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1.1 BACKGROUND OF THE PROBLEM 2

Suppose that a scalar response g; and a p-dimensional vector of covariates z; are
observed for individuals ¢ = 1,2, ..., K. Let 3 denote the p x 1 vector of regression
parameters which measures the effects of x; on y; for all ¢ = 1,2,..., K. When the
responses arc continuous and their distributions are asyminetric, fitting a median
regression model (Morgenthaler (1992), Section 3) to this type of data is equivalent

to use the relationship

yi = g(m;) + <, (1.1)

where m; is the median of y;, ¢(.) is a suitable known link function, and &, is a model
error component. Denote by f; the density of the distribution of the 7th individual
such that f;(m;) > 0.

For

g(my) = 2.3, (1.2)

Morgenthaler (1992) proposed an absolute-deviation quasi-likelihood (ADQL) ap-
proach to estimate ( consistently. To be specific, Morgenthaler (1992) suggested to

solve the estimating equation

DT {diag[S,,.... Si, ..., Sk]} H{sgn(y — m)} =0, (1.3)
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where

y = (W1, Yir e Yi)

9 —_— 27 I !
m = (M, .y My, ooy ME)

with
1 fy>my
sgn(y; —my;) =
—1 otherwise,
foalli = 1,..., . Furthermore, S; = S{1n;) is a user-supplied dispersion function that
models the scatter of the responses as a function of the median, and D = (D;;) : K xp,

with D;; = 0p;/03;, where p; = 2.

Note that for any random variable y; with density f;

E{sgn(y, —m;)} = 1.Pr(y; >m;)+(=1). Pr(y; < my)

implying that the estimating equation in (1.3) produces consistent estimates of the
paramcter 2. Under some regularity conditions, Morgenthaler (1992) computed the

variance of 3 (obtained from (1.3)) as

var(3) = {DTS(m) 2 FDY " Y{D"S(m) ' DY DT S(m) : FD}™ !, (1.4)
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3=

where F' = diag[2f(m1), ... 2fx(mp)]. If S, * = 2fi(m;), then the var(,?) in (1.4)

reduces to
var(3) = {DTS(m)"'D} 1.

To illustrate the use of the estimating equation (1.3) Morgenthaler (1992) considered

an example with the response y; following a gammma (asymmnetric) distribution given

by
(,—,'—:LJJI,I/(/,—l
fily) = —="— (1.5)
(%) T
where
o0 x> C_‘Klf!l!y;liﬁl
E(Yi) = yif(!/i) dy; = Yi—~=, dy; = i,
0 0 (Z_l> INO
and
m, m; v)—:—:fllz, l./L—l 1 3y — 08
/ flyi) dyi = / —i——_,—,l-"—— dyiy=-=m;, = [ {7 “ ]
Jo o (/%L) ) I(0s) 2 3v; +0.2

= Himg,

(Banncheka and Ekanayake (2009)). It is clear that the median m; and the mean g
of the ith observation are linked by a proportionality relation m; = mg;p;. Evaluating

the density at the median they found

fitmy) = Dw) W mg exp(—vome ) (1/my) o< 1/m;. (1.6)
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This (1.6) shows that a user, as suggested by Morgenthaler (1992), can choose S;(m;)

2

2

as S; o« m? implying that, S; = kg;m?, where kg; can be computed casily. Consc-

quently, the ADQL estiinating equation (1.3) reduces to

DT diag[(m;*) " {sen(y — m)} = 0, (L.7)

which may be solved for /3 involved in the median function. Note that this ADQL
approach appears to have several limitations. First S; is chosen as S; oc m? which
may be an appropriate choice only if m; holds a proportionality relation to p; so
that m; = mg;u; for a suitable constant myg,;. Second, using a mean response based
gradient matrix D in (1.7) is also dependent ou such proportionality relation between
means and medians, which may not hold in general.

We remark that if the deusity of the response y; at median m; were known, one
could use suitable likelihood approach to estimate 3 involved in the median function.
For example, Jung (1996) has considered a longitudinal setup, where the distribution
of the responses at the median is assumed to be known at any given time, but in
general the marginal density may not be known. This implies that there is no way
to compute the joint distribution of the repeated responses. Thus, Jung (1996) has
extended the QL approach to the loxlgit,lldilletl setup but with an added restriction

on the distribution of the response at the median. We now describe this median
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regression problem in the longitudinal setup as follows.

Suppose that for the ith individual, y; = (yi1, ..., Yits ..., yir)’ 18 the T x 1 response
vector where elements are collected repeatedly over time. Let X; = (4, vy Tigy ooy Zi7)
be the T'xp matrix of covariates. Let J denote the px 1 vector of regression parameters
which measures the effects of z;, on y; for all t = 1,2, ..., T and foralli =1,2,..., K.

When the responses are continuous and their distributions are syimmetric, one fits

the linear model
Yi = 4‘(”3 + & (18)

to estimate 3. Suppose that &; = (g;1,...,&7) in (1.8) has the mean vector 0 and
t Pl i )

L L
covariance matrix ¥; = AXC(p)A} with A; = diag[var(si1), ..., var(e;), .... var(gir)]
and C'(p) as the T x T correlation matrix. It then follows that the well-known

generalized least square (GLS) estimator of (7 is a solution of the estimating equation

Fiy

| p

S XSy - XB) = 0. . (1.9)

i=1
Note that the estimating equation (1.9) does not depend on the distribution of y;.
However, if the responses are continuous but their distributions are asvinnetric such
as Gamina (McCullagl and Nelder (1989, p. 300)), ,3 estimates of the mean regression

model (1.8) can be inefficient (Bassett and Koenker (1978)). As a remedy, for the

asymmetric data in the logitudinal setup, one may follow Morgenthaler (1992), among
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others and model the median rather than the mean of the responses as a function of the
covariates @. More specifically, let m;, be the median of y;; and m; = (myy, ..., mir).

