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Abstract 

This thesis deals with the exploration and the development of Inverse Electron­

Demand Diels-Alder (IEDDA)-based methodologies to access 6H-dibenzo[b,d]pyran-6-

ones (DBPs) and their application in target-oriented synthesis. Due to its importance 

throughout this dissertation, the Diels-Alder reaction is discussed in some detail in 

Chapter 1. This is followed by a discussion of the evolution of research on the IEDDA 

reaction in the Bodwell group. A detailed investigation of the methods that were 

developed to produce DBPs is described in Chapter 2 and Chapter 3. Furthermore, the 

scope of these methodologies was demonstrated by applying these approaches to the 

synthesis of natural and non-natural products. In this regard, their use in the synthesis of 

elaborated chiral pyrenophanes (non-natural products) is presented in Chapter 4, and their 

application in the synthesis of natural products such as Cannabinol and 

Defucogilvocarcin V is displayed in Chapter 2 and Chapter 5. 

6H-dibenzo[b,d]pyran-6-one 
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Chapter 1 

Introduction 

The German chemist, Prof. Otto Diels and his student, Kurt Alder published a 

landmark mticle in 1928,1 which ushered in a new era in the field of organic chemistry. 

This mticle describes the [ 4+2] cycloaddition reaction between cyclopentadiene (1) and 

1 ,4-benzoquinone (2) to give adducts 3 and 4 (Scheme 1.1 ). Although there were some 

reports of [ 4+ 2] cycloadditions prior to this work, 2 it was Diels and Alder who properly 

identified the products that were produced from the above reaction. This discovery 

provided the synthetic community with the spectacular "Diels-Aider reaction," and for 

their contributions, these two eminent chemists were awarded the Nobel Prize in 1950. 

Over the years, the Diels-Alder reaction has progressed enormously to equip the synthetic 

organic chemistry conmmnity with an invaluable tool. Its ability to rapidly access 

complex products with a high degree of regio- and stereoselectivity make this reaction 

one of the most useful organic transfonnations to the practitioners of organic synthesis. 

0 H 0 

0 9 0 ¢ a;} + 

0 0 

2 3 4 

Scheme 1.1. First report of the [ 4+2] cycloaddition by Otto Diels and Kurt Alder. 



1.1 Concepts of the Diels-Alder reaction 

1.1.1 Effect of the conformation of the diene 

In general, the Diels-Alder reaction involves a cyclic or acyclic 1 ,3 -butadiene 

system (the diene or 4n component) and an alkene or alkyne (the dienophile or 2n 

component). The conformation of the diene is absolutely critical for the success of the 

Diels-Alder reaction. The most favourable confom1ation of the diene for Diels-Alder 

reaction is the s-cis comformation. Therefore, any substituent(s) or structural feature that 

favours s-cis confonnation facilitates the reaction. On the other hand, substituent(s) or 

structural features that disfavor the s-cis confonnation have the effect of retarding the 

reaction significantly. For example, cis-piperylene (5), an acyclic diene substituted at C 1 

position, is known to react with maleic anhydride (7) to give a mixture of adducts 8 and 9 

(1 :1) in very poor yield (4%),3 whereas the corresponding trans-piperylene (10) afforded 

the Diels-Alder adduct 11 as a single diastereomer in quantitative yield (Scheme 1.2).4 In 

the case of C2-substituted butadienes, the confonnational equilibrium typically favours 

the s-cis isomer, thereby promoting the Diels-Alder reaction (Scheme 1.3). For both C 1-

and C2-substituted dienes, steric effects are responsible for the conf01mational 

preferences. 
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Scheme 1.2. Diels-Alder reactions of cis- and trans-piperylene with maleic anhydride. 

The conf01mational requirement is more emphatically exemplified when the diene 

has a fixed conformation. Dienes 14 and 15 have a fixed transoid geometry (Scheme 

1.3), and thus no cycloadditions are observed. In contrast, dienes with an enforced s-cis 

confonnation, such as cyclopentadiene (23), 9, I 0-dimethylanthracene (22) and 1,2-

dimethylenecyclohexadiene (21) are especially reactive. 

H H 

;I'H R'¢H 
H ~ ~ H 

H H 

12 13 

crCH2 co 
14 15 

Scheme 1.3. Conformations of some dienes 
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The difference in reactivity of a variety of dienes with maleic anhydride and 

tetracyanoethylene in comparison to butadiene is given in Table 1.1.4 Rate increases of 2-

6 orders of magnitude are achieved upon fixing the conformation of the diene. 

Entry 

2 

3 

4 

5 

6 

Diene 

( 
16 

Me'( 
17 

Me 

( 
18 

Me y 
MeA 

19 

OMe 

( 
20 

ex 
21 

Relative rate of 
reactivity with 
maleic anhydride 
(at 30 oc) 

1.0 

2.3 

3.3 

4.9 

12.3 

110 

Relative rate of 
reactivity with 
tetracyanoethylene 
(TCNE) [at 20 oq 

1.0 

2.2 

4.0 

46.8 

1150 

2370 
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7 

8 

Me 

c¢o 
Me 

22 

0 
23 

234 2,500,000 

1350 82900 

Table 1.1. Relative rates of reactivity of several dienes with maleic anhydride 

and TCNE (adapted from reference 4). 

1.2 Stereochemistry of the Diels-Alder reaction 

1.2.1 Diastereoselectivity 

The Diels-Alder reaction, in general, fo llows Alder's rule. 5 According to Alder 

and Stein, the major product of the cycloaddition results from maximum accumulation of 

double bonds participating in the reaction, as well as secondary interactions of 

substituents present on the dienophile. Woodward and Hoffmann attributed endo 

preference of the Diels-Alder reaction to the secondary orbital interactions of p -orbitals 

that are not involved in the formation of new sigma bonds.6 For example, 

cyclopentadiene reacts with maleic anhydride to afford the product 25, which arises from 

the endo transition state, almost exclusively(> 98.5%). The thermodynamically favoured 

product 27, which is produced from the exo transition state 26 is obtained only in 

negligible quantities(< 1.5%) [Scheme 1.4].7 While there can be no doubt that endo 

transition states are typically lower in energy than the corresponding exo transition states, 

there has been a long-lasting debate on whether secondary orbital interactions are 
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responsible for this or whether they even exist. Though there is some computational 

suppmt for the notion of secondary orbital interactions favoring en do products, 8 other 

factors such as solvent effects, steric interactions, electrostatic forces, etc. ,9 have been 

more convincingly linked to the general preference for the endo transition state. 

23 
diethyl ether 

~ 
:"Y. 
I I I I 

•Q : 
:)l: : H H 

0 H 
en do 

24 

I I 
I I 
1 I 

H- : I 0 

H{! 
0 

exo 
26 

~~0 
0 0 

> 98.5% 

25 

< 1.5% 

27 

Scheme 1.4. Exo- and endo- transition states leading to adducts 25 and 27. 

1.2.2 Stereospecificity 

Using the language of Frontier Molecular Orbital (FMO) theory, the Diels-Alder 

reaction is a suprafacial addition with respect to both the diene and the dienophile 

components and thus more precisely tem1ed as a [4n5+2n5] cycloaddition. Being a 

conceited reaction, it is necessarily stereospecific with respect to both the diene and the 

dienophile. In this regard, the existing relative stereochemical relationships in the 

stmting materials is reflected in the cycloadduct. 
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For example, the reaction between (E,E)-2,4-hexadiene (28) and TCNE (29) at 

ambient temperature afforded the adduct 30 in quantitative yield (Scheme 1.5). 10 The 

cis-relation of the methyl substituents on the diene is completely transfened to the 

product. In another, more recent example, trans-dimethyl fumarate (32) reacted with 

isoprene (31) to generate the corresponding cycloadduct 33, where by the trans geometry 

of the dienophile is reflected in the product. 11 

Me Me 

< ¢{' NCJ(CN CH2CI2 
CN 

+ I 
25 oc . 1-2 min CN NC CN CN 

Me quant. Me 

28 29 meso-30 

Me'( f C02Me toluene MeUco2Me 
+ 

70 oc. 36 h Me02C 
92% 

C02 Me 

31 32 (±)-33 

Scheme 1.5. Preservation of relative stereochemistry in the Diels-Alder reaction. 

1.2.3 Regioselectivity 

The regiochemical outcome of the Diels-Alder reaction can be predicted with a 

reasonable degree of confidence by the position of the substituent(s) on the diene and the 

dienophile components. This is commonly illustrated using resonance structures and 

matching the partially charged ends of the two components with the more pronounced 

partial charges. 
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For an example, the Diels-Alder reaction between 1-methoxybutadiene (34) and 

methyl vinyl ketone (37) is known to afford ortho-substituted product 40 (Scheme 1.6). 12 

The non-bonding pair of electrons on the C 1 methoxy group of the diene allows a charge­

separated resonance structure (35) to be drawn and this contributes to its resonance 

hybrid 36, thereby leaving a partial negative charge at C4 of the diene. Similarly, the 

electron-withdrawing acetyl group at one end of the dienophile 37 imparts a partial 

positive charge at the opposite end in its resonance hybrid (39). The initial contact of the 

carbon with partial negative charge in 36 and the carbon with partial positive charge in 39 

leads to the 3,4-disubstituted cyclohexene product 40. In the case of 2-methoxybutadiene 

(41), the methoxy group generates a negative charge at the Cl position of the diene (in its 

resonance structure 42) and its Diels-Alder reaction with methyl vinyl ketone provides 

the I ,4-disubstituted cyclohexene product 47. 13 
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Scheme 1.6. Examples of regioselectivity in the Diels-Alder reaction. 

1.3 Classification of the Diels-Aider reactions 

The Diels-Alder reaction can be classified into three types, according to the 

electronic nature of the diene and the dienophile: 1) the neutral Diels-Alder reaction, 2) 

the normal (electron demand) Diels-Alder reaction, and 3) the inverse electron demand 

Diels-Alder (IEDDA) reaction. FMO theory is commonly used to explain the reactivity 

of the Diels-Alder reaction. By this approach, decreasing the energy gap between 

frontier orbitals of the two reaction pm1ners is predicted to lower the electronic 

component (but not the steric component) of the activation barrier to reaction. 14 Indeed, 

the energy gap between the Highest Occupied Molecular Orbital of the diene (HOMO) 
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and the Lowest Unoccupied Molecular Orbital (LUMO) of the dienophile has been 

correlated with the rate of reaction. 

In the case of a neutral Diels-Alder reaction, the energy gap between the HOMO 

of the diene and LUMO of the dienophile is large and so is the energy gap between the 

HOMO of the dienophile and LUMO of the diene (Scheme 1.7). Thus, elevated 

temperature is required to cause the reaction pattners to react. In the second category, 

i.e. the nonnal Diels-Alder reaction, the diene is substituted with one or more electron­

donating groups (EDG). This has the effect of raising the energy level of the HOMO. 

Similarly, the LUMO of the dienophile can be lowered by placing electron-withdrawing 

groups (EWG) on it. The net result is that the energy gap between the HOMO of the 

diene and LUMO of the dienophile is significantly reduced, thereby facilitating the 

reaction. This category is by far the most extensively explored category and, 

consequently, a broad range of stable dienes is readily available. Danishefsky' s diene 15 

and Rawal ' s diene 16 are two especially useful ones (Scheme 1.8). These dienes owe their 

usefulness to the I ,3-relationship between the two substituents. This arrangement of 

donor groups allows them to electronically bias the diene system in a cooperative fashion, 

which leads to high reactivity and high levels of regioselectivity. Furthermore, the 

functional groups provide oppottunities for further synthetic manipulation following 

Diels-Alder reaction. The third category is the IEDDA reaction, which involves the use 

of an electron deficient diene and an electron rich dienophile. In this case, the dominant 

orbital interaction is between the HOMO of the dienophile and the LUMO of the diene. 

Although this version of the Diels-Alder reaction has received considerable attention over 
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the past few decades, it is still heavily overshadowed by the normal Diels-Alder reaction. 

A major reason for this is that few generally useful electron deficient dienes are 

commercially available or easily synthesized (see following section). 

HOMO diene - LUMO dienophile HOMO diene - LUMO dienophile HOMO dienophile - LUMO diene 

HOMO dienophile - LUMO diene 

large I'>E 
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Diene Dienophile Diene Dienophile Diene Dienophile 

II ;:rEDG ()EDG 
I + - I 

EWGJJ ~ EWG'.. :_ 

EDG EDG 

;:r EWG ()EWG 

I+ - I 
EDGJJ ~ EDG''. :_ 

Neutral Diels-Aider 
Reaction 

Normal (Electron Demand) 
Diels-Aider Reaction 

Scheme 1.7. Types ofDiels-Alder reactions. 
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Inverse Electron Demand 
Diels-Aider Reaction 

Danishefsky's diene, 48 Rawal's diene, 49 

Scheme 1.8. Notable dienes for the nonnal 

Diels-Aider reaction. 
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1.4 The inverse electron demand Diels-Alder (lEODA) reaction 

Among the tlu·ee types of Diels-Alder reactions, the nonnal (electron demand) 

Diels-Alder is by far the most highly developed and widely used reaction. This is not to 

say that its counterpa11, the IEDDA reaction has been ignored. In fact, it has been 

receiving attention for over half a century. 

The first examples of the IEDDA reaction were rep011ed by Carboni eta!. in 1957 

(Scheme 1.9). 17 1 ,2,4,5-Tetrazines 50 and 56 served as heteroaromatic electron-deficient 

dienes. In this regard, the LUMO of the diene is lowered by virtue of the presence of the 

electronegative nitrogen atoms in the diene urut housed by the 1 ,2,4,5-tetrazine system. 

When olefins were used as dienophiles, e.g. styrene (51), dihydropyridazines such as 54 

were obtained as products, which were subsequently oxidized to pyridazines such as 55. 

Dihydropyridazine 54 presumably arises from an initial [ 4+2] cycloaddition to give 52, 

followed by a retro-[4+2] cycloaddition (to expel nitrogen gas) and a double bond 

migration. Alternatively, pyridazines were obtained directly when a1kynes were used as 

dienophiles. For example, diene 56 reacted with diphenylacetylene (57), presumably via 

cycloadduct 58, to afford pyradazine 59 in good yield (86%). 
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Scheme 1.9. IEDDA reactions of 1,2,4,5-tetrazines 50 and 56. 

In the following years, numerous investigations employing heteroaromatic 

systems, including tetrazines, 18 triazines, 19 and diazines,20 as electron-deficient dienes 

were reported. As illustrated in Scheme 1.1 0, these reactions generate various 

heteroaromatic and aromatic (in the case of diazines) compounds upon reaction with 

electron-rich dienophiles such as 61. All but one of these types of heterocyclic 

compounds involves the expulsion of N2 from the initial cycloadduct. The exception is 

1 ,3,5-triazines (67), which undergo the elimination of HCN following cycloaddition. 

Aromatization typically occurs after the loss of N2 or HCN by elimination of H- EDG 

(e.g. an alcohol if EDG is an alkoxy group). 
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Scheme 1.10. General representation ofiEDDA reactions of some heterocycles 

(adapted from reference 18 b). 

The lEODA reaction has been shown to be very useful in the field of natural 

products synthesis. For example, Boger eta/. ' s very short total syntheses of (±)-cis- and 

(±)-trans-trikentrin A2 1 magnificently demonstrate the use of sequential lEODA reactions 

of hetero-aromatic azadienes (Scheme 1. 11 ). In this work, 3,6-bis(methylthio )-1 ,2,4,5-

tetrazine (73) reacted with enamine 74 in an lEODA fashion to afford 75, which was 

aromatized to 76 by an acid-catalyzed elimination of pyn olidine in high yield (85%, 2 

steps). Oxidation of 76 with mCPBA afforded disulfone 77, which underwent 
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nucleophilic aromatic substitution with allene amine 78 to provide 79. The acylation of 

the secondary amine gave 80, which set the stage for the next (intramolecular) IEDDA 

reaction between one of the double bonds of the allene moiety and the I ,2-diazine. 
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2
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Scheme 1.11 . Total syntheses of (±)-cis- and (±)-trans -trikentrin A by Boger et al. 

Thermolysis of 80 furnished N-acyl-cis-trikentrin A 81 (via a cycloaddition, expulsion of 

N2 and a dehydrogenation). The acetyl group in 81 was smoothly removed to cis-
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trikentrin A (83). The epimerization of intem1ediate 77 using trimethylamine to give 

trans-78, followed by the same set of reactions employed for the synthesis cis-trikentrin 

A (77 to 82) furnished trans-trikentrin A (84), thereby completing the total synthesis of 

these two indole alkaloids. 

More recently, the use of a 1 ,2,4-triazine as the electron-rich diene was reported 

in the total synthesis of louisianin family of natural products.22 The key and common 

intetmediate for these pyridine-containing alkaloids was accomplished by a 

regioselective IEDDA reaction of 1 ,2,4-triazine 85 with cyclopentanone-derived enamine 

86 (Scheme 1.12). In this event, both microwave and thermal conditions were employed 

and the product 87 was obtained as the sole regioisomer. This compound was further 

elaborated to all four members of this family (one of which is shown in the Scheme 1.12). 

Q 
C02Et 

6 86 
C02Et 

N~N 5 steps 

~ (" :::,.__ 1 N 
a) toluene, f-!W, 120 oc 

1 h, 80% 0 
or I b) xylene, 160 °C, 10 h 

SPh then Si02 , 160 oc SPh louisianin C 

85 18 h, 89% 87 88 

Scheme 1.12. The IEDDA reaction of 1 ,2,4-triazine 85 in the synthesis 

of louisianin C. 

16 



1.4.1 All-carbon IEDDA dienes 

Although heteroaromatic azadienes are the most commonly used electron­

deficient dienes, a variety of other diene systems with no heteroatoms in the diene unit 

have also been employed. 

One such system is 2-pyranone. It is known to undergo IEDDA reactions, 

following a similar order of events as in the case of azadienes. However, instead ofN2 or 

HCN, C02 is extruded from the initial cycloadduct. Boger and co-workers reported the 

use of 3-carbomethoxy-2-pyranone (89) as the electron-deficient diene in the synthesis of 

juncusol (94),23 a 9,10-dihydrophenanthrene-containing compound (Scheme 1.13). Diene 

89 was subjected to the IEDDA reaction with ketene acetal 90 (an electron-rich 

dienophile) to afford 93 (75%), generating the C ring of the natural product. As alluded 

to above, this process goes through the intennediacy of an adduct such as 91, followed 

by the elimination of C02 and methanol. From the exclusive placement of the remaining 

OMe group at the site ortho to the ester, it can be inferred that the IEDDA reaction 

occurred in a highly regioselective manner. Here and in most other examples, the sense 

of the regioselectivity is exactly what would be predicted using the considerations 

presented in Section 1.2.3. 
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Scheme 1.13. The lEODA reaction of89 in the synthesis of juncusol. 

Noland and Kedrowski reported IEDDA reactions of nitrovinyl qumones with 

furans and indoles,24 as well as enol ethers (Scheme 1.14).25 Along with complete 

regioselectivity, the diene underwent endo-selective cycloaddition with dienophiles 

having endocyclic heteroatom-based substituents (furans and indoles). Interestingly, in 

the case of dienophiles with exocyclic heteroatom-based substitutents, e.g . 99, the 

reaction proceeded with exo diastereoselectivity. The authors reasoned that the 

heterocyclic dienophiles had the opportunity for secondary interactions that stabilized the 

endo transition state, whereas dienophiles without a heteroatom-based substituent could 

not participate in such interactions. Whatever the reasons for the change in endo/exo 

selectivity, the adducts were found to tautomerize to the con esponding hydroquinones in 

polar solvents or upon subsequent treatment with Et3N. 
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Scheme 1.14. IEDDA reactions ofvinylquinone 95. 

Based on the IEDDA behavior of the vinyl qumone motif in the previous 

examples, Dirk Trauner's group applied an intramolecular version of this reaction to the 

total synthesis of (- )-helenaquinone (105), a pentacyclic natural product. 26 In this regard, 

an intermediate 102 was subjected to a key intramolecular IEDDA reaction leading to the 

pentacyclic product 104, which was subsequently oxidized to 105, thereby completing 

the synthesis of the natural product (Scheme 1. 15). Unlike in the previous two examples 

of nitrovinyl quinones, the mode of cycloaddition (exo or endo) cannot be determined in 

this event, because the initially formed adduct 103 could not be isolated. 
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Scheme 1.15. The IEDDA-reaction in the synthesis of (-)-helenaquinone. 

OH 

In a recent report on the first total synthesis of rhodexin A, 27 Jung and co-workers 

used a Tf2NH-catalyzed IEDDA reaction as a key reaction to construct the BCD ring 

system of the natural product (Scheme 1.16). This reaction set four contiguous 

stereocenters via an exo transition state to afford 108 as a mixture of epimers (isomers at 

the 0 -silyl-containing carbon in the B ring). Both diastereomers were useful for further 

synthetic work, as the offending stereocenter was destroyed later by converting the 0 -

silyl group to a ketone. The diene and the dienophile were designed in such a way that 

the A ring could be easily fused onto the B ring and the butenolide moiety could be 

attached to the D ring. 
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Scheme 1.16. The IEDDA reaction in the total synthesis of rhodexin A. 

1.4.2 IEDDA reactions in the Bodwell Group 

0 

Over the past 15 years, eff01ts in the Bodwell group have led to the synthesis of a 

variety of electron-deficient all-carbon dienes. The common feature of these dienes is the 

presence of electron-withdrawing groups on the diene unit with a l ,3-relationsh.ip. As in 

the cases of Danishefsky' s diene and Rawal' s diene, this arrangement a llows the EWGs 

to co-operatively bias the diene system and this causes the dienes to undergo completely 

regioselective cycloaddition upon IEDDA reaction with electron-rich dienophiles. These 

dienes have been used in the synthesis of several different classes of compounds. 

The first report from the Bodwell group on the IEDDA reaction came in 1997. In 

this work, cyclohexenone-derived diene 110 underwent IEDDA reactions with a variety 

of electron-rich dienophiles in a completely regioselective fashion . For example, diene 

110 reacted with ketene acetal 111 to afford the adduct 112 (Scheme 1.17).28 This diene 
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also reacted with vinyl ethers and styrenes to g1ve richly-functionalized [6,6] nng 

systems. 

0 

~CO,Et 
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Scheme 1.17. The IEDDA reaction of 110 with ketene acetal111. 

Following this report, IEDDA reactions of the coumarin-fused diene 113 with 

enamines (eletron-rich dienophiles), e.g. 86, were reported.29 In this regard, the initially 

formed cycloadduct 114, underwent elimination of pyrrolidine and dehydrogenation 

(presumably, a transfer hydrogentation to enamine 86) to afford 6H-dibenzo[b,d]pyran-6-

ones (116) (Scheme 1.18). 
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Scheme 1.18. The IEDDA reaction of coumarin-fused diene 113 

with enamine 86. 
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In a later rep011, chromone-based diene 117, which was synthesized from the 

corresponding 3-fOimylchromene using a Homer-Wadsworth-Emmons reaction, 

underwent an IEDDA-initiated domino sequence with a series of enamines (e.g. 86) to 

produce a variety of 2-hydroxybenzophenones (e.g. 120).30 Interestingly, the second 

elimination was intramolecular (with respect to the leaving group) (119 to 120), thereby 

generating 2-hydroxybenzophenones instead of the expected xanthones (Scheme 1.19). 

0 0 

~co,Et 86 ~co,Et 
I CH2CI2, rt, 25 min I 

0 75% H 

117 120 

j 1 iotcamoleoolac 
elimination 

- 0 
0 N 0 H 

~co,Et crX6co,Et 
N~ I 

0 

118 119 

Scheme 1.19. The IEDDA reaction of diene 117 leading to 

2-hydroxybenzophenone 120. 

In order to synthesize xanthones, the intramolecular elimination needed to be 

blocked. Accordingly, the dienophiles (e.g. 122) were modified such that there is no 

hydrogen atom present for this elimination to occur, as it is in intermediate 124 (Scheme 

1.20). Thus, presumed intennediate diene 124, formed by the initial elimination of 

pyrrolidine from adduct 123, underwent a subsequent elimination of methanol to generate 
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a new aromatic ring (125). Using this strategy, a variety of C-ring-substituted xanthones 

was synthesized from chromone diene 121, which vary in the nature of their electron-

withdrawing groups.31 A notable feature of the reactions involving dienophile 122 was 

that the regioselectivity of the cycloaddition was dictated by the pyrrolidinyl group and 

not the two methoxy groups. 
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Scheme 1.20. IEDDA reactions of diene 121leading to xanthones. 

To further demonstrate the value of the IEDDA reaction and to develop an 

efficient entry into functionalized nitrogen-containing polycyclic systems, 2-azadienes 

(e.g. 126) were prepared.32 These dienes reacted with a variety of dienophiles (e.g. 127), 

followed by tautomerization of the initial adduct (not shown) to afford pentacyclic 

systems as a mixture of diastereomers (128 and 129), which are the products of endo and 

exo transition states (Scheme 1.21 ). 
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N02
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~N 

~oAo 
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5 mol% Yb(OTfh 
CH3CN 

36:64 (90%) 

+ 

128 129 

Scheme 1.21. The Yb(OTf)3-catalyzed IEDDA reaction of azadiene 126 with 

dihydropyran (127). 

Although the IEDDA methodology developed in the Bodwell group has shown 

significant promise to access different classes of compounds, its application to target 

molecules was at a very primitive stage at the outset of the work described herein. Thus 

the work described in this thesis had the overarching goal of more fully developing the 

synthesis of 6H-dibenzo[b,d]pyran-6-ones (DBPs) (Scheme 1.18) and applying it to the 

synthesis of specific targets. 

The starting point of this work was the stepwise method for the synthesis of 

DBPs, which was developed previously in the Bodwell group (Scheme 1.18). 

Subsequently, it was found that enamines could be generated in situ and react with these 

dienes to afford DBPs. Chapter 2 contains a pm1 of the work associated with the 

development these methods. 

In Chapter 3, the details of the development of a multicomponent reaction leading 

to a variety of A- and C-ring substituted DBPs are presented. This highly productive 

reaction was then employed in a total synthesis of a natural product, cannabinol. 
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The DBPs also offered a new entry into the synthesis of novel chiral 

pyrenophanes, which are non-natural products. One of the dibenzopyranones generated 

by the multicomponent methodology was used as the stm1ing material to the concise 

synthesis of a set of Crsymmetric pyrenophanes. The results of this work are described 

in Chapter 4. 

In related work, a stepwise (non-multicomponent) approach to DBPs was used in 

the synthesis of defucogilvocarcin V, an antitumor compound. This strategy offered the 

potential to synthesize some new C-8 analogs along with the targeted defucogilvocarcin 

V. These findings are presented in Chapter 5. 

This is a publication-based dissertation. As such, each subsequent Chapter is a 

slightly modified version of the publication given at the beginning of each Chapter. The 

contributions of all authors are explained at the beginning of each Chapter. 
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Chapter 2 

Synthesis of 6H-Dibenzo[b,d]pyran-6-ones Using the 

Inverse Electron Demand Diels-Alder Reaction 

This chapter is based upon the following publication: 

Pattie, I. R.; Nandaluru, P.R.; Benoit, W. L.; Miller, D. 0. ; Dawe, L. N. Bodwell, G. J. J. 

Org. Chem. 2011, 76, 9015-9030. 

Contributions of authors 
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I. R. Pattie: synthetic experimental work for a major portion of the publication. 

P. R. Nandaluru: some synthetic experimental work (The contributions of P . R. 

Nandaluru are presented in this chapter and those of I. R. Pattie have been omitted except 

where they are related to the discussion), manuscript preparation. 

W. L. Benoit: undergraduate student who assisted I. R. Pattie with a small portion of the 

synthetic work. 

D. 0. Miller, L. N . Dawe: X-ray crystal structure detenninations. 
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2.1 Introduction 

A variety of natural products feature a 6H-dibenzo[b,d]pyran-6-one (1) core, 

including fasciculiferol (2), 1 altemariol (3),2 autunmariol ( 4), 3 autunmariniol (5), 3 

altenuisol (6)4 and ellagic acid (7)5 (Figure 2.1 ). Furthetmore, dibenzopyranones have 

served as intennediates in the synthesis of cannabinoids6 and other phmmaceutically 

interesting compounds, e.g. progesterone, androgen and glucoco1ticoid receptor 

agonists,7 endothelial proliferation inhibitors8 and antidyslipidemic agents.9 

0 0 

OH 

2 
HO 

2 (fasciculiferol) 

0 OH 

OH 

MeO 

OH 
5 (autumnariniol) 6 (altenuisol) 

0 OH 

?~ R 
HO~ 
3 R = OH (alternariol) 
4 R = H (autumnariol) 

0 
OH 

HO 
OH 

HO 
0 

7 (ellagic acid) 

Figure 2.1. Structures of 6H-dibenzo[b,d]pyran-6-one (1) and some natural 

products containing this motif. 

Numerous approaches to the synthesis of 6H-dibenzo[b,d]pyran-6-ones have been 

reported. These can be broadly classified according to the bonds formed during the key 

step(s) as follows: approaches that involve (I) biaryl bond formation fo llowed by 

lactonization, 10 (2) construction of an ester or ether followed by intramolecular biaryl 
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bond formation, 11 (3) a cyclization to form the C ring (orB and C rings), with or without 

a subsequent aromatization, 6ct, 
12 

( 4) rearrangement of spirocyclic compounds, 13 
( 5) 

biomimetic syntheses of altemarial derivatives 14 and ( 6) miscellaneous methods. 15 In the 

third category, enediyne I · · 12a--c eye oaromahzatwn, ruthenium-catalyzed [2+2+2] 

I . . 6d 6 eye oaromatizatiOn, n electrocyclic nng I 12d d . c osure, con ensatwns involving 

hr 12e d . 12f- h b . I . hd . d h n· I c omones an coumanns eanng e ectron-w1t rawmg groups, an t e 1e s-

Alder reaction I Zi- n have been exploited. Of these methods, the Diels-Alder reaction 

arguably offers the greatest potential for diversity-oriented synthesis. An existing 

coumarin system can be designed to function as either a diene or a dienophile in either 

the nmmal or inverse electron demand version of the reaction. For the nmmal Diels-

Alder reaction, coumarin-based dienophiles12
j- l and a diene 12

i have been reported. The 

Bodwell has group communicated the only example of a coumarin-based diene (8) to be 

used as a substrate in an inverse electron demand Diels-Alder (IEDDA)-based synthesis 

of C-ring functionalized 6H-dibenzo[ b,d]pyran-6-ones 12111 9 (Scheme 2.1) and, more 

recently, an application of this methodology in the total synthesis ofurolithin M7 (10).16 

0 

C02 Me ref. 12m 
OH 

~ -----------

~ 

8 9 10 (urolithin M7) 

Scheme 2.1. First rep011 on 6H-dibenzo[b,d]pyran-6-ones from the Bodwell group, 

and urolithin M7. 
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2.2 Results and Discussion 

As reported earlier, 1201 coumarin-fused diene 8 was synthesized in a single step 

from salicylaldehyde (11) and dimethyl glutaconate (12) (Scheme 2.2). This involves a 

transesterification and a vinylogous Knoevenagel condensation, although the order of 

events is unclear. An important feature of diene 8 is that the electron-withdrawing 

groups on the diene unit have a 1,3 relationship, as do the electron-donating groups on 

Danishefsky's diene. 17 However, the synthesis of diene 8 is not easily modified to allow 

for the incorporation of a variety of other electron-withdrawing groups at the terminus of 

the diene system. Accordingly, an alternative and more general approach to the synthesis 

of a family of electron deficient, coumarin-fused dienes was sought. 

OH &CHO 
11 

0 &B' 
13 

piperidine, benzene 
80 °C, 92% 

~EWG 

14 EWG = C02Et, 65% 
15 EWG =COMe, 4% 
16 EWG = CN, 13% 

EWG = C02Et, COMe, CN 1 
Pd(OAc)2, Cui , P(o-tolylb 

Et3N, benzene, 80 oc 

Scheme 2.2. Synthetic approach to coumarin-fused dienes 8, and 14-16. 
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The use of 3-bromocoumarin (13) 18 as a conunon starting material in the Heck 

reaction with various electron-deficient alkenes was identified as a promising route 

(Scheme 2.2). After some optimization, good results were obtained using ethyl acrylate. 

Diene 14 was obtained in 65% yield. However, the use of these conditions with methyl 

vinyl ketone or acrylonitrile afforded dienes 15 and 16 in very poor yield. Faced with the 

prospect of reoptirnizing the Heck reaction for each electron-deficient alkene, another 

approach was investigated. This involved the use of the Homer-Wadsworth-Emmons 

reaction to generate the electron-deficient diene system, which had been used 

successfully for other electron deficient dienes (Scheme 2.3). 19 Thus, access to multigram 

quantities of3-fonnylcoumarin (17) was required and this was achieved by ozonolysis of 

diene 8. At 84%, the yield of this reaction is somewhat better than that reported by 

Triggle eta!. for the oxidative cleavage of 14 using Os04/Nal04 (70%).20 

0 0 &lMe 
(E)-15 82% 
(Z)-15 ca. 4% 

NaH 
THF 

rt 

0 
II 

Eto- f~S02Ph 
EtO 

19 

(E)-20 , 41 % 

Scheme 2.3. Synthesis of coumarin-fused dienes 15, 16 and 20. 

NC""'-/C02H 21 

pyridine 
110 oc 

(E)-16, 55% 
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Aldehyde 17 was reacted with phosphonate 1921 to afford diene 20 in modest 

yield (work done by I. R. Pottie). In this regard, only the E isomer of sulfone 20 was 

isolated. Methyl ketone 15 was synthesized using a Wittig reaction between 17 and ylide 

18 (work done by I. R. Pottie).22 Both geometric isomers were produced, but they could 

be separated using flash chromatography to afford (£)-15 (82%). A 9:1 mixture of (Z)-15 

I (E)-15 ( 4%) was also isolated. Finally, isomerically pure cyanodiene (E)-16 was 

synthesized using decarboxylative Knoevenagel condensation of 17 with cyanoacetic 

acid (21)? 3 Attempts to generate the corresponding nitrodiene using a Henry reaction of 

17 with nitromethane were unsuccessful (work done by I. R. Pottie). 

