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Abstract

Multivariate statistical methods are widely used in process operations for predict-
ing unmcasured quality, and detection and diagnosis of faults. Performance of these
monitoring tools greatly depends on selecting the right set of variables as input to the
tools. In a tvpical chemical process on average 1500 variables are logged. Sclection
of appropriate input variables from these large set of variables is a daunting task.
This thesis investigates the application of retrospective Taguchi method in selecting
input variables for multivariate statistical monitoring tools. Taguchi’s design of ex-
periment (DoE) approach has been widely used in industrial process design, primarily
in manufacturing industries for optimizing process paranieters. Instead of relying on
an arbitrary selection of levels, experiments are conducted following an orthogonal
array as determined by the Taguchi method. In the current research, the method is
adapted for selecting important input variables for process monitoring tools, namely,
support vector regression (SVR) and principal component analysis {PCA). Taguchi’s
DoE assumes that variables are uncorrelated which is contrarv to process data. Pro-
cess variables are highly correlated and show dynamic variations due to the frequent
changes made in the set points causing difficulty to select data to match the orthog-
onal array of the Taguchi method. These implementation difficulties were addressed
in the proposed methodology. Retrospective Taguchi method was adapted for deal-

ing with process data. Additional data preprocessing and correlation analysis steps
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were proposed to condition process data for Taguchi method. Detailed methodologies

to apply Taguchi method to select input variables for SVR and PCA are described
in the thesis. The methodologies were demonstrated using industrial data from a
petrochemical process and a hydrometallurgy process respectively. The performance
of the proposed Taguchi based method was compared with variable importance in
projection (VIP) method. The industrial case studies clearly show that the proposed
methodology can minimize the computational efforts in variable selection and it can

improve the performance of the monitoring tools.
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Chapter 1

Introduction

1.1 Importance of variable selection

Multivariate statistical methods are widely used in process industries for monitoring
purposes. On an average, about 1500 variables are logged at anytime in a process. Due
to the sheer number of variables, it is difficult to select the most relevant variables
for any application. Process knowledge is typically used to select input variables.
However, often limited process knowledge is available to the application developer
and has to relv on statistical packages to complement process knowledge.

It is 'al.ways a challenge to decide which variables should be included in a model
to achieve the best performance [Abrahamsson et al., 2003]. Today, variable selec-
tion procedures are an integral part of virtually all widely used statistics packages
[George, 2000]. The main objective of variable selection methods for monitoring tools
is to have a concise model that can improve the prediction & fault detection perfor-
mance of the monitoring tool. The major concern with multivariate methods is the
high probability of over-fitting, which is aggravated when the number of variables is

large. Recently, support vector regression (SVR) is gaining much attention as an in-




ferential predictor due to its ability to capture process non-linearity. However, SVR is

a computationally intensive method. A concise model can cut down the development
time and make online implementation easier. Principal component analysis (PCA) is
a widely used fault detection and diagnosis tool in process industry. The performance
of a PCA based fault detection & diagnosis tool depends largely on the selection of
right kind of input variables. It is important to select those variables that bear the
fault signatures in the process. A concise list of variables also facilitates identification
of the root cause of fault. Both SVR and PCA do not have any built-in method to se-
lect input variables. Developers mainly rely on process knowledge, and trial and error
to select input variables. Therefore, it is important to develop systematic methods to

select input variables for these monitoring tools.

1.2 Objectives of the Current Study

This research is aimed at developing an input variable selection methodology for an
SVR inferential predictor and PCA.

The following objectives are set for the current study:

e Adapt Taguchi’s experimental design method for dealing with correlated process

data.

e Develop a comprehensive input variable selection methodology for a SVR infer-

ential predictor.

e Apply SVR along with the variable selection method to build an inferential
predictor for predicting the quality variable (4CBA) of a Purified Terephthalic
Acid (PTA) process.

e Develop a comprehensive variable selection methodology for PCA.



e Apply PCA along with the proposed variable selection method to build fault

detection models for Leach Residue Thickener (LRT), CCD 1 Thickener and

CCD 2 Thickener of a nickel hydromet process.

1.3 Thesis Organization

The first chapter of this thesis briefly describes the motivations for this rescarch in
the context of the importance of variable selection and the objectives of the study.

Chapter 2 covers an extensive review of literature on existing variable selection
methods. A brief introduction of Taguchi’s experimental design method, and variable
selection in SVR and PCA are also described.

Chapter 3 describes the input variable selection methodology for an inferential
predictor using support vector regression (SVR). The methodology is demonstrated
through a case study from a petrochemical process. Prediction performance is com-
pared with the partial least square (PLS) and the variable importance in projection
(VIP) method.

Chapter 4 is devoted to describing the input variable selection methodology for
an inferential predictor from a large set of correlated variables. The methodology is
demonstrated through the same case study used in Chapter 3.

Chapter 5 describes the methodology of variable selection for PCA. The method-
ology is demonstrated by developing fault detection models for the leach residue
thickener (LRT), counter current decantation (CCD) 1 thickener and counter cur-
rent decantation (CCD) 2 thickener of a nickel-hydromet process. The root causes
of the faults are discussed through contribution and trend plots. The effectiveness of
variable selection is also demonstrated through a comparison study.

Chapter 6 briefly outlines the concluding remarks with a summary of useful



findings. Recommendations for future work are also provided.



Chapter 2

Literature Review

2.1 Classification of variable selection methods

Subscts of variables can be sclected in two forms: (a) feature or input variable se-
lection, and (b) feature or input variable extraction. The feature selection method
basically selects subsets of original variables. Application of filter-based feature se-
lection niethodology in classification problems using Least-Squares Support Vector
Machines can be found in [Herrera et al., 2006],[Rossi et al., 2006]. Alternatively, in
the feature extraction method, subsets of variables are extracted by linear or nonlin-
ear transformations of the original ones. Principal component analysis is a popular
feature extraction method where principal components are extracted as a linear rela-
tionship of the original input variables. Subsequently, only the major PCs are used
for further analysis. Application of feature extraction using PCA in the context of
Artificial Neural Network (ANNs) can be found in [Jalali-Heravi et al., 2007]. Feature
extraction can reduce the number of variables by grouping correlated variables.
Comimon variable selection methods for multivariate data analysis can be grouped

into two categories: filter methods and wrapper methods [Pierna et al., 2009]. Filter




methods utilize an indirect estimator to measure the prediction ability of the selected

subsets of input variables. Alternatively, wrapper methods directly utilize the mul-

tivariate method of interest to measure the prediction performance. In the following

subsections, these two variable selection methods will be deseribed in detail.

2.1.1 Wrapper methods

Classical wrapper methods are based on sequential techniques to eliminate variables.
The process starts by choosing a subset of variables from the input variables. A regres-
sion model is subsequently built using that subset to predict the response variables.
Cross validation is performed, and the root mean square error of cross validation (RM-
SECV) or prediction (RMSEP) is used as a criterion to evaluate the subset. Wrapper
methods directly measure the generalization ability of the subset of input variables
using the learning algorithm of interest. For example, for the selection of important
variables for a PLS model, the model itself can be used as a regression model to quan-
tify the prediction ability of the selected subset. The subset that provides the best
prediction performance is selected as the final model. The selection of variables can
use a forward selection technique, a backward selection technique or a combination of
both.

Forward sclection methods start with a single variable, and then variables arce
added one at a time. After each addition, a model is built to evaluate the performance.
The main drawback of forward sclection is that it produces weaker subsets at the initial
stage. As a result, the importance of a certain variable is not assessed in the context
of other variables which arc not yet included in the modecl.

Backward selection is the opposite of forward selection, which starts with all the
variables, and, subscquently, variables are removed to sce the performance. Backward

variable selection method for partial least square (PLS) can be found in [Pierna et al.,




2009]. The first step is to fit a model with all the variables. In the subsequent steps,

onc variable is dropped at a tinme and a new model is constructed using a training
data set. The new model is applied to a test data set to see the performance in terms
of RMSEP. If the RMSEP of the new model is found to be less than the previous one,
it indicates that the variable, which is left out, is not siguificant in terms of prediction,
and thereby, is removed. The procedure is repeated n (number of variables) times
by successively re-fitting reduced models. The final model is constructed with the
variables which give the minimum RMSEP. In the backward elimination method,
there might be a situation in which the variable, which is removed at an early stage,
may have a significant effect when added to the final reduced models [Pierna et al.,
2009].

Iterative PLS (IPLS) is an example of a wrapper-based variable sclection method
which combines both backward and forward steps. It initially starts with a small
number of variables, and, subsequently, new variables are added to the list or removed
from the list based on the improvement of the model. The initial variable selection
is done randomly and a PLS model is built using the selected variables followed by
evaluation using cross validation. In the next step, a variable is added or withdrawn
from the modcl randomly, and a new PLS model is built and cvaluated by cross
validation. If RMSE of the new cross validation is lower than the original, the new
sct of variables replaces the original. The algorithm is terminated when every variable
is tested atleast once without providing any improvements [Osborne et al., 1997].

In the recent past, extensive rescarch has been done to use genctic algorithm
(GA) for variable selection. GA is an optimization method applied to identify a subset
of the measured variables that provides the lowest RMSECYV for the target regression
model. Details of GA algorithm for variable selection in PLS regression can be found

in [Wisc ct al., 2007]. The algorithm has several steps. The first step of the GA



is to generate several subsets of randomly selected variables. The pool of all these
subsets is termed as population. Each subset of variables in the population is called
an individual. Each variable entered in a subset is converted to a binary number,
and this binary structure is termed gene. A regression model is built for each subset
(individual) and RMSECYV is calculated, which is considered as a fitness value for each
individual. The median of fitness values is considered as a threshold for the selection
of an individual. In the second step, the individuals with fitness greater than the
median fitness values are retained and all others are discarded. In the third step, the
GA breeds between the retained individuals to replace the discarded variables. The
genes from two random individuals are split at some random points in the gene. The
first part of the gene from the first individual is swapped with the first part of the gene
from the second individual, thus it produces two new individuals of hybrid variables.
All the new subsets created in the breeding stage are added to the population. In
the next stage all the subsets’ genes are given a chance for random mutation. After
all the subsets have been paired and bred, the population returns to its original size
and the process returns again to the fitness evaluation step. The GA will terminate
after a finite number of iterations or after some percentage of the individuals in the
population arc using identical variable subsets [Andersen and Bro, 2010].

The major concern with the application of GA is over fitting, which can lead to
improper prediction [Leardi et al., 2002]. In situations where the variables, especially
the output variables, are very noisy, the number of samples are very small, or the
variables to objects ratio is very high, GA may model the noise instead of information
[Leardi and Lupianez Gonzalez, 1998]. Another problem with the GA is that it
generates very few variables which explore a very small part of the domain. One has
to make several runs to extract the final list of variables. The final model is selected

using a step wise approach wherce the variables are selccted based on the frequency



of selection of each variable in all the runs [Leardi and Lupianez Gonzalez, 1998].

Application of GA for the feature selection of PLS in spectral data sets is reported
by [Leardi, 2000].

The major limitation of the wrapper approach is that it uses the same target
model to select the variables. These methods do not consider the different levels of
operation explicitly; therefore, they do not give information on the range of operation,
and there is a risk that model may be built only using data from a narrow operating
range. A model developed using a certain range of operation data may not work when

the process is operated at a different range.

2.1.2 Filter methods

Filter mnethods use an indirect estimator which solely relies on the properties of the
data. These methods are usually used at the pre-processing stage to screen the im-
portant variables. For example, the correlation coeflicient or signal-to-noise-ratio can
be used as a ranking criterion to measure the input-output relationship. Based on the
criterion, variables are ranked for selection. This essentially improves the prediction
ability and reduces the inclusion of redundant variables.

Variable importance in projection (VIP) is an example of a filter-based method
used for PLS, where VIP value provides a combined measure of contribution of a
variable in X block in describing the dependent variable in Y block. A VIP value
smaller than 1 indicates a non-important variable which can be removed. The main
advantage of the VIP method is that it is able to select variables that are important
not only for predicting Y, but also for describing X [Andersen and Bro, 2010].

[Hoskuldsson, 2001] proposed a filter-based variable selection method for PLS
regression based on correlation cocfficient and data intervals. In this approach, first,

the squared correlation coefficient for each variable is calculated with the response
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variable. Based on the results, the variables showing high correlation are selected.
Then, the sample intervals, for which these variables show good results, are selected
as training data to build the final model. The method thus selects both variables and
the data range for the model.

Filter methods have some advantages over wrapper methods. The main advan-
tage is that the target model is not used during the variable selection process, and
thereby, has no influence on the variable selection. As a result, they can be used as
a completely separate preliminary step, and give additional confirmation on variable
selection. Based on the ranking of the variables, the selected important variables can
be used to build the final target model,

Many prediction and monitoring algorithins utilize filter-based variable ranking
as a principal or auxiliary selection mechanism because of its simplicity, scalability and
good empirical success [Guyon and Elisseeff, 2003]. The main advantage of the filter
method is that it deals solely with the properties of data that will be used for building
the model. Data quality severely affects all data-based methods. If the data contain
noise, it deteriorates the prediction performance. As such, it is always a good idea to
select variables which have high signal to noise ratio. Taguchi’s experimental design
mcthod is a systematic quantitative method which can be used to calculate the signal-
to-noise-ratio. The main advantage of Taguchi method is that it allows for the analysis
of many different paramcters without having a high amount of experimentation. Also,
it is straight forward and easy to apply to many engineering situation. In the following

scction, the method will be deseribed in detail.

2.1.2.1 Taguchi experimental design method

The Taguchi experimental design method is a powerful statistical design approach

developed by Dr. Genichi Taguchi for improving product quality and process by re-
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ducing variability in the process [Antony and Antony, 2001]. The main objective of
this method is to determine the optimal values for factors of a process which have high
influence on process improvement. The chosen factors are arranged in an orthogonal
array for experimental analysis to determine the signal-to-noise-ratio. Orthogonal ar-
rays are designed to compute the main interaction effects of the factors with the use
of a minimum number of experimental trials.

Successful application of the Taguchi method in the automotive, plastics, semi-
conductors, metal fabrication and foundry industries can be found in [Rowlands et al.,
2000]. Improvement in process yield in a chemical process using the method is re-
ported by [Antony and Antony, 2001]. Selection of an optimal set of design param-
cters to achieve fast convergence speed and network accuracy of a neural network
model is described in [Khaw et al., 1995]. Application of Taguchi method in tuning
parameters (I{,, ;. Kp) of a PID controller based on performance index (Integral-
Squarred-Error) is reported in [Vlachogiannis and Roy, 2005].

Taguchi experiments are usually conducted on the actual process facilities, rather
than in a laboratory situation, which may lead to plant shut-down, and are often un-
econonical or impractical specially for a large chemical process [Sukthomya and Tan-
nock, 2005]. However, this situation can be avoided using the retrospective Taguchi
method which is based on historical process data. [Sukthomya and Tannock, 2005
uscd the retrospective Taguchi approach to determine important process paramecters
of the superplastic forming (SPF') process which creates a design-specified fan blade
for an aircraft enginc. The maximum acrofoil thickness of the finished blade was
considered as the target output of the process. The application of the retrospec-
tive Taguchi method was carried out in two different ways. The first approach used
a matched data-set for each experiment in the orthogonal array from the historical

databasc. The corresponding acrofoil thickness for that data-set was considered as
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the output of the experiinent. In the second approach, a neural network model was
trained using the retrospective data of the parameters. The network was then used
for Taguchi experimentation to emulate the response of the SPF process using the
same experimental design set in the array. Finally, based on the signal-to-noise ra-
tio, important parameters for the SPF process that affect the quality of the blade in
terms of thickness were selected. For the first method, it is often difficult to fill the
orthogonal array using historical data; while the second method can overcome this
difliculty as it requires additional work of building a NN model, and the performance

of the method will depend largely on the prediction ability of NN model.

