
















































































































































extrinsic information received from the first stage of the turbo decoder is passed on to 

both decoders in this stage as their a priori information. The decoding process in this 

stage is identical to the process in the first stage. The extrinsic information from this stage 

is passed on to the first stage and the iterative decoding process proceeds. 

3.5 Summary 

This chapter presents an overview of iterative decoding of turbo codes. We began our 

discussion by defining a channel model followed by the introduction to the principles of 

iterative decoding. We explained the importance of soft-input soft-output component 

decoders and the concept of log likelihood ratios (LLRs). Next we presented in detail, the 

description of the algorithms used in component decoders. The MAP algorithm calculates 

the a posteriori LLRs of individual bits by examining every possible path through the 

trellis. This results in optimum performance but makes the resulting decoder 

computationally complex. Max-Log-MAP and Log-MAP, presented in the subsequent 

sections transform the calculations in MAP, to the log domain, thereby making them 

considerably less complex. The second algorithm we presented was the SOY A algorithm, 

which is a modification of the classical Yiterbi algorithm. It finds the ML path through 

the encoder trellis that corresponds to the ML transmitted sequence. The algorithm then 

considers the discarded paths together with the ML path to compute the LLRs of the 

individual bits in the ML sequence. Bi-directional SOYA consists of a forward and a 

backward SOY A. Backward SOY A is identical to forward SOY A except that it operates 

on the received sequence in the reverse direction. Backward SOY A can often find 'better' 
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discarded paths through the trellis which could have been missed in the forward SOV A, 

thus leading to an overall improvement in performance. 
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Chapter 4 

Sliding Window Decoding of Turbo Codes 

4.1 Introduction 

The turbo coding schemes presented in previous chapters perform close to the Shannon 

limit only for very long frame lengths [1]. Their performance deteriorates with a decrease 

in the frame length. For example a 10,000-bit code outperforms a 1000-bit code by 

0.7dB, and a 169-bit code by 1.6 dB at BER of 10-4 [23]. A long frame length, however, 

means a long decoding trellis for which the memory requirements as well as the decoder 

complexity are excessive from an implementation view point. In order to reduce the 

decoder complexity without affecting its performance significantly, we use longer frame 

lengths (e.g. 1000-bit or more) but decode the frames with sliding window component 

decoders [17]. The sliding window implementations of component decoders, i.e. MAP, 

Max-Log-MAP, SOVA and bi-directional SOVA reduce the decision depth of the trellis 

to around five times the encoder constraint length which eliminates the need to store the 
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trellis for the entire frame in memory. We begin this chapter with a review of 

conventional sliding window implementations of these algorithms. We then present new 

multiple bit release techniques which further reduce the complexity of the decoders 

significantly without any performance degradations. 

4.2 Sliding Window Component Decoders 

The component decoders (Max-Log-MAP, SOV A and bi-directional SOV A) explained in 

the previous chapter are all trellis based decoders with identical forward recursion. The 

number of trellis stages formed in the forward recursion is equal to the frame length of 

the code. Since the trellis has to be stored in the memory, for longer frame lengths, the 

decoder memory requirements are huge. However, it is possible to make reliable 

decisions after a relatively small number of trellis stages. This number is referred to as 

the decision depth D of the component decoder. The minimum decision depth is usually 

five times the encoder constraint length [17]. The reason we can make reliable decisions 

after the decision depth is that after this depth all the survivor paths at a given stage of the 

trellis tend to originate from the same initial state and have same first edge. The decoding 

decision corresponding to this edge will therefore not be affected by the subsequent trellis 

stages. This implies that we only need to compute and store the decision depth of the 

trellis to decode a single bit. This depth constitutes our decoding window. Once the bit in 

the decoded window is released, the next stage of the trellis is built and the window slides 

forward. A generalized sliding window decoding process is shown in Figure 4.1. 
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Figure 4.1. One bit release sliding window decoding 

Let us now examine the sliding window implementations of Max-Log-MAP, SOYA and 

bi-directional SOYA component decoders in detail. 

4.2.1 SOV A and Bi-directional SOV A 

To explain the sliding window SOY A algorithm we define the following terms. 

DsovA Decision depth of trellis for SOY A. 

TsovA Traceback depth of trellis for SOYA. 

TsovA is the total number of trellis stages, where the discarded path merging with the ML 

path is considered to find the reliability value of decoded bit. For single bit release 

SOY A, forward recursion starts by building the first DsovA stages of the trellis. This is 

followed by SOYA traceback at each stage of the trellis in the current window. TsovA in 

this case equals DsovA· The decoded bit at the first stage of the trellis is released and the 
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decoding window slides forward by one trellis stage. The decoded bit at the second trellis 

stage is released in this window followed by another slide of the window and so on. 

