

extrinsic information received from the first stage of the turbo decoder is passed on to

both decoders in this stage as their a priori information. The decoding process in this

stage is identical to the process in the first stage. The extrinsic information from this stage

is passed on to the first stage and the iterative decoding process proceeds.

3.5 Summary

This chapter presents an overview of iterative decoding of turbo codes. We began our

discussion by defining a channel model followed by the introduction to the principles of

iterative decoding. We explained the importance of soft-input soft-output component

decoders and the concept of log likelihood ratios (LLRs). Next we presented in detail, the

description of the algorithms used in component decoders. The MAP algorithm calculates

the a posteriori LLRs of individual bits by examining every possible path through the

trellis. This results in optimum performance but makes the resulting decoder

computationally complex. Max-Log-MAP and Log-MAP, presented in the subsequent

sections transform the calculations in MAP, to the log domain, thereby making them

considerably less complex. The second algorithm we presented was the SOY A algorithm,

which is a modification of the classical Yiterbi algorithm. It finds the ML path through

the encoder trellis that corresponds to the ML transmitted sequence. The algorithm then

considers the discarded paths together with the ML path to compute the LLRs of the

individual bits in the ML sequence. Bi-directional SOYA consists of a forward and a

backward SOY A. Backward SOY A is identical to forward SOY A except that it operates

on the received sequence in the reverse direction. Backward SOY A can often find 'better'

56

discarded paths through the trellis which could have been missed in the forward SOV A,

thus leading to an overall improvement in performance.

57

Chapter 4

Sliding Window Decoding of Turbo Codes

4.1 Introduction

The turbo coding schemes presented in previous chapters perform close to the Shannon

limit only for very long frame lengths [1]. Their performance deteriorates with a decrease

in the frame length. For example a 10,000-bit code outperforms a 1000-bit code by

0.7dB, and a 169-bit code by 1.6 dB at BER of 10-4 [23]. A long frame length, however,

means a long decoding trellis for which the memory requirements as well as the decoder

complexity are excessive from an implementation view point. In order to reduce the

decoder complexity without affecting its performance significantly, we use longer frame

lengths (e.g. 1000-bit or more) but decode the frames with sliding window component

decoders [17]. The sliding window implementations of component decoders, i.e. MAP,

Max-Log-MAP, SOVA and bi-directional SOVA reduce the decision depth of the trellis

to around five times the encoder constraint length which eliminates the need to store the

58

trellis for the entire frame in memory. We begin this chapter with a review of

conventional sliding window implementations of these algorithms. We then present new

multiple bit release techniques which further reduce the complexity of the decoders

significantly without any performance degradations.

4.2 Sliding Window Component Decoders

The component decoders (Max-Log-MAP, SOV A and bi-directional SOV A) explained in

the previous chapter are all trellis based decoders with identical forward recursion. The

number of trellis stages formed in the forward recursion is equal to the frame length of

the code. Since the trellis has to be stored in the memory, for longer frame lengths, the

decoder memory requirements are huge. However, it is possible to make reliable

decisions after a relatively small number of trellis stages. This number is referred to as

the decision depth D of the component decoder. The minimum decision depth is usually

five times the encoder constraint length [17]. The reason we can make reliable decisions

after the decision depth is that after this depth all the survivor paths at a given stage of the

trellis tend to originate from the same initial state and have same first edge. The decoding

decision corresponding to this edge will therefore not be affected by the subsequent trellis

stages. This implies that we only need to compute and store the decision depth of the

trellis to decode a single bit. This depth constitutes our decoding window. Once the bit in

the decoded window is released, the next stage of the trellis is built and the window slides

forward. A generalized sliding window decoding process is shown in Figure 4.1.

59

:e
' • •••

', ' '· ~; ,..._ \

,,;,~: .. ~ ,· / •. /

Figure 4.1. One bit release sliding window decoding

Let us now examine the sliding window implementations of Max-Log-MAP, SOYA and

bi-directional SOYA component decoders in detail.

4.2.1 SOV A and Bi-directional SOV A

To explain the sliding window SOY A algorithm we define the following terms.

DsovA Decision depth of trellis for SOY A.

TsovA Traceback depth of trellis for SOYA.

TsovA is the total number of trellis stages, where the discarded path merging with the ML

path is considered to find the reliability value of decoded bit. For single bit release

SOY A, forward recursion starts by building the first DsovA stages of the trellis. This is

followed by SOYA traceback at each stage of the trellis in the current window. TsovA in

this case equals DsovA· The decoded bit at the first stage of the trellis is released and the

60

decoding window slides forward by one trellis stage. The decoded bit at the second trellis

stage is released in this window followed by another slide of the window and so on.

Decoding of bi-directional SOYA is the same as simple SOVA except that sliding

window in backward SOV A starts from the last stage in the trellis and moves in the

opposite direction, thus releasing the bits in reverse order.

4.2.2 MAP and Max-Log-MAP

The parameters for MAP and Max-Log-MAP algorithms are defined as follows.

DMAP Same as DsovA

T MAP Number of trellis stages in the backward recursion which is the same as DMAP or

DsoVA·

Forward recursion in the MAP algorithm is similar to the forward recursion in SOV A, the

only difference being the actual calculation of path metrics. Max-Log-MAP however has

forward recursion equivalent to that of SOV A. The forward recursion in both MAP and

Max-Log-MAP is followed by a backward recursion instead of a traceback as was the

case in SOV A. This backward recursion is identical to the forward recursion but proceeds

from the last stage in the decoding window to the first stage. T MAP therefore is always the

same as DMAP in the sliding window decoding of MAP and Max-Log-MAP. After the

release of the decoded bit, the window slides forward in the same manner as explained

previously for SOV A.