2.1.3 Variable selection in SVR

[Rakotomamonjy, 2003] utilizes an idea similar to wrapper based backward selection
to rank variables in classilication problems. The algorithm starts with all features
and repeatedly removes a feature until r features are left or all variables have heen
ranked. The ranking criteria is derived from support vector machines, and are based
on weight vector ||w||* or generalization error bounds sensitivity with respect to a
variable. After the removal of a feature, if it minimizes the generalization error, the
feature is treated as non-significant, and is thereby removed from the model. In
machince learning algorithm like support vector regression (SVR), although variable
selection using the wrapper method can be a good alternative to evaluate the selected
subsct of input variables, it requires a high computational cost [Hand ct al., 2000].
For SVR, variable selection can help in reducing dimension. Lowering dimension
is important for cascs where training data is small. It also improves genceralization
errors, as irrelevant features cause the performance to deteriorate. Finally, the compu-
tational cost, which is a critical factor for online application, will be reduced [Weston

et al., 2001]. Feature selection for support vector machines using backward or forward
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selection methods are expensive to compute and are time consuming [Weston et al.,
2001].

In the case of data having redundant variables, the wrapper method may create
different subsets of variables with identical predictive power |Guyon and Elisseeff,
2003]. Therefore, there is a need for the development of new variable selection methods
that can deal with correlated data, and give a clear decision on input variables without

being computationally too expensive.

2.1.4 Variable selection in PCA

Principal component analysis (PCA) is a dimensionality reduction technique widely
used in process mouitoring. Even though PCA can handle large data sets, it also
suffers fromn the curse of over fitting and other application difficulties discussed earlier.
The need to develop a concise model using PCA is stressed in [Iintiaz et al., 2007].
For a paper mill application, they mainly used process knowledge & signal quality to
select variables.

PCA treats the data svmmetrically, and it does not divide the data matrix into
input and output blocks. For a fault detection model using PCA, it is necessary to
select those variables which bear fault signatures. In cases where there is no output,
one still needs to sclect significant variables with respeet to a defined eriterion. This
is called unsupervised variable selection [Guyon and Elisseeff, 2003]. Therefore, the
challenge for variable sclection in PCA is two-fold. First, a suitable output for the
PCA miodel that can be used for ranking the variables is needed, and, second, a
consistent methodology to calculate the contribution of cach variable on the output

should be developed.



Chapter 3

Variable selection for inferential
predictor using retrospective

Taguchi method

3.1 Introduction

Inferential predictors or soft sensors are a valuable tool for inferring difficult-to-
measure product qualities from real-time process measurements. A key issue in in-
ferential predictor design is the selection of input variables that have the greatest
influence on the prediction. This minimizes the complexity of the model and, accord-
ing to the principle of parsimony, the simplest model that can explain the data well
is preferred. Also, from a practical point of view, a concise modecl is desirable because
having a large number of variables in the predictor will iucrease the probability of
bad values in the input variables, which may adversely affect the model’s prediction
ability. The thesis proposes a new approach for variable selection based on Taguchi’s

cxperimental design method. Taguchi (1986) introduced a simplified design of exper-
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iment (DoE) approach using an orthogonal array. The method has been widely used

in industrial process design, primarily in the development of trials to generate enough

process information to establish the optimal conditions for a particular process while

keeping the number of experiments to a minimum [Cobb and Clarkson, 1994]. Instead
of relying on an arbitrary selection of levels, experiments are conducted following an
orthogonal array, as suggested by Taguchi. The method works best at the initial de-
sign stage or when experiments can be carried out without upsetting the process. In
many systenms, conducting experiments is either too costly or siniplv not possible. An
alternative to experimentation is to carry out the analysis using historical data, which
is known as the retrospective Taguchi method [Khoei et al., 2002]. The retrospective
Taguchi method has been used primarily for selecting important optimizing param-
eters in the manufacturing industry. In the current research, the method is adapted
for selecting important input variables for inferential predictors in the process plant.

The core of the retrospective Taguchi method is to fill in the orthogonal array
using historical data. It is often difficult to fill in the orthogonal array using historical
process data for several reasons. First, chemical processes are dynamic systems; op-
erators make frequent adjustments to set points whose effects are felt in the process
for an extended period of time. Sccond, processes are typically operated at a narrow
range, as such data is not available at all levels. Third, a high degree of correlation be-
tween variables is observed in historical process data because of the correlated moves
made by the operators. For example, if the feed rate in a reactor goes up, the op-
crator will typically adjust the reactor level in order to maintain the same residence
time. Therefore, it will be difficult to find data with a high feed flow rate and low
rcactor level. The proposed methodology sccks to overcome these challenges.

The modified retrospective Taguchi variable selection method has been used

in combination with support vector regression (SVR) for developing an inferential
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predictor. SVR is a nonlinear regression method that maps the nounlinear data to a
high-dimensional feature space where linear regression is performed. The performance
of the proposed retrospective Taguchi variable selection method is compared with the

variable importance in projection (VIP) method, which is a variable selection method

based on Partial Least Squares (PLS), introduced by Eriksson et al. [Eriksson et al.,

2001].

The chapter is divided into the following sections. A brief review of the theoreti-
cal framework of the SVR method is given in Section 3.2. Section 3.3 describes in detail
the modified retrospective Taguchi method, while Section 3.4 explains the method-
ology through an industrial case study. The effectiveness of the proposed method in
variable selection for SVR is presented in Section 3.5. Finally, Section 3.6 identifies

key conclusions.

3.2 Support Vector Regression

Support vector machine is a supervised learning method that can be used for nonlin-
ear regression. The main feature of the SVR methodology is that it possesses good
generalization ability of the regression function, robustness of the solution, sparseness
of the regression, and an automatic control of the solution complexity [Desai et al.,
2006]. The original SVM algorithm was invented by Vladimir N. Vapnik and the cur-
rent standard soft margin was proposed by Cortes and Vapnik [Cortes and Vapnik,
1995]. Later, a version of SVM for regression known as e-support vector regression (e-
SVR) was proposed by Drucker et al. [Drucker et al., 1997]. In SVR the lower dimen-
sional input space (&) is transformed into a high-dimensional feature space, F, via a
nonlinear mapping and provides an output which is a linear function of the weights

and the kernels. The process is carried out by mapping the input data into higher di-

-



mecnsional feature space using the kernel trick; a linear regression is then performed in

this feature space. The basic characteristic of SVR, which makes it unique from other
methods, is that it follows the structural risk minimization (SRM) technique, when
other conventional methods follow empirical risk minimization (ERM). ERM does
not guarantec a good gencralization performance with the resultant model, as it only
minimizes error on the training data, while SRM minimizes an upper bound on the
expected risk. The SRM feature generalizes the input-output relationship during its
training phase and produces an optimized model in such a way that both the pre-
diction error and model complexity are minimized simultaneously. In the following

section the mechanism of e-SVR will be described in detail.

3.2.1 Algorithm of s~-Support Vector Regression

Consider a set of training data points, [(w1,y1), - (wi, i) -+, (e, y)], where z; €
R>" is a feature vector and y; € R! is the target output. The objective is to find a
function, f(z) (Figure 3.1), that has maximum e deviation from the targets y; for all
training data and at the sante time remains as flat as possible. That means, as long
as the error is within ¢, which is termed an s-insensitive zone, there is no effort to fit
these variations by function, because this e-insensitive zone should ideally contain the

noisce in the data. The SVR methodology considers the following estimation function

fz)=wlé(x)+ b (3.1)

where w denotes the weight vector, b is a constant; ¢(x) denotes a function termed
feature, and w.¢(x) denotes the dot product in the fecature space, F, such that

¢:r— F,w € F. The flatness can be achieved by seeking a small w.
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Under given parameters of the cost function (measuring empirical risk), C' > 0

and € > 0, the standard error function of SVR is

1 l {
min{w,b,&,&} —= §wTw +(C> &+C> &) (3.2)
i—1 i=1
subject to
who(e) +b—y: <e+& (3.3a)
yi —w () —b<et+ & (3.3b)
Ei,f; >0, 0=1----- al' (33(‘)

To avoid over-fitting and thereby improving generalization capability, Equ. 3.2 in-
volves summation of empirical risk, and a complexity term in terms of w?. By min-
inmizing the objective function in Egn. 3.2, the SVR optimizes the position of the
e-tubc around the data which is shown in Figure 3.1. Eqn. 3.2 penalizes those data
points which lie more than « distance away from the fitted function, f(r). The stated
excess positive and negative deviations beyond the ¢ distance arc defined in terms of
the slack variables £ and &* respectively, as shown in Figure 3.1. The slack variable is
mtroduced to allow some flexibility to function f(x) when it is not possible to approx-
imate an input pair with ¢ precision. The e-insensitive loss function in Figure 3.1 can

be defined by Equ. 3.4 :

0 for [f(x) —yl < e
Lely) = (3.4)
|f(z) —y|l —e otherwise.

During the fitting of the prediction function to the training data, the SVR mini-
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© Data points E

® Support Vectors
® Fitted by SVR
© Points outside the tube

Figure 3.1: A schematic presentation of SVR, along with its e-insensitive loss func-
tion, in which the slope is determined by the value of C [Lahiri and Ghanta, 2008]
mizces the training sct crror by minimizing both &, £€* and ||w?|| in order to increasc the
Hlatness of the function or to penalize over-complexity. The prediction accuracy and
generalization performance are controlled by two frec paramcters, C and €. The cost
function parameter C' determines the trade-off between the flatness and the tolerance
amount of the prediction crrors beyond the magnitudes of . The model produced
by SVR depends on a subset of the training data called support vectors, because
any training data that is within the width paramcter € is ignored by the cost func-
tion C used in building the model. The tube width parameter € determines the number
of support vectors. As e decreases, the number of support vectors (SV) increases and
thus enhances the risk of model over-fitting and poor generalization. Again, a large €
valuc produces relatively better gencralization performance but provides a high train-
ing set error.

According to Vapnik [Vapnik, 1995] [Vapnik, 1998], the solution to the optimization



problem described in Eqn. 3.2 and Eqn. 3.3 is:

!
fle,c.a®) = Z:(m —af)(p(uy)-@o(x)) + b (3.5)

where, v, o >0, are Lagrange multiplicrs pertaining to the input data vector, r; and
satisfving ov; of=0, for i=1, 2,------ , I; and the weight vector can be calculated by

the following cquation:

!
w = Yoy = o))l (3.6)
i=1

The solution to the optimization problem in Eqn. 3.5 require the computation of
a dot product in a feature space, F'. This cumbersome computation can be avoided us-
ing kernel trick. According to Mercer's theorem, any positive, semi-definite, and sym-
metric kernel function, K, can be expressed as a dot product in the high-dimensional
space. The kernel function is defined in terms of the dot product of the mapping

function ¢ as shown in Eqn. 3.7:

K(xi, 1) = dlay).d(;) (3.7)

The main advantage of this formulation (Eqn. 3.7) is that for many choices of
the sct @;(x), the form of K is analytically known [Lahiri and Ghanta, 2008]. The
kernel function performs all the computations in the input space instead of the feature
spacc. Various kernel functions arc available. The most widely used kernel function is

the radial basis function (RBF), defined as:

—|x; — x|

= (3.8)

K(x;, ;) = exp

where ¢ denotes the width of the RBF. Substituting the dot product in Eqn. 3.5 with



a kernel function, the general form of the SVR-based regression function will be:

I
flr,w) = fle,0,0) =D (o — ) K(x.2;) +b. (3.9)

i=1

Here the weight vector w is expressed in terms of the Lagrange multipliers, a and
«*. The values of these multipliers are obtained by maximizing the following convex

QP problem:

1 {
Rlo, o) = =5 > (0 —ai)(o] — a)
= 4,j=1
!
X I((.’L’i, .IJJ') — £ Z((X: + O(L') (310)
i=1
l
+ 2o ylaf — o)
=1

!
subject to constraints: 0 < «; < C,0< of <C, Vy, and 3 (of — o) = 0.
i=1
Now a set S of support vectors z, can be found by putting values in the indices ‘i” where
0< a<C and &=0 (or £=0). Using the support vectors, the bias parameter, b in

Eqn. 3.9 can be computed as:

l

Ys — € — Z (am — 0 )O(Tm) G(x5) | - (3.11)

Ll me=95

Finally, after getting all the parameters, the approximate function is as shown in

Equ. 3.12:



3.3 Methodology

Step I1:
Screen out preliminary variables based on process
knowledge & trend analysis

'

Step 2:
Remove outliers and fill in missing values

'

Step 3:
Adjust time delay & average the data for conversion of
dynamic data to steady state

Y

Step 4:
Select range of levels for the input variables

b

Step 5:
Select orthogonal array & populate it with appropriate
levels of data from historical data

v

Step 6:
Calculate S/N ratio to find important variables

Figure 3.2: Proposed variable selection ow chart

The proposed methodology exploits the merits of Taguchi method to identify
important input variables for an inferential predictor. The method initially screens
out preliminary variables based on process knowledge and trend analysis. Utilizing
process knowledge, an initial list of variables are selected which can have significant
contribution to determine the quality variable. Again, trend analysis is useful to
select variables based on haviug significant variation with the quality variable. The
inethodology has additional preprocessing steps to remove the dynamic effects from
the data. Also, the methodology relaxes some of the assumptions of the Taguchi
method in order to have sufficient data to fill the orthogonal array. Finally, it applies

the Taguchi method to eliminate variables with small S/N ratios. The steps of the



proposed method are shown using a flow chart in Figure 3.2.

Step 1 is the screening of important variables based on prior process knowl-
edge and trend analysis. Through trend analysis, the variation of each variable is
observed. Variables which consistently do not show any movement when the quality
variable is changing are omitted from the list. This provides a concise list which is
used for further analysis.

Step 2 is data preprocessing for outlier removal and filling in missing values. Pre-
processing is a crucial step in data analysis, especially for industrial data, as it may
contain bad values as a result of process upsets. Also the sensors may contain bias
error or variance error. Any outlier or bad data in the data sct should be removed
since these values can bias the results towards the outliers. This can be done either by
visual inspection or using simple rules. Missing values due to outlier removal or slicing
of bad data should be filled using appropriate missing data treatment method. For
example, use mean of the variable or interpolated values to fill in the missing values.

Step 3 is time delay adjustment and data averaging. Time delay arises mainly
from the residence time in vessels and transportation time in pipes. Adjusting the
time delay will allow a better capture of correlation in the predictor. After time
dclay adjustment, data is averaged in order to remove dynamie effects from data. The
window for averaging will depend on the dynainics of the system, as well as on the
frequency at which the quality variable is available.

Step 4 is the selection of range of cach level for all input variables. Two levels
arc commonly used for analysis [Sukthomya and Tannock, 2005]. The Taguchi method
uses a constant value for each level. This is too restrictive for process data. Often it
is not possible to match the values from the historical data repository. Instead, a
range is assigned for each level. The exact size of the range for the level depends on

the range of variation of the variable. Usually, for normal distribution, levels can be
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assignied based on the deviation from the mean of the data itemns. For non-normal
distributions, data can be coded by proportion [Sukthomya and Tannock, 2005]. For
example, 20%-40% of the range of data can be considered as low level and 60%-80%
of the range as high level.

