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Abstract

The flow of seawater around marine risers is subject to vortex shedding which excites

oscillations known as Vortex Induced Vibrations (VIV). When the VIV frequency

approaches one of the natural frequencies of the structure, resonance occurs. This

results in enhancement of the vibration amplitude of the structure and may have

potentially destructive consequences. At present, the prediction of this phenomenon

is one of the most challenging areas in the offshore industry.

The focus of this research is on the development of a new approach for simulating

vortex induced vibrations on marine risers at high Reynolds numbers using a Large

Eddy Simulation (LES) computational fluid dynamics code. This method considers

the span-wise variation of the lift and drag forces, and determines the moment acting

on the cylinder. The predicted motion then consists of a rotational component to

accompany the traditional cross-stream translation.

A simulation of flow around a stationary cylinder was performed to establish the

vortex shedding pattern and determine the lift and drag coefficients. At this point a

harmonic model was invoked and the cylinder was free to respond to it's shed vortices.

Results are presented for the simulation of turbulent flows past a 3 m long cylinder

with 1 m diameter, undergoing vortex induced vibrations at a Reynolds number equal

to 1 x 105 .



Acknowledgements

First, I would like to take this opportunity to thank my thesis supervisors, Dr. Neil

Bose, Dr. Julio Militzer, and Dr. Eric Thornhill. It has been my great pleasure to

work with each of you. Dr. Bose has been instrumental in moving this project forward

and was always available, willing, and able to provide valuable guidance and a helpful

hand when called upon. I am grateful to Dr. Militzer for providing me the focus and

direction that I needed to press on when I was ready to throw my hands up in despair.

The long chats about life, computational fluid dynamics, and everything in-between

will be a treasure for my entire professional career. I would like to acknowledge Dr.

Thornhill for his helpful suggestions and Dr. Rubens Campregher for providing sage

advice on the design and development of the numerical routines contained in this

dissertation.

I would also like to thank Memorial University of Newfoundland and Dalhousie

University for providing the numerical facilities required for this project and I am

grateful for the financial support provided by the Natural Sciences and Engineer­

ing Research Council (NSERC) of Canada and Petroleum Research Atlantic Canada

(PRAC).

I am deeply indebted to my parents for creating an environment in which choosing

this path seemed so natural. My brother, Matthew, and sister, Krista, have provided

a ready ear and incisive mind to support and challenge me in my life and work, and

iii



ACKNOWLEDGEMENTS

for that I thank you both. A special thanks to my young sons, David and Seamus

for the opportunity to watch them learn and grow. Their uninhibited journeys of

discovery served as great motivation throughout this research.

Finally, I would like to thank my wife Jennifer, for her unwavering support, en­

couragement and motivation throughout my studies. For putting up with all my mood

swings, rants, raves, frustrations, and moments of jubilation during the course of this

study, I am eternally grateful. She pulled me back down to earth when things were

tough and always helped me to keep the proper perspective. I can only hope that I

might someday be able to provide the same level of assistance to someone in a similar

situation as the above individuals have provided me.

iv



Contents

Nomenclature

1 Introduction

1.1 Overview of Thesis

2 Literature Review

2.1 Forced Oscillations

2.2 Structures in the Wake of VIV .

2.3 Self Excited or Free Oscillations.

2.4 Effect of Mass Damping

2.5 One vs. Two Degrees of Freedom Systems

2.6 Three Dimensionality .

2.7 High Reynolds Number Flows

2.8 Numerical Simulations

2.9 Three-dimensional Wake effects

2.10 Summary of Literature Review

3 Methodology of the Research

3.1 Numerical Requirements for the Simulation of VIV

3.1.1 Large Eddy Simulation (LES)

xvi

10

15

18

19

21

25

29

31

33

34

34



CONTENTS

3.1.2 Moving Geometry. 35

3.1.2.1 Dimensionality 36

3.2 The Numerical Wind Tunnel. 36

3.2.0.2 Hardware Requirements and Additional Software 38

3.4.1 Dimensional Analysis .

3.4.2 Effect of Cylinder Motion on the Wake

3.3 Flow Past a Stationary Cylinder. . . . . . . . . . . ...

3.4 Flow-Structure Interaction . . . . . . . . . . . . . . . . . . . . . . .

41

41

42

44

44

46

Flow Structures in Wake . . . . . . . . . . . . . . . . . . . . .

Strouhal Number

3.3.1

3.3.2

4 Code Development for the Simulation of VIV 48

4.1 Surrounding Cells method 48

4.2 Second-Order Velocity Interpolation. . 49

4.3 Calculation of Lift and Drag Forces . 57

4.4 Quantifying the Induced Roughness. . 61

4.4.1 Controlling the solution with roughness approximation 63

4.5 Accounting for the span-wise variation in forces along the cylinder span. 64

5 Modeling Generalities and Validation 73

5.1 Domain Size. 73

5.2 Grid Independence Study 74

5.3 Validating the 2nd-order Velocity Interpolation . 77

6 Simulation of Flow Past a Fixed Circular Cylinder at Re = 105 82

6.1 Computational Details 83

6.1.1 Computing Time

6.2 Results.

84

87

vi



CONTENTS

6.2.1

6.2.2

6.2.3

Three-dimensional Effects

Correlation Coefficients . . .

Span-wise Distribution of Force and Moment Coefficients .

87

94

97

7 Simulation of 3D Flow Past an Elastically Mounted Cylinder Under-

101

. .102

· .... 105

..................... 106Three Dimensional Effects7.2.1

going VIV

7.1 Modelling Details.

7.2 Results for Cross-stream Translation Case

7.2.2 Span-wise Distribution of Force and Moment Coefficients .... 110

7.3 Results for 1* = 1 ....

Span-wise Distribution of Force and Moment Coefficients .... 119

7.3.1

7.3.2

Three-dimensional effects .

· .... 112

...... 114

7.4 Results for 1* = m* . . .

Span-wise Distribution of Force and Moment Coefficients . . . . 130

7.4.1

7.4.2

Three-dimensional effects. . . . . . . . . . . . . .

. .122

.123

8 Conclusions & Recommendations 133

8.1 Summary of Code Development 133

8.2 Summary of Validation for 2nd-order interpolation 135

8.3 Summary of Stationary Cylinder Simulations. . . . . . . . . . . . . . . 135

8.4 Summary of Moving Cylinder Simulations · .... 137

8.4.1 Summary of Results for Cross-Stream Translation. . 138

8.4.2 Summary of Results for 1* = 1 138

8.4.3 Summary of Results for 1* = m* . . . . . . . . . . . . . . . . . . 139

8.5 Significant Contributions to the Field 141

8.6 Recommendations for Further Work. . . . . . . . . . . . . . . . . . . . 142

vii



Bibliography

Appendix A: Grid Refinement Study

Appendix B: Matlab Scripts

viii

CONTENTS

144

154

156



List of Figures

1.1 Typical geometry for marine riser . .

2.1 Vortex shedding patterns behind VIV cylinder (Williams and Roshko) [85] 10

2.2 Response of flexible one degree of freedom circular cylinder (Feng) [23] 12

2.3 Phase Response of flexible one degree of freedom circular cylinder

(Feng) [23] 13

2.4 Vibration amplitude data for impulsive and progressive regimes (Brika

and Laneville) [19] . . . . . . . . . . . . . 14

2.5 Amplitude response for low m*( parameters (Khalak-Williamson) [40] 16

2.6 Amplitude response for high m*( parameters (Khalak-Williamson) [40] 17

2.7 Discontinuities in Strouhal number for transition to three dimension-

ality (Williamson) [82]

2.8 Hysteretic behavior at the first discontinuity in Strouhal number for

transition to three dimensionality (Williamson) [82]

2.9 Variation in Cd versus Re for shear, 1:3, and uniform flow, 1:1 (Humphries

and Walker) [33]

2.10 Variation in AID versus Re for shear and uniform flow (Humphries

and Walker) [33]

3.1 Eddies in turbulent flow

ix

20

21

22

23

34



LIST OF FIGURES

3.2 Cartesian adaptive grid. 37

3.3 Transitions in disturbed regions: (a) TrW, (b) TrSL, (c), (d) TrBL . 42

4.1 Simple grid 49

4.2 Traditional IE velocity interpolation on stationary boundary 50

4.3 Second order linear interpolation 51

4.4 Second order bilinear interpolation

4.5 Simple surrounding cells flowchart.

4.6 Identifying cells to East and West .

4.7 Identifying cells to North and South

4.8 Identifying faces to East and West

4.9 Identifying surrounding faces .

4.10 Differential lift and drag forces .

4.11 Simple lift and drag integration flowchart .

4.12 Boundary cell with both faces inside ..

4.13 Determining roughness on immersed boundary.

4.14 Arbitrary two degree of freedom spring-mass-damper system

4.15 Free body diagram for multiple spring-mass-damper system

4.16 Displacement history for cylinder without span-wise lift moment

4.17 Displacement history for cylinder with moment varying with Cl

5.1 Calculation domain

52

53

54

54

54

55

58

60

61

62

65

67

71

72

74

5.2 Illustration of separation bubble size 78

5.3 Grid Convergence Study at Re = 100 . . . . . . . . . . . . . . . . .. 79

5.4 Single Sided Amplitude Spectrum of Cl at Re = 100 79

5.5 Cl and Cd vs time at R e = 100 80

5.6 Vorticity contours for stationary cylinder at Re = 100 81



LIST OF FIGURES

5.7 Velocity contours for stationary cylinder at Re = 100 81

6.1 Computational domain for flow past stationary cylinder at Re = 105 85

6.2 Refined mesh for flow past stationary cylinder at Re = 105 . . . . 86

6.3 Refined mesh around cylinder for flow past stationary cylinder at Re =

87

6.4 Refined mesh along span for flow past stationary cylinder at Re = 105 88

6.5 Coefficients of lift and drag for stationary cylinder at Re = 105 . . . 88

6.6 Amplitude spectrum of lift coefficient for stationary cylinder at Re = 105 89

6.7 Velocity vectors for stationary cylinder at Re = 105
, and y = 0.5 90

6.8 Velocity vectors for stationary cylinder at Re = 105
, and y = 1.5 91

6.9 Velocity vectors for stationary cylinder at Re = 105 , and y = 2.5 91

6.10 Vorticity contours for stationary cylinder at Re = 105
, and y = 0.5 92

6.11 Vorticity contours for stationary cylinder at Re = 105
, and y = 1.5 92

6.12 Vorticity contours for stationary cylinder at Re = 105 , and y = 2.5 92

6.13 Instantaneous span-wise vorticity iso-surfaces for flow past stationary

cylinder at Re = 105 . Iso-surfaces +2.0 and -2.0

6.14 Span-wise vorticity in mid-plane of stationary cylinder at R e = 105 (z =

15D)

6.15 Instantaneous span-wise vorticity iso-surfaces for flow past stationary

cylinder at Re = 105 . Iso-surfaces +2.0 and -2.0

6.16 C1 vs time at Re = 105 along span of stationary cylinder

93

94

95

95

6.17 Cross correlation coefficient along span of stationary cylinder at Re = 105 96

6.18 Distribution of lift coefficient along the stationary cylinder span at

Re= 105 ...

6.19 Distribution.of drag coefficient along the stationary cylinder span at

Re= 105
.

xi

98

99



LIST OF FIGURES

6.20 Moment coefficient and lift coefficient for stationary cylinder at Re = 105 100

6.21 Amplitude spectrum of moment coefficient for stationary cylinder at

Re= 105
. . 100

7.1 One degree of freedom spring-damper system ...... 102

7.2 Two degrees of freedom spring-damper system (stream-wise and cross-

stream) · 102

7.3 Two degrees of freedom spring-damper system (stream-wise and rota-

tion) . . . . . . . . . . . . . .... 103

7.4 Coefficients of lift and drag for cylinder at Re = 105 oscillating in the

cross-stream direction

7.5 Velocity vectors at y=0.5 for cylinder at Re = 105 oscillating in stream-

.107

wise direction ............ 108

7.6 Velocity vectors at y=1.5 for cylinder at Re = 105 oscillating in stream-

wise direction ..... 108

7.7 Velocity vectors at y=2.5 for cylinder at Re = 105 oscillating in stream-

wise direction · 109

7.8 Instantaneous iso-surfaces stream-wise velocity for flow past a moving

cylinder. Iso-surfaces +0.5,0.2 and -0.5, -0.2 · 109

7.9 Cross correlation coefficient along span of cylinder translating in cross-

stream direction at Re = 105 110

7.10 Distribution of Lm.S. lift coefficient along span of cylinder translating

in cross-stream direction at Re = 105 . . . . . . . . . . . . . . . . . . . 111

7.11 Distribution of drag coefficient along span of cylinder translating in

cross-stream direction at Re = 105 111

7.12 Moment and lift coefficients for cylinder atRe = 105 translating in

cross-stream direction

xii

.................. 112



LIST OF FIGURES

7.13 Coefficients of lift and drag for translating and rotating cylinder with

1* = 1 at Re = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.14 Velocity contours for moving and rotating cylinder at Re = 105 ,1* = 1

and y = 1.5 ... 115

7.15 Velocity vectors for moving and rotating cylinder with 1* = 1 at Re =

105 , and y = 0.5 . . .... 115

7.16 Velocity vectors for moving and rotating cylinder with 1* = 1 at Re =

105 , and y = 1.5. . . . . . . . . . . ... . ..... 116

7.17 Velocity vectors for moving and rotating cylinder with 1* = 1 at Re =

105 , and y = 2.5. . 116

7.18 Velocity vectors showing 2C pattern for moving and rotating cylinder

with 1* = 1 at Re = 105
, and y = 2.5 · 117

7.19 Instantaneous iso-surfaces stream-wise velocity for flow past a moving

and rotating cylinder with 1* = 1 at Re = 105 . Iso-surfaces +0.2 and

-0.2 mls .................................. 117

7.20 3-D model of vortex shedding from moving and rotating cylinder with

1* = 1 at Re = 105 .......... 118

7.21 Cross correlation coefficient along span of moving and rotating cylinder

with 1* = 1 at Re = 105 ..................... 119

7.22 Distribution of Lm.S lift coefficient along span of the moving and ro-

tating cylinder with 1* = 1 at Re = 105 . · 120

7.23 Distribution of drag coefficient along span of the moving and rotating

cylinder with 1* = 1 at Re = 105 · 120

7.24 Moment coefficient and lift coefficient for moving and rotating cylinder

with 1* = 1 at Re = 105 . . . . . . . . . . . . . . . . . . . . . . . . . . 121

xiii



LIST OF FIGURES

7.25 Coefficients of lift for translating and rotating cylinder at Re = 105

and 1* = m* .. ............................. 123

7.26 Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 0.5 .. 124

7.27 Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 1.5 . 125

7.28 Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 2.5 .. 125

7.29 2C pattern for cylinder at Re = 105 and 1* = m*, at y = 1.5 ... 126

7.30 Instantaneous iso-surfaces of stream-wise velocity for flow past a mov-

ing cylinder with 1* = m*. Iso-surfaces +0.5,0.2 and -0.5, -0.2 m/s. . 126

7.31 Comparison of rotation angles for cylinder at Re = 105 for 1* = 1 and

I*=m*

7.32 Comparison of amplitude ratios for cylinders at Re = 105 for 1* = 1

.127

and 1* = m* and pure translation . . . . . . . . . . . . . . . . . . . . . 128

7.33 Comparison of cross-stream cylinder velocities ratios for translating

and rotating cylinder at Re = 105 for 1* = 1 and 1* = m* . . . . . . . . 128

7.34 Cross correlation coefficient along span of moving cylinder at Re = 105

for 1* =m* .. 129

7.35 Cross correlation coefficient along span of moving cylinder at Re = 105 130

7.36 Distribution of lift coefficient along span of moving cylinder at Re = 105

for 1* = m* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.37 Distribution of drag coefficient along the moving cylinder span at Re =

105 and 1* = m* . . 131

7.38 Moment and lift coefficients for moving cylinder at Re = 105 at Re =

105 for 1* = m*

xiv

.. 132



List of Tables

3.1 Flow regimes over a smooth cylinder

5.1 Grid Convergence for 2nd-order Benchmark

6.1 Computational Times for Numerical Simulation

6.2 Grid Convergence for flow over a Stationary Cylinder

43

78

84

86

7.1 Computational Times for Numerical Simulation of Moving Cylinder .. 105

7.2 VIV parameters for cylinder translating in cross-stream direction .. 106

7.3 VIV parameters for case of 1* = 1 113

7.4 VIV parameters for case of 1* = m* . . . . . . . . . . . . . . . .. 122



Nomenclature

bi-linear interpolation coefficient

;3 bi-linear interpolation coefficient

6.Xtarget target cell dimension in the x-direction

6.Ytarget target cell dimension in the y-direction

6.Ztarget target cell dimension in the z-direction

relative error

correlation coefficient

'P phase angle

A correlation length

dynamic viscosity

angle

fluid density

non-dimensional time

material damping coefficient

2c co-rotating vortex pairs

2D two-dimensional

2P counter-rotating vortex pairs

28 single vortex

3D three-dimensional

xvi



NOMENCLATURE

A amplitude of cylinder motion

al distance from spring/damper no. 1 to cylinder centroid

a2 distance from spring/damper no. 2 to cylinder centroid

Ar aspect ratio

BL boundary-layer

structural damping coefficient

Ca added mass coefficient

Cadapt grid adaptation criterion

Cd drag coefficient

Cdl out-of phase component of lift

Cl lift coefficient

Cm moment coefficient

Cml in-phase component of lift

CPU Central Processing Unit

D Diameter

DNS Direct Numerical Simulation

forcing function for immersed boundary method

F Force

Jeom common frequency at which lock-in occurs

Fd drag force

Jex frequency of oscillation of a body

Jinline frequency of oscillation in the inline direction

F/ lift force

In natural frequency

Fpx pressure contribution to drag force

Fpy pressure contribution to lift force

xvii



NOMENCLATURE

Fs factor of safety

Jst vortex shedding frequency for a body at rest

Jtransverse frequency of oscillation in the transverse direction

Fp.x viscous contribution to the drag force

Fv viscous force

Jvac natural frequency of an object in a vacuum

F xx magnitude of the second derivative of u-velocity at cell centroid

Fyy magnitude of the second derivative of v-velocity at cell centroid

Fzz magnitude of the second derivative of w-velocity at cell centroid

inside distance from the face velocity to the immersed boundary

moment of inertia

1* inertia ratio

I d moment of inertia of displaced body

spring constant

length

L b separation bubble length

LES Large Eddy Simulation

L f eddy formation length

Lx stream-wise distance from inside face to immersed boundary

L y cross-stream distance from inside face to immersed boundary

body mass

m* mass ratio

M v external moment acting on spring damper system

N 1 fine grid

N2 coarse grid

pressure

xviii



grid refinement ratio

RANS Reynolds Averaged Navier Stokes

Re Reynolds number

separation region

SL shear layers

St Strouhal number

time

Tr transition

U velocity in the stream-wise direction

u+ ratio of local fluid velocity and friction velocity

u* friction velocity

VIV vortex induced vibrations

v;. reduced velocity

direction parallel to free stream

direction parallel to cyilnder span

y+ dimensionless wall distance

direction perpendicular to free-stream

xix

NOMENCLATURE



Chapter 1

Introduction

Vortex induced vibration is the most important dynamic response of a deep water

riser [811. The flow of seawater around these long cylinders is subject to vortex

shedding. This is an unsteady oscillatory phenomenon, which causes the pressure

distribution around the cylinders to fluctuate, resulting in forces perpendicular to

the flow and structure. These forces excite forced oscillations of the cylinder known

as vortex-induced vibrations. When the frequency of VIV approaches one of the

natural frequencies of the structure, the amplitude of vibration is enhanced through

a resonant phenomenon known as lock-in. Figure 1.1 shows the typical geometry of

a marine riser. The deflected shape may vary due to a number of factors including

shear currents, riser material, and the intended function of the riser. In general it

is reasonable to assume that vertical sections of the riser (i.e at 90 degree angles of

attack) are sufficiently long for local lock-in to occur. The current profile also varies

from the surface to the ocean floor and there are generally large current velocities at

the top that diminish with increasing water depth.

While vortex shedding on bluff bodies in the cross-stream and stream-wise direc­

tions has been described in a number of review papers over the past fifty years (Sarp-
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Figure 1.1: Typical geometry for marine riser

kaya [62], Feng [23], Bearman [9], Marcollo and Hinwood [45], Jauvtis and Williamson

[35], etc.), the three-dimensional nature of vortex shedding has received very little at­

tention, despite the general agreement that cylinder wakes are three-dimensional for

Reynolds numbers greater than 150. Moreover, the majority of three-dimensional nu­

merical simulations have been performed at Reynolds numbers much lower than the

industry relevant range of 105 - 107 . A typical marine riser, for example, may have

an outer diamter of 0.3 m and in some deepwater environments current velocities may

reach as high as 2 m/s.

The focus of this research is on the development of a new approach for simulating

vortex induced vibrations on marine risers at relatively high Reynolds numbers. This

method considers the span-wise variation of the lift and drag forces, and determines

the moment acting on the cylinder. The predicted motion then consists of a rotational

component to accompany the traditional cross-stream translation. The movement of

the cylinder, therefore, is no longer confined to a principal axis, which may influence
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the prescribed motion. This is accomplished by describing the motion of the cylinder

using a set of springs and dampers. A moment acting on the cylinder causes the

springs on one end to compress, and stretch on the other, thus rotating the cylinder.

One of the major difficulties encountered in the simulation of this flow is the

fact that the cylinder moves. In this research a number of innovative features have

been incorporated into a Large Eddy Simulation (LES) computational fluid dynam­

ics code initially developed at Dalhousie. The code originally included an adaptive

unstructured Cartesian grid, and a first-order Immersed Boundary (IB) Method for

boundary condition specification, but needed to be developed considerably for this

research. In order to simulate the VIV phenomenon, the code was used to calculate

the unsteady flow and at each time step the hydrodynamic forces acting on the cylin­

der were calculated in a separate routine based on the pressure distribution around

the cylinder. This information was then used to solve three second-order ordinary

differential equations, which gave the velocity and displacement of the cylinder in

cross-flow, stream-wise, and rotational planes. This information was transferred back

to the code where the cylinder was displaced and another cycle of LES calculations

was started. The advantage of the Immersed Boundary Method is that there was no

need to create a new mesh after the cylinder was displaced.

1.1 Overview of Thesis

The contents of each chapter in this thesis are summarized below:

• Chapter 2 provides the background for this research, and presents a summary

of the major accomplishments in the study of vortex induced vibrations on

cylinders.

• Chapter 3 establishes the methods used in the simulations.
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• Chapter 4 discusses the development of numerical procedures and formulae re­

quired for these simulations.

• Chapter 5 presents some modeling generalities common to the simulations in this

thesis along with a validation of the velocity interpolation routine described in

Chapter 4.