The investigation of the IEDDA chemistry of dienes 8, 15, 16 and 20 commenced 

with the reaction of 8 with ethyl vinyl ether. Although ethyl vinyl ether is a relatively 

weak dienophile, it had been found to react with a related electron-deficient dienophile at 

80 °C. 193 However, 8 was unreactive towards ethyl vinyl ether (by tic analysis) after 

heating for 4d at 120 oc. Partial aromatic character (even a small amount) in the 

pyranone ring would be expected to decrease the Diels-Alder reactivity. In view of the 

lower reactivity of 8, a more reactive dienophile was employed. Indeed, the enamine 

(22) derived from cyclopentenone and pynolidine reacted smoothly with diene 8 in 

dichloromethane at ambient temperature to afford dibenzopyranone 32 in 43% yield 

(Scheme 2.4). 12
m Under the same conditions, dienes 15, 16 and 20 provided the 

conesponding dibenzopyranones 33-35 (25-38%). 

The products presumably arise from a fonnal IEDDA reaction24 to afford adducts 

23-26, followed by 1 ,2-elimination to give cyclohexadienes 27-30 and a dehydrogenation 
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(Scheme 2.4). Transfer hydrogenation25 to enamine 22 (giving amine 31) is a pathway 

for the dehydrogenation of 27-30 to afford 32-35. For dienes 8, 15 and 16, no 

intem1ediates or byproducts were isolated or observed (by tic analysis) during the course 

of these reactions. However, the use of diene 20 gave rise to the formation of 

dibenzopyranone 36 ( 49% ), which lacks the sulfonyl group, in addition to 35. Allylic 

sulfones are known to undergo 1 ,4-elimination of benzenesulfinic acid, 26 so it seems 

likely that 36 is formed by a 1 ,4-elimination of benzenesulfinic acid from 26 followed by 

a 1 ,2-elimination of pynolidine. 

0 

~EWG 

B EWG = C02Me 
15 EWG =COMe 
16 EWG = CN 
20 EWG = S02Ph 

22 

o-N~ 
22 

0 m EWG 
32 EWG = C0 2Me (43%) 
33 EWG =COMe (34%) 
34 EWG = CN (38%) 
35 EWG = S02Ph (25%) 

0:"~ 1 

36 (49%) 

27 EWG = C02Me 
28 EWG = COMe 
29 EWG = CN 
30 EWG = S02Ph 

Scheme 2.4. IEDDA reactions of dienes 8, 15, 16 and 20 with preformed enamine 22. 
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Using this preformed enamine strategy, diene 8 was reacted with a variety of 

enamines to afford the conesponding C-ring substituted dibenzopyranones (work done by 

I. R. Pattie and it is omitted from the publication on which this chapter is based). In 

considering the fmther extension of the methodology, the synthesis of the required 

enamines in reasonably pure fom1 was identified as a potential problem.27 As such, 

attention was tumed to the possibility of generating the enamines in situ. Moreover, the 

proposed mechanism for dibenzopyranone fonnation involves the elimination of the 

secondary amine used to generate the enamine, so the opportunity to perform these 

reactions organocatalytically also presented itself. 

Using the optimized in situ enamine generation conditions developed by I. R. 

Pattie, dienes 8, 15, 16 and 20 were converted into the conesponding dibenzopyranones 

32-35 in yields that matched or exceeded those obtained using prefmmed enamine 22 

(Scheme 2.5). In the case of sulfone-bearing diene 20, the byproduct 36 ( 45%) was again 

produced along with 35 (14%). The product distribution was similar to that obtained 

using prefonned enamine 22. 

8 EWG = C02Me 
15 EWG = COMe 
16 EWG = CN 
20 EWG = S02Ph 

cyclopentanone (5.0 equiv) 
pyrrolidine (0.5 equiv.) 

32 EWG = C0 2Me (74%) 
33 EWG = COMe (46%) 
34 EWG = CN (38%) 
35 EWG = S02Ph (14%) 
36 EWG = H (45%) 

Scheme 2.5 . IEDDA reactions of dienes 8, 15, 16 and 20 under in situ conditions. 
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By employing these in situ conditions, a wide range of ketones were reacted with 

diene 8 to produce a variety of C-ring substituted dibenzopyranones (work done by I. R. 

Pattie and it is omitted from the publication on which this chapter is based). This method 

allowed the use of ketones that would otherwise be difficult or not possible to isolate as 

their enamines. 

To demonstrate that A-ring substituted dibenzopyranones are also accessible 

using the IEDDA-based approach, a series of salicylaldehydes was reacted with dimethyl 

glutaconate (12) to afford the coiTesponding coumarin-fused dienes (Scheme 2.6) (work 

done by I. R. Pattie and it is omitted from the publication on which this chapter is based 

on). With the exception of some cases (R = 5-Me, 4-Me, 3-Me), 2H-chromenes were 

also obtained along with the required dienes. In contrast to the diene products, which 

anse from a combination of vinylogous Knoevenagel condensation and 

transesterification, the 2H-chromene products arise from a combination of vinylogous 

Knoevenagel condensation and conjugate addition. 

OH 

~CHO 

0 0 

MeO~OMe 
12 

3~~6 piperidine, benzene, 80 oc 
R 

R = OMe, Me, Br 
C02Me, N02 

0 

'~co,~, 
R 
diene 

Scheme 2.6. Synthesis of substituted coumarin-fused dienes. 

,§~:~Me 
R 
2H-chromene 
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The dienes were reacted with 22 using both the preformed enamine (work done 

by I. R. Pattie) and the method involving its generation in situ (Table 2.1 ) . In the case of 

the parent diene 8, it had already been found that the in situ method gave a much better 

yield of dibenzopyranone 32 (Table 2.1, Entry 1 ). This was also the case for dienes 38, 

39, 40 and 41 , but the superiority of the in situ method was less pronounced (Table 2.1 , 

Entries 2-5). For dienes 42, 43 and 44, better yields were obtained using prefonned 22 

(Table 2.1, Entries 6-8). Overall, the yields using preformed 22 were more consistent 

than when using the in situ method. In both instances, nitro-substituted diene 44 stood 

out as the poorest-yielding example.28 
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0 

8 

?~CO,Me 
22 a; CH2CI2, rt 

R 
diene 

Entry Diene 

1 SR = H 

2 38R =6-Me 

3 39R = 7-Me 

4 40 R = 8-Me 

5 41 R = 6-0Me 

6 42 R = 6-Br 

7 43 R = 6-C02Me 

8 44 R = 6-N02 

0 

4 6!6! C0
2

Me-_ c_y-'-cl.;:_o_pe_n_ta_n_on_e_ 
_ pyrrolidine 

MgS04 , CH2CI2 

diene 

R 
dibenzopyranones 

Dibenzopyranone 

32R=H 

45 R = 2-Me 

46 R= 3-Me 

47 R = 4-Me 

48 R = 2-0Me 

49 R = 2-Br 

50 R = 2-C02Me 

51 R = 2-N02 

Pottie' s work 

% yield 
(preformed 22) 

43 

47 

51 

48 

51 

51 

41 

24 

Nandaluru's 
work 

% yield 
(in situ 22) 

74 

50 

57 

54 

64 

35 

34 

22 

Table 2.1: Results of reactions of enamine 22 with coumarin-fused dienes. 

As a further example of the scope of the methodology, salicylaldehyde (11) was 

reacted with dimethyl 3-methylglutaconate (52) to afford diene 53 (55%), which bears a 

methyl group on the diene unit. Reaction of 53 with prefonned enamine 20 gave 

dibenzopyranone 54 (67%) (Work done by I. R. Pottie), in which the newly-formed 
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aromatic ring is hexasubstituted. Generation of the enamine in situ gave a 44% yield of 

54 (Scheme 2.7). 

Me 

Me02C~C02Me 
52 

piperid ine, benzene 
80 °C, 55% 

0 Me 

~co,M-e------, 
53 20, CH2CI2 

rt, 67% 

54 

cyclopentanone 
pyrrolidine, CH2CI2 
40 °C, 44% 

Scheme 2.7. Synthesis of dibenzopyranone 54 having hexasubstituted C-ring. 

Whereas ethyl vinyl ether was found to be unreactive towards diene 8, ketene 

acetal 5529 reacted slowly at reflux in dichloromethane (Scheme 2.8). The IEDDA adduct 

56 was isolated in 72% yield after 20 h of reaction. Upon extending the reaction time to 

48 h, 56 (60%) was still the major product, but cyclohexadiene 57 (9%) and 

dibenzopyranone 58 (15%) were also isolated. As for most of the reactions with 

enamines described above, the fonnation of dibenzopyranone 58 can be explained by a 

sequential IEDDA I elimination I transfer hydrogenation process. Diene 57 appears 

simply to be the result of a sequential IEDDA I elimination sequence. The relative 
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configuration in 56 was established usmg an X-ray crystal stmcture determination 

(experimental section), and it is fully consistent with a concerted cycloaddition. The 

much slower rate of elimination in adduct 56 than that in the conesponding enamine 

adducts (e.g. 23, Scheme 4) is likely due to the absence of an organic base. In the 

reactions involving enamines, pyrrolidine (a 2° amine), adducts such as 23 (a 3° amine) 

and the enamines themselves (3° amines) are present. 

56 

(72%, 20 h) 
(60%, 2d) 

0 

8 

0 

57 

(traces, 20 h) 
(9%, 2d) 

0 

58 

(traces, 20 h) 
(15%, 2d) 

Scheme 2.8. IEDDA reaction of diene 8 with ketene acetal. 

OEt 
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2.3 Conclusions 

A set of coumarin-fused electron deficient I ,3-dienes was synthesized, which 

differ in the nature of the electron withdrawing group (EWG) at the tenninus of the diene 

unit and (when EWG = C02Me) the nature and position of substituents. These dienes 

reacted with the enamine derived from cyclopentanone and pyrrolidine to afford the 

corresponding cyclopenteno-fused 6H-dibenzo[b,d]pyran-6-ones, most likely via a 

domino inverse electron demand Diels-Alder (IEDDA) I elimination I transfer 

hydrogenation sequence. 
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2.5 Experimental procedures and characterization data 

General: Reactions were perfonned using anhydrous solvents under a balloon containing 

N2 unless otherwise indicated. All reactions were perfonned with oven-dried (120 °C) 

glassware. THF was distilled immediately prior to use from sodium I benzophenone. All 

other chemicals and solvents were used as received. Solvents were removed under 

reduced pressure using a rotary evaporator. Chromatographic separations were achieved 

using Silicycle silica gel 60, particle size 40-63 mm. Thin-layer chromatography (tic) was 

performed using commercially precoated plastic-backed POLYGRAM® SlL G/UV254 

silica gel plates, layer thickness 200 mm. Compounds on tic plates were visualized using 

a UV lamp (254 and 365 run). Melting points were obtained using Fisher-Johns 

apparatus or OptiMelt automated melting point system and are uncorrected. Infrared (IR) 

spectra were recorded using solid samples on a Bruker TENSOR 27 instrument. 1H and 

13C spectra were obtained from CDC13 or DMSO-d6 solutions using Bruker Advance (500 

or 300 MHz) instruments. Chemical shifts are relative to internal standards: TMS (8H = 

0.00 ppm) and CDC13 (8c = 77.23 ppm), respectively. Low-resolution and high­

resolution mass spectrometric (MS) data were obtained using an Agilent 1100 senes 

LC/MSD instrument and a Waters Micromass® GCT premierTM instrument. 

Note: Procedures and characterization are provided only for compounds not reported in I. 

R. Pattie ' s dissertation. 
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Standard procedure A (for IEDDA reactions using preformed enamines) 

To a magnetically stined, room temperature solution of the diene (1 .0 equiv.) in 

dichloromethane was added neat enamine (1.5 equiv.) dropwise and the resulting solution 

was stined at room temperature for the amount of time indicated. The disappearance of 

the starting material was monitored by tic. The solvent was then removed under reduced 

pressure and the residue was subjected to flash chromatography on silica gel to afford the 

product(s). 

Standard procedure B (for IEDDA reactions using in situ-generated enamines) 

To a magnetically stined, room temperature solution of the diene ( 1.0 equiv.), the ketone 

(5.0 equiv.) and MgS04 (2 .0 equiv) in dichloromethane was added pyrrolidine (0.5 

equiv.). The mixture was stined at room temperature and the disappearance of the diene 

was monitored by tic. When the diene had been consumed, the MgS04 was removed by 

gravity filtration. The filtrate was washed with aqueous 1 M HCI solution, dried over 

Na2S04 and concentrated under reduced pressure. The residue was subjected to flash 

chromatography on silica gel to afford the product(s) . 
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Ethyl (E)-3-(2-oxo-2H-chromen-3-yl)acrylate (14) 

A mixture of 3-bromocoumarin (1.00 g, 5.18 mmol), ethyl acrylate (0.84 mL, 7.70 

mmol), Pd(OAc)2 (46 mg, 0.20 mmol), P(o-tolyl)3 (94 mg, 0.31 mmol), Cui (35 mg, 0.18 

mmol), triethylamine (3.58 mL, 25 .8 mmol) in benzene (10 mL) was heated at reflux for 

4 h. The reaction mixture was cooled to room temperature and aqueous 1 M HC1 

solution (20 mL) was added. The resulting mixture was extracted with chloroform and 

the combined organic extracts were dried over Na2S04. The solvent was removed under 

reduced pressure and the residue was subjected to flash chromatography on silica gel 

(chloroform). The product was triturated with ether (2 x 5 mL) to afford 14 as a cream 

colored solid (0.82 g, 65%): mp 120-121 oc; IR (powder) v = 2978 (w), 1708 (s), 1604 

(m), 1165 (s) cm-1
; 

1H NMR (CDC13, 500 MHz) 6 = 7.88 (s, 1 H), 7.60-7.54 (m, 2 H), 

7.57 (d, J = 16.1 Hz, 1 H), 7.36 (d, J= 8.3 Hz, 1 H), 7.33-7.30 (m, 1 H), 7.10 (d, J = 15.9 

Hz, 1 H), 4.27 (q, J = 7.1 Hz, 2 H), 1.34 (t, J = 7.1 Hz, 3 H); 13C NMR (500 MH:z;) 8 

166.9, 159.1, 153.5, 143.4, 137.8, 132.9, 128.5, 124.8, 123.8, 122.4, 119.0, 116.7, 60.8, 

14.3; APCI-(-)-MS mlz (%) 244 (~,100), 212 (40), 245 (20); HRMS (APCI-(+)) ca1cd 

for Ct4Ht304: 245.0814, found 245 .0815. 
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8-Acetylbenzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one (33) 

Using standard procedure A (12 h, 0.30 g scale, chlorof01m used for chromatography), 33 

(0.13 g, 34%) was obtained as a white solid: mp 220-223 °C; IR (powder) v = 1720 (s), 

1603 (m), 1184 (s) cm- 1
; 

1H NMR (CDCh, 500 MHz) b = 8.83 (s, 1 H), 8.26 (d, J = 8.1 

Hz, 1 H), 7.56 (t, J = 7.7 Hz, 1 H), 7.44 (d, J = 8.2 Hz, 1 H), 7.39 (t, J = 7.7 Hz, 1 H), 

3.49 (t, J = 7.5 Hz, 2 H), 3.44 (t, J = 7.8 Hz, 2 H), 2.73 (s, 3 H), 2.28 (quint, J = 7.7 Hz, 2 

H); 13C NMR (125 MH:z;) b = 198.6, 161.2, 154.4, 152.0, 142.3, 134.6, 133.5, 131.3, 

130.9, 126.9, 124.5, 120.3, 118.9, 118.0, 35.1 , 33.9, 28.3, 25.2; EI-(+)-MS mlz (%) 279 

([M + It, 100), 171 (15); HRMS (EI) calcd for C 18H140 3 : 278.0943, found 278.0947. 

Using standard procedure B (5 h, 0.30 g scale, chlorofonn used for chromatography), 33 

(0.18 g, 46%) was obtained as a white solid. 

8-Cyanobenzo [b ]-2,3-dihydro-lH-indeno [ 5,4-d]-6H-pyran-6-one (34) 

Using standard procedure A (3 h, 0.30 g scale, chloroform used for chromatography), 34 

(0.15 g, 3 8%) was obtained as a white solid: mp 301-304 °C; IR (powder) v = 2220 ( w ), 

1724 (s), 1594 (m) cm- 1
; 

1H NMR (CDCh, 500 MHz) b = 8.62 (s, 1 H), 8.21 (d, J = 8.0 
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Hz, 1 H), 7.60 (t, J = 7.6 Hz, 1 H), 7.45 (d, J = 8.2 Hz, 1 H), 7.41 (t, J = 7.6 Hz, 1 H), 

3.59 (t, J = 7.3 Hz, 2 H), 3.31 (t, J = 7.6 Hz, 2 H), 2.40 (quint, J = 7.5 Hz, 2 H); 13C NMR 

(125 MH:z) 6 = 160.0, 155.9, 152.0, 141.4, 135.3, 133.7, 131.6, 126.8, 124.7, 121.2, 

118.3, 118.2, 116.7, 1 09.3, 36.0, 32.8, 24.7; EI-(+)-MS mlz (%) 262 ([M + It, 1 00), 263 

(15), 284 (20); HRMS (EI) calcd for C 17H 11N02: 261.0790, found 261.0793. Using 

standard procedure B (3 h, 0.30 g scale, chloroform used for chromatography), 34 (0.15 

g, 38%) was obtained as a white solid. 

9,9-Diethoxy-8,9,10,10a-tetrahydro-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid 

methyl ester (56), 9-eth oxy-1 0,1 Oa-dihydro-6H-dibenzo [ b,d] pyran-6-one-8-

carboxylic acid methyl ester (57), and 9-ethoxy-6H-dibenzo[b,d]pyran-6-one-8-

carboxylic acid methyl ester (58). 

To a solution of diene 8 (0.40 g, 1. 74 mmol) in dichloromethane (8 mL) was added 1, 1-

diethoxyethene (1.15 g, 9.91 mmol) and the resulting mixture was heated at reflux 20 h. 

The reaction mixture was cooled to room temperature, the solvent was removed under 

reduced pressure and the residue was subjected to flash chromatography on silica gel 

(dichloromethane) to give 56 (0.43 g, 72%) as a pale yellow solid: mp 151-1 54 °C; JR 

(powder) v = 1738 (s), 1649 (w), 1201 (s) cm- 1
; 

1H NMR (CD2Cb, 500 MHz) 6 = 7.32-

7.27 (m, 2H), 7.20-7.17 (m, IH), 7.01- 7.05 (m, lH), 6.89 (dd, J = 5.3, 3.2 Hz, lH), 3.89 
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(m, 1H), 3.80-3.78 (m, 1H), 3.67-3.61 (m, 2H), 3.66 (s, 3H), 3.59-3 .53 (m, 2H), 2.77 

(ddd, J= 13.0, 5.7, 1.8 Hz, 1H), 2.34 (dd, J= 13.0, 11.1 Hz, 1H), 1.18 (t, J= 7.0 Hz, 3H), 

1.17 (t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CD2Ch) J = 169.5, 163.0, 150.7, 136.3, 

130.0, 128.6, 125.4, 125.0, 124.4, 117.3, 99.2, 56.6, 56.1, 52.7, 50.2, 33.2, 30.7, 15.4, 

15.3; APCI-(- )-MS m/z (%) 346 (M+, 5), 345 (40), 300 (15), 299 (100); HRMS (APCI­

(+)) calcd for C 19H230 6: 347.1495, found 347.1497. Upon extending the reaction time to 

2 d, compounds 56 (0.36 g, 60%) 57 (0.047 g, 9%) and 58 (0.078 g, 15%) were obtained. 

57: mp 177-180 °C; IR (powder) v = 1703 (s), 1618 (m), 1520 (s) cm-1
; 

1H NMR 

(CD2Ch, 500 MHz) J = 7.91 (d, J = 3.4 Hz, 1H), 7.32-7.26 (m, 2H), 7.18-7.15 (m, 1H), 

7.07-7.05 (m, 1H), 4.41-4.35 (m, 1H), 4.27-4.21 (m, 1H), 4.16 (ddd, J = 18.8, 7.6, 3.3 

Hz, 1H), 3.75 (s, 3H), 3.35 (dd, J = 17.2, 7.6 Hz, 1H), 2.63 (dd, J = 18.8, 16.9 Hz, 1H), 

1.44 (t, J = 7.0 Hz, 3H); 13C NMR (75 MHz, CD2Ch) J = 171.4, 164.0, 161.3, 150.8, 

141.1 , 129.0, 125.9, 124.5, 121.8, 117.7, 111.8, 106.7, 63.3, 51.5 , 32.2, 3 1.2, 15.1 ; El-MS 

mlz (%) 301 ([M + It, 100), 241 (55), 323, (50), 269 (40); HRMS (EI) calcd for 

C 17H 160 5: 300.0998, found 300.1006. 58: mp 218- 220 °C; IR (powder) v = 1711 (s), 

1608 (m) cm- 1
; 

1H NMR (CD2Cb, 500 MHz) J = 8.70 (s, lH), 8.06 (dd, J = 7.9, 1.6 Hz, 

1H), 7.57-7.54 (m, 2H), 7.39-7.33 (m, 2H), 4.34 (q, J= 7.0 Hz, 2H), 3.91 (s, 3H), 1.55 

(t, J = 6.9 Hz, 3H); 13C NMR (75 MH~) 8 165.3, 163 .3, 160.4, 152.6, 139.7, 135.1, 131.9, 

124.9, 123.6, 122.6, 118.2, 117.8, 113.9, 104.7, 65 .7, 52.5, 14.7; El-MS mlz (%) 299 ([M 

+ It, 100), 267 (60); HRMS (APCI-(+)) calcd for C 17H 150 5: 299.0919, found 299.0917. 
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I 13 
1.6 Selected H and C NMR spectra for Chapter 2 

________________ J1Lt ___ L __ ~lJ 
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 

fl (ppm) 

200 190 140 13 0 12 0 100 6 0 50 
n (ppm) 
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10.0 9 .5 9 .0 8 .5 8 .0 7.5 7 .0 6.5 6 .0 5 .5 5 .0 4 .5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 
f l (ppm) 

200 190 180 1 70 1 60 I SO 140 1 3 0 120 11 0 100 90 80 7 0 6 0 SO 40 30 2 0 10 0 
fl (ppm) 
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~------------------------------------------------------------------------------------------

0 

~CN 
34 

I i II , ~ ~ )I l' I 
-----~-'--·-j L ___ u L''------------ -~L-' ~· -~·-·-·-·- _) II 

·---J'-

10.0 9 .5 9.0 8.5 8 .0 7.5 7.0 6.5 6.0 5.5 5.0 4. 5 '1.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 
fl (ppm) 

200 190 180 170 160 150 140 130 120 110 100 90 so 70 60 so 4 0 3 0 20 10 
f l (ppm) 
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OEt 
OEt 
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f1 ( ppm) 

100 
fl (ppm) 
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10.0 9 .5 9 .0 8 .5 8 .0 7.5 7 .0 6 .5 6.0 5 .5 5 .0 4.5 <1 .0 3 .5 3.0 2.5 2.0 1.5 1.0 0.0 
f1 (ppm) 

100 so 7 0 
f l { ppm) 

57 



10.0 9.5 9.0 8.5 8.0 7 .5 7.0 6.5 6.0 5 .5 5.0 <1.5 4 .0 3 .5 3 .0 2 .5 2 .0 1.5 1.0 0.5 0 .0 
f l (ppm) 

._J.L.LJJWLL__uL_j__ 
2 00 19 0 180 170 !60 ISO t •W 13 0 12 0 1 10 100 9 0 

ft {pprn) 
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2.7 X- ray crystallographic information for compound 56 

56 (Figure 1 a and 1 b) also crystallized as a racemic twin in P2 12121 with four fonnula 

units per unit cell (Figure 2). Absolute configuration at C4 is R, and at C7 is S. 

(a) (b) 

Figure 1: (a) Asymmetric unit of 56, with 50% probability ellipsoids and (b) side-view 
represented with capped-sticks. 

Figure 2: Packed unit cell of 56, viewed along the a-axis. 
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Table I Summary of Crystallographic Data 

Compound reference 
Chemical fonnula 
Formula Mass 
Crystal system 
alA 
b!A 
ciA 
o./0 
(J/0 
y/0 
Unit cell volume/A3 

Temperature/K 
Space group 
No. of formula units per unit cell, Z 
Radiation type 
Absorption coefficient, ,u/mm·' 
No. of reflections measured 
No. of independent reflections 
R int 

Final R1 values(! > 2a{J)) 
Final wR(F) values (all data) 
Goodness of fit on F 

References 

56 
c,9H220 6 
346.38 
Orthorhombic 
7.939(2) 
13.091(3) 
16.8 16(4) 
90.00 
90.00 
90.00 
1747.7(7) 
163(2) 
?2,2,2, 
4 
MoKa 
0.098 
23193 
361 1 
0.0331 
0.0323 
0.0831 
1.061 

a) Altomare, A. , Cascarano, G ., Giacovazzo, C., Guagliardi, A. , Burla, M., Polidori, G. , 
and Camalli , M., J. Appl. Cryst., 1994, 27, 435. b) Sheldrick, G.M. Acta Cryst. 2008, 
A64, 112-1 22. c) Cromer, D. T. & Waber, J. T. ; "Intemational Tables for X-ray 
Crystallography", Vol. IV, The Kynoch Press, Binningham, England, Table 2.2 A 
(1974). d) lbers, J. A. & Hamilton, W. C., Acta Crystallogr. , 1964, 17, 78 1. e) Creagh, D. 
C. & McAuley, W.J .; "International Tables for Crystallography", Vol C, (A.J.C. Wilson, 
ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222 (1992). f) 
Creagh, D . C. & Hubbell, J.H .. ; "International Tables for Crystallography", Vol C, 
(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206 
(1992). g) Hooft, R.W.W., Straver, L.H. , Spek, A.L. J. Appl. Crystallogr. 2008, 41, 96-
103. h) Dolomanov, O.V., Bourhis, L.J. , Gildea, R.J. , Howard, J.A.K., Puschmann, H. J. 
Appl. Cryst. 2009, 42, 339-341. 
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Chapter 3 

Multicomponent Synthesis of 6H-Dibenzo[b,d]pyran-6-

ones and a Total Synthesis of Cannabinol 

This chapter is based upon the following publication: 

Nandaluru, P. R.; Bodwell, G. J. Org. Lett. 2012, 14, 310-313. 

Contributions of authors 

G. J. Bodwell: research supervisor, manuscript preparation. 

P.R. Nandaluru: experimental work, manuscript preparation. 
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3.1 Introduction 

Multicomponent reactions (MCR) are highly valuable transformations due to their 

ability to incorporate three or more substrates into a single target in one operation. 1 

MCRs typically achieve a substantial increase in molecular complexity and offer 

opportunities for diversity-oriented synthesis. They have proven to be valuable in drug 

discovery,2 as well as in the total synthesis of natural products. 3 

Cannabinoids fonn a class of about 70 natural products that have been isolated 

from the plant Cannabis sativa.4 Cannabinol (1), 119-tetrahydrocannabinol (THC) (2), and 

cannabinodiol (3) are prominent members of this family (Figure 3.1). G-protein coupled 

cellular receptors, CB 1 and CB2, are the targets of the cannabinoids.5 While the CB 1 

receptor is widely present in the central nervous system (CNS), especially the brain, the 

CB2 receptor is less widely distributed. The CB2 receptor is present in organs and tissues 

of immune-related systems, such as the spleen, thymus, bone marrow and B lymphocytes. 

Hence, cannabinoid agonists that selectively bind to one of the receptors are desirable in 

that side effects associated with the expression of the other receptor would be 

minimized.6 

62 



Me 

Me 

Me 

cannabinol (1) 

Me 

cannabinodiol (3) 

Me 

Me 

t-9- tetrahydrocannabinol (2) 

6H-dibenzo(b,d)pyran-6-one (4) 

Figure 3.1. Prominent cannabinoids 1-3 and 6H-dibenzopyranone ( 4) 

Several strategies for the synthesis of cannabinol (1) and its derivatives have been 

reported. These can be classified according to the key steps involved: I) aromatization of 

tetrahydrocannabinols, 7 2) a nucleophilic aromatic substitution I lactonization I Grignard 

reaction sequence,8 3) a Suzuki coupling I Jactonization I Grignard reaction sequence,9 4) 

Ru-catalyzed cyclotrimerization followed by a Grignard reaction. 10 The latter three 

categories all involve the intermediacy of a derivative of 6H-dibenzo[b,d]pyranone 

(DBP) (4). 

3.2 Results and Discussion 

In connection with ongoing studies of the inverse electron demand Diels-Alder 

(IEDDA) reaction, 11 an IEDDA-based route to DBPs was developed by the Bodwell 

group. In its original form, an electron-deficient diene such as 7 (the product of a 

reaction between salicylaldehyde (5) and dimethyl glutaconate (6)) was reacted with an 

enamine, e.g. 8, to afford the corresponding DBP, e.g. 11 (Scheme 3. 1).12 Subsequently, 
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it was found that an electron-rich dienophile (the enamine) could be generated in situ 

from a secondary amine and a ketone, e.g. 9 and 10.13 The fonnation of DBP 11 was 

explained by a domino sequence consisting of an IEDDA reaction, a 1 ,2 -elimination of 

the secondary amine and a dehydrogenation (most likely a transfer hydrogenation to a 

hydrogen acceptor, e.g. the enamine). This methodology was applied to the synthesis of 

a metabolite of ellagic acid, urolithin M7.14 

~CHO + 

~OH 

5 

0 

6 + 

10 

0 

t OMe-
piperidine 

MeO 0 

6 

Q 
MgS04, 7 

ref. 13 
H 

9 

0 

OMe 

0 

ref.12 o-N:J 

8 

0 

OMe 

11 

Scheme 3.1. Stepwise IEDDA-based approaches to DBPs. 

The observation that a 2° amine plays a catalytic role in both the formation of the 

electron-deficient diene (Knoevenagel condensation) and the electron-rich dienophile 

( enamine formation and subsequent elimination) prompted us to investigate the 

possibility of generating both IEDDA partners in situ. If successful, this would be a 

multicomponent domino reaction consisting of six steps: Knoevenagel reaction, 

transesterification, enamine fom1ation, IEDDA reaction, 1 ,2-elimination and transfer 
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hydrogenation (Scheme 3.2). The antic ipated dual catalytic function of the 2° amine 

presented an opportunity to perfmm auto-tandem organocatalysis. 15 The existence of 

precedents for the simultaneous in situ generation of both the diene and dienophile in the 

normal Diels-Alder reaction, 16 and the application of the IEDDA reaction in MCRs 17 

augured well for the success of the proposed MCR. 

o:CHO 

+ 

OH 

Knoevenagel 
0 0 reaction 

MeO~OMe ------

5 6 

OMe lEODA 
,8-elimination 

"""' 
reaction 

l 
- HNR2 

0 

OMe transfer 

"""' 
hydrogenation 

"""' 
--7 

0 --7 

14 11 

Scheme 3.2. Six reactions in the formation of DBPs. 

0 

OMe 
--7 OH~ 

12 

R 
'N- R 

0 
8 

(generated 
in situ) 

0 

OMe 

OMe 

transesterification 

-MeOH l 
0 

+ """' 
0 0 
7 

A mixture of salicylaldehyde (5), dimethyl glutaconate (6), and cyclopentanone 

(10) with morpholine as the base and toluene as the solvent was chosen for initial 

experiments. DBP 11 was obtained from the outset and, through variation of the relative 

amounts of the reactants and base, it was found that a maximum yield of 50% was 
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obtained when 1:2:2:2.5 ratio of 5:6: lO:morpholine was used (entry 8, Table 3.1). While 

holding this ratio constant, the solvent and base were varied, and it was found that a 

maximum yield of 69% was obtained using pyrrolidine as the base and l ,4-dioxane as the 

solvent (entry 9, Table 3.2). Only with pyrrolidine as the base was any reaction at room 

temperature observed (tic analysis). Although progress at room temperature was 

minimal, it was found that slightly better yields were obtained when reactions were first 

stirred at room temperature for 2 h before heating at reflux. Reactions conducted in l ,4-

dioxane were somewhat slower than those in other solvents, so they were heated for 24 h 

instead of 12 h. Conditions have not yet been identified, under which sub-stoichiometric 

amounts of base afford competitive yields ofll. 
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Entry 

1 

2 

3 

4 

5 

6 

7 

8 

9 

r(YCHO 

~OH 
5 

0 6 0 

MeO~OMe 
0 6, base, toluene, D. , 12 h 

10 

Salicylaldehyde Dimethyl gluta- Cyclopentanone 
(equiv.) conate (equiv.) (equiv.) 

1 1 1 

1 2 1 

1 2 2 

1 2 2 

1 2 3 

1 2 5 

1 2 8 

1 2 5 

2 2 5 

Table 3.1. Optimization of stoichiometry for the MCR. 

0 

OMe 

11 

Morpholine Isolated 
(equiv.) yield(% ) 

1 21 

1 28 

1 28 

2 32 

2 46 

2 49 

2 50 

2.5 50 

3 45 
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Entry Base (2.5 equiv.) Solvent 
Isolated yield 

(%) 

1 piperidine toluene 53 

2 pyrrolidine toluene 60 

3 morpholine ethanol 54 

4 L-proline ethanol 43 

5 piperidine ethanol 57 

6 pyrrolidinea ethanol 56 

7 morpho line 1 ,4-dioxaneb 49 

8 piperidine l ,4-dioxaneb 52 

9 pyrrolidine 1 ,4-dioxaneb 69 

10 py:rrolidinea chlorofonn 50 

ll pyrrolidinea THF 45 

12 pyrrolidinea acetonitrile 58 
0 The reaction mi xture was stirred at room temperature for 2 h pn or to heatmg at reflux. 
6The reaction mixture was heated at reflu x for 24 h 

Table 3.2. Optimization of the base and the solvent for the MCR. 

Using the best conditions for the synthesis of 11, a series of salicylaldehydes 18 

was reacted with dimethyl glutaconate (6) and cyclopentanone (10) to afford a set of A-

ring substituted DBPs, most of which had been previously synthesized using a stepwise 

approach (Table 3.3). 12
'
13 The yields ranged from 0% to 79% and, where comparisons 

could be made, were superior (by l-44%, Table S 1) to those obtained using stepwise 

syntheses. 
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0 0 

0 0 6 
MeO~OMe, 10 

OMe 

pyrrolidine, 1 ,4-dioxane 

rt, 2 h, then 90-100 oc. 24 h 

Entry Salicylaldehdye Substituent 
6H-dibenzo[b,d] Isolated 
pyran-6-one yield(%) 

1 5 none 11 69 

2 15 
I 

16 57 R = OMe 

3 17 
2 

18 64 R =OMe 

4 19 
3 

20 79 R = OMe 

5 21 
4 

22 no product R = OMe 

6 23 
I 

24 48 R = Me 

7 25 
2 

26 62 R = Me 

8 27 
3 

28 68 R = Me 

9 29 
3 

30 67 R = Br 

3 
10 31 R = C0

2
Me 32 51 

11 33 
3 

R = NO 
2 

34 10 

Table 3.3. Synthesis of A-ring substituted DBPs. 