Step 5 is the selection of the appropriate orthogonal array based on the levels
and number of variables. Taguchi method utilizes a special design of orthogonal arrays
to study the entire process parameter space with a small number of experiments only,
and selection of an appropriate orthogonal array depends on the number of levels and
parameters used in the analysis [Lin and Lin, 2002]. Orthogonal array is a system-
atically designed array where each row corresponds to a particular experiment and
variables are arranged in columns. Once the array has been selected, it is populated
with appropriate values from the data set that fit well with each experimental condi-
tion in the array. For highly correlated process variables, this is a challenging task, as
the combination of different levels in the orthogonal array may not be available. To
overcome this problem, three closely matched measurements are selected from the
data-set for each experiment in the array. The target is to keep the average of these
three data points within the range of the levels of that particular experiment. Three
data points arc considered as three trials for cach experiment, and the corresponding
quality values are considered as the results obtained from the trials.

Step 6 is to calculate the signal-to-noise (S/N) ratio for cach experiment uti-
lizing the three trials’ results. The S/N ratio is used as a criterion for variable selec-
tion. Taguchi has proposed the following three definitions of S/N ratio [Ghani ¢t al.,
2004]:

Nominal is the best characteristic: S/N=10 log%

2y,

Smaller the better characteristics: S/N=-10 log (> y?)

Larger the better characteristics: S/N=-10 log1(¥ %)

Y



where y is the average of observed output data, si the variance of y, n the number of
observations or trials for each experiment, and y the observed data. Selection of a par-
ticular equation depends on the characteristic of the quality variable. For example, to
measure the ‘liter weight’ quality variable of clinker in a clinkerisation process used
for determining under-burnt or over-burnt characteristic of produced clinker, ‘nomi-
nal is the best characteristic’ is appropriate. For each type of characteristic described
above, the higher the S/N ratio, the more influence the variable has on the experi-
ment. In the current analysis, output is product quality that is a measure of impurity
in the product. Therefore, the “smaller the better characteristic" has been used to

calculate the S/N ratio.

Experiments Design of experiments Trial outputs Experiment High/Low level Overall S/N ration
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Figure 3.3: Graphical representation of the calculation of S/N ratio

For calculating S/N ration of a particular input variable, the average low and
high level S/N ratios arc calculated from the corresponding low and high level exper-
iments of that particular variable. The difference of the average low and high level
S/N ratios give the final S/N ration of a variable. The calculation of S/N ratio for
“Variable 1" is shown using a graphical representation in Figure 3.3. In this case eleven
input variables with two levels have been considered. According to Taguchi's design of
experintents, a L11 design is appropriate for this case. Design of experiments is shown

in the sccond column, where high level of a variable is denoted by (+) sign and low
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level is denoted by (-) sign. Experiments 1 to 7 contain the low level experiments for
variable 1 and experiments 8 to 12 contain high level experiments for variable 1. The
corresponding trial outputs were used to calculate the high level and low level S/N
ratios of variable 1. The difference of the high and low level averages gave the overall

S/N ration for variable 1. This process should be repeated for each input variable.

3.4 Industrial Case Study

The proposed variable sclection method is validated using data from a petrochemicals

plant. An inferential predictor is developed using SVR to predict the product qual-

ity. The input variables for the SVR model are selected using the proposed methodol-
ogy. Because of the proprietary nature of the process, the process details and actual

values are withheld in the description.

3.4.1 Data Description

Figure 3.4 shows a process flow diagram of the plant, indicating the sensor locations
of the important process variables. The fresh feed, solvent, catalyst, and promoter
are fed into the mixing tank. The solvent-to-feed ratio is maintained using a ratio
controller. The ntixed stream is pumped to the reactor, and air is blown in using
a conipressor for oxidation. A consecutive oxidation reaction of the form given in

Eqn. 3.13 takes place in the reactor.

A—B—C (3.13)

This is an exothermic reaction. The reactor is operated at constant pressure. The heat
of the reaction is removed using a condenser, and the condensed water is recycled back

into the system. Part of the condensate is withdrawn from the system. The water
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withdrawal rate controls the concentration of reactants inside the reactor. Thus, wa-
ter withdrawal is an important manipulated variable in the svstem. About 95% of
the achievable conversion takes place in the reactor. Subsequently, reactor effluent
is pumped into a series of three crystallizers for secondary reaction and crystalliza-
tion. In addition to residual reaction, effluent is also depressurized and cooled to the
filtering condition in the crystallizer. Air is fed to the first crystallizer for additional
reaction of un-reacted feed. Product coming out of the crystallizer undergoes filtering

and drying, which complete the process.

Condenser 1 Condenser 2

0100,
To exhaust
O)

Water withdrawal

@ Prnmnler®
Fresh feed

Rutio Catalyst
controller

Mixing
tank

First

Second ‘Third Buffer

erysla- crysta- crysta- tank
-lizer «llizer -llizer
v ® T
Vacuum )
filter Dryer Product
(Measurcd quality variable in product)

Recycted mother liquor

Figure 3.4: Schematic diagram of the process layout

Typically, crude product is analyzed in the lab once or twice a day to ascertain
the product quality. The intermediate product B is considered an impurity to the
product C. Thus, the measured concentration of B in the product is the quality
indicator for the product. The product specification requires the concentration of B
to remain below the allowable limit. Keeping the concentration too low consumes more

solvent, which is also not desirable from an economic point of view. Thus, the control
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objective is to maintain the product quality at the upper allowable limit. However, the
measurcments of the quality variable were available only twice a day through lab
analysis. Therefore an online predictor was required in order to use it as a controlled
variable in a model predictive controller (MPC). Data for a period of four months
were collected for building the predictor. The process was operated in two different
feed levels during the data collection period. Lab analysis of the quality variable was

done at four-hour intervals in order to gather sufficient data to build the predictor.

3.4.2 Adjustment for time delay and process dynamic

The quality variable was measured in four-hour intervals while the process variables
from the data historian were available at 15-minute intervals. The delay time for
the selected process variables with respect to the quality variable varies between 2.5
and 3.5 hours. Therefore, for each lab measurement, the corresponding process data
are the process measuremnents taken 2.5 to 3.5 hours prior to the quality measure-
ment. To account for this time delay, the lab data is lagged by 3 hours. The 4-hour
sampling time for the lab data is not suitable to build a dynamic predictor, and
the Taguchi method cannot handle the dynamic data; therefore, hourly averages of
the process data are taken, which effectively removes the dynamic information from
the data. Finally, because product quality is measured at a low frequency, the data
matrix has a multivariate structure. Only the complete rows are kept, and all rows
which do not contain a quality valuc arc discarded. This is called complete data anal-
ysis, which is explained in Table 3.1. For example, a lab measurement is available at
16:00 hrs. The corresponding process data are the averages of process measurcments
between 12:30 and 13:30 hrs. In this way, a new data matrix is created where only the
average values of the process measurcments and corresponding quality measurcments

are retained. Finally, a total of 120 rows are available for building the predictor.



Table 3.1: Complete data analvsis

Variable No.

Time 1 2 3 4 5 6 7 8 9 10 11 Qv
12:00 1.28 0.020 29377 354 555 8526 111.70 31.19 3.33 1.19 036 N.M.
12:15 1.28 0.019 28549 356 556 85.27 111.61 3263 343 120 0.36 N.M.
12:30 1.28 0.019 2805.0 3.56 5.573 85.72 111.28 32.50 3.45 1.21 0.36 NAL
12:45 1.28 0.019 2743.9 3.48 5.58 85.83 111.77 33.30 3.38 1.22 0.37 N.AL
13:00 1.28 0.019 2759.1 3.37 5.59 86.05 111.73 32.18 3.45 1.21 0.36 N.M.
13:15 1.30 0.019 2810.2 3.31 5.59 85.43 111.52 30.64 3.46 1.18 0.35 N.M.
13:30 1.30 0.018 2822.3 3.23 5.60 85.73 111.75 31.1 3.44 1.19 0.35 N.M.
Average 1.28 0.019 2788.1 3.39 5.59 85.75 111.61 31.95 3.44 1.20 0.36
13:45 1.30 0.017 28530 321 560 878 111.68 31.55 3.33 120 036 N.M.
16:00 1.30 0.018 2971.5 3.31 5.59 85.39 111.38 31.19 3.40 1.20 0.36 2179
16:15 1.30 0.018 29682 3.33 560 &8.77 111.73 3244 350 1.19 036 N.M.
16:30 1.32 0.018 2927.5 3.37 5.60 85.49 111.61 31.66 3.32 1.17 0.36 N.N\L
16:45 1.35 0.018 2954.2 3.42 5.60 87.18 111.70 31.46 3.38 1.20 0.36 N.\L
17:00 1.30 0.018 2956.1 3.46 5.60 85.42 111.54 31.21 3.34 1.21 0.37 N.M
17:15 1.26 0.018 2919.5 3.50 5.60 85.96 111.55 31.72 3.38 1.22 0.36 N.ML
17:30 1.24 0.018 2914.2 3.51 5.60 85.74 111.77 34.10 3.33 1.17 0.35 N.M.
Average 1.29 0.018 2934.3 3.45 5.60 85.96 111.63 32.03 3.35 1.19 0.36
19:45 1.30 0.018 29399 333 561 8.59 111.76 30.87 3.33 120 036 N.M.
20:00 1.30 0.018 2943.4 3.34 5.61 86.52 112.14 34.38 3.29 1.16 0.36 2103
(a) Original data matrix for averaging data
QV=Quality Variable N.M.=Not Measured
Data matrix after complete data analyis
16:00 1.28 0.019 2788.1 3.39 5.59 85.75 111.61 31.95 3.44 1.20 0.36 2179
20:00 1.29 0.018 2934.3 3.45 5.60 85.96 111.63 32.03 3.35 1.19 0.36 2103

(b) New data matrix




Table 3.2: List of variables used in the Taguchi analysis

No. Variable name

Description

WO~ WD =

—_ =
— O

Ratio controller
Promoter tlow

Air (Crystallizer)
0;% (Crystallizer)
CO,% (Crystallizer)
Air (Reactors)
Feed rate
Condensate flow
0,% (Condenser)
C0,% (Condenscr)
C'O% (Condenser)

Control of [(solvent+catalyst+promoter)/feed] ratio
Promoter supplied to feed preparation drum

Air supplicd to first crystallizer

0,% measured in crystallizer-1 outlet gas streain
CO,% measured in Crystallizer-1 outlet gas

Air supplied to the reactor

Feed supplied to the reactor through pump
Condensate withdrawal from condenser-2 bottom
;% measured in condenser-2 outlet gas stream
CO,% mcasured in condenser-2 outlet gas stream
CO% measured in condenser-2 outlet gas stream

3.4.3 Variable selection by retrospective Taguchi method

Table 3.3: Selection of levels of data for the Taguchi orthogoual experiment using
historical data

No. Variable Min Max Mcan Range Limit LL.  HL

1 Ratio controller 1.2 205 1.56 085 034 154 1.71

2 Promoter flow 0.002 0.028 0.017 0.026 0.010 0.013 0.018

3 Air (Crystallizer) 1514 4024 72940 2510 1004 2518 3020

4 0% (Crystallizer) 190 3.66 3.28 1.75 0.70 2.61 296

5 CO,% (Crystallizer) 5.23 6.13 5.71 0.89 035 5.59 5.77

6  Air (Reactors) 111.2 178.9 165.1 67.6 27.1 138.3 151.8 |

7 Feed rate 145.8 234.7 216.7 88.9 355 181.4 199.2 |

8 Condensate flow 194 487 398 29.3 117 31.1 36.9 |

9  0,% (Condenser) 6.39 796 T7.03 157 062 7.02 734 '

10 CO% (Condenser) 2.23 347 264 124 049 2.73 298 |

11 CO% (Condenser) 0.665 0.971 0.749 0.306 0.122 0.787 0.849 :
|
|
|

LL=Lower level limit (<), HL=Higher level limit(>), Limit=40% of range value

to scleet the levels for the orthogonal array. A range, rather than a specific value, is
assigned for each level. From the available data, for each variable, the lowest forty

|
Table 3.2 shows the list of the variables used in the analysis. The next step is
percent values arc considered as low level and the highest forty percent values arce
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considered as high level. Table 3.3 reports ranges of the levels of different variables. For

example, the “recycle ratio” has a range of 0.85; 40% of this range gives the limit for the

variable which is 0.34. Adding this limit value (0.34) to its minimum value (1.2} gives a
lower level limit (1.54), and subtracting it from the maximum value (2.05) gives higher
level limit (1.71). Therefore, values falling in the range of 1.2-1.54 are considered low
level and values between 1.71 and 2.05 are categorized as high level.

Table 3.4: Taguchi orthogonal array with low-level and high-level values of cleven
variables to design the experiment

Variable number :

Exp 1 2 3 4 5 6 7 8 9 10 11
1 1.54 0.013 2518 2.61 5.59 138.3 181.4 31.1 7.02 2.73 0.787
1.54 0.013 2518 2.61 5.59 151.8 1992 36.9 7.34 2.98 0.849
1.54 0.013 3020 296 577 138.3 181.4 31.1 7.34 298 0.849
1.54 0.018 2518 296 577 138.3 1992 36.9 7.02 2.73 0.849
1.54 0.018 3020 2.61 577 151.8 181.4 36.9 7.02 2.98 0.787
1.54 0.018 3020 2.61 577 151.8 181.4 36.9 7.02 298 0.787
1.54 0.018 3020 296 5.59 151.8 199.2 31.1 7.34 2.73 0.787
1.71 0.013 3020 2.61 577 151.8 1992 31.1 7.02 2.73 0.849
( 1.71 0.013 2518 296 577 151.8 1814 369 7.34 2.73 0.787
1 1.71 0.018 3020 2.61 5.59 138.3 181.4 36.9 7.34 2.73 0.849
11 1.71 0.018 2518 296 5.59 151.8 181.4 31.1 7.02 298 0.849
12 1.71 0.018 2518 2.61 5.77 138.3 199.2 31.1 7.34 298 0.787

O 00 1O Uk Wik

The next step is to select the appropriate orthogonal array. An orthogonal array
is a matrix which represents the condition of factors in a scrics of experiments. For
eleven variables and two levels, the suggested orthogonal array is L11. Table 3.4 shows
the orthogonal array where cach row corresponds to an experiment. The cleven vari-
ables considered as eleven factors are arranged in column direction. The array is
designed for two levels. The low level data appear in bold face and the rest are the
high level data. The next step is to find the appropriate combination of these twelve

cexperiments from the data set. This is a challenging task because of the corrclation
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among the process variables. On the other hand, the Taguchi method assumes vari-
ables are uncorrclated, so the array has a standard combination of different levels. To
overcomne this problem, three values are selected from the data set for each exper-
iment in the array. The measurements are selected in such a way that the average
falls within the range of the levels. In the event the value is still outside the limit, an
additional 10% margin for the limit is allowed. Using the above methodology, from
a total of thirty-six rows of measurements, the twelve experiments for the array are
constructed.

Based on the trial results, the signal-to-noise ratio is calculated for each experi-
ment. The quality variable for this particular process is an intermediate product which
in turn determines the product quality. The minimum of this value is desired; there-
fore, “the smaller the better" criterion is appropriate in this case. Table 3.5 shows
the calculated signal-to-noise ratios based on the trial results for all experiments. Ta-
ble 3.6 reports the calculation steps of S/N ratio of each variable with explanation.

Variables with larger S/N ratios are considered more important variables.

3.5 Results and Discussion

3.5.1 PLS model

To validate the importance of the cleven initially-screened variables, first a linear
PLS model is developed using all eleven variables. Figure 3.5 shows the prediction
of both the training and test data sets. The model captured 74.14% variance with
three latent variables. The figure clearly indicates that the eleven variables which are

sclected based on process knowledge are significant in predicting the quality output.
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Table 3.5: Calculation of S/N ratio of each experiment in the array fromn the output
quality variable value obtained from cach trial data

Y;*= Output Q.V.

