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ABSTRACT 

An original combined analytical and experimental study of the 

effects of wave grouping on the slow drift oscillations of floating 

moored structures has been presented. The work constitutes the first 

incorporation of existing techniques of simulating wave groups and the 

slow oscillating response of a moored model of a rectangular barge. 

The analytical model assumes that each pair of frequencies in a 

discrete wave spectrum will give rise to a regular wave group. Each of 

these regular wave groups will produce a low frequency force that is 

propo~tional to the product of the wave amplitudes in the ·group and 

varies at a frequency equal to the difference in the frequency pair. 

Furthermore, this low frequency force is related to a modified SIWEH of 

the regular wave group by a constant phase angle. Therefore the 

resultant force is determined by superposition of these regular 

slow-varying forces. Subsequently the ensuing slow oscillating motions 

can be established and related to the SIWEH spectrum. This relation is 

expressed in the form of a transfer function. The analytical model is 

then evaluated by means of a set of detailed experimental tests 

' conducted on a rectangular barge. A JONSWAP spectrum was modelled for 

a range of grouping characteristics and the results compared to the 

analytical model. Results indicate that the slow drift motions are 

highly influenced by free motion effects. An empirical transfer 

function which included these free motion effects produced good 

agreement between subsequent predicted and measured slow drift 

responses. The technique developed in this study shows that the 

second-order response to linear waves can be related to the wave 

envelope when the effects of these linear waves are dominant. 
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CHAPTER 1 

INTRODUCTION 

The increase in offshore activities which require support from 

large moored or dynamically positioned structures. has prompted a need 

for an acute understanding of the physical phenomena related to the 

mooring of large vessels in open sea conditions. Situations will be 

further complicated with attempts by the offshore industry to extend 

its operating season as well as moving into more violent environments. 

The industrial sector will therefore require safe, acc~rate and 

inexpensive techniques of design and analysis of systems to enable it 

to operate effectively in such environments. One of the problems 

associated with the mooring of structures in waves is the effect of 

wave grouping on their slowly oscillating drift response. 

A floating structure moored in irregular waves will experience 

first-order wave forces that are linearly proportional to the heights 

of the waves and will act at frequencies that are equal to the 

frequencies of the waves. They also experience smaller, low frequency 

second-order forces that,are proportional to the square of the wave 

heights. The frequencies of the second-order forces are related to the 

frequencies of the wave groups contained in the irregular waves. These 

low frequency second-order forces are commonly referred to as slow 

drift forces and the structure's response to these drift forces are 

referred to as slow drift oscillations. The slow drift forces, though 

relatively small in magnitude, can excite large horizontal motions in 

moored structures. The group frequences at which these forces act 
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typicallY coincide with the resonant frequencies of moored structures. 

In general the damping that is associated with the horizontal motions 

of a moored structure is very low. Therefore, when these group 

frequencies fall near the resonant frequency of the structure the 

result is large amplitude motion behaviour in the horizontal 

direction. 

The traditional approach to design and analysis of offshore 

structures is a combination of analytical and scaled prototype 

modelling. In relation to studying the effects of wave grouping on 

floating structures both analytical and experimental e~forts have only 

begun in recent years. The earliest observations of these effects were 

reported by Remery and Hermans (1971) and Hsu and Blenkarn (1972). 

These authors showed that the drift forces in irregular wave trains are 

associated with the frequencies of the groups present in the train. 

Hsu and Blenkarn (1972) and Newman (1974) approximated these forces 

using coefficients found from regular waves. These methods did not 

give phase information between the group and the slow varying drift 

force. This information is important when considering the effect of 

these slow drift forces ~n the motion of a structure in terms of the 

sequence at which wave groups impinge on it. ?inkster (1981) has 

presented a technique of determining the slow drift forces on 

structures by direct integration of second-order pressures on the 

wetted part of the structure. This analytical model does describe a 

means of determining the phase between the slow drift force and the 

wave envelope. 

Paralleling developments in theories which may be used to predict 
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second-order forces are studies of wave groups. These began with 

studies of sequences of wave heights by Goda (1970). Then Nolte and 

Hsu (1972) studied _the statistics of envelopes by observations of time 

traces. Arhan and Ezraty (1978) and Rye (1981) studied wave heights 

and envelopes by means of auto correlation functions. Funke and 

Mansard (1979) and Nelson (1980) analyzed wave groups by squaring and 

smoothing time traces. Analysis of field data using the techniques of 

these authors have shown that group characteristics can be unique to a 

particular region. This suggests that a structure's performance can be 

optimized for a particular region. 

In order to evaluate the theories predicting the influence of slow 

drift forces caused by particular wave groups on the performance of a 

structure, the most reliable method available is scaled model testing. 

Confidence in the accuracy of analytical models will be heightened by 

agreement with experimentally simulated conditions provided these 

simulations are controllable and understood. Although ?inkster and van 

Oortmerssen (1977) has presented a rigorous formulation of his approach 

to computing the slowly-varying forces caused by irregular waves, 

experimental verification of these methods is for the most part limited 

to regular waves. Results of experiments in irregular waves are 

confined to comparisons between predicted and measured spectral 

densities of drift forces. Funke and Mansard (1979) have presented a 

technique to identify the grouping characteristics of waves contained 

in an irregular wave train by introducing the concept of the SIWEH. 
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SIWEH is an acronym for the smoothed instantaneous wave energy history. 

This method is used to indicate the group activity along the time axis 

by describing wave energy as the square of the water surface elevation 

averaged over a time period which is a function of the peak frequency. 

These authors have also presented a method of modelling a wave spectrum 

containing particular group characteristics but have not attempted to 

predict the slowly oscillating drift response of a structure to wave 

groups. 

The following study addresses, both analytically and 

experimentally, the effects of wave grouping on the slowly oscillating 

drift response of floating moored structures. The thesis is organized 

as follows: 

(i) A review of the pertinent literature is presented and 

discussed in Chapter 2. This review covers the areas of wave groups, 

second-order wave forces on structures and prototype modelling. This 

Chapter identifies an inefficiency in predicting the response of 

floating moored structures to irregular wave groups. 

(ii) Chapter 3 presents an original analytical technique which 

relates the slow drift response of a floating moored structure to the 

wave group affecting it. The development integrates a number of 

techniques found in the literature. 

(ii) Chapter 4 describes a method to determine the number of 

discrete components needed to simulate a wave group. This is done in 

terms of the characteristics of the structure under investigation. 

(iii) Chapter 5 describes the calibration of a 60 m wave tank used 

to experimentally evaluate the method proposed in Chapter 3. The 
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calibration procedure implements a number of simulation techniques 

described in Chapter 4. Subsequently a detailed set of model tests are 

conducted on a model of a rectangular barge. 

(iv) Chapter 6 compares the analytical and experimental results. 

(v) Chapter 7 discusses the results of this comparison and 

presents a number of conclusions. 

work found in the present study which is not available in current 

literature and thereby contributes to this area or research includes: 

(1) The analytical model relating the slow drift response to the 

wave group. 

(ii) Experimental demonstration of the magnitude and phase 

relationship between the wave group and structure response. 

' 
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CHAPTER 2 

LITERATURE REVIEW 

The following Chapter reviews the current literature on two 

topics. One addresses wave groups and the other reviews developments 

concerning theories and experiments which may be used to predict the 

second-order wave forces on moored floating structures. Detailed 

derivations are not given in this chapter but will be discussed in the 

Appendix. 

2.1 Wave Group Analysis 

An extremely detailed review of information on ocean wave groups 

is given in Rye (1981). A more recent review can also be found in 

LeBlond(1982). Also a concise review of wave groups can be found in 

van Vledder (1983a, 1983b). This among other literature that was 

reviewed for the present work has revealed that there are a number of 

approaches taken in the study of wave groups contained in ocean 

spectra. These may be categorized as, 

1. Statistical ana~ysis involving sequences of wave heights which 

may exceed some prescribed threshold. 

2. Statistical analysis of wave envelopes created by connecting 

the crests and troughs of zero-crossing waves. 

3. Squaring and smoothing of time histories of wave data. 

2.1.1 Analysis Using Sequence of Wave Heights 

Goda (1970) studi e d wave groups using a statistical model based on 

the assumpti o n that s ucc e s si ve wa ve he i ghts ar e inde pe nden t of each 

o t her . The probability, pr, tha t the wave height, H, is greater than 



-7-

the group level, He' is defined as, ( 2. 1 ) 

Pr(H) = 1 - -P(H ) . c 

and the probability that the wave height, H, will be less than He is 

defined as, 

q(H) = 1 - pr(H) (2.2) 

Therefore, pr(H) + q(H) 2 1. 

The probability of a wave group of length, j, is equal to the product 

of the separate probabilities of each of the wave lengths in the group 

exceeding the value, H simultaneously. This expression is given as, c, 

Pl ( j) 
j -1 

( 1-pr) pr (2.3) 

The mean, jl, and standard deviation, sd (j1), are calculated as 

follows, 

1 
j 1 • ( l.;,.pr) (2.4) 

and 

' 
(2.5) 

The probability of a group of waves of heights less than He with a 

group length, j, is expressed as, 

. 1 
P2(j) = (1-pr)J- pr 

with a mean and standard deviation of, 

pr 

(2.6) 

(2.7) 



and 

sd (j 2) 
~ 

(1-pr) 2 

pr 

-a-

(2.8) 

The probability of a wave group with a length, j, (j ~ 2) is found 

from, 

P3 (j) • 
pr(1-pr) (pj- 1 -(1-p) j-1 ) 

2pr-1 
(2.9) 

Goda (1970) used computer simulations to investigate the above 

described model for various spectral forms. These simultations used 

phase components that were generated from a uniform distribution on 

the interval 0.2 to n. The simulations showed that the average group 

length produced from a narrow spectrum are higher than those predicted 

by his model. Goda's model was also compared to field data by Wilson 

and Baird (1972), Rye (1974), Goda (1976) and Dattatri et al (1977). 

Once again all results given clearly indicate that the measured average 

groups lengths are greater than theoretical values. Based on the 

findings of these authors it is concluded that successive wave heights 

are dependent. Therefore the resultant average group lengths are 

greater than those found under the assumption of independence between 

the successive wave heights. 

The dependency between successive wave heights has been examined 

by various authors who studied the characteristics of its joint 

probability density distribution. Rye (1974), Dattatri et al (1977), 

Arhan and Ezraty (1978) and Su et al (1982) studied the correlations 

between successive wave heights. 

Rye (1974) was the first to calculate the correlation coefficient 

between successive wave heights. The correlation coefficient, Rhh(k) 



is expressed as, 

N-k 
1: 

1=1 

where, 
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(H - H) 
i 

N ~ number of wave heights in sample 

H average wave height 

sd(H)~ standard deviation of wave heights 

(2.10) 

k a difference in number between successive wave heights. 

Rye (1974) reported Rhh{1) values of 0.30 and 0.20 for wave growth and 

wave decay respectively. Other authors, Dattatri et al (1977) found a 

mean Rhh(l) value of 0.236 and Arhan and Ezraty (1978).gave an average 

value of 0.297. The latter two authors did not however, distinguish 

between growing and decaying sea states. Su et al distinguished 

between wave growth and wave decay be examining the trend in H. In the 

case if wave growth they reported Rhh(1) values of 0.374 and for wave 

decay, Rhh(l) values equal to 0.340. Goda (1983) analyzed wave swell 

in a very narrow spectrum and found Rhh(1) values of 0.649. It is 

concluded from the work of these authors that the dependency between 

successive wave heights decreases as wave lengths increase. Also the 

'· value of Rhh(l) is dependent upon the spectrum form, i.e. higher 

correlations are found from narrow spectra. 

Kiruma (1980) derived a theory for group lengths where successive 

waves are correlated. The model assumes that the joint probability 

density function of two successive wave heights is given by the 

two-dimensional Rayleigh distribution. In order to calculate the 

probalility of a sequence of waves of a height greater than H0 , or 

lower than H0 Kimura used the conditional probabilities, 
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and 

p22 

Prob [H1_ 1 
H c 
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(2.11) 

H ) c 
(2.12) 

The probability of a sequence of j successive heights greater than 

He is, 

. 1 
p1(j) = p22 J- (1-p22) 

with a mean of, 

1 
j 1 ( 1-p22) 

and a standard deviation of 

sd(j2) 
p22~ 

(1-p22) 

(2.13) 

(2.110 

(2.15) 

' By analogy, the probability of a sequence of j heights less than He 

is, 

p2(j) = (1-p11) p11j-l (2.16) 

with a mean of, 

j2 
( 1 -p 1 1 ) (2.17) 



and a standard deviation of, 

sd(j2) 
p11~ 

(1-p11) 
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(2.18) 

Kimura (1980) conducted computer simulations to generate time 

sequences of wave groups. The simulations were generated for a 

spectrum of different peakedness characteristics. The phases 

associated with each of the wave components generated were selected 

from a uniform distribution on the interval (0.2 to ~). Using this 

model Kimura found good agreement between the measured values and those 

predicted by his model. When compared to field data tne measured 

average group lengths for group levels above the average wave heights 

in the group are larger than those predicted by Kimura's model. For 

group levels above H1 ; 3 there was an obvious improvement between the 

theoretical and measured group lengths. 

Kimura'a model for group length distribution considers only the 

correlation between non-successive wave heights. Van Vledder (1983b) 

extended this model to include correlations between non-successive wage 

heights. In the extended version of the model a wave height is 

' correlated not only with the previous wave height, but also with the 

one previous to that. Van Vledder (1983a)assumed the existance of a 

joint probability density distribution function for three successive 

heights Hi, Hi+l• Hi+2• Kimura's original model and its 

expanded version were tested using data fron the North Sea as well as 

that found in published literature. Van Vledder (1983a) found that the 

original model of Kimura provided a good prediction of the average 

group length. The model also showed that successive wave heights are 

dependent. This dependency is particularly noticeable for wave heights 
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greater than 3 ~· Conclusions with regard to the expanded version of 

the model were not given. 

Thompson an~ Smith (1975) have made a study of wave groups 

appearing in 20 minute pressure records. The measurements obtained 

from each group included the maximum, significant and average wave 

heights and wave group periods. These terms are illustrated in Figure 

2.1a. Individual wave heights were measured from the crest elevation 

to the mean through elevation and individual wave periods were measued 

between visually estimated "centre of mass" of the adjacent crests. 

Groups having peak waves of height equal to or less tnan one-third of 

the significant height were not detected in the wave records. One 

advantage of using the crest centroid over zero-line crossings is that 

the former is independent of the mean water level and consequently the 

presence of long waves in the record, which sometimes effects the 

results derived from zero-crossing analysis. For the case of narrow 

band ocean wave spectra, height measures derived from wave groups 

appearing in 20 minute wave records have well defined statistical 

distributions that are related to the theoretical Rayleigh wave height 

' distribution developed by Longuet-Higgins (1952). 

