63) and (2.68) into Eq. (2.71) yields
82, = 80" mot-+ (mo) Boc+ (o8t -t 3s, ) @72)

In the Kohn variational method, the matrices o, and o, are defined as

oy =1, o, =R. (2.73)
This implies

S0, =0, 8o, =9OR. (2.74)

The infinitesimal variation of the functional Z, in the Kohn method can, therefore, be

uv

written as

o=, =5R*(m,o+m”R)+(m,0+m”R)*5R+%5R. (2.75)
Now, if one chooses a trial matrix R ) such that

my +m; R =0, (2.76)

R =-mjm,, @

Eq. (2.75) reduces to

[

{

1
uv(R(o))_ER(o))‘_'o; (2.78)



5[R]=0. (2.79)

: Egs. (2.78) and (2.79) imply that
[R]=Ry-25,,Rq) (2.80)
is the Kohn variational functional and is stationary. Using Eqs. (2.70), (2.73) and (2.77),
» one arrives at
[R]=-2(my - mjym;jim,,) @81
~ Eq. (2.81), which gives the stationary reactance matrix R in the Kohn variational method,
is the Kohn formula for the multi-channel scattering case.
In the inverse Kohn variational method, the matrices o, and o, are defined as
(Nesbet (1980) [43])
O IRE ol sl (2.82)
This implies
Sali=I6R, 1 B0 =0 (2.83)
Substituting Eqs (2.82) and (2.83) into Eq. (2.72), one obtains the infinitesimal variation

of the functional Z, 8

8%, =8R ™" (mg + meR ™)+ (my, + myuR™) SR — IESR" : (2.84)

this case, a trial inverse matrix R('ol) can be chosen for R such that

m, +myRG =0, (2.85)

Ry =—mgmy,. (2.86)



With this choice, Eq. (2.84) becomes
- PR O
5(=,.v(R(o‘))+5R(o'))=0 ; (2.87)
or
SR]=0. (2.88)
The stationary value of the inverse Kohn functional lR"J is, therefore, given by
R]=rR{+25,,RE) - (2.89)
» Using Egs. (2.70), (2.82) and (2.86), one arrives at
[R_l]= Z(mn — Mg mgemg, ) (2.90)
" Eq. (2.90), which gives the inverse reactance matrix R™" in the inverse Kohn variational

method, is the so-called inverse Kohn formula for the multi-channel scattering case.

2.3 The Harris-Nesbet variational method for electron collisions with

~atomic hydrogen

In this section, we shall discuss the Harris-Nesbet variational method within the context
of the collision of electrons with hydrogen atoms. As is well-known, the Hamiltonian of
electron-atomic-hydrogen collision system is

lgebithice e Lypunl s, @91
P IV, ST O o |r,—r2|

mic units (a.u.) are used throughout this section. 7 and 7, are the position vectors of

electron of the hydrogen atom and of the scattered electron respectively.
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The total wave function of the electron-atomic-hydrogen system for a definite total
angular momentum L and total spin § is written in a standard expansion form as (see for

example, Gien, 1998 [26])

B 1 A SO
wu(n,rz)Thiaz]zun,,,(r.)a,,,,z(rz)va:z(r.,q), @92)

iyl

1, and [, are the orbital angular quantum number of the hydrogenic electron and scattered
electron respectively. S=0 or 1 corresponds to singlet or triplet scattering. 13,Z is the

- exchange operator which interchanges the coordinates of the hydrogenic and scattered
 clectrons. A scattering channel is specified by p=(n,,/;,l,); n; is principal quantum
number of the hydrogen atom, /; , its orbital angular momentum and /; , orbital angular

momentum quantum number of the scattered electron. ,, (r;) is a radial wave function

mh
of the hydrogen atom while Y}j% (#,7) is a bipolar spherical harmonic of the collision
- system and is as well known can be expressed in terms of the angular momentum wave
function of the individual electrons as [45]

V(= mzmc(:, o Limymy, MY, R)Y, . (B), (293)
: where C(1,,1,, Lym,,m,,M ) is the relevant Clebsch-Gordan coefficient.
An important part (see for instance, Gien, 1995 [18]) of the Harris-Nesbet variational
method is to construct the scattering trial wave functions F,,, (r,). F,,,(r,), as was
discussed in various sections above, is composed of two parts, a free part and a bound

- These scattered waves are, therefore, explicitly written as

F,(n)=®,(n)+a,s,(n)+e,C,(n) . (2.94)
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The independent free wave functions § , and C, are for this case given by

S e ) (2.95)
-~ and
C,(n)=k, (1= " n, (k,r,) (2.96)

where k, and [, are the momentum and angular momentum of the scattered electron,
respectively. k, is given by E, = E—-%k; where E, is the energy of the electron of H.
Jk,r,) and n, (k,r,) are the spherical Bessel and spherical Neumann functions,

respectively. The weight factor (l—e"’" )u’l'l introduced is to force the spherical
Neumann function to behave correctly in terms of r; (as rz'2 ) near the coordinate origin.
The weight factor is expressed in terms of the stability parameter S . The results of
phase shift and cross section calculated do not depend on the value chosen for A. £ may
‘ be varied to produce a good agreement between the Kohn and inverse Kohn results. An
alternative approximate form which can be used to represent the free function C o (rz)
was introduced by Armstead (1968) [3]
C,(r)=k,G, (k,r), 2.97)
G, (k,r,)= j,,,,(kprz)+%j,l,z(kprz).
»h2

The Armstead form also provides correct asymptotic behaviors for the Cp(rl) function

the coordinate origin as well as at large distance r, The bound part P, (rz) is
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expanded in terms of a numerable set of the short-range square-integrable functions

wp,i(rl)

2)=2.C,.0,:(1)- (2.98)

The functions ¢, (rz) have usually been chosen to be Slater-type functions,

wa VA
(2a;) b =@,
P =| —2— g 2.99
¢Im(’2) [1"(2[2+3)} n'e ( )

In the case when correlation terms are added to the basis set, one can recast the expansion

(2.92) as

[iﬁ }{Z"‘n,lK rl)Fn‘hlz(rZ) L '3 rz ZCZ. rl’rl)yul (’l’ﬁ)}

mly

m|"‘

(2.100)
where z,(r;,r,) is a correlation function.
Elements of the bound-bound matrix of H-E in the case of electron collisions with
hydrogen atoms are, therefore, given, for example, by (see Gien (2002) [32])

M, =B,B;,x
<un,|l,| ('] )rz‘l'z i YLT,?,, (ﬁ Fy 1(]'1 55 EXI P, 1“"/,1/. (’l )’zﬂn B YLI:.LI“ (;l JF )> B (2.101)
where B, and B, are normalization constants.

The bound-free matrix elements for this collision process are given, for example, by
M, =Bk, X

<un,.1,, (’1 )rz"’e_a'mYLm,('A‘l i X(ﬁ _Exlif’lz]“n,\i,, (’1 )J/ (k; 7’2)Yu I

2

®.2)’
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(2.102)

and

Mye=By{u,,, (e vl (- Bt B, )G,V GoA)). @109

qvé ‘w2
while the free-free matrix elements of H-E are given by

Mg :k,zk,zx

<“n,.1,, (rl )jl,, (kiyr )Yuh,t,’i,l (;x Fy i(ﬁ il EXI s ﬁu 1“»,‘1,, (’1 )L,z (k,z’z )YIZ,’IN (;1 JFy )> ,(2.104)

M= <“ il ('])C (’2) 1_7? ('] ’1 H EX1+ ] ity r‘ r L (':h;z))’ (2.105)
Mg =k.z<“n,,g, ('] )jld (k.z’z)Y:.li,, (;l -F 1("7 7 EX] * FA’H]"",.I,. (r, )C ( )YL/,.’/ 2 (;“FZ )> i (2196}
Mes =kpa (i, (), ()Yt G YA - ENi 2 B, ()i, oYl R 210T)

The m-matrix elements can then be calculated in terms of these bound-bound, bound-free
and free-free matrix elements through Eqs (2.49) to (2.54). Elements of the reactance
matrix R and the inverse reactance matrix R can then be deduced from their Kohn and
inverse Kohn formulas (Eq. (2.81) and Eq. (2.90)). Once the R matrix or the inverse R
matrix, R , has been obtained, the cross sections can be calculated by using the well
known relationship between the matrix R and the transition matrix T. The partial cross

section Q,, of a collision process in which the electron-hydrogen-atom system makes a

transition from channel q to channel p is, therefore, given by

)
i QiR

4 2 4r
(O) =k—:TWl e

2

(2.108)
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At low energies below the first excitation threshold, only one scattering channel is

open for any partial waves L. In this case, the reactance matrix R, is nothing else but the
tangent of the phase shift 5L . Thus, in the Kohn variational method, J; is given by

8, =arctan(R, ), (2.109)
while in the inverse Kohn method, by
o= arccotan(RL" ) (2.110)

The elastic differential cross section I(k,@) at a scattering angle @ for an electron of
momentum k scattered from the hydrogen target is given in terms of the partial-wave

phase shifts §; by
S - i 2
1(,0)=2|f(k.0) + Z|f " k.0) . @111
where f*(k,8) are the scattering amplitudes,
f’(k,9)=—2i,k—2(2L+1)(e3“’f ~1)P, (cos 6). (2.112)
L

“+” refer to singlet and triplet scattering respectively.
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Chapter 3

Accurate Calculation of e - H Scattering

3.1 Method of calculation

As was mentioned in chapter 2, the total wave function of the electron-hydrogen-atom
system can be expanded in terms of the complete set of (discrete and continuum) states of
hydrogen atom (Eq. (2.92)). In the well-known close-coupling approximation, the infinite
series of Eq. (2.92) is, usually, truncated. Only a few lowest discrete states of the
hydrogen atom are retained in the expansion, and one has, usually, used a number of
pseudo states to represent the remainder hydrogenic states excluded from the expansion.
In order to improve the accuracy of the truncated wave function, one may also add to the
truncated expansion a number of correlation terms as shown in Eq. (2.100). It can be seen
through Eq. (2.100) that a greater number of correlation terms added to the expansion of
¥ would likely provide a better accuracy for the truncated total wave function, and
thereby a more accurate representation of the various interaction effects of the collision
system. For convenience, we shall refer to the set of states and pseudo states (with or
without the inclusion of correlation terms) that we consider for the expansion of the total
wave function as a coupling scheme. For our present calculation of electron collision with

hydrogen atom at energies below its first excitation threshold, we shall consider
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altogether six coupling schemes, the so-called four-state (4S), extended four-state (E4S),
six-state (6S), extended six-state (E6S), three-state (3S) and extended three-state (E3S)
ones.

