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ABSTRACT 

The use of Digital Prolate Spheroidal Wave Functions (DPSWF) in the field 

of digital filtering has increased steadily during the past decade. The unique pro­

perty: that DPSWF provide maximum concentration of signal energy in the 

passband of a low-pass filter has been the basis of most of the work done in the 

area of digital filter design involving the prolate functions. The maximization of 

energy corresponds to the largest eigenvalue, which belongs to the lowest order 

DPSWF, and the energy concentration decreases as the order increases. 

It is, however, desirable to investigate the effect of higher order eigenfunc­

tions in addition to the lowest order one on the filter characteristics and perfor­

mance. This thesis is the outcome of such investigations. A suitably weighted 

linear combination of those DPSWF which are even functions of frequency is 

made to approximate an ideal low-pass characteristic in the minimum mean 

squared error (rvnvfSE) sense. 

Results employing various numbers of even prolate functions are obtained 

and compared with each other and with the maximum energy concentration case. 

It is shown that the flatness of the passband of a low-pass filter is greatly 

improved with the number of even prolate functions while maintaining a toler­

able loss of energy in the passband. 

One of the key features of the lowest order DPSWF, is that its side lobes are 

very low. This is a direct result of maximizing the concentration of energy within 
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a certain interval. This feature is very useful for harmonic analysis problems. 

This is demonstrated by applying the prolate function as a window in harmonic 

analysis using discrete Fourier transform. The performance of the prolate func­

tion is compared to that of many other popular window functions, in the present 

work. 
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CHAPTER 1 

INTRODUCTION 

1.1 Literature Review and Objective of the Thesis 

Prolate spheroidal wave functions have extensive applications in many 

important fields such as electromagnetic and acoustic scattering, absorption of 

electromagnetic radiation by prolate spheroidal model or a human being, molecu­

lar physics etc. However, electromagnetic scattering by spheroids has been and 

continues to be one or the major areas or application of the spheroidal wave func­

tions [1-6]. 

In addition to electromagnetic applications the prolate functions have also 

important applications in the fields of signal processing and digital filtering. This 

is due to the inherent band-limiting characteristics of these functions, as shown 

by Slepian et. al. [7] in 1961. The series of papers on 'Prolate Spheroidal Wave 

Functions, Fourier Analysis and Uncertainty', by D. Slepian, H.O. Pollak and 

H.J. Landau [7-11], covered many aspects, including discrete ones, of the prolate 

functions, as applied to signal theory. They discussed the prolate functions in the 

light of the Fourier transform. The discrete versions of these functions, the so 

called discrete prolate functions, were applied to the field of digital filtering by 

Tufts and Francis [12] in 1970, and independently by Papoulis and Bertran (13] 

in 1972, prior to Slepian's paper [11] on the discrete version of the prolate 

spheroidal wave functions. 
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Eberhard [14] used the discrete functions in the calculation of power spectra, 

m 1973. Jain and Ranganath (15], used them in an extrapolation algorithm for 

discrete signals, in 1981. Dickey, Shanmugam and Green [16, 17] used the prolate 

function 'lf;1 ( C, X) (in the notation of Slepian (7], this is the prolate function of 

order 1) for edge detection in picture processing, in 1977, 79. Durrani and Chap-

man (18, 19] designed IIR (Infinite Impulse Response) digital filters using the 

discrete prolate functions, in 1981, 84. 

In this thesis, the effect of higher order discrete prolate spheroidal eigenfunc-

tions, in addition to the lowest order eigenfunction, on the characteristics of a 

low-pass digital filter, is investigated. Also the eigenfunction of the lowest order is 

applied as a window, in analyzing the harmonic contents of a digital input 

sequence using discrete Fourier transform. The performance of this window is 

compared with that of other popular windows. 

1.2 Prolate Spheroidal Wave Functions 

In this section a brief account of prolate spheroidal functions, their computa-

tions and their relation to signal processing and digital filtering is given. 

1.2.1 General Aspects 

The prolate spheroidal wave functions are the solutions of the differential 

equation [20, 7], 

(1-t2)~-2t du dt~ dt + ( 1.1) 

where C IS real, A and m are separation constants and A can take only 
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certain ( countably infinite number of) discrete values. For other values of ~' 

series solutions to (1.1) do not converge. For single-valuedness of the prolate 

functions, m has to be an integer, and it is customary to assume that m is 

either zero or positive. Since ~ can take only certain discrete values for each 

m, it is usual to designate it by ~mn' where m, = 0, 1, 2, . . . and n > m. 

For each ~mn' there is a unique solution Smn ( c, t) to the above equation, 

called the angular prolate spheroidal functions. For each ~mn' a second set of 

solutions exists. These are called the radial prolate spheroidal functions of the 

(I) 
first kind , Rmn ( C, t ). These radial functions are simply scaled versions of the 

angular functions. 

Many authors [20-23), have dealt with these functions in great detail. How-

ever, there are diversities in the notations and the normalization schemes of these 

functions, in literature. The various notations in vogue are mentioned in [20, 

p.14]. In this thesis, Flammer's notations [20] are used as already adapted by 

Slepian, et al. (7-10). 

1.2.2 Computational Techniques 

The computation of the spheroidal wave functions is quite complex. A brief 

survey of the computational techniques for these functions, is given here. The 

functions are estimated by means of series expansions using other known func-

tions like the Legendre functions, spherical Bessel, Neumann and Hankel func-

tions. The expansion coefficients obey a recursion relation that has three (or 

more) terms. Convergent solutions to these recursion formulae exist, only for 
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certain discrete A values in (1.1), as stated before. For C = 0, (1.1) reduces to 

the differential equation that is satisfied by the associated Legendre functions. 

For C =/: 0, the angle functions are expanded as an infinite series in the Legendre 

functions, [20) 

~~ dmn m 
Smn(C, t) - L..J r (C) pm+r(t). (1.2) 

r =0,1 

The prime over the summation sign indicates that the summation is over even 

indices whenever n - m is even, and is over odd indices whenever n - m IS 

dmn 
odd. The coefficients r (C), satisfy the recursion relation, 

2 
(2m +r +2) (2m +r +1) C dmn 

(2m +2r +3) (2m +2r +5) r +2 (c) 

[ 
2(m+r)(m+r+l)-2m2-1 2] mn 

+ (m+r) (m+r+l)- Amn(C) + (2m+2r-1) (2m+2r+3) C dr (C) 

2 
r(r-1)C dmn + (C) = 0 

(2m +2r -3) (2m +2r -1) r -
2 

' 
(r > 0) (1.3) 

This recursiOn relation is a linear homogeneous second-order difference equation, 

and has two independent, non-trivial solutions. Only one of them converges as r 

approaches oo, and this solution is used in expanding the angle functions, as in 

{1.2). For small values of 
2 c, the eigenvalues and the expansion 

coefficients d~n( c) can be obtained, as a power series in c2
. But this method is 

not very accurate. Bouwkamp (20, p.20] suggested a correction scheme for the 

eigenvalues and this improved accuracy from two to six decimal places. 
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An alternate approach, was to expand the angle functions smn ( c, t) as a 

power series in ( 1- t2
), and this leads to the following relations [20, p.23] 

m 00 

smn ( c, t) - (1- t2) 2 ~ 
mn 2 k 

c 2k (1- t ) , (n-m) even (1.4a) 
k=O 

m 00 

Smn (C, t) t (1 - t
2

) 
2 ~ 

mn 2 k 
(n-m) odd - c 2k (1- t ) , (1.4b) 

k=O 

mn dmn 
The expansion coefficients c2k are related to the coefficients 2r, seen earlier, 

by the equations 

00 

(2m +2r )! mn 1 ~ [m+r+a dmn 
c2k -

(2r )! 
(-r h 2r ' 2m k! (m +k )! 

r=k 

(n -m) even (1.5a) 

00 

(2m +2r +1)! mn 1 ~ [m+r+a dmn 
c2k -

(2r+1)! 
(-rh 2r ' 2m k! (m +k )! 

r=k 

(n -m) odd (1.5b) 

The subscript k in ( r h implies that 

(rh = r (r+l) .... (r+k-1). (1.6) 

This method of expansion is useful for computing the radial functions. 

Other expansion functions have also been attempted. However, the Legendre 

functions are widely used for the angle function computation. Radial prolate 

(1) 
spheroidal wave functions of the first kind, Rmn ( C, t ), are expressed as a series 

of spherical Bessel functions which converges rapidly. A third set of solutions for 

(2) 
the differential equation in (1.1) is Rmn ( C, t ), the radial prolate spheroidal wave 
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functions of the second kind. These are computed using a series expansion involv­

ing the spherical Neumann functions. The computations of R~~ ( c, t ), was beset 

with convergence problems [20, p.32]. This problem was overcome by a method of 

integration proposed by Sinha & MacPhie (24}. This method reduced computa-

tion time on the computer considerably and also improved the accuracy of the 

eigenvalue to several decimal places. 

1.2.3 Relation to Band-limited & Time-limited Signals 

It is well known that a signal cannot be time-limited and band-limited at the 

same time. While strict limiting is not possible, one might try to see how much 

time-limited a band-limited signal can be or how much band-limited a finite 

duration signal can be. The 'amount' of time-limiting (or band-limiting) can be 

measured in terms of the concentration of signal energy within the intervals of 

interest. The solution to the problem of maximizing these concentrations is the 

prolate spheroidal wave function of the lowest order and degree. The problem has 

been treated well in the papers by Slepian et al. [7-10]. In the following para-

graphs, their work is summarized. 

Functions /(l), that are defined for all time t, and are square integrable 

in the absolute, over the entire range of t on the real axis (from -oo to oo ), 

are said to belong to a class of functions denoted by L: [7). The energy of a sig-

nal, denoted by E, is given by the relation 

00 

E - J I /(t)l2 
dt. (1.7) 

-00 
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The functions /(l), have associated with them, a Fourier transform F (w) 

defined as 
00 

F (w) - J f(t) e-iwt dt. (1.8) 

-00 

Here w denotes angular frequency and w/2-;r is the frequency variable f. 

Functions f(t ), whose Fourier transform vanishes outside a certain interval 

-O<w<O are said to be band-limited (and of bandwidth 211), and belong to the 

class of band-limited functions B, which is thus a subset of L:. Functions in 

B can be written as a finite inverse Fourier transform, 

/(l) -

0 

1 IF (w) eiwt dw. 
2-;r 

-0 

(1.9) 

On the other hand there are functions in L: that vanish outside a certain 

time interval - T /2 < l < T /2. Such functions are called time-limited functions 

~nd constitute a class denoted as D, which is also a subset of L:. Given any 

function /( t) in L: one can obtain a band-limited or time-limited version of 

f(l ), by the operators B and D respectively, given by the following equa-

tions, 
0 

B Bf(l) - _1_J F (w) eiwt dw, ( 1.10) 
2-;r 

-0 

{ :(t) Ill< T/2 
D Dj(l) - (1.11) 

Ill> o. 

A function In B, that has maximum energy concentration in the interval 



8 

(-T/2, T/2) is the angular prolate spheroidal wave function S00 (C, t ). lnciden-

tally, C here refers to the time-bandwidth product 0 T /2. A function in L:, 
when first time-limited and then band-limited, becomes a member of B with 

smaller total energy. The function that loses the smallest fraction of energy, in 

this transformation, is once again S00 ( c, t ) (except for a scalar factor). The ratio 

of the total energy of the transformed function in B, to the original function in 

L: is .X
00

, the eigenvalue corresponding to S00 ( c, t ). Let the above transforma-

tion, viz., first time-limiting and then band-limiting, be performed on a function 

which is a member of B (instead of L:, as assumed before). Again it is 

800 ( c, t ), that loses the smallest fraction of total energy under such a transform a-

tion. This time, the ratio of total energy of the transformed function to that of 

2 
the original one is .X

00
• Thus the prolate spheroidal wave function S00 (C, t ), has 

several useful extremal properties with respect to the band-limiting and time-

limiting operations. That, this provides the basis for the designing of finite length 

digital filters, will be treated in later chapters. 

1.2.4 The Discrete Case [11) 

Associated with the angle functions S0n ( C, t ) are certain scaled, band-

limited functions 7/Jn ( C, t) defined by 

(1.12) 

where 

1 - J [S,.(C, t )j
2 

dt, (1.13) 

-1 
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2 
and [un(C)] is thus the energy of S0n(C,t) in the interval (-1,1). These 

scaled functions 1/Jn ( C, t) satisfy the integral equation 

T /2 

J sin 0 (t-s) 
1r (t -s) 

- T /2 

1/Ji (c, s) ds, i = 0, 1, 2, ... ( 1.14) 

The kernel of this equation is easily identified as the sine function, scaled in mag-

nitude. The digitized version of the above equation is [11, p.1376], 

-f: 
m=O 

sin 21I"W ( n -m) v<k>(N W) 
1r ( n -m) m ' ' 

(1.15) 

n = 0, ±1, ±2, ... 

where { v~> (N, W)} are called the Discre~e Prolate Spheroidal Sequences (DPSS), 

for each k = 0, 1, 2, ... , N -1. In the index set (0, N -1), the DPSS obeys the 

following difference equation 

+ ~ (n +1) [N -1-n] v~k~ 1 (N, W) - 0, 

k, n = 0, 1, ... , N -1. (1.16) 

(The significance of these equations, will be discussed m the next chapter). It 

should be noted that, in the continuous case, the prolate spheroidal functions 

satisfy a second-order differential equation, and in the discrete case they satisfy a 

second-order difference equation. 
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The DPSS, in the index set (0, N -1), has an associated spectrum defined in 

the following equation 

u,. (N, W; !J = c,. E v~>(N, W) e-i•(N-l-2•)1 

n=O 

k = 0, 1, ... , N -1, ( 1.17) 

where f.k is a constant ( f.k = 1 for even k and f.k = j for odd k ). These 

functions, Uk (N, W; f) are called the Discrete Prolate Spheroidal Wave Func-

tions (DPSWF), and are continuous periodic functions of the frequency variable 

f. In all the above equations, N is called the length of the sequence, and W 

is the normalized bandwidth. By the very process of sampling of a continuous-

time signal (such as 7/Jn (C, t) in our case), the frequency spectrum extends to the 

entire frequency axis. Consequently the notion of bandwidth is limited to the fun-

damental interval (-1/2, 1/2), the Nyquist interval for unit sampling period. 

Hence .I WI < 1/2 in the above expressions. 

A sequence that is band-limited to - W < f < W (its spectrum vanishes 

outside this interval), most concentrated on the index set (0, N -1) is the DPSS 

{ V~) (N, W)}. As before, this is true to within a scalar constant factor. An index-

limited sequence with spectrum most concentrated in - W < f < W, is again the 

DPSS { v~)(N, W)} on the index set (0, N -1). The spectrum for this sequence, 

as seen before, U0 (N, W; /) exp (j 1r (N -1)/), which corresponds to the DPSWF 

of the lowest order and is the function that is considered in detail in the present 

work. The concentration of the signal is, as before, measured in terms of the 
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E .o. 

n=-oo 

1/2 J iUk (N, W; fll
2 

df 
-1/2 

k = 0, 1, ... , N -1. 
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(1.18) 

The energy concentration for both these extremal cases 1s A
0

(N, W). Thus the 

discrete prolate spheroidal sequence {v~>(N, W)} is very similar to its continu-

ous counterpart 800 ( C, t ), in its extremal properties. 

1.3 Present Work 

In the terminology of digital filters, the DPSS { v~>(N, W)} for 

n = 0, 1, ... , N -1, would be called the filter coefficients for a Finite Impulse 

Response (FIR) filter. The frequency response of this digital filter is thus related 

to the DPSWF U0 (N, W; f). Since U0 (N, W; f) has its energy concentrated in 

the interval (- W, W ), it has a low-pass characteristics. The low-pass filter it 

represents, shall henceforth be referred to as the discrete prolate filter or prolate 

filter for brevity. 

Since the criterion is one of maximum energy concentration in the passband 

[(- W, W )] interval, the prolate filter has very low side lobe levels. For a filter of 

order N = 4 and normalized bandwidth W = 0.20, the highest side lobe is 

about -20 dB (this is with respect to the gain at d.c . which is the maximum and 

thus 0 dB). It is customary to represent the frequency response on a log scale, 

and to normalize it with respect to the gain at zero frequency. This side lobe level 

is a good one for a filter of that small length. As the filter order N, or the 
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bandwidth W is increased, the side lobe levels drop further down. For example, 

at N = 10, W = 0.20 the filter has a highest side lobe at a level of -50 dB. The 

performance in the interval (- W, W ), called the passband characteristic is, how­

ever, not suitable for many filtering applications. The reason for this is a sloping 

response curve in the passband. To get an idea of how sloping the curve can be, 

for the case N = 4, W = 0.20, at the edge of the passband the gain falls to -30 

dB. Between the zero frequency point and the passband edge, the response curve 

slopes smoothly. This limits the application of the prolate filter to the area of 

spectral analysis. The higher order prolate functions have lesser energy concentra­

tions in their passband, but the passband sloping is also lesser. The motivation 

for the present work is to make use of these higher order functions to improve 

passband flatness and examine it in the light of Chebyshev filter, which is well 

known for its flat passband characteristics. The method to achieve this and the 

results obtained are given in Chapter 3. 

The frequency response of the prolate filter based on the discrete prolate 

function of the lowest order, seems well suited for applications in harmonic 

analysis of data samples. This is tested in the present work, wherein the DPSS 

{ v~0)(N, W)} on the index set (0, N -1), is construed as a data window, and it 

is used to analyze, with discrete Fourier transform, a finite set of samples for har­

monic contents. Its performance is compared to that of Blackman-Harris window. 

Also, a few important figures of merit are computed for the prolate window, and 

it is compared to other familiar windows based on these figures of merit. 



13 

1.4 Thesis Organization 

In the following chapter, the important properties of the DPSWF and the 

DPSS, and the methods to compute these prolate functions, are given. In Chapter 

3, the method to improve flatness is discussed and the results of applying the 

method are presented. Chapter 4 contains the use of the discrete prolate func­

tions in harmonic analysis problems. Several popular data windows are compared 

to the prolate sequence (DPSS {v~>(N, W)}), that is used as a data window. 

The figures of merit for these windows, as defined in (25], are computed and com­

pared. The problem of two-tone detection, presented in (25], is attempted with 

the prolate window (so named for brevity, since it uses the DPSS), and the 

results are presented in this chapter. Chapter 5 gives the conclusions drawn from 

this study. The computer programs are listed in the appendix. 
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CHAPTER 2 

THE DISCRETE PROLATE SPHEROIDAL FUNCTIONS 

In this chapter, the equations defining the DPSWF and the DPSS, and their 

interconnection, are presented. Some extremal properties of these discrete prolate 

functions are then presented. The computational methods employed in evaluating 

these functions are provided in the final section of this chapter. 

2.1 The Discrete Prolate Spheroidal Wave Functions [11] 

The discrete prolate spheroidal wave functions (DPSWF), Uk (N, W; I) and 

their associated eigenvalues Ak (N, W) evolve as the real solution to the integral 

equation, 

w 

J sin N 1r (I-11
) 1 1 

sin 7r ( f- f') U,. (N, W; I ) df - >--~: (N, W) U~: (N, w; I) (2.1) 

-W 

where -oo< I <oo, k = 0, 1, . .. , N -1. The DPSWF are normalized so that 

1
2 

I U~: (N, w ; 1)12 
dl = 1, 

-1/2 

U~: ( N, w; 1) I > o 
/=0 

(2.2a) 

(2.2b) 

The eigenvalues are real, distinct and positive and are arranged in a descending 

order 



Since the kernel of the above integral equation can be written as 

sin N 1r (f- J') 
sin 1r (f- /') 

(N -1)/2 

E 
k =-(N -1)/2 
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(2.4) 

it is degenerate [26]. Hence the integral equation has only N non-zero e1gen-

values, and so k takes on the values in the range (0, N -1). 

The DPSWF are orthogonal in two different intervals. They are orthogonal 

in the (-W, W) interval, i.e., 

w I U; (N, W;!) U;(N, W; /) df - A.. f; . . 
' '1 

-W 

and they are orthonormal in the (-1/2, 1/2) interval, i.e., 

1/2 I U; (N, W;!) U; (N, W;f) df 
-1/2 

In the above expressions 8ij is the Kronecker delta, i.e., 

f; .. = {1 
'1 

0 

I=J 

I,J =0,1, ... ,N-l. 

i~j 

(2.5) 

(2.6) 

{2.7) 

The DPSWF Uk (N, W; f), are periodic functions of f. It has a period of 1 

if N is odd, and a period of 2 if N is even. It is also symmetric about the ori-

gin, i.e. about the f = 0 axis. Thus, it obeys the following symmetry relation 

f N-1 f fl;; (N, W; +1) = {-1) Uk (N, W; ). (2.8) 
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The DPSWF Uk (N, W; /), has k zeros m the interval (- W, W) and N -1 

zeros in (-1/2, 1/2). It is an even function about the origin whenever k IS 

even, and is odd whenever k is odd. 