Only 6-methoxysalicylaldehyde (21) fai led to afford any of the desired DBP 

(Table 3.3, Entry 5). Excluding cyclopentanone (10) from the reaction mixture led to the 

formation of the corresponding methoxydiene (cf 7), 19 and it was unreactive towards in 
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situ-generated enamine 8. Presumably, steric hindrance at the transition state of the 

cycloaddition inhibits the reaction (TS-I, Figure 3.2). The other methoxy-substituted 

salicylaldehydes (15, 17, 19) and the conesponding methyl-substituted salicylaldehydes 

(23, 25, 27) reacted smoothly to afford the respective DHPs (48-79%). In both series, 

the yield for the 5-substituted system was the best, followed by the 4- and 3-isomers 

(Table 3.3, Entries 2-4 and 6-8). For the various 5-substituted salicylaldehydes (19, 27, 

29, 31, 33), the yields were good until the substituent became strongly electron 

withdrawing (Table 3.3, Entries 4 and 8-11). However, the drop in yield only became 

drastic when a nitro group was present. This is presumably due to the preferential 

fom1ation of an isomeric 2H-chromene over the desired nitrodiene. 13 

The ability of the MCR to generate C-ring-substituted DBPs was then probed by 

conducting it with a series of ketones, several of which had previously been used in 

stepwise DBP syntheses (Table 3.4).12
'
13 Methyl ketones (35, 37, 39, 41) reacted to 

afford the conesponding 9-substituted DBPs 36 (71 %), 38 (36%), 40 (45%) and 42 

(39%), respectively (Table 3.4, Entries 1-4). In the case ofbutanone (41), nonaromatized 

byproduct 43 was obtained in 12% yield. This compound arises from IEDDA reaction of 

diene 7 with the more highly substituted enamine derived from 41 . As previously 

observed for systems bearing a substituent (i.e. one that is not part of a :S5-membered 

fused ring) at the I 0 position of the DBP skeleton, dehydrogenation did not occur. 13 

However, reaction of 43 with DDQ afforded the conesponding DBP 53 in 85% yield 

(Scheme 3.3). 
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DBP 
Isolated 

Entry Ketone 
yield (%) 

Me 0 

0 c6(0Me 
I Me)lMe ~ 71 

35 
I 

0 0 

36 

Ph 0 

0 c6(0Me 
2a Me)lPh ~ 36 

I 
37 

0 0 

38 

0 

0 :?' OMe 
3a Me~ ~ 

I 45 
I 
~ 

39 // 
0 0 
40 

Me 
0 Me 0 

0 

Me~ 
:?' 

I 
OMe co:OMe 4 ~ ~ 39, 12 

Me I 
~ 

I 
41 // 

0 0 0 0 
42 43 

0 

0 :?' OMe 

0 I sa 
~ 

~ 35 
I 

44 // 
0 0 
45 

71 



0 0 
0 

6 OMe OMe 60 
6a 

(57:4) 
46 

47 48 

0 
0 

6 OMe 

r 48 

49 
50 

Me 
0 

0 

& Me 
OMe 

8a 36 

51 

52 

a 3.0 equi v. of ketone was used instead of 5.0. 

Table 3.4. Synthesis of C-ring substituted DBPs using the MCR. 

Me 0 Me 0 

I 

~ OMe _____ o_o_o ____ ~ 
benzene, 80 oc, 24 h 

0 0 85% 

I Me« OMe 
CC( 

43 53 

Scheme 3.3. Synthesis of DBP 53. 

In line with the stepwise DBP syntheses, 12
'
13 small cyclic ketones (::S5-membered) 

44 and 10 reacted to afford DBPs 45 (35%) and 11 (69%), whereas larger cyclic ketones 
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(2:.6-membered) 46 and 49 afforded nonaromatized products (Table 3 .4, Entries 5-7). 

Cyclohexanone (46) gave a mixture of cyclohexadienes 47 and 48 (60% combined yield, 

57:3 by 1H NMR analysis) , and cycloheptanone ( 49) gave only I ,4-cyclohexadiene 50 

(48%). The aromatization of 47/48 and 49 using DDQ was reported earlier. 13 2-

Methylcyclopentanone (51) afforded only DBP 52, which arises from reaction of the less 

substituted enamine (Table 3.4, Entry 8). Where comparisons are available, the yields of 

the MCR are mostly better than those of the corresponding stepwise syntheses (Table 

S2). Exceptions are acetophenone (37), cyclohexanone ( 46) and cycloheptanone ( 49). 

6-Methoxysalicylaldehyde (21), which had failed to afford DBP 22 in a MCR 

with cyclopentanone (1 0), reacted with 6 and acetone (35) to provide DBP 54 ( 4 7%) 

(Scheme 3.4). The MCR clearly tolerates one, but not two substituents in the bay region 

of the DBP framework. When compared to the failed reaction of salicylaldehyde 21 with 

cyclopentanone (10), the enamine derived from acetone does not encounter significant 

steric repulsions with the methoxy group of the diene derived from 21 during IEDDA 

reaction (Figure 3.2, TS-11). Thus the DBP was obtained in the latter case and not the 

former case. 

OMe 

~CHO 

V OH 

21 

0 0 Me 

MeO~OMe, Me~O 
6 35 

pyrrolidine, 1 ,4-dioxane 

rt, 2 h, then 90-100 °C, 24 h 
47% 

Scheme 3.4 . MCR leading to DBP 54. 

Me 0 

OMe 

54 
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MeO 

TS-1 

Me 'Jtl 
~N'\...: OMe 

'-'::: 

0 0 

TS-11 

Figure 3.2. Transition states during cycloaddtions for diene derived from 

21 with enamines derived from cyclopentanone and acetone. 

OMe 

HO 6 ~OMe 
0 55 

n-Buli, THF 

rt, 1 h, 66% 

OMe 

A 
Me~OMe 

0 56 

OMe 

~CHO 
n-Buli , TMEDA 
THF, rt, 2 h 

H2, 20% Pd(OHb /C 

ethanol , 89% 

OMe 

Nal , AICI3 
CH2CI2/CH3CN 
(1 :2), 90 min 
81 % 

~ Me OMe 
then DMF, rt 
12 h, 64% ~ Me 

0 
OMe 

OMe 

~CHO 

Me~OH 
59 

58 

Scheme 3.5. Synthesis of salicylaldehyde 58 using reported procedures. 

57 

Salicylaldehyde 59, which was prepared from 3,5-dimethoxybenzoic acid (55) 

usmg known literature procedures (Scheme 3.5),20 also reacted well with 6 and 35, 

affording DBP 60 (48%) on a 1.2 g scale. This product was converted into cannabinol 
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(1) by two different four-step pathways (Scheme 3.6). Hydrolysis of 60 afforded acid 61 

(90%). Treatment of 61 with MeLi (8 equiv.), fo llowed by reaction of the crude product 

with p-TsOH, brought about simultaneous conversion of the acid group to a methyl 

ketone and the pyranone system to a dimethylpyran unit. Alkene 62 (14%) was 

consistently obtained along with the intended product 63 (42%). Alternatively, alkene 62 

could be accessed by Grignard reaction of 60 with MeMgBr, followed by treatment of the 

crude product with p-TsOH (87%, 2 steps). Oxidative cleavage of the terminal alkene 

then afforded methyl ketone 63 (57%). The synthesis of cannabinol (1) was then 

completed by reacting 63 with Hl/Ac20 , which effected both demethylation and 

deacylation in high yield (95%). This seldom-used retro-Friedel-Crafts acylation relies 

upon the presence of an adj acent methyl group.2 1 
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Me 0 
Me OMe ~ 

) ~CHO _M_e_o_2_c_~--~--c_o_2_M_e_J_s_M '_e __ 

UlAOH pyrrolidine, 1 ,4-dioxane Me 
rt, 2 h, then 90-100 °C, 24 h 

59 48% 

OMe 

Me 0 
62 

Me 

1. MeMgBr, THF 
70 °C, 16 h 

2. p-TsOH, toluene 
70 °C, 1 h 
87% (2 steps) 

Me 

Me Me 

14% 
Os04 , Nal04 

1) Meli, THF 

THF/H20 rt, 2 h 
rt, 16 h 

60 

Me 0 

OMe 

1 0% KOH/MeOH 
70 °C, 6h, 90% 

Me 0 

OH 

61 

57% 2. p-TsOH, toluene 

42% 
70 °C, 0.5 h 

Me 0 Me 

OMe Me 66% HI, Ac20 OH 

120 °C, 4 h, 95% 

Me 
Me Me 0 'Me 

63 

Scheme 3.6. Synthesis of cannabinol (1) 

3.3 Conclusions 

In conclusion, previously reported stepwise syntheses of DBPs have been 

combined to afford a multicomponent domino reaction that perfmms substantially better 

than the stepwise approaches in most cases. Six reactions (Knoevenagel reaction, 

transesterification, enamine fonnation, IEDDA reaction, I ,2-elimination, transfer 
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hydrogenation) occur during the MCR, in which both IEDDA components are generaterd 

in situ and pyrrolidine mediates two separate processes (Knoevenagel reaction and 

enamine formation) . This chemistry has been applied in the total synthesis of cannabinol 

(1). 
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3.5 Experimental procedures and characterization data 

General 1: The general experimental can be found in page 47. 

General II: Acetone was distilled from K2C03. Anhydrous 1 ,4-dioxane was obtained 

conunercially. 

General procedure for synthesis of 6H-dibenzo[b,d]pyran-6-ones (DBPs) 

To a solution of the salicylaldehyde (1.0 equiv.), dimethyl glutaconate (6) (2.0 equiv.) 

and ketone (5.0 equiv.) in 1,4-dioxane (10 mL) was added pyrrolidine (2.5 equiv.) and 

the resulting mixture was stilTed at room temperature for 2 h and then heated at 90-100 

oc for 24 h. The reaction mixture was cooled to room temperature and the solvent was 

removed under reduced pressure. The residue was dissolved in CHC13 (50 mL), washed 

with 1 M HCl solution (20 mL), dried over Na2S04, gravity filtered and the solvent was 

removed under reduced pressure. The residue was subjected to column chromatography 

(1% MeOH I CHCh) and the product obtained was triturated with diethyl ether (2 x 5 

mL) to give the DBP. 
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Benzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-8-carboxylic acid methyl 

ester (11) 1 

Salicylaldehyde (5) (0.50 g, 4.09 mmol), dimethyl glutaconate (6) (1.29 g, 8.18 mmol), 

cyclopentanone (10) (1.72 g, 20.5 mmol) and pyrrolidine (0.72 g, 10 mmol) in 1,4-

dioxane (10 mL) afforded DBP 11 (0.83 g, 69%) as a colorless solid. Rt = 0.60 (30% 

ethyl acetate I hexanes); mp 231- 232 oc ; 1R (neat) v = 1717 (s), 1601 (m), 1201 (s) cm-1
; 

1H NMR (CDCb, 500 MHz) (5 = 8.90 (s, 1H), 8.19 (d, J = 7.9 Hz, 1H), 7.51- 7.48 (m, 

1H), 7.36-7.32 (m, 2H), 3.94 (s, 3H), 3.47-3.42 (m, 4H), 2.27 (quint, J = 7.7 Hz, 2H); 

13C NMR (CDCh, 125 MHz) 6 = 166.00, 160.95, 155.29, 151.91 , 141.78, 134.43, 

132.02, 130.72, 126.86, 126.62, 124.34, 120.37, 118.81 , 117.90, 52.11 , 35 .31 , 33 .59, 

24.96; El-MS mlz (%) 294 (M\ 100%), 279 (22), 263 (40), 262 (30), 191 (23), 178 (21), 

152 (11); HRMS [EI-(+)] calcd for C18H140 4 294.0892, found 294.0888. 

1 
C haracterization data for thi s compound were originall y reported in : Pott ie, I. R.; Nandaluru, P . R .; 

Beno it, W. L. ; Miller, D. 0. ; Dawe, L. N .; Bodwell , G . J. J. Org. Chem. 2011, 76, 9015. The data 
presented here are (in whole, or in part) new, but virtually identical to the previously reported data. 
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4-Methoxybenzo [ b]-2,3-dihydro-lH-indeno [ 5,4-d] -6H-pyran-6-one-8-carboxy lie acid 

methyl ester (16) 

MeO 

Salicylaldehyde 15 (0.50 g, 3.3 nunol), dimethyl glutaconate (6) (1.03 g, 6.52 mmol), 

cyclopentanone (10) (1.38 g, 16.4 mmol) and pyrrolidine (0.58 g, 8.2 mmol) in 1,4-

dioxane (10 mL) afforded DBP 16 (0.60 g, 57%) as a colorless solid. Rr = 0.50 (30% 

ethyl acetate I hexanes); mp 224-227 oc ; IR (neat) V= 1714 (s), 1584 (m), 1275 (m), 

1232 (m), 1206 (s) cm- 1; 1H NMR (CDCh, 500 MHz) 6 = 8.94 (s, 1H), 7.78 (d, J = 8.3 

Hz, 1H), 7.26 (t, J = 8.2 Hz, 1H), 7.09-7.07 (m, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.46-

3.42 (m, 4H), 2.26 (quint, J = 7.7 Hz, 2H); 13C NMR (CDC13, 125 MHz) o = 165.99, 

160.41, 155.25, 147.94, 142.05, 141.70, 134.63, 132.01 , 126.60, 123 .79, 120.32, 11 9.44, 

11 8.23, 11 2.66, 56.22, 52.07, 35.35, 33.58, 24.94; APCI-(+)-MS m/z (%) 326 (24), 325 

([M + 1t, 100); HRMS [EI-(+)] calcd for C19H160 s 324.0998, found 324.0996. 

3-Methoxybenzo [b)-2,3-dihydro-1H-inden o [ 5,4-d] -6H-pyran -6-one-8-carboxylic acid 

methyl ester (18) 

MeO 
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Salicylaldehyde 17 (0.50 g, 3.3 mmol), dimethyl glutaconate (6) ( 1.03 g, 6.52 mmol), 

cyclopentanone (10) (1.38 g, 16.4 nunol) and pyrrolidine (0.58 g, 8.2 mmol) in 1,4-

dioxane (10 mL) afforded DBP 18 (0.68 g, 64%) as a colorless solid. RI = 0.50 (30% 

ethyl acetate I hexanes); mp 260-261 °C; IR (neat) V= 1713 (s), 1616 (m), 1241 (m), 

1201 (s) cm- 1; 1H NMR (CDCI3, 500 MHz) 6 = 8.94 (s, lH), 8.14 (d, J = 8.8 Hz, lH), 

6.93-6.90 (m, 2H), 3.94 (s, 3H), 3.90 (s, 3H), 3.46-3.42 (m, 4H), 2.28 (quint, J = 7.7 Hz, 

2H); 13C NMR (CDCI3, 125 MHz) 6 = 166.48, 161.86, 161.58, 155.50, 153.89, 140.93, 

135.24, 132.55, 128.27, 125.97, 119.43, 112.32, 112.24, 102.30, 56.00, 52.35, 35.46, 

33.94, 25.24; APCI-(+)-MS mlz (%) 326 (23), 325 ([M + It, 100); HRMS [EI-(+)] 

calcd for C, 9H1 60s 324.0998, found 324.1005. 

2-Methoxybenzo[b] -2,3-dihydro-1H-indeno [5,4-d)-6H-pyran-6-one-8-carboxylic acid 

methyl ester (20) 1 

Salicylaldehyde 19 (0.50 g, 3.3 nunol), dimethyl g1utaconate (6) ( 1.03 g, 6.52 mmol), 

cyclopentanone (10) (1.38 g, 16.4 mmol) and pynolidine (0.58 g, 8.2 mmol) in 1,4-

dioxane (1 0 mL) afforded DBP 20 (0.84 g, 79%) as a colorless solid. Rr = 0.50 (30% 

ethyl acetate I hexanes); mp 244- 245 °C; IR (neat) V = 1717 (s), 1598 (m), 1280 (m), 

1244 (s), 1204 (s) cm- 1; 1H NMR (CDCI3, 500 MHz) 6 = 8.96 (s, lH), 7.71 (d, J = 2.7 

Hz, lH), 7.33 (d, J = 9.0 Hz, lH), 7.09 (dd, J = 9.0, 2.8 Hz, lH), 3.95 (s, 3H), 3.90 (s, 
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3H), 3.50 (t, J = 7.5 Hz, 2H), 3.46 (t, J = 7.8 Hz, 2H), 2.29 (quint, J = 7.7 Hz, 2H); 13C 

NMR (CDCh, 125 MHz) o= 166.07, 161.1 7, 155.94, 155.21 , 146.24, 141.74, 134.46, 

132.17, 126.77, 120.59, 119.34, 11 8.59, 116.77, 111.34, 55.85, 52.14, 35.19, 33.58, 

25.01; APCI-(+)-MS m/z (%) 327 (4), 326 (23), 325 ([M + It, 100); HRMS [EI-(+)] 

calcd for C,9H1 60s 324.0998, found 324.1000. 

4-Methylbenzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-8-carboxylic acid 

methyl ester (24) 1 

C02 Me 

Me 

Salicylaldehyde 23 (0.50 g, 3.7 mmol), dimethyl glutaconate (6) (1 .16 g, 7.33 mmol), 

cyclopentanone (10) (1.54 g, 18.3 mmol) and pyrrolidine (0.65 g, 9.1 mmol) in 1,4-

dioxane (1 0 mL) afforded DBP 24 (0.55 g, 48%) as a colorless solid. Rr = 0.60 (30% 

ethyl acetate I hexanes); mp 228- 229 °C; IR (neat) V = 1714 (s), 1588 (w), 1236 (s), 1225 

(s), 1195 (s) cm- 1; 1H NMR (CDCb, 500 MHz) J = 8.89 (s, lH), 8.02 (d, J = 8.1 Hz, lH), 

7.35 (d, J = 7.2 Hz, lH), 7.22 (t, J = 7.8 Hz, !H), 3.94 (s, 3H), 3.45-3.41 (m, 4H), 2.47 

(s, 3H), 2.26 (quint, J = 7.7 Hz, 2H); 13C NMR (CDCI3, 125 MHz) 6 = 166.05, 160.96, 

155. 13, 150. 16, 141.79, 134.85, 132. 17, 131.93, 127.02, 126.42, 124.56, 123.65, 120.23, 

11 8.47, 52.07, 35.46, 33 .60, 24.98, 16.30; GC-MS m/z (%) 308 (M+, 100), 293 (1 6), 277 
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(34), 248 (15), 205 (1 7), 189 (25), 165 (13); HRMS [EI-(+)] calcd for C,gH,604 

308.1049, found 308.1045. 

3-Methylb enzo [ b]-2,3-dihydro-lH-indeno [5,4-d] -6H-pyran-6-on e-8-carboxylic acid 

methyl ester (26) 1 

Salicylaldehyde 25 (0.50 g, 3.7 mrnol), dimethyl glutaconate (6) ( 1.1 6 g, 7.33 mrnol), 

cyclopentanone (10) ( 1.54 g, 18.3 mmol) and pyrrolidine (0.65 g, 9.1 mrnol) in 1,4-

dioxane (10 mL) afforded DBP 26 (0.70 g, 62%) as a colorless solid. Rr = 0.60 (30% 

ethyl acetate I hexanes); mp 268-269 °C; IR (neat) V= 1710 (s), 1623 (w), 1597 (w), 

1282 (w), 1236 (s), 1206 (s) cm-1; 1H NMR (CDCb, 500 MHz) b = 8.88 (s, 1H), 8.04 (d, 

J = 8.6 Hz, 1H), 7.14- 7.12 (m, 2H), 3.94 (s, 3H), 3.42 (t, J = 7.7 Hz, 4H), 2.44 (s, 3H), 

2.27 (quint, J = 7.7 Hz, 2H); 13C NMR (CDCh, 125 MHz) b = 166.07, 161.1 7, 155.13, 

151.91 , 141.73, 141.33, 134.62, 132.03, 126.61, 126. 12, 125.42, 119.98, 11 8.03, 116.1 7, 

52.06, 35 .21, 33.59, 24.89, 21.34; GC-MS mlz (%) 308 (M+, 100), 293 (14), 277 (37), 

249 (15), 205 (16), 189 (25), 165 (1 2); HRMS [EI-(+)] calcd for C 19H160 4 308.1049, 

found 308. 1044. 
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2-Methyl benzo [ b]-2,3-d ihydro-lH-indeno [ 5,4-d] -6H-pyran-6-one-8-carboxylic acid 

methyl ester (28) 1 

Salicylaldehyde 27 (0.50 g, 3.7 nunol), dimethyl glutaconate (6) (1.16 g, 7.33 mrnol), 

cyclopentanone (10) (1.54 g, 18.3 nunol) and pyrrolidine (0.65 g, 9.1 nunol) in 1,4-

dioxane (10 mL) afforded DBP 28 (0.77 g, 68%) as a colorless solid. Rr = 0.60 (30% 

ethyl acetate I hexanes); mp 258-260 °C; IR (neat) V= 1714 (s), 1597 (w), 1281 (w), 

1234 (m), 1206 (s) cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 = 8.92 (s, 1H), 7.97 (s, 1H), 

7.31-7.26 (m, 2H), 3.94 (s, 3H), 3.47-3.43 (m, 4H), 2.47 (s, 3H), 2.29-2.26 (m, 2H); 13C 

NMR (CDCI3, 125 MHz) 6 = 166.09, 161.19, 155.1 7, 150.01 , 141.69, 134.57, 133.82, 

132.08, 131.57, 126.94, 126.49, 120.46, 118.52, 117.61 , 52.10, 35 .39, 33 .58, 25.00, 

21.40; El-MS mlz (%) 308 (M+, 100), 277 (29), 249 (14), 205 (14), 189 (11), 109 (5); 

HRMS [EI-(+)] calcd for C,9HI60d08.1049, found 308.1046. 

2-Bromobenzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-8-carboxylic acid 

methyl ester (30) 1 

Br 
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Salicylaldehyde 29 (0.50 g, 2.5 mmol), dimethyl glutaconate (6) (0.79 g, 5.0 mmol), 

cyclopentanone (10) (1.04 g, 12.4 mmol) and pyrrolidine (0.44 g, 6.2 mmol) in 1,4-

dioxane (1 0 mL) afforded DBP 30 (0.62 g, 67%) as a colorless solid. Rr = 0.70 (30% 

ethyl acetate I hexanes): mp 262-263 oc; IR (neat) V= 1717 (s), 1594 (w), 1274 (m), 

1232 (m), 1202 (s) cm- 1
; 

1H NMR (CDCh, 500 MHz) J = 8.94 (s, lH), 8.33 (s, lH), 7.61 

(d, J = 8.4 Hz, lH), 7.29-7.26 (m, lH), 3.96 (s, 3H), 3.47 (t, J = 7. 1 Hz, 4H), 2.32-2.29 

(m, 2H); 13C NMR (CDC13, 125 MHz) J = 165.87, 160.39, 155.68, 150.86, 142.02, 

133.50, 133.16, 132. 17, 129.48, 127.35, 120.55, 120.41 , 11 9.60, 11 7.14, 52.24, 35.13, 

33.61 , 25.01; El-MS mlz (%) 374 (M+ 8 1Br, 97), 372 (~79Br, 100), 343 (29), 341 (33), 

178 (14), 176 (20); HRMS [EI-(+)] calcd forC 18H130/9Br 371.9997, found 371.9999. 

Benzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-2,8-dicarboxylic acid 

dimethyl ester (32) 1 

Salicylaldehyde 31 (0.50 g, 2.8 mmol), dimethyl glutaconate (6) (0.88 g, 5.6 mmol), 

cyclopentanone (10) (1.17 g, 13.9 rmnol) and pyrrolidine (0.49 g, 6.9 mmol) in 1,4-

dioxane (1 0 mL) afforded DBP 32 (0.50 g, 51 %) as a colorless solid. Rr = 0.60 (30% 

ethyl acetate I hexanes): mp > 300 oc ; lR (neat) V = 1738 (m), 1717 (s), 1611 (w), 1256 

(s), 1236 (m), 1203 (s) cm- 1
; 

1H NMR (CDC13, 500 MHz) J = 8.96 (d, J = 1.3 Hz, 1H), 

8.94 (s, 1H), 8. 17 (dd, J = 8.6, 1.7 Hz, 1H), 7.43 (d, J= 8.6 Hz, l H), 3.99 (s, 3H), 3.96 
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(s, 3H), 3.56 (t, J = 7.5 Hz, 2H), 3.47 (t, J = 7.8 Hz, 2H), 2.32 (quint, J = 7. 7Hz, 2H); 13C 

NMR (CDCb, 125 MHz) b = 166.05, 165.91, 160.35, 155.84, 154.90, 142.23, 133.66, 

132.15, 131.71 , 129.05, 127.28, 126.36, 120.29, 118.76, 118.11 , 52.55, 52.24, 35.19, 

33.66, 25 .01; GC-MS mlz (%) 352 (M+, 100), 321 (57), 293 (22), 189 (21), 176 (30); 

HRMS [EI-(+)] calcd for C20H 160 6 352.0947, found 352.0946. 

2-Nitrobenzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-8-carboxylic acid 

methyl ester (34) 1 

Salicylaldehyde 33 (0.50 g, 3.0 mmol), dimethyl glutaconate (6) (0.94 g, 6.0 mmol), 

cyclopentanone (10) (1.25 g, 14.9 mmo1) and pyrrolidine (0.53 g, 7.5 mmol) in 1,4-

dioxane (10 mL) afforded DBP 34 (0.10 g, 10%) as a colorless solid. R1 = 0.70 (30% 

ethyl acetate I hexanes); mp 272- 273 oc; JR (neat) v = 1752 (m), 1726 (s), 1599 (w), 

1529 (m), 1350 (m), 1272 (w), 1205 (s) cm- 1
; 

1H NMR (CDCI3, 500 MHz) b = 9.21 (s, 

1H), 8.98 (s, 1H), 8.40 (d, J = 8.1, 1H), 7.54 (d, J = 8.7 Hz, 1H), 3.98 (s, 3H), 3.59 (m, 

2H), 3.51 (t, J = 7.4 Hz, 2H), 2.38-2.35 (m, 2H); 13C NMR (CDCb, 125 MHz) b = 

165.68, 159.57, 156.38, 155.72, 144.08, 142.57, 132.53, 132.34, 128. 15, 125.59, 122.96, 

120.24, 119.33, 119.00, 52.40, 35.10, 33 .70, 25.02; El-MS m/z (%) 339 (~, 100), 307 

(48), 280 (22), 234 (13), 176 (16); HRMS [EI-(+)] calcd for C 18H 13N06 339.0743, found 

339.0746. 
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9-Methyi-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester (36) 1 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 

anhydrous acetone (35) (1.18 g, 20.3 mmol) and pyrrolidine (0.72 g, 10 mmol) in 1,4-

dioxane (10 mL) afforded DBP 36 (0.78 g, 71 %) as a colorless solid. R1 = 0.60 (30% 

ethyl acetate I hexanes); mp 216-2 17 °C; rR (neat) V= 1715 (s), 1608 (m), 1311 (m), 

1240 (m), 1186 (m) cm- 1; 1H NMR (CDCh, 500 MHz) 15 = 8.92 (s, 1H), 8.07- 8.05 (m, 

1H), 7.94 (s, 1H), 7.53-7.50 (m, 1H), 7.36-7.34 (m, 2H), 3.95 (s, 3H), 2.80 (s, 3H); 13C 

NMR (CDC13, 125 MHz) 15 = 166.30, 160.42, 152.02, 147.50, 137.09, 133.58, 131.44, 

130.13, 124.71 , 124.67, 123.25, 118.96, 117.95, 117.16, 52.22, 22.55; El-MS mlz (%) 

268 (M+, 71), 237 (100), 181 (31), 152 (28), 118 (11); HRMS [EI-(+)] calcd for C,6H1204 

268.0736, found 268.0738. 

9-Phenyi-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester (38) 1 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 

acetophenone (37) (1.47 g, 12.3 mmo1) and pyrrolidine (0.72 g, 10 mmol) in 1,4-dioxane 

(1 0 mL) afforded DBP 38 (0.49 g, 36%) as a colorless solid. R1 = 0.40 (30% ethyl 
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acetate I hexanes); mp 195-196 °C; IR (nujo l) v= 1738 (s), 1719 (s) cm- 1; 1H NMR 

(CDCI3, 500 MHz) (5 = 8.89 (s, LH), 8.09-8.07 (m, 2H), 7.56- 7.53 (m, IH), 7.50-7.46 

(m, 3H), 7.42-7.40 (m, 3H), 7.37-7.34 (m, 1H), 3.74 (s, 3H); 13C NMR (CDCh, 125 

MHz) (5 = 167.26, 160.52, 152.24, 149.08, 140.21, 137.00, 133.12, 131.80, 131.49, 

128.57, 128.38, 125.03, 124.54, 123.56, 120.11 , 118.26, 117.46, 52.59; GC-MS mlz (%) 

330 (M+, 81), 299 (100), 27 1 (11), 255 (25), 226 (40), 213 (24); Anal. calcd for 

C2,H1404; C, 76.36; H, 4.27. Found C, 76.20; H, 4.10. 

9-Cyclopropyl-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester (40) 

0 

OMe 

Salicylaldehyde (5) (0.50 g, 4.1 nunol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 

cyclopropyl methyl ketone (39) (1.03 g, 12.3 mmol) and pyno1idine (0.72 g, 10 mmo1) in 

1,4-dioxane (10 mL) afforded DBP 40 (0.55 g, 45%) as a colorless solid.2 Rr = 0.50 

(30% ethyl acetate I hexanes); mp 190- 192 oc ; IR (neat) v = 1711 (s), 1608 (s), 1225 (s), 

11 87 (s) cm- 1; 1H MR (CDCh, 500 MHz) (5 = 8.84 (s, !H), 8.03 (d, J = 8.1 Hz, 1H), 

7.65 (s, !H), 7.53-7.50 (m, lH), 7.36-7.33 (m, 2H), 3.97 (s, 3H), 2.95-2.90 (m, 1H), 

1.24-1.20 (m, 2H), 0.93- 0.89 (m, 2H); 13C NMR (CDC13, 125 MHz) (5 = 167.19, 160.80, 

152.93 , 152.35, 137.48, 133.51, 13 1.97, 131.77, 125.03, 123.48, 11 8.67, 11 8.54, 11 8.38, 

2 The product obtained from chromatography was triturated with hexanes (3 x 5 mL) instead of diethyl 
ether. 
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117.68, 52.76, 14.57, 10.79; APCI-(+)-MS m/z(%) 296 (20), 295 ([M + It, 100), 263 

(8); HRMS [EI-(+)] calcd for C,sH 1404 294.0892, found 294.0888. 

9-Ethyl-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester (42) and 7,10-

dihydro-9,10-dimethyl-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester 

(43) 

0 Me 0 

OMe I MeijoMe 
CCC 

42 43 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8. 16 mmol), 

butanone ( 41) (1.4 7 g, 20.4 mmol) and pynolidine (0. 72 g, 10 mmol) in 1 ,4-dioxane (1 0 

mL) afforded (prior to trituration) a mixture of DBP 42 and dihydro-DBP 43 as a 

colorless solid. Trituration of the product obtained from chromatography with diethyl 

ether (3 x 5 mL) afforded DBP 42 (0.44 g, 39%) as a colorless solid. The ether washes 

were concentrated under reduced pressure and subjected to colunm chromatography 

(dichloromethane) to give dihydro-DBP 43 (0. 14 g, 12%) as a colorless solid. 42: Rr = 

0.60 (30% ethyl acetate I hexanes); mp 196- 197 oc ; IR (neat) v = 1715 (s), 1608 (m), 

1297 (w), 125 1 (m), 1228 (s), 1282 (s) cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 = 8.90 (s, 

!H), 8.10-8.08 (m, !H), 7.98 (s, !H), 7.53- 7.50 (m, !H), 7.37-7.34 (m, 2H), 3.94 (s, 

3H), 3. 19 (q, J = 7.5 Hz, 2H), 1.34 (t, J = 7.5 Hz, 3H); 13C NMR (CDC13, 125 MHz) 6 = 

166.40, 160.50, 153.29, 152.04, 137.29, 133 .75, 131.44, 130.02, 124.73 , 123.29, 123.27, 
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118.95, 118.01 , 117.33, 52.33, 28.22, 15.59; APCI-(+)-MS mlz (%) 284 (20), 283 ([M + 

It, 100), 253 (6); HRMS [EI-(+)] calcd for C,7H1404 282.0892, found 282.0895. 43: Rr 

= 0.55 (30% ethyl acetate I hexanes); mp 129-130 oc; IR (neat) v = 1708 (s), 1655 (w), 

1289 (w), 1206 (s) cm- 1; 1H NMR (CDCb, 500 MHz) 6 = 7.61 (d, J = 7.2 Hz, lH), 7.52-

7.49 (m, lH), 7.37-7.36 (m, lH), 7.34-7.30 (m, lH), 3.82-3.77 (m, lH), 3.80 (s, 3H), 

3.71-3.69 (m, !H), 3.27- 3.21 (m, lH), 2.3 1 (s, 3H), 1.40 (d, J = 7.1 Hz, 3H); 13C NMR 

(CDCb, 125 MHz) 6 = 167.48, 160.70, 153.10, 148.38, 147.55, 130.81, 124.33, 123.29, 

121.67, 120.50, 117.76, 117.40, 51.58, 38.97, 26.64, 19.96, 19.55; APCI-(+)-MS m/z (%) 

286 (17), 285 ([M + It, 87 ), 254 (19), 253 (100); HRMS [EI-(+)] calcd for C 11H160 4 

284.1049, found 284. 1044. 

Dibenzopyranone 45 1 

0 

OMe 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 

cyclobutanone (44) (0.86 g, 12 mmol) and pyrrolidine (0.72 g, 10 mmol) in 1,4-dioxane 

(10 mL) afforded DBP 45 (0.40 g, 35%) as a colorless solid. Rr = 0.60 (30% ethyl 

acetate I hexanes); mp 245-246 oc; 1R (neat) v = 1726 (s), 1612 (m), 123 7 (s), 12 10 (s) 

cm-
1
; 

1
H NMR (CDCI3, 500 MHz) 6 = 8.83 (s, lH), 7.83 (d, J = 7.1 Hz, lH), 7.50 (t, J = 

7.2 Hz, lH), 7.34-7.3 1 (m, 2H), 3.94 (s, 3H), 3.59 (s, 4H); 13C NMR (CDC13, 125 MHz) 

6 = 165.00, 16 1.02, 155.32, 151.89, 140.84, 132.97, 131.63, 131.30, 125.84, 125.3 1, 
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124.67, 119.87, 117.53, 117.31, 52.16, 32.16, 31.05; El-MS mlz (%) 280 (M+, 100), 279 

(73), 249 (17), 221 (14), 165 (36), 139 (9); HRMS [EI-(+)] calcd for C 17H 120 4 280.0736, 

found 280.0735. 

