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Abstract

Colorectal cancer is a significant health concern in the province of Newfoundland and

Labrador (NL) which has the highest age-standardized incidence and mortality rates for

colorectal cancer in Canada. Several studies have attempted to identify inherited genetic

variants which can serve as independent prognostic markers in colorectal cancer patients.

We have conducted such a study in two colorectal cancer patient cohorts (discovery and

validation sets) from Newfoundland . We investigated 27 genetic polymorphism s in the

discovery cohort and attempted to replicate the positive correlations in the validation

cohort . Our results showed that the MTHFR _Glu429Ala polymorphism was associated

with worse overall survival in two cohorts albeit with an apparently different pattern of

inheritance. An association of the heterozygote genotype of this polymorphism with

shorter overall survival was also detected in male patients from both cohorts. Another

polymorphism , ERCC5_His46His, was also found to be associated with disease-free

survival in these cohorts. Further studies on these polymorphisms may facilitate

understanding of the mechanisms behind prognostic differences among colorectal cancer

patients and aid in better prediction of clinical outcomes.
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Chapter 1. Colorectal cancer

1.1 Cancer

Cancer is a disease characterized by uncontrollable division of certain abnormal cells

which can develop into a tumor that can invade tissues or spread to distant organs (1).

Over one hundred types of cancers have been identified based on the cell types in which

they develop (1). Instability of the genome making the cell's deoxyribonucleic acid

(DNA) hyper-mutable as well as increased inflammation that can favor carcinogenesis

are recognized as the two primary reasons which can enable normal cells to acquire

cancerous properties (2). Through the course of development of cancer cells, distinct

proliferative abilities are acquired in a successive manner. Hanahan and Weinberg

described these unique attributes of cancer cells as 'hallmarks of cancer' (2). Cancer cells

have prolonged cellular growth signaling for proliferation which can be due to self­

production of growth factors, induction of growth factor production in the surrounding

normal cells, high sensitivity to growth factors due to changes in receptor structure or

continually triggered pathways downstream of receptors (2). Normal cell proliferation is

also controlled by the action of tumor suppressor genes which inhibit proliferation and

growth in unfavorable conditions and can also induce cell senescence and death. Cancer

cells escape the suppressive action of these genes to continue proliferating. A

dysfunctional contact inhibition mechanism, which prevents excessive proliferation of

cells under normal conditions, also contributes to continued proliferation in cancer cells

(2). Normal cells have a way of regulating cell proliferat ion through induction of
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apoptosis which causes death of highly stressed and abnormal cells such as cancer cells.

But cancer cells evade apoptosis via multiple mechanisms like loss of function or reduced

activity of apoptotic factors and up-regulation of counter-apoptotic factors (2). In addition

to such prolific properties , cancer cells have an added ability to be immortal, likely due to

the maintenance of telomere lengths at the end of chromatids after each replication (2).

This ability to replicate endlessly enables formation of a fully grown macroscopic tumor

from microscopic cancerous cells. And like all tissues in the body, the growing tumor

also requires a constant supply of blood and nutrients. This is facilitated by formation of

new tumor vasculature by up-regulating pro-angiogenic factors early in neoplastic

development (2). With advancing growth, the tumor cells begin to penetrate the

surrounding normal tissues and vasculature , then spread to distant organs via blood

and/or lymph vessels and develop into micrometastases and eventually grow into

metastatic tumors. Cancer cells may also have the ability to modify cell metabolic

processes in a way to favor tumorigenesis as well as evade destruction by the immune

system (2). Evidently, cancer is a highly complex disease involving aberrations in

multiple genes operating in multiple pathways, the accumulation of which can lead to

initiation of cancer which can then grow into lethal forms by modifying cellular functions

to suit its survival.

1.2 Structure and function s of the colon and rectum

The colon, also known as the large intestine or large bowel, is approximately 1.5 meters

long (3). The colon begins as the caecum and progresses into the ascending colon,
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transverse colon, descending colon and sigmoid colon. The colon terminates in the

rectum which opens exteriorly into the anal canal (Figure 1). A sharp curve at the level

of the liver is known as the hepatic flexure and one at the level of spleen is known as the

splenic flexure (3). Histologically, the colon and rectum are lined by 4 basic membranes.

Beginning outwards, they are (3):

1) Visceral peritoneum: The outermost serous membrane.

2) Muscle layers: They are arranged as longitudinal and circular fibres.

3) Submucosa: This layer contains networks of nerves, blood vessels, lymph vessels

and lymphoid tissue . For defence against microbial infections, the submucosa in

colon has greater amount of lymphoid tissue compared to other parts of the

alimentary canal.

4) Mucosa: This is composed of three layers of tissue. Starting inwards, they are:

Mucous membrane-innermo st layer of columnar epithelial cells

responsible for absorption, secretion and protection .

ii. Lamina propria-loose connective tissue layer responsible for support and

protection.

iii. Muscularis mucosa-provides involutions to the mucous layer.

The primary function of colon is to absorb water from the matter that arrives from the

small intestines (3). This results in the formation of the fecal matter. The fecal matter

then moves along the colon and to the rectum where it propelled by muscle movements to

the anal canal for expulsion. The colon also expels swallowed air and gases produced by
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Figure 1. Structure of colon and rectum

S ), )t ll lc OtXl\I 't

AdaptedtTom ' PrinciplesofAnatomyand Physiology'(4)
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bacterial action on unabsorbed food matter. The large amount of lymphoid tissue in the

colonic submucosa protects the colon from microbial infections as the fecal matter is rich

in microbes (3).

1.3 Colorectal cancer: Molecular mechanisms and pathology

Cancer of the colonic tissue is called 'colon cancer ' while that of the rectal tissue is called

'rec tal cancer ' and they are referred together as colorectal cancer (5). Development and

growth of colorectal cancer involve multiple and sequential changes in the genome such

as destabilizing the genome by mutations that inactivate chromosome stabilizing genes,

defects in DNA repair machinery, epigenetic silencing by DNA methylation, deactivation

of tumor suppressor genes and activation of proto-oncogenes to oncogenes (6,7). This

series of changes eventually manifests pathologicall y as colorectal cancer. According to

the inheritance patterns, there are two forms of colorectal cancer:

Familial and inherited forms of colorectal cancers with familial clustering. In the

case of inherited forms, there is a strong hereditary predisposition .

ii. Sporadic forms without a strong hereditary predisposition.

The familial and inherited forms comprise approximately 15-25% of all colorectal cancer

syndromes while the sporadic forms comprise the majority with 70-85% of the cases (8­

12). The inherited and sporadic forms may involve different genetic and molecular

mechanisms. Inherited forms are due to high-penetrant mutations in critical genes (8).

Examples of inherited forms include:
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I) Lynch syndrome (previously known as Hereditary Non-polyposis Colorectal

Cancer (HNPCC)) is characterized by germline mutations in the mismatch repair

genes (MMR) such as MLH1. MSH2. MSH6 and PMS2 (8), leading to the

microsatellite instability (MSI) phenotype in tumors.

2) Familial adenomatous polyposis (FAP) is an autosomal dominant form of

colorectal cancer caused by the germline mutations in the adenomatous polyposis

coli (APe) gene (13).

3) mutY homolog (E. coli) (MUTYH)-associatedpolyposis (MAP) is an autosomal

recessive disease where mutations in MUTYH gene predispose the individual to

colorectal cancer (1 I).

4) Examples of other rare forms of colorectal cancer syndromes are Juvenile

Polyposis, Peutz-Jeghers Syndrome, Cowden disease and Bannayan-Ruvalcaba­

Riley Syndrome (8).

The incompletely understood Familial colorectal cancer type X (FCCTX) is a form with a

strong familial clustering of colorectal cancer but no well-defined hereditary

predisposition or molecular mechanism (11,14,15). This form is distinct from the Lynch

syndrome in terms of age of onset, tumor histology, tumor grade and absence of deficient

MMR (16). Recent developments suggest that molecular mechanisms involved in

chromosomal instability may be involved in development of FCCTX (16).

In sporadic colorectal cancer cases, a strong genetic predisposition may not exist. Rather,

interaction of several low susceptibili ty alleles and environmental factors are proposed to

results in carcinogenesis . Genome-wide association studies (GWAS) have identified at
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least 14 such low-susceptibil ity genetic variants that increase the risk of developing

colorectal cancer ( 17).

Molecular mechani sms involved in sporadic forms of colorectal cancer are:

I) Chromosomal instabili ty (CIN) : Characterized by numerical or structural

abnormalities in the chromosomes causing damage to tumor suppressor genes or

oncogenes (18).

2) Defecti ve MMR system leading to MSI: In sporadic cases, MSI is due to

hypermeth ylation of the promoter of the mismatch repair gene MLH1 leadin g to

its silencing (19).

3) CpO island methylator phenotype (CIMP): In CIMP, the CpO islands are

methylated causing inactivation of certain genes (20).

Histological types of colorectal cancer: Pathologically, at least eight different histological

types of epithelial tumors have been defined by the World Health Organization (WHO)

(21). Adenoma is the early benign tumor. Adenocarcinoma is the malignant type, shows

moderate differentiation and can be either mucinous or non-mucin ous (22). It is the most

commonly observed histological type of coloreetaI cancer (-90-95%) (2 1,23). Mucinous

adenocarcinoma, in which the tumor cells secrete mucin (> 50% of tumor mass is due to

mucin) is found in up to 17% of tumors while the majorit y of adenocarcinom as are non­

mucinous (21-23). Other rarer patho logical forms are signet-cell carcinoma , squamous

cell carcinoma, adenosquam ous carcinoma, small cell carcinoma and medullary

carcinoma (2 1,24).
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1.4 Colorecta l cancer incidenc e and mortali ty statistics

1.4.1 Worldwide incidence and mortality: According to WHO's report "The global

burden of disease. 2004 Update" (25), colorectal cancer was responsible for

approximately 639,000 deaths worldwide with 336,000 male deaths and 303,000 female

deaths. On the list of lethal cancers in terms of number of cancer deaths, colorecta l cancer

was the 4th major global killer in the year 2004 (25). Of all the cancers worldwide ,

colorectal cancer ranks the 4th in men and the 3rd in women in terms of incidence (26).

The general trend observed worldwide is high incidence of this disease predominantly in

the western world such as North America, Australia and European countries and low

incidence in South American, Asian and African populations (26).

1.4.2 Colorectal cancer in Canada: Among all cancers (excluding non-melanoma skin

cancers) , the incidence of colorectal cancer across Canada was expected to be the 4th

highest with 22,200 estimated new cases in 2011 (27). In 2011, the mortality due to

colorectal cancer was expected to be the 2nd highest among all cancers with 8,900

patients estimated to die because of it (27). Relative survival rate of colorectal cancer

patients (survival of colorectal cancer patients compared to that of the general population

from the same region) over a 5-year period is 63-64% (27). It is reported that the Atlantic

Provinces in Canada have higher colorectal cancer incidence and mortality rates when

compared to western provinces like Alberta (AB) and British Columbia (BC) (27).

Multiple factors such as lifestyle factors (exercise, diet), family history, intensity of

screening programs, differential participation as well as quality and availabilit y of

healthcare and diagnostic services may account for this inter-provincial variation in
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colorectal cancer incidence and mortality rates (27).

Figures 2 and 3 show the inter-provincial variation and the east-west gradient in

incidence and mortality rates of colorectal cancer across Canada (27). NL shows the

highest age-standardized incidence and mortality rates for both men and women. Other

Atlantic provinces such as Prince Edward Island (PE), Nova Scotia (NS) and New

Brunswick (NB) as well as Quebec (QC) have higher incidence and mortality rates

compared to the western provinces of AB and BC.

1.4.3 Colorectal cancer in Newfoundland and Labrador (NL): When Canadian

provinces are compared, the age-standard ized incidence rate is the highest for both males

and females from NL (27). Eighty nine cases per 100,000 new male colorectal cancer

patients were expected in NL in 2011 while the national expected rate was 611100,000.

For females, fifty two new cases per 100,000 were expected in NL while the national

average of incidence for females was 40/100,000 (Figure 2). Also, according to the

Canadian Cancer Statistics 20 II , men and women patients from NL have the highest age­

standardized colorectal cancer mortality rates across Canada (27). Forty-five deaths per

100,000 men were expected in NL in 2011 while the national average was 25

deaths/100,000 males. For females, twenty-three deaths per 100,000 are expected in NL

while the national expected number of deaths is 15 deaths/100,000 (Figure 3). These

statistics show the relatively greater burden of colorectal cancer in NL when compared to

other Canadian provinces.
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Figure 2. Estimated age-standardized incidence rat es for colorectal cancer in

Canadian provinces, 2011
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Figure 3. Estimated age-standardized mortali ty rate s for colorectal cancer in

Canadian provinces, 2011
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1.5 Prognosis

Prognosis is the prediction of the course of a disease leading to specific health conditions,

known as clinical outcomes, after diagnosis of the disease (28). The US National Library

of Medicine defines clinical outcome as "a measure ofhow a patient (or study subje ct)

fee ls, f unctions, or survives; or a clinical measurement of the incidence or severity ofa

disease (e.g., diagnosis ofdisease) " (29). Clinical outcomes in cancer include recurrence

of cancer, metastasis or death. Two of the commonly used measures of clinical outcome,

which are also the end-points analyzed in this thesis project are overall survival (OS) and

disease free survival (DFS). While their definitions may change from one study to other,

we refer to OS and DFS in this study as defined below.

os: It is the survival period of the patient from the time of diagnosis until his/her

death from any cause. OS rate, usually expressed as a 5-year survival rate, is the

proportion of patients alive five years after diagnosis of the disease.

ii. DFS: DFS is the survival of patients after diagnosis without relapse (i.e.

recurrence or metastasis) or death from any cause.

1.5.1 Fac tors affecting pr ognosis in colorecta l cancer patien ts: Prognosis and clinical

outcomes in cancer patients are highly variable and dependent on multiple factors.

Currently, the tumor-node-metastasis (TNM) staging is the standard tool for

prognostication in colorectal cancer patients (30). The TNM stage is a measure of the

extent of tissue invasion by the tumor (T) and metastasis to lymph nodes (N) or distant
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organs (M). The TNM staging published by American Joint Committee on Cancer

(AJCC) is the widely accepted standard for staging of colorectal cancer (30). The latest

classification (published 2010) is depicted in Table 1.

In addition , there are a large number of acknowledged prognostic factors but their use in

clinical practice is limited. In 1999, the College of American Pathologists (CAP)

convened a consensus statement (31) categorizing the prognostic factors in colorectal

cancer into five categories:

Category I: It includes factors which are conclusively established to have prognostic

value based on the results of multiple trials considered statistically robust. These factors

are routinely used in the clinic for patient management. This category includes depth of

tumor invasion (T of TNM staging) , metastasis to regional lymph nodes (N of TNM

staging), lymphatic or vascular invasion , presence of residual tumor after surgical

removal and levels of pre-operative carcinoembryonic antigen (CEA) in the serum.

CategorY IIA: This category includes factors which are considered important for

inclusion in pathology reports and have repeatedly shown prognostic relevance.

However, they await validation in large studies . This category includes tumor grade ,

circumferential resection margins (CRM) and tumor staging after neoadjuvant therapy .

Category lIB: This category includes factors which show prognostic relevance in

multiple studies but further studies are needed for inclusion in category I or 1IA. It

includes tumor histology , MSI status in tumor cells , loss of heterozygosity (LOH) at 18q,

allelic loss of Dee gene and the configuration of tumor border .
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Table 1. Stage grouping for colorectal cancer

Stage Designation TNM Characteristics

stage 0 Tis, NO, MO

T1, NO,MO or
stage I

T2, NO, MO

stagelIA T3,NO ,MO

stage lIB T4a, NO,MO

stagelIC T4b, NO, MO

T1-T2, N I/N lc , MOor
stage IlIA

TI ,N2a,MO

T3-T4a, NI/Nlc, MOor

stage IIIB T2-T3, N2a, MOor

T1-T2, N2b, MO

14a, N2a, MOor

stage IIIC T3-T4a, N2b, MOor

14 b, NI-N2, MO

stage IVA any T, any N, M Ia

stage IVB anyT,anyN,M l b

Tis=carcinoma in situ limited to lamina propria or basement membrane, Tl =submucosallayer invaded
by tumor cells, T2=tumor penetrated deeper into muscularis propria, T3=tumor penetrated into sub­
serosa or tissues surrounding colon/rectum, T4a=direct penetration through the peritoneum, T4b=direct
penetration into or attachment to other organs. NO=no metastasis of tumor cells into regional lymph
nodes, NI =I -3 lymph nodes affected, N la= 1 lymph node affected, Nlb=2-3 lymph nodes affected,
Nlc=no metastasis into regional lymph nodes but tumor deposit(s) present, N2a=4-6 lymph nodes
affected, N2b=7 or more lymph nodes affected , MO=distant metastasis not observed. Ml a=distant
metastasis to a single organ/site, Mlb=distant metastasis to multipleorgan slsites.

Adapted from AlCC Cancer Staging Handbook, 7th Edition (20 10) (30)
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Category III: This category includes factors which have not been well-studied for their

prognostic relevance. It includes DNA content , a large set of putative molecular markers

including genes and proteins which may have prognostic roles due to altered function or

abnormal expression (tumor suppressor genes affected due to LOH at I p/pS3, 8p, I p, Sq,

oncogenes (KRAS, MYC), apoptotic and cell suicide-related genes (BCL2, BAX), genes

involved in DNA synthesis, growth factor-related genes (TGF, EGFR), cyclin-dependent

kinase inhibitor genes (CDKls) , genes involved in angiogenesis (VEGF), glycoprotein

genes and adhesion molecules (E-cadherin, sialo-Tn antigen, CD44), matrix

metalloproteases (MMPs) and inhibitors of MMPs, genes that suppress metastasis

(NME1)) and other features such as perineural invasion, microvessel density, cell proteins

and carbohydrates, peritumoral fibrosis, neuroendocrine differentiation foci, nucleolar

organizing regions and proliferation indices.

Category IV: This category includes factors for which absence of prognostic relevance

has been well established. It includes tumor size and gross tumor configuration .

A decade later, the t h edition of AJCC cancer staging manual published in 2010 includes

updates and recommendations for improved prognostication based on scientific evidence

(30). TNM staging system still remains the most powerful prognostic tool. Stage­

independent factors that are used on a general basis include tumor histology, tumor grade,

presence/absence of residual tumor after surgical removal, serum CEA levels, serum

cytokine levels, extramural venous invasion and vascular invasion into submucosa.

However, they are not a part of an objective prognostic tool such as TNM staging. AJCC
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also recommends collection of eight parameters due to their prognostic significance (30).

These are pre-operative serum CEA level, number of tumor depo sits detached from

primary tumor , tumor regression grade following neoadjuvant therapy to assess response

to therap y (grades 0-3, grade 0 indic ates total respon se to therap y and grade 3 indic ates

worst respon se), CRM measured from the tumor bound ary to the closest margin of

surgical removal , MSI status in tumor cells , perineural invasion (i.e invasion around local

nerves by tumor cells) , mutation status in codons 12 or 13 of KRAS gene in tumor cells,

especially in advanced stage patients since mutation s in these codons are strongly

correlated with absence of response to monocl onal antibodie s directed against epidermal

growth factor receptor (EGFR) and 18q LOH status in tumor cells. Although these factor s

are not currently a part of a clinical progno stication system such as the TNM staging

system, further studies may lead to their incorporation in future editions (30). Hence, the

collecti on of data on these factors in patholo gy reports is strongly recommend ed by

AlCC . Apart from these molecul ar and pathological factors, demographic factors such as

gender, age and ethni city may also play a strong role in the variable prognosis in

colorect al cancer patient s (30) . For this thesis project, we used data on ten dem ographi c,

clinico -path ological and molecular variables for analysis.

1.5.2 Clinicopathologica l and molecular variables included in this thesis project

Ten demographic, clinico-pathological and molecu lar variables included for analysis in

this thesis project are briefly described below . The data on these variables were ava ilable

to us and many of them have been acknowledged by Al CC to have possible pro gnostic

role s in colorect al cancer (30). These variables were included in the study to test their
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association with patient survival in our cohorts and for adjustment in the multivariate

analyses to account for their effects in the model.

a) Stage : Stage is the only well-established and routinely used prognostic factor in

colorectal cancer patients. The generally observed trend is that patient prognosis

worsens with increasing disease stage (30).

b) Tumor grade: Based on the apparent differentiation of tumor cells, four tumor

grades have been defined: GI for a well differentiated tumor to G4 for a virtually

undifferentiated tumor (30). The AlCC (30) as well as CAP consensus statement (31)

recommend a two-tiered classification with low grade (GI and G2) and high grade

(G3 and G4) colorectal tumors. In this project, we have classified patients according

to this two-tiered system for analyses. Low grade tumors generally have a low cell

proliferation rate and metastatic potential while high grade tumors have a high cell

proliferation rate and metastatic potential (32) which has been demonstrated to have a

stage-independent adverse prognostic correlation in multiple studies (24). However,

since grading is a subjective criterion, designation of a tumor grade varies from one

observer to another (31). Due to lack of a widely accepted grading protocol, accurate

use of tumor grade in prognostication is difficult and hence limited (24,31).

c) Vascular/lymphatic inva sion : Presence of vascular or lymphatic invasion has been

documented to be associated with unfavorable prognosis (24,30,31) and is routinely

included in pathology reports. AlCC recommends inclusion of this information as a

part of V and L staging classification (30). However, its objective use as a prognostic

marker is limited by several factors. CAP recommends examination in at least 3
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tumor blocks (ideally 5 tumor blocks) to conclusively establish presence or absence

of invasion (31). This makes the process cumbersome , time-consuming and costly.

Moreover, there is no standard protocol for assessing invasion adding undesirable

inter-observer variability to the judgement , especially in cases of small and large

vessel invasions (24). Due to these reasons, vascular/lymphatic invasion data are not

included in an objective prognostication system. In this study, we have included

vascular/lymphatic invasion as an exploratory variable in our analyses.

d) Tumor histology: After non-mucinous adenocarcinoma , mucinous adenocarcinoma

is the next most common histological type of colorectal cancer (21-23). The

prognostic significance of mucinous tumor type is undecided due to several

conflicting reports (24,31).

e) MSI stat us: Mismatch repair proteins are responsible for correcting wrongly inserted

nucleotide bases after DNA replication . Defects in mismatch-repair proteins (MLHI ,

MSH2, MSH6, PMS2) due to germline mutations can lead to increase or decrease in

length of microsatellites which are repeating units of nucleotides , (commonly

dinucleotides of cytosine and adenine (CA)), present in thousands of locations in the

genome (9). This is termed "rnicrosatellite instability" (MSI) (9). In a large meta­

analysis conducted by Popat et al (33) including over 7,500 patients from 32 different

studies, it was shown that patients with MSI-high (MSI-H) status have a significantly

longer survival when compared with patients with microsatellite stable (MSS) or

MSI-Iow (MSI-L). The i h edition of AlCC cancer staging manual published in 2010

recommends the collection of MSI-status of patients for prognostic purposes (30).
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Tumor location: Literature reports have consistently suggested that patients with

rectal cancers have a worse survival compared to patients with colon cancer (34).

However, tumor location is not clinically used as a prognostic factor nor is it

considered in the guidelines and recommendation s by CAP and AlCC.

g) Familial ri sk status: Familial risk status was assigned to the patients in the

Newfoundland Colorectal Cancer Registry (NFCCR) previously as described by

Green et al (35). Literature reports on association of familial risk status with

prognosis are deficient. Therefore its role in prognosis of patients is not known.

h) BRAFl_Val600Glu mutation status: v-rafmurine sarcoma viral oncogene homolog

BI (BRAFl) is a proto-oncogene and is a part of a signal transduction pathway

(Ras/Raf/MEKIMA P pathway) (36). Activation of this pathway leads to cell

proliferation. The somatic Val600Glu mis-sense mutation in BRAFl makes it

oncogenic . As a result, the gene is continuously activated which causes cell

proliferation and inhibited apoptosis (36). The correlation of this mutation with

unfavorable prognosis has also emerged in the literature (37-39). For patients in

NFCCR, the data on this mutation in tumor samples was collected for a previous

study by Wish et al (40).

Age: It is acknowledged by AlC C that age may play a strong role in prognosis in

colorectal cancer patients (30) although it is not a part of a clinical prognostication

system yet. Since OS is our primary end-point for analysis, age may be a significant

factor since the chances of survival are expected to be reduced with increasing age.

j ) Sex: Gender is also acknowledged by AlCC to play an important role in variable
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prognoses in colorectal cancer patients (30) although further studies are required

before it can be objectively used for prognostication .

1.5.3 Surv ival end-points anal yzed in this th esis proj ect

Two end-points were analyzed in this thesis project. The primary end-point was as for

which as status and as time are required for analysis. as was our primary end-point

since the selected 27 genetic polymorphisms for analysis in this study were associated

with as in at least one study in the literature. The secondary end-point was DFS for

which DFS status and DFS time are required for analysis.

a) OS status: It indicates if the patient was alive or dead at the time of last follow up.

The death of the patient could be due to any cause.

b) OS time : It is the time in years from diagnosis of colorecta l cancer until death from

any cause

c) DFS status: It indicates if the patient had recurrence of cancer, metastasis or died

from any cause during the follow-up period. In the discovery cohort, recurrence and

metastasis were identified using the information from the response to follow-up

questionnaires and pathology reports. In the validation cohort, recurrence and

metastasis were identified from surgical reports, pathological reports, imaging data

and cancer clinic charts.

d) DFS time: It is the time in years from diagnosis of colorectal cancer until the first

occurrence of the event (recurrence, metastasis or death).
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1.6 Genetic variations and genetic prognostic research

Genetic variations can range from large scale structural or numerical karyotypic

abnormalities affecting entire chromosomes to changes in single nucleotides (41).