• Chapter 6 discusses the simulation of flow over a stationary cylinder at Re =

105 and investigates the distribution of span-wise forces and degree of three­

dimensionality present in the field.

• Chapter 7 explores the response of the cylinder to vortex induced loads in terms

of vortex shedding patterns and three-dimensional force distributions.

• Chapter 8 provides the conclusions drawn from this thesis, highlights the new

contributions, and suggests future research directions.



Chapter 2

Literature Review

The following chapter gives a brief review of the significant contributions to the un­

derstanding of vortex induced vibrations on circular cylinders.

2.1 Forced Oscillations

The majority of experiments on VIV have been performed on circular cylinders forced

to oscillate at a fixed frequency, desired amplitude and Reynolds number. These

experiments, known as forced oscillation experiments, are useful in isolating certain

aspects of VIV, but the results of forced oscillation experiments may differ from the

more realistic case where a cylinder is free to vibrate in response to forces in its wake.

Such experiments are known as self-excited or free oscillation experiments and are

discussed in section 2.3.

Bishop and Hassan [15] conducted the pioneering experiments of vortex induced

vibrations on circular cylinders in 1964 using forced oscillations in the transverse

plane. Their results, at Re = 6000 and AID = 0.25, showed a jump in phase angle

(between displacement and excitation) in the interval 0.86 < Jearn I Jst < 0.95, where

Re, AID, Jearn and Jst represent the Reynolds number, dimensionless amplitude,



LITERATURE REVIEW

common frequency at which lock-in occurs and vortex shedding frequency for a body

at rest, respectively. This behaviour delineated a hysteresis loop, and it's discovery

has proven to be a major accomplishment that has since been the focus of a great

deal of research. Mercier [47] then conducted forced in-line and transverse oscillations

for 4000 < Re < 8000 and plotted drag and lift coefficients as functions of reduced

velocity and AID. His figures separated the drag coefficient into mean and oscillatory

components and the lift coefficient into drag and inertial components. In 1976 Stansby

[71] observed the phase jump of Bishop and Hassan at fcoml fst = 0.86, Re = 3600

and AID = 0.25 and attributed his results to a change in the wake above and below

some critical limit.

In 1978 an important experiment was undertaken by Sarpkaya [62], who deter­

mined in-phase and out-of-phase components of time dependent force on a rigid cylin­

der for various values of AlDin the range of 6000 < Re < 35000. In-line force obser­

vations showed that the in-line force increased as the transverse oscillation amplitude

increased and that synchronization occurred at a frequency lower than Strouhal fre­

quency for a stationary cylinder (St = 0.21) for 5000 < Re < 25000. The transverse

force observations showed that the in-phase and out-of phase components of lift (Gml

and Gdl , respectively) were independent of Reynolds number for 5000 < Re < 25000

and that at lock-in there is a rapid decrease in the in-phase (inertia) component and

an increase in the absolute value of the out-of-phase (drag) component. Furthermore,

at lock-in for AID < 1, the cylinder response is similar to that of periodic flow over

a cylinder at rest. This important result shows that the in-phase coefficient of lift

cannot be determined from an oscillating cylinder in a fluid at rest. This has been

confirmed by the fact that Gml = 1 for an oscillating cylinder in a fluid at rest, while

experimental observations have shown that this value may be as high as 2.0 near syn­

chronization. In 1983 Staubli [72] essentially repeated the experiments of Sarpkaya
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at a higher Reynolds number (Re = 60000). He concluded that hysteresis observed

in elastically mounted cylinders of certain damping and mass ratios is caused by a

non-linear relation between the fluid force and amplitude of oscillation.

Gopalkrishnan [28] reported the vortex induced lift and drag components from

forced oscillation experiments on a smooth circular cylinder at Re = 104 . The results

compared well with the works of Bishop and Hassan [151 and Staubli [72] and showed

that the lift force phase angle was different for large A/D and small A/D. Further­

more, the range of reduced velocities where the lift coefficient excited the cylinder

did not coincide with the lock-in region. It was surmised that the excitation region is

dependent on phase and lock-in is frequency dependent. His results also showed that

amplitude modulated forces (beating) cause a reduction in mean drag coefficient, an

increase in Lm.S. oscillating drag coefficient, and that the magnitude of lift is sim­

ilar to lift from sinusoidal forcing. In these experiments the reaction force was only

measured at one end of the cylinder (which was suspended at both ends), and the

load was assumed to be uniformly distributed. As a result, the span wise variation

(3-dimensional effect) was not accounted fOL

Moe and Wu [501 conducted a large set of experiments with free and forced oscil­

lations using the same apparatus with various end-conditions. These included a) free

in both directions, b) clamped in-line, free in transverse, c) clamped in-line, forced

in transverse, d) free in-line, forced transverse. It was determined that a prevailing

oscillation frequency resulted for similar lock-in regions in both free and forced oscilla­

tions. Furthermore, large self-excited transverse motions occurred for a wider range of

reduced velocities if bodies were free in both directions, rather than restrained in-line.

It was also determined that the lift force was irregular for all cases (more so for the

self-excited cylinder) and that large random effects exist in the lift force for both free

and forced cases (more so for in-line fixed than in-line spring supported).
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Blevins [17] suggested that the drag and inertia coefficients obtained by Mercier

[47], Sarpkaya [62], Staubli [72], Wu [86]' Deep Oil Technology [73] and Gopalkrishnan

[28] be combined into a single database for semi-empirical correlations for design

purposes only.

2.2 Structures in the Wake of VIV

Before discussing the experiments performed on cylinders undergoing free oscillations

it is important to consider the work that has been done on understanding the source

of hysteresis in low Reynolds number flows over circular cylinders.

In 1972 Angrilli et al. [7] studied the relationship between vortex shedding and

cylinder displacement for 2500 :S Re :S 7500. They determined that for small oscilla­

tions the vortex trails were similar to those behind stationary bluff bodies. For larger

oscillations it was determined that the trajectories of vortex trails must cross each

other twice in order to reach a stable configuration in the wake. Zdravkovich [87], [88]

analyzed the flow visualization patterns of the forced and free oscillation experiments

of previous investigators. He suggested that the phase change in unsteady lift near

synchronization could be explained by a change of timing of the newly shed vortices

with respect to the displacement of the cylinder. He found that two very different

modes of vortex shedding occurred in the lock-in region. At the beginning of the

range, a vortex formed on one side of the cylinder was shed when the cylinder was

near it's maximum displacement on the other side. Near the end of the range, vortices

were shed when the cylinder was near it's maximum displacement on the same side.

It is clear that the character of vortex shedding influences the phase of the lift force,

and hence the energy transfer between the fluid and the body. Williamson and Roshko

[85] investigated the reason for the abrupt change in the character of vortex formation
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through the synchronization region. They oscillated a vertical surface piercing cylinder

along a sinusoidal path and photographed the path of aluminum particles that were

floating at the free surface. Their results, in the range of 300 :S Re :S 1000, identified a

critical curve below which the vortex formation was similar to the classic von Karman

vortex street and which is called the 2S mode. For reduced velocity values greater than

the critical curve, two counter-rotating vortices (not necessarily of equal strength)

were shed in each half-cycle. A double-wake type velocity profile resulted and the

flow structure was denoted as the 2P mode (meaning two vortex pairs). Along the

critical curve only two vortices were formed in each cycle and the shed vorticity is

more concentrated than at other reduced velocities. This phenomenon coincides with

the peak in lift forces from the experiments and is called resonant synchronization.

They concluded that the shedding of more concentrated vorticity induced larger forces

and that the abrupt changes in body forces through lock-in are therefore due to sharp

changes in vortex dynamics. Furthermore, the jump in phase angle (between lift force

and body motion) is due to a change in the timing of shedding that results from pairing

of the 2P mode. Since either mode of vortex shedding may occur at certain reduced

velocities, hysteresis results. A map of the vortex shedding patterns is included in

Figure 2.1, where the I and II are the curves where Bishop and Hassan [15] observed

the jump in lift force on the cylinder, and A = f.;. Line I corresponds to the decreasing

reduced velocity tests and line I I represents the results from incrementally increasing

reduced velocity tests.

These experiments identified some important vorticity characteristics in the wake

of bodies undergoing induced vibrations, however, they were performed over a small

range of Reynolds numbers and may not be relevant to more realistic flows (at higher

Reynolds numbers). Moreover, it has been suggested by Sarpkaya [64] that aluminum

particles strongly affect the position and strength of vortices and vorticity distribution
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Figure 2.1: Vortex shedding patterns behind VIV cylinder (Williams and Roshko)[85]

near the free surface. Although Williams and Roshko [85] claimed that vortex patterns

obtained using a dye method beneath the surface were similar, they did not report

on the results of this technique. In order to expand the work of Williams and Roshko

[85] to a wider range of applications, further testing is necessary at higher Reynolds

numbers without surfactants.

2.3 Self Excited or Free Oscillations

This section reviews experiments performed on circular cylinders for the more realistic

case of self excited or free oscillation and concludes with a comparison of forced and

free oscillations.

In 1968 Feng [23] undertook one of the more famous contributions to VIVo His

experiments were performed with a flexible one degree of freedom cylinder in a wind

tunnel with m* = 248, ( = 0.00103 and m*( = 0.255, where the mass ratio and

10
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material damping coefficient were given by m* and (, respectively. He measured

fexl fearn' AID and phase angle (cp) versus reduced velocity (v,. = UI fvacD) for the

following cases:

1. cylinder started from rest at a prescribed velocity

2. velocity increased incrementally with cylinder oscillating at steady state ampli­

tude

3. velocity decreased incrementally with cylinder oscillating at steady state ampli­

tude

For the experiments with the cylinder started from rest, it was observed, as shown

in Figures 2.2 and 2.3 that for v,. < 5, AID was very small and the frequency of

oscillation for the cylinder was less than both the natural frequency of the cylinder and

the frequency of vortex shedding. This is known as the inception phase of oscillations.

For v,. > 5 the frequency of vortex shedding and frequency of oscillation approached

each other (lock-in) and maximum AID occurred for v,. = 6. At v,. ~ 7, the oscillation

frequency of the cylinder returned to a value close to its natural frequency in a vacuum,

fvae (lock-out).

For the experiments with the velocity increasing incrementally, AID was much

higher than the results obtained when the cylinder started from rest at a prescribed

velocity, and at v,. ~ 6, AID = 0.53. At v,. = 6.4, AID dropped to the value

determined in the first set of experiments, and the phase angle changed by 35 degrees.

As will be discussed later, this indicated a change in the wake structure.

For the third set of experiments the AID data followed the results of the first case

until v,. ~ 5.9, when AID jumped back to higher values. This indicated a clockwise

oscillation hysteresis loop. At the same reduced velocity, the phase angle changed by

60 degrees, indicating a counter-clockwise phase-hysteresis loop.

11
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Figure 2.2: Response of flexible one degree of freedom circular cylinder (Feng) [23]

In 1993 Brika and Laneville [19] followed up on these experiments with a series

of relatively low Reynolds number tests (3.4 x 103
::; Re ::; 11.3 x 103

) on a flexible

circular cylinder in a wind tunnel. The tests were separated into the progressive

regime (PR) and the impulsive regime (IR). In the progressive regime the cylinder

oscillated at steady state amplitude and the velocity of the air was incrementally a)

increased or b) decreased. In the impulsive regime the velocity of air was fixed and

the cylinder was either a) released from rest or b) externally excited by a shaker at

AID ~ 0.85. As a final test, PR(a) was repeated for a velocity step twice as large as

the original. The results, shown in Figure 2.4 were strikingly similar to Feng's [23]

and hysteresis was once again identified for AID and phase angle.

Brika and Laneville [19] determined that for velocities larger than the synchroniza­

tion offset velocity (at about v,. = 0.78) and smaller than the lower critical velocity

the system first tends toward an unavailable final state on extension of the lower

branch. It then suddenly departs towards the upper branch to a second and available

12
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Figure 2.3: Phase Response of flexible one degree of freedom circular cylinder (Feng)
[23]

state. It was also observed that the phase angle remained constant along the cable

(within 5%), so the authors concluded that the flow mode is not governed, or affected

by variations of vibration amplitude and the results should be comparable to those

from uniform rigid cylinders.

Brika and Laneville [19] determined that a hysteresis loop existed for v,. = 5.84 and

Re = 7350 at AID = 0.4 and AID = 0.27. According to the work of Williamson and

Roshko [85], the shedding mode for both regions should be 2P, but Brika and Laneville

[19] observed the 2P mode at AID = 0.4 and the 28 mode at AID = 0.27. The large

difference in Reynolds numbers between Brika and Laneville [19] and Williamson and

Roshko [85], as well as variation in amplitude (previously assumed inconsequential)

along the flexible cable used by Brika and Laneville [19] could account for the different

wake states observed by both sets of researchers. Brika and Laneville [19] conclude

that the transition from 2P to 28 mode is very sensitive to hysteresis.

13
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Figure 2.4: Vibration amplitude data for impulsive and progressive regimes (Brika
and Laneville) [19]

In 1984 Bearman [9] undertook a major review of the forced and free oscillation

experiments of vortex induced vibrations on bluff bodies. He observed that two shear

layers were responsible for vortex shedding and that the motion of an oscillating

cylinder controlled the instability mechanism leading to vortex shedding. It was also

determined that the vortex shedding correlation length increased when the shedding

frequency coincided with the body oscillation frequency and that the range of lock-in

was a function of the amplitude (AID). This means that while the shed vortices

are invariably three-dimensional, they appear to be more two-dimensional during

lock in. Furthermore, Bearman [9] concluded that fluctuating lift increased in the

lock-in range due to improved two-dimensionality of the flow which increased the

strength of vortices. He concluded his review with a comparison of free and forced

oscillations. The advantage of forced oscillations is that reduced velocities and AID

can be varied independently, while they are intrinsically linked in free oscillation

14
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experiments. The disadvantage of forced oscillations is that only a limited range of

reduced velocities and amplitudes match those of free vibrations. He concluded that

the results of free and forced vibrations are only the same if the exact history of

motion is inconsequential. Moe and Wu [50] considered this very issue in 1990 and

concluded that separation points and pressure distributions along the cylinder are

strongly affected by the previous history of the motion. So, while forced oscillation

experiments may provide insight into certain aspects of VIV, the true behavior can

only be modeled by free oscillation.

2.4 Effect of Mass Damping

In 1996 Khalak and Williamson [39] investigated the effects of mass damping on the

response of a rigid cylinder undergoing VIV in uniform flow. The test cylinder had

a low mass ratio m* and a normalized damping parameter, (, at least an order of

magnitude smaller than previous experiments. Their results showed initial and lower

branches of response due to changes in vortex shedding mode. It was determined

that a low mass ratio m* leads to higher response amplitude and larger range of

response in the lower branch. The upper branch, however, is unaffected by changes

in the mass ratio. Perhaps the most important finding in this paper was that, for

cylinders with low mass ratios, lock-in cannot be defined by near matching of the

shedding frequency with the frequency obtained from pluck tests in still water. It

was observed, for example, that in the synchronization regime, the structural natural

frequency was much lower than the frequency of oscillation, but "the frequency of

oscillation was still below the vortex shedding frequency of a non-oscillating cylinder

in this regime" [391.

Follow-up papers by Khalak and Williamson [401 and Govardhan and Williamson

15
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[29] confirm that there are two distinct types of responses depending on if the param­

eter m*( is high or low. As shown in Figures 2.5 and 2.6, at high m*( only the initial

and lower branches are observed.

Upper branch '-... I I

~
:: ::
II 1'1

H 1t ~ i Lower branch

el ::~I /'
c( ::

Initial excitation ..... :}
branch /"y

Figure 2.5: Amplitude response for low m*( parameters (Khalak-Williamson) [40]

These branches are separated by continuous mode transition. At low m*( values,

initial, upper and lower branches were observed with the highest response amplitudes

existing in the upper branch. Furthermore, the initial branch is characterized by the

28 vortex shedding mode and the 2P mode is found in both the upper and lower

branch. In the upper branch, the two vortices have quite unequal strengths, while in

the lower branch they are relatively equal in strength. The authors also observed that

the jump from the initial to upper branch was hysteretic, while the transition between

the upper and lower branch exhibited switching in the timing of the vortex shedding

(denoted by H and I, respectively, in Figure 2.5). Govardhan and Williamson [29]

conclude that the range of synchronization is controlled mainly by m*, and that he

peak amplitudes are controlled by m*(. 8arpkaya [64] has concerns with the use of
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Figure 2.6: Amplitude response for high m*( parameters (Khalak-Williamson) [40]

a combined mass-damping parameter and recommends that correlations should be

confirmed at higher Reynolds number and other m*(.

Triantafyllou et al. [74] also analyzed the behavior of cylinders with low mass

and damping in 2003 with a series of experiments on a rigid and flexible cylinders

(in one and two degrees of freedom, respectively). The most important result from

his experiments was the absence of hysteretic jump from the initial to upper branch.

It has been proposed by Sarpkaya [64] that either the value of m*( = 0.105 used

by Triantafyllou et al. [74] was not sufficiently small, or that the Reynolds number

present in the experiments of Govardhan and Williamson [29] was too small for the

shear layer transition to reach completion. This points to a Reynolds number effect

which could be explained by experiments with" m*(:::; 0.105 where the minimum Re

at v,. = 3 is larger than about 15 000 to resolve the existence or absence of various

regimes in the AID versus v,. plot at industrially significant Reynolds numbers"[64].
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2.5 One vs. Two Degrees of Freedom Systems

Most of the work in VIV has been done on single degree of freedom systems with the

assumption that oscillations in the in-line direction do not strongly affect the behavior

of the cylinder. Jong and Vandiver [37] studied the relationship between in-line and

cross-flow VIV of cylinders and determined that the motion in the two directions are

not independent of each other. The added mass is a function of the type of motion of

the body, and is much different for one and two degree of freedom systems. Moreover,

differences such as kinetic energy and phase angle complicate the motion even more.

Sarpkaya [63] studied two directional (bi-harmonic) free oscillations in 1995 and

found that AID values and the range of lock-in frequencies were both 20% larger

at Re = 35xl03 for two directional oscillations compared to their single degree of

freedom equivalents. They concluded that the variation of AID over frequency ratios

such as finlinel ftransverse are very complicated, indicating changes in the wake.

There has been some disagreement on this subject as evidenced by the work of

Jauvtis and Williamson [35] in 2002. Based on their forced oscillation experiments

on a cylinder in two degrees of freedom, they concluded that "the freedom to oscillate

in-line with the flow affects the transverse vibration surprisingly little". Most other

researchers, however have arrived at completely different conclusions, which leads one

to believe that the experiments of Jauvtis and Williamson [35] may have been influ­

enced by the fact that both the in-line and transverse frequencies were set equal to one

another. Marcollo and Hinwood [45] contradicted the work of Jauvtis and Williamson

[35] with their experiments on cross-flow and in-line responses of long flexible cylin­

ders subjected to uniform flow. They concluded that "In line vibration is found to

have strong dependency on the cross flow vibration and is forced at frequencies very

different to that which would be predicted a priori". It is clear from the foregoing that

cylinders undergoing VIV that are constrained in one direction behave differently from
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cylinders with two degrees of freedom. The question that remains, however, is what

this means for cylinders free to move in more than two directions. To the author's

knowledge this subject has not received considerable attention and no experiments

have been undertaken to address this issue. This may be an area that would benefit

from numerical simulation, since restraints can be easily applied to numerical models.

The promising field of numerical simulations is discussed in Section 2.8.

2.6 Three Dimensionality

The wake behind even a nominally 2-dimensional cylinder can produce vortices with

3-dimensional character. With this in mind, Williamson [82] observed 3-dimensional

structures behind the wake of a circular cylinder for Re > 178. It had been tradition­

ally assumed that these structures were the result of Kelvin-Hemhotz vortices caused

by oscillations within the separating regions. Williamson [82] showed that these struc­

tures were in fact the result of deformation of the primary wake vortices and that the

transition to three-dimensionality occurs through two discontinuities in the Strouhal

number. As shown in Figure 2.7, the first discontinuity occurs at 170:'S Re:'S 180.

This corresponds to the hysteretic transition from periodic and laminar vortex

shedding to the formation of vortex loops. The second discontinuity occurs over

225:'S Re :'S 270 and corresponds to the transition from vortex loops to finer stream­

wise vortices, which do not display hysteretic behavior. As shown in Figure 2.8 , the

behavior at the first discontinuity is hysteretic.

The 3-dimensionality of vortex induced vibrations was studied by Voorhees and

Wei [76] in 2002. Specifically, they investigated the three dimensionality in the wake

of a surface piercing rigid cylinder (m* = 190 and m*( = 0.103), mounted as an

inverted pendulum for 2300 :'S Re :'S 6800. The cylinders underwent free vibration
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Figure 2.7: Discontinuities in Strouhal number for transition to three dimensionality
(Williamson) [82]

and produced results consistent with experiments on elastically mounted cylinders

with similar mass ratio and damping. In general, results showed that Karman vortices

produced strong axial flows that were directed towards the free surface. Below the

free surface, these flows were the result of linearly increasing oscillation amplitude

along the span. Near the free surface, however, there was an equal likelihood of up­

flow or down-flow. Interestingly, the up-flow and down-flow were well correlated with

the quasi-periodic beating of the cylinder amplitude in the synchronization range. An

important result, then is that the free surface disrupts the primary up-flow mechanism

below the free surface, while inducing the Karman vortices at the top of the cylinder

to spread laterally. Finally, it was concluded that at the free surface, vortex formation

depends on the size of the gap between the cylinder and the free surface.

As discussed in Section 2.3, Bearman [9] also studied three-dimensionality behind

circular cylinders undergoing VIV and observed increased correlation lengths during
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lock-in. This indicates that over certain lengths along the cylinder span during lock-

in, the flow becomes more 2-dimensional. The extent of the correlation length has not

been established, however, for a wide range of Reynolds numbers, and as discussed in

Section 2.8, three dimensional simulations produce results that compare better with

experimental work. The foregoing underscores the requirement of numerical studies

of vortex induced vibration to be fully three-dimensional.

2.7 High Reynolds Number Flows

By far the majority of the work done on the vortex induced vibrations of rigid and

flexible cylinders has been performed at low Reynolds numbers, Re. As a result the

occurrence of VIV at high Re and modal response of structures is poorly understood.