These functions can also be found as the solution to the differential equation 

d [ ) dUk (N, W; f) 
dw cos w- cos 21rW dw 

(2.9) 

where W IS the angular frequency, and w = 21r f. The ()k ( N, W) 's for 

k = 0 to N -1, are the eigenvalues of the tridiagonal matrix a-(N, W) whose 

elements are given by, 

cr(N, W);j -

_!_ i (N -1), 
2 

J = i-1 

[ [ N
2
-l I- ir cos 2rrW, J =I 

! (i +1) (N -1-i ), J = i+1 

0, li -i I > 1 . 

i,j =0,1, ... ,N-l. 

(2.10) 

The ()k (N, W) 's are real and distinct and are arranged in a descending order, so 

that 

(2.11) 

like the >..k (N, W) 's in (2.3). 



2.2 The Discrete Prolate Spheroidal Sequences [11] 

The DPSS { V~k> (N, W)} is the solution to the system of equations 

!: 
m=O 

sin 21rW(n -m) v~>(N, W) _ 
1r (n -m) 

\. (k) 
"k (N, W) V,. (N, W), 

n = 0, ±1, ±2, ... 

for each k = 0, 1, ... , N -I. 

These sequences are normalized to unit energy so that 

and are arranged so that 

!: v<~>(N W) > 0 
1 ' - ' 

i=O 

!: (N-l-2j) v~>(N, W) > 0. 

i=O 
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(2.12) 

(2.13) 

(2.14) 

The eigenvalues Ak (N, W) associated with the DPSS in (2.12), are the same, 

as the eigenvalues of the DPSWF, in (2.1). These eigenvalues can be computed as 

the eigenvalues of the N XN matrix p(N, W) with element in the m throw, 

nth column given by 

sin 21r W ( n -m) 
p(N, W)mn = ( ) 1r n -m 

m, n = 0, 1, ... , N -I. (2.15) 

The eigenvectors corresponding to these eigenvalues, normalized to unit energy 

and arranged according to (2.14), are the DPSS {v~k>(N, W)} on the index set 

(0, N -1). 
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The DPSS are orthogonal in two different index sets. They are orthogonal in 

(0, N -1), I.e., 

E v~'(N, W) v~'(N, W) - )... {J .. 
I I] ! (2.16) 

n=O 

and orthonormal in (-oo, oo), 

00 E v~>(N, W) v~·>(N, W) _ 8,i. (2.17) 
n =-oo 

The DPSS on the index set ( 0, N -1) also satisfies the difference equation 

0, (2.18) 

k, n = 0, 1, ... , N -1 

where Bk (N, W) 's are the same as in (2.11). 

2.3 Equations Connecting the DPSWF and the DPSS [11) 

Once the DPSS { v~>(N, W)} on the index set (0, N -1) is known, the 

DPSWF Uk (N, W; f) can be computed using the relation 

uk (N, W;/) - Ek E v~'(N, w) e-i~ (N-t-2n)/ (2.Hl) 
n=O 

k = 0, 1, ... , N -1 
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where f.k is a constant: 

k even 

(2.20) 
k odd 

Equation (2.H)), is similar to the discrete Fourier transform equation and 

thus a similar inverse relation exists: 

v~>(N, W) - :. 12 Uk (N, W; /) ei~(N-l-2n)f df ' 

-1/2 

(2.21) 

n, k = 0, 1, ... , N -1. 

This relates the DPSS to the DPSWF. This inverse relation is useful to find out 

the DPSS only in the index range (0, N -1). For all n, the following relation 

holds: 

(2.22) 

k=O,l, ... ,N-1. 

Denoting by Bw and 1:2
, the Band-limiting and Index-limiting operators, 

1 

such that 

and 

-
{O

H(f) 

Bw H(f) 
lfl < w 

(2.23) 

lfl > w 

(2.24) 
otherwise 

the above DPSS-DPSWF interconnecting equations can be represented as the 
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following transform pairs: 

€ /N-I {V(k)(N W)} +---+ U (N W· /) ej1r(N- l)/ 
k o n ' k ' ' ' 

(2.25) 

E A (N W) {v<k>(N W)} +---+ B U (N W· /) ei1r(N-l)! 
kk' n' w k '' · (2.26) 

These transform equations clearly indicate the fact that band-limiting (and time-

limiting) 'stretches' the signal in the time (frequency) domain. Thus in (2.25), 

index-limiting the DPSS, the transform exists for all f. In (2.26), band-limiting 

the DPSWF, the inverse transform exists for all n. 

In the present work, the DPSS are evaluated first, usmg equation (2.12). 

The DPSWF are then computed at the necessary frequency points using the 

interconnecting equation (2.19). The orthogonality property of the DPSWF, equa-

tions (2.5) and (2.6), is used to include higher order DPSWF in filter design, and 

this will be seen in the next Chapter. 

2.4 Extremal Properties [11] 

There are two important extremal properties, that make these discrete pro-

late functions useful in simultaneous time-limiting and band-limiting. These pro-

perties are presented in the following sections. It is on the basis of these proper-

ties that these functions find their use in spectral analysis as an optimal filter, 

and this is discussed in the next section on prolate filter. 
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2.4.1 Most Concentrated Band-limited Sequence 

Consider the set of all sequences, whose spectrum vanishes outside 

If I > W and denote them by {h,J, where the flower brackets stand to iden-

tify a sequence (not just the nth element, hn) and the index n ranges from 

-oo to oo. The energy of the sequence is defined as 

00 

E D. E 1hn1
2 

- E(-oo, oo) (2.27) 
n =-oo 

The sequence {hn} has a discrete Fourier transform H(f). Since {hn} 1s 

band-limited to - W < f < W, the following inverse relation holds: 

w 

h. = J H(f) e-;2~•1 df ' 0 < W < 1/2, n = 0, ±1, ±2, ... (2.28) 

-W 

Parseval's theorem relates the energy in the two domains as, 

w 

E - I: ihl = J IHUll
2 

df. (2.29) 

n =-oo -W 

The energy of the sequence {hn} on the index set (N0 , N0+N -1), denoted by 

E (N0 , N0+N -1), is given by 

E(N
0

, N
0
+N-1) - N~-l ihl. (2.30) 

n=N0 

Consider the energy concentration parameter A, defined as the ratio between 

E (N0, N0+N -1) and E (-oo, oo), i.e., 

A D. E (N0 , N0+N -1) 
E (-oo, oo) 

(2.31) 
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Using (2.28) & (2.29), A can be written as 

No+N-l W W E J df J df' H(/) H'(/') e-; 2~•(1-/) 
n=No -W -W A -

w 

J IH(/)!
2 

dj 
-W 

Taking the summation inside the integration (the operations are commutative in 

this case), we get 

w w 

Jdffdf' e-i1r(2N0+N-l)(f-/) sinN7r(/-[') H(f)H-(f') 
sin 1r ( f- f ) 

A - -W -W 

This follows from the fact that, 

Let '¢(/) be defined as, 

This reduces A in (2.32) to, 

w 

J IH(/)1
2 

df 

-W 

e-i1r(2No+N-l)(!-!') sin N1r(f -f') 
sin 1r (f- /') 

w w 

A -
J df J df' sin N 7r ( f- f') 1/J(f) v/ (/') 

sin 1r (f- / 1
) 

-W -W 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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It can be shown that A is stationary when 1/J(/) satisfies the DPSWF integral 

equation (2.1). Thus the maximum value of A is A
0
(N, W) and this occurs 

when 1/J(/) = C U0 (N, W; f) for If I < W, where C is a scalar constant, 

independent of f. From (2.34), we then have 

{ 

c ej'Tr (2No+N-l)f Uo (N, W; /) If I < w 
H(f) = 

o w <If I< 1/2 

(2.36) 

Using (2.28), the band-limited sequence {hn} is 

w 

h J U I 
j1r (N -1-2 (n -NcJ!) d'f 

n - C 0 (N, W; ) e (2.37) 

-W 
n = 0, ±1, ±2, ... 

Comparing this to (2.22), the equation connecting the DPSS & DPSWF, we have 

(2.38) 

where d is a scalar constant, independent of n. 

Thus a band-limited sequence, most concentrated in the sense of (2.31), IS 

the DPSS { v~0~N (N, W)} to within a scala_r factor. 
0 

2.4.2 Index-limited Sequence with Most Concentrated Spectrum 

Let {hn} be an index-limited sequence, so that 

0 

h n {2.39) 

0 
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Let the ratio of the energy of its spectrum in the interval (- W, W ), to the total 

energy of {hn}, be represented by J-l, i.e., 

w 

J IHUl df 
- W {2.40} 

1/2 J jH(f)j
2 

df 
- 1/2 

The spectrum H(/) is given by the transform equation 

(2.41} 

Using this relation, {2.40} can be reduced to 

w 

J drr N~-l N~-l hn hm. 
J L....J L....J . ej2rrf (m - n) 

-W n=N0 m=N0 

J.l -

Interchanging orders of summation and integration, we get 

J.l -
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After integrating, we get 

Finally, translating the indices n & m to the (0, N -1) interval, for conveni-

ence, 

~~ 
n=O m=O 

sin 21r W ( n - m) • 
---~--"- hn + N. hm + N. 

1r ( n -m) o o 

J.l - (2.42) 

Comparing the above equation to (2.12), the equation that defines the DPSS, 

it is seen that J.l will be maximum when 

n = 0, 1, ... , N -1. (2.43) 

Thus the index-limited sequence, with most concentrated spectrum m 

-W<j<W IS, 

0 

C v<O> (N W) 
n-N0 ' 

(2.44) 

0 

which is the DPSS { V~~N. (N, W)} on the index set (0, N -1). The concentra-
o 

tion of its spectrum in the (- W, W) interval, J.l = A
0
(N, W ). The spectrum is 
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related to the DPSWF U0 (N, W; f) by the equation 

H(f) = d TT f j1r(2N0+N-l)f 
u 0 (N, W; ) e for all /, (2.45) 

where d is a constant independent of f. 

2.6 The Discrete Prolate Filter 

In the sections up to now, the evolution of the DPSS and the DPSWF, and 

some of their interesting properties, were seen. The prolate filter was defined, in 

section 1.3, as having the impulse response sequence {hn} of (2.44), which is the 

index-limited DPSS { V~~No (N, W)} that has the most concentrated spectrum in 

- W < f < W. The filter is an optimal one, in the sense that it is based on the 

maximization of energy concentration In the passband of a low-pass 

configuration. N refers to the filter length and W IS the normalized 

bandwidth. W is the point on the frequency axis, inside of which the energy is 

maximized, and is normalized since the sampling period T is assumed to be 

unity. Hence W is less than or equal to 1/2, since the Nyquist interval at unit 

sampling rate is (-1/2, 1/2). The normalization equation (2.13) for the DPSS, 

implies that the filter coefficients {hn} are normalized to unit energy. 

Two major areas, in which the prolate filter would be useful, are edge detec-

tion in picture processing and detection of a weak tone, in the presence of a 

strong nearby one, in harmonic analysis. Both these applications need a narrow 

main lobe and low side lobe levels - features that can be attained for large N 

and small W, in a prolate filter. Chapter 4 discusses the use of the prolate filter 

in harmonic analysis. 
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2.6 Computation of the DPSS & DPSWF 

First, the DPSS {v~>(N, W)} is computed as the solution to the system of 

equations (seen earlier), 

~ 
m=O 

sin 21rW(n-m) v~>(N, W) _ 
1r (n -m) 

\ (k) 
"k(N, W) Vn (N, W), 

k = 0, 1, ... , N -1 and n = 0, ± 1, ±2, . . . . 

(2.12) 

This equation is the familiar characteristic-value or eigenvalue problem. The 

eigenvalues Ak (N, W) can be found as the eigenvalues of the matrix p (N, W ), 

whose elements are given by 

sin 21r W ( n -m) 
p(N, W)mn = ( ) 

1r n -m 
m, n = 0, 1, ... , N -1. (2.15) 

Let the corresponding eigenvectors of this matrix be denoted by 

{ e<~>(N, W)}. When { e<~>(N, W)} are normalized to unit energy according to 
1 1 

~ 1, 

i=O 

and with a sign convention that makes 

~ e<~>(N W) > 0 
1 ' -

j=O 

and ~ (N -l-2j) e~l(N, W) > 0, 
j=O 

(2.46) 

(2.47) 

for each k = 0, 1, 2, ... , N -1 (the DPSS normalization conventions), then these 

eigenvectors are simply the DPSS {vj>(N, W)} on the index set (0, N-1). 
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There are several methods to compute the eigenvalues and eigenvectors of a 

matrix, such as p(N, W) in (2.15), available in literature. Among these, the 

widely used methods (27] are 1. the Jacobi method, 2. the Householder's 

method, 3. the polynomial method and 4. the iteration or power method. 

The iterative method is useful when both the eigenvalues and the eigenvec­

tors have to be found. They can be obtained simultaneously, in the process of 

iteration. When used in conjunction with a method of sweeping, that sweeps out 

previously determined eigenvalues, all the eigenvalues and eigenvectors of a 

matrix can be found. This method is useful for matrices of small dimensions, 

about (20 X 20) in size. It is thus limited, in this sense. There is an additional 

convergence problem, when the largest and the next-to-largest eigenvalues have 

nearly the same values. This situation occurs in the case of p (N, W) for large N 

and W. 

For matrices of larger dimensions, a very efficient method is possible using 

the Householder's tridiagonal method that reduces a given matrix to a tridiagonal 

one using orthogonal transformations, by employing an algorithm called the QL 

algorithm (28], to get the eigenvalues and eigenvectors. This algorithm is limited 

to symmetric matrices, and thus can be used for p (N, W ). When N is even, a 

reduction in the size of p(N, W), from (N X N) to (N/2 X N/2) is possible 

(14], to further reduce the computation times. 

The QL algorithm is based on the decomposition of the matrix into the pro­

duct of an orthogonal matrix and a lower triangular matrix. Routines for the 
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algorithm, written in FORTRAN, are available in the Eispack Guide [29). Rou-

tines TRED2 and TQL2, are useful to compute the eigenvalues of p(N, W). The 

routine TRED2 reduces the real symmetric matrix to a symmetric tridiagonal 

matrix, and accumulates the orthogonal transformations for use in the routine 

TQL2, which then determines the eigenvalues and eigenvectors of the symmetric 

tridiagonal matrix. These routines were used, in the present work, for p (N, W) 

of order up to 50, and took less than 5 minutes for computation on the VAX 

11/780 computer. All eigenvalues took between 2 and 3 iterations, at the max-

imum, to converge. 

Once the DPSS are found, the DPSWF ~ (N, W; I) can be computed using 

the connecting equation, 

uk (N, W; /) - Ek E v~l(N, W) e-i~(N-l-2n)/ (2 .19) 
n=O 

for k = 0, 1, 2, ... , N -1. This equation 1s very straightforward, and the 

DPSWF can be computed at regular intervals of I, m the range 

-1/2 < f < 1/2. 
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CHAPTER 3 

FOURIER ADDITION OF THE DPSWF 

In this chapter, the method to include higher order prolate functions, and 

the results based on this method, for various N and W, are presented. A filter , 

that uses these higher order functions, is compared to a Chebyshev filter with 

similar parameters, at the end of the chapter. 

3.1 Method for Improvement of Passband Performance 

Papoulis and Bertran [13] had suggested the use of a correcting system, m 

cascade with the prolate filter, to improve the passband performance. In this 

work, the DPSWF of higher orders are used in conjunction with the order zero 

U0 (N, W; f), to achieve the desired flatness. The flatness is possible, because 

these functions are used to minimize the mean squared error from the ideal 

response characteristic. The method uses the orthogonality property of the 

DPSWF. The idea is simple, and is similar to the Fourier series approximation of 

arbitrary functions. A discussion of the theory behind Fourier series approxima-

tion, is given in the following section. 

3.1.1 Least Squares Approximation and Fourier Series (30, 31] 

The general linear approximation equation is given by 

(3.1) 

where /(l) is the given function , to be approximated in the interval 

[t1, t2]; </>;(l) 's are the orthogonal basis functions, in the interval [tl' t2] and 
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c1 's are the weighting coefficients. The problem of approximation is one of using 

the linear weighted combination of ¢1(t), i = 1, 2, ... , n, such that it is close 

to /(l) in some sense. The variable t signifies that a time signal /(l) is 

being dealt with, but this is not a restriction. It could be any other physical (or 

non-physical, for that matter) quantity which is chosen as an independent vari-

able. The criterion used for nearness is the Least-Squares Norm, or L2-Norm as it 

is usually denoted. For this norm, the quantity MSE, given by 

(3.2) 

called the mean square error, is minimized by proper choice of the C.'s. It has 
' 

been shown [31) that the Ci 's are given by 

t2 J f (I ) ¢; (I) dl 

tl (3.3) c. -
' 

to make MSE mm1mum. The MSE is then called the mm1mum mean squared 

error (:MMSE). The ¢, ( t) 's are square integrable and orthogonal, where ortho-

gonality implies that 

t2 { ! ¢;(1) ¢;(1) dl = :; 

i=ri 
(3.4) 

I=J 

for some set of constants ki. Orthogonality IS not a necessity for (3.1) to be 
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true. It is enough that the functions { ¢>,. (t)} be linearly independent. If they are 

not orthogonal, however, the expression for c,. 's, (3.3) is not valid and the 

evaluation of these weights is more complicated. 

Fourier senes is used in the approximation of periodic functions. It uses 

cos kt and sin kt, k = 1, 2, . . . , as basis functions, leading to the approxi-

mation equation 

/(t) _, a2o + "6 ( t b t) ,__ L..-J ak cos k + k _sink . (3.5) 
k=l 

These basis functions are periodic with a period of 211". If /(t) were aperiodic, 

(3.5) would still hold true in the range (- 11", 1r), and outside this range, /(t) 

would be approximated as the repetition of the fundamental form in (-11", 1r). 

Thus outside the range (-1r, 1r), the approximation would be in error, but usu-

ally the range of interest in approximating an aperiodic function would be finite. 

Other general intervals, like [ t1, t2] can be obtained by proper scaling and shift-

ing of the sinusoids. 

3.1.2 Approximation Using the DPSWF 

The function that is being approximated, is the ideal digital low-pass filter 

response, VIZ., 

-
{0

1 
F(f) 

-w<f<w 
(3.6) 

elsewhere in (-1/2, 1/2]. 
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The DPSWF Uk (N, W; I), k = 0, 1, 2, ... , N -1, are used as the basis set of 

functions. The approximation equation is 

N-1 

F(l) ~ E c" ~ (N, W; 1). 
k=O 

The Ck 's can be evaluated on the basis of (3.3), i.e., using: 

1/2 I F(f) u. (N, W; f) df 

-1/2 

12 

[ Uk (N, W; 1)]
2 

dl 

-1/2 

The DPSWF are orthonormal in the (-1/2, 1/2) interval, and so 

We also have, 

1
2 

[ Uk (N, W; 1)]
2 

dl - 1, 

-1/2 

1
2 

F(l) Uk (N, W; I) dl = 

-1/2 

k = 0, 1, ... , N -1. 

w I U;(N, W;/) df' 
-W 

(3.7) 

(3.8) 

(3.10) 

smce F (I) is unity inside (- W, W) and vanishes outside this interval. As a 

result, (3.8) simplifies to 

w I u. (N, W;/) df. (3.11) 

-W 

The ideal response functions F( I) is an even function of I about the I = 0 

axis, and so are the DPSWF Uk (N, W; I) for k even. Hence the coefficients Ck 



for k odd, are zero in (3.7). This reduces (3.7) to 

N-1 

F(/) ~ E' c" u" (N, w; f> 
k=O 

where, the prime indicates summation over even indices. 
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(3.12) 

It was seen earlier [Eq. (2.45)] that U0 (N, W; /) has maximum energy 

concentration in the interval (-W, W). This concentration equals A
0

(N, W). 

For the higher order DPSWF Uk (N, W; /), the energy concentration in the 

interval (- W, W) is given by Ak (N, W ). Since the Ak (N, W) 's are ordered such 

that it decreases with increasing index k , [Eq. (2.3)], the passband 

[the (- W, W) interval] energy concentration for higher order DPSWF 

Uk (N, W; f) decreases with k. As a result, the total energy concentration in the 

passband, for the linear weighted sum {3.12), decreases as higher order DPSWF 

are included. From {3.12), it can be seen that the total energy concentration 

X (N, W) is given by 

X(N,W)-

{3.13) 

Thus X (N, W) ts less than A0 {N, W ). The energy lost in the passband is 

transferred to the stopband and the transition region between the two bands. 
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This leads to widened main lobe and/or increased side lobe levels in the magni-

tude spectrum of the filter designed according to (3.12). 

In (3.6), F(/) is a periodic function of f, with a period of 1. The 

DPSWF for k even, are even functions of J about J = 0. They are also 

periodic in f. Their period is 1, when N is odd and 2 when N is even. F(/) 

can also be chosen to span the same period. The approximation (3.12), is similar 

to the classical Fourier series representation of periodic functions. For this reason, 

the filter designed using (3.12), shall be called a Fourier prolate filter, from now 

on. 

3.2 Results and Discussion 

In the sections that follow, some of the results based on (3.12) are presented, 

for selected values of N and W, and one of the cases is compared with a Che-

byshev design of same filter length N and similar passbands and stopbands. 

