A SEMI-AUTONOMOUS ON-LINE CHEMOTHERAPY
PRESCRIPTION SYSTEM

SYED NAQVI

A Semi-Autonomous On-Line

Chemotherapy Prescription System

by

© Syed Naqvi

A thesis submitted to the

School of Graduate Studies

in partial fulfilment of the
requirements for the degree of

Master of Science

Department of Computer Science
{

Memorial University of Newfoundland

October 24, 2007

St. John’s Newfoundland

Abstract

To advance the causes of reducing medical errors and improving the quality of
patient care, healthcare is currently going through a period of vast reforms. CPOE
(Computerized Physician Order Entry) is one such reform. An important example
of CPOE is drug prescription, both of individual drugs and complex regimens, e.g.,
chemotherapy. By reducing medication errors, CPOE can both increase the quality of
patient care and decrease cost. Several types of problems may arise during the design
and implementation of CPOE systems. The most obvious of these problems are due

to insufficient attention being paid to the nature of existing manual clinical workflows.

. o

Much more d ing are subtle related to i attention being paid

to the nature of the clinical workplace — in particular, the frequent lack of resources,

e.g., system admini and p! for ongoing system maintenance and
evolution after the system is deployed.

In this thesis, we will describe the development of an on-line chemotherapy pre-
scription system in which many aspects of system maintenance and evolution can be
performed by the system’s users. The user-guided operational model underlying this
system overcomes many of the problems arising from li};qited system maintenance
and evolution resources in the target workplace. This thesis will also include several
discussions of various lessons learned during the development of this system that are

applicable to the development of medical informatics systems in general.

Contents

Abstract
Acknowledgements
List of Tables

List of Figures

1 Introduction
WETHMotIvation .- i el "2 Ve oyl SO SR CEE R Bl Bk LR
120 Objeetives <. .. i L ann o LR S
MESTREONENDIONSE &« X e el o Y LB et e el e et A

S Orgamization of THesis" & i & b is LA S i el . SRl s

2 Background
2 MedicaliSoftwares v .5 .ot als ORISR A o AR T
25151 Data Storage SyStems & « 2 ST T S TR s
2.1.2 Analytical and Decision Support Systems

213 Computerized Physician Order Entry Systems (CPOE)

iii

2.2 Developing Medical Systems: Problems and Solutions
2¢2:1 SyEten: Developiient: -0, 1Sy n a i N AR T I e s
2.2.1.1 Importing Legacy Knowledge

2:2.1.2 Tnteroporability fe: o e 15 S S S T Ueek

2.2:1:3) DEegal IRSHE S S5t oo 4 SRR e B e LG 1

2.2.14 Social and Organizational Issues

222" ‘SysteriOperation . % oAttt L5 i s At S HT A AT

2:3¢ SoftwaratDevelopments e (o AN Ty bt B SPIRTE & S
2.3.1 What is a Software Process Model?
2.3.2 Types of Software Process Models
253:2¢1 P Waterfall Mirdel e o A SR ity o it v L

2:3:122¢ Anerenental ModelTe & - e S8 SRRt

2.32:3" AP rototyping Nodell Jelen I8 Buf 25§ it i, edn S

2:3;2.4 SpiraliMedalls 4§ Tes SRR I ST I LR

2.3.3 What is a System Operational Model?
2.3.4 Types of System Operational Model
2.3.5 Which System Process and Operational I\‘Aodels are Appropri-

ateifor Medical Informaties? . . 5. clati i atuists SR s,

3 Chemotherapy Prescription
SITCRROECE N B8R, Gl o PR TR R T L e DO
U WhERS CPOL - R, 28 r Tt el St o = 1250
SHEN BaneftaaRCPORN . WUk A, o LR w0 SRR, 1k

3.1.2.1 Reduction of Medical Errors

21

31

BB S Tive Ahd (COBEEN', . o BT R a8 8L 36

3.1:2:37 1 ResedrellPurpoees’ . 6 Vs 3l B e s o 37

3.1.24 Administrative Purposes 37

3H3 S ProbleMBwith CRO . sl vk e silis SRS e e 37
3.1.4 Factors in ful CPOE Impl HORHR e e e 39

8.2 1 Chemotheraby Preseriptionl’ . o fl. Wial. . ' Lo e et Sy 41
3:2.1 . What is'Cheriobherapy T L7, (% S80I 68 Sk i s 41
3.2.2 Manual Chemotherapy Workflow 42
3.2.3 Computerized Chemotherapy Workflow 44
3.24 Benefits of Computerized Workflow 45
3.25 Consideration Concerning Computerized Workflow 46

SRR TEVIOUR WVOTK . L TRUes T, o B b b RN ER s B s i [e 46
System Design 58
A aSTEtemiObjeetives s .y IR AR BB R S R 59
45 ey A tTTTBRRLIN. .\ " nL. 1 oot s BRSSO e S Tl 61
4.2.1 Democratic Model of System Operation. 61
4.2.2 User Interface Design M TR AR 63

i8S SystemiObjectsand Clasgad | . f = 0 S0 a1 % Sale s, S T 64
e SnglosIser Iesignt P bW L S B 00 BHIED R R e 30 65
4.4.1 Single-Session Activities 0., 66
BRI T L VAT - R SR e e R o L 68

A1t S Setirch Patient S E RN 8, VAT R TR S, 71

4.4.1:31 “Pyescribe REgImen =i olh. tH i Sl ot 73

vi

o

4470 =S ShOTt=-Torm A Chivaties . "or-ve o 8 SRR SRR I e S 80

A.4:2.1 L SAdld) PAGIBAL syl i e Ol R SR 80

4:4:2.2" Create New Regimien.. - af. o0 8 L ik b il 83

4423 Alter ExistingRegimen 89

4:4.2:4" 1 Manage REEIMENS. . 4l: 5 o 4 sl (Iate Aoy 94

A3 AN TSR A CLIVITIBET s 0 W =, ikt o i S S 94
4.43.1 Add New Chemotherapy drug 96

44321 "Pasaword Retrievhl oo & il | i g LT 99
STVIVIEISET IDSSIgnaN - . S 3 T T crl SRt ey e s SR 102
brlR IndiTectiINUETACtIon L ik uonik o e G SR S5l 102
4,6.1.1 View Patient History:.o oo oo oo 104

4.6 2evLimited Direct Intergetiont o= S iSRRI 107
4.5.2.1°" ‘Dnport Regiment. S St s v 107

A5 O TEED TRTETARRTON R L S e e P 110

4.5/ 351 AT TP FopoRaTt oy A SRR N TR RS S sl 111

4:5:312 Vot PTOpoSAl 8 00 LT e it W, LR 116

4.5.3.3 View Status of Proposals . . . O R 118
AGIEDACABAREIDERIER o b R | i, R SRR 120
4.7 Summary: Implications for Medical Informatics Development 124
System Development 127
el e Develobuent, Pracess ihii 10 et B ST S 128
or2ibeveloprment Modely i 2 el i SRS ST R e R 128
R T Enlat e D i Toh - S S e L SRRy | B 130

5.3.1 Development Framework 131

Hr8el.1 % -aldrie STIIts ot S e R e KSR R e 131

5.3.1.2 Spring MVC Framework 133

5.3.1.3 Evaluation of Struts and Spring frameworks 134

o2t DevelopruentilDB; . ic (e o ol Lol e, S 134

BRI EatAbase "8 ' dirs k- R RERe 8BS 1T LSRG, 135

Ol R AWeDSETVORRY', St | R B et il e EOREEI i 135

5.4 Summary: Implications for Medical Informatics Development 136

6 System A and Impl, i 138
6.1 System AcceptanceModel oo 139
6.2 Implementing Medical Informatics Software in the Workplace 141
;2011 Software Adopton ', 5. 0. e R R T 141

6.2.2 Software Implementation.c. ... 142

6.3 Summary: Implications for Medical Informatics Development 143

7 Conclusion and Future Directions 145

viii

List of Tables

2.1 Types of System Operational Models

4.1 Single User Design Table

4.2 Multi User Design Table

List of Figures

3.

=

3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.

4.2

4.4

4.5

4.6

4.7

4.8
4.9

‘Workflow Diagram: Manual Chemotherapy Prescription Process . . . 43

Workflow Diagram: Computerized Chemotherapy Prescription Process 47

Screenshots: Meditech - (a) Patient Profile (b) Finding Patient. . .. 49
Farrell Version 1 - Sample Prescription Page 52
Farrell Version 2 - Sample Prescription 53
Farrell Version 2 - Sample Prescription (Cont’d) 54
Farrell Version 3 - Sample Prescription Input Page 56
Farrell Version 3 - Sample Prescription Output Page 57
Workflow Diagram: Login/Logout 69
SRR RARGtYLOGIE T e fh il LSRR R PR (i 70
Workflow Diagram: Patient Search by MCP Number 72
Screenshot: Patient SearchPage 73
Workflow Diagram: Patient Search by Demographic Information . . . 74
Workflow Diagram: Prescribe Regimen 76
Screenshot: Sample Prescription Input Page i
Screenshot: Sample Prescription Output Page 78
Workflow Diagram: Add Patient to Database 81

4.10 Screenshot: Add Patient to Database 82

4.11 Workflow Diagram: Create New Regimen. 85
4.12 Screenshot: Create Regimen - Regimen Name 86
4.13 Screenshot: Create Regimen - Chemo Drugs Details 87
4.14 Screenshot: Create Regimen - Antiemetic Drugs Details 88
4.15 Workflow Diagram: Alter Regimen 91
4.16 Screenshot: Alter Regimen - Regimen Name 92
4.17 Screenshot: Alter Regimen - Chemo Drugs Details 93
4.18 Workflow Diagram: Manage Regimens 95
4.19 Screenshot: Manage RegimensL, 95
4.20 Workflow Diagram: Add New Chemotherapy Drug 97
4.21 Screenshot: Add New Chemotherapy Drug 98
4.22 Workflow Diagram: Password Retrieval 100
4.23 s5creenshat: Password, Retrieval o5 .00l il Doy 8 ol e e 101
4.24 Workflow Diagram: View Patient History 105
4.25 Screenshot: View Patient History 106
4.26 Workflow Diagram: Import Regimen o0k EL BN T 108
diJgScrtenshot: Inport REpIMEnt. = s £L 8 b S b 1 e St I ot 109
4.28 Workflow Diagram: Add Proposal 113
4.29 Screenshot: Add Proposal - Change Emetogenicity Potential 114
4.30 Workflow Diagram: Vote Proposal 17
4.31 Workflow Diagram: View Proposals 118
4.32 Screenshot: View Proposals 119
4.33 Database Entity-Relationship Diagram 121

5.1 Spiral Development Model

xii

Chapter 1

Introduction

1.1 Motivation

Almost all activities involved in the process of improving a patient’s health are initi-
ated via a written order by a physician. This order is usually a prescription, which
includes instructions for administering medication, or different tests for diagnostic
purposes. This initial step or entry point for the process of patient care is crucial, as
the entire care process is dependent on it. In particular, a minor mistake in prescrib-
ing, e.g., mistakes in dosage or frequency of medication, ¢an cause severe problems,
or in the worst case this could result in the death of the patient. Hence, physicians
are required to be very careful while writing such prescriptions.

In 1999, a report by the Institute of Medicine, “To Err Is Human” [36], cited much
evidence to indicate that in the United States alone, preventable medication errors are
involved in 44,000 to 98,000 deaths per annum (a greater death toll than deaths due

to such feared threats as breast cancer, motor-vehicle wrecks, and AIDS combined)

and cost $17 to $29 billion per year. This report and others have renewed efforts
to apply information technology to clinical workflow in order to decrease medication
errors. Studies have proved that the introduction of a computer in clinical workflow
can significantly reduce medication errors [61, 43]. The successful introduction of a
computer system, e.g., CPOE (Computerized Physician Order Entry), can cause not,
only a decrease in medication errors, but also enhance work through many aspects,
e.g., reduced cost, standardization of care and improved efficiency of care delivery (37,
59] . CPOE systems are remarkably helpful in reducing prescription related errors,
where prescription writing involves complex calculations of dosage. This motivates
the development of prescription systems that can be helpful in making the prescription
process more accurate and improving the quality of patient care.

Such computerization is desirable; however, there are known problems that occur
during the development of these systems, such as inattention to the clinical workflow.
These problems can be severe enough that the resulting systems are often rejected by
physicians. If the promises of computerization given above are to be realized, these

problems must be dealt with during system development.

1.2 Objectives

Given the prescription problem described in motivation, as well as known problems

with impl i ized sol to medical informatics in general, this

thesis has two main objectives:

1. To develop a restricted CPOE system for the chemotherapy prescription process.

2. To present a number of lessons learned during the development of such a system

that are also relevant to medical informatics in general.

In the process of developing the required system, we have discovered what we think is
a gap in current software engineering theory and practice. This gap is related to the
assumptions that are made in software engineering practices and the actual operation
of the system both in terms of maintenance and evolution after deployment. Given
this gap, we also have a third objective of this thesis, to describe this gap and propose
a solution.

The reader should note that though software engineering techniques are used
extensively in the design and implementation of this system (and the description of
this design and implementation), this thesis is not intended as a software engineering
thesis. Rather, it is intended as a contribution to medical informatics, as both a
demonstration of how a particular kind of system can be developed and the general

lessons that should be learned from this development process.

1.3 Contributions

The major contributions to this thesis are as follows:

o A detailed workflow analysis of the chemotherapy prescription process: This
workflow analysis was gathered by repeated weekly conversation with Dr. Far-
rell, under the Spiral software process development model (see Section 2.3.2.4).
These conversations allowed us to gather workflow not only because Dr. Farrell

was a chemotherapy prescriber himself, but also because he was the developer of

many of several previous chemotherapy prescription systems (see Section 3.3);
hence, these conversations access the experience of not only Dr. Farrell, but
all users with which Dr. Farrell himself interacted in developing his previous
systems. Similarly the workflow was also validated through these conversations
with Dr. Farrell (and hence also indirectly validated with the other system

users that Dr. Farrell talked to while developing his previous systems).

A set of software development guidelines for medical informatics: These guide-
lines are encoded as various lessons learned during this project and are listed
at the end of Chapters 4, 5, and 6. We are aware that many of these lessons
are common sense in the software engineering community; however, it is still of
interest to list such guidelines here because these have particular importance in

medical informatics.

Addressing problems of post-development system operation in medical informat-
ics: This involved developing what we believe to be an original classification of
post-development system operational models (see Section 2.3.3), and explain-
ing why certain medical informatics systems such as E:hemotherapy prescription
operate under a model that is not currently addres;ed in an adequate fashion
by software development practice. We also propose a solution to this problem

in the form of a democratic model of system operation (see Section 4.2.1).

1.4 Organization of Thesis

In Chapters 2 and 3, we describe the general problems with medical informatics
software and look in detail at the prescription process, particularly as it relates to

chemotherapy.

o In Chapter 2, we will describe different types of medical software/tools (Sec-
tion 2.1), problems that arise while developing them, and possible solutions to
those problems (Section 2.2). We will see how software techniques are helpful
in developing medical software (Section 2.3). We will discuss how the operation
of software after its development is important to consider while developing any
software. We will discuss in detail the different software operational models
defined in terms of software evolution and maintenance (Section 2.3.3). We will
discuss which software process model and system operational model is appro-

priate for the development of medical systems (Section 2.3.5).

In Chapter 3, we will discuss in detail both CPOE (Section 3.1) and chemother-
apy prescription (Section 3.2) as a restricted form of CPOE system. We will also
examine different problems for the development of suth a system that are intro-
duced due to the limited resources available for the maintenance and evolution
of a medical system during its operation. Finally, we will look at the previ-
ous work that has been done to implement chemotherapy prescription systems

(Section 3.3).

In Chapters 4, 5, and 6, we will look at the design, development, and implementation

of a chemotherapy prescription system. Note that at the end of each of these chapters,

as this thesis is on medical informatics, we will give in-depth discussions of the specific

lessons we draw for developing medical informatics software in general.

o In chapter 4, we will discuss the design of a chemotherapy prescription system.
‘We will describe the objectives of the system (Section 4.1), and it’s two key fea-
tures (Section 4.2), related to user interface design and a newly proposed model
of system operation, which we call the democratic model of system operation.
We identify system objects and classes (Section 4.3), and break the design of
the system into single-user (Section 4.4) and multi-user (Section 4.5) features.

Finally, we will describe the database schema for the system (Section 4.6).

choices, i.e., dev

In Chapter 5, we will look at different
framework, IDE, database and webserver, that were made for the development
of our chemotherapy prescription system. We will see how the choice of tech-

nologies for development of software is affected in the case of medical software.

In Chapter 6, we will discuss the different system implementation models de-

scribing different ways to get software accepted in a target workplace. We will

discuss the different factors that affect the acceptance of medical software/tools
!

by healthcare.

Finally, in Chapter 7, we will provide conclusions and a list of directions for future

research.

Chapter 2

Background

In this chapter, we will review different background topics for this thesis. These
include general descriptions of the types of medical software (Section 2.1), different
problems involved in the development of medical software and their solutions (Section
2.2), and a description of software engineering techniques (Section 2.3). The latter
includes not only standard techniques such as the software process model (Section
2.3.1), but also includes the software operational model (Section 2.3.3), which is of

particular concern to the system developed in this thesis.

2.1 Medical Software

Modern healthcare organizations are designed and structured to enhance the effi-
ciency of healthcare. The introduction of information technology into healthcare can
greatly enhance the process of quality patient care. Along with the basic effects of
introducing computers to any workflow, i.e., cost reduction and increased time effi-

ciency, computerized workflow can reduce many flaws attached to manual healthcare

7

workflow, which are explained later in this section with reference to different types of
medical systems.

However, healthcare organizations have given little attention to the introduction
of computers to clinical workflow [14, 45]. If we explore the causes of such inattention
to the clinical workflow further, we will discover many important and interesting facts
about healthcare organizations. The clinical environment is different from any other
work environment, because of the uniqueness and complexity which arise from the
types of services, complexity of services, and motives behind the services it provides.
These factors are further elaborated later in this section.

There are many types of medical systems, which are designed for use by different
user communities. These communities include single doctors, small groups of doctors,
and large groups of doctors. To examine past efforts for the details of successes and
failures in an attempt to implement different types of electronic medical systems, we
have divided systems into three levels depending on system functionality and type of
user community. When we discuss each type of system, we will describe what that
system does, the potential advantages it has, and whether or not it has been a success

in the past in the USA and Canada.

2.1.1 Data Storage Systems

These systems include Electronic Health Records (EHR) and Electronic Medical
Records (EMR). According to the HIMSS Electronic Health Record Committee, EHR
is defined as a secure, real time, point-of-care, patient-centric information resource for

clinicians [30]. An EMR is conceptually different from an EHR, as an EMR is the ac-

tual computerized clinical record in different hospitals and physician’s offices, whereas
an EHR is designed to share data among different EMRs [27]. EHRs are reliant on
EMRs being in place and EMRs can never reach their full potential without EHRs.
In both kinds of systems, patient data from different sources is stored in databases to
make it available to clinicians. This data can be scanned images of paper documents,
diagnostic images, or other type of medical data related to patients. EHRs and EMRs
are designed for many uses, from individual clinics which have single-user EMRs to
hospital level EMRs, which may have dozens or hundreds of users. Hence, EMRs and
EHRs cover a broad spectrum of user communities.

A report by HIMSS on EMRs and EHRs establishes their ability to improve patient

care in the following ways [30]:
1. Helping to reduce medical errors.
2. Making access to patient data faster.
3. Providing remote access to data.
4. Allowing the sharing of data among different clinicians.

(
Despite the potential of EMRs and EHRs to make ibutions to the i

of healthcare quality, significant initiatives and strategies to implement them in the

past have caused only a relatively small number of sites in North America to use

them. In 1991, the Institute of Medicine (IOM) [50] d to have comprel
implementation of EHR in the US over a period of 10 years. However, after 12 years,
no more than 17-25 percent of the medical user community employs EHR [32]. Like

the US, Canada is also far behind in i ducing in the health In

Canada, major steps to introduce nation-wide EHR were taken through a multi-
million dollar investment by Infoway, funded by the federal government. Infoway [15]
is a not for profit organization which aims to put an interoperable EHR into place
across 50 percent of Canada (by population) by the end of the year 2009. However,
a report by Infoway states that about 91 percent of physicians are still using paper

records and/or prescribing using paper [14].

2.1.2 Analytical and Decision Support Systems

Analytical and decision support tools are designed to help doctors in making critical
decisions on patient health. Analytical tools are used to access large transactional
datasets by various data mining techniques. The results extracted using these tools
can then be visualized using different knowledge representation methods. These tools
can be used broadly to find the useful patterns in health data which can help in
improving patient care, e.g., analytical tools to find adverse drug events. Analytical
tools may also be used for visual data analysis or image processing [53]. A clinical
decision support system is any system that helps in making diagnostic decisions for
patient care [67]. Both analytical and decision support systems are typically focused
systems, aimed at single users or small groups of users.

Work on clinical decision support systems originated in the 1970s, when systems
such as the de Dombals Leeds abdominal pain system (23] and the MYCIN system
[80] for selecting antibiotics, were developed. In 1999, Perreault and Metzger outlined

the key benefits of clinical decision support systems [56]:

1. Supporting clinical di is and plan

2. Promoting the use of best practices in patient care.

3. Helping with cost reduction by reducing medication errors, and helping to avoid

duplicate and unnecessary tests.