Decoding of bi-directional SOYA is the same as simple SOVA except that sliding 

window in backward SOV A starts from the last stage in the trellis and moves in the 

opposite direction, thus releasing the bits in reverse order. 

4.2.2 MAP and Max-Log-MAP 

The parameters for MAP and Max-Log-MAP algorithms are defined as follows. 

DMAP Same as DsovA 

T MAP Number of trellis stages in the backward recursion which is the same as DMAP or 

DsoVA· 

Forward recursion in the MAP algorithm is similar to the forward recursion in SOV A, the 

only difference being the actual calculation of path metrics. Max-Log-MAP however has 

forward recursion equivalent to that of SOV A. The forward recursion in both MAP and 

Max-Log-MAP is followed by a backward recursion instead of a traceback as was the 

case in SOV A. This backward recursion is identical to the forward recursion but proceeds 

from the last stage in the decoding window to the first stage. T MAP therefore is always the 

same as DMAP in the sliding window decoding of MAP and Max-Log-MAP. After the 

release of the decoded bit, the window slides forward in the same manner as explained 

previously for SOV A. 
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Figure 4.2. BER performance of one bit release sliding window decoding 

4.2.3 Comparison of SOV A and MAP 

The bit error rate (BER) performance comparison of full frame length decoding and 

sliding window single-bit release decoding for bi-directional SOYA and Max-Log-MAP 

is shown in Figure 4.2. A turbo encoder with pseudorandom interleaver and RSC 

component encoders of constraint length 3 have been used. The value of DsovA IDMAP and 

TsovAITsovA for the sliding window component decoders is 15. It is evident from the 

simulation results that sliding window implementations perform reasonably close to full 

frame length implementations. Moreover they are significantly less complex and 

therefore more suitable for practical implementations. 
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4.3 Multiple Bit Release Sliding Window Decoding 

We have seen in the previous section that sliding window implementations significantly 

reduce the memory requirements of component decoders. However, to ensure high 

performance, the component decoders and hence the turbo decoder must also be able to 

decode at very high speeds. One way to increase the speed of the component decoders is 

to release more than one bit in a single decoding window. This will result in the fewer 

slides of the window and hence faster decoding of the encoded frame. Vucetic and Yuan 

suggested a Max-Log-MAP based decoder in which multiple bits are released by 

doubling the size of sliding window [17]. In this thesis however, we will study the effect 

of progressively releasing multiple bits in the Max-Log-MAP decoder. Additionally we 

will also analyze SOVA and bi-directional SOVA for multiple bit release 

implementations. One bit release sliding window decoding will be our reference for 

performance and complexity analysis. We begin by considering a number of 

modifications to one bit release sliding window implementations, which allow multiple 

bits to be released in one decoding window. We then examine the rationale behind these 

modifications and their probable influence on decoder complexity and performance. 

4.3.1 SOV A and Bi-directional SOV A 

In order to facilitate the release of N bits in one decoding window we consider the 

following modifications. 
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Figure 4.3. Multiple bit release sliding window decoding 

1. Increase the decision depth of trellis by N-1 

Dmult_SOVA = DsovA + (N-1) where 1 ~ N ~ DsovA 

2. Keep Tmult_sovA same as TsovA and use the same ML and discarded paths in the 

decoding of all the N bits in a decoding window. 

3. After N bits in a window have been decoded, slide the window forward by N trellis 

stages. 

Figure 4.3 shows theN bit release sliding window decoding graphically. The decoding 

process begins with a forward recursion which builds Dmult_sovA trellis stages and finds 

the ML path. This is followed by the sov A traceback in which T mult_SOVA discarded 

paths, one at each stage in the SOV A traceback depth, are considered. The ML path and 

the discarded path at each trellis stage in the SOV A traceback are not only used to 
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calculate the soft value of the decoded bit at the first stage of the trellis but also for the 

decoded bits at trellis stages k=n, where 2-:::;.n<.:::N. Once the SOV A traceback is complete 

and N bits are released, the window slides forward by N trellis stages. 