Furthermore, similar to (1.2), for some link function g(.), let

g(mae) =, . (1.10)

For longitudinal data, Jung (1996), for example, suggests to solve an indicator func-
tion based quasi-likelihood estimating equation, where the indicator variable is de-
fined as I(y; > my) with my is the median of v as in (1.10). More specifically, in
the cluster regression setup, Jung's quasi-likclihood (QL) estimating equation can be

expressed as
~ 1 1
Z Zb”B;FiQi_I{](’IJi >m;) — 51'1'} =0, (1.11)
i=1 7t

where I(y; > my) = [I(ya = ma), e Iy = ma)y o, Iyer > mayr)] is the T x 1
vector of indicator functions, 17 is the T x 1 unit vector, €, is the T" x T covariance
matrix of [I(y;, > m;) — %1T], B; is the T x p first derivative matrix of m; with
respect to 3, i.e., B; = dm,; /03, where m; = (my,...,m;7)" with g(m;,) = z},3, and
o7 'T; = ¢ 'diag[y(min)s e Y(Mig). oo, y(mar)}, where @7 y(my) is the probability
density function (pdf) of y;; evaluated at the median my. Jung (1996) refers to the
solution of (1.11) for  as the maximum quasi-likelihood estimate. Note that the QL

estimating equation (1.11) may be treated as a generalization of the ADQL estimating
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equation (1.3), from the independent setup to the longitudinal setup. However, one
cannot compute 2;, the covariance matrix of the vector of indicator functions, as we
cannot compute the pair-wise bivariate distributions of the elements of the asymmetric
response vector y; = (Yi1, .- Yits ---, ¥ir)'. This is because the correlation structure or
the joint distribution of the repeated responses may not be available. To resolve
this computational issue, Jung (1996) has estimated the pair-wise elements of €,
matrix by estimating the bivariate probability of any two indicator variables using
a distribution free moment approach. There are, however, several limitations to
this pairwisce probability estimnation by using such a moment approach. First, if the
repeated respouses follow an auto-correlation model, which is most likely in practice,
using pairwise probabilities based on the concept of unstructured correlations for
repeated data may yield inefficient estimates, as in this approach one is computing too
many correlations whercas auto-corrclation model contains only a few lag correlations.
Furthermore, in some situations when the pair-wise covariances will be a function
of individual specific non-stationary covariates (such as under binary or count data
models), one cannot take the average over the individuals to estimmate the covariance

or correlation matrix.
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Note that in exponential failure times setup, some authors such as Hasan, Su-
tradhar and Sneddon (2007) dealt with mean regression model under a class of auto-
correlation structures for the repeated exponential responses. But, no median regres-

sion was cousidered by these authors.

1.2 Objective of the thesis

Our main objectives are as follows:

1. We develop the median regression model for longitudinal exponential failure

time data considered by Hasan et al. (2007).

2. We develop median regression based estimating equations for the regression
paramcters involved in the median function. This will be done by computing
the exact correlation matrix under the assumed correlation model for repeated

TespoILses.

3. We will also consider several 'working’ correlation structures based estimating
cquatious. For example, following Jung (1996), (a) we will consider a non-
parametric correlation structure based estimating equation approach, where
pair-wise correlations are estiinated by simple method of moments; (b) Second

an independence assumption based correlation matrix will be used to construct







Chapter 2

Mean Regression Based GQL
Estimation for Exponential

Longitudinal Models

Some authors such as Geraci and Bottai (2007) have modelled the asymmetric data at
a given time point by a Laplace distribution, and modelled the correlations through
the comnion individual random effects shiared by the repeated responses. However,
even though the random effects generate an equicorrelation structure for the repeated
responses, tliey do not appear to address the tine effects (Sutradhar 2011, Section

2.4). This is because the individual specific random effect may remain the same
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throughout the data collection period and hence cannot represent any time effects.
Some other authors such as Hasan et al. (2007, Section 2.1, p. 552) have con-
sidered a class of non-stationary auto-correlation models for longitudinal exponen-
tial failure time data, AR(1) [auto-regressive of order 1] model being an impor-
tant special case. Suppose that y; is the exponential response collected at time ¢
(t =1,..,T) for the ith (i = 1,..., K) individual and u;(3) is the mean of y;. Let
Ui = (Yiry s Yits -, yir) with its mean vector p;(3) = (i1 (8), oo it (8)s oos e ()

Next suppose that ¥;(7, p) is the covariance matrix of y; which has the formula

2Cip)A)? (2.1)

1

Yi(d.p) = A

where A; = diag [o111(3), ..., 0 (). ...y oy (B)] with 04, (3) = var(Yy) and Ci(p) =
(ciut(p)), ciut(p) being the correlation between y;, and y,. In (2.1), Ci(p) is the
T x T correlation matrix of y; = (¥, ..., Yits - ¥sr)’. Note that under a class of

auto-correlation structures, this C;(p) takes the form

1 ‘ 1 P2 .. PT—1
P1 1 Pt Pr-2
Ci(p) = , (2.2)
pr-1 Pr-2 - ... 1

(Sutradhar (2003)) where p, is known as the £th (€ = 1,..., 7 — 1) lag auto-correlation
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between y;; and y; 46 Hasan et al. (2007) have shown that the longitudinal exponen-
tial data following ARMA (p*, ¢*) [auto -regressive moving average of order p* and ¢*]
models satisfy the correlation matrix form in (2.2). For convenience, following Hasan
et al. (2007), we demonstrate the validity of the general auto-correlation structure

(2.2) for low order correlation models, nanmely, AR(1), MA(1), and EQC.