Unfortunately, decision support systems are underused in a manner similar to that
seen with data storage systems. For example, a report by the Joint Clinical Decision
Support Workgroup concluded that clinical decision systems are still used only by

minority of physician in their practice [77].

2.1.3 Computerized Physician Order Entry Systems (CPOE)

Order entry systems, such as Computerized Physician Order Entry (CPOE) are one
level above EHR/EMR. Such systems are designed on top of physician workflow and

are used to assist physici in i patient-related tasks such as ordering

tests and prescribing medications. The purpose of such systems is mainly to prevent
medication errors that are related primarily to prescription writing. Such systems
may have additional features such as decision support, patient safety features such as
real-time patient identification, and billing. CPOE is pri{narily designed for use by
single doctors, though a CPOE system may serve a groupy of doctors.

Successful order entry systems are guaranteed to improve healthcare in the fol-

lowing ways [9, 20, 38, 60]:

1. Reducing the prescription errors that are inherent in writing prescriptions which

involve complex calculations, such as chemotherapy prescriptions.
2. Giving direct access to patient data and history.

11

@

. Removing interpretation of illegible hand-written orders from the workload for

nurses and pharmacists.

-~

. Providing quicker turnover time for medications.

Ll

Making data more readily available for other uses such as research.

Though the concept of order entry systems is very old, and research has proven its
effectiveness in improving clinical processes [9, 20, 38, 60], it remains underused in
healthcare. Indeed, in the US and Canada, the use of CPOE is even lower than the
use of EHR/EMR described earlier in the section. In the US, out of 17-25 percent
of users of EHR, only about 9.6 percent use some kind of electronic ordering system,
which may include electronic prescribing or electronic lab test ordering [21]. Similarly,
in Canada, less than 5 percent of physicians use electronic ordering systems [14]. As
order entry systems, and specifically Computerized Physician Order Entry systems,

are the subject of this thesis, they are discussed in more detail in Section 3.1.

2.2 Developing Medical Systems: Problems and
Solutions]

In the previous sections, we have looked into different medical systems shown to be

helpful in improving the process of patient care and noted that despite the benefits

of such systems, their usage is low. If such systems are guaranteed to improve the

quality of healthcare, but are not widely used, then there must be factors involved to

prevent their adoption. In this section, we will explore the problems underlying such

minimal use of medical systems and that must, therefore, be taken into consideration

12

when designing medical systems. We have divided these problems into two categories:
system development problems (Section 2.2.1), which affect the development of a med-
ical system, and system operation problems (Section 2.2.2), which arise during the

use of a system after development.

2.2.1 System Development

In this section we will identify and briefly explain the different problems that arise
while changing from a manual medical system to an electronic medical system. We
will also discuss how these problems have affected the introduction of medical systems

in healthcare and how (if at all) they have been addressed.

2.2.1.1 Importing Legacy Knowledge

In order to make legacy data readily available to physicians in new electronic systems
older patient data must be added to electronic patient records. This addition of
data can be expensive and difficult, as it may include scanning all paper records
into an electronic form. This transfer of data from paper to a scanned digital format
needs careful attention to ensure that all necessary details qre transferred successfully.
Unfortunately, research has shown that many physicians find patient data hard to
understand in a scanned digital form, which causes them to revert back to manual
systems [39]. Importing patient data is also difficult as it involves the assimilation
of medical knowledge from different sources into the new system. These systems are
often further complicated due to the use of specific medical terminology, as systems

which use non-standard medical terms are likely to be rejected by the users.

Scanning old patient records and adding them to new systems should be considered
only as an intermediate step towards developing a fully electronic medical record [39].
This step not only eliminates the problem of slow processing and rigid structure
in scanned documents, but also makes the electronic data more readily available
for sharing, administrative, and research purposes. However, in order to prevent the
possibilities of errors involved in the manual addition of data to a database, necessary
validity checks are required to ensure the correctness of the data. Moreover, to deal
with the problem of usage of medical terminology, it is important to work in close
collaboration with the actual users of the system, i.e., physicians, who will be obliged

to work with the medical terminologies employed by the system.

2.2.1.2 Interoperability

Interoperability is an important issue if we are to merge data from different sources
to make it available for sharing among the users of those sources. Most stand-alone
medical systems are developed and targeted for a particular department or hospital
and lack any shared conventions of data with other sources. This restricts large
amounts of medical data to only one medical system at a Ejme and renders that data
useless to other systems that could benefit by sharing it [2‘4, 42].

In order to make data available for sharing from different sources it is necessary to
standardize medical data. There are many standards, such as Health Level 7 (HL7)
[31], that can be introduced as guidelines to enable the exchange and interoperability
of electronic health records. HL7 introduces a set of “rules of conversation” that
enable different systems to communicate patient-centric data. In Canada, Infoway,

which has invested millions of dollars provided by the Canadian government, has

14

established a set of guiding principles for information standards. Infoway is also

leveraging HL7 ing, which is dard th hout North America [24].

2.2.1.3 Legal Issues

There are many legal issues involved in use of EHR and electronic prescribing systems,
which make the development process more complex. Privacy laws make it difficult
to share data among the users of electronic health data, i.e., the personal data of
a patient or the history of his medical record is not allowed to be open for general
access like research work or administrative use without the consent of the patient.
For example, under the Food and Drug Regulations in Canada a pharmacy is allowed
to fill only those prescriptions that are ordered by physician in a written or verbal
form. Food and Drug regulation states: “C.01.041 (1.1) Subject to C.01.043 and
C.01.046, no person shall sell a substance containing a Schedule F drug unless (a)
the sale is made pursuant to a verbal or written prescription received by the seller;”
[41]. Moreover, there are many hurdles related to the creation of and maintenance of
medical records which make the development and maintenance process more complex.

To overcome the privacy problem, we need to deal wifh the privacy of patients
and medical professionals very carefully. Within the healthcare information system,
there is an emerging need to ensure the security and integrity of healthcare data while
maintaining patient privacy. A relational database is a good solution to problems re-
lated to privacy and security issues, where data can be stored in tables and limited
access can be granted to each person according to his/her privileges. Moreover, to
enhance privacy, field protection can be applied to tables to restrict access to indi-

vidual columns. To make data available for research, we can use various techniques,

15

such as data anonymisation, to preserve privacy [75].

In addition to such technical solutions, we can also deal with legal issues by devel-
oping legislation that takes into account the specific concerns of health information.
For example, a possible solution to the legal issues involved in electronic prescribing

'y Authorities

has been proposed by the National A iation of Pharmacy R
(NAPRA), which has developed general recommendations for the safe and effective
transfer of prescriptions between prescribers and pharmacists. They identify five prin-
ciples that should be met for safe transfer of electronic prescriptions, which are also

supported by the Health Canadas Therapeutic Products Programme (TPP) [51]:

1. The process must maintain patient confidentiality.

»

The process must be able to verify the authenticity of the prescription, i.e., that

the prescriber is initiating the prescription.

o

The system must be capable of validating the accuracy of the prescription, and

the process must include a mechanism to prevent forgeries.

[o

Patient choice must be protected; that is the patient must determine the prac-

titioner to receive the prescription authority. !

Legal issues within many other areas of health informatics could be resolved by sim-
ilarly structured legislation. In any case, such issues are not currently handled by
software engineering methods and probably will not be handled in future; hence,

they will not be addressed in this thesis.

2.2.1.4 Social and Organizational Issues

Modern healthcare organizations are confronted with new clinical e-health technolo-
gies as never before. Early evidence suggests that the adoption of new medical soft-
ware/tools depends in large part on their acceptance by both hospital bureaucracies
and by doctors. This acceptance must take into account various social and organiza-

tional issues related to the behavior of doctors and bureaucrats within the hospital

environment. These issues and behaviors are di: | ively in [49]. The fol-
lowing condenses some of the main points in that discussion, and divides these issues
into two categories: bureaucratic and physician.

Hospital bureaucracies show the following behavior towards the adoption of new

software/tool:

1. The approval process: It is very difficult for a medical tool to be approved
by hospital bureaucrats. This is primarily due to caution about adoption of
new tools because a minor error in those tools could harm patients health and
even cause deaths. Moreover, the bureaucracy also has to consider the complex

security and privacy issues associated with the adoption of new software.
¢
Limited IT Many devel probl arise because of limited

»

hospital IT resources. For example, the d of some datab: bled

tools may require database administration, but a hospital’s IT department may

not have any d 1 to spare.

o

Preference for existing tools: As hospital bureaucracies trust only existing

tools, they ask for new tools/software based on, and thus similar to, those tools.

17

This similarity falls in two categories:

e Look and feel: Hospital bureaucracies insist that new tools use the same
interface as existing tools or, in the case of a paper-based system, they
require new tools to have the same input and display format as that system.

e Underlying technologies: Bureaucrats are more comfortable using new

tools which are based on technologies that they are already familiar with.

Doctors show the following behavior towards the adoption of new tools/software:

1. Need for familiar look: Even if they agree to use new tools, doctors need
these tools to have same interface and look as tools with which they are already

familiar, i.e., the interface of the old system.

L4

Difficulty in extracting workflow descriptions: Due to the busy sched-
ules of doctors, it is sometimes very hard to get useful descriptions of clinical
workflow from them. This may result in the development of a system with in-
sufficient information about the target workplace and users, leading to a failure

of adoption.)

©

Cannot be compelled to change: Doctors have a responsibility to patient
care which they always maintain as priority. Hence, no one can compel them

to adopt a new technology which they do not feel serves that priority.

This last behavior is particularly important, because it highlights a crucial difference
between the relationship of doctors and the administration in hospital and the re-

lationship between employees and the administration in companies. In a company,

18

the workers are employees of the company and can be compelled by the administra-
tion to make any change related to work. However, the relationship between doctors
and hospital is not so much that of employees but rather that of private contractor;
therefore it is much more difficult to compell doctors to make any changes requested
by the administration. This difference in relationship has implications for software

adoption. In an ordinary company workers can be told by the administration or IT

Sl 1

department to adopt a new , while the successful de of medical
tools/software requires that doctors and administrators both see the benefits and
hence agree to adopting a new technology.

The problems that occur during the development and acceptance of medical sys-
tems due to social and organizational issues that are specific to the medical field have
been given very little attention in the past [40, 59]. This inattention was a cause
for the failure of many medical informatics systems, where either physicians refused
to accept new systems or stopped using medical systems to protest against them,
e.g., the Cedars-Sinai hospital uninstalled a multimillion dollar system as physicians
stopped using it [40]. There is not really an effective solution available in software
literature to overcome these problems, but it is recommended that designers involve
physicians in the development process as much as possible. This is related to the issue

of physician champions in medical software development, which will be discussed in

more detail in later sections of this thesis.

2.2.2 System Operation

We have di d many de and their solutions in the previous
section. Let us now consider the problems that are associated with system operation.
System operation is concerned with the issues related to short, mid, and long term
system evolution and maintenance, i.e., what a system does after it is developed.
Here, issues related to maintenance are how system changes that arise from the day
to day usage of the system, e.g., adding a new users to system, are handled. System
evolution is related to the need for change in the basic design of a system that arises
after using that system for a long period of time. For example, in the case of a
chemotherapy prescription system, if the basic method of prescribing chemotherapy
drugs is changed, it will cause a need for a corresponding change in the design of the
system. These issues are especially important for systems which are developed for a
longer period, making it more likely for these issues to come forth.

Though system operation issues occasionally come up in software development,
they are not satisfactorily addressed in software engineering literature at present.
This is particularly unfortunate for us, as many medical informatics systems are long

lived and face these problems. This will be discussed in mpre detail in Section 2.3.3.

2.3 Software Development

From Section 2.1 and Section 2.2, we see that medical software presents some in-

teresting devel al Here we will analyze these problems in terms of

two components of the software development process, the software process model and

the system operational model, and we will see how appropriate software engineering

20

techniques can help us to solve many of the problems arising during the development
of medical informatics systems. In this section, we will briefly describe what each
model is (Section 2.3.1 and 2.3.3), and the types of each model (Sections 2.3.2 and
2.3.4). The discussion of types of system operational models (Section 2.3.4) is partic-
ularly detailed, as this is not, to our knowledge, adequately addressed in the software
literature. Finally, in Section 2.3.5, we discuss which software process and system

operational models are most relevant to medical informatics.

2.3.1 What is a Software Process Model?

A software process model may be defined as a simplified description of a software
process which is presented from a particular perspective [69]. In other words, we
can say that a process model is a plan of action for a large and complex software
development, which includes a clear statement of what is required and the different
tools, steps and series of steps, required to successfully implement a software product
[10, pp. 21-22].

In the early days of computers, software development was still evolving. Because
projects were small, the programmers’ own defined ways; of development were suf-
ficient to produce successful software. The most common way to develop software
was to write code and then test it, and came to be called the build and fix model.

With the passage of time, software projects became more complicated and difficult to

o i

develop with tr: 1 programming t due to lack of knowledge about the
software implementation. To overcome this problem new development models, also

called software development paradigms, were introduced to cover the whole software

21

development life cycle. These models include a comprehensive guidance towards the
development of software.

A model, also called the life cycle of a project development, consists of different
phases, which can range from three (for a simple model, including Design, Develop-
ment, and Maintenance) to more than twenty phases. However, most of the models

include the phases of Requi Design, tion, Testing, Deployment,

and Maintenance. Different process models include different iterations and orders
of these phases, which make them suitable for particular circumstances. Hence, the
selection of an appropriate model depends on the nature of the project and its con-

straints.

2.3.2 Types of Software Process Models

Today, we have many software process models, all of which are actually variations of

four traditional software models.

2.3.2.1 Waterfall Model

The waterfall model was introduced by Royce in 1970 axdd is also called the linear

sequential model [63]. In this model the following phases are completed in order.
1. Requirement Specification
2. Design
3. Implementation
4. Testing

22

5. Deployment
6. Maintenance

In the Waterfall model one should only move to the next phase on the completion
of previous phase. There is no jumping back and forth, and there is no overlap
between the phases. In spite of the fact that the system being developed is always well
documented from the very beginning of the process, one of the main disadvantages
of the Waterfall model is that not every part of the product is available until late in

the development process. Thus, if mi: or ¢ iencies exist in the d. ation

or earlier phases, they may not be discovered until the deployment of the software.
Hence, correction must often be done in the maintenance phase. Because of its

sequential nature, the Waterfall model is not licable when the requi are

not clear and well understood at the start of the project. Moreover, in the Waterfall
model the actual participation of the end user is negligible, and only the final version
of the product can be delivered to users, which makes it unavailable for comments by

the client in earlier stages.

2.3.2.2 Incremental Model

The Incremental model was introduced in 1975 by Basili [8]. The Incremental model
is a series of waterfall cycles, where the requirements are known at the beginning
and are divided into groups, and the initial group of requirements is fulfilled at the
end of a series of several waterfall builds. Hence, this model can get evaluation from
the client by showing a working part of software after each cycle, which can allow

both alterations during development and the addition of new requirements during

23

the implementation of the system. In the Incremental model a usable product is
available after the first release, and each iteration results in additional functionalities
for the product. However, in this model, users are required to learn the new system
developed in each cycle. Thus, the Incremental model is beneficial for projects where

feedback is necessary from customers at early stages of project development.

2.3.2.3 Prototyping Model

This model, also called the Evolutionary model, was introduced by Floyd [26] and
simply refines the prototype system in each iteration. Working software is built in
the first iteration and then refined in later subsequent iterations. The specification,
development, and testing phases are carried out concurrently. Rapid feedback is made
possible by adding customer evaluation in each cycle. The final system will accurately
fulfill the user needs; however the project is often started without full knowledge of

requirements and thus needs greater coordination with the user.

2.3.2.4 Spiral Model

The Spiral model was defined by Boehm in 1988 [12], and is recommended for high-
{
risk projects where the requirements must be refined andvthe user’s needs must be
met. The Spiral development model involves incremental builds which identify areas
of risk and decide how to overcome and eliminate chances of risk via the validation
and verification of the project in each iteration or build of the product. As such,
it is obvious that the Spiral model combines features of the Waterfall, Incremental,
and Prototyping models, and hence provides a great deal of user involvement and

risk management. If we compare the Spiral model in more detail with other models,

24

its distinctive feature is that it deals with the risks and uncertainties involved in
software development. The Spiral model explicitly recognizes the following risks and

uncertainties [10]:

-

. During long developments, the users are neglected in the process of gathering

their requirements.

L

The users requirements are misunderstood.

o3

The users change requirements.

L

The target hardware configuration changes.

The disadvantage of using the Spiral model is its complexity and greater cost. How-
ever, given the high risk associated with medical software, this is the preferred model

for medical system development (see Section 2.3.5 for more discussion).

2.3.3 What is a System Operational Model?

A system operational model is a description of the short to midterm maintenance
and evolution requirements for a given system. Here, system maintenance is support
that is available for the operation of a system, which could either be support from
the developer of the system or support by the system administrator, who is available
onsite or contracted to perform different activities necessary for such system to keep
them up and running. System evolution is how system requirements evolve in the
short to long term during a system’s operation. Both maintenance and evolution are

changes to the system that require resources; hence, system operational model is the

25

description that includes not only the nature of maintenance and evolution but also
take into account the resources that are available to make those changes.

How are system maintenance and system evolution typically handled in software
engineering? The usual approach is to assume that there will always be sufficient

for

d evolution and mai i.e., one or more system adminis-
trators and one or more programmers will always be there to bring about the changes

required to handle evolution and mai e. Under the ion of 1

change resources, there is no need to explicitly describe system evolution and mainte-
nance. Instead, to deal with any future change in systems, proper software engineering
practices are adopted when the initial system is developed, e.g., structured program-
ming is used and all necessary documentation is done, such that it is easy to make any
changes which are necessary in the future. Unfortunately, as we will see in the next
section, the assumption of unlimited change resources is not true for certain system

operational environments.

2.3.4 Types of System Operational Model

Though there is no explicit mention of system operatiofal models in the software
engineering literature, there appear to be three types. Unlike system process models,
which depend more on the complexity of the system, system operational models de-
pend on the user community and to a lesser degree on the application being developed.

These three types are as follows:

1. Large Organizational Model: This includes organizations that have ef-

fectively for system mai and evolution.

These organizations can use their resources for system administration, and can
handle any changes which they may want in their system due to long term

system evolution.

N

Personal Model: This includes standalone systems developed for personal use.
Users using such systems possess very limited resources for the maintenance and

evolution of their systems.

ool

Small Organizational Model: This includes small organizations or focused
groups in large organizations, such as a cancer clinic in a large healthcare or-
ganization. These organizations have limited resources available, and cannot

usually afford system maintenance and evolution.

This is to our

an original classi ion of system operation models. We
believe that this classification is useful not only for showing how existing systems
operate, but also for showing types of systems not adequately addressed in current
software development practice. This ordering of models may look somewhat strange,
but this is the historical order in which these models emerged. To fully understand
the differences between these three models, it is useful to lgok at this historical order
in more detail.

This historical order can be nicely visualized in terms of a 3 x 2 table (see Table
2.1), whose dimensions are types of available support and size of user communities.

The types of support are:

1. No Support: A workplace where no system administrator is available and no

or very little support is available from the developer of the system.

27

2. Partial Support: A workplace where support is available but is available
either part-time onsite or full-time off-site, e.g., support available via phone

from the developer of the system.

3. Full Support: A workplace where support is available both, full-time onsite,

i.e., system administrators and p hired by organization, and /or full-

time off-site.

The types of user communities are:

1. Singl y Singl systems were first introduced in the 1970s.
These systems are developed for a standalone computer and are less complex

and less expensive then multi-user systems.

2. Multi-user Systems: Multi-user systems were first introduced in the 1950s,
when it was common for big organizations to use such systems. Multi-user
systems are more complex and expensive than single-user systems. Due to their
complexity and different functionalities such systems require full support and
dedicated technical support on site.

¢
Note that two possible combinations of support and user communities are very rare:
Multi-user systems with no support, and single-user systems with full support. Hence,
they are not addressed below.

Let us now look at the historical order in which the models emerged. When

computers were first introduced they came only in a multi-user environment. Initial
computer systems in 1950s were targeted to hundreds or thousands of users, and

those multi-user systems were, by definition, complex systems. Organizations that

28

were using such multi-user systems had their own IT divisions, or had the resources
to contract different companies for the full system support. These systems were
developed under the Large Organizational Model. In the late 1970s and early 1980s
stand alone systems were introduced for the use of single users. These systems were
simple, but had no support from the developers. Users using these systems were
expected to be smart enough to be able to fix any problems that might arise while
using them. Therefore, these systems were effectively under the Personal Model.

At this point we have pure versions of the first two models. However, the era
of the mid 1980’s saw the introduction of partial support, which did not affect big
businesses, but did change the Personal Model by moving it from the upper left
corner down the column. In this model, users who pay several thousand dollars for
a system receive help from designated staff belonging to the vendor companies who
created these systems. Because of the large number of users entitled to such services,
providing support to them was not an issue for big vender companies, due to the
economic factors involved. Hence, single-user systems were the first type of systems
for which partial support was provided. As more and more people got into the market
one of the ways for system developers to retain market s‘ba.re became the provision
of user support. This now meant that by the addition of partial support, single-user
systems could become more complex, and in turn could be adapted to the needs of
small organizations. This led to the emergence of the third operational model, the
Small Organizational Model.