4.3.2 The Effect of Modifications on Decoder Complexity and 

Performance 

Let us first consider how these modifications will reduce the computational 

complexity of the component decoders. The number of computations in the forward 

recursion of SOV A and MAP remain unaffected by the modifications. The reason is that 

even though we are building the trellis in steps (i.e. N stages after each slide of the 

window), the number of stages required to decode the entire block is still the same. The 

number of SOV A trace backs, however, is reduced by a factor of N which implies fewer 

computations and an overall increase in the decoder speed. This increase comes at the 

expense of additional hardware i.e. memory to store N-1 additional stages of the 

elongated trellis and logic to enable the release of N bits simultaneously. The amount of 

additional hardware required is proportional toN. 

In order to determine the effect of proposed modifications on the decoder 

performance, we analyze how they will affect the reliability of individual bits released in 

a decoding window. An increase in the trellis decision depth implies more reliable ML 

paths for the first N-1 bits in the window. The ML path for the Nh bit has the same length 

as in one bit release implementation and therefore its reliability is unaffected. On the 

other hand, keeping SOV A traceback length unchanged means that all but the first bit in 
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Figure 4.4. Perlormance analysis of multiple bit release sliding window decoding 

the decoding window now have a reduced traceback. A reduced traceback implies fewer 

discarded or alternate paths available in the decoding process. It is clear from the above 

discussion that while the first modification tends to increase the reliability of individual 

bits, the later has the opposite effect. Consider the example shown in Figure 4.4. We 

compare a 3 bit release implementation (N=3) to a single bit release implementation. As 

discussed above the reliability of the first bit d1 will increase since the length of the ML 
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path D, used in its decoding has increased by 2 while its traceback length Tis unchanged. 

The reliability of the last bit d3 will decrease since the length of its ML path is the same 

as it was in one bit release implementation while its traceback length has decreased by 2. 

The intermediate bit d2 has the length of its ML path increased byl, however at the same 

time its traceback length has also decreased by 1. Therefore its reliability may increase, 

decrease or remain unaffected depending on these individual effects. In general we can 

expect the effect of two modifications to balance each other and therefore multiple bit 

release implementations to have performances similar to single bit release 

implementations. Moreover if the two effects are not uniform and decoded bits at 

different positions are affected differently, we can exploit these differences to even 

increase the overall performance of a turbo decoder. This is the motivation behind the 

multiple bit release implementation presented above. 

4.3.3 MAP and Max-Log-MAP 

A multiple bit release sliding window MAP and Max-Log-MAP can be implemented 

in a fashion similar to that of SOV A explained above. The key difference is the length of 

backward recursion which in the case of MAP and Max-Log-MAP is the same as forward 

recursion i.e. Dmult_MAP = Tmult_MAP. The performance and complexity analyses are also 

similar to those of SOV A. The number of computations in the forward recursion of MAP 

and Max-Log-MAP remains unaffected by the modifications. The number of 

computations in the backward recursion increases in each window; however, the number 
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of total windows is reduced by a factor of N, leading to an overall reduction in 

computations. 

4.4 Summary 

In this chapter we have discussed sliding window decoding of turbo codes. The sliding 

window approach allows us to use large block lengths but at the same time design 

decoders with reasonable complexity. All the component decoding algorithms presented 

in Chapter 3 (and the turbo decoders based on them) are suitable for sliding window 

implementations. 

We described a generalized sliding window implementation in which one bit was 

released after each slide of the window and we also showed that the performance of 

sliding window decoding is comparable to that of full block length decoding. Next we 

examined the possibility of increasing decoding speed by releasing multiple bits in each 

decoding window. The proposed modifications to single bit release SOYA, bi-directional 

SOYA and Max-Log MAP enabled the release of multiple bits with a very little increase 

in hardware complexity. We also analyzed that multiple bit release implementations 

should be comparable in performance to the single bit release implementations. We shall 

investigate this claim more thoroughly by examining the BER (bit error rate) simulation 

results of these implementations in Chapter 5. 
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Chapter 5 

Performance of Multiple Bit Release Turbo 

Decoders 

5.1 Introduction 

Multiple bit release implementations of component decoders, presented in Chapter 4, 

increase the decoding speed by enabling the release of multiple bits in a decoding 

window of trellis based decoding algorithms such as SOY A, bi-directional SOY A and 

Max-Log-Map. In Chapter 4 we also conjectured that multiple bit release 

implementations can be comparable to single bit release implementations in terms of 

BER performance. In this chapter we shall verify this claim by simulating the 

performance of a turbo coded system with turbo decoders based on SOYA, bi-directional 

SOYA and Max-Log-MAP component decoders. We shall also estimate the possible 

speedups that can be obtained from multiple bit release implementations relative to single 
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bit release implementations. This will provide us with speed versus performance trade

offs for various multiple bit release implementations. Finally we shall simulate the 

performance of multiple bit release punctured turbo codes to confirm that results obtained 

for non-punctured turbo codes also hold for punctured turbo codes. We must note here 

that multiple bit release implementations and their corresponding speedup estimates 

provided in this chapter are for component decoders. Since these component decoders 

operate in an iterative fashion in a turbo decoder, a faster component decoder translates 

into a faster turbo decoder. The BER performance results presented in this chapter 

however are for the turbo coded system which employs these multiple bit release 

component decoders. 