61

0
10

-1
10

-2
10

-3 ii 10

-4
10

-5
10

-6

K=3, Block length=1000, No of Blocks=10,000, Random lnterleaver

...... Max-Log-MAP full length decoding

... .,. .. Bi-directional SOYA full length decoding

.... Max-Log-MAP 1 bit sliding window decoding
... Bi-directional SOYA 1 bit sliding window decoding

10 ~--~--~----~--~----L---~--~----~--~--~
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Eb/NO db

Figure 4.2. BER performance of one bit release sliding window decoding

4.2.3 Comparison of SOV A and MAP

The bit error rate (BER) performance comparison of full frame length decoding and

sliding window single-bit release decoding for bi-directional SOYA and Max-Log-MAP

is shown in Figure 4.2. A turbo encoder with pseudorandom interleaver and RSC

component encoders of constraint length 3 have been used. The value of DsovA IDMAP and

TsovAITsovA for the sliding window component decoders is 15. It is evident from the

simulation results that sliding window implementations perform reasonably close to full

frame length implementations. Moreover they are significantly less complex and

therefore more suitable for practical implementations.

62

4.3 Multiple Bit Release Sliding Window Decoding

We have seen in the previous section that sliding window implementations significantly

reduce the memory requirements of component decoders. However, to ensure high

performance, the component decoders and hence the turbo decoder must also be able to

decode at very high speeds. One way to increase the speed of the component decoders is

to release more than one bit in a single decoding window. This will result in the fewer

slides of the window and hence faster decoding of the encoded frame. Vucetic and Yuan

suggested a Max-Log-MAP based decoder in which multiple bits are released by

doubling the size of sliding window [17]. In this thesis however, we will study the effect

of progressively releasing multiple bits in the Max-Log-MAP decoder. Additionally we

will also analyze SOVA and bi-directional SOVA for multiple bit release

implementations. One bit release sliding window decoding will be our reference for

performance and complexity analysis. We begin by considering a number of

modifications to one bit release sliding window implementations, which allow multiple

bits to be released in one decoding window. We then examine the rationale behind these

modifications and their probable influence on decoder complexity and performance.

4.3.1 SOV A and Bi-directional SOV A

In order to facilitate the release of N bits in one decoding window we consider the

following modifications.

63

D+(N-1)
T

' • • • • 0, • • "{YiJ% """,
\/d''; ,, d

(.{ ,_/"<
,' j

><:. /

'• ' :~~i ~\~~~;')d I •• (il: , . / :-t~ . i • •• • • l • I !

c\-<• f

Figure 4.3. Multiple bit release sliding window decoding

1. Increase the decision depth of trellis by N-1

Dmult_SOVA = DsovA + (N-1) where 1 ~ N ~ DsovA

2. Keep Tmult_sovA same as TsovA and use the same ML and discarded paths in the

decoding of all the N bits in a decoding window.

3. After N bits in a window have been decoded, slide the window forward by N trellis

stages.

Figure 4.3 shows theN bit release sliding window decoding graphically. The decoding

process begins with a forward recursion which builds Dmult_sovA trellis stages and finds

the ML path. This is followed by the sov A traceback in which T mult_SOVA discarded

paths, one at each stage in the SOV A traceback depth, are considered. The ML path and

the discarded path at each trellis stage in the SOV A traceback are not only used to

64

calculate the soft value of the decoded bit at the first stage of the trellis but also for the

decoded bits at trellis stages k=n, where 2-:::;.n<.:::N. Once the SOV A traceback is complete

and N bits are released, the window slides forward by N trellis stages.

4.3.2 The Effect of Modifications on Decoder Complexity and

Performance

Let us first consider how these modifications will reduce the computational

complexity of the component decoders. The number of computations in the forward

recursion of SOV A and MAP remain unaffected by the modifications. The reason is that

even though we are building the trellis in steps (i.e. N stages after each slide of the

window), the number of stages required to decode the entire block is still the same. The

number of SOV A trace backs, however, is reduced by a factor of N which implies fewer

computations and an overall increase in the decoder speed. This increase comes at the

expense of additional hardware i.e. memory to store N-1 additional stages of the

elongated trellis and logic to enable the release of N bits simultaneously. The amount of

additional hardware required is proportional toN.

In order to determine the effect of proposed modifications on the decoder

performance, we analyze how they will affect the reliability of individual bits released in

a decoding window. An increase in the trellis decision depth implies more reliable ML

paths for the first N-1 bits in the window. The ML path for the Nh bit has the same length

as in one bit release implementation and therefore its reliability is unaffected. On the

other hand, keeping SOV A traceback length unchanged means that all but the first bit in

65

One-bit release

Multiple-bit release

Figure 4.4. Perlormance analysis of multiple bit release sliding window decoding

the decoding window now have a reduced traceback. A reduced traceback implies fewer

discarded or alternate paths available in the decoding process. It is clear from the above

discussion that while the first modification tends to increase the reliability of individual

bits, the later has the opposite effect. Consider the example shown in Figure 4.4. We

compare a 3 bit release implementation (N=3) to a single bit release implementation. As

discussed above the reliability of the first bit d1 will increase since the length of the ML

66

path D, used in its decoding has increased by 2 while its traceback length Tis unchanged.

The reliability of the last bit d3 will decrease since the length of its ML path is the same

as it was in one bit release implementation while its traceback length has decreased by 2.