Designers have been forced to use high safety factors due to either a lack of data or

practical experience with VIV at high Reynolds numbers. Moreover, the experiments
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that have been undertaken at high Re are generally case-specific or proprietary.

onetheless, a number of important VIV studies have been performed at relatively

high Reynolds number. Humphries and Walker [331 tested a rigid cylinder (m* =

1.98, m*( = 0.0283) in uniform and shear flow for 5x104
::; Re ::; 4x105

. Their results,

shown in Figures 2.9 and 2.10 showed that the drag coefficient was much higher

compared to a rigid cylinder at rest and was largest for VIV in uniform flow. The

legends in these figures describe the extent of shear flow by the ratio of the minimum to

maximum free stream velocity used in the experiment. For example 1 : 1 corresponds

to uniform flow and 1 : 3 represents a linear shear flow in which the maximum free

stream velocity is three times larger than the minimum free stream velocity.
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Figure 2.9: Variation in Cd versus Re for shear, 1:3, and uniform flow, 1:1 (Humphries
and Walker) [331

The drag coefficient behaved similar to that of a rigid, non-VIV, cylinder (Cdo )

entering the critical regime (or drag bucket), in that it underwent a considerable
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Figure 2.10: Variation in AID versus Re for shear and uniform flow (Humphries and
Walker) [33]

decrease in value. At lock-in, however, in 2 degrees of freedom, the drag coefficient

increased sharply, and VIV took place. In the critical regime, Cd reached a maximum

before the maximum AID. In shear flows it was observed that the drag coefficient

increased with increasing shear and that lock-in occurred with smaller peaks at lower

Re. Furthermore, with increasing shear, the maximum AID decreased towards unity

and the range of lock-in increased.

Huse et al. [34] performed large scale model testing of deep sea risers (90 m long)

in sheared currents and determined that vortex induced vibrations cause resonant

axial vibrations along the length of the cylinder whether the riser is pinned at both

ends or free at one end and pinned at the other. They concluded that reducing both

the lateral and axial excitation is important in the reduction of high axial stresses.

They also determined that, at high Re, AID values for cylinders with pinned-pinned

connections are generally smaller than for cylinders with both ends free to move
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in the axial direction. This raises important questions about the influence of the

connections between the spans that make up a riser. According to Sarpkaya [64], the

elastic connections may behave as a strong damper, which increases the stiffness of the

line, and hence reduces the amplitude of VIVo More testing is necessary in this area

to determine the role that span connections, or couplings, may play in the dynamics

of VIVo Finally, Huse et al. [34] conclude that high Reynolds number data are not

significantly different from sub-critical data above Re = 20000.

Tentative conclusions for high Re VIV were presented by Sarpkaya [64] based on

conversations with representatives of large petroleum concerns and are summarized

here.

I As Re increases from 4xl05 to ~ 106 , the Strouhal number, St, is undefined

for steady flow over a smooth cylinder. For a cylinder undergoing vortex

induced vibrations St is indeed definable over this range and increases

from rv 0.18 - 0.24 due to enhanced correlation.

II Cylinders with small roughness exhibit small AID values and if the rough­

ness is increased, AID increases. The same cylinder undergoing forced

oscillations behaves similarly to a cylinder undergoing free oscillation.

III one of the experiments with Re > 20000 show the initial branch that

Khalak and Williamson [40] observed at Re < 5000. Furthermore, vor­

tex modes have only been mapped at Re < 103 , and it may be difficult

to photograph coherent structures in the wake at much higher Reynolds

numbers.

IV Free oscillations at large Re are not sinusoidal. It is proposed, then, that

the AID, phase angle, vortex structures and other influencing paramaters

never become fully established (periodic). Each cycle in free oscillation is
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affected by the character of the previous cycle, so branches in the AID

versus Vr. plots are never exhibited, due to the ever changing flow topology.

V High Re lift, drag and amplitude data for smooth cylinders are similar

to results for 20000 :S Re :S 60000 except for the smooth St and Cd

transition. At issue is the manner in which to quantify the effects of

the end conditions for single span experiments versus continuous pipes,

to account for multiple modes and mode interfaces, and to supress VIV

without drag penalty.

VI The interpretation and planning of experiments will be greatly improved

by the dissemination of large-scale proprietary data.

2.8 Numerical Simulations

Experimental investigations of VIV have been quite successful at low Reynolds num­

bers but studies at industry relavant Reynolds numbers (on the order of 105 -107) have

proven difficult in an experimental setting. The numerical simulation of VIV through

computational fluid dynamics has therefore arisen as a practical alternative. Numer­

ical simulations of vortex induced vibrations have received considerable attention in

recent years, but significant, three-dimensional contributions are still very few. This is

due, in part, to the incredible complexity inherent in three-dimensional simulation of

fluids at high Reynolds number, notwithstanding the fluid structure interaction that

is not fully understood. Gabbai and Benaroya [271 outline four issues to be considered

for any numerical simulation: modeling of the flow field, modeling of the structural

vibration, modeling of the fluid-structure interaction, and data analysis. 'While there

are a number of possible numerical methods for computational fluid dynamics, it

has been shown that LES and DNS hold the most promise for understanding the
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wake-boundary-Iayer interaction [48], especially at high Reynolds numbers, and for

moving geometries. Limitations in computing power have prevented D S simulations

for Reynolds numbers greater than around 5000 and even these are for the simplest

problems, like channel flow. It would seem then, that for the immediate future, the

simulation of vortex induced vibrations can best be accomplished using large eddy

simulation, and this is the focus of the work outlined in this section.

Tutor and Holdo[751 investigated the benefits of 3D simulation in 2000. Using

a 2D and 3D sub-grid scale LES model, they forced a cylinder to oscillate in the

transverse direction at AID = 0.11, Re = 2.4x104
, and II;. = 5.4 and compared the

results. Their results, showed a departure from two-dimensionality a short distance

behind the cylinder.

The spacing between simulated vortices was also compared and it was observed

that the 3D simulation predicted more room for the vortices to develop behind the

cylinder. This translated into more elongated and slightly weaker vortices, with a

longer time averaged recirculation length. A slight phase difference between the two

simulations was also observed and the 3D simulation showed better agreement with

the experimental work of Bearman and Curie [101 at equivalent reduced velocity. Fi­

nally, the 3D simulation predicted smaller time averaged drag coefficient and absolute

pressure than the 2D simulations and it was concluded that the deviations between

the simulations were attributed to three-dimensionality of the wake. These results

support the notion that simulations of vortex induced vibrations at high Reynolds

number should be performed by three-dimensional codes.

A criticism of this type of simulation is the fact that it is essentially a forced

oscillation, having the same limitations as the experimental equivalent. A simulation

of self-excited vortex induced vibration requires a model that couples the cylinder

motion and the fluid forcing function such that the two are calculated simultaneously.
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AI-Jamal et al.[5] simulated self-excited VIV at Re = 8000 for a range of damping

ratios and natural frequencies using a 2D LES code and compared their results to

the work of Govardhan and Williamson [29] . The immediate concern with a 2D

simulation is the assumption of two-dimensionality. Most 2D codes over-predict the

drag coefficient for large Reynolds numbers by 5-10% [5] and the results from 3D

codes provide better agreement with experimental data (confirmed by Tutor and

Holdo [75]). AI-Jamal et al. argue that a 2D simulation has its merits since the

lift and drag coefficients are predicted more accurately when VIV begins, because

at this point, the wake correlation length increases and the 3D influence of vortex

shedding is diminished. They do concede, however, that there is some difference in

the vortex shedding behavior when Re > 7000 and there is significant turbulence in

the wake of the cylinder. For their simulation, the vibratory motion of the cylinder

was predicted by the following non-dimensional one degree-of-freedom model:

(2.1)

where Y is the displacement of the cylinder relative to the at-rest position, dYldr

is the transverse velocity of the cylinder, ( is the material damping ratio, iN is the

natural frequency, m* is the ratio of the cylinder mass to the mass of the displaced

fluid (the mass ratio) and CL is the instantaneous lift coefficient.

Their results showed that as ( was increased, the beating response was less pro­

nounced, and the range of the lock-in region and peak AID decreased. The plots

of AID versus v,. did not identify the upper branch described by Govardhan and

Williamson [29], and the lower branch did not reach a constant value for v,. > 13.0.

The authors speculate that the discrepancy was likely due to the fact that the reduced

velocity in the simulation was varied by changing the natural frequency of the cylinder,
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rather than changing the fluid velocity (and hence Reynolds number). This meant

that at Vr > 13.0, the cylinder oscillation frequency was very low due to negligible

cylinder stiffness.

An important result from the simulation was that during lock-in the ratio of the

cylinder oscillation to the natural frequency was less than unity observed by Govard­

han and Williamson [29]. This was likely because Govardhan and Williamson used

a forced regular sinusoid as the forcing function and assumed a constant fluid damp­

ing. In contrast, the simulation of AI-Jamal et al.[5] incorporated an irregular forcing

function and the fluid damping was calculated implicitly in the fluid forces and varied

with time.

Perhaps the most important result from the study was the absence of the 2P

and 2S modes of vibration identified by Williamson and others([19], [85] [40], [29]).

Govardhan and Williamson [29] state that visualization was unclear for Re > 3700

and to this point vibration modes still haven't been established for moderate to high

Reynolds numbers. It is therefore not surprising that 2P and 2S modes of vibration

were not observed by AI-Jamal et al.[5], since there is no evidence to indicate that

they even exist in this flow regime. Furthermore, according to Zdravkovich [89], shear

layers around cylinders begin to show instabilities at Re ~ 1300 and are fully turbulent

at Re ~ 1100. For this work, then, the wake was likely in the transition range,

still developing, and doubtlessly different from the wake at a much smaller Reynolds

number. This becomes even more pronounced in the case of VIV, since the shear

layers are time dependent. Moreover, while the work of Govardhan and Williamson

[29] was based on forced sinusoidal oscillations, the motion of the cylinder for the 2D

simulation of AI-Jamal et al.[5] was irregular, and not purely sinusoidal. As discussed

in Section 2.7, vortex structures and other influencing parameters may never become

fully established (periodic) for irregular flows due to time dependent AID and phase
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angle. AI-Jamal et al.[5] contend that "the lack of constancy in amplitude and phase

angle could quite likely lead to the lack of repeatability in vortex formation which

certainly could suppress the standard mode patterns". They conclude that a direct

comparison between forced and self excited oscillations cannot be made, especially

when self-excited oscillation is not sinusoidal and phase angle is not constant.

2.9 Three-dimensional Wake effects

While two-dimensional vortex shedding on bluff bodies has been described in a number

of review papers over the past fifty years, the three-dimensional nature of vortex

shedding has received very little attention, despite the general agreement that cylinder

wakes are three dimensional for Re >150 [89]. Nevertheless, Williamson, [84] identified

oblique and parallel vortex shedding, and mode A and mode B three-dimensional

instabilities in the wake of circular cylinders for laminar and turbulent flow regimes.

Oblique shedding influences the amplitude, frequency, and phase of the flow induced

forces and the transition from one oblique shedding mode to another has been linked

to the existence of discontinuities in the relationship between the Strouhal number

and the Reynolds number for laminar flows. Slaoutli and Gerard, [68], studied the

effect of end plates on the wake of circular cylinders at low Re and determined that

the shedding pattern (whether oblique or parallel) depended on the end conditions.

Williamson concluded that the oblique and parallel modes of vortex shedding are

intrinsic to the flow around cylinders and may be instigated by the end conditions.

The majority of numerical investigations of vortex shedding in the wake of circular

cylinders have been two-dimensional. This is largely due to the computational expense

of three-dimensional simulations, especially at higher Reynolds numbers. Mittal [491

simulated the three-dimensional flow past a circular cylinder with low aspect ratio
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(L/D=16) at Re = 100,300 and 1000. Mode A and mode B instabilities were identified

using a computational domain with one 'slip' wall and one 'no-slip' wall. It was shown

that parallel shedding persisted in the simulations for t < 100 s. Beyond this time,

oblique shedding occurred. They concluded that, since other researchers used slip-wall

end conditions in their simulations and did not observe oblique vortex shedding, the

end-conditions are responsible for oblique and parallel modes and both are intrinsic

to the flow. Despite the large body of data showing that the wake behind the cylinder

is 3-D and varies along the span, a plane of symmetry at mid-span was invoked in

this work. In addition, the vortex induced force and frequency data was only given

at the mid-span and variation along the span was not reported.

Evangelinos and Karniadakis [21] performed a Direct Numerical Simulation for

the flow over a stationary rigid cylinder assuming periodic boundary conditions. Only

results at mid-span were given and no span-wise variation of the unsteady forces was

reported. Norberg [54] presented a review of significant 2-D and 3-D simulations

over the range of 45 < Re < 4.4 x 104 for rigid, smooth, long, and unconfined

(low blockage) cylinders. The report showed that the 3-D simulation of Lu et al.

[43] at Re = 104 produced a fluctuating lift component of 0.46 at the mid-span.

Furthermore, mid-span approximations of Strouhal and Lm.S. lift coefficient for the

range of 1.6 x 103 - 1.5 X 105 and 5.4 x 103 - 2.2 X 105 , respectively, were provided

by the following empirical functions:

Strouhal number: 0.1853 + 0.0261 (-o.9x
23

)

Sectional Lm.S. lift coefficient: 0.52 - 0.6x-2
.6

where x = log 1.6~~03'

30

(2.2)

(2.3)



LITERATURE REVIEW

So et al. !701 assessed the validity of 2-D assumptions on mean drag and flow

induced forces for a stationary circular cylinder with Re = 100 and aspect ratio of

16, using finite volume and lattice Boltzmann numerical techniques. They found that

the calculated mean drag and r.m.s. lift coefficients varied greatly across the span

and that vortex shedding changed from parallel to oblique over the time range of

600 :S t :S 900. They also found that lift and drag signals go through a series of

transitions for t :S 200, 200 :S t :S 500, and t :2: 500, and conclude that the variation

partially explains why there is so much scatter in the lift and drag coefficients in the

literature.

In 2005, Flemming and Williamson [251 performed a series of VIV experiments on

a hanging cylinder pin connected at one end, and free in the other. The results showed

a new mode of vortex shedding near the pin in which a pair of co-rotating vortices

were formed. This mode was subsequently named the 2C mode of vortex shedding,

and illustrated that all of the shedding mode shapes for cylinders undergoing VIV

have may not have been discovered.

2.10 Summary of Literature Review

To a large extent, the experiments discussed in this chapter have been of limited value

for the case of marine risers at relatively high Reynolds number. The experimental

work, for example, has mostly been dedicated to forced oscillations at low Re, and the

results of a smaller number of free-oscillation experiments have either been performed

at low Re or have not been published. Furthermore, the majority of the numerical

work was performed by two-dimensional codes at low Re and the small number of

three-dimensional codes used to simulate VIV have been performed almost exclusively

at lower Re. Finally, in all of the simulations it was assumed that the flow around
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the riser became increasingly two-dimensional at the onset of VIV and that there

was no amplitude variation over the span of the cylinder. To date, the validity of

these assumptions has not been investigated and one of the aims of this thesis is

to determine whether the assumption of two-dimensionality is justified. Another

important question that arises from all of the previous research is the extent to which

the experimental apparatus influenced the behaviour of the riser. For example, span­

wise amplitude variation would not be apparent if the experimental apparatus was

restricted to planar (cross-stream and/or stream-wise) motion.

The research presented in this thesis investigates the vortex shedding modes and

influence of span-wise force variation for cylinders undergoing vortex induced vibra­

tions in the translational, as well as rotational planes at relatively high Reynolds

number (Re = 105
).
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Chapter 3

Methodology of the Research

Under normal operating conditions, the flow around full-scale marine risers is at high

Reynolds number on the order of 105 -107 and the risers have low structural damping.

The focus of the current work was on the simulation of the VIV phenomenon at high

Reynolds numbers for risers translating and rotating in the cross-stream plane.

To achieve this goal the research was done systematically for a series of milestone

events. These included:

• Comprehensive literature review

• Identification and development of a suitable numerical code and required di­

mensionality

• Simulation of flow past a fixed circular cylinder

• Simulation of flow structure interaction

A review of the pertinent literature was presented in chapter 2, and the remaining

topics are discussed here.
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Figure 3.1: Eddies in turbulent flow

3.1 Numerical Requirements for the Simulation of

VIV

As discussed in Chapter 2 Large Eddy Simulations hold promise for understanding

flows at critical Reynolds numbers with moving geometry. The tremendous compu-

tational expense of Direct Numerical Simulation is prohibitive for VIV simulations at

significant Reynolds numbers and LES is seen as the most practical alternative.

3.1.1 Large Eddy Simulation (LES)

Turbulent flows contain a wide range of length and time scales. One of the key

challenges in turbulence research is understanding relationships between the structure,

dynamics, and statistics of small and large scales of motion. Figure 3.1 shows an

illustration of the different eddy sizes that might exist in a turbulent flow.

It has been suggested that while a full simulation of all of the length and time

scales using DNS could be quite expensive (computationally), a method that resolves

the largest eddies and models the effects of the small eddies may also be useful [69].

This is known as Large-Eddy-Simulation (LES). The large-scale motions are generally

more energetic than the small-scale ones, and are by far the most effective transporters
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of the conserved properties [24]. The small-scale motions, in contrast contribute little

in terms of transport. Large-eddy simulations are three dimensional, time dependent

and much less costly than D S. Furthermore, LES is the preferred method when

D S is not a practical option, such as in high Reynolds number flows or flows with

complex geometry. Thus, in LES the dynamics of large scale (energy containing)

motions (which are affected by the flow geometry and are not universal) are computed

explicitly whereas the influence of smaller scales (energy dissipating) are represented

by simple models such as eddy viscosity. Traditional eddy viscosity LES models

simulate the energy cascade by dissipating energy for all wavelengths. Multiscale

LES models split the resolved scales of the simulation into 'large' and 'small' using

a filter. The large scales do not require a model, while the unresolved small scale

needs a model to dissipate the energy. Although an eddy viscosity model using the

Reynolds Averaged avier-Stokes (RANS) [80] equations provides good predictions

for certain types of flows such as pipe or channel flows and flat plate boundary-layers,

it fails to represent accurately flows where large scale unsteadiness is significant - such

as the flow over bluff bodies which involves unsteady separation and vortex shedding.

For these flows, large eddy simulation (LES), which resolves the large-scale unsteady

motion explicitly, is a better option. Conceptually, LES is situated between Direct

Numerical Simulation (DNS) and the RANS approach.

3.1.2 Moving Geometry

The analysis of VIV on marine risers is complicated by the fact that the geometry is

not fixed in space. Most CFD codes apply body-fitted coordinates where the mesh

conforms to an object's boundaries. 'When this object moves, the entire mesh must

be regenerated at each time step, which increases the computational expense of the

simulation. A code that minimizes or eliminates this procedure is well suited to the
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simulation of vortex induced vibrations.

3.1.2.1 Dimensionality

The increased correlation length associated with the VIV phenomenon during lock-in

may lead one to assume that a two-dimensional simulation would sufficiently describe

the behavior of circular cylinders undergoing VIVo As discussed in Chapter 2 the

extent of this correlation length has not been studied extensively and 3D simulations

show better agreement with experimental work at moderate Re. Three-dimensional

numerical codes are therefore essential to adequately simulate the VIV phenomenon.

Based on these findings it was decided to use a fully 3D Large Eddy Simulation that

is effective at modelling a moving geometry.

3.2 The Numerical Wind Tunnel

The Numerical Wind Tunnel ( WT) [21 is a 3-dimensional CFD simulation tool de­

veloped by the Centre for Marine Vessel Development and Research at Dalhousie

University, Halifax, Canada. It is capable of simulating flows around multiple, com­

plex, moving geometries using Large-Eddy Simulation. The main features of the

code include: boundary conditions enforced with the Immersed Boundary Method

(IMBM); anisotropic Cartesian adaptive staggered mesh; time advancement by the

fractional step method; and multi-scale LES turbulence model.

To overcome the re-gridding requirements inherent to most simulations with mov­

ing geometry, the immersed boundary method was proposed by Peskin [571. This

method models complex geometries by representing the necessary shape through ad­

ditional force terms in the momentum equations and has found wide application in

Bio-Fluid Mechanics for solving flows such as a swimming fish, a pulsing heart and
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Figure 3.2: Cartesian adaptive grid

flow in a flexible blood vessel. Fadlun [22] proposed an alternative method for the

types of flows considered here, namely those where the coupling between the moving

boundaries and flow is one way and the boundary is known as a function of space

and time. This method lends itself very well to the simulation of any flow with com­

plex and or unsteady boundaries and uses Cartesian meshes. Figure 3.2 presents a

close up view of the grid around a cylinder. It is notable that the round surface is

approached by stair-like successions of rectangular cells and that the approximation

can be improved by increasing the number of cells or implementing a second order

approximation of the immersed boundary.

Ham et al. [30] successfully used anisotropic local grid refinement on Cartesian

grids as an alternative to embedded-grid techniques proposed by Fadlun [22]. Local­

ized grid refinement allows for fewer cells to be used far from the flow feature and a

higher concentration of cells near the boundary. This means that the linearized veloc­

ity profile will be more accurate because the grid spacing near the boundary is small.

The process of refining and coarsening (combining) cells is called grid adaptation. As
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stated by Ham et al. [3D] , ''the optimal mesh is the smallest mesh (i.e. mesh with the

fewest cells) for which the error associated with each cell is less than a specified toler­

ance". The NWT uses the IMBM as modified by [22] with the anisotropic Cartesian

grid of[30].

For time advancement the NWT uses the Fractional Step Method. A pseudo­

pressure is used to correct the velocities and enforce continuity at each time step.

The transient anisotropic Cartesian grid used for the WT is fully unstructured and

staggered. While collocated meshes may be better suited for steady and low Reynolds

number flows, the accuracy of the collocated scheme is diminished for turbulent flows.

Under these circumstances, non-physical oscillations in the pressure field may occur

and the collocated method must be adapted to conserve the convective term. Con­

versely, the staggered arrangement is unconditionally stable, and correctly models the

turbulent behavior without introducing artificial dissipation. Following the method

proposed by Kim and Choi [41]' the integration of the momentum and continuity

equation is carried out in steps. Initially, the momentum equations are solved for a

velocity using the pressure values from the previous time step and then the estimated

velocity field is used to find the new pressure. This new pressure is then used to

calculate the velocities at cell centre and face normal. In their derivations and the

method used here, a fully implicit Crank-Nicholson method is used for time advance­

ment. Unlike SIMPLE type methods, which are better suited for steady flows, the

fractional step scheme proposed here enforces mass conservation at each time step,

which is essential for unsteady flows.

3.2.0.2 Hardware Requirements and Additional Software

Traditionally, software has been written for serial computation (i.e, to be executed

by a single computer having a single Central Processing Unit (CPU)). Problems are
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solved by a series of instructions, executed one after the other by the CPU, where

only one instruction may be executed at any moment in time. In the simplest sense,

parallel computing is the simultaneous use of multiple computer resources to solve a

computational problem. The computer resources can include a single computer with

multiple processors, an arbitrary number of computers connected by a network, or a

combination of both.

The computational problem usually demonstrates characteristics such as the abil­

ity to be broken apart into discrete pieces of work that can be solved simultaneously,

and solved in less time with multiple computer resources than with a single computer

resource. Ultimately, parallel computing allows for the solution of large CFD prob­

lems in reasonable time. The Numerical Wind Tunnel has been designed to operate

in a parallel environment where the computational domain is distributed among a

number of processors such that the number of computational cells dedicated to each

processor is roughly equal.