(i) Four-state (4S) and extended four-state (E4S) schemes.

The four-state scheme is composed of the s, 2s, 2p states of the hydrogen atom
and the 5 pseudo state. The 5 pseudo state was introduced by Burke et al. (1969) [4].

It is a linear combination of the 2p state and 2_p pseudo state derived by Damburg et al.

(1967) [46]. Burke et al. (1969) [4] showed that the 5 pseudo state together with the 2p
state accounts for 100 percents of the dipole polarizability of the hydrogen atom in its
ground state. Thus, an inclusion of the % pseudo state to the coupling scheme will take
good care of the long-range dipole interaction of the collision system. Explicit form for
the normalized radial wave function of the 5 pseudo state and its energy &,, were given
by Burke et al. (1969) [4].

The exponents ¢; of the basis functions that are used to expand the bound part of
the scattered wave (~ r,”e”®" ) were chosen over a wide range of values to speed up the
convergence of the calculation. In the extended four-state scheme (E4S), a great number
of correlation terms were added to the 4S scheme. The correlation terms that we use in
our calculation were chosen to be in the form of a product of two Slater-type functions.
The number of correlation terms was increased gradually until the results of the
calculation no longer changed significantly, i.e., when these results were already

approaching their convergent values. Again, the exponents @, and a;, of the Slater-type
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functions were chosen over a wide range of values, and the power m, of the factor
r"" has usually been taken to be equal to /,. Our experience indicates that it is not
necessary to include the correlation terms with [, greater than 2 in order to reach the

convergent values for our results at low energy. We also noticed that a higher number of
basis functions and correlation terms were required for an accurate calculation of partial
wave scattering of higher order. Usually, it has been quite time-consuming to find a
suitable set of basis functions and correlation terms for our calculations in order to obtain
accurate results for the phase shifts and/or cross sections. The principal criterion for
choosing these sets of basis functions and correlation functions is to achieve the
convergence values for the phase shifts as well as to speed up the convergence of the
calculations.

The total number of basis functions used in the expansion of the bound part of the
scattered wave functions are: 24 for L=0, 27 for L=1, 2 and 3, 30 for L=4 and 5, 33 for
L=6, 7 and 8 and 36 for L =9, respectively. The total number of correlation terms added
to the expansion of ¥ are: 90 for L=0 triplet scattering, 108 for L=0 singlet scattering,
150 for L=1, 180 for L=2 triplet scattering, 270 for L=2 singlet scattering, 240 for L=3,
180 for L=4, 432 for L=5, 120 for L=6, 594 for L=7, 792 for L=8, 780 for L=9, 660 for
L=10 and 780 for L>11.

(ii) Six-state (6S) and extended six-state (E6S) schemes.

The 6S scheme consists of six atomic hydrogen states and pseudo states

18,128, 2p,§§, gﬁ,ﬁ (Geltman et al., 1970 [34]). The pseudo states 3s, 5 and 3d are
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those obtained by Damburg et al. (1968) [47] to provide 100% of polarizabilities for most
of the open channels above the n=2 H excitation threshold. The normalized radial
functions u,, (r) of the 3s, 5 and 3d pseudo states and their effective energies &

(in

nih

Rydbergs) (Damburg et al. (1968) [47]) are respectively given by

s SR T Ol
=P -3}

1 25 1 2
“32(’1)=8\/§r129 A(l-"grlJ’ Eas 5 e -

In the extended six-state (E6S) scheme, a large number of correlation terms is
added to the scheme. The number of basis functions that is used to expand the bound part
of the scattered wave functions is the same as in the case of the 4S and E4S schemes. The
total number of correlation terms included to the E6S scheme are: 72 for L=0 triplet
scattering, 90 for L=0 singlet scattering, 270 for L=1, 240 for L=2 singlet scattering, 588
for L=2 triplet scattering, 624 for L=3, 300 for L=4, 360 for L=5, 462 for L=6, 630 for
L=7 and 8, 594 for L >9.

(iii) Three-state (3S) and extended three-state (E3S) schemes.

The 3S scheme is composed of the 1s, 2s, 2p states of hydrogen atom. It is

essentially the 4S scheme without the 3-1; pseudo state. This scheme can account for
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approximately 65. 8% of the dipole polarizability of hydrogen atom in its ground state
only (Castillejo et al., 1960 [48]). Thus, we had to add to the 3S scheme a great number
of correlation terms so that the E3S scheme could yield convergent values for our results.
The total number of correlation terms used are: 84 for L=0 singlet scattering, 90 for L=0
triplet scattering, 420 for L=1, 672 for L=2, 756 for L=3, 672 for L=4 singlet scattering,
546 for L=4 triplet scattering, 504 for L=5, 336 for L=6, 450 for L=7, 768 for L=8 and
780 for L =29, respectively. The same number of basis functions as those of the 4S and
E4S schemes were considered for the calculation.

We have employed a general computer code, which had been developed
throughout the years by Gien (1995 [18], 1998 [26], 2001 [49], 2002 [32]) for the Harris-
Nesbet variational calculations of electron (and positron) collisions with atomic targets,
to obtain, with the consideration of the six coupling schemes described above, the phase
shifts and cross sections for elastic scattering of electron from hydrogen atom at energies
below its first excitation threshold. These results will be presented in the next section

with discussion.
3.2 Numerical results and discussion

In tables 3.1 to 3.15, we display the results of our calculations of phase shift for both
singlet and triplet scattering of electron from hydrogen atom at energies below the first
excitation threshold of H and with the partial waves L=0, 1, 2, 3, 4, 5, 6 and 7. The
calculations were done with the six coupling schemes described above, namely the three-

State (3S), the four-state (4S), the six-state (6S), the extended three-state (E3S), the
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extended four-state (E4S) and the extended six-state (E6S). Theoretical values obtained
by other researchers using other numerical methods, whenever available, are also shown
in these tables for comparison. We also plot, as examples, the singlet and triplet S—wave
phase shifts in figures 3.1 and 3.2, the singlet and triplet P-wave phase shifts in figures
3.3 and 3.4, the singlet and triplet D—wave phase shifts in figures 3.5 and 3.6 and the
singlet and triplet F-wave phase shifts in figures 3.7 and 3.8 that were calculated with the
4S and E4S schemes. Samples of elastic differential cross sections obtained by us for
electron-hydrogen collisions at the nine energies where experimental data have been
available (E=0.582, 1.207, 1.597, 2.171, 3.009, 3.423, 4.889, 6.691 and 8.704 eV)
(Williams (1975) [12]) are given in tables 3.16 to 3.24. We also present the results of
elastic differential cross section calculated with the E4S scheme that we believe to be our
most accurate ones in figures 3.9 to 3.17 for a visual comparison with experimental data
by Williams. Table 3.25 displays our results of total cross section at these nine energies.
Tables 3.1 to 3.15 show that the phase shifts obtained with the 4S and 6S schemes

are clearly greater than those with the 3S one. This fact indicates that the 5 pseudo state

and 3s, 5 and 3d pseudo states when added to the 3S scheme contribute significantly to
the interaction effects of electron-hydrogen-atom collision system in the 4S and 6S

schemes at both short and long distances. This is as expected since, as was discussed
above, the 5 pseudo state in the 4S scheme when combined with the 2p state accounts

for 100 percents of the dipole polarizability of hydrogen atom in its ground state. The 4S

scheme should, therefore, represent well the long-rang dipole interaction of the collision
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system. On the other hand, the 3s, 5 and 3d pseudo states, when added to the 3S
coupling scheme to form the 6S one, improve the dipole as well as quadrupole
interaction effects of the collision system.

The results of the singlet S—wave phase shifts, as shown in table 3.1, that we
calculated with the E4S, E6S and E3S schemes in the Harris-Nesbet variational method,
agree excellently with each other. They are also in excellent agreement with the phase
shifts calculated by Gien (1998) [26] with the Harris-Nesbet method, using a 13-state
scheme. The fact that these results calculated with completely different schemes agree
excellently with each other indicates that our phase shifts obtained already are
approaching their convergent values probably within a few percents at worst. They
should, thereby, be very accurate. The results obtained with the employment of the direct
numerical method by Botero et al. (1992) [9] and by Wang et al. (1994) [50] agree very
well with ours within about 2%. The singlet S—wave phase shifts calculated by Schwartz
(1961) [1] and Shimamura (1971) [51] with the Harris variational method also agree very
well with ours within about 3%. Very good agreement is also found between our results
and the ones calculated with the R-matrix method by Scholz et al. (1988) [8] and with the
CCKT method by Bhatia et al. (2001) [10].

Our results of the singlet S—wave phase shifts calculated with the E4S and 4S
schemes and displayed in table 3.1 and in figures 3.1 differ from each other noticeably.
They show a significant improvement of the accuracy of the phase shifts when a great
number of correlation terms are added to the scheme. We conclude that these correlation

terms play a very important role in the acquirement of the accurate results for the phiase
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Table 3.1: Singlet S-wave phase shifts (in units of radian) of electron collision with hydrogen atom. The numbers in parentheses
give the uncertainty in the last digit quoted.

k(ag") 0.1 0i5] 02 0.3 0.4 0.5 0.6 0.7 0.8 083 085 0.86

“HN 3S 2.492 2215 1.976 1.595 1.310 1.093 0.930 0.817 0.773 0.873 0.642 0.716
"HN 4 2.932 2267 2.036 1.663 1.379 1.162 0.998 0.882 0.833 0928 0.710 0.779
“HN 6S 2.520 2.252 2018 1.640 1.352 1.130 0.964 0.848 0.802 0.904 0.688 0.754
YHN E3S 2.551 2291 2.063 1.692 1.411 15197 1:037 0.926 0.883 0979 0.774 0.837
“HN E4S 2:551; 2.291 2.063 1.692 1.411 1.196 1.036 0.926 0.883 0.979 0.774 0.837
"HN E6S 2:551 2.291 2.063 1.693 1.412 1197 1.037 0.927 0.884 0.980 0.776 0.838
£HN 135 2.550 2.290 2.062 1.692 1.410 1.196 1.035 0.9250 0.8814 0.9772 — =

f'DR 1l 2.558 = 2.066 1.695 1.414 1.200 1.040 0.930 0.887 == — ==
'DR II 2.555 = 2.066 1.695 1.415 1.200 1.041 0.930 0.887 = = —
JR-matrix ~ 2.550 = 2.062 1.691 1.410 1.196 1.035 0.925 = = == —
*Variational 2.556 = 2.067 1.696 1.415 1.201 1.041 0.930 0.887 — = =
'Variational  2.553(1) — 2.0673(9) 1.6964(5) 1.4146(4) 1.202(1) 1.041(1) 0.930(1) 0.886(1) — = =
=eleidn 255358 - = 2.06678  1.69816  1.41540  1.20094 1.04083 0.93111 0.88718 — = =
a b

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
& Harris-Nesbet calculation, T.T.Gien (1998) [26]

_"direct numerical method, J. Botero and J. Shertzer (1992) [9]

! direct numerical method, Y. D. Wang and J. Callaway (1994) [50]

JR-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) [8]

¥ Variational method, I. Shimamura (1971) [51]

"Variational method, C. Schwartz (1961) [1]

"™ CCKT method, A. K Bhatia and A. Temkin (2001) [10]
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shifts and that the 4S scheme, by itself, cannot provide accurate results for the singlet
S—wave phase shifts.