The intermediate bit d2 has the length of its ML path increased byl, however at the same

time its traceback length has also decreased by 1. Therefore its reliability may increase,

decrease or remain unaffected depending on these individual effects. In general we can

expect the effect of two modifications to balance each other and therefore multiple bit

release implementations to have performances similar to single bit release

implementations. Moreover if the two effects are not uniform and decoded bits at

different positions are affected differently, we can exploit these differences to even

increase the overall performance of a turbo decoder. This is the motivation behind the

multiple bit release implementation presented above.

4.3.3 MAP and Max-Log-MAP

A multiple bit release sliding window MAP and Max-Log-MAP can be implemented

in a fashion similar to that of SOV A explained above. The key difference is the length of

backward recursion which in the case of MAP and Max-Log-MAP is the same as forward

recursion i.e. Dmult_MAP = Tmult_MAP. The performance and complexity analyses are also

similar to those of SOV A. The number of computations in the forward recursion of MAP

and Max-Log-MAP remains unaffected by the modifications. The number of

computations in the backward recursion increases in each window; however, the number

67

of total windows is reduced by a factor of N, leading to an overall reduction in

computations.

4.4 Summary

In this chapter we have discussed sliding window decoding of turbo codes. The sliding

window approach allows us to use large block lengths but at the same time design

decoders with reasonable complexity. All the component decoding algorithms presented

in Chapter 3 (and the turbo decoders based on them) are suitable for sliding window

implementations.

We described a generalized sliding window implementation in which one bit was

released after each slide of the window and we also showed that the performance of

sliding window decoding is comparable to that of full block length decoding. Next we

examined the possibility of increasing decoding speed by releasing multiple bits in each

decoding window. The proposed modifications to single bit release SOYA, bi-directional

SOYA and Max-Log MAP enabled the release of multiple bits with a very little increase

in hardware complexity. We also analyzed that multiple bit release implementations

should be comparable in performance to the single bit release implementations. We shall

investigate this claim more thoroughly by examining the BER (bit error rate) simulation

results of these implementations in Chapter 5.

68

Chapter 5

Performance of Multiple Bit Release Turbo

Decoders

5.1 Introduction

Multiple bit release implementations of component decoders, presented in Chapter 4,

increase the decoding speed by enabling the release of multiple bits in a decoding

window of trellis based decoding algorithms such as SOY A, bi-directional SOY A and

Max-Log-Map. In Chapter 4 we also conjectured that multiple bit release

implementations can be comparable to single bit release implementations in terms of

BER performance. In this chapter we shall verify this claim by simulating the

performance of a turbo coded system with turbo decoders based on SOYA, bi-directional

SOYA and Max-Log-MAP component decoders. We shall also estimate the possible

speedups that can be obtained from multiple bit release implementations relative to single

69

bit release implementations. This will provide us with speed versus performance trade

offs for various multiple bit release implementations. Finally we shall simulate the

performance of multiple bit release punctured turbo codes to confirm that results obtained

for non-punctured turbo codes also hold for punctured turbo codes. We must note here

that multiple bit release implementations and their corresponding speedup estimates

provided in this chapter are for component decoders. Since these component decoders

operate in an iterative fashion in a turbo decoder, a faster component decoder translates

into a faster turbo decoder. The BER performance results presented in this chapter

however are for the turbo coded system which employs these multiple bit release

component decoders.

5.2 Simulation Setup

In order to simulate the encoding process, random binary sequence u of length L is

generated. This sequence is then encoded by a turbo encoder that consists of two identical

RSC encoders of Figure 2.3, separated by a pseudo-random interleaver. The encoded

sequence vis then mapped to signal levels using an antipodal baseband signaling scheme

characterized by

x = 2v-l. (5.1)

The channel symbols are then corrupted by additive white Gaussian noise resulting in the

received sequence

y = x + e, (5.2)

70

Table 5.1. Standard simulation parameters

Channel Additive White Gaussian Noise (A WGN)

Component Encoders 2 identical RSC codes (SOY A, bi-directional SOY A

& Max-Log-MAP)

RSC parameters Constraint Length K = 3, forward polynomial= 1 +D4
,

feedback polynomial= 1 +D+D2 (Figure 2.3)

lnterleaver 1000 bit random interleaver

Decoding iterations 8

Decoding window size 5xK(constraint length)

for1 bit release SOY A:

DsovA

DMAP 5xK(constraint length)

where e is the zero-mean Gaussian noise random variable with variance CF
2

• The

variance CF
2 is calculated according to the desired energy per bit to noise density ratio,

Et/No. using the relation

(5.3)

where E/No is the energy per symbol to the noise density ratio. For coded channels E8/N0

is related to EJNo by

E/No = Et/No + 10logJO(r), (5.4)

71

where r is the code rate. For the non-punctured turbo coding scheme of Figure 2.8, used

in our simulations, r is 1/3.

The received sequence is decoded by a turbo decoder which consists of two

component soft-in soft-out decoders operating in parallel as shown in Figure 3.2. The

number of decoding iterations is limited to eight and the component decoders used in our

simulations are SOV A, bi-directional SOV A and Max-Log-MAP. A summary of the

standard parameters used in the simulations is given in Table 5.1.

5.3 Single Bit Release Component Decoders

Figure 5.1 shows the bit error rate (BER) performance comparison of one bit release

SOV A, bi-directional SOV A and Max-Log-MAP. While both bi-directional SOV A and

Max-Log-MAP are better than simple SOVA it is interesting to note that bi-directional

SOVA is consistently better than Max-Log-MAP. Similar results were also reported for

normal or full length decoding of bi-directional SOV A and Max-Log-MAP in [28]. We

shall use these single-bit release curves as our reference, and compare the performance of

multiple bit release implementations against these curves.