2.1 Exponential AR(1) Model - EAR(1)

Suppose that the respounse y;; follows an exponential distribution with paramecter

Ain = h{x},3), for a suitable known link function h(.). That is,

f(yin) = Aexp(—Xi i) (2.3)

Next for t = 2....,T. following Hasan et al. (2007, eqn. (2.1)) [see also Gaver and
Lewis (1980)], we write a dynamic model in exponential variables as,

Yit = piis— + Lpay, t=2,..T;1=1. K (2.4)

where, {ay,t = 1,....7T; i = 1,..., '} is a sequence of expouential random variables

Aig—1
/\:l

with parameter Ay = exp(—a?%,.3) and p; = p with p as a probability parameter

or correlation parameter (0 < p < 1). In (2.4), I is an indicator variable such that
0 with probability p

I
1 with probability 1 — p,
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and I;; and a; are assumed to be independent.
Next we compute the mean, variance and correlations of the responses for the expo-

nential AR(1) model (2.3)-(2.4). To be specific, following Hasan et al. (2007), one

may write

Hit(ﬁ) = E(Yu) = Eyi,r—lE [{/)iyi,t—l + Iitail}l Uz‘,t—l]

= E [piyii—1 + E(Li) E(air)]

1 1 1
- A 1 — _— p— -~ 2.1.'
p {/\ml} +{L=p) { Aif} » (2:5)

Um(ﬂ) = va‘r( /z‘t) = Eyi.r,—lv[{piyi,t—l + IuaruH yi,t—l]

1
Vi B {pivia + Luai}| yii—1] = VA (2.6)
it
and
E(Yifyi‘f—f) = Ey-i,tv/Eyi.tfl’+l Ey::,zflE[Yilylhf—flyi.l—l’ ey ;I/i,f—f]
- {5
At Ait—t
1 1 ¢
= — n + 11,
{)\it}{/\it(’}[/ ]
yielding

Ciul(p) = COT/]‘(KIIA )/11) = ,[)lt_ul- (27)
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2.2 Exponential Moving Average of Order 1 Model
- EMA(1)

Suppose that the repeated responses yii. ... ¥ir, ..., yir follow an exponential moving
average of order 1 (EMA(1)) process. The EMA(1) model may be represented as
Yt = pis + Tumin@i41y. (2.8)
(Hasan ct al. (2007)) where p, Iy and a; are as defined under the exponential
AR(1) model (2.4) and n; = Ajp41)/ A Then the mean, variance and correlation for
repeated responses under (2.8) can be found as,
EYy) = Elpay + L)

= /)E((I‘,'l) -+ E(],‘[)E(T],’g)E((l,‘[)

1 /\i(f+1)}{ 1 }
= ps— 4+ (1l=p
! {/\it} ( . /){ Air Ai(r41)

1
Air”

(2.9)

V‘dl'(}’,'[) = \r'{/)(l,‘/ -+ ],'['I],‘{a,‘(f+1)]
= pPv(an) + miviliaigsy]
= p*v(a) + ny { E*(L)v(aisn) + BTV (@) + va)v{aigr) }

1
- (2.10)

it SV
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variance and correlation have the form given by

E(Yy) = Elpiyio + Ll

= pmEYw) + E(Li)E(ay)

1
_ 1 2.13
Ait | |
v(Yi) = vipwio + L)
= [)?V(}/j()) + V([i/,(l'it)
- /)fV(Yio) + {Eg(fit)v((bit) + E(Iit)vz(ait) + V([“)V(a’“)}
1
_ 1 (2.14)
A
and
I cov(Yi. Yiiee) = covipyio + L piviio + Li—e@is¢]
= cov[piyio, Pilio)
= /)?V():())
p?
= 7 for all £# 0
it
vielding

corr(Yy, Yi) = p°. (2.15)
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moment estimator for p, has the formula
K T—¢
> it G/ K(T = 0)

L=l il
pe = = (2.18)

K
DD UR/KT

i=1 t=1

(yit — i)

. -1
{ow with pir = Ay

where 7 is the standardized residual, defined as y; =

and oy, /\,7,2.




Chapter 3

Median Regression Based

Estimation

It is generally recognized that the mean regression based estimate for J obtained from
(2.16) may be biased when the responses y;, exhibit an asynunetric pattern. See for
example, Bassett and Koenker (1978) for a discussion on this issue in a cross-sectional
sctup (i.c, when 7" = 1). As pointed out in Chapter 1, to resolve this problem, Mor-
genthaler (1992) has proposed ADQL approach to obtain median regression based
estimates in a cross-sectional setup, and Jung (1996), for exainple, has proposed a
median regression based QL approach to obtain unbiased and consistent estimator

of /7 involved in the median function in a longitudinal setup, where the pair-wise
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longitudinal correlations are estimated non-parametrically. However, because of non-
parametric estimation of the true correlation structure, the QL approach may produce
less efficient regression estimates, especially when the true correlation follow a spe-
cific pattern, such as the correlation structure given in (2.2). Moreover, there is no
simulation study in Jung (1996) to examine the performance of the QL estimation
approacl.

