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Abstract 

In independence setup, the quasi-likelihood estimation of the regression parameters 

involved in the mean function requires only the specification of the mean and variance 

function of the responses. In the longitudinal setup, one also has to accommodate the 

underlying correlation structure in order to obtain consistent and efficient regression 

estimates. Under the independence setup, when the responses follow an asymmetric 

distribution with a heavy tail , it has been argued in the literature that the regression 

estimates using mean regression model can be inefficient as compared to those ob­

tained using ft median regression model. Subsequently, the median regression models 

have been extended to study the asymmetric longitudinal datft, but the longitudinal 

correlation of this type of asymmetric data have been computed using the moment es­

timates for all pairwise correlations. By considering an autoregressive order 1 (AR(l)) 

model for longitudinal exponential responses, in this thesis, it is demonstrated that the 

existing pairwise estimates of correlations under median regression model may yield 
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inefficient etitimateti as compared to the simpler independence assumption based es­

timates. It i a lso argued in the thesis that the quasi-likelihood approach for median 

regression models may perform the same or worse than the mean regression models 

unless the data are highly asymmetric such as involving outliers. We illustrate the 

inference techniques discussed in the thesis by re-analysing the well-known labor pain 

data. 
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Chapter 1 

Introduction 

1.1 B ackground of the problem 

In the Independence setup, when the responses follow an asymmetric distribution 

with a heavy tail, it has been argued in the li terature (Bassett and Koenker (1978) 

and Koenker and Bassett (1978)) that the regression estimates using mean regression 

model can be inefficient as compared to those obtained using a median regression 

model. Subsequently many researchers such as Morgenthaler (1992) , Kottas and 

Gelfand (2001) , Kottas and Krnj ajic (2009) and Reich, Bondell and Wang (2010) , 

have studied various properties of t he quantile regression estimates in the indepen­

dence setup. 
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Suppose that a scalar response Y i and a p-dimensional vector of covariates Xi are 

observed for individuals i = 1, 2, ... , I<. Let fJ denote the p x 1 vector of regression 

pararneters which meas ures t he effects of x i on Yi for all i = 1, 2, .. . , I< . \rVhen the 

responses are cont inuous and t heir distributions are asymmetric, fitting a median 

regression model (Morgent haler ( 1992) , Section 3) to this type of data is equivalent 

to use t he rela tionship 

( 1.1) 

where mi is the median of Yi, g(. ) is a suitable known link function , and Ei is a model 

error component . Denote by f i t he density of the distribut ion of the i th individual 

such that f i(m;) > 0. 

For 

(1.2) 

Morgenthaler (1992) proposed an absolute-deviation quasi-likelihood (ADQL) ap­

proach to estimate fJ consistently. To be specific, Morgent haler (1992) suggested to 

solve the estimating equation 

(1.3) 
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where 

with 

ify; ~ mi 

otherwise, 

fo all i = 1, ... , K . Furthermore, Si = S(m;) is a user-supplied dispersion function that 

models the scatter of the responses as a function of the median , and D = ( Dij) : K x p , 

Note that for any random variable Yi with density f ; 

1. Pr(yi ~ mi) + (- 1) . P r (yi < mi) 

1 1 
1. -+ (- 1) . -

2 2 

0 

implying that the estimating equation in (1.3) produces consist ent estimates of the 

parameter (J . Under some regularity conditions, Morgenthaler (1992) computed the 

variance of /3 (obtained from ( 1.3)) as 
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I 

where F = diag[2.ft (m1 ), . .. , 2.fl<(mg )]. If Si- 2 = 2.fi(rn.i) , then the var(,B) in (1.4) 

reduces to 

To illustrate the use of the estimating equation (1.3) Morgenthaler (1992) considered 

an example with the response Yi following a gamma (asymmetric) distribution given 

by 

(1.5) 

where 

and 

P,i [
3vi- 0.8] 
31/i + 0.2 

(Bannehelm and Eka.nayake (2009)). It is clear that the median mi and the mean f.Li 

of the ith observa tion are linked by a propor tionality relation m; = moi f.Li · Evaluating 

the densi ty at the median they found 

( 1.6) 
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This (1.6) shows that a user, as suggested by Morgenthaler (1992) , can choose Si (mi) 

as S; ex m; implying that, Si = koirn}, where koi can be computed easily. Conse­

quently, the ADQL estimating equation (1.3) reduces to 

(1.7) 

which may be solved for (3 involved in the median function. Note that this ADQL 

approach appears to have several limitations. First Si is chosen as Si ex m7 which 

may be an appropriate choice only if m i holds a proportionality relation to fli so 

that m i = moi fli for a suitable constant moi · Second, using a mean response based 

gradient matrix Din (1.7) is also dependent on such proportionality relation between 

means and medians, which may not hold in general. 

'N e remark that if the density of the response Yi at median m .; were known, one 

could use suitable likelihood approach to estimate (3 involved in the median function. 

For example, .lung (1996) has considered a longitudinal setup , where the distribution 

of the responses at the median is assumed to be known at any given time, but in 

general the marginal density may not be known. T his implies that there is no way 

to compute the joint distribution of the repeated responses. Thus, .lung (1996) has 

extended the QL approach to the longitudinal setup but with an added restriction 

on the distribution of the response at the median . We now describe this median 
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regression problem in the longitudinal setup as follows. 

Suppose that for the ·ith individual, Yi = (yi1 , --- ,Yit, ... ,yir)' is the T x 1 response 

vector where elements are collected repeatedly over time. Let X i = (xi!, ... , Xit , ... , Xir )' 

be the T x p matrix of covariates. Let /3 denote the p x 1 vector of regression parameters 

which measures the effects of Xit on Yil. for all t = 1, 2, ... , T and for all i = 1, 2, ... , K. 

When the responses are continuous and their distributions are symmetric, one fits 

the linear model 

(1.8) 

to estimate {3 . Suppose that ci = (cit, .. . , ciT)' in (1.8) has the mean vector 0 and 

I 'I 

covariance matrix L:i = Al- C(p)A? with A; = diag[var(ciJ ), .. . , var(cit), ... , var(ciT )] 

and C(p) as the T x T correlation matrix. It then follows that the well-known 

generalized least square (GLS) estimator of /3 is a solution of the estimating equation 

[ ( 

L X{L:i I (Yi - Xi /3) = 0. (1.9) 
i.= l 

Note that the estimating equation (1.9) does not depend on the distribution of Yi· 

However, if t he responses are continuous but their distributions are asymmetric such 

as Gamma (McCullagh and Nelder (1989, p. 300) ), /3 estimates of the mean regression 

model (1.8) can be inefficient (Bassett and Koenker (1978) ). As a remedy, for the 

asymmetric data in the logitudinal setup, one may follow Morgenthaler (1992) , among 
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others and model the median rather than the mean of the responses as a function of the 

covariates x . More specifically, let mit be the median of Yit and m i = (mi1, ... , miT)'. 