3.2.1 Filters with N = 4 and N = 5, for W = 0.20 

Fig. 1. compares the prolate and Fourier prolate filters for the set of values, 

N = 4 and W = 0.20. There are four orders of DPSWF Uk (N, W; /), viz., 

k = 0, 1, 2 and 3. Of these, U0 (N, W; f) and U2 (N, W; f) are even functions 

I 
of frequency, and hence these are the only ones of interest. The prolate filter is 

simply characterized by U0 (N, W; f). The Fourier prolate filter is formed using a 

weighted sum of U0 (N, W; /) and U2 (N, W; /) according to (3.12). 
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It can be observed that U0 (N, W; /) has a main lobe and a side lobe in the 

frequency interval (0, 1/2). The addition of U2 (N, W; f) has widened the main 

lobe and has brought the side lobe level down by about 5 dB. There is a slight 

improvement in the passband performance. This can be measured, to some 

extent, by looking at the edge-of-the-passband gain. At this edge, i.e. at 

f = W = 0.20, there is an increase in gain of about 1 dB in the response curve. 

This is only a very slight improvement, but that is expected for small N. 

The performances of the prolate and Fourier prolate filters with N = 5 and 

W = 0.20, are compared in Fig. 2. Now k can be 0, 1, 2, 3 and 4, or there are 

three basis functions U0 (N, W; f), U2 (N, W; f) and U4 (N, W; f) that are even 

functions of frequency and thus useful for the Fourier prolate filter design. The 

prolate filter based on U0 (N, W; f) alone, has a main lobe and two side lobes in 

the interval (0, 1/2). To this is added U2 (N, W; f), the next even function. 

Again this results in a widened main lobe, 5 dB gain improvement at the edge of 

the passband, and just one side lobe which is 10 dB below the prolate filter's first 

side lobe. U4 (N, W; f) is then added to the other two functions (again in accor­

dance with (3.12)), and it should be noted that there is virtually no difference in 

performance. This is because the weighting coefficient c4 is small, since the 

energy in (-W, W) is small for U. (N, W; /). 

In both these cases, the transfer of passband energy is to the transition 

reg10n, and this has lead to widened main lobe. The side lobe levels are lower, 

but when compared to a prolate filter having that widened main lobe width, 

these levels would be higher. 
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3.2.2 Filters with N = 6 and N = 7, for W = 0.20 

For N = 6 and W = 0.20, there are still only 3 orders that are useful in 

the design of the Fourier prolate filter, viz., U0 (N, W; /), U2 (N, W; f) and 

~ (N, W; f). Again the main lobe widens with the addition of U2 (N, W; f) (see 

Fig. 3). The edge-of-the-passband response is up by 10 dB, but the side lobe 

level has gone up by 5 dB. The energy lost in the passband, is transferred to both 

the transition region and the stopband. As a result, there is a widened main lobe 

and raised side lobe levels. 

The gain at the passband edge is a good measure of flatness, and any 

improvement at that frequency can lead to an overall improved passband perfor­

mance. This effect is more pronounced in . the next example, where N = 7 (Fig. 

4). Clearly, a filter with a flatter passband performance can be seen. In this case, 

the gain at the edge of the passband is 15 dB better than U0 (N, W; f), when 

U2 (N, W; f) is added to it. The side lobe level also rises by 15 dB. This tendency 

of increased side lobe levels, clearly shows that the situation of improvement in 

the passband performance to that of the reduction of side lobe levels, is a 

compromising one. or course, both can be improved simultaneously' as one 

increases the length N, of the filter. But for a fixed N, improvement in one can 

be achieved at the cost of the other. The passband energy concentration drops 

from about 99% to 82%, which may not be a serious loss for the kind of applica­

tions that warrant a flat passband. Moreover, the side lobes are still 20 dB below 

the d.c. gain, and this level is comparable to other filters (of same length) that 
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employ a flatness-in-the-passband criterion. The addition of U4 (N, W; /) does 

not make much improvement in the passband performance of the Fourier prolate 

filter. 

3.2.3 Filter with N = 10 and W = 0.20 

Next, consider a filter of order N = 10, and W = 0.20. The effects of 

including one by one, the orders u2 (N, W; f), u4 (N, W; I), u6 (N, W; I) and 

Us (N, W; I) can be seen in Fig. 5, 6 and 7, on the following pages. The prolate 

filter U0 (N, W; ll has 4 side lobes in the interval (0, 1/2). The highest side lobe 

is at a level of about -45 dB, and at the passband edge, f = 0.20, the gain is 

about -35 dB. With the addition of u2 (N, W; I), the first side lobe rises up to 

-20 dB (Fig. 5), but at the edge of the passband there is a gain of -10 dB, which 

is 25 dB better than the prolate filter. This is a very good improvement. The loss 

of energy is about 15% within the passband, and there are now 3 side lobes in 

(0, 1/2). A ripple or an overshoot in the amplitude response, of about 3 dB 

height, can be seen within the passband. This shows that the gain at the 

passband edge alone, is not a criterion enough to measure flatness in the 

passband. The ripple amplitude, as well as the average slope in the passband 

response should be small to achieve flatness. With the inclusion of U4 (N, W; I), 

the side lobe levels get about 5 dB better, and the highest side lobe goes to -25 

dB from the -20 dB before; the edge-of-the-passband gain also improves by about 

5 dB and rises to -5 dB now; the ripple height reduces to a 2 dB level. There is 

thus an improvement in every sense, with the addition of U4 (N, W; /) in the 

design. Inclusion of the higher orders, viz., U6 (N, W; f) and Us (N, W; /) does 
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not make much difference to the design, since their weighting coefficients are 

small as a result of small energy concentrations in their passband. 

3.2.4 Filter with N = 10 and W = 0.15 

The widening of the main lobe implies that the resulting Fourier prolate 

filter has a higher bandwidth (the region within which it has the same energy 

concentration as that of the prolate filter in (- W, W)) compared to that of the 

prolate filter. It is higher than the normalized bandwidth W. As a result, for a 

filter of required bandwidth one can start from the prolate functions of smaller 

W To get a filter of approximately W = 0.20 bandwidth, an initial value of 

W = 0.10 was tried. After gradual increases, it was found that W = 0.15 gave 

the required bandwidth (Fig. 8). 

The first side lobe of the prolate filter, (N = 10, W = 0.15), is at a level of 

-35 dB. This is 10 dB higher than that of the prolate filter with 

W = 0.20, N = 10. This is expected, since the eigenvalues A
0

(N, W) reduce with 

W [11), implying that the passband energy concentration is lower for lower W. 

This results in an increased energy in the stopband, and hence increased side lobe 

levels result. Here again, the Fourier prolate design requires the first three even­

ordered prolate functions, Uo (N, W; I), u2 (N, W; f) and u4 (N, W; f). The 

passband ripple is now reduced to nearly 0.5 dB in amplitude (see Fig. 11). The 

highest side lobe level is -15 dB. This is 10 dB inferior to the previous case, with 

W = 0.20, but this is expected since the basis functions themselves have higher 

side lobe levels in comparison to the previous case. The Fourier prolate design 

has a bandwidth of about 0.20; it extends roughly between 0.00 and 0.20. 
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Figure g compares U0 (N, W; f) with N = 10, W = 0.20, to the Fourier 

prolate filter using Uo (N, W; /), U2 (N, W; f) and U4 (N, W; f) with N = 10 and 

W = 0.15. Both filters have a passband extending between 0.00 and approxi­

mately 0.20 (on the positive frequency side). The Fourier prolate filter has a 

much flatter passband, compared to the prolate filter. However, this is at the cost 

of a side lobe structure, which now has a -20 dB high side lobe, 30 dB inferior to 

that of the prolate filter. 

3.2.5 Comparison to the Chebyshev Filter 

Till now, the effect of including the higher order DPSWF on the filter 

response characteristic was seen in comparison to the prolate filter, that is based 

on the DPSWF U0 (N, W; f) alone. The Fourier prolate design is compared to a 

filter, of similar nature and based on the minimax criterion - the standard and 

highly useful Chebyshev filter. 

A Chebyshev filter of order N = 10, with a passband between f = 0 and 

0.20 (again, for the positive side) and a stopband from f = 0.25 to 0.50, is com­

pared to the Fourier prolate filter designed with N = 10 and W = 0.15. The 

Chebyshev design was obtained using the FORTRAN routine in [32, pp. 187-

204]. The comparison is shown in Fig. 10, and it can be observed that the Fourier 

prolate design is quite close in performance, to the Chebyshev filter. Both filters 

have nearly the same side lobe levels and side lobe structures; the edge-of-the­

passband gain is also nearly the same. An expanded look at the passband 
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performance shows that both filters have very similar ripple levels (Fig. 11). Thus 

the Fourier prolate design, in this case, is as good as the Chebyshev design. 

3.2.6 Summary of Comparisons 

The characteristics of three filters, viz., the Fourier prolate filter using orders 

0, 2 and 4 of the DPSWF ~ (N, W; f) with N = 10 and W = 0.15 (Sec. 

3.2.4), the prolate filter using DPSWF U0 (N, W; f) with N = 10 and W = 0.20 

(Sec. 3.2.3), and the Chebyshev filter of Sec. 3.2.5, are compared in the following 

table. The three filters have a main lobe extending from I = 0 to I = 0.20. It 

can be seen that the prolate filter has a better side lobe level, but the Fourier 

prolate and Chebyshev filters have a better gain at the passband edge. The 

Fourier prolate and Chebyshev filters have nearly equal response levels. 

Highest Side Gain at the Ripple 
FILTERS Lobe Level Passband Edge Amplitude 

(dB) (dB) (dB) 

Prolate -46 -38 0.0 

Fourier Prolate - 18 -22 0.5 

Chebyshev -20 - 18 1.0 
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CHAPTER 4 

PROLATE FUNCTIONS IN THE LIGHT OF 
HARMONIC ANALYSIS 
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In this chapter, the role of the DPSS as a window, used in harmonic 

analysis, is discussed. To this effect, the first discussion is a brief account of the 

windowing concepts in filter design. This is followed by a look at the use of win-

dows in harmonic analysis. Certain quantities that are useful in comparing vari-

ous windows, are then defined. The window based on the DPSS, is compared to a 

few other windows on the basis of the data provided by Harris [25]. Next, a prob-

lem of weak-signal detection, in the presence of interference, similar to the exam-

ple given in [25], is presented. The performance of the prolate window, in this 

detection problem, is compared to that of the Blackman-Harris window. 

4.1 Use of Windows in Filter Design (32] 

Linear phase FIR filters can be designed using one of the following three 

well-known methods [32]: the frequency sampling method, the window method, 

and optimal design method, such as the one based on Chebyshev criterion. The 

one optimal design that was seen previously, was the one based on the discrete 

prolate functions, where the criterion was one of maximizing the passband energy 

concentration. Each of these three techniques is useful in designing filters for use 

in a particular application and hence each technique is important. The design 

technique, that is going to be looked at, is the window technique, as this intro-

duces the concept of windowing, which is very essential in harmonic analysis. 
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·g 
The frequency response H( e1 

), of any digital filter is a periodic function of 

the frequency and can thus be expanded in a Fourier series expression of the form 

H(ei8
) - ~ h. e-inO . (4.1) 

n =-oo 

The Fourier series coefficients hn are given by 

h n (4.2) 

-1!" 

The sequence {hn}, is the impulse response sequence of the filter. The filter in 

( 4.1) is unrealizable since the impulse response sequence is infinite in duration (as 

the summation in (4.1) extends to ±oo): Moreover, an infinite amount of delay 

is needed to realize the impulse response that starts at -oo. Thus the filter 

coefficients hn in the Fourier series representation (4.1), of H(ej8
) is not real-

izable. 

An FIR design, which would be an approximation of H(ei8
), can be 

obtained by truncating the infinite summation in (4.1) to n = ±N. Such a 

direct truncation of the series leads to Gibbs oscillations [32] in the desired 

response. The sharp cutoff points in the desired response represent a discontinuity 

in H( ei8 ). Its truncated Fourier series gives rise to fixed amplitude overshoot 

and ripple at the desired sharp cutoff points. Thus in approximating an ideal 

low-pass filter by a truncation of (4.1), a ripple of maximum amplitude which is 
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9% of the step size of the ideal response, results in the design. Increasing N 

only reduces the frequency range in which the ripple occurs, but not the ripple 

amplitude. Hence direct truncation of (4.1) is not very useful to design a reason-

able Fffi filter. 

A finite duration weighting sequence { wn}, called a window, is used to 

modify the Fourier coefficients hn in ( 4.1), to improve the convergence of the 

Fourier series. This is called the windowing technique and leads to very reason-

able filter designs, and easier realizability in terms of filter length is possible. An 

FIR approximation to H( ei8
) is obtained by multiplying the two sequences 

{hn} and { wn}. A new sequence (hn: hn = hn · Wn} is thus obtained, and this 

sequence {hn} is finite in duration since wn is zero outside a certain interval, 

say -N < n < N. 

·e ... ·e ... 
If W(e 1 

) and H(e 1 
) are the transform pairs of {wn} and {hn} respec-

... ·e ·e ·e 
tively, then H( e1 

) = H( e1 
) * W( e1 

), where * denotes circular convolution. 

This follows from the fact that multiplication in one domain corresponds to con-

volution in the other (transform) domain. For physical realizability and causality, 

... 
{ hn} is shifted to lie in (0, 2N ). This only affects the phase spectrum by a 

linear shift, and leaves the magnitude spectrum unperturbed. 

Multiplying {hn} by such a weighting sequence { wn}, finite in duration, 

has the effect of smoothing the discontinuities in H(ei 8
) into transition bands at 
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the region of discontinuities. Since this frequency response results from the circu­

lar convolution of both H(ei8
) and W(ei 8

), the transition bandwidth depends 

on the main lobe width of W(ei8
). Also the side lobes of W(ei8

) causes errors 

in the form of ripples in the response H( ei8
). As a result, it can be inferred that 

a good window should have 

(i) small main lobe width, to reduce transition bandwidth, and 

(ii) small side lobes with a fast falloff, so that the side lobes decrease in size as 

() --+ 1r. This reduces approximation errors in the desired response. 

Many windows are available in literature [25]. Basic among them are the rec­

tangle. and triangle windows. The popular ones include the Hamming, Hanning 

and Kaiser windows. The following section describes how the window sequences 

are useful in harmonic analysis. 

4.2 Use of Windows in Harmonic Analysis 

Harmonic analysis, involves the processing of time waveform or samples to 

check the spectral contents, and to plot them using relative magnitude levels 

against the frequency. With respect to this application, windows are applied to 

the waveform or samples in order to smooth its spectrum. 

4.2.1 The Discrete Fourier Transform 

A time waveform can be of infinite duration in theory, but in practice it is 

always a finite length of data that is used in spectral analysis. Moreover, for 
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practicality the data that is processed is an uniformly sampled one having a fixed 

number, N, of samples. The spectral analysis is simply the Fourier transform 

analysis of the signal. For a general signal, this transform exists for all w, where 

w is the angular frequency variable. It is not practical to calculate the transform 

for the continuum of all W. It is customary to represent the transform by a set 

of frequency samples, scanning a finite frequency range. 

The equations related to spectral analysis [30), are now presented. A time 

waveform f(l) has a Fourier transform F(jw) given by 

00 

F(jw) - I f(t) e-jwt dt (4.3) 

-00 

To compute the above integral, f(l) 1s represented by a set of samples 

4 = f(kT). This reduces the above integration to a summation, given by 

(4.4) 

This is similar to (4.1), and F(eif
1

) denotes the spectrum of the sequence 

{4 }, where e is the normalized frequency variable (8 = WT ). The spectrum 

F(ei8
) is periodic with a period of 21r (from the sampling theorem). The pro-

cess of sampling in the time domain leads to periodicity of the spectrum in the 

frequency domain, the period being 1/ T Hz., for a sampling interval of T 

seconds. 

The Fourier series representation of a periodic function f(t) gives rise to 

line spectrum or discrete frequency spectrum (the Fourier coefficients give the 
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amplitude of each frequency component). This is similar to sampling in the time 

domain, which leads to a periodic continuous spectrum in the frequency domain. 

Fourier series can thus be looked upon as sampling in the frequency domain, 

which leads to a periodic time waveform. F(jw) in (4.3) is represented by its 

samples Fm = F(jmO), and f(t) by its samples 4 = f(kT). Relating these 

samples by a transformation such as (4.3), makes both sequences {4} and 

{Fm} to be periodic. The numerical evaluation of the spectrum F(jw) reduces 

to evaluating the sequence samples {Fm}· 

Since the data observed or analyzed Is finite in duration, only a finite 

number of samples has to be processed. Let there be only N samples of 4. 
Equation (4.4) reduces to 

(4.5) 

for the spectrum of the sequence { 4}. Using the unnormalized frequency vari-

able w = 8/ T, ( 4.5) can be rewritten as 

N - 1 

F(ei8) = F(eiwT) = E 4 e-iwkT . (4.6) 
k=O 

The sequence { J; } is assumed aperiodic to start with, but F ( eiwT) is a con-

tinuous periodic function. Sampling this spectrum at regular intervals of 

t::&w = 0, the following equation can be obtained: 

N-1 

Fm 6 F(eimOT) = E 4 e-ikmOT . (4.7) 

k :=0 
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When n = 2tr/ NT, there are exactly N samples (30] F:n for the spec­

trum. These samples are periodic since F(ei0) is periodic. This choice of 0 is 

useful to precisely invert the discrete Fourier transform of ( 4.7). The original 

sequence { 4} can be obtained from {Fm} using the inverse relation, 

{4.8) 

Equations ( 4.7) and {4.8) constitute the discrete Fourier transform (DFT) pau. 

The transformation is exact, i.e., it is a one to one mapping between {4} and 

The sampling of the spectrum in ( 4. 7), forces { 4 } to be a periodic 

sequence outside the (0, N -1) interval. Initially { 4 } was assumed to be 

aperiodic. Thus outside (0, N -1), (4.8) will be erroneous. To reduce errors, in 

this numerical evaluation of spectra, either N, the number of samples, has to be 

large or the spacing between samples, T, should be small. Both sequences now 

have a period of N. Thus the original time waveform is represented by N sam-

pies spaced T seconds apart, and the total duration of the waveform is 

R = NT seconds; n is the spacing between the frequency samples and also 

defines the frequency resolution of the spectrum. Thus, harmonic analysis is per-

formed using the discrete Fourier transform. This is useful for the numerical 

evaluation of spectra using the speed and efficiency of computers. 
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4.2 .2 Spectral Leakage 

Equations (4.7) and (4.8) can also be interpreted as an orthogonal projection 

technique on the time samples. The functions e-ikmOT are an orthogonal basis 

set of functions that span the observation interval NT. Breaking them up into 

sines and cosines, the following orthogonal functions can be obtained: 

cos [ km n T] = cos [ km · ~; · T ] = cos [ ~; km ] 

(4.9) 

for m, k = 0, 1, 2, ... , N -1. These functions give the projections of a given 

complex sequence along the real and the imaginary axes, respectively. 

By orthogonality, it is meant that [33), 

if m=n (mod N) 

if m=;l=n 

and (4.10) 

N-l {N E e-jkmOT ejlmOT = 

m=O 0 

if k=l (mod N) 

if k=;l=l . 

These functions are thus, orthogonal on finite point sets and are called orthogonal 

sequences. These sequences are said to span a signal space, into which a given 

time sequence can be projected, in much the same way as the vector projections 

in a 3-dimensional space (or the Fourier series of a periodic waveform). Here, it is 

an N -dimensional space, since there are N basis functions. 
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Using these basis functions, the given sequence is expanded, to find the pro­

jection on each one. These projections correspond to the spectral content of the 

data sequence, since the basis functions represent the frequency sampling points. 

As long as the given time sequence has a periodicity that matches with one of 

these basis functions, there is only one spectral component. A periodicity that is 

slightly away from one of the basis functions (the frequency sampling point or 

the DFT bin, as it is usually called), projects on all these orthogonal directions 

and thus biases the estimates of the actual components at these directions. This 

phenomenon is called spectral leakage, and is due to the finite extent of the data 

as well as the discretization of the spectrum. This phenomenon is explained by 

Harris [25]. 

The reason for this leakage is that a periodicity is being forced on the given 

finite extent data, and this leads to discontinuity, in the data and its slopes, at 

the edges of the observation interval. This effect can be reduced by smoothing 

the data so that it goes to zero at the boundaries. This smoothing is done by a 

window function (a sequence) that is applied to the input data sequence multipli­

catively. In the frequency domain, this leads to a convolution operation and 

hence, to reduce the bias in the spectral estimation and spectral leakage, a 

narrow-main-lobe-and-low-side-lobes window function is needed. With such a 

window function applied to the data, when a periodicity of arbitrary frequency 

exists in the data sequence, the projection is onto a basis vector closest to this 

frequency. The projection on the other basis vectors get reduced because of the 

low side lobes in the window's transform. 
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4.3 Figures of Merit for Windows 

Having discussed the utilities and requirements of a window, both in the 

filter design situation and the harmonic analysis situation, the next discussion is 

about how to measure their performance quantitatively and how the different 

data windows, available in literature, can be compared to one another. Harris [25) 

has listed many parameters that are useful in comparing window performances. 