The purpose of this chapter is to consider a specific correlation model for exponen-
tial data and develop median based regression estimates, where the correlation matrix
will be estimated in various ways. In Section 3.1, we consider the AR(1) exponential
model discussed in Section 2.1 and develop a median regression model based GQL

estimating equation. The construction of the estimating equation is given in details.
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3.1 GQL Estimation for Median Regression Model

with AR(1) (Known Correlation Structure) Ex-

ponential Data

To develop the median regression based estimation approach, we minimize the dis-

tance function
[0(yie = i) — E{(yie 2 mar)}] (3.1)

for all i = 1,..., A\ and t = 1,...,T, wherecas in the mean regression based GQL

approach we have minimized the distance function
Wi — E(yir)] (3.2)

for all i and . where g, ..., yiry ..., yir are correlated following the AR(1) model, that
is, with correlation structure given by (2.7).

In (3.1), 8(y;¢ > my) is an indicator variable defined as

Loif g > my
Myy > ma) = (3.3)

0 it yy < my
where the median my;; can be derived as

1L . mir ] 1 loa?2
/ fQya) dya = / - exp(—Aiyit) dyix = B == My = = (3:4)
( 0 ]

) it it
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The mean and variance of this indicator variable are given by
fiio = E[0(yu > mi)] = 1. Priyy = nu) +0 . Priyi <my)
1 1
= 1.-40.=
2 + 2
1
= = 3.5
= (35)
and
G = varl§(yn = ma)) = E[{8(yi = ma)}?] = [E{3(yi = mar) })?
= [12 CPrlyy > my) 4+ 0% . Pr(yy < my)] — ji
1
2 4
1
Furtherniore, let
Sy > my) = [y = min)y s 8(yir = i)y oo, 8(yir = )] = T % 1. (3.7)
It then follows that
A 1.,
E(y; > m;)] = ElT (3.8)

Next. denote the covariance between d(y;, > my,.) and 0y > mi) by 7. That is

Giot = CoV[(yin = M), 0(yae = 1)) = E[0(i = M) 6(yir = mig)) — flin flar

1
= Pr(yi = My Yur = Mig) — 1

(3.9)
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Next, following Sutradhar (2003) (See also Jung (1996)), we write the median regres-

sion based GQL estimating equation for 3 as

> ~
> 2l zm) W) 52305, 0) 50y 2 ) = Bl 2 m)]] = 0. (3.13)
=1
96" (y; > my) ;

ap

The formula for the derivative 1 (3.13) is given in the following subsec-

tion.

90" (y; > m;)

3.1.3 Formula for the derivative 97 px T
Consider
00y 2 my) _ B0lys 2 mi) O (3.14)
o3 om, O
95 (y; B8y > m.
Note that (i 2 may be computed by computing the general element ————(y’f = ")_

Omi Omy
Because 0(yy > my) = 1 when y;, > my, and §(y; > my) = 0 when y;, < my,, it is
equivalent to write 0(y; > my) = sgu(yy — my) with
- 1if sgn(yy —my) =1
6(ie = miy) = (3.15)
0 if sgu(yy —my) = —1

‘Yt
Next, let Fy(yi) = f(yit)dy;e be the cumulative distribution function. Then we
0

nay write

5(?/it > mu,) = S{-’;H(Zl/iz - mu)

= [2Fu(ya — ma) — 1]. (3.16)
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This is because for y;; > my one writes

< Fylyy) <1 where 0 <y < 00,

B —

This implies that for z; = vy, — my

< Fiy(zy) <1 for —my < yi < o0,

bo| =

That is

< Fylyy —my) < 1.

(NN

By the same token, when 1, < myy, we write

0< Fylyy —my) <

NN

Hence

+ve for y; > my
2F(yy —my)—1 =

—ve for yi < my

= sgn(yic — Mmit). (3.17)

It then follows that

D8y > miz)

= _2fi!(7”it)7 (318)
om;y
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yielding
94 (y; > m,
—(”;,"') = —2f.(m;), (3.19)
om;
where
fi(my) = diag [fi(ma), ., fie(mae), o fir(mar)] 2 T x T, (3.20)
with
fit(”l'it) = f(yif)l Yit=Mies (321)

is the density of the repeated response y;; evaluated at the median m;. Hence the

derivative in (3.14) has the formula

Oé(yz Z 77’L,j)

o5 = —2f;(m;)D; (3.22)
where
D = Oa:; - 85761 a;;‘ 0(’;;),’ px T (3.23)
with
Omy, _ d(log2/it)
ol os
Consequently

0 (y; > my)

(9,8 - = [2f2 (7”’2')Di]

= =2D;fi(m;) (3.24)
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related studies were confined to longitudinal count and/or binary data. However, as
explained in Chapter 2, because this auto-correlation class also liolds for exponential
data, it makes this GQL approach as a reasonable alternative estimmation approach. In
this thesis we consider the GQL approach for repeated exponential data and examine
its performance with other approaches including Jung’s QL approach. We also will
consider a simple "independence’ assumption based 'working’ GQL approach. For

convenience, we summmnarize these three approaches as in the following sections.