Furthermore, similar to (1.2) , for some link function g(.), let 

(1.10) 

For longitudinal data, Jnng (1996), for example, suggests to solve an indicator func-

tion based quru:;i-likelihood estimating equation, where the indicator variable is de-

fined as l (Y·it 2: rnif) with mit is t he median of Yit as in (1.10). More specifically, in 

the cluster regression setup, Jung's quasi-likelihood (QL) estimating equation can be 

expressed as 

K 1 1 
~ -B'rn:- '{I(y· > m .. )- -l7·} = 0 
~ -+.. ' /. ' ' - ! 2 ' 
i= l '+'t 

(1.11) 

vector of indicator functions , IT is the T X 1 unit vector , ni is the T X T covariance 

matrix of [I (Yi 2: mi) - ~ 1 T], Bi is the T x p first derivative matrix of mi with 

respect to /3, i.e., Bi = 8m) 8(3', where mi = (mi1 , .. . , mir)' with g(mit) = x;t/3, and 

density function (pdf) of Y it evaluated at the median m it · Jung (1996) refers to the 

solut ion of (1.11) for /3 as the maximum quasi-likelihood estimate. Note that the QL 

estimating equation ( 1.11) may be treated as a generalization of the ADQL estimating 
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equation (1.3) , from the independent setup to the longitudinal setup. However, one 

cannot compute Di, the covariance matrix of the vector of indicator functions, as we 

cannot compute t he pair-wise bivariate distributions of the element s of the asymmetric 

response vector Yi = (Yil, ... , Yit, ... , YiT )'. This is because the correlation structure or 

the joint distribution of the repeated responses may not be available. To resolve 

this computational issue, .Jung (1996) has estimated the pair-wise elements of ni 

matrix by estimating the bivariate probability of any two indicator variables using 

a distribution free moment approach. There are, however , several limitations to 

this pairwise probability estimation by using such a moment approach. First , if the 

repeated responses follow an auto-correlation model, which is most likely in practice, 

using pairwise probabilities based on the concept of unstructured correlations for 

repeated dat a may yield inefficient estimates, as in this approach one is computing too 

many correlations whereas auto-correlation model contains only a few lag correlations. 

Furthermore, in some situations when the pair-wise covariances will be a funct ion 

of individual specific non-stationary covariates (such as under binary or count data 

models), one cannot t ake t he average over t he individuals to estimate the covariance 

or correlation matrix. 
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Note t hat in exponential failure t imes setup, some authors such as Hasan, Su­

tradhar and Sneddon (2007) dealt with mean regression model under a class of auto­

correlation structures for the repeated exponential responses. But , no median regres­

sion was considered by t hese authors. 

1.2 Objective of the thesis 

Our main objectives are as follows: 

1. We develop the median regression model for longit udinal exponential failure 

time data. considered by Hasan et al. (2007). 

2. We develop median regression based estimating equations for t he regression 

parameters involved in the median function. T his will be done by computing 

t he exact correlation matrix under the assumed correlation model for repeated 

responses. 

3. We will also consider several 'working' correlation structures based estimating 

equations. For example, following Jung (1996), (a) we will consider a non­

parametric correlation structure based estimating equation approach, where 

pair-wise correla tions are estimated by simple rnethod of moments; (b) Second 

an independence assumption based correlation matrix will be used to construct 
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the estimating equat ions; (c) Also, a lag correlation based auto-correlation 

structure will be used to develop the desired estimating equations. 

To examine the performance of the above mentioned inference techniques, we aim at 

a two-fold empirical study. First, the median regression estimation will be compared 

with mean regression based estimation. This comparison will also be studied by gen­

erating a few percentage of outlying observations, where in the absence of outliers 

the data are assumed to follow longitudinal exponential model. We also would like to 

compare the relative performance of the median based approaches, where these ap­

proaches differ from each other because of the correlation structures used to construct 

the respective estimating equations. 



Chapter 2 

Mean Regression Based GQL 

Estimation for Exponential 

Longitudinal Models 

Some authors such as Geraci and Bottai (2007) have modelled the asymmetric data at 

a given time point by a Laplace distribution , and modelled the correlations through 

the common individual random effects shared by the repeated responses. However, 

even though the random effects generate an equicorrelation structure for the repeated 

responses, they do not appear to address the t ime effects (Sutradhar 2011, Section 

2.4). T his is because the individual specific random eff'ect may remain the same 
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throughout t he data collection period and hence cannot represent any t ime effects. 

Some other authors such as Hasan et al. (2007, Section 2.1, p. 552) have con-

sidered a class of non-stationary auto-correla tion models for longitudinal exponen-

tial failure t ime da ta, AR(1) [auto-regressive of order 1] model being an impor-

tant special case. Suppose that Yit is the exponential response collected at time t 

( t = 1, .. . , T ) for the i th ( i = 1, ... , K) individual and f.Lit ({3 ) is the mean of Yit. Let 

Yi = (Yii , ··· , Yit., ... ,y;r)' with its mean vector J.Li({3) = (J.Lil({3), ... ,f.Lit(f3), ... ,f.LiT(f3) )'. 

Next suppose that 2',;({3, p) is the covariance matrix of Yi which has the formula 

( ) _ Al/2c ( ) 112 L,i {3, P - i ·i P Ai (2.1) 

where Ai = diag [aiu ({3), ... , aiu (f3), ... , awr(f3)] wit h aiu (f3) = var(Yit) and Ci(P) = 

( Ciut (p))' Ciut. (p) being the correlation between Yiu and Yit . In (2.1 )' ci (p) is the 

T x T correlation ma trix of y; = (y-il, ... , Yit? ... , YiT )'. Note that under a class of 

auto-correlation structures, t his c i (p) takes the form 

1 P1 P2 PT- 1 

(2 .2) 
1 PT-2 

C.;(p)= 

PT- l PT - 2 1 

(Sutradhar (2003)) where Pe is known as the £th (£ = 1, ... , T - 1) lag auto-correlation 
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between Yit. and Yi ,t+f · Hasan et al. (2007) have shown that the longitudinal exponen-

tial data following ARMA (p*, q*) [auto -regressive moving average of order p* and q*] 

models satisfy the correlation matrix form in (2.2). For convenience, following Hasan 

et al. (2007), we demonstrate the validi ty of the general auto-correlation structure 

(2 .2) for low order correlation models, nam ly, AR(1), MA(1), and EQC. 

2.1 Exponential AR(l) Model- EAR(l) 

Suppose that the response Yi l follows an exponential distribution with parameter 

Ai1 = h(x; ,/3), for a suitable known link function h( .) . That is, 

(2.3) 

ext fort = 2, ... , T, following Hasan et al. (2007 eqn . (2.1)) [see also Gaver and 

Lewis (1980)], we write a dynamic model in exponential variables a.s, 

Yit = PiYi,t- 1 + I il.a·it, t = 2, ... , T; i = 1, .. . , J( (2.4) 

where, {a;t , t = 1, ... , T; i = 1, ... , K} is a. sequence of exponential random variables 

with parameter Aif = exp( -x~t/3) and Pi = p \~~~ with p as a probabili ty parameter 

or correlation parameter (0 :=:; p :=:; 1). In (2.4), I;1 is a.n indicator variable such that 

with probability p 

with probability 1 - p, 
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and Iii. and a il are assumed to be independent. 

Next we compute the mean, variance and correlations of the responses for the expo-

nential AR(1) model (2.3)-(2.4) . To be specific, following Hasan et al. (2007), one 

may write 

E [PiYi,t-1 + E(Iit)E(ait.)] 