Chromosomal aberrations can be either structural where chromosomes have unrepaired or

mis-repaired breaks; or numerical where there are more or less than the normal number of

chromosomes causing polyploidy or aneuploidy (42). Single Nucleotide Polymorphisms

(SNPs) are alterations in a single base in the DNA sequence and it is estimated that there

are more than 10 million SNPs in the human genome (43). SNPs can occur within a gene

and may alter a coding sequence. A SNP is silent when the substitution in the codon does

not change the encoded amino acid, missense when the substituted codon encodes a

different amino acid, or nonsense when it creates a stop codon producing truncated

protein. SNPs can also occur in the untranslated regions (UTRs), in promoter regions or

in splice sites (42). Copy number variations (CNVs) are variations in number of large

segments of the DNA arising due to deletion or duplication events, and range from I

kilobase to several megabases (42). CNVs may include a gene(s) or its parts. Insertion­

deletion (indel) polymorphisms involve insertion or deletion of one or few nucleotides to

large number of nucleotides in the DNA sequence. Inversion is another type of

polymorphism where a sequence is present in an inverted manner in the DNA (42).

Genetic variations can be either germline or somatic. Somatic variations are tissue

specific and non-inheritable. An example is the Val600Glu missense mutation in the

BRAFl gene in tumor cells, such as in colorectal cancer (see section 1.5.2). Germline

variations are inherited variations and occur in all cell types (44).
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A large number of studies have been conducted in the past decade to find polymorphisms

associated with prognosis in colorectal cancer. Currently , the identified polymorphisms

are not used in the clinical setting as further studies in the field are required (44).

Recently, the commercial Oncotype DX® Colon Cancer Assay was developed by

Webber and colleagues using tumor gene expression data for 12-genes in stage-II patients

to predict risk of recurrence (45). On similar lines, ColoPrint® prognostic index was

developed by Salazar and others and validated using gene expression profiles of 18 genes

in colorectal tumor samples (46). If prognostic relevance of a germline variation is

established, similar prognostic indices using germline variations may be valuable since

germline DNA can easily be obtained from blood.

Of the large number of common germline polymorphisms investigated for their

prognostic relevance, the 27 polymorphisms which are a part of this thesis project are

discussed in the following section (section 1.7). The selection of these polymorphisms is

described in section 3.1 and the literature findings described below are based on the

curations posted in the dbCPCO database as of late 2011 (47). These studies are not

entirely homogenous in terms of study design, cohort characteristics , treatment regimen

and statistical analyses. Hence, it is not surprising to find that several results reported in

different studies are conflicting. In addition, study power issues and potential

confounders not accounted for in different studies can yield different results .
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1.7 Genetic polymorphisms investigat ed in this study and pr evious

literature finding s in colorectal canc er cohorts

I ) rs9344, NG_ 007375. I:g .12038G>A, Pr o241 P ro A1G syno ny mous polym orphism

in cyelin DI (CCNDl) gene. The activity of CCND! protein is required for transition

of the cell cycle from growth I (GI) phase to the synthesis (S) phase (48). The G

allele for this synonymous polymorphism, located in the splice donor site following

exon 4, prod uces an isoform of CCNDI messenger ribon ucleic acid (mRNA) by

facilitating alternative splicing (49). In one study , young male patients from

Singapo re with GG genotype for this polymorphism had shorter cancer -specific

surviva l following surgery in univariate surviva l analysis (50). In another study,

advanced colorectal cancer patients with AA genotype (from a mixed population)

treated with the monoclonal antibody cetuximab had poorer OS in univariate survival

analysis when compared to patients with GA or GG genotypes (51). Thus the two

results were not entire comparable, possibly due to different treatment characteristics

and outcomes analyzed. In four other studies , no correlation was observed between

this polymorphism and OS in colorectal cancer (52-55).

2) rs2229080 , NG_ 013341.1: g.57106IC> G, Arg 20 lG ly C/G mis-sen se

polymorphism in the deleted in colore cta l carcinoma (DCC) gene. DCC is a tumor

suppressor gene (56) . Schmitt et al (57) reported that the G allele (Gly) of this

polymorp hism was associated with lowered expression of the DCC gene. In a

Swedis h cohort , colorectal cancer patients homozygous for the C alle le (Arg/Arg)
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were reported to have better OS when compared to patient s having C/G (Arg/Gly) or

G/G (Gly/Gly) genotypes in univariate analysis (58), but multi variate analysis was

not performed in this stud y. In another study in an Asian cohort , no correlati on was

observed with OS in colore ctal cancer in univariate analysis (55).

3) rs2227983 , NG_ 007726.1:g.147531G>A, Arg 521Lys G/A in th e epide r ma l

growth fact or r ecept or (EGFR) gene. EGFR is a transmembrane protein which

upon binding to the EGF, initiates a signaling cascade which leads to cell

prolifera tion (59). Functional charac terization of EGFR_Arg52ILys polymorphism

performed in Chinese hamster ovary cells is suggestive of impaired ligand bindin g to

extracellular domain of EGFR and the reduced abilit y of EGFR to induce cell growth

(60). Patien ts with metastatic colorectal cancer with an allele encoding lysine amin o

acid (Al A or G/A genot ypes ) were reported to have better progre ssion -free surv ival

(PFS) and OS in a French cohort (univariate analysis) (6 1), favorable OS in cohort of

male patien ts from mixed population (univariate analysis) (62), and better OS in an

Asian cohort (multivariate anal ysis) (63). Thus all these studies reported favorable

survival in the presence of the allele encodin g lysine. In five other studies, no

association was observed between this polymorphi sm and OS in colorectal cancer

(51 ,52,64-66 ).

4) rs11615 , NG_ 015839.1:g.8525T>C, Asn118 Asn CIT synonymous polymorphism

in excision repair cro ss-complementing rodent repair deficien cy,

complement ati on gro up 1 (ERCCl) gene. ERCC I repair s the abnormal lesions in
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the DNA by nucleotide excisio n repair (67). The presence ofT allele in Asn l 18Asn is

associated with reduced gene expression by altering codon usage (68). Previously, T

allele (CT and IT genotypes) was correl ated with worse OS in Asian cohorts in

multivariate (69) and univariate analysis (70,71) and IT genotype was correlated with

worse PFS in an Italian cohort in univariate analysis (72). In mixed population

cohorts, similar correlations were reported; i.e. patients with CC genotypes had better

OS in univariate (73) as well as in multivariate analysis (74). A contradi ctory result

was reported in a Spanish cohort (75) where the C allele (CC and CT genotypes) was

correlated with worse OS in multivariate analysis. In three other similar studies, no

association was observed between rsl1615 and OS in colorectal cancer (76-78).

5) rs13181, NG_007067.2:g.23927A>C, Lys751GIn Gff in ERCC2 gene. ERCC2

protein is involved in DNA repair machinery by nucleotide excis ion repair (79). Cells

expressing Lys variant have inefficient DNA repair and abnormalities in chromatids,

such as breaks in the DNA strand or damaged unrepaired bases (80). Poor OS in

colorectal cancer patient s (mixed population) carrying T allele (GIn/Gin and Lys/Gln)

was previously found using univariate analysis (74,81). The genotypes for Lys/Lys

and Gln/Lys werealso associated with poor PFS compared to patients with genotype

for GIn/GIn in the Italian cohort treated with 5-fluorouracil (5-FU), leucovorin and

oxaliplatin in multivariat e analysis (72). However , in a Chinese patient cohort, also

treated with 5-FU, leucovorin and oxalipl atin, homozygotes for lysine (Lys/Lys) had

better OS and PFS comp ared to heterozygotes in multivariate analysis, presumably

due to enhanced efficacy of oxaliplatin in patients with poor DNA repair function of
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ERCC2 (due to Lys75 lG ln) (82). Also, in a Turkish cohort of metastatic colorectal

cancer patients, GIn/Gin homozygotes had a shorter OS compared to Lys/Lys

homozygotes (83). Six other studies reported no significant correlation between this

polymorphism and OS in colorectal cancer (71,75,76,78,84,85).

6) rsl047768, NG_007146.1:g.11344T>C, His46His CIT in ERCC5 gene. ERCC5 is

also a DNA repair protein functioning in the nucleotide excision repair pathway (86).

The functional impact of this synonymous polymorphism is not clearly established

yet. Earlier, patients with the CC genotype for this synonymous polymorphism were

reported to have a better OS in univariate analysis (84) and PFS in multivariate

analysis (87) while one study reported no statistically significant correlation with OS

in colorectal cancer (75).

7) rs9350, NC_OOOOOl.lO:g.242048674C>T, Pro757Leu CIT in exonuclea se 1

(EXOI) gene. EXO I has a 5' .....3' double stranded DNA exonuclease activity and

functions in the DNA mis-match repair mechanism to remove the mis-matched DNA

bases (88). The functional impact of this polymorphism is yet to be established . In a

Japanese cohort, the patients with the Leu/Leu genotype were found to have worse

OS relative to other genotypes in univariate analysis (55).

8) rs1800682, NG_011541.1:g.6185T>C, c-24+733T>C in Fas (TNF receptor

superfamily, member 6) (FAS) gene. FAS is a cell membrane receptor and has a

fundamental role in inducing cell death (apoptosis) upon binding to its ligand (89).

The functional impact of this polymorphism has not been conclusively established.
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Previously, patients with CC genotype were reported to have significantly worse OS

in univariate analysis when compared to patients with IT or TC genotypes in a study

by Hofmann and others (90).

9) rs3S18SS, NG_012067.1:g.11323G>A, Gly388Arg AlG in fibroblast growth

factor receptor 4 (FGFR4) gene. The receptors belonging to FGFR family activate a

cascade of signals which induce cell division and differentiation but the exact

function of this particular member of the family is currently unknown (91). In a study

using breast cancer cells, the cells having an allele for Arg (GG or AG genotypes)

were reported to have greater motility in vitro and potential for progression (92). The

same study also reported univariate analysis results where colorectal cancer patients

having the FGFR4 with Arg variant had a significantly worse OS compared to

homozygotes for Gly in the early months after diagnosis (92). One study reported no

correlation of this polymorphism with OS in colorectal cancer (93).

10) Glutathione S-t ransferase mu-l (GSTMl) gene deletion . The primary function of

GSTM I enzyme is to detoxify the electrophilic xenobiotics including drugs by

conjugating them with glutathione (94). A homozygous deletion of the gene would

cause a total loss of enzyme. In one study published by Csejtei et al. (95), Hungarian

Dukes' stage B colorectal cancer patients with homozygous deletion of GSTMl gene

had significantly poorer OS in univariate analysis when compared to patients with at

least one copy of the gene. Five other studies reported no significant correlation of

GSTMl gene deletion with OS in colorectal cancer (74,77,78,96,97).
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11) rs169S, NG_01207 S.1:g.6624A>G, I1elOSVal AJG in glutathione S-transferase pi

1 (GSTPl) gene. GSTPI enzyme, like other members of the GST family of enzymes,

is also involved in metaboli sm of xenobiotics (98). The GSTPI enzyme with the

valine residue at amino acid position 105 has been reported to have a reduced activity

(99). In a Dutch cohort of colorectal cancer patient s, patients with the valine variant

(lleNal+VaINal) treated with capecitabine and irinotecan were found to have better

PFS than patients with lle/Ile genotype in multivariate analysis, likely because of

reduced metabolism of irinotecan by GSTPI due to this polymorphi sm, as authors

suggested (100) . A similar result was observed in a mixed population cohort of

metastatic colorectal cancer patients treated with 5-FU and oxaliplatin where carr iers

ofan allele for valine (lieNal and ValNal) had significantly better OS than the lle/Ile

homozygotes in univariate analysis (101). A similar association with favorable OS in

univariate analysis and favorable PFS in multivariate analysis was found in another

study of Caucasian patient s (102) . In addition , in two studies with Chinese subjects,

patients homozygotes for the allele coding for valine were detected to have better OS

(univariate analysis) (103) and the carriers of the same allele were detected to have

favorable PFS (univariate analysis) and OS (multivariate analysis) (104). Contrary to

these reports, the carrier s of the valine variant were reported to have a worse OS in a

Swedish-Cauca sian colorectal cancer patient cohort in multivariat e analysis (105) and

homozygo sity for valine was correlated with poor PFS in univariate analysis in a

Korean colorectal cancer patient cohort (106). Also, six studies reported no

significant correlation of this polymorphism with OS in colorectal
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(71,76,77,96,97,107).

12)Glutathione S-transferase theta-l (GSTTl) gene deletion. GSTT I enzyme

metabolizes the electrophilic and hydrophobic xenobiotics by conjugating them with

glutathione (108). Homozygous deletion of this gene results in loss of enzyme. In an

age-stratified analysis, Rajagopal et al. (109) reported that young colorectal cancer

patients with the homozygous deletion of this gene have a significantly favorable OS

in univariate analyses while older patients with the gene deletion have poorer OS.

Four other studies reported no significant association of GSITI gene deletion with

OS in colorectal cancer (74,78,95,101).

13) rs1800795 , NG_011640.1:g.4880C>G, -174G/C in promoter in interleukin 6

(interferon, beta 2) (IL6) gene. IL6 is a cytokine and is involved in a wide range of

inflammatory responses (110). In vitro analysis of this polymorphism performed

using the HeLa cells has shown that the C allele reduced the gene expression (111). In

one study of a Swedish colorectal cancer patient cohort, patients with the CC

genotype showed better OS compared to heterozygotes after univariate analysis

(112).

14) rs1799977, NG_007109.1:g.23590A>G, I1e291Val AlG in mutL homolog 1, colon

cancer, non polyposis type 2 (E. coli) (MLHl) gene. MLH1 protein plays a role in

the MMR machinery which repairs the mis-matched bases in the DNA (1 13). The

definite functional impact of this polymorphism is not known. The GG and AG

genotypes were reported to be correlated with a favorable OS in multivariate analys is
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in a Spanish cohort of sporadic colorectal cancer patients (114). In another large study

of Caucasian colorectal cancer patients, no association was observed between this

polymorphism and OS in colorectal cancer (115).

IS)rsI7997S0 , NG_01l 740.I :g.3471deIG, -1607 indel G in promoter of matrix

metallopeptidase 1 (inters titial collagen ase) (MMPl) gene. This protein belongs to

the MMP family of enzymes . The primary function of these enzymes is to catalyze

the breakdown of the extracellular matrix during events like embryonic development,

tissue remodeling and reproduction and MMP I particularly breaks down interstitial

collagen types I, II and III (116). They are also found to playa role in diseases such

as arthritis and metastasis of cancer cells (116). Functionally, insertion of G (insG)

has been reported to enhance the transcription of MMP1 gene by facilitating an extra

binding site for the transcription factor v-ets erythroblas tosis virus E26 oncogene

homolog I (avian) (117). In a study conducted in colorectal cancer patients from

Australia, patients homozygous for insG had significantly better OS compared to

other genotypes (insG/insG vs insG/deIG+delG/deIG) in a multivariate analysis

(118). In a contradictory report, patients in a French study homozygous for insG

(insG/insG) had significantly worse cancer-specific survival, OS and DFS in

multivariate analysis when compared to the deletion homozygotes (deIG/deIG) (119).

16) rs24386S, NG_008989.I :g.3726C>T, -1306 crr in promoter region of matrix

metallopeptidase 2 (gelatinase A, 72kDa geiatinase, 72kDa type IV collagena se)

(MMP2) gene. MMP2 is involved in the degradation of type IV collagen found in the
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basement membranes, regulates inflammatory response and vascularization and is

involved in endometrial breakdown (120). For this polymorphism, the presence ofT

allele has been reported to abolish an SPI binding site in the promoter of MMPl

lowering its gene expression (121). A Dutch study of 215 colorectal cancer patients

previously showed that the C allele (CC and CT genotypes) was associated with

favorable OS in multivariate analyses (122). In another study by Hettiaratchi et al

(118), no correlation for this polymorphism was observed with OS in colorecta l

17)rs1801133, NG_013351.1:g .14783C>T , Ala222 Val crr missense polymorphism

in meth ylene tetrahydrofolate reductase (NAD(P)H) (M THFR) gene. The role of

this enzyme is the conversion of 5, IO-methylenetetrahydrofolate (5, IO-MTHF) to 5­

methyltetrahydrofolate (5-MTHF) (123). 5-MTHF acts as a co-substrate in synthesis

of methionine from homocysteine (123). For this polymorphism, studies have

reported that presence of T allele (CT or IT genotypes) is associated with reduced

amount ofMTHFR enzyme (124) and reduced enzymatic activity (125). In one study,

Caucasian colorecta l cancer patients homozygous for C allele had better OS and

cancer specific survival in multivariate analysis (124). A similar association was

observed in stage III patients in a Swedish cohort (multivariate analys is) (126).

However, in a Mexican cohort of colorectal cancer patients, a conflicting result was

obtained where patients homozygous for the C allele had a significantly worse OS in

univariate analysis (127). Nine other studies reported no significant correlation of this

polymorphism with OS in colorectal cancer (55,128-135).
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18)rsI801131 , NG_0133Sl.1 :g.1668SA>C, Glu429Ala AlC missense polymorphism

in MTHFR gene. The C allele for this polymorphism is reported to reduce the

activity of MTHFR enzyme (136). In metastatic colorectal cancer patients from a

mixed population, a sex-specific association was observed where females

homozygous for A allele had a favorable OS relative to other genotypes in univariate

analysis (133). Similar association was also observed in a Spanish colorectal cancer

patient cohort where patients homozygous for A allele showed favorable OS in the

multivariate analysis (137). In six other studies, no correlation was observed between

rs l 801131 and OS in colorectal cancer (76,78,128,130,134,135).

19) rsl0S2133, NG_012106.1:g.121 46C>G, Ser326Cys C/G in 8-oxoguanine DNA

glycosylase (OGGI) gene. OGG I enzyme excises the abnormal 8-oxoguanine base

formed due to exposure of guanine to reactive oxygen (138). OGGI enzyme with

cysteine at amino acid position 326 instead of serine has been reported to have a

reduced DNA-binding ability and reduced ability to repair damaged DNA (139). A

correlation of this polymorphism was observed with both OS and PFS in univariate

analysis in a Dutch cohort treated with capecitabine and oxaliplatin (140). However,

whether the prognosis was favorable or worse was not described by these authors. In

another study, no significant correlation was observed between rs l052 133 and OS

(75).

20) rs4648298, NC_000001.10:g.186641682T>C, c.3618A1G in 3'- UTR of

pro staglandin-endoperoxide synthase 2 (prostaglandin GIH synthase and
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cyclooxygenase) (PTGS2) gene. PTGS2 is an essential enzyme in prostaglandin

synthesis during inflammatory responses (141). The functional consequence of this

polymorphism is currently unknown. Previously, in a Spanish colorectal cancer

patient cohort, the G allele was correlated with a favorable OS in multivariate

analysis (142).

21) rs1799889, NG_013213.I :g.4332_4333in sA, -675 indel 4G/5G in promoter of

ser pin peptidase inhibitor, clade E (nexin, plasminogen acti vator inhibitor type

I), member 1 (SERPINEl) gene. This protein inhibits fibrinolysis by inhibiting

tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) (high

amounts of this protein are associated with formation of blood clots) (143). In a study

which assessed the functional impact of this polymorphism, the insertion allele (insG)

was linked to lower transcriptional activity (144). In a Swedish cohort, in univariate

analysis in Dukes' stage Al B colorectal cancer patients, the patients with insG/insG

genotype were detected to have better OS compared to patients with delG/delG or

delG/insG genotypes (145).

22) rs34743033, NC_000018.9:g.657730(28 base pairs (bp»2/3/4, 2/3 repeats of 28bp

in 5'- UTR in thymid ylate synthetase (TYMS) gene. TYMS enzyme, together with

5, IO-MTHF, converts deoxyuridylate to deoxythymidylate which is used for DNA

replication and repair. The drug 5-FU exerts its anti-neoplastic effect primarily by

inhibiting this enzyme (146). There is a variable number of tandem repeat (VNTR) of

28 bp sequence in 5' -UTR of TYMSgene. Reportedly, the three repeat allele (3R) has
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an enhanced transl ational efficiency (147). In a Hungarian study, color ectal cance r

patient s hom ozygous for the 2-repeats (2R) allele had a worse OS comp ared to

patients with 3R allele in univariate anal ysis (148 ). Similarly, in another mult i-center

study with patient s from acros s Europe and Austra lia, patient s treated with the dru gs

pemetre xedlirinotecan and hom ozygou s for 3R showe d a significantly favorable PFS

in multi variate analysis (149 ). However , in another study with patient s treated with 5­

FU, leucovor in and oxa liplatin, those with 2R homo zygotes and heterozygotes

(2R/3R) had a favorabl e PFS in multivariate anal ysis (78). In a Dutch cohort , it was

reported that patient s younger than 60 year s and homoz ygous for 2R had a favor able

OS in univariate analysi s (150 ). In a Spanish cohort of rectal cancer patien ts, 3R

homoz ygote s showed favorable PFS and OS followin g multi vari ate analysis ( 151).

Contradictorily, stage III colorectal cancer patient s from Asia homozygous for 3R

were found to have worse OS in univari ate analysis (152) . In at least 2 1 other studies ,

no corre lation was observe d for this polymorphism with OS in co lorecta l cancer

(7 1,74,76-78, I04,129,130,135 ,153-164).

23) rs16430, NC_000018.9:g.673 444deITinsTTAAAG, ind el 6 bp in 3 ' -UTR of TYMS

gene. In an in vitro study using the human embryo nic kidne y cell line , the allele with

deletion of the 6 bp sequence was linked to lowered stability of TYMS mRN A (165).

The same study reported reduced gene expre ssion in the presence of 6 bp deletion in

tumor cells obtained from metastatic colorectal cancer patients. In a Spanish

colorectal cancer patient cohort treated with 5-FU based chemotherapy regimen, it

was observed that patient s with homoz ygous deletion of 6 bp had favorable OS in the
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multivariate analysis (155). On the contrary, in a French cohort, patients homozygous

for the 6 bp insertion had favorable as compared to heterozygotes after univariate

analysis (157). At least thirteen other studies did not find an association between

rs l6430 and as in colorectal cancer (74,76,78,130,135,148,151,153,154,162­

164,166).

24) rs2010963, NG_008732.1:g.5398C>G, -634G/C polymorphism in 5'- UTR in

vascular endothelial growth factor A (VEGFA) gene. The VEGFA protein targets

endothelial cells and induces angiogenesis, increased vascular permeability, cell

migration and inhibition of apoptosis (167). In a Greek study to understand the

functional impact of polymorphisms in VEGFA gene, tumors from patients with non­

small cell lung cancer were used. This study reported that tumor cells homozygous

for the G allele had low VEGFA expression level as well as low tumor vascularization

(168). In another Greek cohort of colorecta l cancer patients, those patients with the

genotype CC of this polymorphism had a significantly worse as relative to those

with GG genotype in multivariate analysis (169). No association with as in

colorectal cancer was observed in three other studies (170-172).

25)rs3025039, NG_008732.1:g.19584C>T, +936C IT polymorphism in 3'- UTR in

VEGFA gene. A study conducted in healthy post-menopausal women from Austria

showed that homozygotes for the C allele had higher levels of plasma VEGF protein

levels than those carrying the T allele (CT+TT combined) (173). In a study

investigating Greek colorectal cancer patients, it was reported that patients
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homozygous for the T allele had worse OS compared to homozygotes for C allele

(169). Three other studies did not find a significant correlation between rs3025039

and OS in colorectal cancer (51,171,172).

26) rs25487, NC_000018.9:g.44055726T>C, Arg399Gln G/A in X-ray repair

complementing defecti ve repai r in Chin ese ham ster cells I (XRCC1) gene.

XRCC I protein repairs single strand breaks in the DNA caused by alkylating agents

and ionizing radations via base excision repair mechanism (174). Wang et al (175)

reported that cells homozygous for A allele (Oln/Oln) had a relatively greater number

of breaks in the chromosome per cell than other genotypes, indicative of an impaired

function of XRCCl gene. In a Spanish cohort, patients homozygous for the A allele

(OIn/G1n) had a significantly favorable OS after univariate analysis (75). However,

contradictory associations were observed in Korean, Chinese and Turkish cohorts

after univariate analysis: in their analyses, patients homozygous for the A allele

(OIn/G1n) showed worse OS compared to homozygotes for 0 allele (71,83,131). In

six other reports, this polymorphism was not associated with OS in colorectal cancer

(74,76,77,176-178).

27) rs861539, NG_OII 516.1:g.21071C>T, Thr241 Met CIT in XR CC3 gene. XRCC3 is

involved in the homologous recombination, maintenance of the stability of

chromosome as well as DNA damage repair (179). Cells expressing XRCC3 protein

with the methionine variant have been reported to have a defective DNA repair

mechanism leading to abnormalities in chromosomal structure (180). The allele
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coding for the amino acid methionine was correlated with significantly favorable

prognosis after univariate analysis in a Spanish cohort of colorectal cancer patients

(75). In another study by Grimminger et al (178), a statistically significant correlation

between this polymorphism and OS in colorectal cancer was not observed.

Evident from the literature , for a given polymorphism, conflicting results in relation to

prognosis do exist. This is in fact a common observation. The cohorts described in these

studies may be heterogenous in terms of size, patient characteristics (ethnicity, age,

stage), study design, treatment regimen as well as the definition of endpoints and

statistical approaches, and different results for same polymorphisms may be obtained due

to these differences (181,182). In addition, it is possible that the associations reported

might be false positives or false negatives . Hence before genetic markers can find

application into clinical patient management, large and well designed studies in

homogenous patient cohorts are requ ired to validate the correlations of genetic markers

with outcome (183).
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Chapter 2. Thesis project

2.1 Research Objectives

This thesis project has two main objectives:

I) To test the associations of 27 genetic variations with prognosis using a large

cohort of colorectal cancer patients from Newfoundland (the discovery set). These

polymorphisms were previously reported to be associated with prognosis in

colorectal cancer.