Now that we have seen how these three models emerged, let us examine how each

model deals with the issues of software maintenance and software evolution:

29

1. Large Organizational Model: In the case of the Large Organizational Model,
as such organizations have effectively unlimited resources, they can afford to

allocate these resources as necessary for both system maintenance and evolution.

L

Personal Model: In the case of the Personal Model, for maintenance, either

the person or the developer p is responsible for system mai and

evolution. For future system evolution under this model, software companies are
always trying to establish the needs of their users. As the number of personal-
system users is large, big software companies can invest a lot of money to make a
good general package for them. Hence, personal computer evolution is handled
very well. In the case of system maintenance, as companies sell these systems to
many users, they have the resources to maintain them and to provide support,
such as 24/7 help lines or technical support available over the web to correct
problems. As systems under the personal model are relatively simple compared
to multi-user systems, partial support is sufficient for their maintenance and

evolution.

f ot

Small Organizational Model: In the case of the Small Organizational Model,
{

organizations lack the resources to handle the maintenance and evolution. More-

over, these organizations do not have the numbers to encourage the emergence

of vendor companies that will provide them with even partial support.

As we can see from the above, there is a gap in how to deal with a system operating

under the Small Organizational Model. One way to deal with maintenance for these

organizations is that we can minimize the need for full time system administrator

support by building systems in such a way that the system users can handle adminis-

30

tration themselves. To handle evolution, in case of organizations whose activities are
small and very circumscribed, with sufficient design during the development of the
system; we can also put the evolution of such systems in the hands of their users.
To handle system operation in the Small Organizational Model, we have intro-
duced a democratic model of system operation (see Section 4.2.1). Though this model
is described in detail in Section 4.2.1, the following points should be noted here; first,
we have built this model so that system changes that are required based on day to

day activities are in the user’s hands. Second, although the system inistrator

cannot be fully removed from the loop, minor day to day changes can be made by

the users using this democratic approach, so that even partial support is sufficient.

2.3.5 Which System Process and Operational Models are
Appropriate for Medical Informatics?

By looking at the complexity of medical systems and taking into consideration the risk
involved in the process of developing a medical tool, the Spiral model (see Section
2.3.2.4) seems to be the most appropriate one. As this model needs strong user
involvement in the process of development, there is a need to find computer literate
physicians who can act as physician champions and can help throughout the process
of developing a successful medical tool.

The system operational model depends on the type of medical system being de-
veloped. For EMRs/EHRs, and general drug orders CPOE will fall under the large
organizational model. Decision support systems, if they are done frequently enough,

will fall under the personal model. Infrequently used decision support systems and

31

targeted CPOE systems will fall under the Small Organizational Model. Hence med-
ical informatics tools fall into all three categories of system operational model. In
Chapter 3, we will see that chemotherapy prescription systems fall under the Small
Organizational Model and we will show in detail how limited resources can cause

problems for the operation of such systems.

Table 2.1: Types of System Operational Models

Single-User Multi-User
Envir Envir
Personal \/
No Support X
(1970's)
Organizational
Personal \/ 9
Partial Support [Small] 4
(1980's+) (1990°s+)
Organizational \/
Full Support X [Large]
(1950's+)

32

Chapter 3

Chemotherapy Prescription

In this chapter we will look at a particular type of order entry system associated
with chemotherapy prescription. Such a system is an example of a CPOE system
(see Section 2.1). CPOE systems can be of a generalized nature, covering all types of
medical prescription writing, or can be targeted systems, where a system is designed
to computerize a specific type of medical treatment such as chemotherapy. Targeted
CPOE systems inherit all the problems of the generalized CPOE, but also introduce
some new problems due to their targeted nature. Hence, in this chapter we will
discuss CPOE in general (Section 3.1), and we will look af an example of a targeted
CPOE, a chemotherapy prescription (Section 3.2). Finally, we will review previous
efforts to develop chemotherapy prescription systems and we will sketch the form of

an idealized system that builds on this work (Section 3.3).

33

3.1 CPOE

In Section 2.2, we looked at the problems associated with medical software in general.
In this section, we will look at these problems in the context of the particular system
of interest to us in this thesis, namely CPOE. In this section, we more closely exam-
ine the definition of CPOE (Section 3.1.1), and we review the benefits and problems
associated with CPOE implementation (Section 3.1.2), as well as the problems (Sec-
tion 3.1.3). Finally, we will summarize the factors associated with successful CPOE

implementation (Section 3.1.4).

3.1.1 What is CPOE?

CPOE (Computerized Physician Order Entry) is the generic name for a computer
application which was introduced as an effort to eliminate the chance of errors, such
as errors in ordering medication by a physician (see Section 3.1.2). To eliminate
the chance of errors, instead of writing orders on a prescription pad, the prescriber
enters an order directly into the computer. The functionalities of CPOE systems
vary in different CPOE tools. Kaushal and Bates describe the basic functionalities
of CPOE tools as follows: “..Basic CPOE ensures stavz;iurdized, legible, complete
orders by only accepting typed orders in a standard and complete format... Basic
clinical decision support may include suggestions or default values for drug doses,
routes, and frequencies...” [35]. Advanced CPOE systems may include, but are not
limited to, decision support, drug dose recommendation, drug interaction notification,

and billing [13].

34

3.1.2 Benefits of CPOE

Studies have shown that CPOE systems are effective in reducing the medication errors
that frequently occur in the paper based system currently in use by the majority of
medical service providers [9, 20, 38, 60]. Note that even a basic CPOE system can
be very helpful in reducing calculation errors in prescriptions which involve complex
calculations (such as protocols for cancer chemotherapy or HIV therapy). These and

other benefits are described in more detail below.

3.1.2.1 Reduction of Medical Errors

Every year, thousands of patients world-wide die as a result of medication errors

[36]. Mistakes such as errors in dosage, improper routes of ation, and wrong
dosage schedules, among others, are typically responsible for such events. Such mis-
takes have at least two causes: The first cause is Doctors’ poor handwriting, which
sometimes leaves pharmacists squinting to read drug names or dosages, and causes
them to provide improper medication or dosages by misunderstanding the prescrip-
tion. The second cause of medication errors arises when prescription writing involves

complex calculations. Given the actions of some drugs, especially the cell toxic drugs

involved in chemotherapy, any mistake in calculation of dosage has ial to cause

patient’s injury or even death. This problem is compounded when prescriptions in-
volve multiple drugs; for example, in a chemotherapy prescription, a selection of drugs
is given and the dosage of each drug involves calculations (see Section 3.2.1 for de-
tails). Even if neither of the above problems is present, the prescription is written

perfectly, and everything is calculated correctly, adverse drug events (in which several

35

drugs combine to have unexpected side effects) can cause another category of errors
where wrong combinations of drugs can cause harm to the patient'.

CPOE systems are regarded as the solution to medication errors which arise from
prescription writing. CPOE solves the problems of poor handwriting, as all prescrip-
tions are computer generated and all calculations are done by computer, eliminating
the chance of calculation errors. Moreover, CPOE can check the possibility of any
known adverse drug events automatically. The results of CPOE can be impressive;
published studies have shown that CPOE can prevent 81 percent of errors related to

prescription writing [9, 20, 38, 60].

3.1.2.2 Time and Cost

Most studies on CPOE benefits are related to CPOE’s ability to reduce medication
errors, as this is the primary purpose of CPOE systems. However, CPOE systems
also have the ability to reduce overall hospital costs. Evans et al [25], have shown that

CPOE systems help to reduce the cost of medication and the length of hospital stays

infe

by reducing the number of orders for ibiotics when anti

programs were used. Moreover, the ability of CPOE to reduce adverse drug events
|

also causes a decrease in the costs associated with such events, which are, according

to a report by the Institute of Medicine, about 2 billion dollars a year [36].

IThere is another type of error related to deficiency of medication knowledge, which may occur
because of less experienced physicians entering into the field, or when physicians occasionally find
themselves outside their normal area of expertise [11]. Though this could potentially be mitigated
by computerization, i.e., an appropriately designed expert system, this is beyond the scope of this

thesis and will not be considered further herein.

36

3.1.2.3 Research Purposes

Electronic data is always attractive for research purposes. CPOE data is stored
electronically in itemized form in databases, i.e., not in scanned document form;
hence, it provides electronic data which is more readily available for research, which in
turn can improve the quality of healthcare. For example, in the case of chemotherapy
treatment, where different combinations of drugs are used to treat cancer, medical
data can help researchers to find the best combinations of drugs for the treatment of

particular types of cancer.

3.1.2.4 Administrative Purposes

A computerized medical system like CPOE can be useful for administrative purposes,
such as evaluation of clinical staff performance. For instance, useful information can
be retrieved about how often a particular drug is prescribed by the physician and how
much a particular drug costs per year. In this way, administrators can maximize the

effectiveness of their resource allocation.

3.1.3 Problems with CPOE ¢
CPOE has been under discussion for over 35 years, which has lead to an understanding
of many problems with CPOE systems. In 1970, Collen [19] introduced the concept of
CPOE by listing the general objectives of Medical Information Management Systems,
and stated that, “Physicians should enter medical orders directly into the computer”.

Following this, there were various efforts to implement CPOE systems. Sittig and

Stead [68], in 1993, summarized the previous work done related to CPOE. According

37

to their paper most of the efforts made in the 1970s and 1980s met with failure.
Technology constraints at that time, costs, and lack of computer literacy within the
medical profession were among the major causes of these systems’ failures.

Oddly, recent implementations of CPOE at different sites do not show significant

impr , despite ad in and suffici

literacy

in the medical profession. As a result, many of these efforts have failed. For example,

d a multimillion-dollar CPOE in late

Cedars-Sinai Hospital in Los Angeles i

2002 and three months after i

the tool was uni as pl
complained about the poor design of the system [40]. If technology has improved, the
cost of technology has decreased, software design and implementation methodologies
have improved, and computer literacy in the medical profession has improved, then
other reasons must be responsible for the failure of these systems.

The main reason for these failures seems to be a lack of respect by system devel-
opers for the clinical workflow, in particular, where insufficient attentions has been
paid to the details of going from manual to computerized workflow [40, 59]. This was
acknowledged by Michael L. Langberg, M.D., Chief Medical Officer at Cedars-Sinai
Medical Center, who stated that, “One of the most important lessons learned to date
is that the complezity of human change management may be easily underestimated”
[40]. We will discuss this in much greater detail when we look at the specifics of
chemotherapy prescription in Section 3.3. In the next section, we will discuss the

factors that make for a successful CPOE system.

38

3.1.4 Factors in Successful CPOE Implementations

As seen in previous subsection, many CPOE systems have failed because physicians

stopped using them, and one of the main causes seems to be inattention to clinical

workflow by system developers. Physicians need a system that is guaranteed to

help them provide quality care to their patients and, obviously, they cannot make

compromises in patient care. If a tool is designed in keeping with established physician

and healthcare workflows (which are already known to work well), then there are fewer

chances for that tool to fail. Thus, to make CPOE acceptable for physicians to adopt,

it must have at least the following properties [6, 78]:

It should be accurate and reliable so as to positively affect patient care.

While implementing CPOE systems, legacy systems currently in use by the

health care providers should be taken into consideration.

Physicians should be given full authority to make any decisions about pa-
tient health. Imposing something against a physician’s final decision should

be avoided.
¢

It should be fast enough that it improves the speed of workflow or at least it

should not be slower than the existing system.

It should be easy to use and should require minimal training for effective use.
A striking feature of medical work is that it is fast paced. Physicians have little
time to spare to learn new technologies. Hence, the new CPOE system should

be simple enough that it takes little time for physicians to learn it.

39

o Interface issues should be taken into consideration while designing such systems

and the interface should be consistent throughout the system.

o It should have standardization with respect to medical procedures and termi-

nology and a workflow that can be effectively implemented in healthcare.

e During system implementation, physicians should receive any help they need to

change their workflow strategies and habits.
o After the system has been implemented, online help should be available.

These are the minimal requirements for a ful CPOE i ion. It is

istics,

strongly recommended that, to fulfill and to und d the above

physicians should be an active part of the implementation. Thus there is a need to
search for computer literate physicians, referred to as “physician champions” through-
out the literature [59, 65], if the process of implementation is to be successful.
‘When compared to “ordinary” software, the development of medical software/tools
is much more complex and risky, as if it is done incorrectly, people can die and it
will have excessive costs (see Section 3.1.2). Careful consideration should be given to
make sure that the appropriate software process model is‘ selected to deal with this
complexity. Moreover, we also need to choose the appropriate system operational
model. This is necessary because CPOE, as noted earlier, comes in several sizes. The
general CPOE falls under Large Organizational Model. However, as we will see in
next section, chemotherapy prescription seems to fall under the Small Organizational

Model. It means that ch herap; iption has fewer availabl and

its implications will be discussed and dealt with in the remainder of this thesis.

40

3.2 Chemotherapy Prescription

In this section, we will now examine a specific type of CPOE in detail, i.e., chemother-
apy prescription. We will structure this system in parallel with that for CPOE, by
first giving a description of chemotherapy (Section 3.2.1). Recall that one of the
main problems with CPOE is not paying attention to the workflow of healthcare sys-
tem. Therefore, we give an overview of chemotherapy prescription workflow (Section
3.2.2), and we will see how this manual workflow can be improved by replacing it
with computerized workflow (Section 3.2.3). We will look at the benefits of the com-
puterized workflow (Section 3.2.4), and considerations concerning the development of

computerized workflow (Section 3.2.5).

3.2.1 What is Chemotherapy?

Chemotherapy refers to the use of drugs to treat an illness (chemotherapy = chemical-
therapy) [3]. Where cancer is concerned, chemotherapy is used to either destroy cancer
cells completely or, when this is not possible, to control the growth of these cells [2].
Most cancer chemotherapeutic drugs have been chosen because they act as poisons
that attack dividing cells. The typical side effects of cell—t(li;(ic drugs result from their
effects on other rapidly dividing cells such as hair follicles and bone marrow, which

produces new red and white blood cells. Short-term effects of chemotherapy include

hair loss, bone marrow suppression, anemia, and ibility to infe
There is a large number of different drugs that are used to treat cancer. Each
type of cancer is only sensitive to particular drugs, and there are many different

types of drugs. In most cases, a combination of drugs, also called a drug regimen,

41

is given in order to imize the effici of the treatment. This bi

of drugs is also called combinational chemotherapy. Each chemotherapy drug
has an associated dosage, route of delivery, frequency of application, and associated
additional instructions as well as a collection of emetogenic levels which vary from 0
to 5 based on the dosage of that drug. The dosages of the drugs depend on both the
type of cancer, and on patient characteristics such as height and weight (see Section
4.4.1.3 for details). Antiemetic drugs are also part of each drug regimen, to minimize
the side effects of chemotherapy drugs (see [49] and references). Antiemetic drugs are
selected based on the emetogenicity level of the chemotherapy drugs which are part of
regimen (see Section 4.4.2.2 for algorithm to select antiemetic drugs). Each antiemetic

drug has an associated dosage, route of delivery, and frequency of application.

3.2.2 Manual Chemotherapy Workflow

The manual chemotherapy workflow is shown in Figure 3.1. The physician makes
decisions based on the patient’s history and medical conditions. These decisions
could involve writing a new prescription for a new patient or altering or continuing
an old prescription. The prescription is then sent to the pharmacy.

This manual workflow has the following categories of problems:

1. Immediate problems: The process of chemotherapy involves calculations
based on the patient’s height and weight. A minor mistake in these calculations,
mistakes in the schedule of dosages, or improper methods of administration can
have severe effects on the patient’s health. Moreover, physicians’ notoriously

poor handwriting often leaves pharmacists squinting to decipher a dosage e.g.,

42

Patient arrives at
examination room

Physician reviews
patient data

Does patient need
change in regimen?,

Physician

Batient already on
regimen?

creates a

new regimen

No

¥

Patient continues with Physician
same regimen new pres

creates a
scription

Customize regimen

Prescription is sent to
the pharmacy

Figure 3.1: Workflow Diagram: Manual Chemotherapy Prescription Process

43

10 milligrams versus 10 micrograms. These mistakes can even happen with the

name of prescribed drugs (see Section 3.1.2).

0

Secondary problems: Patient data in files are not readily available for sec-
ondary uses such as research work or generating reports. It is almost impossible
for a physician to get a report based on large groups of patients, as it would
cost too much time and money to compile a report based on patient data stored
in paper files. Similarly, patient data can only be used for research purposes if
it is stripped of names and other identifying information, which is difficult to

do in the manual chemotherapy workflow.

Notice that many of these problems can be resolved by the computerized workflow

described in the next subsection.

3.2.3 Computerized Chemotherapy Workflow

From Section 3.1 on CPOE and Section 3.2.1 on the chemotherapy prescription pro-
cess, we can see that the chemotherapy prescription process is an ideal case for the
implementation of CPOE. Such implementation can greatly reduce the inherent prob-
lems attached to the manual chemotherapy prescription workflow mentioned in pre-

vious subsection. One possible computerized workflow is shown in Figure 3.2. Notice

that this puterized workflow is designed to have as few differences from the man-
ual workflow as possible. However, one big difference in this computerized workflow

is that patient and regimen data is now stored in electronic form in databases.

44

3.2.4 Benefits of Computerized Workflow

In additional to the benefits attached to the implementation of a CPOE system that
are described in Section 3.1.2, the implementation of a targeted chemotherapy CPOE

system offers solutions to the problems related to manual workflow:

1. Fixes to immediate problems: With many chemotherapy regimens com-
prised of cell-toxic chemicals that must be individualized to patients’ height,
weight and diagnosis, delivering chemotherapy effectively and safely requires
specialized knowledge and strict attention to detail. Computerized entry of
such prescriptions can help to overcome potential problems of errors in dosages

due to complex calculati A ized cl 3} y system can also

help in fixing the problems that arise from the physicians’ poor hand writing.

%)

can also help doctors in gen-

. Fixes to dary pr A d
erating reports and looking beyond an individual patient to see how similar
patients with similar medical histories and cultural backgrounds have been di-
agnosed and treated for similar problems. Similarly, a database can be made
available for research work provided privacy is guara}nteed to the involved par-
ties. This can be made possible by stripping off ne‘mlcs and other personally
identifiable information or by anonymizing datasets by entry modification [75].

Along with the fixes to primary and secondary problems mentioned above, we have an

R

additional benefit. R hers are conti ly trying new ions to improve
the quality of chemotherapy. These new combinations can be stored in the database
to make them available to physicians in the prescribing process. The computerized

system can now not only inform the physician about updates in chemotherapy drugs,

45

but will also let the physician add new regimens, which they have found effective
against a particular cancer, to the database for others to use. These new regimens
can be added into a private or public pool based on the consent of the physician who

is adding them (see Section 4.4.2.2 for more details).

3.2.5 Consideration Concerning Computerized Workflow

Along with the long list of CPOE implementation considerations given in Section
3.1.4, the big thing which we need to consider for the development of chemotherapy
prescriptions is the system operational model. CPOE is a mid-sized medical infor-
matics application where we are dealing with anywhere between 3-10 doctors, who
are interacting with 1-5 pharmacists. Chemotherapy and chemotherapy equipment
are typically associated with cancer clinic. Regardless of whether or not this clinic
is affiliated with a hospital, the cancer clinic will probably not be able to get full
support with respect to system administrators and programmers to deal with system
evolution and maintenance. In Section 4.2.1 we will see how this problem can be
solved by the introduction of a democratic system operation model.
¢

3.3 Previous Work

In the previous sections of this chapter, we noted that there are two issues that
need to be addressed while developing a medical system: respect for existing clinical
workflow and the system operational model. One aspect of workflow is deciding how
to handle errors. If one of the big benefits of CPOE is the reduction of errors then

one can handle errors in one of two ways: One can make it as difficult as possible

46

Figure 3.

Patient
Database

Physician enters
patient private key

Physician views
patient history

s patient in
database?

Patient data
Add Patient added to
database

Goes patient have an
existing regimen?

Physician
Does patient need o chooses Get Regimen
ange in regimen? S~ regimenfrom |\ Regimen | Database
regimen list

Customize
gimen

e

Prescription printed and
handed over o pharmacy,

Physician creates new.
prescription

: Workflow Diagram: Computerized Chemotherapy Prescription Process

47

to make errors, or one can make it as easy as possible to do the right things. In
this section, we will discuss different attempts that have been made in the past to
change the manual chemotherapy workflow shown in Section 3.2.2 into the idealized
chemotherapy workflow detailed in Section 3.2.3. Past work that has been done can
be divided into two categories based on the type of error-handling strategy followed
while designing systems.

Systems using the first strategy make it hard for users to make errors. This is
typically done by implementing rigorous error checking and by making sure that there
is no deviation from the design workflow. In the case of medical systems, which are by
definition complex systems, development using this approach is likely to compound
the complexity of the system by making it difficult for the users to do what they need
to do. For example, if the diagnostic workflow is implemented in a rigid fashion, such
that a doctor cannot view a patient history unless that doctor is already treating that
patient, i.e., the doctor has already ordered the lab tests for that patient, a doctor
in emergency board will not be able to write prescription for a patient, that has
just come under their care. Such problems have resulted in the failure of physician
to fully adopt such systems. To our knowledge, the ma%or available chemotherapy
prescription systems have all used this strategy. They are general CPOE systems,

such as Opis 2000 [54] and Meditech [44], that have been customized to work for

h 1 "

apy. Sample scr of Meditech are shown in Figures 3.3. Note that

while these systems are built under the philosophy of making things in such a way
that it make hard for people to create errors, they are incredibly difficult to use.