He has tabulated the various figures [p. 55), for different windows that were 

popular at that time [1978). Some of these figures of merit are described briefly in 

the following paragraphs. 

4.3.1 Equivalent Noise Bandwidth 

When a window is used to estimate a harmonic in the presence of broad-

band noise, the noise within the bandwidth of the window contributes to the esti-

mate of that harmonic, and thus creates a bias in the estimate. To reduce this 

bias a narrow band window is needed. This bias is quantified by what is known 

as the equivalent noise bandwidth (ENBW) of the window. This is the width of a 

rectangle window with the same peak power gain that introduces the same noise 

power, in the estimation of the harmonic. Here, power implies the squared ampli-

tude of the harmonic. The ENBW is given by 

ENBW-
n 

( 4.11) 

where { wn} are the window coefficients. The summation in the numerator is the 
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normalized noise power, and that in the denominator is the peak power gain (the 

gain at zero frequency). 

4.3.2 Processing Gain and Processing Loss 

The DFT can be construed as a bank of matched filters, where each of the 

filters is matched to one of the sinusoidal basis functions. Thus, a quantity called 

the coherent gain or processing gain (PG) can be defined for these matched 

filters, and also for the windows. Since windowing reduces the data to zero at the 

edges, this can be attributed as the processing loss (PL) of the window. To meas-

ure these attributes quantitatively, consider a simple input data sequence of the 

form 

(4.12) 

where it is assumed, for convenience, that the input complex sinusoids have the 

same frequencies as the basis set, and { q } is a white noise sequence that 1s 
n 

Gaussian with variance 
2 oq . At the filter output, that is after the window is 

applied to this sequence, when the DFT output is analyzed, the expected value of 

the signal at the output (the spectral component at w,. ), IS 

(4.13) 
n n 

This is the output of the filter that is 'matched' to the basis frequency w,. . 

It is found that the output is modified in amplitude by an extra factor which is 

simply the sum of all the window coefficients. This summation is called the 
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coherent gain. The square of the this gain is the coherent power gain of the win-

dow. For a rectangle window the coherent gain is N, the number of terms in the 

window sequence, since each coefficient is unity. For other windows, it is less than 

N, since the window coefficients go to zero on either side of the observation 

interval NT (about the center of this interval). The coherent gain is normalized 

by dividing it by N, and thus the rectangle window, which is used as a reference 

for the other windows, has unit gain. 

The noise component q m (4.12), gives rise to the incoherent component 
n 

at the output, and the expected noise component at the output is given by 

F.l . k nmse (4.14) 
n 

and the square of this expression gives the incoherent power in the output at the 

DFT sample point wk. This incoherent power is given by 

(4.15) 
n m 

The summation in the above expression is the incoherent power gain. Thus, the 

incoherent power gain is the sum of the square of the window coefficients, while 

the coherent power gain is the square of the sum of the window coefficients. 
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The processing gain, PG, is defined as the ratio of the output SNR (signal-

to-noise-ratio) to the input SNR, and is hence given by 

A2 [ ~ w. r I o;
2 ~ w.

2 
[ ~ w. r 

PC - ____ n _______ n ___ - ___ n ___ _ 
(4.16) 

n 

The reciprocal of this gives the processing loss, which is the same as the ENBW 

defined in ( 4.11 ). 

4.3.3 Scalloping Loss 

This is also called the picket-fence effect. In ( 4.16), the processing gain was 

considered when the input tone lies at an exact DFT sampling point. There 

would be a reduction in PG, as an input tone resides in between neighboring 

basis vectors, and this reduction is maximum when the tone is at the center of 

the two basis vectors. Now ( 4.13), which gives the coherent signal component at 

the output, becomes 

I ~ jw(k +l/ 2) nT - jw1 nT 
~ signal = L....J wn A e e (4.17) 

n 

where w(k + 1/ 2) is the midpoint between wk and w(k + 1), and it is, hence, given 

by 

w(k +1/ 2) = 211" (k +1/2) £ = 211" (k +1/2) ~T . (4.18) 

Putting (4.18) into (4.17), we have 

I ~ ej(1rj N)n 
~ signal = A L....J wn · ( 4.19) 

n 
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The scalloping loss is defined as the ratio of the coherent gain for a tone at 

the midpoint between two DFT bins, to the coherent gain for a tone at a DFT 

bin. Hence scalloping loss is expressed as 

Scalloping loss (4.20) 

n 

The power loss is the square of the above expression, and is usually expressed in 

decibels. 

The sum of the two processing losses, viz., the maximum scalloping loss due 

to the worst case frequency location of the tone and the processing loss due to 

data reduction at the edges of the observation interval, is called the worst case 

processing loss. This loss is also, usually, expressed in decibels, and is the one 

mostly listed in the table of merits. 

4.3.4 Minimum Resolution Bandwidth 

As long as one is just interested in detecting a harmonic in broad-band 

noise, any window other than the rectangle window, is useful. But when one has 

to resolve two nearby tones of nearly equal strength, one needs windows with 

special characteristics. More than a minimum worst case processing loss, is 

needed for the window. The window should have a narrow main lobe and a low 
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side lobe structure, to resolve the two nearby tones. A quantity that is used in 

measuring a window performance, in relation to this resolving problem, is the 

mm1mum resolution bandwidth. This is the minimum separation required 

between two equal-amplitude tones at the input, that is necessary to resolve them 

at the output of the windowed transform. The usual specification is the half­

power or 3 dB bandwidth, that measures the bandwidth of a filter. In using the 

DFT, there is a coherent addition of the spectral components, weighted through 

the window coefficients, at a given frequency. The half-power specification is not 

sufficient in this case. When two kernels are contributing to the coherent summa­

tion, the sum at the crossover point should be less than the amplitude of the 

tones, if they have to be resolved. Hence the gain from each kernel, at the cross­

over point should be less than half, or the crossover point should be beyond the 3 

dB point. It is usual to consider the 6 dB bandwidth for the purposes of resolu­

tion. The two kernels arise in this situation due to the window being centered at 

each of the input tones, when one measures the spectrum at the crossover point. 

The two equal-amplitude tones contribute to the output at the DFT bins in the 

crossover region. The 6 dB bandwidth is taken to be the minimum resolution 

bandwidth of the window. 

4.3 .5 Summary and Other Merits 

Besides the above figures of merit, a few others can be found in [25]. But the 

above quantities are very useful in describing windows as applied to harmonic 
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analysis. It is usual to compare and contrast different windows based on 

(i) the side lobe level, which reduces spectral leakage, and hence, the estimation 

bias, 

(ii) the worst case processing loss, which affects detectability of a tone, and 

(iii) the minimum resolution bandwidth, which specifies the spacing necessary 

between two equal-amplitude tones, for being resolved. 

Also a good window should have a side lobe structure that decays very fast 

with frequency, for this reduces interference from distant tones. The computation 

of the window coefficients should be easy, and quantizing the coefficients should 

not adversely affect the window performance. 

4.4 The Prolate Window 

The DPSS { v~0>(N, W )}, on the index set (0, N -1), constitutes the win­

dow coefficients and hence this window is called the prolate window. A small W 

can give the required narrow main lobe. Thus the DPSS lends itself to a flexible 

window design. This window is compared to other standard and popular win­

dows, in the following sections. 

4.4.1 Comparison to Other Windows 

There are numerous window designs available in literature. Two of the fun­

damental ones are the rectangle and triangle windows. Though not used in prac­

tice, these form a basis of comparison for other windows. The Hamming and Han­

ning windows, that were obtained by adding translated Dirichlet kernels [25), are 

simple to compute and have a good resolving power and a low processing loss. 
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The Blackman-Harris family of windows evolve as a 3-terrn or 4-terrn weighted 

cosine series. The weighting coefficients can be chosen, to place the zeros in the 

frequency response at required locations or to minimize the side lobe levels. This 

family of windows is highly useful for harmonic analysis, since it has good resolv­

ing power, low side lobes and the window coefficients are easy to compute. The 

Dolph-Chebyshev family of windows have a very narrow main lobe for any given 

side lobe level (all the side lobes are at the same height). It is not very easy to 

compute this window, and the side lobe levels are very sensitive to inaccuracies in 

the computation of the window coefficients. Other optimal windows such as the 

Kaiser-Bessel and Barcilon-Ternes windows also perform as well as the 

Blackman-Harris windows, in detecting a weak signal in the presenc~ of a strong 

nearby one. 

Table 1 lists the figures of merit, that were discussed in the previous section, 

of a few of these windows. The prolate window is computed for the values of the 

parameter W = 0.03, 0.05, 0.06 and 0.08. From Table 1, it is seen that the win­

dows have a worst case loss in the range of 3 to 4 dB, and a minimum resolution 

bandwidth in the range of 1.2 to 2.8 bins. or the two 4-terrn windows, the 

'minimum' 4-terrn Blackman-Harris window has a highest side lobe at -92.5 dB 

(Nuttall [34), carne up with a 4-terrn window that had a -93.32 dB high side lobe. 

This level is less than the one Blackman-Harris claimed to be minimum, and 

hence Nuttall phrases that window as 'minimum'). The other 4-term Blackman­

Harris window has a -7 4 dB high side lobe. For convenience, the Blackman-Harris 
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Table 1 - Some Figures of Merit of Selected Windows 

Highest 3dB Scali- Worst 6 dB 

WINDOW 
Side Lobe Coherent 

ENBW 
Band- oping Case Band-

Level Gain Width Loss Loss Width 
(dB) (Bins) (Bins) (dB) (dB) (Bins) 

Rectangle t - 13.3 1.00 1.00 0.89 3.92 3.92 1.21 

Triangle t -26.6 0.50 1.33 1.27 1.82 3.07 1.77 

'Minimum' 4-Sample t 
-92.5 0.36 2.00 1.90 0.83 3.84 2.66 Blackman-Harris 

74 dB 4-Sample t 
-74.8 0.40 1.79 1.70 1.03 3.56 2.38 

Blackman-Harris 

Prolate ( W = 0.03) -33.1 0.58 1.29 1.24 1.93 3.04 1.72 

Prolate ( W = 0.05) -57.2 0.45 1.62 1.54 1.24 3.35 2.16 

Prolate ( W = 0.06) -70.0 0.40 1.77 1.68 1.06 3.53 2.35 

Prolate ( W = 0.08) - 91.8 0.35 2.06 1.95 0.78 3.93 2.74 

Dolph-Chebyshev t 
-50.0 0.53 1.39 1.33 1.70 3.12 1.85 

a= 2.5 
Dolph-Chebyshev t -60.0 0.48 1.51 1.44 1.44 3.23 2.01 
a=3.0 
Dolph-Chebyshev t 

-70.0 0.45 1.62 1.55 1.25 3.35 2.17 
a= 3.5 
Dolph-Chebyshev t 

-80.0 0.42 1.73 1.65 1.10 3.48 2.31 
a= 4.0 

t Refer [25], page 55, for more information on these windows. 

windows are addressed by their side lobe levels. Of the two 4-term Blackman-

Harris windows, except for its inferior high side lobe, the 7 4-dB window has a 

lower 6 dB bandwidth, hence a higher resolving power; a higher coherent gain, 

hence a lower ENBW; a slightly higher scalloping loss, but a lower worst case 

processing loss. 
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or the four prolate windows, the one with w = 0.06, has an overall better 

performance, in terms of its side lobe level, scalloping loss, coherent gain and 

worst case processing loss. Comparing this window to the 74-dB Blackman-Harris 

window, it is observed that the prolate window has a slightly lower 6 dB band­

width and hence a slightly better resolving power; a lower worst case processing 

loss; a higher first side lobe level at -71 dB but a faster side lobe falloff. These 

differences are, however, not very significant, and the windows are very similar. 

4.4.2 Side Lobe Level vs. Worst Case Proeessing Loss 

The side lobe level and the worst case processing loss are, perhaps, the two 

most important parameters of the windows, in relation to harmonic analysis. 

Harris [25], accordingly compared several windows by locating them in a 2-dim­

ensional plane, that has the side lobe levels marked on the y - axis and the worst 

case processing loss on the x- axis. The windows located on the lowest left-hand 

corner, would be the best ones for harmonic analysis, since they have both, a low 

side lobe level and a low worst case processing loss. The rectangle, triangle, 

Dolph-Chebyshev, Blackman-Harris and prolate windows, are located on this 

graph (see Fig. 12). The Dolph-Chebyshev windows are located at the lowest 

left-hand region in this plane, and hence they are the best windows for harmonic 

analysis. But their side lobe structure is very sensitive to errors in the computa­

tion of the window coefficients, and hence their location on this graph is prone to 

change. Moreover, all the side lobes are at the same height and this is not suit­

able for multi-tone detection since even a distant strong tone creates the same 

amount of bias, in the estimation of a weak tone, as does a nearby strong tone. 
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The prolate windows and the Blackman-Harris windows (so also the Kaiser­

Bessel windows) are next-in-line, with respect to their location on this plane. 

They do not have the constant level side lobes and coefficient sensitivity prob­

lems of the Dolph-Chebyshev windows. Hence the prolate, Blackman-Harris and 

Kaiser-Bessel windows are a better choice for harmonic analysis. Though useful 

for comparing windows, this 2-dimensional plane does not fully represent the win­

dow performances. In the following section the Blackman-Harris and prolate win­

dows are compared in the situation of detecting a weak tone in the vicinity of a 

strong tone, based on an example in Harris [25). 

4.5 The Two Tone Detection Problem 

A problem of two tone detection, that proves the usefulness and necessity of 

a data window, is now considered. The prolate window that is considered here is 

the one with W = 0.06 and the Blackman-Harris window is the one with a -7 4 

dB high side lobe. The rectangle window's performance is also included in this 

situation, to highlight its deficiency. The frequency spectrum of the three win­

dows are provided in Fig. 13 & 14. The rectangle window is seen to have a very 

narrow (like a pencil-beam) main lobe, but the side lobe levels are very high, the 

highest side lobe is at a height of about -13 dB. The prolate and Blackman­

Harris windows have very low level side lobes, and a main lobe much wider than 

that of the rectangle window. It is also observed that the side lobe falloff is faster 

for the prolate window, as said earlier. This makes them more suited to multi 

tone detection situations, as a distant tone would cause lesser interference in 

comparison to a nearby tone. 



0,---------------------------~---------------------------, 

1\ 
0 -I 

0 
~ 
I 

0 
w 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-0.50 -0.40 -0.30 - 0.20 -0,10 o.oo 0.10 0.20 
FREQUENCY, Hz 

FIG. 13 - RECTANGLE WINDOW 
FREQUENCY RESPONSE OF THE WINDOW 

0.30 0.40 0.50 



---- PROLATE CW=0.06J 
-- 74 dB BLACKMAN-HARRIS 

0~------------------------~~--~----------------------~ 

0 
(\J 

m' 
"D 

. 
:L 
=:Jo 
O::"<t 
r-' 
u 
w 
0... 
Ul 

0 
W<D 
01 
::J 
f-
>---< 

z 
~o A'n 
~ <fl (\ (\ f\ fl f\ (\ (\ A f\ fl f\ (\ A A f\ (\ !\ 1\ ,., t~ 1 

r )1 
~ I II f 

r " " \ f' '\ I " I I \ \ \r r 1 \ 
f\ f\ r, r\ \ \ \ \ \ \ I \ \ I II I 11 \1 { 

8 I \ 1 \ \ \ \ \ I I I 11 ~ f ~ 
I t I I i 

- 0.50 -0.40 -0.30 - 0.20 -0. 1 0 0. 00 0. 1 0 
FREQUENCY, Hz 

0.20 0.30 

FIG. 14 - BLACKMAN-HARRIS & PROLATE WINDOWS 
COMPARISON OF FREQUENCY RESPONSE 

0.40 0.50 



76 

4.6.1 The Tones at 6.0 and 10.0 Bins 

When two spectral lines reside in DFT bins, the rectangle window allows 

each to be identified with no interaction. To demonstrate this, the two input 

tones are chosen to be at 5.0 f./ N and 10.0 f. /N, corresponding to the 
8 8 

5th and lOth DFT bins. The tone at the 5th bin is of unit amplitude, while the 

weaker tone at the lOth bin is of 0.01 amplitude. Thus, on a log scale, there is a 

40 dB separation in their amplitudes. The power spectrum at the rectangle win-

dow output is shown in Fig. 15. The DFT output points are joined by straight 

line segments. Clearly, two peaks are visible at the output, showing that the rec-

tangle window has not caused any interference of the two tones. The DFT bins 

correspond to the nulls of its spectrum, and thus no leakage (and hence no bias) 

is caused in the estimation of the tones. 

For the same input, the prolate and the Blackman-Harris windows g1ve a 

rather broad spectrum DFT output. The DFT outputs are shown in Fig. 15. But 

two peaks are distinct, and these correspond to the two input tones; there is a 

difference in the heights of the peaks of 40 dB magnitude, and this is the same as 

that of the input tones. For the prolate window there is a pronounced null 

between the peaks, that is 25 dB below the smaller peak. The null in the case of 

the Blackman-Harris window is 20 dB below the smaller peak. If a 3 dB margin is 

considered for high confidence detection, then the detection is good with both 

these windows. 
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4.5.2 The Tones at 5.5 and 10.0 Bins 

The input is now modified, so that the larger tone is shifted to 5.5 bins (a 

location corresponding to the worst case processing loss, for most of the win­

dows), and the smaller tone is stationed at 10.0 bins. The results can be seen in 

Fig. 16. The rectangle window just detects one peak corresponding to the larger 

tone; there is just one peak in the DFT output of the rectangle window. The side 

lobe structure of the larger tone engulfs completely the main lobe of the smaller 

tone. The separation between the input tones is now 4.5 bins. At this frequency, 

the rectangle window has a gain of -23 dB with respect to the d.c. gain (see Fig. 

13). The window has a worst case processing loss of 4 dB, and considering a 3.0 

dB high confidence detection margin, the 'threshold' level at this 4.5 bins separa­

tion is - 23- 4 + 3 = -24 dB. The smaller tone at -40 dB, is thus within this 

'threshold' and thus it is engulfed in the side lobe structure of the larger tone. 

There is also an asymmetry noticed in this side lobe structure, about the main 

lobe at 5.5 bins. This is due to the coherent addition of the side lobe structures 

(discussed earlier in the section on spectral leakage) between the kernels located 

at the positive and negative frequency axes.· There is a leakage between these two 

kernels. 

The prolate and Blackman-Harris windows are now applied to the two tone 

signal, to illustrate the weak tone detectability (Fig. 16). The windows have very 

similar DFT outputs. There are two peaks with 40 dB magnitude separation with 

a 4 dB null separating them. For the same 3 dB high confidence margin, the 



FIG. 16 - INPUT TONES AT 5. 50 & 10.00 BINS 
POWER SPECTRUM AFTER WINDOWING 
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detection is thus marginal. Also, since there is no DFT output corresponding to 

5.5 bins, the larger tone seems to be located at 6.0 bins and thus there is a slight 

positional bias in the estimation. This experiment has demonstrated the limita­

tions of the rectangle window, which detects only one peak, and the usefulness of 

the other two windows. 

4.5.3 The Tones at 5.25 and 10.0 Bins 

The input power spectrum is modified so that the larger tone is shifted to 

5.25 bins. Then it is checked if this corresponds to the worst case location for any 

of the three windows being compared here. The weaker tone is still positioned at 

10.0 bins. The rectangle window again detects only one peak (that of the larger 

tone), and the result is similar to the previous case (Fig. 17), except that the 

asymmetry about the main lobe is more pronounced and there is a reduced side 

lobe level. The weaker tone is still within the side lobe structure of the larger 

tone and hence goes undetected. 

Again, the Blackman-Harris and prolate windows are tried. The results are 

quite similar to the previous case, viz., two output peaks, with a 40 dB separation 

in their heights and at the input frequency locations. The null between peaks, for 

the Blackman-Harris window, is 5 dB deep, and that for the prolate window is 2 

dB better. The detection is slightly better than in the previous case. This 

confirms that the previous case, viz., larger tone at 5.5 bins, corresponds to the 

worst case location for all the three windows. 
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The prolate window performs as well as the Blackman-Harris window, as 

seen in this example. Also the Kaiser-Bessel, Dolph-Chebyshev and Barcilon­

Temes windows are good for this situation, as Harris [25) demonstrated. The 

main lobe width of the prolate window can be controlled by varying the parame­

ter W of the DPSS {v~>(N, W)}. Thus the main lobe width can be smoothly 

controlled. This flexibility does not exist in the design of the Blackman-Harris 

windows. For larger W, the prolate window has lower side lobe levels. A gra­

dient search technique is used, in the case of the Blackman-Harris window, to 

find the weighting coefficients in the cosine series that achieve a minimum side 

lobe level. 



CHAPTER 5 

SUMMARY AND CONCLUSIONS 

This study is basically twofold: 

83 

(i) to investigate the use of higher order discrete prolate functions 1n filter 

design, and 

(ii) to apply the prolate function, as a window, in spectral analysis. 