(2.5) 

CTitt ({3) = var(Yit) 

1 
+VYi,t- lE [{ P·iYi,t- 1 + l it.ait }i Yi, t-1 ] = ),2 , (2.6) 

i f. 

and 

E (Yit Yi ,t-e) EYi. t.-eEYi, t- e+J .. . EYi ,t- 1 E [YitYi ,t-eiY.i,t- 1, .. . , Yi,t-e] 

e 11 { 1}{1} p 2-2- + - --
Ait \,t-e Ait A.it- e 

{ ),1 } { ),1_ } [ / + 1], 
1.t 1.1. e 

yielding 

( ) _ C ·(' .r "\/ ) _ lt-ul C·iut p - Or-7 I;u, I it - p . (2.7) 
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2.2 Exponential Moving Average of Order 1 Model 

- EMA(l) 

Suppose that the repeated responses Yi i , . .. , Yit, . .. , Y.iT follow an exponential moving 

average of ord r 1 (EMA(1)) process. The EMA(1) model ruay be represented as 

(2.8) 

(Hasan et al. (2007)) where p, f it and a i t are as defined under the exponential 

AR(1) model (2.4) and 'r/it = >..i(t+ I)(A;1• Th n the mean, variance and correlation for 

repeated responses under (2.8) can be found as, 

{ 
1 } ( ) { A;(t+Il } { 1 } p - + 1- p -- --

)..it . A;t A;(t+ I l 

1 
(2.9) 

p2v(a.;,) + 'rlTt. { E 2(Jit)v(a·i(t+ I)) + E(Iit)v2
(ai(t+ I)) + v(Iit )v(a·i(t+l))} 

1 
\ 2 ' 
/\ ; t 

(2.10) 
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and 

cov(Y;t , Yi ,t-e ) cov[pait. + I it1]itai,(t+ 1), pai,t-e + I i,t-e1li,t-eai,(t+l )- el 

cov[pait, I i,t-e1Ji,t-ea i,(t+l )-e] 

p(1- p) 

AitA·i,t-e ' 

yielding 

. . _ { p(1 ~ p) if It- ui = 1 
COli (Yit , Yiu) -

0 otherwise. 

(2.11) 

2.3 Exponential Equi-correlation Model - EEQC 

Suppose that the init ial response y;o follow an exponential distribut ion with t ime 

independent parameter A;o ( = 1, say). Further suppose that the response Yit has a 

functional relationship with YiO of the form 

(2.12) 

(Hasa,n et al. (2007)) where for all t = 1, 2, .. . , T , CLit follows exponential distribution 

with parameter A.it and Pi = p>...;o/ Ait · It can be shown under (2. 12) that the mean, 
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variance and correla tion have the form given by 

E(Y;t.) 

and 

yield ing 

PiE (Y;o ) + E(Iit)E(a·it) 

1 

p~v(Yio ) + { E 2 (I·it)v (a·it) + E (Iit )v2 (ait) + v(Jit)v(ait ) } 

1 
\ 2 ' 
/\ it 

cov(Y;, , Yi ,t- e) 

p~v (Yio ) 

p2 
for all £ ..J. 0 \ 2 > I 

/\ it 

17 

(2.13) 

(2.14) 

(2 .15) 
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It is now clear from (2.7) , (2 .11), and (2.15) that the correlations under all three 

processes, namely, AR(1) , MA(1) and EQC models for exponential data, satisfy the 

general auto-correlation matrix Ci(P) in (2 .2) . 

2.4 Mean Regression Based GQL Estimating Equa-

tion 

Turning back to the estimation of (3 involved in the mean function P,it (f3 ) = >.~t = 

exp(:r;1.f3), we may follow Sutradhar (2003) and wri te the GQL (Generalized Quasi-

likelihood) estimating equation for (3 as 

(2.16) 

where C;(p) involved in L',;((J, p) has the R.uto-correlation structure form (2.2) . Note 

that for known p, this equation (2. 16) may be solved iteratively using 

' 
0 

- A 
0 

8 1-Li - 1 8 /-Li 8 1-Li - 1 

[ 

f ( 1 ] - [ [ }( 1 l 
(J(r + 1) - (J (r) + 8 8(3 '[',i ((3, p) 8(31 ,. 8 8(3 '[',·i (Yi -p.;) ,. (2.17) 

where [.]r is computed by evaluating t he quantity in [ ] using (3 = /3(r'). Next, because 

Pe (e = 1, ... , T - 1) is unknown in practice, it must be estimated. For the estimation 

of this hg correlR.tion parameter, w may use the method of moments and solve the 

€th (€ = 1, ... , T- 1) lag correlation based moment equation. To be specific, the 
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moment estimator for Pe has the formula 

J( T- f 

L L Yit Yi,t+d K(T - £) 
i= l t=l pe= ~~~K-' __ T __________ __ 

LLYit!KT 
i=l t= l 

(Yit - /-Lit) . 
where flit is the standardized residual, defined as Yit = { }1/ 2 , w1th /-Lit 

(Ji tt 

19 

(2.18) 

). - 1 
- 1.t 



Chapter 3 

Median Regression Based 

Estimation 

It is generally recognized that the mean regression based estimate for f3 obtained from 

(2 .16) may be biased when the responses Y.it exhibit an asymmetric pattern. See for 

example, Bassett and Koenker ( 1978) for a discussion on this issue in a cross-sectional 

setup (i.e, when T = 1). As pointed out in Chapter 1, to resolve this problem, Mor­

genthaler (1992) has proposed ADQL approach to obtain median regression based 

estimates in a cross-sectional setup, and Jung (1996) , for example, has proposed a 

median regression based QL approach to obtain unbiased and consistent estimator 

of /3 involved in the median function in a longitudinal setup, where the pair-wise 
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longitudinal correlations are estimated non-parametrically. However, because of non­

parametric estimation of the t rue correlation structure, t he QL approach may produce 

less efficient regression estimates, especially when the true correlation follow a spe­

cific pattern, such as the correlation structure given in (2.2) . Moreover , there is no 

simulation study in Jung (1996) to examine the performance of the QL estimation 

approach. 

T he purpose of t his chapter is to consider a specific correlation model for exponen­

tial data and develop median based regression estimates, where the correlation matrix 

will be estimated in various ways. In Section 3.1 , we consider the AR (1) exponential 

model discussed in Section 2.1 and develop a median regression model based GQL 

estimating equation. T he construction of the estimating equation is given in details. 



3. 1 GQL EST IMATION FOR MEDIAN REGRESSION MODEL WITH AR( 1 ) 

( K NOWN CORRELATION STRUCTURE) EXPONENTIAL D ATA 22 

3.1 GQL Estimation for Median Regression Model 

with AR(l) (Known Correlation Structure) Ex-

ponential Data 

To develop the median regression based est imation approach, we minimize the dis-

tance function 

(3.1 ) 

for all i = 1, .. . , f{ and t = 1, ... , T , whereas in the mean regression based GQL 

approach we have minimized the distance function 

(3.2) 

for all i and t , where Yi L, ... , Yu, ... , YiT arc correlated following the AR( 1) model, that 

is, with correlation structure given by (2.7). 