3.2.1 Jung’s Approach

To apply the QL estimating equation (1.11), Jung (1996) has estimated the pairwise
clements of ;5 matrix in (3.13) by estimating the bivariate probability of any two
idicator variables using a distribution free moment approach. To be specific, the
pairwisc bivariate probabilities for d(y;,, > my) and 6(y;; > my) have been non-

parametrically estimated by using the proportion as
K
Z(s(!/iv > "niv)(s(yil > "”f{if)

p”'(;Uir; 2 My Yit 2 7n,.if) - =L ]{ - (326)

Thus, to construct ¥; 5 matrix, one writes %, 5 = (5, ), where

N
Z 5(111'” 2 7”’2’1})5(?/11 2 'nl'it)
i=1

Ting = 1% -

(3.27)

e | =
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The QL estimate of 3 is then obtained by solving (1.11) or equivalently using the

iterative equation (3.25), where X; 5 is computed by using (3.27).

3.2.2 Lag-Correlation Approach

Note that, when the repeated responses y;1, ..., y;r follow EAR(1), EMA(1) or EEQC
structures, their correlations become lag dependent as in the Gaussian case. Thus,
corr(Yiy, yir) depends on |v — ¢| rather than individuals v, ¢ = 1,...,T. For example,

in the EAR(1) case corr(y,,, yi1) = plt=vlin EMA(1) casc

p(l—=p) )t —ul=1
Corr(yih yiu) -
0 otherwise.
and in EEQC case corr(y;,,;; ) = p?. All these correlations may be represented simply

by pji—y. Thus irrespective of the correlation structure in such an auto-correlation

class, one may use the auto-correlation matrix from (2.2) as

1 P P2 - PTd
N 14 1 ,Mo PT2
Ci(p) = : (3.28)
pr-1 Pr-2 . ... 1

When %; 5 computed using (3.28) is compared to the unstructured covariance matrix

(3.27) used by Jung (1996), it is clear that C;(p) based ;s matrix requires fower
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elements. For the estimation of p, (¢ = 1,...,7 — 1), we use moment estimate as
follows:

K T-¢
N . 1
Pe = Z Z S(Yir = ity Yigae = Mygae) /[ K(T =€) — 1 /(1/4). (3.29)
i=1 t=1

1

4C~'i(,0), and 3 is obtained by solving (3.13)

Conscquently, 3; 5 is computed as ¥;5 =

or equivalently using the iterative equation (3.25).

3.2.3 Using Independence among repeated responses

In this case, the correlation index paramecter p is assumed to be zero. Consequently,
the pairwise bivariate probabilities for d(y;, > my,) and §(y;e > my) given in (3.11),

for example, reduce to

1
Pr(yiv > myy, g > y) = e N T At — T (3.30)
because the median m;, = [;jtz under the exponential model. Applying (3.30) to (3.9),

one obtaius zero covariances or corrclations, i.e, 5;,; = 0. Thus, one may simply use

Sis = Cov(8(y; > my)) = A:,{S‘é,ﬂ_(;(/))Ai{,«Q = %C’i,(; = 17 in (3.13) or (3.25) for the

estimation of /3.
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4.1 Simulation Design

For the generation of the repeated responses i1, ..., Yit, ... yir, we follow the EAR(1)

model (2.4), i.c.,
Yit = Pillip— + Lyay =1, K; t=2..,T (4.1)

where, {a;} is a scquence of exponential random variables with parameter A\; =

Miot - . .
exp(—r3/3), pi = p 5= with p as a probability parameter or correlation parameter

0 < p < 1) and I; is an indicator variable such that I; ~ bin(1l — p). For our
P g

purposes, we choosc
o v = 100 individuals, 7" = 4 time points
e Consider scalar 3 =10.5,0.7, 1.0

e For covariates r;, we assume that they are staionary, i.e., they are not time

dependent and cousider
Ty = 'fi ~ U(O, 1)
where U (0. 1) denotes the Uniform distribution in the interval 0 to 1.

e For correlation index parameter p, we choose p = 0.0, 0.5 and 0.7.
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4.2 Steps For Data Generation

Step 1: Generate y;; such that y;, ~ Exp(A; = exp(—z},8)). Note that in general

marginally y;, for all ¢ = 1,...,7 will follow Exp(A;) with

Flyi) = AgeXavit,

Step 2: Generate ay fori=1,..., K ;t =1,...,T following

air ~ Exp(Aie).

Step 3: Generate indicator variable I;; (i = 1,..., K ; t = 1,...,T) following binary

distribution with probability 1 - p. that is, for I;; we follow

I; ~ bin(1 — p).

Step 4: Using a;o, in and y;p, geuerated by following Steps 1 to 3, we generate y;2 by
using (4.1). Next using a;3, I;3 and y;2, we generate y;3. This continues until we

generate iy, for t =T

To have some feclings about the asymmetriness, we have used a selected set of pa-
rameters and with p = 0, and computed the averages of population means (pm) and
medians (pmd) and sample means (sm) and medians (sid), and present theni in the

Table 4.1 below.
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namely by using Jung’s QL approach (JQL) from 3.2.1; lag-correlation (LC) based
GQL (GQL(LC)) from 3.2.2; and by using independence among repeated respouses
(IND) from 3.2.3. The simulated means (SM), simulated standard errors (SSE), simu-
lated mean square errors (SMSE), percentage efficicncy (£ ) among median regression
based approaches, and overall percentage efficiency (E;) as compared to mean regres-
sion based approach for the estimates of 3 are reported in Tables 4.2, 4.3 and 4.4 for

p = 0.0, 0.5, and 0.7, respectively.