5.2 Simulation Setup 

In order to simulate the encoding process, random binary sequence u of length L is 

generated. This sequence is then encoded by a turbo encoder that consists of two identical 

RSC encoders of Figure 2.3, separated by a pseudo-random interleaver. The encoded 

sequence vis then mapped to signal levels using an antipodal baseband signaling scheme 

characterized by 

x = 2v-l. (5.1) 

The channel symbols are then corrupted by additive white Gaussian noise resulting in the 

received sequence 

y = x + e, (5.2) 
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Table 5.1. Standard simulation parameters 

Channel Additive White Gaussian Noise (A WGN) 

Component Encoders 2 identical RSC codes (SOY A, bi-directional SOY A 

& Max-Log-MAP) 

RSC parameters Constraint Length K = 3, forward polynomial= 1 +D4
, 

feedback polynomial= 1 +D+D2 (Figure 2.3) 

lnterleaver 1000 bit random interleaver 

Decoding iterations 8 

Decoding window size 5xK(constraint length) 

for1 bit release SOY A: 

DsovA 

DMAP 5xK(constraint length) 

where e is the zero-mean Gaussian noise random variable with variance CF
2 

• The 

variance CF
2 is calculated according to the desired energy per bit to noise density ratio, 

Et/No. using the relation 

(5.3) 

where E/No is the energy per symbol to the noise density ratio. For coded channels E8/N0 

is related to EJNo by 

E/No = Et/No + 10logJO(r), (5.4) 
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where r is the code rate. For the non-punctured turbo coding scheme of Figure 2.8, used 

in our simulations, r is 1/3. 

The received sequence is decoded by a turbo decoder which consists of two 

component soft-in soft-out decoders operating in parallel as shown in Figure 3.2. The 

number of decoding iterations is limited to eight and the component decoders used in our 

simulations are SOV A, bi-directional SOV A and Max-Log-MAP. A summary of the 

standard parameters used in the simulations is given in Table 5.1. 

5.3 Single Bit Release Component Decoders 

Figure 5.1 shows the bit error rate (BER) performance comparison of one bit release 

SOV A, bi-directional SOV A and Max-Log-MAP. While both bi-directional SOV A and 

Max-Log-MAP are better than simple SOVA it is interesting to note that bi-directional 

SOVA is consistently better than Max-Log-MAP. Similar results were also reported for 

normal or full length decoding of bi-directional SOV A and Max-Log-MAP in [28]. We 

shall use these single-bit release curves as our reference, and compare the performance of 

multiple bit release implementations against these curves. 

5.4 Performance of Multiple Bit Release SOV A 

The BER performance results for multiple bit release SOV A are shown in Figure 5.2. As 

we increase N, i.e. the number of bits released in a single window, there is little effect on 

the performance of the turbo decoder. For example, for N=4 and N=8 the performance is 

almost identical to the single bit release implementation i.e. N=l. As we explained in 
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Figure 5.1. BER performance comparison of one bit release simple SOV A, bi-directional 

SOV A and Max-Log-MAP 

Section 4.3.2, this implies that the decrease in reliability due to the reduced traceback is 

balanced by the increase in reliability due to the increased length of the forward 

recursion. However as we increase N beyond 8, the performance starts to degrade and for 

N=15 (original length of the window), the performance degrades significantly. At this 

point the effect of reduced traceback dominates the effect of increased window length. 
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Figure 5.2. BER performance comparison of multiple bit release sliding window simple 

SOVA 

5.5 Speedup from Multiple Bit Release SOV A 

It is evident from Figure 5.2 that with the proposed modifications we can release up to 8 

bits in a decoding window without any performance degradation. This means that in the 

decoding of a block by a component SOV A decoder, we can reduce the number of 

traceback windows by a factor of 8. This reduction leads to an increase in the overall 

decoding speed. The magnitude of this speedup depends on the implementation details 

and can vary significantly from implementation to implementation depending on the 
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speed versus hardware tradeoffs employed. In order to compare the efficiency of multiple 

bit release implementations of SOV A against single bit release SOV A we consider a 

simple and efficient implementation. We will assume that all the path metrics at a given 

stage of the trellis in the forward recursion can be calculated simultaneously. Therefore 

the time to build a single trellis stage in the forward recursion is constant and we will 

refer to it as T1. For a block of length L, we need to build as many forward trellis stages. 