In (3 .1 ), O(Yit 2 rnit.) is an indicator variable defined as 

(3.3) 
{ 

1 if 
b(Yit 2 mit) = 

0 if 

where the median m;1 can be derived as 

(3.4) 
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The mean and variance of this indicator variable are given by 

and 

Furthermore, let 

1 1 
1.- + 0 . -

2 2 

1 

2 

1 1 

2 4 

1 
-
4 

(3.5) 

(3.6) 

o(yi 2: mi) = [o(yil 2: mi l) , ... , o(Y·it 2: mil) , ... , o(YiT 2: ·miT) ]' : T X 1. (3.7) 

It then follows tlm.t 

(3.8) 

ext, denote the covariance between o(Y·iu 2: miu ) and o(yit 2: mit) by O'iut· That is 
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The computation of Pr(Yiv 2: miv, Yit 2: mit) under the AR.(1) model (2.4) is given in 

the next subsection 3.1.1. 

3.1.1 Formula for Joint Probability 

Under AR(1) structure, the joint probability involved in (3.9) has the formula 

e - ,\ !1J1n ;" , 

[Hasan (2004, Section 4. 1.1 , p. 59)] where Pu = /i~v - t l is the lag v correlat ion for 
-' IV 

all i = 1, ... , K . For convenience, we highlight its derivation in the Appendix . 

Note that for stationary case, Ai(v- J) = A;v, implying that Pv = p. It then follows 

that the bivariate probability function in (3.10) reduces to 

for mi(v+j) ::::; plmiv 
(3.11 ) 

for m i(v+j) > pim iv 

3.1.2 GQL Estimating Equation for f3 

Note that under t he AR(1) model, we have computed (Jivt. = cov[8(Yiv 2: m iv ), 8 (Yit 2: 

mit)] by (3.9) (see also (3.11 )). In matrix notation, we write 

(3.12) 
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Next, following Sutradhar (2003) (See also Jung (1996)), we write the median regres-

sion based GQL estimating equation for (3 as 

(3.13) 

Th f 1 f. h l · · ob' (y; 2: m;) · (3 13) · · · l f 11 · b e ormu a or t e c envat1ve o(3 m . IS given m t 1e o owmg su sec-

tion. 

3.1.3 
of/ (Yi 2:: mi) T 

Formula for the derivative o(J : p x 

Consider 

85(y; 2: m;) 85(y; 2: m;) 8mi 

8(3' om~ 8(3' . 
(3.14) 

85(y; > m;) 88(Y·it > m;t ) 
Note that a-, may be computed by computing the general element 

0 
- . . 

m.; m.;t 

Because c5(y;1 2: m;1. ) = 1 when Yit 2: mit , and 8(y;t 2: mit ) = 0 when Yit < mit , it is 

equivalent to write 8(y;1 2: mu) :::: sgn(yit- m;1) with 

_ { 1 if s.gn(y;t - m it) = 1 
8(y;t 2: mu) -

0 if sgn(Y.it - m;t) = -1 

(3.15) 

[ Yit 
Next, let F;t(Y;t) = Jo f(yit)dy;1 be the cumulative distribution function . Then we 

may write 

sgn(y;t -mit) 

(3 .16) 
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This is because for Yit 2:: m u one writes 

This implies that for Zi t = YiL - m i t 

1 2 ::; Fit(zit) ::; 1 for - mit < Yil- < oo. 

That is 

By the same token, when Yit < mi1, we wri te 

Hence 

It then follows that 

{ 

+ ve for Yit 2:: m it 

- ve for Yil < 1n.if 

sgn(Yit - mit)· (3. 17) 

(3 .18) 
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yielding 

(3019) 

where 

with 

(3021 ) 

is the density of the repeated response Y ·it evaluated at the median m it . Hence the 

derivative in (3014) has the formula 

where 

with 

Consequently 

86(y; ~ mi) 
8{3' 

D ._ Om~ _ [f)m·il 8m.;t Om;T ] 
0 

.,, - 8(3 - 8{3 ' .. o, 8{3 ' .. o, 8{3 ° p x T 

8rn,;t 8(log2/ A;t) 
8(3 8{3 

86' (y; ~ Tn;) 

8{3 

(3022 ) 

(3023) 

(3024) 
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Turning back to (3 .13), we solve this estimating equation for f3 by using the Newton-

Raphson iterative equation 

where [.],. is computed by evaluating the quantity in [ ] using f3 = /J(T} 

3.2 GQL Estimation With Unknown Correlation 

Structure 

Note that the GQL estimating equation in (3.13) is quite general, even though we 

have computed f:i,t5 for this equation under the AR(1) model. More specifically, if the 

correlation structure for exponential data are known, one may attempt to compute 

the ~i,8 accordingly. However, because in practice one may not know the exact 

correlation structure, nome authors such at> Jung (1996) hat> used an unstructured 

correlation matrix and estimated pairwise correlations non-parametrically. But the 

performance of this approach was not adequately studied, for example, by comparing 

with any possible known parametric structure. As opposed to this type of 'working' 

unstructured correlation approach, there exist a GQL approach (Sutradhar (2003)) 

where it is assumed that t he data follow a class of autocorrelat ion structures that 

accommodates AR(1), l\IIA(1) and EQC types of correlations. But this and other 
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related studies were confined to longitudinal count and/or binary data. However , as 

explained in Chapter 2, because this auto-correlation class also holds for exponential 

data, it makes this GQL approach as a reasonable alternative est imation approach . In 

this thesis we consider the GQL approach for repeated exponential data and examine 

its performance wit h other approaches including Jung's QL approach . We also will 

consider a simple 'independence' assumption based 'working' GQL approach. For 

convenience, we summarize t hese three approaches as in the fo llowing sections. 

3.2.1 Jung's Approach 

To apply the QL estimating equation (1.11) , Jung (1996) has estimated the pairwise 

elements of f: i,o matrix in (3. 13) by estimating t he bivariate probabili ty of any two 

indicator variables using a distribution free moment approach. To be specific, the 

pairwise bivariate probabilities for 8(Y·iv ~ miv ) and 8(Yit ~ m it) have been non-

parametrically estimated by using the proport ion as 

[( 

L 8(Yiv ~ m ;v )(5(yu ~ m;t) 
- i= l Pr(Yiv ~ m iv, Yit ~ m a) = ______ ]\ ______ _ 

Thus, to construct f: .,.0 ma trix, one wri tes f:u = (aivt), where 

}( 

L 8(Yiv 2': miv )8(Yit 2': mit) 
·i= l CJivL = _;....__ ____ !< _ _ ___ _ 1 

4 

(3.26) 

(3.27) 
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The QL estimate of (3 is t hen obtained by solving ( 1.11) or equivalently using the 

iterative equation (3 .25), where Ei,o is computed by using (3.27). 