The triplet S—wave phase shifts calculated with the E4S, E6S and E3S schemes in
the Harris-Nesbet variational method, as displayed in table 3.2, agree excellently with
each other. They also agree excellently with the results obtained by Gien (1998) [26] in a
Harris-Nesbet calculation using a 13-state scheme. Again, the excellent agreement of
these phase shifts, which are obtained with completely different schemes, indicates that
our results are already approaching their convergent values probably within a few
percents at worst and should, thereby, be very accurate. They also agree excellently with
the phase shifts calculated with the employment of other numerical methods, such as the
direct numerical method by Botero et al. (1992) [9] and Wang et al. (1994) [50], the
variational method by Shimamura (1971) [51] and Schwartz (1961) [1], the R-matrix
method by Scholz et al. (1988) [8], and the CCKT method by Bhatia et al. (2001) [10]
(within 0.01 percents, approximately).

The triplet S—wave phase shifts calculated with the 4S scheme and E4S one,
where a great number of correlation terms are added, only differ minutely from each
other. As a result, the 4S and E4S curves of phase shift that we display in figure 3.2
almost coincide with each other. This feature indicates that the 4S scheme by itself
already represents very well the various collision effects of the electron-hydrogen-atom
system in the case of S—wave triplet scattering at low energy. It also confirms that the

phase shifts that we obtained with the E4S scheme are approaching their convergent
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Table 3.2: Triplet S-wave phase shifts (in units of radian) of electron collision with hydrogen atom. The numbers in parentheses give
the uncertainty in the last digit quoted.

k(a;) 0.1 0315 102 0.3 0.4 0.5 0.6 0.7 0.8 083 085 0.86
“HN 3S 2.936 2.826 2715 2.497 2.288 2.096 1.922 1.768 1.631 1.593 1.569 1.558
"HN 48 2.938 2.827 2716 2.498 2292 2.103 1.931 1.777 1.641 1.604 1.580 1.568
“HN 6S 2.938 2.828 2717 2.499 2.293 2.102 1.929 1.774 1.638  1.600 1.576 1.564
YHNE3S 2938 2.828 2717 2.500 2.294 2.104 1.933 1.779 1.644  1.606 1.582 1.571
*HNE4S 2938 DIRIR D 1T 2.500 2.294 2.104 1.933 1.780 1.644 1607 1583 1.571
'"HNE6S  2.938 2.828 2717 2.500 2.294 2.104 1.933 1.779 1.644  1.606 1.682 1.571
EHN 13S  2.938 2.828 2.717 2.500 2294 2.104 1.933 1.779 1.644 1606 — —
"DR 1 2.938 - 2717 2.500 2.294 2.104 1.933 1.780 1645 — - -
DR II 2.939 — 2.717 2.500 2.294 2.104 1.933 1.780 1.644  — - -
R-matrix 2939 - 2917 2.500 2294 2.105 1.933 1.780 - - - -
kVariational 2.939 - 2717 2.500 2294 2.105 1.933 1.779 1644  — - -
'Variational 2.9388(4) — 2.7171(5) 2.4996(8) 2.2938(4) 2.1046(4) 1.9329(8) 1.7797(6) 1.643(3) — - -
NEEKT 293853 — 271741 249975 229408  2.10454  1.93272 177950  1.64379 — — —

b€ present Harris-Nesbet calculation with 38, 4S and 6S schemes respectively
e ! bresent Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (1998) [26]
" direct numerical method, J. Botero and J. Shertzer (1992) [9]

! direct numerical method, Y. D. Wang and J. Callaway (1994) [50]
JR-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) [8]

¥ Variational method, I. Shimamura (1971) [51]

! Variational method, C. Schwartz (1961) [1]
™ CCKT method, A. K Bhatia and A. Temkin (2001) [10]
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values, since the results of calculation almost do not change at all, despite an addition of a
great number of correlation terms to the coupling scheme.

Again, the singlet P-wave phase shifts (see table 3.3) calculated with the E4S,
E6S and E3S schemes agree excellently with each other. They also agree very well with
those calculated with the Harris-Nesbet variational method by Gien (1998) [26], using
however a 13-state coupling scheme. Again, this excellent agreement implies that the
singlet P-wave phase shifts obtained are already approaching their convergent values
within a few percents at worst and should, thereby, be very accurate. Our results also
agree very well with those obtained with the direct numerical method by Botero et al.
(1992) [9] and by Wang et al. (1994) [50] and those with the R-matrix method by Scholz
et al. (1988) [8] within 2% to 5%. The variational phase shifts of Das et al. (1976) [6] and
Armstead (1968) [3] deviate from ours about 2 to 10 percents. It is worth noting that the
phase shifts of the calculation by Sloan (1964) [2], except at k=0.1 a.u., deviate
considerably from ours, and hence from other theoretical calculations.

In figure 3.3, we display the singlet P-wave phase shifts that we obtained with the
4S and E4S schemes for a visual comparison. The E4S phase shifts lie considerably
above those of the 4S. Thus, an inclusion of the correlation terms to the coupling scheme
in the calculation improves the accuracy of the phase shifts considerably in this case,
especially at higher scattering energies.

In table 3.4, our results of the triplet P-wave phase shift are given. The triplet
P-wave phase shifts that we obtained in the present Harris-Nesbet calculations with the

E4S, E6S and E3S schemes (shown in table 3.4) agree excellently with each other as well
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Table 3.3: Singlet P-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(a; ) 0.1 DRSS =012 0.3 0.4 0.5 0.6 0.7 0.8 0.83 0.85 0.86
“HN 3S 0.00399 0.00673 0.00823 0.00438 -0.00917 -0.0282 -0.0463 -0.0580 -0.0570 -0.0517 -0.0435 -0.0333
"HN 4S 0.00617 0.0107 0.0140 0.0143  0.00595 -0.00669 -0.0181 -0.0233 -0.0170 -0.0108  -0.0029 0.00643
“HN 6S 0.00586 0.0106 0.0141 0.0135  0.00277 -0.0133 -0.0289 -0.0385 -0.0362 -0.0308 -0.023 -0.0125
YHNE3S 000632 0.0111 0.0149 0.0162 0.00910 -0.00221 -0.0122 -0.0157 -0.00755 -0.00069 0.0078 0.0184
SHNE4S  0.00632 00111 0.0149 0.0161 0.00909 -0.00221 -0.0121 -0.0157 -0.00752 -0.00066 0.0079  0.0184
'THNE6S  0.00632 0.0111 0.0149 0.0161  0.00909 -0.00220 -0.0122 -0.0157 -0.00753 -0.00065 0.0079  0.0185
EHN 13S  0.0063 0.0111 00149 00162 0.0093 -0.0019 -0.0120 -0.0155 -0.0075 -0.00073 — -
"DR I 0.006 — 0.0148 0.0160 0.0090 -0.0020 -0.0117 -0.0149 -0.0068 — — —
‘DR I 0.006 — 0.016 0017 0010 -0.002 -0012 -0.015 -0.007 — - —
IR-matrix  0.006 — 0.015 0016 0009 -0002 -0.012 -0016 — - - -
X Variational 0.0062 — 0.0150 0.0165 0.0099 -0.0011 -0.0106 -0.014 -0.006 — - -
'Variational 0.007 — 0.0147 00170  0.0100 -0.0007 -0.009 -0.013 -0.004 — - -
" POM 0.0067 — 0.0171 0.0210  0.0163 -0.0064 -0.0039 -0.0100 -0.0095 — - -
a, b,c

d,e f

& Harris-Nesbet calculation, T.T.Gien (1998) [26]
f’ direct numerical method, J. Botero and J. Shertzer (1992) [9]
'direct numerical method, Y. D. Wang and J. Callaway (1994) [50]
JR-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) [8]
¥ Variational method, J. N. Das and M. R. H. Rudge (1976) [6]
!'Variational method, R. L. Armstead (1968) [3]
™ the polarized orbital method, I. H. Sloan (1964) [2]

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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Table 3.4: Triplet P-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(ag' ) 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 083 085 0.86
“HN 3S 0.00783 0.0194  0.0371 0.0906 0.162 0236 0.302 0353 0391 0407 0339 039
YHN 48 0.0102  0.0241  0.0446 0.105 0.184 0265 0.335 0386 0421 0434 0394 0425
“HN 6S 0.00986 0.0237  0.0441 0.103 0.177 0255 0.321 0371 0407 0.421 0.380 0412
YHN E3S 0.0104 0.0245 0.0453 0.107 0.187 0270 0.341 0392 0427 0.440 0406 0.432
°HN E4S 0.0104  0.0244  0.0453 0.107 0.187 0270 0.341 0392 0427 0440 0406 0.432
"HN E6S 0.0104  0.0244 0.0453 0.107 0.187 0270 0.341 0392 0427 0440 0.406 0.432
2HN 13S 0.0103  0.0244  0.0452 0.1066 0.1869 0.2701 03408  0.3922 04269 04397 — -
"DR 1 0.0100 — 0.0452 0.1067 0.1873 02708 03417 03933 04283 — - -
DR II 0.010  — 0.046 0.107 0.188 0271 0.342 0394 0429 — - -
J R-matrix 0010  — 0.045 0.107 0.187 0270 0.341 0392 — - - -

¥ variational  0.0103 — 0.0452 0.1067 0.1872 02705 03413 03927 04270 — — -
"Variational 00114 — 0.0450 0.1063 0.1872 02705 03412 03927 0427 — - -
" POM 0.0109 — 0.0486 0.1151 0.2005 0.2867 0.3574  0.4063 04351 — — —
a, b,c

d.e f

& Harris-Nesbet calculation, T.T.Gien (1998) [26]
‘h direct numerical method, J. Botero and J. Shertzer (1992) [9]
! direct numerical method, Y. D. Wang and J. Callaway (1994) [50]

JR-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) [8]

¥ Variational method, J. N. Das and M. R. H. Rudge (1976) [6]

'Wariational method, R. L. Armstead (1968) [3]

"the polarized orbital method, 1. H. Sloan (1964) [2]

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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as with those calculated by Gien (1998) [26], employing the Harris-Nesbet method with a
13-state scheme instead. Our phase shifts also agree well with those calculated by Botero
et al. (1992) [9], by Wang et al. (1994) [50], by Scholz et al. (1988) [8], by Das et al.
(1976) [6], and by Armstead (1968) [3]. The maximum difference between ours and
theirs is less than 4 percents. The present Harris-Nesbet results are approximately 5
percents smaller than the ones obtained by Sloan (1964) [2] who used the polarized
orbital method for his calculation.