Benzo [ b ]-3,5,6, 7 ,8,8a-hexahydronaphthaleno[2,1-d]-6H-pyran-6-one-8-carboxylic 

acid methyl ester (47) 1 and (8aS* ,12aR*)-benzo[b ]-4a,5,6, 7,8,8a-

hexahydronaphthaleno[2,1-d]-6H-pyran-6-one-8-carboxylic acid methyl ester (48) 1 

0 0 

OMe OMe 

47 48 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 

cyclohexanone (46) (1.03 g, 12.2 mmol) and pyrrolidine (0.72 g, 10 mmol) in 1,4-

dioxane (1 0 mL) afforded a mixture of dihydro-DBPs 47 and 48 as a colorless solid? 

Colunm chromatography afforded a pure sample of 47 (0.23 g, 18%) and a 12.5 : 1 

mixture (1H NMR analysis) of 47 and 48 (0.53 g, 42%). Combined yield = 0.76 g (60%); 

47:48 = 57:3. 47: R1 = 0.50 (30% ethyl acetate I hexanes); mp 168-170 OC; TR (neat) 

v= 1703 (s), 1607 (w), 1222 (m), 1207 (m) cm- 1
; 

1H NMR (CDCh, 500 MHz) J = 7.58 

(d, J = 8.0 Hz, 1H), 7.51- 7.48 (m, lH), 7.37- 7.35 (m, 1H), 7.32-7.29 (m, 1H), 3.80 (s, 

3H), 3.80- 3.76 (m, 1H), 3.64- 3.59 (m, 2H), 3.40 (dd, J = 23.9, 6.0 Hz, 1H), 2.43- 2.39 

(m, 1H), 2.09- 2.06 (m, 1H), 1.96- 1.94 (m, 2H), 1.83- 1.80 (m, lH), 1.61- 1.43 (m, 2H); 

13C NMR (CDC13, 125 MHz) b = 167.83, 160.72, 152.99, 148.72, 145.36, 130.62, 
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124.15, 123.62, 120.02, 118.43, 117.80, 117.40, 51.59, 42.53, 36.70, 32.03, 29.32, 27.05, 

26.94; El-MS mlz (%) 310 (M+, 59), 279 (78), 251 (100), 223 (15), 209 (15), 181 (22), 

165 (35); HRMS [EI-(+)] calcd forC 19H 180 4 310.1205, found 310.1199. 

Dihydrodibenzopyranone 501 

0 

OMe 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate ( 6) ( 1.29 g, 8.16 mmol), 

cycloheptanone (49) (1.37 g, 12.2 mmol) and pyrrolidine (0.72 g, 10 mmol) in 1,4-

dioxane (10 mL) afforded dihydro-DBP 50 (0.64 g, 48%) as a colorless solid.2 R1 = 0.50 

(30% ethyl acetate I hexanes); mp 135- 136 OC; IR (neat) v= 1701 (s), 1606 (m), 1290 

(m), 1262 (w), 1225(s), 1210 (s) cm-1
; 

1H NMR (CDCb, 500 MHz) J = 7.60-7.58 (m, 

lH), 7.53-7.49 (m, lH), 7.38-7.36 (m, lH), 7.35-7.31 (m, lH), 3.87-3.82 (m, 2H), 3.80 

(s, 3H), 3.56- 3.50 (m, lH), 3.27- 3.22 (m, 1H), 2.39- 2.34 (m, lH), 2.10- 2.08 (m, 1H), 

1.98- 1.97 (m, 1H), 1.86- 1.80 (m, 3H), 1.70- 1.68 (m, lH), 1.45- 1.35 (m, 2H); 13C NMR 

(CDCb, 125 MHz) J = 167.38, 160.73, 153.13, 150.82, 148.88, 130.74, 124.29, 123.16, 

122.23, 120.26, 117.87, 117.35, 51.53, 42.44, 35.44, 33 .51 , 28.32, 27.20, 26.79, 25.53; 

El-MS m/z (%) 324 (M+, 84), 293 (100), 281 (81), 268 (70), 249 (55), 209 (43), 181 (44), 

165 (41), 152 (47); HRMS [EI-(+)] ca1cd for C20H2004 324.1362, found 324.1358. 
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9-Methylbenzo[b]-2,3-dihydro-1H-indeno[5,4-d]-6H-pyran-6-one-8-carboxylic acid 

methyl ester (52) 1 

Me 
0 

OMe 

Salicylaldehyde (5) (0.50 g, 4.1 mmol), dimethyl glutaconate (6) (1.29 g, 8.16 mmol), 2-

methylcyclopentanone (51) (1.03 g, 12.2 mmol) and pyrrolidine (0.72 g, 10 nunol) in 1,4-

dioxane (10 mL) afforded DBP 52 (0.44 g, 36%) as a colorless solid. R1 = 0.50 (30% 

ethyl acetate I hexanes); mp 206-207 oc ; IR (neat) v = 1714 (s), 1558 (w), 1230 (s), 1200 

(s) cm-1; 1H NMR (CDCh, 500 MHz) J = 8.95 (s, 1H), 8.24 (d, J = 8.0 Hz, 1H), 7.53-

7.50 (m, 1H), 7.39-7.34 (m, 2H), 4.14-4.08 (m, 1H), 3.58- 3.39 (m, 2H), 2.37- 2.27 (m, 

13 s: 1H), 2.11-2.07 (m, 1H), 1.29 (d, J = 7.0 Hz, 3H); C NMR (CDCh, 125 MHz) u = 

165.94, 161.20, 160.49, 152.14, 141.01 , 135.00, 132.81 , 130.96, 127.17, 126.42, 124.56, 

120.72, 119.08, 118.13, 52.37, 39.18, 33.57, 33.31 , 20.47; El-MS mlz (%) 308 (M+, 100), 

293 (54), 275 (31), 205 (21), 189 (17), 138 (10); HRMS [EI-(+)) calcd for C19H160 4 

308.1049, found 308.1049. 

9,10-Dimethyi-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester (53) 
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To a solution of 43 (50 mg, 0.18 mmol) in benzene (10 mL) was added DDQ (60 mg, 

0.26 mmol) in one portion and the resulting mixture was heated at reflux for 24 h. The 

reaction mixture was then cooled to room temperature and gravity filtered. The filtrate 

was concentrated under reduced pressure and the residue was subjected to column 

chromatography (CHCh) to afford DBP 53 (42 mg, 85%) as a colorless solid. Rl = 0.60 

(30 % ethyl acetate I hexanes); mp 141-143 oc ; lR (neat) v 1717 (s), 1595 (w), 1228 (m), 

1206 (m) cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 = 8.70 (s, lH), 8.16 (d, J = 7.9 Hz, lH), 

7.49 (t, J = 7.2 Hz, lH), 7.39 (d, J = 7.8 Hz, lH), 7.33 (t, J = 7.3 Hz, lH), 3.95 (s, 3H), 

2.78 (s, 3H), 2.68 (s, 3H); 13C NMR (CDCh, 125 MHz) 6 = 167.62, 161.13, 151.76, 

145.88, 136.45, 135.23, 131.34, 130.39, 129.99, 128.11 , 123.84, 120.10, 118.86, 118.02, 

52.41 , 20.62, 18.36; APCI-(+)-MS mlz (%) 284 (19), 283 ([M + It , 100); HRMS [EI­

(+)] calcd for C 17H140 4 282.0892, found 282.0897. 

1-Methoxy-9-methyi-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl ester 

(54) 

Me 0 

OMe 

Salicylaldehyde 21 (0.1 0 g, 0.66 mrnol), dimethyl glutaconate (6) (0.2 1 g, 1.3 mmol), 

anhydrous acetone (35) (0.3 8 g, 6.6 mrnol) and pyrrolidine (0.12 g, 1. 7 mrnol) in 1,4-

dioxane (2 mL) afforded DBP 54 (0.092 g, 47%) as a colorless solid.2 Rl = 0.40 (30 % 

ethyl acetate I hexanes); mp 189- 191 oc ; IR (neat) v = 1720 (s), 1607 (m), 121 3 (s), 1079 
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(s) cm- 1
; 

1H NMR (CDC13, 300 MHz) 6 = 9.00 (s, lH), 8.92 (s, !H), 7.47 (t, J = 8.3 Hz, 

lH), 7.10 (dd, J = 8.2, 1.1 Hz, lH), 6.92 (d, J = 8.4 Hz, lH), 4.11 (s, 3H), 3.97 (s, 3H), 

2.83 (s, 3H); 13C NMR (CDC13, 75 MHz) 6 = 166.52, 160.73, 158.70, 153 .27, 147.22, 

137.08, 132.98, 130.95, 130.46, 128.98, 118.71 , 110.54, 107.57, 106.97, 56.08, 52.13, 

22.87; APCI-(+)-MS m/z (%) 300 (15), 299 ([M + It , 100); HRMS [EI-(+)) calcd for 

C17H 140 5 298.0841, found 298.0847. 

1-Methoxy-9-methyl-3-pentyl-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid methyl 

ester (60) 

Me 0 

OMe 

Me 

Salicylaldehyde 59 (1.19 g, 5.36 mmol), dimethyl glutaconate (6) (1.70 g, 10.7 mmol), 

anhydrous acetone (35) (3.11 g, 53 .5 mmol) and pyrrolidine (0.95 g, 13.4 mmol) in 1,4-

dioxane (24 mL) afforded DBP 60 (0.94 g, 48%) as a colorless solid.2 R1 = 0.50 (20% 

ethyl acetate I hexanes); mp 130- 133 °C; IR (neat) v = 172 1 (s), 1608 (w), 1214 (s), 1079 

(s) cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 = 8.95 (s, I H), 8.83 (s, lH), 6.84 (d, J = 1.5 Hz, 

lH), 6.68 (d, J = 1.5 Hz, lH), 4.05 (s, 3H), 3.92 (s, 3H), 2.78 (s, 3H), 2.67 (t, J = 7.8 Hz, 

2H), 1.66 (quint, J = 7.4 Hz, 2H), 1.37-1 .34 (m, 4H), 0.90 (t, J = 6.7 Hz, 3H); 13C NMR 

(CDCh, 125 MHz) 6 = 166.58, 160.95, 158.46, 153.18, 147.13, 137.33, 132.99, 129.99, 

128.45, 11 8.34, 110.09, 107.39, 105.21, 55 .96, 52.06, 36.14, 31.42, 30.53, 22.87, 22.51 , 
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14.01; APCI-(+)-MS mlz (%) 370 (20), 369 ([M + It, 100); HRMS [EI-(+)] calcd for 

C22H240s 368.1624, found 368.1632. 

1-Methoxy-9-methyl-3-pentyi-6H-dibenzo[b,d]pyran-6-one-8-carboxylic acid (61) 

Me 0 

OMe OH 

Me 

A solution of 60 (0.50 g, 1.36 mmol) in 10% KOH I methanol (1 0 mL) was heated at 

reflux for 6 h. The reaction mixture was cooled to room temperature and the solvent was 

removed under reduced pressure. To the residue was added water (5 mL) and the pH was 

adjusted to 2 using concentrated HCI. A precipitate formed and the mixture was suction 

filtered . The solids were vaccum dried for an hour and then dried under air in an oven at 

100 oc for 12 h to afford 61 (0.43 g, 90%) as a cream colored solid. R1 = 0.20 (30% ethyl 

acetate I hexanes); mp 272- 275 oc; IR (neat) v = 3158- 2465 (br s), 1733 (s), 1699 (m), 

1579 (s) cm-1; 1H NMR (DMSO-d6, 500 MHz) (5 = 8.80 (s, lH), 8.66 (s, lH), 6.94 (s, 

1H), 6.87 (s, lH), 4.05 (s, 3H), 2.72 (s, 3H), 2.68 (t, J = 7.7 Hz, 3H), 1.65 (quint, J = 7.4 

Hz, 2H), 1.37- 1.30 (m, 4H), 0.89 (t, J = 6.8 Hz, 3H); 13C NMR (DMSO-d6, 125 MHz) (5 

= 167.32, 159.90, 158.17, 152.45, 147.10, 146.36, 136.32, 131.85, 129.50, 11 7.85, 

109.26, 107.99, 104.28, 56.28, 35.26, 31.01 , 30.00, 22.57, 22.03 , 14.01; APCI-(+)-MS 

mlz (%) 356 (20), 355 [M + It, 100); HRMS [EI-(+)] calcd for C21H220 5 354.1467, 

found 354.1466. 
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8-(2-Propenyl)-1-methoxy-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d)pyran ( 62) and 

8-acetyl-1-methoxy-6,6,9-trimethyl-3-pentyl-6H-dibenzo[ b,d] pyran ( 63) 

OMe 

Me 

Me 

0 -Me 
62 

Me OMe 

Me 

Me 0 

0 -Me 
63 

Me 

To a -78 oc suspension of carboxylic acid 61 (250 mg, 0.71 mmol) in THF (5 mL) was 

added methyllithium (1.28 Min diethyl ether, 4.40 mL, 5.64 mmol) and the mixture was 

stirred for I 0 min. The reaction mixture was brought to room temperature and stilTed for 

a period of 2 h. The reaction mixture was cooled to - 78 oc and quenched with satd. 

NH4CI (1 0 mL) and then wanned to room temperature. The resulting mixture was 

extracted with chloroform (3 x I 0 mL), dried over Na2S04 and the solvent was removed 

under reduced pressure. To the residue was added benzene (7 mL) and p-TsOH (20 mg), 

and the mixture was heated at 70 oc for 30 min. The reaction mixture was cooled to 

room temperature and the solvent was removed under reduced pressure. The residue was 

dissolved in diethyl ether (20 mL), washed with saturated aqueous NaHC03 solution (10 

mL), dried over Na2S04 and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (5% ethyl acetate I hexanes) to afford 

62 (37 mg, 14 %) and 63 (110 mg, 42%) as pale yellow oils. 62: R1 = 0.80 (30% ethyl 

acetate I hexanes); 1H NMR (CDC13, 500 MHz) J 8.1 9 = (s, 1H), 6.97 (s, IH), 6.47 (d, J 

= 1.5 Hz, lH), 6.43 (d, J = 1.5 Hz, lH), 5.20- 5.19 (m, 1H), 4.48-4.87 (m, lH), 3.93 (s, 

3H), 2.57 (t, J = 7.8 Hz, 3H), 2.34 (s, 3H), 2.05 (s, 3H), 1.63 (quint, J = 7.6 Hz, 2H), 1.59 

(s, 6H), 1.35- 1.33 (m, 4H), 0.90 (t, J = 6.9 Hz, 3H); 13C NMR (CDCh, 125 MHz) J = 
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157.21 , 154.27, 145.96, 144.22, 142.24, 137.05, 133.09, 128.08, 126.32, 121.85, 114.71, 

110.89, 109.72, 104.98, 77.21, 55.56, 36.17, 31.56, 30.64, 27.05, 24.31 , 22.56, 20.07, 

14.05; APCI-(+)-MS m/z (%) 366 (31), 365 ([M + It, 100), 349 (8); HRMS [CI-(+)] 

calcd for C25H330 2 365.2481 , found 365 .2487. 63: Rl = 0.50 (30% ethyl acetate I 

hexanes); 1H NMR (CDCb, 500 MHz) J = 8.26 (s, !H), 7.52 (s, !H), 6.47 (d, J = 1.5 Hz, 

!H), 6.43 (d, J = 1.5 Hz, !H), 3.93 (s, 3H), 2.58 (s, 3H), 2.57-2.54 (m, 2H), 2.56 (s, 3H), 

1.64-1.61 (m, 2H), 1.62 (s, 6H), 1.34-1.32 (m, 4H), 0.89 (t, J = 6.9 Hz, 3H); 13C NMR 

(CDCb, 125 MHz) J = 200.91, 157.76, 154.89, 145.94, 137.41 , 136.78, 135.42, 131.1 8, 

129.84, 123.72, 110.96, 108.98, 105.10, 77.21, 55.60, 36.26, 31.53, 30.59, 29.49, 26.99, 

22.55, 22.12, 14.04; APCI-(+)-MS mlz (%) 368 (27), 367 ([M + It, 100); HRMS [CI­

(+)] calcd for C24H3103 367.2273, found 367.2265. 

8-(2-Propenyl)-1-methoxy-6,6,9-trimethyl-3-pentyl-6H-dibenzo[b,d)pyran (62) 

Me 

Me 

Me 

To a solution of 60 (102 mg, 0.28 mmol) in THF (5 mL) was added methy1magnesium 

bromide (3.0 Min diethyl ether, 1.8 mL, 5.39 mmol) at 0 oc over 5 min. The resulting 

mixture was heated at 70 oc for 16 h and then cooled to 0 oc before the addition of 

saturated aqueous NH4Cl solution (1 0 mL). The reaction mixture was extracted with 

chloroform (3 x I 0 mL), dried over Na2S04 and the solvent was removed under reduced 

pressure. To the residue was toluene (5 mL) and p -TsOH (20 mg) and the resulting 
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mixture was heated at 70 oc for I h. The reaction mixture was cooled to room 

temperature and the solvent was removed under reduced pressure. The residue was 

dissolved in ethyl acetate (15 mL), washed with staurated aqueous NaHC03 solution (1 0 

mL), dried over Na2S04 and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (2% ethyl acetate I hexanes) to afford 

62 (88 mg, 87%) as a pale yellow oil. See above for characterization data. 

8-Acetyl-1-methoxy-6,6,9-trimethyl-3-pentyl-6H-dibenzo [b,d] pyran ( 63) 

Me 0 

Me 

Me 

To a solution of 62 (80 mg, 0.22 mmol) in a 6:4 mixture of dry THF I deionized H20 (2 

mL) was added 4% Os04 in water (I 00 flL). The resu lting mixture was stirred at room 

temperature for 20 min and Nal04 (190 mg, 0.89 mmol) was then added in several 

portions. The reaction mixture was stirred at room temperature for 16 h and then 

quenched by the addition of saturated aqueous Na2S03 solution (5 mL). The resulting 

mixture was extracted with ethyl acetate (2 x I 0 mL) and the combined organic layers 

were washed with saturated aqueous NaHC03 solution (5 mL), dried over Na2S04 and 

the solvent was removed under reduced pressure. The residue was subjected to column 

chromatography (7% ethyl acetate I hexanes) to obtain 63 (46 mg, 57%) as a pale yellow 

oil. See above for characterization data. 
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Cannabinol ( 1-hydroxy-6,6,9-trimethyl-3-pentyi-6H-dibenzo[b,d] pyran) (1) 

Me 

Me 

A mixture of 63 (25 mg, 0.071 mmol), acetic anhydride (0.3 mL) and 66% HI (0.3 mL) 

was heated at 120 oc for 4 h. The reaction mi xture was then cooled to room temperature 

and extracted with diethyl ether (2 x I 0 mL). The combined organic layers were washed 

with saturated aqueous Na2S03 solution (1 0 mL), washed with aqueous saturated 

aHC03 solution (1 0 mL), dried over Na2S04 and the solvent was removed under 

reduced pressure. The residue was subjected to colunm chromatography ( 10% ethyl 

acetate I hexanes) to afford 1 (20 mg, 95%) as a colorless oil. R1 = 0.50 (20% ethyl 

acetate I hexanes); 
1H NMR (CDCb, 500 MHz) c5 = 8.15 (s, I H), 7.14 (d, J = 7.8 Hz, !H), 

7.08- 7.66 (m, !H), 6.44 (d, J = 1.6 Hz, !H), 6.29 (d, J = 1.6 Hz, !H), 5.10 (s, IH), 2.5 1 

(t, J = 7.7 Hz, 3H), 2.38 (s, 3H), 1.63- 1.57 (m, 2H), 1.59 (s, 6H), 1.33- 1.3 1 (m, 4H), 0.89 

(t, J = 7.0 Hz, 3H); 13C NMR (CDC I3, 125 MHz) c5 = 154.65, 152.95 , 144.54, 136.90, 

136.87, 127.59, 127.49, 126.32, 122.63 , 110.82, 109.83, 108.67, 77.29, 35.60, 3 1.47, 

30.46, 27. 10, 22.54, 21.53 , 14.03; APCI-(+)-MS mlz (%) 312 (24), 311 ([M + It , 100); 

HRMS [EI-(+)] calcd for C21H260 2 3 10.1933, found 3 10.1 938. 
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I 13 
3.6 Selected H and C NMR spectra for Chapter 3 

i j .1~ 
. _j,______J\ '---~ '----"---- l 

10.0 9.5 9 .0 8 .5 8 .0 7 .5 7 .0 6 . 5 6.0 5 . 5 s .o 4 .5 4 .0 3 .5 3 .0 2.5 2 .0 l.S 1.0 o.s 0 .0 
f l (ppm) 

I 

--· ---.~..lJ_JJ __ l_JJJLil __ ,_~-~---j __ LL_~----L 
2 00 19 0 18 0 170 160 1 50 140 130 120 110 100 

f1 (pl)m) 
30 
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MeO 16 

_L,;. _ ___.._)LLL,~l 
10.0 9 .5 9 .0 8 . 5 8 .0 7 .5 7 .0 6 .5 6 .0 s .s 5.0 ... 5 4 .0 3 .5 3 .0 2.5 2.0 1. 5 1.0 o.s 0 0 

t1 (ppm) 

200 190 litO 17 0 160 I SO 140 130 12 0 110 100 9 0 80 7 0 60 50 4 0 30 2 0 10 0 
n CPP"'l 
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MeO 

18 

-----~--J-~~~~~ ------------"~~~~--~· 
10 .0 9 .5 9.0 8.5 8 0 7 .5 7.0 6 .5 6.0 5.5 5.0 4 .5 3 .5 3.0 2.5 2.0 1.5 1.0 0 .5 0 .0 

f l (ppm) 
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MeO 

20 

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 
ft (pp rn) 

200 190 H IO 170 160 I SO 140 130 120 110 100 
fl (ppm ) 
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Me 24 

10 .0 9 5 9 .0 6 5 8 .0 7 .5 7 .0 6 . 5 6 .0 5 . 5 s.o 4 .5 
ft (ppm) 

3 .0 2 .5 2 .0 1.5 1.0 o.s o.o 

200 190 180 170 160 I SO 140 13 0 120 1 10 100 90 80 70 60 SO 40 30 20 10 0 
I I (ppm) 
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C02 Me 

Me 

26 

! 

____ JC ____ ,,__ _ ___,uL._ __________ .,__jL. ___ j~ _ _,___ ____ _j, 

9 .5 9.0 8.5 8 .0 7 .5 7.0 

190 180 140 13 0 

u u u u u u u u 
fl ( ppm) 

! 

"""''"''"'"~-.w"""'" __ l[,_j__,.~.,.J.... 
lOO 90 60 60 

f1 (ppm) 
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Me 

28 

I j ;\ I 
____ _> ____ _.Jl_____jl '--------------~~~ 1._ ___ jJ~c___ _____ L 
10.0 9.5 9.0 e.s a.o 7.5 7.0 6.5 6 .0 5.0 4 . 5 

( I (ppm) 
3.5 ) .0 2 .5 2.0 1. 5 1.0 0.5 

>00 
Fl (pp m) 
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Br 

30 

I 
/1 ~ ~ /i 1[ 1i !: ---------'L_j __ _____, ~ \__ ___________________________________ -' L__) l __ ________) \..___ _ __) __ 

6.> >.O 
f1 (ppm) 

2.> 

>00 
fl (ppm) 
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32 

10.0 9 .5 9 .0 8.5 8.0 7.5 7.0 6 .5 6 .0 5.5 5 .0 4 . 5 4 .0 3 .5 3.0 2 .5 2.0 1.5 1.0 0.5 0 .0 
tt (ppm) 

2 00 190 160 1 70 160 1 50 140 130 1 2 0 110 100 90 
fl (ppm ) 
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34 

'·" tl (ppm) 

'I J I j I j .I ! -------Ll.LL .. dJ____. .L _jj____.;. 
>00 

fl (ppm) 
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Me 0 

I ~OMe cr:x 
36 

-~~_____,,LuL_ __ _ 
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6 .5 6.0 5.5 S.O 4 .5 " ·0 3 .5 3 .0 2 .5 2.0 1.5 l.O 0.5 0.0 

fl (ppm) 

---~---- _L_j_ ____ L 

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 so '10 30 20 10 
fl (ppm) 
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_ _j'---LJ~.·~ --~'----_____;L_____j 
10.0 9.5 9 .0 8 .5 8.0 7.5 7.0 6 .5 6.0 5 .5 5.0 4.5 4.0 3 .5 3 .0 2.5 2 .0 t.S l.O 0.5 0 .0 

fl ( ppm) 

200 190 180 1 7 0 160 15 0 140 130 120 110 100 90 80 7 0 60 50 40 30 20 10 
fl ( ppm) 
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I 

_j l_Jju___l -~"--------1'-------'~J~-
10.0 9.5 9 .0 8 .5 8 0 7 .5 7,0 6 . 5 6.0 5 .5 5 .0 4 . 5 ~.0 3 . 5 3 .0 2 .5 l .O 1 5 1.0 0 .5 0 .0 

fl ( ppm) 