The passband performance has been improved, in the present work. The use 

of the prolate function in harmonic analysis has been demonstrated. 

The discrete prolate filter is based on the DPSWF U0 (N, W; I), as seen ear­

lier. When u2 (N, W; I), the next higher order even function, is added to 

U0 (N, W; I), a widened main lobe results. The main lobe is also less slanting, 

and the edge-of-the-passband gain is also improved. As more and more even func­

tions are added there is an increase in main lobe width and an improvement in 

flatness. The side lobe falloff is also faster. These improvements level off after the 

first few additions, since the passband energy concentration of higher order func­

tions becomes less and less significant with increasing order. 

However, the addition of higher order terms also introduces passband rip­

ples, as N and W get larger. This is an unwanted situation, but the ripple 

amplitudes reduce with the number of even functions, with significant passband 

energy concentration, that are included in the design. Also, the side lobe levels or 
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the prolate filter increase with the inclusion of the higher order functions. This is 

expected, since it is known that the higher order functions have higher energy 

concentrations outside the passband interval, as compared to that of the lowest 

order one. This increase in side lobe levels can be reduced to some extent with 

the inclusion of all the significant orders. 

One of the filters, so designed by including higher order DPSWF, is com­

pared to a Chebyshev filter with similar design parameters. It is seen that the 

new design is as good as the Chebyshev design, and would thus be suitable to 

many applications that warrant a Chebyshev type filter. Thus, it is seen that the 

passband performance of the prolate filter can be improved at the cost of raised 

side lobe levels. There is a reduction of energy concentration in the passband, in 

including higher order DPSWF; but the passband energy concentration is com­

parable to that of other filters with a flat passband. 

The addition of the prolate functions is performed with a least-squares cn­

terion, in choosing the weights for the higher order functions. A possible exten­

sion to this work, would be to use a Chebyshev criterion in choosing these 

weighting coefficients to achieve a flat passband characteristic. 

In the second part of this work, the narrow main lobe and the low side lobe 

structure of the DPSWF U0 (N, W; /) was made use of, in harmonic . analysis. 

For this purpose, the DPSS {v~0>(N, W)} on the index set (0, N-1) was used as 

the window coefficients, in analyzing the harmonic contents of a data sequence 
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using the discrete Fourier transform. This window is appropriately termed as the 

prolate window. The width of the main lobe can be controlled by a proper choice 

of W, and this leads to flexible window designs. 

With reference to detection of a harmonic tone in the presence of strong 

interference, the windows that are best suited, are the Kaiser-Bessel and the 

Blackman-Harris families of windows. The performance of the prolate window 

was compared to that of the 4-term Blackman-Harris window. The windows are 

located in the 2-dimensional plane (see Fig. 12), that compares the windows on 

the basis of their highest side lobe level and their minimum resolution bandwidth. 

The prolate windows are located close to the Blackman-Harris windows, and the 

windows have a similar performance in the two tone detection problem that was 

considered. 

Thus it is found that the prolate window is as useful to applications in spec­

tral analysis, as the popular Blackman-Harris and Kaiser-Bessel windows. 

Another application of this type is picture processing. It would be interesting, to 

extend the prolate window to the two-dimensional case and use it for edge detec­

tion in pictures. 
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C*********************************************************** 
C* * 
C* THIS PROGRAM IS FOR COMPUTING THE DISCRETE PROLATE * 
C* SPHEROIDAL SEQUENCES AND THE RELATED DISCRETE * 
C* PROLATE SPHEROIDAL WAVE FUNCTIONS (DPSS & DPSWF) , * 
C* AND FOR DOING THE FOURIER ADDITION OF THE DPSWF * 
C* (USING EISPACK ROUTINES) * 
C* * 
C*********************************************************** 
C* LIST OF VARIABLES * 
C*********************************************************** 
C* * 
C* A = MATRIX WHOSE EIGENVECTORS ARE THE DPSS * 
C * N = ORDER OF A * 
C* WR, WI = VECTORS CONTAINING EIGENVALUES OF A * 
C* Z(I,L) = THE N COMPONENTS OF THE Lth EIGENVECTOR * 
C* U(L,J) = THE DPSWF CORRESPONDING TO Lth EIGENVECTOR * 
C* Ul (L, J) = REAL U (L, J) * 
C* U2(L,J) =MAGNITUDE OF U(L,J) * 
C* NM = NUMBER OF ROWS IN Z MATRIX DIMENSION * 
C * I ERR = ERROR PARAMETER * 
C* ITS = NUMBER OF ITERATIONS * 
C* W = NORMALISED BANDWIDTH (BETWEEN 0. AND . 5) * 
C* Nl = NUMBER OF POINTS FOR FREQUENCY PLOT * 
C* (NUMBER OF STRIPS FOR INTEGRATION) * 
C* N2 = THE INTEGRAL MULTIPLE FACTOR FOR W * 
C* DELF = WIDTH OF THE INTEGRATION STRIP * 
C* FREQ = NORMALISED FREQUENCY (BETWEEN 0. AND .5) * 
C* MAG = MAGNITUDE RESPONSE OF THE FILTER * 
C* NS = NUMBER OF EIGENVALUES USED IN MAG-FREQ PLOT * 
C* FLTERl = THE FOURIER WEIGIITED TRANSFER FUNCTION * 
C* FLTER2 = THE LOGARITHMIC FLTERl * 
C* COEFF = THE FOURIER COEFFICIENTS * 
C* * 
C*********************************************************** 
C* SECTION FOR TYPE DECLARATION AND DIMENSIONING * 
C*********************************************************** 

CHARACTER*l III,JJJ,KKK,LLL 
PARAMETER (N=lO,N1=80) 
INTEGER ITS(N) 
REAL*8 Z(N,N),WR(N),WI(N),A(N,N),FVl(N) ,IVl(N) 
COMPLEX*16 U(N,Nl+l),E 
REAL*8 Ul(N,Nl+l) ,U2(Nl+l),SUM1(N) ,SUM2(N) 
REAL*8 FLTERl(N,Nl+l) ,FLTER2(N,Nl+l) 
REAL*8 COEFF(N),ENERGY(Nl+l) 

C*********************************************************** 
C* THE PARAMETERS ARE ENTERED HERE * 
C*********************************************************** 

NM=N 
NS=N 
W=.20 
PI=ASIN(1.)*2 
N2=IFIX(W*Nl) 
DELF=l./Nl 
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C*********************************************************** 
C* * 
C* MATRIX ELEMENTS ARE DEFINED HERE * 
C* * 
C*********************************************************** 

DO 20 I=1,N 
DO 15 J=1,N 
IF(I.EQ.J)GO TO 5 
GO TO 10 

5 A(I,J)=2*W 
GO TO 15 

10 A(I,J)=SIN(PI*2*W*(I-J))/{PI*(I-J)) 
15 CONTINUE 
20 CONTINUE 

C*********************************************************** 
C* * 
C* SECTION FOR COMPUTING EIGENVALUES AND EIGENVECTORS * 
C* * 
C*********************************************************** 

CALL TRED2(NM,N,A,WR,FV1,Z) 
CALL TQL2(NM,N,WR,FV1,Z,IERR,ITS) 

C*********************************************************** 
C* * 
C* SECTION FOR MAKING SUM Z(I,J) > 0, AND * 
C* SUM (N+1-2*I)*Z(I,J) > 0 * 
C* * 
C*********************************************************** 

25 

30 

35 

40 

DO 40 J=1,N 
SUM1(J)=O. 
SUM2(J)=O. 
DO 25 I=1,N 
SUM1(J)=SUM1(J)+Z(I,J) 
SUM2(J)=SUM2(J)+(N+1-2*I)*Z(I,J) 
IF(SUM1(J) .LT.O.)THEN 
DO 30 I=1,N 
Z(I,J)=-Z(I,J) 
SUM1(J)=-SUM1(J) 
END IF 
IF(SUM2(J) .LT.O.)THEN 
DO 35 I=1,N/2 
TEMP=Z (I , J) 
Z(I,J)=Z(N+1-I,J) 
Z(N+1-I,J)=TEMP 
SUM2(J)=-SUM2(J) 
END IF 
CONTINUE 
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C*********************************************************** 
C* * 
C* SECTION FOR COMPUTING THE DPSWF FROM THE DPSS * 
C* * 
C*********************************************************** 

* 
45 

DO 45 I=1,N 
IF((I/2)*2.NE.I)E=(1,0) 
IF((I/2)*2.EQ.I)E=(0,1) 
DO 45 J=1,N1+1 
FREQ=DELF*(J-1)-0.5 
U(I,J)=(O. ,0.) 
DO 45 K=1,N 
THETA=PI*(N+1-2*K)*FREQ 
U(I,J)=U(I,J)+E*CMPLX(Z(K,I)*COS(THETA), 
-Z(K,I)*SIN(THETA)) 
U1(I,J)=REAL(U(I,J)) 
CONTINUE 

C*********************************************************** 
C* * 
C* SECTION FOR LINEAR FOURIER ADDITION OF THE DPSWF * 
C* USING SIMPSON'S RULE FOR INTEGRATION * 
C* * 
C*********************************************************** 

50 

55 

60 

65 

70 

75 

80 

85 
90 

* 

DO 60 I=1,N,2 
COEFF (I) =U1 (I, ( (N1/2) -N2+1)) +U1 (I, ( (N1/2) +N2+1)) 
DO 50 J=1,N2 
COEFF(I)=COEFF(I)+4.0*U1(I, (((N1/2)-N2)+2.*J)) 
DO 55 J=1,N2-1 
COEFF(I)=COEFF(I)+2.0*U1(I, (((N1/2)-N2+1)+2.*J)) 
COEFF(I)=COEFF(I)*DELF/3. 
CONTINUE 
DO 90 I=1, (N+1)/2-1 
DO 65 J=1,N1+1 
FLTER1(I,J)=O. 
DO 65 K=1,2*I+1,2 
FLTER1(I,J)=FLTER1(I,J)+COEFF(K)*U1(K,J) 
NUMER=FLTER1(I, (N1/2)-N2+1)**2. 
+FLTER1(I, (N1/2)+N2+1)**2. 
DO 70 J=1,N2 
NUMER=NUMER+4*FLTER1(I, (N1/2)-N2+2*J)**2. 
DO 75 J=1,N2-1 
NUMER=NUMER+2*FLTER1(I, (N1/2)-N2+1+2*J)**2. 
DENOM=FLTER1(I,1)**2.+FLTER1(I,N1+1)**2. 
DO 80 J=1,N1/2 
DENOM=DENOM+4*FLTER1(I,2*J)**2. 
DO 85 J=1,N1/2-1 
DENOM=DENOM+2*FLTER1(I,1+2*J)**2. 
ENERGY(I)=NUMER/DENOM 
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C*********************************************************** 
C* * 
C* SECTION FOR LOGARITHMIC PLOT * 
C* * 
C*********************************************************** 

95 

* 
100 

DO 95 J=1,N1+1 
U2(J)=20*DLOG10(CDABS(U(1,J))/CDABS(U(1,N1/2+1))) 
IF(U2(J) . LT. (-60 . ))U2(J)=-60. 
CONTINUE 
DO 100 I=1, (N+1)/2-1 
DO 100 J=1,N1+1 
FLTER2(I,J)=20*DLOG10(DABS(FLTER1(I,J) 
/FLTER1(I,N1/2+1))) 
IF (FLTER2 (I, J) . LT. ( -60.)) FLTER2 (I, J) =-60 . 
CONTINUE 

C*********************************************************** 
C* * 
C* SECTION FOR PLOTTING MAGNITUDE RESPONSE (MAG VS FREQ) * 
C* * 
C*********************************************************** 

105 

110 
115 

* 

* 

IF(N . GT.9)THEN 
NN=N/10 
III=CHAR(48+NN) 
END IF 
JJJ=CHAR(48+N-NN*10) 
DO 115 I=2,2*((NS+1)/2)+1 
IF(I.GT . 9)THEN 
II=I/10 
KKK=CHAR(48+II) 
END IF 
LLL=CHAR(48+I-II*10) 
CALL ASSIGN (I, 'E4'//III//JJJ/fKKK//LLL//' .DAT') 
WRITE(I,105)N1+1 
FORMAT (I I, 3X, I4) 
DO 115 J=1,N1+1 
FREQ=DELF*(J-1)-0.5 
IF(I.EQ.2)WRITE(I,110)FREQ,U1(1,J) 
IF (I. GE. 3 .AND. I. LE . (NS+1) /2+1) 
WRITE(I,110)FREQ,FLTER1(I-2,J) 
IF(I.EQ. (NS+1)/2+2)WRITE(I,110)FREQ,U2(J) 
IF(I.GT. (NS+1)/2+2) 
WRITE(I,110)FREQ,FLTER2(I-((NS+1)/2+2) ,J) 
FORMAT(' ',5X,F8.6,5X,F14.7) 
CONTINUE 

C*********************************************************** 
C* * 
C* OUTPUT SECTION * 
C* * 
C*********************************************************** 

CALL ASSIGN (1, 'E4'//III//JJJ//'l.DAT') 
DO 145 I=1,N 
WRITE(1,120)I,WR(I),ITS(I),I,COEFF(I) 
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120 FORMAT ( I I , I LAMBDA ( I , I 3 , I ) = I , E 14 . 7 , 1X, I 6 , 
* 3X, 'ITERATIONS' ,3X, 'COEFF(' ,I3, ')=' ,E14.7) 

c WRITE(1,125) 
c 125 FORMAT(' ','ASSOCIATED EIGENVECTOR COMPONENTS ARE I/) 
c WRITE (1, 130) (Z (L, I) ,L=1,N) 
c 130 FORMAT(' ',13X,E14.7) 
c WRITE(1,135)SUM1(I) 
c 135 FORMAT(' ', 'SUM1=',F9.5) 
c WRITE(1,140)SUM2(I) 
c 140 FORMAT(' ', 'SUM2=',F9.5) 

145 CONTINUE 
WRITE(1,150)IERR 

150 FORMAT(' ','THE ERROR CODE IS',I4) 
DO 160 I=1, (N+1)/2-1 
WRITE(1,155)ENERGY(I) 

155 FORMAT ( I I , I THE ENERGY RATI 0 OF THE FOURIER FILTER 
* IS =' ,F9.6) 

160 CONTINUE 

C*********************************************************** 

STOP 
END 
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C*********************************************************** 
C* * 
C* ROUTINE TO DETERMINE THE EIGENVALUES AND * 
C* EIGENVECTORS OF A SYMMETRIC TRIDIAGONAL MATRIX * 
C* (REFERENCE: 'MATRIX EIGENSYSTEM ROUTINES - EISPACK * 
C* GUIDE' - SMITH, B. T. et al . ) * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* D =VECTOR OF SIZE N. CONTAINS DIAGONAL ELEMENTS * 
C* OF THE SYMMETRIC MATRIX ON INPUT. CONTAINS * 
C* EIGENVALUES ON OUTPUT IN ASCENDING ORDER * 
C* E -VECTOR OF SIZE N. CONTAINS N-1 SUBDIAGONAL * 
C* ELEMENTS ON INPUT. ROUTINE DESTROYS E ON OUTPUT. * 
C* E (1) IS ARBITRARY * 
C* ITS =VECTOR OF SIZE N. CONTAINS THE NUMBER OF * 
C* ITERATIONS FOR EACH EIGENVALUE * 
C* * 
C*********************************************************** 

SUBROUTINE TQL2 (NM,N,D,E,Z,IERR,ITS) 
IMPLICIT REAL*8 (A-H,O-Z) 
DIMENSION ITS(NM) 
REAL*8 D(N) ,E(N) ,Z(NM,N),MACHEP 

C*********************************************************** 

c 
c 
c 

c 

c 
c 

c 

5 

10 
15 
20 

* * * * MACHEP IS A MACHINE DEPENDENT PARAMETER * * * * 
**** SPECIFYING THE RELATIVE PRECISION OF ******* 
**** FLOATING POINT ARITHMETIC ****************** 
MACHEP=1E-07 
IERR=O 
IF(N.EQ.1)GO TO 80 
DO 5 I=2,N 
E(I-1)=E(I) 
F=O.O 
B--Q.O 
E(N)=O.O 
DO 55 L=l,N 
ITS(L)=O 
H=MACHEP*(DABS(D(L))+DABS(E(L))) 
IF(B.LT.H)B=H 
**** LOOK FOR SMALL SUB-DIAGONAL ELEMENT **** 
DO 10 M=L,N 
IF(DABS(E(M)) .LE.B)GO TO 15 
**** E(N) IS ALWAYS ZERO, SO THERE IS NO **** 
**** EXIT THROUGH THE BOTTOM OF THE LOOP **** 
CONTINUE 
IF(M.EQ.L)GO TO 50 
IF(ITS(L) .EQ.30)GO TO 75 
ITS(L)=ITS(L)+1 
**** FORM SHIFT **** 
L1=L+1 



G=D (L) 
P=(D(L1)-G)/(2.0*E(L)) 
R=DSQRT(P*P+1.0) 
D(L)=E(L)/(P+DSIGN(R,P)) 
H=G-D(L) 
DO 25 I=L1,N 

25 D(I)=D(I)-H 
F=F+H 

C **** QL TRANSFORMATION **** 
P=D (M) 
C=1.0 
S=O.O 
MML=M-L 
DO 45 II=1,MML 
I=M-II 
G=C*E (I) 
H=C*P 
IF(DABS(P) .LT.DABS(E(I)))GO TO 30 
C=E(I)/P 
R=DSQRT(C*C+1.0) 
E(I+1)=S*P*R 
S=C/R 
C=1.0/R 
GO TO 35 

30 C=P /E (I) 
R=DSQRT(C*C+1.0) 
E(I+1)=S*E(I)*R 
S=1.0/R 
C=C*S 

35 P=C*D(I)-S*G 
D(I+1)=H+S*(C*G+S*D(I)) 

C **** FORM VECTOR **** 
DO 40 K=1,N 
H=Z (K, I +1) 
Z(K,I+1)=S*Z(K,I)+C*H 
Z(K,I)=C*Z(K,I)-S*H 

40 CONTINUE 
45 CONTINUE 

E(L)=S*P 
D(L)=C*P 
IF(DABS(E(L)) .GT.B)GO TO 20 

50 D(L)=D(L)+F 
55 CONTINUE 

C **** ORDER EIGENVALUES AND EIGENVECTORS **** 
DO 70 II=2,N 
I=II-1 
K=I 
P=D (I) 
T=ITS(I) 
00 60 J=II,N 
IF(D(J) .LE.P)GO TO 60 
K=J 
P=D(J) 
T=ITS(J) 

60 CONTINUE 
IF(K.EQ.I)GO TO 70 
D(K)=D(I) 

96 



c 
c 

65 
70 

75 

ITS(K)=ITS(I) 
D (I) =P 
ITS(I)=T 
DO 65 J=l,N 
P=Z (J, I) 
Z ( J , I ) =Z ( J , K) 
Z(J,K)=P 
CONTINUE 
CONTINUE 
GO TO 80 
**** SET ERROR -- NO CONVERGENCE TO AN **** 
**** EIGENVALUE AFTER 30 ITERATIONS ******* 
IERR=L 
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C*********************************************************** 

80 RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR REDUCING A REAL SYMMETRIC MATRIX TO A * 
C* SYMMETRIC TRIDIAGONAL MATRIX ACCUMULATING * 
C* ORTIIOGONAL TRANSFORMATIONS * 
C* (REFERENCE: 'MATRIX EIGENSYSTEM ROUTINES - EISPACK * 
C* GUIDE' - SMITH, B.T. et al.) * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* A - A SYMMETRIC MATRIX OF ORDER N TO BE REDUCED. * 
C* ONLY THE FULL LOWER TRIANGLE OF THE MATRIX * 
C* NEED BE SUPPLIED * 
C* D =VECTOR OF SIZE N. CONTAINS DIAGONAL ELEMENTS * 
C* OF THE SYMMETRIC MATRIX. * 
C* E - VECTOR OF SIZE N. CONTAINS N-1 SUBDIAGONAL * 
C* ELEMENTS. E (1) IS ARBITRARY * 
C* Z = ORTHOGONAL TRANSFORMATION MATRIX PRODUCED * 
C* IN THE REDUCTION PROCESS * 
C* * 
C*********************************************************** 

SUBROUTINE TRED2 (NM,N,A,D,E,Z) 
IMPLICIT REAL*8 (A-H,O-Z) 
REAL*8 A(NM,N),D(N),E(N),Z(NM,N) 