The triplet P-wave phase shifts calculated with the E4S and 4S schemes are
displayed in figure 3.4 for a visual comparison. The phase shifts calculated with the E4S
scheme are greater than those obtained with the 4S scheme, as expected. This reasserts
the important role that correlation terms play in the acquirement of accurate values for the
phase shifts.

The singlet and triplet D—wave phase shifts calculated with the E4S, E6S and E3S
schemes (see tables 3.5 and 3.6) in the Harris-Nesbet method agree excellently with each
other. They also agree very well with the phase shifts obtained by Gien (1998) [26], using
a 13-state scheme. A good agreement is found between our E4S results and those by
Callaway (1978) [7] who also used the Harris-Nesbet method for his calculation, but with
the consideration of an eleven-state coupling scheme and between our E4S results and
those by Register et al. (1975) [52] who employed a basis set of 35 Hylleraas functions.
In e - H collisions, one may choose to use the sets of basis functions in the form of a
Hylleraas-type wave function to expand the wave function ¥ of the collision (two-

electron) system. This choice should, in principle, be equivalent to ours, provided that the
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Table 3.5: Singlet D-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(“al ) 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.83 0.85 0.86
“HN 3S 0.000863 0.00192 0.00336 0.00748 0.0133 0.0207 0.0297 0.0413 0.0609 0.0729 0.0906 0.130
"HN 4S 0.00132  0.00291 0.00505 0.0107  0.0179 0.0265 0.0369 0.0505 0.0723 0.0847 0.102 0.142
“HN 6S 0.00113  0.00255 0.00453 0.00989 0.0165 0.0243 0.0339 0.0468 0.0679 0.0803 0.0996 0.164
YHN E3S 0.00130  0.00293 0.00509 0.0110  0.0185 0.0276 0.0383 0.0524 0.0746 0.0872 0.1064 0.171
“HN E4S 0.00133  0.00294 0.00513 0.0110  0.0186 0.0276 0.0385 0.0526 0.0748 0.0874 0.107 0.171
"HN E6S 0.00132  0.00294 0.00512 0.0110  0.0185 0.0276 0.0385 0.0525 0.0747 0.0874 0.107 0.171
£HN 13S 0.00131  0.00292 0.00509 0.0110  0.0185 0.0276 0.0385 0.0526 0.0748 0.0873 — e
"HN I 0.00120 — 0.00520 0.0108  0.0183 0.0274 0.0383 0.0523 0.0745 — = =
"HN III 0.0013 = 0.0051 0.0109  0.0184 0.0273 0.0381 0.0517 0.0739 — = =
DRI 0.0007 = 0.0048 0.0105 0.0182 0.0271 0.0379 0.0518 0.0745 — = =
XDR II 0.0012 = 0.0056  0.011 0I018: 0:007- 10038 0052, 50075 = == S
'R-matrix 0.00132 ~=— 0.00510 0.0109  0.0183 0.0272 0.0379 0.0518 — = = =
"CCM 0.001 = = 0.011 = R 0.050 0.070 — = —

e be present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively

dye f

£ Harris-Nesbet calculation, T.T.Gien (1998) [26]
‘*‘Harris—Nesbet calculation, D. Register and R. T. Poe (1975) [52]
'Harris-Nesbet calculation, J. Callaway (1978) 7]
J direct numerical method, J. Botero and J. Shertzer (1992) [9]

¥ direct numerical method, Y. D. Wang and J. Callaway (1994) [50]

'R-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) [8]
" the close coupling method, P. G. Burke, D. F. Gallaher and S. Geltman (1969) [4]

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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Table 3.6: Triplet D-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

kla;") 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 083 085 0.86
THN 3S 0.000875 0.00200 0.00363 0.00857 0.0155 0.0239 0.0333 0.0436 0.0548 0.0585 0.0610 0.0623
"HN 4S 0.00132  0.00293 0.00513 0.0112  0.0195 0.0295 0.0410 0.0533 0.0662 0.0701 0.0728 0.0742
°HN 6S 0.00114 0.00259 0.00464 0.0103 0.0178 0.0272 0.0380 0.0498 0.0621 0.0659 0.0686 0.0699
YHNE3S 000131 0.00295 0.00516 00114 0.0198 0.0304 0.0424 0.0557 0.0697 0.0739 0.0768 0.0783
CHNE4S  0.00133 0.00296 0.00520 00115 0.0199 0.0304 0.0426 0.0559 0.0698 0.0741 0.0770 0.0785
"HNE6S  0.00130 0.00295 0.00518 0.0114 0.0199 0.0304 0.0424 0.0556 0.0696 0.0739 0.0768 0.0783
SHN 13S  0.00132 0.00294 0.00515 0.0114  0.0198 0.0302 0.0423 0.0555 0.0693 0.0736 — -
"HN II 0.00130 — 0.00520 0.0114  0.0198 0.0304 0.0424 0.0559 0.0697 — — -
"HN 111 0.0013 — 0.0052 00113  0.0197 0.0301 0.0421 0.0550 0.0688 — - -
DRI 0.0007 — 0.0049 00110 00196 0.0300 0.0422 0.0554 0.0699 — - -
“DR II 0.0012 — 0.0057  0.011 0.020 0.030 0042 0055 0070 — - -
'R-matrix ~ 0.00132 — 0.00517 00114  0.0197 0.0301 0.0421 0.0553 — - - -
"CCM 0.001 — — 0.011 — 0.029 — 0.053 0.066 — — —
a, b,c

doe f

£ Harris-Nesbet calculation, T.T.Gien (1998) [26]

" Harris-Nesbet calculation, D. Register and R. T. Poe (1975) [52]

' Harris-Nesbet calculation, J. Callaway (1978) [7]
J direct numerical method, J. Botero and J. Shertzer (1992) [9]
¥direct numerical method, Y. D. Wang and J. Callaway (1994) [50]

'R-matrix method, T. Scholz, P. Scott and P. G. Burke (1988) 8]
™ the close coupling method, P. G. Burke, D. F. Gallaher and S. Geltman (1969) [4]

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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set of basis functions selected for each case are sufficient to represent ¥ accurately.
Thus, we believe that the slight deviation sometimes seen to exist between our results and
those calculated with the use of the Hylleraas-type wave functions originates, more or
less, from the different numerical methods and/or the details of the numerical procedures
(rather than from the type of the basis functions) that one considers for the calculations.
As seen in tables 3.5 and 3.6, other sets of phase shifts obtained by Wang et al. (1994)
[50], Scholz et al. (1988) [8] and Burke et al. (1969) [4] are also in good agreement with
ours within a few percents approximately. The D-wave phase shifts of singlet and triplet
scattering by Botero et al. (1992) [9] are about 5% smaller than ours.

Figures 3.5 and 3.6 show that both singlet and triplet D—wave phase shifts
calculated with the E4S lie higher than their counterparts calculated with the 4S scheme.
Once again, the inclusion of the correlation terms to the coupling scheme is seen to
improve the accuracy of the phase shifts that we calculated.

Our results of singlet and triplet F-~wave phase shifts that we calculated with the
E6S, E4S and E3S schemes (see tables 3.7 and 3.8) again agree excellently with each
other and with those calculated by Gien (1998) [26] with a 13-state scheme. The
excellent agreement of these results which were obtained with completely different
coupling schemes again indicates that our E4S, E6S and E3S phase shifts are already
approaching their convergent values and should, thereby, be very accurate. Our phase
shifts also agree well with those calculated by Callaway (1978) [7]. The phase shifts of
the direct numerical method by Botero et al. (1992) [9] and by Wang et al. (1994) [50],

and of the close coupling method by Burke et al. (1969) [4] also agree well with ours
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Table 3.7: Singlet F-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(ag‘) 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 083 085 086
“HN 3S 0.000288 0.000646 0.00114 0.00250 0.00435 0.00669 0.00953 0.0130 0.0173 0.0189 0.0201 0.0208
"HN4S  0.000440 0.000985 0.00174 0.00384 0.00666 0.0102 0.0144 0.0194 0.0255 0.0277 0.0293 0.0302
SHN 6S 0.000374 0.000845 0.00151 0.00343 0.00609 0.00933 0.0131 0.0175 0.0230 0.0249 0.0264 0.0272
YHNE3S  0.000432 0.000980 0.00173 0.00387 0.00671 0.0104 0.0147 0.0198 0.0263 0.0285 0.0302 0.0311
HNE4S  0.000441 0.000990 0.00175 0.00389 0.00680 0.0104 0.0148  0.0200 0.0264 0.0287 0.0303 0.0312
THNE6S  0.000435 0.000989 0.00175 0.00388 0.00677 0.0104 0.0148 0.0200 0.0264 0.0286 0.0303 0.0312
EHN 13S  0.00043  0.00097 0.0017 00038 00067 00103 0.0146 0.0199 00262 00284 — —
"HNII - - - 0.0038  0.0066 0.0102 00145 0.0194 0.0259 — - -
‘DR I 0.00000 — 0.0016  0.0037 0.0065 0.0101 0.0145 00199 0.0264 — - -
DR II 0.00010 — 0.0015 0.0038 00064 0010 0015 0020 0026 — - -
kccm 0.000 - — 0.004 — 0010  — 0019 0025 — — —

a, bc
de f

£ Harris-Nesbet calculation, T.T.Gien (1998) [26]
_"Harris—Nesbet calculation, J. Callaway (1978) (7]
! direct numerical method, J. Botero and J. Shertzer (1992) [9]