___ Ll /l. __ Jll -- j__j 
200 190 180 170 160 150 1"0 130 120 110 100 90 80 70 60 50 .. o 30 20 10 0 

fl (ppm) 
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OMe 

42 

- U ~ U ~ M ~ U U U U U U U U U U U U ~ ~ 
fl (ppm ) 

~~~~~~~~~--~~~~--~~~~--~~--~~ 
200 190 lBO 170 160 I SO 140 130 120 110 100 90 80 70 60 SO 4 0 30 20 0 

11 (ppm) 
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Me 0 

I M•ijoMe 
CCX 

43 

10 .0 9 . 5 3.0 2 .5 2 .0 1.5 o.s 

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 so 40 30 20 10 
fl (ppm) 
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OMe 

45 

____ ____,l__ __ _,L___Lt_~ _________ _____,LJ:L -------A-----~L . 
... 

II (PP"' ) 

... 
f t ( ppm) 
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OMe 

47 

10.0 9 . 5 9.0 BS B.O 7 .5 7.0 5 .0 5.5 5 .0 4 .5 4 .0 3 .5 
fl ( ppm) 

2.5 2.0 1.5 0.5 

JJ II · ~) . _____ _j_, 

wo 
fl (ppm) 
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9 .5 8 0 7 .5 7.0 50 
fl ( pprn) 

•oo 
" (pp ... ) 

) .5 25 o.s 00 
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Me 
0 

OMe 

52 

8.5 8 .0 s.s s.o 
II ( ppm) 

3 .0 2 .5 l .O 0.0 

I 

L I.'JL I l ~~~ Ii i · ______ ~-Wll --·_ .. _____ .J __ lL 
000 

n (p pm ) 
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Me 0 

I M•ijoMe 
(XX 

53 

1

1

1\ ---~i l,'---'--__ _;lJ\ ______ j _____ t_ 
10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3 .5 3 .0 2.5 2.0 1.5 1.0 0.5 0 .0 

fl (ppm) 

·---'--'--·Jj_jhll ____ _j,_____ -----~ ............... 11_ -"-· 

200 19 0 16 0 170 160 150 140 130 120 11 0 100 90 80 70 60 50 40 30 20 10 0 
fl (ppm) 
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Me 0 

OMe 

54 

I 
I 

I ~JI I li 
--------·-·--·-·-·--A-L _________________ JLL_~ l L__________ ---------------- JUL ___________ jl _______________ , L ... ~---- ------- L-. 

10.0 9.5 9.0 8 .5 8.0 7.5 7.0 6.5 6 .0 5.5 5.0 4.5 4.0 3.5 3.0 2 .5 2.0 1.5 1.0 0.5 0 .0 
f1 (ppm) 
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f1 (ppm) 
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Me 0 

OMe 

Me 
60 

lJ UJ J ~ A., 
j 
IJ . ,_ , L 

10.0 9.5 90 8 .5 8 .0 7.5 7.0 6.5 5 .5 5.0 
f1 (ppm) 

3.0 2.5 '0 1.5 1.0 0 .5 0 .0 
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f l {ppm) 
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Me 0 

OH 

Me 
61 

' 

~I 
II 
I 

j I ) \ ' . I I 
_____ [_; --'~--------------J'--j \ ____ )L.t __ A_jL~~ 

10.0 9 .5 8 .0 ?.S 7,0 6.5 6 .0 5.5 5.0 4 .5 4 .0 3 . 5 3.0 2.5 2.0 t.S 1.0 0.5 0.0 
f l (ppm) 
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f1 ( p p m ) 
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Me 

Me 

Me 

10.0 9.5 9.0 8 .5 8.0 7.5 7.0 6 .5 6.0 5 .5 5.0 4 ,5 4.0 3 .5 3 .0 2.5 2.0 1.5 1.0 0.5 0 .0 
f1 (ppm) 

200 190 180 17 0 160 150 14 0 130 120 110 100 90 80 7 0 60 so 40 3 0 20 10 
f l (ppm ) 
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Me 0 

Me 

Me 

3.0 2.5 2 .0 1.5 1.0 0.5 0 .0 

200 190 ISO 110 130 120 110 100 
n (ppm) 

60 so 40 30 20 
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OH 

Me 

Me 

0 ' Me 

I 
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3.7 Table of yields for stepwise and multicomponent DBPs syntheses 

Table Sl. Comparison of yields between the MCR and the corresponding stepwise syntheses of 
A-ring substituted DBPs using both preformed and in situ-generated enamines. 

Stepwise syntheses 
preformed enamine 

R4 cc(co,Me dXco,Me 
Rx>=CHO 6 '-'::: ~ 

I 
R2 ~ OH piperidine 0 0 9 , 10 0 0 benzene, 80 ·c 

R1 (in situ-generated 
Salicylaldehyde diene 

""' 
enamine) / DBP 

MgS04 

MCR 
0 

CH2CI2, rt 

R4 OMe 

Rx>=CHO R3 
6, 9, 10 

R2 ~ OH 1 ,4-dioxane R2 

R1 rt, 2h, then R, 
90-1oo ·c. 24 h 

Entry Salycyl- Substit- DBP Improve-
I aide tuent ment over 

diene DBP DBP DBP DBP DBP 
stepwise 

from diene from diene (in overall overall (in (MCR) 
syntheses 

(prefom1ed situ- generated (pref omu~d siiU- generated 
(%) 

enamine) enamine) enamine) enamine) 

5 none 11 92 43 74 40 68 69 29 

2 15 R1 = OMe 16 57 

3 17 R2 = OMe 18 64 

4 19 R3 = OMe 20 71 51 64 36 45 79 43 34 

5 21 R4 = OMe 22 0 

6 23 R1 = Me 24 72 48 54 35 39 48 13 9 

7 25 R2 = Me 26 80 51 57 41 46 62 21 16 

8 27 R3= Me 28 78 47 50 37 39 68 31 29 

9 29 R3 = Br 30 65 51 35 33 23 67 34 44 

10 31 R3 = C02Me 32 66 41 34 27 22 51 24 29 

11 33 R3 = N02 34 26 24 22 6 6 10 4 4 
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Table S2. Comparison of yields between the MCR and the corresponding stepwise syntheses of 
C-ring substituted DBPs using both preformed and in situ-generated enamines. 

Stepwise syntheses 

~CHO 

~OH 
6 

Ketone-derived enamine 
(preformed enamine) 

Ketone, 9 
piperidine 

benzene, 80 oc 
92% 

Salicylaldehyde (5) 
(in situ-generated 

diene ""' enamine) / DBP 
~-----------------J 

MCR 

~CHO ___ 6_, 9_,_k_e_to_n_e ____ • 

~OH 1 ,4-dioxane 

Entry Ketone 

35 

2 37 

3 39 

4 41 

5 44 

6 46 

7 49 

8 51 

rt, 2h, then 
90-100 °C, 24 h 

DBP 

dicne 

36 92 

38 92 

40 92 

42+43 92 

45 92 

47+48 92 

50 92 

52 92 

DBP 
f rom diene 
(preformed 
cnaminc) 

64 

86 

80 

DBP DBP DBP DBP 
from diene (in overall overall (in (MCR) 
sill/- generated (prefonned situ- generated 
cnamine) cnamine) cnaminc) 

66 6 1 71 

74 59 68 36 

45 

51 

26 24 35 

82 79 75 60 

46 74 43 48 

17 16 36 

Improve-
1nent over 

stepwise 
syntheses 

(%) 

-23 -33 

11 

- 19 - 15 

-26 5 

16 
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Chapter 4 

Concise, Aromatization-based Approach to Elaborate 

CrSymmetric Pyrenophanes 

This chapter is pm1ly based upon the following publication: 

Nandaluru, P . R.; Dongare, P.; Kraml, C. M.; Pascal Jr. , R . A .; Dawe, L. N .; Thompson, 

D. W. ; Bodwell , G. J. Chern. Commun. 2012, 48, 7747- 7749. 
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R. A. Pascal Jr.: measurement of CD spectra and optical rotations. 
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4.1 Introduction 

For the [n]cyclophanes, i.e. those composed of one aromatic system and one 

bridge, pyrene is the largest aromatic system to have been used frequently. All but one of 

the known [n]pyrenophanes are [n](2,7)pyrenophanes (1), 1 which have C2v symmetry and 

are thus inherently achiral systems. 2 The exception is [ 1 0](1 ,6)pyrenophane (2), 3 which 

is Crsytrunetric and thus an inherently chiral cyclophane.4 

2 

Scheme 4.1 . C2v (1, achiral) and C2 (2, chiral) symmetric pyrenophanes. 

The synthesis of 2 was modeled on the general synthetic approach to the 

[n ](2, 7)pyrenophanes (1 ), 1 but proved to be highly problematic. 3 As a result, work aimed 

at the development of an improved synthetic approach to [n ](I ,6)pyrenophanes was 

initiated. The initial results of this work are presented in this chapter. 

4.2 Results and Discussion 

Inspiration for a new synthetic approach to [n](l ,6)pyrenophanes came from a 

recently reported multicomponent reaction (MCR) that affords 6H-dibenzo[b,d]pyran-6-

ones (DBPs)5 described in the previous chapter. In one example of this reaction, 

salicylaldehyde (3) reacted with dimethyl glutaconate ( 4) and cyclopentanone (5) in the 

presence of pynolidine to afford DBP 6 in 69% yield (Scheme 4.2). Within 6 can be 
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seen the elements of a 4-substituted isophthalate, which corresponds to the type of 

starting material used for the synthesis of 2.3 Reduction of 6 with LiAlH4 afforded triol 7 

(95%). The difference in acidity of the different types of OH groups (benzylic and 

phenolic) enabled two units of 7 to be tethered by way of a highly chemoselective 0-

alkylation reaction with 1,6-dibromohexane, which afforded tetraol 8 (78%). Tetraol 8 

contains two elements of axial chirality, which means that two diastereomers exist. Tlc 

analysis showed a single spot under various conditions and the 1H NMR spectrum, 

although quite complex, did not exhibit any signals that could definitively be assigned to 

the respective diastereomers. Evidence for the presence of both diastereomers was 

obtained at a later stage (vide infra). Tetraol 8 was conve1ted into the conesponding 

tetrabromide 9 by reacting it with PBr3 and this set the stage for application of the 

thiacyclophane route, a standard approach used in the Bodwell group for the synthesis of 

pyrenophanes. 1•
3 Unfortunately, all attempts to generate the expected isomeric 

dithiacyclophanes 10 and 11 upon treatment of 9 with Na2S/ Ah03 were unsuccessful. If 

successful, this method would have involved conversion of the dithiacyclophane into a 

cyclophanediene (e.g. 14, Scheme 4.3) and a valence isomerization I dehydrogenation 

(VID) reaction to afford the pyrenophane (e.g. 16, Scheme 4.4) (7 steps overall from 8). 
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CHO 

~OH 

v 
3 

0 

Me02C~C02Me 6 5 

pyrrolidine, 1,4-dioxane 
rt, 2 h, then 90-100 oc 

24 h, 69% 

Br 

Br Br 

9 

t 

+ 

10 

6 

rt, 5 h, 67% 

11 

OH 

0 
LiAIH4 

THF, 70 oc, 5 h 

95% 

7 

Br(CH2)6Br 
K2C03, DMF 
90 °C, 16 h 

78% 

OH HO 

OH HO 

8 

Scheme 4.2. Failed approach to (1 ,6)pyrenophane 16 via the thiacyclophane route. 

OH 

With the fa ilure of this reaction, alternative ways fo r the construction of the 

pyrenophane 16 were sought. In this regard, tetraol 8 was oxidized with PCC/Celite® to 
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afford tetraaldehyde 12 (72%) as a mixture of diastereomers (1: 1.2 mixture, 1H NMR 

analysis) and this mixture was subjected to a four-fold Wittig reaction to furnish the 

corresponding tetraalkene 13 (85%), in preparation for a ring-closing metathesis (RCM) 

reaction (Scheme 4.3). Tetraalkene 13 was subjected to RCM conditions using Grubbs II 

catalyst with the intention of fmming the cyclophanediene 14 (along with an isomeric 

cyclophanediene 15). Unfortunately, this reaction produced a complex mixture of 

products (as shown by tic analysis), from which no identifiable product could be isolated 

using column chromatography. However, the failure of this reaction was not very 

surpnsmg as no example of RCM having been used for the synthesis of 

[2 .2]metacyclophane systems (14 is also a [2.2]metacyclophane) is known.6 
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OH 

8 

0 
0~ 

14 

+ 

0 0 

~ 
15 

HO 

PCC, Celite® 

CH2CI2, rt 
3 h, 72% 

Grubbs II 
- -x -- --------------

CHzCiz. 40 ac 

PPh3CH3Br, t-BuOK 
THF,- 78°C, 1 h 

84% 

12 

Scheme 4.3. Failed approach to (1 ,6)pyrenophane 16 via an RCM based route. 

Finally, as an alternative aimed at forming cyclophanediene 14 (along with an 

isomeric cyclophanediene 15), compound 12 was subjected to McMurry reaction 

conditions (Scheme 4.4).7 Gratifyingly, in this event, the only compound isolated from 

this reaction was [1 2](1 ,6)pyrenophane derivative 16 (12%). 
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12 

Zn, TiCI4, pyridine 

THF, 70 oc, 25 h 

12 % 

Scheme 4.4. Synthesis of[ 12](1 ,6)pyrenophane 16. 

0 
0~ 

14 

0 

0~ 
16 

The (1,6) bridging motif in 16 was evident from its 1H NMR spectrum, which 

contained an AB system (67.89 and 7.69 ppm, J = 9.2 Hz) for the protons attached to the 

pyrene system and high field signals for some of the bridge protons (2H multiplets 

centered at b" 0.36, 0.14, - 0.39 and -0.5 1 ppm), which lie across the face of the pyrene 

system. The (1 ,8) isomer of 16 would have exhibited two singlets for the pyrenyl protons 

and is not expected to exhibit aliphatic signals at such high field. 3 

Although the yield of 16 is low, the result is noteworthy for several reasons. First, 

the reaction delivers the target pyrenophane directly, thereby replacing a 7 -step sequence 

with a 2-step sequence. The reaction is also very productive, as it leads to the formation 

of three new carbon-carbon bonds and two new aromatic rings. A likely order of events 
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is two successive intramolecular McMurry reactions leading to metacyclophanediene 14 

followed by a VID reaction. The observation of dehydrogenation under reductive 

(McMurry) conditions is not without precedent when it results in the formation of an 

aromatic system.7 In the present case, the high aromatic stabilization energy of pyrene 

(74.6 kcal/mol)8 provides ample driving force for dehydrogenation. Assuming that the 

reaction indeed proceeds through metacyclophanediene 14, it is a very rare example of a 

McMurry reaction leading to a (2.2]metacyclophane6
•
9 and the first example of the 

McMurry reaction being used to form both bridges of a [2.2]metacyclophanediene. The 

presence of a tether between the two isophthalaldehyde units in 12 is presumably 

advantageous in this regard. Finally, it is interesting to note that (1 ,6)pyrenophane 16 

was formed to the exclusion of its (1 ,8) isomer. This is in contrast to the 

dithiacyclophane-derived [ 1 0]( 1 ,6)pyrenophane (2), which was fonned as the minor 

component of a 4:7 mixture with [ 1 0](1 ,8)pyrenophane. 3 

By following the same set of reactions that were employed for the synthesis of 

[ 12](1 ,6)pyrenophane (16) from the intermediate trio! 7, two of its lower homologues 

were synthesized. In this event, 0-alkylation of 7 with dibromopentane and 

dibromobutane afforded tetraols 17 (76%) and 18 (80%), respectively, and subsequent 

oxidation of these compounds using PCC produced the corresponding tetraa1dehydes 19 

(73%) and 20 (78%) as an inseparable mixture of diastereomers (1: 1.3 mixture, 1H NMR 

analysis) (Scheme 4.5). To complete the syntheses, these tetraaldehydes were subjected 

to a McMurry reaction, which afforded the targeted [ 11 ](1 ,6)pyrenophane 21 (11 %) and 

[ 1 0](1 ,6)pyrenophane 22 ( 6% ), respectively. 
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7 

VID 

K2C03, DMF 
90 °C, 16 h 

X = 3 76% 17 
X = 2 80% 18 

X = 3 11 % 21 
X= 2 6% 22 

Zn, TiCI4 , pyridine 

THF, 70 °C, 25 h 

PCC, Celite® 

CH2CI2 , rt, 3 h 

X = 3 73% 19 
X = 2 78% 20 

Scheme 4.5. Synthesis of [ll](l ,6)pyrenophane 21 and [10](1 ,6)pyrenophane 22. 

Pyrenophane 16 is a rather elaborate derivative of [ 12](1 ,6)pyrenophane, which 

means that the pyrene system would be expected to be less distorted from planarity than 

that of [ 1 OJ( 1 ,6)pyrenophane (2). Indeed, the solid-state structure of 16 revealed a pyrene 

system that is less twisted than the one in 2. The twist in the pyrene system can be 

assessed using the torsion angles through its middle bonds (C6-C7-C26-C27-C28-C l 6-
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Cl7-C29). For 16, the five angles range from 160.1 to 174.1° and the average dev iation 

from 180° (the value for a planar pyrene system) is I 0.8° (Table 4.1). This compares to a 

range of 159.9 to 170.5° and an average deviation from 180° of 14.JO in 2.3 The bend in 

the pyrene system of 16 (as indicated by the smallest angle formed by C8-C7-C26 and 

C 18-Cl7-C I6) is 17.4°, which is also smaller than the corresponding value in 2 

(27.3°).3•
10 Relatively long intramolecular C(s/)-H 1t interactions 11 (3.30 A) between 

protons attached to C37 and C38 and the apical rings of the pyrene system are also 

observed. The unit cell (space group PT , SI-Figure 3) consists of two enantiomeric 

molecules in a face-to-face arrangement with a closest n n contact of 3.47 A.12 

In the case of [ 1 0](1 ,6)pyrenophane 22, the solid-state stm cture showed a pyrene 

unit that has more twist than that of 2 and obviously much more when compared to its 

higher homologue 16. For 22, the average deviation from the five angles (range from 

148.9 to 164.4) is 22. 1 o . Though the X-ray crystal stmcture for [ 11 ](1 ,6)pyrenophane 21 

couldn ' t be obtained, its stmcture was calculated at the B3L YP/6-31 G(D) level of 

theory.13 The predicted average deviation from planarity for 21 was 15.5°. The structures 

of 16 and 22 were also calculated at the same level of theory and the predicted average 

dev iations from planarity (2 1.4° for 22; 10.9° for 16) were in excellent agreement with 

the experimentally determined values (22 .1 o for 22; 10.8° fo r 16) . Thus, the predicted 

value for 21 can be viewed with a reasonable degree of confidence. 
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Figure 4.1. X-ray crystal structures of pyrenophanes16 and 22. 

0 
0~ 

16 

22 
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16, 21 and 22 

Bond -O(CH
2

)
4
0- -O(CH

2
)
4
0- -O(CH

2
)

5
0- -O(CH

2
)

6
0- -O(CH

2
)

6
0-

(calcd) (X-ray) (calcd) (calcd) (X-ray) 

a 151.3 15 1.9 16 1.4 166.1 168.6 

b -162.2 - 16-J....l- -1 64.8 -170.2 -1 7-J.. I 

c 161 .3 16 1...1- 166.7 171.0 172.0 

d -163. 1 - 162.8 - 166.7 - 170.9 - 17 1.7 

e 155.1 148.9 162.7 167.5 160. 1 

average 
21.4 22 .1 15.5 10.9 10.8 

deviation 

average deviation : average deviation from 180°. 

Table 4.1. Calcu lated (B3LYP/6-3 1 G(D)) and measured (X-ray) tors ion angles in the 

pyrene system. 

Photophysical properties of 16, 21 and 22 

The absorption spectrum for 16 (Fig. 4.2, top left) exhibits s ignificant complexity 

in the low energy absorption band envelope with bands ~nax (c:, M- 1 cm- 1
) at 392 (1.4 x 

I 0\ 373 (3.2 x 10\ 365 (3.0 x 1 04
) , 355 (2.5 x 1 04

) , 295 (3 .9 x I 04
) and 283 (2.5 x 1 04

) 

nm, whereas its emission spectrum shows bands ~nax at 400 and 419 nm. The absorption 

features at 392 nm and the barely reso lved band at 365 nm are not apparent in the 

emission profile. As a result, the mirror image symmetry between the absorption and 

emission spectra expected for a 2-state system is absent. These observations imply that 
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the lowest energy absorption band envelope is comprised of two overlapping transitions 

and their vibronic components, one of which leads to emission and the other to non­

radiative decay. The fluorescence quantum yield(<!>) for 16 is 0.40 and the fluorescence 

lifetime ( rr) is 1. 7 ns. This compares to <D = 0.64 and rr = 480 ns for pyrene. 14 

The absorption and emission spectra for 21 (Fig. 4.2, top right) are similar to 

those of 16. In the case of 21, absorption bands /L,nax (&, M" 1 cm-1
) are observed at 395 

(8.5 x 104
), 377 (1.8 x 104

) , 362 (1.8 x 104
) , 297 (2.9 x 104

) and 285 (2.2 x 104
) nm and 

emission bands are observed at /L,nax at 404 and 422 nm. The only significant difference 

between the spectral features of 21 from those of 16 is that the low energy absorption 

band at 395 nm is nearly merged with the neighbouring band at 377 nm. The 

fluorescence quantum yield (<!>)for 21 (0.44) is slightly higher than that of 16 (0.40), but 

its fluorescence lifetime ( rr) (1.5 ns) is slightly shorter than that of 16 (1.7 ns). 

The absorption and emission spectra for 22 (Fig. 4.2, bottom) are somewhat 

different in appearance from those of its two higher homo1ogs, 16 and 21. Its absorption 

bands appear at /L,nax (&, M-1 cm-1
) at 385 (3 .9 x 104

), 373 (4.2 x 104
), 353 (2.1 x 104

) , 300 

(4.9 x 104
) and 290 (3 .3 x 104

) run and emission bands at 417 and 436 nm. The low 

energy absorption band that was observed for 16 (392 nm) and 21 (395 nm) is now 

(presumably) buried underneath the band at 385 nm. Furthennore, a decrease in 

fluorescence lifetime ( rr = 1.2 ns) and a pronounced increase in fluorescence quantum 

yield(<!> = 0.80) was observed. 
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By this preliminary study, it can be inferred that the fluorescence lifetime ( rr = 

1.7, 1.5 and 1.2 ns) for these pyrenophanes (16, 21 and 22) decreases as the pyrene 

becomes more twisted, whereas the quantum yield (<I> = 0.40, 0.46 and 0.80) increases. 

The origin of this intriguing trend is being investigated in collaboration with Prof. David 

W. Thompson's group. 
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Figure 4.2 . Normalized absorption (solid line) and emission spectra (dashed line) for 16 

(top left), 21 (top right) and 22 (bottom) in CHCI3 ( 1 atm N2) at 298 ± 3 K. 
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Chiroptical Properties of 16, 21 and 22 

Small samples (ca . 10 mg) of(+)-16 (>99% ee by HPLC) and (- )-16 (>99% ee 

by HPLC) were obtained by preparative chiral phase HPLC (Chiralpak OD-H 

column: 40% ethanol (0.1% diethylamine) I C02 , 100 bar). The CD spectra (Fig. 4.3 , 

top left) of the two enantiomers are nearly perfect mirror images and the specific 

rotations ([a] 0
23 = + 130° ± 20° (c = 0.13, CHC13) and [a] 0

23 = - 120° ± 20° (c = 0.14, 

CHCb)) agree well. The low precision is due to the small quantities of the pure 

enantiomers. 

Although the CD spectra of the enantiomers of 21 (Fig. 4.3, top right) show 

mirror images of one another, their specific rotations couldn ' t be determined because of 

the turbid nature of their solutions even at low concentrations. In the case of 22 (Fig. 4.3, 

bottom), the CD spectra again show a mirror image relationship and the specific rotations 

of its enantiomers are [a]0
24 = +290° ± 20° and [a]0

24 = -230° ± 30° (c = 0.12 in CHCb). 

Unfortunately, specific rotation values of enantiomers of 21 are not available to 

draw a more accurate comparison of chiroptical propet1ies among pyrenophanes, 16, 21 

and 22. However, when comparison is made between 16 and 22, i. e. the longest and the 

shortest tethered pyrenophanes of the three homo logs, it appears that the specific rotation 

value increases as the twist in the pyrene system increases. 
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Figure 4.3 . CD spectra for (+)-16, 21 and 22 (black line) and (-)-16, 21 and 22 
(red line). 

4.3 Conclusions 

[n summary, ( I ,6)pyrenophanes 16, 21 , 22 were synthes ized by a route that both starts 

and ends with a highly productive reaction . T he ini tia l multicomponent reaction not 

on ly brought together most of the atoms required for these pyrenophanes, but a lso 
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generated a new aromatic ring that ultimately manifested itself as the two apical rings 

in the pyrene system. The synthesis culminated in a very unusual twofold 

intramolecular McMurry I VID reaction, which generated the two central aromatic 

rings of the pyrene system. As such, all four of the rings in the pyrene unit were 

created during the synthesis. Looking forward, the multicomponent reaction holds 

promise for the synthesis of related pyrenophanes through variation of the ketone and 

salicylaldehyde components of the MCR. There is also potential to vary the length of 

the bridge (and thus the degree of deformation of the pyrene system) by varying the 

length of the dihalide used in the 0-alkylation reaction. Enantioselective syntheses of 

these inherently chiral cyclophanes are also conceivable. 15 

tl 0 

~CHO 

~OH 

Br 

Br 

I 

oJ 
Scheme 4.6. Points of diversity for future ( 1 ,6)pyrenophane syntheses. 
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4.5 Experimental procedures and characterization data 

General 1: The general experimental can be found on page 47. 

General II: DMF was vacuum distilled from CaH2. 

2,3-Dihydro-5, 7 -bis(hydroxymethyl)-4-(2-hydroxyp h enyl)-lH-indene (7) 

OH 

To a 0 oc slurry of LiAIH4 (1.55 g, 40.8 mmol) in THF (45 mL) was added 

dibenzopyranone 6 (3.00 g, 10.2 mmol) in several portions and the resulting mixture was 

heated at 70 oc for 5 h. After cooling to 0 °C, water (20 mL) was added carefully over a 

period of 20 min. The reaction mixture was diluted with aqueous 1.0 M HCl solution 

(1 00 mL) and extracted with CHCh (3 x 200 mL). The combined organic layers were 

dried over Na2S04, gravity filtered and the solvent was removed under reduced pressure. 

The residue was triturated with ether (2 x 15 mL) to afford 7 (2.59 g, 95%) as a colorless 

solid. Rr = 0.60 (ethyl acetate); mp 148-150 °C; IR (neat) v 3482 (w), 3265 (m), 3067 

(m), 2928 (m), 2361 (w), 1447 (m), 1058 (s) cm-1
; 

1H NMR (DMSO-d6, 500 MHz) f5 

9.23 (br s, 1H), 7.36 (s, 1H); 7.15 (td, J = 7.7, 1.7 Hz, IH), 6.95 (dd, J= 7.5, 1.7 Hz, 1H), 

6.90 (d, J = 8.1 Hz, 1H), 6.82 (t, J = 7.4 Hz, 1H), 5.06 (t, J = 5.5 Hz, 1H), 4.86 (br s, 1H), 

4.49 (d, J= 5.2 Hz, 2H), 4.25 (d, J = 13.5, lH), 4.17 (d, J= 13.4 Hz, 1H), 2.85 (t, J= 7.5 

Hz, 2H), 2.51-2.47 (m, 2H), 1.97-1.89 (m, 2H); 13C NMR (DMSO-d6, 500 MHz) f5 

154.10, 142.36, 138.70, 137.90, 135.79, 131.36, 130.39, 128.10, 125.84, 123.09, 118.70, 
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115.36, 61.36, 60.74, 31.54, 30.16, 24.25; ESI-(+)-MS mlz (%) 294 (19), 293 ([M + Nat, 

1 00), 253 (7), 223(5), 217 (8). 

1,6-Bis(2-(2,3-di hydro-5, 7 -bis(hydroxymethy1)-1H-inden-4-yl)ph en oxy )hexane (8) 

OH HO 

To a suspension of triol 7 (1.00 g, 3.70 rnmol) and K2C03 (1.53 g, 11.1 rnmol) in DMF 

(15 mL) was added 1 ,6-dibromohexane (0.49 g, 2.0 mmol). The resulting mixture was 

stirred vigorously at 90 oc for 16 h and then cooled to room temperature. Water (30 mL) 

was added and the resulting mixture was extracted with ethyl acetate (3 x 30 mL). The 

combined organic layers were washed with water (50 mL), dried over Na2S04, gravity 

filtered and the solvent was removed under reduced pressure. The residue was subjected 

to column chromatography (5% MeOH I CHC13) to obtain tetraol 8 (0.90 g, 78%) as a 

colorless solid. Rr= 0.40 (ethyl acetate); mp 131- 133 °C; JR (neat) v 3450- 3100 (br, m), 

2941 (w), 2860 (w), 2364 (w), 2328 (w), 1444 (s), 1233 (s) cm- 1
; 

1H NMR (DMSO-d6, 

500 MHz) J 7.36 (s, !H), 7.32- 7.28 (m, 1H), 7.04- 7.02 (m, 1H), 7.01 (dd, J = 7.4, 1.9 

Hz, !H), 6.97- 6.94 (m, 1H), 5.04 (t, J = 5.5 Hz, !H), 4.82 (t, J = 5.3 Hz, !H), 4.47 (d, J = 

5.5 Hz, 2H), 4.16 (dd, J = 14.0, 5.8 Hz, 1H), 4.12 (dd, J = 14.0, 5.7 Hz, lH), 3.87-3.78 

(m, 2H), 2.84-2.75 (m, 2H), 2.48- 2.36 (m, 2H), 1.93-1.82 (m, 2H), 1.42- 1.39 (m, 2H), 

1.10- 1.07 (m, 2H); 13C NMR (DMSO-d6, 75 MHz) J 155.33, 142.13, 138.53, 137.73, 

!52 



135.87, 131.00, 130.40, 128.39, 127.81, 123.11, 120.11, 11 2.21, 67.29, 61.31, 60.68, 

31.51, 30.12, 28.35, 24.78, 24.26; ESI-(+)-MS mlz (%) 647 (11), 646 (48), 645 ([M + 

Nat, 100), 569 (9), 551 (7), 359 (8), 305 (7); MALDI-TOF MS cald for C40H460 6Na 

645 .3192, found 645.3194. 

1,6-Bis(2-(2,3-dihydro-5, 7 -b is(b romomethy1)-1H-inden-4-yl)phen oxy )hexane (9) 

Br Br 

To a 0 oc solution of 8 (0.20g, 0.32 mmol) in CH2Cb (20 mL) was added phosphorous 

tribromide (0.26 g, 0.96 mmol) and the resulting mixture was stirred at room temperature 

for 5 h. The reaction mixture was diluted with CH2Cb (20 mL), washed with 10% 

NaHC03 solution (15 mL) and then with water (I 0 mL). The organic layer was dried 

over Na2S04, gravity filtered and the solvent was removed under reduced pressure. The 

residue was subjected to column chromatography (50% CH2Cb I hexanes) to obtain 9 

(0.20 g, 67%) as a colorless solid. Rl = 0.50 (10% ethyl acetate I hexanes); mp 153-156 

oc; lR (neat) v = 2940 (w), 2845 (w), 2364 (w), 1437 (m), 1235 (s), 1203 (s) cm- 1
; 

1H 

NMR (CDC13, 500 MHz) c5 7.35-7.31 (m, 1H), 7.28 (d, J = 1.8 Hz, 1H), 7.16 (dd, J = 7.4, 

1.8 Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, lH), 6.91 (dd, J = 8.3, 1.1 Hz, 1H), 4.47-4.33 (m, 

2H), 4.34 (dd, J = 10.0, 1.6 Hz, 1H), 4.18 (d, J = 10.0 Hz, 1H), 3.84-3.77 (m, 2H), 3.00-

2.89 (m, 2H), 2.59- 2.47 (m, 2H), 2.07-1.94 (m, 2H), 1.47- 1.44 (m, 2H), 1.08- 1.05 (m, 
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2H); 13C NMR (CDCh, 300 MHz) (5 155.69, 145.46, 143.64, 135.62, 134.58, 132.30, 

130.53, 129.10, 129.07 127.08, 120.43, 11 2.01 , 67.89, 32.39, 32.33, 31.93, 31.14, 28.78, 

25.38, 24.52. 

1,6-Bis(2-(5, 7 -diformyl-2,3-dihydro-lH-inden-4-yl)phenoxy)hexane (12) 

To a solution oftetraol8 (0.90 g, 1.5 mmol) in CH2Ch (45 mL) was added Celite® (2.70 

g) in one portion. To this suspension was added PCC (3 .74 g, 17.4 mmol) in several 

portions and the resulting mixture was stined at room temperature for 3 h. The reaction 

mixture was vacuum filtered through a plug of Celite® and the cake was washed 

thoroughly with CHCh (3 x 50 mL). The filtrate was removed under reduced pressure 

and the residue was subjected to column chromatography (30% ethyl acetate I hexanes) 

to afford tetraaldehyde 12 (0.63 g, 72%, ca. 1.2:1 mixture of diastereomers by 1H NMR 

analysis) as a colorless solid. R1= 0.30 (30% ethyl acetate I hexanes); mp 168- 171 °C; IR 

(neat) v 2944 (w), 2857 (w), 2364 (w), 2329 (w), 1691 (s), 1590 (m), 124 1 (m) cm- 1
; 

1H 

NMR (CDC13, 500 MHz) (5 10.17 (s, lH), 10.16 (s, 1H), 9.71 (s, lH), 9.70 (s, lH), 8.27 

(s, 1H), 8.27 (s, IH), 7.44-7.40 (m, 2H), 7.17-7.15 (m, 2H), 7.07 (t, J = 7.4 Hz, lH), 7.06 

(t, J = 7.3 Hz, lH), 6.99-6.96 (m, 2H), 3.85- 3.82 (m, 4H), 3.45- 3.31 (m, 4H), 2.80- 2.71 

(m, 2H), 2.64-2.54 (m, 2H), 2.18-2.00 (m, 4H), 1.48-1.43 (m, 4H), 1.08-1.05 (m, 4H); 
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13C NMR (CDCh, 75 MHz) 6 192.32, 191.70 (191.68), 155.83, 151.74 (151.69), 147.26 

(147.23), 143.41 , 133.36, 131.43, 130.75, 130.32, 129.82 (129.78), 124.42, 120.69, 

111.94, 68.00 (67.96), 33.10, 31.27, 28.75, 25.41 (25.36), 24.91 (24.88); APCI-(+)-MS 

mlz (%) 61 7 ( 11 ), 616 (43), 615 ([M + Ht, 100). HRMS [(EI-(+)] calcd for C4oH380 6 

614.2668, found 614.2670. 

1,6-Bis(2-(5, 7 -divioyl-2,3-dihydro-1H-inden-4-yl)phenoxy)hexane (13) 

To PPh3MeBr (1 .00 g, 2.80 mmol) in THF (6 mL) was added t-BuOK (0.38 g, 3.39 

mmol) in three portions and the resulting mixture was stirred at room temperature over a 

period of 2 h. The reaction mixture was then cooled to - 78 °C, a solution of 12 (0.30 g, 

0.72 mmol) in THF(20 mL, boiling was required for complete dissolution of 12) was 