2) To replicate the findings obtained in the discovery cohort in an independent

colorectal cancer cohort from Newfoundland (the validation set).

To achieve these objectives, genotypes for the 27 genetic variations were first obtained in

the discovery set. These data were analyzed together with the clinicopathological,

molecular and prognostic data of the patients using statistical analyses. The variables

which were found to be correlated with survival in the discovery set were then chosen for

replication in the validation set.

2.2 Hypothesis

Many genetic polymorphisms have been reported to be correlated with measures of

prognosis such as OS and DFS in colorectal cancer patient cohorts from around the world

51



(see section 1.7). We have selected a total of 27 such polymorphisms and hypothesized

that these polymorphisms are also correlated with prognosis in colorectal cancer patients

from Newfound land. After this first phase of the study, we also hypothesized that the

significant correlations detected can also be replicated in an additional cohort of

colorectal cancer patients from Newfoundland.

2.3 Patient cohorts

We investigated two independent cohorts of colorectal cancer patients from

Newfoundland in our study.

The discovery set includes colorectal cancer patients from the NFCCR who were

diagnosed over a period of 5 years from January I 999-December 2003 (35). Patients age

under 75 years at diagnosis , with colorectal cancer confirmed pathologically, with

available tumor tissue and informed consent obtained from either the patient or the next­

of-kin (proxies) were included in the registry (35). Patients with familial colorectal

cancer syndromes were also included in this registry. Patients having recurrent cancer,

showing presence of carcinoma in situ (stage 0 colorectal cancer) and carcinoid tumor

were excluded from the registry and/or analysis (35). Out of a total of 1983 colorectal

cancer cases diagnosed with colorectal cancer in Newfoundland in the 5-year recruitment

period, over 730 patients meeting these criteria were included in NFCCR (35). Molecular

and genetic characteristics of this cohort have been described in detail by Woods et al

(184). Out of these 730, DNA and prognostic data were available for 537 patients. Four
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patients having stage 0 colon cancer (carcinoma in-situ) were excluded from analysis .

Two of the patients belonged to the same family and one was excluded randoml y to have

the cohort consisting of unrelated individuals. Thus in the end, 532 patients from NFCC R

were included in the discovery set. Patients' clinical and vital status data was collected

until April 2010 . Their baseline characteristics are shown in Ta ble 2.

In the discover y set, the median age of diagnosis is 61.4 years and the median follow-up

time is 6.4 years. Females, stage IV patients , patients with mucinous tumor histology,

lymphatic and vascular invasion, rectal cancer, and poorly differentiated tumor grade are

each present in a minority of the cohort. The cohort also has a low proportion of patients

with tumors having MSI-H status (10.50%) and BRAFl Val600Glu mutation (9.20%).

One-third of the patient s (33.3%) died durin g the follow up. The age-adju sted surviva l

curve of the discovery cohort is depicted in Fig ure 4. The median survival time of the

patient s in the discovery cohort is - 9.5 years and the 5-year survival rate is - 79%. The

median survival time of the entire NFCC R cohort is - 7 years and the 5-year survival rate

is - 62% (see Fig.AI in appendix). The percentage of stage IV patients in the discovery

cohort is low (9.80%) and this can account for the high survival characteristics of this

cohort. In fact, the entire NFCCR cohort has a higher proportion of stage IV patients

(20.9%) when compared to patients included in this study (9.80%), and this difference is

statisticall y significant (p<O.OOI). This may be because of the fact that the termin ally-ill

stage IV patients are more likely to have died before their blood samples were collected,

indicating a select ion bias in our study. The discovery cohort is thus biased toward early

stage colorecta l cancer patient s and is not representative of the entire NFCCR cohort.
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Table 2. Baseline characteristics of 532 patients in the discovery set

Variable Number of patients 0/0

Sex
male 327 61.50%

female 205 38.50%
Median age 61.36 years (20.7-75)
Histology

non-mucinous 471 88.50%
mucinous 61 11.50%
Location

colon 353 66.40%
rectum 179 33.60%
Stage

I 99 18.60%
II 206 38.70%
III 175 32.90%
IV 52 9.80%

Grade
well diff/moderately diff 489 91.90%

poorly diff/undiff 39 7.30%
unknown 4 0.80%

Vascular invasion
326 61.30%

+ 166 31.20%
unknown 40 7.50%

Lymphatic invasion
315 59.20%

+ 174 32.70%
unknown 43 8.10%
OS status

dead 177 33.30%
alive 354 66.60%

unknown 1 0.10%
Median OS follow-up time (ra nge) 6.36 vears(0.3 8-1O.88)

DFS statu s
event 208 39.10%

no event 323 60.71%
unknown 1 0.19%

Median DFS follow-up time (r ange) 6 years (0.22-10.88)
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Familial risk
low 256 48.10%

high/intermediate 276 51.90%

MSI Status
MS1-H 56 10.50%

MSI-LlMSS 455 85.50%
unknown 21 4%

BRAFl mutation status
+ 49 9.20%

435 81.80%
unknown 48 9%

Ethnicity
Caucasian 486 91.35%

non-Caucasian 12 2.26%
unknown 34 6.39%

Treatment
5-FU based 330 62.03%

other/no chemotherapy 199 37.41%
unknown 3 0.56%

diff: differentiated,MS I: microsatelliteinstability,5 -FU:5 -fluorouracil,e thnicity is based on the ethnicitie s
of all four grandparents of the patients as reported by the patients.
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Figure 4. Age-adjuste d survival curve of discovery cohort

Median survival time is -9.5 years

5-yearsurviv alra tei s - 79%
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The validation set: The discovery set was used to validate, in the Newfoundl and

population, the genetic polymorphisms correlated with outcome in other populations. To

confirm the validity of the significant correlations detected in the discovery set, we also

studied a second Newfoundland colorectal cancer cohort. All patients in this validation

set were from Avalon Peninsula of Newfoundland and were diagnosed with primary

colorectal cancer between January I, 1997 and December 31, 1998. An eligibility

criterion was presence of carcinoma in the polyp with invasion into the stalk. On the

contrary to NFCCR, the age of diagnosis was not a criterion for inclusion. Exclusion

criteria were recurrence of an earlier colorectal cancer, secondary colorectal cancer which

is due to metastasis from a primary cancer elsewhere in the body, carcinoma in situ,

mucosal carcinoma or carcinoid tumors and patients with FAP. Currently, the data and

the biological specimen of these patients are preserved at the NFCCR. Although consent

was not obtained from the patients or their proxies, collection of patient data, and the use

of these data and biospecimen for research purposes were approved by the Regional

Health Boards and Human Investigation Committee (HIC) (now known as Health

Research Ethics Authority) of Memorial University of Newfoundland as long as the data

were handled and analyzed anonymously. In this study, genotypes were obtained for 252

out of the total 280 patients who were included in our analyses. The baseline

characteristics of this cohort are shown in Table 3. In this cohort , the median age of

diagnosis is 68.7 years. Majority of patients (61.51%) had died till the time of last follow­

up. The age-adjusted survival curve of the validation cohort is depicted in Figure 5. The

median survival time of the patients in the validation set is -6 years and the 5-year
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Table 3. Baseline characteristics of 252 patients in the validation set.

Variable Number of patients (n) 0/0

Sex
male 133 52.78%

female 119 47.22%
Median aae 68.7 years (25.3-91.6)
Histology

non-mucinous 211 83.73%
mucinous 41 16.27%
Location

colon 202 80.16%
rectum 50 19.84%
Stage

I 48 19.05%
II 88 34.92%
III 68 26.98%
IV 41 16.27%

unknown 7 2.78%
Grade

well diff/moderately diff 211 83.73%
poorly difflundiff 37 14.68%

unknown 4 1.59%
Lymphatic invasion

64 25.40%
+ 101 40.08%

unknown 87 34.52%
OS status

dead 155 61.51%
alive 97 38.49%

Median OS follow-up time (ranze) 5.43 years (0-12.48)
Median DFS follow-up time (range) 3.25 years (0-12.48)

DFSstatus
event 167 66.27%

no event 85 33.73%
MSlstatus

MSI-H 24 9.52%
MSI-L/MSS 228 90.48%
Treatment
5-FU based 88 34.92%

other/no chemotherapy 148 58.73%
unknown 16 6.35%
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Figure 5. Age-adjusted survival curve of the validation cohort

Median survival time is -6years

Median 5-yearsurv ival rate is -55 %
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survival rate is - 55%. The validation cohort is not significantly different from the entire

cohort (n=280) in terms of distributi on of clinicop atho logical/mol ecular variable s (see

Fig.A2 in appendix). It is assumed that most of the patients in the validat ion cohort are

Caucasians since there was very low ethnic diversit y in the Avalon Peninsula during the

patient recruitment period (1997-98 ). Simi lar to the discovery set, females, stage IV

patients , patients with mucinous tumor histology, lymphatic invasion, rectal cancer, and

poorly differentiated tumor grade are each present in lower proportion in this cohort .

The Kaplan-Meier plots comparing the survival of the discovery and validation cohort s

without age-adjustment is depicted in Figur e 6. Without age-adjustment , the discovery

cohort patient s had a median survival time of - 9 years in contrast to - 9.5 years after age

adjustment , although the 5-year survival rates are similar (- 80% without age-adju stment

and - 79% with age-adjustment) (Figure 4). For the validation cohort , the median

survival time is - 5.2 years compared to - 6 years after age-adju stment and the 5-year

surviva l rate is - 50% compared to - 55% after age-adjustment (Figure 5). The

differences indicate the affect of age on OS, as generall y, OS is expected to reduce with

increasing age. For further comparis ons between the discovery and validation cohorts,

see section 4.3.3 .

Ten clinicopathological and molecular variable s were used in this study for analyses.

These include stage, tumor grade, vascular or lymphatic invasion, tumor histo logy, MSI

status, tumor location, familial risk status, BRAFl _Val600Glu mutation status, age and

sex (see section 1.5.2). The discovery set was used for analysis of 27 genetic
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Figure 6. Kaplan-Meier curve comparing the survival of discovery (n=532) and

validation (n=252) sets

~ 0,6

~
E
8 0.•

Discoverv set: Median survival time is - 9 years. 5-year survival rate is - 80%

Validation set: Median survival time is - 5.2 years. 5-year survival rate is - 50%
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polymorphisms (see section 3.1). The variables which were correlated with OS in the

discovery set after multivariate analysis, including genotypes of 4 polymorphisms, were

also analyzed in the validation set. Of the variables present in the final multivariate model

for DFS in the discovery set, two polymorphisms for which the genotypes were available

in the validation set were also analyzed for validating the results obtained in the

discovery set.
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Chapter 3. Method s

Ethics approval

This study was approved by HIC of Memorial University of Newfoundland (HIC

Reference # 10.I 17).

Contr ibutions and cr edit s

Amit Negandhi: Performed TaqMan® SNP genotyping assays for rsl799889

(SERPINEI gene) and rs l799 750 (MMPI gene) in the discovery set, rsl80 1131 (MTHFR

gene), rs1047768 (ERCC5 gene) and rsl 799889 (SERPINEI gene) in the validation set.

Performed PCR reaction and gel electrophoresis for GS7Tl and GSTMI gene deletions

and genotyping of the VNTR in TYMS gene in the discovery set and for GSTlvll gene

deletion in the validation set. Performed coding of the genotype data and statistical

analyses described in the thesis document. Performed literature research to interpret and

discuss the results obtained.

Michelle Simms: Prepared stock DNA plates ofNFCCR and validation set samples.

J essica Squires : Performed dilution of stock DNA samples and provided technical

assistance in the lab.

Angela Hyde: Provided clinicopatho logical and prognostic data of the validation set

samples.

Dr. Roger Green: Provided DNA samples from NFCCR and the validation set samples.
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Dr. Sevtap Savas: Processed the raw clinicopathological, ethnicity , prognostic , and other

data for the NFCCR samples and coded them for the statistical analyses , provided the

Kaplan Meier survival curves for the entire NFCCR cohort and entire validation cohort

and provided the baseline characteristics tables for the entire NFCCR samples , entire

validation cohort samples and the validation set samples.

Dr. Patrick Parfrey , Dr. Wei Xu and Dr. Michelle Liu provided assistance with study

design and statistical methods.

Fun ding age ncies

This study was funded by the Memorial University of Newfoundland and The Medical

Research Foundation of Faculty of Medicine-Cox Award (2010) , Memorial University.

3.1 Selection of polymorphisms

For this thesis project, 30 polymorph isms were selected which were previously found to

be correlated with survival in colorectal cancer patients from populations other than

Newfoundland. The polymorphisms were selected based on the information collected and

posted in the dbCPCO database (47) as of September 2010. The selection was based on

the following order of priorities :

I) The polymorphisms which showed statistically significant correlations with
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overall survival and/or disease specific survival in at least one study.

2) The polymorphisms which can be genotyped by methods available to us i.e.

Sequenom MassArray®, TaqMan® SNP Genotyping assays and gel

electrophoresis of polymerase chain reaction (PCR) products.

The polymorphisms selected for inclusion in this study are listed in Table 4. An attempt

was made to genotype twenty-five polymorphisms using the Sequenom MassArray®

technology. Among these, the TP53_rsI042522, PTGS2_rs20417, and EGF_rs4444903

polymorphisms failed to be genotyped by this method. The two gene deletions (GSTMI

and GSTTI gene deletions) and the VNTR in TYMS gene were genotyped by gel

electrophoresis of PCR products. SERPINEl _-675 indelG and MMPl_ -1607 indelG

polymorphisms were genotyped using the TaqMan® SNP genotyping assays. Therefore a

total of 27 polymorphisms were genotyped in the discovery set using the MassArray,

TaqMan®, and PCR and gel electrophoresis methods (Table 4).

3.2 Plates containing DNA samples

Discoverv set: Patients recruited to the NFCCR and with available prognostic data and

genomic DNA were included in this study. DNA samples were provided by Dr. Roger

Green and were previously extracted from the blood samples of colorectal cancer

patients. The stock DNA plates contained 541 DNA samples ( IOng/ul in water)

distributed over seven 96-well plates. For the purpose of genotyping by Sequenom

MassArray system, the same concentration of DNA was used. For performing TaqMan®

assays, the stock solutions were aliquoted to seven other plates and diluted to 4ng/1l1
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Table 4. Genetic polymorphi sms selected for inclusion in this thesis project.

Gene
Polymorphi sm rsnumber Type Genotyping methodology

symbol

CCND1
Pro241Pro N G

rs9344 SNP Sequenom MassArray®
NG 007375.1:g.12038G>A

DCC
Arg201G1yC/G

rs2229080 SNP Sequenom MassArray®
NG 013341.1:g.571061C>G

*EGF
A6 1G in 5'-UTR

rs4444903 SNP
Sequenom MassArray®

NG 011441.1:g.5071A>G (failed genotyping)

EGFR
Arg521Lys G/A

rs2227983** SNP Sequenom MassArray®
NG 007726.1:g.147531G>A

ERCC 1
Asn118Asn CIT

rs11615 SNP Sequenom MassArray ®
NG 015839.1:g.8525T>C

ERCC2
Lys751Gin GIT

rs13181 SNP Sequenom MassArray®
NG 007067.2:g.23927A>C

Sequenom MassArray® in discovery

ERCC5
His46His CIT

rs1047768 SNP
set

NG_007146.1:g.11344T>C
TaqMan® assay in validation set

EX01
Pro757Leu CIT

rs9350 SNP Sequenom MassArray®NC 000001.10:g.242048674C>T

FAS
c.-24+733T>C

rs1800682 SNP Sequenom MassArray®NG 011541.1 :g.6185T>C

FGFR4
Gly388Arg NG

rs351855 SNP Sequenom MassArray®
NG 012067.1:g.11323G>A

GSTM 1 Gene deletion n/a
gene

PCR and agarose gel electrophoresis
deletion
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GSTP l
Ile105Vai AlG

rs1695 SNP Sequenom MassArray ®
NG 012075.1:g.6624A>G

GSTT l Gene deletion n/a
gene

PCR and agarose gel electrophoresis
deletion

lL6
-174 G/C in promoter

rs1800795 SNP Sequenom MassArray ®
NG 011640.1:g.4880C>G

MLHl
Ile219Vai AlG

rs1799977 SNP Sequenom MassArray ®
NG 007109.1:g.23590A>G

MMPl
-1607 indel G in promoter

rs1799750 Indel TaqMan® SNP genotyping assay
NG 01l 740. 1:g.3471delG

MMP2
-1306CIT in promoter

rs243865 SNP Sequenom MassArray ®
NG 008989.1 :g.3726C>T

MTHF R
A1a222Val CIT

rs1801133 SNP Sequenom MassArray ®
NG 01335 1.1:g. l4 783C>T

Sequenom MassArray ® in discovery

MTHFR
Glu429Ala AlC

rs1801131 SNP
set

NG_0 13351.1:g.16685A>C
TaqMan® assay in validation set

OGGl
Ser326Cys C/G

rs1052133 SNP Sequenom MassArray ®
NG 012106.1:g.12146C>G

*PTGS2
-765G/C in promoter

rs20417 SNP
Sequenom MassArray ®

NC 00000 1.l0:g. 186650321C>G (failed genotyping)

PTGS2
c.3618A1Gin 3' -UTR

rs4648298 SNP Sequenom MassArray ®
NC 00000 1.l0:g. 186641682T>C

SERPINEl
-675 indelG in promoter

rs1799889 Indel TaqMan® SNP genotyping assay
NG 0132 13.1:g.4332 4333insA

*TP53
Arg72Pro C/G

rs1042522 SNP
Sequenom MassArray ®

NG 017013.1:g.16392C>G (failed genotyping)
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TYMS
2/3 repeats of 28bp in 5'-UTR

rs34743033 VNTR
NC 000018.9:g.657646 (28bp) /2/3/4

PCR and agarose gel electrophoresi s

TYMS
indel6 bp in 3' -UTR

rs16430 Indel
NC 00018.9:g.673444delTins6bp

Sequenom MassArray®

VEGF A
-634G/C in 5' -UTR

rs2010963
NG 008732.1 :g.5398C>G

SNP Sequenom MassArray®

VEGFA
+936C/T in 3' -UTR

rs3025039
NG 008732.1:g.19584C>T

SNP Sequenom MassArray®

XR CCI
Arg399Gln G/A

rs25487 SNP
NC 000019.9:g.44055726T>C

Sequenom MassArray®

X RCC 3
Thr24 1Met CIT

rs861539
NG 011516.1:g.21071C>T

SNP Sequenom MassArray®

'Aimed to be designed in Sequenom MassArray® multiplex reactions. *These polymorphi sms failed to be genotyped by Sequenom MassArra y®
method and were excluded from this project. VNTR: variable number of tandem repeats. **SNP is also designated as rs 11543848.
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concentration with water. In these DNA plates, the last column of each plate (column 12)

contained 3 non-templ ate control s (NTCs) and 5 duplicate DNA samples to test for PCR

contamination and concord ance of genotyping reactions, respectively.

Validation set : An additi onal set of 280 colorectal cancer patient s constituted the

validation set. DNAs that were previously extracted from blood (J ng/ul) or formalin­

fixed paraffin -embedded (FFPE) non-tumor tissue (Sng/ ul) were used to genotype the

MTHFR_Glu429Ala, ERCC5_His46His, SERPINEl_-675indeIG polymorphi sms and

GSTMI gene deletio n.

3.3. Solution s

1) 5X Tris-borate -EDTA (TBE) Buffer

Made by mixing 54 grams (gms) OmniPu r® Tris-Hydrochloride (Tris-HCI)

(Product code 9310, EMD Chemicals Inc. NJ, USA), 27.5 gms Boric acid

(Product code BX0865, EMD Chemicals Inc. NJ, USA), 20 milliliters (ml) 0.5

Molar (M) EDTA (pH=8±0. 1) (Catalog number (cat. #) 46-034-CI, Mediatech

Inc, VA, USA) in one liter of deionized (dH20). The buffer solution was

autocla ved, pH was adjusted to 8.3 with sodium hydroxide (Product code

SX0590 , EMD Chemicals Inc. NJ, USA) and solution was stored at room

temperature .

2) 1X TBE buffer

This solution was prepared by diluting 5X TBE solution in dH20.
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3) IX Tris-EDTA (TE) buffer

Made by mixing the following chemicals in sterile dH20 in a total volume of

200ml: 0.3152 gms Tris-HCI (Product code 9310, EMD Chemicals Inc. NJ, USA)

equivalent to 10 millimoles (mM) Tris-HCI and 0.4 ml of 0.5M stock solution of

EDTA (pH: 8±0.1) (cat. # 46-034-Cl, Mediatech Inc, VA, USA) equivalent to I

mM EDTA.

3.4 Obtaining the genotype data

3.4.1 Using Sequenom MassA rrav® technique

The Sequenom MassArray® system was the first choice for genotyping. This multiplex

reaction system facilitates simultaneous genotyping of multiple polymorphisms in a

reasonably short time and is cost-effective. The genotyping reactions were outsourced to

the Analytical Genetics Technology Centre (AGTC) facility at University Health

Network (UHN), Toronto. Seven DNA plates containing 541 DNA samples and duplicate

samples ( l Ong/ul) were sent for genotyping. The DNA sample identifiers (IDs) were re­

coded prior to sending to the facility. Initially we aimed for genotyping of 27

polymorphisms (Table 4). However, assays for only 25 polymorphisms (except

MMPI J sl7 99750 and SERPINEJs I799889) could be designed by the facility. An

additional 3 polymorphisms (TP53_rs I042522, PTGS2J s20417 and EGFJs4444903)
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failed genotyping by these assays after the reactions were run. Thus genotypes for a total

of22 polymorphisms were obtained by Sequenom MassArray® technology.

3.4.2 Design of primers and pr obes for Custom Tag Man ® SNP Genotyping Assays

Polymorphisms in SERPINEl (rs I799889) and in MMPl (rs I799750) could not be

incorporated in the MassArray multiplex reactions. Therefore we used the TaqMan®

SNP genotyping assays to obtain genotypes for these SNPs. The primers and probes for

these polymorphisms were custom designed using the ' Custom TaqMan® Assay Design

Tool' available online (185). The sequences flanking these polymorphisms were obtained

from the dbSNP database (186) (Table 5). These assays were used in genotyping of 541

samples in the discovery set.

3.4.3 Pr e-designed Ta gM an® SNP Genotv ping Assavs

The predesigned TaqMan ® SNP genotyping assays for MTHFR_Glu429Ala (assay ID

C_850486_20) and ERCC5_His46His (assay ID C_l 891769_20) were obtained from the

Applied Biosystems (187) (primer and probe sequence information for these assays are

proprietary of Applied Biosystems and thus were not provided to us). Assays for these

SNPs were performed for samples in the validation cohort.

TagM an® SNP Genotv ping assay procedure: Upon arrival, 40X TaqMan® assay mix

(Applied Biosystems, CA, USA) containing the primers and probes for the TaqMan®

genotyping reactions was diluted to 20X with IX TE buffer, aliquoted and stored at ­

20°C. For a 96 well plate, the reaction mix was prepared by adding 525J.ll2X TaqMan®

Universal PCR Master mix (part. # 4304437, Roche, NJ, USA), 26.25J.l120X TaqMan®

71



Table 5. Primer and probe inform ation for SNPs in MMPI and SERPINEI genes

SNP MMPI rs1799750 SERPINEI rs1799889
*Assay ID AHVI4S6 AHWR2ZE

Forward primer ACATGTTA TGCCAC AGACAAGGTTGT

Seq. TT AGATGAGGAAA TGACACAAGAGA

Reverse prim er CGTCAAGACTGATA TCTT GGCCGCCTC

Seq. ACTCATAAACAATACTTC CGATGATAC

**Probe 1 Seq. TGAGATAAGTCATA TCCTTTC ACGGCTGACTCCCCCAC

***Probe 2 Seq. TGAGATAAGTCA TA TCTTTC CGGCTGACTCCCCAC

'ID by Applied Biosystems (USA) . "" Reporter 1 dye is VIC, which recognizes the G alle le. """Reporter 2
dye is FAM, which recognizes the deletion of G allele . Underlined are the sequences on probes that are
complementary to the polymorphic sequences. Seq: sequence.
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assay mix (Applied Biosystems, CA, USA) for the particular polymorphism and 393.75111

of sterile water. 114111 of the reaction mix was transferred to each well of an 8-well strip

tube using a single channel pipette. 9111 of the reaction mix from each well of the strip

tube was subsequently transferred to the wells of the MicroAmp® Fast Optical 96-well

reaction plate with barcode (0. 1 ml) (part. # 4346906, Applied Biosystems, CA, USA)

using a multi channel pipette . These plates are custom-made for use in the 7900HT Fast

Real Time PCR System (part. # 4330966 , Applied Biosystems, CA, USA). 1111 of DNA

extracted from blood with a concentration of 4ng/Il1 for SERPINE1_rs1799889 and

MMP1_rs1799750 in the discovery set samples and either 3ng/Il1 (extracted from blood)

or Sng/p! (extracted from FFPE) DNA for MTHFRJs l801131 and ERCC5_rsI047768 in

the validation set samples was added to the plate containing the reaction mix. The final

react ion volume was 10111. A PCR-compatible optica l adhesive cover (part . # 4360954,

Applied Biosystems, CA, USA) was applied over the plate, sealed tightly, and the plate

was centrifuged at 1000 revolutions per minute (rpm) for - 5-10 seconds in a bench top

centrifuge (cat. # 75004367, Sorvall Legend T+ Centrifuge, ThermoFis her Scientific,

MA, USA) prior to the PCR amplification.