Table 4.2: Comparison of mean regression and median regression approaches for the
estimation of regression parameter (3 = 0.5, 0.7, 1.0) involved in an EAR(1) model
with a correlation valuce p = 0.0; based on 500 simulations.

Statistic
p 3  Regression Estimation Approach  SM SSE  SMSE FE, E,
0.0 0.5 Median GQL(TC) 0.4993 0.0748 0.0056 100 52
IND 0.4995 0.0745 0.0055 98 53
JQL 0.4949 0.0839 0.0071 79 41
GQL(LC) 0.4992 0.0754 0.0055 98 53
Mean GQL(AC) 0.4968 0.0535 0.0029 - 100
0.7 Median GQL(TC) 0.6993 0.0746 0.0056 100 52
IND 0.6992 0.0744 0.0055 98 53
JQL 0.6947 0.0843 0.0071 79 41
GQL(LC) 0.6993 0.0753 0.0055 98 53
Mean GQL(AC) 0.6968 0.0535 0.0029 - 100
1.0 Median GQL(TC) 0.9994 0.0745 0.0055 100 52
IND 0.9994 0.0745 0.0055 98 53
JQL 0.9948 0.0841 0.0071 79 41
GQL(LC) 0.9993 0.0752 0.0055 98 53

Mean GQL(AC) 0.9968 0.0535 0.0029 - 100
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Table 4.3: Cownparison of mean regression and median regression approaches for the
estimation of regression parameter (3 = 0.5, 0.7. 1.0) involved in an EAR(1) model
with a correlation value p = 0.5; based ou 500 simulations.

Statistic
p 7 Regression Estimation Approach — SM SSE SMSE E, E,
0.5 0.5 Median GQL(TC) 0.5018 0.1003 0.0100 100 53
IND 0.5021 0.0999 0.0100 100 53
JQL 0.5014 0.1125 0.0126 79 42
GQL(LC) 0.5016 0.1014 0.0102 98 52
Mean GQL(AC) 0.5016 0.0726 0.0053 - 100
0.7 Median GQL(TC) 0.7016 0.1005 0.0100 100 53
IND 0.7022 0.0999 0.0100 100 53
JQL 0.7015 0.1124 0.0126 79 42
GQL(LC) 0.7018 0.1014 0.0102 98 52
Mean GQL(AC) 0.7016 0.0726 0.0053 - 100
1.0 Median GQL(TC) 1.0019 0.1002 0.0100 100 53
IND 1.0021 0.1002 0.0101 100 53
JQL 1.0008 0.1127 0.0127 79 42
GQL(LC) 1.0016 0.1013 0.0102 98 52

Mean GQL(AC) 1.0016 0.0726 0.0053 - 100
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Table 4.4: Comparison of mean regression and median regression approaches for the
estimation of regression parameter (4 = 0.5, 0.7, 1.0) involved in an EAR(1) modecl
with a correlation value p = 0.7; based on 500 simulations.

Statistic
p 3 Regression  Estimation Approach — SM SSE SMSE FE, E,
0.7 0.5 Median GQL(TC) 0.5048 0.1148 0.0132 100 51
IND 0.5055 0.1153 0.0133 99 50
JQL 0.4887 0.1784 0.0319 41 21
GQL(LC) 0.5000 0.1190 0.0141 94 48
Mean GQL(AC) 0.5054 0.0818 0.0067 - 100
0.7 Median GQL(TC) 0.7047 0.1146 0.0132 100 51
IND 0.7057 0.1155 0.0133 99 50
JQL 0.6890 0.1716 0.0295 45 23
GQL(LC) 0.7053 0.1242 0.0154 86 44
Mean GQL(AC) 0.7054 0.0818 0.0067 - 100
1.0 Median GQL(TC) 1.0047 0.1147 0.0132 100 51
IND 1.0056 0.1153 0.0133 99 50
JQL 0.9848 0.2125 0.0454 29 15
GQL(LC) 1.0015 0.1248 0.0155 85 43

Mean GQL(AC) 1.0054 0.0818 0.0067 - 100
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The results of Tables 4.2, 4.3 and 4.4 show that the median regression based
cstilmating equation produces less efficient (in the sense of NSE) estimates as comn-
pared to the mean regression based estimating equation. This is because median
based approaches when compared to the mean based approach produce estimates
with £y < 100, where the efficiency E, for a selected method (M), is defined as
Ey(M) = {SMSE(Mean Based)}/{SMSE(M)} x 100. These results thierefore do not
appear to support the classical result (Bassett and Koenker (1978)) that a median
based estimate may be preferable to the mean based estimate when data are asym-
metric. This perhaps has happened because of the degree of asymnetriness in the
present. exponential data which is not so strong as indicated earlier based on Table
1.1

However, to further explore the above contradiction, we have also generated asymn-
metric exponential data, but forced a small percentage (1%) of observations to be
mean shifted outliers, such that for these observations 7; was first generated from
U(0,1) and then for 1% of them (i) was shifted to £; + 1.5. The mean and median
regression based GQL estimates for these outliers oriented data are shown in Tables
4.5, 4.6 and 4.7 for p = 0, 0.5, and 0.7, respectively. These results show that mean
regression hased GQL estimates are now biased when compared to the corresponding

estimates obtained in the outliers free case as in Tables 4.2, 4.3 and 4.4, whereas
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Table 4.6: Comparison of mean regression and median regression approaches for the
estimation of regression parameter (5 = 0.5, 0.7, 1.0) involved in an EAR(1) model
with a correlation value p = 0.5, in the presence of 1% outliers through shifted
covariate values; based on 500 simulations.