5.4 Performance of Multiple Bit Release SOV A

The BER performance results for multiple bit release SOV A are shown in Figure 5.2. As

we increase N, i.e. the number of bits released in a single window, there is little effect on

the performance of the turbo decoder. For example, for N=4 and N=8 the performance is

almost identical to the single bit release implementation i.e. N=l. As we explained in

72

1....
Q)
..c

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

--e-- Simple SOVA
-·-·-+·-·-· Bidirectional SOVA
----e---· Max-Log-Map -1

1 0 -· ·--..........

·······-... :.::.:::.:::.::··-s.,
........................

·····-.. :~::::~:---...
........ --.

"· ... ,
····· ... ····a

.... "'
·····-.•. :::::·····-...

....... , "'
......... ,

· ~

"~:=:::::.:_:
10·5~------~--------~------~--------~

0 0.5 1 1.5 2
Eb/NO db

Figure 5.1. BER performance comparison of one bit release simple SOV A, bi-directional

SOV A and Max-Log-MAP

Section 4.3.2, this implies that the decrease in reliability due to the reduced traceback is

balanced by the increase in reliability due to the increased length of the forward

recursion. However as we increase N beyond 8, the performance starts to degrade and for

N=15 (original length of the window), the performance degrades significantly. At this

point the effect of reduced traceback dominates the effect of increased window length.

73

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

---e--- 1 bit
-·-·-•·-·-· 4 bits
----e---· 8 bits
---+-- 15 bits

1 o-4c__ ___ --L._ ___ __,_ ____ _L__ ___ __j

0 0.5 1 1.5 2
Eb/NO db

Figure 5.2. BER performance comparison of multiple bit release sliding window simple

SOVA

5.5 Speedup from Multiple Bit Release SOV A

It is evident from Figure 5.2 that with the proposed modifications we can release up to 8

bits in a decoding window without any performance degradation. This means that in the

decoding of a block by a component SOV A decoder, we can reduce the number of

traceback windows by a factor of 8. This reduction leads to an increase in the overall

decoding speed. The magnitude of this speedup depends on the implementation details

and can vary significantly from implementation to implementation depending on the

74

speed versus hardware tradeoffs employed. In order to compare the efficiency of multiple

bit release implementations of SOV A against single bit release SOV A we consider a

simple and efficient implementation. We will assume that all the path metrics at a given

stage of the trellis in the forward recursion can be calculated simultaneously. Therefore

the time to build a single trellis stage in the forward recursion is constant and we will

refer to it as T1. For a block of length L, we need to build as many forward trellis stages.

Therefore, irrespective of the window size, the time to complete the forward recursion for

the entire block is given by LxT1.

The SOV A traceback simply involves the comparison of the differences between the

ML path and the discarded paths at each trellis stage in the traceback window. Since all

the metrics have been calculated and stored in the forward recursion, these differences

can be calculated in parallel followed by a comparison. We will refer to the time that it

takes to compute the metric differences and their comparison followed by the selection of

the best metric difference as Tt. Recall that the length of traceback window in multiple bit

release implementations does not change and therefore we can safely say that Tt will be

the same irrespective of the value of N. The number of traceback windows in the

decoding of a block is determined by the value of N. For N=l the window slides by one

trellis stage after the release of a bit estimate and therefore there are L traceback windows

where Lis the size of the block. For N=2 however, 2 bits are released in each window and

the window slides by 2 trellis stages. Therefore the number of traceback windows is

reduced by a factor of 2. Now we can calculate the approximate time it takes to decode a

block by anN bit release component SOV A decoder as

75

Table 5.2. Speedup from an 8 bit release implementation of SOV A

TtfTt Speedup

Tt = 0.5 T1 1.41

Tt = TJ 1.77

Tt = 1.5 T1 2.11

Tt=2TJ 2.40

Tt=4T1 3.33

Time to decode 1 block = time for forward recursion + time for tracebacks

L = LxT1 +-XI:.
N

(5.5)

Equation 5.5 gives us an idea of the speed up that we can achieve with multiple bit

release implementations. The magnitude of the speedup depends on the ratio of T1 and Tt

and the value of N. For example if T1 and Tt are equal, an 8 bit release (N=8)

implementation will translate in to a speed up of 1.77 over the single bit release

implementation. Table 5.2 shows the speedups that can be achieved from an 8 bit release

implementation for some possible values of T/TJ- It is evident from the table that

reducing T1 with respect to Tt leads to higher speedups. A higher value of N also improves

the speed further however as we have seen from the BER simulation results, the

performance of SOV A based turbo decoder begins to deteriorate when N is increased

beyond 8 when compared against single bit release implementations.

76

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

-e- 1 bit
-·-·-•·-·-· 4 bits

1 o-1
----a---· 8 bits
--+- 15 bits

10-5~------~------~~------~------~
0 0.5 1 1.5 2

Eb/NO db

Figure 5.3. BER performance comparison of multiple bit release sliding window bi-

directional SOYA

5.6 Performance of Multiple Bit Release Bi-directional SOV A

The BER performance results for multiple bit release bi-directional SOY A are shown in

Figure 5.3. As we increase N, i.e. the number of bits released in a single window, the

performance of the turbo decoder improves slightly. An 8 bit release bi-directional

SOYA implementation is consistently better than single bit release bi-directional SOYA

after 0.5 db. However if we release 15 bits, which is the size of the original window in

one bit release implementation, there is no significant deterioration in performance. This

77

Table 5.3. Speedup from a 15 bit release implementation of bidirectional SOVA

TtfTt Speedup

T1 = 0.5 Tt 1.45

Tt = Tt 1.88

T1 = 1.5 Tt 2.27

T1 =2Tt 2.65

Tt = 4 Tf 3.95

implies that for smaller values of N the increase in reliability due to the increased length

of forward recursion surpasses the decrease in reliability due to the reduced traceback,

thus leading to an overall increase in the reliability of decoded bit estimates. For larger

values of N, however, the two effects more or less balance each other. Bi-directional

SOV A therefore is much more resilient to a reduced traceback than SOV A.