The ABI 7900HT Sequence Detection Systems (SDS) software, version 2.4 accompanies

the 7900HT Fast Real Time peR System. For SNP genotyp ing assays , the allelic

discrimination (AD) and absolute quantification (AQ) files were created using the SDS

softwa re following the instructions in 'Applied Biosystems 7900HT Fast Real-ti me PCR

System Allelic Discrimination Getting Started Guide' (part. # 43640 15, Applied

Biosystems, CA, USA). The AD file contains information about the detec tor which is
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composed of a pair of fluorescent probes to detect the particular alleles, sample

information in the plate and enables analysis of the fluorescence data after the PCR run is

completed. The AQ file contains data for the real-time PCR run such as the

thermocycling conditions. These files are essential for performing the PCR run and for

calling the genotypes based on the fluorescence information generated. These files were

initially prepared in a desktop computer , transferred to a USB drive and copied on the

computer adjoining the 7900HT Fast Real Time PCR System. For the PCR amplification ,

the reaction plate was inserted in the machine and a pre-read procedure was performed

using the AD file prepared for the plate. The pre-read is performed to record background

fluorescence which is used as a reference against which the fluorescence recorded after

amplification is compared to give the genotype in each well. After performing the pre­

read, PCR amplification of the DNA samples using the AQ file was performed in the

7900HT Fast Real Time PCR System (part. # 4330966 Applied Biosystems , CA, USA).

The PCR thermocycling condition s are as follows: 50°C for 2 minutes (activation of

AmpErase ® UNG in TaqMan® Universal PCR Master Mix), 95°C for 10 minutes

(activation ofAmpliTaq Gold'E)DNA Polymerase in TaqMan® Universal PCR Master

Mix) and 40 cycles of 95°C for 15 seconds (melting DNA) and 60°C for I minute

(annealing/extension ofprimer) .

After the completion of the PCR run, a post-read was performed using the AD file. Pre­

read and the post-read data in the AD file were automatically analyzed by the software

and genotypes were called (F igure 7). The plots were also manually examined by an

independent researcher (Dr. Savas) to confirm the genotype callings . In case of a
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Figure 7. AD plot for TaqMan assay for MTHFRJs1801131

..\
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A sample AD plot for TaqMan® SNP genotyping assay

Each dot represents a sample. The black squares at the bottom left show no amplification, which are the
NTCs. The blue dots are homozygotes for the T allele while the red dots are homozygotes for the G allele.

The green dots in the center are heterozygotes.
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discrepancy between the visual inspection of the plots and the automatic genotype

calling, the genotyping reaction was repeated. For failed samples up to three repeat

attempts were made to obtain genotypes , whenever the DNA was available. The finalized

genotyping data was exported into an excel sheet and organized for data analysis.

3.4.4 Genotv ping for GSTTI and GSTMI gene delet ions

To detect GSTTl and GSTMl gene deletions, we performed a multiplex PCR reaction

followed by gel electrophoresis as previously described by Arand et al (188). This PCR

reaction is a triplex reaction including the forward and reverse primers for amplification

of three genes: GSTT1 , GSTMl and albumin gene (ALB). ALB gene serves as a positive

control for successful PCR amplification . ALB gene yields a PCR product which is 350

bp long, GSTTl gene product is 480 bp long and the GSTMI gene product is 215 bp long.

The primer sequences for the three genes are shown in Table 6.

For a 96 well plate, reaction mix was prepared by adding 525JlI 2X Amp1iTaq Gold® 360

Master Mix (product. # 4398790 , kit part. # 4398881 , Applied Biosystems, CA, USA),

26.25JlI GC enhancer (product # 4398799, kit part. # 4398881, Applied Biosystems, CA,

USA), 288.75JlI of sterile water and 105JlIprimers (Integrated DNA Technologies , Iowa,

USA) containing 10JlM of each primer (forward and reverse) for all three genes. The

reaction mix was then equally distributed in wells of a 8-well strip tube using a single

channel pipette. 9JlI of the reaction mix was subsequently transferred to each well of the

MicroAmp® Fast Optical 96-well reaction plate with barcode (0.1 ml) (part. # 4346906,
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Table 6. Primer sequenc es for peR amplific ation of GSTTl, GSTMl , ALB gene

fragments and VNTR in TYMS gene

Primer Sequence
Reference5' to 3'

GSTTI F: TTCCTT ACTGGTCCTCACATCTC
(188)

R: TCACCGGATCA TGGCCAGCA
GSTMI F: GAACTCCCTGAAAAGCTAAAGC

(188)
R: GTTGGGC TCAAATATACGGTGG

ALB F: GCCCTCTGCT AACAAGTCCTAC
(188)

R: GCCCTAAAAA GAAAATCGCCAATC

TYMS
F: GTGGCTCCTGCGTTTCCCCC

(189)
R: TCCGAGCCGGCCACAGGCAT

F=forward, R=reverse
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Applied Biosystems, CA, USA) from the strip tube using a multichannel pipette . I JlI of

DNA solution (4ng/ JlI) was added to the reaction mix in the reaction plate . Optical

adhesive cover (part . # 4360954, Applied Biosystems, CA, USA ) was applied , sealed

tightl y, and the reaction plate was spun at 1000 rpm for - 5-10 seconds in a bench-top

centrifuge (cat. # 75004367, Sorva ll Legend T+ Centrifuge, ThermoFisher Scientific,

MA , USA) . An AQ file was set up for each plate and the PCR runs were perform ed on

the 7900HT Fast Real Time PCR System (part. # 4330966 , Applied Biosystems, CA,

USA) with the following thermocycling conditions: 95°C for 10 minut es (primary

denaturation and activation of Ampli Taq Gold 360 DNA po lym erase in AmpliTaq Gold®

360 Master Mix) , 34 cycles of 95°C for 30 seconds (denaturation), 64°C for 30 seconds

(primer annealing) and ire for I minute (primer extension) and a final cycl e of rr c

for 7 minute s (final elongation) follo wed by a hold at 4 "C until plate remo ved from the

thermo cycler. The plate was spun again at 1000 rpm for - 5 second s after the completion

of the PCR run and PCR produ cts were then ana lyzed using the agaro se gel

electrophoresis .

Agarose gel electrophoresis to genotype GSTT 1 and GSTM 1 gene deletion s:

A 1.5% maxi gel was prepared by dissolving and meltin g 3.75 grams OmniPur® Aga rose

PCR Plus (Product code 2010 , EMD Chemica ls Inc. NJ , USA) in 250 ml IX TBE buffer

in a microwave. Eighteen JlI of 10,000X SYBR ® Safe DNA gel stain (cat. # S33 102,

Invitrogen , Oregon, USA) was added to the molten agar solution and mixed by gentle

swirling. The mixtur e was then pour ed into the ge l apparatus and allowed to solidify . The
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gel cast had two combs of 20 wells each and one comb of 17 wells . After solidification,

the combs and rubber edges were removed and the gel was placed in the electrophoresis

tank filled with IX TBE buffer. 151-11 of 6X DNA Gel loading buffer (cat. # ACI0097,

Omega Bio-tek, GA, USA) was added to each well of an 8-well strip tube .

Approximately - 11-11 of loading buffer was mixed with 10 1-11 of PCR products by

pipetting up and down 2-3 times. The mixture was then loaded into the wells of the gel

using a multichannel pipettor. The first well of each row in the agarose gel was loaded

with - 3-41-11 of 135ng/I-II100 bp DNA ladder (cat. # 0 -1030 , Bioneer, Korea) . The gel

was then run at 70 volts (V) and images were taken at 45 and 65 minutes under

ultraviolet (UV) transillumination in an AlphaImager ® EP (Alpha Innotech , CA, USA).

A filter transmitting UV light of wavelength 302 nanometer (nm) was used for

visualizing SYBR® Safe DNA stained gels on the Alphalmage r® EP. An example of the

image is shown in Figure 8. Individuals with the absence of the topmost band have

GSTTI gene deletion while those with the absence of the bottommost band have GSTMI

gene deletion. One agarose gel can accommodate a total of 48 samples. Hence, two gels

were used to analyze samples from one 96-well PCR plate. For the first gel, samples from

columns 7-12 were loaded since column 12 contains the NTCs in plate wells F12, GI2

and H12. If DNA contamination is observed in any of these wells, the PCR products were

discarded and PCR reactions were repeated . If contamination was not observed , then the

electrophoresis of PCR products from columns 1-6 was also performed.
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Figure 8. Gel image for detection of GSTTI and GSTMI gene deletions

500bp GSTTI

1I I I f =GALB
GSTMI

The first sample is a 100 bp DNA ladder. Individuals with absence of topmost band have deletion of
GS1Tl gene. Individuals with the absence of bottommo st band have deletion of GSTMI gene.
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3.4.5 Genotv ping for 2/3 rep eat s of28 bp in 5' -untranslated region (5'- UTR) of

TYMS gene (rs34743033)

Primer sequences for region flanking rs3474303 3 in 5'- UTR in TYMS gene were obtained

from the literature (189) and are shown in Table 6.

For a 96 well plate, reaction mix was prepared by adding 525,.11 2X AmpliTaq Gold® 360

Master Mix (product. # 4398790, kit part. # 439888 I, Applied Biosystems , CA, USA),

52.5JlI GC enhancer (product. # 4398 799, kit part. # 439888 1 Applied Biosystem s, CA,

USA), 157.5JlI of steri le water and 210JlI primer solutions (Integra ted DNA

Technologies , Iowa, USA) containing 10JlM forward and reverse primers. The reaction

mix was equa lly distributed across an 8-well strip tube using a single channe l pipette. 9JlI

of reaction mix was then transferred to each well of a MicroAmp ® Fast Optical 96-well

reaction plate with barcode (0. I ml) (part. # 4346906 , Applied Biosystems , CA, USA)

using a multichan nel pipette. IJlI DNA solution (4nglJlI) was then added into the reaction

mix and the plate was sealed with VWRTM adhes ive foil for microp lates (cat. # 60941­

on, VWR, PA, USA). The reaction was run in a Veriti 96-well fast thermal cycler (part.

# 4375305, Applied Biosystems, CA, USA) with the following thermocycli ng conditions:

95°C for 10 minutes (primary denaturation and activation ofAmpliTaq Gold 360 DNA

polymerase in AmpliTaq Gold® 360 Master Mix), 35 cycles of 95°C for 30 seconds

(denaturation) , 70°C for 30 seconds (annealing) and ire for I minute (extension) and a

final cycle of i re: for 7 minutes (final elongation) followed by a hold at 4 "C until

81



removal of the plate from the thermocycler .

Agarose gel electrophoresis for 2/3 repeats of28 bp in 5'-UTR of TYMS gene

The method for electrophoresis is similar to that of gene deletions for GSIT 1 and GSTM1

genes with the following changes:

a) A 4% maxi gel was prepared by dissolving and melting 10 grams OmniPu r®

Agarose PCR Plus (Product code 2010, EMD Chemicals Inc. NJ, USA) in 250 ml

1X TBE buffer in a microwave .

b) The gel images were taken under UV transillumination in Alphalmager ® EP

(Alpha Innotech, CA, USA) at 45, 75 and 95 minutes.

PCR products with 2 repeats of 28bp VNTR (2R) of TYMS gene migrate faster and form

the bottommost band while those with 3 repeats (3R) migrate slower and form the

topmost band (Figure 9). We very rarely also observed a 4-repeat allele in our samples .

These samples were confirmed by re-amplifications run on 4.5% agarose gels .

3.5 Data analysis

The genotype data was organized in an Excel sheet and combined with the

clinicopathological, demog raphic, molecular, and prognostic data of the patients obtained

from NFCC R and processed by Dr. Sevtap Savas. The prognostic data contained the

clinicopat hologica l and molecular variables described in detail in section 1.5.2.
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Figure 9. Gel image for detection of 2/3 repeats of 28bp in TYMS gene

~OObp

The first well is a 100 bp DNA ladder. Individuals with two bands are heterozygotes for 2 and 3 repeats
(2R/3 R). Individ uals with only the topmost band have 3R. Individuals with only the bottommo st band have
2R.
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The minor allele frequencies (mAFs) of the polymorphisms in colorectal cancer patients

in both the discovery and validation sets were separately calculated in an Excel

document. The mAFs in other Caucasian populations were obtained from the dbSNP

(186) database or published reports and compared to the mAFs in our cohorts. Duplicate

genotypes were checked for concordance. In the case of MassArray®, if a discordant

genotype was obtained in duplicate samples, these genotypes were excluded from the

analysis. For the TaqMan® SNP genotyping and the PCR-gel electrophoresis techniques,

the discordant samples were repeated to obtain the final genotype data. For VNTR in

TYMSgene, the 2R allele has been shown to have lower transcription activity than the 3R

allele (190). Therefore, we combined the rarely observed 4R alleles with the 3R alleles

for data analysis since it is likely that both 3R and 4R alleles have activities greater than

2Rallele.

Hardy-Weinberg equilibrium (HWE) calculations were performed in both the patient

cohorts separately to observe deviations of genotype frequencies in the cohort using an

online tool (191) and were confirmed by manual calculations. In case of any discrepanc y,

the manual calculations were repeated and noted.

Statistical tests were performed using the PASW Statistics 18 software Release 18.0.2

(April 2010) assuming three models of inheritance: co-dominant , dominant and recessive.

In the co-dominant model, the survival times of patients with minor allele homozygotes

and heterozygotes were separately compared with the survival times of patients with

major allele homozygotes. In the dominant model, the survival times of patients with
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minor allele homozygotes+heterozygotes were compared with the survival times of

patients with major allele homozygotes. In the recessive model , the survival times of

patients with minor allele homozygotes were compared with the survival times of patients

with major allele homozygotes+heterozygotes.

To illustrate the three models , let us consider a polymorphism with the major allele A and

the minor allele G. In the co-dominant model , AA is the reference category and patients

with genotypes AG and GG are separately compared to patients with AA genotypes . In

the dominant model, AA genotypes are compared to AG+GG genotypes . In the recessive

model, AA+AG genotypes are compared to GG genotypes (192) .

For clinicopathological and molecula r variables, the categorical variables included were

sex (males vs females) , tumor histology (mucinous vs non-mucinous), tumor location

(rectum vs colon) , stage (stages II, III and IV individually vs stage I), tumor grade

(poorly differentiated/undifferentiated vs well differentiated/moderately differentiated),

vascular invasion (presence vs absence) , familial risk status (high/intermediate vs low),

MSI status (MSI-H vs MSI-L/MSS) and BRAFI _Val600Glu mutation status (presence vs

absence). Age was analyzed as a continuous variable . The vascular invasion data for the

validation set were not available , but the lymphatic invasion data were. In the discovery

set, it was observed that vascular invasion and lymphatic invasion were highly correlated

with each other (see section 4.2.5) i.e. almost all tumors having vascular invasion had

lymphatic invasion too. Thus we compared the vascular invasion data in the discovery set

with the lymphatic invasion data in the validation set to test for significant differences
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between the two cohorts in terms of invasion.

Genotype data was available for 532 patients in the discovery set and 252 patients in the

validation set. Following coding the data, univariate , multivariate, Chi-square and other

analyses were performed as explained in the next sections .

3.5.1 Univariate survival analy sis

Univariate analysis tests for one-to-one correlatio n of a particular variable with a time­

dependent outcome . In univariate surviva l analysis, as (the primary end-point) was

analyzed using as status and as time (the time from diagnosis of colorectal cancer until

death from any cause) . DFS (the secondary end-point) was analyzed using DFS status

and DFS time (the time from diagnosis of colorectal cancer until the first occurrence of

recurre nce, metastasis or death from any cause) . The genotype , demograp hic, molecular

and clinicopa thological data and prognostic data collected in an Excel document were fed

to PASW software . Analyses were performed to explore correlations between genotypes

and other variab les and as and DFS.

Cox-regression and Kaplan-Meier surviva l analyses were performed for each variable

separate ly. These analyses were also repeated separate ly for as and DFS. Cox-regression

analysis gave the p-value and the hazard-ratio with 95% confidence interva ls whi le

Kaplan-Meier analysis was used to construct survival curves. We have used Cox­

regress ion analysis for construction of mult ivariate models as well as for univariate

analyses . Cox-regression analysis is a proportional hazard regressio n method for analysis

of time to event outcomes . This method has two main assumptio ns (193). Firstly, the
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patients who do not experience outcome at the time of last follow-up are censored. This

allows the patients who did not experience the event to be included in the analysis.

Secondly, the proportionality assumpt ion states that the relative hazard of an event for

persons in one group is constant over time and does not change over the course of the

follow-up period. One way to check the proportionality assumption is to check the

Kaplan-Meier curves for intersection. Two-sided p-values less than 0.05 were considered

statistically significant. In these analyses, the patients who were alive at the time of last

follow-up were censored . The statistical results obtained were exported from PASW and

organized in an Excel document.

3.5.2 Chi-square test and Mann-Whitnev V-test

Chi-square test was performed to check for multicollinearity between the variables

included in this study (genotypes, clinicopathological , and molecular variables). If two

variables were highly correlated, only one would be included in the multivariate model to

reduce redundancy (e.g. vascular and lymphatic invasion, section 4.2.5). The Chi-square

test was performed using the PASW statistical package using crosstabs analysis under

descriptive statistics . The results obtained were exported from the PASW and organized

in an Excel document. Chi-square test was also performed to test for significant

differences between the discovery set (n=532) and entire NFCCR cohort (n=735);

validation set (n=252) and entire validation cohort (n=280); and between the discovery

set (n=532) and validation set (n=252) to check the comparability of the cohorts. Age,

which is a continuous variable, were not normally distributed in either cohorts . Hence we

used the non-parametric Mann-Whitney U-rest to compare median age between the
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cohorts.

3.5.3 Multivariate survival ana lvsis

Multi variate Cox-regr ession analysis result s show the independent predicti ve potential of

each variable in the final model. To obtain reliable result s in multi variate analyses, it is

desirable to have at least 10 outcome s for each variable (193 ). In the discovery set, for

selection of variables to be enter ed in the final multi variate model, all the variables

(genotypes, demographic , clinicop athological and prognostic data) were entered together

in Cox-regression analysis and backward selection method (likeliho od ratio (LR» was

performed. Backward selection method sequentially eliminates the statist ically

insignificant variables and provides the list of selected variables with highest statistica l

significance (194 ). This method selectivel y reduce s the large number of variables to a

small group of the most relevant variables . It is worth noting that in our analy sis, using

this selection method , variables with well-known prognostic significance (such as sex ,

age, stage, MSI-status) remained in the final model. These selected variables were then

entered into the multi variate Cox-regression analysis to obtain the final mult ivariate

analysis result .

In the validation set, our aim was to test the validity of the variables that were found to be

independently correlat ed with OS in the discovery set. Therefore, these variables were

entered together in multivariate Cox-r egression analysis for OS. For DFS ana lysis in the

validation set, only the variables with available data were entered in the multi variate

analysis. The discovery and the validation sets were also pooled together and Cox -
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regression analysis was repeated for both OS and DFS. Although the two cohorts were

found to be dissimilar in many aspects (see section 4.3.3), for exploratory purposes we

combined the cohorts (i.e. the pooled cohort) and repeated the analysis to observe the

associations of polymorphism s in a larger sample set. We also analyzed the multivariate

model for OS in the discovery , validation and pooled sets in the male and female patients

separately. In this study, we did not perform correction for multiple testing .

3.6 Construction of linkage disequilibrium (LD) maps

For MTHFR_Glu429Ala and ERCC5_His46His polymorphism s, the LD maps were

created using the Haploview 4.2 software (195). For this purpose , the SNP genotype data

for a IOOkb region containing the gene of interest for Caucasian population was

downloaded from the International HapMap Project website using the data in HapMap

Genome Browser release #28 (Phases 1, 2 & 3-merged genotypes and frequencies) (196).
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Chapter 4. Results

4.1 Genotype data

The quality control measures in terms of successful duplication rate and successful

genotyping and the missing genotype data for 27 polymorphisms in the discovery set and

4 polymorphisms in the validation set are enlisted in Table 7.

To verify the genotypes obtained , at least 5.9% of the genotypes were successfull y

duplicated for each polymorphism with at least 99.7% concordance rate. The minimum

successful genotyping rate was 97.4% in the discovery cohort and 94.4% in the validation

cohort . The mAF of polymorphisms in the discover y and validation cohorts were also

similar to those described in dbSNP (186) or to literature reports for Caucasian

populations and are shown in Tabl e 8.

Hardy-Weinberg Equilibrium fHWE) Calculations

In the discovery cohort, four poIymorphism s deviated from HWE : ERCC2_Lys75IOln,

OGG1_Ser326Cys, VEGFA_-634 O/C and XRCC3 _Th r24IMet. The remaining

polymorphisms in the discovery set and the four polymorph isms analyzed in the

validation set were in HWE. Reasons for deviation of genotype frequencies from HWE

can be many such as errors in genotyp ing, founder effect , genet ic drift , assorted mating or

reproductive benefit for heterozygotes over wild-type homozygotes (197). However , it is

suggested in the literature that deviation of genotype frequencies from HWE should not

be a critical parameter for inclusion or exclusion ofa polymorphism in the analysis (197).
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Table 7. Genotype data quality measure s

Successful
Missin g

0/0
Gene Polymorphism SNP ID genotype successful

duplication rate
geno type s (n)

genotyping
Discovery set

ERCC2 Lys75 IGin o/r rsl3 181 6.43% 8 98.5
GSTPl Ile l OSVal N G rsl695 6.23% 7 98.7
MTHF R Glu429Ala NC rs l80 1131 6.40% 6 98.9
MTHFR Ala222Va i crr rs1801133 6.24% 8 (I discordant) 98.5
VEGFA -634G/C in 5' -UTR rs2010963 6.43% 8 98.5
XRCCl Arg399Gln G/A rs25487 6.12% 14 (I discordant) 97.4
ERCC5 His46His CIT rs1047768 6.36% 2 99.6
OGG l Ser326Cys C/G rs l052 133 6.34% 1 99.8
ERCCl Asn 118Asn crr rs l1615 6.34% 1 99.8
TYMS indel 6 bp in 3' -UTR rsl6430 6.16% 6 98.9
MLHl Ile219VaiNG rs1799977 6.34% 1 99.8
FAS c.24+733T>C rsl800682 6.36% 2 99.6
lL6 - I74G/C in promoter rsl800795 6.17% 2 99.6

EGFR Arg521Lys G/A rs2227983 6.36% 2 99.6
DCC Arg20 lGly C/G rs2229080 6.36% 2 99.6

MMP2 -1306Crr in promoter rs243865 6.36% 2 99.6
VEGFA +936Crr in 3' -UTR rs3025039 6.34% 1 99.8
FGFR4 Gly388Arg NG rs351855 6.34% 1 99.8
PTGS2 c.3618NG in 3'UTR rs4648298 6.26% 10 98.1
XRCC3 Thr24 1Met crr rs861539 6.34% 1 99.8
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CCNDI Pro241Pro AlG rs9344 6.17% 2 99.6
EXO I Pro757Leu crr rs9350 6.34% I 99.8
MMP I -1607inde1G in promoter rs l799 750 7.08% 0 100

SERPINE I -675 indelG in promoter rs l 799889 7.45% 0 100
GSITI gene deletion 6.90% 0 100
GSTMI gene deletion 6.30% 0 100
TYMS 2/3 repeats of 28 bp rs34743033 7.09% I 98.7

Validation set
MTHFR Glu429Ala AlC rs l80 1131 8.80% 2 99.2
ERCC5 His46His rs1047768 13.22% 10 96.0

SERPINEI -675indeiG in promoter rsl799889 8.98% 7 97.2
GSTM I Gene deletion 5.90% 14 94.4

Successful genotype duplication rate is the ratio of the number of samples successfully genotyped more than once to the total number of samples
successfully genotyped. % successful genotyping is the percentage of samples successfully genotyped. Concordance for the duplicate genotypes
obtained from UHN is 99.73% whereas in TaqMan® assays it was 100%. Concordance is the percentage of duplicated genotypes yielding concordant
results. The discordant genotypes obtained in the duplicated samples using Sequenom MassArray® were not included in the analyses.
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Table 8. Minor allele frequencies (mAF) of the polymorphisms stud ied

Gene Symbol Polymorphism
mAF mAF in discovery

Ca ucas ian (va lidation) set
CCNDI Pro241Pro AlG 48-63% 45.28%

DCC Arg201Gly C/G 33-42% 36.98%
EGFR Arg521Lys G/A 22-30% 26.89%

ERCCI Asn118Asn CIT 33-45% 37.57%
ERCC2 Lys751GIn GIT 27-42% 35.69%
ERCC5 His46His CIT 32-51% 41.13% (42.15%)

EXOI Pro757Leu CIT 15-27% 14.60%
FAS -670AlG in promoter 39-50% 44.91%

FGFR4 Gly388Arg AlG 26-31% 31.26%
GSTM I gene deletion *38-62% 45. 10% (44.54%)
GSTP I lie I05Val AlG 29-42% 36.67%
GSTTI gene deletion *15-20% 17%

IL6 -174G/C in promoter 50-57% 44.25%

MLHl lIe219Vai AlG 0-35% 28.63%
MMPI -1607 indelG in promoter 43.30% 46.90%
MMP2 -1306CIT in promoter 18-25% 22.92%

MTHF R Glu429Ala A/C 33-38% 30.6 1% (30.00%)
MTHFR Ala222Val CIT 21-37% 31.77%

OGGI Ser326Cys C/G 15-22% 23.54%

PTGS2 c.3618A1Gin 3'-UTR 1.7-1.8% 1.63%
SERPlNEl -675 indeiG in promoter 54.30% 46.71% (46.5 3%)

TYMS indel6 bp in 3'-UTR 37.00% 34.13%
TYMS 2/3 repeats of 28-bp 44.60% 46.60%

VEGFA -634G/C in 5'-UTR 20-43% 29.10%
VEGFA +936CIT in 3'-UTR 10-22% 10.73%
XRC CI Arg399Gln G/A 37-58% 34.36%
XRC C3 Thr241 Met CIT 37-65% 39.74%

*mAFs obtained from a published report (198) . mAF information for other variations were retrieved from
the dbSNP database (186) .
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In addition, founder effect is promi nent in the Newfoundland popu lation ( 199) and

therefo re HWE assu mptions may not be fulfi lled. Hence , we included the four

polymorphi sms which deviated from HWE in our ana lyses . For HWE calculations for the

polymorp hisms included in this study , see Table Al in appendix. The polymorph isms

with i value greater than 3.84 were considered to be deviating from HW E (191 ). Of

special note , none of the polymorphisms that deviated from HWE were in the

multivariate ana lysis models described in this thesis . Therefore, their inclusion into our

ana lysis did not alter our main results.