In order to take advantage of this feature of the NWT, a suitable parallel envi­

ronment is necessary. For the majority of this research a small 16 processor cluster

located at Dalhousie University was made available and traffic was usually limited to

one other user, also using 16 processors. Additionally, a recent partnership of seven

academic institutions, including Memorial University of Newfoundland, University of

New Brunswick, Mount Allison University, and the University of Prince Edward Is­

land has resulted in the Atlantic Computational Excellence Network, or ACEnet for

short. The goal of ACEnet is to create and operate high performance computing

facilities interconnected by high-speed networks, allowing them to behave as a single,

regionally distributed "computational power grid" of enormous capacity [1). At the

time of writing, the newly developed network is still experiencing "growing pains" and

has not proven to be extremely useful to this research. The availability of suitable
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cluster resources has been a limiting factor in the number of simulated time-steps

achievable for this work, as well as the number of potential simulation cases to be

studied.

In addition to the CFD code itself, there are additional pieces of software that

must be installed and understood in order to use the WT on multiple processors:

• MPICH (http://www-unix.mcs.anl.gov/mpi/mpich/) is the message-passing li­

brary used with NWT. It is the standard implementation for a wide variety of

parallel and distributed computing environments and is the method by which

processors communicate with each other.

• PARMETIS(http:jjwww-users.cs.umn.eduj karypisjmetisjparmetisj) is an MPI­

based library that repartitions the mesh in parallel. The domain must be parti­

tioned for parallel computing. In order to improve the efficiency of the parallel

computing jobs, each processor should have an equal number of cells and the

amount of data passed between processors should be minimized. In the WT,

this is accomplished using PARMETIS. It optimizes the redistribution cost ver­

sus the inter-processor communication cost and assigns new processor identifiers

for each cell, based on an array of cell-centre connectivity supplied by WT.

• OpenDX (http://www/opendx.org) OpenDx is a powerful program developed

by IBM to visualize 2 and 3-dimensional data. Post-processing routines must

be created in OpenDX format in order to interpret the results from the NWT.

Along with the NvVT code, these programs are all open source and must be down­

loaded and installed in order for the code to function properly. For more information

on the theoretical development of the umerical vVind Tunnel, the interested reader

is directed to thesis published by Bell [111.
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3.3 Flow Past a Stationary Cylinder

The first step in simulating the motion of a cylinder undergoing vortex induced vi­

bration is to simulate the flow field around a stationary cylinder. The following

paragraphs describe the vortex shedding characteristics and structures that develop

in the wake of a stationary cylinder at various Reynolds numbers.

3.3.1 Flow Structures in Wake

The pressure on a fluid particle increases from the free-stream to stagnation pressure

as the leading edge of a cylinder is approached. The increased pressure impels the fluid

over the cylinder and a boundary-layer develops. As the Reynolds number increases

beyond 5, the pressure cannot force the flow around the trailing edge of the cylinder

and the boundary-layer separates, forming two shear layers that bound the wake.

The slower moving portion of the shear layers cause the shear layers to roll into the

near wake and form swirling vortices. A regular pattern of vortices forms which is

known as the vortex street. The behavior of flow structures in the wake of a cylinder

depends on the state of the flow, which may be laminar, transitional, or turbulent.

The transition from laminar to turbulent flow around bluff bodies is gradual and takes

place over various regions of disturbed flow. These regions can be identified as the

wake, shear layers, and boundary-layers. Figure 3.3, shows the transition in disturbed

regions where BL, L, Tr and S refer to the boundary-layer, laminar, transition, and

separation regions respectively.

The transition to turbulence first takes place in the wake, with the separated

boundary-layers (free shear layers) remaining laminar. This is known as the TrW

regime. As the Reynolds number is increased, the transition moves from the wake to

the free shear layers towards the point of separation, and is called the TrSL regime.
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Figure 3.3: Transitions in disturbed regions: (a) TrW, (b) TrSL, (c), (d) TrBL

The transition then moves from the shear layers to the boundary-layers at separation

(TrBL), and a drastic decrease in drag occurs due to the different flow structures

resulting from the interaction between the separating layers and those undergoing

transition to turbulence. The final stage of transition occurs as the boundary-layers

become fully turbulent before the separation line and move towards the front stagna-

tion point. This marks the end of the transitional flow regime and the flow is said to

be fully turbulent. The major Reynolds number flow regimes for flow over a smooth

circular cylinder are given in Table 3.1

3.3.2 Strouhal Number

The regular pattern of alternating vortices in the vortex street causes an oscillatory

lift force perpendicular to the stream motion. The dimensionless frequency of vortex

shedding is expressed as a Strouhal number, St:

St = Ii:
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Table 3.1: Flow regimes over a smooth cylinder
Re I Description

< 5 Unseparated Flow
5 - 15 ::; Re < 40 Fixed pair of opposing vortices in

wake
40 ::; Re < 150 Vortex street is laminar
150::; Re < 300 Transition to turbulence in wake

(TrW)
300::; Re < 3 x 10 vortex street is fully turbulent

(TrSL)
3 x 10 ::; Re < 3.5 x 10 Laminar boundary-layer has

undergone transition and wake is
narrower and disorganized (TrBL)

3.5 x 10 ::; Re Turbulent vortex street is
established

where is is the frequency of vortex shedding, D is the characteristic length (cylinder

diameter), and U is the free-stream velocity of the fluid. Experiments have shown

that the vortex shedding frequency is equal to the frequency of oscillation of the lift

force and twice the frequency of the drag force (since the drag shedding frequency is

influenced by both vortices as they are shed from the cylinder). The Strouhal number

is a function of Re and to a lesser extent surface roughness and free stream turbulence

[16). The Strouhal number for a fixed rigid cylinder settles on a value of St ~ 0.21 for

Re outside of the transitional range of (2 x 105 < Re < 2 x 106). For smooth cylinders

in the transitional range, however, the wake does not show periodic behavior and the

Strouhal number may reach values as high as St ~ 0.5 [4). Finally, vortex shedding

does not occur at a single frequency at high Reynolds numbers, but rather wanders

over a narrow band of frequencies and is not constant along the span [65) of a fixed

cylinder. According to Friehe [26) the distance over which force fluctations along the

span may be considered insignificant (the correlation length) for stationary cylinders

is 5 diameters for fully turbulent vortex sheets and 3-4 diameters for transitional

Reynolds numbers [32).

43



METHODOLOGY OF THE RESEARCH

3.4 Flow-Structure Interaction

The aim of this research was to investigate the response of a cylinder undergoing

vortex-induced vibrations in translation and rotation in a plane parallel to the cross­

stream direction. There have been no published studies to determine to what extent

the forces, responses, and vorticity dynamics of an elastically mounted body in a flow

are modified by this motion. This research addresses these issues through a system of

harmonic models used to simulate the response of the cylinder to its three-dimensional

shed vortices. The details of the model are discussed further in Section 4.5, and some

of the parameters important to the analysis of vortex induced vibrations are described

in the following section.

3.4.1 Dimensional Analysis

The following non-dimensional terms have been found most useful in the analysis of

subsonic vortex induced vibrations in a steady flow [16]:

1. Fineness ratio

2. Reduced velocity

3. Dimensionless amplitude

4. Mass ratio

5. Reynolds number

6. Damping factor

7. Turbulence intensity
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The significance of these parameters is discussed in Chapter 2, and their definitions

are given in the ensuing paragraphs.

The fineness ratio is defined as the ratio of the model length (I) to its width (D).

When the length is specified as the third dimension, the parameter is known as the

aspect ratio. Furthermore, the relative roughness is defined as the ratio of the surface

roughness to the width.

fineness ratio =~ (3.2)

The reduced velocity is defined as the path length per cycle (given by U/ j, where

U is the free stream velocity and j is the oscillation frequency) divided by the model

width. The maximum model width is often used in this parameter since it tends to

govern the width of the wake.

. U
reduced velocIty =ji5 (3.3)

The dimensionless amplitude is defined as the vibration amplitude(Ay ), or one

half of the path width, divided by the model width.

dimensionless amplitude =45- (3.4)

The mass ratio is used to measure of the tendency of a lightweight structure to

experience VIVo It is defined as the ratio of the structural mass (m) to the displaced

fluid mass and is given by:

mass ratio = ~;;;2

where p is the density of the fluid.
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The Reynolds number is a measure of the inertial forces to the viscous forces and

may be used to determine whether a flow is laminar, turbulent, or in transition.

Reynolds number =U~

where v is the dynamic viscosity of the fluid.

(3.6)

The damping factor,(, describes the energy dissipated by a structure as it vibrates

and is given by:

damping factor =( = energy dissipated per cycle (3.7)
47f x total energy of structure

Finally, the turbulence intensity is a measurement of the root mean square of the

turbulence in a flow u~ms to the free stream velocity.

turbulence intensity = u~s

3.4.2 Effect of Cylinder Motion on the Wake

(3.8)

As discussed in Chapter 2, the cylinder motion has large effect on vortex shedding.

Some of the potential consequences of cylinder vibration are summarized below:

• Increased strength of vortices

• Increased span-wise correlation

• Lock-in or synchronization

• Increased mean drag

• Modified phase, sequence and pattern of vortices
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The simulation of vortex induced vibrations on marine risers is very challenging and

computationally expensive. Furthermore, simulations covering a large range of re­

duced velocities and industry relevant Reynolds numbers for large aspect ratio cylin­

ders are impractical for the foreseeable future using present numerical techniques.

For this thesis it was important to identify a major aspect of VIV modelling problem

that had been accepted into practise but not challenged critically. Namely, the as­

sumption that harmonic models (or experimental arrangements) that permitted only

translation in the cross-stream and/or stream-wise direction were sufficient to predict

the response of a cylinder to vortices shed at relatively high Reynolds number. In

order to challenge this approach a modelling technique was developed that included

a rotational component to account for the force variation along the span of a circular

cylinder.

The ensuing chapters detail the code development necessary for this work, as well

as the results of a series of simulations for the analysis of a circular cylinder undergoing

VIV in both translation and rotation parallel to the cross-stream dimension, at a

relatively high Reynolds number of Re = 105 .
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Chapter 4

Code Development for the Simulation

of VIV

The work described in this thesis made use of the Numerical Wind Tunnel (NWT)

platform developed at the Centre for Marine Vessel Development and Research at

Dalhousie University [21. In order to perform a simulation of vortex induced vibrations

using the NWT, considerable code development was required. The following chapter

describes some of the major contributions to the NWT necessary to study vortex

induced vibrations on marine risers.

4.1 Surrounding Cells method

The surrounding cells method was developed for this research and is an algorithm

for finding the cells and/or faces surrounding a given face or cell in a computational

domain. The faces in the NWT are sorted into lists which makes it easy to propagate

along the list, but advancing to another location is somewhat more difficult. Consider

the cell shown in Figure 4.1.
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Figure 4.1: Simple grid

If the faces adjacent to the highlighted face #2 are desired, the list can be incre­

mented or decremented to find face #1 and face #3. If, however, the face immediately

above face #2 is desired, there is no way to immediately jump to that face. Many of

the routines discussed in this section need information about the faces and cells sur­

rounding a particular face; hence the requirement for the surrounding cells method.

The method is described in more detail in section 4.2

4.2 Second-Order Velocity Interpolation

To implement the immersed boundary method a forcing function is added to the

momentum equation as a body force. This equation, in integral conservation form, is

given by Equation 4.1:

t+1/ 2 = (convective + viscous + pressure)i+l/2 + Vi+~; u
i

(4.1)

where the forcing function, !, ensures that the fluid velocity, u, is equal to the bound­

ary velocity, V. Traditional immersed boundary simulations approximate the no-slip

condition at a solid boundary by setting the fluid velocity at all faces inside the
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Immersed
Bounda 16

Figure 4.2: Traditional IE velocity interpolation on stationary boundary

boundary to zero (a first-order approximation). This method will not accurately

resolve velocities at the cylinder surface unless the grid and immersed boundary are

coincident, which is unlikely for curved surfaces. As shown in Figure 4.2 this approach

can lead to non-physical values of the velocity at a solid surface, and a violation of the

no-slip condition. The no-slip condition dictates that at a solid boundary the velocity

of the fluid and the velocity of the boundary must be equal. For stationary objects

this means that the fluid velocity must be zero at the surface of an object. The arrows

in the figure represent velocity vectors and it is clear that at the cylinder surface the

velocity is not zero. For most practical applications an interpolation scheme that is

second order accurate is advisable, since it will improve the predictions obtained by

a first-order method.

The simplest second order interpolation scheme is based on a linear interpolation

of the face velocity, Ui inside the immersed boundary from the first face outside of it,

U o, and is given by Equation 4.2:

(4.2)

where y is the distance from U o to the immersed boundary and h is the distance from

Ui to the immersed boundary. An example of the linear interpolation scheme is shown
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h[2ZJy
Ui

Figure 4.3: Second order linear interpolation

in Figure 4.3 and is applicable in all coordinate directions.

Figure 4.3 shows that the velocity at the solid surface is zero. While the inter-

polation is algebraically correct, if the distance from U o to the immersed boundary

is small, ~ may become large and lead to numerical instability. In other words, if

the external face paired with the IE face is too close to the boundary the IE velocity

is forced to become very large and non-physical, which may lead to instability. To

overcome the instability, Kim and Choi [41]' recommend either using a face further

away from the IB or a bilinear interpolation scheme.

The bilinear interpolation method has several advantages over the linear interpo-

lation method. Namely, it is numerically more stable, allows for external faces close

to the IB to be used, interpolates over three external faces, rather than one (or two),

and interpolates over two directions rather than one. Figure 4.4 illustrates the bilin-

ear interpolation method. The point (xp,Yp) is where the no-slip condition is to be

enforced, and Ul,U2, U3, U4, are the face velocities surrounding point (xp, Yp).

The interpolation of the IE face velocity, U1 is based on the following formula from

Kim and Choi [41]:

U1 = - [a(l- (3)u~ + (1- a) (1- (3)u~ + (1- a)/3u1] /a/3 (4.3)
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Figure 4.4: Second order bilinear interpolation

where a = (X3 - xp) / (X3 - Xl), {3 = (Y2 - Yp) / (Y2 - Yl). The scheme is similarly

extended to all components of velocity.

In order to obtain the face velocities Ul-4' the surrounding cells method must be

used, and it is now explained in more detail. A simplified flowchart is given in Figure

4.5 for two-dimensional flow from West to East. The first steps involve identifying a

face inside the immersed boundary. This is accomplished by a simple algorithm that

defines a line connecting the centre of the immersed boundary to each face in the

computational domain. If the line crosses the boundary of the object an even number

of times (including zero) then the face is considered inside the lB. Conversely, if the

number of intersections is odd the face is outside.

If a face is inside the immersed boundary the cells to the east and west are identified

as shown in Figure 4.6, where the face is denoted by h and the cells to the West and

East are given by Cl and C2, respectively. For each of these cells, the cells to the North

and South are identified, as shown in Figure 4.7 for cell C2.

With these cells identified it is possible to obtain the face information. Recall

that it is not possible to move to the North and South directly from the faces, so

the surrounding cells must be first identified so that the faces belonging to these cells

may be used. The faces to the East and West of the surrounding cells are identified

as shown in Figure 4.8 for cell C2b.
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Figure 4.5: Simple surrounding cells flowchart

53



CODE DEVELOPMENT FOR THE SIMULATION OF VIV

Get
neighbour
cells

Figure 4.6: Identifying cells to East and West

Get cells to
North and
South

.
C.:!a

Figure 4.7: Identifying cells to North and South

Get faces to
East and West
of cell

.
c,

Figure 4.8: Identifying faces to East and West
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•

Figure 4.9: Identifying surrounding faces

If one of these faces is outside the immersed boundary it represents a suitable

external face neighbor for the internal face. For the internal face and neighbor (h

and h) located east of the object centre, faces 13 and 14 are located east of hand 12·

Similarly, for hand 12 located west of the object centre, faces 13 and 14 are located

west of hand 12, as shown in Figure 4.9 for cells C2 and C2b.

With the surrounding faces identified, the velocity and the coordinates of each face

are stored as well as the location of the point p. Point p is defined as the intersection

of the wall-normal line passing through the location where the internal face velocity

UI is defined, and the immersed boundary.

The 2ndorder implementation assumes a linear relationship between cells. In order

to use the routine effectively, it is therefore important to ensure that such a rela-

tionship is valid. Turbulent effects vanish very near a wall and the boundary-layer is

dominated by viscous shear [801. In the 1930s, the Law of the Wall was developed by

Ludwig Prandtl and assumes that the dimensionless velocity, u+, is purely a function

of the dimensionless wall distance, y+. He proposed the following:

u = !(p"Tw,p,y)
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where u is the local fluid velocity, p, is the kinematic viscosity of the fluid, Tw is

the shear stress at the wall, p is the fluid density and y is the distance to the wall.

Dimensionless analysis gives

Up1/2 = ( yp1/2T;P)
1/2 f

Tw P,

Prandtl then defined the following non-dimensional terms:

u*=fi

yu*
y+ = -;-

Substitution leads to the Law of the Wall :

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

The term u* has the dimensions of velocity and is referred to as the friction velocity.

It is a measure of the velocity gradient at the wall. The ratio of the local fluid velocity

to the friction velocity is given by u+, and y+ is a form of the Reynolds number,

evaluated at a distance y from the wall, using the friction velocity. The inner part of

the wall layer, very near the wall is called the viscous sublayer. The velocity profile is

assumed linear in this region and experiments have shown that the linear distribution

holds for y+ ~ 5 [42]. For the 2nd order implementation to be valid, the interpolation

must take place in the viscous sublayer, so a routine was written into the algorithm to

calculate y+ and determine the validity of the linear assumption. For flows in which
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boundary-layer effects are important, it is generally accepted that the first grid point

above the surface should be located at y+ '" 1 [8], [77]' so this is generally not a

problem for well resolved meshes.

4.3 Calculation of Lift and Drag Forces

When a fluid flows past an object an interaction between the body and the fluid

occurs that can be described in terms of wall shear stresses (due to viscous effects)

and normal stresses (due to the pressure). The resultant force in the direction of the

upstream velocity is termed the drag, and the resultant force normal to the upstream

velocity is termed the lift. The total drag and lift forces are obtained by integrating the

differential drag and lift forces over the surface of the object, as shown in Equations

4.10 and 4.11

Fd = Fpx + Fvx = JpcosBdA + JTsinBdA

F1 = Fpy + Fvy = JpsinBdA +JTcosBdA

(4.10)

(4.11)

where p and v represent the pressure and viscous contributions in each of the coor­

dinate direction shown in Figure 4.10 and Fd and Fl represent the forces of drag and

lift, respectively.

For cylindrical surfaces at moderate Reynolds numbers it has been shown that the

contribution to the lift and drag forces from shear stresses is minimal. For example, the

contribution to the lift and drag force from shear stresses (Fvx and Fvy , respectively)

can be approximated from the following equation from Munson [51]:
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Figure 4.10: Differential lift and drag forces

F = pVo
2
A (~)

Vx 2 ,Jl[e

F = pVcJ
2
A (~)

V y 2 ,Jl[e

(4.12)

(4.13)

For Reynolds numbers of 1 x 103
, 1 x 104, 1 X 105 the ratio of friction (viscous)

drag to the total drag is 0.14, 0.048, and 0.016 and the wall shear stress contribution

to total lift is significantly smaller. For this work, the drag and lift forces are pressure

dominated and the contribution of shear stress is therefore ignored.

The resultant of the pressure distribution is obtained by integrating the pressure

values over the cylinder surface, so the lift force on a cylinder CFt) is given by:

F1 (t) = JpsinBdA

and the lift coefficient (C1) is calculated from:

(4.14)

(4.15)

Similarly, the drag force (Fd) and drag coefficient (Cd) on a cylinder are given by

equation 4.16 and 4.17, respectively:

58



CODE DEVELOPMENT FOR THE SIMULATION OF VIV

Algorithm 1 Identifying surface cells
FOR each cell

Get East Face
IF face is inside 18

get west face
IF face is outside 18

assign pressure, angle
END IF

END IF
Get West face
IF face is inside 18

get east face
IF face is outside 18

assign pressure, angle
END IF

END IF
END FOR

Fd (t) = JpcosBdA (4.16)

(4.17)

In order to apply these formulae to the Numerical Wind Tunnel, significant code

development was required. Figure 4.11 shows a simplified flowchart for the lift and

drag integration routine.

Firstly, the cells at the surface of the cylinder had to be identified. This was

accomplished via a modified version of the surrounding cells method. The routine

needs information about each cell immediately outside the immersed boundary, but

does not require information from the surrounding faces or cells. The pseudocode

presented in Algorithm 1 describes the routine.

As shown in Figure 4.12, the situation may arise where a cell is located ort a

boundary, but neither face to the east or west is located outside. This algorithm must
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Figure 4.11: Simple lift and drag integration flowchart
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Outside cell

-- --
Inside cell

Figure 4.12: Boundary cell with both faces inside

also be run for cells in the north direction, where references to the east and west are

replaced by north and south, respectively. This is necessary so that the cells adjacent

to straight sections are identified.

The next step in the drag integration routine is to sort each cell according to the

angle it makes with respect to the centre of the cylinder and the front stagnation

point and remove any duplicate entries identified. This angle is termed Bstag and

the domain is generally divided amongst several processors. Vectors of pressure and

Bstag are created for each processor and sent to the main processor, where they are

combined into a single vector and sorted according to Bstag . The vector that resides

on the master processor then contains pressure and Bstag data for all of the cells

surrounding the cylinder. A cubic spline routine was then developed to fit through

the data contained on the master processor. This cubic spline was then integrated

numerically over the cylinder surface to determine the lift and drag forces.

4.4 Quantifying the Induced Roughness

In the Immersed Boundary method, the no-slip condition is enforced at faces identified

as being inside the immersed boundary (the IE faces). The true no-slip condition,

however, exists at the surface of the immersed boundary, and rarely do the face and

boundary coincide. This results in a staircase pattern, which essentially induces a
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oy

ox

Figure 4.13: Determining roughness on immersed boundary

roughness on the immersed surface. For a staggered grid, the extent of this roughness

can be approximated by the distance from the immersed boundary surface to the IB

face in each of the coordinate directions.

Figure 4.13 illustrates the method for determining roughness where Lx and Ly

represent the distance from the immersed face to the immersed boundary in the x

and y coordinate directions, respectively, and the dashed lines indicate the centre-

lines of the cell.