C*********************************************************** 

c 

5 

10 

15 

20 

25 

DO 5 I=1,N 
DO 5 J=1,I 
Z (I, J) =A (I, J) 
CONTINUE 
IF(N.EQ.1)GO TO 70 
DO 65 II=2,N 
I=N+2-II 
L=I-1 
H=O.O 
SCALE=O.O 
IF(L.LT.2)GO TO 15 
**** SCALE ROW **** 
DO 10 K=1,L 
SCALE=SCALE+DABS(Z(I,K)) 
IF(SCALE.NE.O.O)GO TO 20 
E (I) =Z (I , L) 
GO TO 60 
DO 25 K=1,L 
Z(I,K)=Z(I,K)/SCALE 
H=H+Z(I,K)*Z(I,K) 
CONTINUE 
F=Z(I,L) 
G=-DSIGN(DSQRT(H),F) 
E(I)=SCALE*G 
H=H-F*G 



c 

c 

c 

c 

30 

35 

40 

45 

50 

55 
60 
65 
70 

75 

80 
85 

90 
95 

Z(I,L)=F-G 
F=O.O 
DO 45 J=1,L 
Z(J,I)=Z(I,J)/(SCALE*H) 
G=O.O 
**** FORM ELEMENT OF A*U **** 
DO 30 K=1,J 
G=G+Z(J,K)*Z(I,K) 
JP1=J+1 
IF(L.LT.JP1)GO TO 40 
DO 35 K=JP1,L 
G=G+Z(K,J)*Z(I,K) 
**** FORM ELEMENT OF P **** 
E(J)=G/H 
F=F+E(J)*Z(I,J) 
CONTINUE 
HH=F/ (H+H) 
**** FORM REDUCED A **** 
DO 50 J=1,L 
F=Z (I, J) 
G=E(J)-HH*F 
E(J)=G 
DO 50 K=1,J 
Z(J,K)=Z(J,K)-F*E(K)-G*Z(I,K) 
CONTINUE 
DO 55 K=1,L 
Z(I,K)=SCALE*Z(I,K) 
D (I) =H 
CONTINUE 
D(1)=0.0 
E(1)=0.0 
**** ACCUMULATION OF TRANSFORMATION MATRICES **** 
DO 95 I=1,N 
L=I-1 
IF(D(I) .EQ.O.O)GO TO 85 
00 80 J=1,L 
G=O.O 
DO 75 K=1,L 
G=G+Z(I,K)*Z(K,J) 
00 80 K=1,L 
Z(K,J)=Z(K,J)-G*Z(K,I) 
CONTINUE 
D (I ) =Z j_ I , I ) 
Z(I,I)-1.0 
IF(L.LT.1)GO TO 95 
00 90 J=1,L 
Z(I,J)=O.O 
Z(J,I)=O.O 
CONTINUE 
CONTINUE 
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C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* TI·US PRcx;RAM IS FOR COMPUTING THE FIGURES OF * 
C* MERIT OF A FEW WINDOWS * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C * N = ORDER OF THE WINDOW * 
C* NS = NUMBER OF DIFFERENT WINDOWS * 
C* NSL = NUMBER OF SIDELOBES IN WINDOW RESPONSE * 
C * N1 = NUMBER OF FREQUENCY POINTS FOR PLOTTING * 
C * CG - COHERENT GAIN * 
C* SL = SCALLOPING LOSS * 
C* ENBW = EQUIVALENT NOISE BANDWIDTH * 
C* WL = WORST CASE PROCESSING LOSS * 
C* EMR = EXPECTED MINIMUM RESPONSE FOR PLOTTING * 
C* HSL - HIGHEST SIDELOBE LEVEL * 
C* SLFREQ = FREQUENCY AT HSL IN BINS * 
C* FREQ3DB = FREQUENCY AT THE THREE dB LEVEL * 
C* ACT3DB = ACTUAL LEVEL AT THAT FREQUENCY * 
C * BW3DB = THREE dB BANDWIDTii IN BINS * 
C* FREQ6DB = FREQUENCY AT THE SIX dB LEVEL * 
C* ACT6DB = ACTUAL LEVEL AT THAT FREQUENCY * 
C* BW6DB = SIX dB BANDWIDTH IN BINS * 
C* Z = PROLATE MATRIX OF EIGENVECTORS * 
C* Y 1,N = RECTANGLE WINDOW COEFFICIENTS * 
C* Y 2,N = TRIANGLE WINDOW COEFFICIENTS * 
C* Y 3,N = 92 dB-BLACKMAN-HARRIS WINDOW COEFFICIENTS * 
C* Y 4,N = 74 dB-BLACKMAN-HARRIS WINDOW COEFFICIENTS * 
C* Y 5,N = PROLATE WINDOW WITH W = 0.03 * 
C* Y 6,N = PROLATE WINDOW WITii W = 0.05 * 
C* Y 7,N =PROLATE WINDOW WITii W = 0.06 * 
C* Y 8,N = PROLATE WINDOW WITH W = 0.08 * 
C* Y 9,N = BARCILON-TEMES WINDOW WITH ALPHA = 3.0 * 
C* Y 10,N = BARCILON-TEMES WINDOW WITH ALPHA= 3.5 * 
C* Y 1l,N - BARCILON-TEMES WINDOW WITH ALPHA = 4.0 * 
C* Y 12 ,N - OOLPH-CHEBYSHEV WINDOW WITH ALPHA = 2.5 * 
C* Y 13,N - OOLPH-CHEBYSHEV WINDOW WITH ALPHA= 3.0 * 
C* Y 14,N = OOLPH-CHEBYSHEV WINDOW WITH ALPHA= 3.5 * 
C* Y 15,N - OOLPH-CHEBYSHEV WINDOW WITH ALPHA = 4.0 * 
C* * 
C*********************************************************** 

COMPLEX*16 SL1(15) ,U(800),V(50) 
REAL*8 SL(15),Y(15,50),A(4),B(4),W(50) ,PI,THETA 
REAL*8 CG(15) ,DG(15),WL(15),ENBW(15) 
REAL*8 Z(50,50),T(50) ,VV(50),FFREQ(200),SFREQ(200) 
REAL*8 X(800),FREQ(800),U1(800),U2(800) 
REAL*8 FREQ3DB,FREQ6DB,ACT3DB,ACT6DB,BW3DB,BW6DB 
COMMON PI 
DATA A/0.35875,0.48829,0.14128,0.01168/ 

C DATA A/0.3635819,0.4891775,0.1365995,0.0106411/ 
C DATA A/0.338946,0.481973,0.161054,0.018027/ 



DATA B/0.40217,0.49703,0 .09892,0.00188/ 
CALL ASSIGN (1, 'E71.DAT') 
N=50 
NS=15 
N1=800 
EMR= -120. 
PI=2*DASIN(1 .DO) 

C RECTANGLE WINDOW 
DO 5 J=1,N 

5 Y(1,J)=1. 
C TRIANGLE WINDOW 

10 
c 

15 
* 

c 

20 
* 

c 

25 
c 

30 
c 

31 
c 

35 
c 

40 
c 

45 
c 

50 
c 

55 

DO 10 J=1,N 
IF(J.LE. (N/2))Y(2,J)=(2 . *J)/N 
IF(J . GE. (N/2))Y(2,J)=Y(2,N-J) 
CONTINUE 
92 dB-BLACKMAN-HARRIS WINDOW 
DO 15 J=1,N 
THETA=2*PI*(J-1)/N 
Y(3,J)=A(1)-A(2)*DCOS(THETA)+A(3)*DCOS(2*THETA) 
-A(4)*DCOS(3*THETA) 
74 dB-BLACKMAN-HARRIS WINDOW 
DO 20 J=1,N 
THETA=2*PI*(J-1)/N 
Y(4,J)=B(1)-B(2)*DCOS(THETA)+B(3)*DCOS(2*THETA) 
-B(4)*DCOS(3*THETA) 
PROLATE WINDOW WITH W = 0 . 03 
CALL DPSS(N,0 .03,Z) 
DO 25 J=1,N 
Y(5,J)=Z(J,1) 
PROLATE WINDOW WITH W = 0.05 
CALL DPSS(N,0.05,Z) 
DO 30 J=1 , N 
Y(6,J)=Z(J,1) 
PROLATE WINDOW WITH W = 0.06 
CALL DPSS(N,0.06,Z) 
DO 31 J=1,N 
Y ( 7 , J) =Z ( J , 1) 
PROLATE WINDOW WITH W = 0.08 
CALL DPSS(N,0.08,Z) 
DO 35 J=1,N 
Y(8,J)=Z(J,1) 
BARCILON-TEMES WINDOW WITH ALPHA= 3.0 
CALL BARCITEMES(3 . 0DO,N,W,T,V,VV) 
DO 40 J=1,N 
Y(9,J)=W(J) 
BARCILON-TEMES WINDOW WITH ALPHA= 3 . 5 
CALL BARCITEMES(3.5DO,N,W,T,V,VV) 
DO 45 J=1,N 
Y(10,J)=W(J) 
BARCILON-TEMES WINDOW WITH ALPHA = 4.0 
CALL BARCITEMES(4.0DQ,N,W,T,V,VV) 
DO 50 J=1,N 
Y(11,J)=W(J) 
DOLPH-CHEBYSHEV WINDOW WITH ALPHA = 2. 5 
CALL DOLPHCHEBY(Z .SDO,N,W,T,V) 
DO 55 J=1,N 
Y(12,J)=W(J) 
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60 

65 

70 

75 

80 

85 

90 

95 

* 
* 

* 
* 

* 
* 
* 

* 

CALL DOLPHCHEBY(3.0DO,N,W,T,V) 
DO 60 J=1,N 
Y(13,J)=W(J) 
CALL DOLPHCHEBY(3.5DO,N,W,T,V) 
DO 65 J=1,N 
Y(14,J)=W(J) 
CALL DOLPHCHEBY(4.0DO,N,W,T,V) 
DO 70 J=1,N 
Y(15,J)=W(J) 
DO 150 I=1,NS 
IF I.EQ.1 WRITE 1,* 'RECTANGLE WINDOW' 
IF I.EQ.2 WRITE 1,* 'TRIANGLE WINDOW' 
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IF I.EQ.3 WRITE 1,* '92 dB-BLACKMAN-HARRIS WINDOW' 
IF I.EQ.4 WRITE 1,* '74 dB-BLACKMAN-HARRIS WINDOW' 
IF I.EQ.5 WRITE 1,* 'PROLATE WINDOW WITH W = 0.03' 
IF I.EQ.6 WRITE 1,* 'PROLATE WINDOW WITH W = 0.05' 
IF I.EQ.7 WRITE 1,* 'PROLATE WINDOW WITH W = 0.06' 
IF I.EQ.8 WRITE 1,* 'PROLATE WINDOW WITH W = 0.08' 
IF I.EQ.9 
WRITE(1,* 'BARCILON-TEMES WINDOW WITH ALPHA = 3.0' 
IF(I.EQ.10) 
WRITE(1,*) 'BARCILON-TEMES WINDOW WITH ALPHA = 3.5' 
IF(I.EQ.11) 
WRITE(1,*) 'BARCILON-TEMES WINDOW WITH ALPHA - 4.0' 
IF(I.EQ.12) 
WRITE(1,*) 'DOLPH-CHEBYSHEV WINDOW WITH ALPHA= 2.5' 
IF (I. EQ. 13) 
WRITE(1,*) 'DOLPH-CHEBYSHEV WINDOW WITH ALPHA= 3.0' 
IF (I .EQ.14) 
WRITE(1,*) 'DOLPH-CHEBYSHEV WINDOW WITH ALPHA= 3.5' 
IF(I.EQ.15) 
WRITE(1,*) 'DOLPH-CHEBYSHEV WINDOW WITH ALPHA= 4.0' 
DO 75 J=1,N 
CG(I)=CG(I)+Y(I,J) 
DO 80 J=1,N 
DG(I)=DG(I)+Y(I,J)**2. 
DO 85 J=1,N 
SL1(I)=SL1(I)+DCMPLX(Y(I,J)*DCOS(PI/N*J), 
-Y(I,J)*DSIN(PI/N*J)) 
DO 90 J=1,N 
X (J) =Y (I, J) 
CALL RESPONSE(X,N,FREQ,0.5,N1,U) 
CALL LPLOT(U,N1,EMR,U1,U2) 
CALL SEARCHSLOBE(FREQ,N1,U2,FFREQ,SFREQ,NSL) 
K=2 
DO 95 J=2,NSL-2 
IF(SFREQ(J+1) .GT.SFREQ(K))THEN 
HSL=SFREQ(J+1) 
K=K+1 
GO TO 95 
END IF 
IF(SFREQ(J+1) .LE.SFREQ(K))HSL=SFREQ(K) 
CONTINUE 
SLFREQ=2*FFREQ(K)*N 
CALL SEARCHFREQ(X,N,-3.DO,FREQ3DB,ACT3L,0.0001DO) 
CALL SEARCHFREQ(X,N,-6.DO,FREQ6DB,ACT6L,0.0001DO) 
BW3DB=2*FREQ3DB*N 



100 

105 

110 

115 

120 

125 

130 

135 

140 

145 

150 
* 

BW6DB=2*FREQ6DB*N 
SL!Il=CDABS(SL1(I)) 
SL I =SL(I)/CG(I) 
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SL I =-20*DLOG10(SL(I)) 
ENBW(I)=N*DG(I)/CG(I)**2. 
CG(I)=CG(I)/N 
WL(I)=SL(I)+10*DLOG10(ENBW(I)) 
WRITE(1,100)HSL 
FORMAT(/' ','HIGHEST SIDELOBE LEVEL IS =',1X,F8.4) 
WRITE(1,105)CG(I) 
FORMAT(' ','THE COHERENT GAIN IS =',1X,F8.4) 
WRITE(1,110)ENBW(I) 
FORMAT(' ','EQUIVALENT NOISE BANDWIDTH =',1X,F8.4) 
WRITE(1,115)BW3DB 
FORMAT(' ','THREE dB BANDWIDTH IS (BINS)=',1X,F8.4) 
WRITE(1,120)SL(I) 
FORMAT(' ','THE SCALLOPING LOSS IS =',1X,F8.4) 
WRITE(1,125)WL(I) 
FORMAT(' ','THE WORSTCASE LOSS IS =',1X,F8.4) 
WRITE(1,130)BW6DB 
FORMAT(' ','SIX dB BANDWIDTH IS (BINS) =',1X,F8.4) 
WRITE(1,135)SLFREQ 
FORMAT(' ','FREQUENCY AT SIDELOBE(BINS) =',1X,F8.4) 
WRITE(1,140)ACT3L 
FORMAT(' ','ACTUAL LEVEL AT 3 dB EDGE =',1X,F8.4) 
WRITE(1,145)ACT6L 
FORMAT(' ','ACTUAL LEVEL AT 6 dB EDGE =',1X, 
F8 .4/ /) 
CONTINUE 

C*********************************************************** 

STOP 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR COMPUTING THE PROLATE WINDOW * 
C* COEFFICIENTS * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* A = MATRIX WHOSE EIGENVECTORS ARE THE DPSS * 
C* N = ORDER OF A * 
C* Z(I,L) =THEN COMPONENTS OF THE Lth EIGENVECTOR * 
C* Z(I,1) =THE WINDOW COEFFICIENTS * 
C* WR,WI -VECTORS CONTAINING EIGENVALUES OF A * 
C* NM - NUMBER OF ROWS IN Z MATRIX DIMENSION * 
C * I ERR - ERROR PARAMETER * 
C* W - NORMALISED BANDWIDTH (BETWEEN 0. AND .5) * 
C* * 
C*********************************************************** 

SUBROUTINE DPSS(N,W,Z) 
INTEGER*4 ITS(50) 
REAL*8 2(50,50) ,WR(50) ,WI(50),A(50,50) 
REAL*8 SUM1(50),SUM2(50),FV1(50),IV1(50) 
REAL*8 21 

C*********************************************************** 
C* * 
C * THE PARAMETERS ARE ENTERED HERE * 
C* * 
C*********************************************************** 

NM=N 
PI=ASIN(1.)*2 

C*********************************************************** 
C* * 
C* MATRIX ELEMENTS ARE DEFINED HERE * 
C* * 
C*********************************************************** 

00 20 I=1,N 
00 15 J=1,N 
IF(I.EQ.J)GO TO 5 
GO TO 10 

5 A(I,J)=2*W 
GO TO 15 

10 A(I,J)=SIN(PI*2*W*(I-J))/(PI*(I-J)) 
15 CONTINUE 
20 CONTINUE 
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C****************«****************************************** 
C* * 
C* SECTION FOR CO~~u7ING EIGENVALUES AND EIGENVECTORS * 
C* * 
C******************* *~ ************************************** 

CALL 'IRED2 (NN,N,A,WR,FV1,Z) 
CALL TQL2(NM,N,WR,FV1,Z,IERR,ITS) 

C*********************************************************** 
C* * 
C* SECTION FOR RENORMALIZING DPSS * 
C* * 
C*********************************************************** 

DO 21 J=1,N 
Z1=Z(N/2,J) 
DO 21 I=1,N 
Z(I,J)=Z(I,J)/21 

21 CONTINUE 

C*********************************************************** 
C* * 
C* SECTION FOR MAKING SUM Z(I,J) > 0, AND * 
C* SUM (N+1-2*I)*Z(I,J) > 0 * 
C* * 
C*********************************************************** 

25 

30 

35 

40 

DO 40 J=1,N 
SUM1(J)=O. 
SUM2(J)=O. 
DO 25 I=1,N 
SUM1(J)=SUM1(J)+Z(I,J) 
SUM2(J)=SUM2(J)+(N+l-2*I)*Z(I,J) 
IF(SUM1(J) .LT.O.)THEN 
DO 30 I=1,N 
Z(I,J)=-Z(I,J) 
SUM1(J)=-SUM1(J) 
END IF 
IF(SUM2(J) .LT.O.)THEN 
DO 35 I=1,N/2 
TEMP=Z(I,J) 
Z(I,J)=Z(N+1-I,J) 
Z(N+1-I,J)=TEMP 
SUM2(J)=-SUM2(J) 
END IF 
CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR DOLPH-CHEBYSHEV WINDOW * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* ALPHA = PARAMETER IN THE DESIGN OF THE WINDOW * 
C* N = ORDER OF THE WINDOW * 
C* Z = THE WINDOW COEFFICIENTS * 
C* * 
C*********************************************************** 

SUBROUTINE DOLPHCHEBY(ALPHA,N,Z,W,Y) 
COMPLEX* 16 Y (N) 
REAL*8 A,B,C,D,E,F,G,THETA,Z(N),Z1,ALPHA,PI,W(N) 
COMMON PI 
G=10. **ALPHA 
A=DLOG(G+DSQRT(G**2-l.)) 
B=DCOSH(A/N) 
C=DLOG(B+DSQRT(B**2-1.)) 
D=DCOSH (N*C) 
DO 5 K=1,N 
THETA=2 *PI *K/N 
E=DABS(B*DCOS(PI*K/N)) 
IF(E.LT.1.DO)THEN 
F=PI/2-DATAN(E/DSQRT((1.-E**2))) 
W(K)=DCOS(N*F)/D 
END IF 
IF(E.GE.1.DO)THEN 
F=DLOG(E+DSQRT(E**2-1.)) 
W(K)=DCOSH(N*F)/D 
END IF 
W(K)=(-1.**K)*W(K)*DCOS(N/2*THETA) 

5 CONTINUE 
DO 15 I=1,N 
Y(I)=(O. ,0.) 
DO 10 J=1,N 
THETA=2*PI*J*I/N 
Y(I)=Y(I)+(W(J)jN)*DCMPLX(DCOS(THETA) ,DSIN(THETA)) 

10 CONTINUE 
Z(I)=CDABS(Y(I)) 

15 CONTINUE 
21=2 (N/2) 
DO 20 J=1,N 
Z(J)=Z(J)/21 

20 CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR BARCILON-TEMES WINDOW * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* ALPHA = PARAMETER IN THE DESIGN OF THE WINDOW * 
C* N = ORDER OF THE WINDOW * 
C* Z = THE WINDOW COEFFICIENTS * 
C* * 
C*********************************************************** 

5 

10 

15 

20 

* 

* 

SUBROUTINE BARCITEMES(ALPHA,N,Z,W,Y,X) 
COMPLEX*16 Y(N) 
REAL*8 A,B,C,D,E,F,THETA,Z(N),Z1,ALPHA,PI,X(N) ,W(N) 
COMMON PI 
A=DSQRT((10.**(2.*ALPHA))-1.) 
B=10. **ALPHA 
C=DLOG(B+DSQRT(B**2-1.)) 
D=DCOSH (C/N) 
DO 5 K=1,N 
E=DABS(D*DCOS(PI*K/N)) 
IF(E.LT.1.DO)THEN 
F=PII2-DATAN(E/DSQRT((1.-E**2))) 
X!K)=N*F 
W K)=(-1**K)*((A*DCOS(X(K))+B*X(K)IC*DSIN(X(K))) 
I (C+A*B)*((X(K)IC)**2.+1.)))*DCOS(PI*K) 
END IF 
IF(E.GE.1.DO)THEN 
F=DLOG(E+DSQRT(E**2-1.)) 
X!K)=N*F 
W K)=( - 1**K)*((A*DCOSH(X(K))+B*X(K)IC*DSINH(X(K))) 
I (C+A*B)*((X(K)IC)**2.+1.)))*DCOS(PI*K) 
END IF 
CONTINUE 
DO 15 I=1,N 
Y(I)=(O. ,0.) 
DO 10 J=1,N 
THETA=2*PI*J*I/N 
Y(I)=Y(I)+(W(J)/N)*DCMPLX(DCOS(THETA) ,DSIN(THETA)) 
CONTINUE 
Z(I)=CDABS(Y(I)) 
CONTINUE 
Z1=Z(NI2) 
DO 20 J=1,N 
Z(J)=Z(J)IZ1 
CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR COMPUTING THE FREQUENCY RESPONSE * 
C* OF THE WINDOW * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* X = THE WINDOW COEFFICIENTS * 
C * N = ORDER OF THE WINDOW * 
C* Nl NUMBER OF POINTS FOR FREQUENCY RESPONSE * 
C* FREQ = THE FREQUENCIES AT WHICH RESPONSE IS COMPUTED * 
C* FREQR = THE RANGE OF FREQUENCY FOR WHICH RESPONSE * 
C* IS DESIRED (USUALLY -. 5 TO . 5) * 
C* U - FREQUENCY RESPONSE OF THE WINDOW * 
C* * 
C*********************************************************** 