4.2 Univa riate anal ysis

4.2.1 Polymorphisms correlated with OS

For explo ratory purposes, univariate Cox-regres sion analysis was performed and Kaplan­

Meier surviva l plots were obtained for each polymorp hism . Since we observe d that the

co-dom inant model gives a more robust resu lt compared to the recessive and domi nant

models , statistically significant correl ations (p<O.05) in only the co-dominant inheritance

model are discussed here . For comple te tabulated results of the analyses for co-dominant,

recessive and dominant mode ls, refer to Tables A2, A3 and A4 in the appendix.

Six polymorp hisms showed statist ically significan t corre lations with OS in univariate

ana lysis , assuming a co-domi nant inheritance mode l (F igur e 10).
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Figure Hla-Hlf, Kaplan-Meier survival plots Corpolymorphi sms and OS in the discovery set (co-dominant model)

"i~
l.~ \:

lOa. MTHFR_Glu429Ala and OS, HR: 1.73 [1.07-2.81], p=0.025

l:j~
10e. PTGS2_c.3618 AlG and OS, HR: 2.02 [1.03-3 .95], p=0.041

l';~
lOb. ERCC5_His46 His and OS, HR: 1.87 [1.24-2.82], p=0.003

,,.,

lJ~
10d. SERPl NE1_-675 indelG and OS, HR: 0.56 [0.35-0 .89], p=O.013

95





I) MTHFR_Glu429Ala (NG_013351.1:g.16685A>C) (r sI801131 ). Patients

homozygo us for alanine (CC) have a worse OS compared to patients homozygous for

glutamate (AA) (p=0.025, HR=1.733, 95% CI: [1.070 -2.807]) (Figure lOa).

2) ERCC5_His46His (NG_007146.I :g.11344T>C) (rsI047768). Patients homozygous

for T allele have a worse OS compared to patients homozygous for C allele (p=O.003,

HR= 1.87, 95% CI: [1.238-2.824]) (Figure lOb).

3) PTGS2_c.3618 A/G in 3'-UTR (NC_OOOOOl.lO:g.186641682T>C) (rs4648298).

Heterozygotes (GA) have a worse OS compared to patients homozygous for A allele

(p=0.041, HR=2.016, 95% CI: [1.030-3.946]). The mAF for this polymorphism is

very low (1.63%). Hence we excluded this polymorphi sm from mulitivariate analysis

to prevent obtaining unreliable statistical results (193) (Figure 10c).

4) SERPINEl_-675 indelG (NG_013213.1:g.4332_4333in sA) (rsI799889). Patients

homozygous for insG allele had a favorable OS compared to patients homozygous for

delG (p=0.013, HR=0.557, 95% CI: [0.351-0.885]) (Figure lOd).

5) MMPl_-1607 indelG (NG_011740.I :g.3471deIG) (rs1799750). Patients

homozygous for insG allele had a worse OS compa red to patients homozygous for

delG (p=0 .044, HR= 1.539, 95% CI: [1.012-2.339]) (Figure IOe).

6) GSTMI gene deletion. Patients having at least one copy of the gene had a worse OS

when compared to patients homozygous for deletion of the gene (p=0.009,

HR=1.484, 95% CI: [1.104-1.994]) (Figure 10f).
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The results on polymorph isms without statistically significant associatio ns with OS are

shown in Table A2 in appendix.

4.2.2 Clinicopathological features correlated with OS

We also performed univariate Cox-regression analysis and constructed Kaplan-Meier

surviva l plots to test correlation of clinicopatho logica l variables with OS. The results are

depicted in Table 9.

Sex, higher stages, vascular invasion, lymphatic invasion and MSI status were correlated

with OS (Figure 11).

I ) Sex: Males had approximately 50% greater hazard of death when compared to

females (p=0.012, HR= 1.501, 95% CI: [1.09-2.06]) (Figure lIa).

2) Stage: Stage III (p=0.005 , HR=2.151, 95% CI= 1.26-3.68) and stage IV (p<O.OOI,

HR=10.211, 95% CI: [5.80-17.98]) patients had a greater hazard of death when

compared to stage I patients (Figure l lb ).

3) Vascular inva sion: Patients with tumor vascular invasion had - 67% greater hazard

of death when compared to patients without tumor vascular invasion (p=0.001,

HR= I.674, 95% CI: [1.23-2.28]) (Figure llc).

4) Lymphatic invasion: Patients with lymphatic invasion had an approximately 54%

greater hazard of death when compared to patients without lymphatic invasion

(p=0.006, HR=1.535, 95% CI: [1.13-2.08]) (Figure lId)
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Tabl e 9. Clinicopathological featu res correlated with OS in univariate anal ysis

(discovery set)

Variable p-value HR 95%CI n
Sex (males vs females) .012 1.501 1.09-2.06 531

Age at diagnosis .230 1.010 0.99-1.03 531
Histology (mucinous vs non-mucinous) .990 0.997 0.63-1.59 531

Location (rectum vs colon) .129 1.264 0.93-1.71 531
Stage <.001
II vs I .182 1.449 0.84-2.50
III vs I .005 2.151 1.26-3.68
IVvsI <.001 10.211 5.80-17.98 531

Grade (poorly/undifferentiated vs
.735 0.900 0.49-1.66 527

well/moderately differentiated)
Vascular invasion (+ vs-) .001 1.674 1.23-2.28 49 1

Lymphatic invasion (+ vs -) .006 1.535 1.13-2.08 488
Familial risk (high/intermediate vs low) .751 1.049 0.78-1.41 531

MSI status (MSI-H vs MSI-L /S) <.001 0.156 0.06-0.42 510
BRAFJ -VaI600Glu mutation status (+ vs-) .447 0.813 0.48-1.39 483

HR: hazard ratio , CI: confidence interval , n: number of patient s, HR> I implies increased hazard of death,

HR<1 implies reduced hazard of deat h.
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5) MSI statu s: Patients with MSI-H tumors had a surviva l advantage compared to

patients with MSI-L/MSS tumors: they had - 85% reduced hazard of death (p<0.001,

HR=0. 156, 95% CI: [0.06-0.42]) (Figure lIe).

4.2.3 Polymorphisms correlated with DFS

In univariate analysis assuming co-dominant inheritance model, two polymorphisms were

significantly correlated with DFS (Figures 12).

I ) ERCC5_Hi s46His (NG_007146.I:g.1I344T>C) (rsI047768). Patients homozygous

for T allele had a worse DFS compared to patients homozygous for C allele (p=O.Ol,

HR=1.647, 95% CI: [1.124-2.414]) (Figure 12a).

2) GSTMl gene deletion. Patients with at least one copy of the gene had a worse DFS

when compared to patients homozygous for gene deletion (p=0.004, HR=1.489, 95%

CI: [1.133-1.957]) (Figure 12b).

Both these polyporphisms were also associated with as in the discovery cohort in

univariate analysis (section 4.2.1). The results on polymorphisms without statistically

significant associations with DFS are shown in Tabl e AS in the appendix. Results for

recessive and dominant models are shown in Tables A6 and A7 in app endi x.
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Figures 12a-12b. Kaplan-Meier survival plots for polymorphisms and DFS in the

discovery set (co-dominant model)

12a. ERCC5_His46His and DFS, HR: 1.65 [1.12-2.41 ], p=O.OI

~ 0 ,6

~a 04

12b. GSTMI gene deletion and DFS, HR: 1.49 [1.13-1.96], p=O.004

A=absenceofgeneand P=presenceofgene
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4.2.4 Clinicopathological features correlated with DFS

The results for univariate Cox-regression analysis for correlation between

clinicopathological features and DFS are shown in Table 10. Six clinicopathological

features were correlated with DFS in univariate Cox-regression analysis (Figure 13).

1) Sex: Males had an approximate 47% greater hazard of event compared to females

(p=O.O I, HR=I.471 , 95% Cl: [1.097-1.973]) (Figure 13a).

2) Location: Patients with rectal cancer had - 40% greater hazard of event when

compared to colon cancer patients (p=0.017, HR=1.403, 95% Cl: [1.062-1.854])

(Figure I3b ).

3) Stage: Stage III patients have - 100% greater hazard of event (p=0.002, HR=2.096,

95% Cl: [1.314-3.345]) while stage IV patients have - 478% greater hazard of event

(p<O.OOI, HR=5.778, 95% Cl: [3.476-9.604]) when compared to stage 1 patients

(Figure I3c ).

4) Vascu lar invasion: Patients with tumor vascular invasion have - 60% greater hazard

of event when compared to patients without tumor vascular invasion (p=O.OO I,

HR=1.604. 95% Cl: [1.206-2.134]) (Figure I3d ).

5) Lymphatic invasion: Patients with lymphatic invasion have - 50% greater hazard of

event when compared to patients without lymphatic invasion (p=0.005, HR=I.4 98,

95% Cl: [1.129-1.988]) (Figure l3e ).

6) MSI status: Patients with MSI-H tumors had favorable survival when compared to
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Tabl e 10. Clinicopathological features corr elated with DFS in univariate an alysis

(d iscovery set)

Variable p-value HR 95% CI n
Sex (male vs female ) 0.01 1.471 1.097 1.973 530

Age at diagnosis 0.62 1.004 0.989 1.019 530

Histology (mucinous vs non-mucinous) 0.861 0.962 0.624 1.484 530

Location (rectum vs colon) 0.017 1.403 1.062 1.854 530

Stage <0.001
11vs I 0.248 1.324 0.823 2.131
IIIvs I 0.002 2.096 1.314 3.345
IVvsI <0.001 5.778 3.476 9.604 530

Grade (poorly diff/undiffvs well
0.534 0.831 0.464 1.489 526

diff/modera tely diff)
Vascula r invasion (+ vs -) 0.001 1.604 1.206 2.134 490

Lymphatic invasion (+ vs-) 0.005 1.498 1.129 1.988 487
Familial risk (high/moderate vs low) 0.33 1.146 0.871 1.506 530

MSI status (MSI-H vs MSI-LIMSS) <0.001 0.279 0.137 0.566 509
BRAFl Val600Glu mutation (+ vs-) 0.714 0.915 0.57 1.47 483

HR: hazard rat io, CI: confidence interval, n: number of pat ients , diff : differe ntiated, HR> l implies

increasedhazardofevent,HR<1 implies reduced hazard of event.
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patients with MSI-L/MSS tumors with an approximately 72% reduction of hazard for the

event (p<0.001, HR=0.279, 95% CI: [0.137-0.566]) (Figure 131).

4.2.5 Chi- square test result s for correlation between clinicopathological and

molecular variables

We performed this analysis in the discovery set to test for association amongst

clinicopathological and molecular variables. The statistically significant correlations

(p<0.05) are depicted in (Table 11).

Female sex was correlated with colonic location, MSI-H tumors and presence of

BRAFI _Val600Glu mutation in the tumors . Majority of the mucinous tumors were found

in the colon and were also correlated with MSI-H and BRAFl_Val600Glu mutation in the

tumors. BRAFl _Val600Glu mutation was also correlated with MSI-H tumors and

mucinous histology. MSI-H tumors were mostly found in the colon, had high grade and

were mostly found in early stage (stage I and II) patients. Presence of vascular and

lymphatic invasions was correlated with increasing stage and high grade tumors.

Vascular and lymphatic invasions were highly correlated with one another (p=2.68xlO­

!OO). Hence for multivariate analyses, only the data on vascular invasion status was

included into the survival analysis to reduce redundancy .
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Table 11. Cor relation betwe en clinicopathological and molecular var ia bles

(dis covery set)

Var iables p-value Correlation between n
Location and Sex 0.039 females and colon 532

MSI and Sex 0.01 females and MSI-H 511

BRAFI mutation and Sex <0.001 females and mutation 484

Histolo gy and Location 0.014 mucinous and colon 532

MSI and Location <0.001 MSI-H and colon 511
BRAFI Val600Glu and Location <0.001 mutation and colon 484

Stage and Histology 0.027
stage I and non-muci nous,

532
stage II and mucinous

MSI and Histology 0.G38 MSI-H and mucinous 511
BRAFI mutation and Histology 0.048 mutation and mucinous 484

Vascular inva sion and Stage <0.00 1 invasion and stage 492

Lymphatic inva sion and Stage <0.001 invasion and stage 489
MSI and Stage 0.037 MSI-H and stages I & II 511

Vascular inva sion and Grade 0.014
invasion and poorly

488
diffe rentiated

Lymphatic invasion and Gra de 0.041
invasion and poorly

485
differentiated

MSI and Grade 0.01 MSI-H and poorly diff/undiff 507
Lymphatic and Vascular invasions <0.001 presence of invasion 486

BRAFl Val600Glu and MSI <0.001 mutation and MSI-H 477

Only statistically significant associations are shown in the table, n: numbero f patients.



4.3 Multivariate anal ysis for OS

4.3.1 Multi vari ate analy sis for OS in the discovery set (co-domin ant model)

Multivariate analysis is performed to test for independent predictive value of a variable

when adjusted for other variables in the model. The variables were selected for entry into

multivariate analysis as explained in section 3.5.3. Table 12 shows the multivariate

analysis result for OS assuming co-dominant inheritance in the discovery set. For all the

polymorphisms associated in the multivariate analysis in discovery cohort , the

proportionality assumption was met in the univariate analysis (Figure 10).

In multivariate analysis, four polymorphisms showed an independent prognostic potential

when adjusted for sex, age, stage and MSI status. For MTHFR _Glu429Ala

(NG_0 l3351.1 :g.16685A>C), patients homozygous for the alanine variant had - 72%

greater hazard of death when compared to patients homozygous for glutamate (p=0.036,

HR=1.715, 95% CI: [1.036-2.839]) . For ERCC5_His46His (NG_007146.1:g .11344T>C),

patients homozygous for T had significantly worse OS with - 78% greater hazard of death

when compared to patients homozygous for C (p=O.OI, HR=1.782, 95% CI: [1.l50­

2.763]). For SERPINEl_-675 indeiG (NG_013213 .1:g.4332_4333insA), patients

homozygous for insG had favorable OS with -48 % reduced hazard of death when

compared to patients homozygous for deiG allele (p=0.008, HR=0.5 17, 95% C1: [0.319­

0.840]). In case of GSTMI gene deletion, patients with at least one copy of the gene had

worse OS (-40% increased hazard) compared to patients homozygous for deletion of the

gene (p=0.033, HR=1.404, 95% C1: [1.027-1.919]). Male sex, increasing age and stages
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Table 12. Multivariate analysis result for OS in th e discov ery se t (n= 504)

(co-dominant model)

Var iable p-value HR (95% CI) n

MTHFRJsI 801131 0.105

CAvsAA 0.342 1.175(0 .842-1.639) 230 vs 232

CCvsAA 0.036 1.715 (1.036-2.839) 42v s232

ER CCS_ rsl 047768 0.034
TCvsCC 0.098 1.365 (0.944-1.973) 240vs l73

TTvsCC 0.01 1.782(1.15-2.763 ) 91 vs 173

SERPINEl_r s1799889 0.029
G/- vs -/- 0.238 0.809 (0.569-1.15) 258vs l4 1

GG vs -/- 0.008 0.517(0.319-0.84) 105v s 141

GSTMI gene deletion (+ vs-) 0.033 1.404(1.027-1.919) 228 vs 276

Sex (malevs female) 0.031 1.456 (1.036-2.047) 313vs191

Age at diagnosi s 0.046 1.018(1 -1.036)

Stage <0.001
ll vs l 0.18 1.473 (0.836-2.594) 194 vs 95

III vs I 0.01 2.084 (1.194-3.637) 165 vs95

IV vsl <0.001 11.685 (6.454-21.158) 50 vs 95

MSI status (MSI-HI MSI-L-MSS) 0.004 0.233 (0.086-0.635) 56 vs448

MTHF R rs1801131 is MTHFR G1u429Ala, ERCC5 rs1047768 is ERCC5 His46His ,
SE RPINEI rsl 799889 is SERPINEI -675 indelG, G allele for SERPINEI -675 inde lG is referred to as
insG allele -;;nd - alle le is referred to ~ delG alle le in the text, HR: hazard r<uio,CI: confidence interva l, n:
number of patients, HR> I implies increase d hazard of death, HR< I implies reduced hazard of death.
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III and IV had an increased hazard of death while patients having tumors with MSI-H

status had a significantly favorable OS.

After obtaining these results, we aimed to replicate them in another independent

colorectal cancer patient cohort also from Newfoundland (the validation set). For this

purpose, we obtained their genotypes for four polymorphisms (MTHFR _Glu429Ala,

ERCC5_His46His, SERPlNEI_-675 indelG and GSTMI gene deletion) correlated with

OS in the multivariate analysis in the discovery set, and the multivariate analysis was

repeated.

4.3.2 Multivariate analvsi s for OS in the validation set (co-dominant model)

In the validation set, only the MTHFR _G lu429Ala polymorphism showed independent

prognostic value when adjusted for age, stage and MSI status (Table 13). Interestingly,

while we had found the association of Ala/Ala homozygotes with worse OS in the

discovery set, in the validation set, heterozygotes (Glu/Ala) had - 71% increased hazard

of death when compared with Glu/Glu homozygotes (p=O.005, HR=1.713, 95% CI:

[1.181-2.487]). Thus the same polymorphism (MTHFR _Gl u429Ala) was correlated with

worse OS in the discovery and validation sets, although with different patterns

(homozygosity for alanine in the discovery set and heterozygosity in the validation set).

In order to explore more, we also performed separate multivariate analysis with

MTHF R_G lu429Ala genotypes assuming recessive and dominant models, together with

the other clinicoptahological variables in the model (sex, age, stage and MSI status).

Again we have found that the CC (Ala/Ala) genotype was associated with worse OS in
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Table 13. M u lt iva r ia te analysi s r es u lt for O S in th e va lid a t ion set (n= 224)

(co-do m ina nt model)

Va riable p-value HR (95% CI ) n

MTHFRJs1801131 .010

ACvsAA .005 1.713 (1.181-2.48 7) 92 vs l1 2

CCvsAA .730 0.889(0.454- 1.738) 20vs l 12

ERCC5Js I04776 8 .609

TCvsCC .387 1.197(0.796-1.8) 112vs76

TTvsCC .398 1.261(0. 737-2.159) 36vs76

SERPINEIJs l799 889 .716

G/-vs-/- .420 1.187(0.782-1.802) 103 vs 69

GGvs -/- .766 1.075 (0.669-1.727) 52 vs 69

GSTMI gene deletion (+ vs-) .261 1.234 (0.855-1.780) 99 vs l25

Sex (males vs females) .175 1.282 (0.895-1.837) 118 vs l 06

Age at diagnosis <.001 1.051 (1.034-1.069)

Stage <.001

II vsl .662 1.144(0.626-2.092) 80vs44

III vsI .001 2.609 (1.446-4 .707) 64 vs 44

IV vsI <.001 11.324 (5.918-21.669 ) 36 vs 44

MSI sta tus (MSI-H vs MSI-LlMSS) .002 0.257(0.108-0.609) 21 vs203

MTHFR rs l801131 is MT HFR Glu429Ala, ERCC5 rs1047768 is ERCC5 His46His,
SE RPINE I rsl799889 is SERPlNE I -675 indelG, G allele for S ERPINEI -675 indelG is referred to as
insG allelea nd - allele is referred to ~ delG allele in the text, HR: hazard ratio, CI: confidence interval, n:
number of patients, HR>1 implies increased hazard of death, HR<I implies reduced hazard of death.
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the discovery set when compared to AA+AC genotypes (i.e. recess ive inheritance

pattern). However, in the validation set, AC+CC (Ala/Glu and Ala/Ala) genotypes were

associated with worse OS when compared to AA (GlufGlu) genotype (data not shown)

(dominant inheritance pattern) .

4.3.3 Differences between discoverY and valida tion sets

Three of the four the polymorphisms correlated with OS in the discovery set were not

correlated in the validation set i.e. ERCC5_His46His, SERPlNEl_-675 indeiG and

GSTMI gene deletion. However, the MTHF R_Glu429A la Ala var iant was associa ted

with shorter OS in both sets (homozygosity for alanine in the discove ry set and

heterozygosity for alanine in the validatio n set corre lated with shorte r OS). We sought to

understand these results by first looking at the differences between the discovery and

valida tion sets in terms of thei r important clinicopathological and prognostic

characteristics. Apart from a large difference in the sample size (discovery set has more

than twice the number of patients in the validation set) , the cohorts also differed in other

features . To test if these differences were significant, we performed chi-square tests and

Mann-Whi tney U tests (Table 14). We observed that the validation set had a significantly

higher median age (68.7 years compared to 61.36 years in the discovery set, p<O.OOI).

This is expected since patients were recruited in the validation set regardless of their age

and in the discovery set below 75 years of age . The validatio n set also had a greater

proportion of deaths (6 1.51% compared to 33.3% in the discove ry set, p<O.OO I) and

greater proportio n of events (recurre nce/metastasis /dea th) (66.27% compared to 39. 1% in

the discovery set, p<O.OO I) which may be due to the longer follow -up times for patients
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Table 14. Differences between the discovery and validation sets

Discovery Valida tion x/Ma nn- Discovery Va lida tion x2lMa nn-

(n=532) (n=252) Whitn ey U
(n=532) (n=252) Whitney

test U test
Sex n( %) n (%) OS sta tus n (% ) n( %)

male 327(61.50%) 133(52 .78%) dead 177 (33.30%) 155(61.51 %)

female 205(38 .50%) 119 (47.22%) p=0.021 alive 354(66.60%) 97(38.49%)

Median age (yrs) 61.36 (20.7-75) 68.7 (25.3-91.6) p<O.OOI unknown 1(0 .10%) p<O.OOI

Histology DFS statu s

non-mucinous 471(88.50%) 211(83 .73%) no event 323(60.71%) 85(33 .73%)

mucinous 61(11.50%) 41(16.27%) p=0.062 event" 208(39.1%) 167 (66.27%)

Locati on unknown 1(0 .19%) p<O.OOI

colon 353(66.40%) 202(80.16%) MSI Statu s
rectum 179(33 .60%) 50(19 .84%) p<O.OOI MSI-H 56(10.50%) 24(9.52%)

Stage MSSIMSI-L 455(85 .50%) 228(90.48%)

I 99(18 .60%) 48(19 .05%) unknown 21(4 %) p=0.543

II 206(38.70%) 88(34 .92%) *Vascular/Lymphatic
invasion

1lI 175(32.90 %) 68(26 .98%) 326(61.30%) 64(25.40%)

IV 52(9 .80%) 41(16.27 %) + 166(31.20 %) 101(40 .08%)

unknown 7(2 .78%) p=0.034 unknown 40(7 .50%) 87(3 4.52%) p<O.OOI

Grade 5-F U based tr eatm ent
welldi fflmoderatelydiff 489(91.90%) 211(83 .73%) 5-FUtreated 330(62.03%) 88(34 .92%)

poorlydifflundiff 39(7 .30%) 37(14.68%) other/nochemotherapy 199(37.41 %) 148(58 .73%)

unknown 4(0 .80%) 4 (1.59%) p=O.OOI unknown 3 (0.56%) 16(6.35 %) p<O.OOI
'Vascular invasion in the discovery set and lymphatic invasion in the validation set were compared. Familial risk status and BRAFl Val600Glu
mutation status data were not available for the validation set samples and hence were not compared."event refers to the first occurrence of recurrence,
metastasis or death.
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in the validation set. Even in the age-adjusted survival curves (section 2.3, Figure 4 and

Figure 5), the difference in survival times of the two cohorts remained significant. In

addition, the proportion of rectal cancer patients was greater in the discovery set (33.6%

compared to 19.84% in the validation set, p<O.OOI). Also, the proportion of patients

without lymphatic/vascu lar invasion in the validation set was low (25.4% compared to

61.3% in the discovery set, p<O.OO I). There were also treatment related differences

between the two cohorts. A large portion of patients in the discovery set received 5-FU

based chemotherapy (-62%) compared to those in the validation set (-35%) and the

difference was statistically significant (p<O.OOI). Additionally, the validation cohort had

significantly greater proportion of female patients (p=O.021), stage IV patients (p=O.034)

and patients with poorly differentiated or undifferentiated tumor grade (p=O.OO I) than the

discovery cohort Thus a large number of differences between the two cohorts might be a

likely reason for inconsistent results. These differences may partly account for the

differences in correlations observed in the discovery and validation sets and are discussed

in section 5.3.