Therefore, irrespective of the window size, the time to complete the forward recursion for 

the entire block is given by LxT1. 

The SOV A traceback simply involves the comparison of the differences between the 

ML path and the discarded paths at each trellis stage in the traceback window. Since all 

the metrics have been calculated and stored in the forward recursion, these differences 

can be calculated in parallel followed by a comparison. We will refer to the time that it 

takes to compute the metric differences and their comparison followed by the selection of 

the best metric difference as Tt. Recall that the length of traceback window in multiple bit 

release implementations does not change and therefore we can safely say that Tt will be 

the same irrespective of the value of N. The number of traceback windows in the 

decoding of a block is determined by the value of N. For N=l the window slides by one 

trellis stage after the release of a bit estimate and therefore there are L traceback windows 

where Lis the size of the block. For N=2 however, 2 bits are released in each window and 

the window slides by 2 trellis stages. Therefore the number of traceback windows is 

reduced by a factor of 2. Now we can calculate the approximate time it takes to decode a 

block by anN bit release component SOV A decoder as 
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Table 5.2. Speedup from an 8 bit release implementation of SOV A 

TtfTt Speedup 

Tt = 0.5 T1 1.41 

Tt = TJ 1.77 

Tt = 1.5 T1 2.11 

Tt=2TJ 2.40 

Tt=4T1 3.33 

Time to decode 1 block = time for forward recursion + time for tracebacks 

L = LxT1 +-XI:. 
N 

(5.5) 

Equation 5.5 gives us an idea of the speed up that we can achieve with multiple bit 

release implementations. The magnitude of the speedup depends on the ratio of T1 and Tt 

and the value of N. For example if T1 and Tt are equal, an 8 bit release (N=8) 

implementation will translate in to a speed up of 1.77 over the single bit release 

implementation. Table 5.2 shows the speedups that can be achieved from an 8 bit release 

implementation for some possible values of T/TJ- It is evident from the table that 

reducing T1 with respect to Tt leads to higher speedups. A higher value of N also improves 

the speed further however as we have seen from the BER simulation results, the 

performance of SOV A based turbo decoder begins to deteriorate when N is increased 

beyond 8 when compared against single bit release implementations. 
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Figure 5.3. BER performance comparison of multiple bit release sliding window bi-

directional SOYA 

5.6 Performance of Multiple Bit Release Bi-directional SOV A 

The BER performance results for multiple bit release bi-directional SOY A are shown in 

Figure 5.3. As we increase N, i.e. the number of bits released in a single window, the 

performance of the turbo decoder improves slightly. An 8 bit release bi-directional 

SOYA implementation is consistently better than single bit release bi-directional SOYA 

after 0.5 db. However if we release 15 bits, which is the size of the original window in 

one bit release implementation, there is no significant deterioration in performance. This 
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Table 5.3. Speedup from a 15 bit release implementation of bidirectional SOVA 

TtfTt Speedup 

T1 = 0.5 Tt 1.45 

Tt = Tt 1.88 

T1 = 1.5 Tt 2.27 

T1 =2Tt 2.65 

Tt = 4 Tf 3.95 

implies that for smaller values of N the increase in reliability due to the increased length 

of forward recursion surpasses the decrease in reliability due to the reduced traceback, 

thus leading to an overall increase in the reliability of decoded bit estimates. For larger 

values of N, however, the two effects more or less balance each other. Bi-directional 

SOV A therefore is much more resilient to a reduced traceback than SOV A. 

5.7 Speedup from Multiple Bit Release Bi-directional SOVA 

The speedup analysis of bidirectional SOV A is similar to the one presented for SOV A in 

Section 5.5. Since we can release 15 bits in bi-directional SOV A without any 

performance degradation, a speedup of 1.875 can be achieved when T1 and T1 are equal. 