Jdirect numerical method, Y. D. Wang and J. Callaway (1994) [50]

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively

¥the close coupling method, P. G. Burke, D. F. Gallaher and S. Geltman (1969) [4]
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Table 3.8: Triplet F-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(a;) 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 083 085 086
THN 3S 0.000288 0.000646 0.00114 0.00249 0.00429 0.00654 0.00930 0.0128 0.0174 0.0193 0.0208 0.0217
"HN 4s 0.000440 0.000985 0.00174 0.00385 0.00671 0.0103  0.0147  0.0198 0.0260 0.0281 0.0298 0.0307
“HN 6S 0.000374 0.000845 0.00151 0.00342 0.00612 0.00943 0.0132  0.0176 0.0229 0.0249 0.0264 0.0272
YHNE3S  0.000432 0.000980 0.00173 0.00388 0.00674 0.0105 0.0149  0.0202 0.0267 0.0290 0.0307 0.0317
“HNE4S  0.000441 0.000991 0.00175 0.00390 0.00683 0.0105 0.0151  0.0204 0.0269 0.0291 0.0308 0.0318
THNE6S  0.000435 0.000989 0.00175 0.00389 0.00681 0.0105 0.0150  0.0204 0.0268 0.0291 0.0308 0.0317
EHN 13S  0.00043 0.00097 0.0017 0.0038 0.0067 00104 00148 0.0202 0.0266 0.0289 — -
"HN III - — - 0.0038 0.0067  0.0103 00147 0.0197 0.0263 — - -
‘DRI 0.00000 — 0.0016 0.0037 0.0065 00102 00148  0.0204 00271 — - -
DR II 0.00010 — 0.0015 0.0038 0.0064 0010 0015 0020 0026 — - -
¥ceMm 0.000 = - 0.004 — 0010  — 0.020 0026 — — —
:‘ l"f“ present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively

& Harris-Nesbet calculation, T.T.Gien (1998) [26]

" Harris-Nesbet calculation, J. Callaway (1978) [7]
! direct numerical method, J. Botero and J. Shertzer (1992) [9]
Jdirect numerical method, Y. D. Wang and J. Callaway (1994) [50]
K the close coupling method, P. G. Burke, D. F. Gallaher and S. Geltman (1969) [4]

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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which were calculated with the extended schemes. They are about 2 to 8 percents smaller
than ours at almost energies shown. However, at a small energy of 0.01 Ryd, as was
noticed by Gien (1998) [26], the values obtained by these three research groups are quite
small, compared with ours.

Figures 3.7 and 3.8 display the singlet and triplet F-~wave phase shifts calculated
with the use of the E4S and 4S schemes, respectively. It can be seen clearly from figures
3.7 and 3.8 that the 4S phase shifts are smaller than the E4S ones. This reasserts the
significant effects of correlation terms that we add to the coupling scheme on the singlet
and triplet F-wave phase shifts, as expected.

Our singlet and triplet G—wave phase shifts calculated with the E4S, E6S and E3S
schemes (shown in table 3.9) also agree excellently with each other and with those
calculated with the same method by Gien (1998) [26], employing, however, a 13-state
scheme. This again implies that our results of G—wave phase shifts that we calculated
with the use of completely different extended coupling schemes are already approaching
their convergent values, and should, thereby, be very accurate.

Tables 3.10 to 3.15 tabulate the singlet and triplet phase shifts that are obtained
for higher partial-wave (L=5, 6, 7) elastic scattering of electrons from hydrogen atoms at
energies below the first excitation threshold. These phase shifts that we calculated with
the use of different schemes E4S, E6S and E3S also agree well with each other. We
believe that these higher partial wave phase shifts are also approaching their convergent

values, perhaps within a few percents.
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The phase shifts at the nine energies of 0.582, 1.207, 1.597, 2.171, 3.009, 3.423,
4.889, 6.691 and 8.704 eV have been obtained for the partial waves L equal to up to 18
with the use of the 38, 4S, 6S, E3S, E4S and E6S coupling schemes, and then used to
deduce the elastic differential cross sections and total cross sections for electron
collisions with hydrogen atoms at these energies.

Tables 3.16 to 3.24 display our results of elastic differential cross section at the
nine energies of 0.582, 1.207, 1.597, 2.171, 3.009, 3.423, 4.889, 6.691 and 8.704 eV,
respectively. They are also compared with experimental data available in the literature
(Williams, 1975 [12]). The differential cross sections of our present Harris-Nesbet
calculations with the use of the different coupling schemes E4S, E6S and E3S, as seen in
these tables, agree excellently with each other. The maximum difference among these
differential cross sections (DCS) for scattering angles between 10 and 150 degrees and
for all nine energies is just 0.007 7a;. The DCS results of the present Harris-Nesbet
calculations also agree excellently with the ones calculated by Gien (2000) [29], using the
same numerical method with a 13-state scheme however (see tables 3.16 to 3.24). For a
visual comparison of our results with experimental data measured by Williams (1975)
[12], we plotted, as example, in figures 3.9 to 3.17 our E4S elastic differential cross
sections together with experimental data by Williams at these nine energies. Our
theoretical differential cross sections (see figures 3.9 to 3.17) agree excellently with
experimental data by Williams.

In table 3.25, we show the total cross sections of the present Harris-Nesbet

calculations done with the 3S, 4S, 6S, E3S, E4S, and E6S schemes at the nine energies
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mentioned above. The total cross sections calculated with the E4S, E6S and E3S schemes
agree very well with each other. The maximum difference between the cross sections
calculated with these different schemes is less than 0.05%. Our results also agree
excellently with those obtained by Gien (2000) [29], who used the same Harris-Nesbet
method for his calculation, but with the consideration of a 13-state scheme instead (see

table 3.25).
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Table 3.9: G-wave phase shifts (in units of radian) of electron collision with hydrogen atom.

k(a;' ) 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.83 0.85 0.86
Singlet
*HN 3S 0.000129 0.000293 0.000520 0.00116 0.00202 0.00316 0.00450 0.00604 0.00795 0.00870 0.00938 0.0104
"HN 48 0.000196 0.000447 0.000794 0.00177 0.00312 0.00493 0.00703 0.00934 0.0121 0.0133 0.0144 0.0167
“HN 6S 0.000167 0.000381 0.000677 0.00151 0.00266 0.00421 0.00602 0.00804 0.0105 0.0115 0.0125 0.0141
YHNE3S  0.000192 0.000423 0.000775 0.00175 0.00310 0.00487 0.00704 0.00954 0.0125 0.0137 0.0148 0.0167
CHNE4S  0.000197 0.000448 0.000797 0.00179 0.00317 0.00505 0.00723 0.00965 0.0126 0.0138 0.0150 0.0174
THNE6S  0.000193 0.000433 0.000787 0.00177 0.00311 0.00488 0.00702 0.00954 0.0125 0.0137 0.0146 0.0154
EHN 13S  0.00019 0.00044 0.00078 0.0018 0.0031 0.0048 0.0069 0.0094 0.0124 00134 — -
Triplet
2HN 3S 0.000129 0.000293 0.000520 0.00116 0.00202 0.00317 0.00450 0.00603 0.00796 0.00873 0.00945 0.0107
"HN 4S 0.000196 0.000447 0.000794 0.00177 0.00312 0.00497 0.00709 0.00942 0.0122 0.0135 0.0147 0.0176
“HN 6S 0.000167 0.000381 0.000677 0.00151 0.00267 0.00424 0.00604 0.00803 0.0105 0.0115 0.0124 0.0146
YHNE3S  0.000195 0.000442 0.000788 0.00177 0.00314 0.00502 0.00746 0.00972 0.0132 0.0136 0.0145 0.0152
CHNE4S  0.000197 0.000448 0.000797 0.00179 0.00317 0.00508 0.00728 0.00969 0.0126 0.0139 0.0151 0.0186
THNE6S  0.000193 0.000433 0.000787 0.00177 0.00311 0.00488 0.00704 0.00958 0.0126 0.0137 0.0147 0.0156
EHN 13S  0.00019 0.00044 0.00078 0.0018 0.0031 0.0048 0.0069 0.0094 0.0124 0.0135 — -

a, b,c
die £

£ Harris-Nesbet calculation, T.T.Gien (1998) [26]

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively



Table 3.10: Singlet H-wave phase shifts (in units of radian) of electron collision with
hydrogen atom. The number in [ ] indicates powers of ten.

klag") “HN 3S HN 4S °HN 6S YHNE3S °HNE4S 'HN E6S

0.1 0.682[-4] 0.104[-3] 0.883[-4] 0.102[-3] 0.107[-3]  0.102[-3]
0.15 0.156[-3]  0.238[-3] 0.203[-3] 0231[-3] 0243[-3] 0.236[-3]
0.2 0.279(-3] 0.425[-3] 0362[-3] 0416[-3] 0432[-3] 0.424[-3]
0.3 0.625[-3] 0.954[-3] 0.813[-3] 0.942[-3] 0.969[-3] 0.957[-3]
0.4 0.110[-2]  0.169[-2] 0.144[-2] 0.168[-2] 0.171[-2]  0.169[-2]
0.5 0.171[-2]  0.263[-2] 0224[-2] 0263[-2] 0.266[-2] 0.264[-2]
0.6 0.244[-2] 0377[-2] 0322[-2] 0387[-2] 0.383[-2] 0.380[-2]
0.7 0.330[-2] 0510[-2] 0437[-2] 0.523[-2] 0.522[-2] 0.519[-2]
0.8 0433[-2] 0.666[-2] 0.573[-2] 0.686[-2] 0.686[-2] 0.685[-2]
0.83 0471[-2] 0.725[-2] 0.623[-2] 0.719[-2] 0.746[-2] 0.718[-2]
0.85 0.500[-2] 0.772[-2] 0.622[-2] 0.766[-2] 0.792[-2] 0.776[-2]
0.86 0.521[-2] 0.810[-2] 0.694[-2] 0.788[-2] 0.822[-2]  0.798[-2]

Table 3.11: Triplet H-wave phase shifts (in units of radian) of electron collision with
hydrogen atom. The number in [ ] indicates powers of ten.