Exp Y Y, Y, Zs Y2 S/N Ratio
i=1
1 2006.72 1860.24 2607.82 14288163.98 -66.78
2 1907.87 2002.57 1135.32 §8939187.47 -64.74
3 2604.77 2367.88 1393.72 14334113.80 -66.79
4 2386.46 153271 2008.05 12076650.55 -66.05
5 1879.88 2003.74 2125.69 12067493.53 -66.04
6 2672.39 2072.05 2118.76 15924205.10 -67.25
7 2296.64 2595.03 2019.69 16210027.66 -67.33
8 2002.57 2365.35 2216.91 14519878.58 -66.85
9 2078.00 1960.33 2142.21 12750022.69 -66.28
10 2141.45 2079.73 2149.94 13533348.86 -66.54
11 201096 977.43 2134.29 9554510.00 -65.03
12 1900.15 2089.13 2071.14 12264675.05 -66.12

“Output quality variable obtained from three trials data for cach experiment

3
'S /N ratio=-10 log (3" Y?), where N=3
N, 1 i
i

Table 3.6: Calculation of S/N ratio for each variable

Variable No. Variable LLC* HLC® S/N ratio °
1 Ratio controller -66.43 -66.16 0.26
2 Promoter flow -66.29 -66.34 0.05
3 Air (Crystallizer) -65.83  -66.80 0.97
4 02% (Crystallizer)  -66.33 -66.30 0.04
5 CO2% (Crystallizer) -66.08 -66.48 0.40
6 Air (Reactors) -66.46 -66.22 0.24
7 Feed rate -66.39 -66.22 0.17
8 Condensate flow -66.48 -66.15 0.33
9 0,% (Condenser) -66.33  -66.30 0.03
10 CO,% (Condenser)  -66.64  -66.00 0.64
11 CO% (Condenser)  -66.63 -66.00 0.63

“Low level contribution’ for cach variable is calculated as average of S/N ratios of those
experiments in the orthogonal array where the variable is contributing as low level

"High level contribution’ for cach variable is caleulated as average of S/N ratios of those
cxperiments in the orthogonal array where the variable is contributing as high level

¢Absolute difference between HLC and LLC
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Figure 3.5: Data prediction by PLS model using all eleven variables

3.5.2 VIP method

The proposed retrospective Taguchi variable sclection method is compared with the
variable importance in projection (VIP) method in the context of SVR model. The
VIP score of a predictor variable is a summary of the importance of the projcctions
to find the latent variables. The VIP value is a weighted sum of squares of the PLS
weights and therefore, it explaing the variance of cach PLS dimension. VIP scores
demonstrate the importance of each variable, so they are often used for variable se-
leetion. Usually the average of squared VIP scores equals one. A score value greater
than one is used as variable selection criteria. Table 3.7 shows the rank of the variables

bascd on the VIP scores.
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Table 3.7: Comparison of rank of variables

Variables arranged Calculated  Rank  Calculated Rank
in order of importance S/N ratio (Taguchi) VIP value (VIP)
(based on process knowledge)

Ratio controller 0.26 6 1.30 2
C'O2% (Condenser) 0.64 2 1.02 7
Air (Reactors) 0.24 7 1.08 5
CO% (Condenser) 0.63 3 1.26 3
Air (Crystallizer) 0.97 1 1.89 1
CO,% (Crystallizer) 0.40 4 0.16 11
Coudensate flow 0.33 5 1.15 4
Promoter flow 0.05 9 0.68 8
0,% (Crystallizer) 0.04 10 0.59 9
Feed rate 0.17 8 1.07 6
0,% (Condenser) 0.03 11 0.44 10

3.5.3 Selected variables by Taguchi method

In Table 3.7, variables are arranged in order of importance based on process knowl-
edge. The ranks of the variables based on S/N ratio calculated using Taguchi method
are given in column 3. I'rom the ranks, it is evident that the seven important variables
sclected by the Taguchi method arc also important based on process knowledge.
The most important variable based on the analysis is “air supplied to first crys-
tallizer” Air is added to the erystallizer for additional conversion of intermediate prod-
uct to final product. Therefore, this variable has a direct link to the product quality
and will make the most significant contribution. The second and third key variables
are “*COy and C'O in the gas stream going out from condenser-2.” Both CO, and C'O are
by-products produced during the reaction and directly reflect reaction extent. The
next important variable is “C'O, measured in first crystallizer outlet,” which directly
measures the additional reaction taking place in the crystallizer. It is less important
than the air supplied to the crystallizer because only a small portion of the reac-

tion (<5%) takes place in the crystallizer. The next important variable is “condensate
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flow withdrawn from condenser-2.” This is an important variable as it controls the
rate of condensate flow re-fluxed to the reactor, which in turn controls the water
concentration in the reactor. The rate of reaction is proportional to concentration of
reactant. The next selected variable is “ratio of solvent, catalyst, and promoter with
respect to fresh feed.” The ratio has a significant effect, as it controls the catalyst con-
centration within the reactor. Finally, the variable “air supplied to the reactor” directly

effects the oxidation reaction.

3.5.4 Comparison of predictions between Taguchi-SVR and VIP-

SVR

Based on the analysis, seven variables are selected using VIP and another set of
scven variables arc sclected using Taguchi approach. The sclected variables arc used
to develop two separate models using the s-support vector regression method. The
SVR algorithm uses a radial basis function (RBF) as kernel. SVR model is developed
using PLS Toolbox software [Wise et al., 2007].

Figures 3.5, 3.6, and 3.7 show the predictions by the PLS, Taguchi-SVR, and
VIP-SVR approaches respectively. A comparison of Figures 3.6 and 3.7 with Figure 3.5
clearly demonstrates that SVR gives better prediction than PLS. Again, if Figure 3.6 is
compared with Figure 3.7, it can be stated that variables selected by Taguchi imnethod
has shown good prediction performance compared to the VIP method. The residuals
are also plotted in each figure to show the dynamic variation and bias in prediction. It
is clearly observed that the Taguchi method captures the dynamic variation well
and shows less bias than the VIP method. The model performance is also measured
quantitatively by the root-mcan-squarc-crror (RMSE). Figurc 3.8 shows the RMSE
value of the training, validation, and test sets for each case. It clearly shows that the

Taguchi-SVR method has less prediction error than the VIP-SVR method.
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Figure 3.6: Data
approach

prediction by SVR model using variables selected from Taguchi

3.6 Conclusions

In a typical chemical process, on average 1500 process variables are measured at any
given time. Of these, it is difficult to sclect the most important variables for building
an inferential predictor. The proposed method offers a systematic quantitative ap-
proach to sclecting the most important variables. The method is based on Taguchi's
experimental design. IHowever, rather than performing new experiments, the devel-
oped method cmploys historical process data to select important variables for an

inferential predictor. The technique can be carried out relatively cheaply and without

any process disruption, as it uses ouly historical data.
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is compared with VIP method. The Taguchi-SVR method shows significantly better
performance in predicting the product quality than the VIP-SVR method.
Implementation difficulties arising from the dynamic changes in the process vari-
ables have been addressed. The most significant implementation difficulty is to find
orthogonal experiments between the correlated variables. It makes it difficult to fill the
orthogonal array in general. This issue is further investigated in Chapter 4. Despite
the limitation, the case study illustrates that the technique can be effectively used
for variable selection utilizing historical data. It has the ability to identify important

variables which can improve the prediction ability of a soft sensor.



Chapter 4

Selection of input variables for
inferential predictor from a large

set of correlated variables

4.1 Introduction

In Chapter 3, a systematic quantitative approach of variable selection for an inferential
predictor using retrospective Taguchi method is explained. Tt is observed that in the
presence of correlated variables, it becomes difficult to fill in the orthogonal array using
historical data. Process variables arc usually highly corrclated, making it difficult to
fill the designed orthogonal array of the Taguchi method using historical data. The
orthogonal array is designed with diffcrent combinations of low and high levels of
the factors. In a situation, where two variables are positively correlated, it would be
difficult to get valucs having onc at low level and another at high level. For example, if
the feed rate in a reactor increases, the reactor level is also raised to keep the residence

time the same. As such, in the historical data a high reactor level and low feed rate

40
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combination is typically not available. In the present chapter, this issue is further
investigated and a methodology is developed to resolve this issue in a systematic way.
The present chapter aims to develop a methodology to select important variables for
an inferential predictor from a large set of correlated variables. The proposed method
is a combination of filter and wrapper approach to deal with correlated variables.
Grouping correlated variables based on their correlation coefficients is at the core of

the method. The proposed variable selection method has been used in combination

with support vector regression (SVR) for developing an inferential predictor. The

performance of the proposed method is compared with the variable importance in
projection (VIP) method, which is a variable selection method based on partial least
squares (PLS).

The chapter is divided into the following sections. Section 4.2 describes in detail
the methodology of variable selection from a large set of correlated variables. Sec-
tion 4.3 explains the methodology through an industrial case study. Finally, in Sec-

tion 4.4 key conclusions are described.

4.2 Methodology

The proposed methodology is a hybrid of the retrospective Taguchi method and wrap-
per nicthod. It uses a correlation-based classifier to group highly correlated variables
into different uncorrelated groups. Then, it applies the Taguchi method to eliminate
groups of variables with small S/N ratios. Subsequently, it uses a wrapper method to
select variables within the group. The key elements of the methodology are described

below:




4.2.1 Classification of variables

Corrclation matrix is calculated from the available training data. The correlation
matrix of n variables X (n x n) is a » x n symmetric matrix whose i.j entry is
corr(X;, X;). Following the calculation of the correlation matrix, variables are re-
ordered and grouped based on the correlation. A modified k-nearest neighbor al-
gorithm (MKNN) is applied to group the variables. Detailed theory of the MKNN
algorithm can be found in [Parvin et al., 2010|. Matlab built-in function ‘corrmap.m’
is used to carry out the above calculation. It produces a pseudo-color map which
shows the correlation between variables in a data-set after rearranging the correlated
variables in groups. This gives a visual way of classifying large data-set of variables

into several uncorrelated groups.

4.2.2 Selection of important groups

Following the classification of variables into groups, a representative variable is se-
lected from each group. For example, if the classification algorithm produces n groups,
(n) representative variables will be selected one from each group. Then, the retrospec-
tive Taguchi method is applied to the selected variables to find important variables.
The advantage of using a single variable from each group is that these variables are
relatively uncorrelated with each other; therefore, it is easier to fill the orthogonal
array considering these variables as factors.

The retrospective Taghchi method for variable selection has three steps. The
first step is the selection of levels for all representative variables. Two levels are com-
monly used for analysis [Sukthomya and Tannock, 2005]. The Taguchi method uses
a constant valuc for cach level. This is too restrictive for process data. Often it is not

possible to match the values from the historical data repository. Instead, a range is
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assigned for each level. The exact size of the range for a level depends on the range of
variation of the variable. The second step is the selection of an appropriate orthogonal
array based on the levels and number of variables. An orthogonal array is a systein-
atically designed array where each row corresponds to a particular experiment and
variables are arranged in columns. Once the array has becn selected, it is populated
with appropriate values from the data set that matches closely with each experimental
condition in the array. As mentioned previously, because these representative vari-
ables conie from different groups, as such they are relatively uncorrelated and makes it
easier to fill the orthogonal array using historical data. Three data points are usually
considered as three trials for each experiment, and the corresponding quality values
are considered as the results obtained from the trials. In the final step, the three trials’
results are utilized to calculate the signal-to-noise (S/N) ratio for each experiment.
In an orthogonal array, a variable is kept systematically in either low or high
level in an experiment. The low level or high level contribution of a variable is the S/N
ratio of the experiment, where it acts ay either a low level or high level, respectively.
After calculating the S/N ratio of each experiment, the S/N ratio for each variable
is calculated from the difference of its average low level contribution and average
high level contribution in all the experiments. Based on the S/N ratio, a decision
is made as to whether a particular variable is important or not. Since each variable
is representing a group, if a variable is deemed important, that meceans that all the
variables belonging to that particular group are considered important. In the next

step, important variables are sclected from within the sclected groups.

4.2.3 Selection of variables from within groups

The sclection of variables from within the group is donc using a wrapper based method.

SVR models are built with all variables from the selected groups. Model performance
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is evaluated by the root mean square error (RMSE) of cross-validation data or pre-
diction data or a combination of both. A systematic backward climination approach
is followed.

First, a niodel is developed using all variables of the selected groups. Variables
are subsequently eliminated one at a time from each group. If the model performance
deteriorates, the eliminated variable is considered important and re-introduced in the
model. After testing all the variables from a group, the same exercise is carried out on
the variables belonging to other groups. The process terminates after all the groups
with multiple variables have been tested.

The steps of the proposed method are shown using a flow chart in Figure 4.1.
Step 1 is the sereening of important variables based on prior process knowledge and
trend analysis. This provides a concise list which is used for further analysis. Step 2 is
data preprocessing for outlier removal and filling in missing values. Preprocessing is
a crucial step in data analysis, especially for industrial data, as it may contain bad
values as a result of process upsets. Also the sensors may contain bias error or variance
error; therefore, it is important to validate the measurements before further analy-
sis. Step 3 is time delay adjustiment and data averaging. Tine delay arises mainly from
the residence time in vessels and transportation time in pipes. Adjusting the time de-
lay will allow for a better capture of correlation in the predictor. After time delay
adjustment, data is averaged in order to remove dynamic cffects from data. The win-
dow for averaging will depend on the dynamics of the system as well as the frequency
at which the quality variable is available. Step 4 is grouping correlated variables based
on the correlation color map. Step 5 is selection of important groups from the list
of groups created in Step 4. The retrospective Taguchi algorithm is applied to sclecet
the groups. Step 6 &7 are to apply a systematic backward eliinination approach us-

ing SVR to climinatc least contributing variables from within groups. First, an SVR
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model is built using all the selected groups of variables from Step 5. A variable is
removed from a selected group one at a time, and, subsequently, an SVR model is
built. If prediction performance is not improved, the variable is considered important
and re-introduced in the model. The process terminates after all the variables are

tested once.

4.3 Results and Discussion

The list of preliminarily sclected variables used as input to the variable sclection
process are shown in Table 4.1. The classification algorithm was used to classify these

variables into different groups.

Table 4.1: List of variables used in the Taguchi analysis

No. Variable name Description

1 Ratio controller Control of [(solvent+catalyst+promoter)/feed| ratio
2 Promoter How Promoter supplicd to feed preparation drum

3 Air (Crystallizer) Air supplied to first crystallizer

4 % (Crystallizer) 0% measured in crystallizer-1 outlet gas stream

5  COy% (Crystallizer) CO2% measurcd in Crystallizer-1 outlet gas

6  Air (Reactors) Air supplicd to the reactor

7  Feed rate Feed supplied to the reactor through pump

8 Condensate flow Condensate withdrawal from condenser-2 bottom

9 2% {Condcnscr) 02 % measurcd in condenser-2 outlet gas stream

C02% (Condenser)  CO2% measured in condenser-2 outlet gas stream
CO% (Condenser)  CO% measured in condenser-2 outlet gas stream

—_
—_ O

4.3.1 Grouping variables using correlation color map

Figure 4.2 shows the correlation color map of eleven variables, where variables are
grouped by correlation. The map clearly identifics six groups as reported in Table
4.2. Group 2 has five correlated variables. Air (Reactors) is added to the reactors for

oxidation reaction and air (Crystallizer) is added to the erystallizer for the remaining
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Figure 4.2: Correlation color map for grouping variables based on correlation matrix

conversion. These two variables are therefore correlated with the Feed rate. Again,
CO2% (Condenser) and CO% (Condenser) are reaction bi-products which are essen-
tially a measure of the reaction rate. These two variables are inversely correlated
with the feed rate and air added to the reactors. An increase in feed rate reduces
residence time and affects reaction conversion. This leads to a decrease in reaction bi-
products. All these correlation are reflected in Group 2. Group 6 has two correlated
variables. Both the ratio controller and condensate flow maintain the desired solvent

concentration in the reactor. As such, they are expected to be correlated.