Statistic

p 3 Regression Estimation Approach ~ SM SSE  SMSE RB
0.5 0.5  Median GQL(TC) 0.5124 0.1023 0.0106
IND 0.5130 0.1022 0.0106

JQL 0.5127 0.1137 0.0131 11.2250
GQL(LC) 0.5127 0.1034 0.0108

Mean GQL(AC) 0.5194 0.0736 26.4000
0.7  Median GQL(TC) 0.7152 0.1026 0.0107
IND 0.7161 0.1024 0.0107

JQL 0.7147 0.1153 0.0135 12.7520
GQL(LC) 0.7155 0.1036 0.0109

Mean GQL(AC) 0.7302 0.0750 40.2970
1.0 Median GQL(TC) 1.0186 0.1039 0.0111
IND 1.0195 0.1028 0.0109

JQL 1.0189 0.1152 0.0136 16.3980
GQL(LC) 1.0192 0.1037 0.0111

Mean GQL(AC) 1.0515 0.0791 65.1340




4.3 SIMULATION RESULTS 43

Table 4.7: Comparison of mean regression and median regression approaches for the
estimation of regression paramcter (8 = 0.5, 0.7, 1.0} involved in an EAR(1) model
with a correlation value p = 0.7, in the presence of 1% outliers through shifted
covariate values; based on 500 simulations.

Statistic

p 3 Regression Estimation Approach ~ SM SSE  SMSE RB
0.7 0.5 Median GQL(TC) 0.5174 0.1156 0.0136
IND 0.5186 0.1169 0.0140

JQL 0.5083 0.1428 0.0204 5.8304
GQL(LC) (0.5104 0.1259 0.0159

Mean GQL(AC) 0.5235 0.0818 28.7700
0.7 Median GQL(TC) 0.7201 0.1162 0.0139
IND 0.7211 0.1172 0.0141

JQL 0.7007 0.1518 0.0230 0.5151
GQL(LC) 0.7138 0.1304 0.0171

Moan GQL(AC) 0.7342  0.0802 41.4510
1.0 Meaian GQL(TC) 1.0319 0.1165 0.0146
IND 1.0307 0.1171 0.0146

JQL 1.0158 0.1529 0.0234 3.8451
GQL(LC) 1.0316 0.1186 0.0151

Mean GQL(AC) 1.0565 0.0845 66.8533







Chapter 5

Labor Pain Data Analysis : An
Illustration of the estimation

methods

The labor pain data reported by Davis (1991) counsists of repeated measurements of
sclf-reported amount of pain on K = 83 women in labor, of which 43 were randomly
assigned to a pain medication (treatment) group and 40 to a placebo group. At
30-minute intervals, the amount of pain was marked on a 100 mm line, where 0 =
no pain aud 100 = extreme paiu. The maxinum number of measurements for each

woman was 6, but there are some missing values at later measurement times. The









LABOR PAIN DATA ANALYSIS : AN ILLUSTRATION OF THE ESTIMATION
METHODS 48

Note that to understand the effect of times on the labor pain, Jung (1996, Sec-
tion 6), for example, fitted a lincar median regression model with errors having zero
median. To be specific, Jung (1996) has fitted a model y;; = 8y + Bot + € for the
treatment group, aud obtained BQ: 4.36 and ﬁgz 1.37 by using pairwise correlation
estimates based QL approach (JQL). In order to see how these estimates or model
fit the observed data in Figure 5.1, we have generated €; from uniform distribution
U(—3, %) [to keep the distribution at median to be uniform as suggested by Jung
(1996)) and cstimated yy as gy = /30 —+ ﬁgt + €. The fitted data for this treatinent

group are displayed in Figure 5.3.
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if needed.

For the aforementioned reason, we have re-analysed the data set using correlated
exponential model given in Chapter 2. Note that when we have compared the IND,
JQL and GQL(LC) approaches to the true model based GQL(TC) through a sim-
ulation study in Chapter 4, it was found that IND followed by GQL(LC) produce
more cfficient regression estimates. As shown in Tables 4.2, 4.3, and 4.4, among
all approaches, Jung’s (1996) QL approach was the worst as it produces more bias
estimates along with large standard errors. For this reason, we have fitted IND,
GQL(LC) and GQL(TC) approaches to this data set. Because our main concern is
to see the effect of times in trcatiment group, we have fitted the exponential model,
Vit = pillii—1 + Lyai following (2.4) with median m;=(log2) exp(dy + 51t). The pa-
rameter estimates along with their estimated standard errors (shown in parenthesis)

under these three approaches were found to be

o I P
GQL(TC) 2.161(0.136) 0.138(0.034) 0.746
IND 2.208(0.114)  0.109(0.032) -
GQL(LC) 1.799(0.118) 0.179(0.019) 0.785
and as displayed in Figure 5.4, the fitted medians by these three approaches appear

to agree well with the medians of the observed data (OBS).
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Figure 5.4: Observed versus various model based fitted medians for the treatment

group

These approaches also appear to fit the over all data well. For example, using

above wentioned F. 3 in mi=(log2) exp(/3 + F1t) and p under both GQL(TC) and

GQL(LC) approaches, when y;; were generated following the exponential distribution

with median m,,, they produce the distributions as in Figures 5.5 and 5.6, respectively.
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to be closer to the true model based GQL(TC) estimates but with larger standard
errors for the regression estimates. The pattern of these standard errors to be different
for this data set when compared to the simulation results reported in Tables 4.2, 4.3,
and 4.4. However, in view of the simulation results reported in Tables 4.5, 4.6, and
4.7 and because the observed data are highly asymmetric, the median based estimates

are preferable to the nican based estimates.