added drop wise for a period of 15 min and the mixture was stirred at this temperature for 

I h. The reaction mixture was warmed to room temperature and quenching with water (5 

mL). Organic layer was separated and the aqueous layer was washed with ethyl acetate (2 

x I 0 mL). The combined organic layers were dried over Na2S0 4, gravity fi ltered and the 

solvent was removed under reduced pressure. The residue was subj ected to column 

clu·omatography (5- 1 0 % ethyl acetate I hexanes) to obtain 13 (0.25 g, 84%) as an off­

white solid . Rl = 0.60 (10% ethyl acetate I hexanes); mp 107- 110 oc ; IR (neat) v 2930 
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(w), 2364 (w), 1588 (w), 1448 (m), 1230 (s), 1036 (m) cm- 1
; 

1H NMR (CDCh, 500 

MHz) 6 7.60 (s, 1H), 7.33-7.27 (m, lH), 7.05 (dd, J= 7.4, 1.9 Hz, IH), 6.99 (d, J = 7.3 

Hz, I H), 6.97-6.91 (m, I H), 6.81 (dd, J = 17.7, 11.0 Hz, I H), 6.43 (dd, J = 17.6, 11.0 Hz, 

I H), 5. 73 (d, J = 17.5, I H), 5.58 (d, J = 17.5 Hz, 1H), 5.29 (d, J = 11.2 Hz, IH), 4.99 (d, 

J = 11.0 Hz, IH), 3.79 ( t, J = 6.4 Hz, 2H), 2.97 (t, J = 8.1 Hz, 2H), 2.56 (t, J = 7.4 Hz, 

2H), 2.02- 1.92 (m, 2H), 1.48-1.44 (m, 2H), 1.12-1.07 (m, 2H); 13C NMR (CDC13, 300 

MHz) 6 156.14, 144.37, 141.23, 135.84, 135.21 , 134.74, 133.67, 132.38, 131.31 , 128.74, 

128.47, 120.33, 119.61 , 114.49, 113.05 , 112.41 , 68.19, 32.32, 31.97, 28.94, 25.47, 24.71 ; 

APCI-(+)-MS mlz (%) 609 (13), 608 (49), 607 ([M+It, 100), 605 (4); HRMS [(EI-(+)] 

calcd for C44H460 2 606.3498, found 606.3491 . 

Pyrenophane 16 

To a 0 oc suspension of Zn (<1 0 micron, 1.06 g, 17.1 mmol) in THF (35 mL) was added 

TiCl4 ( 1.0 M in CH2Cl2, 13.0 mL, 13 mmol) over a period of 15 min and the resulting 

mixture was heated at 70 oc for I h. Pyridine (0.13 mL, 1.67 mmol) was added to the hot 

reaction mixture and heating was continued for 15 min. A solution of tetraaldehyde 12 

(0.50 g, 0.8 1 mmol) in THF (30 mL, boiling was required for complete dissolution of 12) 

was added over a period of 30 min and heating was continued for 24 h. The reaction 

mixture was cooled to room temperature and 10% aqueous NaOH solution (20 mL) was 
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added. The precipitate that formed was removed by vacuum filtered through a plug of 

Celite®, which was then washed with CHCh (3 x 35 mL). The filtrate was washed with 

H20 (2 x 50 mL), dried over Na2S04 and the solvent was removed under reduced 

pressure. The residue was subjected to column chromatography using neutral Ab03 (5-

1 0% ethyl acetate I hexanes) and the product was triturated with diethyl ether (2 x I mL) 

to give pyrenophane 16 (53 mg, I2 %) as an off-white solid. Rr= 0.50 (10% ethyl acetate 

I hexanes); mp 185-188 °C; 1 H NMR (CD2Ch, 500 MHz) £5 7.89 ( d, J = 9.2 Hz, I H), 7. 73 

(d, J = 6.8 Hz, IH), 7.69 (d, J = 9.2 Hz, IH), 7.42 (t, J = 8.3 Hz, 1H), 7.26 (t, J = 7.4 Hz, 

IH), 6.98 (d, J = 8.0 Hz, IH), 3.55 (t, J= 7.4 Hz, 2H), 3.32-3.26 (m, 2H), 3.20-3.I6 (m, 

IH), 2.85-2.79 (m, IH), 2.35-2.24 (m, 2H), 0.38-0.33 (m, IH), O.I7-0. 11 (m, 1H), - 0.35-

- 0.43 (m, 1H), - 0.47 - - 0.55 (m, 1H); 13C NMR (CD2Cl2, 75 MHz) £5 158.48, I41.83, 

138.73, I30.9I , 129.87, 129.39, I26.2I , I25.10, I23.I8, I22.09, II6.96, 70.96, 33.7I , 

32.40, 30.66, 26.03 , 25.62; APCI-(+)-MS mlz (%) 551 (10), 550 (43), 549 ([M + Ht, 

IOO), 547 (4); HRMS [(EI-(+)] calcd for C40H360 2 548.2715, found 548.27 I8. 

1,6-Bis(2-(2,3-dihydro-5, 7 -bis(hydroxymethyl)-1H-inden-4-yl)phenoxy)pentane (17) 

HO 

To a suspension oftriol7 (1.00 g, 3.7 mmol) and K2C03 (1 .53 g, II. I mmol) in DMF (15 

mL) was added I ,5-dibromopentane (0.4 7 g, 2 . I mmol). The resulting mixture was 
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stirred vigorously at 90 oc for 16 h and then cooled to room temperature. Water (30 mL) 

was added and the resulting mixture was extracted with ethyl acetate (3 x 30 mL). The 

combined organic layers were washed with water (50 mL), dried over Na2S04, gravity 

filtered and the solvent was removed under reduced pressure. The residue was subjected 

to column chromatography (5% MeOH I CHC13) to obtain tetraol 17 (0.86 g, 76%) as a 

colorless solid. Rr = 0.30 (ethyl acetate); mp 63-65 °C; IR (neat) v = 3450-3100 (br, w), 

2926 (w), 2861 (w), 2364 (w), 1444 (m), 1229 (s), 1017 (s) em_,; 1H NMR (DMSO-d6, 

500 MHz) b 7.37 (s, 1H), 7.33-7.29 (m, lH), 7.03-7.01 (m, 2H), 6.98-6.95 (m, 1H), 5.06 

(t, J = 5.4 Hz, 1H), 4.85-4.82 (m, lH), 4.49 (d, J = 5.4 Hz, 2H), 4.17 (dd, J = 13.4, 5.4 

Hz, 1H), 4.13 (dd, J = 13.4, 5.2 Hz, 1H), 3.83-3 .71 (m, 2H), 2.82 (t, J = 7.5 Hz, 2H), 

2.48- 2.36 (m, 2H), 1.93- 1.83 (m, 2H), 1.44-1.37 (m, 2H), 1.13- 1.09 (m, 1H); 13C NMR 

(DMSO-d6, 75 MHz) b 155.47, 142.24, 138.68, 137.88, 136.00, 131.09, 130.52, 128.53, 

127.97, 123.20, 120.29, 112.40, 67.50 (67.46), 61.44, 60.79, 31.64, 30.26, 27.87 (27.84), 

24.38, 21.71 (21.65); ESI-(+)-MS mlz (%) 633 (10), 632 (41), 631 ([M + Nat, 100), 218 

(4); MALDI-TOF MS cald for C39~406Na 631.3036, found 631.3021. 

1,6-Bis(2-(2,3-dihydro-5, 7 -bis(hydroxymethyl)-1H-inden-4-yl)phenoxy )butane ( 18) 

HO 
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To a suspension of trio! 7 (1.00 g, 3.70 mmol) and K2C03 (1.53 g, 11.1 mmol) in DMF 

(15 mL) was added I ,4-dibromobutane (0.44 g, 2.0 mmol). The resulting mixture was 

stirred vigorously at 90 oc for I 6 hand then cooled to room temperature. Water (30 mL) 

was added and the resulting mixture was extracted with ethyl acetate (3 x 30 mL). The 

combined organic layers were washed with water (50 mL), dried over Na2S04, gravity 

filtered and the solvent was removed under reduced pressure. The residue was subjected 

to column chromatography (5% MeOH I CHC13) to obtain tetraol 18 (0.88 g, 80%) as a 

colorless solid. IR (neat) v = 3450-3100 (br m), 2947 (w), 2871 (w), 2835 (w), 2364 (w), 

2328 (w), 1445 (m), 1229 (s), 1015 (s) cm-1
; 

1H NMR (DMSO-d6, 500 MHz) 6 7.37 (s, 

lH), 7.30-7.27 (m, 2H), 7.00 (dd, J = 7.4, 1.9 Hz, 1H), 6.98-6.94 (m, 2H), 5.05 (t, J = 

5.5 Hz, 1H), 4.82 (t, J = 5.3 Hz, lH), 4.48 (d, J = 5.4 Hz, lH), 4.15 (dd, J = 13.3, 5.3 Hz, 

!H), 4.11 (dd, J = 13.3, 5.2 Hz, !H), 3.80-3 .77 (m, 2H), 2.83-2.72 (m, 2H), 2.45-2.35 

(m, 2H), 1.90-1.80 (m, 2H), 1.46--1.43 (m, 2H); 13C NMR (DMSO-d6, 75 MHz) 6 

155.25, 142.11 (142.08), 138.60, 137.68, 135.88, 130.95, 130.40, 128.37, 127.78, 123.14, 

120.14, 112.21 , 67.10 (67.05), 61.31 , 60.67, 31.52, 30.11 , 24 .96, 24.41 ; ESI-(+)-MS mlz 

(%) 619 (9), 618 (41), 617 ([M + Nat, 100), 218 (4); MALDI-TOF MS cald for 

C3sH420 6Na 617.2879, found 61 7.2877. 
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1,6-Bis(2-(5, 7 -diformyl-2,3-dihydro-1H-inden-4-yl)phenoxy)pentane (19) 

To a solution of tetrao1 17 (0.86 g, 1.40 mmol) in CH2Ch ( 45 mL) was added Celite® 

(2.56 g) in one portion. To this suspension was added PCC (3.62 g, 16.8 mmol) in 

several portions and the resulting mixture was stirred at room temperature for 3 h. The 

reaction mixture was vacuum filtered through a plug of Celite® and the cake was washed 

thoroughly with CHCh (3 x 50 mL). The filtrate was removed under reduced pressure 

and the residue was subjected to column chromatography (30% ethyl acetate I hexanes) 

to afford tetraaldehyde 19 (0.61 g, 73%, ca. 1.3:1 mixture of diastereomers by 1H NMR 

analysis) as a colorless solid. Rr= 0.40 (30% ethyl acetate I hexanes ); mp 146-149 °C; IR 

(neat) v 2957 (w), 2871 (w), 2364 (w), 1690 (s), 1589 (m), 1239 (m) em - I; 
1H NMR 

(CDCh, 500 MHz) 6 10.19 (s, 1H), 10.19 (s, 1H), 9.71 (s, 1H), 9.69 (s, 1H), 8.28 (s, 2H), 

7.42 (t, J = 8. 1 Hz, 2H), 7.1 7 (dd, J = 7.4, 1.8 Hz, 2H), 7.08- 7.05 (m, 2H), 6.95 (t, J = 7.4 

Hz, 2H), 3.85- 3.74 (m, 4H), 3.46--3 .33 (m, 4H), 2.8 1- 2.73 (m, 2H), 2.63- 2.54 (m, 2H), 

2.17-1.98 (m, 4H), 1.48- 1.42 (m, 4H), 1.1 2- 1.08 (m, 2H); 13C NMR (CDC13, 75 MHz) 6 

192.28, 191.68, 155.68, 151.77 (151.69), 147.22 (147.1 5), 143.31 (143.29), 133.26, 

131.35, 130.69, 130.31 ' 129.77 (129.69), 124.28, 120.70, 111.87 (111.84), 67.87 (67.84), 

33.05, 31.22, 28.23 , 24.87 (24.84), 22. 18; APCI-(+)-MS mlz (%) 603 (1 1), 602 (42), 601 

([M+ 1t , 100); HRMS [(EI-(+)] calcd forC 39H360 6 600.25 12, found 600.2513. 
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1,6-Bis(2-(5,7-diformyl-2,3-dihydro-1H-inden-4-yl)phenoxy)butane (20) 

To a solution oftetraol18 (0.90 g, 1.5 mmol) in CH2Cb (45 mL) was added Celite® (2.70 

g) in one portion. To this suspension was added PCC (3 .92 g, 18.2 mmol) in several 

portions and the resulting mixture was stirred at room temperature for 3 h. The reaction 

mixture was vacuum filtered through a plug of Celite® and the cake was washed 

thoroughly with CHCI3 (3 x 50 mL). The fi ltrate was removed under reduced pressure 

and the residue was subjected to colunm chromatography (30% ethyl acetate I hexanes) 

to afford tetraaldehyde 20 (0.70 g, 78%, ca. 1.3:1 mixture ofdiastereomers by 1H NMR 

analysis) as a colorless solid. Rr = 0.30 (30% ethyl acetate I hexanes); mp 191-193 °C; IR 

(neat) v 2949 (w), 2842 (w), 27 12 (w), 2364 (w), 1691 (s), 1590 (m), 1241 (m) em - I; 
1H 

NMR (CDCh, 500 MHz) 6 10.19 (s, 1H), 10.18 (s, 1H), 9.69 (s, 1H), 9.65 (s, 1H), 8.27 

(s, 1H), 8.25 (s, 1H), 7.41-7.36 (s, 2H), 7.16 (dd, J= 7.5, 1.8 Hz, 2H), 7.06 (td, J= 7.4, 

1.0 Hz, 1H), 6.88-6.84 (m, 2H), 3.81-3.74 (m, 4H), 3.43-3.29 (m, 4H), 2.79- 2.71 (m, 

2H), 2.62-2.52 (m, 2H), 2.19-1.95 (m, 4H), 1.48-1.45 (m, 4H); 13C NMR (CDC13, 75 

MHz) 6 192.28 (192.25), 191.63 (191.61), 155.51 , 151.83 ( 151.73), 147.18 (147.10), 

143.19 (143.18), 133.22 (133.18), 131.34, 130.69, 130.30, (130.28), 129.83 (129.68), 

124.24 (124.20), 120.76, 111.69 (111.68), 67.63 (67.53), 33 .02, 31.21 (31.18), 25.53 
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(25.44), 24.86 (24.81); APCI-(+)-MS mlz (%) 589 (10), 588 (44), 587 ([M+It, 100), 569 

(6); HRMS [(EI-(+)] calcd for C 38H 3406 586.2355, found 586.2350. 

Pyrenophane 21 

To a 0 oc suspension ofZn (< 10 micron, 1.09 g, 17.1 mmol) in THF (35 mL) was added 

TiCl4 (1.0 Min CH2Ch, 13 .3 mL, 13.3 mmol) over a period of 15 min and the resulting 

mixture was heated at 70 oc for 1 h. Pyridine (0.13 mL, 1.67 mmol) was added to the hot 

reaction mixture and heating was continued for 15 min. A solution of tetraaldehyde 19 

(0.50 g, 0.81 mmol) in THF (30 mL, boiling was required for complete dissolution of 19) 

was added over a period of 30 min and heating was continued for 24 h. The reaction 

mixture was cooled to room temperature and 10% aqueous NaOH solution (20 mL) was 

added. The precipitate that formed was removed by vacuum filtered through a plug of 

Celite®, which was then washed with CHC13 (3 x 35 mL). The filtrate was washed with 

H20 (2 x 50 mL), dried over Na2S04 and the solvent was removed under reduced 

pressure. The residue was subjected to column chromatography using neutral Ab03 (5-

1 0% ethyl acetate I hexanes) and the product was triturated with diethyl ether (2 x I mL) 

to give pyrenophane 21 (49 mg, 11 %) as an off-white solid. R1= 0.40 (10% ethyl acetate 

I hexanes); mp 206-209 °C; 1H NMR (CD2Ch, 500 MHz) J 7.89 (d, J = 9.0, !H), 7.84 (d, 

J = 7.2 Hz, lH), 7.64 (d, J= 9.4 Hz, !H), 7.40 (t, J= 7.1 Hz, lH), 7.33 (t, J= 7.4 Hz, 
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1H), 6.99 (d, J = 8.0 Hz, 1H), 3.55 (t, J = 7.8 Hz, 1H), 3.42-3.36 (m, 1H), 2.87-2.85 (m, 

1H), 2.78-2.72 (m, 1H), 2.78-2.72 (m, IH), 2.40-2.38 (m, 1H), 2.34-2.27 (m, 2H), 0.59-

0.50 (m, 1H), 0.24-0.15 (m, IH), -1.20--1.27 (m, 1H); 13C NMR (CD2Ch, 75 MHz) 6 

158.91 , 141.95, 138.91 , 133.15, 130.67, 130.25, 129.54, 129.51 , 126.70, 126.40, 125.46, 

123.28, 123.16, 120.32, 72.03, 33.44, 32.30, 31.33, 25.62, 22.45; APCI-(+)-MS mlz (%) 

537 (10), 536 (44), 535 ([M+It, 100), 533 (3); HRMS [(EI-(+)] calcd for C39H3402 

534.2559, found 534.2558. 

Pyrenophane 22 

To a 0 oc suspension ofZn (<10 micron, 1.12 g, 16.7 mmol) in THF (35 mL) was added 

TiCI4 (1.0 Min CH2Ch, 13 .7 mL, 13.0 mmo1) over a period of 15 min and the resulting 

mixture was heated at 70 oc for I h. Pyridine (0.13 mL, 1.67 mmol) was added to the hot 

reaction mixture and heating was continued for 15 min. A solution of tetraaldehyde 20 

(0.50 g, 0.81 mmol) in THF (30 mL, boiling was required for complete dissolution of 20) 

was added over a period of 30 min and heating was continued for 24 h. The reaction 

mixture was cooled to room temperature and 10% aqueous NaOH solution (20 mL) was 

added. The precipitate that f01med was removed by vacuum filtered through a plug of 

Celite®, which was then washed with CHCh (3 x 35 mL). The filtrate was washed with 

H20 (2 x 50 mL), dried over Na2S04 and the solvent was removed under reduced 

163 



pressure. The residue was subjected to column chromatography using neutral Ab03 (5-

I 0% ethyl acetate I hexanes) and the product was triturated with diethyl ether (2 x I mL) 

to give pyrenophane 22 (26 mg, 6 %) as an off-white solid. R1= 0.30 (l 0% ethyl acetate I 

hexanes); mp 195-198 oc; 1H NMR (CD2Cb, 500 MHz) b 7.90 (dd, J= 7.3, 1.9 Hz, 1H), 

7.86 (d, J = 9.1 Hz, 1H), 7.67 (d, J = 9.1 Hz, 1H), 7.33 (td, J = 7.7, 1.9 Hz, 1H), 7.28 (td, 

J = 7.4, 1.3 Hz, 1H), 6.81 (dd, J = 7.8, 1.3 Hz, 1H), 3.53-3.50 (m, 2H), 3.43 (ddd, J = 

16.0, 8.5, 5.0 Hz, 1H), 2.74-2.70 (m, 1H), 2.66-2.61 (m, 1H), 2.37-2.22 (m, 2H), 1.95-

1.92 (m, lH), - 0.19--0.28 (m, I H), - 0.72-0.81 (m, 1H); 13C NMR (CD2Cb, 75 MHz) b 

157.66, 142.42, 139.10, 132.50, 130.90, 130.11 , 129.36, 129.31, 126.85, 126.68, 125.96, 

122.97, 122.54, 118.58, 70.25, 33.22, 32.22, 25.87, 25 .55; APCI-(+)-MS m/z (%) 523 

(10), 522 (44), 521 ((M+1t, 100), 519 (3); HRMS [(EI-(+)] calcd forC 38H320 2 520.2402, 

found 520.2403. 
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I 13 
4.6 Selected H and C NMR spectra for Chapter 4 

OH 

7 

~ ~ ~ u ~ ~ ~ ~ ~ ~ 
fl ( ppm) 

I iill ii UL/ ' j : li.L _____ ___L_UJJL : LL_ __ _-J • .___~ LU _l 

2 0 0 190 160 17 0 160 1 5 0 140 13 0 12 0 1 10 1 0 0 
f1 (ppm) 
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OH 

tJk ___ /\_ j:_J'--__ .L 

10.0 9 . 5 6 .5 s.s 5 .0 
fl {ppm) 

200 190 180 170 160 150 1~0 130 120 >00 
tl (ppm) 

70 60 so 40 30 20 10 
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Br Br 

10.0 9.5 9.0 8 .5 8.0 7.5 7 .0 6.5 6.0 5 .5 5.0 4.5 4 .0 3 .5 3.0 2.5 2.0 1.5 1.0 0 .5 0 .0 
f1 (ppm) 

2 00 19 0 180 170 1 6 0 150 I •W 130 12 0 110 100 90 80 70 60 50 40 30 2 0 10 
fl (ppm) 
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5.5 
rt (ppm ) 

2 00 190 180 1 7 0 1 6 0 150 1 4 0 130 120 110 100 90 80 70 50 50 4 0 30 2 0 10 
fl (ppm) 
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10 .0 9 .5 9 .0 8.5 8.0 7 .5 7.0 6.5 6.0 5 .5 5.0 4.5 4 .0 3.5 3 .0 2 .5 2 .0 1.5 1.0 0 .5 0.0 
fl (ppm) 

200 190 180 1 70 16 0 15 0 140 130 1 2 0 110 100 90 80 70 60 50 40 30 20 10 0 
f1 (ppm) 
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0 
0~ 

16 

a.o 7 .9 7.8 7 .7 7 .6 7.s 7.4 
f1 (ppm) 

8.5 4.5 
f t (ppm) 

110 100 
f l ( p pm) 
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OH 

OH HO 

17 

•. o 
fi {ppm) 

200 190 160 17 0 160 15 0 140 130 120 11 0 100 90 80 7 0 60 50 4 0 30 20 10 
fl (ppm) 
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HO 

10.0 9.5 9.0 8.5 8 .0 7 .5 7.0 6.5 6.0 5.5 5 .0 4 .5 <1 .0 3 .5 3 .0 2 .5 2.0 1.5 1.0 0 .5 0 .0 
fl (ppm) 

200 1 9 0 180 17 0 160 15 0 140 130 120 110 100 90 so 7 0 6 0 so 40 3 0 20 10 
fl (ppm) 
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10.5 10.0 9 .5 9.0 8 .5 8 .0 7 .5 7 .0 6 .5 6.0 5.5 5.0 4.5 4.0 3 .5 3 .0 2.5 2.0 1.5 1.0 0 .5 0.0 
f1 ( p p rn) 

200 190 180 1 70 160 1 5 0 140 13 0 1 2 0 110 1 0 0 90 80 70 60 so 40 30 20 1 0 
fl ( p p m ) 
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11 .0 10.5 10 .0 9.5 8 .5 5 .5 J . 5 
ft (ppm) 

I 

-L--ll.iLJlJ.l.J. ... ~_lt _ _ ..., 
20 0 1 9 0 18 0 17 0 16 0 150 1 4 0 130 120 1 10 100 9 0 80 7 0 60 5 0 4 0 3 0 2 0 10 

fl ( p pm) 
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8.0 7 .9 7.8 7 ,7 7.6 7.5 7,4 
fl ( p p m ) 

200 190 180 

4 .5 4 .0 
f1 (ppm) 

140 130 120 11 0 100 90 
n (ppm) 

6 

0~ 
21 

so ' 0 
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8 .0 7.9 7 .8 7 .7 7 .6 7.5 7 .4 7 . 3 7 .2 7 . 1 7.0 6.9 6 .8 6 .7 
f1 (ppm) 

22 

I 

-~LtJc________c___Jj~LLJ~ 
9 .0 8.5 8 .0 7 .5 7.0 6 .5 6.0 5.0 4 .5 1 .5 1.0 0 .5 0 .0 ·0.5 - 1.0 

fl (ppm) 

20 0 190 180 17 0 160 1 50 140 1 3 0 12 0 110 1 0 0 90 8 0 7 0 6 0 5 0 40 30 2 0 1 0 
fl ( p pm) 
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Details of the Resolution of 16 

Requestor: Graham Bodwell Sample ID: 16 

Amount received: 20 mg Quote#: 

Analysis Summary: 

The following SFC separation yielded 9 mg ofpeak-1 (chemical purity >99%, ee >99%) 

and 10 mg ofpeak-2 (chemical purity >99%, ee >99%). Chromatograms are included in 

this report. 

Preparative Method: 

OD-H (20 x 2 em) 

40% ethanol(O. l% DEA)/C02, 100 bar 

100 bar 

60 mL/min, 254 nm. 

Analytical Method: 

OD-H (15 x 0.46 em) 

40% methanol(0.1 % DEA)/C02, 

3 mL/min, 220 and 254 nm 

inj vol.: 5 mL, 0.75 mg/mL 1:1:1 ethanol:DCM:DMSO 

Sample: 16 

320 Cl·ll.yfl'·&-..twlll!foll()l.lA fA IJJ 
300 "·· 

"" 
280 

220 

200 ... 
"" 

.. .. .. 
20 

ii 
I, 

i 
I 
I 
i 
\ 

\ 
\ 

RT(nY11 
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Sample: 16 peak-1 

50 

35 

•, .,_ ___ .:..:-"--"' ·"" ~ ,.:..: ......... ,,~, ·'1 ,~·' · ··--~• · • •. ·." ' ·;·.• 

Index Time (min) Area (%) 

Peak-1 3.19 100.00 

Peak-2 

Total 100.00 

Sample: 16 peak-2 
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Index Time (min) Area(%) 

Peak-! 

Peak-2 4.88 100.00 

Total 100.00 

4.7 Supplementary crystallographic information for pyrenophanes 16 and 22 

Single crystal X-ray diffraction studies. A crystal of 16 and 22 was mounted on a low 

temperature diffraction loop and measured on a Rigaku Saturn CCD area detector with 

Sl 
graphite monochromated Mo-Ka radiation. The structure was solved by direct methods 

S2 
and expanded using Fourier techniques. Neutral atom scattering factors were taken 

S3 S4 
from Cromer and Waber. Anomalous dispersion effects were included in Fcalc; the 

S5 
values for L\f and L\f' were those of Creagh and McAuley. The values for the mass 

S6 
attenuation coefficients are those of Creagh and Hubbell. All calculations and 

. I" . c d . c IS S
7

,S
8 d M s9 II ~-..; v1sua 1zatwns were per1orme usmg rysta tructure an ercury- crysta ograp1uc 

S l 
software packages, except for refinement, which was perfom1ed using SHELXL-97. 

Non-hydrogen atoms were refined anisotropically, while hydrogen atoms were 

introduced in calculated positions and refined on a riding model. Crystallograpruc details 

of 16 are summarized in Table 1 and crystallographic details of 22 are presented in Table 

5. 
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Pyrenophane 16 crystallized in the triclinic space group PT with Z = 2. Figure 1 

shows the asymmetric unit, while the alternate view in Figure 2 highlights the numerous 

intramolecular (methylene) C-H n interactions (3.30- 3.51 A; Table 2). Note that the 

longer (methylene )C-H n interactions are considered insignificant due to the small 

Donor - Hydrogen . .. Acceptor (D - H ··· A) bond angles (these deviate significantly 

from linearity). s4-s 10 The torsion angle for C8-C26-Cl8-C 16 is 175.1 o, while the bend 

angle between the planes defined by C7-C8-C26 and Cl7-C l 8-C 16 is 17.4°. The twist in 

the py:rene system can be assessed based on the torsion angles through the middle of the 

py:rene system (C6-C7-C26-C27-C28-C16-Cl 7-C29; Table 3); each angle would measure 

180° in a planar system, however, here, the five angles range from 160.0 - 174.1 °. 

Further intermolecular n n interactions (3.47 A; Figure 3) are present between adjacent 

molecules in the packed unit cell, as calculated from closest mean plane contacts. 

Figure 1: Asymmetric unit for 16 with 30% probability ellipsoids; H -atom labels omitted 

for clarity. 
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Figure 2: Alternate view of the asymmetric unit of 16, with (s/)C-H to n: contacts 

indicated by dashed lines. 

Figure 3: Packed unit cell for 16. Separation between the planes fanned by the atoms 

C13, Cl6, C23, C26, C27 and C28, and their symmetry equivalent, inversion related, 

counterpat1s generated by the operation (ii) 1-x, 1-y, 1-z indicated by a dashed line. 
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Table 1 Summary of X-ray Data 

Compound reference 
Chemical fonnula 
Formula Mass 
Crystal system 
alA 
biA 
ciA 
o.lo 
(JJO 
ylo 
Unit cell volumeiA3 

TemperatureiK 
Space group 
No. of formula units per unit cell, Z 
Radiation type 
Absorption coefficient, ,ulmm-1 

No. of reflections measured 
No. of independent reflections 
R int 

Final R1 values(! > 2o{l)) 
Final wR(F2

) values (all data) 
Goodness of fit on F 2 

Rl = 2: IIFol - IFcll I 2: IFol, I > 2cr(I) 
wR2 = [L: ( w (Fo2 - Fc2) 2)1 L: w(Fo2) 2] 112

, all data 

16 
C4oH3602 
548.69 
Triclinic 
9.395(5) 
12.771 (6) 
13.799(7) 
104.045(8) 
107.143(4) 
106.279(6) 
1419.9(12) 
153(2) 
PT 
2 
MoKa 
0.077 
13837 
5859 
0.0590 
0.0884 
0.1924 
1.150 

Table 2: Intramolecular (methylene)C-H .. . 7t interactions for 16 

D-H ···A D-H H···A D-H···A 

C38 - H38A ... Cgl 0.99 A 3.30 A 159.8° 

C36- H36B .. . Cg2 0.99 A 3.5 1 A 128.1 ° 

C39- H39A .. . Cg3 0.99 A 3.39 A 128.5° 

C37 -H37A ... Cg4 0.99 A 3.30 A 157.6° 
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For Table 2: 

Cg1 is the centroid ofC7, C8, C12, C13, C26, C27 

Cg2 is the centroid ofC13-C15, C27, C28 

Cg3 is the centroid ofC23-C28 

Cg4 is the centroid ofC16-C18, C22, C23, C28 

Table 3: Torsion angles through the middle of the pyrene system (0
) 

C6- C7- C26- C27 

C7- C26- C27- C28 

C26- C27- C28- C16 

C17- C16- C28- C27 

C28-C16-C17-C29 

168.5(2) 

-174.1(2) 

172.0(2) 

-171.5(2) 

160.1 (2) 

Pyrenophane 22 crystallized in the triclinic space group PT with Z = 2 (crystallographic 

details summarized in Table 4). Figure 4 shows the asymmetric unit, while the alternate 

view in Figure 5 highlights the numerous possible intramolecular (methylene)C-H .. . rr 

interactions (3.12 - 3.48 A; Table 5), however, these are likely to be considered 

insignificant due to the small Donor- Hydrogen ... Acceptor (D - H ... A) bond angles 

(these deviate significantly from linearity.)s10 A more likely real, but weak, 

intennolecular (phenyl)C-H . .. rr interaction (3.35 A; Figure 6) is present between 

adjacent molecules in the packed unit cell. 

The torsion angle for C8-C26-C 18-C 16 is 166.2° while the bend angle between the planes 

defined by C7-C8-C26 and C17-Cl8-Cl6 is 44.3°. The twist in the pyrene system can be 
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assessed based on the torsion angles through the middle of the pyrene system (C6-C7-

C26-C27-C28-Cl6-Cl7-C29; Table 6); each angle would measure 180° in a planar 

system, however, here, the five angles range from 148.9 - 164.4°. 

Table 4 Summary of X-ray data 

Compound reference 
Chemical fonnula 
Formula Mass 
Crystal system 
alA 
biA 
ciA 
o.lo 
(Jio 
yfD 
Unit cel l volumeiA3 

TemperatureiK 
Space group 
No. of formula units per unit cell, Z 
Radiation type 
Absorption coefficient, ,ulmm-1 

No. of reflections measured 
No. of independent reflections 
R 1111 

Final R1 values(! > 2a{J)) 
Final wR(F ) values (all data) 
Goodness of fit on F 

R1 = I IIFol - !fell I I IFo l, I > 2cr(I) 
wR2 = [I ( w (Fo2 - Fc2) 2)1 I w(Fo2) 2] 112, all data 

22 
C3sH320 2 
520.64 
Triclinic 
9.143(5) 
11.785(6) 
13 .878(7) 
109.572(3) 
97.451(4) 
105.330(6) 
1319.1(12) 
163(2) 
PI 
2 
MoKa 
0.079 
11569 
5876 
0.0301 
0.0529 
0.1491 
1.103 

Table 5: Possible (methylene)C-H . .. 7t interactions for 22 

D-H ... A D-H H ... A D - H ... A 

C36- H36B ... Cg1 0.99 A 3.48 A 150.2° 

C36 - H36B ... Cg2 0.99 A 3.34 A 132.7° 

C37- H37B .. . Cg3 0.99 A 3. 12 A 139.0° 

Intramolecular 

Intramolecular 

Intramolecular 
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C37- H37B .. . Cg4 0.99 A 

C30 - H30 .. . Cg4iv 0.95 A 

For Table 5: 

3.36 A 

3.35 A 

Cg1 is the centroid ofC7, C8, Cl2, C13, C26, C27 

Cg2 is the centroid ofC13-C15, C27, C28 

Cg3 is the centroid ofC23-C28 

Cg4 is the centroid ofC16-C1 8, C22, C23, C28 

Symmetry operator (iv) 2-x, 1-y, 1-z 

Intramolecular 

Inteimolecular 

Table 6: Torsion angles through the middle of the pyrene system for 22 C) 

C6 - C7 - C26 - C27 

C7- C26- C27- C28 

C26 - C27 - C28 - C16 

C 17 - C 16 - C28 - C27 

C28- C16- Cl7- C29 

151.92(1 1) 

-164.40(13) 

161.40(13) 

-162.83(13) 

148.90(13) 
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Figure 4: Asymmetric unit for 22 with 30% probability ellipsoids; H-atom labels omitted 
for clarity. 

Figure 5: Alternate view of the asymmetric unit of 22, with sh011 methylene-H to 1t 

contacts indicated by dashed lines. 
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Figure6: Expanded, packed unit cell for 22. Separation between the centroid of [C 16-
C17, C22, C23, C28] and the atom H30 of an adjacent, tenninal benzene ring indicated 
by a dashed line. (i) x,y,z (ii) 1-x, 1-y, 1-z (iii) -1 +x, y, z (iv) 2-x, 1-y, 1-z. 

References for crystallographic information: 

Sl. SHELX97: Sheldrick, G. M. Acta Cryst. 2008, A64, 11 2. 

S2. DIRDIF99: Beurskens, P. T. ; Admiraal, G.; Beurskens, G.; Bosman, W. P .; de 

Gelder, R.; Israel, R.; Smits, J. M. M. (1999). The DIRDIF-99 program system, 

Technical Report of the C1ystallography Laboratory, University ofNijmegen, The 

Netherlands. 

S3. Cromer, D. T .; Waber, J. T. "International Tables for X-ray Crystallography", 

Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974). 

S4. Ibers, J. A.; Hamilton, W. C. Acta Cryst. , 1964, 17, 781. 

S5. Creagh, D. C. ; McAuley, W. J. "International Tables for Crystallography", Vol 

C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, 

pages 2 19-222 ( 1992). 
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S6. Creagh, D . C.; Hubbell, 1. H. "International Tables for Crystallography", Vol C, 

(A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 

200-206 ( 1992). 

S7. CrystalStructure 3.7.0: Crystal Structure Analysis Package, Rigaku and 

Rigaku/MSC (2000-2005). 9009 New Trails Dr. The Woodlands TX 7738 1 USA. 

S8. CRYSTALS Issue 10: Watkin, D. 1.; Prout, C. K.; Carruthers, 1. R. ; Betteridge, 

P.W. Chemical Crystallography Laboratory, Oxford, UK. (1996) 

S9. Mercury 3.0: C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. 

Shields, R. Taylor, M. Towler and 1. van de Streek, J. Appl. Clyst., 2006, 39, 453 . 

SlO. Arunan, E.; Desiraju, G. R. ; Klein, R. A.; Sadlej , J. ; Scheiner, S.; Alkmta, I. ; 

Clary, D. C. ; Crabtree, R. H.; Dannenberg, 1. I.; Hobza, P.; Kjaergaard, H. G.; 

Legon, A. C.; Mennucci, B.; Nesbitt, D . 1. Pure Appl. Chern., 2012, 83, 1619. 

4.8 Experimental details of the absorption and emission spectra 

Sample preparation. Samples were dissolved 2.5 mL of CHCh (Fisher, Spectral grade) 

in a 1.0 em path-length screw-top quartz cuvettes received from Starna. UV-Vis and 

fluorescence spectra of solvent were routinely recorded prior to addition of the sample to 

ensure that the solvent did not contain absorbing or emitting impurities. Extinction 

coefficients were determined by gravimetric methods with typical concentrations of 

between 1 o-s to 1 o-6 M. 

Electronic spectra. UV-vis spectra were obtained using an Agilent 8453A Diode Array 

UV-visible spectrophotometer. Manipulation of the UV -visible spectroscopic data were 

conducted using ChemStation software provided by Agilent or by expmting the data and 

utilizing Microcal Origin 8.0 analysis software. 
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Luminescence measurements were performed usmg a Photon Technology 

International (PTI) Quantamaster 6000 photon counting spectrofluorometer equipped 

with a 75 W Ushio Xenon arc lamp as the excitation source. The emitted light was 

collected 90° to the excitation beam and detected by a Hammamatsu R-928 

photomultiplier tube (PMT) housed in Products for Research water-cooled PMT housing. 

Emission spectra were coiTected for instrument response and light loss using coiTection 

factors supplied by manufacturer. Excitation spectra were coiTected in real time using 

cotTection factors supplied by the manufacturers. 

Emission quantum yields were measured on optically dilute (Abs < 0.2 with },exc = 

350 nrn, 1 atm N2) CHCh solutions at 295 ± 3 K by relative actinometry using a standard 

quinine bisulfate in 0.1 M aqueous sulfuric acid ( (/>std = 0.52 at Aexc = 350 run). Quantum 

yields were determined using: 

d. = "- . (Astd ](~](~]
2 

'rem 'f/,td A I 
un std n std [S5-l] 

Where A is a solution absorbance, I the emission intensity, n the refraction index of the 

solvent and the subscripts un and std refer to the unknown and standard, respectively. 

Time Resolved Emission Measurements. Lifetimes were obtained usmg PTI 

LaserStrobe TM-3 fluorescence lifetime spectrofluorometer. Sample excitation was 

afforded by a PTI GL-3300 nitrogen laser coupled to the high-resolution PTI GL-302 dye 

laser. Instrument response functions (IRF) were obtained using a scattering solution 
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(milk or coffee powder in H20). The extraction of lifetimes from experimental data was 

performed using by curve fitting procedures based on Marquardt minimization algorithm 

provided by PTI or the data was exported and data analysis was accomplished using 

Microcal Origin 8.0 software. 
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Chapter 5 