4.3.4 Multivariate analv sis for OS in the pooled set (co-dominant model)

We then combined the discovery and validation sets and performed the analysis again in

this pooled sample set since it has a larger sample size and greater power for detection of

correlations (Table 15). In the pooled set, when adjusted for age, stage and MSI status,

MTHF R_G lu429A la, ERCC5 _His 46His and GSTMI gene deletion show independent

predictive potential for overall survival. For MTHF R_Glu429Ala, similar to the results in
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Table 15. Multi variate anal ysis result s for OS in the pooled sample set (n=728)

(co-dominant model)

Varia ble p-value HR (95% CI)

MTHFRJs l 801 131 .106

ACvsAA .035 1.298 (1.018-1.654) 322 vs344

CCvsAA .660 1.094 (0.732-1.636) 62v s344

ERCC5Js I047768 .007
TCvsCC .016 1.390 (1.064-1.816) 352 vs24 9

TT vs CC .003 1.652 (1.185-2.303) 127 vs249

SERPINE1_rs1799889 .381
G/- vs -/- .500 0.913 (0.700-1.190) 361vs2 10

GG vs -/- .165 0.790 (0.566-1.102) 157 vs 210

GSTMl gene deletion (+ vs -) .040 1.273(1.011-1.604) 327 vs 401

Sex( males vs females) .146 1.197 (0.939-1.526) 431vs297

Age at diagno sis <.001 1.046 (1.034-1.059)

Stag e <.001
II vsl .091 1.419(0 .946-2.127) 274vs139

IIIvsI <.001 2.377 (1.592-3.550) 229v s139

IV vsl <.001 10.735 (6.993-16.481) 86 vs 139

MSI status (MSI-H vs MSI-LlM SS) <.001 0.269 (0.142-0.510) 77vs 651

MTHFR rs l8 0 1131 is MTHFR Glu429Ala , ERCC5 rs1047768 is ERCC5 His46His,
SERPlNEl rsl 799889 is SERPINEI :675 indelG, G allele for SERPlNEl -675 indelG is referred to as
insG allelea nd - allele is referred to as deJG allele in the text, HR: hazard ratio, CI: confidence interva ls, n:
number of patients, HR>l implies increased hazard of death, HR< I implies reduced hazard of death.
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the validation set, the heterozygotes had worse survival when compared to homozygotes

for the allele coding for the amino acid glutamate (Glu/Glu) with - 30% increased hazard

of death (p=0.035, HR=1.30, 95% CI: [1.02-1.65]). For ERCC5_His46His, the

heterozygotes (p=0.016, HR=1.39, 95% CI: [1.06-1.82]) and homozygotes for T allele

(p=0.003, HR=1.65, 95% CI: [1.19-2.30]) had worse survival when compared to

homozygotes for C allele. Patients having at least one copy of GSTMl gene had - 27%

increased hazard of death when compared to patients with null allele (p=0.04, HR=I.27 ,

95% CI: [1.01-1.60]) . Increasing age and stages III and IV were also correlated with poor

OS. MSI-H status of tumor, as expected, was predictive offavorable prognosis.

4.3.5 Summa ry of result s of multi variat e ana lvses for OS

The results of multivariate analysis in the discovery set, validation set and pooled set are

shown together in Tab le 16.

Because of the biological role of the MTHFR enzyme in 5-FU function (the main

chemotherapeutic agent used in treatment of patients in the discovery and validation

cohorts), we also attempted to replicate the multivariate model in those patients treated

with 5-FU. This analysis, however, did not find association of this polymorphism in the

discovery, validation or pooled set (data not shown).
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Table 16. Summary of multivariate anal ysis result s for OS in th e discovery set (n=504), va lidation set (n=224) and

pooled sample set (n=728) (co-dominant mod el)

Discovery set Valida tion set Pooled set
(n=504, dea ths=168) (n=224,death s=134) (n=728, deaths=302)

Variable p-value HR (95% Cl ) p-value HR(95% CI) p-valu e HR(95% CI)
MTHFRJsl801131 0.105 0.01 0.106

CAvsAA 0.342 1.175(0.842 -1.639) 0.005 1.713 (1.181-2.487) 0.035 1.298 (1.018-1.654)
CCvsAA 0.036 1.715 (1.036-2.839) 0.73 0.889(0.454-1.738) 0.66 1.094 (0.732-1.636)

ERCC5Js I047768 0.034 0.609 0.007
TCvsCC 0.098 1.365(0 .944-1.973) 0.387 1.197(0.796 -1.80) 0.016 1.390 (1.064-1.816)
TTvsCC 0.01 1.782 (1.15-2.763) 0.398 1.261(0 .737-2.159) 0.003 1.652 (1.185-2.303)

SE RPlNEIJs 1799889 0.029 0.716 0.381
G/-vs- I- 0.238 0.809(0.569-1 .15) 0.42 1.187(0 .782-1.802) 0.5 0.913(0.700-1.190)
GGvs -l- 0.008 0.517 (0.319-0.84) 0.766 1.075(0 .669-1.727) 0.165 0.790(0.566-1 .102)

GSTMI gene deletion (+ vs -) 0.033 1.404 (1.027-1.919) 0.261 1.234(0.855-1.780) 0.04 1.273(1.011-1.604)
Sex (male vs female) 0.031 1.456( 1.036-2.047) 0.175 1.282(0 .895-1.837) 0.146 1.197(0.939-1.526)

Age at dia gnosis 0.046 1.018(1-1.0 36) <0.001 1.051(1.034-1.069) <0.001 1.046 (1.034-1.059)

Sta ge <0.001 <0.001 <0.001
stage II vs I 0.18 1.473(0 .836-2.594) 0.662 1.144(0.626 -2.092) 0.091 1.419(0.946-2.127)

stage 1II vsI 0.01 2.084 (1.194-3.637) 0.001 2.609 (1.446-4.707) <0.001 2.377(1. 592-3.550)

stage lVvs l <0.001 11.685 <0.001 11.324 <0.001 10.735
(6.454-21.158) (5.918-21.669) (6.993-16.481)

MSI sta tus (MSI-HI MSI-L-MSS) 0.004 0.233 (0.086-0.635) 0.002 0.257 (0.108-0.609) <0.001 0.269 (0.142-0.510)

AfTHFR rsl80 1131 is AfTHFR Glu429Ala, ERCC5 rs1047768 is ERCC5 His46His, SERPlN E J rsl799889 is SERPlNEJ -675 indelG, G allele for
SERPI NEJ -675 indelG is referred to as insG allele-and - allele is referred to as deiG allele in the text, HR: hazard ratio, CI: confidence interval,
n=number of patients, HR>I implies increased hazard of death, HR<I implies reduced hazard of death.
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4.3.6 Multiva r iate ana lvsis for OS in sex-stratified patients

To test for sex-spec ific differences in associations , we tested the applicab ility of the

multivariate analysis model in males and females separately in the discovery, validation

and pooled sample sets. The results of analysis in female and male patients are

summarize d in Ta ble 17 and Tab le 18, respecti vely. In the case of female patients, none

of the polymorphisms was associated with OS in the discovery or validation sets.

ERCC5_His46His polymorphism was correlated in the pooled set where the

heterozygotes had - 78% increased hazard of death compared to CC homozygotes.

Interestingly, in male patients, all four polymorphisms were correlated with OS in the

discovery set. For MTHFR_Glu429Ala, both the heterozygotes and Ala/Ala homozygotes

had worse survival when compared to Glu/Glu homoz ygotes . The heterozygotes had

- 52% increased hazard of death when compared to Glu/G lu homozygotes. In the

validation set, the heterozygotes had - 116% increase d hazard of death compared to

Glu/Glu homozygotes. Thus corre lation of heterozygo tes with shorter OS in male patients

was confirmed in the validation set. This suggests a sex-specific corre lation of this

polymorphism with OS. This observation may also be a reflection of the greater study

power in the males than in females since males are present in a larger proportion than

females in both the cohorts. In the pooled set, heterozygo tes were corre lated with worse

OS with - 59% increased hazard of death. The ERCC5_His46His. SERPINEl _­

675indeiG polymorphi sms and GSTMI gene deletion were corre lated with OS in the

discovery set but not in the validation set. Their correlation with OS was also observed in

the pooled set.
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Table 17. Multivariate anal ysis for OS in female patients (co-dominant mod el)

Discovery set Valida t ion set Pooled sa mple set

(n=191,death s=54) (n=106,d eath s=54) (n=297, deaths=108)

Variables n-value HR(95%Cl) n-valu e HR(95% Cl) p-value HR(95%Cl)

MTHFR JsI80 1131 0.586 0.1 0.673
ACvsAA 0.332 0.744(0.409-1.353) 0.163 1.524(0 .843-2.754) 0.643 1.100(0.734-1.651)
CCvsAA 0.92 1.052(0.389-2 .846) 0.223 0.388(0.085-1.779) 0.542 0.774(0.340-1.762)

ERCC5Js 1047768 0.15 0.53 0.057
TCvsCC 0.051 1.968(0 .996-3.89 1) 0.268 1.452(0 .750-2.812) 0.019 1.731 (1.094-2.737)
TTvsCC 0.26 1.686(0.679-4.19) 0.786 1.130(0.468-2.728) 0.105 1.656(0 .900-3.046)

SERPl NEJ_rs1799889 0.91 0.15 0.503
G/-vs-I- 0.934 1.028(0.542-1.94 7) 0.073 1.987(0 .937-4.215) 0.352 1.251(0 .78 1-2.004)
GGvs-l- 0.72 0.806(0.248-2.6 17) 0.088 2.109(0.895-4.965) 0.273 1.418(0 .759-2.648)

GSTMJ ene deletion (+ vs -) 0.455 1.241(0 .705-2 .184) 0.871 0.950(0.51 1-1.765) 0.939 .985 (0.663-1.462)

Aae at dia nosis 0.547 1.01(0 .978-1.043) 0.003 1.040(1.014-1.067) <0.001 1.040(1.021-1.060)

Stage <0.001 <0.001 <0.001
II vsl 0.234 1.957(0 .648-5.911) 0.213 1.963(0 .679-5.675) 0.034 2.254 (1.064-4.773)
IlI vsl 0.074 2.82(0.905-8.794) 0.002 5.264 (1.817-15.250) 0.001 3.846 (1.781-8.305 )
IV vsl <0.001 13.373(4.2-42.584) <0.001 28.262 (9.192-86.895) <0.001 22.33500.257-48.635)

MSI status (MS I-H vs MSSIMSI-L) 0.027 0.193(0.045-0.829) 0.013 0.228(0.071-0.728) 0.001 0.245(0.105-0.568)

MTHFR rs1801131 is MTHFR Glu429Ala , ERCC5 rs1047768 is ERC C5 His46His, SERPJNEJ rsl799889 is SERPJNEJ -675 indelG, G allele for
SERPI NEJ _-675 indelG is referred to as insG allele-and - allele is referred to as delG allele in the text, HR: hazard ratio,-CI : confidence interval,n :
number of patients, HR>I implies increased hazard of death, HR<I implies reduced hazard of death.
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Table 18. Multivariate anal ysis for OS in male patients (co-dominant model )

Discovery Set Valida tion set Pooled set

(n=313, deaths=114) (n=118, dea ths=80) (n=431, dea ths=194)

Variable p-value HR (95% CI) p-value HR (95% CI) p-value HR(95% CI)

MT HF RJs1801131 0.024 .013 .015

ACvsAA 0.048 1.516 (1.004-2.288) .004 2.168 (1.284-3.660) .004 1.592 (1.161-2.183)

CCvsAA 0.014 2.144(1.168-3.937) .951 1.025(0.459 -2.293) .267 1.317(0.810-2.142)

ERCC5Js I047768 0.085 .685 .070

TCv s CC 0.661 1.106(0.705-1 .734) .457 1.236 (0.707-2.162) .171 1.263(0 .904-1.766)

TTvsCC 0.037 1.72 (1.033-2.866) .439 1.334(0.643-2.769) .022 1.599 (1.071-2.387)

SERPlNEIJs1799889 0.019 .279 .033

G/-v s -/- 0.125 0.71 (0.458-I.I) .438 .807 (0.470-1.387) .054 0.717(0.511-1.006)

GG vs- /- 0.005 0.458 (0.265-0.789) .110 .601 (0.322-1.123) .013 0.601( 0.403-0.897)

GSTMI gene deletion (+ vs-) 0.044 1.481 (1.01-2.17) .222 1.352(0.834-2.192) .018 1.422 (1.061-1.904)

Age at diagnosis 0.129 1.017 (0.995-1.039) <0.001 1.068(1.043-1.095) <0.001 1.055 (1.037-1.072)

Stage <0.001 <0.001 <0.001

llvsl 0.461 1.288(0 .657-2.527) .885 .947 (0.451-1.988) .474 1.195 (0.734-1.944)

III vsl 0.033 2.024 (1.06-3.867) .032 2.263 (1.072-4.778) .002 2.122( 1.318-3.416)

IV vsl <0.001 11.808 (5.744-24.276) . <0.001 6.717 (2.860-15.776) <0.001 7.366(4.333-12.522)

MSI sta tus (MSI-H vs MSSIMSI-L ) 0.062 0.26 (0.063-1.067) .036 .206(0.047-0.900) .012 0.279 (0.103-0.758)

MTHFR rsl801131 is MTHFR-G1u429Ala, ERCC5 rs l047768 is ERCC5-His46His, SERPlNE I rsl799889 is SERPINE I -675 indelG, G allele for
SERPlNE I -675 indelG is referred to as insG allelea nd - allele is referred to as delG allele in the text, HR=hazard ratio, CI=confidence interval, n:
number of patients, HR> I implies increased hazard of death, HR<I implies reduced hazard of death.
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4.4 Treatment with 5-FU and survival in stage III colon cancer patient s

5-FU alone or in combination with other drugs is the most widely used chemotherapeutic

agent in treatment of stage III colon cancer (200,201). To see the effect of5-FU treatment

on patient survival, we compared survival times of stage III colon cancer patients in the

pooled set treated with 5-FU (n=134) and those who received no chemotherapy or were

treated with other drugs (n=29). Stage III colon cancer patients were chosen since most of

these patients are treated with 5-FU (-82%). In addition, the analysis was performed in

the pooled set to have a large sample size.

In the univariate analysis, as expected (200,201), patients treated with 5-FU had longer

survival times (p<O.OOI) when compared to other patients (Figure 14). A multivariate

analysis including MSI-H status and age also showed that 5-FU treatment is a MSI status

independent prognostic factor and patients who received other chemotherapy or no

chemotherapy had - 235% increased hazard of death (p<O.OOI , HR=3.348, 95% CI:

[2.034-5.511]). These results confirm that 5-FU treatment improves survival in treated

patients .

Since MTHFR enzyme is indirectly involved in the mechanism of action of 5-FU (20 I),

we also analyzed the MTHF R_G lu429A la polymorphism (which reduces MTHFR

activity) with survival in stage III colon cancer patients treated with 5-FU from the

pooled set (n=134). The polymorphism was not correlated with survival in both

univariate and multivariate analyses, suggesting that the MTHFR_G lu429Ala

polymorphism does not affect survival in 5-FU treated stage III colon cancer patients,
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Figure 14. Kaplan -Meier plot for stage III colon cancer patients based on treatment

characteristics (pooled set, OS)
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although these results could have also been obtained due to small sample size. This

analysis was not performed in patients who received other chemotherap y or no

chemotherapy due to small sample size (n=29).

As an exploratory analysis, we also wanted to analyze the combined effect of

polymorphi sms in MTHFR and TYMS genes on survival in 5-FU treated stage III colon

cancer patient s since these proteins are involved in 5-FU pathway. The genotype s for the

four polymorph isms MTHFR (Glu429Ala and Ala222Val) and TYMS (2RJ3R VNTR and

indel6bp) were available only for the samples in the discovery set (n=I06). This small

sample size made it imposib le to perform the statistical analyse s intended above (data not

shown). Thus currentl y it is not known whether these polymorphi sms in MTHFR and

TYMS genes affect survival in our 5-FU treated patients .

4.5 Multivariate analysis for DFS

DFS was our secondary end-point for analysis . In the discovery set, similar to analysis

with as , we selected the variables using the backward elimination LR method and

performed multivariate Cox-regression analysis. The results for analyses in the discovery,

validation and pooled sets are shown in Tabl e 19. In the discovery set, polymorphi sms in

ERCC5 and OGGI genes were correlated with DFS after adjustment for stage and MSI

status. For the ERCC5_His46His polymorphism , patient s homozygous for the T alle le
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Table 19. Multivariate anal ysis for DFS in the discovery set (n=504) , validation set (n=227) and pooled sample set

(n=734) (co-dominant model)

Discovery set Valida tion set Pooled sa mple set

(n=504,ev ents=198) (n=227.events= 148) (n=734. dea t hs=348)

Vari abl e p-value HR (95% CI) p-vaJue HR( 95% CI) p-value HR (95% CI)

ERCC5Js I047768 0.098 0.036 0.007

TC vs CC 0.211 1.235 (0.887-1.72) 0.041 1.483 (1.015-2.167) 0.035 1.304 (1.018-1.670)

TTvsCC 0.032 1.54 (1.039-2.288) O.ot8 1.805 (1.107-2.943) 0.002 1.611 (1.190-2.182)

OGGIJs I052133 0.082

GC vs CC 0.59 1.088 (0.801-1.477)

GGvsCC 0.025 1.81(1.075 -3.038)

ERCCIJs l 16 15 0.152

TC vs TT 0.281 1.193 (0.866-1.643)

CCv sTT 0.054 1.477 (0.993-2.196)

TYMS_rs16430 0.171

6 bp/-vs6 bp/6 bp 0.235 0.831 (0.611-1.128)

-/- vs 6bp /6bp 0.325 1.252 (0.8-1.96)

GSTMIgene deletion( +vs -) 0.09 1.278 (0.962-1.698) 0.366 1.167 (0.835-1.632) 0.125 1.179 (0.955- 1.456)

Location (rectum vs colon) 0.055 1.334( 0.994-1.789) 0.743 1.070(0 .714-1.604) 0.386 1.107 (0.88-1.392)

Stage <0.001 <0.001 <0.001

II vsl 0.099 1.512 (0.925-2.472) 0.036 1.821 (1.041-3.187) 0.0 13 1.588(1.101-2.292)

III vsl 0.003 2.09( 1.281-3.407) <0.001 3.144( 1.793-5.513) <0.001 2.321( 1.614-3.339)

IV vsl <0.001 6.24(3.692-10.533) <0.001 130.162 (52.48-322.83) <0.00 1 7.721(5. 224-11.414)

MSI status (MS I-H vs MSI-U MSS) 0.004 0.35 (0.168-0.71) 0.007 0.366 (0.176-0.758) <0.001 0.373 (0.225-0.621)

ERCC5Js I047768 is ERCC5_His46His, OGGI J s I052133 is OGGI_Ser326Cys , ERCC IJs l 16 15 is ERCCI _A snI18Asn, TYMSJs 16430 is
TYMS_inde16 bp in 3' -UTR, 6 bp in TYMSJs16430 refers to the sequence CTTT AA, HR: hazard ratio, CI: confidence interval , n: number of patients,
HR> I implies increased hazard of event, HR<I implies reduced hazard of event .
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had shorter DFS (-54% increased hazard of event) compared to patients homozygous for

the C allele (p=0.032, HR: 1.542,95% CI: [1.039-2.288]) . For the OGGl _Ser326Cys

polymorphism, patients homozygous for cysteine had significantly reduced DFS (- 81%

increased hazard) compared to patients homozygous for serine (p=0.025, HR:1.808, 95%

CI: [1.075-3.038]). The proportionality assumption was fulfilled for associations of

ERCC5_His46His and OGGl _Ser326Cys polymorphisms with DFS in the univariate

analysis. In addition, tumor stages III and IV were correlated with significantly worse

DFS when compared to stage I, and MSI-H status of tumor was correlated with a

favorable DFS.

For analysis in the validation set, genotypes for OGGl _rsl052133, ERCCIJsl16l5 and

TYMS_rsl6430 polymorphisms were not available . On analyzing the available variables

(ERCC5_His46His, GSTMI gene deletion, location, stage and MSI status) , both the

heterozygotes and minor allele homozygotes for ERCC5_His46His crr were correlated

with worse DFS when adjusted for stage and MSI status. T allele homozygotes had - 81%

increased hazard of event when compared to C allele homozygotes (p=O.O18, HR: 1.805,

95% CI: [1.107-2.943]). Heterozygotes had - 48% increased hazard of the event

(p=0.041, HR: 1.483,95% CI: [1.015-2.167]). Thus the results suggest the association of

ERCC5_His46His with poor DFS in colorectal cancer patients.

In the pooled set, ERCC5_His46His was again correlated with worse DFS when adjusted

for stage and MSI status. Both the heterozygotes (-30% increased hazard) (p=0.035,

HR=1.304, 95% CI: [1.018-1.67]) and homozygotes for T allele (-61 % increased hazard
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of event) (p=0.002, HR=1.611, 95% CI: [1.190-2.182]) had significantly worse DFS

when compared to homozygotes for C allele.

When the multivariate analysis results for DFS and OS were compared,

ERCC5_His46His polymorphism , which was associated with DFS in the discovery ,

validation and pooled sets, was also associated with OS in the discovery and pooled

cohorts (Table 16 and Table 19). MTHFR_Glu429Ala polymorphism was associated

with OS in discovery, validation and pooled cohorts, but did not remain in the

multivariate model of DFS. Two other polymorphisms associated with OS in the

discovery cohort namely SERPINE1_-675indeIG and GSTMl gene deletion, were not

associated with DFS in multivariate analysis. In the case of clinicopathological and

demographic variables, sex, age, stage and MSI status were significantly associated with

OS in the discovery cohort while only stage and MSI status were found to be significantly

associated with DFS in multivariate analysis in all three cohorts .
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Chapter 5. Discussion

Colorectal cancer is a critical health concern in Newfoundland since it has the highest

age-standardized incidence and mortality rates in Canada (27). In recent years, there has

been an upsurge in genetic prognostic studies performed in various colorectal cancer

patient cohorts in an attempt to identify independent genetic prognostic markers.

Identification of genetic prognostic markers may not only help in clinical prognostication

of the patients but will also help us to understand the underlying mechanisms of variable

prognosis in patients . For this thesis project, we have performed genetic prognostic

research in two independent colorectal cancer patient cohorts from Newfoundland. The

survival end-points analyzed were as (primary end-point) and DFS (secondary end­

point).

In the first stage of the project, 27 genetic polymorphisms were analyzed in relation to

as and DFS in a discovery cohort of 532 patients from the NFCCR. The second stage of

the project was for the replication of results obtained in the first stage in a validation set

comprising an additional 252 colorectal cancer patients , also from Newfoundland. For

as, a sex-stratified analysis was also performed in the discovery and validation sets.

Compared to most other genetic prognost ic studies in colorectal cancer, this retrospective

cohort study has certain unique strengths . This is the first such study conducted in the

Newfoundland population and amongst the few in Canada. In addition to external

validation of previously reported correlations, we have performed an internal validation

in which we tried to replicate the initial findings in another cohort from Newfoundland.
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Such internal validation studies are rarely found in the literature . Both cohorts have a

significantly large number of patients followed-up for a significan t duration (up to over

10 years), a resource which only a few research groups have.

5.1 Univariate analysis results for OS in the discovery set

In univaria te analysis, six polymorph isms were correlated with OS in the discovery set in

the co-dominant model: MTHFR_Glu429Ala, ERCC5_His46His, PTGS2_c.3618A/G in

3'-UTR, SERPINEI_-675 indelG, MMPI_-1607 indelG and GSTMI gene deletion .

PTGS2_3618A/G was excluded from multivaria te analysis because of its low minor allele

frequency (1.63%) in order to prevent unreliable statistical results (193). Correlations

with the remaining 21 polymorph isms were not detected in this cohort .

5.2 Multivariate model for OS in the discovery set

The multivariate analysis model for the discovery set assuming codominant inheritance

includes eight variables, each of which had independent predictive value for OS when

adjusted for other variables in the model. Male sex, increasing age, tumors with advanced

stage (III and IV) and MSI-L/MSS were predic tive of poor survival. Along with these

clinicopathologica l variables, four genetic polymorphisms showed independent predictive

value for OS: MTHFR_G1u429Ala, ERCC5_His 46His, SERPINEI_-675 indelG and

GSTMI gene deletion.
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For ERCC5_His46His , our finding suggests worse as (-78 % increased hazard) for

patients homozygous for T allele (TT) when compared to patients homozygous for C

allele (CC). This result is similar to two other studies in which patients homozygous for T

allele had a worse as and PFS (84,87). Two other studies did not find a correlation of

this polymorphism with as (75,87). ERCC5_His46His is a non-splice site synonymous

polymorphism whose functional impact is not clearly known and its potential biological

role in prognosis of cancer patients remains to be elucidated .

In case of SERPlNEl _-675 indelG, the insG allele has been linked to lower

transcriptional activity of the gene (144). The functional role of SERPINEl in cancer

prognosis is ambiguous. For example, it has been shown to reduce tumor angiogenesis at

high concentration while at low concentration it has been shown to induce tumor

angiogenesis and metastasis (202,203). On the other hand, studies in animal models as

well as in vitro experiment s suggest that the worse prognosis of high SERPINEI

expression due to delG allele may be due to its pro-metastatic and pro-angiogenic effect

via multiple mechanisms such as altering cell migration and adhesion properties (203). In

our study, patients homozygous for the insG allele, which is associated with decreased

transcription of the gene, had - 48% reduced hazard of death compared to the patients

homozygous for delG allele, which may be due to the reduced pro-angiogenic and pro­

metastatic abilities of the protein. Our finding is concordant with that in a Swedish

colorectal cancer patient cohort in which insG homozygotes had a favorable prognosis

compared to heterozygote s and delG homozygotes (145).
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In the case ofa GSTMl gene deletion, patients with at least one copy of the GSTMl gene

showed -40% increased hazard of death when compared to patients with null genotype.

Most patients in the discovery set were treated with 5-FU based chemotherapy and/or

radiotherapy and it is known that part of the mechanism of these therapies is through

generation of reactive oxygen species (ROS) which cause oxidative damage to the tumor

cells (204,205). A possible explanation for our finding could be the enhanced efficacy of

these therapies in patients with GSTMl null genotypes leading to favorable prognosis .