4.3.2 Group selection using the retrospective Taguchi method

In this step, important groups are selected by applying the retrospective Taguchi
method. First, a representative variable is selected from each group. Table 4.2 reports

the selected variables from each group. Next, ranges of low and high levels are assigned




Table 4.2: Grouping variables based on correlation matrix

Variable No. Variable name Group Selected variable *
2 Promoter flow 1 2
3 Air (Crystallizer)

6 Air (Reactors)

7 Feed rate 2 3
10 C0,% (Condcenscer)

11 CO% (Condenser)

9 0,% (Condenser) 3 9
5 C0,% (Crystallizer) 4 5
4 0,% (Crystallizer) 5 4
8 Condensate flow 6 8
1 Ratio controller

“Representative variable selected from each group for using in the variable selection process

for cach variable based on the available data. Table 4.3 reports the ranges of the levels
of the six representative variables. For cach variable, the twenty to forty percent range
is considered as low level and the sixty to eighty percent range is considered as high
level.

Next step is to select the appropriate orthogonal array for Taguchi experimental
design. An orthogonal array is a matrix which gives the levels of factors in a scries of
experiments. For six variables and two levels, the suggested orthogonal array is L8. Ta-
ble 4.4 shows the orthogonal array where cach row corresponds to an experiment, and
the six variables, considered as six factors, are arranged in column direction. The low
level data are denoted by bold face and the rest arc the high level data. The next
step is to find the appropriate combination of these eight experiments from the data
set. For each experiment in the array, three closely matched values are selected from
the data set that fall within the defined range (as shown in Table 4.4). The measured

quality variables of these three data points are considered as the output of the three




Table 4.3: Selection of levels of data of group variables for the Taguchi orthogonal
experiment using historical data

No. Variable Min Max Range LLR* HLR®

2 Promoter flow 0.002 0.028 0.026 0.007-0.013 .018-0.023

3 Air (Crystallizer) 2207.1 3819.5 1612.3  2529.6-2852.1 3174.5-3497.0
9 0>% (Condeunser) 6.48 7.52 1.04 6.69-6.90 7.10-7.31
5
4

C0,% (Crystallizer) 5.39 6.01 0.62 5.51-5.64 5.76-5.88
0,% (Crystallizer) 3.12 3.66 (.54 3.23-3.33 3.44-3.55
8 Condensate flow 23.49 48.40 24.92 28.47-33.45 38.44-43.42

“Low level data range is from {(min + 20% of range value) to (min + 40 % of range value)
"High level data range is from (min + 60% of range value) to (min + 80 % of range value)
trials conducted for each experiment. Based on these three output values, the signal-
to-noisc ratio for cach cxperiment is calculated. According to Taguchi’s experimental

design method, calculation of S/N ratio differs based on the nature of the output

variables [Sukthomya and Tannock, 2005]. The quality variable for this particular

process is an intermediate product which in turn deterinines the product quality. The
minimum of this value is desired: thercfore, “the smaller the better” criterion is ap-
propriate in this case. Table 4.5 reports the output values of three trials and the
calculation of the S/N ratio for cach cxperiment. Next step is to calculate average
S/N ratio for each variable. To calculate this, first the average S/N ratios for the high

Ievels and low levels of cach variable were calculated. The difference between thesc

two average S/N ratios gives the final S/N ratio for a particular variable. Table 4.6
reports the calculated values of the S/N ratio of cach variable with an explanation.

Variables with larger S/N ratios are considered more important variables.




Table 4.4: Taguchi orthogonal array with low-level and high-level range values of six group variables to design the experi-

ment
Variable number a
Exp. 2 3 9 ) 1 8

1 0.007-0.013 2529.6-2852.1 6.69-6.90 5.51-5.64 3.23-3.33 28.47-33.45
2 0.007-0.013 2529.6-2852.1 6.69-6.90 5.76-5.88 3.44-3.55 38.44-43.42
3 0.007-0.013 3174.5-3497.0 7.10-731 5.51-5.64 3.23-3.33 38.44-43.12
4 0.007-0.013 3174.5-3497.0 7.10-7.31 5.76-5.88 3.44-3.56 28.47-33.45
5 0.018-0.023 2529.6-2852.1 7.10-7.31 5.51-5.64 3.44-3.55 28.47-33.45
6 0.018-0.023 2529.6-2852.1 7.10-7.31 5.76-5.88 3.23-3.33 38.44-43.42
7 0.018-0.023 3174.5-34970 6.69-6.90 5.51-5.64 3.44-3.55 38.44-43.42
8 0.018-0.023 3174.5-34970 6.69-6.90 5.76-5.88 3.23-3.33 28.47-33.45

“Bold faccd-low level data range ; normal-high level data range
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Table 4.5: Calculation of S/N ratio of each experiment in the array from the output
quality variable value obtained from each trial data

Y%= Output Q.V.

Exp Y] Y, Y 'il Y2 S/N Ratio *
1 1929.97 1949.96 1945.31 113113544 -65.76
2 2052.34 2076.57 2151.66 13153905.0 -66.42
3 2163.03 2171.35 2283.30 14606938.8 -66.87
4 2028.17 2067.56 2052.97 12602974.8 -66.23
5 2082.31 1987.42 2040.44 12449235.0 -66.18
6 2012.23 1984.75 1989.65 11947028.3 -66.00
7 2740.26 2195.76 2225.99 17285379.3 -67.61
8 2138.49 2066.36 215897 13504142.2 -66.53

“Qutput quality variable obtained from three trials data for cach experiment

N
*S/N ratio=-10 log 4 (3" ¥;?), where N=3
=1

Table 4.6: Calculation of S/N ratio of cach variable for ranking

Group Variable No. Variable LLC* HLC® S/Nratio¢ Rank
1 2 Promoter flow -66.32  -66.58 0.257 6
2 3 Air (Crystallizer) -66.09 -66.81 0.721 1
3 9 0,% (Condenser) -66.58 -66.32 0.258 5
4 5 C'Oy% (Crystallizer) -66.61 -66.30 0.309 4
) 4 0,% (Crystallizer) -66.29 -66.61 0.316 3
6 8 Condensate flow -66.18 -66.73 0.547 2

“Low level contribution’ for cach variable is calculated as the average of S/N ratios of thosc
experiments in the orthogonal array where the variable is contributing as low level
5High level contribution’ for cach variable is calculated as the average of S/N ratios of those
experiments in the orthogonal array where the variable is contributing as high level
“Absolute difference between HLC and LLC



4.3.3 Backward elimination of variables from groups using

SVR

Table 4.7: Backward elimination of group variables using SVR

RMSE
Step Variable used Cal. C.V. Pred. Improve? Decision
1¢ 3,6,7,10,11,1,8,4,5 36.19 5564 55.85
b 3,6,10,11,1,8,4,5 36.21 54.05 52.07 Yes Eliminate variable 7
3¢ 3,6,10,1,8, 4,5 386 54.15 56.84 No Keep variable 11
44 3,6,10,11,1,4,5 36.31 43.94 45.61 Yes Eliminate variable 8

“Select all the variables from group 2, 6, 5 and 4
"Eliminate variable 7 from group 2

“Remove variable 11 from group 2

“Reinclude variable 11 and remove variable 8 from group 6

Based on the rank as shown in Table 4.6, The four groups having the highest S/N
ratios were selected. The next step was to eliminate variables which are redundant for
prediction. Table 4.7 explains the steps involved in the variable elimination process.
First, a model was built using all the variables from groups 2, 6, 5 and 4. Variable 7
from group 2 was eliminated and a model was built using the remaining variables. This
lead to a decrease in RMSE value; therefore, variable 7 was eliminated. Next, variable
11 from group 2 was removed and a model was built using the remaining variables.
The elimination of variable 11 increased RMSE values of both cross-validation and
prediction; therefore, it was re-included in the list of variables. Figures 4.3 (a), (b)
and (c) show the prediction performance of training and test data of the first three

trials. This procedure was repeated until all the variables were tested once.

4.3.4 Final prediction model

The prediction performance of the final SVR model is shown in Figure 4.4. The model

was developed using the seven variables emerging from the backward elimination. The
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Figure 4.3: Prediction performances at the selection stages of groups variables using
SVR: (a) Step 1: Using all the variables from groups 2, 6, 5 and 4 ; (b) Step 2:
Eliminating variable 7 from group 2 and (c) Step 3: Eliminating variable 11 from

group 2
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=-SVR algorithm was used with a radial basis function (RBF) as kernel.

The proposed hybrid Taguchi-Wrapper variable selection method is compared
with the variable importance in projection (VIP) method in the context of the SVR
model. The ranks of the variables based on VIP scores is given in Table 3.7. Seven
variables selected from VIP were used to build a separate inodel using s-SVR. Fig-
ure 4.5 shows the prediction performance of VIP-SVR predictor. A comparison of
Figure 4.4 with Figure 4.5, clearly shows that the variables selected by the Taguchi-
Wrapper method have superior prediction performance compared to the variables
selected by the VIP method. Figure 4.6 shows the RMSE values of the training, val-
idation, and test sets for both methods. It clearly shows that the Taguchi-Wrapper

based SVR predictor has less prediction error than the VIP-SVR based predictor.

120 |
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100 N VIP + SVR
80
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o
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Figure 4.6: Comparison of RMSE values for training, cross-validation and test data



4.4 Conclusions

A systematic quantitative method for selecting the most important input variables
for an inferential predictor from a large set of correlated variables is developed. The

mcthod is a combination of the retrospective Taguchi method and wrapper approach.

e The method resolves the implementation difficulties of the retrospective Taguchi
method arising from correlated nature of process variables. It utilizes a classifi-
cation algorithm to classify variables into groups of correlated variables. Instead
of using all variables, a representative variable from each group is used to fll-in
the Taguchi orthogonal array with the appropriate values. Since these variables

are uncorrelated, the orthogonal array can be easily lilled using historical data.

e The proposed Taguchi-Wrapper-SVR method is applied for building an inferen-
tial predictor to predict 4-CBA concentration for a PTA process. The method
is compared with the VIP method. The Taguchi-Wrapper-SVR method shows
significantly better performance in predicting 4-CBA concentration than the
VIP-SVR method. The results clearly indicate that the proposed methodology

can improve the prediction ability of SVR predictor.

e Wrapper-based variable sclection for SVR requires large computational cffort.
Taguchi method can effectively eliminate groups of variables and bring the num-
ber of variables to a manageable nunber when wrapper based method can be
feasible. A combined retrospective Taguchi and SVR-wrapper approach helps

to reduce computational effort substantially.




Chapter 5

Variable selection for PCA model

applied to Hydromet process

5.1 Introduction to Fault Detection

Principal component analysis (PCA) has been successfully used as a fault detection
& diagnosis (FDD) tool in a wide range of processes [Bakshi, 1998, Kresta et al.,
1991, Qin, 2003]. PCA projects data lying on a high dimensional measurement space
onto a lower dimension space. Usually, process variables are correlated with each other
and this correlation breaks down during any faulty situation. A PCA model identifies
this in advance and indicates it as a fault in the process. Early fault detection can
provide operators sufficient time to take appropriate action to avoid process shutdownn.

A key issue in building a PCA model is the selection of important variables that
bear fault signatures. This reduces the complexity of the model, avoids the inclusion
of any variable that makes no major contribution in representing the process, and in
the event a fault is detected, makes it easier to diagnose the root cause of fault. In

building a PCA modecl, there is no specific guideline about the selection of variables.
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It is a trial and error process where variables are selected based on data quality anal-

ysis, knowledge of the process and feedback from the plant operators. This Chapter
proposes a new systematic approach for the selection of important variables for a PCA
model based on the retrospective Taguchi method. A detailed review on the methodol-
ogy and application of the Taguchi method is discussed in Chapter 3. In this chapter,
we describe the monitoring scheme developed to detect and diagnose process faults
of leach residue thickener (LRT) and counter current decantation (CCD) circuit of a
hydromet process.

This chapter is orgauized as follows. An overview of the current control practices
in mineral processing industrics is presented in Section 5.2. A brief review on PCA
along with its fault detection criteria is given in Section 5.3. Section 5.4 describes
the variable selection methodology for a PCA model using the retrospective Taguchi
method. Section 5.5 presents data description along with related operational problems
of industrial case studies. Section 5.6 explains the methodology with results. Finally,

the chapter ends with concluding remarks in Section 5.7.

5.2 Monitoring practices in mineral
processing plants

Mineral processing industry has many regulatory issues and operational challenges
which arise due to the solid handling nature of the process. One of the key issues is
that, in most of the cases, its dynamic behavior is poorly understood. For example,
factors like ore compositions, particle size distribution, ore conditioning etc. influence
the process to a greater extent [Jemwa and Aldrich, 2006]. It is difficult to describe
these behaviors mathematically. This complex nature of the process creates problems

in the autoniated control system. Essential properties such as mineral texture, libera-
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Figure 5.1: Major processing steps involved in a minceral processing plant

tion degree, surface activity, slurry rheology, bubble size distribution and loading are
difficult to measure and even to infer from other measurements [Hodouin et al., 2001].
In some cases, the control practice is dependent on visual appearance, which requires
highly expert observations by the operators. It requires innovative and cffective so-
lutions to ensure snooth operations of these strongly disturbed, poorly modeled and
difficult to measure processes [Hodouin, 2011].

To overcome these challenges, mineral processing industries are implement-
ing real time monitoring systems on various process units and streams [Jemwa and
Aldrich. 2006]. Various data-based monitoring techniques such as data reconciliation,
image processing, pattern recognition, multivariate statistical methods, soft sensors
and controller performance monitoring, etc. are gaining popularity in mineral pro-
cesses. In a mineral processing plant, the main concern is rapid changes in ore grade,
mineralogy and grindability. These changes disturb the process, so it is very impor-
tant to detect this process shifting through a suitable model. PCA has the ability to

detect these shifts in operating conditions, and therefore has reccived much attention
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in mineral processing. Application of the PCA approach for fault detection in flota-
tion column is described in [Bergh and Acosta, 2009]. Expert control systems such
as neural networks and image processing systeins are also gaining popularity. Appli-
cation of a neural network as an expert control systen for determining and tracking
the optimal concentrations of zinc and sulfuric acid for the electrolytic process in zinc
hydrometallurgy can be found in [Wu et al., 2001]. [Wu et al., 2002] developed an
expert control system using a combination of steady-state mathematical models and
model switching rules to determine and track the optimal p¥ of the neutral and acid
leaches coming out of the leaching process in a zinc hvdrometallurgy plant. [Honggiu
et al., 2010] developed a model to optimize the cobalt purification process in zinc
hydrometallurgy using a combination of fuzzy C-means clustering and fuzzy support
vector machine. Application of ilnage processing to extract selected features from the
images of a flotation cell and using them to build a PLS model to predict the zinc

concentration can be found in [Hatonen et al., 1999].

5.3 Theory of Principal Component Analysis

Principal component analysis is a dimension reduction technique introduced by Pear-
son (1901), and later developed by Hotelling (1933). It projects correlated set of
variables onto a lower dimensional subspace where the transformed data is uncorre-
lated. The coordinates of this new subspace are called principal components (PC). Thus,
it decomposes the data into a few key uncorrelated variables and separates the redun-
dancy which usually arises in process data due to multiple measurements of the same
variable or linear relationships between variables. Each PC is a linear combination of
original variables. The first few principal components reflect the major trend in the

process and can be used in monitoring instead of a large number of variables.
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Consider a data matrix, X € R¥*™ containing N sawmnples aud m variables. The
objective is to find mm linear combinations of the original variables, known as princi-
pal components (PCs), which are a set of uncorrelated score variables as shown in
Equation 5.1:

ti=Xpi [i=1,---,m]; p; € R™! (5.1)

Here, p is known as the loading vector which represents the weights of each vari-
able. The loading vector is calculated in such a way that it can maximize the variance
in the score vector. The calculation steps of PCA are described below:

Step 1: Calculate the loading matrix P by applying singular value decomposi-

tion (SVD) on the co-variance matrix, ¥ = XTX/(N — 1) as follows:

Y= PAPT:  PeR™"™ AeR™™ (5.2)

The loading vectors are the orthonormal column vectors of the matrix P aud A is the
co-variance matrix of the principal components containing non-negative real cigenval-
ues of decreasing magnitude (A, > Ay > --- > A, > 0) along its main diagonals with
zero off-diagonal clements. Since the loading vectors are orthogonal to cach other, the
scores are uncorrelated to each other.