The roughness, then, is calculated based on the following formulae:

_1(¥-Lx)81 = tan -a--
1'- -Ly

-1 (.?f - L y )82 = tan -ax--2- Lx

d = ~ (~+ .-!:L)2+(?! +~)2
2 2 tan 82 2 tan 81

(4.18)

(4.19)

(4.20)

When comparing rough and smooth cylinders, we notice an increase in the drag

coefficient and a decrease in the Strouhal number for the rough cylinder. Bishop [14]
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reported on a series of measurements of full-scale instrumented piles 0.48m and 2.8m

in diameter and found that the maximum and minimum drag coefficient more than

doubled the assumed drag coefficient when compared with similar smooth cylinders

entering the drag crisis. Furthermore, while typical marine growth roughness ranges

from 1 to 100mm [55], Sarpkaya [611 and Kasahara [381 found that a roughness as low

as J = 0.005 resulted in a doubling of the drag coefficient. It can therefore be assumed

that the drag coefficient on marine risers is heavily subject to the roughness imparted

to them by the marine environment. Due to time constraints, the roughness algorithm

was not validated against experimental or numerical benchmarks. However, it has

provided a unique means of quantifying how well the Cartesian grid approximates an

immersed boundary. Section 4.4.1 describes a manner in which this algorithm has

been used to control the mesh in a CFD solution.

4.4.1 Controlling the solution with roughness approximation

The default grid adaptation method in the NWT uses a target number of cells or a

constant adaptation criterion. Using a constant adaptation level can require a great

deal of computer memory in the adaption routine and it is only possible to increase

the value by a small amount at a time (or risk running out of memory). The target

mesh method gradually adjusts the adaptation criteria by comparing the user-defined

target with the actual number of cells in the computational domain. If the number

of cells is less than the target, more refinement is required and the adaptation level

is increased. Conversely, if the number of cells is greater than the target, the grid is

coarsened.

Unfortunately, in the process of achieving the target number of cells the grid

resolution near the immersed boundary may be coarsened, as the solution advances

in time and a greater number of cells are required in the wake. In response to this the
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Algorithm 2 Target Roughness Method
IF actual roughness > target roughness

adaptation criterion == (adaptation criterion) /1.1
ELSE IF actual roughness < target roughness

adaptation criterion == (adaptation criterion) *1.1
END IF

"target roughness" method was developed. The target roughness method compares

the roughness value for the immersed boundary with a user-defined target roughness

and adjusts the adaptation level as shown in Algorithm 2:

The result is that the number of cells around the immersed boundary remains

relatively constant unless the target roughness is changed.

4.5 Accounting for the span-wise variation in forces

along the cylinder span.

While vortex shedding on bluff bodies in the cross-stream and stream-wise directions

has been described in a number of review papers over the past fifty years, the three

dimensional nature of vortex shedding has received very little attention, despite the

general agreement that cylinder wakes are three dimensional for Reynolds numbers

greater than 150. In order to account for the force variation along the span of a cylin-

der, a rotational component should be introduced into the system of VIV equations

traditionally used to model translation. The movement of the cylinder, therefore, is

no longer confined to the principal axis, which may influence the prescribed motion.

For an arbitrary two-d.o.f. spring-mass-damper system, as shown in Figure 4.14,

the coupled equations of motion are defined by

(4.21)
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F2

Figure 4.14: Arbitrary two degree of freedom spring-mass-damper system

(4.22)

where Fv and M v are the external force and moment on the system, while FI and F2

are the interactive forces between the two d.oJ. spring-mass-damper system and aI,

a2 are the distances shown in Figure 4.14.

In general, the equation of motion for a single spring-mass-damper can be written

my + c[; + ky = F (t) (4.23)

For the purposes of VIV, the following non-dimensional terms are introduced

(=2~
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(4.26)

m* = (~pD2)

CL(t) = 2d;~
P 00

Substituting equation 4.24 and equation 4.25 into equation 4.23 gives:

and dividing equation 4.29 by m gives:

(4.27)

(4.28)

(4.29)

(4.30)

Substituting equations 4.26, 4.27 and 4.28 into equation 4.30 and letting the system

response force F(t) be the lift force on the cylinder FL

.. (41f(). (21f)2 2 Cdt)
y+ TF" y+ YF y=;--;;;.;- (4.31)

which is recognized as a suitable equation for describing the cross-stream response of

a structure to vortex induced vibrations. This equation may be written compactly as:

y+ cY + ky = 2~~~t)

where c = (ilf-) and k = (~y.

For multiple spring-mass-damper systems, equation 4.32 can be written as:
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Figure 4.15: Free body diagram for multiple spring-mass-damper system

(4.33)

and equivalently,

(4.34)

Returning to Figure 4.14, the free body diagram is shown in Figure 4.15 and the

equations of motion for the cross-stream and rotational directions are:

(4.35)

(4.36)

Substituting Yl = Y - al sin Band Y2 = Y + a2 sin Band assuming small amplitudes

of oscillation (sin B -:::= B), equations 4.35 and 4.36 may be written as
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my + c (y - ale) + k (y - ale) +

C(y+a2e) +k(y+a2e) = F

Ie - c (y - ale) al - k (y - ale) al +

c (y + a2e) a2 + k (y + a2e) a2 = M

(4.37)

(4.38)

a = Length/2:

my + 2ciJ - 2ky = F (4.39)

(4.40)

This approach uses two springs and two dampers, each having coefficients that

are half as large as the coefficients traditionally applied to risers. In terms of the

traditional coefficients, equations 4.39 and 4.40 can then be written as:

my+ciJ- ky = F (4.41)

(4.42)

Noting that equation 4.41 and equation 4.32 are equivalent, equation 4.42 is ex-

panded by replacing the constants c and k with the well-known riser parameters and
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substituting the equation for the moment of inertia of a cylinder rotated about its

cross-sectional axis:

(4.43)

This equation can be generalized by substituting r = -it, where Ar is the aspect

ratio (Length/Diameter), but for most cases L2 » r2
, and equation 4.43 can be

simplified to

mL2

I~­
12

The moment can also be nondimensionalized by the moment coefficient.

(4.44)

(4.45)

Substituting the non-dimensional terms in equations 4.24 and 4.25 into equation

4.43 and dividing by m gives:

.. (L)2. 2 (L)2 (1 2 2)Ie + (4n(fn) 2 me + (2nfn) m 2 e= 2PVooL em (4.46)

In a manner analogous to the mass ratio, the inertia ratio is defined as the ratio

of the body inertia to the inertia of the displaced fluid, and is given by:

(4.47)

The inertia term in equation 4.46 can therefore be replaced by I = ¥ 1*

which leads to
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(4.48)

(4.49)

Finally, substituting equation 4.27 into equation 4.49, the rotational response of a

structure to vortex induced vibrations is given by:

ij 12 (7fCin) m*e 12 (7fin)2 m* e= ~c
+ I* + 1* 7fI* m

(4.50)

Together with the rotational response given by Equation 4.50, the expressions for

the cross-stream and stream-wise response are given by the following:

.. (47fC). (27f)2 2 Cdt)y+ ~ y+ fF y=;-----;;;,;-

x+ (47fC) X+ (~)2 X = ~ CD (t)
U* U* 7f m*

(4.51)

(4.52)

Figures 4.16 and 4.17 illustrate the potential influence of the rotational term on

VIV motions. The equations of motion described by equations 4.51 and 4.50 were

written into a Matlab routine and solved for various conditions using a fourth order

Runge-Kutta method. The lift coefficient was described by:

Cl(t) = 0.7 cos (t) (4.53)

and the damping factor, mass ratio, and reduced velocity were set to 0.005, 1, and

5.0, respectively to promote large oscillations. The first case, shown in Figure 4.16

shows the displacement of the cylinder over 100 seconds when no moment is applied
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Figure 4.16: Displacement history for cylinder without span-wise lift moment

(i.e. the traditional approach). The results show a dimensionless r.m.s amplitude of

0.618.

Figure 4.17 shows the displacement of the cylinder when the moment coefficient

was set to vary with the lift coefficient according to:

Cm(t) = 0.1 cos (t) (4.54)

This expression was chosen as a simple means of describing the variation of the mo-

ment coefficient over time, and served primarily to compare the motion of a body

undergoing pure translation with a body undergoing translation and rotation. The

results showed that the dimensionless r.m.s amplitude at the mid-span remained 0.618

(since the centroid of the cylinder was assumed to be located at the cylinder mid-span),

and the r.m.s. amplitude at one end of the cylinder (denoted by RHS) increased to

0.798, which represented a 30% increase in amplitude due to the rotation of the cylin-

der. The maximum rotation angle was computed to be 20.4° and while this value is

larger than that expected from a real riser (with larger mass and inertia ratios), it is
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Moment = 0.08 Aspect Ratio = 3.0
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Figure 4.17: Displacement history for cylinder with moment varying with Cj

clear from the figures that a moment applied to the cylinder undergoing VIV behaved

differently from the case of a cylinder with a uniform force distribution along the

span. The shape and amplitude of the displacement curve, for example was altered

significantly due to the combined effects of translation and rotation.

These figures show that an unsymmetrical distribution oflift forces along the cylin-

der span influenced the response of the cylinder when it was subjected to a sinusoidal

lift force. In order to study the behaviour in more detail, numerical simulations were

required, and are the focus of Chapter 7. The equations shown in equations 4.37 and

4.38 were implemented into the NWT and solved at each time-step using a 4th or­

der Runge-Kutta routine. The location of the immersed boundary was then updated

with the resultant displacements and the Cartesian mesh was refined to reflect the

new location of the boundary.
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Chapter 5

Modeling Generalities and Validation

5.1 Domain Size

Depending on the length of the cylinder in the span-wise direction, two calculation

domains were used in this work. For the validation studies the computational domain,

shown in Figure 5.1, was set to be 40 cylinder diameters in the stream-wise direction

(x), 50 diameters in the cross-stream direction (z), and 0.5 diameters in the span-wise

direction (y). For larger aspect ratios (i.e. for tests where the cylinder length is larger

than 0.5 diameters) the domain was set to be 30D x 30D x 3D. For all computational

domains, the cylinder was located at the centre of the x and z planes and it's axis

spanned the extent of the domain in the y direction.

The blockage ratio can be defined as the ratio of the cylinder diameter to the

height of the test section and the blockage effect is said to be negligible if this ratio

is less than 3-5%. Anagnostopoulos et al. [6] have shown that larger blockage ratios

tend to increase the separation angle and drag coefficient, and decrease the size of

vortices. For this reason, all of the simulations in this work maintained a blockage

ratio below 5%.

73



MODELING GENERALITIES AND VALIDATION

Figure 5.1: Calculation domain

In this research, the following cases were been studied for the simulation of vortex

induced vibrations on marine risers.

• Stationary short cylinder at Re = 100 for 2nd order validation

• Stationary long cylinder at Re = 105

• Cross-stream translational VIV response of a cylinder with L/D = 3 at Re = 105

• Cross-stream translation and rotational VIV response of a cylinder with L/D =

3 at Re = 105 and I* = 1

• Cross-stream translation and rotational VIV response of a cylinder with L/D =

3 at Re = 105 and 1* = m*

5.2 Grid Independence Study

The method of performing a CFD simulation on two or more successively finer grids

to examine the spatial convergence of a simulation is known as a grid convergence, or
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grid refinement study. As the grid is refined and the time step is reduced the spatial

and temporal discretization errors, respectively, should asymptotically approach zero,

excluding computer round-off error. Roach [58] suggests a grid convergence index

(GCI) for the reporting of grid independence studies in CFD. It is a measure of the

percentage the computed value is away from the asymptotic numerical value, and

indicates how much the solution would change with a further refinement of the grid.

The grid refinement ratio (r) is given in terms of the total number of elements

used in the coarse (N2 ) and fine (N1) grids:

r= (~) (5.1)

The theoretical order of grid convergence (Pc) is assumed to be equal to 2, or can

be estimated from the solutions of three successively finer simulations (13,12, and h,

respectively).

Pc = In (;: =;:) jln(r)

The grid convergence index is defined as:

GCljine = r~ ~11

where Fs is a factor of safety and € is the relative error, given by Equation 5.4.

12-h
€=--

h

(5.2)

(5.3)

(5.4)

A factor of safety of 3.0 is recommended for two-grid studies, and 1.25 for comparisons

over three grids or more. It is important that each grid level yields solutions that are in

the asymptotic range of convergence for the computed solution. This can be checked
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by comparing the two GCI values computed over three grids.

(5.5)

A value of Equation 5.5 that is close to unity indicates that the solutions are well

within the asymptotic range of convergence. Finally, the value of the simulation

variable at zero grid spacing can be estimated from Equation 5.6:

lexact ~ h + ~~c-_I: (5.6)

The NWT uses anisotropic grid refinement on an unstructured Cartesian mesh,

which means that the grid spacing, or number of cells in the simulation cannot be fixed

a priori. The target anisotropic cell dimensions are given by .0.Xtarget, .0.Ytarget, and

.0.Ztarget, and are functions of the variables and/or derivatives at the cell centroid. The

adaptation of the mesh is accomplished by comparing the actual cell dimensions to

the target cell dimensions from equations 5.7, 5.8, and 5.9 and refining or coarsening

appropriately.

(5.7)

(5.8)

(5.9)

where Cadapt is the user specified error tolerance (grid adaptation criterion) and Fxx , Fyy

and Fzz are the magnitudes of the second derivatives of velocity calculated at the cell

centroid. The mesh density may be controlled by adjusting the value of the the
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grid adaptation criterion and grid refinement study can therefore be undertaken by

adjusting the value of Cadapt to produce coarse and dense meshes. All of the simulations

presented in this thesis have been subject to a grid independence study. Due to

the computational resources required some of the sensitivity studies have been more

rigorous than others. The details of each grid independence study is presented with

its respective simulation.

5.3 Validating the 2nd-order Velocity Interpolation

In order to validate the 2nd-order velocity interpolation, the flow over a circular cylin­

der at a Reynolds number of 100 was chosen as a benchmark case. This flow is

characterized by a periodic laminar flow regime in which staggered eddies are not

shed from the cylinder but rather initiate at the end of the closed near-wake. Fur­

thermore, the roll-up of eddies is gradual until a 'fixed' pattern develops. Important

aspects of this flow regime include:

• The eddy formation length. The distance from the base of the cylinder to the

point of maximum vorticity is called the length of the eddy formation region

(L f ). Beyond Lf viscous dissipation and diffusion gradually reduce the strength

of eddies.

• The Strouhal number (see Section 3.3.2)

• Separation bubble size. As shown in Figure 5.2, the distance from the base of

the cylinder to the point where the time-averaged stream-wise velocity is zero

is given by Lb. This value is normalized by the cylinder diameter such that

separation bubble size is given as Lb/ D.
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Figure 5.2: Illustration of separation bubble size

Two different grids were used, along with the method of grid convergence discussed

in Section 5.2, to obtain grid independent results. The simulation was first carried

out for 175 dimensionless time-steps in order for the wake and vortex street to become

well established and average values of Cd, L f and LjD were then computed over an

additional 50 seconds. Over the same time-frame the root-mean-square of Cl was

calculated as well as the Strouhal number. The results are presented in Table 5.1,

where the values reported for an adaptation criteria of zero indicate the predicted

value that would result for a perfectly refined mesh (i.e. with a grid spacing of zero).

It is clear that the lift and drag coefficients can be obtained using a fairly coarse

mesh, but a finer mesh was necessary to obtain consistent values for the size of the

separation bubble and eddy formation length, as shown in Figure 5.3. The simulation,

therefore was assumed to be grid independent using an adaptation criterion of 4E - 05

with grid convergence indices ranging from 0.4% to 6%.

The power spectrum of the lift coefficient is shown in Figure 5.4, where there

is a clear resonant peak at 0.168 Hz. This value is less than 2% larger than the

experimental result of 0.165 obtained by Williamson [83] and less than 0.6% larger

than the value of 0.167 reported by Roshko [59] .
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Figure 5.3: Grid Convergence Study at Re = 100
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Figure 5.4: Single Sided Amplitude Spectrum of C1 at Re = 100

79



MODELING GENERALITIES AND VALIDATION

~
~

o 1'/\ !\ 1\ r\ :\ ;'\ /\ /\ (\ r
\! \) \! \! \j \! \j \.! \j

30
timers]

Figure 5.5: C1 and Cd vs time at Re = 100

Figure 5.5 shows the lift and drag coefficients computed over the last 50+ seconds

of the simulation. The average drag coefficient of 1.2 and Lm.S lift coefficient of 0.21

compared well with the numerical values of 1.27 and 0.24 reported by So et al [70]

and agree within 5% and 12%, respectively.

The size of the separation bubble averaged over the final 50s of the simulation was

computed to be 1.44. This value is within 3% of the numerical result of 1.4 reported

by Park et al. [56]. Finally, the length of the eddy formation region (L j = 2.12) is

within 8% of the curve fit through the works of Berger [13] and Nishioko and Sato

[52] over a Reynolds number range of 60::; Re ::; 120 presented by Zdravkovich [89].

For Re = 100 this curve gives a value of approximately L j = 2.3.

Figure 5.6 and Figure 5.7 show the instantaneous vorticity and velocity contours

for flow around a stationary cylinder at Re = 100. Qualitatively, the figure shows

the classic pattern of stationary vortices in the wake of the cylinder and compares

very well with the works of Kim [41] and Singh and Mittal [67]. Finally, an identical

simulation was performed using the 1st order interpolation method with slightly less

favorable results of Cd = 1.2, C1 = 0.198, LjD = 1.45, L j = 2.11. The results from
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•

Figure 5.6: Vorticity contours for stationary cylinder at Re = 100

Figure 5.7: Velocity contours for stationary cylinder at Re = 100

the first order method give confidence in the strength of the overall code, and also

demonstrate the improvements owing to the second order method.
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Chapter 6

Simulation of Flow Past a Fixed

Circular Cylinder at Re == 105

The first step in simulating the motion of a cylinder undergoing vortex induced vibra­

tions was thought to be the simulation of the flow field around a stationary cylinder.

When the flow field was established and in agreement with experimental/numerical

observations, the cylinder was allowed to move in response to its shed vortices. The

three-dimensional simulation of the flow of an incompressible fluid past a smooth

circular cylinder at a Reynolds number equal to 100, 000 is presented in this Chapter.

This flow has been studied numerically by a small number of researchers including

Wang [78], Sampaio and Coutinho [60] and Breuer [18]. Wang et al. simulated the

flow around a circular cylinder for Re = 5 x 105 using a LES code with wall model­

ing. The simulated pressure coefficient compared well with the experimental work of

Warschauer and Leene [79], but the drag coefficient was not captured. The predicted

Strouhal number was in agrement with the work of Shih et al. [66] for a rough cylin­

der, but under predicted the results of Achenbach [3]. Sampaio and Coutinho [60]

performed a 2D LES simulation for Re = 104
- 106 and found reasonably good agree-
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ment with experimental work at Re = 3 x 105
, but concluded that finer grids and a

fully 3-dimensional model was necessary to improve their results. Breuer [18] studied

the applicability of LES for high Reynolds number flows and determined that grid­

independent results for three-dimensional, time-dependent flows were a considerable

challenge

The onset to transition to turbulence in boundary-layers develops slowly, and

the flow at Re = 105 is known as the precritical regime [89]. This is a regime in

which little transition takes place and the boundary-layers at the cylinder separate

laminarly. The only transition to turbulence takes place in the free shear layers.

Furthermore, as the Re is increased, the precritical regime is characterized by the

gradual displacement of the separation point downstream and a gradual decrease in

the lift and drag coefficients.

6.1 Computational Details

The computational domain for this simulation is shown in Figure 6.1. Periodic bound­

aries were imposed in the span-wise direction to minimize the effect of span-wise

boundaries, and slip boundaries were imposed in the cross-stream direction. A uni­

form velocity of 1 m/s was specified at the inlet and the downstream boundary was

prescribed by a convective outlet.

The span-wise length was set to be 3D, sufficiently large to capture significantly

large three-dimensional span-wise wake effects [20]. It was not possible to simulate

larger lengths due to limited computational resources, and these simulations were

performed using 16 processors in parallel.
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6.1.1 Computing Time

Table 6.1 summarises the computational time dedicated to the simulations presented

in this thesis. At the beginning of the simulation (from step 0 to step 10,000) there

was a period over which the flow was still developing and did not display periodic

behaviorviour. This was labeled as the transient period and was not considered in

the statistical analysis of time varying properties describing this flow. Steps 10,000

to 21,000 covered the range of periodic flow and provided the numerical results for

flow over a stationary cylinder presented in this chapter. As shown in the table, these

simulations required approximately 170 days to complete using 16 3GHz processors.

In order to ensure that all of the moving cylinder simulations started with a well

established flow field, and that each had a common set of initial conditions, all of the

moving cylinder simulations discussed in Chapter 7 began at the end of the periodic

regime of the stationary cylinder (i.e. step 21001).

The computational expense of three-dimensional simulations at high Reynolds

numbers is extremely (and sometimes prohibitively) high, due to the level of mesh

refinement required. This, coupled with limited computer resources and time restric­

tions did not allow for a traditional grid independence study to be performed for these

simulations. A new approach was therefore required to establish the grid sensitivity.

It was decided to perform a grid independence study over three grids that were only

one cell thick in the span-wise direction (essentially, a two-dimensional grid), but oth­

erwise identical to the domain shown in Figure 6.1. Rather than tracking changes
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Figure 6.1: Computational domain for flow past stationary cylinder at Re = 105

in the results against the number of cells in the mesh, the grid adaptation criterion

was chosen as the dependent variable in the grid refinement study. This parameter,

discussed in section 5.2 specifies the tolerance for which the error across a given cell

calls the automatic mesh refinement routine. Assuming that velocity fluctuations in

the flow-field are largest in the wake of the cylinder, the domain in Figure 6.1 should

also be grid independent for the same value of the grid adaptation criterion.

Three different grids were used, along with the method of grid convergence dis-

cussed in Section 5.2, to obtain grid independent results. Each simulation was started

from rest and carried out for 30 dimensionless time-steps in order for the wake and

vortex street to become well established. The average values of Cd and root-mean-

square of Cl were calculated as well as the Strouhal number. The results are presented

in Table 6.2 , and the full analysis is presented in Appendix A.

According to the results of the grid independence study the simulation was as­

sumed to be grid independent using an adaptation criterion of 4E - 05 with grid
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convergence indices ranging from 0.6% to 3%. The domain shown in Figure 6.1 was

therefore assumed to be grid independent for an adaptation criterion of 4E - 05.

Figures 6.2, 6.3, and 6.4 show the mesh used in this simulation. This mesh has been

automatically refined according to the grid independence study, and shows that the

grid density is greater in the wake of the cylinder than along the span. This means

that assuming the refinement criterion is sufficient in the wake (as determined by the

grid independence study), the variation in the span-wise direction will be sufficiently

refined as well.