SUBROUTINE RESPONSE(X,N,FREQ,FREQR,Nl,U) 
COMMON PI 
COMPLEX*16 U(Nl+l) 
REAL*8 X(Nl+l) ,FREQ(Nl+l),FREQR , THETA 

C*********************************************************** 

DO 5 J=l,Nl+l 
FREQ(J)=2 . *FREQR/Nl*(J-1)-FREQR 
U(J)=(O.,O.) 
DO 5 K=l,N 
THETA=PI*(N+l-2*K)*FREQ(J) 
U(J)=U(J)+DCMPLX(X(K)*DCOS(THETA),-X(K)*DSIN(THETA)) 

5 CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR LOGARITHMIC PLOT * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* U = FREQUENCY RESPONSE OF THE WINDOW * 
C* Ul = REAL PART OF U * 
C* U2 = RESPONSE IN DECIBELS * 
C* Nl = NUMBER OF POINTS FOR FREQUENCY RESPONSE * 
C* EMR = EXPECTED MINIMUM RESPONSE FOR PLOTTING * 
C* * 
C*********************************************************** 

SUBROUTINE LPLOT(U,Nl,EMR,Ul,U2) 
COMPLEX*16 U(Nl+l) 
REAL*8 Ul(Nl+l),U2(Nl+l) 

C*********************************************************** 

:00 5 J=l,Nl+l 
Ul !J) =REAL (U (J)) 
U2 J)=20*DLOG10(CDABS(U(J))/CDABS(U(Nl/2+1))) 
IF U2(J) .LT.EMR)U2(J)=EMR 

5 CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR SEARCHING THE SIDELOBE LEVELS * 
C* AND THEIR FREQUENCY LOCATIONS * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* FFREQ = FREQUENCY AT WHICH THE SIDELOBES PEAK * 
C* SFREQ = SIDELOBE PEAK LEVELS * 
C* * 
C*********************************************************** 

SUBROUTINE SEARCHSLOBE(FREQ,N1,U2,FFREQ,SFREQ,I) 
REAL*8 FREQ(N1+1),U2(N1+1),FFREQ(N1/2) ,SFREQ(N1/2) 

C*********************************************************** 

K=1 
DO 5 I=N1/2+1,N1 
IF((U2(I-1) .LT.U2(I)) .AND. (U2(I) .GT.U2(I+1)))THEN 
FFREQ(K)=FREQ(I) 
SFREQ(K)=U2(I) 
K=K+1 
END IF 

5 CONTINUE 
I=K 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* ROUTINE TO SEARCH FOR A FREQUENCY AT A PARTICULAR * 
C* DECIBEL LEVEL * 
C* * 
C*********************************************************** 
C* LIST OF VARIABLES * 
C*********************************************************** 
C* * 
C* X = THE WINDOW COEFFICIENTS * 
C* SRCHL = dB LEVEL BEING SEARCHED * 
C * FREQL = FREQUENCY AT SEARCH dB LEVEL * 
C * ACTLEV = ACTUAL dB AT THAT FREQUENCY * 
C* EPSI = PERMITTED TOLERANCE IN SRCHL * 
C * FREQ = CURRENT FREQUENCY OF SEARCH * 
C * DELTAF = FREQUENCY INCREMENT FOR SEARCHING * 
C* * 
C*********************************************************** 

SUBROUTINE SEARCHFREQ(X,N,SRCHL,FREQL,ACTLEV,EPSI} 
COMMON PI 
REAL*8 X(N} ,SRCHL,FREQL,ACTLEV,U2(2} 
REAL*8 DIFF,EPSI,THETA,FREQ 
COMPLEX*16 U(2} ,U1 

C*********************************************************** 

5 

10 

15 

20 

FREQ=O.DO 
DELTAF=0.1 
DO 15 I=1,2 
IF(I.EQ.1}FREQ=FREQ 
IF(I.EQ.2}FREQ=FREQ+DELTAF 
U(I}=(O. ,0.) 
DO 10 J=1,N 
THETA=PI*(N+1-2.*J}*FREQ 
U(I}=U(I}+DCMPLX(X(J}*DCOS(THETA} ,-X(J}*DSIN(THETA}} 
CONTINUE 
IF(FREQ.EQ.O.}U1=U(I} 
U2(I}=20*DLOG10(CDABS(U(I}}/CDABS(U1}} 
DIFF=DABS(U2(I}}-DABS(SRCHL} 
IF(DABS(DIFF} .LT.EPSI)GO TO 20 
CONTINUE 
IF((U2(1} .GT.SRCHL} .AND. (U2(2} .GT.SRCHL}}THEN 
GO TO 5 
END IF 
IF((U2(1} .GT.SRCHL) .AND. (U2(2} .LT.SRCHL}}THEN 
FREQ=FREQ-DELTAF 
DELTAF=DELTAF /2. 
GO TO 5 
END IF 
FREQL=FREQ 
ACTLEV=U2 (I} 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C* THIS PRCCRAM IS FOR COMPUTING THE FREQUENCY PLOT AND * 
C* APPLICATION IN THE HARMONIC ANALYSIS EXAMPLE (HARRIS) * 
C* OF THE RECTANGLE, BLACKMAN-HARRIS AND PROLATE WINDOWS * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* N = ORDER OF THE WINDOW * 
C* M - NUMBER OF FREQUENCY POINTS AT WHICH * 
C* SPECTRUM IS COMPUTED. (GENERALLY = N) * 
C* N1 = NUMBER OF POINTS FOR FREQUENCY RESPONSE * 
C* F(N) =SINUSOID INPUT PROCESSED BY THE WINDOW * 
C* F1,F2 =COMPONENTS IN F(N) * 
C* FW(N) = THE SPECTRUM AT THE OUTPUT OF THE WINDOW * 
C* Y!1 Nl = RECTANGULAR WINDOW COEFFICIENTS * 
C* Y 2:N - BLACKMAN-HARRIS WINDOW COEFFICIENTS * 
C* Y 3,N = PROLATE WINDOW COEFFICIENTS * 
C* MAG(N = MAGNITUDE OF FW(N) * 
C* U(I,N = FREQUENCY RESPONSE OF THE WINDOW * 
C* U1(I,N) -REAL PART OF U * 
C* U2 (I, N) = MAGNITUDE OF U * 
C* * 
C*********************************************************** 

c 

c 

5 

c 

COMPLEX*16 U(3,100),FW(26l 
REAL*8 U1(3,100),U2(3,100 ,Y(3,50),Z1(50,50) 
REAL*8 F(50),Z(50),MAG(26 ,A(4) 
DATA A/.35875, .48829, .14128,.01168/ 
DATA A/0.40217,0.49703,0.09892,0.00188/ 
CALL ASSIGN 1, 'HA1.DAT' 
CALL ASSIGN 2, 'HA2 .DAT' 
CALL ASSIGN 3, 'HA3 .DAT' 
CALL ASSIGN 4, 'HA4.DAT' 
CALL ASSIGN 5, 'HAS .DAT' 
CALL ASSIGN 6, 'HA6 .DAT' 
N=50 
NS=3 
N1=80 
M=N/2+1 
PI=2*ASIN(1.) 
DO 30 I=1,NS 
RECTANGULAR WINDOW 
IF(I.EQ.1)THEN 
DO 5 J=1,N 
Y(I,J)=1. 
Z(J)=Y(I,J) 
END IF 
74 dB 4-SAMPLE BLACKMAN-HARRIS WINDOW 
IF(I.EQ.2)THEN 
DO 10 J=1,N 
THETA=2*PI*(J-1)/N 



c 

10 

11 

15 

20 
25 
30 

* 
Y(I,J)=A(1)-A(2)*COS(THETA)+A(3)*COS(2*THETA) 
-A(4)*COS(3*THETA) 
Z(J)=Y(I,J) 
END IF 
PROLATE WINDOW WITH W - 0.06 
IF{I.EQ.3)THEN 
CALL DPSS(N,0.06,Z1) 
DO 11 J=1,N 
Y(I,J)=Z1(J,1) 
Z{J)=Y(I,J) 
END IF 
CALL HARMONIC (Z,N,MAG, FW,M,F,5 . 5,10 . ) 
WRITE(I,15)M 
FORMAT { ' ' , I 3) 
DO 25 K=1,M 
WRITE(I,20)K-1,MAG(K) 
FORMAT(' ',I3,5X,F9.5) 
CONTINUE 
CONTINUE 
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C*********************************************************** 
C* * 
C* SECTION FOR COMPUTING THE FREQUENCY RESPONSE * 
C* * 
C*********************************************************** 

* 
35 

DO 35 I=1,NS 
DO 35 J=1,N1+1 
FREQ=1./N1*(J-1)-0.5 
U (I, J) = (0., 0.) 
DO 35 K=1,N 
THETA=PI*(N+1-2*K)*FREQ 
U(I,J)=U(I,J)+DCMPLX{Y(I,K)*COS(THETA), 
-Y(I,K)*SIN(THETA)) 
U1(I,J)=REAL(U(I,J)) 
CONTINUE 

C*********************************************************** 
C* SECTION FOR LOGARITHMIC PLOT * 
C*********************************************************** 

40 

45 
50 

DO 50 I=1,NS 
WRITE(I+3,40)N1+1 
FORMAT ( ' ' , I 3) 
DO 50 J=1,N1+1 
FREQ=1./N1*(J-1)-0.5 
U2(I,J)=20*DLOG10(CDABS(U(I,J))/CDABS(U(I,N1/2+1))) 
IF{U2(I,J) .LT. {-120.))U2(I,J)=-120. 
WRITE{I+3,45)FREQ,U2(I,J) 
FORMAT{' ',F9.5,3X,F10.5) 
CONTINUE 

C*********************************************************** 

STOP 
END 
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C*********************************************************** 
C* * 
C* ROUTINE FOR THE HARMONIC ANALYSIS USING THE * 
C* GIVEN WINDOW * 
C* * 
C*********************************************************** 
C* * 
C* LIST OF VARIABLES * 
C* * 
C*********************************************************** 
C* * 
C* N = THE ORDER OF THE WINDOW * 
C* M = THE NUMBER OF FREQUENCY POINTS AT WHICH * 
C* SPEC'IRUM IS COMPUTED. (GENERALLY = N) * 
C* F (N) = THE SINUSOID INPUT THAT IS PROCESSED BY THE * 
C* GIVEN WINDOW * 
C* F1,F2 =COMPONENTS IN F(N) * 
C* FW(N) = THE SPEC'IRUM AT THE OUTPUT OF THE WINDOW * 
C* W(N) = THE WINDOW COEFFICIENTS * 
C* MAG(N) = THE MAGNITUDE OF FW(N) * 
C* * 
C*********************************************************** 

10 

20 
* 

30 

40 

so 

SUBROUTINE HARMONIC (W,N,MAG,FW,M,F,F1,F2) 
REAL*8 F(N),W(N),MAG(M) ,MAG1 
COMPLEX*16 FW(M) 
PI=2*ASIN (1.) 
DO 10 I=1,N · 
F(I)=COS(2*PI*F1*(I-1)/N)+0.01*COS(2*PI*F2*(I-1)/N) 
DO 20 K=1,M 
FREQ=2*PI*(K-1)/N 
FW (K) = (0. , 0.) 
DO 20 I=1,N 
FW(K)=FW(K)+W(I)*F(I) 
*CMPLX(COS(FREQ*(I-1)),-SIN(FREQ*(I-1))) 
DO 30 K=1,M 
MAG (K) =CDABS (FW (K) ) 
MAG1=MAG (1) 
DO 40 K=1,M 
IF(MAG(K) .GE.MAG1)MAG1=MAG(K) 
DO SO K=1,M 
MAG(K)=20*DLOG10(MAG(K)/MAG1) 
IF(MAG(K) .LT.-?O.)MAG(K)=-70. 
CONTINUE 

C*********************************************************** 

RETURN 
END 
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C*********************************************************** 
C* * 
C * A GENERAL PLOTTING ROUTINE * 
C* * 
C*********************************************************** 
C* * 
C* VARIABLES ARE INTRODUCED HERE * 
C* * 
C*********************************************************** 
C* * 
C* IHT = LOOICAL VARIABLE FOR TITLE OF X AXIS * 
C* NHT = NO. OF LETTERS IN TITLE OF X AXIS * 
C* IVT = LOOICAL VARIABLE FOR TITLE OF Y AXIS * 
C* NVT = NO. OF LETTERS IN TITLE OF Y AXIS * 
C* ISMB = LOOICAL VARIABLE FOR TITLE OF A CURVE * 
C* ISMP = LOOICAL VARIABLE FOR TITLE OF THE FIGURE * 
C* IANN = LOOICAL VARIABLE FOR ANNOTATIONS * 
C* ISM - LOOICAL VARIABLE FOR SYMBOL CODE * 
C * I SM1 = MARKER OR NO MARKER IN CURVE * 
C* X, Y = SET OF DATA POINTS * 
C* N = NUMBER OF DATA POINTS * 
C* NSAME - NO. OF CURVES ON SAME FIGURE * 
C* NLINES = NO. OF LINES IN FIGURE TITLE * 
C* FILE = NAME OF DATA FILE * 
C* HXL = LENGTH OF X AXIS * 
C* VYL = LENGTH OF Y AXIS * 
C* HOL = LENGTH OF HORIZONTAL OUTLINE * 
C* VOL = LENGTH OF VERTICAL OUTLINE * 
C* FH - START VALUE ON X AXIS * 
C* FV = START VALUE ON Y AXIS * 
C* DH = INCREMENT ALONG X AXIS * 
C* DV = INCREMENT ALONG Y AXIS * 
C* OX = X COORD. OF PLOTTER ORIGIN * 
C* OY = Y COORD. OF PLOTTER ORIGIN * 
C* DX - X COORD. OF LOWEST LEGEND * 
C * DY = Y COORD. OF LOWEST LEGEND * 
C* HLL = HORIZONTAL LENGTH OF LEGEND BOX * 
C* KCYCL = INCREMENT IN GATHERING DATA FROM THE ARRAYS * 
C* LTYPE = TYPE OF CURVE CONNECTING THE DATA POINTS * 
C* NDP = n FOR LINE WITH MARKERS AT EVERY nth POINT * 
C* FCTR - ENLARGEMENT/REDUCTION FACTOR OF FIGURE * 
C* SLANT = SLANT ANGLE FOR ITALICS * 
C* LX = 1 FOR LOO X AXIS * 
C* LY = 1 FOR LOO Y AXIS * 
C* ALSIZE = SIZE OF AXIS LABELS (THE NUMERALS) * 
C* ANSIZE - SIZE OF LETTERS IN ANNOTATION * 
C* ATSIZE = SIZE OF LETTERS IN AXIS TITLES * 
C* CTSIZE = SIZE OF LETTERS IN CURVE TITLE * 
C* FTSIZE = SIZE OF LETTERS IN FIGURE TITLE * 
C* MLSIZE = SIZE OF MARKER IN LEGEND * 
C* * 
C*********************************************************** 

LOOICAL*4 IVT(SO),IHT(SO),ISMB(SO),ISMP(SO),IANN(SO) 
REAL MLSIZE 
BYTE FILE{lS} 
DIMENSION X(1002) ,Y(1002) 



CALL PLOTS(53,0,-9) 
CALL DASHDF (0,0. ,0. ,0.) 
TYPE*, 'WELCOME TO THIS ZETA PLOTTING ROUTINE' 
TYPE*, 'ENTER 1, IF YOU WANT TO USE LOG X AXIS' 
TYPE* I I ENTER MN OTHER INTEGER OTHERWISE ' 
ACCEPT* I LX 
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TYPE*, 'ENTER X AXIS LENGTH, START VALUE, INCREMENT' 
IF(LX.EQ.1)THEN 
TYPE* , ' (NOTE : HERE INCREMENT REFERS TO NUMBER OF ' 
TYPE*, 'LOG CYCLES PER UNIT LENGTH; START VALUE MUST' 
TYPE*, 'BE POSITIVE; DO NOT USE CUBIC SPLINE OPTION)' 
END IF 
ACCEPT*,HXL,FH,DH 
TYPE*, 'ENTER 1, IF YOU WANT TO USE LOGY AXIS' 
ACCEPT* I LY 
TYPE*, 'ENTER Y AXIS LENGTH, START VALUE, INCREMENT' 
IF(LY.EQ.1)THEN 
TYPE* , ' (NOTE : HERE INCREMENT REFERS TO NUMBER OF ' 
TYPE*, 'LOG CYCLES PER UNIT LENGTH; START VALUE MUST' 
TYPE*, 'BE POSITIVE; DO NOT USE CUBIC SPLINE OPTION)' 
END IF 
ACCEPT*,VYL,FV,DV 
ALSIZE=.100 
ANSIZE=.100 
ATSIZE=.140 
CTSIZE=.125 
FTSIZE=.175 
MLSIZE=.100 
XANGLE=O. 
YANGLE=90. 
HLL=4. 
SLANT=O. 
KCYCL=1 
TYPE*, 'ENTER 1, TO CHANGE MN OF THE LETTERING' 
TYPE*, 'SIZES. (ENTER MN OTHER INTEGER OTHERWISE)' 
ACCEPT* I K 
IF(K.EQ.1)THEN 
TYPE*, 'THE FOLLOWING ARE THE 
TYPE*, '1 - THE AXIS LABEL 
TYPE*, '2 - THE ANNOTATIONS 
TYPE*, '3 - THE AXIS TITLE 

DEFAULT SIZES' 
0.100' 
0.100' 
0.140' 
0.125' TYPE* I t 4 - THE CURVE TITLE 

TYPE*, '5 - THE FIGURE TITLE 
TYPE* I t 6 - THE MARKER IN LEGEND 
TYPE* I t 

0.175' 
0.100' 

TYPE*, 'HOW MMN OF THEM DO YOU WANT TO CHANGE?' 
ACCEPT* ,K 
DO 4 I=1,K 
TYPE*, 'ENTER NUMBER OF ITEM IN THE ABOVE LIST (1-7)' 
ACCEPT* ,K1 
TYPE* I 'ENTER THE SIZE' 
IF~K1.EQ.1lACCEPT*,ALSIZE 
IF K1.EQ.2 ACCEPT*,ANSIZE 
IF K1.EQ.3 ACCEPT*,ATSIZE 
IF Kl.EQ.4 ACCEPT*,CTSIZE 



4 

s 

10 

1S 
20 

2S 

30 
3S 

IF(K1.EQ.S)ACCEPT*,FTSIZE 
IF(K1.EQ.6)ACCEPT*,MLSIZE 
CONTINUE 
END IF 
TYPE* I 'ENTER TITLE OF X AXIS' 
ACCEPTS, (IHT(I),I=1,50) 
FORMAT (SOA4) 
TYPE*, 'ENTER NO. OF LETTERS IN TITLE' 
ACCEPT* I NHI' 
TYPE* I ' ENTER TITLE OF y AXIs ' 
ACCEPTS, (IVT(I),I=1,50) 
TYPE*, 'ENTER NO. OF LETTERS IN TITLE' 
ACCEPT* ,NVT 
NHI'=-NHI' 
TYPE*, 'ENTER FACTOR FOR SIZE REDUCTION' 
ACCEPT* IF 
FCTR=1/F 
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CALL FACTOR(FCTR) 
OX=(S.S/FCTR-HXL)/2 
OY=(11/FCTR-VYL)/2 
CALL PLOT(OX,OY,-3) 
CALL NEWPEN ( 1) 
IF(LX.EQ.1)GO TO 1S 
CALL AXIS(O . ,O.,IHT,NHI',HXL,XANGLE,999.,1.) 
IF((FH.EQ.IFIX!FH):1.) .AND. (DH.EQ.IFIX(DHl*1 . ))~=-1 
IF ( (FH.NE. IFIX FH) 1.) .OR. (DH .NE. IFIX (DH) 1.)) K-2 
DO 10 I=1,IFIX HXL)+1 
DSX=I-1 
FNUM=FH+DH* (I -1) 
CALL NUMBER(DSX,-2*ALSIZE,ALSIZE,FNUM,XANGLE,K) 
CONTINUE 
NHI'=-NHI' 
DSX=(HXL-NHI'*ATSIZE)/2 
CALL SYMBOL(DSX,-4*ALSIZE,ATSIZE,IHT,XANGLE,NHT) 
IF(LX.NE.1)GO TO 20 
CALL LGAXIS(OX,OY,IHT,NHT,HXL,XANGLE,FH,DH) 
IF(LY.EQ.1)GO TO 30 
CALL AXIS(O.,O.,IVT,NVT,VYL,YANGLE,999.,1.) 
IF((FV.EQ . IFIX!FV):1.) .AND. (DV.EQ.IFIX(DVl*1.))~=-1 
IF ( (FV .NE. IFIX FV) 1.) .OR. (DV .NE. IFIX (DV) 1.)) K-2 
DO 2S I=1,IFIX VYL)+1 
DSY=I-1-ALSIZE/2 
FNUM=FV+DV* (I-1) 
CALL NUMBER(-ALSIZE,DSY,ALSIZE,FNUM,YANGLE,K) 
CONTINUE 
DSY=(VYL-NVT*ATSIZE)/2 
CALL SYMBOL(-3*ALSIZE,DSY,ATSIZE,IVT,YANGLE,NVT) 
IF(LY.NE.1}GO TO 3S 
CALL LGAXIS(OX,OY,IVT,NVT,VYL,YANGLE,FV,DV) 
TYPE*, 'ENTER NO. OF CURVES IN THE FIGURE' 
ACCEPT* , NSAME 
IF(NSAME.EQ.1)THEN 
TYPE* I 'ENTER TYPE OF CURVE ' 
TYPE* , '4 - FOR ONLY MARKERS ' 
TYPE*, '5 - FOR CUBIC SPLINE WITHOUT MARKER' 
TYPE*, '6 - FOR STRAIGHT LINE WITHOUT MARKER' 
ACCEPT*, LTYPE 