Chapter 6

Concluding Remarks

In a regression setup for repeated asymmetric data such as exponential data, there
exists a pair-wise correlation structure (semi-parametric) based median regression QL
approach (Jung (1996)) for the estimation of the regression effects. In this thesis, by
using an AR(1) type correlation niodel for repeated exponential data, we have exam-
ined the performance of the simpler mean based GQL approach with several median
based GQL approaches. The results of a simulation study indicates that the mean
regression based GQL approach performs better than all median regression based QL
approaches. This contradicts the classical result (Bassett and IKoenker (1978)) that
a median regression approach should be preferable to the mean regression based ap-

proach when the data are asymmetric. However, when the repeated exponential data







Appendix A

A.1 Derivation for Joint Probability in (3.10)

Following Hasan (2004, Section 4.1.1, p. 59), we first consider lag 1 apart repeated
responses s, and 1), where y;, and y;,41) must satisfy the relationship 41y >
Po+1Yin. Note that mi41) (a realized value of the random variable Yj,1))) can be
either myui1) > Pot1Wio OF M1y < Pos1¥i. Therefore the bivariate probability

function of g, and yi,41y may be computed as follows:

P7'(Z/m Z My Yi(og1) 2 7n'i('u+l)) = / / f(yilnyi(u—i—l)) dyil'dyi('n+l)' (Al)
Sy Jang

o1)
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computed as
o0
H(yiv) - / f(Jnrv UI v+1) ) d(/z v+1)
Mi(u41)
o0
= / [/\ivpe_/\iuym6(?/71(1)—#1) - /)v+lyi,u)
Miu41)
+ Ailv/\i(v+1)(1 _ p)e“)\ivyil-e—’\i(1'+l)(yi(v+1)"Pl/‘+l?/1u)j| dyi(v+1)
0o
— / /\Lv/\l(1)+l (1 _ /)) ln'/lve )‘z(u+1)('!/i(w+I)_Pv+ll‘liu)dyi(v+l)
vt1})
[‘ﬂs S(Yitwi1) = Por1¥in) = 0 for myguyy > p'u+1y'iu]
— /\w(l _ p) Ain(1=p)yiv e A’I(’l?+l)1n1(l'+l)’ <A4)

whercas for case (b) mipg1y < Pes1Vios H(yie) is computed as

H(yiﬂ) = / f(Um l/l v41) ) d%(ww
P

v+1Yie

= / [/\ivf)(f_)\i”ywé(% v+1) pv+]7~/w)
P

v 1 Yiv

S XioYio 5= A Yi(nt1) —Po+iliv !
+ ,\,-,,,\,L-(,L)H)(l —ple e~ Nt )y Wi p )y —Pet iy )] dyiur 1)

00
= / /\'iupe_)\i’“yird(yi(v+1) - f)'u+1?/iv)dyi(u—kl)

S Pe+1liv
o0
Aiv¥Yin ,_)\ o Yi(o —Pu+1lYiv
+/ A /\z vt1) (1 - )/ e~ Mo Wi Pty )d‘yi(v+1)
Po+1Yiv

o.@)
— ,V)VU:‘ iv ’\1 Yiv A o Yigo —Puv iv p
= e y _+_/ Aiv it 1) (1 — p)e™NieviwemAic 1 Wigor 1y —Put1y l)dyi(”H)
1

v+ 1Yiv

(88 6 (Yigor1) = Pos1¥ie) = 1 for migiry < Pus1yio]

—Xiv¥in —XivWiv —Xinlio
= /\ilva Y A€ o — /\iupe v

_ —XiolYiu
— Aiv(j ioli ,
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yielding

/\iu(l - ,0)6'*“'(I_P)yive‘*z<u+1>mi<u+1) for Mi(y+1) = Po+1Yiv

H(.Uw) = (A6)
)\ive*)‘w““ for Mi(v41) < Po+1Yiv

Next, by using the above formula for H(y;,) in (A.6) we evaluate the remaining

integral in (A.3) over my, as follows. For case (&) Miw+1) > Putr17i, the integral in

(A.3) is evaluated as

" OC
! , o _ X1 =P)Yiv , = Ao 1) T ;
Pr(yic > My, Yigor1) = Migor1)) = / Aio(1 = p)em tollmPlice =Xty dyy;,
M,
_ e*)w(wl)'mi(uﬂ)6*/\1‘1»(1—/))77111- (A?)

whereas for case (b) Mypy1) < Pot1Miv, we evaluate the integral in (A.3) as

00
(1 77 — *—)‘uv w
P (.l/iv > Mivs Yi(v+1) > ’ni(u+l)) - / )\iue v dyiv
o IMNG
— e—'/\mvnl"iu (A.8)

It then follows that the bivariate probability function of y;, and ;441 has the formn

given by

e~ Mt for  miwe1) < Pog1i
pr(yil' 2 Mirs Yi(u+1) Z I]n'i(u+])) =
6_/\1(u+l)m'i(1v+1)(j_/\zu(l_ﬂ)"Hu fOI' 7n’i(v+l) > Pos1Mis
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