2.1.2 Analysis of Wave Groups Using Envelope Statistics 

Nolte and Hsu (1972) expressed wave groups in terms of wave crests 

and wave troughs. The wave group is defined as that part of the 
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amplitude envelope that exceeds a specific level. The length of the 

wave group is defined as the time duration, L1, the amplitude envelope 

exceeds this level. These authors assumed that successive crossings of 

levels of the amplitude envelope form a Poisson process, from which the 

average time duration between an upcrossing of the amplitude envelope 

through the specific level has an exponential distribution. The 

Poisson model gives the probability that the time duration, L1, that 

the wave envelope will exceed the specified level ,H0 , is smaller 

than a time duration, t, by the following relationship, 

Pr(t) Prob [L1 ~ t]= 1-exp (-t/L1)] (2.19) 

where L1 is the average time duration above the level H0 • 

Nolte and Hsu (1972) tested their model from recordings in the Gulf of 

Mexico. Based on 900 individual waves, they found good agreement 

between their model and the measured values. 

2.1.3 Wave Group Analysis by Squaring and Smoothing of Time Data 

Several authors have studied wave group characteristics of wave 

trains by squaring the time trace and smoothing it with a variety of 

filtering techniques. Sedivy (1978) found that the use of a moving 

window with a length of twice the peak spectral period to be an optimum 

value for identifying modelled wave groups. Figure 2.1b shows a 

definition of the group boundaries used. Nelson (1980) conducted 

experiments by varying this window length in fractions and multiples of 

the spectral peak period. Results indicated that large energy groups 

were identified by all windows and that the number of waves identified 
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in a group was seldom affected by window length. However for groups 

with small energy content the number of groups varied as well as the 

number of waves in a group, i.e. increasing the window length decreased 

the number of waves in a group. Nelson (1980) also found by varying 

the window length from one half to four times the peak period the 

number of wave groups decreased by 50%. The relationship between the 

maximum wave height in a group and that of the wave record was found to 

have an average value of unity. 

As a means of estimating the essential parameters of a natural sea 

state and determining how these parameters change as a-function of time 

and location, Funke and Mansard (1979) have _presented the smoothed 

instantaneous wave energy history (SIWEH) function. This SIWEH is 

defined as, 

for 

E(t) 1 
T p 

T ~ t ~ (T - T ) p 0 p 

(2.20a) 

(2.20b) 

where T is the length of the finite wave record, T is the peak period 
0 ' p 

of the spectrum and Q
1 

is a smoothing window. For the beginning and 

end conditions 

and 

2 
E(t) = (T +t) 

p 

for 0 :i t :£ Tp 

E(t) 2 
T +(T -t) 

p 0 

T -t 
J 0 
T=-T 

p 

for (T -T ) ~ t ~ T 
0 p 0 

(2.21a) 

(2.21b) 



with 

Q = 0, everywhere else 
1 
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T < T p (2.21c) 

(2.21d) 

Evaluation of the ~ 2 term identifies several distinct components, a 

one of which is the difference of frequency pairs. It is this 

difference term which transfers energy in the lower frequency range and 

thereby tends to excite the slow drift response of floating structures. 

wave group activity in terms of wave energy distribution along the time 

axis is described by the groupiness factor (GF), 

(2.22a) 

(2.22b) 

where E is the average value of E(t), m is the zeroth moment of the 
£0 

SIWEH spectrum and m is the zeroth moment of the variance spectrum 
0 

The groupiness factor is a measure of the deviation of the 

instantaneous wave energy about its mean. Therefore a GF equal to zero 

would indicate that the waves are regular, i.e. of constant frequency 

and amplitude, whereas \arge groupiness factors would imply that the 

energy fluctuates greatly about its mean. Different groupiness factors 

are possible for any particular modelled wave spectrum. Hence, it is 

believed that a different statistical response could be observed for 

these conditions. 

2.2 Theories to Determine Second-Order Forces on Floating Structure 

Theories dealing with second-order drift forces may be categorized 

into f o ur main areas: 
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1 . Potential theories that determine the steady second-order forces on 

the basis or conservation or momentum and energy. In this method, 

changes in momentum of the fluid surrounding the body are equated 

to the steady force acting on the body in regular waves. This 

method is commonly referred to as the "far field" approach since it 

uses knowledge or the fluid potential rar from the structure when 

describing the fluid motions. For the most part, these theories 

are three dimensional and exact to second-order. 

2. Potential theories which determine the steady seco~d-order forces 

and slow oscillating drift forces by direct integration of the 

fluid pressure acting on the wetted part of the body. This 

technique is commonly referred to as the "near field" method. 

These theories are two-dimensional or three-dimensional and exact 

to second-order. 

3. Potential theories which determine the steady second-order forces 

by equating the damping energy radiated by the oscillating body to 

the work done by incoming regular waves. These theories are 

approximate and use the slender body assumption. 

4. Theories which use the Morison's equation approximation. These 

theories apply mainly to slender member structures such as 

semisubmersibles. 

2.2.1 Historical Background 

The second-order effects of waves on floating vessels were first 
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reported by Suyehiro (1924). Expressions for the steady sway force and 

steady longitudinal force were given by Watanabe (1938) and Havelock 

(1942) respectively. Both expressions used the Froude-Kryloff 

components only and neglected diffraction effects. Maruo (1960) 

presented expressions for the longitudinal and transverse steady 

second-order forces on a fixed vessel in regular waves. This method 

makes use of the ''far field" approach, and is valid for two and 

three-dimensions, exact to second-order. In his expression Maruo 

includes diffraction and radiation effects. Several authors then used 

modified verisons of Maruo•s expression to calculate s~eady drift 

forces. Newman (1967) expanded the theory to include the mean yaw 

moment. Faltinsen and Michelsen (1974) modified the expression and 

evaluated their results by means of a distribution of singularities 

over the body surface. 

Salvesen (1974) derived an expression for the total mean and low 

frequency second-order forces and moments on floating structures. The 

expansions were derived by integration over the wetted surface of the 

body. This theory was then used by Dalzell and Kin (1976) to determine 

the steady forces in regOlar waves. These steady forces were then used 

to predict the second-order low frequency forces on a vessel. Pinkster 

and Hooft (1978) gave an expression based on direct integration of 

pressure for the mean and low frequency second-order horizontal wave 

force on a vessel in irregular waves. This technique was extended to 

compute the mean longitudinal and transverse force as well as the yaw 

moment on a free floating barge in regular waves. Faltinsen and Loken 

(1979) gave a two-dimensional method based on potential theory to 

compute the mean and low ~requency components of the second-order 
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transverse force on cylinders floating in beam seas. The contribution 

of the second-order non-linear velocity term was expressed in terms of 

first-order quantities. Pinkster and Van Oortmerssen (1977) extended 

the method of direct pressure integration to include the low frequency 

components of second-order forces in floating bodies caused by regular 

wave groups. Then in Pinkster (1981) the direct integration of 

pressure was used to determine the low frequency second-order 

longitudinal force on a semi-submersible. Pinkster (1981) assumed that 

the irregular wave response could be determined by superposition of the 

results obtained from regular wave groups. 

Apar~ from the theories described above there are numerous others. 

These are for the most part extensions of the works of the 

aforementioned authors. For convenience these theories are summarized 

in Table 1. It is also difficult to draw conclusions regarding the 

validity of most of the theories due to their lack of sufficient 

experimental data and in some cases even numerical results are not 

presented. 

2.2.2 Current Methods of Predicting Second-Order Forces 

' Most of the work that has been carried out in recent years is 

directed mainly towards the steady drift forces on vessels in regular 

waves. Second-order forces have been estimated by means of 

coefficients found from these regular wave analyses. These 

coefficients are generally expressed as, 

2 
pga (f)L] (2.23) 
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where, 

F
0 

steady drift force 

p density 

g gravitational acceleration 

L characteristic length of structure 

a = wave amplitude 

Figure 2.2 shows these coefficients experimentally determined for a 

variety of structural shapes. As indicated in the Figure the 

coefficients are highly dependent on structural shape and wave 

frequency. ?inkster (1974) suggests that the spectrum ·of the slow 

varying force, SF(~), can be determined from the steady drift 

coefficients by the following expression, 

( 2 g2 L2 SF ~) = 2 p 

CD £ S(f) S(f+~) R 4 (f+~) df (2.24) 

where, S(f) is the variance spectral density of the water surface 

elevation. 

Subsequently, the low frequency response spectrum SR(~) is 

determined for a single degree of freedom system using the expression, 

SR(~) SF(~) [ 1 ] (2.25) = 
~2)2 (c - m + (b~)2 

a 

where, m equivalent mass a 

c restoring coefficient 

b damping coefficient 

This expression assumes linear damping and restoring coefficients. 

Roberts (1981) has presented a theoretical model to handle nonlinear 

restoring cases. 
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This technique assumes that the effects of second-order waves 

caused by the simultaneous existence of two or more regular wave 

components are neglibible. Choice of a theory to predict steady drift 

coefficients on a vessel in regular waves is strongly dependent on the 

type of structure under investigation. These coefficients predicted 

for the same vessel can vary depending on the choice or theory used. 

This effect is demonstrated in Figure 2.3. The Figure compares the 

experimental and analytical results for a Series 60 ship. The method 

of Faltinsen and Michelsen (1974) does not give good agreement with the 

experiments. However this particular method does show.good agreement 

with experiments on rectangular barges. 

Remery and Hermans (1971) applied Equation (3.10) to determine 

slow drift oscillations on a rectangular barge in regular wave 

groups, i.e. groups containing two regular wave components. Rye et al 

(1975) used the same Equation to determine the slow drift oscillations 

on a model of a large-volume caisson structure also in regular wave 

groups. In the case of the rectangular barge, analysis showed good 

agreement between measured and predicted values but for the caisson 

model agreement was poor\ Referring once again to Figure 2.2 Rye et al 

found that the coefficients found from regular waves underestimated 

those required for regular wave groups. This difference is illustrated 

in the Figure. 

Standing et al (1981) suggests that this discrepancy is due to 

second-order wave effects. Standing et al studied the slow oscillating 

drift response of a ship shape. In his analysis Standing et al has 

used the method of ?inkster (1975) to determine steady slow-drift 

effects related to first-order quantities and extended his analysis to 
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include second-order wave terms using the method of Bowers (1975). 

Bowers (1975) neglected all wave diffraction and radiation effects and 

round zero mean f _orce contribution from the second order wave. 

standing et al using this combined method, compared his numerical 

results to model tests in irregular waves. Only magnitude response 

spectra were presented and agreement between the two methods was not 
good. 

2.3 wave Modelling for Slow Drift Oscillation Analysis 

The effect of wave modelling on the slow drift response of 

moored floating structures has been illustrated by a number of 

authors. 

Naess (1978) has presented the results of a model test carried out 

on a model restricted to heave only. The model was exposed to a 

continuous spectrum of filtered white noise using random phase 

information. In addition to this, spectra of a finite number of 

regular waves were applied. These spectra consisted of eight and 

sixteen components with equidistant and randomly chosen frequency 

resolutions. The results of his experiments are summarized in Figure 

2.~. It was found that slow drift oscillations of the model when 

exposed to regular components with equidistant frequencies were highly 

dependent on the resonant frequency of the model. This was further 

illustrated by altering the resonant frequency and observing the same 

Phenomenon. Spangenberg (1980) has shown experimentally, by testing a 

semisubmersible, that representation of the natural sea state solely by 

means of an energy spectrum is insufficient to predict the response of 
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a system for mooring and dynamic position control. In his experiments 

the semisubmersible was tested in three different wave patterns of 

almost identical energy distribution but having different wave grouping 

characteristics. The results showed that the slow drift oscillations 

experienced by the model in the horizontal plane were significantly 

influenced by the wave grouping. Results for surge from the 

experiments are summarized in Figure 2.5. As can be seen in these 

results, the period of the slow drift oscillations corresponds to the 

wave group _period where the wave grouping was pronounced. However, 

these experiments showed no recognizable effect of grouping on any 

other motion other than those in the horizontal plane. 

Mansard and Pratte (1982) showed that the wave grouping present in 

irregular waves is an important parameter in the assesment of vessel 

response • The authors have shown that Bounded Long Wave Components 

must be correctly produced in order to simulate wave groups that will 

produce a realistic vessel response. 

2.4 Summary 

The literature revi~wed has revealed an inefficiency in the 

existing techniques to determine the effects of wave grouping on the 

slow drift response of floating moored structures. 

Existing methods to determine the steady drift forces on 

structures in regular waves produce good agreement with experimental 

results. Slowly oscillating drift forces determined from steady drift 

coefficients were found to accurately predict the slowly oscillating 

drift response in regular wave groups only and in certain cases the 
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effects of second-order waves caused by the simultaneous existence of 

the two wave components have a significant influence on the response. 

When wave spectra are modelled using a large number of components the 

method of predicting the slowly oscillating drift response from steady 

drift coefficients results in poor agreement between experiment and 

theory. 

Experimental work has shown that grouping patte.rns resulting from 

wave spectra that are simulated using a constant frequency difference 

can significantly effect the slowly varying response of the model. 

Therefore, if these groups are not representative natur.al wave groups 

they will not give an accurate prediction of the structure's response. 

Furthermore when a random superposition of regular wave components is 

used to model irregular wave spectra they should be arranged to produce 

wave group characteristics that are observed in real sea-states. 

The method of squaring and smoothing the time trace to identify 

the wave group characteristics has two distinct advantages. One is 

that it readily identifies the low-frequency components of the group 

and secondly, it expresses the group characteristics in terms of the 

square of the wave amplitude. It is the square of the amplitude to 

which these low frequency forces are proportional. 
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CHAPTER 3 

THE ANALYTICAL MODEL 

The following chapter presents a model of a quadratic transfer 

function relating the slow drift response of a moored floating 

structure to an irregular wave group. The model utilizes the 

hydrodynamic models of Pinkster (1981) and Faltinsen and Michelsen 

(1974) in conjunction with the wave modelling techniques of Funke and 

Mansard (1979). In the model a magnitude and phase relationship 

between the slow drift forces and the SIWEH is developed. Subsequently 

an expression to relate the SIWEH and slow drift oscillation is 

presented. 

3.1 Determination of Slowly-Varying Forces 

The basic difference between the methods of Pinkster (1981) and 

Faltinsen and Michelsen (1974) is the "near field'' method of ?inkster 

and the "far field" method used by Faltinsen. Appendix D gives a 

detailed description of~both methods. Although both methods produce 

the same results for a rectangular barge, the near-field approach shows 

more clearly the effects of first-order waves on the drift forces. 

These effects are described as five components defined by Equations 

(0.35). 