Moreover, as these systems use the Large Or model, any

for use by small organizations such as cancer clinics is very difficult to do.

48

16 Day

SCH PCI

Identify Pat ent
Frint Gptions Rounds tore

from YOUR LIST of Patients in a bed

from YOUR LIST of Patients by Facility

frem YOUR DIS/DEP Patients With New Results

by Mave, Nomber ..

by RECENT JISIT ACTIVITY (Mew Entries)

fron YOUR TNCOMPLETE RECORDS none)

by OUTPATLENT Localion

fran YOUR LIST of ER Patients (none)

by NAHE (Racent Uisits Only)

by PROVIDER’S Petients

by PROVIDER GROUP’s

by LOCATIOY CInpslie)

by ADMISSION DATE (1
DISCHARGE DRTE (1

by ER VISIT

by SDC VISIT

by SOUNDEX NAME.
| by UNIT NJMBER

Figure 3.3: Screenshots: Meditech - (a) Patient Profile (b) Finding Patient.
49

Systems using the second strategy make it easier for users to do the right thing.
This is typically done by a more flexible implementation of the workflow and a less
rigorous approach for error checking, in which errors are flagged but allowed if the
doctor considers it necessary. For example, during patient data entry there may be
some normal range check on data; if a doctor enters data outside the range, this
potential error will be noted but allowed if physician finds it necessary. Note that
part of this certainly involves the reengineering of the user interface, but this type of

flexibility also has to be designed in to the system from the start of development.

To our k ledge, there are no iall ilabl

systems that follow this
strategy. However, Dr. Gerard Farrell, of MUN Health Sciences, over the last decade,

has built a series of three systems on this philosophy:

e Version 1 was developed by Dr. Farrell in 1995. It was a set of hem-oncology
chemotherapy prescription pages developed for the Newfoundland Cancer Treat-
ment and Research Foundation (NCTRF) using Microsoft Excel. A sample
prescription page is show in Figure 3.4. This version computerized the pa-
per prescription forms, and did automatic calculation of chemotherapy drugs
dosages, hence reducing the chances of calculation efrors. However, this version
had many problems because each oncologist had his own copy of prescription
pages, i.e., Excel sheets; hence, these pages were essentially open source and
copies could be modified independently. Moreover, if someone altered the for-
mula behind a dosage cell by mistake, it could lead to severe dosage errors.
Minor changes in any drug regimen needed changes in all physical copies of

that regimen, which was difficult to coordinate and enforce. Similarly, the addi-

50

tion of a new regimen involved the distribution of new copies to all physicians.
Finally, prescription pages were technology dependent, and as the prescription
pages were designed using Microsoft Excel, users had to have Microsoft Excel

installed on their computers to view and use these pages.

e Version 2 was built by Dr. Farrell in 1997. It was a set of web-enabled pre-
scription pages using Java Script. Sample pages of a prescription are shown
in Figures 3.5 and 3.6. This system had hard coded web prescription pages,
which solved the problems of technology dependence and as the system was
implemented on web, there was only one copy of each regimen. Unfortunately,

storage of prescription and patient data was not possible in this version.

Version 3 was a collaborative effort of Dr. Farrell with the MUN Computer

Science Medical Informatics Group; the result of this collaboration appeared

as a student project [49]. This version was developed using Java Server Pages

(JSP) [72], (a Java technology that dynamically generates HTML and XML),

and prescription pages were attached to a database for storage of precription

and patient data. A sample prescription input page is shown in Figure 3.7, and
¢

the corresponding output page is shown in Figure 38.

Note that the third version overcame the problems associated with Versions 1 and
2, but it still lacked abilities of the idealized computerized workflow described in
Section 3.2.3. All three versions were judged to function well with respect to the
second workflow and error handling philosophy stated above. With respect to system
operational models, though all were adequate to the extent that resources required

for installation were minimal, there was no mechanism for modifying these systems.

51

Hosp. B VArd

WCP Hurber

Medicine Program Chart Humber

Physician's Chemotherapeutic Medications
General Hospital Site

Height = cms | Weight = kas]
BSA=_ 000 m”
Total Bili = ALP = Cr=
Diagnosis - Drug Allergies-

Date - ##sss#hH

Round off total dosages where appropriate

CHOP
CYCLOPHOSPHAMIDE
750 mg/m? = 0 mg in 100 mis Normal Saline IV
over 1 hour
DOXORUBICIN
50 mg/m’ = 0 mg (in a syringe) IV push
VINCRISTINE
1.4mgim’= 0.0 mg (MAXIMUM 2 mg)
in 20 mis Normal Saline
(in a syringe) IV push
PREDNISONE
100 mg PO od for 6 days
Anti-Emetics:
o] 10 mg IV pre-ch
Ondansetron 8 mg PO pre-chemo & 8 hrs POst chemo
Maxeran 10 mg PO/IV q4h prn

Physician's Signature

Figure 3.4: Farrell Version 1 - Sample Prescription Page

52

Antineoplastic Drugs Prescription Form

H
=
i

i
g

5
§

Weight in Kilograms
Height in Centimetres]

Calculate BSA and Full Dose Chemo
Body Surface Area;

Date
AC(60/600), Cycle #
Percent of Protocol Dose Intended by Physician: | 100% |

Dose !
Drug Name (sz) Dose (mg) Route Frequency

| Maxeran (Metoclopromide) | [105 [po = prechemo

[Anzemet (Dolasetron) | [100 [po x| pre-chemo

Figure 3.5: Farrell Version 2 - Sample Prescription

| “H [po 3 prechemo

JEiE i A [prechemo
Adriamycin (Doxorubicin) ' JISE T i"mao Day 1 Only
Cyclophosphamide (600) | ivover1hr Day 1 Ony

Total hydration (in mis) should equal the dose of Cyclophosphamide (in mgs).
This prescription represents | % of the full dose as per the protocol

This prescription has been rounded off by the signing physician if this box is
checked: |~

Sigmitire:

Figure 3.6: Farrell Version 2 - Sample Prescription (Cont’d)

54

There was no mechanism for creating a new regimen or altering an existing regimen
which required a programmer to add new pages or modify existing ones to make any
change or introduce a new regimen; indeed, as the implemented version 2 system
aged, physicians were forced to modify system pages by manually overwriting the
fields on the paper outputs. Moreover, note that none of those versions was explicitly
multi-user or had even basic security features such as password-authorized access to
the system.

In the next chapter, we will look at the design of a chemotherapy prescription
system along the lines of the Farrell systems which solves all problems with Versions
1 through 3 mentioned above. Moreover, to support true multi-user functionality,
our new system has abilities above and beyond the idealized computerized workflow

described earlier.

55

HeglthCart

Medicine Program
Physicians Chemotherapeutic Medications

General Hospital Site
Height =180 cms

Total Bi =

Diagnosis-fni
Date: [Seturday, August 11, 2007 62953F

Percent of Protocol Dose Intended by Physician: [100% <]

o .

o1 mg 100 mg(in a syringe) IV push

PREDNISONE 100 mg PO od for 5 days

[Maxeren (Metoclopromide) 10
[Anzemet (Dolesetron) ~]
[Decadron)=l

[Ativan (Lorazepem)

Figure 3.7: Farrell Version 3 - Sample Prescription Input Page

56

HealthCan

Medicine Program

y s
General Hospital Site

Height = 180 cms

‘Total Bili =4

Weight = 80 kgs

ALP= 5 CR=25

Diagosis-nl Drug Allergies- nil

Date: Saturday, August 11, 2007 6:29:53 PM.

PREDNISONE

Maxeran (Metoclopromide)

Decadron (Dexamethasont)
Ativan (Lorazepam)

CHOP

100mg (in a syringe) IV push

100 mg PO od for Sdays

10
100
8
05

Figure 3.8: Farrell Version 3 - Sample Prescription Output Page

57

Chapter 4

System Design

In this chapter and the succeeding two, we will design and implement a chemotherapy
system along the lines sketched at the end of Chapter 3. This system will be devel-
oped under the Spiral model, which we have discussed in Chapter 2 as the best for
developing medical informatics software (see Section 2.3.2.4). As we are building this
new system to operate under the Small Organizational Model (see Section 2.3.4), we
need to design the system in such a way that it’s operation fits the limited resources
of the target workplace. In terms of user interface, we will give our system a similar
look to the previous systems pioneered by Dr. Farrell, and(we will use the same error
handling philosophy used by these systems (see Section 3.3).

This chapter is organized as follows: We will first describe the objectives of our
system (Section 4.1); as part of this we will describe the two key features of this
system (Section 4.2), the democratic model of system operation, and our user interface
philosophy. This is followed by a brief description of the objects in this system

(Section 4.3). We will then describe the features associated with single-user functions

58

and multi-user functions of the system (Sections 4.4 and 4.5). The description of each
function includes a description of workflow with a workflow diagram’, a discussion of
design decisions made related to that function, and one or more screenshots associated
with the implementation of that function in the chemotherapy prescription system.
This is followed by the detailed description of the database schema implementing the
objects described in Section 4.3 (Section 4.6). Finally we will summarize the lessons

learned while designing our chemotherapy prescription system (Section 4.7).

4.1 System Objectives

In this section, we will give a general overview of system objectives and functionalities;
the details of specific tasks are included in specific subsections later in this chapter.
The system objectives can be broken down into single-user and multi-user capabilities.
Given the description of idealized computerized workflow in Section 3.2.3, we require

the following single-user capabilities:

e The system should allow physicians to add new patients and to search for ex-
isting patients in the database. Moreover, the syst'em should be able to keep

patient profiles in order to allow physicians to look at the histories of patients.

It may seems contradictory that we are using flowcharts (which assume a rigorously defined
workflow) to specify workflow when in Section 4.7, we claim that requirements in medical informatics
software development are more often stated as flexible guidelines. Readers should therefore interpret
the workflows flowcharts given in this thesis as the normative processes i.e., the processes that occur
90 percent of the time, and exceptional situations (which occur in the remaining 10% of the time)

are then superimposed on these flowcharts,

e The system should allow a physician to prescribe a regimen to any patient. Due
to ongoing research, regimens change frequently over time; hence, the system
should offer different functions to create new regimens and alter existing ones.
Moreover, the system should have a convenient regimen management system,
where regimens should be organized in to different lists, i.e., primary and sec-
ondary, based on frequency of their usage. This is to provide quick access to

regimens at the time of prescribing.

e The system should have a drug database and physicians should be able to add

drugs to the database.

Given the requi for multi-user ions implicit in Sections 3.2.3 and 3.3,

we also need the following capabilities:

The system should allow only authorized access to it.

Physicians should be able to view the history of patients, which may include

prescriptions issued by other physicians.

® Regimen data should be divided into public and priv{ate lists, such that a physi-
cian can choose to make a regimen public at the time of creation, and any
physician can import a regimen from that public list to his/her private list at

any time (see Section 4.5.2.1).

Prescription data derived from regimens must be public. Any physician looking
at the patient history must be able to look at the prescription history of the

patient, where he can cancel any past prescription but can make changes to

60

only those prescriptions that were prescribed by him/her (see Section 4.4.1.3

for details).

There are several other multi-user capabilities, i.e., changing the name or emeto-
genicity potential of chemotherapy drugs and adding or deleting users, which, while
suggested by the individual users, should actually be decided by the whole user com-
munity. One solution for this would be to provide a mechanism for making, voting

on, and resolving proposals within the user community (see Section 4.2.1 for details).

4.2 Key Features

Given the system described in Section 4.1, two key design features are a democratic
model of system operation to deal with short to mid-term system evolution and
maintenance, and the user interface. In this section, we will discuss both of these key

features in more detail.

4.2.1 Democratic Model of System Operation

In Chapter 2, we discussed the operational problems, i.e.y system evolution and sys-
tem maintenance, attached to small organizations. In Chapter 3, we realized that
the chemotherapy prescription system we are going to develop falls under the Small
Organizational Model. Thus, we have to deal with short, mid, and long term system
evolution and maintenance under the assumption that the target workplace does not
have enough resources to deal with such operational problems.

To handle system maintenance and evolution, we are going to put as many as-

pects of system maintenance and evolution as possible into the hands of the users

61

themselves. We have named this the Democratic Model of System Operation.
To handle changes in both single-user and multi-user environments, we have built the
system to be flexible enough that individual users can make only those changes that
do not affect other users. When a change affects more than one user, the democratic
process is invoked; this applies for both evolution and maintenance. Under the demo-
cratic model, in order to fulfill a requested change which affects multiple users, we

1 i

have i ed a voting To request a change in the system, users can

issue new proposals and other users may vote on them. The details of this voting
mechanism can be found in Section 4.5.

We have split the later design sections into single-user and multi-user. Under the
democratic model, the aspects of maintenance and evolution are scattered in both
single-user and multi-user functions. In single-user cases we have features to create
or alter regimens and to import a regimen to a user’s private list. Meanwhile, most
of the multi-user functions fall under the democratic model of system administration.

Note that the democratic model is not a perfect solution for a systems operat-
ing under the Small Organizational Model. The democratic model can successfully

handle short to mid-term changes. However, long-term ghanges such as changes in

the algorithm for the calculation of ici ial (see Section 4.4.2.2) or
fundamental changes to the way in which chemotherapy is prescribed cannot be han-
dled by our proposed democratic model and will require the intervention of computer
professionals. That being said, there is no suggested solution to such problems in the
software engineering literature, and at least our proposed model can handle short to

mid term changes well.

62

4.2.2 User Interface Design

The user interface design of our chemotherapy prescription system has the following

characteristics:

e To make it easier for the users to adopt the new system, our chemotherapy
prescription system mimics the format of the older paper-based versions, such
that the prescription pages look exactly the same as pages of the old system and
different features of the system mimic the workflow of the physician. This is in

st with physician and ic behavior towards software tools as

described in Section 2.2.1.4.

To follow the error handling approach described in Section 3.3, i.e., to make

it easier for users to do the right thing, our chemotherapy prescription system
has minimal interference in the workflow. For example, the system does not
use popup windows to distract users when the system finds any potential error;
instead, to notify the user of these potential errors, different color schemes are
used, such that the color of field is changed to red for the field with the potential

error and a message is displayed on the top of page.;

Each of the tasks and subtasks described later in this chapter are illustrated with

hots from the impls d user interface. From these screenshots, it can be

seen that the impl d user interface has the ch istics described above.

63

4.3 System Objects and Classes

Before we describe in detail the tasks and subtasks making up the system in Sec-
tions 4.4 and 4.5, let us first describe the objects in the system. There are many
objects implicit in the system as sketched in Chapter 3. However these objects can
be divided into two groups: Entity objects, and Control objects. From an object-

oriented perspective, an Entity object represents an object in the real-world problem

domain while Control objects are ible for workflow, impl ation and task

sequencing, as well as user navigation through the system [76].
The system has the following Entity objects: Physician , Patient, Regimen,
Prescription, Chemodrug, Antiemetic, and Administrator. Note that Physician ob-

jects correspond to users of the system. The system has the following Control ob-

jects, which the individual ‘tasks of the system: Login, Lo-

gout, PasswordRetrieval, AddUser, DeleteUser, AddPatient, PatientSearch, AddDrug,

CreateRegi AlterRegi ImportRegimen, Regi M PrescribeRegi-
men, CancelPrescription, EditPrescription, ViewRegimenList, AddComments, View-
Comments, AddProposal, and VoteProposal. The implementation of the Entity ob-
Jjects in terms of database schema is described in Section 4‘6 Though Control objects
are invoked to implement the tasks and subtasks described in Section 4.4 and 4.5, it
is not necessary to examine the details here and they will not be referred to in the

remainder of this thesis.

64

4.4 Single User Design

Workflow associated with single-user is subdivided into smaller subtasks. These sub-
tasks are grouped into three categories based on activity duration: single-session
(Section 4.4.1), short-term (Section 4.4.2), and mid-term (Section 4.4.3). This break-
down of tasks into smaller subtasks is shown in Table 4.1.

Before we look into the actual description of each task, we would like to give an
overview of the level structure and class naming conventions used in Table 4.1. As
this system is designed relative to the MVC model (see Section 5.2), it is split into

the following three layers:

1. Presentation layer: The presentation layer includes all form beans®, which
also act as the form data validation layer. In Table 4.1, all classes that end with
Form are part of the presentation layer. Notice that a few tasks do not have
Form classes involved in them. This is because those particular tasks do not
include any form data. Hence, for any task X, if it includes form data there is

a class XForm, which acts as a form bean and also validates the form data.

»

Business logic layer: The business logic layer lids in between the presenta-
tion layer and the data layer and includes classes that are used to handle the
information exchange between a database and a user interface. In Table 4.1 all

classes that end with Action are part of the business layer. Notice that, for all

ZA Java Bean is a Java class that follows a specific set of interface specifications. It is a reusable

software that can be mani in an appli builder tool. A form bean is a type

of Java bean. A form bean stores HTML form data from a submitted client request and the data

bean provides a simple representation of an entity bean [74].

65

tasks in the table, there is a corresponding Action class attached to it, which
performs the necessary functions to fulfill that task. Hence, for any Task X,

there is a class XAction to perform that task.

24

Data layer: The data layer or data object layer is responsible for the creation
of data beans to be transferred to the business layer. Hence, for every database
table there is a corresponding data bean class with the same name. Notice
that for all data bean class X there is a corresponding XData class that is
responsible for connection to the database, and for making all types of queries
to the database table encoding data of type X. Here, also notice that a number
of the entity objects that we have seen in the previous section also map to the
database tables. For each entity object there is one or more corresponding table

in the database; see Section 4.6 for details.

In Table 4.1, for any task X, standard in the class column means standard classes

attached to the task that are XForm and XAction. Similarly every data bean® class

Y has a YData class which is responsible for connecting to the database and for all

queries to the database table encoding data of type Y. As each data bean class has a
h

corresponding Data class, it is not shown in the table.

4.4.1 Single-Session Activities

Single session activities include all activities that a physician does during one session

of system usage. This includes the functions Login/Logout (Section 4.4.1.1), Search

Patient (Section 4.4.1.2), and Prescribe Regimen (Section 4.4.1.3).

3See Footnote 2

66

Table 4.1: Single User Design Table

Task Task Sub-Task Associated Classes
Duration (Section #) (Diagram #)
Single Login/Logout, Login (4.1) Standard + Physician
Session (4.4.1.1) Logout (4.1) LogoutAction
Search Patient By MCP (4.3) Standard + Patient
(44.1.2) By Demographic Standard + Patient
5)
Prescribe Ri Prescribe Ri dard +
(4.4.1.3) (4.6) Prescription +
Regimen
Short Add Patient Add Patient Standard + Patient
Term (4.4.2.1) (4.9)
Create Ri CreateR Standard + Regimen
(44.2.2) (4.11)
Alter Regimen Alter Regimen Standard + Regimen
(4.4.2.3) (4.15) ”
Manage Regimen | Manage Regimen | Standard + Regimen
(4.4.2.4) (4.18)
Mid Add Drug Add Drug Standard + Drug
Term (4.4.3.1) (4.20)

Password Retrieval

(4.4.3.2)

Password Retrieval

(4.22)

Standard + Physician

67

4.4.1.1 Login/Logout

In order to log in to the system, the user enters his/her username and password
on the login screen. The system validates the username and password against the
information in the database. In the case of a match, the system creates the session
variables on the server, and users can use the chemotherapy prescription system. If
the login information entered by a user is incorrect that user is sent back to the login
screen and error messages are displayed. When a user selects the logout option all
session variables are removed from the server and the user is brought back to the login
screen. A workflow diagram for this function is shown in Figure 4.1, and a screenshot
of the implemented login page is shown in Figure 4.2.

The following decisions were made during the design of the different features

involved in the Login/Logout function:

1. Length of username and password: The security of a password is usually
measured by its length, but research has shown that if very lengthy passwords
are enforced to increase security it makes it more difficult for users to remember
them, which causes them to write them somewhere or to forget their password
too regularly [1]. Hence, the password should be lenfgthy enough that it cannot
be broken and simultaneously should be small enough that the user can easily
remember it. We have followed the best practices proposed by Gartner [1], and

we have required that passwords have the following properties:
e They must be at least 8 characters long
e They may contain alpha-numeric characters
e They are case sensitive

68

User enters username and
password

Physician
Database

Validate login

Physicin Information 5 ;
e information

Login failed;
o—| display error
messages

Valid information?

Yes
Create session Physician uses.
variables gt
Delete session Physician requests
variables logout
Exit

Figure 4.1: Workflow Diagram: Login/Logout

69

N
HealthCare Welcome
Corporation of St. John's

“Logon
Please cater your usermame sad password

username: [

password:

Forgot your password?

Don't have a username?

Request an account now

Figure 4.2: Screenshot: Login

70

e They cannot be the same as the username

Similarly, the username is restricted to a minimum length of 6 characters.

»

Invalid login attempts: There is no limit on the number of login attempts
by the user. This may seem non-standard from the viewpoint of security, as
a common practice is to lock the user account after a fixed number of invalid
login attempts. However, given the clinical environment, where physicians need
to have constant access to the system locking a physician’s account under such

circumstances is not feasible.