Step 2: Calculate the principal components as t; = Xp;, [i=1.---.m].

For m variables, the equal number of PCs are extracted as follows:

X =tip +topy + 00 + tmpi, (5.3)

Step 3: Determine the number of PCs, r (r < m) required to capture most of the
systematic variability in the data. In practice, 2 or 3 PCs are often sufficient to explain

most of the systematic variation [Kourti and MacGregor, 1995]. Since these scores
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are uncorrelated, they can be monitored individually. These 7 scores are used to filter

noisy data according to Equation 5.4, which is also known as PCA model:

X . tlp’f e t2pg doeeenn + trpf = XP,.P? (54)

After building a PCA model, future behavior can be referenced against this
‘in control’ modecl. New multivariate observations can be projected onto the plane
defined by the PCA loading vectors to obtain their scores as [t; new = DY Tnew), and
the residuals as [enew = Znew — Enew); Where Znew = Prtrnew; trmew is the (r x 1)
vector of scores from the model and P, is the (m x r) matrix of loadings [Kourti and

MacGregor, 1995].

5.3.1 Fault Detection Criteria

Two popular collective test statistics based on PCA known as Hotelling’s 72 and

(-statistics are used for fault detection.

5.3.1.1 Hotelling’s T?-Statistics

The original form of T2-statistic is defined as:

T} = (2 - 8)2 7Nz — 2)T (5.5)

In PCA Hotelling’s T2-Statistics provide a measure of the variation within the

PCA model. T? is the sum of normalized squared scores as shown in Equation 5.6:

W =mste, (5.6)

where A, represents a diagonal matrix containing the r largest eigenvalues, t; refers
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to the i-th row of 7, € RV, the matrix of r score vectors from the PCA model. In
calculating the T2-Statistic, the smaller eigenvalues are not considered, such that it
will not be affected by the inaccuracies of the smaller eigenvalues.

Statistical confidence limits for T? are directly calculated from the F distribution

as shown in Equation 5.7 [Wise and Gallagher, 1996]

r(N—1)

7(]\[ 0 Fo(r, N —r). (5.7)

TtQ/CL(“) -

Where F,(r. N — ) is the 100(1 — «v)% critical point of the F distribution with r and
(N — r) degrees of freedomn.

Hotelling’s T? detects abnormal variations in the quality variables in the plane
of the first r PCs which are caused by common causes. In case of the occurrence of
a totally new type of event which is not present in the reference model, that can be
detected by computing the squarred prediction error (SPE) of the residuals of a new

observation [Kresta et al., 1991].

5.3.1.2 Squared Prediction Error (SPE) or Q-Statistics

Q-Statistics or Q-Residuals, also known as Rao-statistics, deals with the observation
space corresponding to the (m —r) smallest singular values. It represents the squared
perpendicular distance of a new multivariate obscrvation from the projection space.

The collective test statistics is defined as follows [Kourti and MacGregor, 1995]:

Q; or SPE; = (x; —&)(x; — 2)7 (5.8)




64

The distribution of the Q-statistics as approximated in [Jackson and Mudholkar, 1979]

is given below:

1/ho
hoCo /269 Bahy(h, — 1
Qu or SPE, — |Vl ), Baholhy = 1) (5.9)
0 01
Where 6; = i afi. h, =1— 25‘:“9‘9"‘, and ¢, is the normal deviate corresponding
i=a+1 U2

to the (1 — «) percentile. The threshold for the SPE is calculated by Equation 5.9
for a given level of significance. This threshold can be used to detect the fault. Geo-
metrically SPE calculates a projected distance from a point in B™ to the hyper-plane
defined by the principal components. It measures to which extent the new data is in
agreement with the correlation structure ideuntified by the set of PCs. In the case of
agreement, SPE only reflects the random variation or measurcment noise. SPE will be
below the threshold given by @-statistics indicating that the process is ‘in control’. On
the contrary, if the correlation of data breaks down, that will be an indication of a
faulty operation and will be manifested by violating the control limnit by SPE. Usually,

PCA has the ability to deteet a fault carlier before it is perceived by the operator.

5.4 Methodology for selection of input variables

for PCA

The proposed methodology uses the retrospective Taguchi method to select important
input variables for PCA model. In the case of an inferential predictor as described in
Chapter 3, the measured quality variable is used as a trial result for each experiment in
the array. PCA gives a symmectric treatment of data and does not divide variables into
input (X) and output (Y) blocks. As such an outcome variable for each experiment

has to be defined. In the present analysis, the caleulated Hotelling's T?-statistics is
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considered as the outcome variable for each trial. Hotelling’s T2-statistics provides a
measurement of process variation within the PCA model. T2-statistics was used as
an outcome variable because it is a determinant of occurrence of common fault in a
PCA model. If T? value crosses the defined confidence limit, it indicates a fault in the
process. The objective of the variable selection method is to select variables which
bear the most fault signatures of the uuit. Therefore, the variables which will have
most deterministic power in indicating the fault will also have the most contribution
to the T2-statistics.

Figure 5.2 shows a flow chart of the steps of the proposed variables selection
method. Step 1 is the screening of important variables based on prior process knowl-
edge and trend analysis. Through trend analysis, the variation of each variable is
observed. Variables perceived as not important from process point of view are ormit-
ted from the list. Step 2 is data preprocessing for outlier removal and filling in missing
values. Preprocessing is a crucial step in data analysis, especially for industrial data, as
it may contain had values as a result of process upsets. Also the sensors may contain
bias error or variance error; therefore, it is important to validate the measurements
before further analysis. Step 3 is the selection of normal operation data from data
historian that represents the process well. An ideal PCA modcl requires the identifi-
cation of process data that captures the correlation between different variables. Step 4
is building a PCA modecl to calculate the Hotelling’s T2 values. This 72 value will be
considered as an outcome variable for each experiment fitted in the orthogonal array.

Step 5 is the sclection of the ranges of levels for all input variables. For cach
variable two levels are used for this analysis. The exact size of the range for a level de-
pends on the range of variation of the variable. In Step 6, the appropriate orthogonal
array based on the levels and number of variables is selected following Taguchi exper-

imental design. Orthogonal array is a systematically designed array where cach row
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Figure 5.2: Proposed variable selection flow chart for process fault detection

corresponds to a particular experiment and variables arce arranged in columns. Once

the array has been selected, it is populated with appropriate values from the data set
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that fits well with each experimental condition in the array. In the current analy-
sis, nine closelv matched measurements are selected from the data-set for each exper-
iment in the array. The target is to keep the average of these nine data points within
the range of the levels of that particular experiment. Nine data points are considered
as nine trials for each experiment. The corresponding T? values are considered as the
results obtained from the trials. In a PCA 1odel, Hotelling’s T?-statistics value is a
measure of fault in the proeess. T?-statistics is expected to be in their nominal range
during normal conditions. Therefore, the “nominal is the best characteristic” crite-
ria is used to calculate the S/N ratio for each experiment. Taguchi has proposed the
following equation to calculate the S/N ratio for this characteristic [Ghani et al., 2004]:
)

Yy
S/N = lUlogF (5.10)

y
where ¥ is the average of observed output data and ag is the variance of y.
In the final step, the trials’ results are utilized to calculate the signal-to-noise (S/N)
ratio for each experiment. The contribution of a variable in an experiment is measured
from its position as a low level or high level in that experinient. The S/N ratio for
a variable is calculated from the difference of its average low level contribution and
average high level contribution in all the experiments. Finally, the variables are ranked
based on the S/N ratio, and the variables with high S/N ratios are selected as input

variables to the PCA model.

5.5 Industrial Case Study : Hydromet Process

PCA-based monitoring schemes are developed for the various thickener units of a
hydro-metallurgical plant. The important variables for building the PCA model are

selected using the proposed retrospective Taguchi-based method. In the following sec-
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tions, we briefly describe the process and various operational problems in the thickener
units. Due to the proprietary nature of the process, the tag nanics and actual values

are withheld it the description.

5.5.1 Process description

In a hydromet process, raw ore is concentrated through subsequent metal extraction
stages to extract target metals for industrial or commmercial uses. Figure 5.1 presents a
simplified flow chart showing the major stages in a Nickel hydromet process. Crushing,
grinding and size classification are typically used for minerals liberation. Separation
processes involve flotation and leaching units followed by thickener units to separate
target metals as leach solution from leach slurry. Moreover, there are some periph-
cral processes such as feeders, convevors, tailing disposal, effluent treatment, reagent
dosage, etc.

The current study focuses on the thickener circuit of a hydro-metallurgical plant.
Figure 5.3 shows the different processing units of a typical hydro-metallurgical refining
process. Metal concentrate is first finely grounded in the grinding unit and then passed
to the pre-leach section. Pre-leached concentrate is then processed in an autoclave
where it reacts with oxygen and sulphuric acid at an elevated temperature and pressure
to producc an impure sulphate solution of metal called leach slurry. Leach slurry
is then thickened in leach residue thickener (LRT') to produce leach solution. The
underflow slurry from LRT is further thickened in the CCD circuit to scparate the
remaining leach solution. Leach residuc from the CCD circuit is treated in the effluent
treatment scction for impoundment. Leach solution coming out of the LRT and CCD
units is further processed to remnove any impurities from the metal solution and sent
to a metal extraction unit for the production of finished metal. The leach residue

thickener and counter current decantation (CCD) circuit have a considerable impact
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Figure 5.3: Block diagram of different processing units in a hydro-metallurgical plant
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on the process in terms of maximizing metal recovery from leach slurry. In the following

sections, a brief overview of these units is presented.

CCD 1 overflow (Leach solation) CCD Sovertio
| — D 5 overflow
€CD 4 overflow

CCD 3 overflow M

€CD 2 grerflow

Ta leack

LRT residnce — —y  residue

Feed put wash thickener,
agitator-5

Leach

resitue

thickener

cep s To process /
efllnent nen-
[ tralization
»«QJ +§ § 3
CCD 1 ouderflow CCD 2 mderflow €CD 3 underflow CCD 4 undecdlow CCD 5 nuderflow {Leach rexidue)

Figurc 5.4: Schematic diagram of matcerial flow in a CCD circuit

Leach residue thickener (LRT) performs the primary separation of the target
metal from leach slurry. Leach slurry coming out of pressure leach section is thickened
in leach residue thickener to separate the target metal as leach solution. Counter cur-
rent decantation (CCD) thickener circuit is used in the hydro-metallurgical process to
recover additional soluble metals from leach residue coming out of LRT thickener. The
basis of CCD operation is to obtain a concentrated suspended solid in order to min-
imize the leach liquor content in underflow slurry. The diluted slurry is then fed to
the next thickener. In this way, the suspended solids are concentrated repeatedly in
each thickener in order to keep the metal content to a minimum in the underflow
slurry. The nuniber of CCD stages required to recover the desired amount of soluble
metal depends on the amount of liquor present in the thickener underflow slurry. Fig-
ure 5.4 shows the underflow and overflow flow-paths in a five stage CCD circuit. The
final product is the leach solution obtained as overflow from CCD 1 thickener. Final
leach residue is collected from the underflow of CCD 5 thickener for further processing

prior to disposal.
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5.5.2 Operational problems in thickener operation
Doughnut-shape formation:

Doughnut-shape formation in the bottom layer of thickener is a major problem in the

thickener operation. The reasons for this formation are described below:

e synthetic polymer is commonly used to increase the thickener performance. If
its dosage is increased, the underflow viscosity is also increased. As a result,
there comes a point when the thickened solids lose their fluidity. The rake arms
may no longer cause flow toward the discharge point. Mass tends to travel
along in front of the rake arms and starts to accumulate in the rake arms. As
a result, it becomes blocked as stationary mass and additional retention time
will make them more immovable. The net result is the formation of a fairly
solid accumulation that slides along the Hoor of the thickener and eventually
fills the rake truss itself. If allowed to continue long cnough, additional solids
accumulate in front of the mass contained in the rake and the total accumulation
ean cventually grow to form a complete ring. This formation is commonly
known as doughnut formation. The island effectively blocks settled solids from
discharging through the central discharge outlet. Any solids which rcach the
outlet must pass up and over this island or short circuit directly from the feed
inlet. With insufficient detention time in the thickener, the result will be a much

lower solids concentration (diluted underflow slurry) [Moss, 1978].

e whilc operating a thickener, if the density of underflow sludge decreascs, the
rate of underflow is decreased to control density. This action may work in favor
of increased doughuut formation. If the retention time is iucreased by allowing
the solids in the thickener as long as possible, it may then cause doughnut shape

formation.



[

When doughnut forms:

o the viscous drag through the slurry is increased.

e the friction between the doughnut and the bed beneath the rakes increascs,

which eventually increases rake torque.
The following signs can be indicative of doughnut shape formation:

e an increase in rake torque, at the same time, a decrease in underflow density..
The control strategy during doughnut formation:

e fced rate should be decreased.

e rake should be raised to make the doughnut island slough off and flow or slide

into the discharge outlet.

Channeling:

4 Major
Channel

Major channel

Local channel  gueu

Figure 5.5: Formation of different channels on the settling bed wall [Kurt, 2006]
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Channeling is described as the short circuiting of fluid in the bed due to the

creation of a higher concentration gradient. Figure 5.5 shows the formation of a

major and localized channel on the settling bed wall. The causes of channeling are:

e the high-pressure gradient at the bottom of the bed. The fluid rising from the
compression zone causes cracks through the bed, which leads to shear failure of

the compression region [Vesilind, 1968].

another possible cause is the breaking of the solid matrix by impuritics and air

bubbles that break flow paths through the sludge bed [Glasrud et al., 1993].
High initial concentration and settling time may also create channcling.

'DeBoer, 1990] pointed out that the degree of channeling and/or size of the
channels are perhaps responsive to changes in the flocculant nature of a given

suspension.

[Dixon, 1979] mentioned the possibility that channeling is the result of wall

effects.

Factors like the size, shape and density of the solid particles also affect the

formation of channeling.
The effects of chauneling are:

during compression, it causes the real concentration value in the bed to be higher

than the normal value. This leads to overestimation of the thickener capacity.

it causes other events such as reverse concentration gradients in the settling bed.
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Rat holing:

In order to operate a thickener properly, the sludge that has scttled on the bottom
of the tank has to be moved into the sludge trough, from which it can be pumped
to the next unit. If the sludge fails to be moved to the sludge trough, the pump will
extract dilute sludge and, as a result, the sludge forms a funnel on top of the sludge
trough [Sanin et al., 2011]. This is known as rat holing. Rat holing is considered as

fatal to the proper operation of the thickener.