3.2.2 Lag-Correlation Approach 

Note that, when the repeated responses Yil , ... , YiT follow EAR(1), EMA(1) or EEQC 

structures, their correlations become lag dependent as in the Gaussian case. Thus, 

corr(Yiv, Yit) depends on lv - t i rather than individuals v, t = 1, .. . , T . For example, 

in the EAR(1) case corr(Yiv, Yit) = pit-vi , in EMA(1) case 

{ 

p(1 - p) if It- ui = 1 
corr(y.;t, Yi'!,) = 

0 otherwise. 

and in EEQC case corr(y;v,it) = p2
. All these correlations may be represented simply 

by Pit-vi· T hus irrespective of the correlation structure in such an au to-correlation 

class, one may use the auto-correlation matrix from (2.2) as 

1 PI P2 PT- 1 

P1 1 PT- 2 
(3.28) 

PT- l PT- 2 1 

When Ei,o computed using (3.28) is compared to the unstructured covariance matrix 

(3.27) used by Jung (1996), it is clear that Ci(P ) based E.i,o matrix requires fewer 
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elements. For the estimation of Pe ( e = 1, ... , T - 1), we use moment estimate as 

follows : 

[ 

K r-e 1] 
Pe = ~ 8 o(ya ;:::: rn;t., Yi ,tH ;:::: rn;,t+e )/ K (T - €) - 4 /(1/ 4). (3.29) 

Consequently, f: ;,o is computed as f: i,J = ~C; (p) , and /J is obtained by solving (3.13) 

or equivalent ly using the iterative equation (3.25). 

3.2.3 Using Indep endence among repeated responses 

In this case, the correlation index parameter p is assumed to be zero. Consequently, 

the pairwise bivariate probabilit ies for o(y;v ;:::: rn;v) and o(yit ;:::: rn;t) given in (3 .11), 

for example, reduce to 

1 P1·(y · > rn y · > rn·) = e->.;.,m;"e-A;(mit. = -
'l.V - '1.1;, t l - tl ~ 

4 
) (3.30) 

because the median m it = ~ under the exponential model. Applying (3.30) to (3.9), 

one obtains zero covariances or correlations, i.e, Q-ivt = 0. T hus, one may simply use 

- _ c . (~( )) _ A11zc- ( ) 112 _ 1 c- _ 1 . ( ) ( ) L:; ,c5 - ou u Yi ;:::: rn; - i ,c5 i,c5 p A;,6 - 4 i,c5 - 4Ir m 3.13 or 3.25 for the 

estimation of {3 . 



Chapter 4 

Simulations Based Empirical Study 

Note that when responses are asymmetric, the mean based regression estimates may 

be inefficient (Ba.'3sct t and Koenker (1978)) as compared to the median based regres­

sion estimates. For the purpose of obtaining efficient regression estimates, in Chapter 

3, we have discussed various median ba.'3ed GQL approaches constructed by using 

different forms and/ or estimates for the covariance matrix t i,<5 . As far as the mean 

based regression estimation is concerned in Chapter 2, we have discussed the GQL 

estimating equations approach for such an e.'timation for the regr ssion parameters. 

In this chapter , we conduct an extensive simulation study to compare all the above 

approaches for the estimation of the parameters involved in a regression model for 

longitudinal exponential (asymmetric) data. 
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4.1 Simulation Design 

For t he generation of the repeated responses Y.il , ... , Yit, ... , Yn· , we follow the EAR( 1) 

model (2.4) , i.e., 

Ya = PiYi,t- 1 + l itait i = 1, .. . , ]( ; t = 2, ... , T ( 4.1) 

where, { ait} is a sequence of exponent ial random variables with parameter Ait = 

exp( -x;,tf3), Pi = p \';~ 1 with p as a probability parameter or correlation parameter 

(0 ::::; p ::::; 1) and l it is an indicator variable such that l it ""' bin (1 - p). For our 

purposes , we choose 

• ]( = 100 individuals, T = 4 time points 

• Consider scalar /3 = 0.5, 0.7, 1.0 

• For covaria tes Xit , we assume that they are staionary, 1.e., they are not time 

dependent and consider 

where U(O, 1) denotes the Uniform distribu tion in the interval 0 to 1. 

• For correlation index parameter p, we choose p = 0.0 , 0.5 and 0.7. 
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4.2 Steps For Data Generation 

Step 1: Generate Yi1 such that Yi1 "' Exp(>.-il = exp( -x~ 1 ;3)) . Note that in general 

marginally Yit for all t = 1, ... ,Twill follow Exp(A.it) with 

f.(1'J·) =A· e- >.;tYa . . , 1.t zt 

Step 2: Generate ai1. fori= 1, ... , ]( ; t = 1, ... , T following 

Step 3: Generate indicator variable Ia ( i = 1, ... , K ; t = 1, ... , T) following binary 

distribution with probabili ty 1 - p. that is, for Iu we follow 

Ia "'bin(l - p). 

Step 4: Using ai2, Ii2 and Yi l , generated by following Steps 1 to 3, we generate Yi2 by 

using (4.1). Next using ai3 , Ii3 and Y,i2 , we generate Y i3 . T his continues until we 

generate Yit. for t = T. 

To have some feelings about the asymmetriness, we have used a selected set of pa-

rameters and with p = 0, and computed the averages of population means (pm) and 

medians (pmd) and sample means (sm) and medians (smd), and present them in the 

Table 4.1 below. 
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Table 4.1: Mean and median comparison for selected T, and for /3 = 0.5, p = 0.0 and 
f{ = 100 

Average of 
T pm pmd sm smd 
10 1.0993 0.7619 2.1182 2.0031 
50 1.0993 0.7619 2.4325 2.1621 
100 1.0993 0.7619 2.6528 2.3502 

In Table 4.1 , the difference between the average of the population medians and the 

average of the population means shows asymmetriness. But the degree of asymmetri-

ness does not appear to be high for this sel cted design. 

4.3 Simulation Results 

In this study, we have estimated the model parameters in 500 simulations using 

various combinations of the parameter values of /3 = 0.5, 0.7, & 1.0 and p = 0.0, 

0.5, & 0. 7. For the estimation of /3 , we first use the mean regression based GQL 

estimating equation (2.16) constructed by exploiting a class of auto-correlation mod-

els and deuote the estimate as GQL(AC) estimate, where AC stands for a general 

auto-correlation structure. ext, for the median regression based e t imation for /3, 

we use the GQL(TC) estimating equation (3.13) constructed by using t rue EAR(1) 

model, and three non-parametric correlation structures based estimating equations, 
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namely by using Jung's QL approach (JQL) from 3.2.1; lag-correlation (LC) based 

GQL (GQL(LC) ) from 3.2.2; and by using independence among repeated responses 

(IND) from 3.2.3. T he simulated means (SM), simulated standard errors (SSE) , simu-

lated mean square errors (SMSE), percentage effi ciency (E1 ) among median regression 

based approaches, and overall percentage efficiency (E2 ) as compared to mean regres-

sion based approach for the estimates of f3 are reported in Tables 4.2, 4.3 and 4.4 for 

p = 0.0 , 0.5 , and 0.7, respectively. 

Table 4.2: Comparison of mean regression and median regression approaches for the 
estimation of regression parameter (/3 = 0.5, 0.7, 1.0) involved in an EAR(1) model 
wi th a correlation value p = 0.0; based on 500 simulations. 