The possible speedups from a 15 bit release implementation for different values ofT /Tt 

are shown in Table 5.3. 
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Figure 5.4. BER performance comparison of multiple bit release sliding window Max-

Log-MAP 

5.8 Performance of Multiple Bit Release Max-Log-MAP 

The BER performance results for multiple bit release Max-Log-MAP are shown in Figure 

5.4. The performance of the turbo decoder improves consistently with an increase in N. 

As we explained in Section 4.3.3, a multiple bit release implementation of Max-Log-

MAP means an increase in the length of forward as well as backward recursion. This 

obviously leads to an improved performance, as more reliable estimates are available in 

the forward as well as backward directions. 
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5.9 Speedup from Multiple Bit Release Max-Log-MAP 

The forward recursion of Max-Log-MAP is identical to that of SOV A; however, it is 

followed by a backward recursion instead of a traceback. Since this backward recursion is 

identical to the forward recursion we can safely assume that the time it takes to build a 

trellis stage in the forward direction is equal to the time it takes to build a stage in the 

backward direction. Now we can estimate the time required to decode a single block 

using a Max-Log-MAP component decoder as: 

Time to decode 1 block =LxT1 +~xT1 xDmutr 
N MAP' (5.6) 

where Tt is the time to build one trellis stage and Dmult_MAP is the size of the decoding 

window in multiple bit release Max-Log-MAP or MAP decoding. It must be noted that 

towards the end of the block the size of the decoding window gets smaller. The above 

equation does not take this into account and therefore is not exact. However if Dmult_MAP is 

significantly smaller than L, this approximation is acceptable. Moreover we will use the 

above equation for the comparison of single and multiple bit release decoders 

maintaining the same assumptions across all implementations. Let us now calculate the 

speedup from multiple bit release implementations. We can rewrite Equation 5.6 as 

. ( D +N -1) Ttme to decode 1 block= LxT1 1 + MAP N , (5.7) 

where DMAP is the length of the original window(N=l) in one-bit release implementation 

and Dmult_MAP = D MAP + N -1 . We use Equation 5.1 to calculate the speedups for 

different values of N for DMAP =15. The results are listed in Table 5.4. 
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Table 5.4. Speedup from multiple bit release Max-Log-MAP 

N Speedup 

2 1.78 

4 2.90 

8 4.26 

15 5.46 

5.10 Comparison of Bi-directional SOVA and Max-Log-MAP 

Figures 5.5 and 5.6 show the BER performance comparison of bi-directional SOVA and 

Max-Log-MAP for N=8 and N=15 respectively. For N=8 bi-directional SOV A is 

consistently better than Max-Log-MAP whereas both decoders have a similar 

performance for N=15. In order to compare the decoding speed, we consider equations 

5.5 and 5.6. The first term in both equations i.e. LxT1 is same since it represents the time 

of forward recursion which is identical in SOV A and Max-Log-MAP. The difference in 

the speed of the decoders therefore depends on the terms Tt in Equation 5.5 and 

T1 X Dmutt_MAP in Equation 5.6. For a 4-state decoder Dmutt_MAP must be greater than 15 

(five times the encoder's constraint length), which is the minimum window size required 

to make reliable decisions. Furthermore, for the same window size T/T1 can range from 

0.5 to 2 for the implementation described in Section 5.5. Therefore we can safely say that 

the decoding speed of bi-directional SOVA is higher than that of Max-Log-MAP. 
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Figure 5.5. BER performance comparison of eight bit release sliding window bi-

directional SOV A and Max-Log-MAP 
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Figure 5.6. BER performance comparison of fifteen bit release sliding window bi-

directional SOV A and Max-Log-MAP 
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The above analysis assumes a 4-state encoder. However let us also examine how the two 

decoders compare for 8 or 16 state encoders. An increase in the number of states implies 

an increase in the minimum decoding window length required for making reliable 

decisions. For example, Dmutt_MAP must be greater than 20 or 25 for an 8 or 16-state 

encoder respectively. An increase in the window size will have no effect on TJ and a very 

little effect on T1• An increased window implies a longer ML path and therefore more 

discarded paths in the SOV A traceback. Since the metric differences in SOV A traceback 

can be computed in parallel this only translates into a time penalty of using a larger 

comparator for comparing and selecting the best metric difference. A higher state encoder 

will therefore only enhance the speed difference between bi-directional SOYA and Max

Log-MAP. 

5.11. Multiple Bit Release Punctured Turbo Codes 

Puncturing is used to increase the rate of a turbo code and many practical channel coding 

standards employ punctured turbo codes. Therefore it is worthwhile to analyze the 

performance of multiple bit release component decoders in a turbo coded system which 

employs puncturing. The simulation of a punctured coded system is very similar to the 

one described in Section 5.2. The encoding operation is followed by an additional 

puncturing block which punctures the output of the encoder according to a fixed 

puncturing pattern to obtain the desired code rate. The turbo decoder used for the non

punctured codes can also be used to decode punctured codes; however, the punctured bits 

must be inserted in the received sequence at the decoder input. Since punctured bits are 
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not transmitted, we insert a neutral value in the stream where coded bits were punctured. 