k(a;") HN3S  °HN4S  °HN6S  °HNE3S °HNE4S 'HNE6S

0.1 0.681[-4] 0.104[-3] 0.883[-4] 0.102[-3] 0.107[-3]  0.102[-3]
0.15 0.156[-3]  0.238[-3] 0.203[-3] 0231[-3] 0.243[-3] 0.236[-3]
0.2 0279[-3] 0.425[-3] 0362[-3] 0416[-3] 0432[-3] 0.424[-3]
03 0.625[-3]  0.954[-3] 0.813[-3] 0.942[-3] 0.969[-3] 0.957[-3]
0.4 0.110[-2]  0.169[-2]  0.144[-2] 0.168[-2] 0.171[-2]  0.169[-2]
0.5 0.171[-2]  0.263[-2] 0224[-2] 0263[-2] 0.266[-2] 0.264[-2]
0.6 0244[-2] 0377[-2] 0322[-2] 0.387[-2] 0.383[-2] 0.380[-2]
0.7 0.330[-2] 0.511[-2] 0437[-2] 0.524[-2] 0.522[-2] 0.519[-2]
0.8 0.434[-2] 0.669[-2] 0.573[-2] 0.686[-2] 0.687[-2] 0.685[-2]
0.83 0472(-2] 0.728[-2] 0.622[-2] 0.719[-2] 0.747[-2] 0.717[-2]
0.85 0.502[-2] 0.774[-2] 0.661[-2] 0.767[-2] 0.792[-2] 0.777[-2]
0.86 0.522[-2] 0.812[-2] 0.691[-2] 0.788[-2] 0.820[-2]  0.799[-2]

a, b,c

e present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
, e,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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Table 3.12: Singlet I-wave phase shifts (in units of radian) of electron collision with
hydrogen atom. The number in [ ] indicates powers of ten.

kla;") HN3S PHN4S  °HN6S  °HNE3S °HNE4S 'HNEG6S

0

0.1 0401[-4] 0.609[-4] 0.519[-4] 0.559[-4] 0.609[-4] 0.574[-4]
0.15 0.924[-4] 0.141[-3]  0.120[-3] 0.135[-3] 0.141[-3]  0.135[-3]
02 0.166[-3] 0.252[-3] 0.215[-3] 0.245[-3] 0.253[-3] 0.246[-3]
03 0.374[-3]  0.570[-3] 0.486[-3] 0.557[-3] 0.572[-3]  0.562[-3]
04 0.661[-3] 0.101[-2] 0.862[-3] 0.996[-3] 0.102[-2]  0.100[-2]
0.5 0.103(-2]  0.159[-2]  0.136[-2] 0.157[-2] 0.161[-2]  0.160[-2]
0.6 0.157[-2]  0.250[-2] 0.245[-2] 0229[-2] 0.310[-2] 0.309[-2]
0.7 0.201[-2] 0310[-2] 0266[-2] 0.310[-2] 0.316[-2] 0.314[-2]
08 0263[-2] 0.405[-2] 0.348[-2] 0408[-2] 0414[-2] 0.412[-2]
0.83 0288[-2] 0.447[-2] 0.386[-2] 0447[-2] 0460[-2] 0.460[-2]
0.85 0.295[-2] 0.451[-2] 0.389[-2] 0453[-2] 0462[-2] 0.460[-2]
0.86 0.304[-2]  0.466[-2] 0.401[-2] 0470[-2] 0.477[-2] 0.475[-2]

Table 3.13: Triplet I-wave phase shifts (in units of radian) of electron collision with
hydrogen atom. The number in [ ] indicates powers of ten.

k(a;") "HN3S  PHN4S  ‘HNG6S  °HNE3S °HNE4S 'HN E6S

0.1 0.401[-4]  0.609[-4]  0.519[-4]  0.559[-4]  0.609[-4]  0.574[-4]
0.15 0.924[-4] 0.141[-3] 0.120[-3] 0.135[-3] 0.141[-3]  0.135[-3]
0.2 0.166[-3]  0.252[-3] 0.215[-3] 0.245[-3] 0.253[-3]  0.246[-3]
0.3 0.374[-3]  0.570[-3] 0.486[-3] 0.557[-3] 0.572[-3] 0.562[-3]
0.4 0.662[-3]  0.101[-2]  0.862[-3] 0.996[-3] 0.102[-2]  0.100[-2]
0.5 0.104[-2] 0.159[-2] 0.136[-2] 0.157[-2] 0.161[-2] 0.159[-2]
0.6 0.155[-2] 0.245[-2] 0.216[-2] 0.228[-2] 0.271[-2] 0.261[-2]
0.7 0.201[-2] 0.311[-2] 0.265[-2] 0.310[-2] 0.316[-2] 0.314[-2]
0.8 0.264[-2] 0.405[-2] 0.347[-2] 0.408[-2] 0.414[-2] 0.412[-2]
0.83 0.289(-2] 0.446[-2] 0.383[-2] 0.447[-2] 0.459[-2] 0.457[-2]
0.85 0.296(-2] 0.451[-2] 0.389[-2] 0.452[-2] 0.462[-2] 0.460[-2]
0.86 0.305[-2]  0.466[-2] 0.401[-2] 0.469[-2] 0.477[-2] 0.475[-2]
a, b,c

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively

el present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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Table 3.14: Singlet J-wave phase shifts (in units of radian) of electron collision with
hydrogen. The number in [ ] indicates powers of ten.

klag") *HN 3S HN 4S °HN 6S ‘HNE3S °HNE4S 'HN E6S

0.1 0.253[-4] 0.384[-4] 0.328[-4] 0.301[-4] 0.389[-4] 0.383[-4]
0.15 0.587[-4] 0.893[-4] 0.761[-4] 0.836[-4] 0911[-4] 0.862[-4]
0.2 0.106[-3]  0.161[-3] 0.137[-3] 0.153[-3] 0.164[-3]  0.158[-3]
03 0.240[-3] 0.365[-3] 0312[-3] 0.355[-3] 0.371[-3] 0.363[-3]
0.4 0427[-3]  0.651[-3] 0.556[-3] 0.634[-3] 0.662[-3] 0.649[-3]
0.5 0.668(-3]  0.102[-2] 0.872[-3] 0.980[-3] 0.103[-2] 0.102[-2]
0.6 0.967[-3] 0.149[-2] 0.127[-2] 0.144[-2] 0.149[-2]  0.147[-2]
0.7 0.131[-2] 0200(-2] 0.172[-2] 0.197[-2] 0.204[-2] 0.201[-2]
0.8 0.171[-2]  0.263[-2] 0225[-2] 0.250[-2] 0.269[-2] 0.265[-2]
0.83 0.188[-2] 0.290[-2] 0.249[-2] 0.283[-2] 0.291[-2] 0.287[-2]
0.85 0.194[-2]  0.294[-2] 0255[-2] 0.300[-2] 0.305[-2] 0.307[-2]
0.86 0.200-2]  0.303[-2] 0.265[-2] 0.309[-2] 0.313[-2]  0.338[-2]

Table 3.15: Triplet J-wave phase shifts (in units of radian) of electron collision with
hydrogen atom. The number in [ ] indicates powers of ten.

k(a;") *HN 3S HN 4S °HN 6S YHNE3S °HNE4S 'HNEG6S

0

0.1 0.246[-4]  0.385[-4] 0.323[-4] 0.295[-4] 0.393[-4]  0.383[-4]
0.15 0.587[-4] 0.893[-4] 0.761[-4] 0.836[-4] 0.911[-4]  0.858[-4]
0.2 0.106[-3] 0.161[-3]  0.137[-3] 0.153[-3] 0.164[-3]  0.158[-3]
0.3 0.239[-3] 0.365[-3] 0.311[-3] 0.354[-3] 0.371[-3] 0.361[-3]
0.4 0.423[-3]  0.652[-3] 0.551[-3] 0.630[-3] 0.661[-3]  0.648[-3]
0.5 0.658[-3] 0.102[-2] 0.861[-3] 0.973[-3] 0.103[-2] 0.101[-2]
0.6 0.955[-3] 0.149[-2] 0.125[-2] 0.144[-2] 0.149[-2] 0.146[-2]
0.7 0.130[-2] 0.201[-2] 0.171[-2] 0.197[-2] 0.203[-2] 0.201[-2]
0.8 0.171[-2] 0.264[-2] 0.225[-2] 0.250[-2] 0.267[-2] 0.264[-2]
0.83 0.187[-2] 0.286[-2] 0.246[-2]  0.283[-2]  0.290[-2]  0.286[-2]
0.85 0.192[-2]  0.292[-2] 0.252(-2] 0.298[-2]  0.305[-2]  0.301[-2]
0.86 0.198[-2]  0.300[-2]  0.259[-2]  0.306[-2]  0.313[-2]  0.309[-2]
a, bc

present Harris-Nesbet calculation with 38, 4S and 6S schemes respectively

ki present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
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Table 3.16: Differential cross sections (in units of 7m§ sr™!) for the elastic scattering of

electrons from atomic hydrogen at 0.582 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and

random errors.

Angle *HN °HN °HN °HN ‘HN  'HN £HN "Williams
(deg) 3S 48 6S E3S E4S  E6S  13S

10 2036 1.812 1.864 1756 1754 1754 1759 —

15 2069 1.855 1.902 1798 1798 1796 1800  —

20 2102 1.898 1941 1.841 1.841 1839  1.843 1.79(24)
25 2136 1.941 1981 1.884 1.885 1.883 1888  —

30 2172 1988 2023 1931 1932 1930 1934 1.87(28)
35 2210 2036 2068 1980 1981 1979 1982  —

40 2,248 2,085 2114 2030 2030 2029  2.031 1.95(28)
45 2287 2134 2161 2080 2080 2079  2.081 -

50 2:308 v alIRAT LD 210x - 28R 1 25183 DS 2.8 1.98(28)
55 21370 2288 99601 2)18S) 2186, 2185 | 2:186: | —

60 2:410:" 5912901 213111, 2.239" '2.840' 12238 2239 2.20(17)
70 2499 2397 2415 2348 2349 2347 2349 2.29(26)
80 ISR Y 1215057 112,521, 2 45BN D508 L QIdSTIL [0 450 2.44(24)
90 2675 2611 2628 2567 2568 2566  2.568 2.55(19)
1008 2 760 271st Haaill: 0le78l  Walegait alann s 0ie74: B2 70(10)
100 Etsd0 s HolRiB e Salaallis s o gl ol ARE algga s g L 0l65(20)
120 2917 2904 2922 2867 2.867 2866 2868 2.85(16)
130 2985 2986 3.006 2950 2950 2949 2951 2.78(20)
140 3043 3055 3076 3.022 3.021 3.020 3.022 2.84(27)
150 3.090 3.112 3.134 3080 3.079 3.079  3.080  2.99(20)
a, b,c

d.e,f

£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
hexperimental values, J. F. Williams (1975) [12]
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Table 3.17: Differential cross sections (in units of ;m§ st for the elastic scattering of
electrons from atomic hydrogen at 1.207 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle "HN °HN °‘HN ‘HN °HN 'HN  ®HN  "Williams
(deg)  3S 48 65 E3S41 | (EASE CE6SY. 1138