Statistic 
p f3 Regression Estimation Approach SM SSE SMSE EJ E2 

0.0 0.5 Median GQL(T C) 0.4993 0.0748 0.0056 100 52 
IND 0.4995 0.0745 0.0055 98 53 
JQL 0.4949 0.0839 0.0071 79 41 

GQL(LC) 0.4992 0.0754 0.0055 98 53 
Mean GQL(AC) 0.4968 0.0535 0.0029 100 

0.7 Median GQL(TC) 0.6993 0.0746 0.0056 100 52 
IND 0.6992 0.0744 0.0055 98 53 
JQL 0.6947 0.0843 0.0071 79 41 

GQL(LC) 0.6993 0.0753 0.0055 98 53 
Mean GQL(AC) 0.6968 0.0535 0.0029 100 

1.0 Median GQL(TC) 0.9994 0.0745 0.0055 100 52 
IND 0.9994 0.0745 0.0055 98 53 
JQL 0.9948 0.0841 0.0071 79 41 

GQL(LC) 0.9993 0.0752 0.0055 98 53 
Mean GQL(AC) 0.9968 0.0535 0.0029 100 
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Table 4.3: Comparison of mean regression and median regression approaches for the 
estimat ion of regression parameter (/3 = 0.5 , 0.7, 1.0) involved in an EAR(1) model 
with a correlation value p = 0.5; based on 500 simulations. 

Statistic 
p /3 Regression Estimation Approach SM SSE SMSE E1 E2 

0.5 0.5 Median GQL(TC) 0.5018 0.1003 0.0100 100 53 
IND 0.5021 0.0999 0.0100 100 53 
JQL 0.5014 0 .1125 0.0126 79 42 

GQL(LC) 0.5016 0 .1014 0.0102 98 52 
Mean GQL(AC) 0.5016 0.0726 0.0053 100 

0.7 ifcdian GQL(TC) 0.7016 0.1005 0.0100 100 53 
IND 0.7022 0.0999 0.0100 100 53 
JQL 0.7015 0.1124 0.0126 79 42 

GQL(LC) 0.7018 0.1014 0.0102 98 52 
rvrea.ll GQL(AC) 0.7016 0.0726 0.0053 100 

1.0 Median GQL(TC) 1.0019 0.1002 0.0100 100 53 
IND 1.0021 0.1002 0.0101 100 53 
JQL 1.0008 0.1127 0.0127 79 42 

GQL(LC) 1.0016 0.1013 0.0102 98 52 
Mean GQL(AC) 1.0016 0.0726 0.0053 100 
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Table 4.4: Comparison of mean regression and median regression approaches for the 
estimation of regression parameter ((3 = 0.5, 0.7, 1.0) involved in an EAR(1) model 
with a correlation value p = 0.7; based on 500 simulations. 

Statistic 
p (3 Regression Estimation Approach SM SSE SMSE E l E2 

0.7 0.5 Median GQL(TC) 0.5048 0.1148 0.0132 100 51 
IND 0.5055 0.1153 0.0133 99 50 
.JQL 0.4887 0.1784 0.0319 41 21 

GQL(LC) 0.5000 0.1190 0.0141 94 48 
Mean GQL(AC) 0.5054 0.0818 0.0067 100 

0.7 Median GQL(TC) 0.7047 0.1146 0.0132 100 51 
IND 0.7057 0.1155 0.0133 99 50 
.JQL 0.6890 0.1716 0.0295 45 23 

GQL(LC) 0.7053 0.1242 0.0154 86 44 
Mean GQL(AC) 0.7054 0.0818 0.0067 100 

1.0 Median GQL(TC) 1.0047 0.1147 0.0132 100 51 
IND 1.0056 0.1153 0.0133 99 50 
JQL 0.9848 0.2125 0.0454 29 15 

GQL(LC) 1.0015 0.1248 0.0155 85 43 
Mean GQL(AC) 1.0054 0.0818 0.0067 100 
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The results of Tables 4.2, 4.3 and 4.4 show that the median regression based 

estimating equation produces less efficient (in the sense of MSE) e t imates as com­

pared to the mean regression based estimating equation. This is because median 

based approaches when compared to the mean based approach produce estimates 

with E 2 < 100, where the efficiency E2 for a selected method (M), is defined as 

E2 (M) = {SMSE(Mean Based)}/{S:tviSE(M)} x 100. These results therefore do not 

appear to support the classical result (Bassett and Koenker (1978)) that a median 

based estimate may be preferable to the mean based estimate when data. are asym­

metric. This perhaps has happened because of the degree of a.symmetriness in the 

present exponential data which is not so strong as indicated earlier based on Table 

4.1. 

However, to fur ther explore the above contradiction, we have also generated asym­

metric exponential data, but forced a small percentage (1%) of observations to be 

mean shifted outliers , such that for these observations ii was first generated from 

U(0,1) and theu for 1% of them (ii) was shifted to i .; + 1.5. The mean and median 

regression based GQL estimates for these outliers oriented data are shown in Tables 

4.5, 4.6 and 4.7 for p = 0, 0.5, and 0.7, respectively. These results show that mean 

regression bas d GQL estimates are now biased when compared to the corresponding 

estimates obta ined in the outliers free case as in Tables 4.2, 4.3 and 4.4, whereas 



4.3 SIMULATION RESULTS 40 

the median regression based new estimates do not appear to be affected by outliers. 

This prompted us to compare the relative bias as opposed to ISE, for the mean 

and median regression based estimates. It is clear from the last columns of Tables 

4.5, 4.6 1'\,nd 4.7 thi'\,t mean regression based GQL estimates have much larger relative 

bias, for example in Table 4.7, 66.85% when j3 = 1.0 and p = 0.7, as compared to 

3.85% relative bias for the median based regression estimates. Thus, if the degree of 

a:symmetry is high which is caused here due to added outlier the median regression 

based approach appears to work better than the mean regression based approach. 
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Table 4.5: Comparison of mean regression and median regression approaches for the 
estimation of regression parameter (/3 = 0.5, 0.7, 1.0) involved in an EAR(1) model 
with a correlation value p = 0.0, in the presence of 1% outliers through shifted 
covariate values; based on 500 simulations. 

Statistic 
p /3 Regression Estimation Approach SM SSE SMSE RB 

0.0 0.5 Median GQL(TC) 0.5094 0.0761 0.0058 
IND 0.5094 0.0758 0.0057 
JQL 0.5062 0.0856 0.0073 7.3272 

GQL(LC) 0.5090 0.0769 0.0060 
Mean GQL(AC) 0.5147 0.0539 27.4021 

0.7 Ivied ian GQL(TC) 0.7126 0.0758 0.0059 
IND 0.7120 0.0756 0.0058 
.JQL 0.7089 0.0862 0.0075 10.3960 

GQL(LC) 0.7123 0.0769 0.0060 
Mean GQL(AC) 0.7258 0.0547 47.2810 

1.0 Median GQL(TC) 1.0162 0.0764 0.0061 
IND 1.0160 0.0764 0.0061 
JQL 1.0126 0.0864 0.0076 14.6391 

GQL(LC) 1.0159 0.0776 0.0062 
Mean GQL(AC) 1.0481 0.0570 84.3990 
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Table 4.6: Comparison of mean regression and median regression approaches for the 
estimation of regression parameter ({3 = 0.5, 0.7, 1.0) involved in an EAR(1) model 
with a. correlation value p = 0.5, in the presence of 1% outliers through shifted 
covariate values; based on 500 simulations. 