For the antipodal baseband signaling scheme of Section 5.2, where bits 0 and 1 are 

mapped to signal levels -1 and 1 respectively, 0 would be the neutral value. 

Figures 5.7 and 5.8 show the BER performance results for punctured turbo codes with 

multiple bit release bi-directional SOVA and Max-Log-MAP respectively. We have 

obtained a rate 1/2 code from a non punctured rate 113 code by puncturing the output of 

the two encoders alternately. In the figures the puncturing pattern is represented by a 

puncturing vector where 0 denotes the bit positions that were punctured. The results show 

that for punctured turbo codes the variation in performance due to the variation in N 

follow a pattern similar to the one we observed for non-punctured codes in Figures 5.3 

and 5.4. This indicates that the behavior of multiple-bit release decoders does not change 

in a punctured turbo coded system. 

When a code is punctured to increase the code rate, the performance of the coded 

system deteriorates. For a turbo coded system with conventional component decoders the 

performance drops approximately 0.6 dB, when the code rate is increased from 1/3 to 1/2 

[23]. The comparison of non-punctured and punctured fifteen bit release SOV A and 

Max-Log-MAP in Figure 5.9 and 5.10 also shows a similar deterioration in performance. 

Therefore, multiple bit release component decoders behave very much like conventional 

component decoders in a punctured turbo coded system. 

84 



K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec(110101] 
10°r---------,------r==================7=~==~ 

-- 1 bit release Punctured Bi-Sova 
··--+-·· 8 bit release Punctured Bi-Sova 
··•·· 15 bit release Punctured Bi-Sova 

'<~ .... 
'-.'\, 
'·~ 

... ~ 

'~ ,~,\ 
... ~ ... 

'· 1 o·4~--------::"-=-----------c------------,-L::----------: 
0 0.5 1 1.5 2 

Eb/NO db 

Figure 5.7. BER performance comparison of multiple bit release punctured bi-

directional SOV A 
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Figure 5.8. BER performance comparison of multiple bit release punctured Max-Log-

MAP 
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Figure 5.9. Performance degradation in multiple bit release punctured bi-directional 

SOVA 
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Figure 5.10. Performance degradation in multiple bit release punctured Max-Log-MAP 
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Figure 5.11. 30 turbo encoder 

5.12 Turbo Codes with Higher State Encoders 

The BER simulation results presented so far in this chapter are for turbo coded systems 

with four state component encoders. We have already established in Section 5.10 that 

speedup estimates derived for turbo codes with four state component encoders also hold 

for codes with higher state component encoders. Let us now confirm that the same is also 

true for the performance of the turbo coded system which employs component encoders 

with more than four states. Figure 5.11 shows the standard turbo encoder for 30 wireless 

communication systems [30]. It consists of two eight state RSC component encoders. 

Figures 5.12 and 5.13 show the BER simulations results for turbo coded systems that use 

the eight state encoder of Figure 5 .11. We must mention here that 30 wireless standard 
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Figure 5.12. BER performance comparison of 8-state bi-directional SOVA 

..... 
(JJ 
..c 

K=4, 1000 bit interleaver, 10,000 blocks 
10°r---------,----------,-------r==~~==7=~ 

--+- 1 bit reelase 
-·-·•-·- 4 bit release 
--•-- 8 bit release 
-+- 15 bit release 

10-5'----------:-'-::------------'------------,-"=----------: 
0 0.5 1 1.5 

Eb/NO 

Figure 5.13. BER performance comparison of 8-state Max-Log-MAP 
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allows multiple frame lengths (between 40 and 5114 bytes), and the exact permutation of 

the interleaver is determined, based on the frame length according to predefined rules. 

However we have used a fixed frame size of 1000 bits and a random interleaver in our 

simulations. The results demonstrate a similar trend as was observed for four state 

encoders and even better performance than in the case of four state encoders. 

5.13 Overall Speedup of the Turbo Decoder 

The speedup estimates presented in this chapter are for the component decoders used in a 

turbo decoder. These component decoders operate in an iterative fashion in a turbo 

decoder. However the output of a component decoder has to be interleaved, or 

deinterleaved, before it can be given to the next decoder. The time required for 

interleaving is relatively small compared to the decoding time of component decoders for 

long frames (i.e. 1000 bits). If we ignore the time used by the interleavers I deinterleavers 

then the speedup estimates derived for component decoders also hold for the Turbo 

decoder. For example if a 15 bit release implementation of bi-directional SOV A provides 

a speedup of 2.65 over single bit release bi-directional SOVA, then a turbo decoder 

based on 15 bit release implementation will be approximately 2.65 times faster than the 

turbo decoder using single bit release bi-directional SOV A. 