An Inverse Electron Demand Diels-Aider- Based Total 

Synthesis of Defucogilvocarcin V and some 

C-8 Analogues 

This Chapter is based on the following publication: 

Nandaluru, P.R.; Bodwell , G. J. J. Org. Chern. 2012, 77, 8028. 

Contributions of authors 

G. J. Bodwell: research supervisor, manuscript preparation. 

P. R. Nandaluru: experimental work, manuscript preparation. 
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5.1 Introduction 

A class of aryl C-glycoside-containing natural products, comprised of the 

gilvocarcins, 1-4 ravidomycin (2), s-6 the chrysomycins (3) 7-
8 and polycarcin ( 4),9 has been 

isolated from different species of Streptomyces. These compounds exhibit impressive 

biological properties, including antibacterial2
•
10 and strong antitumor activity.11

-
14 

Structurally, they share a common tetra cyclic aromatic core ( 6H-benzo[ d]naphtho[ 1,2-

b]pyran-6-one), to which a sugar is attached at C-4. Individual gilvocarcins are 

distinguished by variation of the R group at C-8, by which they were named as 

gilvocarcin M (R = methyl), gilvocarcin E (R = ethyl) and gilvocarcin V (R = vinyl). 

Furthetmore, the aglycon of one of them, defucogilvocarcin V (5c), was isolated from the 

fermentation broth of Streptomyces arenae 2064 by Mishra and co-workers. 15 Studies 

suggested that the antitumor activity of defucogilvocarcin V (5c), on activation by light, 

is similar to that of the parent gilvocarcin V (lc).15
·
16 This implies that the role of sugar 

moiety in the anticancer activity may be of minor importance. 
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OH OMe 

0 

1a gilvocarcin M (R1=1, R2=methyl) 

1b gilvocarcin E (R1=1, R2=ethyl) 

1c gilvocarcin V (R1=1, R2=vinyl) 

2 ravidomycin V (R1=11, R2=vinyl) 

3a chrysomycin A (R1=111 , R2=vinyl) 

3b chrysomycin B (R1=111 , R2=methyl} 

4 polycarcin (R1=1V, R2=vinyl) 

0~.,,0H 
MeYNMe2 

OAc 
II 

OH OMe 

0 

Sa defucogilvocarcin M (R = methyl) 
5b defucogilvocarcin E (R = ethyl) 
5c defucogilvocarcin V (R = vinyl} 

Me'¢ ::: 
OH 
IV 

Figure 5.1. The gilvocarcin family of natural products. 

The gilvocarcins (1) and their aglycons (defucogilvocarcins, 5) have been targets 

ofthe synthetic community because of their impressive biological profiles. Whereas only 

a handful of total syntheses of gilvocarcins have been accomplished, 17
-

20 a relatively 

large number of defucogilvocarcin syntheses has been reported. The strategies used to 

approach the defucogilvocarcins can be sorted into three categories according to the 

ring(s) generated during the key step(s): 1) formation of the C ring using a) Suzuki 

coupling followed by lactonization, 21
-

23 b) esterification I intramolecular biaryl bond 

formation, 24 c) nucleophilic aromatic substitution I lactonization, 25
-

26 d) Pechmann 

condensation27 and e) conjugate addition I lactonization;28 2) fom1ation of the A and C 

rings using f) Diels-Alder reaction (A ring) I Meerwein coupling I lactonization (C 
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ring);2
9-

31 and 3) formation of the B and C rings using g) a Dotz chromium carbene 

benzannulation I lactonization,32 h) a [2+2] cycloaddition I pericyclic ring opening- ring 

closing I lactonization33 and i) a condensation reaction between a styryl sulfone and a 

phthalide.34 More recently, a one-pot enzymatic synthesis of defucogilvacarcin M 

starting from acetyl-CoA and malonyl-CoA using fifteen enzymes has been reported.35 

Notably, none of the non-enzymatic synthetic approaches to the defucogilvocarcins 

involves the fonnation of the D-ring, which is where variations at C-8 of natural products 

are present. 

5.2 Results and Discussion 

In connection with ongoing work aimed at the development and application of the 

inverse electron demand Diels-Alder (IEDDA) reaction,36 our group has reported the 

synthesis of a variety of electron deficient dienes. 37
-4

4 The common structural feature of 

these systems is the presence of two electron withdrawing groups on the diene unit with a 

1 ,3-relationship. This motif allows the two electron-withdrawing groups to electronically 

bias the diene in a co-operative fashion, which results in completely regioselective 

cycloaddition upon reaction with electron rich dienophiles. This chemistry has provided 

access to several different classes of compounds, including 2-hydroxybenzophenones,38 

isophthalates,39 xanthones,40 pyrido[2,3-c ]coumarins4 1 and 6H-dibenzo[b,d]pyran-6-ones 

(DBPs).42
-
44 Additionally, the methodology developed for the synthesis ofDBPs has been 

exploited in total syntheses of cannabinol44 and urolithin M7,45 as well as in the synthesis 

of an elaborate chiral cyclophane.46 To further demonstrate the value of this 

methodology, defucogilvocarcins were identified as attractive synthetic targets. Reported 
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herein are details of the total synthesis of defucogilvocarcin V (Sc) and some of its C-8 

analogues. 

The retrosynthetic analysis of Sc based on our DBP-forming methodology 

commences with functional group interconversion to provide 6H-benzo[d]naphtho[1 ,2-

b]benzopyran-6-one (6) (Scheme 5.1). The D-ring and C-ring are then opened 

successively using an IEDDA-driven domino transform,42
•
43

•
45 (giving naphthalene-

derived diene 7 and electron rich dienophile 8) and a vinylogous Knoevenagel 

condensation I transesterification transform to afford 1-hydroxy-2-naphthaldehyde 9 and 

dimethyl glutaconate (10). The differentially 0-protected 1-hydroxy-2-naphthaldehyde 9 

leads back to commercially available juglone (11). 

OH OMe 

0 
Sc 

OH 0 

0:> 
0 

11 

lEODA 
reaction 

MOMO OMe 

MOMO OMe 

~ 
9 OH 0 

MeO~OMe 

0 10 0 

0 
6 

OMe 

0 

vinylogous 
Knoevenagel 

reaction I 
transesterification 

Scheme 5.1. Retrosynthetic analysis of defucogilvocarcin V (SC). 
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Before initiating work on the synthesis of 9, a model study starting from more 

abundantly and inexpensively available 1-hydroxy-2-naphthaldehyde (12) was conducted 

to test the viability of the key steps (Scheme 5.2). The reaction of 12 with dimethyl 

glutaconate (10) afforded diene 13 in high yield (87%). Diene 13 was then subjected to 

the key IEDDA reaction with a series of enamines derived from dimethoxyacetaldehyde, 

i. e. Sa- c, whereby it was found that the nature of the secondary amine used to generate 

the enamine played a critical role in the reaction. While the use of the pyrrolidine­

derived enamine Sa resulted in the consumption of the starting diene, no identifiable 

product was obtained from the reaction. On the other hand, the morpholine-derived 

enamine Sb did not undergo reaction with 13 under the same conditions. After some 

experimentation, it was found that diene 13 reacted smoothly with the piperidine-derived 

enamine Sc to afford 14 (86%). In this case, more concentrated solutions were required 

to drive the reaction to completion. The reasons for differences in reactivity between the 

various enamines Sa-c are not immediately obvious. In any event, the IEDDA reaction 

involving Sc proceeded with complete regioselectivity, in line with previous 

observations.37
-4

5 Consequently, the newly-generated D-ring was endowed with 

correctly placed methoxy and methoxycarbonyl groups, the latter of which was poised for 

conversion to the required vinyl functionality. Both the ester and lactone functionalities 

present in 14 were reduced with LiAlH4 to give trio! 15 (96%). It was envisaged that 

oxidation of 15 would afford lactone-aldehyde 16 (via a hemiacetal), but all attempts to 

accomplish this transformation using various oxidizing agents (PCC, Mn02, IBX and 

Fetizon's reagent) fai led. In all cases, the starting material was consumed to give a 
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deeply colored reaction mixture, from which no identifiable product was isolated. 

Quinone f01mation may compete with the desired transformation. 

12 

* [0] 

t 

0 
16 

0 10 0 

MeO~OMe 
piperidine, THF 
rt, 1 h; then 70 oc . 3 h 

87% 

OH 

15 

H 

0 

OMe 

0 13 0 

LiAIH4 , THF 
70 °C, 4 h 

OH 96% 

Ba NR2 = ~-N~ 

1\ 
8b NR2 = ~-N 0 

\__/ 

8cNR2 = ~-N~ 

Scheme 5.2. Attempted synthesis of a defucogilvocarcin V model. 

MeO 

MeO~NRz 
Ba-c 

benzene, 80 oc 
48 h, 86% (Be) 

0 
14 

OMe 

0 

Although the viability of the two key steps had been established, an alternative 

approach to functional group management was required. Accordingly, methods for 

achieving the chemoselective reduction of the ester over the lactone were investigated. 

To this end, hydrolysis of 14 afforded carboxylic acid 17 (93%) (Scheme 5.3). In this 

reaction, both the ester and lactone were presumably hydrolyzed and the lactone 

refom1ed during the acidic workup. Weinreb amide 18 was then prepared in a moderate 
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yield (55%) in preparation for a chemoselective reduction with DIBAL-H, which was 

intended to result in the f01mation of aldehyde 16. Unfortunately, this reaction showed 

no evidence of progress at -78 °C, the temperature typically used for this 

transfonnation.4 7 Upon warming the reaction mixture to room temperature and stirring at 

this temperature for 12 h, the starting material was consumed, but a complex mixture of 

products was produced (TLC and 1H NMR analysis). However, a chemoselective 

reduction of acid 17 was achieved using Me2S·BH3. This afforded benzylic alcohol 20 

(79%) along with a minor, but still significant, amount of the overreduced benzylic 

alcohol19 (17%). Oxidation of 20 was achieved using PCC I Celite® to give aldehyde 16 

(73%). Finally, a Wittig reaction under mild conditions48 using DBU as the base was 

employed to obtain the olefin 21 (70%), thereby completing the model study. Model 

compound 21 was synthesized in six steps from commercially available 1-hydroxy-2-

naphthaldehyde (12) in 28% overall yield. 
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10% KOH/MeOH 

OMe 70 °C, 5 h, 93 % 

0 
14 

0 

Me(MeO)NH•HCI 
EDC•HCI 

18 0 

~ 

• 

0 
16 

iPrNEt 
CH2CI2, rt 
24 h, 55% 

OMe 
I 
N, 

Me 

0 

DIBAL-H 

H 

0 

(17%) 

PCC/Celite® 20 

CH2CI2, rt (79%) 

16 h. 74% 

PPh3CH3Br, DBU 

CH2CI2. rt 
16 h, 70% 

Scheme 5.3. Completion of the defucogilvocarcin V model study. 

OH 

+ 

OH 

0 

~ 

0 
21 

Upon successful completion of the model study, attention was tumed to applying 

the approach to the synthesis of defucogilvocarin V (Sc). The synthesis began from 

juglone (11), which is commercially available or readily accessible from 1,5-

dihydroxynaphthalene (22).49 The hydroxyl group of juglone (11) was MOM-protected50 

and the resulting 1,4-naphthoquinone 23 (92%) was subjected to a reductive acylation I 
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methylation protocol, which was based upon procedures described for the 0-methyl 

analog of 23 (Scheme 5.4).51 This involved reduction of the naphthoquinone 23 with Zn 

and selective 0-acetylation at the less sterically hindered site. The monoacylated product 

24 (75%) was then 0-methylated upon treatment with dimethyl sulfate to give 25 (97%). 

The acetyl group was removed using K2C03 in MeOH to afford naphthol 26 (80%), 

which was regioselectively f01mylated using the Skatteb0l ortho-fonnylation52 to provide 

the required hydroxynaphthaldehyde 9 (63%). 

OH 

~ vy 
OH 

22 

CuCI, 0 2 

OH 0 

6¢ 
0 

11 

MOMO OMe 

rt, 20 min, 80% 

AA vy 
O......,_,.,.. Me 

25 II 
0 

MOMO 0 

MOMCI, iPr2NEt 

CH2CI2, rt 
14 h, 92% 

6¢ 
23 

Zn, (CH3C0h0 
CHCI3, 60 •c 
20 min, 75% 

Me2S04 , K2C03 

acetone, 60 ·c 
16 h, 97% 

0 

MOMO OMe 

AA vy 
MOMO OMe 

OH 

26 

(HCHO)n, MgCI2 

Et3N, CH3CN 
60 ·c. 2 h, 67% 

AA 
~CHO 

OH 
9 

Scheme 5.4. Synthesis ofhydroxynaphthaldehyde 9. 
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With 9 in hand, a vinylogous Knoevenagel reaction was carried out with dimethyl 

glutaconate (10) to generate the corresponding electron deficient diene 7 (87%) (Scheme 

5.5). Reaction of 7 with enamine 8c resulted in the formation of ester 6 (89%), which 

differs from the natural product only in the nature of the C-8 substituent and the presence 

of the protective group at C-1. Hydrolysis of the ester provided carboxylic acid 27 

(86% ), which was then reduced to afford benzylic alcohol 28 (51 %). Oxidation of 28 

gave aldehyde 29 (74%), which was subjected to a Wittig reaction to furnish olefin 30 

(76%). To mirror the model study, carboxylic acid 27 was converted into the 

corresponding Weinreb amide 31 (40%). 

201 



9 

0 10 0 

MeO~OMe 
piperidine, THF 
rt, 1 h, then 70 oc . 3 h 
87% 

MOMO OMe 

MOMO OMe 

7 0 

PCC/Celite® 

OMe 

0 

MeO 0 
MeO~N 

8c 
benzene, 80 oc 
48 h, 86% (8c) 

MOMO OMe 

Ph3PCH3Br 
DBU, CH2CI2 
rt, 30 h 

CH2CI2, rt 
3 h, 73% OMe 

40 oc . 5 h 
76% 

MOMO OMe 

30 0 

0 
29 

0 0 

[ 

6R=C02Me 
10% KOH/MeOH 
70 oc . 2 h, 86% 

[

27R=C02H 

BH3·SMe2/THF 
rt,5h, 51 % 

MOMO OMe 

0 0 
31 

28 R = CH20H 

Me(MeO)NH•HCI, 
EDC·HCI, iPr2NEt 
CH2CI2. rt, 16 h, 40% 

Scheme 5.5. Synthesis of MOM-protected defucogilvocarcin V (30). 

Finally, compounds 6, 29, 30 and 31 were deprotected using BC13 (Scheme 5.6). 

This reaction smoothly afforded defucogilvocarcin V (5c) (83%) along with three C-8 
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analogues, 32 (87%), 33 (82%) and 34 (63%). The total synthesis of defucogilvocarcin V 

(5c) was accomplished in 12 steps fromjuglone in 5.3% overall yield. 

MOMO OMe 

0 

6 R = C02Me 
29 R = CHO 
30 R = CH=CH2 
31 R = C(O)NMe(OMe) 

-78 °C, 1h 
then rt, 30 min 

OH OMe 

0 

32 R = C02Me (87%) 
33 R = CHO (83) 

R 

Sc R = CH=CH2 (82%) 
34 R = C(O)NMe(OMe) (63%) 

Scheme 5.6. Synthesis of defucogilvocarcin V (5C) and C- 8 analogs 32-34. 

5.3 Conclusions 

The approach to defucogilvocarcin V (Sc) described here differs from all 

previously reported approaches in that it involves construction of the D-ring. Not only is 

the D-ring fmmed with the required C-1 0 methoxy group, but it also bears an ester at C-

8, which is where differences in the natural defucogilvocarcins and gilvocarcins occur. 

Synthetic manipulation of the ester group led to the natural product defucogilvocarcin V 

(5c) as well as three C-8 analogues, which all offer opportunities for further elaboration. 
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5.5 Experimental procedures and characterization data 

General 1: The general experimental can be found in page 47. 

General II: Acetone was distilled over K2C03. Acetonitrile and triethylamine were 

distilled over CaH2. 

Methyl (E)-3-(6H-naphtho[1,2-h]pyran-6-on-5-yl)acrylate (13). 

~ OMe 

0 0 

To a solution of 1-hydroxy-2-naphthaldehyde (12) (2.00 g, 11 .6 mmol) and dimethyl 

glutaconate (10) (2.76 g, 17.5 mmol) in THF (40 mL) was added piperidine (0.99 g, 12 

mmol) and the resulting mixture was stined at room temperature for 1 h and then at 70 

°C for 3 h. The reaction mixture was cooled to room temperature and the solvent was 

removed under reduced pressure. The residue was dissolved in CHCb (600 mL) and the 

resulting solution was washed with aqueous 1.0 M HCl solution (1 x). The layers were 

separated and the organic layer was dried over Na2S04 and gravity filtered. The solvent 

was removed under reduced pressure and diethyl ether (15 mL) was added to the residue. 

The resulting mixture was stined for 10 min and vacuum filtered. On repetition of this 

process (ether addition to the solids, stining and filtration), 13 (2.83 g, 87%) was 

obtained as a yellow solid. R1 = 0.30 (30% ethyl acetate I hexanes); mp 191- 193 oc; IR 

(neat) v = 1708 (s) cm- 1
; 

1H NMR (CDC13, 500 MHz) b 8.57- 8.55 (m, 1H), 7.98 (s, 1H), 

7.89-7.87 (m, lH), 7.70 (d, J = 8.5 Hz, 1H), 7.69-7.66 (m, 2H), 7.63 (d, J = 15.9 Hz, 
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lH), 7.49 (d, J = 8.5 Hz, lH), 7.17 (d, J = 15.8 Hz, lH), 3.83 (s, 3H); 13C NMR (CDCi}, 

75 MHz) b 167.72, 159.28, 151.40, 144.68, 138.50, 135.55, 129.59, 128.17, 127.71, 

125.14, 123.90, 123.08, 122.94, 122.86, 121.74, 114.71, 52.10; ESI-(+)-MS mlz (%) 303 

(100, [M+Na]}; HRMS [EI-(+)] calcd for C 17H120 4 280.0736, found 280.0732. 

10-Methoxy-6H-benzo[d]naphtho[1,2-b]pyran-6-one-8-carboxylic acid methyl ester 

(14). 

OMe 

0 0 

A mixture of dimethoxyacetaldehyde ( 1.86 g, 10.7 rnrnol , 60% solution in water) and 

piperidine (0.73 g, 8.6 rnrnol) in benzene (35 mL) was heated at reflux for 1 h using a 

Dean-Stark apparatus. Solvent (- 30 mL) was removed from the reaction flask through 

the Dean-Stark condenser. The reaction mixture was cooled to room temperature and 13 

(0.30 g, 1.1 mmol) was added in one portion. The resulting mixture was then heated at 

reflux for 48 h (note: the low dilution is critical for the complete consumption of the 

starting material). The reaction was monitored by 1H NMR analysis (an aliquot was 

taken from the reaction using a pipette, ether (0.5 mL) was added, the supernatant was 

decanted and the residue was dried under vacuum; 1H NMR was perfom1ed after every 

12 h, starting from 24 h). The reaction mixture was cooled to room temperature and the 

solvent was removed under reduced pressure. The residue was dissolved in CHCh (70 

mL) and washed with aqueous 1.0 M HCI solution (2 x). The layers were separated and 
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the organic layer dried over Na2S04 and gravity filtered. The solvent was removed under 

reduced pressure and the residue was subjected column chromatography (CHCh). The 

product obtained from chromatography was triturated with ether (2x7 mL) to give 14 

(0.30 g, 86%) as a pale yellow solid. R1 = 0.30 (30% ethyl acetate I hexanes); mp 247-

250 °C; IR (neat) v = 1715 (s) cm- 1
; 

1H NMR (CDCh, 500 MHz) 6 8.96 (d, J = 9.2 Hz, 

!H), 8.75 (d, J = 1.7 Hz, !H), 8.61-8.57 (m, !H), 7.93 (d, J = 1.7 Hz, !H), 7.85-7.82 (m, 

!H), 7.68 (d, J = 9.1 Hz, lH), 7.63-7.59 (m, 2H), 4.14 (s, 3H), 3.99 (s, 3H); 13C NMR 

(CDCh, 75 MHz) 6 165.87, 160.74, 157.64, 147.70, 134.33, 130.58, 128.67, 128.45, 

127.44, 126.97, 124.73, 124.33, 124.03 , 123.53, 123.10, 122.80, 116.82, 112.81 , 56.58, 

52.82; APCI-(+)-MS mlz (%) 335 ([M+Ht, I 00); HRMS [CI-(+)] calcd for C20H 150 5 

335.0919, found 335.0930. 

2-(2,4-Bis(hydroxymethyl)-6-methoxy)-1-naphthol (15) . 

OH 

OH 

To a 0 oc slurry of LiAIH4 (0.18 g, 4. 7 mmol) in THF (20 mL) was added 14 (0.40 g, 1.2 

mmol) in several portions and the reaction mixture was heated at reflux for 4 h. After 

cooling to 0 °C, the reaction was quenched by the careful addition of aqueous 1.0 M HCI 

solution (20 mL). The resulting mixture was vacuum filtered and the filtrate was washed 

thoroughly with CHC13 (4x). The layers were separated and the aqueous layer was 

washed with CHCh (I x). The combined organic layers were dried over Na2S04 and 
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gravity filtered . The solvent was removed under reduced pressure and the residue was 

triturated with ether (2 x3 mL) to afford 15 (0.39 g, 96%) as a colorless solid. Rf = 0.20 

(50% ethyl acetate I hexanes); mp 197-200 oc; lR (neat) v = 3389 (w) cm-1; 1H NMR 

(DMSO-d6, 500 MHz) J 8.18-8.17 (m, lH), 7.82-7.80 (m, 1H), 7.48-7.42 (m, 2H), 7.37 

(d, J = 8.3 Hz, lH), 7.16 (d, J = 1.6 Hz, 1H), 7.01 (d, J = 8.3 Hz, 1H), 6.93 (d, J = 1.6 Hz, 

1H), 5.20 (t, J = 5.8 Hz, 1H), 4.56 (d, J = 4.7 Hz, 2H), 4.18 (d, J = 13.9 Hz, 1H), 4.10 (d, 

J = 13.8 Hz, 1H), 3.29 (s, 3H); 13C NMR (DMSO-d6, 75 MHz) J 156.75, 149.36, 142.76, 

141.86, 133.72, 129.64, 127.37, 125.74, 125.33, 124.69, 122.83, 122.23 , 118.65, 11 7.66, 

116.70, 107.55, 63 .27, 60.86, 55 .30; APCI-(-)-MS m/z (%) 309 (100, [M-Hr); HRMS 

[EI-(+)] calcd for C19H1s04 310.1205, found 310.1208. 

10-Methoxy-6H-benzo[d]naphtho[1,2-b]pyran-6-one-8-carboxylic acid (17). 

A suspension of 14 (0.60 g, 1.8 mmol) in 10% KOH I methanol (30 mL) was heated at 

reflux for 5 h. The reaction mixture was cooled to room temperature and the solvent was 

removed under reduced pressure. To the residue was added water ( 1 0 mL) and the pH 

was adjusted to ~ 2.0 using aqueous 5.0 M HCl solution. The resulting mixture was 

suction filtered. The solids were vacuum dried for 1 h and then air dried in an oven at 

90- 100 oc for 12 h to afford 17 (0.53 g, 93%) as a pale yellow solid. Rl = 0.60 (ethyl 

acetate); mp 266-269 °C; IR (neat) v = 3200- 2700 (br, w), 1734 (s) cm- 1; 1H NMR 
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(DMSO-d6, 500 MHz) 6 8.99 (d, J= 9.1 Hz, 1H), 8.46 (d, J= 1.6 Hz, 1H), 8.42-8.38 (m, 

1H), 8.03-7.99 (m, 1H), 7.95 (d, J= 1.7 Hz, 1H), 7.85 (d, J= 9.1 Hz, 1H), 7.72-7.68 (m, 

2H), 4.15 (s, 3H); 13C NMR (DMSO-d6, 75 MHz) 6 165.77, 159.47, 157.06, 146.46, 

133.40, 131.34, 128.18, 127.32, 126.95, 126.76, 124.15, 123.55, 122.50, 122.39, 122.30, 

121.49, 116.66, 112.18, 56.36; APCI-(-)-MS mlz (%) 319 (100, [M-Hr); HRMS [EI-

(+)] calcd for C,9H120s 320.0685, found 320.0687. 

N,10-dimethoxy-N-methyl-6H-benzo[d]naphtho[1,2-b]pyran-6-one-8-carboxamide 

(18). 

0 0 

OMe 
I 
N, 

Me 

To a mixture of 17 (0.18 mg, 0.55 mmol) and EDCJ·HCl (0.20 g, 1.0 mmol) in CH2Ch 

(3.0 mL) was added iPr2NEt (0.28 g, 2.2 mmol) and the resulting mixture was stined at 

room temperature for h. To the resulting mixture was added N,O-

dimethylhydroxylamine hydrochloride (0.13 g, 1.3 mmol) in one portion and the mixture 

was stined at room temperature for a hllther 24 h. Water (20 mL) was then added 

followed by the aqueous 1.0 M HCl solution (15 mL). The layers were separated and the 

aqueous layer was washed with CHC13 (2 x). The combined organic layers were dried 

over Na2S04 and gravity filtered. The solvent was removed under reduced pressure and 

the residue was subjected to column chromatography (3% methanol I CHC13) and the 

product was triturated with ether (2 x I mL) to afford 18 (0.11 g, 55%) as a colorless solid. 
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R1= 0.50 (50% ethyl acetate I hexanes); mp 164-167 oc; 1R (neat) v = 1718 (s), 1633 (m) 

cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 9.03 (d, J = 9.1 Hz, 1H), 8.64-8.62 (m, 1H), 8.53 (d, 

J = 1.6 Hz, 1H), 7.89-7.87 (m, 1H), 7.75-7.73 (m, 2H), 7.65-7.61 (m, 2H), 4.15 (s, 3H), 

3.67 (s, 3H), 3.44 (s, 3H); 13C NMR (CDCh, 75 MHz) 6 168.14, 160.98, 157.50, 147.46, 

134.51 , 134.21, 128.30, 127.46, 126.96, 124.82, 124.01 , 123.65, 122.8 1, 122.79, 122.70, 

117.09, 113.02, 61.67, 56.58, 34.04; APCI-(+)-MS mlz (%) 364 (100, [M+Ht); HRMS 

[EI-( +)] calcd for C21 H 17N05 363.1107, found 363.1111. 

8-(Hydroxymethyl)-1 O-methoxy-6H-benzo [d) naphtho[1 ,2-b] pyran (19) and 8-

(hydroxymethyl)-1 O-methoxy-6H-benzo [d) naphtho [1,2-b] pyran-6-one (20) . 

OH 

19 
0 
20 

OH 

To a 0 oc suspension of 17 (0.20 g, 0.63 mmol) in THF (20 mL) was added H3B·SMe2 

(1 .8 mL, 3.7 nunol) dropwise over a period of5 min and the resulting mixture was stirred 

at room temperature for 20 h. The reaction mixture was cooled to 0 oc and methanol (3 .0 

mL) was added dropwise. The solvent was removed under reduced pressure and the 

residue was dissolved in CHCI3 (200 mL). The resulting solution was washed with 

aqueous 1.0 M HCI solution (I x) and then with saturated aqueous NaHC03 solution ( I x). 

The layers were separated and the organic layer was dried over Na2S04 , gravity filtered 

and the solvent was removed under reduced pressure. The residue was triturated with 
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ether (3 x3 mL) to afford 20 (153 mg, 79%) as a colorless solid . The ether layer was 

concentrated under reduced pressure and the residue was subjected to column 

chromatography ( 40% ethyl acetate I hexanes) to afford 19 (30 mg, 17%) as a colorless 

solid. 19: Rr= 0.80 (ethyl acetate); mp 122-125 °C; IR (neat) v = 3400-3100 (br, w) 

cm- 1; 1H NMR (CDCh, 500 MHz) J 8.49 (d, J = 8.8 Hz, 1H), 8.28-8.26 (m, 1H), 7.81 -

7.78 (m, 1H), 7.50 (d, J= 8.8 Hz, 1H), 7.48-7.44 (m, 2H), 7.00 (d, J= 1.5 Hz, 1H), 6.86 

(d, J = 1.4 Hz, 1H), 5.16 (s, 2H), 4.73 (s, 2H), 3.97 (s, 3H), 1.73 (s, 1H); 13C NMR 

(CDCh, 75 MHz) J 156.54, 150.78, 141.36, 134.19, 133.75, 127.30, 126.43, 125.88, 

125.32, 124.99, 122.20, 120.43, 11 8.75, 116.96, 115.63, 110. 13, 69.29, 65.11 , 55.72; 

APCI-(+)-MS mlz (%) [M+Ht not observed, 291 (11), 275 (100); HRMS [EI-(+)] calcd 

for C 19H160 3 292.1099, found 292.1116. 20: R1 = 0.70 (ethyl acetate); mp 23 1-234 °C; 

IR (neat) v = 3433 (m), 1692 (s) cm-1; 1H NMR (DMSO-d6, 500 MHz) J 9.02 (d, J = 9.1 

Hz, 1H), 8.43- 8.41 (m, 1H), 8.02-8.00 (m, 1H), 7.99 (d, J = 1.5 Hz, 1H), 7.86 (d, J = 9.1 

Hz, 1H), 7.72-7.66 (m, 2H), 7.60 (d, J = 1.6 Hz, 1H), 5.54 (t, J = 5.6 Hz, 1H), 4.70 (d, J 

= 3.5 Hz, H), 4.11 (s, 3H); 13C NMR (DMSO-d6, 75 MHz) J 160.20, 157.10, 145.47, 

145.13, 132.93, 127.70, 127.46, 126.97, 124.36, 123 .53, 122.69, 122.09, 121.84, 121.36, 

118.88, 115.81, 113.02, 62.17, 56.37; ESI-(+)-MS m/z (%) 307 (100, [M+Ht); HRMS 

[El-(+)J calcd for C ,9H1404 306.0892, found 306.0901 . 
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10-Methoxy-6H-benzo [ dj naphtho[1,2-b] pyran-6-one-8-carbaldehyde (16). 

H 

0 0 

To a mixture of 20 (0.19 g, 0.62 mmol) and Celite® (0.20 g) in CH2Cb (10 mL) was 

added PCC (0.33 g, 1.5 mmol) in several portions and the resulting mixture was stirred at 

room temperature for 20 h. The reaction mixture was gravity filtered and the filter cake 

was washed repeatedly with CHCh (3 x). The solvent was removed under reduced 

pressure and the residue was subjected to column chromatography ( 4% methanol I 

CHC13). The product was triturated with ether (3 x l mL) to afford 16 (0.14 g, 74%) as a 

pale yellow solid. Rr= 0.30 (30% ethyl acetate I hexanes); mp 238-241 oc ; IR (neat) v = 

1722 (m), 1688 (s) cm-1; 1H NMR (CDCh, 500 MHz) (5 10.11 (s, 1H), 9.03 (d, J = 9.1 

Hz, 1H), 8.64- 8.62 (m, 1H), 8.59 (s, 1H), 7.89-7.88 (m, lH), 7.83 (s, 1H), 7.74 (d, J = 

9.1 Hz, 1H), 7.66- 7.64 (m, 2H), 4.18 (s, 3H); 13C NMR (CDCh, 75 MHz) (5 190.39, 

160.33, 158.12, 148.00, 136.16, 134.38, 130.29, 128.60, 127.30, 127.11 , 126.94, 124.52, 

124.03 , 123.33, 123.31, 122.69, 112.77, 112.56, 56.45; ESI-(+)-MS mlz (%) 305 (7, 

[M+Ht), 102 (100); HRMS [EI-(+)] calcd for C19H1204 304.0736, found 304.0725. 

10-Methoxy-8-vinyi-6H-benzo[d]naphtho[1,2-b]pyran-6-one (21). 

0 
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A mixture ofPPh3MeBr (0.59 g, 1.7 mmol) and DBU (0.30 g, 2.0 mmol) in CH2Cb (8.0 

mL) was heated at reflux for 1 h. The reaction mixture was cooled to room temperature 

and 16 (0.1 Og, 0.32 mmol) was added in one portion. The resulting mixture was stirred at 

room temperature for 16 h. The reaction mixture was diluted with CHC13 (50 mL) and 

washed with aqueous 1.0 M HCI solution (1 x). The organic layer was dried over Na2S04 

and gravity filtered. The solvent was removed under reduced pressure and the residue 

was subjected to column chromatography (CH2Ch) to afford 21 (70 mg, 70%) as a 

colorless solid. Rl = 0.50 (30% ethyl acetate I hexanes); mp 202-205 oc ; IR (neat) v = 

1718 (s), 1599 (w) cm-1
; 

1H NMR (CDCh, 500 MHz) b 8.96 (d, J = 9.1 Hz, 1H), 8.60 

(dd, J = 7.1 , 2.2 Hz, 1H), 8.16 (d, J = 1.7 Hz, 1H), 7.85 (dd, J = 6.8, 2.3 Hz, 1H), 7.69 (d, 

J = 9.0 Hz, 1H), 7.62-7.57 (m, 2H), 7.36 (d, J = 1.7 Hz, 1H), 6.81 (dd, J = 17.5, 10.8 Hz, 

1H), 5.95 (d, J = 17.5 Hz, lH), 5.44 (d, J = 10.8 Hz, 1H), 4.11 (s, 3H); 13C NMR (CDCh, 

75 MHz) b 161.49, 157.79, 146.67, 138.71, 135.61 , 133.77, 127.84, 127.40, 126.77, 

124.71 , 124.35, 123.83, 123.67, 123.35, 122.61 , 120.74, 116.54, 114.23, 11 3.45, 56.27; 

APCI-(+)-MS mlz (%) 303 (100, [M+Ht); HRMS [EI-(+)] calcd for C2oH 140 3 302.0943, 

found 302.0934. 

5-Hydroxy-1,4-naphthoquinone Uuglone) (11). 

OH 0 

6:> 
0 
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This compound was both purchased and synthesized using the following procedure, 

which is a modified version of a literature procedure.49 To a mechanically stirred 

suspension of 1 ,5-dihydroxynaphthalene (22, 17.5 g, 109 mmol) in acetonitrile (260 mL) 

was added freshly prepared CuCl53 (6.50 g, 65.7 mmol) and a strong current of 0 2 gas 

was bubbled through the reaction mixture for 2 h. The reaction mixture was vacuum 

filtered through a plug of Celite® and the filter cake was washed thoroughly with CHCh 

(500 mL). The filtrate was concentrated under reduced pressure and the residue was 

subjected to column chromatography (CHCh) to afford 11 (8.51 g, 45%) as an orange 

solid. Rt = 0.60 (30% ethyl acetate I hexanes); mp 147-152 oc (lit. mp49 154-161 °C); 1H 

NMR (CDCb, 500 MHz) J 11.90 (s, 1H), 7.66-7.61 (m, 2H), 7.29 (dd, J = 7.8, 1.9 Hz, 

1H), 6.96 (s, 2H); 13C NMR (CDC13, 75 MHz) J 190.29, 184.25, 161.45, 139.59, 138.65, 

136.57, 131.76, 124.50, 119.16, 114.97; HRMS [EI-(+)] calcd for C 10H60 3 174.031 7, 

found 174.0320. 

5-(Methoxymethoxy)-1,4-naphthoquinone (23) . 

MOMO 0 

6¢ 
0 

To 0 °C solution of 11 (5 .00 g, 28.7 mmol) and MOMCl (5 .78 g, 71.8 mmol) in CH2C}z 

(80 mL) was added iPr2NEt (7.43 g, 57.5 mmol) dropwise over 15 min and the reaction 

mixture was stirred at room temperature for 14 h. To this mixture was added saturated 

aqueous NH4Cl solution (50 mL) and the layers were separated. The aqueous layer was 
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extracted with CH2Cb (I x) and the combined organic layers were dried over Na2S04 and 

gravity filtered. The solvent was removed under reduced pressure and the residue was 