4.4.1.2 Search Patient

To find a patient from the database, the user enters the MCP* number of the patient.
In certain cases, where a patent does not have an MCP number available, the user
can use patient demographic information to search the patient. The chemotherapy
system searches the patient information database and returns results based on the
type of search it performs. Workflow diagrams for searching by MCP and searching
by demographic information are shown in Figures 4.3 and 4.5 respectively, and a
screenshot of the implemented patient search page is show(;1 in Figure 4.4.

The following decisions were made during the design of different features involved

in the Patient Search functions:

“4In order to uniquely identify patients in the patient database, there is a need for a unique key.
As the system is being implemented in Newfoundland and Labrador, we are using the MCP number
that the provincial government issues uniquely to every patient [52]. Note that any implementation
of this system relative to another healthcare jurisdiction would have to find a corresponding uniquely

identifying number for patients

71

1. Search by MCP number: As the MCP number is unique for every patient,

the primary search is based on MCP number.

Physician enters
patient’s MCP
Number

!

Patient Search patient in
Data [GCRE RS database

r

& Display error
Patient found? L (b
Yes
System
displays
patient data

Figure 4.3: Workflow Diagram: Patient Search by MCP Number

2. Search for patient’s demographic information: In search by demographic
information, users can enter the available information on a patient to search for

a patient or list of patients from the database. This tool is extremely helpful in

72

emergencies or other cases where the patients MCP number is not available.

AN\ e
HealthCare Patient Search

Corporation of St. John's

Quick Links

Submit

1 FestNome: [
Last Name: [
Gender: [smiect
Date of Bisth: [Montn 5] [Gay o] [Feor
Postal Code: [

Submit

Figure 4.4: Screenshot: Patient Search Page

4.4.1.3 Prescribe Regimen

In order to prescribe a regimen, the user must first search for the patient and then
look at the patient history (see Section 4.4.1.2 for details of patient search). To

prescribe a regimen, the user selec

a regimen from his private list of regimens (see

73

Physician enters
patient's demographic
Information

Search for patients in
database

Display error

Tist of patients
empty?

Display lst of
patients

Physician select
patient from the st

System displays {
patient data

Figure 4.5: Workflow Diagram: Patient Search by Demographic Information

74

Section 4.4.2.4). The system then generates the prescription with patient information
on it, the user enters the patient height and weight, and the system calculates dosages
of different drugs (see below for details). The user can make changes in dosages if
necessary. Once the system generates a printable version of the prescription, the
user prints/saves the prescription. The workflow diagram for this process is shown in
Figure 4.6, and screenshot of the implemented prescription input and output pages
are shown in Figure 4.7, and 4.8, respectively.

The system calculates dosages of different drugs in a given regimen based on the
Body Surface Area (BSA) of the patient. This BSA is calculated using the height

and weight of the patient entered by the physician, using following formula:
BSA(m?) = Weight(kg)®*?" x Height(cm)®™ x 0.007449

Drug dosage is then typically a function of BSA. For example, the dosage for Cy-

clophosphamide is calculated as:
Cyclophosphamide(mg) = 750mg x BSA

Note that, the user can modify automatically calculated dosages in two ways: Ei-
ther as a group, by applying a common factor to each, of individually by changing
individual dosage fields.

The following decisions were made during the design of different features involved

in the Prescribe Regimen function:

1. Selection of prescription: In order to show physicians the available regimens
to prescribe, the regimens are divided into two lists. Physicians can find more

commonly used regimens in the primary list and less commonly used ones in

()

Physician selects Prescribe
Regimen option

outstanding
arescription2

¥ System cancels
old prescription
Regimen [R | System generates regimens list|
Database from regimen database

S regimen in il
the list?
alternate list
Database
Yes
¥
System generates.
Prysican seectsregimen il

from the list

selected regimen

Y

‘System enters prescription
parameters o current
prescription from old No i
prescription Y System saves
presciiption to ve "\ Prescription,
s | prescription pt Database
prescription data "a‘“f“”
System ’
Physician
g B e
prescription ki

Figure 4.6: Workflow Diagram: Prescribe Regimen

76

ealthCare
Corporation of St. John's

Medicine Program
's Ch

Tohlm-F AI.P-F

Diagnosis- [nil Drug Allergies- [nil
Date: [0871272007 MMDDIYYYY)
CHOP

Percent of Protocol Dose Intended by Physician: |100% =l

1500
DOXORUBICIN
50

mg/m? 101 mg 100 mi |in a inlel iush v

[Anzemet (Dalasetron) =]

Decadron (Dexamet |
[Ativan (Lorazepam) =]

Figure 4.7: Screenshot: Sample Prescription Input Page

7

S
HealthCare

Corporation of SL John's

Medicine Program
s Ch euti
General Hospital Site
‘Height =180 cms Weight =80 kes

Total Bili =4.0

Diagnosis- nil Drug Allerges- nd
Date: 08/122007 04:04:26

CR=25

gl

Percent of Protocol Dose Intended by Physician: 100 %

DOXORUBICIN
50 mg 01 m, 100 mg (in inge) push IV

l

PREDNISONE
100 mg 100 mg 100 mg PO od for 5 d
Stemeti(Prochlorperaine) 10 po pre-chemo
100 po pre-chemo
Decadron (Dexamethasone) 8 po pre-chemo
Ativan(Lorazepam) 05 po pre-chemo
] it | S

Figure 4.8: Screenshot: Sample Prescription Output Page

8

0

L

the secondary list. For details of the division of regimens into primary and

secondary lists see Section 4.4.2.4.

Automatic entry of data from previous prescriptions: To make the
prescription writing process faster, if the regimen is already prescribed to the
patient then data from the last prescription is automatically entered to the new
prescription by the system. However, the physician can make changes in the
height and weight of the patient if they have changed since the last visit and
the system will calculate dosages based on the patient’s new body surface area.

Moreover, the physician can also make changes to the dosages of different drugs.

A ic error ing: Major

ions involved in the process of

prescribing are done by the system to eliminate the possibilities of manual
calculation errors. Along with automatically calculating dosages, the system
also looks for any possibility of error while entering the height or the weight
of patients; if height or weight are beyond the normal range it will inform the
ordering physician about the possibility of errors. Here, a normal range for
height is 0-225 c¢m, and for weight is 0-225 pounds.‘ The physician is notified
for any possibility of error by the field color turnin!g to red. Note that this is

consistent with the error handling philosophy adopted in this system, in which

potential errors are flagged but allowed if the physician considers it necessary.

Future prescriptions: A physician can prescribe a regimen with some future
date on it. The system allows prescribing a regimen in the future because some
regimens have multiple courses of treatment. However, to eliminate the chances

of multiple future prescriptions, the system does not allow more than one future

79

prescription per patient. If a future prescription is already in database for a
particular patient then the system will allow physicians to prescribe only if the
previous prescription is cancelled for that patient. The system will notify the
physician of the existing future prescription and, if the physician elects to cancel

the prescription, the prescription is cancelled automatically by the system.

4.4.2 Short-Term Activities

Short term activities include activities that range from those that run for one day
e.g., adding a new patient to the system, to those which run for a year or more,
during which time new regimens are created or physicians feel it necessary to make
changes in existing regimens. Short-term activities include adding new patients (Sec-
tion 4.4.2.1), creating new regimens (Section 4.4.2.2), and altering existing regimens

(Section 4.4.2.3).

4.4.2.1 Add Patient

A user enters patient’s personal information to add him into the system. If a patient
is already in the database the user is brought back to the add patient page with an
error message. A workflow diagram for this function is shown in Figure 4.9, and a

hot of the impl, d patient regi ion page is shown in Figure 4.10.

The following decisions were made during the design of different features involved

in the Add Patient function:

1. Selection of patient’s unique identifier: To uniquely identify a patient in

a patient database there is a need for a unique key which will help to search

80

Physician enters
patient data
Physician
Validate data
patient data

f

Display error
messages

z
&

Valid information?

Yes

Data CSave patient | Save patient data

: Add Patient to Database

Figure 4.9: Workflow Diagran

81

N
HealthCare

Corporation of St. John's

Quick Links

» Patient Search
» Prestribe Regimen

» Add Patient

» Creata Regimen

> Alter Regimen

» Import Regimen (0 New)
» Viaw Oslated Ragimens
» View Regimens

» Admin

» Logout

Patient Registration

MCP Number :
First Name :
Last Name :

Gender :
Date of Birth :
Steet Address :

City :
Provinee :

Postal Code

e —
| —

Male =]
[November =] [13 =] o7
F7 Aondie asd
e

[5tvonn's
[Newfoundiand =]
+ [RIBIST rormat: Amanan)

Figure 4.10: Screenshot: Add Patient to Database

82

»

patients in that database. For this purpose, the patient’s MCP number is used

(see Footnote 4).

Use of di hic infc ion to identify i Different medi-

cal systems use different types of keys to identify a patient in their patient
databases. Patient MCP numbers and demographic information are currently
implemented as keys in our system. The question naturally arises as to how
much demographic information we are going to store. Storing more information
might be better for futures uses, such as linking with other datasets or commu-
nicating with other systems. However, in the interests of patient privacy and
saving memory space, we have elected to store what we consider the minimum

information necessary for identification by demographic information.

4.4.2.2 Create New Regimen

In order to create a new regimen, the user suggests a unique name for the regimen,
the number of chemotherapy drugs, and defines the scope of regimen, i.e., public or
private (see below). The user then enters the details of chemotherapy drugs and the
system validates chemotherapy drugs against the drug database. If the chemotherapy
drugs are not in the database the system prompts the user to add the new drugs and
their emetogenicity levels (see Section 4.4.3.1 for details). If all entered drugs are
in the database, or have been added to the database, then the system suggests the
possible list of antiemetic drugs based on the emetogenic levels of all chemotherapy
drugs (see below). Here users can make changes to the list of antiemetic drugs by

adding or deleting drugs/doses from a group or changing the order of drugs/doses.

83

The user then requests the final regimen and the system develops a regimen based
on the information entered by the user and allows the user to save the regimen to
the database according to the scope mentioned by the user. A workflow diagram for
this function is shown in Figure 4.11. Screenshots of the implemented initial pages
to initialize the regimen, collect the details of chemotherapy drugs and to select
antiemetic drugs are shown in Figures 4.12, 4.13, and 4.14 respectively.

The following decisions were made during the design of different features involved

in the Create New Regimen function:

1. Public and private regimens: While creating a new regimen the physician is
asked to set the scope of that regimen. The physician can make the new regimen
available just to himself, i.e., a private regimen, or he can make it public so
that every physician in the system will be notified about the new regimen and
allowed to import it to their private list. For details of the Import Regimen

function, see Section 4.5.2.1.

=

Automatic selection of antiemetic: A decision support feature is incorpo-

rated into the system which helps physicians during the selection of antiemetic
P

drugs. To make the system automatically select antiemetic drugs based on

the icity potential of ch 1 drugs, an algorithm for predicting

the acute icity of ch 1 y regi was used. Recall that emeto-

genicity potential of chemotherapy drugs is between 0-5, with 0 having no effect
and 5 having maximum effect. This algorithm, developed by the VHA Phar-

macy Benefits M S ic Health Group and Medical Advisory

Panel [79), is as follows:

84

enters regimen
number of chemo
drugs

Regimen

forsiel) System validates name

Physician enters chemo.
drug information

System calculates emetogenicity
potential and generates
‘antiemetic drug list

!

Physician makes changes
if necesgary

System displays the final
jmen and saves it to
database

W

Private

&

Regimen
Oatabase.

Figure 4.11: Workflow Diagram: Create New Regimen

85

HealthCare Create Regimen

Corporation of St. John's

Quick Links
Please enter following information
» Patint Search

» Prescnbe Regimen Name of Regimen: [cHOP

> Add Patient R
sl aR Number of chemoDrugs:

 Alter Regimen Regimen scope © Private @ Public

» Import Regimen (0 New)

You may anter vp te 80 harates.)
5 View Deletsd Regimans

Frest Regmen]
» View Regimens

> agmin Comments:

» Lagout =

Figure 4.12: Screenshot: Create Regimen - Regimen Name

86

are

Corporation of St. john's

Quick Links

» paiant Search
» Prescribo Rogimen
» ada patirt

» Craats Regmen
>
»im

 Rogimen (0 New
> View Delotud Regimans
» View Regimens

» Lonout

[riGsPrAMOE

Regimen detail

Max Dose* Route Frequency Instructions

ol fomesy s o
LN B e

AntiEmetics: ©Use default @ Change default

* Leave maximum dose field blank for no maximum limit

Figure 4.13: Screenshot: Create Regimen - Chemo Drugs Details

VAP
HealthCar

Antiemetic Drugs

Corporation of St. John's

Quick Links

» Patient Search
» Prescribe Ragimen
» Add Patient

» Create Regimen

» Attor Regimen

» Import Re

nen (0 New)
> View Deleted Regimens
» View Regimens

» Admin

» Logou

ic Dr
Create New Grouj
Group Name:

CRC Blockers.
€ none
@ Stemetil (Prochlorperazine)
© Maxeran (Metoclopromide)
© Gravol (Dimenhydrinate)

Add drug CRC Blockgrs Delete drug from
5-HT3 Receptor Antagonist
€ none i el
@ Zofran (Ondansetron) 2
© Anzemet (Dolasetron) @8
€ Kytril (Granisetron) © 100 © pofiv
P gptor Antagoni Delete drug from §-HT3 Pecepto

Steriods
none
@ Decadron (Dexamethasone)

Add dnig tg Stariads

Anxiolytics
@ none
© Atlvan (Lorazepam)

g to Anxalytics

Figure 4.14: Screenshot: Create Regimen - Antiemetic Drugs Details

88

(a) Identify the most emetogenic chemotherapy drug in the regimen.

(b) Assess the relative contribution of other chemotherapy drugs to the emeto-
genicity of the regimen. When considering other drugs the following rules
apply:

o Level 1 drugs do not contribute to the emetogenicity of a given regimen
e Adding one or more level-2 drugs increases the emetogenicity of the
regimen one level above the most emetogenic agent in the regimen
e Adding level-3 or level-4 drugs increases the emetogenicity of the reg-

imen by one level per such drug.

Note that regardless of the final computed value, if it is greater than 5 then it
is set to 5. In this system, physicians can make changes in the antiemetic drugs

and their dosages as suggested by the algorithm.

4.4.2.3 Alter Existing Regimen

In order to alter an existing regimen the physician selects an existing regimen from
his private list. Because the new regimen could be confl!\sed with the old one, the
physician is required to rename that regimen and select its new scope, i.e., public
or private (see Section 4.4.2.2). The system displays the list of all chemo-drugs in
the existing regimen. The physician makes changes in the chemotherapy drugs, i.e.,
adding or deleting chemotherapy drugs to the regimen, and can change the doses,
routes, frequencies or instructions associated with drugs (see Section 3.2.1). The sys-
tem then recommends antiemetic drugs based on the new chemo drugs by using the

algorithm described in Section 4.4.2.2. After this, the physician makes changes or

89

approves the suggested antiemetic drugs and the system displays the final regimen
based on changes made by the physician who then saves the regimen. The workflow
diagram for this function is shown in Figure 4.15. Screenshots of the implemented ini-
tial pages to rename the existing regimen, and to collect details of new chemotherapy
drugs and/or to delete existing drugs are shown in Figures 4.16 and 4.17 respectively.
The page to select antiemetic drugs in case of altering an existing regimen is the same
as shown in Figure 4.14 for creating a new regimen.

The following decisions were made during the design of different features involved

in the Alter Ezisting Regimen function:

1y i dified regi To modify an existing regimen the system
creates a new copy of that regimen in the database and the existing regimen
remains unchanged. Changes are not permitted in an existing regimen for the

following reasons:

® An existing regimen might be in use by other physicians who are not willing

to make changes in that regimen.

® An existing regimen might already have been prescribed by the physician.
In order to display an old prescription, the system maps prescription drug
data to the regimen template stored in the database. Thus, altering that
regimen template can cause problems when the system attempts to display

old prescriptions.

90

Physician renames the
regimen

Regimen

Lo System valdates new name

Physician makes changes
in chemo drugs and o Yes

System veriies drugs and Drug
dosages Database
Ye
No
System calculates emetogenicity
Add drugs to database oo phedons o
‘antiemetic drug list

Il

ician makes cn-nm
f necassar

it T

e Togmen and o

Noltify other physicians.

Private

Figure 4.15: Workflow Diagram: Alter Regimen

91

* x
are Alter Regimen Speciiction
. o

Corporation of St. John's

Ruick ik Please enter modified name of CHOP

» Patient Search

> Prescribe Regimen Name of Regimen: [ModfsdChop

» Add Patient Number of new ne)
» Create Regimen chemoDrugs:
? Alter Regimen Regimen scope € Private & Public

» Import Regimen (0 New)
» View Deleted Regimens
» View Regimens

(You may anter 9 1080 charactes)
[Modified version of Chop =

b Comments:
» Logout =

| amp—
=]

Figure 4.16: S hot: Alter Regi - Regi Name

92

[HealthCare Regimen detail

‘orporation of St john's

ek Lin
SLEAED Neme Dose Max Dose” Route Frequency Comments

2] k| DR

e

- PREDNSONE fid g/ =1

HSEEE LS Fle

[el
(o]

Antimetics: € Use default ® Change default

-]
* Laave maximum dose field blank for no maximm imit

Figure 4.17: Screenshot: Alter Regimen - Chemo Drugs Details

93

4.4.2.4 Manage Regimens

Physicians can manage their private regimens by moving them to primary or sec-
ondary lists (see below). To move a regimen from one list to another the physician
selects the regimen to be moved and the system adds that regimen to the second
list and deletes it from the first. A workflow diagram for this function is shown in
Figure 4.18, and a screenshot of the implemented manage regimen page is shown in
Figure 4.19.

The following decisions were made during the design of different features involved

in the Manage Regimens function:

1. Purpose of regimen management: In order to make it easier for physicians
to find the most frequently used regimens out of their all private regimen list,
the list is divided into primary and secondary regimens lists. The purpose of
the primary list is to hold all regimens that are used frequently in prescribing
and display them first for regimen selection during prescribing. The physician

can move a regimen from one list to another at any time.

4.4.3 Mid-Term Activities

Mid-term activities include activities that range from one to five years, where new
drugs are introduced and are used as replacements for existing drugs in regimens.
Mid-term activities involve the addition of new chemo-drugs to the database (Section

4.4.3.1) and the retrieval of lost passwords (Section 4.4.3.2).

94

Physician selects rogimen o
bo transforrod to socond fist

Figure 4.18: Workflow Diagram: Manage Regimens

AN ; !
HealthCare Regimen List

Corporation of St. John's

Regimen Name Comments
uick Links
53 P CHOP Test Regimen
» Patient Search I Modifled Chop Modified version of Chop
» Prascribe Regimen T Doap Test Regimen
» Add Pati ' ALL Induction Test Regimen
ient e
» Creats Regmen I Ny Test Reqimen
 STEM CELL COLLECTION Tekt Regimen
» Ater Ragiman
» Import Regimen (0 New)
» View Regimens
» Admin
» Logout

Figure 4.19: Screenshot: Manage Regimens

95

4.4.3.1 Add New Chemotherapy drug

While creating a new regimen (see Section 4.4.2.2) or altering an existing regimen
(see Section 4.4.2.3), if the physician enters a drug name which is not in the drug
database he/she is prompted to enter the new drug into the database along with the
emetogenic potential of that drug. The physician enters the drug name and the system
then generates a form to enter the emetogenicity potential. Next, the physician enters
ranges of dosages for all emetogenic levels of the drug (see Section 3.2.1), which are
then validated by the system and stored in the database. The workflow diagram for
this function is shown in Figure 4.20, and a Screenshot of a the implemented page to
add new chemotherapy drugs to the system is shown in Figure 4.21.

The following decisions were made during the design of different features involved

in Add New Chemotherapy drug function:

1. A ic error ch for ible mi by the user: The range

of possible dosages of a drug is broken down in such a way that there are sub-
ranges, each with their own emetogenicity level. The union of these sub-ranges
must cover the entire range, and the emetogenicity level must increase as the
dosage goes up. When adding a new drug, the system automatically checks
for the any possible errors in dosage ranges and emetogenic levels. There are
four possible types of errors: The emetogenicity level can be out of range or
non-decreasing and ranges can overlap or have gaps between them. For this
purpose, the physician has to enter the correct details of one emetogenic level
for a particular drug, which is then examined by the system before the physician

is allowed to proceed to the next level.

96

Physician enters drug name
information for new regimen or
altered regimen

Database

Create
Regimen

System generates
emetogenicity form

Physician enters emetogenicity
levels for drugs

No
Data
erified
Yes
]

System updates drug
database

Drug
Database \ A% 99

Figure 4.20: Workflow Diagram: Add New Chemotherapy Drug

97

HealthC,

are Add Drug

[Corporation of St. John's

QuickLinks Following drug was nat found in chemotherapy emetogenic potential
database. Please enter the emetogenic potential for this durg on a
Vecisn scale of 0-5, where 0 means no emetogenic potential & 5 means
ekl severe emetogenic potential
¥ Add Patient Enter Emetogenic levels in decendi
» Creats Regimen o R b TN T T e i
b g Agent Minimum Dot Maximum Dose* Level
» Import Regimen (0 New) ot i L e e ave
» View Deleted Regimens JPREDNISONE
» view Reginens {ra——— o | e
» Adin
» Logout
| SRR | [l 5
[i | Py | | S| e
(TR, [Ex] [(T,

Subimit

Figure 4.21: Screenshot: Add New Chemotherapy Drug

98

2. Direct addition of drugs to chemotherapy drug database without pass-
ing through administration: Physicians are allowed to enter new drugs
directly into the drug database without any approval from the system admin-
istrator. The addition of another step, i.e., approval from the administrator,
could cause unnecessary delays in the creation of a new regimen or alteration
of an existing regimen, which is not tolerable due to the time-sensitive nature

of the work physicians perform.