In order to elucidate the relationship between each of these 

components and the wave group affecting them, consider for example 

Component I, described by Equation (D.35a) rewritten here as, 
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( ) J ( 1 )2 
F 2 ( t) :s - 2 pg r;r ( t , t) n 1 ( t) d t 

I WL 
( 3. 1) 

where, 

r; (l)(t,t) -time dependent relative wave elevation at a point, t, 
r 

along the waterline of the structure. 

- directional cosine of an elemental length, dt, in the 

longitudinal direction. 

These terms are schematizea in Figure 3.1. 

Assume that the group consists of a narrow band of N discrete 

long-crested waves such that the free surface is given to first-order 

as, 

r; (1)(t) 
a 

N 
r an cos (wnT + En) 

n=l 
(3.2) 

Following this, the first-order relative wave elevation at a point, t, 

on the waterline of the body can be written as, 

r (1)(t 1) 
~r , 

N 
t an r;rn(~) (t) cos (w t + E + E (t)) 

n=l n n rn 
(3.3) 

where, 

a 
n amplitude of component n 

= phase associated with component a 
n 

radian frequency of component n 

magnitude of transfer function relating the undisturbed 

first-order wave, an, at the center of gravity of the 

structure to the first-order relative wave elevation ( l) r;r 

at point, t, on the structure's waterline. 

c phase of transfer function associated with magnitude rn 
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substituting Equation (3.3) into (3.1) yields, 

(2)t 
N N 

a a J 1 r; (1)(1) r; (1)(.9.) E E 4 pg COS(£ (.9.) - £ (.9.)) FI 
n=1 m=1 n m WL rn rm rn rm 

n 1 ( .9.) d.9. cos (!iw (t) + 
nm · ~Enm) 

N N 
a a { 1 pg r; (l)(R.) r; (1)(.9.) + E t sin(£ (.9.)- £ (1)) 

n=1 m•1 n m WL rn rm rn rm 

(3.4) 

+ high frequency terms 

where ~wnm = w - w n m 

~Enm ::a £ - £ n m 

This expression can be rewritten as, 

F ( 2 ) (t) 
N N 

= 1: E a a p cos (£\wnm(t) + .6£ ) 
I n=1 m=1 

n m run nm 

N N 
+ E E a a Qnm sin ( 6w (t) + ~€ ) 

n=1 m=1 
n m nm run 

(3.5) 

where P and Q are the quadrature components of the time independent 
run run 

transfer function, relating the relative wave height force component to 

the wave envelope. Expa~sion of Equation (3.5) reveals that the 

second-order force contains n constant components as well as the slow 

varying components. The resulting quadrature components of the low 

frequency 6w , depends on the sum of P and P and the difference of 
run nm mn 

Qnm and Q terms. These terms can be reformatted so that the 
mn 

following symmetry relations are valid. 

p p 
nm mn 

and 

Q -Q 
nm mn 
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Thus the slowly varying second-order force given by Equation (3.5) can 

be rewritten as, 

F ( 2 )(t) 
N N 
E · E a a F cos (6w t - y - 6E ) (3.6) 

I n=1 m=1 
n m nm run run nm 

;; F 
2 

+ Q 
2' 

where run run run 

-1 Q 
y tan [pnm] 

nm nm 

and y -Y nm mn 

Similar developments are made ror the other contributions (II-IV). 

The total quadrature components are determined by summation or all 

contributions. The resulting transfer runction described by terms F nm 

and Y are independent of both time and the phase components, E , 
nm n 

associated with each of the sinusoids comprising the wave spectrum. 

Therefore, the total second-order effects of first-order waves exerted 

on a structure by a group of n components is expressed as, 

F( 2 )(t) 
N N 
r E a a F cos (6w t - 6.E - y ) (3.7) 

I n=1 m=1 n m run nm nm run 

The general assump~on of the above model is that the slowly · 

oscillating drift force is the resultant of all superimposed regular 

wave groups that can be produced by a wave spectrum. The key factor in 

relating the amplitude of this slowly oscillating drift force to the 

amplitude of the regular wave group is the steady drift coefficient 

found from regular waves. This coefficient "R(w)" is expressed as, 

R(w) (3.8) 

where F
0 

- constant drift force 

a(w) - wave amplitude c o rresponding to frequency w 

L - structure length 
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These coefficients are dependent on the wavelength to structural length 

ratio and are therefore a function of wave frequency. Following this, 

for small differences in frequency the amplitude of the slow varying 

force coefficient, F , in Equation (3.7) is expressed as, nm 

(3.9) 

Equation (3.7) shows that the time record of any component F ( 2 )(t) 
1 

oscillating at frequency qAw is the sum of contributions from 

components whose difference frequencies are equal to q~w • The 

contribution of the sum of each frequency difference to the total slow 

oscillating force is written as, 

N-q 
F (

2
)(t) = r an an+q F cos(q~wt- ~E +- Y + ) q n~l n,q n,n q n q 

where, 

a n 

- w - w n+q n 

• a(w ) n 

F n,q 
[ l L R(w ) R( )] 2 pg n wn+q 

F ( 2 )(t) 
q 

N-q 
r 

n=l 
a a + F (cosq~wt cos(~E - Y ) n ~ q n,q n,n+q n,n+q 

-sin q~wt sin(~E - Y )] n,n+q n,n+q 

N-q 

(3.10a) 

(3.10b) 

F ( 2 )(t) 
q [ r a a F cos(~E - Y + >]cos(q~wt) 

n=l n n+q n,q n,n+q n,n q 

N-q 
- [ r a a F sin(~E - Y + >]sin(q~wt) n=l n n+q n,q n,n+q n,n q 

(3.10c) 
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Equivalently this can be written as, 

where 

F (t) 
q 

0 q tan 
-1 

N-q 
[ F ( Y )]2]1/2 

+ r · a a sin 6£ +-
n=l n n+q n,q n,n q n,m+q 

N-q 
t a an+q F sinC~£ + - y ) 

n=1 n n,q n,n q n,n+q 

N-q 
t a an+q F cos(6£n,n+q- Yn,n+q} 

n=1. n n,q 

3.2 The Second-Order Wave Term 

( 3. 1 Od) 

(3.10e) 

In addition to the second-order forces caused by first-order waves, as 

indicated by Equation (D.35e) there are also second-order forces caused 

by a second-order wave or "set-down" wave. 

The second-order "set down" wave can cause an inertial type drift 

force associated with the pressure gradient in the set-down wave. 

Salvensen (1974) has shown that the second-order potential makes no 

contribution to the horizontal mean drift force or overturning moment. 

The set-down in an irregular wave group represents a long period 

second-order wave which is associated with the wave envelope and 

travels at the group velocity. It is affected by a change in the mean 

water level due to the irregularity of the wave heights. Other 

contributions to the set-down are from wave diffraction of the 

first-order wave caused by the structure and interactions between 

incident and diffracted waves. There are also two free wave 

components, namely the diffraction of the incident set-down wave 
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and reflection of the set-down wave from other boundaries such as those 

in a wave tank. 

Bowers (1975) used a Froude-Kryloff type of approximation for 

pressures in the set down wave. In his analysis, the total second-

order effects of the incident waves were considered on a symmetric flat 

bottom hulk, moored in head seas. Reflections were considered to be 

small. This method is easy to evaluate and provides good agreement 

between the calculated values and those measured in a wave tank. The 

same method is applied here to a rectangular barge. 

3.2.1 Set-down Force on a Rectangular Barge 

The second-order pressure caused by the set-down wave is defined 

as, 

(2) acp< 2 > 
P = -ps at 

The expression for cp(
2

) given by Equation (C.16a) is rewritten as, 

N-1 
4>(2) = r · 

m=1 

N 
r d cosh ~k (z+h) sin 

n=m+1 nm nm 
(~w t+~k x+~e: ) nm nm nm 

where, 

let, 

then, 

~w nm 

~k nrn 

~e:nm 

N-1 
r 

= 

= 

N 
r 

k -k n rn 

e: -e: n m 

d d 
m=1 n=rn+1 nm nm 

(2) 
o<P 

at 

d cosh 6k (z+h) sin (~w t+~k x+~e: ) nm nm nm nm nm 

d 
run 

~w cosh ~k (z+h) cos (~w t+~k x+~e: ) 
nm nm nm run nm 

(3.11) 
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-
-d 

run run 

• ~k cosh~k (z+h) sin(~w t+Ak x+A£ ) 
nm run nm run run 

- d 
nm run 

~k 

run 
cosh ~k (z+h) 

nm 

{sin 6k x cos(~w t+6£ ) +cos ~k x sin(6w t+~£ >} 
nm nm run nm nm run 

(3.12) 

Term 1 vanishes arter integration from X -L/2 to x = L/2. 

Therefore, 

i -d 6w 6k cosh ~k (z+h) cos 6k x 
run nm run run nm 

• sin(6w t+6£ ) 
nm nm 

B/2 0 L/2 

f J J 
-B/2 z-D -L/2 

Bp d 
nm 

6w run 

• sin (~w t+8£ ) 
nm run 

~k L ~w 

2pBd sin 
run sin(8w t+6£ ) run . 

nm 2 nm nm 6k 

' nm 
{sinh 8k h - sinh 6k (h-D)i 

nm run 

(3.13) 

• 2 sin 
8k L 

run 
2 

0 

f 
z-D 

cosh 8k (z+h)dz 
nm 

(3.14) 

Therefore the set-down force on a rectangular barge of dimensions LxBxH 

submerged to draft, D, is, 

F ( 2 (t) 
N-1 N ~w ~k 

E E 2 B d 
nm 

sin 
run 

L . p . . ~ ""2 2 nm 
m=1 n=m+l nm 

{sinh 6k - sinh ~k ( h-D) } sin(~w t+6£ ) (3.15) 

nm nm nm nm 
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3.3 Slowly-Oscillating Response Motions 

The second-order equation or surge motion or a linear moored 

floating structure with one degree of freedom is given as, 

m X (2 ) + b~ ( 2 ) + eX (2 ) 
a 1 1 1 

F ( 2 )(t) + F ( 2 )(t) 
1 2 

F ( 2 )(t) 
T 

where, 

X (2) 
1 

(3.16) 

- is second-order motion response in longitudinal 

direction 

F ( 2 )(t) - total second-order forcing function 
T 

m - effective mass 
a 

b damping coefficient 

c - restoring coefficient 

When the damping experienced by the moored structure is light and 

the restoring coefficient is linear then the solution to 

Equation (3.16) can be expressed in the frequency domain as, 

F (
2

)(6w >[e(llw ) 
1 nm nm 

(3.17) 

where, 

(2) I x1 (llwnm) a(llwnm) - is ~he polar form of the Fourier Transform of the 

slow drift oscillation x
1 

( 2 )(t). 

- Magnitude and phase of the Transfer Function 

relating slow oscillating drift force to slow 

drift oscillation x
1 

( 2 )(t). This is determined 

from the classical solution of the equation of 

motion of a single degree of freedom system. 
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F
1 

<2 >(6wnm)/e<wnm) -Fourier Transform of equation (3.10a) 

J a ( 6wnm ) = /4' ( 6w nm) + Je ( 6w run) 

A similar procedure is used for the second-order wave effects, 

F
2

( 2 )(t), and the total response will be the sum of the two. 

(3.18) 

However, when the structure is moored with a non-linear mooring 

system a time domain analysis will be necessary to determine the slow 

X1
(2)(t). drift response For the present case a linear system is 

assumed. 

3.4 The SIWEH Related to the Slow-Drift Response 

The SIWEH for rectangular smoothing is defined as, 

1 N 2 
N-1 N 

E(t) :a 2 l: a + r · E a a cos[ 6wnm t + 6Enm] (3.19) 
n=1 

n 
m=1 n=m+l m n 

Considering the slow-oscillation part only of Equation (3.19), the 

slow-drift varying contribution of each component of frequency q6w is 

written as, 

N-q 
E (t) = E a a cos(q6w t - AE ) 

q n=, n n+q n,n+q 

N-q 
= cos(q6w)t E 

n=1 

N-q 
- sin(qAw)t E 

where, 

a a(w ) 
n n 

!J.E 
n,n+q 

n=1 

E - E n+q n 

a a cos(6E + ) n n+q n,n q 

a a sin(6E + ) n n+q n,n q (3.20) 
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Therefore, 

N-q N-q 
[ 2 2] 1 / 2! E(q~w)= [ E a a cos(6£ + )] +[ E a a sin(~E )] 

n =
1 

n n+q n,n q _
1 

n n+q n,n+q 
n- · C 3. 21) 

where, 

-1 
o(q6w) = tan 

N-q 
E a a sin(~E ) 

n=l n n+q n,n+q 

N-q 
( 3- 22) 

E a a + cos(6E + ) 
n=l n n q n,n q 

Equation (3.9) indicates that the f"orce coefficient is a bi-1 inear 

function of R(w ) and R(w ). Obviously the contribution from each~ n m 

frequency difference to the total slow oscillating force describe ill by 

Equation (3.8) will be dependent on the wave amplitude associated with 

each of the frequencies comprising the difference 6w • Therefore~ , in nm 

order to compensate for this effect, the SIWEH will be modi.Cied in. the 

following manner. Each component of the first-order wave spectrum. is 

weighted using the non-dimensional drift coefficient, R(w), i.e. 

a ' a(w ) R(w ) 
n n n 

therefore, a ' a ' n n+q 

The final expression for the modified SIWEH, E (q6w), is determined by m 

substitution of a ' and 4l ' for a and a respect! vely in Equati •on n n+q n m 

(3.21). This weighting of the SIWEH is applied only to the magnitude of 

the resultant spectrum. The associated phase spectrum is the same as 

that given by Equation (3.22) 

The SIWEHm is now related to the slow drift oscillation, x
1 

(
2 

) ~wnm 

L a(~wnrn) as, 

(2) 
X 1 ( ~w nm ) [ a ( ~w nm ) 

( 2) -
T F ( 6w ) J Y ( ~w ) = 

nm _ nrn E ( ~w ) / o ( ~w ) rn nrn _ nm 
(.3. 23) 

wher e l o(~wnrn) is defined by Equation (3.22). 
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3.5 Summary 

An original technique to ~elate the slow oscillating drift 

response of a moored floating structure to the wave groups contained in 

an irregular wave spectrum has been presented. The second-order 

effects of first-order waves are determined from the constant drift 

coefficients of the structure in regular waves and the second-order 

effects of second-order waves are established using a Froude-Kryloff 

approximation for pressures in the undisturbed incident set down wave. 

The model assumes that each pair of frequencies in a discrete wave 

spectrum will give rise to a regular wave group. Each of these regular 

wave groups will produce a low frequency force that is proportional to 

the product of the wave amplitudes in the group and varies at a 

frequency equal to the difference in the frequency pair. Furthermore, 

this low frequency force is related to the SIWEH of the regular wave 

group by a constant phase angle. Therefore the resultant force is 

determined by superposition of these regular slow-varying forces. 