5.14 Summary 

In this chapter we have presented the performance comparison of turbo coded systems 

with multiple bit release component decoders. We simulated the performance of these 
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systems and demonstrated that multiple bit release implementations can be used to 

increase the decoding speed without any degradation in performance. In case of Max

Log-MAP and bi-directional SOV A the performance actually improved slightly by 

releasing multiple bits. The comparison of turbo coded systems with different component 

decoders also established the superiority of multiple bit release bi-directional SOV A over 

multiple bit release Max-Log-MAP in speed as well as performance. Finally we extended 

our simulations to punctured turbo codes and turbo codes with higher state encoders. The 

speed and performance advantages obtained by using multiple bit release component 

encoders were confirmed in these systems as well. 
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Chapter 6 

Conclusions 

In this thesis design issues related to the implementation of high speed, low complexity 

turbo decoders have been investigated. Chapters 1 and 2 provided the background on 

error correcting codes. Chapter 3 explained the iterative decoding of turbo codes along 

with the description of several decoding algorithms. Sliding window decoding, which is 

used to reduce the decoder memory requirements, was presented in chapter 4. To increase 

the decoding speed, multiple bit release sliding window turbo decoders were also 

proposed in this chapter. Chapter 5 examined the BER and speed performance of the 

proposed multiple bit release decoders. The speedups obtained from these 

implementations and their effects on the decoder's performance were also discussed. Two 

publications resulted from this work: [29] and [31]. 

The results obtained in chapter 4 (Figure 4.2) demonstrate that sliding window 

decoding can be used to reduce decoder memory requirements without significant 
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performance degradation. Building on these results, multiple bit release sliding window 

implementations for SOV A, bi-directional SOV A and Max-Log-MAP based turbo 

decoders have been considered. These implementations sought to increase the decoder 

speed without affecting its performance. The BER simulation results in chapter 5 proved 

that it is possible to increase the speed and reduce the computational complexity of 

SOV A, bi-directional SOV A and Max-Log-MAP based turbo decoders through the 

proposed modifications. A comparative analysis of these results indicated that while 

considerable speedups can be achieved in SOV A based turbo decoder, bi-directional 

SOV A and Max-Log-MAP based turbo decoders are more suitable for such 

implementations. Bi-directional SOVA, due to its higher decoding speed and slightly 

better performance than Max-Log-MAP, proved to be the most suitable algorithm for 

multiple bit release sliding window implementations of turbo decoders. 

The above results were also confirmed with punctured turbo codes and turbo codes 

with different constraint lengths (or encoder states). The increase in speed and 

performance was obtained at the expense of certain modifications which require extra 

hardware i.e. memory to store extra trellis stages and logic to release multiple bits. 

However this increase was modest and was greatly outweighed by the gain in the 

decoding speeds. The results obtained in this thesis argue strongly in favor of multiple bit 

release sliding window implementations of turbo decoders due to their reduced 

computational complexity, improved performance and faster decoding speeds. 
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6.1 Future Work 

The purpose of this study was to research the design of fast and low complexity turbo 

decoders for future wireless networks. Therefore, implementation of multiple bit release 

sliding window turbo decoders, analyzed in chapter 5, in silicon (ASICIFPGA) would be 

a natural progression of this work. Recent advances in turbo coding have led to the 

emergence of several new techniques. Multiple bit release sliding window decoders can 

also be used to the benefit of these techniques. Some suggestions are: 

• Multiple turbo codes presented in [32] have recently been shown to outperform 

conventional turbo codes. A multiple turbo encoder consists of 3 or more simple 

component encoders and the turbo decoder consists of the same number of 

component decoders. Since the component decoders in multiple turbo codes are the 

same as in conventional turbo codes, the component decoders explained in chapter 5 

can be used in a multiple turbo decoder to increase its speed. However the 

performance of the multiple turbo decoder which employs these multiple bit release 

sliding window component decoders will have to be verified through BER 

simulations. 

• To increase the speed of decoding, a method has been proposed in [33] to divide the 

received frame in smaller slices and then decoding them in parallel. If the size of a 

single slice is large enough i.e. multiple decoding windows, then multiple bit release 

decoding can be employed in each slice independently leading to an overall increase 

in decoding speed. 
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