&

Automatic setting of missing limits for Emetogenicity levels of chemo
drugs: Any drug with no specified upper limit for the highest emetogenic level
entered has no upper limit of dosages for that particular level. This means that,
any dose entered above the lower limit of that level is assigned the emetogenicity
potential of that level. Moreover, the range starting from 0 up to the minimum
range specified for the lowest level entered by the physician is automatically
assigned an emetogenic potential of 1. Note that lgvel 1 does not affect the

selection of antiemetic drugs for a regimen (see Section 4.4.2.2 for details).

4.4.3.2 Password Retrieval

In order to retrieve his/her password, a user needs to enter his username or email
address. The system validates the username/email of the user and mails the login
information to the user email address stored in the database. In the case of an invalid

username/email address entered by the user, that user is taken back to the password

99

retrieval page with an error message. The workflow diagram for this function is shown
in Figure 4.22, and a screenshot of the implemented password retrieval page is shown

in Figure 4.23.

Physician enters usermame o
license nur

Physician Vaidate usermame or lcense
< Databage | Pyeceniniomaton number

Valid information? N Error messages

displayed

Physician

Retrieve login information
L etrieve login informat

Figure 4.22: Workflow Diagram: Password Retrieval

100

|HealthCare Password retrieval

Corporation of St John's

Please enter usemame or email address to
retrieve you pessword.

usemame : [
email eddress: [

Figure 4.23: Screenshot: Password Retrieval

The following decisions were made during the design of different features involved

in the Password Retrieval function:

i,

IS)

Information required to retrieve username/password: To make it sim-
pler for users to retrieve their passwords, they can either use their usernames or
their email addresses to retrieve them; where the systém sends a password along
with the username to the email address of the user in question. This method is
also helpful in cases where users have forgotten their usernames allowing them

to retrieve them by entering their email address into the system.

. Use of email address to retrieve username/password: We have looked

into different commonly used ways to provide a user his password [46]. The

basis for selection of a method is that it should be as simple as possible for the

101

user, and it should be secure enough that no one can misuse it. One possible
way to give a password to a user is to send it to the email address which he/she
provides during the registration process. Another is by answering some secret
question which only the user can answer. This secret question is saved to the
database, along with other information, during the registration process. While
making decisions about the method for password retrieval to be employed, it
was considered that it would an extra burden on the user to remember the

answer to the secret question. Hence, the email address method is used here.

4.5 Multi User Design

In the previous section, we noted that single-user activities were divided into session,
short-term, and mid-term activities. Multi-user activities can have duration from
single-session to mid-term. However, an important aspect of multi-user activities
is the type of interaction among users; hence, in the case of a multi-user design, we
have chosen to divide activities into three categories based on the interaction between
the users, namely indirect (Section 4.5.1), limited direct (Section 4.5.2), and direct
interaction (Section 4.5.3). These categories, along with {heir corresponding tasks,
are shown in Table 4.2. Note that we are using the same task, subtask, and class

conventions for Table 4.2 as were described in introduction Section 4.4 for Table 4.1.

4.5.1 Indirect Interaction

Indirect interaction between the users of a chemotherapy prescription system happens

when a patient is treated by more than one physician. Here, physicians can not

102

Table 4.2: Multi User Design Table

User Interaction Task Sub-Task Associated Classes
Type (Section #) (Diagram #)
Indirect View patient View patient Standard +
history history Patient +
(45.1.1) (4.24) Prescription
Limited direct Import Regi Import Regi dard +
(4.5.2.1) (4.26) Regimen
Driect Add Proposal Add Proposal Standard +
(4.5.3.1) (4.28) Administrator
Vote Proposal Vote Proposal Standard +
(4.5.3.2) (430) ¢ Administrator
View Proposals | View Proposals Standard +
(4.5.3.3) (N/A) Administrator

103

only view the history of a patient and the way that patient is treated by the other
physicians, but also make changes in the prescriptions assigned by other physicians by
deleting the existing prescription. The only task that falls under indirect interaction

is viewing patient history (Section 4.5.1.1).

4.5.1.1 View Patient History

After a successful search for a patient (see Section 4.4.1.2) the system displays the
patient’s history page. Here the physician can cancel, modify, or add comments to an
old prescription, or can prescribe a regimen to the patient (see Section 4.4.1.3). Note
that viewing patient history partially falls under the multi-user environment, where a
physician can view the prescriptions made by other physicians and can cancel them.
A workflow diagram for this function is shown in Figure 4.24, and a screenshot of the
implemented patient history page is shown in Figure 4.25.

The following decisions were made during the design of different features involved

in the View Patient History function:

1. Alteration of past prescription: Physicians can change any prescription.

Such changes can only be made by the physician whb made that prescription.

»

Conditions under which a Physician can cancel a prescription: Any
physician can cancel any prescription prescribed by himself or any other physi-
cian within one day of the prescription being issued. Moreover, any future
prescription can be cancelled at any time by any physician. Note that it is
only in the second scenario where a future prescription can be cancelled. Under

Prescribe Regimen (see Section 4.4.1.3) we see that if a physician prescribes a

104

Patient Search

!

System display patient

Prescription

Database history page

' | !

Physician »
:,,,m,,, oyl [Physician adds :::::::
egimen prescription to r
) prescription
prescription
{
System v System
Get Prescription
dspiays K orogcition | Datavass Update cancels
prescription ol prescription

Figure 4.24: Workflow Diagram: View Patient History

105

are Patient Record

Corporation of St John's

Jown Horkans MCP NumoeR: 234543234
57 ALuanoaLs RoAD, §T. Jomn's, NL

Na
Quick Links Aoouss

» Patient Soarch

» Prescrib Regimen Name Date Status Comments
» add patient -
» Craats Regimen ©CHOP 00/12/2007 04113 cancg | P
» Altar Ragrmer

¥ o 2007 e iaz SANCELED Y SvIo |
» import Ragimen (0 New) O SHRP DA2I2007 08IXIT 0g/19/7007 04i14:30 o

» View Delet

O o

212007 041225 cact
» View Regimens ; 4

i © CHOP 0A/IZ/2007 041105 SanciL B s s
» Logout e s
Coarmenr pagang CANCELLEO sy Svio |— 2] o cosnra)
O CuoP 00[1202007040426 0g/12/2007 04:11:18 o ey

-

Figure 4.25: Screenshot: View Patient History

106

regimen when an outstanding prescription is already in the system, the future

prescription is automatically cancelled by the system.

@

. Addition of comments with each prescription entry: In order to enhance
communication between the users of the chemotherapy prescription system, any
physician can add comments on any prescription. This feature can help the
physician in informing other physicians about the reasons for his/her actions,

e.g., his/her reasons for canceling a prescription.

4.5.2 Limited Direct Interaction

Limited direct interaction between the users of the chemotherapy prescription system
occurs when a physician shows his interest in using a regimen created by the other
physician. The only task that falls under limited direction interaction is the Import

Regimen function (Section 4.5.2.1).

4.5.2.1 Import Regimen

In order to import a public regimen, the system displays the list of public regimens
available to the user. The user then selects the regimens hg wants to import and the
system adds them to the user’s private list. A workflow diagram for this function is
shown in Figure 4.26, and a screenshot of the implemented page to import regimen
is shown in Figure 4.27.

The following decisions were made during the design of different features involved

in Import Regimen function:

107

Physician selects
Import Regimen
option

System generates
Regimen public regimen list

Database which is not part of the
physician’s private list

Physician selects
regimens to import

System imports
selected regimens to
the private list

Regimen
Database

Figure 4.26: Workflow Diagram: Import Regimen

108

Ao))
HealthCare Regimen List

Corporation of St. John's

Quick Links

Regimen Name Comments
» Patient Search 8 Modified Modified version of Chop
» Prescribe Regimen L D

» Add
» Creata Regimen

» alter Regimen
» Import Regimen (2 New) Regimen Name Comments
» View Deleted Regimens A

i [

» View Regimens
» Admin

» Logow _impart | 0o |

Figure 4.27: Screenshot: Import Regimen

109

1. Importing a regimen from a public list to a private list: In order to
increase collaboration and sharing among users, physicians can make regimens
public while creating a new regimen (see Section 4.4.2.2). The public list is
always available to all physicians and displays all public regimens that are not
already part of a physician’s private lists. Each physician can, at any time,

import a regimen from his/her private list to the public list.

»

Alert physician of new regimen: To notify physicians of a new regimen in
a public list, each time a new regimen is added to the database, all physicians
in the database are notified the next time they log in to the system by a display
of the number of new regimens available to import in front of the link to the

import regimen page in the subtask sidebar(see Figure 4.27).

©w

. Secondary list for viewed regimens: In order to differentiate between the
viewed and unviewed public regimens, every public regimen that is not imported
by the physician, after looking at his primary list of public regimen, is sent to

a secondary public regimen list and can be imported at any later time.

4.5.3 Direct Interaction

Direct interaction is where the majority of system administration is done. System
administration under the democratic model is done by issuing and voting on propos-
als (see Section 4.2.1). The types of proposals currently implemented are described
in Section 4.5.3.1. This process involves several functions. To make the voting mech-
anism simpler, we have introduced a bulletin board structure where physicians can

either make a new proposal (See Section 4.5.3.1), vote on a proposal (See Section

110

4.5.3.2), or view the status of an existing proposal (See Section 4.5.3.3).

The democratic model of system operation has the following features:

1. Bulletin board: In order to accommodate all types of system administration
features, a bulletin board structure was designed. This bulletin board can
display all pending proposals which are not resolved (see Section 4.5.3.2 for

more details on proposal lution). Note that all proposals that are resolved

are moved to a separate list. Here physicians can either add a new proposal to

the bulletin board or can vote on an existing proposal.

»

Ability to issue pr ls: Every physician who is regi: d in the system
has the ability to make a proposal. Moreover, there is no maximum limit on

the number of proposals that can be made by a particular physician.

3. Resoluti: hanism for pr 1s: All proposals are resolved in a demo-
cratic fashion, where physicians vote to either accept or reject the change re-
quested. However, the percentage of votes necessary for the acceptance of a
proposal depends on the criticality of the change requested in that proposal
(see Section 4.5.3.1). Once a proposal is accepted or rejected it is sent to the

resolved proposals list, and any actions requested by an accepted proposal are

automatically taken by system.

4.5.3.1 Add Proposal

In order to make a proposal, the user selects the new proposal option. The user
is asked to select a category of proposal and the system displays different proposal
types under the selected category. The user then selects the proposal type and enters

111

any required data for that proposal. The system validates the data and saves the
proposal to the proposal database. A workflow diagram for this function is shown in
Figure 4.28 and a screenshot of the implemented page to add a proposal to change
emetogenicity potential is shown in Figure 4.29.

The following decisions were made during the design of different features involved

in the Add Proposal function:

1. Types of Proposals: There are many types of tasks that can be performed
using the democratic model of system operation. However, in the system de-

veloped in this thesis, the available tasks are as follows:

(a) Add user: This proposal is used to add a new user to the system. Any
existing user may make such a proposal, in which that existing user selects
a unique username and enters his/her personal information required to
create an account®. The criteria for adding a new user is acceptance by
two existing users. Upon successful acceptance of the proposal the new

user is automatically added to the system.

(b) Delete user: This proposal is used to delete an existing user from the
system. Any existing user may make such a proposal, in which that user
enters the username of the user to be deleted, as well as optional reasons

for deletion. The criterion for deleting a user is acceptance by 50 percent of

5This is actually an over simplification. The current system does not allow usernames or pass-
words to be changed once entered. Hence, we are assuming that though the existing user triggers
the function, the new user is actually present and enters his username and password in such a way
that the existing user does not see it, allowing it to remain private. We realize that this is awkward

and it should be fixed in the future versions of the system

112

Physiciar

n selects
proposal category

System generates
proposal list

System requests.
related data
Physician enters
requested data

System
validates data

Save
Proposal

Figure 4.28: Workflow Diagram: Add Proposal

System
displays erfor
messages

Proposal
Database

113

HealthCare Administration

Corporation of St. John's

Exisiting Emetogenic Levels
(Ol ‘Agent Minimum Dose Maximum Dose Level
» Patint Search Cyclophosphamide 1501 No Max. Limit s
bl Cyclophosphamide 751 1500 4
» Add Patient
Cyclophosphamide 0 750 3

» Creats Regimen
» Alter Regimen
¥ Import Regimen (0 New)

» View Deleted Regimens S Tt
et ol New Emetogenic Levels

G Enter modified Emetogenic levels in decending order.
*(eave Maximum dose fleld empty for no upper limit.
Agent Minimum Dose Maximum Dose* Level
Cycophosgnir [L E—
[] g | [
| I = | 1P |
Comments

|

Figure 4.29: Screenshot: Add Proposal - Change Emetogenicity Potential

114

the existing users. Upon successful acceptance of the proposal the selected

user is automatically deleted from the system.

Change chemotherapy drug name:This proposal is used to change the name
of chemotherapy drugs in the drug database. This feature is used to cor-
rect any misspelled drug name in the drug database. Any existing user can
make such a proposal, in which the user enters both the existing and modi-
fied name of the drug. The criterion to change the name of a chemotherapy
drug is acceptance by 60 percent of the existing users. Upon successful ac-
ceptance of the proposal, the drug name is automatically changed in the
drug database. Note that this change of chemotherapy drug name will
only affect future regimens; for existing regimens, the name of the drug

will remain the same.

Change icity p ial of ch herapy drug: This proposal is
used to change the emetogenicity levels of chemotherapy drugs. This fea-
ture is used to correct the range of any level or to add a new level to a drug.
Any existing user can make such a proposal and enters the modified details

of the all emetogenicity levels of the chemotherapy drug. The criterion to

i 1

change ici ial of a apy drug is a by

60 percent of the existing users. Upon successful acceptance of the pro-

posal, the old icity levels of the drug are replaced

by the proposed levels. Note that emetogenicity levels are used only while
creating a new regimen. Hence, a change in emetogenicity levels will not

affect the existing regimens.

115

Note that each of the acceptance criteria above also has an implicit rejection
criterion. If X percent is the acceptance criterion for a proposal then (100 - X)

percent is the rejection criterion of that proposal.

4.5.3.2 Vote Proposal

In order to vote on a proposal, a user either accepts or rejects it. The system saves

1

the vote in the proposal d. and when the or rejection criterion

associated with the proposal is met, that proposal is considered resolved. The system
performs the administrative task if the proposal is accepted, and in either case, the
proposal is sent to the resolved proposal list. A workflow diagram for this function
is shown in Figure 4.30; as voting on a proposal is done on the same screen where
proposal status is viewed, see Section 4.5.3.3 for screenshot.

The following decisions were made during the design of different features involved

in the Vote Proposal function:

1. User accepts a proposal when he/she adds it: A user who adds a proposal

does not need to vote on it. New proposals added by the user are considered to

be accepted by the user who adds them.

N

Criteria for acceptance or rejection of proposal: A proposal is considered
resolved as soon as its acceptance or rejection criterion is met. Hence, not all
the users of system are required to vote on a proposal when an acceptance or
rejection criterion is already fulfilled. Once a proposal has been resolved it is

moved to the resolved proposal list.

116

Physician accepts or|
rejects a proposal

Proposal
Database

System saves vote to
proposal database

System checks if

Figure 4.30: Workflow Diagram: Vote Proposal

Wik

4.5.3.3 View Status of Proposals

‘When a user selects the system administration option the system displays all the
outstanding proposals that remain unresolved. A user can add a new proposals
(see Section 4.5.3.1) or vote on existing proposals (see Section 4.5.3.2). A workflow
diagram of this function is shown in Figure 4.31, and a screenshot of the implemented

page to view the status of proposals is shown in Figure 4.32.

Figure 4.31: Workflow Diagram: View Proposals

118

o
HealthCare

Corporation of St. John's

> Patiant Search

» Prascribe Regimen Ao user

» Add patient Aaqvs

> Create Regimen

5 Alter Regimen Oetere user

TWAREHAM

» Import Regimen (0 New)

» View Deleted Regimens °

» View Regimens EmeTosenic
PoTENTIAL

5 Admin

» Logout.

Administration

TWAREHAM

sreomaqu

svepinaQur

2007-08-14

2007-08-14

2007-08-14

Comments

quikLirks
:

O visiming

RespoNse

AccepTED

accest
reeer C

sccepr O
recr ©

Submit

Figure 4.32: Screenshot: View Proposals

119

4.6 Database Design

To implement the Entity objects that were described in Section 4.3 and used in pre-
vious sections, we have designed a database for our system consisting of 18 schemas.
The relationships among these schemas, as well as their associated Entity objects,
is shown in Figure 4.33. As we can see from this figure, an Entity object may be
mapped onto a collection of several schemas.

The description of each schema is given below. Each schema consists of a collection
of attributes, where each attribute has an associated basic datatype. In each schema
the attribute that is the primary key is bold faced and a foreign key attribute is
italicized. An attribute is both a primary and a foreign key if it is bold faced and
italicized. A short description will be given at the end of each schema for any attribute
marked by a star (*). Schemas are listed alphabetically by the objects they are

associated with as follows:
e Administrator

— Administrator (ProposallD: integer, CreatorUsername: string, Status*:
enum, CreationDate: date/time, Comments: shling, Category: string, Ac-
ceptanceCriteria: integer)

Status*: Status can be pending, rejected, or accepted.

— AddUserProposal (ProposalID: integer, Username: string)

— DeleteUserProposal (ProposallD: integer, Username: string)

— ChangeEmetogenicityPotentialProposal (ProposallD: integer, DrugID: in-
teger, Level: integer, DoseUpperLimit: integer, DoseLowerLimit: integer)

120

£ Patient Prescription

i Patient

Administrator

|

Figure 4.33: Database Entity-Relationship Diagram

121

— ChangeChemoDrugNameProposal (ProposallD: integer, DrugID: integer,

NewName: string)
e Antiemetic

— RegimenAntiEmetics(DatabaseGrouplD: integer, TradeName: string, Gener-

icName: string, Dose: float, Route: string)
e ChemoDrug

— ChemoDrug (DruglID: integer, Agent: string)

— EmetogenicityPotential (DrugID: integer, Level: integer, DoseUpperLimit:

integer, DoseLowerLimit: integer)
o Patient

— Patient (DatabasePatientId: integer, FirstName: string, LastName:
string, MCPNumber: string, Gender: string, Birthday: date/time, Stree-

tAddress: string, City: string, Province: string, PostalCode: string)

e Physician

¢
— Physician (Username: string, Password: string, LicenseNumber: string,
FirstName: string, LastName: string, DateAdded: date/time, EmailAd-

dress: string, Active*: boolean)

Active*: Only physicians for which attribute active is set to true can use

the system.

122

e Prescription

— PrescriptionEvent (DatabasePrescriptionID: integer, DatabaseP ID:

integer, DatabaseRegimenID: integer, CycleNumber: integer, Prescription-
Date: date/time, Comments: string, PhysicianUsername: string, DoseRe-
duce: integer, Cancelled: boolean, CancelledBy: string, CancellationDate:
date/time)

— Prescription (DatabasePrescriptionID: integer, DrugN : string, Calcu-

latedDose: float, PrescribedDose: float)

— BioPhysicalParameters (DatabasePrescriptionID: integer, Height: integer,
Weight: integer, CalculatedBSA*: float, UsedBSA: float)
CalculatedBSA*: BSA is Body Surface Area, calculated on basis of patient

height and weight (see Section 4.4.1.3 for details).

— PrescriptionAntiEmeticsDose (DatabasePrescriptionID: integer, DrugName:

string, DrugDose: float, DrugRoute: string, Frequency: string)

o Regimen

— Regi (DatabaseRegi! Id: integer, Regi Name: string, Username:
string, DateE: 1: date/time, C string)
— Regi S (DatabaseRegi ID: integer, PhysicianUsername:

string, CreaterLicenseNumber: string, Scope*: enum, View*: boolean,

CreationDate: date/time)

Scope*: scope can be public, private or default.

123

View*: view is true if regimen has been viewed by physician, and false
otherwise.