Figure 6.2: Refined mesh for flow past stationary cylinder at Re = 105
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Figure 6.3: Refined mesh around cylinder for flow past stationary cylinder at Re = 105

6.2 Results

Figure 6.5 shows two cycles of the lift coefficient, along with the drag coefficient for

this flow. The predicted r.m.s lift coefficient for the stationary cylinder was computed

to be C1,rms = 0.54, which is within 2% of the experimental work of Norberg [53] with

C1,rms = 0.55. The average drag coefficient for the stationary cylinder was Cd = 1.15,

which is within 4% of the experimental measurements of Schewe [65] and Achenbach

[3], who obtained time average drag coefficients of Cd = 1.20. Furthermore, the

predicted Strouhal number of St = 0.183 is also within 4% of the simulated results of

Chen [20] with St = 0.190, and 2% of Norberg's [54] empirical result of St = 0.186.

Figure 6.6 shows the amplitude spectrum of lift, and confirms this value with a clear

resonant peak at St = 0.183. The strong spikes in C1 and Cd do not correspond to the

frequency of vortex shedding and cannot be linked directly to periodic flow features.

They are likely the result of turbulent shedding at this Reynolds number.

6.2.1 Three-dimensional Effects

The simplest way to identify the three-dimensional characteristics of this flow is ac­

complished by visualizing the velocity vector and span-wise vorticity plots near the

wake of the cylinder. The velocity vector plots at three different locations are shown
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Figure 6.4: Refined mesh along span for flow past stationary cylinder at Re = 105
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Figure 6.5: Coefficients of lift and drag for stationary cylinder at Re = 105
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Figure 6.6: Amplitude spectrum of lift coefficient for stationary cylinder at Re = 105

in figures 6.7 , 6.8 and 6.9.

It is clear from the plots that the near wake velocity at y = 0.5 is different from

that at the mid-span and at y = 2.5. In all of the plots vortices are shed alternately,

but they do not remain in-phase along the span of the cylinder. At y = 0.5, for

example, the vortex formed at the top of the cylinder appears to be much further

developed at y = 2.5. This phase variation is evidence of the lack of similarity in the

near wake and lends credence to the interpretation that the flow is three-dimensional

[70].

Plots of span-wise vorticity at the locations specified by figures 6.7, 6.8 and 6.9

are shown in 6.10, 6.11 and 6.12. The vortex shedding pattern is such that in a

cycle two vortices are released, one from the bottom and another from the top. This

shedding behavior can then be identified as 28, namely two single vortices. Although

the shedding pattern remains 28 along the span ofthe cylinder, the nature and timing

of shed vortices varies considerably.

This can perhaps be seen most effectively in the three-dimensional iso-surface
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Figure 6.7: Velocity vectors for stationary cylinder at Re = 105
, and y = 0.5
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Figure 6.8: Velocity vectors for stationary cylinder at Re = 105 , and y = 1.5
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Figure 6.9: Velocity vectors for stationary cylinder at Re = 105 , and y = 2.5
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Figure 6.10: Vorticity contours for stationary cylinder at Re = 105 , and y = 0.5
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Figure 6.11: Vorticity contours for stationary cylinder at Re = 105 , and y = 1.5
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Figure 6.12: Vorticity contours for stationary cylinder at Re = 105 , and y = 2.5
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Figure 6.13: Instantaneous span-wise vorticity iso-surfaces for flow past stationary
cylinder at Re = 105 . Iso-surfaces +2,0 and -2.0

plot of span-wise vorticity shown in Figure 6.13. It is clear from the figure that

vortices generated inside the riser boundary-layer are shed downstream and form

coherent structures in the 28 pattern. The pattern persists along the span and an

increasingly three-dimensional flow field develops downstream. Furthermore, the flow

is not uniform along the span of the cylinder, which indicates that the flow around a

circular cylinder at Re = 105 cannot be assumed to be two-dimensional. The three-

dimensionality of the flowfield is examined in more quantitative terms later in this

section.

Another important feature of a three-dimensional flow-field is the presence of

oblique or parallel shedding modes, Williamson [84] and Luo et al. [44] showed

that in the absence of free-stream shear and cylinder vibration, discontinuities in the

St - Re relationship at low Reynolds numbers were caused by the shedding of vortices

at some oblique angle along the span, Figure 6.14 shows the instantaneous span-wise

component of vorticity along a plane parallel to the midpoint of the cylinder (i,e.
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Figure 6.14: Span-wise vorticity in mid-plane of stationary cylinder at Re = 105 (z =

15D)

at z = 15D). The shedding appears to be slightly oblique and antisymmetric along

the plane, which may be the cause (or consequence) of the time-lag between vortices.

Also, Figure 6.15 shows a side view of the iso-surfaces shown in Figure 6.13 and re-

veals that the vortex structures in the far-wake become more symmetric about the

span centre-line as the flow progresses.

It is clear from Figure 6.14 that there is only a single vortex cell within the span of

the cylinder, which suggests that the frequency of vortex shedding may be constant.

Figure 6.16 shows the lift coefficient over time at various span-wise locations. The

calculated St number for each of these curves is indeed the same, which supports the

claims of So et al. [701 that the St value is not a good indicator of three-dimensionality.

6.2.2 Correlation Coefficients

An effective way of quantifying the degree of three-dimensionality in a flow-field is

by examining the spatial correlation along the span. The correlation coefficient, "/ij,
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Figure 6.15: Instantaneous span-wise vorticity iso-surfaces for flow past stationary
cylinder at Re = 105

. Iso-surfaces +2.0 and -2.0
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Figure 6.16: Cl vs time at Re = 105 along span of stationary cylinder
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Figure 6.17: Cross correlation coefficient along span of stationary cylinder at Re = 105

indicates the strength and direction of a linear relationship between two random

variables, and is given by [70]:

Lt {[Cz (Yi, t + 7)] [Cz (Yj, t)]}

'Yij(T) = VLdCz (Yi, t + 7)]\/LdCz (Yj, t)]2
(6.1)

where Yi represents the spatial position along the span and 7 represents the time delay

between samples. In general terms, correlation refers to the departure of two variables

from independence, and a value of 'Yij equal to unity indicates that the variables are

perfectly correlated [46]. The coefficient 'Yij between the mid-span (Y = 0) and

another location along the span at zero time delay (7 = 0) is shown in Figure 6.17.

The figure shows that the lift force is most correlated near the mid-span, and

becomes less and less correlated towards the ends of the cylinder. Furthermore, the

flow is shown to be anti-symmetric about the mid-span. These results are consistent

with the work of So et al. [70] for flow over a circular cylinder at Re = 100 and aspect

ratio of 16.
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Another measure of the three-dimensionality of a field is the span-wise correlation

length, A, scaled by the cylinder diameter. There exists a correlation length over

which the the force fluctuations in the wake may be described as perfectly correlated.

Knowledge of A also has significance for vortex-induced vibration modeling since many

empirical models use it as a modeling parameter, and it is important to identify the

span-wise computational dimension to use in 3-D CFD codes to capture significant

flow features. The correlation length can be computed by integrating the correlation

coefficient over the cylinder length [91:

/

L/2
A = rij(z)dz

-L/2
(6.2)

The correlation length for this field was computed to be 2.7, which also compares

reasonably well (within 13%) with the empirical formulas presented by Norberg [541:

(
Re )-0.2

A = 2.6 ---5 = 3.1
2.4 x 10

(6.3)

Despite the significance of the correlation length in three-dimensional fields, signif-

icant contributions at high Reynolds numbers are limited. The work described herein

has contributed to this scientific knowledge base on the behavior of three-dimensional

flow-fields at precritical Reynolds numbers on relatively low aspect ratio cylinders.

Section 6.2.3 furthers this study through an investigation of the distribution of forces

and moments along the cylinder span.

6.2.3 Span-wise Distribution of Force and Moment Coefficients

Figure 6.18 shows the variation of the r.m.s. lift coefficient along the span of the

cylinder averaged over thirty dimensionless time steps. C/ increases from one end of

the cylinder to the other and is obviously anti-symmetric about the mid-span. The
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Figure 6.18: Distribution of lift coefficient along the stationary cylinder span at Re =

105

distribution of the drag coefficient along the span, averaged over the same time period

is shown in Figure 6.19. In general, Cd reaches the extreme values near the ends ofthe

cylinder, with the drag coefficient leveling off towards the central L/2 span. Similarly

to Figure 6.18, the drag coefficient is also anti-symmetric about the mid-span, most

likely due to the three-dimensionality of the wake.

The anti-symmetric force distribution imposes a moment about the cylinder. As-

suming that the cylinder is uniform, the centroid is located at the midpoint of the

cylinder, at a distance L/2 along the span. A resultant moment is obtained by sum­

ming the moments of the lift force over the cylinder span. Figure 6.20 shows the

resultant moment coefficient Cm in the cross-stream direction, along with the corre-

sponding lift coefficient plotted over time. The moment coefficient has peak values

at around ±0.05 and a root mean square value of Cm,rms = 0.029. It is clear that

the moment coefficient and lift coefficient are operating at different frequencies. This

implies that the spanwise location of the resultant moment arm is not stationary, and
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Figure 6.19: Distribution of drag coefficient along the stationary cylinder span at
Re = 105

varies over time.

Figure 6.21 shows the amplitude spectrum of the moment coefficient, with a band

ofresonance from 0.09 to 0.25 Hz, with peaks located at 0.0916,0.183, and 0.244 Hz.

To the author's knowledge, this moment coefficient investigation is unique to this

thesis and has not been performed (or is not published in the literature) by other

researchers. Aside from being a scientific curiosity, it is an important parameter in

the code developed for this thesis, since the rotation angle computed by the code is

a function of the moment coefficient supplied to it. Furthermore, this information

would also be helpful in quantifying the magnitude and behaviour of the bending

forces expected in the design of risers.
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Figure 6.20: Moment coefficient and lift coefficient for stationary cylinder at Re = 105

Figure 6.21: Amplitude spectrum of moment coefficient for stationary cylinder at
Re = 105
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Chapter 7

Simulation of 3D Flow Past an

Elastically Mounted Cylinder

Undergoing VIV

The majority of research into vortex-induced vibrations has been dedicated to the

case of a cylinder vibrating in the transverse (cross-stream) direction. A single spring­

damper system, located at the centre of the cylinder and shown in Figure 7.1, can be

used to model this behavior numerically. As discussed in Chapter 2, there are very few

papers reporting studies for the more practical case of vibration in the stream-wise

and cross-stream directions (Figure 7.2), and even fewer for the case where there is

variation of amplitude along the span of a body. For moving, rigid, cylinders, detailed

measurements of cross-correlation between lift forces measured at the two ends of the

cylinder can be found in Hover et al. [31]. In these experiments, the forces at each end

of a rigid tapered and rigid uniform cylinder undergoing forced and free vibrations

were measured for Re = 3800. They determined that the correlation coefficient was

much higher in the case of forced oscillations, especially for the uniform cylinder. To
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Figure 7.1: One degree of freedom spring-damper system

Figure 7.2: Two degrees of freedom spring-damper system (stream-wise and cross­
stream)

date, an investigation into the response of a rigid cylinder to flow induced forces that

vary along the span-wise direction has not been published. These are much more

difficult to simulate numerically, especially at relatively high Reynolds number, and

are the focus of this chapter.

7.1 Modelling Details

A model for this type of motion was introduced in Section 4.5, and the conceptual dia­

gram is presented in Figure 7.3. The cylinder is supported by a pair of spring-damper

systems in the cross-stream (Z) direction. The model can be easily adapted to include

a pair of spring-dampers in the stream-wise direction as well, but it was decided to
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Figure 7.3: Two degrees of freedom spring-damper system (stream-wise and rotation)

determine the effect of cylinder rotation in one direction only, in order to clearly mark

the effect of the rotation, and to limit complications. The methodology used for the

implementation of harmonic models, however, remains the same irrespective of the

plane(s) of rotation through which the cylinder is allowed to move.

The periodic flow-field produced by the stationary cylinder simulation was used

as a starting point in the VIV simulation, and the moment induced by the lift forces,

as well as the resultant lift and drag forces on the cylinder were input into the Runge-

Kutta routines described previously. The cylinder position was then updated with

the cross-stream displacements and rotational angle, and the flow-field was solved by

the NWT. At each subsequent time step, the harmonic model was re-invoked and the

LES flow simulation for the displaced cylinder was repeated until the target number

of time steps was achieved. The flowfield produced by the stationary cylinder ensured

that the grid was sufficiently refined at the onset of VIV motion, and reduced the

likelihood of numerical divergence. While it is acknowledged that this may not be

representative of natural VIV onset on an elastically mounted cylinder, the approach is

consistent with the numerical approaches of Chen [20] and Bell [12] for the simulation

of vortex-induced vibrations on cylinders.

These tests represented an opportunity to investigate how accurate the assumption
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of a uniform force distribution, normally assumed in the prediction of VIV, is capable

in predicting the wake vortex modes along the span, and hence VIV motion of a

marine riser. The simulations are intended to demonstrate local flow features generic

to cases having span-wise amplitude variations, and have therefore been designed

to promote large amplitude oscillations. For values of the mass ratio parameter,

m* < 6.0, a new "super upper" branch with significant stream-wise and cross-stream

amplitudes was discovered by Jauvtis and Williamson [36], and results are presented

for m* = 2.6. In one of the only LES simulations of vortex induced vibrations on

risers at Re = 105 , Chen [20] chose a damping ratio (* = 0.005 and reduced velocity

U* = 6.055 and modelled the VIV phenomenon using a single springjdashpot system.

In order to promote high amplitude motions, and provide a means of comparison

with other numerical simulations the values of the mass ratio, damping ratio, and

reduced velocity for this study were chosen to be the same (m* = 2.6, (* = 0.005 and

U* = 6.055).

The simulated results presented in this chapter required considerable computa-

tional resources which precluded a long time statistical analysis. The results, therefore

concentrate primarily on the behavior of the cylinder at the onset of vortex induced

vibrations, and have been performed mainly using a 16 processor (3.6 GHz) PC clus­

ter located at the Centre for Marine Vessel Development and Research at Dalhousie.

Towards the end of this research the Atlantic Computational Excellence Network

(ACEnet) was also used to perform simulations using 16, 2.6 GHz processors. The

case of a cylinder undergoing vortex induced vibrations in the cross-stream direction

was first investigated to determine the flow characteristics and establish a baseline

for the remaining tests, which allowed the cylinder to translate and rotate in plane

parallel to the cross-stream direction. The differences between the simulations, were

therefore attributed to the rotation caused by a variable amplitude of vibration along
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the span of the cylinder.

In order to ensure that all of the moving cylinder simulations started with a well

established flow field, and that each had a common set of initial conditions, all of

the moving cylinder simulations presented in this chapter began at the end of the

periodic regime of the stationary cylinder (i.e. step 21001). Table 7.1 shows the

computation times for each of the test cases presented in this thesis. The pure trans-

lation case (presented in section 7.2 ) was executed on the cmvdr1 cluster at Dal­

housie (cmvdr1.me.dal.ca) for 117 days, using 163.6 GHz processors, and the cases

for rotation and translation were executed using the AceNet resources described in

section 3.2.0.2. Each of the simulations used 16 2.6 GHz processors, but the pla­

centia (placentia.ace-net.ca) cluster produced results twice as fast as the mahone

(mahone.ace-net.ca) cluster. This was mainly the result of decreased user activity on

the placentia cluster, and an improved hardware configuration. Unfortunately, at the

time of writing, the placentia cluster was still in development and required frequent

shutdowns for hardware and software modifications, which limited it's effectiveness

for this thesis.

7.2 Results for Cross-stream Translation Case

The simulation of vortex induced vibrations on a cylinder translating in the cross-

stream direction is presented in this section in order to establish a baseline against

which the effects of rotation (discussed in sections 7.3 and 7.4) may be measured.
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Table 7.2 summarizes the VIV parameters used in these simulations.

Table 7.2: VIV parameters for cylinder translating in cross-stream direction
I Parameter I Value I

Re 105

U* 6.055
(* 0.005
m* 2.65
1* nla

Figure 7.4 shows the lift and drag coefficients at the onset of VIV for the case

of a cylinder free to translate in the cross-stream direction (Figure 7.1) . The lift

coefficient undergoes a transitional period before settling into what appears to be a

sinusoidal-type motion, with Clrms = 3.37. Over the same period, the drag coefficient

reaches a maximum value of approximately 5 and an average value of 1.45. It is

difficult, however, to see any trends in the lift and drag coefficients at this stage

since the simulated time is not sufficient to compute long-time averages or obtain

statistically steady results. As a point of comparison, however, Chen [20] obtained

maximum values of Clrms rv 3.5 and Cd = 5.2 for a cylinder free to translate in the

stream-wise and cross-stream directions. It was difficult to compare time-series data

in this manner, however, since the flow was transitional and statistical parameters

could not be obtained.

7.2.1 Three Dimensional Effects

The three-dimensional characteristics of this flow near the wake of the cylinder at the

mid-span and 0.5D from each end are shown in the velocity vector plots in Figures

7.5, 7.6, and 7.7. No clear vortex shedding pattern is obvious at this stage, and the

figures look remarkably similar to each other along the span of the cylinder. This

indicates that the wake of the cylinder is less three-dimensional than the case of the
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Figure 7.4: Coefficients of lift and drag for cylinder at Re = 105 oscillating in the
cross-stream direction

stationary cylinder (Section 6.2.1) .

Three-dimensional iso-surfaces of velocity for this flow, presented in Figure 7.8,

show that while there is some variation along the span of the cylinder, the flow is

essentially behaving similarly along the cylinder.

To quantify the degree of three-dimensionality, the correlation coefficients (Tij ,

described in section 6.2.2) were computed, and are presented in Figure 7.9. Values

of Tij near unity indicate that the lift coefficient is highly correlated along the entire

span of the cylinder. Compared with the results presented for the stationary cylinder,

it is clear that the forces along the cylinder span become more correlated when the

cylinder is allowed to move in the cross-flow direction. This is an important result,

because it supports the commonly held notion (as discussed in chapter 2) that the

flow becomes two-dimensional once the cylinder is allowed to respond to it's shed

vortices. Perhaps the uniform motion in the direction of the force organizes the wake

and governs the flow. But the question remains as to whether this behaviour will

continue as the cylinder is allowed to rotate and translate in the same plane. This is
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Figure 7.5: Velocity vectors at y=0.5 for cylinder at Re = 105 oscillating in stream­
wise direction

Figure 7.6: Velocity vectors at y=1.5 for cylinder at Re = 105 oscillating in stream­
wise direction
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Figure 7.7: Velocity vectors at y=2.5 for cylinder at Re = 105 oscillating in stream­
wise direction

Figure 7.8: Instantaneous iso-surfaces stream-wise velocity for flow past a moving
cylinder. Iso-surfaces +0.5,0.2 and -0.5, -0.2
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Figure 7.9: Cross correlation coefficient along span of cylinder translating in cross­
stream direction at Re = 105

investigated further in the sections 7.3 and 7.4.

The correlation length, A, for this flow-field was computed to be 2.98, which

indicates that the force fluctuations in the wake are perfectly correlated for essentially

the entire length of the 3m cylinder. This value is higher than A = 2.7 computed for

the stationary cylinder, thus providing further evidence of two-dimensionality in the

flow field once the cylinder moves.

7.2.2 Span-wise Distribution of Force and Moment Coefficients

Figures 7.10 and 7.11 show the distribution of Clrm. and Cd over the length of the

cylinder, averaged over time. Cz ranges from 3.35 to 3.38, and Cd ranges from 2.92 to

3.10, indicating that there is a 0.8 percent variation in lift and six percent variation

in drag across the span of the cylinder. This is much lower than the twenty percent

variation in Cz and thirty percent variation in Cd reported in Section 6.2.3 for the flow

over a stationary cylinder, and represents increased uniformity along the cylinder span,

and hence increased two-dimensionality.
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Figure 7.10: Distribution of Lm.S. lift coefficient along span of cylinder translating
in cross-stream direction at Re = 105
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Figure 7.11: Distribution of drag coefficient along span of cylinder translating in
cross-stream direction at Re = 105
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Figure 7.12: Moment and lift coefficients for cylinder atRe = 105 translating in cross­
stream direction

Finally, the moment and lift coefficients for this flow are plotted in Figure 7.12.

The moment coefficient has peak values at around ±0.04 and a root mean square

value of Cm,rms = 0.018. These values are smaller in magnitude than those reported

for the stationary cylinder (with peaks of ±0.05 and Cm,rms = 0.029). This is not

surprising result in light the previous evidence of increased correlation.

7.3 Results for 1* = 1

The simulations for a cylinder translating and rotating with 1* = 1 is an exaggerated

case, designed to promote very large angles of rotation, and hence large amplitude

variation along the span of the cylinder. For a cylinder with LjD = 3 it was not

possible to achieve large amplitude oscillations at the ends of the cylinder using the

more realistic case where 1* = m* (discussed in section 7.4). To investigate the

behaviour of a rigid cylinder experiencing large amplitude variations due to VIV a

cylinder with a very low inertia ratio (1* = 1) was selected. The VIV parameters
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Figure 7.13: Coefficients of lift and drag for translating and rotating cylinder with
1* = 1 at Re = 105

relevant to these simulations are presented in Table 7.3.

Table 7.3: VIV parameters for case of I* = 1
I Parameter I Value I

Re 10
U* 6.055

(* 0.005

m* 2.65

1* 1

Figure 7.13 shows the lift and drag coefficients at the onset of VIV for the case of

a cylinder free to translate and rotate in a plane parallel to the cross-stream direction

(Figure 7.3). The simulated time is not sufficient to compute long-time averages or

obtain statistically steady results, but it is clear that the drag coefficient reaches a

maximum value of about 6, and the lift coefficient reaches a value as high as 4. The

drag coefficient has a minimum value of -8, which implies that the rotating cylinder

wake produced alternating low pressure regions on the upstream and downstream

sides of the cylinder.
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7.3.1 Three-dimensional effects

Figure 7.14 shows the velocity contours at the mid-span of the cylinder, and in order

to visualize the three-dimensional characteristics of this flow near the wake of the

cylinder, velocity vectors at the mid-span and 0.5D from each end are shown in

Figures 7.15,7.16, and 7.17. The vortex shedding pattern is governed by the rotation

of the cylinder (20.9 degrees at this timestep) and is most apparent at the extremities.

The plots were each prepared at the same computational time-step, and the flow varies

considerably along the span, as vortices shed from the cylinder in the the negative

cross-stream direction (at y = 0.5) are shed in the positive direction at the other end.

As shown in Figure 7.18, the vortex shedding pattern at the mid-span shows a pair of

co-rotating vortices. In the literature, this is known as the 2C pattern and has been

identified by Flemming and Williamson [251 in experiments on a cylinder pivoting

about a pin connection at the top of the span at Re ~ 1200. The 2C pattern does

not appear to persist along the span of the cylinder, and is likely affected by the large

amplitude translations of the ends of the cylinder, which are much larger than the

mid-span translations, due to the cylinder's angle of rotation.

Instantaneous surfaces of stream-wise velocity are shown in Figure 7.19, where the

red and blue surfaces represent u = 0.2mjs andu = -.2mjs, respectively. The figure

shows three structures at the ends of the cylinder blending together as the cylinder

mid-span is approached. In order to further understand the vortex pattern along the

span of the cylinder, a conceptual model of the vortex structure was developed.