Statistic 
p {3 Regression Estimation Approach SM SSE SMSE RB 

0.5 0.5 Median GQL(TC) 0.5124 0.1023 0.0106 
IND 0.5130 0.1022 0.0106 
JQL 0.5127 0.1137 0.0131 11.2250 

GQL(LC) 0.5127 0.1034 0.0108 
Mean GQL(AC) 0.5194 0.0736 26.4000 

0.7 Median GQL(TC) 0.7152 0.1026 0.0107 
IND 0.7161 0.1024 0.0107 
JQL 0.7147 0.1153 0.0135 12.7520 

GQL(LC) 0.7155 0.1036 0.0109 
Mean GQL(AC) 0.7302 0.0750 40.2970 

1.0 Median GQL(TC) 1.0186 0.1039 0.0111 
IND 1.0195 0.1028 0.0109 
JQL 1.0189 0.1152 0.0136 16.3980 

GQL(LC) 1.0192 0.1037 0.0111 
Mean GQL(AC) 1.0515 0.0791 65.1340 
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Table 4. 7: Comparison of mean regression and median regression approaches for the 
estimation of regression parameter ({3 = 0.5 , 0.7, 1.0) involved in an EAR(1) model 
with a correlation value p = 0.7, in the presence of 1% outliers through shifted 
covariate values; based on 500 simulations. 

Statistic 
p (3 . Regression Estimation Approach SM SSE SMSE RB 

0.7 0.5 Median GQL(TC) 0.5174 0.1156 0.0136 
IND 0.5186 0.1169 0.0140 
JQL 0.5083 0.1428 0.0204 5.8304 

GQL(LC) 0.5104 0.1259 0.0159 
Mean GQL(AC) 0.5235 0.0818 28.7700 

0.7 Median GQL(TC) 0.7201 0.1162 0.0139 
IND 0.7211 0.1172 0.0141 
JQL 0.7007 0.1518 0.0230 0.5151 

GQL(LC) 0.7138 0.1304 0.0171 
Mean GQL(AC) 0.7342 0.0802 41.4510 

1.0 Median GQL(TC) 1.0319 0.1165 0.0146 
IND 1.0307 0.1171 0.0146 
JQL 1.0158 0.1529 0.0234 3.8451 

GQL(LC) 1.0316 0.1186 0.0151 
Mean GQL(AC) 1.0565 0.0845 66.8533 
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We now turn back to the results of Tables 4.2, 4.3 and 4.4 and compare the 

relative performance among the median regression based estimation approaches. All 

three approaches, namely I D, JQL, and GQL(LC) appear to produce unbiased 

regression e.timates similar to that of median based GQL(TC) estimates. However, 

when the standard errors of these three approaches are compared to the median 

based GQL(TC) approach, Jung's QL (JQL) approach appears to be less efficient as 

compared to the I D and GQL(LC) approaches. Between the last two approaches, 

that is , I D and GQL(LC) , IND appears to be slight ly more efficient. Thus, for the 

AR.(l) based exponential data, median regression based IND approach appears to be 

the best in producing efficient regression estimates and this approach is simpler as 

compared to the other approaches. 



Chapter 5 

Labor Pain Data Analysis : An 

Illustration of the estimation 

methods 

The labor pain data reported by Davis (1991) consists of repeated measurements of 

self-reported amount of pain on K = 83 women in labor, of which 43 were randomly 

assigned to a pain medication (treatment) group and 40 to a placebo group. At 

30-minute intervals , the amount of pain was marked on a 100 mm line, where 0 = 

no pain and 100 = extreme pain. The maximum number of measurements for each 

woman was 6, but there are some missing values at later measurement times. The 
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observed data under t reatment and placebo groups are displayed in Figures 5.1 and 

5.2, respectively. 

Time 1 Time 2 Time 3 
20 16 

1& r---------------~ 

15 12 

10 8 

5 4 

>. 
(.) 

c: 0 0 I),) 

& 0 20 40 60 80 100 0 20 40 60 80 0 10 20 30 40 50 60 70 
I),) 

Time4 Time 5 1-< 
li-. 1& 

8 

Time 6 
-

12 6 
r-

8 4 

r- r--
4 2 

-
rT m 

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 

Figure 5.1: Labor pain observed data for treatment group 
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Figure 5.2: Labor pain observed data for placebo group 

It appears from Figure 5.1 that under the treatment group, the labor pain at 

any given time (t = 1, .. . ,6) have an exponential form, whereas the marginal observed 

distributions at different times under the placebo group do not tend to follow the 

same distribution. 
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Note tha t to understand the effect of t imes on the labor pain, Jung (1996, Sec-

tion 6), for example, fitted a linear median regression model with errors having zero 

median. To be specific, Jung (1996) has fit ted a model Yit = /30 + {32t + Eit for the 

treatment group, and obtained ;30= 4.36 and ;32= 1.37 by using pairwise correlation 

estimates based QL approach (.JQL). In order to see how these estimates or model 

fi t the observed data in Figure 5.1, we have generated f.i1 from uniform distribution 

U( -~ , 4) [to keep the distribution at median to be uniform as suggested by Jung 

(1996)] and estimated Ya as fli t = {30 + ;32 t +f.-it. T he fi tted data. for t his t reatment 

group are displayed in Figure 5.3. 
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Figure 5.3: Linear median regression based fit ted labor pain data for the treatment 
group with U( -~, ~ ) error 

It is however clear that the histogram in Figure 5.3 do not exhibit the exponential 

form exhibi ted hy F igure 5.1. Thus, even though JQL approach fi ts the median well, 

the overall distribution fitting appears to be unsatisfactory. ote that if the inference 

procedure fi ts t he original distribution well , one may est imate other quantiles as well 
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if needed. 

For the aforementioned reason, we have re-analysed the data set using correlated 

exponential model given in Chapter 2. Note that when we have compared the IND, 

JQL and GQL(LC) approaches to the true model based GQL(TC) through a sim-

ulation study in Chapter 4, it was found that IND followed by GQL(LC) produce 

more efficient regression estimates. As shown in Tables 4.2, 4.3, and 4.4, among 

all approaches, .Jung's (1996) QL approach was the worst as it produces more bias 

estimates along with large standard errors. For this reason, we have fi t ted IND, 

GQL(LC) and GQL(TC) approaches to this data set. Because our main concern is 

to see t he effect of times in treatment group, we have fitted the exponential model, 

:Uit = Pi :Ui ,t-1 + Iitail following (2.4) with median mit=(log2) exp((30 + (31 t ). The pa-

rameter estimates along with their estimated standard errors (shown in parenthesis) 

under these three approaches were found to be 

f3o !31 p 

GQL(TC) 2.161(0.136) 0. 138(0.034) 0.746 

IND 2.208(0.114) 0.109(0.032) 

GQL(LC) 1. 799(0.118) 0.179(0.019) 0.785 

and as displayed in Figure 5.4, the fitted medians by these three approaches appear 

to agree well with the medians of the observed data (OBS) . 
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Figure 5.4: Observed versus various model based fitted medians for the treatment 
group 

These approaches also appear to fit the over all data well. For example, using 

above rnentioned /30 , /31 in m i1= (log2) exp (,B0 + ,B1t) and p under both GQL(TC) and 

GQL(LC) approaches, when Y ·it were generated following the exponential distribution 

with m edian m-;1 , t hey produce the d istributions as in Figures 5 .5 and 5.6 , resp ectively. 
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These dist ribut ions appear to agree well with seemingly exponential distribution for 

the observed data d isplayed in Figure 5.1. 
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Figure 5.5: Exponential median regression based fitted labor pain data for the treat­
ment group under GQL(TC) 
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Figure 5.6: Exponential median regression based fitted labor pain data for the t reat­
ment group under GQL(LC) 

We also have estimated the parameters of the exponential model (2.4) using the 

mean regression based GQL(AC) approach. The parameter estimates along with the 

estimated standard errors under this approach were found to be {10 = 2.549(0.194), /l1 

= 0.129(0.051) and p = 0.741. These estimates including correlation estimate appear 
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to be closer to the true model based GQL(TC) estimates but with larger standard 

errors for the regression estimates. The pattern of these standard errors to be different 

for this data set when compared to the simulation results reported in Tables 4.2, 4.3, 

and 4.4. However, in view of the simulation results reported in Tables 4.5, 4.6, and 

4. 7 and because the observed data are highly asymmetric, the median based estimates 

are preferable to the mean based estimates. 