5.7 Speedup from Multiple Bit Release Bi-directional SOVA

The speedup analysis of bidirectional SOV A is similar to the one presented for SOV A in

Section 5.5. Since we can release 15 bits in bi-directional SOV A without any

performance degradation, a speedup of 1.875 can be achieved when T1 and T1 are equal.

The possible speedups from a 15 bit release implementation for different values ofT /Tt

are shown in Table 5.3.

78

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

---e- 1 bit
........ A 4 bits

1 o·1
----e---· 8 bits
~ 15 bits

1 o-sL__ ___ ,_l,_ ___ ____j_ ____ ..,L__ ___ __J

0 0.5 1 1.5 2
Eb/NO db

Figure 5.4. BER performance comparison of multiple bit release sliding window Max-

Log-MAP

5.8 Performance of Multiple Bit Release Max-Log-MAP

The BER performance results for multiple bit release Max-Log-MAP are shown in Figure

5.4. The performance of the turbo decoder improves consistently with an increase in N.

As we explained in Section 4.3.3, a multiple bit release implementation of Max-Log-

MAP means an increase in the length of forward as well as backward recursion. This

obviously leads to an improved performance, as more reliable estimates are available in

the forward as well as backward directions.

79

5.9 Speedup from Multiple Bit Release Max-Log-MAP

The forward recursion of Max-Log-MAP is identical to that of SOV A; however, it is

followed by a backward recursion instead of a traceback. Since this backward recursion is

identical to the forward recursion we can safely assume that the time it takes to build a

trellis stage in the forward direction is equal to the time it takes to build a stage in the

backward direction. Now we can estimate the time required to decode a single block

using a Max-Log-MAP component decoder as:

Time to decode 1 block =LxT1 +~xT1 xDmutr
N MAP' (5.6)

where Tt is the time to build one trellis stage and Dmult_MAP is the size of the decoding

window in multiple bit release Max-Log-MAP or MAP decoding. It must be noted that

towards the end of the block the size of the decoding window gets smaller. The above

equation does not take this into account and therefore is not exact. However if Dmult_MAP is

significantly smaller than L, this approximation is acceptable. Moreover we will use the

above equation for the comparison of single and multiple bit release decoders

maintaining the same assumptions across all implementations. Let us now calculate the

speedup from multiple bit release implementations. We can rewrite Equation 5.6 as

. (D +N -1) Ttme to decode 1 block= LxT1 1 + MAP N , (5.7)

where DMAP is the length of the original window(N=l) in one-bit release implementation

and Dmult_MAP = D MAP + N -1 . We use Equation 5.1 to calculate the speedups for

different values of N for DMAP =15. The results are listed in Table 5.4.

80

Table 5.4. Speedup from multiple bit release Max-Log-MAP

N Speedup

2 1.78

4 2.90

8 4.26

15 5.46

5.10 Comparison of Bi-directional SOVA and Max-Log-MAP

Figures 5.5 and 5.6 show the BER performance comparison of bi-directional SOVA and

Max-Log-MAP for N=8 and N=15 respectively. For N=8 bi-directional SOV A is

consistently better than Max-Log-MAP whereas both decoders have a similar

performance for N=15. In order to compare the decoding speed, we consider equations

5.5 and 5.6. The first term in both equations i.e. LxT1 is same since it represents the time

of forward recursion which is identical in SOV A and Max-Log-MAP. The difference in

the speed of the decoders therefore depends on the terms Tt in Equation 5.5 and

T1 X Dmutt_MAP in Equation 5.6. For a 4-state decoder Dmutt_MAP must be greater than 15

(five times the encoder's constraint length), which is the minimum window size required

to make reliable decisions. Furthermore, for the same window size T/T1 can range from

0.5 to 2 for the implementation described in Section 5.5. Therefore we can safely say that

the decoding speed of bi-directional SOVA is higher than that of Max-Log-MAP.

81

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

-e- max-log-map T=0=15+ 7
........ bi-sova 0=15+7, T=15

··~ ..

1 o·5
0~----~0~.5~----~1------~1.~5----~2

Eb/NO db

Figure 5.5. BER performance comparison of eight bit release sliding window bi-

directional SOV A and Max-Log-MAP

1 0
o 1000 bit interleaver, 10,000 blocks, 8 iterations

-e- max-log-map T=0=15+14
........ bi-sova 0=15+14, T=15

1 o·5L__ ___ _,__ ___ ___j__ ___ --,-L=--__ ____...J

0 0.5 1 1.5 2
Eb/NO db

Figure 5.6. BER performance comparison of fifteen bit release sliding window bi-

directional SOV A and Max-Log-MAP

82

The above analysis assumes a 4-state encoder. However let us also examine how the two

decoders compare for 8 or 16 state encoders. An increase in the number of states implies

an increase in the minimum decoding window length required for making reliable

decisions. For example, Dmutt_MAP must be greater than 20 or 25 for an 8 or 16-state

encoder respectively. An increase in the window size will have no effect on TJ and a very

little effect on T1• An increased window implies a longer ML path and therefore more

discarded paths in the SOV A traceback. Since the metric differences in SOV A traceback

can be computed in parallel this only translates into a time penalty of using a larger

comparator for comparing and selecting the best metric difference. A higher state encoder

will therefore only enhance the speed difference between bi-directional SOYA and Max

Log-MAP.