5.6 Results and Discussion

5.6.1 Leach Residue Thickener (LRT)

5.6.1.1 Data Description

Table 5.1: List of preliminarily selected variables for LRT thickener used in proposed
variable selection process

No. Variable name Description

1 Underflow rate (FFIC) Measured PV in ratio controller (FFIC)

2 Underflow flow rate (FIC) Measured PV in flow-controller (FIC) (kg/hr)
3 Undertlow slurry flow Solids mass flow from FQI transmitter (kg /hr)
14 Rake torque Torque measured from power requirement

5 Bed weight Measured PV in bed weight controller (kg)

6 Bed pressure Solids loading of thickener hed(kPa)

7 Rake lift position Rake’s position to measure lifting condition (%)
8 Influent temperature Measured input feed slurry temperature (°C)
9 Overflow temperature Measured overflow temperature (°C)

10 Underflow temperature Measured underflow slurry temperature (°C)
11 Visc loop temperture Mecasured visc loop temperature (°C)

From the available data of a total thirty variables, variables that do not show
any variation and arc perceived as not important from process point of view are
climinated. Table 5.1 shows the list of preliminarily selected variables with description.

These eleven variables were used as input to the variable sclection process.

5.6.1.2 Variable selection

Using normal operation data, first, a PCA model is built using preliminarily selected
eleven variables (shown in Table 5.1) to calculate the Hotteling’s 7% values. The
ranges of the levels of eleven variables are also determined from the data as shown in
Table 5.2. The standard orthogonal array for eleven variables and two levels is shown
in Table 5.3. In the next step, for each experiment in the array, values were searched

from the historical data so that the valucs arc within the ranges specified for cach



Table 5.2: Selection of levels of data for designing Taguchi orthogonal array using historical data for LRT thickener

No. Variable Min

Max Range Limit® LL° HL-
1 Undertlow rate (FFIC) 5.17 66.87 61.70 2776 3294  39.11
2 Underflow flow rate (FIC) 1.60 1033.34 1031.74 464.28 465.88 569.06
3 Underflow slurry to CCD flow  0.07  819.86 819.78 368.90 368.98 450.96
4 Rake torque 0.27 13.52 13.25 5.96 6.23 7.55
5 Bed weight 5788.5 9659.7 3871.2 1742.1 7530.5 7917.6
) Bed pressure 38.57 4391 5.33 2.40 40.97 41.51
7 Rake lift position 10.84  100.18 89.34 40.20  51.05 59.98
3 Influent temperature 23.41 95.59 72.17 32.48 5583 63.11
9 Overflow temperature 5837  84.99 26.62 1198 7035 73.01
10 Underflow temperature 29.86 82.44 52.58 23.66  53.52 58.78
11 Visc loop temperture 11.95 39.86 27.90 1256 2451  27.30

“Limit is 40 percent of range value

bCalculated by adding limit value with minimum value: low level data range is from min to LL
“Calculated by subtracting limit value from maximum value; high level data range is from HL to max

92



Table 5.3: Taguchi orthogonal array with low-level and high-level values of eleven variables to design the experiment for

LRT thickener

Variable number

1

&3}
"
T

2

3

4

5

6

10

11

32.94
32.94
32.94
32.94
32.94
32.94
32.94
39.11
39.11
10 39.11
11 39.11
12 39.11

O 00 ~1 O U = W=

465.88
465.88
465.88
569.06
569.06
569.06
569.06
465.88
465.88
569.06
569.06
569.06

368.98
368.98
450.96
368.98
450.96
450.96
450.96
450.96
368.98
450.96
368.98
368.98

6.23
6.23
7.55
7.55
6.23
6.23
7.55
6.23
7.55
6.23
7.55
6.23

7530.51
7530.51
7917.64
7917.64
7917.64
7917.64
7530.51
7917.64
7917.64
7530.51
7530.51
7917.64

40.97
41.51
40.97
40.97
41.51
41.51
41.51
41.51
41.51
40.97
41.51
40.97

51.05
59.98
51.05
59.98
51.05
51.05
59.98
59.98
51.05
51.05
51.05
59.98

55.89
63.11
55.89
63.11
63.11
63.11
55.89
55.89
63.11
63.11
55.89
55.89

70.35
73.01
73.01
70.35
70.35
70.35
73.01
70.35
73.01
73.01
70.35
73.01

53.52
58.78
58.78
53.52
58.78
58.78
53.52
53.52
53.52
53.52
58.78
58.78

24.51
27.30
27.30
27.30
24.51
24.51
24.51
27.30
24.51
27.30
27.30
24.51

“Bold faced-low level values ; normal-high level values

-1
~1
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Table 5.4: Calculation of S/N ratio of each experiment in the orthogonal array for

LRT thickener

Y;= Hotteling T? value for each trial

Bxp. 1 2 8 4 & 6 7 B8 9 N Sm® BN"® 8, ° Ve ¢ §/N®
1 15 56 03 48 16 283 4 12 14 9 883 1445 H0 70 1i2
9 20 6807 25 102 14 1.3 056 20 4§ @81 1752 818 102 =0ud
3 23 18 08 65 96 23 1.0 58 08 9 1066 1836 77.1 9.6 048
4 1117 12 66 98 13 13 09 16 9 715 1514 799 100 -1.65
5 4319 26 08 16 1.6 1.3 08 22 9 320 411 91 11 4.78
6 16 18 11 1.3 66 14 1.7 1.1 0.9 9 314 570 288 32 -0.00
7 23 06 28 1.2 11 15 1.1 08 98 9 474 1134 661 88 2.7
8 1208 04 15 06 26 1.5 1.1 1.9 9 151 190 39 05 5.25
9 08 15 16 1.8 14 58 09 16 1.1 9 302 486 184 23 1.30
10 16 2.1 09 1.3 08 26 1.1 59 22 9 379 573 194 24 209
11 40 23 14 08 03 1.1 1.2 54 1.3 9 351 582 231 29 0.94
2 17 #£3 07 21 17 0% 0% 28 1.1 8 188 284 38 D6 647

9
aSm1=(§1;Y,-)/N
bSleiy;_?

CS€1= §T1-37n1
Ve =Se; f/(N-1)
°S/N = 101og [{Spagre]




Table 5.5: Calculation of S/N ratio of each variable for LRT thickener

No. Variable LLC* HLC® S/Nratio ¢ Rank
1 Underflow rate (FFIC) 0.202 3211 3.01 2
2 Underflow flow rate (FIC) 1.543  1.394 0.15 10
3 Undertlow slurrv to CCD fow 1.291  1.621 0.33 9
4 Rake torque 2,740 -0.342 3.08 1
5 Bed weight 0.186 2.363 2.18 3
6  Bced pressure 1.704  1.279 0.42 8
7  Rake lift Position 1.518 1.369 0.15 11
8  Influent temperature 1.912  1.000 0.91 )
9  Overflow temperature 1.725 1.187 (.54 7
10 Underflow temperature 0.888 2.024 1.14 4
11 Visc loop temperature 1.797  1.115 0.68 6

“Low level contribution’ for cach variable is calculated as average of S/N ratios of those
oxperiments in the orthogonal array where the variable is contributing as low level

bHigh level contribution’ for cach variable is calculated as average of S/N ratios of those
experiments in the orthogonal array where the variable is contributing as high level

“Absolute difference between HLC and LLC
experiment. For each experiment, nine closely matched data sets were selected and
considered as nine trials. Table 5.4 reports the corresponding Hotteling 77 valucs as
the outcome variables of nine trials for each experiment. Based on the trials’ results,
the S/N ratio was calculated for cach experiment as given in Figure 5.4. Table 5.5
shows the calculation of S/N ratio for each variable. For example, in case of the
underflow rate (FFIC), its low level values are placed in experiments 1 to 7 of the
orthogonal array in Table 5.3. Therefore, its low level contribution is the average of
S/N ratios of the first scven experiments. Similarly, the high level contribution will be
the average of the S/N ratios of experiments 8 to 12. Finally the difference between
the low level average S/N ratio and high level average S/N ratio gives the overall S/N
ratio for a variable. Based on overall S/N ratios, variables were ranked. The ranks

of the variables are shown in Table 5.5. Seven variables which have S/N ratios >0.5

were selected to build the PCA model.
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5.6.1.3 Fault detection model

The selected variables were mean-centered and scaled by the reciprocal of the square
root of standard deviation. Figure 5.6 (a) shows the eigenvalue plot for seven principal
components. Based on the cumulative variance captured as shown in Figure 5.6 (b),
one principal component was selected as it is captured 96.11 % of total variance.

Figures 5.7 (a) and (b) show the T2 and @ residuals plots of the model, respectively.
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Figure 5.6: (a) Eigenvalue plot and (b) cumulative variance captured (%) plot for
LRT thickener

5.6.1.4 Validation

In order to validate the fault detection and diagnosis capability of the model, two
faulty data-sets are selected where process was impacted by fault which eventually

led to a temporary shutdown of the unit.
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Figure 5.7: (a) Hotelling’s 7% plot and (b) Q-residuals plot of PCA model for LRT
thickener

Validation data set 1:

Figurces 5.8 (a) and (b) report the Hotelling’s 72 and Q-residuals plots of the first
validation data-set, respectively. At t=6.8 hrs, the value of @ residual crossed the

confidence litmit and remained outside the limit upto t=15.0 hrs when the unit tripped.

Figure 5.9 illustrates the residual contribution of cach variable over time using
a color plot. Tt clearly shows that influent temperature has the most residual contri-
bution for fault occurrence at t=6.8 hrs. In order to ascertain the root cause, cach
variable was further investigated. Figure 5.10 (e) shows at t=6.8 hrs influent temper-
ature started to decrease. A decrease in temperature lowers the settling velocity as
it reduces the rate of diffusion of flocculant and rate of collision of particles. Due to

low scttling vclocity, the bed level decrcases, which lowers the bed weight as shown
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Figure 5.8: (a) Hotelling’s T2 plot and (b) Q-residuals plot of validation data set 1
for LRT thickener
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Figure 5.9: Color plot of validation data set 1 for LRT thickener
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Figure 5.10: Trend plots of different variables of validation data set 1 for LRT thick-
ener

in 5.10 (¢). In order to maintain bed weight, the underflow rate was decreased to a
minimum level as shown in Figure 5.10 (b). However, it still was not sufficient to

recover the system and the underflow was completely shut down.

Validation data set 2:

Figures 5.11 (a) and (b) show Hotelling’s 7% and @Q-residuals plot, respectively, for
the sccond validation data-set. Figurc 5.11 (b) shows that at t=13.0 hrs, valuc of
()-residual inereased sharply indicating that the process became unstable.

The contribution plot in Figure 5.12 shows that influent temperaturce has the
most contribution to fault occurrence at t=13.0 hrs. Figure 5.13 (e) clearly shows
that, upto t=13.0 hours, influent temperature was constant and then it started to
decrease sharply. In Figure 5.13 (a), if a threshold is drawn based on the previous

pecak at t=10.0 hrs, at t=15.0 hrs it will provide an indication to the opcrator that
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Figure 5.11: (a) Hotelling’s 72 plot and (b) Q-residuals plot of validation data sct 2
for LRT thickener
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Figure 5.12: Color plot of validation data set 2 for LRT thickener
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Figure 5.13: Trend plots of different variables of validation data set 2 for LRT thick-
cner

rake torque has rcached a critical limit. On the other hand, PCA modcl detects this
fault two hours early at t=13.0 hrs, as well as it precisely indicates that influent tem-
perature is the root causc of the fault. So the operator will have sufficient time to

take corrective actions.

Effectiveness of variable selection:

The effectiveness of the proposed variable selection method is demonstrated by build-
ing two alternate models. The first one is built using all cleven variables and the
second one is built using seven randomly chosen variables where the first four impor-
tant variables sclected by the proposed method are not included. These two models
are then applied to validation data set 1 to compare the prediction abilities of the

models. Figures 5.14 show (a) Hotelling’s 72 plot and (b) @ residuals plot of val-
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Figure 5.14: Comparison of proposed variable selection method for LRT thickener:
[(a) Hotelling’s T? plot and (b) Q residuals plot], where model is built (1) using
scven variables sclected from proposed variable selection method (2) using all cleven
variables (3) using random seven variables

idation data-sct 1 calculated using the three models described above. Comparison
of Figure 5.14 (1b) with (2b) and (3b) clearly shows that prediction performance by
the model using the proposed variable selection method is consistent, whereas in the
other two cases, most of the time, @-residual is above the confidence limit showing

false fault detection.

5.6.2 CCD 1 thickener
5.6.2.1 Data Description

Figure 5.15 shows a schematic diagram of CCD 1 thickener with sensor locations of
the preliminary selected fifteen process variables. The description of each variable is
sumnmarized in Table 5.6. These fifteen variables were used as input to the variable

selection process.
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Figure 5.15: Schematic diagram of CCD 1 thickener

Table 5.6: List of preliminarily scleeted variables for CCD 1 thickener used in proposed

variable selection process

No. Variable name Description

1 Iced rate LRT underflow FFIC controller’s output (%)

2 Underflow density Underflow slurry density(gm/cc)

3 Floc dilution rate Recycled overflow volume to dilute floc (m3/hr)
4 Feed dilution rate Recycled overflow volume to dilute feed (m3/hr)
5 Underflow slurry flow Solids mass flow from FIT transmitter (kg /hr)

6 Underflow solids % Solids % in underflow slurry going to CCD 2 (%)
7 Overflow tank level Meausred PV in overflow tank level controller (%)
8 Rake torque Torque measured from power requirement (%)

9 Underflow temperature Underflow slurry temperature (°C)

10 Overflow temperature Measured overflow temperature (°C)

11 Bed weight Measured PV in bed weight controller (kg)

12 Bed pressure Solids loading of thickener bed(kPa)

13 Floc volumne Floc volume added to feed stream (m3/h)

14 Underflow rate (FFIC) Measured PV in ratio controller (FFIC)

15 Undertlow flow rate (FIC) Measured PV in flow-controller (FIC) (kg/h)




88

5.6.2.2 Variable selection

Table 5.7: Selection of levels of data for designing Taguchi orthogonal array using
historical data for CCD 1 thickener

No. Variable Min Max Range Limit® LL* HL°
1 Feed rate 0.103 62.75  62.65 25.06 252 377

2 Underflow density 1.329 1.89 0.56 0.22 1.6 1.7

3 Floc dilution rate 0.00001 1.001  1.001 0.40 0.4 0.6

4 Feed dilution rate 0.003 5.02 5.02 2.01 2.01  3.02

5 Underflow slurry flow 17.31 587.2  569.9 22797 2453 3593
6 Underflow solids % 13.37 55.44  42.07 16.83 30.2 386

7 Overflow tank level 21.31 103.06 81.75 32.70 54.0 704

8 Rake torque 0.014 1861  18.59 7.44 7.5 11.2

9 Underflow temperature 26.74 51.93 25.19 10.07 36.8 419

10 Overflow temperature 23.65 70.35  46.70 18.68 42.3 517

11 Bed weight 3567.37 6699.0 3131.7 12527 4820 5446
12 Bed pressure 34.65 3792 3.27 1.31 359 36.6

13 Floc volume 0.00002 0.014  0.0138 0.0055 0.006 0.008

14 Undertlow rate (FFIC) 0.121 47.57  47.45 18.98 19.1 286
15 Underflow flow rate (FIC) 36.84 1088.5 1051.6 420.66 457.5 667.8

Limit is 40 percent of range value
bCalculated by adding limit value with minimum value; low level data range is from min to LL
“Calculated by subtracting limit value from maximum value; high level data range is from HL to max

Using fifteen preliminarily selected variables, first, a PCA model was built to
calculate the Hotelling’s T? values. The ranges of the levels of fifteen variables were
also calculated as shown in Table 5.7. Table 5.8 reports the standard orthogonal array
for fifteen variables filled in with low and high level values. Table 5.9 reports the
corresponding Hotelling’s T2 values as the outcome variable of nine trials conducted
for each experiment. S/N raio was calculated for each experiment as given in Table
5.9. The overall S/N ratio and ranks for the variables are given in Table 5.10.

From the rank of the variables, top ten variables which have S/N ratios >0.5

were selected to build the final model.