Chapter 6 

Concluding Remarks 

In a regression setup for repeated asymmetric data such as exponential data, there 

exists a pair-wise correlation structure (semi-parametric) based median regression QL 

approach (Jung (1996)) for the estimation of the regression effects. In this thesis , by 

using an AR(1 ) type correlation model for repeated exponential data, we have exam­

ined the performance of the simpler mean based GQL approach wit h several median 

based GQL approaches. The results of a simulation study indicates that the mean 

regression based GQL approach performs better than all median regression based QL 

approaches. This contradicts the classical result (Bassett and Koenker (1978) ) that 

a median regression approach should be preferable to the mean regression based ap­

proach when the data are asymmetric. However, when the repeated exponential data 
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were contaminated through 1% outliers, the performances were reversed , that is, me­

dian regression based QL approaches were found to be better than the mean regression 

based QL approach. Thus, the study indicates that if the data are highly asymmetric 

then one should use median regression based approaches. Furthermore, when median 

regression based approach were compared among themselves (as opposed to mean 

regression based approach), it was found that independence assumption based QL 

approach performs better than the other competitive median based GQL approaches. 



Appendix A 

A.l D erivation for Joint P robability in (3.10) 

Following Hasan (2004, Section 4. 1.1, p. 59), we first consider lag 1 apart repeated 

responses Yiv and Yi(v+ I), where ?Jiv and Y i(v+ J) must satisfy t he relationship Yi(v+ J) ~ 

Pv+JYiv · Note that m.i (v+ l ) (a realized value of the random variable Yi(v+l ) )) can be 

eit her m i(v+l ) > Pv+ l Yiv or mi(v+ I ) :S: P u+ IYiv· T herefore t he bivaria te probability 

function of Y iv and Yi(u+ l ) may be computed as follows: 

(A.1) 
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where f(Yiv, 7/i(v+ l ) ) is the bivariate probability density function of lag 1 apart non-

stationary repeated responses Yiv and Yi(u+ ,), which has the form 

). - >.;,.y;, J:( ) iuPe U Yi(v+l ) - Pv+lYiv 

where 6(:~:) is the discrete Dirac delta. function, i.e. fJ(x) is the distribution with atom 

of probabili ty 1 at :~: = 0. 

The lower limit of t he integration with respect to Yi(v+ I) should be the maximum of 

mi(v+l ) a.nd Pu+ IYiv· It then follows that 

j. ;· J'(:IJiv, Yi(v+l)) dyivdYi(v+1 ) 
ll"liv • rnax(rnt(1.'+ 1), Pv+lY·iu) 

in,, H (y;v)dYiv (say) . (A.3) 

Note that there are two cases to consider to evaluate the integral H(Yiu) in (A.3) : (a) 

m i(v+ I) > P11+IY.iv and (b) m i(v+ I) :::; Pv+ IY·iv · For case (a) m i(u+ l) > Pv+lViv, H (Y·iv) is 
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computed as 

I oo f(Y·iv, Y.i (v+l) ) dyi(v+ l ) 
1n i( v+l) 

100 

[AivPe -AiuYiuc)(yi(v+1) - Pv+ l Y.iv) 

m i(v+ I) 

1oo AivAi(v+1)(1- p )e- >.;, y;,e->.i(u+ I) (Y;(v+l)- Pu+I Yi•J)dyi(v+ l) 

m ;,(v+ L) 

[as c5(Yi(v+ l)- P.v+lYiv) = 0 for mi(v+l ) > Pv+lYiv] 

A (1 - p)e->..;,(1- p )y;" e - >.;(,+ J)m ;(,+ ll 
w ' 

whereas for case (b) m ·i(v+l ) :::; Pv+IYiv, H(y;v ) is computed as 

/

00 

A ;v p e->.;.,y;, c5 ( y i(v+ l ) - Pv+ IY iv)dYi(v+ l ) 

• Pv+ IYiv 

+ roo Aiv Ai (·u+ l )(1 - p)e->.;,.y;,.e-Ai(v+l) (Y;(,+I)-Pv+IYiv )dy i(v+l) 

} Pu+ IY'iv 

59 

(A.4) 

AivPe-AivYiv + roo Aiv Ai(v+l)(l - p)e-AiuYive- Ai(v+l) (Yi(v+ l)-Pv+I Yiv )dyi(v+l) 

} Pv+ !Y1v 

[as c5(Yi (v+ t) - Pv+ l Y iv ) = 1 for m i (v+ l ) :::; Pv+ l Yiv] 

\ . e - AiuYiv 
A zv ' (A.5) 
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yielding 

for mi(v+l) > Pv+lYiv 
(A.6) 

for mi(v+ l ) :S: Pv+lYiv 

Next, by using the above formula for H (Yiv) in (A.6) we evaluate the remaining 

integral in (A.3) over m iv as follows. For case (a) mi(v+l ) > Pv+ lmiv , the integral in 

(A.3) is evaluated as 

(A .7) 

whereas for case (b) mi(v+ l ) ::; Pv+l m iv , we evaluate the integral in (A.3) as 

/

·00 

A e-Ai uYiv dy · 
'LV • 'LV 

• 1Hiu 

(A.8) 

It then follows that the bivariate probability function of :Yiv and :Yi(v+l) has the form 

given by 

for 

for 
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Similarly, after some algebra it can be shown that the bivariate probability function 

of lag 2 apart repeated responses Yiv and Yi(v+2) is 

for rni(u+2) ::; Pv+2Pv+Lmiv 
(A. lO) 

for ffii(v+2} > Pv+2Pv+ l m iv 

Following (A.9) and (A.lO), it can be shown that t he bivariate probability function 

of la.g _j a.pmt repca.ted responses Yiv and Y·i(v+i) is 

{ 

e- .>. ,.,., ,. 

Pr(y;, ~ m;,, Y·i(v+j) ~ m;( v+J ) ) = 
e-.x ,<" .... 1 > 111.,< "+J> e-A, u ( 1- p' )1n. , u 

for m ;(.,+j) :<:; Pu+j Pu+j - I·· ·Pu+ lmiu 
(A.ll ) 

for 1n;(v+j) > Pv+j Pu+.i - I .. ·Pv+ l rniu 
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