subjected to column chromatography (25% ethyl acetate I hexanes). The product was 

triturated with hexanes (2 x 15 mL) to afford 23 (5.80 g, 92%). Rt = 0.30 (30% ethyl 

acetate I hexanes); mp 98-101 oc (lit. mp50 102.5-103 °C); 1H NMR (CDCb, 500 MHz) 

/5 7.80 (dd, J = 7.6, 1.2 Hz, lH), 7.67 (dd, J = 8.5, 7.5 Hz, lH), 7 .54 (d, J = 8.4, 1.2 Hz, 

!H), 6.89 (d, J = 10.3 Hz, 1H), 6.86 (d, J= 10.3 Hz, 1H), 5.36 (s, 2H), 3.55 (s, 3H); 13C 

NMR (CDCb, 75 MHz) /5 185.04, 184.17, 157.11 , 140.80, 136.37, 134.73, 133 .99, 

122.33, 120.68, 120.53, 95.10, 56.64; HRMS [EI-(+)] calcd for C 12H1004 218.0579, 

found 218.0582. 

4-Acetoxy-8-( methoxymethoxy)-1-naphthol (24). 

MOMO OH 

6¢ 
O'r(Me 

0 

To a mixture of 23 (1.00 g, 4.59 mmol) and zinc (3.00 g, 45.9 mmol) in CHC13 (30 mL) 

was added acetic anhydride (0.93 g, 9.1 mmol) and pyridine (0.89 g, 11 mmol). The 

resulting mixture was heated at gentle reflux for 20 min. The reaction mixture was 

cooled to room temperature, diluted with CHCb (60 mL) and washed with cold aqueous 

1.0 M HCI solution (I x). The layers were separated and the organic layer was dried over 

Na2S04 and gravity filtered. The solvent was removed under reduced pressure and the 
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residue was subjected to column chromatography (20% ethyl acetate I hexanes) to afford 

24 (0.90 g, 75%) as an off-white solid. R1= 0.40 (30% ethyl acetate I hexanes); mp 92-

93 oc; IR (neat) v = 1753 (m) cm-1; 1H NMR (CDCh, 500 MHz) 6 9.26 (s, 1H), 7.44 (d, 

J= 8.5 Hz, 1H), 7.35 (t, J= 8.1 Hz, 1H), 7. 13 (d, J = 8.4 Hz, IH), 7.10 (d, J= 7.7 Hz, 

1H), 6.85 (d, J = 8.4 Hz, 1H), 5.45 (s, 2H), 3.58 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCh, 

75 MHz) 6 169.91, 153.83, 152.28, 138.69, 129.30, 126.57, 119.98, 115.92, 115.73, 

109.51 , 108.38, 95.75, 56.87, 20.94; APCI-(-)-MS mlz (%) 261 (100, [M-Hr); HRMS 

[EI-(+)] calcd for C,4H140s 262.0841, found 262.0844. 

1-Acetoxy-4-methoxy-5-(methoxymethoxy)naph thalene (25). 

To a solution of 24 (1.00 g, 3.82 mrnol) in acetone (20 mL) was added K2C03 (2.63 g, 

19.0 mmol) and Me2S04 (3.85 g, 30.5 mmol) and the mixture was heated at reflux for 16 

h. The reaction mixture was cooled to room temperature and gravity filtered. The 

solvent was removed under reduced pressure and the residue was subjected to column 

chromatography ( 10% ethyl acetate I hexanes to remove excess dimethyl sulfate, then 

25% ethyl acetate I hexanes to elute the product) and the product was triturated with 

hexanes (2x5 mL) to afford 25 (1.02 g, 97%) as a colorless solid. R1 = 0.35 (30% ethyl 

acetate I hexanes); mp 55- 57 ac ; IR (neat) v = 1748 (m) cm- 1; 1H NMR (CDC13, 500 
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MHz) b 7.49 (d, J = 8.4 Hz, lH), 7.40 (t, J = 8.0 Hz, lH), 7.14 (d, J= 8.8 Hz, lH), 7. 12 

(d, J = 8.8 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 5.26 (s, 2H), 3.96 (s, 3H), 3.60 (s, 3H), 2.43 

(s, 3H); 13C NMR (CDCI3, 75 MHz) b 169.86, 154.82, 154.23, 140.02, 130.14, 127.08, 

119.37, 11 8.35, 115.61, 114.11, 105.25, 96.82, 56.59, 56.42, 20.99; ESI-(+)-MS mlz (%) 

299 (100, [M+Nat); HRMS [EI-(+)] calcd for C 15H, 60 5 276.1008, found 276.0995. 

4-Methoxy-5-( methoxymethoxy )-!-naphthol (26). 

MOMO OMe 

~ 
~ 

OH 

A 0 oc solution of 25 (2.20 g, 7.97 mmol) in methanol (25 mL) was purged with nitrogen 

for 15 min and then K2C03 (1.21 g, 8.75 mmol) was added in one portion. The resulting 

mixture was stirred at room temperature for 20 min and the solvent was removed under 

reduced pressure. Cold deionized water (50 mL) was added slowly to the residue and the 

resu lting mixture was extracted with ethyl acetate (3x). The combined organic layers 

were dried over Na2S04 and gravity filtered . The solvent was removed under reduced 

pressure and the residue was subjected to column chromatography (25 % ethyl acetate I 

hexanes) to afford 26 (1.50 g, 80%) as an off-white solid. Rr= 0.30 (30% ethyl acetate I 

hexanes); mp 108- 111 °C; IR (neat) v = 3413 (br, s) cm- 1
; 

1H NMR (CDC13, 500 MHz) 6 

7.86 (d, J = 8.4 Hz, lH), 7.40 (t, J = 8.0 Hz, lH), 7. 14 (d, J = 7.6 Hz, lH), 6.75 (d, J = 

8.2 Hz, lH), 6.72 (d, J = 8.3 Hz, lH), 5.26 (s, 2H), 4.94 (s, l H), 3.91 (s, 3H), 3.61 (s, 

3H); 13C NMR (CDC13, 75 MHz) b 153.70, 150.80, 145.40, 127.83, 125.90, 11 9.63, 
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116.47, 114.47, 108.63, 107.20, 96.99, 57.38, 56.44; APCI-(-)-MS m/z (%) 233 (100, 

[M-Hr); HRMS [EI-(+)] calcd for C13H1404 234.0892, found 234.0887. 

1-Hydroxy-4-methoxy-5-(methoxymethoxy)-2-naphthaldehyde (9). 

MOMO OMe 

AA 
~CHO 

OH 

Acetonitrile (21 mL) was purged with nitrogen for a period of 15 min and then 26 (0. 70 

g, 3.0 mmol) was added, followed by paraf01maldehyde (0.62 g, 21 mmol) and 

triethylamine (1.50 g, 14.9 mmol). The resulting mixture was heated at 60 oc for 2 h 

with vigorous stirring. The reaction mixture was cooled to 0 oc and diluted with cold 

ethyl acetate (30 mL). To the resulting mixture was added slowly cold saturated aqueous 

NH4Cl solution (20 mL), followed by cold aqueous 1.0 M HCI solution (10 mL). The 

layers were separated and the aqueous layer was washed with ethyl acetate (2 x). The 

combined organic layers were dried over Na2S04 and gravity filtered. The solvent was 

removed under reduced pressure and the residue was subjected to column 

chromatography (30% ethyl acetate I hexanes). The product was triturated with hexanes 

(2x3 mL) to afford 9 (0.49 g, 63%) as a yellow solid. R1 = 0.40 (30% ethyl acetate I 

hexanes); mp 91 - 94 °C, IR (neat) v = 1646 (m) cm- 1; 1H NMR (CDC13, 500 MHz) t5 

12.24 (s, lH), 9.93 (s, lH), 8.19 (dd, J = 8.4, 1.2 Hz, 1H), 7.49 (t, J = 8.0 Hz, 1H), 7.35 

(dd, J = 7.7, 1.2 Hz, lH), 6.83 (s, 1H), 5.26 (s, 2H), 3.96 (s, 3H), 3.61 (s, 3H); 13C NMR 

(CDCI3, 75 MHz) t5 195.85, 156.1 6, 153.80, 149.75, 128.12, 127.00, 123 .14, 119.09, 
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119.05, 113.24, 105.10, 97.05, 57.11 , 56.51; APCI-(-)-MS mlz (%) 261 (100, [M-lr); 

HRMS [EI-(+)] calcd for C14H140s 262.0841, found 262.0844. 

Methyl (E)-4-methoxy-5-(methoxymethoxy)-3-(6H-naphtho[1,2-b]pyran-6-on-5-

yl)acrylate {7). 

MOMO OMe 

~ OMe 

0 0 

To a solution of9 (0.78 g, 3.0 mmol) and dimethyl glutaconate (10) (0.94 g, 5.9 mmol) in 

THF (15 mL) was added piperidine (0.26 g, 3.0 mmol) and the resulting mixture was 

stiued at room temperature for 1 h and then heated at 70 oc for 3 h. The reaction mixture 

was cooled to room temperature, diluted with CHC13 (350 mL) and washed with cold 

aqueous 1.0 M HCI sol ution (I x). The layers were separated and the organic layer was 

dried over Na2S04 and gravity filtered. The solvent was removed under reduced pressure 

and the residue was sluuied with diethyl ether (20 mL), stiued for 10 min and vacuum 

filtered. This process (ether addition, stiuing and filtration) was repeated to afford 7 

(0.96 g, 87%) as a yellow solid. Rr= 0.30 (50% ethyl acetate I hexanes); mp 184- 187 °C; 

IR (neat) v = 1714 (m), 1697 (s), 998 (s) cm-1; 1H NMR (CDCh, 500 MHz) 6 8.26 (d, J = 

8.3 Hz, 1H), 7.90 (s, 1H), 7.62 (d, J = 15.9 Hz, 1H), 7.57 (t, J = 8.1 Hz, lH), 7.30 (d, J = 

7.5 Hz, 1H), 7.1 7 (d, J = 15.8 Hz, 1H), 6.74 (s, 1H), 5.29 (s, 2H), 4.01 (s, 3H), 3.83 (s. 

3H), 3.61 (s, 3H); 13C NMR (CDC13, 75 MHz) 6 167.56, 159.1 7, 154.30, 153.93, 145.76, 
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143.95, 138.30, 128.28, 126.23, 122.88, 122.16, 120.47, 117.17, 117.08, 114.52, 101.41 , 

96.80, 56.62, 56.55, 51.88; APCI-(+)-MS mlz (%) 371 (50, [M+Ht, 50), 339 (100); 

HRMS [CI-(+)] calcd for C20H 190 7 371.1131, found 371.1136. 

10,12-Dimethoxy-1-(methoxymethoxy)-6H-benzo[d)naphtho[l,2-b]pyran-6-one-8-

carboxylic acid methyl ester (6). 

MOMO OMe 

OMe 

0 0 

A mixture of dimethoxyacetaldehyde (2.35 g, 13.5 mmol, 60% solution in water) and 

piperidine (0.92 g, 11 mmol) in benzene (40 mL) was heated at reflux for 1 h using a 

Dean-Stark apparatus. Approximately 30 mL of solvent was removed from the reaction 

flask through the Dean-Stark apparatus. The reaction mixture was cooled to room 

temperature and 7 (0.50 g, 1.4 mmol) was added in one portion. The resulting mixture 

was then heated at reflux for 48 h. The reaction mixture was cooled to room temperature 

and the solvent was removed under reduced pressure. The residue was dissolved in 

CHCh (400 mL) and washed with water ( I x). The organic layer was dried over Na2S04 

and gravity filtered. The solvent was removed under reduced pressure and the residue 

was subjected to column chromatography (5% methanol I CHCh). Diethyl ether (20 mL) 

was added to the residue and the mixture was stirred well for 10 min and vacuum filtered. 

This process (ether addition to the solids, stining and filtration) was repeated to afford 6 
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(0.51 g, 89%) as an orange solid . Rt = 0.30 (50% ethyl acetate I hexanes); mp 222-225 

°C; IR (neat) v = 1735 (s) cm- 1
; 

1H NMR (CDCi], 500 MHz) 6 8.76 (d, J= 1.7 Hz, lH), 

8.41 (s, lH), 8.30 (d, J = 8.4 Hz, lH), 7.94 (d, J = 1.7 Hz, lH), 7.52 (t, J = 8. 1 Hz, lH), 

7.26-7.24 (m, lH), 5.30 (s, 2H), 4.15 (s, 3H), 4.03 (s, 3H), 3.99 (s, 3H), 3.63 (s, 3H); 13C 

NMR (CDCi], 125 MHz) 6 165.86, 160.76, 157.56, 153.88, 152.87, 142.18, 130.71 , 

128.43, 127.63, 126.83, 124.48, 123.53, 119.64, 11 7.28, 116.87, 116.10, 112.96, 104.32, 

97.09, 56.80, 56.76, 56.74, 52.82; APCI-(+)-MS m/z (%) 425 (58, [M+Ht), 393 (100); 

HRMS [CI-(+)] calcd for C23H2tOs 425.1236, found 425.1248. 

10,12-Dimethoxy-1-(methoxymethoxy)-6H-benzo[d)naphtho[l,2-b]pyran-6-one-8-

carboxylic acid (27). 

MOMO OMe 

A suspension of 6 (0.11 g, 0.26 mmol) in 10% KOH I methanol (3.0 mL) was heated at 

reflux for 2 h. The reaction mixture was cooled to room temperature and the majority of 

the solvent was removed under reduced pressure. The residue was cooled to 0 oc and 

cold water (1 mL) was added dropwise to dissolve the residue. The pH was adjusted to -

4.0 using cold aqueous 1.0 M HCl solution. The yellow precipitate that fonned was 

isolated by suction fi ltration. The solids were vacuum dried for 2 h and then dried under 

air in an oven at 90- 1 00 oc fo r I 2 h to afford 27 (91 mg, 86%) as a pale yellow solid. Rt 
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= 0.20 (ethyl acetate); mp 197-200 oc; IR (neat) v = 3300-2400 (br, w), 1733 (m), 1689 

(s) cm- 1
; 

1H NMR (DMSO-d6, 500 MHz) 6 8.41 (d, J = 1.6 Hz, !H), 8.34 (s, !H), 8.01 (d, 

J = 8.4 Hz, 1H), 7.90 (d, J = 1.7 Hz, !H), 7.57 (t, J = 8.1 Hz, !H), 7.24 (d, J = 7.7 Hz, 

!H), 5.29 (s, 2H), 4.14 (s, 3H), 3.95 (s, 3H), 3.52 (s, 3H); 13C NMR (DMSO-d6, 75 MHz) 

6 165.85, 159.60, 157.12, 153.46, 152.18, 140.65, 131.68, 127.72, 126.53, 125.74, 

122.66, 118.19, 116.81 , 115.39, 114.68, 112.46, 103.22, 95.92, 56.61 , 56.06, 56.01 ; ESI­

(-)-MS m/z (%) 409 (100, [M-Hr); MALDI-TOF HRMS calcd for C22H 180 8 410.1 002, 

found 410.0991. 

8-(Hydroxymethyl)-10,12-dimethoxy-1-(methoxymethoxy)-6H-benzo[d]naphtho[l,2-

b]pyran-6-one-8-carboxylic acid (28). 

MOMO OMe 

OH 

0 

To a 0 oc suspension of 27 (80 mg, 0.20 mmol) in THF (8.0 mL) was added H3B·SMe2 

(0.60 mL, 1.2 mmol) dropwise over a period of 5 min and the resulting mixture was 

stirred at room temperature for 5 h. The reaction mixture was cooled to 0 °C, methanol 

(1 mL) was added dropwise and the solvent was removed under reduced pressure. The 

residue was dissolved in CHCh (20 mL) and the resulting solution was washed with 

aqueous N aHC03 so lution (I x), dried over Na2S04 and gravity fi ltered. The solvent was 

removed under reduced pressure and the residue was subjected to column 
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chromatography (2% methanol I CHCh). The product was triturated with ether (2x 1 mL) 

to afford 28 (40 mg, 51%) as a pale yellow solid. Rr= 0.50 (ethyl acetate); mp 165-168 

ac ; 1H NMR (CDC13, 500 MHz) J 8.24 (d, J = 8.7 Hz, 1H), 8.10 (s, 1H), 7.88 (s, 1H), 

7.50 (t, J = 8.1 Hz, 1H), 7.21 (d, J = 7.8 Hz, 1H), 7.06 (s, 1 H), 5.30 (s, 2H), 4.69 (s, 2H), 

3.94 (s, 3H), 3.89 (s, 3H), 3.67 (s, 3H), 2.55 (br s, 1H); 13C NMR (CDCh, 75 MHz) J 

161.06, 157.09, 153.35, 151.84, 142.78, 140.45, 126.91, 126.48, 122.92, 122.84, 119.53, 

11 8.56, 117.08, 115.96, 114.47, 11 3.26, 103.79, 97.22, 64.35, 56.61 , 56.07, 55.93; APCI­

(+)-MS mlz (%) 397 (95, [M+Ht), 214 (100); HRMS [EI-(+)] calcd for C22H200 7 

396.1209, found 396. 1222. 

10,12-Dimethoxy-1-(methoxymethoxy)-6H-benzo[d]naphtho[l,2-b]pyran-6-one-8-

carbaldehyde (29). 

MOMO OMe 

0 

To a mixture of 28 (60 mg, 0.15 mmol) and Celite® (100 mg) in CH2Ch (8.0 mL) was 

added PCC (65 mg, 0.30 mmol) in three portions and the resulting mixture was stined at 

room temperature for 3 h. The reaction mixture was gravity filtered and the filter cake 

was washed throughly with CHCh. The solvent was removed under reduced pressure 

and the residue was subjected to column chromatography (2% methanol I CHC13) . The 

residue was triturated with diethyl ether (2x1 mL) to afford 29 (44 mg, 73%) as a yellow 
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solid. Rr = 0.40 (50% ethyl acetate I hexanes); mp 200-203 °C; 1H NMR (CDCh, 500 

MHz) b 10.10 (s, 1H), 8.59 (d, J= 1.6 Hz, 1H), 8.44 (s, lH), 8.33 (d, J= 8.9 Hz, 1H), 

7.81 (d, J = 1.8 Hz, 1H), 7.55 (t, J= 8.5 Hz, lH), 7.29-7.28 (m, 1H), 5.31 (s, 2H), 4.18 

(s, 3H), 4.05 (s, 3H), 3.63 (s, 3H); 13C NMR (CDC13, 75 MHz) b 190.27, 160.23, 157.87, 

153.59, 152.66, 142.29, 136.10, 129.80, 127.48, 127.09, 126.45, 123.57, 119.51 , 116.98, 

116.04, 112.59, 103.75, 96.72, 56.51 , 56.45, 56.40; APCI-(+)-MS mlz (%) 395 (52, 

[M+Ht), 394 (100), 363 (99); HRMS [EI-(+)] calcd for C22H 180 7 394.1053, found 

394.1067. 

10,12-Dimethoxy-1-(methoxymethoxy)-8-vinyi-6H-benzo[d]naphtho[l,2-b]pyran-6-

one (30). 

MOMO OMe 

0 

A mixture of PPh3MeBr (135 mg, 0.38 mmol) and DBU (68 mg, 0.45 mmol) in CH2Ch 

(2.5 mL) was heated at reflux for 1 h. The reaction mixture was cooled to room 

temperature and 29 (25 mg, 0.06 mmol) was added in one portion. The resulting mixture 

was stined at room temperature for 16 h and then heated at reflux for 2 h. The reaction 

mixture was cooled to room temperature and diluted with CHCh (20 mL). The resulting 

mixture was washed with aqueous 1.0 M HCI so lution (1 x) and the layers were separated. 

The organic layer was dried over Na2S04 and gravity filtered. The solvent was removed 
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under reduced pressure and the residue was triturated with ether (2 x0.5 mL). 1H NMR 

analysis of the residue showed the presence of starting material (ca. 1 0% ), so the material 

was resubjected to the original reaction conditions using freshly prepared ylide. This 

time, the reaction mixture was refluxed first for 3 h and then stirred at room temperature 

for 12 h. The workup was performed as before. The residue was subjected to colunm 

chromatography (2% methanol I CHCh) and the product was triturated with ether (2 x I 

mL) to afford 30 (19 mg, 76%) as a yellow solid. R/= 0.60 (50% ethyl acetate I hexanes); 

mp 184-187 °C; 1H NMR (CDCh, 500 MHz) 15 8.44 (s, 1H), 8.33 (d, J = 8.4 Hz, 1H), 

8.18 (s, 1H), 7.52 (t, J= 7.8 Hz, 1H), 7.38 (s, 1H), 7.25-7.22 (m, 1H), 6.82 (dd, J= 17.6, 

11.1 Hz, 1H), 5.96 (d , J = 18.4 Hz, 1H), 5.45 (d, J = 11.0 Hz, 1H), 5.31 (s, 2H), 4.13 (s, 

3H), 4.04 (s, 3H), 3.63 (s, 3H); 13C NMR (CDCh, 75 MHz) c5 161.29, 157.49, 153.57, 

152.48, 140.96, 138.62, 135.38, 127.20, 126.73 , 123.86, 123.52, 120.69, 118.84, 116.95, 

116.41 , 115.45, 114.07, 113.36, 104.34, 96.93 , 56.61 , 56.51 , 56.29; APCI-(+)-MS mlz 

(%) 394 (26), 393 (100, [M+H]l , 392 (29), 363 (8), 362 (23), 361 (87), 346 (4), 279 (9), 

217 (8), 215 (8), 214 (56); HRMS [EI-(+)] calcd for C23H2o0 6 392.1260, found 392.1272. 

N,10,12-Trimethoxy-1-(methoxymethoxy)-N-methy1-6H-benzo[d]naphtho[l,2-

b]pyran-6-one-8-carboxamide (31). 

MOMO OMe 

0 0 

OMe 
I 
N, 

Me 
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To a solution of EDCI·HCI (23 mg, 0.12 mmol) in CH2Cb (1.5 mL) was added DIPEA 

(47 mg, 0.36 mmo1) and the resulting mixture was stirred at room temperature for 15 min. 

Carboxylic acid 27 (25 mg, 0.061 mmol) was added and the resulting mixture was stirred 

for 30 min. N,O-Dimethy1hydroxylamine hydrochloride (18 mg, 0.18 nunol) was then 

added in three portions and the reaction mixture was stirred for a further 16 h. The 

reaction mixture was diluted with CHC13 (15 mL) and washed with aqueous 1.0 M HCl 

solution (I x). The layers were separated and the aqueous layer was washed with CHCI3 

(2 x). The combined organic layers were dried over Na2S04 and gravity filtered. The 

solvent was removed under reduced pressure and the residue was subjected to column 

chromatography (1% methanol I CHC13) . The product was triturated with ether (2 x0.5 

mL) to afford 31 (11 mg, 40%) as a pale yellow solid. R1= 0.40 (ethyl acetate); mp 134-

137 oc; 1H NMR (CDCh, 300 MHz) () 8.52 (d, J = 1.7 Hz, 1H), 8.47 (s, 1H), 8.34 (dd, J 

= 8.5, 1.1 Hz, 1H), 7.74 (d, J = 1.7 Hz, 1H), 7.53 (t, J= 8.1 Hz, !H), 7.27-7.24 (m, 1H), 

5.31 (s, 2H), 4.15 (s, 3H), 4 .05 (s, 3H), 3.66 (s, 3H), 3.63 (s, 3H), 3.44 (s, 3H); 13C NMR 

(CDC13, 75 MHz) () 167.88, 160.76, 157.16, 153.62, 152.62, 141.67, 134.37, 127.36, 

126.68, 126.45, 122.97, 122.62, 119.24, 117.04, 116.88, 115.73, 112.89, 104.29, 96.88, 

61.45, 56.63, 56.55, 56.52, 33.82; APCI-(+)-MS m/z (%) 454 (96, [M+Ht), 422 (100); 

HRMS [EI-(+)] calcd for C24H23NOs 453 .1424, found 453.1421. 

1-Hydroxy-l 0,12-dimethoxy-6H-benzo[d] naphtho [1,2-b] pyran-6-one-8-carboxylic 

acid methyl ester (32). 
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OH OMe 

To a -78 oc so lution of 6 (100 mg, 0.24 mmol) in CH2Ch (20 mL) was added BCh (1 .0 

M solution in CH2Ch, 1.2 mL, 1.2 mmol) dropwise and the resulting mixture was stitTed 

at this temperature for 1 h. The reaction mixture was wanned to room temperature and 

stirred for an additional 30 min. To this mixture was added cold water (15 mL) and then 

CHC13 (25 mL). The layers were separated and the aqueous layer was extracted with 

CHCh (2x). The combined organic layers were dried over Na2S04 and gravity filtered. 

The solvent was removed under reduced pressure and the residue was subjected to 

column chromatography (2% methanol I CHC13) . The product was triturated with ether 

(2x2 mL) to afford 32 (81 mg, 87%) as a yellow solid. R1 = 0.30 (50% ethyl acetate I 

hexanes); mp 258-261 oc; 1H NMR (CDCh, 500 MHz) b 9.28 (s, lH), 8.69 (d, J = 1.6 

Hz, 1H), 8.26 (s, 1H), 8.03 (d, J = 8.5 Hz, 1H), 7.84 (s, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.02 

(d, J = 7.7 Hz, 1H), 4.12 (s, 3H), 4.11 (s, 3H), 4.00 (s, 3H); 13C NMR (CDCh, 75 MHz) b 

165.53 , 160.40, 157.11 , 154.20, 151.96, 142.66, 130.49, 128.76, 127.93, 125.95, 124.20, 

123.13, 116.57, 115.32, 113.67, 113.43, 112.10, 101.41 , 56.56, 56.05, 52.64; APCI-(+)­

MS mlz (%) 381 (70, [M+Ht), 214 (100); HRMS [EI-(+)] calcd for C2 1H 160 7 380.0896, 

found 380.0905. 
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1-Hydroxy-l 0,12-dimethoxy-6H-benzo[ d] naphtho[ 1,2-b] pyran-6-one-8-

carboxaldehyde (33). 

OH OMe 

0 

To a -78 oc so lution of 29 (11 mg, 0.028 mmol) in CH2Cb (3 .0 mL) was added BC13 

(1.0 M solution in CH2Ch, 0.25 mL, 0.25 mmol) dropwise and the resulting mixture was 

stirred at this temperature for I h. The reaction mixture was wanned to room temperature 

and stirred for an additional period of 30 min. To this mixture was added cold water (1 0 

mL) and then CHC13 (15 mL). The layers were separated and the aqueous layer was 

extracted w ith CHCh (2 x). The combined organic layers were dried over Na2S04 and 

gravity fi ltered. The solvent was removed under reduced pressure and the residue was 

subjected to column chromatography (2% methanol I CHCI3) and the product was 

triturated with ether (2 x 1 mL) to afford 33 (8 mg, 82%) as a yellow solid. Rr = 0.45 

(50% ethyl acetate I hexanes); mp 269-27 1 °C; 1H NMR (CDC13, 300 MHz) J 10.11 (s, 

1H), 9.35 (s, IH), 8.6 1 (s, 1H), 8.4 1 (s, IH), 8. 12 (d, J = 8.4 Hz, IH), 7.83 (s, IH), 7.55 

(d, J = 8. 1 Hz, 1H), 7.08 (d, J = 7.6 Hz, I H), 4.19 (s, 3H), 4.17 (s, 3H); APCI-(+)-MS m/z 

(%) 351 ( 16, [M+HJl, 214 (100); HRMS [EI-(+)] calcd for C20H 140 6 350.0790, found 

350.0799. 
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1-Hydroxy-10,12-dimethoxy-8-vinyl-6H-benzo[d]naphtho[l,2-b]pyran-6-one 

( defucogilvocarcin V) (5c). 

OH OMe 

0 

To a -78 oc solution of 30 (14 mg, 0.035 mmol) in CH2Clz (4.0 mL) was added BCb 

(1.0 M solution in CH2Clz, 0.30 mL, 0.30 mmol) dropwise and the resulting mixture was 

stined at this temperature for 1 h. The reaction mixture was wanned to room temperature 

and stin·ed for an additional min. To this mixture was added cold water (1 0 mL) and then 

CHCb (15 mL). The layers were separated and the aqueous layer was extracted with 

CHCl3 (2x). The combined organic layers were dried over Na2S04 and gravity filtered. 

The solvent was removed under reduced pressure and the residue was subjected to 

column chromatography (2% methanol I CHC13). The product was triturated with ether 

(2x I mL) to afford 5c (10 mg, 83%) as a yellow solid. Rl = 0.65 (50% ethyl acetate I 

hexanes); mp 240-245 oc (lit. mp 15 253-257 °C); 1H NMR (CDCh, 500 MHz) (5 9.30 (s, 

1H), 8.22 (s, 1H), 8.08 (s, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.9 Hz, 1H), 7.27 (s, 

1H), 6.78 (d, J = 7.9 Hz, 1H), 6.76 (dd, J = 17.7, 10.7 Hz, 1H), 5.92 (d, J = 17.5 Hz, 1H), 

5.43 (d, J = 10.9 Hz, 1H), 4.07 (s, 6H); 13C NMR (CDC13, 75 MHz) (5 161.08, 157.15, 

154.16, 151.75, 141.47, 138.57, 135.29, 128.46, 126.03, 123.46, 123.22, 120.5 1, 116.44, 

114.71, 113.85, 113.36, 112.68, 101.42, 56.13, 55.89; APCI-(+)-MS mlz (%) 349 (100, 

[M+Ht); HRMS [EI-(+)] calcd for C21H 160 5 348.0998, found 348.1013. 
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l-Hydroxy-N,10,12-trimethoxy-N-methyl-6H-benzo[d]naphtho[l,2-b]pyran-6-one-8-

carboxamide (34). 

OH OMe 

0 0 

OMe 
I 

N, Me 

To a - 78 oc solution of 31 (9 mg, 0.02 mmol) in CH2Ch (2 .0 mL) was added BC13 (1.0 

M solution in CH2Ch, 0.20 mL, 0.20 mmol) dropwise and the resulting mixture was 

stirred at this temperature for 1 h. The reaction mixture was cooled to room temperature 

and stirred for an additional 30 min. To this mixture was added cold water (1 0 mL) and 

then CHC13 (15 mL). The layers were separated and the aqueous layer was extracted 

with CHCb (2x). The combined organic layers were dried over Na2S04 and gravity 

filtered. The solvent was removed under reduced pressure and the residue was subjected 

to column clu·omatography ( 1% methanol I CHC13). The product was triturated with 

hexanes (2x I mL) to afford 34 (5 mg, 63%) as a pale yellow solid. R1 = 0.40 (ethyl 

acetate); mp 178-181 °C; 1H NMR (CDCb, 300 MHz) J 9.35 (s, lH), 8.5 1 (d, J = 1.7 Hz, 

1H), 8.38 (s, !H), 8.09 (d, J = 8.4 Hz, !H), 7.73 (d, J = 1.7 Hz, lH), 7.52 (t, J = 8. 1 Hz, 

1H), 7.04 (d, J = 7.8 Hz, 1H), 4.15 (s, 3H), 3.67 (s, 3H), 3.44 (s, 3H); 13C NMR (CDC13, 

75 MHz) b 167.81, 160.6 1, 156.99, 154.18, 152.02, 142.44, 134.41 , 128.73, 126.31, 

126.09, 122.88, 122.68, 116.91, 11 5.23, 113.70, 11 3.23, 11 2.29, 101.64, 99.97, 61.46, 

56.55, 56.13, 33.82; APCI-(+)-MS m/z (%) 410 (100, [M+Ht); HRMS [EI-(+)] calcd for 

Cn H1 9N07 409.1162, found 409.1153 . 
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5.6 Selected H and C NMR spectra for Chapter 5 
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OH OH 

15 
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Chapter 6 

Conclusions 

The initial investigations of the synthesis of 6H-dibenzo[b,d]pyran-6-ones using 

inverse electron demand Diels-Alder (IEDDA)-based strategies were can·ied out by L R. 

Pottie, a former graduate student in the Bodwell group. This project involved the 

synthesis of coumarin-fused electron-deficient dienes and the study of their IEDDA 

reactions using electron-rich dienophiles. In this regard, a set of coumarin-fused dienes, 

was synthesized, in which the electron-withdrawing group at the terminus of the diene 

unit and the nature and position of the "R" group on the diene were varied. These dienes 

were found to react with the preformed enamine derived from cyclopentanone and 

pyrrolidine to afford DBPs. Subsequently, in situ enamine generation conditions were 

developed and this significantly simplified the synthesis of DBPs, by offering the 

advantage of not having to synthesize the enamine. Using a coumarin-fused diene (EWG 

= C02Me, R = H), both preformed and in situ methods were thoroughly investigated by 

employing a variety of enamines (preformed method) or ketones (in situ method) to 

afford the corresponding DBPs (Scheme 6.1 ). In one example, where the dienophile was 

a ketene acetal, the initial cycloadduct was isolated and its structure is consistent with a 

concet1ed cycloaddition. P. R. Nandaluru' s contributions to thi s project were I ) to repeat 

a number of I. R. Pottie ' s experiments to conform yields, provide material fo r full 

characterization and provide material to expand the scope of this methodology, and 2) to 

expand and solidify the scope of the methodology. Only the synthetic work leading to 

new compounds or ones using the in situ method is presented in Chapter 2. P. R. 
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Nandaluru is also heavily involved in the writing and preparation of the manuscript for 

publication. 

0 

~EWG 

R 

R = Me, OMe, Br 
C02Me, N02 

EWG = C02Me, COMe 
CN, S02Ph 

enamine 0 

MgS04, ketone 

R1 = alkyl, aryl, alkoxy 

fused 4-8 membered rings 

Scheme 6.1. Preformed and in situ methods for the synthesis of DBPS. 

Based on the observation that a secondary amine played a catalytic role in the 

formation of both the diene (piperidine in the Knoevenagel condensation) and the 

dienophile (pyrrolidine in enamine formation) components in stepwise methods, a 

multicomponent reaction (MCR) was developed. In this MCR, the overall transfonnation 

involved six reactions in one pot to give rapid access to a broad range of DBPs. Using 

this methodology, a variety of A- and C-ring substituted DBPs were synthesized and in 

most cases, where comparisons can be made, the yields are higher than stepwise methods. 

One of the DBPs (2) generated using this MCR served as a precursor for a concise 

synthesis of cannabinol (3), a prominent member of the cannabinoid class of natural 

products. The results of this work are presented in Chapter 3. P. R. Nandaluru 

contributed all of the synthetic work and was heavily involved in the writing and 

preparation of the manuscript for publication. 

261 



Me 0 

Me 0 
OMe ~ 

~CHO _M_e_0_2_C_~ __ ~ __ c_o_
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Me~OH pyrrolidine, 1 ,4-dioxane Me 

1 rt, 2 h, then 90-1 oo ·c. 24 h 

OMe 

2 
48% 

4 steps 

Me 

Me 

3 

Scheme 6.2. MCR leading to a key intermediate 2 in the cannabinol synthesis. 

To fm1her demonstrate the value of the MCR, pyrenophanes were considered to be 

attractive targets, as synthesis of structurally diverse pyrenophanes that contain nonplanar 

pyrene systems is another major area of interest in the Bodwell group. In this proj ect, the 

very productive MCR provided an efficient entry into pyrenophane precursors. One of 

the DBPs (4) generated using the MCR was used for a very concise synthesis (5 steps) of 

elaborate Cr symmetric pyrenophanes (Scheme 6.3). The synthesis relied upon two very 

productive events: I) the MCR and 2) a double McMuny I valence isomerization I 

dehydrogenation reaction, and provided novel (I ,6)-pyenophanes exclusively over their 

( 1 ,8)-pyrenophanes. This approach to pyrenophanes has great potential for structural 

modifications of pyrenophanes because of the broad scope of the MCR. The results of 

this work are presented in Chapter 4. P. R. Nandaluru contributed all of the synthetic 
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work and was heavily involved in the writing and preparation of the manuscript for 

publication. 

4 

7 

THF, 70 °C, 5 h 

95% 

2 steps 

OH 

5 

Br(CH2)xBr 
K2C03, DMF 

90 °C, 16 h 
76-80% 

6 

Scheme 6.3. Synthesis of C2_symmetric pyrenophanes using DBP 4. 

X= 1, 2, 3 

In the last project, the IEDDA-based step wise method was employed in the total 

synthesis of defucogilvocarcin V, an antitumor compound. The synthesis of the natural 

product was accomplished in 12 steps from the commercially available juglone (8) in 

5.2% overall yield. The key step of the approach was the IEDDA reaction of diene 9 and 

the enamine 10 derived from dimethoxyacetaldehyde to afford the tetracyclic aromatic 

motif 11 . The ester functionality present in 11 was subjected to functional group 

interconversions to afford the natural product as well as, three new C-8 analogues. The 

results of this work are presented in Chapter 5. P. R. Nandaluru contributed all of the 
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synthetic work and was heavily involved in the writing and preparation of the manuscript 

for publication. 

OH 0 

6) 
0 

8 

OH OMe 

12 ° 

MOMO OMe 

6 steps 

5 steps 

0 

MeO 0 
MeO~N 10 

OMe 

benzene, 80 ·c 
48 h, 86% 

MOMO OMe 

Scheme 6.4. IEDDA reaction in the synthesis of defucogilvocarcin V. 

OMe 

0 

In summary, both step-wise and MCR methodologies were developed for the 

synthesis of DBPs and these methods were used effectively in the synthesis of both 

natural and non-natural products. 
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