Subsequently the ensuing slowly oscillating motions can be established 

and related to the SIWEH spectrum. This relation is expressed in the 

form of a transfer funct~on. Once this transfer function is known it 

can be utilized to determine the slow drift response of the structure 

to any group characteristics that can be associated with a particular 

wave spectrum. 

This technique can be quite efficacious since by applying Fourier 

transforms a time history of the response motion is readily available 

without excessive computational effort. 
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CHAPTER ~ 

WAVE SPECTRUM MODELLING AND ITS EFFECTS ON SLOW DRIFT RESPONSE 

The following Chapter investigates the effects of varying 

frequency difference on the slow drift response of a moored structure. 

The objective is to determine an appropriate resolution to model a 

spectrum. Gererally sprectra are modelled as a finite sum of regular 

sinusoidal components used to approximate some analytical expression 

describing a continuous energy spectrum. The frequency difference 

between the discrete components will have a very significant effect on 

the response of the system model. This effect has been demonstrated by 

Naess (1978). The model response is also critically dependent on the 

width and sharpness of the response peak at the natural frequency. 

This is a function of the system's mass (including added mass), damping 

and restoring coefficients and when considering the response of the 

system to any modelled spectrum, the frequency difference is important 

since it can either enhance or suppress grouping characteristics that 

are close to the resonant frequency of the system being tested. 

4.1 Wave Spectra 

There are a number of empirically derived expressions describing 

wave energy spectra, the two most common of which are the 

Pierson-Moskowitz (P-M) and the Joint North Sea Wave Project 

(JONSWAP).The P-M spectrum is expressed as, 

S(w) 
2 ag 4 -s exp [-S (w*/w) ] (4.1) 

w 
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where w is the radial rrequency, a = 0.008, ~=0.74 and w* g/U where U 

is the wind speed in meters per second. This spectrum is applicable 

onlY for a fully developed sea. A full account of the derivation and 

properties of this spectrum may be found in Pierson and Moskowitz 

(1964). The JONSWAP spectrum was postulated in an attempt to account 

for the higher peaks of spectra in a storm situation for the same total 

energy as compared with the (P-M). The functional form of the spectrum 

is given as, 

S(w) 
2 

ag 
5 

w 
(4.2) 

where, w is the peak frequency, a = 0.01 for w ~ w and a = 0.09 for 
m m 

w > w • m Also, Y, is a peak enhancement factor, Y = 3.3 is usually used 

for North Sea conditions and Y • 1 would represent a Pierson-Moskowitz 

spectrum. 

The wave group spectrum associated with either of these 

expressions can be rewritten in discrete form following Equation (3.21) 

as, 

N-q N-q 
[ 2 . 2 ]1 /2 

E(q~w)= [ t a a cos(~£ )] +[ t a0an+qsln(~en,n+q)] n=l n n+~ n,n+q n=l 

where, an = J S(wn)~w·, an+q= j S(wn+q)~~. E, randomly chosen phase 

component and ~w is the frequency resolution at which S(w) is 

represented. This group spectrum is in turn related to the forcing 

spectrum by means of the force coefficents described in Section 3.3. 

The ~w value is an important feature in terms of the spectrum 

representation. If too large, the predicted response may underestimate 

or possibly not indicate the response at the resonant frequency. It 

would therefore be convenient to express this value of ~w in terms of 

the characteristics of a particular moored system. 

(4.3) 
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The modelling of waves via a spectrum in order to investigate the 

response of a particular structure must produce the wave heights, 

slopes and groups that will occur in its natural environment and most 

influence its response. The usual methods of wave simulation can be 

classified into two main areas; (1) manipulation of pseudo-random 

signals by means of transfer functions chosen for specific spectral 

characteristics and; (2) the generation of a wave train in the time 

domain under the assumption that the surface elevation is Gaussian 

distributed and that phase of frequency components form a uniform 

distribution. An alternate technique belonging to this second category 

derives its source of random noise from a Gaussin distributed real 

and imaginary, white spectrum. 

The first of these two categories is a 'deterministic' method 

where a given spectral density is appropriately digitized and square 

rooted. The spectrum is then paired with random phases selected from a 

uniform random number source with mean of zero and standard deviation 

of TI/2. The latter case is a 'probabilistic' method where the square 

root of the desired spectrum is used as a filter which is multiplied 
' 

with a Gaussianly distributed real and imaginary white spectrum. The 

result leads to a randomization of the spectrum which is more like that 

encountered in nature. If the spectrum is represented by equidistant 

frequencies the repeat period which is inversely proportional to the 

frequency difference. This method does not provide any means of 

controlling the grouping characteristics of the resulting wave train. 

In order to control these phase characteristics Funke and Mansard 

(l 979) have pr esented a means of synthesizing the phase associated with 
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the energy spectrum such that the resulting wave train will have the 

desired group characteristics. A brief description of this method is 

outlined as follows: 

i) a desired SIWEH is first determined. The SIWEH is described in 

Chapter 2. 

ii) a phase modulating function is setup such that the higher 

frequencies are contained in a low group area. 

ii) a phase modulated sinusoid is then generated with the frequencies 

arranged in accordance with the modulating function and containing 

a frequency range equal to the desired spectrum. · 

iii) this phase modulated sinusoid is then weighted with the square 

root of the desired SIWEH and a Fourier transform performed, 

resulting in a magnitude as well as a phase spectrum. 

iv) the resulting phase is then paired with the required magnitude 

spectrum and an inverse Fourier transformation yields a wave train 

with the proper grouping characteristics • . 

A second method of wave simulation presented by Spangenberg (1980) 

generates a surface elevation ~ (t) at some fixed station as, a 

where 

also, 

N ' 
lim L 

n=l 
a cos n 

w ' + r (t) n n 

w ' - w' n n-1 ----------------< r (t) ~ 
n 

2 

w ' n 
- w' n-1 

2 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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The introduction of the rn(t) term in Equation (4.6) overcomes the 

problem of harmonically relating the spectral components. This value 

is chosen at random from an assumed uniform distribution and ·will cause 

a shift in the frequency difference. The frequency shift can be either 

regularly or randomly selected during the generation of the time 

series. Continuity is maintained during a frequency shift if, 

t + £ = w t + £ wna s na nb s nb 
(4.8) 

where w and w b are the frequencies and £ and £ b are the phase na n na n 

components before and after the shift taking place at time t
3

• 

This technique enables the generation of a non-repetitive time 

series. However, depending on the time of the shift t , a portion of s 

the simulated train can be repetitive. Therefore when using this 

method a sufficiently short shift time should be used. 

4.3 Wave Grouping 

There is very little information available on the wave group 

characteristics of prototype wave groups therefore it is not known what 

a typical group spectrum would be. Group patterns are for the most 

' part chosen at random, however once a particular group is determined 

the SIWEH technique is very effective in arranging the wave pattern to 

follow these characteristics. This method can also be used to extend a 

group repeat period further than the limitations of the finite Fourier 

transform by first generating the longer required group period, 

breaking it into segments and using the energy spectrum to fill in each 

segment. Subsequently, these segmental groups are set together again 

and the complete train is run. 
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4.4 Response Spectra 

The slow drift response spectrum, SR(~), is related to the forcing 

spectrum, SF(~), by the expression, 

(4.9) 

where SF(~) includes all forcing contributions described in Appendix D. 

Consider the equation of motion 

• F(t) m x + bx + ex -a 

where m = a 
effective mass 

b damping coefficient 

c = restoring coefficient 

For a lightly damped system with 

2 c 
m a 

of a single degree of freedom 

natural frequency, wo' given 

The transfer function, TF(~), of this system can be written, 

system, 

(4.10) 

by 

(4.11) 

(4.12) 

Writing the force spectrum, SF(~), in discrete form, 

N-m 
SF (m6w)= A 1: S (n6w) S [ (n+m)6w] R

2
(nl\w)R

2
[ (n+m)6w]L\w (4.13) 

n=1 

where, 

L structure length 

R(n6w) and R[(n+m)L\w] are force coefficients at frequencies n6w 

and (n+m)6w respectively 
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n and m are integers 

supposing for convenience that the force coerficients, 

R2(n~w)R2 [(n+m)6w]=~ then the motion response spectrum can be expressed 

in discrete form as, 

N-m 2 2 2 2 2]-1 
S (m~w)= A r (m (w - (m~w) ) + b (m~w) S(n~w) S((n+m)~w) 

R a o n=1 

N-m 2 2 2 2 2]-1 
A L [m (w -(m~w) ) + b (m~w) SF(m~w) 

1 
a o 

n= 
(4.14) 

Dividing numerator and denominator of Equation (4.14) by b 2
, the 

Equation can now be expressed in non-dimensional form as, 

(4.15) 

where t = c/2 ma w
0 

Consider a response spectrum of width ~, - ~2 such that the response at 

1 frequencies ~ 1 and ~2 represent 2 of the peak of the response spectrum. 

Then, when m 1 ~w 

Substituting these values into Equation (4.15) and rearranging the 

terms yields, 

4 2 
(~) _ ( 2 (m~w) 2 1-2z; ) 
wo wo 

2 
+ ( 1-8z; ) = 0 

Solving for (m~w/w )2, 
0 

2 /,:7 (~) 2 2 w = (1-2z; ) ± 2z; 1+z; 
0 

(4.16) 

(4.17) 



-43-

Assuming r;<<l the roots of Equation (4.17) are, 

(m- m
1

) 6w 
4r; :::::: 2 --

2
---

wo 

Therefore, the frequency difference 6w is expressed as, 

!:J.w= I 
4.5 Sample Calculations 

(4.18) 

(4.19) 

Sample calculations were used to investigate the effects of 

varying the frequency difference on the response spectrum. The primary 

objective of this exercise was to suggest a basis for defining a 

minimum resolution based on structural response properties such as 

damping and natural frequency. Figure ~.1 illustrates the effects of 

the Y factor on the JONSWAP spectrum and subsequently the groupiness 

associated with these. In the Figure, Y values of 1 to 5 are used. 

These spectra are assumed to be continuous. However, if these spectra 

are modelled by means of time series of finite length and containing 

therefore only a finite number of frequency components, the groupiness 

spectrum as described can vary depending on the choice of phase. 

'· Figure 4.2 shows the effect of damping on a moored structure. The 

system used has a mass of 166 kg and a restoring coefficient of 12.90 

N/m. Consider also for demonstration purposes that the force 

coefficients in Equation (4.13) are equal to unity, then the grouping 

spectra in Figure 4.1 will represent the shape of the second-order 

forcing spectra. Consequently, varying the resolution of the input wave 

spectrum will in turn vary the resolution of the input forcing 

spectrum. 
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Figure 4.3 shows the response of the systems illustrated in 

Figure 4.2 for a range of frequency resolutions ranging from continuous 

to 2w , in terms of their RMS values. The input spectrum in this case 
0 

is a modelled JONSWAP with Y = 3.3 and a wrn value of 0.75 Hz. This 

Figure indicates that for 6w/w
0 

ratios of less than 0.12 there is very 

good agreement between the RMS response values predicted by a 

continuous spectrum and those predicted by the modelled spectrum. The 

results imply that the necessary resolution can be related to both the 

natural frequency and the amount of damping in the system. This would 

indicate that the resolution allowable for any model spectrum would be 

unique to the system being tested. In view of the results obtained 

from the present analysis it is recommended that the frequency 

difference satisfy the following minimum requirements, 

(4.20) 

(4.21) 



CHAPTER 5 

Wave Tank Calibration and Model Tests 

The following chapter describes the wave tank facility at Memorial 

UniversitY and gives a detailed description of the procedures used to 

calibrate and generate both regular and irregular waves • A 

description of the methods used to generate wave groups for model tests 

is also outlined. Following the tank calibration a series of model 

tests were run and the results are used to evaluate the model developed 

in Chapter 3. 

5.1 First-Order Wave Generation 

Gilbert et al (1971) derived dimensionless expressions which 

relate waveboard displacement to surface profiles for piston type wave 

generators. These expressions were presented for both regular and 

random wave generation. In the case of regular waves the operating 

conditions are defined by the required wave period, T, and water depth 

h, at the waveboard. Combining these parameters yields a dimensionless 

variable, 

h (5.1) 

where g is acceleration due to gravity. The amplitude of the board 

stroke, s, and the wave amplitude, 

G 
a m 
s 

a , are given by m 

(5.2) 

The waves of a random sea state are irregular in height and 

pe . 
rlod, therefore the board stroke an~ the forces required for the 

generation of such a sea are similarly irregular. Thus the waves can 
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no longer be defined in terms of a height and period; instead the sea 

state is defined by its energy spectrum and variations in waye height 

must be considered iti statistical terms. The statistical properties of 

waves depend on the mean square water surface elevation and the 

spectral width parameter both of which can be calculated from the 

spectrum. 

For random wave generation Gilbert et al (1971) have defined a 

variable 

(5.3) 

where the prototype wind speed U is to be modelled at a linea~ scale F 

in a flume of water depth h. Values of v1 are related to a 

dimensionless mean square waveboard stroke H1 , 

M H = -- (5.4) 
1 h2 

where M, is the mean square.value of the paddle displacement. Once a 

prototype wind speed and scale factor have been established a 

nondimensional curve can be used to obtain the mean square va~ue of the 
board stroke. 

5.2 Second-order Wave Generation 

Sand (1982) has presented equations to generate second-order 

control signals to correct for group bounded waves in wave modeL ling. 

In the analysis a number of long waves have been identified, one of 

Which is a free long wave caused by first-order local disturbances and 

a second is due to wave board displacement. Another free second-order 

wave Which originates from group bound long waves is defined as a 
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parasitic long wave. The extent to which each of these waves dominates 

is dependent on a number of parameters such as frequency difference, 

water depth and frequency range. 

Appendix E describes the development of the second-order signal 

used to eliminate free long wave components resulting from first-order 

wave generation and thereby setting-up correct group bounded long 

waves. The Appendix indicates that in order to construct a 

second-order control signal for a spectrum each possible combination 

consisting of two components must be included. This will obviously 

require an immense amount of calculations. 

An approximation for the control signal is given by Barthel et al 

(1983) as, 

x< 2 >(t) = (a b -a b) F
1 

cos (6wnmt) 
~ nm mn 

+ (a a + b b ) F1 sin (6w t) (5.5) n m n m nm 

Values of F
1 

can be found in Figure E.1. As indicated in the 

Figure, F
1 

is a function of f and f where 6w = 2n(f -f ). It seems n m nm n m 

that a further approximation of this method would be to choose a value 

F1 (6f, f ) which would give the best representation of the second-order 
p ' 

wave spectrum corresponding to the frequency band of the resonant 

frequency of the system under investigation, thus giving a good 

representation of the second-order wave spectrum most influencing the 

slow drift response. Therefore Equation (5.5) can be rewritten as, 

F
1
(6f,f) [<a b -a b) cos(6w t)+ p n m m n nm 

(a a + b b ) sin(6w t)] n m n m nm (5.6a) 
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This expression is easily adapted to the SIWEH as, 

x( 2 ) (t) • F
1 

(!:lf, f ) E(t) 
nm p 

(5.6b) 

where E(t) is defined by Equation (3.21). 