This result contrasts with the findings in a small Hungarian cohort of colorectal cancer

patients in which Dukes' stage B colorectal cancer patients (n=34) with homozygous

deletion of GSTMl gene had worse as when compared to patients with at least one copy

of the gene (95). This discrepancy between our results and Csejtei et al. (95) study may

be due to differences in patient cohort size and stage (95). However, several other studies

also did not find a correlation of this gene deletion with as (77,78,96,97,101).

For MTHFR _Glu429Ala, patients homozygous for the amino acid alanine (Ala/Ala) had

- 72% increased hazard of death when compared to patients homozygous for the amino

acid glutamate (Glu/Glu). This correlation of alanine variant with poor survival is

concordant with another study in a Spanish colorectal cancer patient cohort in which

patients homozygous for the amino acid glutamate (Glu/Glu) had favorable as (137). In

another study, a result discordant with ours was reported. Female colorectal cancer

patients (mixed ethnicities) homozygous for amino acid glutamate (Glu/Glu) were

reported to have favorable as relative to other genotypes (Ala/Ala and Glu/Ala) (133).

However, several other studies did not find a correlation with this polymorphism
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(76,78,128,130,134,135). This polymorphism and its relation to prognosis are discussed

in detail in the later sections.

5.3 Multivariate analysis for OS in the validation set

We next aimed to replicate the multivariate model in the discovery set in the validation

set (consisting of252 patients from Newfoundland) including sex, age, stage, MSl-status,

MTHFR _Glu429Ala, ERCC5_His46His, SERPI NE1_-675 indeiG and GSTM l gene

deletion genotypes. In the validation set, the correlations of age, stage and MSI-status, but

not sex were replicated. Similar to the results in the discovery set, increasing age,

advanced stages (III and IV) and MSI-L/MSS were significantly correlated with worse

OS in the validation set. In the case of genetic polymorphisms, ERCC5_His46His,

SERPlNE 1_-675 indelG polymorphisms and GSTM l gene deletion were not correlated

with OS in the validation set. Therefore, their results in the discovery set were not

replicated in the validation set. However, interestingly, MTHFR _Glu429Al a

polymorphism was correlated with OS, although this time, the heterozygotes (Glu/Ala)

had worse prognosis compared to homozygotes for glutamate (Glu/Glu). This association

is different than that in the discovery set where homozygotes for alanine (Ala/Ala) had

poor prognosis.
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5.4 Possible reasons for differences in results obtained in the discovery

and validation sets

Our validation study did not validate the associations of ERCC5_His46His, SERPINEI_­

675 indelG polymorphisms and GSTMI gene deletion with OS. However, we found the

association of two different genotypes with OS in the case of MTHFR _Glu429Ala

polymorphism. While these two genotypes (CC homozygous genotype coding for the

alanine variant in the discovery set and AC heterozygous genotype coding for both

alanine and glutamate variants in the validation set) were different from each other,

nevertheless, they contained the same allele (C allele coding for alanine variant). The

possible reasons for such an observation could be:

i) Chance of correlations being false positives or false negatives

ii) Differences in study power in two cohorts

iii) Differences between the two cohorts

iv) Sex-specific effects

v) Other polymorphisms in linkage disequilibrium with MTHFR _Glu429Ala

Chance of correlation s being false positives or false negatives: It is possible that

the correlations observed in the discovery set, which were not replicated in the

validation set (ERCC5_His46His, SERPlNEI_-675indeIG, GSTMI gene deletion) are

false positives, particular ly in case of the SERPlNEI_-675 indelG, ERCC5_His46His

polymorphisms and the GSTMI gene deletion . Alternatively , it is possible that the
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results obtained in the validation set are false negatives. Considering the small sample

size of the validation set, it may not have enough power to detect a similar effect (see

below).

ii) Differences in study power in two cohorts: Our analysis showed that heterozygo tes

generally have more study power to detect a corre lation since they are in greater

numbers compared to minor allele homozygotes (data not shown). Correlations of

minor allele homozygotes with OS were observed in the discovery set for

MTHFR_G1u429Ala, ERCC5_His46His, SERP INE 1_-675 indelG polymorp hisms

and GSTMI gene deletion, but not in the validation set. This might be due to the

insuffic ient power because of the small cohort size in the validation set (less than half

the size of discovery set) and the lower number of minor allele homozygotes when

compared to the discovery set. Alternat ively, the observation may also be due to

smaller effect-size of the polymorphisms in the validation cohort than the discovery

cohort, which might have remained undetected.

iii) Differences between the two cohorts: The validation set is not fully comparab le to

the discovery set in terms of cohort size, number of events and a few variab les (e.g.

age) . Specifically, the validation set has a greater percentage (or earlier occurrence) of

deaths than the discovery cohort (62% compared to 33% in discovery set, p<O.OOI)

and this cohort is characterized by patients with a statist ically significa ntly higher

median age compared to the discovery set (p<O.OO I). It is also likely that medical care

might have been different for the discovery and validation cohort patients, since they
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were recruited at different time period s.

It is also likely that inter-patient variability in folate intake or bioavailability can

modify the prognosis of the patients . Additionally, folate pathway involves a number

of other genes which may be polymorphic (206). These variations may also modify

the effect of MTHFR _Glu429Ala in colorectal cancer prognosis. It is known that

older individuals have an impaired ability to absorb dietary folate (207) . Therefore the

age difference between the cohorts may also explain why we detected an association

with different patterns (homozygosity in discovery set and heterozygosity in the

validation set) of MTHFR _Glu429Ala with OS in these two cohorts. Possible

differences between young and old colorectal cancer patients in terms of folate

pathway are discussed in detail in section 5.4 .2.

Additionally, a significantly greater proportion of patients in the discovery set were

treated with 5-FU compared to patients in the validation set. This difference may

account for the higher OS rate of the discovery set patients compared to the validation

set patients, even after age-adjustment (section 2.3).

iv) Sex-specific effect: It is also possibl e that the differences in associations in the two

cohorts may be due to sub-group effects. For example , in females, none of the

polymorphisms were correlated with OS in the multivariate analysis in either patient

set. But in males , the association ofheterozygotes for MTHFR _Glu429Ala with OS

was detected in both sets . This result suggests that prognostic mechanisms may differ

between male and female colorectal cancer patients and it is discussed in detail in
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section 5.5.

v) Other polymorphisms in LD with M THFR_G lu429A la: MTHFR_Glu429Ala lies

in a 12 kb long LD block which has a number of other known SNPs (Figure 15). It is

possible that the true prognostic marker, if it indeed exists, may be a SNP in close

proximity to MTHFR _Glu429Ala in this LD block with a high (but not complete)

correlation with it. For example, another polymorphism MTHFR_A la222Va l is in the

same LD block as MTHF R_Glu429A la but these two SNPs are not correlated with

each other (data not shown). MTHFR _A la222Va l results in a thermolabile enzyme

and causes a more significant reduction in the MTHFR enzyme activity than

MTHFR _Glu429Ala (136,208). It is also reported that MTHFR activity is further

reduced if these two polymorphisms are present together (136,208,209). This

polymorphism was included in our study too. However, it was not associated with OS

in the discovery set. Further studies on other SNPs in this LD block and their

correlations with prognosis are warranted.

5.5 Folate pathway, MTHFR_ Glu429Ala polymorphism and their

possible relation to cancer prognosis

Although the patterns of associations differ, MTHFR _Glu429Ala polymorphism was

associated with OS in both the discovery and validation sets. In the discovery set, AlaiAla

homozygotes had - 72% increased hazard of death compared to Glu/Glu homozygotes

137



Figure 15. LD block of MTHFR_Glu429Ala (rsI801131)

II II t 1 I IIII I 1 i I
---=----------=~l

The black triangle shows the LD block in which MTHF R_G1u429A la (rs I80113 1) is located (circled) .
Below the LD map. other known polymorphisms in this block are shown. rs15375l 6 and rsl3306553

(which are shown in boxes) are the first and last SNPs respectively of the LD block. rs l80 1l3 1 is circled to
help demonstrate the relative position of this polymorphism within this LD block.
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(p=0.036, HR: 1.715,95% CI: [1.04-2 .84]) while in the validation set, the heterozygotes

(Glu/Ala ) had - 71% increased hazard of death compared to Glu/Glu homoz ygotes

(p=0.005, HR: 1.713,95% CI: [1.181-2.487]) .

Both genotypes (CC, AC) are known to lead to reduced MTHFR enzyme activity

(136,208). The role of the MTHFR_G lu429Ala polymorphism in colorectal cancer

outcome seems to be complex and currently not well understood . Based on the current

literature findings about this variant and its function , the followin g mechanisms by which

MTHFR variants leads to poor outcome can be suggested .

Folate, also known as vitamin B9, is an essential molecule for one-carbon transfer

reactions. MTHFR is involved in folate metaboli sm where it converts 5,IO-methylene

tetrahydrofolate (5,IO-MTHF) to 5-methyl tetrahydrofolate (5-MTHF ), which is the

circulatory form of folate (206) . Both forms of folate mediate one-carbon transfer

reactions although for different purposes . 5, IO-MTHF is predominantl y used for the de

novo synthesi s of thymidine and purines which are used by the replicating cells for DNA

synthesis whereas 5-MTHF is predominantl y used for synthesis of methionine from

homoc ysteine , which is then used for synthesis of S-adenos yl methionine (SAM) (206).

SAM serves as a methyl donor for a large number of biological reaction s, includin g

methylation of DNA (206) (Figure 16). MTHFR enzyme has two domains, a catalytic

domain and a regulatory domain and the Glu429Ala polymorphism lies in the regulator y

domain of the protein (2 10). Studies in human lymphocytes have reported reduced

MTHFR enzyme activity in alanine variant (136 ,208). Although both heterozygotes and
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Figure 16. Folate pathway with normal MTHFR activity

Methyl donor for multip le

methylation reactions ,

including DNA methylation

5, IO-MTH F: 5, IO-methylene tetrahydro folate, 5-MTHF : 5-methyl tetrahydrof olate, MTH FR: methylene
tetrahydrofolatereductase,SAM:S-adenosylmethionine
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homozygotes have reduced enzyme activity, the effect is more severe in alanine

homozygotes which have - 60% of the normal enzymatic activity, while the

heterozygotes have - 80% of the normal enzymatic activity (136,208). Reduced MTHFR

activity can thus result in the accumulati on of 5, 10-MTHF and a concurrent reduction of

5-MTHF since the former is not efficiently converted to the latter. We believe that the

accumulation of 5, IO-MTHF and concurrent reduced availability of 5-MTHF may lead to

poor prognosis in patients. From clinical trials and animal studies, the role of folate

supplementation in prevention of colorectal cancer has been established (211). However,

reports have recently emerged which suggest different roles of folate supplementation in

different scenarios, i.e. folate supplementation indeed prevents development of colorectal

adenoma but once a colorectal adenoma has developed, high folate intake in fact aids its

growth and progression (211-214). In rat models of colorectal cancer , folate

supplementation has been associated with progression of already developed cancer (213).

Also, in the Aspirin/Folate Polyp Prevention Study, folate supplementation was

associated with higher risk of advanced adenomas as well as increased number of

adenomas in patients with previously established colorectal adenomas (211,213). It is

believed that with folate supplementation, the greater availability of nucleotide precursors

is used by the rapidly dividing tumor cells which favor tumor progression

(206,212,213 ,215). In the case of our study, it is likely that for patients with reduced

MTHFR enzyme activity (Ala/Ala homozygotes and Glu/Ala heterozygotes for

MTHFR_Glu429Ala polymorphism), the accumulation of 5, IO-MTHF, which is

predominantly used for nucleotide synthesis, may make nucleotide precursors available to
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tumor cells in abundance. This may have assisted tumor growth and progression

eventually leading to poor prognosis (Figure 17). In a study using knockout mice with

heterozygous or homozygous deletions of the MTHFR gene, it was observed that the

amount of SAM as well as the extent of DNA methylation were significantly reduced,

suggesting that reduced MTHFR activity (in our case, due to Glu429Ala polymorphism)

may lead to similar, although less severe observation (216). A Harvard group also

reported that global DNA hypomethylation in colon tumor cells was correlated with

worse cancer-specific survival as well as as in two independent cohorts with over 600

samples (217). Thus, reduced activity of MTHFR due to MTHFR _Glu429Ala may have

led to reducedsynthesis of SAM, and this may have led to DNA hypomethylation which

in tum could have led to poor prognosis in our patients. DNA hypomethylation is known

to induce carcinogenesis by mechanisms such as rendering the DNA hypermutable and

inducing strand breaks, destabilizing the chromatin' s conformation, deregulating gene

transcription or even triggering inflammatory pathways (215,217). These mechanisms

may increase tumor aggression as well and lead to poor prognosis (217). These

hypotheses and possible explanations are based on literature findings, often ambiguous,

and hence need to be further evaluated.

5.5.1 Correlation orGlu/Ala heterozvgotes wit h worse OS in the va lida tion set

In the validation set, the heterozygotes for MT HFR_G lu429A la had a worse as

compared to Glu/Glu homozygotes while in the discovery set, Ala/Ala homozygotes had

poor as.This difference in associations may be due to the age-specific differences in the
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Figure 17. Hypothe sized changes in folate pathway with reduced MTHFR activity

due to M THFR_ Glu429Ala polymorphi sm

SAM

(methyl donor for DNA methylation)

Pur ine a nd th ymidin e synthesis

Accumu lation of 5,\ O-MTHF

maymakeabundantnucleotides

availab le for tumor cells to grow

Reduction of 5-MTHF may

cause reduced synthesis of SAM

and DNA hypo methylation

5,IO-MTHF : 5,10-methylene tetrahydrofolate, 5-MTHF : 5-methyl tetrahydrofolate, MTHFR : methylene
tetrahydrofolatereductase,SAM:S-adenosylmethionine
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folate pathway. The validation set has a significantly higher median age compared to the

discovery set (p<O.OO I). It is also known that older individuals have an inherent reduced

ability to absorb dietary folate (207). We hypothesize that although the low availability of

folate may not provide ample amount of nucleotide precursors for tumor progression,

reduced absorption of folate coupled with reduced MTHFR activity may lead to a severe

deficiency of available 5-MTHF in aged individuals. This may have caused severe

deficiency of SAM and subsequent DNA hypomethylation. Hence this association may

be age-specific in older individuals and heterozygosity of the polymorphism may be

sufficient to cause worse prognosis (Figure 17). In this case, we would also expect to

find association of the AlaiAla homozygotes with as as well. This possible association

might have been missed because of the low number of homozygotes in this cohort (i.e.

because of insufficient power).

5.6 Validation of correlation of MTHFR_ Glu429Ala polymorphism with

OS in male patients (co-dominant model )

In the sub-set of male patients, correlation of MTHFR _Glu429Ala polymorphism was

replicated in the validation set. In both the discovery and validation sets, the

hetereozygotes (Glu/Ala) had a worse as when compared to Glu/Glu homozygotes. The

AlaiAla homozygotes were also associated with worse as in the male patients of the

discovery set. However, in female patients, none of the polymorphisms were correlated

with as either in the discovery set or validation set. Although this may be due to lack
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power (i.e. false negative findings), these data sugges t a gender-specific corre lation of

this polymorphism with OS.

Reports on gender-specific diffe rences for MTHFR _G lu429Ala or in the folate pathway

are limited . In one study in healthy Singaporean Chinese individuals , males had a

significantly greater extent of methylation of the MTHFR gene compared to females

(2 18). If this does cause an inherent reduct ion in MTHF R gene expression in men, then

the lower amount of MTHF R coupled with the Glu429Ala polymorphism may have led

to increased 5, IO-MTHF and reduced 5-MTHF in males compared to females. This

increase in 5, IO-MTHF and concurrent decrease in 5-MTHF may have led to worse

prognosis in males via increased availability of nucleotide precursors for tumor cells and

increase d DNA hypomethylation respectively. This male-specific correlation with

surviva l in our study is in conflict with a previous study in a cohort of 141 metastatic

colorecta l cancer patients in which female patients homozygous for glutamate (GluJGlu)

had a longer OS compa red to female patients homozygous for alanine (Ala/Ala) or

heterozygotes (GiuJAla) after univariate analys is (133). However , all the patients in that

study were stage IV patients (metastatic colorectal cancer) and these authors did not

perform a multivariate analysis. Our study predominantly contains early stage patients

and includes multivariate analysis. Therefore their results are not directly comparab le to
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5.7 Validation of correlation of ERCC5_His46His polymorphi sm with

DFS in the validation set (co-dominant model)

DFS was our secondary end-point for analysis and included the patients who experienced

recurrence or metastasis in addition to those included in OS analysis . In the discovery set,

the ERCC5_His46His and OGG1_Ser326Cys polymorphisms along with stage and MSI

status were correlated with DFS. For ERCC5_His46His (C>T), patients homozygous for

the T allele had worse DFS compared to homozygotes for C allele (p=0.032, HR=I .54,

95% Cl= [1.04-2.29],) while for OGG1_Ser326Cys, patients homozygo us for cysteine

had worse DFS (p=0.025, HR= 1.81, 95% CI: [1.2-3.72]).

In the validation set, only the genotypes for the ERCC5_His46His polymorphism but not

OGG1_Ser326Cys, were avai lable for analysis. In this set too, patients homozygous for

the T allele had a worse DFS with - 81% increased hazard of event when compared to

patients homozygous for the C allele (p=0.018 , HR=1.805 , 95% CI: [1.107-2.943]). The

functional consequences of this polymorphism are not yet known . One possibility is that

the true correlation could be due to another polymorphism in LD with ERCC5_His46His

(Figure 18). ERCC5 is a DNA repair protein and the ERCC5_His46His polymorphism

has been reported to be associated with reduced risk of developing lung cancer in

individuals homozygous for the variant alle le (TT) in a Norwegian case-control study

(2 19). In other studies, LOH at l3q33 which encompasses the ERCC5gene is observed in

prostate cancer, head and neck cancer and ovarian cancer cells (220-223) . However, LOH

of the ERCC5 gene is less frequently observe d in colon cancer cells when compared to
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Figure 18. LD block of ERCC5_His46His (rsI047768)

Only the beginning of the LD block is shown due to space limitations. Locat ion of ERCC5_His46His
polymorph ism (rs I047768) in the block is circled .
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other cancers (224). LOH of ERCC5, as well as its down regulation were associated with

a favorable PFS in ovarian cancer patients treated with platinum-based chemotherapy,

presumably due to increased efficacy of the drugs (225). However, the role of ERCC5

and the ERCC5_His46His polymorphism in recurrence or metastasis in colorectal cancer

patients is yet to be investigated. Therefore this polymorphism or other genetic variations

closely linked to it are interesting candidates as disease-progressio n markers in colorectal

cancer and further studies are warranted.

5.8 Absence of correlations of 22 polymorphisms in the discovery set

In the discovery set, only four out of the 27 chosen polymorphisms were correlated with

OS. Thus correlations of22 polymorphisms (PTGS2_36 18NG in 3'-UT R was excluded

from analysis due to its low mAF) with survival were not detected. All 27 polymorphisms

were reported to be correlated with survival in at least one study in the literature (section

1.7) which was the primary reason for selection of these polymorphisms for inclusion in

this project. It is likely that the absence of correlations of these 21 polymorphisms

(PTGS2_c.3618NG excluded) in our study is due to differences in cohort characteristic s

between our study and previous studies, a situation commonly observed in literature

(181,182). These differences between the cohorts may be in terms of ethnicity, treatment

characteristics, variable follow-up times and variable clinical characteristics. The

discovery cohort is one of the largest colorectal cancer cohorts in which such a study has

been performed. This cohort is predominantly composed of early stage Caucasian
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patients followed up to over 10 years, a large percentage of which were treated with 5­

FU-based chemotherapy. These characteristics may not be shared by other cohorts and

we suggest that this may be a reason why these 22 polymorphisms were not correlated in

this cohort.

Our study has certain drawbacks. Firstly, the validation cohort has less than half the

number of patients compared to discovery cohort. Secondly, the discovery and validation

cohorts have dissimilariti es in terms of patient and tumor characteristics. Thirdly, the

discovery cohort is biased toward early-stage patients relative to the validation cohort .

These differences between the two cohorts may have limited the validation of

associations observed in the discovery cohort.

Genetic prognostic research is an emerging field and it currently faces certain challenges.

Multiple studies performed on the same genetic marker may not always give the same

results due to differences in cohort characteristics, treatment characteristics, study design

and statistical methods used. Hence larger studies, including meta-analysis or large

prospective studies may be necessary to establish the prognostic relevance of genetic

markers.

5.9 Conclusion

This is the first study in NL and one of the few studies in Canada to investigate the

potential for using inherited variants as prognostic markers in colorectal cancer. It is also

one of the few studies in the world that attempts to validate the results obtained in an
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additional patient cohort in colorectal cancer. We suggest that larger studies on the

MTHFR _Glu429Ala and ERCC5_His46His polymorphisms, as well as other variants in

linkage disequlibrium with these polymorphisms , should be performed. In the case of

MTHFR _Glu429Ala, sex-specific functional studies are also warranted. Eventually these

studies may help to better predict the outcome of patients and to enable personalized

treatment based on a patient's genetic profile.
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Fig At. OS plot of NFCCR cohort
(n=735)

OS plot of NFCCR cohort (n=735).

5-year OSrate - 62%.

Fig A2. OS plot of entire validation cohort
(n=280)

OS plot of entire validation coh0I1(n=280) .

5-yearOS rate - 50%.
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Table AI. Hardy-Weinberg Equilibr ium (HW E) calculations

Gene Symbol Polymorphism n lvalue p s 0.05 Genotypes in HW E

Discovery set
CCND I rs9344 Pr024 IPro AlG 530 0.01 no yes

DCC rs2229080 Arg20 lGly C/G 530 0.7 no yes
EGFR rs2227983 Arg52 1Lys G/A 530 2.6 1 no yes

ERCCI rs l 1615 Asn l 18Asn CIT 531 3.46 no yes
ERCC2 rs13181 Lvs751Gln Grr 524 4.6 yes no
ERCC5 rs1047768 His46His CIT 530 0.6 no yes
EXOI rs9350 Pro757Leu CIT 531 0.01 no yes
FAS rs l800682 c-24+733T>C 530 0.81 no yes

FGFR4 rs351855 Gly388Arg AlG 531 2.68 no yes
*GSTM I gene deletion n/a n/a n/a n/a
GSTP I rs l695 Ilel 05Vai A/G 525 0.01 no yes
*GSTT I gene deletion n,a n/a n/a n/a

IL6 rs l800795 - I74G/C in promoter 530 0.1 no yes
MLHl rs1799977 Ile219Vai AlG 531 0.1 no yes
MMPI rs l799750 -1607 indel G in promoter 532 0.76 no yes
MMP2 rs243865 -1306CIT in promoter 530 2.07 no yes

MTHFR rsl801133 Ala222Vai CIT 524 0.15 no yes
MTHFR rs l80 1131 Glu429Ala AlC 526 1.66 no yes
OGGJ rsl052133 Ser326Cys C/G 531 4.32 yes no
PTGS2 rs4648298 c.3618A1G in 3'-UTR 522 0.14 no yes

SERPlNE l rs l799889 -675 indelG in promoter 532 1.12 no yes
TYMS rs34743033 2/3 repeats of28bp 532 1.28 no yes
TYMS rs l6430 indel6 bp in 3' -UTR 526 0.02 no yes

VE GFA rs2010963 -634G/C in 5'- UTR 524 9.58 yes no
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VEGFA I rs3025039 +936CIT in 3' -UTR I 531 I 0.5 I no I yes
XRCCl I rs25487 Arg399G ln G/A I 518 I 0.05 I no I yes
XRCC3 I rs861539 T hr241Met err I 531 I 5.42 I yes I no

Validat ion set
MTHFR I rs l801 131 Glu429AlaAlC I 250 I 0.02 I no I yes
ERCC5 I rs1047768 His46His CIT I 242 I 0.28 I no I yes

SERPI NEl I rs l799889 -675 indelG in promoter I 245 I 1.62 I no I yes
*GSTMl I gene deletion I n/a I n/a I n/a I n/a

n=number of samples genotyped. nJa= not applicable. Polymorph isms with x· value greater than 3.84 were considered to be deviating from HWE with
statistical significance (Rodriguez S et al. American Journal of Epidemiology, 2009 ). Polymorphisms deviated from HWE are shown in bold. ' For these
deletions, the methods applied did not detect heterozygotes.
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Table A2. Univariate Cox-regression analy sis for 27 polymorphisms with OS

(co-dominant model)

Variable p-value OR I 95% CI I n
ERCC2Js13 181 0.488

GTvsTT 0.315 0.848 10.6 15-1.169 1
GGvsTT 0.343 0.804 0.513-1.261 523

GSTPIJs 1695 0.66
GAvsAA 0.415 1.145 10.827-1.584 1
GGvsAA 0.483 1.175 0.749-1.843 524

MTHFRJs1801131 0.079
CAvsAA 0.654 1.0751 0.784-1.4741
CCvsAA 0.025 1.733 1.070-2.807 525

MTHFR_fs1801133 0.932
TC vsCC 0.738 1.055 10.771-1.443 1
TTvs CC 0.949 0.983 0.582-1.660 523

VEGFA_fs2010963 0.369
GCvsGG 0.705 1.0631 0.774-1.461 1
CC vsGG 0.218 0.71 0.412-1.224 523

XRCCl_fs25487 0.442
AGvsGG 0.202 1.23 10.895-1.691 1
AAvsGG 0.701 1.105 0.663-1.841 517

ERCC5_fs l047768 0.012
TCvsCC 0.097 1.347 10.948-1.914 /
TTvsCC 0.003 1.87 1.238-2.824 529

OGGIJs 1052133 0.868
GC vsCC 0.71 1.062/ 0.772-1.462 1
GGvsCC 0.655 1.141 0.641-2.030 530

ERCCl _fs 11615 0.705
TC vsTT 0.958 1.009 10.727-1.399 1
CC vsTT 0.434 1.183 0.776-1.802 530