Figure 7.20 shows the principal three-dimensional vortex structures constructed

from cross-sectional measurements of vorticity along the span of the cylinder. At

the mid-span, one of the co-rotating vortices evolves into a pair of counter-rotating

vortices, thus producing a 2C-(2P+S) antisymmetric hybrid mode across the span

of the cylinder. This is essentially a new mode of vortex shedding not previously
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Figure 7.14: Velocity contours for moving and rotating cylinder at Re = 105 , I* = 1
and y = 1.5

Figure 7.15: Velocity vectors for moving and rotating cylinder with 1* = 1 at Re = 105 ,

and y = 0.5
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Figure 7.16: Velocity vectors for moving and rotating cylinder with 1* = 1 at Re = 105 ,

and y = 1.5

Figure 7.17: Velocity vectors for moving and rotating cylinder with 1* = 1atRe = 105 ,

and y = 2.5
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Figure 7.18: Velocity vectors showing 2C pattern for moving and rotating cylinder
with 1* = 1 at Re = 105 , and y = 2.5

Figure 7.19: Instantaneous iso-surfaces stream-wise velocity for flow past a moving
and rotating cylinder with 1* = 1 at Re = 105 . Iso-surfaces +0.2 and -0.2 mls
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Figure 7.20: 3-D model of vortex shedding from moving and rotating cylinder with
I* = 1 at Re = 105

identified in the literature. An investigation into the parameters influencing this

mode, such as reduced velocity, Reynolds number, and range of inertia ratios, would

be useful, but would involve extreme computational time.

In order to quantify the degree of three-dimensionality in this flow-field, the corre­

lation of lift across the span was computed and the results are shown in Figure 7.21.

The figure shows that there is virtually no correlated region except for the very narrow

region around y/L = o. In the central region, the data points decrease from 1 to about

0.244 for -y/L, and from 1 to about -0.013 for positive y/L , and indicate a degree

of symmetry in the flow-field. This is in direct contrast to the correlation coefficients

presented for the stationary cylinder in Section 3.3, which showed higher correlation

across the span but less symmetry. Also, the assumption of two-dimensionality is

clearly not appropriate for cylinders experiencing this degree of rotation.

The correlation length, A, for this flow-field was computed to be 1.06. This indi-

cates that the length over which the force fluctuations in the wake may be described

as perfectly correlated is much smaller for the case of a moving (and rotating) cylinder

compared to a stationary cylinder, at least at the onset of motion. The rotational

component of this flow is most likely the greatest contributor to the reduction in A,

since it was shown in Section 7.2 that VIV motion becomes more two-dimensional
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Figure 7.21: Cross correlation coefficient along span of moving and rotating cylinder
with J* = 1 at Re = 105

when cylinders are restricted to pure translatory motion.

7.3.2 Span-wise Distribution of Force and Moment Coefficients

Figure 7.22 shows the variation of the Lm.s. lift coefficient along the span of the

cylinder at the onset of VIVo Cl decreases from the ends of the cylinder towards the

minimum value near the middle of the cylinder, and shows some symmetry about the

mid-span. The distribution of the drag coefficient along the span, averaged over the

same time period is shown in Figure 7.23. In general, Cd reaches the extreme values

near the ends of the cylinder, with the drag coefficient reaching a minimum value

slightly to the positive side of the central region at y / L = -0.05. Similarly to Figure

6.18, the drag coefficient shows some symmetry along the span, with variances most

likely due to the three-dimensionality of the wake. These figures differ in shape and

magnitude from similar plots for the stationary cylinder, and support the previous

finding that the flow-field becomes more symmetric at the onset of vortex induced

vibrations.
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Figure 7.22: Distribution of r.m.s lift coefficient along span of the moving and rotating
cylinder with 1* = 1 at Re = 105
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Figure 7.23: Distribution of drag coefficient along span of the moving and rotating
cylinder with 1* = 1 at Re = 105
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Figure 7.24: Moment coefficient and lift coefficient for moving and rotating cylinder
with 1* = 1 at Re = 105

The lift force distribution shown in Figure 7.22 imposes a moment about the

cylinder. Figure 7.24 shows the resultant moment coefficient Cm , along with the

corresponding lift coefficient at the onset of VIVo The moment coefficient has peak

values of ±0.44 and a root mean square value of Cm,rms = 0.21. So, while the force

distribution appears to be more symmetric about the cylinder, the moment coefficient

is much larger, due to the increased r.m.s. values of the lift coefficient, compared

to similar results for the stationary cylinder. It is difficult to determine if there is

a decreasing trend in the value of the moment coefficient over time, since there is

insufficient simulated time upon which to perform a statistical analysis. In order to

identify long term trends in the moment coefficient during VIV, several cycles of vortex

shedding are necessary. This, however, would require much greater computational

resources than were available at the time of this research. Similarly to the case of the

stationary cylinder, an investigation into the behavior ofthe moment coefficient along

the span of a cylinder undergoing translation and rotation is unique to this thesis and

has not been published by other researchers.
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These simulations provide an exaggerated response of the cylinder in order to

promote large amplitude variation along the cylinder span. Not only does this allow

for a well defined interpretation of the flow in the wake of the cylinder, but the large

amplitudes of displacement may be more realistic for longer cylinders, even if the

rotation angle is small, which means that the vortex shedding away from the mid-

span may be similar. The following section describes the more realistic case of a

uniform cylinder with 1* = m*.

7.4 Results for ]* = m *

This simulation of vortex induced vibrations on a cylinder free to translate and rotate

with it's inertia ratio equal to it's mass ratio is presented in this section. This is a

more realistic value of the inertia ratio for a uniform cylinder, since if the mass is

uniformly distributed along the span it follows from equation 4.44 that:

(7.1)

For this simulation, the cylinder is free to translate and rotate in the cross-stream

direction as shown in Figure 7.3 and the VIV parameters relevant to the simulation

are presented in Table 7.4

Table 7.4: VIV parameters for case of 1* = m*
I Parameter I Value I

Re 105

U* 6.055
(* 0.005
m* 2.65
1* 2.65

Figure 7.25 shows the lift and drag coefficients at the onset of VIV for the case
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Figure 7.25: Coefficients of lift for translating and rotating cylinder at Re = 105 and
I*=m*

of a cylinder with it's inertia ratio equal to it's mass ratio. The Lm.s lift coefficient

reaches values of ±3.9 which is larger than the case for 1* = 1, and the case for

pure translation described in Section 7.2. Similarly to those other cases, it is difficult

to identify any trends in the lift coefficient at this stage since the simulated time

is not sufficient to compute long-time averages or obtain statistically steady results.

Over the same period, the drag coefficient reaches a maximum value of approximately

Cd = 4 and an average value of 1.4. These values are slightly less than those predicted

for the case of pure translation discussed in 7.2. Furthermore, the peak value of the

drag coefficient in the upstream direction is approximately -1, much smaller than -8

predicted for a cylinder translating and rotating with 1* = 1.

7.4.1 Three-dimensional effects

The three-dimensional characteristics of this flow near the wake of the cylinder at the

mid-span and O.5D from each end are shown in the velocity vector plots in Figures

7.26, 7.27, and 7.28. The flow pattern varies along the span, but not nearly as much
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Figure 7.26: Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 0.5

as for the case of 1* = 1. Moreover, the vortex shedding pattern is less dramatic, but

also shows a small pair of co-rotating vortices at the mid-span (highlighted in Figure

7.29 ), and hints of it near the extremities. In contrast to the plots shown for the case

of 1* = 1, the 2C pattern appears to persist along the span of the cylinder, most likely

due to the fact that the rotation angle is much smaller for the case of 1* = m*and the

flow is less affected by the translation of the ends of the cylinder.

Three-dimensional iso-surfaces of velocity for this flow, presented in Figure 7.30,

show that there is variation along the span of the cylinder, but the effect of cylinder

rotation is not as apparent as for the case of 1* = 1.

A comparison of the rotation angles at the onset of VIV is presented in Figure

7.31 for the case of a cylinder with 1* = 1 and 1* = m*. It is clear from the figure that

much smaller rotation angles exist when an object's inertia ratio is equal to it's mass

ratio, at least for the case of m* = 2.6. For longer cylinders, the small rotation angles

would result in increased amplitudes of motion at the ends of the cylinder, due to
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Figure 7.27: Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 1.5

Figure 7.28: Velocity vectors for cylinder at Re = 105 and 1* = m*, at y = 2.5

125



SIMULATION OF 3D FLOW PAST AN ELASTICALLY MOUNTED CYLINDER
UNDERGOING VIV

Figure 7.29: 2C pattern for cylinder at Re = 105 and 1* = m*, at y = 1.5

Figure 7.30: Instantaneous iso-surfaces of stream-wise velocity for flow past a moving
cylinder with 1* = m*. Iso-surfaces +0.5,0.2 and -0.5, -0.2 mls
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Figure 7.31: Comparison of rotation angles for cylinder at Re = 105 for I* = 1 and
I*=m*

simple trigonometry. As discussed in Section 7.3, large rotation angles were required

in order study the effects of large amplitude vibrations at the ends of the cylinder on

the flow. The variation in amplitude may contribute to the vortex shedding pattern

and result in the 2C-(2P+S) hybrid mode. It is also clear from the figure that the

period of rotation for the cylinder with 1* = m* is about twice that for the case of

1* = 1. This is most likely due to the influence of the rotation angle on the flow.

A comparison of the dimensionless amplitudes at the cylinder mid-span at the

onset of VIV is presented in Figure 7.32 for the case of a translating and rotating

cylinder with 1* = 1 , 1* = m* and also for the case of pure translation. The

largest peak amplitude is found for pure translation, followed by 1* = 1 and 1* = m*.

Furthermore, the period of motion is shortest for the case of 1* = m*. A similar

plot is shown in Figure 7.33 for the cross-stream velocities. The results show that the

cross-stream velocity reaches the largest values for 1* = 1 followed by 1* = m* and is

smallest for the case of pure translation.

The correlation coefficients along the span of the cylinder with 1* = m* are pre-
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Figure 7.32: Comparison of amplitude ratios for cylinders at Re = 105 for ]* = 1 and
1* = m* and pure translation
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Figure 7.33: Comparison of cross-stream cylinder velocities ratios for translating and
rotating cylinder at Re = 105 for ]* = 1 and ]* = m*
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Figure 7.34: Cross correlation coefficient along span of moving cylinder at Re = 105

for 1* =m*

sented in Figure 7.34. There is a narrow region of highly correlated flow at the

cylinder mid-span and less correlation towards the ends of the cylinder. The corre-

lation length, A, for this flow-field was computed to be 2.6, which indicates that the

force fluctuations in the wake are perfectly correlated for about eighty-five percent of

the length of the cylinder. This value is only slightly lower than A = 2.7 computed

for the stationary cylinder, thus indicating that for cylinders with 1* = m* the onset

of vortex induced vibration does not affect the magnitude of the correlation length,

although it clearly alters the flow behaviour.

A comparison of the correlation coefficients for all of the cases discussed in this

thesis are presented in Figure 7.35. It is clear that the forces along the cylinder

span become more correlated when the cylinder is allowed to move in the cross-flow

direction. For a cylinder rotating with 1* = m* the correlation resembles that of the

stationary cylinder in terms of magnitude and shape, but contains a more narrow

band of highly correlated flow. The exaggerated motion of the cylinder with J* = 1

is mostly uncorrelated, as described previously.
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Figure 7.35: Cross correlation coefficient along span of moving cylinder at Re = 105

7.4.2 Span-wise Distribution of Force and Moment Coefficients

Figures 7.36 and 7.37 show the distribution of Ct and Cd over the length of the cylinder.

Ct ranges from about 4.3 to 4.8, and Cd ranges from 3.7 to 4.1, indicating that there is

a ten percent variation in both lift and drag across the span of the cylinder. This is less

than the twenty percent variation in Ct and thirty percent variation in Cd reported in

Section 6.2.3 for the flow over a stationary cylinder. The values of Ct and Cd indicate

an increase in the lift and drag coefficients at the onset ofVIV. Furthermore, the shape

of the lift coefficient distribution curve is similar to that of the stationary cylinder

(shown in Figure 6.18), in that the flow is anti-symmetric about the mid-plane, and

increases from one end of the cylinder to the other. The shape of the drag coefficient

curve does not resemble the drag curve for the stationary cylinder (shown in Figure

6.19)

Finally, the moment and lift coefficients for this flow are plotted in Figure 7.38.

The values of the moment coefficient are larger than those reported for the stationary

cylinder, due to the increase in the lift coefficient. At the onset of motion the moment
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Figure 7.36: Distribution of lift coefficient along span of moving cylinder at Re = 105

for 1* =m*
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Figure 7.37: Distribution of drag coefficient along the moving cylinder span at Re ;=

105 and 1* = m*
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Figure 7.38: Moment and lift coefficients for moving cylinder at Re = 105 at Re = 105

forI' =m'

and lift coefficient curves appear to be moving in opposite directions, but start to

become more in-phase with each other as the solution progresses.
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Chapter 8

Conclusions & Recommendations

The objective of this research was to demonstrate the use of advanced CFD capabilities

for the prediction of cylinder VIV responses at high Reynolds number and to expand

the knowledge of VIV for cylinders free to translate and rotate. The present chapter

summarizes the results of this research and makes recommendations for future work.

8.1 Summary of Code Development

In order to perform a simulation of vortex induced vibrations using the Numerical

Wind Tunnel, considerable code development was required to advance an existing

LES platform developed at Dalhousie University. The code development results lead

to the following conclusions:

1. The surrounding cells method is an efficient algorithm for finding cells and

faces surrounding a given cell in a computational domain. The method was

successfully applied to a number of routines in this NWT, and will serve as a

valuable tool for future applications and code development. Furthermore, the

algorithm is useful for other CFD researchers using unstructured grids.
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2. A bi-linear second-order velocity interpolation routine has been implemented

into the WT to improve the velocity prediction at the immersed boundary.

3. A routine was developed for the NWT to calculate the lift and drag forces on a

body based on pressure measurements. This assumption is valid because it has

been shown that the viscous contribution to the lift and drag forces is negligible

for the flow regimes in this research (Re = 105). The routine effectively identifies

the cells adjacent to an immersed boundary and calculates the lift and drag

forces accordingly.

4. A "roughness" algorithm was developed and implemented into the NWT to

calculate how closely the shape of the immersed boundary is approximated by

the Cartesian mesh. This routine requires a validation study to relate the value

obtained to the actual roughness, but has proven to be an effective tool for

controlling the grid refinement around the immersed boundary (as discussed in

section 4.4.1).

5. A method was developed to simulate the influence of span-wise force variation for

objects undergoing vortex induced vibrations. The routine was built using the

parameters normally applied to bodies experiencing vortex induced vibrations

in pure translation, and hence additional damping and spring constants were

not necessary. The routine requires the specification of the inertia ratio (1*)

and the moment coefficient (Cm ) for a body in a flow, along with the Cl , Cd and

other parameters common to translating VIV simulations.
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8.2 Summary of Validation for 2nd-order interpola­

tion

In order to validate the 2nd-order velocity interpolation, the flow over a circular cylin­

der at a Reynolds number of 100 was chosen as a benchmark case. The results of the

validation lead to the following conclusions:

1. A grid independence study was performed on Cd, Cz , Bt, L f and L / D for grids

consisting of 10000 and 25000 cells. The lift and drag coefficients for this flow

were well predicted by even the coarse mesh, but a finer mesh was necessary to

obtain consistent values for the size of the separation bubble and eddy formation

length. The simulation was assumed to be grid independent using an adaptation

criterion of Cadapt = 4E-05, and the calculated Cd, Cll Bt, Lf and L/D are within

5%, 13%, 0.6%, 8%, and 3% of the values reported in the literature.

2. The second-order interpolation routine produced more favourable results than

an identical simulation using the first-order method. In particular, the lift coeffi­

cient, separation bubble size, and length of the eddy formation region predicted

by the second-order method were in closer agreement with other experimental

and numerical works.

8.3 Summary of Stationary Cylinder Simulations

The flow around a low aspect ratio cylinder at Re = 105 was numerically simulated

using LES. This flow regime was selected based on the knowledge that it represents

a somewhat realistic operating environment for marine risers. One of the objectives

of the simulation was to investigate the presence of three-dimensional flow over the

span of this cylinder, and the computational results led to the following conclusions:
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1. The simulation was assumed to be grid independent using an adaptation crite­

rion of Cadllpt = 4E - 05 and the calculated values of Cd, Cl and St are consistent

with those reported in the literature. Specifically, Cl,rms = 0.54, which is within

2% of the experimental work of orberg [53] with Cl,rms = 0.55. The aver­

age drag coefficient for the stationary cylinder was Cd = 1.15, which is within

4% of the experimental measurements of Schewe [65] and Achenbach [3], who

obtained time averaged drag coefficients of Cd = 1.20. Finally, the predicted

Strouhal number of St = 0.183 is also within 4% of the simulated results of

Chen [20] with St = 0.190.

2. The 2S pattern of vortex shedding is consistent along the span of the cylinder,

but the timing of shed vortices varies considerably. Plots of span-wise vorticity

at various locations along the cylinder span indicate that vortices do not remain

in-phase along the span of the cylinder. This phase variation is evidence of

the lack of similarity in the near wake and indicates that the flow is three­

dimensional.

3. The frequency of vortex shedding is constant along the span of the cylinder, and

is not a good indicator of three-dimensionality in a flow due to phase differences

over the span.

4. The flow is most correlated near the mid-span and becomes less correlated near

the ends of the cylinder. Furthermore, the flow is shown to be anti-symmetric

about the mid-span, implying that a moment exists about the cylinder mid-span

due to an uneven distribution of forces.

5. The correlation length for this flow was computed to be 2.7, which is within

thirteen percent of the empirical formulas reported in the literature at this

Reynolds number.
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6. The lift and drag forces are anti-symmetric about the mid-span and induce

moments on the cylinder. The moment coefficient resulting from the lift forces

is operating at a frequency different from the lift coefficient, which implies that

the moment is not stationary, and varies over time.

7. The amplitude spectrum of the moment coefficient has a band of resonance from

0.09 to 0.25 Hz, with peaks located at 0.092,0.18, and 0.24 Hz.

8.4 Summary of Moving Cylinder Simulations

The behaviour of a low aspect ratio cylinder experiencing vortex induced vibrations at

Re = 105 was numerically simulated using LES. Modeling parameters were chosen to

promote large oscillations and the simulations were intended to demonstrate local flow

features generic to cases having span-wise amplitude variations. The simulations were

performed for the case of a cylinder free to translate in the cross-stream direction, and

also for a cylinder free to translate and rotate in a plane parallel to the cross-stream.

Two different inertia ratios were investigated. A cylinder with an inertia ratio equal

to unity was used to produce exaggerated results on the short cylinder, so that large

amplitudes would exist at the ends of the cylinder, despite the small aspect ratio.

Furthermore, the realistic case of a cylinder with it's inertia ratio equal to it's mass

ratio was used to predict the response of the cylinder.

One of the objectives of the simulation was to investigate the influence of three­

dimensional flow over the span of this cylinder, and the computational results led to

the conclusions listed in the ensuing sections.
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8.4.1 Summary of Results for Cross-Stream Translation

1. At the onset of motion the cylinder wake becomes more organized and highly

correlated along the span. This supports the notion that three-dimensional flows

become increasingly two-dimensional once the cylinder is allowed to respond to

it's shed vortices. As discussed in section 8.4.3 this behaviour was found to be

limited to objects restricted to translation.

2. The correlation length increased from A = 2.7 for a stationary cylinder to A =

3.0 for a 3m cylinder undergoing translation at Re = 105 .

3. The magnitude of the Lm.s moment coefficient decreased by 38% during trans­

lation. This is explained by the fact that the correlation length increased when

the cylinder was allowed to move in the cross-stream direction.

8.4.2 Summary of Results for 1* = 1

1. The maximum values of the lift and drag coefficients more than quadrupled at

the onset of VIV motion.

2. The vortex shedding at the mid-span showed a pair of co-rotating vortices. This

pattern has previously been identified for the case of a cylinder vibrating as a

pendulum, and has been denoted as 2C. Perhaps the segment from the point of

rotation to the end of the cylinder behaves like a pendulum and induces similar

vortex shedding patterns when oscillating.

3. Instantaneous iso-surfaces of stream-wise velocity show three structures at the

ends of the cylinder merging together as the mid-span is approached. A concep­

tual model, constructed from cross-sectional measurements of vorticity, shows

the existence of a 2C-(2P+S) antisymmetric hybrid mode across the span of
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the cylinder. This is essentially a new mode of vortex shedding not previously

identified in the literature.

4. At the onset of motion, there is virtually no region of force correlation except

for a very narrow band around the mid-span. There is, however, increased

symmetry in the flow-field, which is in direct contrast to stationary cylinder

simulations, where there was higher correlation and less symmetry about the

mid-span.

5. The correlation length, A, was computed to be 1.06, which is much smaller than

A = 2.7 for the stationary cylinder.

6. The moment contribution due to lift is increased as a result of larger values

of r.m.s lift, despite evidence of increased symmetry in the flow-field once the

cylinder starts to move.

8.4.3 Summary of Results for 1* = m*

1. The magnitude of the lift coefficient was 14% larger than for the case of pure

translation, and 3% less than the case for I* = 1. The value of the drag coeffi­

cient was 1% less than that predicted for the case of pure translation discussed

in 7.2. Furthermore, the value of the drag coefficient in the upstream direction

is approximately 50% smaller than that predicted for cylinder translating and

rotating with I* = 1.

2. The vortex shedding pattern shows a small pair of co-rotating vortices at the

mid-span, and hints of it near the extremities. In contrast to the plots shown

for the case of 1* = 1, the 2C pattern appears to persist along the span of the

cylinder, most likely because the rotation angle is much smaller for the case
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of I* = m* and the flow is less affected by the translation of the ends of the

cylinder.

3. The rotation angles are much smaller than for the case of a cylinder with I* = 1.

4. The period of rotation for the cylinder with I* = m* is about twice that for the

case of I* = 1.

5. The largest dimensionless amplitude was found for pure translation (Ay = 1.5),

followed by I* = 1 (Ay = 1.3) and 1* = m* (Ay = 1.1). Furthermore, the period

of motion is shortest for the case of I* = mO.

6. The cross-stream velocity of the cylinder reached the largest values for I* = 1

(¥t = 0.8) followed by 1* = m* (¥t = 0.6) and is smallest for the case of pure

translation (¥t = 0.5).

7. The correlation length, A, for this flow-field was computed to be 2.6. This value

is only slightly lower than A = 2.7 computed for the stationary cylinder, thus

indicating that for cylinders with 1* = m* the onset of vortex induced vibration

does not affect the magnitude of the correlation length to a large degree.

8. The correlation coefficient curve resembles that of the stationary cylinder in

terms of magnitude and shape, but contains a more narrow band of highly

correlated flow.