In the above expressions f:lf is chosen to correspond to the 

resonant frequency of the system found from still water tests and f is 
p 

the peak frequency of the first-order wave spectrum. Following 

Equation (5.6b) an estimate of the second-order wave profile can be 

computed from the SIWEH. Once again from Figure E.2 it can be seen 

that Gnm is a function of both f and !:lf. Similar to Equation (5.6a) 

an approximation for the second-order wave profile is written as, 

~ (t) a G (f:lf, f) ((a b -a b) cos(bw t) 
nm run p nm mn run 

+ (a a + b b ) sin(f:lw t)] n m n m run (5.7a) 

Once again this expression is adapted to the SIWEH as, 

(5.7b) 

5.3 Calibration Procedure 

The preceding sections indicate that the second-order wave spectra 

' are dependent on a good representation of the first-order spectral. 

There are two methods employed to generate these spectra in the wave 

tank. These are outlined in Figure 5.1. In the first method a 

closed-loop system is used. Here the spectrum is smoothed to its 

desired shape through an iterative process using information obtained 

from the feedback loop. This method does not consider phase and only 

spectral magnitudes are matched. In the second method phase is 

considered and using this method the sequence at which the waves pass a 

particular station in the tank can be controlled. This is achieved 
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by dividing the input drive signal with a transter function. This 

transter function between the input drive signal and the resulting 

wave profile sets the delay required for each of the lower frequency 

components. Thus the correct sequence of waves is generated at the 

test location in the tank. 

The wave tank facility used in the model tests is shown in 

Figure 5.2. The tank is a reinforced concrete structure with inside 

dimensions of 58.7 m (length) x 4.57 m (width) x 3.0 m (depth) and a 

maximum operating water depth of 1.83 m. One end of the tank is 

provided with a hydraulically operated piston-type generator. An 

aluminum waveboard is driven by a hydraulic actuator having a 48.8 kN 

force capability over a 50 em stroke. A water tight seal is maintained 

by means of a pneumatic sealing gasket. Glass viewing windows along 

one side of the tank are used for observations at both surface and 

subsurface elevations. Waves are measured using conductivity type 

probes and are dissipated by a beach. The beach surface is covered 

with crosshatched wooden strips supported by a steel frame: slope 

1:20. The wave generator is a closed loop servo controlled mechanism 

controlled by analog sigpals which are input into the system through a 

port on the control console. Input signals are generated by means of 

an on-line Hewlett- Packard 5451 Fourier Analyzer computer. 

The performance curves of the wave generator are compared to 

Equations (5.1) and (5.2) in Figure 5.3. In order to establish the 

transfer functions required to control the generator the flat noise 

spectrum shown in Figure 5.4 was input into the wave controller. 

Figure 5.5 illustrates the transfer function between the input signal 

and the waveboard displacement. As can be seen from the Figure the 
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response is very flat with a small fall in on the upper part of the 

frequency range. The transfer function between the waves generated by 

the input noise at a station 30 m from the mean position of the 

waveboard at a water depth of 1.25 m and the input signal itself is 

ehown in Figure 5.6. Very good coherence was found for frequencies 

less than 1.0 Hz. This transfer function is actually used in the 

second method illustrated in Figure 5.1. The drop off in the coherence 

function at low frequency is attributed to reflections and group 

bounded waves that are described in a previous section. Reflection 

coefficients were also determined using the least squar.es method 

described by Mansard and Funke (1980). Results of these reflection 

coefficients are shown in Figure 5.7. 

Using the second method outlined in Figure 5.1 employing the 

transfer function in Figure 5.6, fifteen wave groups were modelled for 

varying frequency differences at the position which would later 

correspond to the center of the model. These wave groups were 

generated to simulate JONSWAP spectra with Y = 3.3 and an w wave of 
n 

0.075Hz using randomly chosen phase components. The details of these 

spectra are given in Table 3. A sample of a group for each of the 

frequency differences is illustrated in Figures 5.8 to 5.14. These 

SIWEH spectra were determined by the technique outlined in Figure 5.15. 

This method gives essentially a rectangular smoothing but uncouples an 

overlap between frequencies of the SIWEH spectrum and the first-order 

wave spectrum. This effect is caused when large frequency differences 

in the first-order spectrum are equal to frequencies of the SIWEH 

spectrum, occuring when the minimum frequency of the first-order 
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spectrum is less than the largest difference produced from the 

spectrum. Comparisons between target and measured profiles for a 

sample of the groups are shown in Figures 5.16 and 5.17. Good 

agreement was found for certain cases. Agreement decreases with 

increased frequency difference. The second-order profiles of these 

sample groups are compared in Figure5.18 and 5.19 where the groups 

were generated with and without second-order control signals. 

Preliminary tests on the barge indicated that the resonant frequency of 

the barge was 0.039 Hz. Therefore a ~f value of 0.039 Hz was used with 

a f value of 0.75 Hz. These values were then used with Equation p 

(5.7b), to determine the second-order profiles. The 

second-order generator signal was established using Equation (5.6b) and 

the resulting second-order profile was found using a moving window. 

5.4 Experimental Set-Up 

A set o~model tests were carried out on the simple model 

illustrated in Figures 5.20 and 5.21. The wave absorbers on the sides 

of the wave tank were co~structed of nylon netting hung from the top of 

the tank walls. They had no apparent effect on wave blockage. The 

model is a rectangular barge 75 em x 90 em x 50 em submerged to a draft 

of 25 em. The barge was moored at a station in the tank approximately 

37 m from the mean position of the waveboard in a water depth of 

1.25m. The counter weight shown in Figure 5.21 had a mass of 1.0 kg. 
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This mass is small in comparison with the total mass of the barge and 

therefore assumed to have negligible effect on the overall response. 

The damping coefficient used in the equation of motion was determined 

from the logarithmic decrement found from the model oscillating in 

still water. This coefficient was checked using the half power method 

and the resulting damping ratio was found to be 0.35. The mooring line 

was equipped with a linear spring the restoring coefricents of which 

are shown in Figure 5.22. The centre of gravity was located at the 

center of the barge in an attempt to minimize the waves scattered by 

the barge motion itself. Surge motions were measured by means of a 

rotary potentiometer located a sufficient distance from the model as 

not to be influenced by any of the other motions and the anchor was 

strain gauged to monitor the force in the mooring line during each run. 

All instrumentation was checked regularly during each testing day to 

ensure consistant outputs. 

The barge was tested in regular waves, regular wave groups, i.e. 

groups consisting of two frequencies, and a number of wave groups of 

varying groupiing characteristics and frequency resolutions. Each wave 

condition was precalibr~~ed at the test location, with and without 

second-order compensation and the corresponding input signals were 

stored and played back with the barge in location. In order to 

correlate the input control signal and the resulting wave pattern, the 

input signal was recorded simultaneously with the response data. 

Subsequently the transfer function in Figure 5.6 was used to determine 

the profile at the time the barge response was recorded thus providing 

Phase information between the wave group and response motion. 
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5.5 Regular Wave Test 

In order to determine the steady drift components, the barge was 

first subjected to trains of regular waves having an amplitude of 5 em 

for all cases of a frequency range between 0.02 Hz to 2.00 Hz at 

increments of 0.10 Hz. The surge response of the barge was monitored 

from the start of each wave train for a 4 min. duration with the force 

being measured by the force transducer shown in Figure 5.21. A sample 

of a run is shown in Figure 5.23. 

5.6 Regular Wave Group Tests 

The barge was also subjected to regular wave groups or "beating 

waves", whose beat frequencies were equal to 0.5 f, 1.0 f 1.5 f and 
0 o, 0 

2.0 f with a constant group amplitude of 5 em. The waves were 
0 

generated from base frequencies of 0.1 Hz, 0.9 Hz and 1.5 Hz with and 

without second-order control compensation. Surge motion and mooring 

loads were monitored from start to five cycles of steady-state. A 

sample of the steady state condition for a run is shown in Figure 

5.24. 

5.7 Irregular Wave Group Tests 

The model was also subjected to the fifteen precalibrated wave 

group described in Section 5.3. Each run had a duration of 20 min., 

after the first 5 min. a sample was taken for the next 15 min •• The 

repeat period of each spectrum is indicated by its frequency 

difference. Transfer functions between the slow drift response and the 

SIWEH spectra were determined for each of the response spectra by m 
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using the method as shown in the following expression, 

TF(f) • 
<x

1 
{2 )(t)) 

(2) 
where x1 (t) represents the Fourier transform of the slow drift 

response and E (t) is the Fourier transform of SIWEH • In each case m m 

the wave profile measured during the calibration of the groups was used 

to generate the SIWEH • 
m 
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CHAPTER 6 

COMPARISON BETWEEN ANALYTICAL AND EXPERIMENTAL MODELS 

The analytical model used to determine the slow drift coefficients 

described in Equation (3.10) is based on the "far field" approach of 

Faltinsen and Michelsen (1974). Details of the derivation of the 

working formula based on Green's Function are described in Appendix o. 

This technique was chosen over the "near field" field technique of 

Pinkster primarily on the basis of its reduced computational effort. 

The output of the program is the steady drift coefficient for regular 

waves. This information allows only a comparison of the magnitudes of 

the measured and predicted transfer functions. 

A panel schematization of the model is illustrated in Figure 6.1. 

Advantage was taken of the symmetry about the longitudinal plane and 

computations were carried out using only 36 panels. Forty values of 

the steady drift coefficient were established for a frequency range 

between 0.20 Hz and 2.00 Hz. A cubic spline technique was then used to 

produce a curve of 400 points. Slowly-varying force contributions from 

the set-down were determ~ned using the expression given by 

Equation (3.15). Contributions from the first-order waves were 

determined using Equations (3.8). These were applied to estimate the 

second-order forces as per Equation (3.9). A comparison between the 

two is shown in Figure 6.2. The first-order wave effects are 

illustrated in a non-dimensional form of the slowly-varying force 

oscillating at a frequency ~f = ~w /2~ with the two constituent run 

frequencies equal to f and f+~f. The second-order wave effects of the 

"set-down" wave are also shown in the Figure. These values increase 



-56-

with increased values of Af/f
0

• The broken line indicates the limit of 

the force that can be produced from a spectrum with a cut-off frequency 

of 2.00 Hz by a set-down wave caused by a wave group containing waves 

of frequencies f and f+Af. Comparison between the two contributions 

indicates that the second-order wave effects are very small in relation 

to the forces caused by first-order waves. 

6.1 Results in Regular Waves 

The steady drift coefficients determined from the regular wave 

tests are compared to those predi9ted by the computer model in Figure 

6.3. There is relatively good agreement for the range ·of frequencies 

tested. The steady drift effects are small up to a frequency of 

0.50 Hz corresponding to a wavelength to barge length ratio of 6:1. 

Above this value the steady drift effect quickly increases. 

6.2 Results in Regular Wave Groups 

The response of the barge to regular wave groups is shown in 

Figure 6.4. As indicated in the Figure the response is dependent on 

the constituent frequencies of the group. Thus the pairs generated 

from the base frequency ~f 0.90 Hz produced the largest response 

values. The experimental results in the Figure were determined with 

and without inclusion of the second-order control programs. Negligible 

difference was found for the two methods. This is predicted by Figures 

(6.2) and (E.1). As mentioned above Figure (6.2) shows that the 

second-order wave contributions are much smaller than those of the 

first-order waves. Also Figure E.1 gives relatively small correction 



-57-

coefficients, F
1

, for the water depth and frequency differences used 

ror these model tests. 

In general the results in regular wave group tests agree well with 

the analytical model for frequencies less than the resonant frequency 

of the moored barge. Discrepancies increase with increasing group 

frequency above this level. This large disagreement may be explained 

as follows. The amplitude of the transfer function for the low 

frequency drift oscillation is found by dividing the measured height, 

peak to peak, of the measured low frequency oscillation by 4a
1

a
2

, where 

a
1 

and a 2 are the amplitudes of the regular wave components. In wave 

groups of frequencies larger than surge resonant frequency of the 

moored model, a free motion condition was excited which caused the 

model to oscillate at a frequency very close to its resonant frequency. 

This free motion when superimposed on the response affected by the wave 

group itself produced a larger oscillating motion than that expected 

from the wave group alone. This behavior indicates an obvious 

limitation of the assumption upon which the analytical model described 

in Section (3.1) is based. This condition will be referred to as a 

"free motion response". , 

6.3 Results In Irregular Wave Groups 

A sample of the measured slowly oscillating drifts response 

spectral densities for each of the frequency differences is shown in 

Figures 6.5 to 6.11. Included in the Figures are the corresponding 

SIWEH spectral densities. Transfer functions determined from each of 

the sets of measured results are compared to the analytical model 
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developed in Chapter 3. Figures 6.12 to 6.18 show this comparison for 

each of the frequency differences indicated in the Figures. The 

comparisons indicate -that the analytical model underestimates the 

response of the barge up to the resonant frequency and above this value 

the analytical model gives an overestimation of the response. This 

effect is attributed to the fact that the slowly oscillating drift 

response of the barge contained both steady state and free motion 

components. A Fourier decomposition of the measured slowly varying 

drift response will result in low frequency components related to 

changes in the mean position of the model as described· in Section 

(3.2). When these free motion components are added to the components 

which are directly related to the SIWEH at these frequencies, the 

result is larger response components than those predicted by the SIWEH 

alone. This trend was consistant regardless of the frequency 

difference or grouping characteristics of the waves. The phase 

component of the transfer functions show a large lag between the wave 

group and the response motion. This is due mainly to the large 

inertial effects of the system. 

' Since the results of the experimental transfer functions showed 

consistent trends, not withstanding their deviation from the analytical 

model, it is assumed that the differences in the free motion response 

with respect to each wave group are small compared to their total 

effect. Therefore the experimental data for both real and imaginary 

components were smoothed using a cubic spline technique in order to 

determine an experimental transfer function. The result is compared in 

polar form to the analytical model in Figure 6.19. The Figure shows 
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the experimentally determined transfer function for the data and the 

magnitude of the transfer function determined from Equation (~.23). 