— AntiEmeticsGroup (DatabaseGrouplD: integer, DatabaseRegimenID: in-

teger, GroupName: string)

— RegimenChemoDrugs (DatabaseRegis Id: integer, DrugID: integer, Quan-

tity: float, Measure: string, MaxDose: float, Instructions: string, Fre-

quency: string, Route: string)

4.7 Summary: Implications for Medical Informat-
ics Development

‘We have learned the following lessons in the course of designing our system:

o When designing medical systems, a key to success is to pay attention to both
the workflow and the interface of the new system. Attention to workflow for the
computerization of healthcare is important because of its user guided acceptance
nature (see Section 6.1). This will involve the physician champion who will

{
both ensure that the new system mimics the old s};stem and guide workflow
and interface design decisions of the new system. Moreover, where possible,
developers themselves should observe the existing workflow. In doing this on
our own system, we recognized that much of the system design consists of
guidelines rather than rigid requirements; physicians tend to break the rules in
the interest of patient care and any requirement can rapidly become a guideline

which can be ignored at doctors’ discretion. Hence, a flexible workflow and

124

interface is very important for a successful computerization of healthcare.

e Our second lesson is based on what we have noticed while computerizing a
small healthcare workflow, i.e., chemotherapy. Our experience on this project
suggests that focusing on a small healthcare workflow has benefits over working

on a larger and more general system:

— We can pay attention to and capture the details of the existing workflow in

a much better way that we can do it for a larger, more complex workflow.

— Though keeping it small results in the system operating under the Small
Organizational Model, which is a problem because of limited resources, by
adopting the democratic model, we can get around this resource problem
to a large degree.

— Last but not least, because we are dealing with a small and focused user
group with very well-defined needs and tasks, this approach allows us to

map system evolution much further forward into the future.

From the above, it is obvious that having one or more physician champions involved in
the design process is very important. Although it is desira{)le that wherever possible
computer literate physicians be involved in the design process, this level of computer
literacy should be fairly high. Physicians with little knowledge of computers can ac-
tually be dangerous to the design process, as they may insist on certain decisions that
they believe are correct based on their limited experience, and they may accidentally
limit the design process by omitting features that they believe (on the basis of their

limited experience) are too difficult to put into the system.

125

‘We make following conjectures based on the lessons given above:

e Conjecture 1: Our “aim to small workflow” philosophy in conjunction with

the democratic model will work in other focused healthcare organizations.

Conjecture 2: Our “aim to small workflow” philosophy leads to a “bottom-up”

1o 1 1th

for overall ization of the h organization: Instead

of starting computerization for all departments of a healthcare organization at
once, one should instead develop a collection of carefully selected focused groups
within that organization that cover the range of possibilities of variation in the

whole system and from there develop the whole system.

Conjecture 3: In this thesis, we viewed several mechanisms for involving physi-
cian champions in the system development process. Our mechanism of choice
has been face-to-face meetings. However, more flexible schemes are possible.
For instance, one can have an on-line forum structure which can be used for
discussion on different screens or as an error reporting tool. We implemented
such a structure at the early stage of the project. Though we did not use it, we

conjecture that in si ions where r ive chdmpions must be involved

and their schedules do not allow frequent face-to-face meetings; such a system

may work well.

Conjecture 1 brings up an interesting point: does the democratic model works as well

for software systems in organizations other than h

where instead of having

free agents like physician, we have more traditional-type employees? This will be

addressed more in Chapter 7.

126

Chapter 5

System Development

In this chapter we will describe the overall software architecture and technologies
underlying the implementation of our system as described in Chapter 4. We realize
that this design may be implemented differently relative to more advanced current
technologies or technologies that will evolve in future. However, we wish to describe
the choices we have made and the justification of these choices not only as documen-
tation of our system, but also as an example of how such technologies choices should
be made with respect to a medical informatics system. After a brief discussion of the
development process (Section 5.1), we will describe the MVC model (Section 5.2).
‘We will then move on to the various technologies used in this system (Section 5.3),
where we will describe both the available options and evaluate these options for their
suitability for medical informatics software. Finally, we will have a section on the

lessons learned during system development (Section 5.4).

127

5.1 Development Process

As the Spiral model (Section 2.3.2.4) was selected for the development of the system,
the breakdown of system tasks in the initial planning phase into single-user fea-

tures and multi-user features was helpful in dividing the system into subtasks. First,

single-user features were developed and after the ful devel of singl
features, multi-user features were added to the system. Each iteration included the
initial planning, requirement gathering, design, development, testing, and evaluation

phases as shown in Figure 5.1.

5.2 Development Model

In this section, we will discuss the overall system development model. As this system
is web-based, after a brief introduction to web based technologies, we will describe
different models and evaluate them.

Consider the evolution of the web and its relationship to the software development
model [66]. In the early days of the web, web pages were only used as a source of
information. They were developed as static HTML pages, yhich were accessible over

the internet. In the past few years web de tools and technologies like J2EE,

which is used to execute Java applications on web servers, have enabled developers
to design multi-tier web applications for large organizations. Web pages have now
become dynamic entities that allow the input and display of information and can
be created or modified dynamically. Moreover, these web pages function as forms,

interacting with deeper logic in the system.

128

Initial Planning

Requirement
Gathering
Analysis and
Design
Development

Deployment

Figure 5.1: Spiral Development Model

129

As we see above, the evolution of web based systems has gone from static pages
to a fusion of display pages, which may be dynamic, and underlying code. This is
managed by the use of multi-tier models. There are two such tier models: the 2-
tier model, and the 3-tier model. The 2-tier model naturally models a distributed
application. A distributed application is naturally split into two layers: the interaction
layer and the processing layer. The interaction layer is used as the interface for the
user, where it displays data and receives commands from the user, translating data
or commands received from the user and delegating them to the processing layer.
The processing layer processes data and sends it back to the interaction layer. For

many applications, a 2-tier model is suffici but if ing data in the

layer is complex then we should split the processing layer further into two more
layers: the business logic layer and the data access layer, where the business logic
layer encompasses all processing and the data access layer handles the transfer of
data in and out of the database. The resulting three-layer approach is used in the
Model-View-Controller (MVC) model of system development, where the developer
separates functions associated with data (Model), user interface (View) and business
logic (Controller) into three different layers. As healthcare qxgmizatinns often involve
complex data processing, we are using the MVC model as the development model of

our project.

5.3 Technology Decisions

Given our chosen devel model, fall under four compo-

nents. We need a web development framework for building under MVC model, an

130

IDE to manipulate things easily, a database, in order to store and access information
effectively, and a web server to run the application. In this section, we will list the
choices for each of these four components and then see which are most appropriate

for our project.

5.3.1 Development Framework

There have been many web development frameworks created under the scope of MVC
modeling. Every development framework has its primary advantages which force
developers to use the MVC model in web application development. Along with this
primary advantage, each framework has its own set of advantages and disadvantages.
In this section we will discuss the two major web development frameworks, Jakarta
Struts and the Spring MVC Framework. Note that both of those frameworks are
based on J2EE technology. We will look at the advantages and disadvantages of
these frameworks, and we will discuss which framework is best for the development
of our chemotherapy prescription system.
5.3.1.1 Jakarta Struts ’
)

Jakarta Struts [4] is an open source project by the Apache Software Foundation. It
is a Java implementation of the MVC model. This project was originally created by
Craig McClanahan, but it was later taken over by the open source community. Struts
provides additional benefits, offering a collection of utilities to handle many of the
most common tasks of web application development.

Jakarta Struts offers the following advantages during application development
66, 29, 28]:

131

1. Ci lized XML Ci ation: Most ion values are part of

XML instead of being hard coded in Java files. This helps developers to con-

centrate on development tasks rather than caring for the system layout.

N

Struts Tags: Struts provides custom tag libraries for HTML forms, which can

implement iteration on different types of data structures, e.g., arrays of objects.

(]

Form Validation: Struts offers an additional layer of form field validation,
which is used to validate the form data before any type of processing in the
business logic layer. This extra layer helps in breaking down the application
into different components and also makes it faster, as validation is done before

any type of processing is done on form values.

IS

. Consistent Approach: Struts enforces a i MVC h through:

out the web application.

o

Developer Support: Struts has a relatively larger user community and a large

knowledge base, both on the web and in the form of books.

o

Testability: Testing can be performed in Struts using StrutsTestCase, an in-

built unit testing facility to test different objects in the system [64].

=¥

IDE Support: Struts has a lot of IDE support and even has IDEs built on

top of it (see Section 5.3.2).

The major disadvantage of the Struts framework is that Struts is relatively hard to
understand for a new developer. It has a steep learning curve, as the developer needs

to know both Java Server Pages (JSP) [72], a Java technology to dynamically generate

132

HTML and XML, and Servlet [73], which can run Java code on the server and send

HTML pages to a browser, before learning the struts framework.

5.3.1.2 Spring MVC Framework

The Spring MVC framework [33] is also an open source framework for the Java plat-
form. It was first developed by Rod Johnson, and was first released under an Apache
2.0 license in 2003. The Spring framework provides a fully functional MVC module
for web application development. The Spring MVC framework provides the following

advantages [33]:

1. Testability: Spring allows easy testing with Spring Mocks, which is an inbuilt

unit testing facility used to test objects in the system

L

Highly configurable: Spring is designed in such a way that every piece of logic
and functionality is highly configurable. This makes it capable of integrating

effortlessly with other popular frameworks.

B

JSP tag library (also known as the Spring tag library): Spring provides
a comprehensive set of tags for handling form eleménts when using JSP and
Spring Web MVC. Each tag provides support for the set of attributes of its
corresponding HTML tag counterpart, making the tags familiar and intuitive

to use.

The major disadvantage of the Spring MVC framework is that as the Spring MVC
framework is relatively new, it has a comparatively smaller user community and fewer

resources, such as books and tutorials.

133

5.3.1.3 Evaluation of Struts and Spring frameworks

We have seen that both MVC frameworks have advantages and disadvantages at-
tached to their usage. As the Spring framework is relatively new and has a smaller
user community and less support for the developers, the Struts framework seems like
a rational choice for an academic project. Moreover, for large applications, Struts
enforces MVC, which is helpful in the division of applications into different layers
and best for an iterative development approach such as the Spiral model (see Section
2.3.2.4), which was used for this project. Hence, we will use Struts as a development

framework for the development of our chemotherapy prescription system.

5.3.2 Development IDE

A highly encouraging aspect of Struts is it’s massive support from different IDEs,
including Eclipse, NetBeans, IBM WebSphere, Borland JBuilder X, Struts Console
and Struts Studio [76]. Out of these the most popular are Eclipse! and NetBeans.
Both NetBeans and Eclipse offer several wizards to automate the process of develop-
ment and simplify the complex struts environment. Netbeans has a gentler learning
curve than Eclipse. However, Eclipse is famous because of its light weight, i.e., min-
imal usage of memory and processing time. Moreover, Eclipse has great support for
unit testing, i.e., the testing of individual classes or collections of classes in isolation.
Given the benefits of Eclipse over NetBeans, Eclipse is the natural choice for the

development of our chemotherapy prescription system.

1Eclipse alone does not support Struts, but Eclipse with the plug-in MyEclipse makes it the most
popular IDE used for the Struts development framework. MyEclipse was developed in 2003 and has

continuously improved in each version [16].

134

5.3.3 Database

Though there are many available database technologies, we have restricted our com-
parison to two of the most popular, MySQL [48] and Oracle [55]. MySQL is selected
for comparison because it is the best free, i.e., open source, database and Oracle
because it is the best commercially-available database.

The Oracle database is a full featured database engine that is well known for its
security and performance and is an obvious choice for any large application where
security and performance are primary concerns [57]. Moreover, due to it’s built-in
support for Java, developers can develop stored procedures, triggers, and functions
that can be executed in the database. On the other hand, MySQL, a free open source
database, offers most of the services that Oracle provides and also provides security
in terms of individual column locking. For any application, such as healthcare, that
has a strong need for security we recommended Oracle; however, as we are working
on an academic project, where cost is more important than security, a free database

like MySQL is more appropriate for our project.

5.3.4 WebServer)

There are many available web-servers, but we have selected the two most commonly
used web servers that support J2EE for comparison, namely JBoss [62] and Apache
Tomcat [4]. The basic difference between these two servers is that JBoss is a complete
Java application server; it supports EJB (Enterprise Java Beans) [71], is a compo-
nent architecture for the development and deployment of object-oriented, distributed,

enterprise-level applications, and also includes the Tomcat server. On the other hand,

135

Apache Tomcat is used for the support of Java Servlet and Java Server Pages. Apache
Tomcat was chosen for our chemotherapy prescription system due to its faster load
time and lower memory usage. Otherwise, both servers have similar features except

that JBoss is capable of running EJBs, which we are not using in this project.

5.4 Summary: Implications for Medical Informat-

ics Development
We have learned the following lesson in the course of developing our system:

e The MVC model is the most widely used development model in web applica-
tions. It is also the most appropriate for medical informatics as well. Due to the
continuously evolving health field, the MVC model makes it easier for an en-
terprise or software packager to continually evolve an application as new needs
and opportunities arise. Moreover, medical informatics tools and applications
are usually complex systems. For such systems the clear division of the system
into layers under MVC model is very important and }\?lpful to the development

and maintenance of the system.

® There are factors affecting technology choices in medicine. Given that we want
to ease acceptance and have the familiar look and feel of older systems, technolo-
gies should be chosen to be consistent with those used by these older systems.
Moreover, there are additional factors related to medical technology in general
and the small organizational setting. Security is paramount, regardless of what

level of organization you are working with and in the small organizational set-

136

ting the technology must be able to function semi autonomously and be cheap

because of limited resources.

During the system devel process, physici h i can still be a guide to

technology choices. The advice of physicians is useful to the extent that it helps you
find those factors in the workplace environment that dictate these choices. These
factors may involve types of technologies physicians are more familiar with and are
more comfortable using. However, we should pay attention to physician advice on
technology to the extent that the physician’s knowledge and experience does not

accidentally hamper the development process (see Section 4.7).

137

Chapter 6

System Acceptance and

Implementation

In Chapters 4 and 5, we discussed the design of our chemotherapy prescription system
and the various technologies used during the development of the system. We observed

how the development of a software tool for a healthcare organization is different from

similar de: for other organizations and requires special considerations (see

Section 2.2.1.4). Like other software devel phases, the i ion of such

& system in a target workplace is also affected by these faclors.

Though, as shown in Chapter 5, we have fully implemented and tested the system
described in Chapter 4, we have not been able to complete the user acceptance process,
i.e., the system has not yet been implemented in the clinical setting or tested by
clinicians not involved in the development process. However, this chapter contains
our notes on how this process should proceed. We will first discuss different models for

acceptance of new technologies relative to types of user communities (Section 6.1), and

138

we will see which model is applicable to the acceptance of medical informatics systems.
We will then discuss how a medical informatics system should be implemented in any
healthcare organization (Section 6.2). Finally, we will discuss different lessons learned

for medical informatics software in general (Section 6.3).

6.1 System Acceptance Model

In this section we will first discuss models for the acceptance of new technologies
relative to the different types of user communities, i.e., user-driven acceptance vs.
organization-driven acceptance and then discuss which model is most appropriate for
healthcare organizations.

The most popular acceptance model in existence is TAM, developed by Davis in
1989 [22], which was explicitly phrased in term of users in general. However, for
the medical informatics environment we would like to distinguish between two forms
of TAM: the user-driven acceptance model, which corresponds to the original TAM

model by Davis, and an organization-driven model [58] ded from the

original TAM model: ‘

e User-Driven Acceptance: This model describes different factors that are
involved in the adoption of new software by individuals. The two main factors
that are identified in the model are perceived usefulness and perceived ease of
use, Where perceived usefulness is defined by the model as: “The degree
to which a person believes that using a particular system would enhance his or
her job performance.”[22, pp. 320] and perceived ease of use is defined as:

“The degree to which a person believes that using a particular system would be

139

free of efforts” [22, pp. 320]. In the real world, different constraints that are
applied to the TAM include time constraints, limited abilities, organizational
limits, and unconscious habits, all of which affect the individual acceptance of

new technology [7].

Organization-Driven Acceptance [58]: As noted above, different constraints

on TAM also include organizational limits. The acceptance of a new software
or system by an organization is mostly dependent on the management or IT
department of the company, who dictate to employees the adoption of that new
system. Individual employees consent is overridden by the decree of top man-
agement in the organization, who are responsible for allocating resources, or the
IT division who are more familiar with the computer field and are considered in
a better position to make a decision on the selection of appropriate systems to
bring about the desired changes. Hence, corporate culture has a major impact

on the decision of individual users towards the adoption of new systems.

One could further sub-divide organization-driven acceptance, but this is not relevant

for the purpose of our thesis. P

Many studies have extended, and used, TAM in different types of systems and

different fields which also include the ination of healthcare profe under

the TAM model [70, 18, 17]. Unlike other organizations, where decisions are made
by management and the IT department and employees follow what management

decides, healthcare organizations are different due to the fact that decisions about

e Bl

the selection of any new are ind dent of organizational or

IT divisions, preferring instead to use only those systems that are proven to be helpful

140

for enhancing the process of patient care (see Section 2.2.1.4). Hence, the selection of
a new tool/software for a physician falls under the individual user acceptance model,
such that the major factors that affect this decision are perceived usefulness, perceived

ease of use, and the values of the medical profession.

6.2 Implementing Medical Informatics Software in

the Workplace

In the previous section, we noted that healthcare organizations are different from
many other organizations, in that, acceptance of a new system by healthcare organi-
zations is greatly dependent on the approval of the users of the system. In this section
we will discuss how physicians should be made part of the development process in the
hope that they will champion the resulting system. The adoption process falls under
two parts: software adoption and implementation, which we will discuss in separate

subsections.

6.2.1 Software Adoption ¢

As noted in Section 2.3.2, the initial stage of many software process models is get-
ting requirements from potential users of the system under development. For this
purpose, users are involved to educate the technology experts about their require-
ments. However, in the case of a medical informatics software development, what is
really required is a partnership between the developers and the users of the systems.

Here, users of systems may involve users other than physicians, e.g., pharmacists. In

141

that case, all types of users must be consulted in every phase of system development.
To better understand the system IT experts need to examine the target workplace
and watch how people interact with each other in order to make the system flexible
enough that it fully follows the actual healthcare workflow (see Section 3.1.4). More-
over, there is a need to involve all users of the system during the design decisions, so
that they all feel invested in the final solution. In our case, the development of the
chemotherapy prescription process, we involved physician champions not just in the
requirement gathering phase but in every development phase of the system, as seen

in previous chapters.

6.2.2 Software Implementation

For the implementation of the system in the target workplace, there is to our knowl-
edge no model available in the software engineering literature. Under the Spiral model
(see Section 2.3.2.4), which we are using for the development of our chemotherapy
prescription system, end users start evaluating different builds of the system from
the beginning of software development, but during the final implementation of the
system in the workplace we need to provide training to all'hsers, especially to users
who were not involved in the system evaluation process. After this training, there
are two ways to proceed: (1) have a system live date when users stop using the old
system and shift to the new system, or (2) have the system implemented in a trial

process'. If the workplace acceptance is organization-driven, setting up a specific im-

The second option is similar to beta testing [34], in that the new system operates in parallel
with the old system. However, in the case of beta testing the purpose is to establish correctness of

the new system, whereas here the purpose is to promote user acceptance.

142

plementation date is possible and is the easiest way to implement a system; however,

if the workplace has user-driven as in healthcare organizations, systems

should be implemented in a number of trials before the actual implementation of the
system. Here, the purpose is to make sure that the new system adequately deals with
all possibilities which are part of the healthcare workflow and ensure that the system
is error free before it is implemented. Otherwise, if users find errors, they will lose

confidence in, and stop using, the system.

6.3 Summary: Implications for Medical Informat-
ics Development

We have learned the following lesson in the course of preparing for the acceptance

and implementation of our system:

e As described in the lessons learned in Chapters 4 and 5, we chose represen-
tative physicians champions based on their knowledge. In the acceptance and
implementation phase, we need to involve every user (n)‘f the system. Given that
healthcare has user guided acceptance, getting a system accepted by all users
will then help with any problems with the acceptance from IT department and

bureaucracy.

After getting the whole user community involved, the next step is to make sure
not to lose them. Users can still reject the system if they lose their faith in
the system due to the wrong types of training or implementation methods. We

must make sure that software tools are error free before they are implemented.

143

Moreover, before implementation, running a system in trial mode parallel with
the existing system (rather than running the new system alone) can help in user
testing and can identify the problems without losing the faith of users on the

new system.

The role of physician champion at this point is now particularly critical; moreover,

it is mainly political. If the rep ive p! ions have been chosen

correctly, they are people who are deeply embedded in the user community and have
the political know-how and personal relationships that will ensure that the new system
is acceptable to the whole user community. Note how this situation is different from
the typical implementation of software in business organizations, where bureaucracy
and IT departments are in control and users have virtually no input or role in the

acceptance process.

144

Chapter 7

Conclusion and Future Directions

In this thesis, we have developed an on-line web-based system for chemotherapy
prescription. This system takes into account a number of factors that are involved in
the development of medical systems. In the course of developing this system, we have
proposed the concept of system operational models. We have noted that our system
falls under the Small Organizational Model, and we have proposed a way of dealing
with the associated problems of limited resources for maintenance and evolution in
the design of such a system. We have also described a number of lessons learned while
developing this system which are applicable both to develaping similar systems and
to developing medical software in general.

There are number of directions for future research. The most obvious of these

involve extensions to the system developed in this thesis:

o Different reporting tools can be added to the system, which will give people the
ability to analyze medical data. This process of adding reporting tools to the

system will need to go through another requirement gathering phase to collect

145

information about the types of report that the end users want from the system.

The system can be integrated to work with existing computerized systems and

latat It can be i 1 with existing patient or drug databases; it

could also be integrated with any existing pharmacy systems to aid sending
prescriptions in electronic form, providing appropriate legislation is put in place

(see Section 2.2.1.3).