5.11. Multiple Bit Release Punctured Turbo Codes

Puncturing is used to increase the rate of a turbo code and many practical channel coding

standards employ punctured turbo codes. Therefore it is worthwhile to analyze the

performance of multiple bit release component decoders in a turbo coded system which

employs puncturing. The simulation of a punctured coded system is very similar to the

one described in Section 5.2. The encoding operation is followed by an additional

puncturing block which punctures the output of the encoder according to a fixed

puncturing pattern to obtain the desired code rate. The turbo decoder used for the non

punctured codes can also be used to decode punctured codes; however, the punctured bits

must be inserted in the received sequence at the decoder input. Since punctured bits are

83

not transmitted, we insert a neutral value in the stream where coded bits were punctured.

For the antipodal baseband signaling scheme of Section 5.2, where bits 0 and 1 are

mapped to signal levels -1 and 1 respectively, 0 would be the neutral value.

Figures 5.7 and 5.8 show the BER performance results for punctured turbo codes with

multiple bit release bi-directional SOVA and Max-Log-MAP respectively. We have

obtained a rate 1/2 code from a non punctured rate 113 code by puncturing the output of

the two encoders alternately. In the figures the puncturing pattern is represented by a

puncturing vector where 0 denotes the bit positions that were punctured. The results show

that for punctured turbo codes the variation in performance due to the variation in N

follow a pattern similar to the one we observed for non-punctured codes in Figures 5.3

and 5.4. This indicates that the behavior of multiple-bit release decoders does not change

in a punctured turbo coded system.

When a code is punctured to increase the code rate, the performance of the coded

system deteriorates. For a turbo coded system with conventional component decoders the

performance drops approximately 0.6 dB, when the code rate is increased from 1/3 to 1/2

[23]. The comparison of non-punctured and punctured fifteen bit release SOV A and

Max-Log-MAP in Figure 5.9 and 5.10 also shows a similar deterioration in performance.

Therefore, multiple bit release component decoders behave very much like conventional

component decoders in a punctured turbo coded system.

84

K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec(110101]
10°r---------,------r==================7=~==~

-- 1 bit release Punctured Bi-Sova
··--+-·· 8 bit release Punctured Bi-Sova
··•·· 15 bit release Punctured Bi-Sova

'<~
'-.'\,
'·~

... ~

'~ ,~,\
... ~ ...

'· 1 o·4~--------::"-=-----------c------------,-L::----------:
0 0.5 1 1.5 2

Eb/NO db

Figure 5.7. BER performance comparison of multiple bit release punctured bi-

directional SOV A

K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec[110101]
10°r---------,--r============================~

-- 1 bit release Punctured Max-Log-MAP
........ 8 bit release Punctured Max-Log-MAP
....... 15 bit release Punctured Max-Log-MAP

1 o·4 ~--------::-'-::---------_j_-----------,-"::----------!.
0 0.5 1 1.5 2

Eb/NO db

Figure 5.8. BER performance comparison of multiple bit release punctured Max-Log-

MAP

85

K=3, 1000 bit interleaver, 1,000 blocks, Puncturing vec[1101 01]
10°r---------,------r==~~~7=~~~=======,

--+- 15 bit release Bi-Sova
--+-- 15 bit release Punctured Bi-Sova

1 o·5':----------=""=--------',-------:-"-=-----~
0 0.5 1 1.5 2

Eb/NO db

Figure 5.9. Performance degradation in multiple bit release punctured bi-directional

SOVA

K=3, 1000 bit interleaver, 1 ,000 blocks, Puncturing vec[11 01 01]
10o,_----~-r===~~==========~~======~

--+- 15 bit release Max-Log-MAP

10"1

10"2

...
Ill
..c

10"3

10"4

10"5

0 0.5

--+-- 15 bit releasePunctured Max-Log-MAP

1
Eb/NO db

1.5 2

Figure 5.10. Performance degradation in multiple bit release punctured Max-Log-MAP

86

vo

VJ

u

Figure 5.11. 30 turbo encoder

5.12 Turbo Codes with Higher State Encoders

The BER simulation results presented so far in this chapter are for turbo coded systems

with four state component encoders. We have already established in Section 5.10 that

speedup estimates derived for turbo codes with four state component encoders also hold

for codes with higher state component encoders. Let us now confirm that the same is also

true for the performance of the turbo coded system which employs component encoders

with more than four states. Figure 5.11 shows the standard turbo encoder for 30 wireless

communication systems [30]. It consists of two eight state RSC component encoders.

Figures 5.12 and 5.13 show the BER simulations results for turbo coded systems that use

the eight state encoder of Figure 5 .11. We must mention here that 30 wireless standard

87

K=4, 1000 bit interleaver, 10,000 blocks
10°,---------,----------,-------r==========~

-- 1 bit release
-·-·+-·- 4 bit release
--•-- 8 bit release
-+- 15 bit release

1 o·7'-----------_.__ ________ ___._ __________ '----------
o 0.5 1 1.5 2

Eb/NO

Figure 5.12. BER performance comparison of 8-state bi-directional SOVA

.....
(JJ
..c

K=4, 1000 bit interleaver, 10,000 blocks
10°r---------,----------,-------r==~~==7=~

--+- 1 bit reelase
-·-·•-·- 4 bit release
--•-- 8 bit release
-+- 15 bit release

10-5'----------:-'-::------------'------------,-"=----------:
0 0.5 1 1.5

Eb/NO

Figure 5.13. BER performance comparison of 8-state Max-Log-MAP

88

allows multiple frame lengths (between 40 and 5114 bytes), and the exact permutation of

the interleaver is determined, based on the frame length according to predefined rules.