The phase component or the analytical transfer function was not 

obtainable from the present model since the 'far field' method was 

used. Therefore, the experimental phase components were associated 

with the analytical magnitude component to form a semi-empirical 

transfer function. Both these transfer functions were used to predict 

the response of the model to six groups not included in the first set 

of tests. The details of these groups are given in Table 4. A time 

domain comparison of the measured slow drift response and those 

predicted by both transfer functions to these six groups are given in 

Figures 6.20 to 6.26. The results were compared in terms of the RMS 

value of the slow drift response, the maximum displacement of the barge 

model and the duration above one-third this maximum value. These 

values are compared in Table 5. Results indicate the free motion 

response had an obvious effect on the response of the barge. Each of 

the measured values was higher than that predicted by the analytical 

model. However agreement was improved when the experimental transfer 

' function was used. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

The following Chapter discusses the work that has been carried out 

in the preceding study by reviewing each of the chapters. The 

discussion is thereby based on the relevance of the topic covered in 

each chapter to the overall study. Conclusions based on the results 

round in the present study are presented and finally recommendations 

for further studies are made. 

7.1 Discussion 

Chapter 2 gives a review of the literature dealing with both wave 

grouping and the slowly oscillating drift response of moored floating 

structures. The review showed that the wave grouping highly influences 

the slow oscillating response of large floating structures. The 

disagreement shown between the analytical models and observations of 

field data suggests that the surface elevation of the sea is not purely 

random. Therefore studies of wave group loading on structures which 

' are based on Rayleigh st~tistics may not give an accurate prediction of 

the worst conditions to be experienced by an offshore structure. 

Better representations of environmental wave conditions will require 

more sophisticated techniques of wave simulation. Nevertheless 

Physical model testing is quite effective in evaluating analytical 

models because even though wave conditions are not completely 

authentic, their characteristics can be accurately determined and a 

comparison made on that basis. Methods to analyze wave loading on 

floating structures have also been reviewed in Chapter 2 and for the 
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most part have produced consistent results. Techniques to analyze the 

slow drift response of structures moored in irregular seas with both 

linear and non linear mooring systems were discussed. One of the 

inefficiencies identified in existing methods was a technique which 

relates the slowly oscillating drift response to the wave group causing 

it. 

Chapter 3 proposes a model to show the relationship between the 

slow drift oscillations of a floating moored structure and a modified 

form of the SIWEH. This relationship seems to be a plausible approach 

since both the SIWEH and slow drift forces, including the effects of 

second-order wave, can be described in terms of first-order quantities. 

The SIWEH is described as the resultant of all regular wave group 

components superimposed on each other with reference to the center of 

gravity of the structure. The primary hypothesis of the model is that 

the force associated with each regular wave group is proportional to 

the product of the amplitudes of the waves constituting the group and 

varies at the same frequency but at a constant phase to that group. 

The resultant force is therefore the superposition of all regular wave 

group forces. The slow ~rift displacement is th~n determined assuming 

a single degree of freedom system with a linear restoring coefficient. 

First-order wave forces were determined using the far-field method and 

second-order wave forces were determined by integration of an 

approximated second-order pressure term over the surface of the 

structure. The approximation of the second-order potential, from which 
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the second-order pressure term used in the present analysis is 

established, will be most effective when contributions to the 

second-order diffracted waves and waves generated by structure motions 

are negligible. These circumstances are more applicable to the 

semisubmersible type structure than to large ships or barge shapes. 

However, increases in diffraction and body generated first-order waves 

result in increased contributions from the first-order waves to the 

total second-order drift forces, thus proportionally reducing the 

relative error introduced by approximations of the second-order 

potential. Therefore the approximate method is acceptable for purposes 

of comparison of contributions to the second-order drift forces. 

The next step in the study was to determine the number of regular 

wave components required to approximate an irregular wave group. 

Chapter 4 illustrates the effects of varying the frequency difference 

of a modelled wave spectrum. This illustration is done by way of 

comparing moments of response spectra for a particular system when only 

the damping characteristics are changed. The results indicate that the 

number of components increases with decreased damping coefficients. 

This result means that lower damped systems produce higher and more 

' peaked response spectra and therefore require more points to 

accurately describe them than does a flatter response spectrum. This 

peaked effect would be more applicable to a streamlined shape such as a 

slender ship or semisubmersible than to barge type structures. Since 

the model tested in the present study did not have a high narrowband 

response spectrum a critical experimental evaluation of the method was 

not possible. 
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However it is suggested that it can be done in the following manner. 

First recall that the shape of the response spectrum is determined by 

the SIWEH spectrum which in turn is dependent on the choice of phase 

paired with the first-order wave spectrum. Set up any moored system 

with variable damping capability and model the same SIWEH spectrum at 

different frequency resolutions thus giving the same shape for the 

response spectra. The rms value of the slow drift response should 

therefore approach some particular value as the number of components 

used to describe the SIWEH is increased. 

Chapter 5 described the calibration procedures and model tests 

used to validate the analytical model proposed in Chapter 3. 

First-order wave generation was shown to be highly controllable 

especially for large frequency differences. The technique used to 

generate a particular sequence of waves at a station in the tank worked 

very effectively. The second-order techniques were less effective in 

the circumstances of the present model. This was due to the small 

quantities required to simulate the second-order waves. These 

second-order waves required large excursions at the low frequencies to 

generate the required lp~g wave. The board displacements necessary 

when combined with the first-order wave generator were beyond the 

mechanical capabilities of the wave generator. This however did not 

invalidate the analytical model since second-order wave contributions 

to the slow varying drift force were negligible in comparison to 

first-order wave effects. Results of the calibrations indicate that 

the procedures used would enable generation of prototype wave trains 

for model tests. 
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Chapter 6 compares the results of the model tests to the 

analytical model. For the most part reasonable agreement was found. 

Discrepancies between the analytical and measured transfer functions 

were due to free motion effects. This discrepancy between the 

analytical and experimental results indicates an obvious limitation of 

the proposed model. These effects were observed to be consistant 

regardless of grouping characteristics or frequency differences. An 

average or all transfer functions was determined and the result 

subsequently used to predict the response of the model to a number of 

wave groups. The predictions of this experimental transfer function 

were more accurate than those of the semi-empirical transfer function. 

The primary difference between the two transfer functions is that 

unlike the semi-empirical function, the experimental version contains 

the effects of the force motion effects. This suggests the following: 

(1) free motions associated with the response of wave groups have a 

significant effect on the overall slow drift oscillations. (2) since 

those effects could be predicted by means of a transfer function, 

regardless of the grouping patterns, the differences in the free 

motions resulting from c~anges in the group patterns are small in 

comparison to the overall effect of the free motion. Increasing the 

frequency difference caused shorter repeat periods and also increased 

the heights of the waves in the group. Since the experimental transfer 

function still gave an accurate prediction of the response motion for 

these larger frequency differences, the result somewhat ratifies the 

assumption of relating irregular group loading to superimposed regular 

wave group components. Even for the steeper waves the assumption was 

upheld. Because agreement was consistent for the range of differences 

t es t e d an upper limitation on the wave steepness could not be 
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determined. Also the consistant behavior of the free motions suggests 

that they can be related to the individual low frequency components of 

the response motions. It must be conceded however that the 

observations and use of the transfer functions are applicable only to 

the situations set up in this case. The barge was linearly moored 

which is not a practical situation. When non-linear mooring systems 

are used a time domain analysis is more appropriate. However when 

moored by a "linear system the resulting motion, when uncoupled from 

free motions, can be used to give an indication of the second-order 

loading on the model caused by the wave groups. 

1.2 Conclusions 

Through the preceding study, as a result of the analytical model 

and experimental tests developed in the work, the following 

conclusions are made: 

There is a predictable relationship between the slowly 

oscillating drift motion of a moored floating structure and the 

SIWEH of the wave group affecting the motion. 

The assumption of superposition of regular wave groups is 
~ 

sufficient to predict the slowly oscillating response of a 

structure in an irregular wave group when first-order wave 

effects are dominant. 

The slowly oscillating drift response of a linearly moored 

floating system to any wave group that can be generated from a 

particular wave spectrum as a result of random phase selection, 

can be predicted using the transfer function established from 

any single group. 
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Free motion responses have a significant effect on the slow 

drift response of a moored floating structure for group 

frequencies greater than the resonant frequency. 

7.3 Recommendations for Further Study 

On the basis of the observations and conclusions resulting from 

this study, the following areas are suggested for further examination: 

- First it is suggested that the proposed model be tested using 

other structural types moored with both linear and non-linear 

systems. 

-Additional model testing should be conducted in·conditions where 

group bounded waves and second-order wave effects are more 

significant. 

Multidirectional wave grouping is also recommended as an 

area for further study. 

- Further work could be conducted on uncoupling the free motion 

responses from the total response to the groups. 
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APPENDIX A 

Tables to 5 



·-

·-
POTENTIAL THEORIES BASED ON 
CONSERVATION OF MOMENTUM -

Maruo (1960) 
Newman (1967) 
Faltinsen and Michelsen (1974) 
Molin ( 1979) 
Kim and Chou (1970) 

POTENTIAL THEORIES BASED ON 
INTEGRATION OF FLUID PRESSURE 

Watanabe (1938) 
Havelock (1942) 
Sal vensen ( 1 97 4) 
Pinkster (1975), (1981) 
Bowers (1980) 
Faltinsen and Loken (1979) 

POTENTIAL THEORIES USING 
SLENDER BODY ASSUMPTION 

Gerritsma and Benkleman (1970) 
Kaplan and Sargent (1976) 

MORISON'S EQUATION 

Pijfers and Brink (1977) ' 
Huse (1976) 

- A2 -

STEADY 
OR 

OSCILLATING 

STEADY 
STEADY 
STEADY 
STEADY 
STEADY 

STEADY 
STEADY 

BOTH 
BOTH 

OSCILLATING 
BOTH 

STEADY 
STEADY 

STEADY 
STEADY 

COMPARISON 
WITH 

EXPERIMENT 

NO 
NO 

YES 
YES 
YES 

NO 
NO 
NO 

YES 
YES 

NO 

NO 
NO 

NO 
YES 

STRUCTURAL 
TYPE 

SHIP 
SHIP 

SHIP,BARGE 
SHIP 
SHIP 

SHIP 
SHIP 
SHIP 

SHIP,BARGE 
SHIP 

CYLINDER 

SHIP 
SHIP 

SEMISUB. 
SEMISUB. 

TABLE 1 THEORIES TO PREDICT SECOND-ORDER WAVE FORCES 
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-

-'- STEADY COMPARISON AGREEMENT 
REFERENCE STRUCTURE OR WITH WITH 

TYPE OSCILLATING THEORY .THEORY 
' -

Remery and Hermans BARGE REGULAR YES GOOD 
( 1 971 ) GROUPS 

Rye.et.al (1975) CAISSON REGULAR YES POOR 
STRUCTURE GROUPS 

Ogawa (1967) SHIP STEADY YES GOOD 

Lalagas (1963) SHIP STEADY YES GOOD 

Naess ( 1978) SEMISUB. OSCILLATING EXPERIMENT 
ONLY 

Spangenberg {1980) SEMISUB. OSCILLATING EXPERIMENT 
ONLY 

TABLE 2 EXPERIMENTAL WORK ON DRIFT FORCES 
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GROUP /::,.f 

No. (Hz) 

1 1.22 X 10- 3 

2 2.44 X 1 o- 3 

3 2.44 X 10- 3 

4 2.44 X 10- 3 

5 2.44 X 10- 3 

6 4.88 X 10- 3 

7 4.88 X 10- 3 

8 7.32 X 10_, 

9 7.32 X 10- 3 

10 9.76 X 10- 3 

1 1 9.76 X 10- 3 

12 1.22 X 1 o-2 

13 1.22 X 10- 2 

14 1. 71 X 10- 2 

15 1. 71 X 10- 2 

MODEL OF JONSWAP: Y a 3.3 
f = 0.075 Hz 
m 

m = 4.53 m2 

0 

SCALE = 1 :100 

RMS 
(em) 

2.08 
2.17 
2.06 
2.18 
2.07 
2.08 
2.10 
2.12 
2.05 
2.10 
2.00 
2.40 
2.05-
2.08 

TABLE 3 MODELLED JONSWAP SPECTRA USED IN MODEL TESTS 
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GROUP llf 
No. (Hz) 

1a 1 .22 X 10- 3 

2a 2.44 X 10-3 

3a 4.88 X 10- 3 

4a 7.32 X 10- 3 

5a 9.76 x 1 o- 3 

6a 1.22 X 1o-a. 

MODEL OF JONSWAP: Y 3.3 
f = 0.075 Hz 
m 

m = 4.53 m2 

0 

SCALE = 1:100 

RMS 
(em) 

2.12 
2.08 
2.1 4 
2.05 
2.08 
2.10 

TABLE 4 MODELLED JONSWAP SPECTRA USED TO TEST PROPOSED MODEL 

'· 
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. 
-

Predicted By Predicted By Measured 
Analytical Experimental Result 
Transfer Function Transfer Function 

RMS (em) 
6f/f0 = 0.03 21.32 28.92 30.65 

0.05 17.24 26.85 31.19 
0.10 28.56 33.81 32.66 
0~ 16 12.50 16.93 18.50 
0.22 21.58 22.90 21.06 
0.27 18. 19 23.49 28.00 
0.39 15.73 1 4.28 7.35 

XoMAX(cm) 
6f/f0 - 0.03 78.71 124.72 104.87 

0.05 70.76 86.77 96.30 
0.10 140.58 140.27 140.73 o., 6 "40.43 "63.51 50.91 
0.22 70.15 63.20 80.84 
0.27 38.62 65.33 50.25 
0.39 30.19 30.21 15.48 

DURATION 
ABOVE 
1/3 XoMAX(sec) 
6f/f0 = 0.03 95.35 122.11 115.79 

0.05 87.31 88.42 92.63 
0.10 33.21 33.52 33.68 
0.16 129.35 136.51 157.89 
0.22 202.31 210.65 231.58 
0.27 310.11 325.90 320.63 
0.39 305.11 336.67 309.83 

' 
TABLE 5 COMPARISON BETWEEN MEASURED RESPONSE VALUES AND THOSE 

PREDICTED BY PROPOSED MODEL 
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APPENDIX B 

Figures 2.1 to 6.25 
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FIG 2.2 STEADY. DRIFT COEFFICIENT VERSUS MODEL WAVE FREQUENCY 
FOR VARIOUS STRUCTURE TYPES 
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HEIGHT TERM . 
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APPENDIX C 

The slowly varying second-order wave force which results from the 

nonlinear interactions between adjacent portions of the wave spectrum 

is determined under the postulation that the hydrodynamic force is due 

to the presence of two simultaneous waves and thus the wave system can 

be represented by a discrete spectrum. The presence of more than one 

frequency, in water of constant depth, will cause a non-uniformity in 
\ 

the wave amplitude and consequently cause long period fluctuations in 

the mass transport which are proportional to the square of the wave 

amplitudes. These low frequency mass-transport currents fluctuate more 

rapidly than the currents produced by steady wave trains of uniform 

amplitude which are largely effected by viscosity and therefore the two 

effects may be considered independently. 