TYMS fs16430 0.549
6 bp/- v;6 bp/6 bp 0.313 0.85 10.619-1.1661

-1-vs 6 bp/6 bp 0.482 0.836 0.507-1.378 525
MLHl JS 1799977 0.72

GAvsAA 0.701 1.062 10.782-1.443 1
GGvsAA 0.55 0.832 0.454-1.522 530

FASJS 1800682 0.478
TCvs TT 0.848 0.967 10.686-1.362 /
CCvs TT 0.348 1.214 0.810-1.820 529

lL6_fS1800795 0.146
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GCvsGG 0.079 1.361 10.965-1.9181
CCvs GG 0.892 1.032 0.654-1.628 529

EGFRJs2227983 0.209
GAvsGG 0.522 1.106 10.813-1.504 1
AAvs GG 0.079 1.662 0.944-2.926 529

DCCJs2229080 0.829
CG vs CC 0.783 1.0451 0.762-1.434\
GGvsCC 0.68 0.9 0.546-1.483 529

MMP2Js243865 0.736
CTvsCC 0.939 1.012 10. 742-1.380 I
TTvsCC 0.435 1.313 0.663-2.598 529

VEGFAJs3025039 0.373
CTvsCC 0.304 1.205 10.844-1.722 1
TTvsCC 0.305 1.826 0.578-5.769 530

FGFR4_fs351855 0.257
CTvsCC 0.103 1.2981 0.949-1.7751
TT vs CC 0.439 1.215 0.742-1.991 530

PTGS2 fs4648298 0.041 2.016 I 1.030-3.946 I 521
XRCC3_ fs861539 0.394

TCvs CC 0.209 1.234 10.889-1.714 1
TTvsCC 0.961 1.012 0.618-1.658 530

CCND1_fs9344 0.191
GAvsGG 0.237 0.813 10.5 77-1.146 1
AAvsGG 0.548 1.132 0.755-1.697 529

EX01_ fs9350 0.483
CTvsCC 0.329 1.1771 0.849-1.6321
TTvs CC 0.532 0.694 0.221-2.182 530

SERPINE1Js1799889 0.046
G/-vs -I- 0.252 0.823 10.589-1.149 /
GGvs -l- 0.013 0.557 0.35 1-0.885 531

MMP 1_f s1799750 0.126
G/-vs -I- 0.153 1.31 I 0.904-1.897 1
GGvs -l- 0.044 1.539 1.012-2.339 531

GSTTl gene deletion 0.585 0.894 I 0.597-1.339 I 531
GSTM l gene deletion 0.009 1.484 I 1.104-1.994 I 531

TYMSJs34743033 0.829
2R/3R vs 3R/3R 0.886 1.0261 0.723-1.4551
2R/2R vs 3R/3R 0.562 1.129 0.749-1.702 530

n=no. of samples available for analysis, HR-h azard ratio, CI-co nfidence interval, 6 bp m TYMS_rs16430
refers to the sequence CTTIAA, HR>1 implies increased hazard of death, HR<1 implies reduced hazard of
death.
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Table A3. Univar iate Cox-regression analysis for OS in discovery set

(reces sive model)

n-number of samples available for analysis, HR-h azard rano, CI=confidence Interval, 6 bp In
TYMS_rsl6430 refers to the sequence CTITAA, GS TTI and GS TM I gene deletions as well as
PTGS2_rs4648298 are not a part of the recessive model, HR>1 implies increased hazard of death, HR<1
implies reduced hazard of death

Variable Genotypes p-value HR 95%CI n
ERCC2 rsl 3181 GG vs GT+TT 0.524 0.871 0.57-1.332 523
GST P1 rs1695 GG vs AG+AA 0.676 1.092 0.723-1.648 524

MTHFR rsl8 01131 CCvsCA+AA 0.027 1.673 1.060-2.641 525
MTHF R rsl8 01133 TT vs TC+CC 0.865 0.957 0.580-1.580 523
VEGFA rs2010963 CC vsGC+GG 0.174 0.693 0.408- 1.177 523
XR CCI rs25487 AAvsAG+GG 0.965 0.989 0.613-1.596 517

ERCC5 rs1047768 TTvsTC+CC 0.012 1.564 1.105-2.213 529
OGGI rs lO52133 GG vs GC+CC 0.702 1.116 0.635-1.964 530
ERCC I rsl1 615 CC vs TC+TT 0.404 1.177 0.803-1.727 530
TYMS rsl 6430 -1-vs 6 bp/- + 6 bp/6 bp 0.68 0.904 0.561-1.459 525

MLHI rs1799977 GG vs GA+AA 0.476 0.808 0.450-1.452 530
FAS rsl800682 CC vs TC+TT 0.23 1.239 0.873-1.757 529
1L6 rsl800795 CC vs GC+GG 0.415 0.849 0.573-1.259 529

EGF R rs2227983 AAvsGA+GG 0.098 1.588 0.918-2.744 529
DCC rs2229080 GG vs CG+CC 0.585 0.878 0.551-1.4 529
MMP2 rs243865 TTvsCT+CC 0.436 1.306 0.667-2.557 529

VEGFA rs3025039 TTvsCT+CC 0.335 1.757 0.558-5.537 530
FGF R4 rs351855 TTvsCT+CC 0.776 1.07 0.671-1.706 530
X RCC3 rs861539 TTvs TC+CC 0.61 0.89 0.569-1.392 530

CCNDI rs9344 AA vs GA+GG 0.159 1.286 0.906-1.825 529
EXO I rs9350 TTvsCT+CC 0.481 0.663 0.212-2.077 530

SERPINE I rsl7 99889 GG vs G/- + -1- 0.03 0.634 0.421-0.956 531

MMP 1 rsl7 99750 GG vs G/- + -1- 0.135 1.29 0.924-1.803 531
TYMS rs34743033 2R/2R vs 2R/3R+3R/3R 0.551 1.111 0.785-1.572 530

- - -
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Table A4. Univariate Cox-regression analysis for OS in discovery set

(dominant model)

n-number of samples availab le for analysis, HR=hazard ratio , CI=confidence Interval , 6 bp In DM S_rst6430
refers to the sequence CTIT AA, GSITI and GSTMI gene deletions as well as PTGS2Js4648298 are not a
part of the domi nant model, HR> l implies increased hazard of death , HR<I implies reduced hazard of
death .

Polymorphi sm Genotype n-value HR 95% CI n
ERCC2 rs13l81 GG+GTvsTT 0.239 0.836 0.621-1.126 523

GSTPI rs l695 GG+GAvsAA 0.366 1.152 0.848-1.565 524

MTHFR rs180113 1 CC+CAvsAA 0.299 1.171 0.869-1.578 525

MTHFR rsl801133 TT+TCvsCC 0.791 1.041 0.772-1.404 523

VEGFA rs2010963 CC+GCvsGG 0.85 0.972 0.720-1.310 523

XRCCI rs25487 AA+AGvsGG 0.23 1.206 0.888-1.636 517

ERCC5 rs1047768 TT+TCvs CC 0.019 1.483 1.067-2.062 529

OGGI rs1052133 GG+GCvsCC 0.634 1.076 0.797- 1.452 530

ERCCI rs l 1615 CC+TC vs TT 0.733 1.054 0.778- 1.429 530

TYMS rsl 6430 -1-+6boz- vs 6 bp/6 bo 0.275 0.847 0.628-1.141 525

MLH I rs1799977 GG+GAvsAA 0.872 1.025 0.762-1.3 77 530

FAS rs1800682 CC+TCvsTT 0.8 19 1.038 0.755-1.427 529

/L6 rsl8 00795 CC+GCvsGG 0.159 1.267 0.9 11-1.763 529

EGF R rs2227983 AA+GAvsGG 0.307 1.166 0.868-1.566 529

DCC rs2229080 GG+CGvsCC 0.922 1.015 0.750-1.374 529

MMPl rs243865 TT+CTvs CC 0.794 0.961 0.713-1.296 529

VEGFA rs3025039 TT+CTvsCC 0.232 1.235 0.874-1.747 530

FGF R4 rs351855 TT+CTvsCC 0.104 1.281 0.950-1.725 530

XRCC3 rs86 1539 TT+TC vs CC 0.29 1.187 0.864-1.630 530

CCNDI rs9344 AA+GAvsGG 0.51 0.899 0.653-1.236 529

EXOI rs9350 TT+CTvsCC 0.445 1.133 0.822-1.560 530

SERPINEI rs l799 889 GG + G/- vs -1- 0.072 0.745 0.541-1.026 531

MMPI rsl799750 GG + G/- vs -1- 0.07 1.381 0.974-1.959 531

TYMS rs34743033 2R/3R+2R/2 R vs 3R/3R 0.736 1.058 0.763-1.468 530
-
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Tabl e AS. Univar iate Cox-regression analysis for DFS in discovery set

(co-dominant model )

Polymorphism p-value HR I 9S% CI I n
ERCC2_fs13181 0.713

GTvs TT 0.415 0.884 10.657-1.1891
GGvsTT 0.707 0.924 0.612-1.395 522

GSTP1_fS 1695 0.286
AGvsAA 0.349 1.155~
GGvsAA 0.122 1.381 0.917-2.078 523

MTHFR_fs1801131 0.394
CAvsAA 0.581 1.085 10.812-1.4491
CCvsAA 0.174 1.389 0.864-2.231 524

MTHFRJsl80 1133 0.906
TC vsCC 0.994 1.001 10.750-1.3361
TTvsCC 0.672 0.899 0.549-1.472 522

VEGFA_fs2010963 0.905
GCvsGG 0.656 1.07 10.795-1.4391
CCvsGG 0.94 1.018 0.643-1.6 11 522

XRCC1_fS25487 0.794
AGvsGG 0.892 1.02 10.763-1.3641
AAvsGG 0.555 0.864 0.531-1.404 516

ERCC5_ f S I 047768 0.037
TC vsCC 0.131 1.28 10.929-1.7631
TTvs CC 0.01 1.647 1.124-2.414 528

OGG1JsI052133 0.215
GC vsCC 0.74 1.052 10.781-1.4151
GGvs CC 0.08 1.558 0.949-2.559 529

ERCC1_fs11615 0.234
TCvs TT 0.307 1.172 10.864-1.590 I
CCvs TT 0.094 1.392 0.945-2.050 529

TYMS_fs16430 0.559
6 bp/- vs 6 bp/6 bp 0.494 0.903 10.673-1.211 1

-/- vs 6 bp/6 bn 0.573 1.134 0.733-1.754 525
MLH 1 _fS 1799977 0.83

GAvsAA 0.927 1.013 10.763-1.3461
GGvsAA 0.574 0.856 0.498-1.472 529

FAS_fs1800682 0.566
TCvs TT 0.769 0.954 10.695-1.309 1

CC vsTT 0.46 1.152 0.791-1.680 528
1L6JS 1800795 0.155

GCvsGG 0.203 1.225 10.896-1.676 1
CCvsGG 0.515 0.869 0.571-1.325 528
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EGFR_rs2227983 0.389
GAvsGG 0.952 0.991 10.746-1.3181
AA vsGG 0.187 1.44 0.838-2.476 528

DCCJs2229080 0.819
CGvsCC 0.742 1.05 10.784-1.407 1
GGvs CC 0.701 0.914 0.579-1.445 528

MMP2Js243865 0.884
CTvs CC 0.827 1.032 10.776-1.3731
TTv sCC 0.634 1.179 0.599-2.322 528

VEGFA_rs3025039 0.397
CTvsCC 0.234 1.219 10.880-1.6881
TTvs CC 0.462 1.538 0.489-4.840 529

FGFR4_rs351855 0.274
CTvsCC 0.107 1.268 10.950-1.694 1
TTvsCC 0.603 1.129 0.714-1.786 529

PTGS2 rs4648298 (GA vs AA) 0.027 1.985 11.080-3.6461 521
XRC C3_rs861539 0.465

TCvs CC 0.236 1.201 10.887-1.6271
TTvsCC 0.854 1.044 0.663-1.643 529

CCND1Js9344 0.444
GAvsGG 0.949 0.989 10.718-1.3641
AAvsGG 0.294 1.229 0.836-1.808 528

EX01Js9350 0.483
CTvs CC 0.464 1.121 10.826-1.520 I
TT vsCC 0.367 0.591 0.188-1.854 529

SERPlNE1 rs1799889 0.533
G/- ~s-I- 0.383 0.869 I 0.633-1.192 1
GGvs -l- 0.294 0.807 0.541-1.204 530

MMP 1_rs 1799750 0.149
G/-vs-I- 0.221 1.235 10.880-1.7331
GGvs -l- 0.051 1.464 0.998-2.147 530

GSTT1 Gene deletion (A vs P) 0.161 0.758 10.515-1.1171 530
GSTM1 Gene Deletion (P vs A) 0.004 1.489 1 1.133-1.9571 530

TYMSJs34743 033 0.918
2R/3R vs 3R/3R 0.846 0.969 10.705-1.3311
2R/2R vs 3R/3R 0.679 0.922 0.628-1.354 529

n=number of patients avai lable for analysis, HR=hazard ratio, CI=confidence Interval, 6 bp In
TYMSJsl6430 refers to the sequence CTlTAA, HR>1 implies increased hazard of event, HR<1 implies
reduced hazard of event.
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Table A6. Univar iate Cox-reg ression anal ysis for DFS in discovery set

(recessive model)

Polymorphism p-valu e HR 95% CI n
ERCC2 rs13181 (GG vs GHIT) 0.925 0.982 .666-1.446 522

GSTPl rs1695 (GG vs AG+AA) 0.198 1.278 .880-1.855 523
MTHF R rs180 1131 (CCvsCA+AA) 0.21 1.335 .850-2.096 524
MTHF R rs1801133 (IT vs TC+CC) 0.657 0.899 .560-1.44 1 522
VEGFA rs20 I0963 (CC vs GC+GG) 0.967 0.991 .636-1.543 522
XRCCl rs25487 (AA vs AG+GG) 0.506 0.855 .539-1.357 516
ERCC5 rs l0 47768 (IT vs CCHC) 0.034 1.422 1.027-1.970 528
OGGl rs1052133 (GG vs CC+GC) 0.085 1.531 .943-2.484 529
ERCC l rsl1 615 (CC vs TC+IT) 0.167 1.279 .902-1.812 529

TYMS rs16430 (-/- vs 6 bp/- + 6 bp/6 bp) 0.401 1.193 .790-1.802 525
MLHl rs1799977 (GG vs GA+AA) 0.546 0.851 .503-1.439 529

FAS rsl 800682 (CC vs TC+IT) 0.304 1.186 .857-1.642 528
lL6 rs1800795 (CC vs GC+GG) 0.154 0.765 .529-1.105 528

EGFR rs2227983 (AA vs GA+GG) 0.17 1.446 .854-2.448 528
DCC rs2229080 (GG vs CG+CC) 0.59 0.889 .581-1.362 528
MMP2 rs243865 (IT vs CHCC) 0.655 1.164 .597-2.272 528

VEGFA rs3025039 (IT vs CHCC) 0.507 1.473 .469-4.626 529
FGFR4 rs351855 (IT vs CHCC) 0.973 1.008 .653-1.555 529
XRCC3 rs861539 (IT vs TC+CC) 0.739 0.933 .618-1.407 529
CCNDl rs9344 (AA vs GA+GG) 0.203 1.237 .891-1.718 528

EXOl rs9350 (IT vs CHCC) 0.339 0.573 .183-1.792 529
SERPlNEl rs1799889 (GG vs G/- + -/-) 0.489 0.885 .627-1.250 530

MMP l rs l 799750 (GG vs G/- + -/-) 0.12 1.277 .938-1.739 530
TYMS rs34743033 (2R12R vs 2R13R+3R13R) 0.7 16 0.94 .675-1.310 529
n-number of patients avai lable for analysis, HR- hazard rano, CI-confidence Interva l, 6 bp In
TYMS_rs16430 refers to the sequence CTITAA, GSTTJ and GSTMJ gene deletion as well as
PTGS2Js4648298 are not included in the recessive model, HR>l implies increased hazard of event, HR<l
implies reduced hazard of event.
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Table A7. Univar iate Cox-regression an alysis for DFS in the discovery set (dominant

model )

Polymorphism p-value HR 95%CI n
ERCC2 rs l3 181 (GG+GTvsTT) 0.426 0.894 .679-1.178 522
GSTPl rsl695 (AG+GGvsAA) 0.197 1.205 .908-1.600 523

MTHF R rsl80 1131 (CA+CCvsAA) 0.381 1.131 .859-1.490 524
MTHF R rs l 801133 (TC+TT vs CC) 0.896 0.982 .745-1.293 522
VEGFA rs2010963 (GC+CC vs GG) 0.692 1.057 .803-1.393 522
XRCCl rs25487 (AG+AA vs GG) 0.939 0.989 .749-1.306 516
ERCC5 rs1047768 (TC+TT vs CC) 0.036 1.378 1.020-1.861 528
OGG l rs1052133 (GC+GG vs CC) 0.393 1.128 .856-1.488 529

ERCC l rsl1 615 (TC+CC vs TT) 0.153 1.23 .926-1.633 529
TYMS rs l 6430 (-1- + 6 bp/- vs 6 bp/6 bp) 0.7 0.947 .719-1.248 525

MLHl rs1799977 (GA+GG vs AA) 0.927 0.987 .752-1.297 529
FAS rsl8 00682 (TC+CC vs TT) 0.942 1.011 .753-1.358 528
lL6 rs l 800795 (GC+CC vs GG) 0.461 1.12 .829-1.512 528

EGFR rs2227983 (GA+AA vs GG) 0.779 1.04 .792-1.366 528
DCC rs2229080 (CG+GG vs CC) 0.88 1.022 .772-1.353 528
MMP2 rs243865 (CHTT vs CC) 0.751 1.046 .793-1.378 528

VEGFA rs3025039 (CHTT vs CC) 0.196 1.234 .897-1.697 529
FGFR4 rs351855 (CHTT vs CC) 0.128 1.238 .941-1.630 529
XRCC3 rs861539 (TC+TT vs CC) 0.297 1.169 .872-1.566 529
CCNDl rs9344 (GA+AA vs GG) 0.735 1.053 .779-1.425 528

EXOl rs9350 (CHTT vs CC) 0.644 1.073 .796-1.447 529
SERPINEl rs1799889 (GI- + GG vs -1-) 0.293 0.851 .630-1.149 530

MMPl rsl799750 (GI- + GG vs -1-) 0.099 1.307 .951-1.797 530
TYMS rs34743033 (2R/3R+2R/2R vs 3R/3R) 0.755 0.954 .708-1.285 529

n=numbe r of patients available for analyis, HR-hazard ratio, CI-co nfidence interval, 6 bp m TYMS_rs16430 refers
to the sequence CTITAA, GSTTI and GSTM I gene deletions as well as PTGS2J s4648298 are not included in the
dominant model, HR> I implies increased hazard of event, HR< I implies reduced hazard of event.
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Table AS. Multivariate anal ysis for OS in the discovery set (rece ssive model)

n- 503. GSTMI and GS TTI gene deletions were not Included In the recessive model, HR: hazard ratio, CI:
confidence interval, HR> 1 implies increased hazard of death, HR<1 implies reduced hazard of death.

Var iable p-value HR 95% ClforHR

MTHFR rs1801131 (CCvsCA+AA) 0.03 1.693 1.052 2.723

ERCC5 rs l0 47768 (TT vs CC+TC) 0.009 1.647 1.13 204

OGGIJs I052133 (GG vs GC+CC) 0.228 10444 0.794 2.624

lL6 rs1800795 (CC vs GC+GG) 0.05 0.66 00435 1.001

EGFR rs2227983 (AA vs GA+GG) 0.019 1.963 1.118 30444

SERPlNEl rs1799889 (GG vs G/- + -/-) 0.037 0.634 0041 4 0.972

Age at diagnosis 0.016 1.021 1.004 1.039

Stage <0.001
II vs I 0.174 1048 0.841 2.604
III vs I 0.005 2.223 1.274 3.879
IV vsl <0.001 13.194 7.213 24.135

MSI status (MSI-H vs MSI-L/MSS) 0.002 0.21 0.077 0.57
-

Table A9. Multivariate anal ysis for OS in the discovery set (dominant model )

Variable p-value HR 95% ClforHR

MTHFR rs1801131 (CA+CCvsAA) 0.199 1.224 0.899 1.666

ERCC5 rs l047768 (TC+TT vs CC) 0.013 1.544 1.095 2.177

Age at diagnosis 0.013 1.022 1.005 1.039

Stage <0.001
II vs I 0.102 1.597 0.911 2.801
III vs I 0.002 2.385 1.371 4.15
IV vsl <0.001 11.365 6.302 200498

MSI status (MSI-H vs MSI-L/MSS) 0.001 0.19 0.07 0.516
n=504 . GS TM I and GSTT I gene deletions are not Included In the dominant model, HR: hazard ratio, CI: confidence
interval, HR>1 implies increased hazard of death, HR< \ implies reduced hazard of death.
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Tabl e AIO. Multivariate anal ysis for DFS in th e discovery set (recessive model)

Var iable p-value HR 95% CI forHR
MTHFR rs1801131 (CCvs CA+AA) 0.067 1.564 0.97 2.523
ERCC5 rs1047768 (IT vs CC+CT) 0.069 1.379 0.976 1.95
OGGl rsl052 133 (GG vs CC+GC) 0.035 1.727 1.04 2.869

TYMS rs16430 (-1- vs 6 bp/6 bp + 6 bp/-) 0.039 1.586 1.023 2.459
DCC rs2229080 (GG vs CG+CC) 0.128 0.708 0.454 1.104
XRCC3 rs861539 (IT vs TC+CC) 0.292 0.79 0.51 1.225

Location (rectum vs colon) 0.006 1.552 1.137 2.117
Stage <0.001
II vs I 0.299 1.308 0.788 2.169
III vs I 0.009 1.951 1.185 3.212
IV vsI <0.001 5.469 3.19 9.376

MSI status (MSI-H vs MSI-L/MSS) 0.002 0.274 0.121 0.62
ERAF l Val600Glu mutation status (+ vs -) 0.022 1.87 1.095 3.193
n=466. TYMS_rs 16430 IS referred as the indel 6 bp polymorphism, 6 bp In TYMS_rs16430 refers to the
sequence CTTIAA, GS TTI and GS TM I gene deletions were not included in the recessive model, HR:
hazard ratio, CI: confide nce interval, HR>1 implies increased hazard of event, HR<I implies reduced
hazard of evenI.

Table All. Multi variate anal ysis for DFS in the discovery set (dominant model )

Variable p-value HR 95% Cl for HR

ERCC5 rs1047768 (TC+IT vs CC) 0.08 1.318 0.967 1.795

ERCCl rs11615 (TC+CC vs IT) 0.126 1.256 0.938 1.683

Location (rectum vs colon) 0.054 1.328 0.995 1.772

Stage <0.001
II vs 1 0.101 1.505 0.924 2.453
III vs I 0.002 2.139 1.322 3.46
IVvs l <0.001 5.941 3.527 10.006

MSI status (MSI-H vs MSI-L/MSS) 0.004 0.346 0.169 0.712
n-507 . GSTTI and GSTM I gene deletions are not Included In the dominant model, HR. hazard ratio, CI:
confidence interval, HR> I implies increased hazard of event, HR<I implies reduced hazard of event.
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Table A12. Chi-square test results between polymorphi sms and clinicopathological

& molecular variables (recess ive model)

Polymorphi sm Variable p-value n

CCNDlJs9344 Histology 0.03 530

CCNDl rs9344 Stage 0.016 530

FASJs1800682 Histology 0.001 530

lL6 rs1800795 Sex 0.009 530

MMP 1Js1 799750 Vascular invasion 0.04 492

SERPINE l rs1799889 Sex 0.039 532

VEGFA rs2010963 MSIstatus 0.003 503

*VEGFA rs20 10963 Grade 0.03 52 1

XRCC3 rs86 1539 BRAFJ Va1600Glu mutation status 0.027 483
'By Fisher s exact test. Only statistically significant correlat ions are shown . n. number of patients

Table AB . Chi-square test results between polymorphi sms and clinicopatholo gical

& molecular variables (dominant model)

Polymorphism Variable p-value n

CCNDl rs9344 Histo logy 0.02 530

ERCCl rs11615 Stage 0.031 531

FAS_rs 1800682 Location 0.046 530

FAS rs1800682 Familial risk 0.027 530

lL6 rs1800795 Grade 0.031 526

XRCCl rs25487 Vascular invasion 0.023 479

XRCC l rs25487 Lymphatic invasion 0.028 476

XRCCl rs2548 7 MSlstatus 0.017 499

XRCC3 rs861539 BRAF l Val600Gl u mutation status 0.Q3 483

TYMS rs34743033 Sex 0.006 53 1
OnlystalIslIcallyslgmficantcorrelalIonsare shown . n.numberofpalIents
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Table A14. Chi-square test results between polymorphi sms and clinicopathological

& molecular variables (co-dominant model)

Polymorphi sm Variable p-value n

CCNDl rs9344 Histology 0.022 530

CCNDl rs9344 Stage 0.017 530

FAS rsl800682 Location 0.014 530

FAS rs1800682 Histology 0.003 530

FGFR4 rs351855 Location 0.032 531

1L6 rsl800795 Sex 0.029 530

MMP2 rs243865 Histo logy 0.029 530

VEGFA rs20 10963 MSIstatus 0.0 12 503

XRCCl rs25487 Vascular invasion 0.046 479

XRCCI rs25487 Lymphatic invasion 0.041 476

XRCCl rs25487 MSIstatus 0.047 499

XRCC3 rs86 1539 BRAFl Val600Glu mutation status 0.024 483

TYMS rs34743033 Sex 0.018 531

Only statisticallysignificantcorrelationsare shown.n :numberof patients
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