10 L8d 1y 1. 300 RIS [FOR4E SR8 10841 (11,2851 =

18 153851 31 300 IBg e 12088, (10G8YE Y 20311, F1.994 - | =

20 L3710 115823 0itH1 884 . 3061 111.306.% (11,3061 41.307" . '1.38(24)
23 1890 1184074 F1SHIN 11.828" 1111.328] = ul.3281, 1324 ' =

30 Lan2 v nl.362s | A1.898T . 11:845) .+ {1:346"" #1345, . 1.346: . 1.38(23)
35 14385 MILSROE LA ESORE T 3720 1L 8T8, 4l 392 a1 378 =

40 1466 1419 1427 1403 1403 1403 1404 1.56(27)
45 1497 (1438 © 460" 1.438% | 1438 " 1:487 . 1:438F =

50 1.532 1492 1497 1477 1477 1477 1477 1.42(26)
58 15570 - Lo3de 1R53BI¢ 15200 N1S20) - 15205 ST (=

60 6815790 RIES 82 BIS6H: N 1866 19661 I 68N LT (23)
70 1.701  1.680 1.681 1.668 1.668 1.668 1.668 1.63(19)
80 11200 A A SR 7/, Ul U 3 el 75 e [ i i Bl R T 7
90 19665 L HILOTT < 90K 1,908 109081 1119085 1908 1:95(28)
100 2014 2.034 2,028 2.028 [2.029°" 2,029 2,029 2.02(24)
110 20231 2ulFR 2SN 21858 1120881 1423158 © 120551 - 201(22)
120 927 @R 2690 N 2.STl (22T 12420, 2.2 . 224(23)
130 253034 ZIRBT DGO 112380\ 121800 ¢ 52390 N 112,890:% | 2.80(27)
140 2406 2486 2476 2490 2489 2489 2490 2.58(24)
150 2.475, 1 567, 25578 1 2:573:. 25080 2513, 21572 | 2:54(23)

a, b,c

present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
def

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
f experimental values, J. F. Williams (1975) [12]
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Table 3.18: Differential cross sections (in units of 7za¢ sr™') for the elastic scattering of
electrons from atomic hydrogen at 1.597 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle "HN P°HN °HN °HN °HN 'HN :HN PWilliams
(deg)  3S 4s 6S E3S E4S  E6S 138

10 TS1897" 1 23T i WRIFFNY 120885 1,280, 1.230 « /11,229 =

15 LSRN w207 (1 2031 » 12145 1214 11214 =

20 Fgn 207 5 208 113205 111.205) | (41,8055 4 1.205 L7y
25 Y99 (L2051 UL20d " 202 1:202 ¢ 115202 1202 =

30 1207 12085 1206k ¢ 1205¢ | 11412057 111.2051 11:205 1.15(10)
35 12210 SR 2T 1208 1 1.2080 1214 T 1214 =

40 132890 12395 (1932 . N12278 1.228" 14228 . 11228 1.18(12)
45 12261 ; 11.252° 1252+ 11.246 "  1:248" " 1,249, 1,248 Ty

50 TR 8T 285 M2 S 0FR N agy - 1294 1274 1.14(16)
95 113084 S1.309. 1308 18080 1305 ¢ 1308 1.505 =

60 1352 1.345 1.343 1339 1341 1341 1341 1.26(7)
70 1.433 1431 1427 1428 1428 1428 1427 1.36(13)
80 1597 11,533 1:528° 1.584 ¢ 11532 115307 <1.531 1.45(14)
90 1.633 1649 1.641 1.653 1.650 1.650 1.649 1.61(12)
100 V746, o Lgda: i 1g6st . a8 HiRgH6 L L1776 v 1795 1.69(9)
110 18615 - 1902 & S1/880 W - 11 967 18907 1907 {1 '1.906 1.88(10)
120 11973 " '2.029 ' 2,018 . 2.039' " 2.085, 121036\ 12.036 2.01(12)
130 2077 2149 (23 (2058 = 268 - 2NS0E 9k 58 2.10(12)
140 2169:, 12256+ : 2287 1122631 2267 2268, . 2268 2.20(12)
150 2,246, 2,347 . 12327 12,361 122360 2.361.  2.360 2.32(15)

a, b,c

s present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
L €,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
" experimental values, J. F. Williams (1975) [12]
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Table 3.19: Differential cross sections (in units of 7z st™') for the elastic scattering of

electrons from atomic hydrogen at 2.171 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle *HN °HN °HN ‘AN °HN 'HN SHN "Williams
(deg) 3S 48 6S E3S E4S  E6S 138

10 13138: 12788 = 1.2895 151204 ¢ 132979 1.296/ % ‘1,292 =
1) PISE - 1.227 0 1GI89 C1o435 1,248 1111243 " (11243 —

20 13098 ARRSNEETIST 11201 4152024 111520211 15201 1.17(10)
25 11084 i1 1564 A8l 168 1:169" ' 1.169! " 1168 =
30 LTS L1082y | T 15142, 1142001142 1 1 112142 1.13(10)
35 1:070 0 SRS VTR0, 1124 o Tal2dn 10124 451,124 =
40 10778 TSR T 0 Al 01 SR i s SR T e R 9 L e 1.12(10)
45 1.0767 - 15104 . <1092/ 1110 (110N 1.0000 0 1,190 ==
50 1087 AA109° 110991 Tl B e - L T4 11Te 1.10(10)
S5 1108 A LARI S PR AS T s uRS 1126 1,125 =
60 1.124 1.140 1.131 1.144 1.144 1.144 1.143 1.13(10)
70 1:1834) 1,197 HIN189/ " 1.2007% ‘1:200¢ . 1,201 * 1.200 1.17(12)

80 1326211 162771 H1i268 " 1/1.281 © 1281F: 1282 .. [1:28] 1.22(8)

90 13570 1378 1367 1 1.3831 153831 5153831 11.382 L3 LED)
100 1.465 1493 1479 1500 1.500 1.500 1.500 1.44(13)
110 15095 . 1:618: 601 | 10627« | 13627 1,627 1.627 1.58(13)
120 1693 k745 | 172S 15787 . 17961 STy ST 1.74(12)
130 1.802 1.869 1.846 1.883 1.883 1.883 1.881 1.87(12)
140 1:899 B98I - 13950, . 1,997 \ <1987 . 15997 . 1.997 1.98(12)
150 1:981, 2077 (2.051" 12.0951..2(094 . 2:095: ' 2.095 2.04(18)

a, b,c

Y present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
, e,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
i experimental values, J. F. Williams (1975) [12]
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Table 3.20: Differential cross sections (in units of 7] st™!) for the elastic scattering of

electrons from atomic hydrogen at 3.009 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and

random errors.

Angle "HN °HN °HN  °HN °HN 'HN SHN "Williams
(deg) 3S 4s 65 E3S E4S E6S 138

10 T 17 o F R S T o i e T T e e

15 I LA Ve st e SR 7 R U R o T

20 (8o long i1 000M oSt 13051 1306 | 113957 1 L15(12)
25 TE08SY ThoRdts 0N 1hobgl 1250 WSl i1 a50H i =

30 1040 TGN I IS R AR T R 7R 1 R A RGN 3 (3
35 15018, 15110 V1073 ML & A8 1132 sl L =

40 0.993 1068 1.037 1087 1.087 1.087 1086  1.04(11)
45 01578, 110358 10008 WII0S 1 1051 18110521 TSI =

50 0.960 1.011 0980 1025 1.025 1.025 1025  1.00(12)
55 0.954 0996 0977 1008  1.008  1.008 1008 —

60 0.954 0989 0973 1.000  1.000  1.000 0999  1.01(7)
70 0.975 1.000 0988 1.009  1.009 1009  1.009  1.04(10)
80 1.021 1.042 1031 1050 1050 1.050  1.049  1.08(11)
90 L(IEh e 50 e S e e S R LT o )
100+ Aot S0 RINSO R o 0/ e 208N A 12108 a0k T 0H]0)
1110} % 10700 “1:308 = g8 L3RI L1ialg i i ST - 418l 1i41i10)
120 1383 1422 1403 1434 1434 1434 1434  147(14)
308N EeR, 1Esavi S TisioH N s ST T S5 TR 5 Sl 105501 TSR (S)
140 1580 1.644 1620 1.660 1.65  1.659 1659  1.72(9)
[50R e GO e T T R S s Ao A i S s 75BN i)
a, b,c

d,e, f

£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
n experimental values, J. F. Williams (1975) [12]
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Table 3.21: Differential cross sections (in units of lraé st'!) for the elastic scattering of

electrons from atomic hydrogen at 3.423 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle "HN °HN °HN °HN °HN HN SHN "Williams
(deg)  3S 4s 65 E3S E4S E6S 135

10 1.290 1.585 1467 1.628 1.634 1.628 1.616 1.66(10)
15 1.224 1465 1369 1.506 1.507 1.505 1.502 1.50(10)
20 1.166 1364 1.285 1.401 1.402 1.401 1.400 1.33(10)
25 Lla . 1277 1251 1311 13011 1.310 1.308 1.29(9)
30 1.065 1.198 1.144 1.228 1.228 1.228 13227 1.19(8)
35 1.022 1'1°130 ' 1.086 1:157 1.156 ST 1,156 =

40 0986 1.074 1.037 1.097 1.096 1.097 1.097 1.08(7)
45 0956 1.028 0.997 1.048 1.047 1.048 1.048 =5

50 0932 0.991 0965 1.008 1.008 1.009 1.008 1.03(6)
55 0915 0.964 0942 0.979 0.979 0.979 0.979 =

60 0905 0.946 0.927 0.959 0.959 0.959 0.959 0.94(6)
70 0908 0.936 0922 0.946 0.946 0.947 0.946 0.91(7)
80 0.938 0.959 0.948 0.968 0.968 0.969 0.968 0.93(7)
920 0993 1011 1.002 1.020 1.020 1.021 1.020 1.01(8)
100 1:069 1.088  1.077" - 1.097 1.097 1.098 1.097 1.10(8)
110 1.160 1.184 1.170 1.194 1.194 1.194 1,183 1.19(7)
120 1257 1239 1.293" /1.301 1.301 1.300 1.300 1.33(9)
130 13354 1380 1:378 ° 1.411 1.411 1.409 1.409 1.42(8)
140 1444 1499 1477 1.513 1513 1:512 13512 1.52(8)
150 1520 1587  '1:.563" '1.602 1.602 1.603 1.601 1.58(8)

b€ present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively

4 f present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
" experimental values, J. F. Williams (1975) [12]
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Table 3.22: Differential cross sections (in units of lrag st’!) for the elastic scattering of

electrons from atomic hydrogen at 4.889 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and

random errors.