C.1 The Stokes Approximation 

The Stokes method of approximation is used to solve the field 

equations and boundary conditions as far as second order, limiting the 

second order approximation to the different frequencies. The 

rectangular coordinate system (x,y,z) defined with the x axis 

horizontal and in the direction or the wave propagation and the z axis 

vertical. The flow field equations to be satisfied are, 

u - v~ (C.1a) 

v2, a:: 0 (C.lb) 

2 
a~ p 1 

+ gz + - u + -- 0 
p 2 at (C.lc) 



- C3 -

where cp velocity potential 

u = velocity vector (u,v,w) 

p pressure 

g • gravitational acceleration 

p = density 

with the boundary conditions, 

(C.2a) 

Pz = z;a 
.. 0 (C.2b) 

(C~t + u.V) (z-z; )) = 0 - (C.2c) 
a a z-z; 

a 

where z • -h is the bottom boundary condition and z;a = free surface 

elevation. 

The Stokes method of approximation takes the form, 

-(1) -(2) + u = u + u .... (C.3a) 

~ - ~(~)+ cp(2) + (C.3b) 

z; -a 
z;(1)+ 
a 

z;(2)+ 
a ..... (C .3c) 

(1) (2) P + pgz • P - + P + •••• (C.3d) 

First order quantities satisfy the linearized equations and boundary 

conditions. The equations of cp( 1
) are 

v2 cp<~>- o (C.4a) 

a;<1> 
[az lz .. -h - 0 (C.4b) 

[a 2cp(1) ap<~> 
._~~2~ + g az J 

at zaO 
= 0 (C.4c) 
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and 

-(1) (1) 
u = V¢> 

(1) a¢>(1) 
E...:.-.:_ - - ~-
p at 

(1) _(1) 
Furthermore, it is assumed that the mean values of u and t 

zero. 

The equations for the second approximation ¢>(
2

) are, 

0 

ap(2) 
[az ]z~-h-o 

a2~< 2 > at< 2> a (1)2 (1) a ca2~<~> 
[ ~ + g - ] • -{- ( u ) + ta ~ 
at2 az · z-o at az at2 

. ap < 1 > 
+ g az ) ]z-o 

then u (2), p( 2 ) and t~2 ) may be found from the relations, 

_(2) 
u 

(2) a~(2) 1 _(1) 2 
.e...:.....:.. ... -[.::..1:- + - u . ] 

P at 2 . 

g ,..(2) 
.. a 

1 _(1)2 
+- u 

2 

(C.5a) 

(C.5b) 

(C.5c) 

are 

(C.6a) 

(C.6b) 

(C.6c) 

(C.7a) 

(C.7b) 

(C.7c) 
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3.2 Solution of First-Order and Second-Order Potentials 

Solution of equations 3.4 yields the classical first-order 

solution for the velocity potential of a wave of uniform amplitude, a, 

frequency, w, and wave number, k, as, 

~(1) = aw cosh(k (z-h)) sin (kx-wt) 
· k sinh(kh) 

Other relationships are; 

~ (l)= a cos (kx-wt) 
a 

2 and, w = gk tanh (kh) 

The phase velocity, C, and group velocity, C , are expressed as g 

and 

1 2kh 
cg • 2 c <1 + sinh(2kh)) 

(C.8) 

A solution for the second-order velocity potential is found using 

a perturbation technique. First it is assumed that the group consists 

of a narrow band of n discrete wave frequencies such that the free 

surface is given to first order as, 

~<lt> - I a cos (k x-w t + £ ) 
a n n n n n 

(C.9) 

The frequency and wave number for each are related by, 

(C.10) 
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The first-order potential corresponding to equation 3.6 may be 

rewritten as 

a w cosh(k (z+h)) 
~(1_ ) n n n 
~ = h k sinh k h sin (knx-wnt + En) 

n n 
(C.11) 

The corresponding relationships for the second-order approximation are 

Equations (C.6). Since the right hand side of these equations is 

expressed totally in terms of first- order terms, they may be given as 

sums of terms of wave numbers (k + k ) and (k - k ) respectively. n m n m 

Retaining differences only, 

N N u ,, >2 - r r 

where k - k n m 

n=lm=l 

6k nm 

£ - £ = 6£ n m nm 

Assuming small differences in frequencies 

(C.12) 

- N N 
r r 

n•1 m=1 

a a 6w cosh(2kh) 
m n nm 

2 
sin(~k x - ~w t + b£ ) (C.13) 

2 sinh (kh) nm nm nm 

(Using the relationship of Equations C.5c and C.6c) 

r(l) !_(a2i(~) + g at(l)) • ~ ~ an am :n
3 

s1n(6k -6w t+A£ ) 
.. - ~t 2 az z=O nm nm nm 

g at n•1 m=l 2 sinh (k h) 
n 

(C.14) 

Retaining diferences only, Equation (C.6c) will take the form, 

• 
N N 
r r 

n•1 m•1 
K a a sin(~k x-6w t+6£ ) m n nm nm nm 

(C.15) 
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where 

cosh(2kh + w 3 ) wn n 
K • 

2 sinh2 (kh) 

Bowers (1975) gives solution to this Equation (retaining differences 

only) as, 

N-1 N 
~( 2 )= k t dmn cosh(~k (z+h))sin(~w t+~k x+A£ ) nm nm nm nm m•1 n=m+1 

where 

1 2 
e +2k k ~w {1+tanh k h)tanh(k h))/w w 

nm n m nm m n m n 
dmn· 2 anam g 2 

(~w ) cosh(~k h-g~k )sinh(Ak h) 
nm nm nm nm 

and 

an is the amplitude of the wave component of frequency wn, 

Also 

e = nm 

k 2 
n 

k 2 
m 

(C.16a) 

(C.16b) 

(C.16c) 



- D1-

APPENDIX D 

COMPARISON BETWEEN METHODS TO DETERMINE WAVE DRIFT FORCES AND 
VALIDATION OF PRESENT PROGRAMS FOR SAME CALCULATIONS 
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There are a number of procedures for predicting the second-order 

behaviour of a structure in waves. These procedures can be separated 

into two main techniques known as the "far field" and "near field" 

approaches. The former is based on considerations of momentum of the 

incident, diffracted and radiated waves far from the structure, while 

the near field approach makes a direct calculation of the forces on the 

structure itself. The far field approach requires relatively less 

computational effort since only the mean'components of horizontal force 

and overturning moments are being considered. Although the near field 

method is more demanding in computational effort, it can be used to 

calculate vertical forces and moments and can also be used to calculate 

the low frequency forces. 

In this Appendix the far field method presented by Faltinsen and 

Michelsen (1974) is described as well as the near field approach of 

Pinkster (1977) and results generated by both methods are compared 

using data from published literature. Furthermore, data generated from 

the program to be used in the present analysis is also compared. This 

existing program is based on the method of Faltinsen and Michelsen 

(1974). 

0.1 wave Drift Forces and Moments -Far Field Approach 

Newman (1967) derived an exact expression for the mean horizontal 

and mean transverse components F FY and the mean overturning moment x, 

M based on changes of momentum in each degree of freedom considered. z 
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The equations are given as, 

F 
X 

- JS [P cos e + pVR (VRcos e - v6sin e)]R de dz (D.1a) 

~ 

F y 
- - (D.lb) 

M z 
ff (D.1c) 
s 
~ 

Integration is over a large cylindrical control surface S of 
~ 

radius R that is extending from the free surface down to z=-h. The 

fluid velocity is defined as V with radial and tangential components 

VR, v
6

, respectively, and P ls the dynamic pressure. 

Faltinsen and Michelsen (197~) showed that these formulae are 

valid for water of finite depth. Assuming the body motions to be small 

the boundary conditions for the motion of the body and wave motions at 

the free surface were linearized. Since the second-order potential 

makes no contribution to the mean drift force, (Ref: Standing et al 

(1981)) the problem can be formulated in terms of first order 

potentials. The total velocity potential, tT' is written as, 

6 
t 

j=1 
~e 

-iwt 

where ' is the velocity potential of the incident wave defined as, 
0 

·cosh k (z+h) i(kx cos 8 + ky sin B - wt) 
cosh kh e 

(0.2) 

(0.3) 

iwt 
~ e is the diffraction potential for the restrained body and ~j' 
7 

j • 1,6 is the contribution to the velocity potential from the jth mode 
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of motion. The solution of ~ is found using the Green's Function and 

singularity distribution method by first expressing~ . (j=1 ••• 7) as, 
J 

41j • )J Qj (E,n,r;) G (x,y,z,; ~. n, r;)ds (D.4) 
s 

where Qj is the unknown source density function and G(x,y,z; ~. n, r;) 

is the Green's function for the problem for ~j. 

The kernel function G(x,y,z; ~.n,r;) can be written according to 

Wehausen and Laitone (1965) in integeral form as, 

1 1 ' G(x,y,z; ~,n,r;) R + R' 

00 

+ 2 PvJ (J.J+v)e-J.Jh cosh [J.J (r;+h)].cosh [J.J (z+h)] .J (J.Jr')dJ.J 
J.J sinh (J,Jh) - v cosh (J,Jh) o 

0 

2 2 
+ i 2 n(k -v ) • cosh [k(r;+h)].cosh [k(z+h)].J (J,Jr') 

2 2 0 k h-v h+v 

and the "series form": 

where 

G (x,y,z; ~.n,r;) 

-

2 
v - ~ • k tanh kh g 

(0.5) 

{0.6) 

(0.7a) 

(0.7b) 

(0.7c) 

(D.7d) 

J
0 

and ~ 0 denote, respectively, the Bessel function of the first kind 

and the second kind of order zero, and K denotes the modified Bessel 
0 
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function of the second kind of order zero. PV in Equation (D.4) 

indicates the principal value of the integral; ~j in Equation (D.7) are 

the real positive roots of the equation: 

( 0.8) 

Since Equation (0.3) is also valid for x as a point on the body 

boundary, taking the normal directional derivative of ~j in Equation 

(0.3) yields the following integral equa~ion for Qj. 

The solution to this boundary value problem takes the form, 

21T Qj (x,y,z) + 

Jf Q j ( t , n, ~ ) ~~ ( x, y , z ; t , n , r; ) ds 
s 

a~o 
= - an ; for j = 7 

:!.J. -a 'for j ~ 1, ••• ,6 
n 

(0.9) 

providing the following conditions are satisfied. 

In t~e fluid domain, 

v2~J - o; ror J • 1, •••• ,7 (D.10a) 

The kinemetic conditions at the ocean floor boundary, 

a~ 
::1- • 0 for z • -h 
az J 

j - 1, .•• ,7 (0.10b) 

The kinematic and dynamic conditions at the mean free surface, 

~ 2 
-~ ~j - 0 at z - o, for J :a 1, ••• ,7 (0.10c) az g 

Also on the mean position of the wetted surface of the immersed 

body, 

:!J.. nj' for j an . 
.. , , •••• 6 (D.10d) 
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and, 

a~ 
ano for j a 7 (D.lOe) 

Equation 0.9 is now solved by approximating the body surface into a 

number of quadrilateral panels assuming the same density, Q. to be 
J 

constant over any given panel. Therefore, the Equation, represented as 

a set of intergals, may be approximated by summations. 

' Using equations (0.1), (0.2) and (0.3) the asymptotic expansion of 

the Green's function (0.4), the far field expression for the first 

order potential was found, 

gta cosh k(z+h) i(kx cos a + ky sin s-wt) 
~ - w cosh kh .e 

+ T(e) e 1L(e) cosh(k(z+h)) ~e-(kr-wt) 
r 

(0.11) 

where T(e) and L(e) are real functions of e, and T(e).eiT( e) is given 

by: 

Jf [Q(F;,n,t) cosh[k(~ + h)] e-i(kf; cos a + kn sin e~ds 
s 

where Q(~) is the "total source" density: 

6 
Q(~,n,,) • Q7 + E Qj(i w) nj , 

j=1 

- -iwt 
where nj = nje 

(0.12) 

. If only contributions up to second-order terms of $T are retained, 

for the computation of forces, then the drift forces and moment can be 

written ip terms of the first-order far field potential as, 
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- _ -p wta 2n 1 kh 
(Fx) - 2 sinh kh ~ C4sinh 2kh + ~] 2T(S) cos [T(S) + n/4] cos s 

k 1 kh 2n 2 
- ~ [if sinh 2kh + 2 J ·f T (e). cos a cte (0.13) 

0 

<F > y = -
P w r,;a 
2 sinh kh 

2n [l + kh] n ~ 4 sinh 2kh 2 2T (S) cos [T(S) + 4J 

sin B - ~k[* sinh 2kh + ~h] (0.14) 

(M- ) (sinh 2kh + ~) [ Pwta ' , z 4k 2 sinh kh ~2n/k.T'(S).sin[T(S) + n/4] 

pwta 2n 
sinh kh • k T'(S) cos [T(S) + n/4] 

-~ 
2 

2n 
Jr2 <e> ,•<e> de 
0 

(0.15) 

where, T'(S) and (T'(S)) is interpreted as~! and {~~) respectively and 

evaluated at e-s. 

The working formulae (0.13) - (0.15) are used in a computer 

program developed to evaluate the steady horizontal drift forces and 

vertical moment. The detail of the derivation is rather complicated 

and lengthy. It can be found in Faltinsen and Michelsen (1974), and 

hence is omitted here. 