However we have used a fixed frame size of 1000 bits and a random interleaver in our

simulations. The results demonstrate a similar trend as was observed for four state

encoders and even better performance than in the case of four state encoders.

5.13 Overall Speedup of the Turbo Decoder

The speedup estimates presented in this chapter are for the component decoders used in a

turbo decoder. These component decoders operate in an iterative fashion in a turbo

decoder. However the output of a component decoder has to be interleaved, or

deinterleaved, before it can be given to the next decoder. The time required for

interleaving is relatively small compared to the decoding time of component decoders for

long frames (i.e. 1000 bits). If we ignore the time used by the interleavers I deinterleavers

then the speedup estimates derived for component decoders also hold for the Turbo

decoder. For example if a 15 bit release implementation of bi-directional SOV A provides

a speedup of 2.65 over single bit release bi-directional SOVA, then a turbo decoder

based on 15 bit release implementation will be approximately 2.65 times faster than the

turbo decoder using single bit release bi-directional SOV A.

5.14 Summary

In this chapter we have presented the performance comparison of turbo coded systems

with multiple bit release component decoders. We simulated the performance of these

89

systems and demonstrated that multiple bit release implementations can be used to

increase the decoding speed without any degradation in performance. In case of Max

Log-MAP and bi-directional SOV A the performance actually improved slightly by

releasing multiple bits. The comparison of turbo coded systems with different component

decoders also established the superiority of multiple bit release bi-directional SOV A over

multiple bit release Max-Log-MAP in speed as well as performance. Finally we extended

our simulations to punctured turbo codes and turbo codes with higher state encoders. The

speed and performance advantages obtained by using multiple bit release component

encoders were confirmed in these systems as well.

90

Chapter 6

Conclusions

In this thesis design issues related to the implementation of high speed, low complexity

turbo decoders have been investigated. Chapters 1 and 2 provided the background on

error correcting codes. Chapter 3 explained the iterative decoding of turbo codes along

with the description of several decoding algorithms. Sliding window decoding, which is

used to reduce the decoder memory requirements, was presented in chapter 4. To increase

the decoding speed, multiple bit release sliding window turbo decoders were also

proposed in this chapter. Chapter 5 examined the BER and speed performance of the

proposed multiple bit release decoders. The speedups obtained from these

implementations and their effects on the decoder's performance were also discussed. Two

publications resulted from this work: [29] and [31].

The results obtained in chapter 4 (Figure 4.2) demonstrate that sliding window

decoding can be used to reduce decoder memory requirements without significant

91

performance degradation. Building on these results, multiple bit release sliding window

implementations for SOV A, bi-directional SOV A and Max-Log-MAP based turbo

decoders have been considered. These implementations sought to increase the decoder

speed without affecting its performance. The BER simulation results in chapter 5 proved

that it is possible to increase the speed and reduce the computational complexity of

SOV A, bi-directional SOV A and Max-Log-MAP based turbo decoders through the

proposed modifications. A comparative analysis of these results indicated that while

considerable speedups can be achieved in SOV A based turbo decoder, bi-directional

SOV A and Max-Log-MAP based turbo decoders are more suitable for such

implementations. Bi-directional SOVA, due to its higher decoding speed and slightly

better performance than Max-Log-MAP, proved to be the most suitable algorithm for

multiple bit release sliding window implementations of turbo decoders.

The above results were also confirmed with punctured turbo codes and turbo codes

with different constraint lengths (or encoder states). The increase in speed and

performance was obtained at the expense of certain modifications which require extra

hardware i.e. memory to store extra trellis stages and logic to release multiple bits.

However this increase was modest and was greatly outweighed by the gain in the

decoding speeds. The results obtained in this thesis argue strongly in favor of multiple bit

release sliding window implementations of turbo decoders due to their reduced

computational complexity, improved performance and faster decoding speeds.

92

6.1 Future Work

The purpose of this study was to research the design of fast and low complexity turbo

decoders for future wireless networks. Therefore, implementation of multiple bit release

sliding window turbo decoders, analyzed in chapter 5, in silicon (ASICIFPGA) would be

a natural progression of this work. Recent advances in turbo coding have led to the

emergence of several new techniques. Multiple bit release sliding window decoders can

also be used to the benefit of these techniques. Some suggestions are:

• Multiple turbo codes presented in [32] have recently been shown to outperform

conventional turbo codes. A multiple turbo encoder consists of 3 or more simple

component encoders and the turbo decoder consists of the same number of

component decoders. Since the component decoders in multiple turbo codes are the

same as in conventional turbo codes, the component decoders explained in chapter 5

can be used in a multiple turbo decoder to increase its speed. However the

performance of the multiple turbo decoder which employs these multiple bit release

sliding window component decoders will have to be verified through BER

simulations.

• To increase the speed of decoding, a method has been proposed in [33] to divide the

received frame in smaller slices and then decoding them in parallel. If the size of a

single slice is large enough i.e. multiple decoding windows, then multiple bit release

decoding can be employed in each slice independently leading to an overall increase

in decoding speed.

93

References

[1] C. Berrou, A. Glavieux, and P. Thitimasjshima, "Near Shannon limit error-correcting
coding and decoding: Turbo-codes,"in Proc., IEEE Int. Conf on Commun., (Geneva,
Switzerland), pp. 1064-1070, May 1993.

[2] C.E. Shannon, "A mathematical theory of communication," Bell Sys. Tech. J., vol. 27,
pp. 379-423 and 623-656, 1948.

[3] R. W. Hamminf, "Error detecting and correcting codes," Bell Sys. Tech. J., vol. 29,
pp. 147-160, 1950.