Angle *HN °HN °HN °HN *HN HN EHN "Williams
(deg) 3S 4s 6S E3S E4S E6S 138

10 1,509 1.903 1737 1966 1972 1965  1.949  2.04(10)
15 o D RINESE R G RO TSI HiggR i 177511 1185(0)
20 11311 15567, '15459. 1:620'  1.620 " 11619 ' 1.618 . 1.62(8)
25 1986 14358834588 1048 S 4R100% 11480Y: 1677 155(7)
30 B S TRl B0 Aaa0 1 I 3508 W TSl 1351 1337 ()
35 1.068 /111:204 | '1:143" 11238 1.238: « 1:239 . 1.239: ' 1.20(7)
40 OOTES T 1060 H 408 1 14088 (1141 il )
45 0:941° 1030/ 0:988". 110550 1105511 1,056, | 1055 —

50 0.887 0960 0925 0981 0981 0982 0981  1.03(6)
55 0.841 0901 0872 0919 0919 0920 0919 —

60 0.804 0.853 0829 0869 0868 0869 0868  0.88(4)
70 0.753 078 0770 0798 0798 0798 0798  0.78(7)
80 0.735 0756 0746 0766 0766 0766  0.766  0.75(7)
90 0.746 0761 0753 0768 0769 0769 0769  0.78(7)
100 0782 0793 0787 0.801 0801  0.801  0.801  0.83(8)
110 0838 0848 0841 0857 0856 0856 0.856  0.90(8)
120 0905 0918 0910 0927 0926 0926 0926  0.94(7)
130 0978 0.997 098 1.006 1.005 1005  1.004  1.00(7)
140'"( 1.047: 1073 | 1.061.:1.083" . 1.082' 1.083 = 1.081. . 1.0%(6)
o) B s o) S L o et T e 1 B I o)
a, bc

diet

£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
n experimental values, J. F. Williams (1975) [12]
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Table 3.23: Differential cross sections (in units of Im; st for the elastic scattering of
electrons from atomic hydrogen at 6.691 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle *HN P°HN °HN ‘HN °HN 'HN ®HN  "Williams
(deg)  3S 4s 65 E3S  E4S  E6S 138

10 1.668 2.113 1921 2.189 2.195 2189 2174 223(10)
15 1,528 1.875 1725 1946 1946 1944 1.946  2.00(12)
20 1405 1.680 1.560 1741 1741 1.740 1742 1.66(13)
25 1294 1513 1416 1565 1565 1.564 1.560  1.56(12)
30 1.187 1359 1281 1402 1403 1403 1401 1.37(10)
35 11088E “19298E S04 11,2581 1259 1.259 1259 1.21(10)
40 0.998 1.104 1054 1.135 1.135 1.135 1135 1.15(8)
45 0917 1002 0960 1.027 1.027 1.028 1.026  1.05(6)
50 0.843 0910 0876 0932 0931 0932 0931 0.97(6)
55 0778 0.831 0.804 0850 0849 0850 0849 0.84(4)
60 0722 0765 0742 0780 0780 0780 0780 0.82(5)
70 0.635 0.662 0647 0674 0673 0674 0673 0.67(4)
80 0.580 0598 0589 0.607 0607 0607  0.606 0.63(5)
90 0557 0567 0562 0574 0574 0574 0574  0.56(4)

100 0.559 0564 0.561 0.571 0571 0.571 0.570  0.57(5)
110 0583 - 10I585% < 10:583,  0.591"  0i59]1" 0,591 0.590 0.61(4)
120 0.621 0.622 0.620 0.628 0.628 0.628 0.628  0.64(6)
130 0.667 0.670 0.668 0.676 0.676 0.675 0.675  0.66(4)
140 Q715 oL OFET. | 0725 0725 0.926 0.726  0.70(5)
150 0,759, 70769 . . 0:764 0778 4 10:773) = 0774 0.773 __ 0.73(5)

a, b

LA present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
e,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
B experimental values, J. F. Williams (1975) [12]
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Table 3.24: Differential cross sections (in units of ng sr’') for the elastic scattering of
electrons from atomic hydrogen at 8.704 eV. The numbers in parentheses are the
maximum possible errors in the last significant digits and include both systematic and
random errors.

Angle *HN P°HN °HN ‘HUN °HN 'HN SHN  "Williams
(deg)  3S 4s 65 E3S  E4S  E6S 138

10 1E7627 2950000 2i314) TRSI7E 2312 12,2837 12:24(14)
15 1.589 1938 1784 2019 2015 2014 2009 2.12(14)
20 140 EIFO7 STISRR 7748 177 1T 1771 1.83(12)
25 1.308 1512 1419 1567 1.566 1565 1.560  1.60(12)
30 1181 1335 1264 1379 1379 1379 1378 1.33(10)
35 {065 TSIR0MECIAOS S o1 5 S5 E1301 5 1217 1.24(10)
40 0962 1.049 1.006 1.076 1077 1077 1.078  1.11(10)
45 0.869 0935 0901 0956 0958 0958 0958 1.00(9)
50 0.784 0.834 0.807 0852 0853 0853 0852 0.92(6)
55 0708 0747 0725 0762 0762 0763 0763 0.82(5)
60 0.643 0.674 0.656 0.686 0.686 0.686  0.686 0.73(4)
70 0538 0.557 0546 0.566 0566 0.566  0.566 0.57(8)
80 0.465 0477 0470 0484 0484 0484 0484 0.47(8)
90 0.422 0428 0425 0434 0434 0434 0434 045@8)

100 0.404 0406 0405 0411 0411 0411 0411  0.41(9)
110 0.407 0.405 0406 0411 0411 0411 0.410  0.42(6)
120 0425 0422 0423 0427 0426 0426 0.426  0.45(7)
130 0454 0450 0452 0454 0453 0453 0453  0.47(7)
140 0.487 0483 0485 0486 0485 0485 0.486  0.48(3)
150 0.520 0.518 0518 0.519 0518 0.519 0.518  0.49(8)

a, bc

T present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
, €,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
& Harris-Nesbet calculation, T.T.Gien (2000) [29]
B experimental values, J. F. Williams (1975) [12]
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Table 3.25: Total elastic cross sections for the scattering of electrons from atomic
hydrogen in units of za?

Energy °‘HN °HN °HN ‘HN “HN "HN 8HN

(eV) 38 4s 6S E3S E4S E6S 138

0.582  33.380 32490 32.762 31931 31.937 31922 31.945
1207  24.157 24309 24284 24225 24226 24224 24226
1.597  21.038 21.425 21.306 21451 21452 21454  21.450
2171 17.992 18.549 18.343 18.661  18.661  18.664  18.657
3.009 15.152 15.805 15.532 15972 15971 15975  15.966
3.423 14.120 14788 14.500 14.968 14968  14.971  14.962
4.889 11448 12089 11792 12279 12279 12281 12271
6.619 9256 9.805  9.534 9983 9983 9985  9.977
8.704 OIS BI05Ti. JieAT T R4 §8 12150 82161 18,207

a, b,c

T present Harris-Nesbet calculation with 3S, 4S and 6S schemes respectively
e,

present Harris-Nesbet calculation with E3S, E4S and E6S schemes respectively
£ Harris-Nesbet calculation, T.T.Gien (2000) [29]
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Chapter4

Conclusions

In this thesis, we have carried out a very accurate calculation of the phase shifts for
electron collisions with hydrogen atoms at low energy below the first hydrogenic
excitation threshold, employing the Harris-Nesbet variational method. The phase shifts
that we obtained for the partial waves L=0, 1, 2, 3, 4, 5, 6 and 7 with the use of the
extended four-state (E4S) scheme appear to have reached their convergent values in both
singlet and triplet scattering and should, thereby, be very accurate. The accuracy of these
phase shifts has been double-checked by carrying out calculations with the use of
different extended coupling schemes (the E6S and E3S ones), and the three sets of phase
shifts calculated were found to agree excellently with each other. They also agreed
excellently with the ones obtained by Gien (1998) [26], who employed the same Harris-
Nesbet method for his calculation but with the 13-state scheme. The phase shifts of the
present calculations for lower partial waves (S, P and D) also agree excellently with the
ones that had been obtained by other research groups using different numerical methods.
Accurate 'phase shifts at the nine energies, where experimental data of differential cross
sections had been available in the literature, have been obtained for the partial waves L
equal to up to 18, and then used to deduce the elastic differential and total cross sections

for electron collisions with hydrogen atoms at these energies. The elastic differential and
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total cross sections that we obtained with the use of the E4S, E6S and E3S scheme have
been found to agree excellently with each other as well as with those obtained earlier by
Gien (2000) [29] with a 13-state scheme. An excellent agreement between our elastic
differential cross sections and experimental data measured by Williams (1975) -[12] has
also been found.

We have also obtained the sets of phase shifts, elastic differential and total cross
sections with the use of the coupling schemes 4S, 6S and 3S. A comparison of these
results with those calculated with the use of the E4S, E6S and E3S schemes show a clear
improvement of the latter as far as their accuracy is concerned. This reconfirms a
significant effect of the correlation terms on the phase shifts and cross sections
calculated, when these correlation terms are added to the coupling schemes.

In view of the reliability and accuracy of the Harris-Nesbet method that one has
experienced with in the various calculations of electron and positron collisions with
atomic targets (Gien and Gien et al. [13-33]), we believe that the phase shifts of our
present Harris-Nesbet calculations are very accurate and may, thereby, serve to double-
check the accuracy of the results obtained by other research groups who used different
numerical methods for their calculations. With the success gained in this work, we hope
to be able to determine again, with our present Harris-Nesbet calculations, the precise
positions and widths of the sequences of S, P and D Feshbach resonances below the n=2
H excitation threshold in electron-hydrogen-atom scattering for comparison with those

obtained by Gien (1998) [26] with the 13-state scheme.
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