0.2 Wave Drift Forces and Moments - Near Field Approach 

The following analysis follows that or Pinkster et al (1977). The 

response motions or the structure are related to a system of three 

co-ordinate axes as illustrated in Figure 0.1. The first system, 

attached to the body, is defined by G - X -1 
x2 - x

3 
with its origin 

fixed to the center of gravity of the body. A second system or 
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co-ordinate axes, fixed with its origin at the mean free surface, is 

defined as 0 - x1 - x2 - x
3

• The third system of co-ordinate axes is 

defined as G- x1 • - x2 • - x
3

•, has its origin at the center of gravity 

of the body and is always parallel to the axes of the fixed system 0 -

x
1 

- x
2 

- x
3

• 

As the body moves due to first-order and second-order wave forces, 

a point on the surface is positioned relative to the fixed system of 

(0.16) 

where 

-co> - <o> -X = Xg + X (0.17) 

i.e. the mean position vector and x(l) is the first-order oscillatory 

motion defined as 

-(1) - {1) (1) -
X . = Xg + ~ X X (0.18) 

where a(l) represents the first-order rotations x~l), x~l) and x~l) 

which represent roll, pitch and yaw respectively. The term x is the 

vector to a point on the surface. The orientation of a surface element 

-on the body is denoted by the outward normal vector n. This vector is 

related to the coordinate system 0 - x1 - x2 - x
3 

and 

x
3

• by, 

N a N(Q} + £N(1) + £2 N(2) 

where, 

-co> 
N • n 

-Cl> -o, 
N . =a . Xn 

o- x1 • - x2 • -

(0.19a) 

(D.19b) 

(D.19c) 

(D:19d) 
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The potentials in this expression are defined relative to the 0 - x1 -

x
2 

- x
3 

axes with, 

where t indicates time and X the position vector of the point under 

consideration. This fluid is bounded by the free surface, the sea 

floor and the body surface and thus must satisfy conditions at each of 

these boundaries. The free surface and ~ea floor boundary conditions 

are Equations (C.4) for the first-order potential, ~ 1 ) , and Equations 

(C.6) for the second-order potential, ~( 2 ). The boundary condition on 

the body surface is that the relative velocity ·between the fluid and 

the body in the direction of the normal to the body is zero, i.e. no 

fluid passes through the hull. This boundary condition has to be 

satisfied at the instantaneous position of the body surface element and 

is written as, 

V ~T N = V • N (0.25) 

where V is the velocity vector of the surface relative to the fixed 

0- X
1 

- X
2

- x
3 

and N is defined by Equation (D.19a). The ~( 1 ) ter~ 

in Equation_ (P.24) is represented as three components expressed as, 

+(~) = ~w(1) + ~d (~) + ~b(~) (D.26) 

where ~w(~) represents the potential of the undisturbed incoming waves 

and ~d( 1 ) represents the diffraction potential. It is from these two 

components that the first-order wave exciting forces are found. The 

body motion potential ~b (l) is used to determine the hydrodynamic 

reaction forces known as added mass and damping. The second-order 
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velocity potential is expressed as 

,(2) - ' (2) + $ (2) + $ (2) 
w d b (0.27) 

where $ ( 2 ) can be considered as the undisturbed second-order wave w 

which must satisfy the free surface boundary condition defined by 

Equation (C.6c ) whereas the second-order diffraction potential, 'd (2 ), 

and the second order body potential $~2 )satisfy the linearized free 

surface equation given by Equation (C.4c). The solution of the 

( 2'> second-order diffraction potential, $d , and the undisturbed 

second-order potential ' ( 2 ) provides the low frequency second-order w 

wave exciting forces. The second-order body potential 'b( 2 ) satisfies 

the same boundary conditions as the first-order body potential and is 

expressed in terms of added mass and damping. 

0.2.1 Second-order Wave Force 

The second-order forces which induce slow drift motions of the 

structure are the only components considered here. The wave drift 

forces are determined along the G - x
1

' - X
2

' - x
3

' axis of the 

co-ordinate system. 

Equation (D.20) is expanded by substituting equations (0.22) and 

(0.19) into (0.21). Therefore, 

FT- -f! (p(O) + EP(~) + E2P( 2 )> (~+EN(~) + E2N( 2 )) dS 

so 

- J/ (p(O) + EP(1} + E2P( 2 )) (~ + EN+ E2 N( 2 )> dS 
s 

. The second-order force is determined by integration of all 

products of pressures, pT, and normal vectors, N, which give 

(0.28) 
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second-order force contributions over the constant part, S
0

, of the 

wetted surface and by integration of first-order pressures over the 

oscillating surface s, 

F ~ 2 ) JJ ( p ( 1 ) N ( , ) + p ( 2 ) ~ + p ( 0 ) N ( 2 ) ) dS 

so 

+1rr <,>-r; p n dS 
s 

Using Equation (0.19c) 

~ ( ~ ) X -JJ p ( 1 ) ~ dS 
s 

0 

(0.29) 

(0.30) 

The gravity force on the structure must also be accounted for in 

this expression. The force along the 0 - x
1

' - x2 • - x
3

• axis caused 

by gravity can be written as, 

F( 2 ) = ~(l) X (0 0 pg~) 
gravity ' • (0.31) 

where is the structure displacement. Therefore Equation 0.30 can be 

written as, 

(0.32) 

This gravity effect is the result of a rotation of the structure 

in response to first-order loading and is expressed as, 

(0.33) 

where, M c mass of structure 

Xg ~ acceleration due to gravity. 

The second part of Equation (0.29) is essentially the integration 

of the pressure, p( 2 ), described by Equation (0.22c). 
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Finally, the second integral in Equation (D.29) is on the wetted 

oscillating part of the structure between the static waterline on the 

body surface, WL, and the wave profile along the body, t~~), 

This integral becomes 

( 1 (1)2 -
- ~ -2 pg z; . • n • di. 

WL · r 
(D.34) 

where z; ( 1 ) is the relative wave amplitude and dl is the line element 
r 

of the waterline. 

The above analysis has indicated that there are several components 

contributing to the second order forces on a structure. They are 

summarized, following ?inkster (1980) as follows: 

I. Relative wave height contribution, 

1 f ( 1)2 - - pg t ... . 2 WL • 
• n • dl 

II. Pressure drop due to velocity squared term, 

~ P ~ l v• ( 1) 12 . ~ • ds 

0 

(D. 35a) 

(D.35b) 

III. Pressure drop due to product of gradient of first-order pressure 

and first-order motion, 

rr a v~ ( ~ ) - (1 ) 
- p J) {at • X . } • n • ds 

So 

IV. The effects of first-order rotations and inertia forces 

.. 
~ c 1 >x <M x < n > g . 

V. The effects of second-order waves. 

rr a~' 2 ' -
- p )) - n ds 

. So at 

VI. A complex term representing second-order motions of the 

structure's center of buoyancy and water plane area. 

(D.35c) 

(D.35d) 

(D.35e) 
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0.3 Sample Calculations 

Figure 0.3 compares the results given by the present program, 

which is based on Equation (0.13), to the near field results of 

Pinkster (1980) and Standing et al (1981) for the barge shown in Figure 

0.2. Also included in the comparison are the results of the far field 

approach presented by Standing et al (1981). The near field results 

given by Standing et al (1981) are based on the method of Pinkster 
\ 

(1980) and the far field results given by the same reference are based 

on the method of Faltinsen and Michelsen (1975). As indicated in the 

Figure, there is very good agreement between the results generated by 

the program used in the present analysis and those presented by 

Standing et al (1981). There is however a considerable discrepancy 

between the results presented by Pinkster (1981) and those presented by 

Standing et al (1981) which are presumably based on the same method. 

Further investigations were conducted by Standing et al (1981) to 

determine the cause of this disagreement. Figure 0.4 illustrates the 

individual contributions of Equations (0.35) to the total drift force. 

As can be seen in the Figure, there is a considerable difference in the 

contribution made by equation (D.35a). Standing attributes this 

disagreement to the manner in which the waterline was modelled for the 

two cases. The Standing method uses twice as many points as the number 

of sources in the row of panels nearest the waterline than does 

Pinkster (1981), presumably giving a more accurate result. 

· The contribution of the second-order wave referred to as "setdown" 

is also investigated for the barge shown in Figure 0.2. The results 

obtained_from Equation (3.15) are compared to those presented by 

Pinkster (1980) and Standing et al (1981) for the same wave conditions 

in Table 01. As indicated in this table, good agreement was found for 

the range tested. 
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1 = Pinkster {1980) 

11 • Standing et al {1981) 
Force Tonnes 

111 • Present Program 
a{w )a{w ) 2 

n m m 

w (rad/sec) 
n 0.50 0.60 o.-10 0.80 0.90 1 .oo 

w {rad/sec) ~ m 

~ ~~ 
\ 

i 
11 0.50 

iii 

6 0 

~' 0.60 5 0 
6 0 

4 6 0 

~~ 0.70 7 8 0 
8 6 0 

11 5 6 0 

~~ 0.80 ·s 6 4 0 
10 6 6 0 

1.4 8 6 8 0 

~ 0.90 15 3 6 3 0 
15 8 5 6 0 

17 15 5 6 6 ' 0 
1.00 16 13 4 2 7 0 

17 17 7 4 8 0 

'able 3 Comparison Among Present Computed Analysis and Published Data For 
Second-order Wave Effects on a Rectangular Barge 



FIG. D.l COORDINATE SYSTEM FOR NEAR FIELD APPROACH • 

0'1 
I 



10m 

DISPLACEMENT - 73750 m 

CG - MIDSHIPS 
Ru- 20m 

Ryy -39m 
Rzz- 39m 

z 

FIG. D.2 RECTANGULAR BARGE USED TO COMPARE NEAR AND FAR FIELD 
APPROACHES 



4.0 PINKSTER NEAR FIELD 

• STANDING NEAR FIELD 
0 STANDING FAR FIELD 

3.5 K PRESENT METHOD FAR FIELD 

3.0 

I N I I 2.5 m_. 
N 

0 
0 
Q.. 

-IN 2.0 
I 

1.5 

1.0 

0.5 

1.5 3.0 

wJL!g 

4.5 5.25 

FIG. D.3 MEAN .DRIFT FORCE COEFFICIENTS IN HEAD SEAS 
' 

FOR RECTANGULAR BARGE SHOWN IN FIG. D .2. 



I 
N 

m[..J 
N 

0 
o
Q... 

I -fC\1 

"" .~ 

4 

2 

0 
1 

•-2 

-4 

-6 

-8 

FORCE COMPONENT 

---

1 

II 

m 
m: 

...... , 2 

' ' ,e 
\ 

\ 
\ 
\ 
\ 

-Dl9-

STANDING 
G) 

6 

+ 
y 

3 

wJLig 

PINKSTER 

------

--
·-·---' 

+----
4 

\ 
\ 

~ 
\ 
\ Ci) 

\ 

' -...-.._e e _________ e 

-------

FIG. 0.4 COMPARISON AMONG COMPONENTS CONTRIBUTING 
TO THE NEAR FIELD APPROACH IN FIG. D. 3 



- El-

APPENDIX E 

SECOND ORDER CONTROL SIGNALS 
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In first-order wave generation undesirable long waves are produced 

which may and the result in erroneous response spectra of the model 

under investigation due to incorrect representation of second-order 

waves. Considerable attention has been recently given to this 

second-order problem by Ottesen Hansen (1978) and Sand (1982). Sand 

(1982) has presented the second-order control signals for second-order 

generation. These second-order signals are unique to the type of 
., 

generator system being used. A variety of wave generator types can be 

found in hydraulic laboratories throughout the world, most of which are 

of the piston or flap type or a combination of both. 

Ottesen-Hansen (1978) has presented transfer functions which 

relate first-order waves in a wave group to natural second-order long 

waves. These transfer functions, Gnm' relate the wave elevations ~n(t) 

and t (t) generated at frequencies f and r respectively, to the m n m 

second-order long wave, ~nm(t) by the relationship, 

tnm<t. ) a a + b b 
h • Gnmh [< n m h2 n m) cos(~wnmt- ~knmx1) 

where, 

G h • nm 

Gl h = . nm 

G2 h • 
nm 

a b -a b 
( m n n m) i ( k >] 

+ h2 s n ~wnmt - ~ nmxl 

G1 h + ~2 h - G3 h . nm nm nm 
G4 h nm 

2 4w D D ~k h cos h(~k h) 
[ nm run run ] 
cosh (k h+k h)-cosh (~k h) n m nm 

~k h(D- D )(k hD + k hD ) coth(~k h) nm n m n m m n nm 
20 D n m 

(E. t a) 

(E.lb) 

(E. 1 c) 

(E.ld) 
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2 D )2 (E.1e) G3 h 21T (D - ~k h run n m run 

G4 h = 41T2
(D - D )2 coth(~krunh) - ~k h (E.1f) run n m nm 

D.= (h/g) 112 f. 
l . l 

(E.1g) 

and, h • water depth 

Curves of these G h values are shown in Figure E.2 for a range of nm 

frequency differences and water depths. It is evident from this graph 

that the long wave amplitude is greatly ~mplified in shallow water. 

Sand (1982) has included these equations of G in a second-order run 

control signal .to produce correct second-order piston positions for the 

correct group induced long wave. The second order piston position is 

defined in time as, 

1: 
n-m=l 

1: 
m•m* 

X~(t) 

f* where, m* = r-• f* 2 lowest frequency. 
0 

(E.2a) 

The solution to the second-order equation is given by Sand (1982) as, 

X(2)(t} ab-ab aa+bb 
= [< n m m n} F h ( n m n m) F h] t --h~--- h 2 1 + h 2 2 3 cos llwnm 

a a +b b a b -a b 
+ [< n m n m) F h ( m n n m) F h] i • t 

h2 1 + h2 23 S n uWnm (E.2b) 

In this expression, 

(E.2c) 

where, 
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G h~kfh[(~k h-~kfh)sinh(~k h+~kfh)+(~k h+~kfh)sinh(~k h-~kfh)] nm nm nm nm nm 
F11h 2 2 2 

and 

2(~k h -~kf h2 )sinh(~k h)sinh(~kfh) nm nm 

fm~kfhkmh(1+Gn)[okmh sinh(ok~h) + ok~h sinh(okmh)] 

Fl2h ~ ~f8(k;h2-~k:h2 ) sinh (~kfh) sinh (kmh) tanh knh) 

f ~kfhk h(l+G )[ok-h sinh(ok~h) + ok+h sinh(ok-h)] 
+ n n m n 1'1 n n 

~f8(k2h2 - ~kf2h2 )sinh(~kfh)sinh(k h)tanh(k h) n n m 

also, ~f is determined from 

and, oKm • km ! ~kf 

Finally the last transfer function in Equation (E.2b) is, 

F2hCF3 - F3 ) ,m ,n 

where 

~k.h(l+G )(1+G ) 
F J n m 

2h • 8 tanh (k h) tanh (k h) n m 

and 

2k h 
m 

G • m sinh(2k h) m 

(E.2d) 

(E.2e) 

(E.2f) 

(E.2g) 

(E.2h) 

f GO 

F - ..E! r 
2kjh sin{kjh)(kjh sin(kjh)coth(~kfh) + ~kfh cos(kJh)] 

3,m ~f j•l 2 2 2 2 
(kjh + Akrh )(sin(kjh)cos{kjh) + kjh] 

(E.2i) 

in which kjh is determined from the expression, 



- E5-

In the previous Equation F11 h is the contribution to the 

second-order piston position x< 2 ) (t) for the natural second-order wave nm 

tnm(t), F12h is the contribution used to eliminate the errors caused by 

the wave board displacement and F
23 

contributes to eliminate the free 

second-order waves generated by first-order local disturbances. The 

contribution of F
23

h is negligible compared to the other two and 

therefore will not be discussed further. 

Curves of F1h are presented in Figu~e E.l. It can be seen from 

the Figure that there are certain conditions where the second-order 

control signal makes no adjustment to the first order wave board 

displacement. This means that below this point the purpose of the 

second-order displacement is to enhance the generated group bounded 

waves while in the deeper water situation the signal's purpose is to 

supress the second-order wave effect. Barthel et al (1983) has shown 

these second-order control signals to be very effective in generating 

correct group bounded waves in shallow water conditions for a piston 

type generator. 
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FIG. E.2 TRANSFER FUNCTION, Gnm h, FOR WAVE GROUPS 
·sAND ( 1982) 