GO TO 45 
END IF 
DX=HXL-HLL 
DY=VYL 
TYPE*, 'LEGEND APPEARS AT RIGHT TOP OF FIGURE' 
TYPE*, 'ENTER 1 - IF YOU WANT TO CHANGE THIS' 
TYPE*,' ENTER ANY OTHER INTEGER OTHERWISE' 
ACCEPT* ,K 
IF(K.EQ.1)THEN 
TYPE*, 'ENTER X,Y COOR. OF LEFT BOTTOM OF LEGEND' 
TYPE*,' (WITH RESPECT TO LEFT BOTTOM OF FIGURE)' 
ACCEPT*,DX,DY 
END IF 
TYPE*, 'ENTER 1 IF YOU WANT THE LEGEND IN ITALICS' 
TYPE* , 'ENTER ANY OTHER INTEGER OTHERWISE ' 
ACCEPT*, K 
IF(K.EQ.1)SLANT=30.0 
TYPE* , ' ENTER TYPE OF CURVE ' 
TYPE*, '1 - FOR CUBIC SPLINE WITH MARKER' 
TYPE*, '2 - FOR STRAIGHT LINE WITH MARKER' 
TYPE*,' 3 - FOR DOT-DASH LINES WITH MARKER' 
TYPE*, '4 - FOR ONLY MARKERS' 
TYPE*, '5 - FOR CUBIC SPLINE WITHOUT MARKER' 
TYPE*, '6 - FOR STRAIGHT LINE WITHOUT MARKER' 
TYPE*,' 7 - FOR DOT-DASH LINES WITHOUT MARKER' 
TYPE*, '8 - FOR MIXED OPTIONS' 
ACCEPT*, LTYPE 
DSY=DY 
DO 85 I=1,NSAME 
TYPE40,I 

40 FORMAT (25H ENTER TITLE OF CURVE NO., I3) 
ACCEPTS, (ISMB(J),J=1,50) 

45 CONTINUE 
IF(LTYPE.NE.8)LTYPE1=LTYPE 
IF(LTYPE.EQ.8)THEN 
TYPE* , 'ENTER TYPE OF CURVE ' 
TYPE*, '1 - FOR CUBIC SPLINE WITH MARKER' 
TYPE*, '2 - FOR STRAIGHT LINE WITH MARKER' 
TYPE*,' 3 - FOR DOT-DASH LINES WITH MARKER' 
TYPE*, '4- FOR ONLY MARKERS' 
TYPE*, '5 - FOR CUBIC SPLINE WITHOUT MARKER' 
TYPE*, '6 - FOR STRAIGHT LINE WITHOUT MARKER' 
TYPE*,' 7 - FOR DOT-DASH LINES WITHOUT MARKER' 
ACCEPT*, LTYPE1 
END IF 
TYPE*, 'ENTER A NUMBER (1-4) TO CHANGE THE PEN' 
TYPE*, '1-BLACK; 2-RED; 3-GREEN; 4-BLUE;' 
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·TYPE*, ' (NOTE: INITIALLY IT IS PEN NUMBER 1. YOU HAVE' 
TYPE*, 'TO SPECIFY THIS ORDER, WHILE SUBMITTING JOB)' 
ACCEPT*, K 
CALL NEWPEN (K) 
IF(LTYPE1.LE.4)THEN 
TYPE*,' ENTER MARKER CODE (0-15) ' 
ACCEPT*, ISM 
ISM1=ISM 
TYPE*, 'MARKERS ARE PROVIDED AT EVERY 8th POINT' 
TYPE*, 'ENTER 1 - IF YOU WANT TO RETAIN THIS' 



50 

* 

55 

60 

TYPE*, 'ENTER 2 - IF YOU WANT TO CHANGE THIS' 
ACCEPT* ,K 
IF(K.EQ.1)NDP=8 
IF (K.EQ. 2) THEN 
TYPE*, 'ENTER THE MARKER DENSITY' 
ACCEPT*,NDP 
END IF 
END IF 
IF ( (LTYPE1. EQ. 3) . OR. (LTYPE1. EQ. 7)) THEN 
TYPE*, 'ENTER LINE TYPE (1-6) ' 
ACCEPT*,ISM2 
END IF 
TYPE*, 'PLEASE ENTER DATA FILE NAME' 
ACCEPT50,FILE 
FORMAT (15A1) 
FILE(15)=0 
OPEN(UNIT=1,NAME=FILE,ACCESS='SEQUENTIAL', 
TYPE='OLD') 
READ (1, *)N 
DO 55 J=1,N 
READ(1,*)X(J),Y(J) 
CONTINUE 

~L~~:~l(~~T=l) 
X N+2 =DH 
Y N+2 =DV 
KCYCL=1 
IF(LTYPE1.LE.4)THEN 
IF((N.LT.10) .AND. (NDP.NE.1))THEN 
NDP=1 
TYPE*,' (MARKERS WILL BE PROVIDED AT EVERY POINT' 
TYPE*, 'SINCE NUMBER OF POINTS IS LESS THAN TEN.)' 
TYPE*,' ' 
END IF 
END IF 
IF~LTYPE1.EQ.1lN=-N 
IF LTYPE1.EQ.2 N=N 
IF LTYPE1.EQ.3 THEN 
N=-N 
KCYCL=ISM2+3 
NDP=NDP 
ISM1=ISM 

IFllLX.NE.1l .AND. lLY.NE.1llGO TO 60 IF LX.EQ.1 .AND. LY.NE.1 LXY=-1 
IF LX.EQ.1 .AND. LY.EQ.1 LXY=O 
IF LX.NE.1 .AND. LY.EQ.1 LXY=1 
CALL ORIGIN(OX,OY,O) 
CALL LGLINE(X,Y,N,KCYCL,NDP,ISM1,LXY) 
CALL PLOT(O. ,0., -3) 
GO TO 75 
CALL LINE(X,Y,N,KCYCL,NDP,ISM1) 
GO TO 75 
END IF 
IF(LTYPE1.EQ.4)NDP=-NDP 
IF(LTYPE1.EQ.S)THEN 
N=-N 
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NDP=O 
ISM1=2 
END IF 
IF(LTYPE1.EQ.6)T.HEN 
N=N 
NDP=O 
ISM1=2 
END IF 
IF(LTYPE1.EQ.7)THEN 
N=-N 
KCYCL=ISM2+3 
NDP=O 

IFllLX.NE.1l .AND. lLY.NE.1llGO TO 65 IF LX.EQ.1 .AND. LY.NE.1 LXY=-1 
IF LX.EQ.1 .AND. LY.EQ.1 LXY=O 
IF LX.NE.1 .AND. LY.EQ.1 LXY=1 
CALL ORIGIN(OX,OY,O) 
CALL LGLINE(X,Y,N,KCYCL,NDP,ISM1,LXY) 
CALL PLOT(O. ,0., -3) 
GO TO 75 

65 CALL LINE(X,Y,N,KCYCL,NDP,ISM1) 
GO TO 75 
END IF 

i~llt~:~:il :~: lt~:~:ill~XY~~170 
IF LX.EQ.1 .AND. LY.EQ.1 LXY=O 
IF LX.NE.1 .AND. LY.EQ.1 LXY=1 
CALL ORIGIN(OX,OY,O) 
CALL LGLINE(X,Y,N,KCYCL,NDP,ISM1,LXY) 
CALL PLOT ( 0 . , 0 . , - 3) 
GO TO 75 

70 CALL FLINE(X,Y,N,KCYCL,NDP,ISM1) 
75 IF(NSAME.EQ.1)GO TO 90 

DSX=DX+0.50 
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DSY=DSY+2*CTSIZE 
IF(LTYPE1.LE.3)THEN 
TYPE*, 'ENTER 1, IF YOU WANT A LINE DRAWN WITH MARKER' 
TYPE* , ' IN LEGEND. ENTER ANY OTHER INTEGER OTHERWISE ' 
ACCEPT*, K 
IF(K.EQ.1)THEN 
CALL PLOTlDX+0.25,DSY,3) 
CALL PLOT DX+0.4375,DSY,2) 
CALL PLOT DX+0.5625,DSY,3) 
CALL PLOT DX+0.75,DSY,2) 
END IF 
END IF 
IF ( (LTYPE1. EQ. 5) .OR. (LTYPE1. EQ. 6)) THEN 
TYPE*, 'ENTER 1, IF YOU WANT A LINE DRAWN IN LEGEND' 
TYPE* , I ENTER ANY OTHER INTEGER OTHERWISE I 

ACCEPT* ,K 
IF (K.EQ.1) THEN 
DSX=DX+O. 25 
CALL PLOT(DSX,DSY,3) 
CALL PLOT(DSX+0.5,DSY,2) 
END IF 
GO TO 80 
END IF 



80 

85 
90 

95 

100 

105 
110 

115 
120 

125 

130 

IF(LTYPE1.EQ.7)THEN 
DSX=DX+O. 25 
CALL PLOT(DSX,DSY,3) 
CALL PLOT(DSX+0.5,DSY,KCYCL) 
GO TO 80 
END IF 
CALL ITALIC (0.) 
CALL SYMBOL(DSX,DSY,MLSIZE/FCTR,ISM1,XANGLE,-1) 
DSX=DX+1.25 
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CALL ITALIC (SLANT) 
CALL SYMBOL(DSX,DSY-CTSIZE/2,CTSIZE,ISMB,XANGLE,50) 
CONTINUE 
CALL NEWPEN ( 1) 
TYPE*,' ENTER NUMBER OF LINES IN TITLE' 
ACCEPT*, NLINES 
SLANT=O. 
IF(NLINES.EQ.O)GO TO 110 
TYPE*, 'DO YOU WANT THE TITLE IN ITALICS?' 
TYPE*, 'ENTER 1, IF YES' 
ACCEPT*, K 
IF(K.EQ.1)SLANT=30.0 
DSY=-1. 
DO 105 I=1,NLINES 
TYPE95,I 
FORMAT(15H ENTER LINE NO.,I3,10H OF TITLE) 
ACCEPT100, (ISMP(J),J=1,50) 
FORMAT ( 50A4) 
TYPE*, 'ENTER NO. OF LETTERS IN TITLE' 
ACCEPT*, K 
DSX=(HXL-K*FTSIZE)/2 
CALL ITALIC (SLANT) 
CALL SYMBOL(DSX,DSY,FTSIZE,ISMP , XANGLE,50) 
DSY=DSY-2*FTSIZE 
CONTINUE 
CONTINUE 
CALL PLOTlHXL,0.,3) 
CALL PLOT HXL, VYL, 2) 
CALL PLOT 0., VYL, 2) 
TYPE*, 'ENTER 1, IF YOU WANT CROSS HATCHING' 
TYPE* , 'ENTER ANY OTHER INTEGER OTHERWISE ' 
ACCEPT*, K 
IF(K.NE.1)GO TO 170 
IF(LX.EQ.1)GO TO 120 
DO 115 I=1,100 
OHX1=I 
IF (OHX1. GE .HXL) GO TO 140 
CALL PLOT(OHX1,0.,3) 
OVY1=VYL 
CALL PLOT(OHX1,0VY1,2) 
CONTINUE 
IF(FH.LT.1.)FH=FH*10 
IF(FH.GE.1.)GO TO 125 
GO TO 120 
IF(F.H.GT.lO . )FH=FH/10 
IF(FH.LE.10.)GO TO 130 
GO TO 125 
IFH1=I INT (FH) 



135 
140 

145 
150 

155 

160 

165 
170 

OHX1=0. 
DO 135 !=1,100 
IFH=IFH1+I 
J=(I-2+IFH1)/9 
IF(IFH.GT.9*J)IFH=IFH-9*J 
FH2=FLOAT ( IFH) 
IF((I.EQ.1) .AND. (FH.GT.FLOAT(IFH1)))FH2=FH+1 
OHX1=0HX1+ALOG10(1.*IFH/(FH2-1))/DH 
IF(OHX1.GE.HXL)GO TO 140 
CALL PLOT(OHX1,0.,3) 
OVY1=VYL 
CALL PLOT(OHX1,0VY1,2) 
CONTINUE 
IF(LY.EQ.1)GO TO 150 
DO 145 !=1,100 
OVY1=I 
IF(OVY1.GE.VYL)GO TO 170 
CALL PLOT(O.,OVY1,3) 
OHX1=HXL 
CALL PLOT(OHX1,0VY1,2) 
CONTINUE 
IF(FV.LT.1.)FV=FV*10 
IF(FV.GE.1.)GO TO 155 
GO TO 150 
IF(FV.GT.10.)FV=FV/10 
IF(FV.LE.10.)GO TO 160 
GO TO 155 
IFV1=IINT(FV) 
OVY1=0. 
DO 165 !=1,100 
IFV=IFV1+I 
J=(I-2+IFV1)/9 
IF(IFV.GT.9*J)IFV=IFV-9*J 
FV2=FLOAT ( IFV) 
IF((I.EQ.1) .AND. (FV.GT.FLOAT(IFV1)))FV2=FV+1 
OVY1=0VY1+ALOG10(1.*IFV/(FV2-1))/DV 
IF(OVY1.GE.VYL)GO TO 170 
CALL PLOT(O.,OVY1,3) 
OHX1=HXL 
CALL PLOT(OHX1,0VY1,2) 
CONTINUE 
CONTINUE 
IF(NSAME.NE.1)THEN 
TYPE* I I ENTER 1 I IF YOU WANT THE LEGEND BOXED. I 

TYPE* I I ENTER MN OTHER INTEGER OTHERWISE I 

ACCEPT* ,K 
IF(K.EQ.1)THEN 
TYPE* , 1 THE LEGEND BOX HAS A LENGTH OF 4 UN! TS . ' 
TYPE*, 'ENTER 1 - IF YOU WANT TO CHANGE THIS.' 
TYPE* I I ENTER MN OTHER INTEGER OTHERWISE I 

ACCEPT* ,K 
IF(K.EQ.1)THEN 
TYPE* I I ENTER LENGTH OF LEGEND BOX I 

ACCEPT* ,HLL 
END IF 
CALL PLOT(DX+HLL,DY,3) 
CALL PLOT(DX+HLL,DY+3*CTSIZE+NSAME*2*CTSIZE,2) 
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CALL PLOT(DX,DY+3*CTSIZE+NSAME*2*CTSIZE,2) 
CALL PLOT(DX,DY,2) 
IF(DY.NE.VYL)CALL PLOT(DX+HLL,DY,2) 
IF((DY.EQ.VYL) .AND. ((DX+HLL) .GT.HXL))THEN 
CALL PLOT(HXL,VYL,3) 
CALL PLOT(DX+HLL,VYL,2) 
END IF 
IF ( (DY. EQ. VYL) .AND. (DX .LT .0.)) THEN 
CALL PLOT (0., DY, 2) 
END IF 
END IF 
END IF 
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TYPE*, 'ENTER 1, IF YOU WANT EXTRA ANNOTATIONS, IN' 
TYPE* , 'THE PLOT. ENTER ANY OTHER INTEGER OTHERWISE ' 
ACCEPT*,K1 
IF(K1.EQ.1)THEN 
TYPE*, 'ENTER NUMBER OF ANNOTATIONS' 
ACCEPT*,K2 
DO 190 I=1,K2 
TYPE175,I 

175 FORMAT(36H ENTER X,Y COORDINATES OF ANNOTATION,I3) 
TYPE*,' (WITH RESPECT TO THE ORIGIN OF THE PLOT)' 
ACCEPT*,XANN,YANN 
CALL PLOT(XANN,YANN,3) 
ANSIZE1=ANSIZE 
TYPE*, 'ENTER 1, IF YOU WANT TO CHANGE SIZE OF THIS' 
TYPE*, 'ANNOTATION. ENTER ANY OTHER INTEGER OTHERWISE' 
ACCEPT*,K3 
IF(K3.EQ.1)THEN 
TYPE*, 'ENTER SIZE OF ANNOTATION' 
ACCEPT*,ANSIZE1 
END IF 
SLANT=O. 
TYPE*, 'ENTER 1 IF YOU WANT ANNOTATION IN ITALICS?' 
TYPE* , 'ENTER ANY OTHER INTEGER OTHERWISE ' 
ACCEPT*,K4 
IF(K4.EQ.1)SLANT=30.0 
TYPE*, 'ARE THERE SPECIAL CHARACTERS IN ANNOTATION?' 
TYPE*, 'ENTER 1, IF YES. ENTER 0, OTHERWISE' 
ACCEPT* ,K5 
IF (KS.EQ.1)THEN . 
TYPE*,' SPECIAL CHARACTERS (SUCH AS GREEK LETTERS)' 
TYPE*, 'ARE ENTERED ONE AT A TIME, BY SPECIFYING' 
TYPE*, 'THEIR ASCII CODE. (CHECK PLOTTER MANUAL FOR' 
TYPE*, 'LIST OF AVAILABLE CHARACTERS)' 
TYPE*,' ' 
TYPE* , 'ENTER NUMBER OF CHARACTERS IN THE STRING' 
TYPE*, '(INCLUDE EVEN, NON-SPECIAL CHARACTERS) ' 
ACCEPT*,K6 
DO 185 J=1,K6 
TYPE180,J 

180 FORMAT ( 34H ENTER ASCI I CODE OF CHARACTER NO. , I 3) 
ACCEPT*,K7 
CALL ITALIC(SLANT) 
CALL SYMBOL(999.,999.,ANSIZE1,K7,XANGLE,O) 

185 CONTINUE 
END IF 



190 

195 

200 

IF(K5.EQ . O)THEN 
TYPE* , 'ENTER NUMBER OF CHARACTERS IN THE STRING' 
ACCEPT* ,K6 
TYPE* , 'ENTER THE CHARACTER STRING' 
ACCEPTS, (IANN(J),J=1,K6) 
CALL ITALIC (SLANT) 
CALL SYMBOL(999.,999.,ANSIZE1,IANN,XANGLE,K6) 
END IF 
CONTINUE 
END IF 
TYPE*, 'DO YOU WANT THE A-4 SIZE OUTLINE?' 
TYPE* , 'ENTER 0 FOR NO OUTLINE ' 
TYPE*, 'ENTER 1 FOR 11 BY 8 . 5 OUTLINE' 
TYPE*, 'ENTER 2 FOR 8.5 BY 11 OUTLINE' 
ACCEPT* ,K 
HOL=11. 
VOL=8.5 
IF!K.EQ.OlGO TO 200 
IF K.EQ.1 GO TO 195 
IF K.EQ.2 THEN 
HOL=8.5 
VOL=11. 
END IF 
X1=(-HOL/FCTR+HXL)/2 
Y1= ( -VOL/FCTR+VYL) /2 
TYPE*, 'THE A4-SIZE OUTLINE CENTERS THE AXES' 
TYPE*, 'ALONG THE CORRESPONDING BOUNDARY LINES. ' 
TYPE*, 'ENTER 1, IF YOU WANT TO CHANGE THIS' 
ACCEPT* ,K 
IF(K.EQ.1)THEN 
TYPE*, 'ENTER X, Y COORDINATES OF LEFT BOTTOM' 
TYPE*, 'OF THE A4-SIZE OUTLINE' 
ACCEPT* ,X1, Y1 
END IF 
CALL PLOT X1,Y1,-3) 
CALL PLOT HOL/FCTR,0,2) 
CALL PLOT HOL/FCTR,VOL/FCTR,2) 
CALL PLOT O,VOL/FCTR,2) 
CALL PLOT 0,0,2) 
CALL PLOT 8.5jFCTR-OX,11/FCTR-OY,999) 
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C*********************************************************** 

STOP 
END 