[4] M.J.E Golay, "Notes on digital coding," Proc. IEEE, vol. 37, p. 657, 1949.

[5] S. Wicker, Error Control Systems for Digital Communications and Storage.
Englewood Cliffs, NJ: Prentice Hall, Inc., 1995.

[6] D. E. Muller, "Application of boolean algebra to switching circuit design," IEEE
trans. on Computers, vol. 3, pp. 6-12, Sept. 1954.

[7] E. Prange, "Cyclic error-correcting codes in two symbols," Tech. Rep. TN-57-103,
Air Force Cambridge Research Center, Cambridge, MA, Sept. 1957.

[8] R.C. Bose and D.K. Ray-Chaudhuri, "On a class of error correcting binary group
codes," Information and Control, vol. 3, pp. 68-79, Mar. 1960.

[9] I.S. Reed and G. Solomon, "Polynomial codes over certain finite fields," SIAM
Journal on Applied Mathematics, vol.8, pp. 300-304, 1960.

[10] E.R. Berlekamp, R.E. Peile, and S.P. Pope, "The application of error control to
communications," IEEE Commun. Magazine, vol. 25, pp. 44-57, Apr. 1987.

[11] P. Elias, "Coding for noisy channels," IRE Conv. Record, vol. 4, pp. 37-47, 1955.

[12] A. J. Viterbi, "Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm," IEEE Trans. Inform. Theory, vol. 13, pp. 260-269, Apr. 1967.

[13] 3rd Generation Partnership Project, "Technical specification group radio access
network: Multiplexing and channel coding (FDD)." 3GPP TS 25.212 V3.1.0, 1999.

[14] G. D. Forney, Concatenated Codes. Cambridge, MA: MIT Press, 1996.

94

[15] 0. Aitsab and R. Pyndiah, "Performance of Reed-Solomon block turbo codes," in
Proc., IEEE GLOBECOM, (London, UK), pp. 121-125, Nov. 1996.

[16] S. Gravano, Introduction to Error Control Codes, New York: Oxford University
Press, 2001.

[17] Branka Vucetic and Jinhong Yuan, Turbo Codes: Principles and Applications,
Norwell, Massachusetts: Kluwer Academinc Publishers Group, 2000.

[18] A.S.Barbulescu and S.S. Pietrobon, "Terminating the trellis of turbo-codes in the
same state," Electron. Lett., vol. 31, no. 1, pp. 22-23, Jan. 1995.

[19] M. Breiling and L. Hanzo, "The super-trellis structure of turbo codes," IEEE Trans.
Inform. Theory, vol. ? , Sep. 2000.

[20] C. Berrou, "Some critical aspects of turbo codes," in Proc. Int. Symp. Turbo Codes
and Related Topics, (Brest, France), pp. 26-31, Sep. 1997.

[21] L.R.Bahl, J.Cocke, F.Jelinek, and J.Raviv, "Optimal decoding of linear codes for
minimizing symbol error rate," IEEE trans. Inform. Theory, vol. ?, pp.284-287,
Mar.1974.

[22] J.Hagenauer and P.Hoeher, "A Viterbi algorithm with soft-decision outputs and its
applications," IEEE Globecom, pp.1680-1686, 1989.

[23] J. P. Woodard and Lajos Hanzo, "Comparative study of turbo decoding techniques:
An overview," IEEE trans. Vehicular Technology, vol. 49, 2208-2232, Nov. 2000.

[24] J.A.Erfanian, S.Pasupathy, and G.Gulak, "Reduced complexity symbol detectors
with parallel structures for lSI channels," IEEE trans. Commun., vol.42, pp. 1661-
1671, 1994.

[25] P.Robertson, E.Villebrun, and P.Hoeher, "A comparison of optimal and sub-optimal
MAP decoding algorithms operating in the log domain," in Proc. Int. Conf
Communications, pp. 1009-1013, June. 1995.

[26] G. D. Forney, "The Viterbi algorithm," Proc. IEEE, vol. 61, pp. 268-278, Mar. 1973.

[27] J. Hagenauer, "Source-controlled channel decoding," IEEE Trans. Commun., vol.
43,pp.2449-2457,Sep. 1995.

[28] J.Chen, M.Fossorier, S.Lin and C.Xu, "Bi-directional SOV A decoding for Turbo
codes," IEEE Commun. Letters, vol. CL-4, pp.405-407, Dec. 2000.

95

[29] Yassir Nawaz, R. Venkatesan and Paul Gillard, "Multiple bit release sliding window
turbo decoding," in Proc. 3rdint. Symp. Turbo Codes and Related Topics, (Brest,
France), pp. 26-31, Sep. 2003.

[30] IEEE 802.16 Broadband Wireless Access Working Group, "Methods for using
concatenated convolutional turbo codes in IEEE 802.16a." IEEE 802.16a-02/80,
2002.

[31] Yassir Nawaz, R. Venkatesan and Paul Gillard, "Sliding Window Implementation of
3G Turbo Decoder," in Proc. IEEE NECEC, (St Johns, Canada), pp. ? , Nov. 2003.

[32] P. C. Massey and D. J. Costello Jr., "New low-complexity turbo like codes," in
Proc. IEEE Information Theory Workshop, (Cairns, Australia), pp. 70-72, Sept.
2001.

[33] D. Gnaedig, E. Boutillon, M. Jezequel, V. C. Gaudet and P. G. Gulak, "On Multiple
Slice Turbo Codes," in Proc. 3rdint. Symp. Turbo Codes and Related Topics, (Brest,
France), pp. 343-346, Sep. 2003.

96