9. The values of the moment coefficient are larger than those reported for the

stationary cylinder, due to the increase in the lift coefficient. At the onset of

motion the moment and lift coefficient curves appear to be moving in opposite

directions, but start to become more in-phase with each other as the solution

progresses.
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8.5 Significant Contributions to the Field

This research produced a number of new contributions to the field of VIV not previ­

ously identified in the literature. These contributions are summarized as follows:

• A model was developed to account for the influence of span-wise force variation

for objects undergoing vortex induced vibrations. Conceptually the model con­

sists of a pair of springs and dampers mounted to the ends of a cylinder, and

uses many of the variables previously established for the simulation of VIVo The

equations of motion have been developed to include a rotational component and

the introduction of the inertia ratio.

• A new vortex shedding pattern has been identified for the case of a cylinder free

to translate and rotate in a plane parallel to the cross-stream direction. At the

mid-span, one of the co-rotating vortices evolves into a pair of counter-rotating

vortices, thus producing a 2C-(2P+S) antisymmetric hybrid mode across the

span of the cylinder. An investigation into the parameters influencing this mode,

such as reduced velocity, Reynolds number, and range of inertia ratios, is justi-

fied.

• The assumption of two-dimensionality is only valid for the case of a cylinder un­

dergoing pure translation. Models that restrict the motion to simple translation

may govern the flow regime and not accurately reflect the behaviour of an object

under less rigid constraints. This has implications for current numerical and ex­

perimental techniques since these models generally only allow for cross-stream

and/or stream-wise motion. The extent to which the experimental apparatus

or harmonic model influenced the behaviour of the riser by eliminating span­

wise amplitude variation is important information that should be considered for

future riser designs.
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• While span-wise correlation should be discouraged on marine risers (either

through strakes or some other means), the extent of span-wise correlation is

likely being over-predicted by current experimental or numerical techniques.

• An investigation into the moment coefficient and span-wise force distribution

for stationary and translating cylinders, as well as the case of cylinders free

to rotate and translate in a plane parallel to the cross-stream direction was

performed using LES. This information is useful in quantifying the magnitude

and behaviour of the bending forces expected in the design of risers.

There have also been relatively few three-dimensional simulations of cylinders at Re =

1Q5reported in the literature, which makes the contributions described previously even

more substantial.

8.6 Recommendations for Further Work

The following directions for extending the work of this thesis are suggested:

• Continue the current simulations for a longer period of simulated time to com­

pute long-time averages and obtain statistically steady results. These simula­

tions are ongoing, but progress has been slow due to the computational expenses

outlined in section 6.1.1. In order to perform meaningful statistical analyses of

these flows, in a reasonable amount of time, a greater number of processors must

be used.

• Extend the simulations for a range of reduced velocities, mass ratios and inertia

ratios to map the response of the cylinder under a variety of loading conditions.

This is necessary to identify the parameters affecting the flow regime and in

particular the presence of the 2C-(2P+S) hybrid mode.
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• Extend the simulations to include a variety of aspect ratios so that the influence

of large amplitude variation of the cylinder ends can be investigated .

• Expand the harmonic model to include the influence of span-wise force variation

in the stream-wise direction.
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Appendix A: Grid Refinement Study

r=rqr=(~)r

p = In(j: =j: )lin (r)

I •.• = I, + ~'p-_~'

c=~
I,

eGl " = F;7 ~&;' I

eGI " = F;-: ~&I"I

a3ymPtotic=~

Calculalethegridrefinemenlralio.r, based on the number of cells
in the fine grid (N1) and coarser grid (N2)

Use Richardson extrapomtionon the two finest grids 10 obtain
an eslimata of the value off al a grid spacing of zero

Calculate the Grid Convergence Index for each oflhe grids using
a faetor of safety of 1.25 (see Roache)

Ate lhe solutions in the asymptotic range of convergence
(cJosetounily)

If they are in the asymplotic band we can say that the value of
ftsostimaled to be Ch=O with an error band of CGI_12

ridSiz_. Cd CI ST cada.
N1 75000 1.17 0.85 0.2140.()()(x)5f1
N2 26500 1.14 0.8 0.211 0.0001(2
N3 8700 1.0318 0.6 0.183 0.005'3

~
~

I Error_.llma.es I

_12 IO'O~3161 0';:251°,0;:218
9230.1048650.3333330.1530055

CGI12 0.0126190.0299710.0068181
CGI23 0.0502870.1598470.0733722

1"~50910~7102~:361
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APPENDIX A: GRiD REFINEMENT STUDY

c adapt 0 Cd 1.182 CI

Iilp-:-------===---t] ~
o 0.()()()2 0.0004 0.0006 0.0008

Adaptation Criterion
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Appendix B: Matlab Scripts

1 %Movement Comparisons

2 %Thiscodeassemblesthemovementfilesforeachofthetestcasesand

3 %compares the results
4 movement_z = load('movement_z.csv');
5 movement_zr = load('movement_Istar.csv'};

6 movement_xzr=load('movement_xzr.csv');
7 %»»»»»»»»>Plots«««««««««««<
8 figure
9 plot(movement_zr(:,1),movement_zr(:,4)-lS,'k--')

10 hold

11 plot(movement_z(:,1),movement_z(:,4)-lS, 'k ' )
12 plot(movement_xzr(:,l),movement_xzr(:,4)-lS, 'k:')

13 xlabel('time [5)')

14 ylabel('A_y'*!D')

151egend('I"*=1','trans ' ,'I"*=m"'· ' )

16
17 figure
18 plot(movement_zr(:,1),movement_zr(:,6), 'k--')

19 hold

20 plot(movement_z(:,l),movement_z(:,6}, 'k')
21 plot(movement_xzr{:,1),movement_xzr(:,6),'k:')

22 xlabel('time[sJ')

23 ylabel('dz!dt')

241egend('I"*=l','trans','I"*=m"*')

25
26 figure

27 plot(rnovernent_zr(:,1),movernent_zr(:,7), 'k-- ' )

28 hold
29 plot(movement_xzr(:,1),movement_xzr(:,7), 'k: I)

30 xlabel('time [sJ')

31 ylabel('{\theta)_{rad)')

321egend('I"*=m"*','I"*=l')

33 holdoff

34 %PLOTymovementvsangle

35 figure
36 plot(movement_zr(:,7),movement_zr(:,4)-lS, 'k: ' )

37 hold

38 plot(movement_xzr(:,7),movernent_xzr(:,4)-lS, 'k- ' )

39 holdoff

40 ylabel('A_y"!D')

41 xlabel(' {\theta)_{rad)')

42 legend(' 1'*~m'*', '1'*-1')

43
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APPENDIX B: MATLAB SCRIPTS

1 I' _"'ltltltlt,._*,,"_ .. Dave Murrin, 04/04/2007 *.- * _- *-** _._ *-

2 % The following is a script to analyze the moments along the span of the

3 % cylinder using the spanwise lift and drag output from the NWT

4 % Note that the final ouput uses the moment coefficient, which is the

5 % moment normalized by the length of the cylinder.

6 % D Murrin

7 %

8 avg_lift_drag_trace - loadl'avg_lift_drag.csv');

9 lift_drag_0_5 - loadl'lift_drag_O.30');

10 lift_drag_l_O ~ loadl' lift_drag_O .60');

11 lift_drag_l_5 ~ loadl'lift_drag_O.90');

12 lift_drag_2_0 - load('lift_drag_1.20');

13 lift_drag_2_5 - load('lift_drag_l.50');

14 lift_drag_3_0 ~ load('lift_drag_1.BO');

15 lift_drag_3_5 ~ load('lift_drag_2.l0');

16 lift_drag_4_0 - loadl'lift_drag_2.40');

17 lift_drag_4_5 = loadl'lift_drag_2.70');
18 % .

19 span_cuts - [-0.4: .1:0.4J ';%normalized lengths

20 span_cuts ~ [-1.2: .3:1.2J'; %

21 %should check against the raw data from avg_lift_drag

22 %checkthefinalvalue

23 avg_lift_drag_tracelend,:)

24 ave_checkll,:) = lift_drag_O_5lend, :);

25 ave_checkl2,:) - lift_drag_l_Olend, :);

26 ave_checkl3,:) ~ lift_drag_l_5lend,:);

27 ave_checkl4,:) ~ lift_drag_2_0lend,:);

28 ave_checkl5,:) - lift_drag_2_5lend, :);

29 ave_check (6, :) = lift_drag_3_0(end, :);

30 ave_check (7, :) - lift_drag_3_5(end,:);

31 ave_check(B,:) - lift_drag_4_0lend,:);

32 ave_check (9, :) - lift_drag_4_5(end, :);

33 % Now we check the average lift and drag

34 average_values = mean (ave_checK, 1)

35 %now we can calculate the moment contribution
36 for iter ~ 1:9

37 mom_contrib(iter) - ave_check(iter,2}·span_cuts(iter);
38 end

39 mom_check ~ sumlmom_contrib) /9

40 mom_fram_arm = aV9_1ift_drag_trace (end, 4) *avg_lift_drag_trace (end, 2)
41 % We must verify the average values with the cut values in the .out file

42 % Now, call the strouhal routine for avg drag, lift and strouhal

43 avg_cl_cd - strouha12lavg_lift_drag_trace);

44 avg_O_5 ~ strouha12llift_drag_O_5);

45 avg_l_O - strouha12(lift_drag_l_0);

46 avg_l_5 = strouha12llift_drag_l_5);

47 avg_2_0 ~ strouha12 (lift_drag_2_0);

48 avg_2_5 ~ strouha12(lift_drag_2_5);

49 avg_3_0 ~ strouha12 (lift_drag_3_0);

50 avg_3_5 ~ strouha12(lift_drag_3_5);

51 avg_4_0 - strouha12(lift_drag_4_0);
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%So,nowwehavethefilteredliftanddragatthecuts.Sowewillfind

%the moments and draw a spline through the results

%c1mom ~ c1mov/(n_cuts-l! '(location - globaILength[IJ/2!/globaILength(IJ;

%clmom sum - clmom + clmom sum;- -

%Now plot results

%We should also plot the variation of Cl and Cd over the span
%createavectoroftheCd

ave_dragll,:) = 2'mean l1ift_drag_O_5l:,3»;

ave_dragl2,:) - 2'mean(lift_drag_1_O(:,3»;

ave_dragl3,:) - 2'mean(lift_drag_l_5(:,3»;

ave_dragl4,:) = 2'mean(lift_drag_2_0(:,3»;

ave_dragl5,:) - 2'mean(lift_drag_2_5(:,3»;

ave_dragl6,:) = 2'mean(lift_drag_3_0(:,3»;

ave_dragl7,:) - 2'mean(lift_drag_3_5l:,3»;

ave_draglB,:) - 2'mean llift_drag_4_0l:,3»;

ave_dragl9,:) = 2'meanllift_drag_4_5l:,3»;

%----------------------------------------------------------

%plot (avg_0_5(:,I! ,c1mom!

% Now we fit the data to a spline so that the timesteps are even

% set the timesteps to 0.001 seconds

dummy_avgl(:,l) - avg_1ift_drag_trace(:,1);

dummy_avgl(:,2) - avg_lift_drag_trace(:,4);

dummy_avgl(:,3) - avg_lift_drag_tracel:,4);

dummy_ones - strouha12ldummy_avgl);

p1ot(dummy_onesl:,l),dummy_onesl:,2»)

title{'C_m vs time');

x1abe1l'Ume [sJ')

y1abe11'C_m')

%% May be interesting to get the frequency and rms values of the moment

stat_results-strouha13ldummy_ones);
%------------------------------------------

%createvectorofCl

rms_liftll,:) = norm(lift_drag_O_51:,2)/sqrtl1ength(lift_drag_O_5( ,2)))

rms_liftI2,:) - norm(lift_drag_l_OI:,2))/sqrtl1engthllift_drag_l_O( ,2)))

rms_lift(3,:) - norm(lift_drag_l_51:,2))/sqrtl1engthllift_drag_l_5( ,2)))

rms_liftI4,:) = norm(lift_drag_2_01:,2)/sqrtl1engthllift_drag_2_0( ,2»))

rms_liftl5,:) = normllift_drag_2_5(:,2»/sqrt(lengthllift_drag_2_5( ,2»)

rms_liftl6,:) - norm(lift_drag_3_0(:,2»/sqrt(lengthllift_drag_3_0( ,2»)

rms_liftl7,:) - normllift_drag_3_5(:,2)/sqrt(lengthllift_drag_3_5( ,2»)

rms_liftlB,:) = norm(lift_drag_4_0(:,2»)/sqrt(lengthllift_drag_4_0( ,2»)

rms_liftl9,:) - norm(lift_drag_4_51:,2»)/sqrt(lengthllift_drag_4_5( ,2»))

%PLOT SPANWISE AVERAGES AND RMS VALUES

xx=-1.2:.05:1.2;

%yy_L = spline((0;span_cuts;5J,[0;rms_lift_at_cut;OJ,xx!;

yy_L = spline(span_cuts,rms_lift,xx);

figure

plot (xx, yy_L, 'k.-',span_cuts,rms_lift, 'ko')
Utle('AVERAGE SPAN WISE RMS LIFT COEFFICIENT');

52 avg_4_5 ~ strouha12(lift_drag_4_5);

53
54

55

56
57
58
59
60

61

62

63

64

65
66
67

68
69
70

71
72
73

74

75
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
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%check the lengths of the arrays, and and truncate if necessary, and plot

%thedistancefroml:length(minlength)

Icheck(l) ~ 1ength(avg_O_S(:, 1»;

Icheck(2) - length(avg_1_0(:,1) I;
Icheck(3) ~ 1ength(avg_1_S(:, 1) I;
Icheck(4) ~ length(avg_2_0(:,1) I;

Icheck(S) - length(avg_2_S(:,1»;

Icheck(6) ~ length(avg_3_0(:, 1»;

Icheck(7) ~ length(avg_3_S(:,1»;

Icheck(8) - length(avg_4_0(:,1»;

Icheck(9) = length(avg_4_S(:,1»;

min (lcheck)

span_Iift(:,1) = avg_O_S(:,2);

__~_ .... __ .__----,., _, ~ -0. 4*ones (length (span_lift (: ,1» ,1);

~,.._.,__ ~ ,., _, ~ -0 .4*ones (length (span_lift (:,1»,1);

~,..u.._~~~__~",",.,., ~ -0. 3*ones (length (span_lift (:,1»),1);

~,.._.... _~ .... ,_, - -0 .2*ones (length (span_lift (:,1»),1);

_,.._ .. "_--u--,.,', = -O.l*ones(length(span_Iift(:,l) ),1);

~ ...u,,_~~~_-"O'"' ., _, ~ O*ones (length (span_lift ( :,1) ) , 1) ;

~,.._ .... _~ ,_,., _, ~ O.l*ones (length (span_lift (:,1»,1);

~ ... u .. _~~~__~",",.", = 0.2*ones(length(span_Iift(:,1),1);

_,.._ .... ---.- .. ,_, ~ 0.3*ones (length (span_lift ( :, 1),1);

_,.._., "_--u--,.,,, ~ 0.4*ones (length (span_lift (:,1»,1);

148
149

103
104
105
106 figure

107 plot(xx,yy, 'k-' ,span_cuts,ave_drag, 'ko')

108 tHle('AVERAGE SPAN WISE DRAG COEFFICIENT');

109 ylabel('C_d')

110 xlabel('Spanwiselength [ml')
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
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plot3 (avg_3_51:, 1), spanwise_dist 1:,7), avg_3_5 (:,2), avg_4_0 (:,1), spanwise_dist (:,8), av '"

g_4_0(:,2»)
152 plot3(avg_4_51:,I),spanwise_dist(:,9),avg_4_5(:,2))

153 xlabel('time (5)')

154 ylabel('Spanwiselocation (y/LJ')

155 zlabel('Cl')

156 izlabel('C_(\itl} 'J
157 hold off

158 i·····················································....
159 % Correlation coefficients between midplane and other values

160 icollectallofthedataintoasinglematrix
161 Corryairs - (avg_O_5 (:,2) ,avg_l_0 (:,2) ,avg_l_5 (:,2) ,avg_2_0 (:,2), avg_2_5 (:,2) ,avg_3_ '"

0(:,2),avg_3_5(:,2),avg_4_0(:,2),avg_4_5(:,2) ];

162 forci=1:9

163 CPl - [Corr_pairs(:,c_i),Corryairs(:,5) I;

164 (corr_r,corr_pl ~ corrcoef(CPl);

165 corr_coeff(c_i) ~ corr_r(2);

166 end

167 %now plot correlation coefficients against span position

168 figure
169 span_interp - -1.5:0.01:1.5;

170 interp_coeff::z [pchip(span_cuts,corr_coeff,span_interp)];

171 Correlation_Length ~ trapz(span_interp,interp_coeff);

172 plot (span_cuts,corr_coeff, 'ko',span_interp,interp_coeff)
173 xlabel('Spanwiselocation (y/LI')

174 ylabel('{\gamma}_{\itij)')

175 i------------------------------------------------------------------------------------'"

176 iplot moment along with lift
177 plot(dummy_ones(:,1) ,dummy_ones(:,2) )

178 time-dummy_ones(:,I);

179 mom = dummy_ones(:,2);

180 plotyy(time,mom,avg_cl_cd(:,I),avg_cl_cd(:,2)

181 [AX,Hl,H2] - plotyy(time,mom,avg_cl_cd(:, 1) ,avg_cl_cd(:,2), 'plot');

182set(get(AX(I),'Ylabel'),'String','C_m')

183set(get(AX(2),'Ylabel'),'String','C_l')

184set(Hl,'LineStyle','-')

185set(Hl,'Color','k')

186set(get(AX(I),'Ylabel'),'Color','k')

187set(get(AX(2),'Ylabel'),'Color','k')

188set(AX(I),'YColor','k')

189set(AX(2),'YColor','k')

190set(H2,'LineStyle',':')

191set(H2,'Color','k')

192 title('Cmvstime');

193 xlabel('time [51')

194 egh - legend([Hl H2], 'C_m', 'C_l');

195
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1 functionresults-strouhal(lift_drag)

2 %matlabcodeforfindingrmsvalues

3 %import data file, or cd into directory and open it

4 %NOTE: For the strouhal number it is important to ensure
5 %that dt is relatively constant

6 %Storeoriginaldata

7 raw_data ~ lift_drag;
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9 %%Removeoutliers

10 % Calculate the mean and the standard deviation

11 %ofeachdatacolumninthematrix

12 % Calculate the mean and the standard deviation

13 %ofeachdatacolumninthematrix

14 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

15 % first add a column of delta CLanddelta CD

16 %calculatingdeltas

17 count - lift_drag;
18 [N,P]-size(count);

19 forC=2:N
20 count(C,4)-count(C,2)-count(C-l,2);

21 count(C,Sl-count(C,3)-count(C-l,3);

22
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24 mu-mean(count);
25 sigma ~ std(count);

26 [n,pl-size(count);

27 % Create a matrix of mean values by

28 % replicating the mu vector for n rows

29 MeanMat-repmat(mu,n,l);

30 % Create a matrix of standard deviation values by

31 % replicating the sigma vector for n rows

32 SigmaMat-repmat(sigma,n,l);

33 % Create a matrix ot zeros and ones, where ones indicate
34 %thelocationofoutliers

35 outliers-abs(count-MeanMat) >2*SigmaMat;
36 %Calculatethenumberofoutliersineachcolumn

37 nout-sum(outliers);

38 count(any(outliers,2),:) -[I;

39 %replace data

40 time-count(:,l);
41lift-count(:,2);
42 drag-count(:,3);

43 delta_lift - count(:,4);
44 delta_drag = count(:,S);

45 %replace original matrix

46lift_drag-[time,lift,drag];
47 %%%%%%%%%%%%%%%EndofOutliersRoutine%%%%%%%%%%%%%%%

48 minvalue-l;

49 %filterthedatafirst

50 b-ones(1,lOlI10;

51 yall = filtfilt(b,l,lift_drag);
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52 lift_drag ~ yall;

53 % data filtered and replaced

54 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

55 time ~ lift_drag (min_value: length (lift_drag) ,1);

56 %lift ~ detrend(lift_drag(min_value:length(lift_drag) ,2)):

57 lift = lift_drag (min_value: length (lift_drag) ,2) ;

58 drag = lift_drag (min_value: length (lift_drag) ,3) ;

59 %%%%%%%%%%%%%%%%%%%%%%%%%%

60
61 t 0 ~ time (1) ;

62 t zeroed ~ time - time(l);

63 time=tzeroed;

64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

65 % NO[<1 l<le fit the data to a spline so that the timesteps are even

66 % set the timesteps to 0.001 seconds

67 delta t ~ 0.001;

68 time_vector = time(l) :delta_t:time(end);

69 % Now fit the lift and drag coefficients to a cubic spline

70 YI_L = interpl(time,lift,time_vector);

71 YI_D = interpl (time, drag, time_vector) ;

72 %look at approximation

73 %plot (time,lift, time_vector,YI_L, '0')

74 time=

75
76
77
78
79
80
81
82
83 yO = lift;

84 N=length(yO);

85 M ~ 2'nextpow2 (N);

86 y= [yO; zeros(M-N,I)];

87 Fs=N/(time(N) -time(l»;

88 dt ~ I/Fs;

89 t=dt*(O:M-I)';

90 df ~ Fs/M;

91 f=df*(O:M-I)';

92 Y=fft(yO,M);

93 Pyy ~ Y. * conj (Y) 1 M;

94 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

95 % Truncate to non-negative frequencies

96 % and find peaks

97 Q ~ ceil ((M+I) 12);

98 Pyyl= Pyy(I:Q);

99 fl ~ f(l :Q);

100 [PyymaxlmaxIJ=max(Pyyl);

101 Imax=find(Pyyl Pyymax);

102 figure(3),plot(fl,Pyyl)
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%% Display the results

results - [Avg_drag , rms_lift , StJ;

disp(' Cd(avg) Cl(rms) Strouhal')

disp(results)

% Plot lift and drag vs time

figure(4),plot(time,drag,'k',time,lift,'k:')
title('CD,CLvstime');

xlabel('time [sl')

ylabel('CD,CL')

legend('CD','CL');

U%UUUUU%U%UUUUU%UUHHH%H%H

titl,e('UI1filt:ered and Filtered

xlabel('time [sJ')

ylabel('CL')

legend('UnfilteredCL','FilteredCL');

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

103 holdon,plot(fl(Imax),Pyyl(Imax),'bo')

104 xlim([OSI)

105 title('Single-SidedAmplitudeSpectrumofCL(t)');

106 xlabel('frequency[Hzl'l

107 %ylabell'IYlf) I') % or Power spectrum

108 ylabel('Pyy(f) ') % or Power spectrum

109 holdoff

110 St-fl(Imax);

111 UUUUUUUU%UUUUUU%%%%%%%UH%U
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
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