Along with the reports for primary care, administrative and research-oriented

based reports can be generated from the patient and prescription databases.

As such reports are no longer primary-care related and will not be read by the

doctors themselves, we must i dataset anony to

ensure patient privacy (see Section 2.2.1.3).

More radical extensions of this system involve fundamental redesign. For example,
as mentioned in Section 4.7, medical workflow consists of guidelines rather than re-
quirements. Hence, we can attempt to build a much more free-form system, in which
not only the workflow which we have seen but the full variability of that workflow is
implemented in the system. This might also include a mate flexible user interface,

which physicians could i ding to their individual needs and preferences.

The work in this thesis also suggests a possible line of software engineering re-
search. We have identified what we believe to be a gap in current practice related
to system operational models. In particular, we have identified a type of system
(falling under the Small Organizational Model) which is not being handled well by
current software development practice. We have proposed one way to getting around

problems associated with this model, namely, the democratic model of system oper-

146

ation. However, as noted in Section 4.7, this model may not be applicable outside

of a user-oriented envi like that in health Hence we need to investigate
alternatives to the democratic model of system operation in healthcare system, eval-
uate the usefulness of these models outside healthcare, and further explore the full

spectrum of system operational models that exist in software applications in general.

147

Bibliography

[1] Allan, A. (2004) “Passwords Are Near the Breaking Point.” Gartner, Research
Note. http://www.indevis.de/dokumente/gartner passwords breakpoint

.pdf

[2] American Cancer Society. (2007) “What Is Chemotherapy And How Does It

Work?” http://www.cancer.org

[3] American Medical Network. (2006) “What is Chemotherapy?” http://wuw.

health.am
[4] Apache Software Foundation. (2007) “Struts.” http://struts.apache.org/

[5] Apache Software Foundation. (2007) “Apache Tomicat.” http://tomcat.

apache.org/

[6] Ash, J.S., Stavri, P.Z. and Kuperman G.J. (2003) “A Consensus Statement on

Considerations for a ful CPOE Impl ation.” Journal of the American

Medical Informatics Association, 10(3), 229-234.

148

[7] Bagozzi, R. P., Davis, F. D., and Warshaw, P. R. (1992) “Development and Test
of a Theory of Technological Learning and Usage.” Human Relations,, 45(7),

659-686.

[8] Basili, V.R. and Turner, A.J. (1975) “Iterative Enhancement: A Practical Tech-
nique for Software Development.” IEEE Transactions on Software Engineering,

1(4), 390-396.

[9] Bates, D.W., Leape, L.L., Cullen, D.J., Laird, N., Petersen, L.A., Teich, J.M.,
Burdick, E., Hickey, M., Kleefield, S., Shea, B., Vander, V.M., and Seger, D.L.
(1998) “Effect of Computerized Physician Order Entry and a team Intervention
on Prevention of Serious Medication Errors.” Journal of the American Medical

Association, 280(15), 1311-1316.

[10] Bell, D. (2001) Software Engineering, A programming Approach. (Third Edi-
tion). Addison Wesley; Reading, MA.

[11] Bobb, A., Gleason, K., Husch, M., Feinglass, J., Yarnold, P.R., and Noskin,
G.A. (2004) “The Epidemiology of Prescribing Errors, The Potential Impact of
Computerized Prescriber Order Entry.” Archives of Internal Medicine, 164(7),

785-792.

[12] Boehm, B.W. (1988) “A Spiral Model of Software Development and Enhance-

ment.” IEEE Computer, 21(5), 61-72.

[13] California Healthcare Foundation (2001) “A Primer On Physician Order Entry.”

http://www.chcf.org/documents/hospitals/CPOEreport . pdf

149

[14] Canada Health Infoway (2006) “BEYOND GOOD INTENTIONS: Accelerating
the Electronic Health Record in Canada.” A Policy Conference Held on June 11-
13, 2006 Montebello QC. http://www.infoway-inforoute.ca/Admin/Upload/

Dev/Document/Conference Executive Summary EN.pdf

[15] Canada Health Inforway (2007) “Canada Health Infoway.” http://www.infoway

-inforoute.ca/
[16] Carnell, J., and Harrop, R. (2004) Pro Jakarta Struts. Apress; Berkeley, CA.

[17] Chau, P.Y.K. and Hu, P. J. (2001) “Information Technology Acceptance by
Individual Professionals: A Model Comparison Approach.” Decision Sciences

32(4), 699-719.

[18] Chismar, W.G. and Wiley-Patton, S. (2003) “Does the Extended Technology
Acceptance Model Apply to Physicians.” in Proceedings of the 36th Hawaii

International Conference on System Sciences, IEEE Press; Los Alamitos, CA.

[19] Collen, M.F. (1970) “General requirements for a Medical Information System

(MIS).” Computers and Biomedical Research, 3(5), 393-406.

[20] Colpaert, K., Claus, B., Somers, A., Vandewoude, K., Robays, H., and Decruye-
naere, J. (2006) “Impact of computerized physician order entry on medication
prescription errors in the intensive care unit: a controlled cross-sectional trial.”

Critical Care, 10(1), R21.

150

[21]

[22]

(23]

[24]

23]

26]

27]

Cutler, D.M., Feldman, N.E., and Horwitz, R.J. (2005) “U.S. Adoption Of
Computerized Physician Order Entry Systems.” Health Affairs, 24(6), 1655~

1663.

Davis, F. D., (1989) “Preceived Usefulness, Preceived Ease of Use, and User

Acceptance of Information Technology.” MIS Quarterly, 13(3), 319-340

de Dombal, F.T., Leaper, D. J., Staniland, J.R., McCann, A.P. , and Horrocks,
J.C. (1972) “Computer-aided diagnosis of acute abdominal pain.” British Med-

ical Journal, 5804(2), 9-13.

Dennis, G. (2005) “GOING THE EXTRA MILE Interoperability is key to EHR
development in Canada” Healthcare Information Management and Communica-

tions Canada, 19(4), 44-46.

Evans, R.S., Pestotnik, S.L., Classen, D.C., Clemmer, T.P., Weaver, L.K., Orme,
J.F., Lloyd, J.F., and Burke, J.P. (1998) “A Computer-Assisted Management
Program for Antibiotics and Other Antiinfective Agents.” The New England

Journal of Medicine, 338(4), 232-238.

-
Floyd, C. (1984) A Systematic Look at Prototyping. In: Budde, R., Kuh-
lenkamp, K., Matthiassen, L., and Zllighoven, H. (eds.) “Appoaches to Proto-

typing.” Springer Verlag; New York. pp. 1-17.

Garets, D., and Davis, M. (2006) “Electronic Medical Records vs. Electronic
Health Records: Yes, There Is a Difference.” HIMSS Electronic Health Record

Committee. http://www.himssanalytics.org/docs/WPEMR EHR.pdf

151

(28] Goodwill, J. (2002) Mastering Jakarta Struts. Wiley; Indianapolis, IN.

[29] Goodwill, J., Hightower, R. (2004) Professional Jakarta Struts. Wiley; Indi-

anapolis, IN.

[30] Handler, T., Holtmeier, R., Metzger, J., Overhage, M., Taylor, S., and Under-
wood, C. (2003) “HIMSS Electronic Health Record Definitional Model Version
1.1" HIMSS Electronic Health Record Committee. http://www.himss.org/

content/files/ehrattributes070703. pdf
[31] Health Level Seven, Inc. “Health Level 7.” http://www.hl7.org/

[32] Jha A.K., Ferris T.G., Donelan K., DesRoches C., Shields A., Rosenbaum S.,
Blumenthal D. (2006) “How Common Are Electronic Health Records In The
United States? A Summary Of The Evidence.” Health Affairs (Project Hope),
25(6), 496-507.

[33] Johnson, R., Hoeller, J., Arendsen, A., Sampaleanu, C., Harrop, R., Risberg, T.,
Davison, D., Kopylenko, D., Pollack, M., Templier, T., Vervaet, E., Tung, P.,
Hale, B., Colyer, A., Lewis, J., Leau, C., and Eva.ns,,. R. “The Spring Frame-
work - Reference Documentation.” http://www.springframework.org/docs/

reference/

[34] Kaner, C., Falk, J., and Nguyen, H. (1999) Testing Computer Software. Wiley;

Indianapolis, IN.

152

35]

[36]

37)

38]

39]

[40]

[41]

Kaushal, R. and Bates, D.W. (2001) “Computerized Physician Or-
der Entry (CPOE) with Clinical Decision Support Systems (CDSSs).”

http://wuw.ahrq.gov/clinic/ptsafety/chap6.htm

Kohn, L.T., Corrigan, J.M. and Donaldson M.S. (2000) To Err Is Human:
Building a Safer Health System. Institute of Medicine, The National Academies

Press.

Kuperman G.J. and Gibson R.F. (2003) “Computer Physician Order Entry:

Benefits, Costs, and Issues.” Annals of Internal Medicine, 139(1), 31-39.

Kuperman, G.J., Teich, J.M., Gandhi, T.K. and Bates, D.W. (2001) “Pa-
tient Safety and Computerized Medication Ordering at Brigham and Womens
Hospital.” Joint Commission Journal on Quality and Patient Safety, 27(10),

509-521.

Laerum, H., Karlsen, T.H., Faxvagg, A. (2003) “Effects of Scanning and Elimi-
nating Paper-based Medical Records on Hospital Physicians Clinical Work Prac-

tice.” Journal of the American Medical Informatics Association, 10(6), 588-595.
;i

Langberg, M.L. (2003) “Challenges to implementing CPOE: A case study of a

work in progress at Cedars-Sinai.” Modern Physician, 7(2), 21-22.

Legislative Renewal Staff (2003) “Legislative Renewal-Issue Paper, Prescription
Drugs (Schedule F).” http://www.hc-sc.gc.ca/ahc-asc/alt formats/hpb-

dgps/pdf/legren/prescription-ordonnance.e.pdf

153

[42]

[43]

[44]

[45]

[46]

[47)

48]

Markle Foundation. (2005) “Linking Health Care Information: Proposed Meth-
ods for Improving Care and Protecting Privacy.” Working Group on Accu-
rately Linking Information for Health Care Quality and Safety http://www.

connectingforhealth.org/assets/reports/linking report 2 2005.pdf

Marion, J.B., David, E.G.,, and Thomas, J.H. (2003) “Leveraging IT to Improve
Patient Safety.” Yearbook of Medical Informatics of the International Medical

Informatics Association (IMIA).

Meditech. (2007) “MEDITECH Shaping the World of Health Care.”

http://www.meditech.com/

Middleton, B., Hammond, W.E., Brennan, P.F., and Cooper, G.F. (2005) “Ac-
celerating U.S. EHR Adoption: How to Get There From Here. Recommendations
Based on the 2004 ACMI Retreat.” Journal of the American Medical Informatics

Association 12(1), 12-19.

Miller, C. (2002) “Password Recovery.” http://fishbowl.pastiche.org/
archives/docs/PasswordRecovery.pdf

¢
Misys Healthcare Systems “Misys In the News.” http://misyshealthcare.com

/press+room/in+the+news.htm

MySQL AB. “MySQL The world’s most popular open source database.”

http://www.mysql.com/

154

(19]

50]

51

52

53]

54]

53]

[56]

Naqvi, S. (2003) Design and Implementation of a Web-Based Chemotherapy
Prescription System. B.Sc.h. Dissertation, Department of Computer Science,

Memorial University of Newfoundland.

National Academies. (2007) “Institute of Medicine of the National Academies.”

http://www.iom.edu/

National Association of Pharmacy Regulatory Authorities (NAPRA) (2007)

“Transfer of Authority to Fill P ipti by El ic Tr ission.”

http://www.napra.org/practice/electronic.pdf

Newfoundland and Labrador Medical Care Plan. (2007) “Medi-
cal Care Plan, Government of Newfoundland and Labrador - Canada.”

http://www.health.gov.nl. ca/mcp/

Odaka, T., Takahama, T., Wagatsuma, H., Shimada, K., and Ogura, H. (1994)
“A Visual Data Analysis System for the Medical Image Processing.” Journal of
Medical Systems, 18(3), 151-157.

Opis, (2006) “Clinical Freedom” Opus Healthcare Solutions, Inc. http://www.

opushealthcare. con/

Oracle Technology Network “Oracle Database 11g.” http://www.oracle.com

/technology/products/database/oraclellg/index.html

Perreault, L.E. and Metzger, J. (1999) “A pragmatic framework for understand-
ing clinical decision support.” Journal of Healthcare Information Management,

13(2), 5-21.

155

57]

58]

[59]

[60]

[61]

62]

(63)

Petri, G., (2005) “A Comparison of Oracle and MySQL.” SELECT Journal,
1st Qtr(1), 41-48.

Poku, K., Vlosky, R. (2003) “A Model of Marketing Oriented Corporate Culture
Influences on Information Technology Adoption.” Louisiana Forest Products
Development Center Working Paper no. 63. http://www.rnr.1lsu.edu/1fpdc/

publication/papers/wp62.pdf

Poon, E.G., Blumenthal, D., Jaggi, T., Honour, M.M., Bates, D.W., and
Kaushal, R. (2004) “From The Field, Overcoming Barriers To Adopting And
Implementing Computerized Physician Order Entry Systems In U.S. Hospitals.”

Health Affairs, 23(4), 184-190.

Potts, A.L., Barr, F.E., Gregory, D.F., Wright, L. and Patel N.R. (2004) “Com-
puterized Physician Order Entry and Medication Errors in a Pediatric Critical

Care Unit.” American Academy of Pediatrics, 113(1), 59-63.

Protti, D.J. (2005) “The Use of Computers in Health Care Can Reduce Errors,

Improve Patient Safety, and Enhance the Quality of Service - There Is Evidence.”
¢

http://wuw.connectingforhealth.nhs.uk/worldview /protti2

Red Hat Middleware. (2007) “JBoss Application Server.” http://www.jboss

.org/products/jbossas

Royce, W.W. (1970) “Managing the Development of Large Software Systems:

Concepts and Techniques.” In: WESCON Technical Papers, Western Electronic

Show and Convention; v. 14 Reprinted in Proceedings of the Ninth International

Conference on Software Engineering, (1989) ACM Press, pp. 328-338.

156

[64] Seale, D. (2004) “StrutsTestCase for JUnit v2.1.3” http://strutstestcase

.sourceforge.net

[65] Sengstack, P.P. and Gugerty, B. (2004) “CPOE Systems: Success Factors and

Impl ion Issues.” Healthcare Information Management, 18(1), 36-45.

[66] Shenoy, S., and Mallya, N. (2004), Struts Survival Guide: Basics to Best Prac-

tices. ObjectSource LLC; Austin, TX.

[67) Shortliffe, E.H., Perreault L.E., Wiederhold, G., and Fagan, L.M. (2001), Medical
Informatics, Computer Applications in Healt Care and Biomedicine (Second

Edition). Springer; New York.

(68] Sitting, D.F. and Stead, W.W. (1994) “Computer-based physician order entry:
the state of the art.” Journal of the American Medical Informatics Association,

1(2), 108-122.

[69] Sommerville, I., (2001) Software Engineering (Sixth Edition). Addison Wesley;

Reading, MA.

[70] Succi, M.J. and Walter, Z.D. (1993) “Theory of User Acceptance of Information
Technologies: An Examination of Health Care Professionals.” in: Proceedings of

the 32nd Hawaii International Conft on System Sciences, IEEE C

Society; Big Island, HI.

[71] Sun Microsystems, Inc. “Java Platform, Enterprise Edition (Java EE) Enterprise

JavaBeans Technology.” http://java.sun.com/products/ejb/

157

[72] Sun Microsystems, Inc. “J2EE JavaServer Pages Technology.”

http://java.sun.com/products/jsp/

(73] Sun Microsystems, Inc. “J2EE Java Servlet Technology.”

http://java.sun.com/products/servliet/

[74] Sun Microsystems, Inc. “Desktop ~ Java JavaBeans.”

http://java.sun.com/products/javabeans/

[75] Sweeney, L., (2001) Computational Disclosure Control for Medical Microdata:

The Datafly System. PhD Thesis, Massachusetts Institute of Technology.

[76] Taylor, A. (2003) J2EE and Beyond: Design, Develop, and Deploy World-Class

Java Software. Prentice Hall; Upper Saddle River, NJ.

[77) Teich, J.M., Osheroff, J.A., Pifer, E.A., Sittig, D.F., Jenders, R.A. (2005) “Clini-

cal Decision Support in El ic Prescribing: R and an Action

Plan.” Journal of the American Medical Informatics Association 12(4), 365-376.

[78] The 2001 Menucha Conference List. (2001) “Considerations Concerning Com-
p
puterized Physician Order Entry Implementation.” http: //ehr .medigent .com/

assets/collaborate/2004/04/01/CPOEmenucha 2001 . pdf

[79) VHA Pharmacy Benefits Management Strategic Healthcare Group and Medical
Advisory Panel. “Protocol for the Use of Antiemetics to Prevent Chemotherapy-
induced Nausea and Vomiting.” http://www.pbm.va.gov/monitoring/

antiemeticdosing.pdf

158

[80] William, V.M. (1978) “MYCIN: A knowledge-based consultation program for
infectious disease diagnosis.” International Journal of Man-Machine Studies,

10(3), 313-322.

159

5263 il

	0001_Cover
	0002_Inside Cover
	0003_Blank Page
	0004_Abstract
	0005_Table of Contents
	0006_Table of Contents v
	0007_Table of Contents vi
	0008_Table of Contents vii
	0009_Table of Contents viii
	0010_List of Tables
	0011_List of Figures
	0012_List of Figures xi
	0013_List of Figures xii
	0014_Chapter 1 - Page 1
	0015_Page 2
	0016_Page 3
	0017_Page 4
	0018_Page 5
	0019_Page 6
	0020_Chapter 2 - Page 7
	0021_Page 8
	0022_Page 9
	0023_Page 10
	0024_Page 11
	0025_Page 12
	0026_Page 13
	0027_Page 14
	0028_Page 15
	0029_Page 16
	0030_Page 17
	0031_Page 18
	0032_Page 19
	0033_Page 20
	0034_Page 21
	0035_Page 22
	0036_Page 23
	0037_Page 24
	0038_Page 25
	0039_Page 26
	0040_Page 27
	0041_Page 28
	0042_Page 29
	0043_Page 30
	0044_Page 31
	0045_Page 32
	0046_Chapter 3 - Page 33
	0047_Page 34
	0048_Page 35
	0049_Page 36
	0050_Page 37
	0051_Page 38
	0052_Page 39
	0053_Page 40
	0054_Page 41
	0055_Page 42
	0056_Page 43
	0057_Page 44
	0058_Page 45
	0059_Page 46
	0060_Page 47
	0061_Page 48
	0062_Page 49
	0063_Page 50
	0064_Page 51
	0065_Page 52
	0066_Page 53
	0067_Page 54
	0068_Page 55
	0069_Page 56
	0070_Page 57
	0071_Chapter 4 - Page 58
	0072_Page 59
	0073_Page 60
	0074_Page 61
	0075_Page 62
	0076_Page 63
	0077_Page 64
	0078_Page 65
	0079_Page 66
	0080_Page 67
	0081_Page 68
	0082_Page 69
	0083_Page 70
	0084_Page 71
	0085_Page 72
	0086_Page 73
	0087_Page 74
	0088_Page 75
	0089_Page 76
	0090_Page 77
	0091_Page 78
	0092_Page 79
	0093_Page 80
	0094_Page 81
	0095_Page 82
	0096_Page 83
	0097_Page 84
	0098_Page 85
	0099_Page 86
	0100_Page 87
	0101_Page 88
	0102_Page 89
	0103_Page 90
	0104_Page 91
	0105_Page 92
	0106_Page 93
	0107_Page 94
	0108_Page 95
	0109_Page 96
	0110_Page 97
	0111_Page 98
	0112_Page 99
	0113_Page 100
	0114_Page 101
	0115_Page 102
	0116_Page 103
	0117_Page 104
	0118_Page 105
	0119_Page 106
	0120_Page 107
	0121_Page 108
	0122_Page 109
	0123_Page 110
	0124_Page 111
	0125_Page 112
	0126_Page 113
	0127_Page 114
	0128_Page 115
	0129_Page 116
	0130_Page 117
	0131_Page 118
	0132_Page 119
	0133_Page 120
	0134_Page 121
	0135_Page 122
	0136_Page 123
	0137_Page 124
	0138_Page 125
	0139_Page 126
	0140_Chapter 5 - Page 127
	0141_Page 128
	0142_Page 129
	0143_Page 130
	0144_Page 131
	0145_Page 132
	0146_Page 133
	0147_Page 134
	0148_Page 135
	0149_Page 136
	0150_Page 137
	0151_Chapter 6 - Page 138
	0152_Page 139
	0153_Page 140
	0154_Page 141
	0155_Page 142
	0156_Page 143
	0157_Page 144
	0158_Chapter 7 - Page 145
	0159_Page 146
	0160_Page 147
	0161_Page 148
	0162_Page 149
	0163_Page 150
	0164_Page 151
	0165_Page 152
	0166_Page 153
	0167_Page 154
	0168_Page 155
	0169_Page 156
	0170_Page 157
	0171_Page 158
	0172_Page 159
	0173_Blank Page
	0174_Blank Page
	0175_Inside Back Cover
	0176_Back Cover