Table 5.8: Taguchi orthogonal array with low-level and high-level values of fifteen variables to design the experiments for
CCD 1 thickener

Variable number o

Exp. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

25.2 1.6 0.4 2.01 245.3 30.2 54.0 7.5 36.8 42.3 4820 35.9 0.006 19.1 457.5
25.2 1.6 0.4 201 2453 30.2 54.0 11.2 419 51.7 5446 36.6 0.008 286 6678
25.2 1.6 04 302 3533 386 704 7.5 36.8 42.3 4820 36.6 0.008 286 667.8
25.2 1.6 0.4 302 3593 386 704 11.2 419 517 5446 35.9 0.006 19.1 457.5
25.2 1.7 06 201 2453 386 704 7.5 36.8 5I.7 5446 35.9 0.006 286 667.8
25.2 1.7 0.6 2.01 2453 386 704 11.2 419 42.3 4820 36.6 0.008 19.1 457.5
25.2 17 06 201 2453 386 704 11.2 419 42.3 4820 36.6 0.008 19.1 457.5
25.2 1.7 0.6 3.02 3593 30.2 54.0 11.2 419 42.3 4820 35.9 0.006 286 667.8
377 1.6 06 201 3593 302 704 7.5 419 42.3 5446 35.9 0.008 19.1 6678
377 1.6 06 2.01 3593 30.2 704 112 36.8 51.7 4820 366 0.006 286 457.5
377 1.6 06 302 2453 386 540 7.5 419 42.3 5416 366 0.006 286 457.5
37.7 1.6 06 302 2453 386 54.0 11.2 36.8 5H1.7 4820 359 0.008 19.1 667.8
377 17 04 201 3593 386 54.0 7.5 419 51.7 4820 35.9 0.008 28.6 457.5
377 1.7 04 201 3593 386 54.0 11.2 36.8 42.3 5416 36.6 0.006 19.1 667.8
37.7 1.7 04 302 245.3 30.2 704 7.5 419 51.7 4820 366 0.006 19.1 6678
377 17 04 302 2453 30.2 704 112 36.8 42.3 5446 35.9 0.008 286 457.5

el o e
S AL oS co o ogte W e

*Bold faced-low level values; normal-high level values
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Table 5.9: Calculation of S/N ratio of cach experiment in the orthogonal array for
CCD 1 thickener

Y;= Hotteling 72 valuc for cach trial

Exp. 1 2 3 4 5 6 7 8 9 N Sm? STi" Sey© Ve, * S/N°¢
122 20 21 38 49 52 21 48 23 9 962 1115 153 19 738
2 08 07 16 126 06 1.0 0.8 0.6 0.8 9 420 164.3 1223 153 -7.11
3 09 08 29 22 3319 33 14 07 9 337 425 88 1.1 5.20
4 55 19 18 05 25 21 08 1.2 1.5 9 352 523 171 21 234
5 50 26 04 1.1 29 22 14 70 72 9 987 149.0 50.3 6.3 2.13
6 26 12 1.8 49 18 45 95 7.2 06 9 129.6 2020 724 9.1 1.70
7T 27 26 1.7 18 24 55 06 15 08 9 426 591 166 2.1  3.37
8 1.7 14 1.7 1.0 24 49 05 3.1 06 9 339 49.6 157 2.0 256
9 00 22 1.7 24 65 22 14 1.2 1.3 9 399 65.3 254 3.2 1.09
10 14 34 19 10 19 04 08 0.6 08 9 165 23.3 6.8 0.9 3.08
11 51 126 42 26 23 26 2.1 1.2 29 9 1414 2346 933 11.7 0.92
1210 04 20 19 05 23 156 1.2 22 9 191 230 3.9 0.5 631
13 1.2 19 20 24 19 41 65 45 33 9 86.6 1095 229 29 5.12
14 33 08 1.0 55 30 22 08 06 08 9 362 583 221 28 1.30
15 21 08 24 1.0 43 31 24 06 22 9 394 508 114 14 4.72
16 22 10 19 06 06 15 04 59 1.0 9 252 484 232 29 -0.67

9
“Sm=0_Y)/N

T
7, ey
‘Sep— é"ﬂ—S'NLl
Wey—Se/(N-1)
“S/N = 101og [t |



Table 5.10: Calculation of S/N ratio of each variable for CCD 1 thickener

No. Variable LLC* HLC® S/N ratio ¢ Rank
1 Feed rate 2197  2.732 0.54 10
2 Underflow density 2,401  2.528 0.13 15
3 Floc dilution rate 2284  2.644 0.36 12
4 Feed dilution rate 2.005 3.055 1.05 8
5  Underflow slurry flow 2.082 1.604 0.48 11
6  Underflow solids % 1.578  3.154 1.58 6
7 Overflow tank level 2.354  2.550 0.20 13
8  Rake torque 3793 1430 2.36 2
9  Underflow temperature 3.531 1.634 1.90 4
10 Overflow temperature 2.539  2.368 0.17 14
11  Bed weight 4.382  -0.001 4.38 1
12 Bed pressure 3.282 1.647 1.64 5
13 Floc volume 3.054 1.8741 1.18 7
14  Underflow rate (FFIC) 3526  1.402 2.12 3
15  Underflow flow rate (FIC) 2.904 2.024 0.88 9

*Low level contribution’ for cach variable is calculated as average of S/N ratios of those
experiments in the orthogonal array where the variable is contributing as low level

bHigh level contribution’ for cach variable is calculated as average of S/N ratios of those
experiments in the orthogonal array where the variable is contributing as high level

“Absolute difference between HLC and LLC
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5.6.2.3 Fault detection model

The sclected variables were mean-centered and scaled by the reciprocal of the square
root of standard deviation. Figure 5.16 (a) shows the eigenvalue plot for ten principal
components. From the cumulative variance captured (%) plot shown in Figure 5.16
(b), two principal components were selected, capturing 97.64 % of total variance.

Figures 5.17 (a) and (b) show T? and @-residuals plots of the model, respectively.
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Figure 5.16: (a) Eigen-value plot and (b) cumulative variance captured (%) plot for
CCD 1 thickener

5.6.2.4 Validation

In order to validate the fault detection and diagnosis capability of the model, two
faulty data-sets were selected where the process was impaeted by fault which eventu-

ally led to a temporary shutdown of the unit.
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Figure 5.17: (a) Hotelling’s T2 plot and (b) Q statistics plot of PCA model for CCD
1 thickener

Validation data-set 1:

Figures 5.18 (a) aud (b) report the T2 and @Q-residuals plots of validation data-set
1, respectively. Figure 5.18 (a) indicates that at t=13.4 hrs valuc of T? crossed the
confidence limit and remained outside the limit upto t=20.0 hrs. Figure 5.19 illustrates
the residual contribution of cach variable over time using a color plot. The plot shows
that underflow solids % has the most contribution for fault occurrence at t=13.4 hrs.

In order to ascertain the root cause, cach variable was further investigated.
Figure 5.20 (e) shows that at t=17.0 hrs, underflow solids % started to decrease. The
PCA modecl detected the fault 3.6 hrs carly at t=13.4 hrs. A deercasc in underflow
solids % is an indication of poor Hocculation. The disturbance in the Hocculation
process causcs direct channcling of feed through underflow, which eventually lowers

the solids content of the underflow slurry. Figure 5.20 (g) shows that, at t=16.0 hrs,
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Figure 5.18: (a) Hotelling’s T2 plot and (b) Q residuals plot of validation data sct 1

for CCD 1 thickener
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Figurc 5.19: Color plot of validation data set 1 for CCD 1 thickener
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Figure 5.20: Trend plots of different variables of validation data set 1 tor CCD 1
thickener

feed was stopped due to disturbaice in the flocculation process. Attempts were taken
to stabilize the process by inercasing the feed rate at t=17.0 hrs; however, it still was

not sufficient, to recover the system and the unit had to stop at t=22.0 hrs.

Validation data-set 2:

Figures 5.21 (a) and (b) show T2 and Q-residuals plots, respectively, for validation
data-set 2. Figure 5.21 (a) shows that at t=7.4 hrs 72 value crossed the confidence
limit and remained outside the limit upto t=22.0 hrs. Figure 5.22 illustrates the
residual contribution of each variable over time using a color plot. It clearly shows
that underflow solids % has the most residual contribution for fault occurrence at
t=7.4 hrs. In order to ascertain the root cause, each variable was further investigated.
Figure 5.23 (¢) shows that at t=11.0 hrs underflow solids % started to decrcase. Figure

5.23 (a) & (d) show that both bed weight and rake torque started to decrease at t=10.0




Figure 5.21: (a) Hotelling’s T? plot and (b) Q residuals plot of validation
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Figure 5.22: Color plot of CCD 1 thickener validation data set 2
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Figure 5.23: Trend plots of different variables of validation data set 2 for CCD 1
thickener

hrs. This indicates that improper flocculation resulted in direet channcling of slurry.

The PCA model detects the fault 2.6 hrs early.

5.6.3 CCD 2 thickener
5.6.3.1 Data Description

In a CCD circuit, each thickener has an identical list of variables and control schemes.
A similar sct of variables sclected for CCD 1 PCA model was used to build the PCA
model for CCD 2 thickener.

5.6.3.2 Fault detection model

The sclected variables were mean-centered and scaled by the reciprocal of square root

of standard deviation. Figure 5.24 (a) shows the eigenvalue plot for nine principal
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Figure 5.24: (a) Eigen-value plot and (b) cumulative variance captured (%) plot for
CCD 2 thickener
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components. From the cumnulative variance captured (%) plot as shown in Figure
5.24 (b), two principal componeuts are selected capturing 99.17 % of total variance.
=4

Figures 5.25 (a) aud (b) show Hotelling’s T2 and @ residuals plots, respectively, of

the final model.

5.6.3.3 Validation

The model was validated on two known faulty data-scts where the process was ini-

pacted by fault which eventually led to a temporary shutdown of the unit.

Validation data-set 1:

Figures 5.26 (a) and (b) report the 7% and @ residuals plots of first validation data set,
respectively. Figure 5.26 (b) indicates that at t=9.0 hrs value of @ residual crossed
the confidence limit and remained outside the limit upto t=13.0 hrs. Figure 5.27
illustrates the residual contribution of each variable over time using a color plot. The
plot shows that rake torque and feed dilution rate have major residual contributions
for fault occurrence at t=9.0 hrs. In order to ascertain the root cause, each variable
was further investigated. Figure 5.28 (d) & (a) show that at t=9.0 hrs rake torque
started to increase, whereas bed weight was decreasing. Figure 5.28 (c¢) shows that
feced dilution rate became unavailable during fault occurrcnce, which essentially de-
teriorated the flocculation process. The feed became relatively viscous due to lack
of dilution. The bed material lost its fluidity, which eventually increased rake torque

and led to the shutdown.

Validation data-set 2:

Figures 5.29 (a) and (b) show T2 and @ residuals plots of the second validation data-

set, respectively. Figure 5.29 (b) indicates that at t=10.5 hrs the value of @ residuals
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Figure 5.26: (a) Hotelling’s 72 plot and (b) Q residuals plot of validation data-set 1
for CCD 2 thickener
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Figure 5.27: Color plot of validation data set 1 for CCD 2 thickener
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crossed the confidence limit and remained outside the limit up to t=13.0 hrs.

Figure 5.30 illustrates the residual contribution of each variable over time using
a color plot. The plot shows that rake torque has the most residual contributions for
fault occurrence at t—10.5 hrs. In order to ascertain the root cause, each variable was
further investigated. Figure 5.31 (g) shows that floc volume rate started to increase
at t=9.0 hrs. As floc addition is proportional to feed rate, this indicates that feed rate
was also increased. Figure 5.31 (d) shows that rake torque did not increase with the
feed rate. Figure 5.31 (b) also reflects this fact where a decrease in underflow solids
% is ohserved. This indicates that a disturbance was created in the settling process
resulting iu direct channeling of feed material. Figure 5.31 (f) also indicates that feed
dilution rate was increased at t=11.0 hrs to improve flocculation. This action could
have bheen taken an half hour before at t=10.5 hrs when PCA model detected the

fault.

5.7 Conclusions

The present chapter discussed a systematic quantitative approach to identifv impor-
tant input variables for a PCA model. The method is based on Taguchi’s experimental
design and employs historical process data to select important variables. The tech-
nique considers the calculated Hotelling’s 77 value as an outcome variable for each
designed experiment of the orthogonal array. The proposed Taguchi-based method-
ology is applied in combination with PCA for building monitoring scheme for LRT
thickener, CCD 1 thickener and CCD 2 thickener of a nickel hydromet process. The
models are validated using process data with known faults. Contribution plots were
used to diagnose the root cause of fault. The major advantages of the proposed

method are stated below:
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e The proposed Taguchi based methodology offers a quantitative and systematic
way of sclecting input variables for PCA. It can significantly reduce the models

development time for PCA based monitoring tool.

e PCA based monitoring technique can be effectively used for detection and diag-
nosis of faults in the thickener units of a hydro-metallurgy process. It provides

earlv warnings and is able to diagnose the root cause of a fault effectively.

e The cffectivencess of the proposed variable selection method is demonstrated on
LRT model. The results show that the variable selection method improves PCA
model quality which provides consistency in detecting faults and avoids false

fault detection.



Chapter 6

Conclusions

6.1 Contributions

The major contributions of this thesis arc listed below:

e Taguchi’s expcrimental design method has been adapted for sclecting input vari-
ables for process monitoring tools. Detailed methodologies have been developed
to sclect input variables for SVR based inferential predictor and PCA based

fault detection and diagnosis method.

e Implementation difficulties in applying Taguchi method to process data were
addressed. Taguchi’s experimental design array was originally developed for
uncorrelated factors. Since process variables are correlated, it becomes diffi-
cult to fill the design array using historical process data. In order to overcome
this difficulty a classification algorithm was used to classify process variables
into different uncorrelated groups. A representative variable was selected from
each group. Taguchi’s experimental design array was designed considering the
representative variables as factors. Since these representative variables are un-

correlated, the design array can be easily filled using historical data.

105
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e A SVR based inferential predictor was developed to predict the 4-CBA concen-
tration of a PTA process. The SVR based predictor successfully modeled process

non-linearly and showed better prediction capability compared to a PLS model.

Input variables for the SVR predictor was selected using the proposed Taguchi’s
experimental design based variable sclection mcthod. Prediction performance
of the Taguchi-SVR model was compared with VIP-SVR model, which used
VIP mecthod to scleet input variables. Results show that Taguchi-SVR has less

prediction error (RMSE) compared to VIP-SVR.

A variable sclection methodology based on Taguchi's experimental design method
is developed for a PCA based monitoring scheme. This systematic, quantitative
method can replace the trial and error and significantly minimize the model-
ing time for PCA. Also the results showed that the PCA model with variables
sclected using the proposed method has less false alarm compared to the PCA

model with larger set of variables.

PCA based monitoring technique was cffectively used to detect and diagnose
faults in the thickener units of a hydro-metallurgy process. It was demonstrated
using industrial data that the monitoring scheme provided carly warnings and

capable to diagnose the root cause of a fault effectively.

6.2 Future Recommendations

e The proposed Taguchi based variable selection methodology has heen used to

sclect variables for a SVR predictor. The methodology is demonstrated through
a case study from a petrochemical process. The main advantage of the method

is that it is not dependent on any learning algorithm. Therefore, the proposed
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method can also be applied to other multivariate regression methods.

PCA model with the proposed variable selection methodology is successfully
applied for detection and diagnoses of faults in three different thickener units
of a hydro-met process. The method can be further validated by applying it to
other units of the process, c.g. flotation unit, grinding unit, autoclave, metal

extraction unit.

For filling the Taguchi’s experimental design array, data scarch was carried out
manuallv. This can be sometimes a tedious process. An automated data search

method will definitely improve the usability of the method.
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